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Preface

This book provides a detailed treatment of microeconometric analysis, the analysis of
individual-level data on the economic behavior of individuals or firms. This type of
analysis usually entails applying regression methods to cross-section and panel data.

The book aims at providing the practitioner with a comprehensive coverage of sta-
tistical methods and their application in modern applied microeconometrics research.
These methods include nonlinear modeling, inference under minimal distributional
assumptions, identifying and measuring causation rather than mere association, and
correcting departures from simple random sampling. Many of these features are of
relevance to individual-level data analysis throughout the social sciences.

The ambitious agenda has determined the characteristics of this book. First, al-
though oriented to the practitioner, the book is relatively advanced in places. A cook-
book approach is inadequate because when two or more complications occur simulta-
neously — a common situation — the practitioner must know enough to be able to adapt
available methods. Second, the book provides considerable coverage of practical data
problems (see especially the last three chapters). Third, the book includes substantial
empirical examples in many chapters to illustrate some of the methods covered. Fi-
nally, the book is unusually long. Despite this length we have been space-constrained.
We had intended to include even more empirical examples, and abbreviated presen-
tations will at times fail to recognize the accomplishments of researchers who have
made substantive contributions.

The book assumes a good understanding of the linear regression model with matrix
algebra. It is written at the mathematical level of the first-year economics Ph.D. se-
quence, comparable to Greene (2003). We have two types of readers in mind. First, the
book can be used as a course text for a microeconometrics course, typically taught in
the second year of the Ph.D., or for data-oriented microeconomics field courses such
as labor economics, public economics, and industrial organization. Second, the book
can be used as a reference work for graduate students and applied researchers who
despite training in microeconometrics will inevitably have gaps that they wish to fill.

For instructors using this book as an econometrics course text it is best to introduce
the basic nonlinear cross-section and linear panel data models as early as possible,

xxi



PREFACE

initially skipping many of the methods chapters. The key methods chapter (Chapter 5)
covers maximum-likelihood and nonlinear least-squares estimation. Knowledge of
maximum likelihood and nonlinear least-squares estimators provides adequate back-
ground for the most commonly used nonlinear cross-section models (Chapters 14—17
and 20), basic linear panel data models (Chapter 21), and treatment evaluation meth-
ods (Chapter 25). Generalized method of moments estimation (Chapter 6) is needed
especially for advanced linear panel data methods (Chapter 22).

For readers using this book as a reference work, the chapters have been written to be
as self-contained as possible. The notable exception is that some command of general
estimation results in Chapter 5, and occasionally Chapter 6, will be necessary. Most
chapters on models are structured to begin with a discussion and example that is acces-
sible to a wide audience.

The Web site www.econ.ucdavis.edu/faculty/cameron provides all the data and
computer programs used in this book and related materials useful for instructional
purposes.

This project has been long and arduous, and at times seemingly without an end. Its
completion has been greatly aided by our colleagues, friends, and graduate students.
We thank especially the following for reading and commenting on specific chapters:
Bijan Borah, Kurt Brénnés, Pian Chen, Tim Cogley, Partha Deb, Massimiliano De
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PART ONE

Preliminaries

Part 1 covers the essential components of microeconometric analysis — an economic
specification, a statistical model and a data set.

Chapter 1 discusses the distinctive aspects of microeconometrics, and provides an
outline of the book. It emphasizes that discreteness of data, and nonlinearity and het-
erogeneity of behavioral relationships are key aspects of individual-level microecono-
metric models. It concludes by presenting the notation and conventions used through-
out the book.

Chapters 2 and 3 set the scene for the remainder of the book by introducing the
reader to key model and data concepts that shape the analyses of later chapters.

A key distinction in econometrics is between essentially descriptive models and
data summaries at various levels of statistical sophistication and models that go be-
yond associations and attempt to estimate causal parameters. The classic definitions
of causality in econometrics derive from the Cowles Commission simultaneous equa-
tions models that draw sharp distinctions between exogenous and endogenous vari-
ables, and between structural and reduced form parameters. Although reduced form
models are very useful for some purposes, knowledge of structural or causal parame-
ters is essential for policy analyses. Identification of structural parameters within the
simultaneous equations framework poses numerous conceptual and practical difficul-
ties. An increasingly-used alternative approach based on the potential outcome model,
also attempts to identify causal parameters but it does so by posing limited questions
within a more manageable framework. Chapter 2 attempts to provide an overview of
the fundamental issues that arise in these and other alternative frameworks. Readers
who initially find this material challenging should return to this chapter after gaining
greater familiarity with specific models covered later in the book.

The empirical researcher’s ability to identify causal parameters depends not only
on the statistical tools and models but also on the type of data available. An experi-
mental framework provides a standard for establishing causal connections. However,
observational, not experimental, data form the basis of much of econometric inference.
Chapter 3 surveys the pros and cons of three main types of data: observational data,
data from social experiments, and data from natural experiments. The strengths and
weaknesses of conducting causal inference based on each type of data are reviewed.
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CHAPTER 1

Overview

1.1. Introduction

This book provides a detailed treatment of microeconometric analysis, the analysis
of individual-level data on the economic behavior of individuals or firms. A broader
definition would also include grouped data. Usually regression methods are applied to
cross-section or panel data.

Analysis of individual data has a long history. Ernst Engel (1857) was among the
earliest quantitative investigators of household budgets. Allen and Bowley (1935),
Houthakker (1957), and Prais and Houthakker (1955) made important contributions
following the same research and modeling tradition. Other landmark studies that were
also influential in stimulating the development of microeconometrics, even though
they did not always use individual-level information, include those by Marschak and
Andrews (1944) in production theory and by Wold and Jureen (1953), Stone (1953),
and Tobin (1958) in consumer demand.

As important as the above earlier cited work is on household budgets and demand
analysis, the material covered in this book has stronger connections with the work on
discrete choice analysis and censored and truncated variable models that saw their first
serious econometric applications in the work of McFadden (1973, 1984) and Heckman
(1974, 1979), respectively. These works involved a major departure from the over-
whelming reliance on linear models that characterized earlier work. Subsequently, they
have led to significant methodological innovations in econometrics. Among the earlier
textbook-level treatments of this material (and more) are the works of Maddala (1983)
and Amemiya (1985). As emphasized by Heckman (2001), McFadden (2001), and oth-
ers, many of the fundamental issues that dominated earlier work based on market data
remain important, especially concerning the conditions necessary for identifiability of
causal economic relations. Nonetheless, the style of microeconometrics is sufficiently
distinct to justify writing a text that is exclusively devoted to it.

Modern microeconometrics based on individual-, household-, and establishment-
level data owes a great deal to the greater availability of data from cross-section
and longitudinal sample surveys and census data. In the past two decades, with the
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expansion of electronic recording and collection of data at the individual level, data
volume has grown explosively. So too has the available computing power for analyzing
large and complex data sets. In many cases event-level data are available; for example,
marketing science often deals with purchase data collected by electronic scanners in
supermarkets, and industrial organization literature contains econometric analyses of
airline travel data collected by online booking systems. There are now new branches of
economics, such as social experimentation and experimental economics, that generate
“experimental” data. These developments have created many new modeling opportu-
nities that are absent when only aggregated market-level data are available. Meanwhile
the explosive growth in the volume and types of data has also given rise to numerous
methodological issues. Processing and econometric analysis of such large microdata-
bases, with the objective of uncovering patterns of economic behavior, constitutes the
core of microeconometrics. Econometric analysis of such data is the subject matter of
this book.

Key precursors of this book are the books by Maddala (1983) and Amemiya (1985).
Like them it covers topics that are presented only briefly, or not at all, in undergraduate
and first-year graduate econometrics courses. Especially compared to Amemiya (1985)
this book is more oriented to the practitioner. The level of presentation is nonetheless
advanced in places, especially for applied researchers in disciplines that are less math-
ematically oriented than economics.

A relatively advanced presentation is needed for several reasons. First, the data are
often discrete or censored, in which case nonlinear methods such as logit, probit,
and Tobit models are used. This leads to statistical inference based on more difficult
asymptotic theory.

Second, distributional assumptions for such data become critically important. One
response is to develop highly parametric models that are sufficiently detailed to capture
the complexities of data, but these models can be challenging to estimate. A more com-
mon response is to minimize parametric assumptions and perform statistical inference
based on standard errors that are “robust” to complications such as heteroskedasticity
and clustering. In such cases considerable knowledge can be needed to ensure valid
statistical inference even if a standard regression package is used.

Third, economic studies often aim to determine causation rather than merely mea-
sure correlation, despite access to observational rather than experimental data. This
leads to methods to isolate causation such as instrumental variables, simultaneous
equations, measurement error correction, selection bias correction, panel data fixed
effects, and differences-in-differences.

Fourth, microeconomic data are typically collected using cross-section and panel
surveys, censuses, or social experiments. Survey data collected using these methods
are subject to problems of complex survey methodology, departures from simple ran-
dom sampling assumptions, and problems of sample selection, measurement errors,
and incomplete, and/or missing data. Dealing with such issues in a way that can sup-
port valid population inferences from the estimated econometric models population
requires use of advanced methods.

Finally, it is not unusual that two or more complications occur simultaneously,
such as endogeneity in a logit model with panel data. Then a cookbook approach
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becomes very difficult to implement. Instead, considerable understanding of the the-
ory underlying the methods is needed, as the researcher may need to read econometrics
journal articles and adapt standard econometrics software.

1.2. Distinctive Aspects of Microeconometrics

We now consider several advantages of microeconometrics that derive from its distinc-
tive features.

1.2.1. Discreteness and Nonlinearity

The first and most obvious point is that microeconometric data are usually at a low
level of aggregation. This has a major consequence for the functional forms used to
analyze the variables of interest. In many, if not most, cases linear functional forms
turn out to be simply inappropriate. More fundamentally, disaggregation brings to the
forefront heterogeneity of individuals, firms, and organizations that should be prop-
erly controlled (modeled) if one wants to make valid inferences about the underlying
relationships. We discuss these issues in greater detail in the following sections.

Although aggregation is not entirely absent in microdata, as for example when
household- or establishment-level data are collected, the level of aggregation is usu-
ally orders of magnitude lower than is common in macro analyses. In the latter case the
process of aggregation leads to smoothing, with many of the movements in opposite
directions canceling in the course of summation. The aggregated variables often show
smoother behavior than their components, and the relationships between the aggre-
gates frequently show greater smoothness than the components. For example, a rela-
tion between two variables at a micro level may be piecewise linear with many nodes.
After aggregation the relationship is likely to be well approximated by a smooth func-
tion. Hence an immediate consequence of disaggregation is the absence of features of
continuity and smoothness both of the variables themselves and of the relationships
between them.

Usually individual- and firm-level data cover a huge range of variation, both in the
cross-section and time-series dimensions. For example, average weekly consumption
of (say) beef is highly likely to be positive and smoothly varying, whereas that of an in-
dividual household in a given week may be frequently zero and may also switch to pos-
itive values from time to time. The average number of hours worked by female workers
is unlikely to be zero, but many individual females have zero market hours of work
(corner solutions), switching to positive values at other times in the course of their la-
bor market history. Average household expenditure on vacations is usually positive, but
many individual households may have zero expenditure on vacations in any given year.
Average per capita consumption of tobacco products will usually be positive, but many
individuals in the population have never consumed these products and never will, irre-
spective of price and income considerations. As Pudney (1989) has observed, micro-
data exhibit “holes, kinks and corners.” The holes correspond to nonparticipation in the
activity of interest, kinks correspond to the switching behavior, and corners correspond
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to the incidence of nonconsumption or nonparticipation at specific points of time.
That is, discreteness and nonlinearity of response are intrinsic to microeconometrics.

An important class of nonlinear models in microeconometrics deals with limited
dependent variables (Maddala, 1983). This class includes many models that provide
suitable frameworks for analyzing discrete responses and responses with limited range
of variation. Such tools of analyses are of course also available for analyzing macro-
data, if required. The point is that they are indispensable in microeconometrics and
give it its distinctive feature.

1.2.2. Greater Realism

Macroeconometrics is sometimes based on strong assumptions; the representative
agent assumption is a leading example. A frequent appeal is made to microeconomic
reasoning to justify certain specifications and interpretations of empirical results. How-
ever, it is rarely possible to say explicitly how these are affected by aggregation over
time and micro units. Alternatively, very extreme aggregation assumptions are made.
For example, aggregates are said to reflect the behavior of a hypothetical representative
agent. Such assumptions also are not credible.

From the viewpoint of microeconomic theory, quantitative analysis founded on
microdata may be regarded as more realistic than that based on aggregated data. There
are three justifications for this claim. First, the measurement of the variables involved
in such hypotheses is often more direct (though not necessarily free from measurement
error) and has greater correspondence to the theory being tested. Second, hypotheses
about economic behavior are usually developed from theories of individual behavior. If
these hypotheses are tested using aggregated data, then many approximations and sim-
plifying assumptions have to be made. The simplifying assumption of a representative
agent causes a great loss of information and severely limits the scope of an empirical
investigation. Because such assumptions can be avoided in microeconometrics, and
usually are, in principle the microdata provide a more realistic framework for testing
microeconomic hypotheses. This is not a claim that the promise of microdata is nec-
essarily achieved in empirical work. Such a claim must be assessed on a case-by-case
basis. Finally, a realistic portrayal of economic activity should accommodate a broad
range of outcomes and responses that are a consequence of individual heterogeneity
and that are predicted by underlying theory. In this sense microeconomic data sets can
support more realistic models.

Microeconometric data are often derived from household or firm surveys, typically
encompassing a wide range of behavior, with many of the behavioral outcomes tak-
ing the form of discrete or categorical responses. Such data sets have many awkward
features that call for special tools in the formulation and analysis that, although not
entirely absent from macroeconometric work, nevertheless are less widely used.

1.2.3. Greater Information Content

The potential advantages of microdata sets can be realized if such data are informa-
tive. Because sample surveys often provide independent observations on thousands of
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cross-sectional units, such data are thought to be more informative than the standard,
usually highly serially correlated, macro time series typically consisting of at most a
few hundred observations.

As will be explained in the next chapter, in practice the situation is not so clear-cut
because the microdata may be quite noisy. At the individual level many (idiosyncratic)
factors may play a large role in determining responses. Often these cannot be observed,
leading one to treat them under the heading of a random component, which can be a
very large part of observed variation. In this sense randomness plays a larger role in
microdata than in macrodata. Of course, this affects measures of goodness of fit of the
regressions. Students whose initial exposure to econometrics comes through aggregate
time-series analysis are often conditioned to see large R? values. When encountering
cross-section regressions for the first time, they express disappointment or even alarm
at the “low explanatory power” of the regression equation. Nevertheless, there remains
a strong presumption that, at least in certain dimensions, large microdata sets are highly
informative.

Another qualification is that when one is dealing with purely cross-section data,
very little can be said about the intertemporal aspects of relationships under study.
This particular aspect of behavior can be studied using panel and transition data.

In many cases one is interested in the behavioral responses of a specific group of
economic agents under some specified economic environment. One example is the
impact of unemployment insurance on the job search behavior of young unemployed
persons. Another example is the labor supply responses of low-income individuals
receiving income support. Unless microdata are used such issues cannot be addressed
directly in empirical work.

1.2.4. Microeconomic Foundations

Econometric models vary in the explicit role given to economic theory. At one end of
the spectrum there are models in which the a priori theorizing may play a dominant
role in the specification of the model and in the choice of an estimation procedure. At
the other end of the spectrum are empirical investigations that make much less use of
economic theory.

The goal of the analysis in the first case is to identify and estimate fundamental
parameters, sometimes called deep parameters, that characterize individual taste and
preferences and/or technological relationships. As a shorthand designation, we call
this the structural approach. Its hallmark is a heavy dependence on economic theory
and emphasis on causal inference. Such models may require many assumptions, such
as the precise specification of a cost or production function or specification of the
distribution of error terms. The empirical conclusions of such an exercise may not
be robust with respect to the departures from the assumptions. In Section 2.4.4 we
shall say more about this approach. At the present stage we simply emphasize that if
the structural approach is implemented with aggregated data, it will yield estimates
of the fundamental parameters only under very stringent (and possibly unrealistic)
conditions. Microdata sets provide a more promising environment for the structural
approach, essentially because they permit greater flexibility in model specification.
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The goal of the analysis in the second case is to model relationship(s) between re-
sponse variables of interest conditionally on variables the researcher takes as given, or
exogenous. More formal definitions of endogeneity and exogeneity are given in Chap-
ter 2. As a shorthand designation, we call this a reduced form approach. The essential
point is that reduced form analysis does not always take into account all causal inter-
dependencies. A regression model in which the focus is on the prediction of y given
regressors X, and not on the causal interpretation of the regression parameters, is often
referred to as a reduced form regression. As will be explained in Chapter 2, in general
the parameters of the reduced form model are functions of structural parameters. They
may not be interpretable without some information about the structural parameters.

1.2.5. Disaggregation and Heterogeneity

It is sometimes said that many problems and issues of macroeconometrics arise from
serial correlation of macro time series, and those of microeconometrics arise from
heteroskedasticity of individual-level data. Although this is a useful characterization of
the modeling effort in many microeconometric analyses, it needs amplification and is
subject to important qualifications. In a range of microeconometric models, modeling
of dynamic dependence may be an important issue.

The benefits of disaggregation, which were emphasized earlier in this section, come
at a cost: As the data become more disaggregated the importance of controlling for
interindividual heterogeneity increases. Heterogeneity, or more precisely unobserved
heterogeneity, plays a very important role in microeconometrics. Obviously, many
variables that reflect interindividual heterogeneity, such as gender, race, educational
background, and social and demographic factors, are directly observed and hence can
be controlled for. In contrast, differences in individual motivation, ability, intelligence,
and so forth are either not observed or, at best, imperfectly observed.

The simplest response is to ignore such heterogeneity, that is, to absorb it into the
regression disturbance. After all this is how one treats the myriad small unobserved
factors. This step of course increases the unexplained part of the variation. More seri-
ously, ignoring persistent interindividual differences leads to confounding with other
factors that are also sources of persistent interindividual differences. Confounding is
said to occur when the individual contributions of different regressors (predictor vari-
ables) to the variation in the variable of interest cannot be statistically separated. Sup-
pose, for example, that the factor x; (schooling) is said to be the source of variation in
y (earnings), when another variable x, (ability), which is another source of variation,
does not appear in the model. Then that part of total variation that is attributable to
the second variable may be incorrectly attributed to the first variable. Intuitively, their
relative importances are confounded. A leading source of confounding bias is the in-
correct omission of regressors from the model and the inclusion of other variables that
are proxies for the omitted variable.

Consider, for example, the case in which a program participation (0/1 dummy)
variable D is included in the regression mean function with a vector of regressors X,

y=xXB+ aD +u, (1.1)
8
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where u is an error term. The term “treatment” is used in biological and experimental
sciences to refer to an administered regimen involving participants in some trial. In
econometrics it commonly refers to participation in some activity that may impact an
outcome of interest. This activity may be randomly assigned to the participants or may
be self-selected by the participant. Thus, although it is acknowledged that individuals
choose their years of schooling, one still thinks of years of schooling as a “treatment”
variable. Suppose that program participation is taken to be a discrete variable. The
coefficient o of the “treatment variable” measures the average impact of the program
participation (D = 1), conditional on covariates. If one does not control for unob-
served heterogeneity, then a potential ambiguity affects the interpretation of the results.
If d is found to have a significant impact, then the following question arises: Is « sig-
nificantly different from zero because D is correlated with some unobserved variable
that affects y or because there is a causal relationship between D and y? For example,
if the program considered is university education, and the covariates do not include a
measure of ability, giving a fully causal interpretation becomes questionable. Because
the issue is important, more attention should be given to how to control for unobserved
heterogeneity.

In some cases where dynamic considerations are involved the type of data available
may put restrictions on how one can control for heterogeneity. Consider the example
of two households, identical in all relevant respects except that one exhibits a sys-
tematically higher preference for consuming good A. One could control for this by
allowing individual utility functions to include a heterogeneity parameter that reflects
their different preferences. Suppose now that there is a theory of consumer behavior
that claims that consumers become addicted to good A, in the sense that the more they
consume of it in one period, the greater is the probability that they will consume more
of it in the future. This theory provides another explanation of persistent interindi-
vidual differences in the consumption of good A. By controlling for heterogeneous
preferences it becomes possible to test which source of persistence in consumption —
preference heterogeneity or addiction — accounts for different consumption patterns.
This type of problem arises whenever some dynamic element generates persistence
in the observed outcomes. Several examples of this type of problem arise in various
places in the book.

A variety of approaches for modeling heterogeneity coexist in microeconometrics.
A brief mention of some of these follows, with details postponed until later.

An extreme solution is to ignore all unobserved interindividual differences. If unob-
served heterogeneity is uncorrelated with observed heterogeneity, and if the outcome
being studied has no intertemporal dependence, then the aforementioned problems will
not arise. Of course, these are strong assumptions and even with these assumptions not
all econometric difficulties disappear.

One approach for handling heterogeneity is to treat it as a fixed effect and to esti-
mate it as a coefficient of an individual specific 0/1 dummy variable. For example, in
a cross-section regression, each micro unit is allowed its own dummy variable (inter-
cept). This leads to an extreme proliferation of parameters because when a new individ-
ual is added to the sample, a new intercept parameter is also added. Thus this approach
will not work if our data are cross sectional. The availability of multiple observations
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per individual unit, most commonly in the form of panel data with 7' time-series ob-
servations for each of the N cross-section units, makes it possible to either estimate
or eliminate the fixed effect, for example by first differencing if the model is linear
and the fixed effect is additive. If the model is nonlinear, as is often the case, the fixed
effect will usually not be additive and other approaches will need to be considered.

A second approach to modeling unobserved heterogeneity is through a random ef-
fects model. There are a number of ways in which the random effects model can be
formulated. One popular formulation assumes that one or more regression parameters,
often just the regression intercept, varies randomly across the cross section. In another
formulation the regression error is given a component structure, with an individual
specific random component. The random effects model then attempts to estimate the
parameters of the distribution from which the random component is drawn. In some
cases, such as demand analysis, the random term can be interpreted as random prefer-
ence variation. Random effects models can be estimated using either cross-section or
panel data.

1.2.6. Dynamics

A very common assumption in cross-section analysis is the absence of intertempo-
ral dependence, that is, an absence of dynamics. Thus, implicitly it is assumed that
the observations correspond to a stochastic equilibrium, with the deviation from the
equilibrium being represented by serially independent random disturbances. Even in
microeconometrics for some data situations such an assumption may be too strong.
For example, it is inconsistent with the presence of serially correlated unobserved het-
erogeneity. Dependence on lagged dependent variables also violates this assumption.

The foregoing discussion illustrates some of the potential limitations of a single
cross-section analysis. Some limitations may be overcome if repeated cross sections
are available. However, if there is dynamic dependence, the least problematic approach
might well be to use panel data.

1.3. Book Outline

The book is split into six parts. Part 1 presents the issues involved in microeconometric
modeling. Parts 2 and 3 present general theory for estimation and statistical inference
for nonlinear regression models. Parts 4 and 5 specialize to the core models used in
applied microeconometrics for, respectively, cross-section and panel data. Part 6 covers
broader topics that make considerable use of material presented in the earlier chapters.

The book outline is summarized in Table 1.1. The remainder of this section details
each part in turn.

1.3.1. Part 1: Preliminaries

Chapters 2 and 3 expand on the special features of the microeconometric approach
to modeling and microeconomic data structures within the more general statistical
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Table 1.1. Book Outline

Part and Chapter

Background”

Example

1. Preliminaries
1. Overview
2. Causal and Noncausal Models
3. Microeconomic Data
Structures
2. Core Methods
4. Linear Models
5. Maximum Likelihood and
Nonlinear Least-Squares
Estimation
6. Generalized Method of
Moments and Systems
Estimation
7. Hypothesis Tests

8. Specification Tests and Model
Selection
9. Semiparametric Methods
10. Numerical Optimization
3. Simulation-Based Methods
11. Bootstrap Methods
12. Simulation-Based Methods
13. Bayesian Methods
4. Models for Cross-Section Data
14. Binary Outcome Models
15. Multinomial Models

16. Tobit and Selection Models
17. Transition Data: Survival
Analysis
18. Mixture Models and
Unobserved Heterogeneity
19. Models for Multiple Hazards
20. Models of Count Data
5. Models for Panel Data
21. Linear Panel Models: Basics
22. Linear Panel Models:
Extensions
23. Nonlinear Panel Models
6. Further Topics
24. Stratified and Clustered
Samples
25. Treatment Evaluation
26. Measurement Error Models

27. Missing Data and Imputation

5,7

5,14

5,14

5,17

5,17

6,21
5,6,21,22
5

5,21

5

Simultaneous equations models
Observational data

Ordinary least squares
m-estimation or extremum
estimation

Instrumental variables

Wald, score, and likelihood ratio
tests
Conditional moment test

Kernel regression
Newton—Raphson iterative method

Percentile +-method
Maximum simulated likelihood
Markov chain Monte Carlo

Logit, probit for y = (0, 1)

Multinomial logit for
y=(,..,m)

Tobit for y = max(y*, 0)

Cox proportional hazards for
y = min(y*, ¢)

Unobserved heterogeneity

Multiple hazards
Poisson fory =0, 1, 2, ...

Fixed and random effects

Dynamic and endogenous
regressors

Panel logit, Tobit, and Poisson

Data (y;;, x;;) correlated over j

Regressor d = 1 if in program

Logit model with measurement
errors

Regression with missing
observations

“ The background gives the essential chapter needed in addition to the treatment of ordinary and weighted LS in
Chapter 4. Note that the first panel data chapter (Chapter 21) requires only Chapter 4.



OVERVIEW

arena of regression analysis. Many of the issues raised in these chapters are pursued
throughout the book as the reader develops the necessary tools.

1.3.2. Part 2: Core Methods

Chapters 4-10 detail the main general methods used in classical estimation and sta-
tistical inference. The results given in Chapter 5 in particular are extensively used
throughout the book.

Chapter 4 presents some results for the linear regression model, emphasizing those
issues and methods that are most relevant for the rest of the book. Analysis is relatively
straightforward as there is an explicit expression for linear model estimators such as
ordinary least squares.

Chapters 5 and 6 present estimation theory that can be applied to nonlinear models
for which there is usually no explicit solution for the estimator. Asymptotic theory
is used to obtain the distribution of estimators, with emphasis on obtaining robust
standard error estimates that rely on relatively weak distributional assumptions. A quite
general treatment of estimation, along with specialization to nonlinear least-squares
and maximum likelihood estimation, is presented in Chapter 5. The more challenging
generalized method of moments estimator and specialization to instrumental variables
estimation are given separate treatment in Chapter 6.

Chapter 7 presents classical hypothesis testing when estimators are nonlinear and
the hypothesis being tested is possibly nonlinear in parameters. Specification tests in
addition to hypothesis tests are the subject of Chapter 8.

Chapter 9 presents semiparametric estimation methods such as kernel regression.
The leading example is flexible modeling of the conditional mean. For the patents ex-
ample, the nonparametric regression model is E[y|x] = g(x), where the function g(-)
is unspecified and is instead estimated. Then estimation has an infinite-dimensional
component g(-) leading to a nonstandard asymptotic theory. With additional regres-
sors some further structure is needed and the methods are called semiparametric or
seminonparametric.

Chapter 10 presents the computational methods used to compute a parameter esti-
mate when the estimator is defined implicitly, usually as the solution to some first-order
conditions.

1.3.3. Part 3: Simulation-Based Methods

Chapters 11-13 consider methods of estimation and inference that rely on simulation.
These methods are generally more computationally intensive and, currently, less uti-
lized than the methods presented in Part 2.

Chapter 11 presents the bootstrap method for statistical inference. This yields the
empirical distribution of an estimator by obtaining new samples by simulation, such
as by repeated resampling with replacement from the original sample. The bootstrap
can provide a simple way to obtain standard errors when the formulas from asymp-
totic theory are complex, as is the case for some two-step estimators. Furthermore, if
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implemented appropriately, the bootstrap can lead to better statistical inference in
small samples.

Chapter 12 presents simulation-based estimation methods, developed for models
that involve an integral over a probability distribution for which there is no closed-
form solution. Estimation is still possible by making multiple draws from the relevant
distribution and averaging.

Chapter 13 presents Bayesian methods, which combine a distribution for the ob-
served data with a specified prior distribution for parameters to obtain a posterior dis-
tribution of the parameters that is the basis for estimation. Recent advances make com-
putation possible even if there is no closed-form solution for the posterior distribution.
Bayesian analysis can provide an approach to estimation and inference that is quite dif-
ferent from the classical approach. However, in many cases only the Bayesian tool kit
is adopted to permit classical estimation and inference for problems that are otherwise
intractable.

1.3.4. Part 4: Models for Cross-Section Data

Chapters 14-20 present the main nonlinear models for cross-section data. This part is
the heart of the book and presents advanced topics such as models for limited depen-
dent variables and sample selection. The classes of models are defined by the range of
values taken by the dependent variable.

Binary data models for dependent variable that can take only two possible values,
say y = O or y = 1, are presented in Chapter 14. In Chapter 15 an extension is made to
multinomial models, for dependent variable that takes several discrete values. Exam-
ples include employment status (employed, unemployed, and out of the labor force)
and mode of transportation to work (car, bus, or train). Linear models can be informa-
tive but are not appropriate, as they can lead to predicted probabilities outside the unit
interval. Instead logit, probit, and related models are used.

Chapter 16 presents models with censoring, truncation, sample selection. Exam-
ples include annual hours of work, conditional on choosing to work, and hospital ex-
penditures, conditional on being hospitalized. In these cases the data are incompletely
observed with a bunching of observations at y = 0 and with the remaining y > 0.
The model for the observed data can be shown to be nonlinear even if the underlying
process is linear, and linear regression on the observed data can be very misleading.
Simple corrections for censoring, truncation, or sample selection such as the Tobit
model exist, but these are very dependent on distributional assumptions.

Models for duration data are presented in Chapters 17-19. An example is length
of unemployment spell. Standard regression models include the exponential, Weibull,
and Cox proportional hazards model. Additionally, as in Chapter 16, the dependent
variable is often incompletely observed. For example, the data may be on the length of
a current spell that is incomplete, rather than the length of a completed spell.

Chapter 20 presents count data models. Examples include various measures of
health utilization such as number of doctor visits and number of days hospitalized.
Again the model is nonlinear, as counts and hence the conditional mean are nonnega-
tive. Leading parametric models include the Poisson and negative binomial.

13



OVERVIEW

1.3.5. Part 5: Models for Panel Data

Chapters 21-23 present methods for panel data. Here the data are observed in several
time periods for each of the many individuals in the sample, so the dependent variable
and regressors are indexed by both individual and time. Any analysis needs to control
for the likely positive correlation of error terms in different time periods for a given in-
dividual. Additionally, panel data can provide sufficient data to control for unobserved
time-invariant individual-specific effects, permitting identification of causation under
weaker assumptions than those needed if only cross-section data are available.

The basic linear panel data model is presented in Chapter 21, with emphasis on
fixed effects and random effects models. Extensions of linear models to permit lagged
dependent variables and endogenous regressors are presented in Chapter 22. Panel
methods for the nonlinear models of Part 4 are presented in Chapter 23.

The panel data methods are placed late in the book to permit a unified self-contained
treatment. Chapter 21 could have been placed immediately after Chapter 4 and is writ-
ten in an accessible manner that relies on little more than knowledge of least-squares
estimation.

1.3.6. Part 6: Further Topics

This part considers important topics that can generally relate to any and all models
covered in Parts 4 and 5. Chapter 24 deals with modeling of clustered data in sev-
eral different models. Chapter 25 discusses treatment evaluation. Treatment evaluation
is a general term that can cover a wide variety of models in which the focus is on
measuring the impact of some “treatment” that is either exogenously or randomly as-
signed to an individual on some measure of interest, denoted an “outcome variable.”
Chapter 26 deals with the consequences of measurement errors in outcome and/or
regressor variables, with emphasis on some leading nonlinear models. Chapter 27
considers some methods of handling missing data in linear and nonlinear regression
models.

1.4. How to Use This Book

The book assumes a basic understanding of the linear regression model with matrix
algebra. It is written at the mathematical level of the first-year economics Ph.D. se-
quence, comparable to Greene (2003).

Although some of the material in this book is covered in a first-year sequence,
most of it appears in second-year econometrics Ph.D. courses or in data-oriented mi-
croeconomics field courses such as labor economics, public economics, or industrial
organization. This book is intended to be used as both an econometrics text and as an
adjunct for such field courses. More generally, the book is intended to be useful as a
reference work for applied researchers in economics, in related social sciences such as
sociology and political science, and in epidemiology.

For readers using this book as a reference work, the models chapters have been
written to be as self-contained as possible. For the specific models presented in Parts 4
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Table 1.2. Outline of a 20-Lecture 10-Week Course

Lectures Chapter Topic

1-3 4, Appx. A Review of linear models and asymptotic theory
4-7 5 Estimation: m-estimation, ML, and NLS

8 10 Estimation: numerical optimization

9-11 14, 15 Models: binary and multinomial

12-14 16 Models: censored and truncated

15 6 Estimation: GMM

16 7 Testing: hypothesis tests

17-19 21 Models: basic linear panel

20 9 Estimation: semiparametric

and 5 it will generally be sufficient to read the relevant chapter in isolation, except
that some command of the general estimation results in Chapter 5 and in some cases
Chapter 6 will be necessary. Most chapters are structured to begin with a discussion
and example that is accessible to a wide audience.

For instructors using this book as a course text it is best to introduce the basic non-
linear cross-section and linear panel data models as early as possible, skipping many
of the methods chapters. The most commonly used nonlinear cross-section models
are presented in Chapters 14-16; these require knowledge of maximum likelihood
and least-squares estimation, presented in Chapter 5. Chapter 21 on linear panel data
models requires even less preparation, essentially just Chapter 4.

Table 1.2 provides an outline for a one-quarter second-year graduate course taught
at the University of California, Davis, immediately following the required first-year
statistics and econometrics sequence. A quarter provides sufficient time to cover the
basic results given in the first half of the chapters in this outline. With additional time
one can go into further detail or cover a subset of Chapters 11-13 on computation-
ally intensive estimation methods (simulation-based estimation, the bootstrap, which
is also briefly presented in Chapter 7, and Bayesian methods); additional cross-section
models (durations and counts) presented in Chapters 17-20; and additional panel data
models (linear model extensions and nonlinear models) given in Chapters 22 and 23.

At Indiana University, Bloomington, a 15-week semester-long field course in mi-
croeconometrics is based on material in most of Parts 4 and 5. The prerequisite courses
for this course cover material similar to that in Part 2.

Some exercises are provided at the end of each chapter after the first three intro-
ductory chapters. These exercises are usually learning-by-doing exercises; some are
purely methodological whereas others entail analysis of generated or actual data. The
level of difficulty of the questions is mostly related to the level of difficulty of the topic.

1.5. Software

There are many software packages available for data analysis. Popular packages with
strong microeconometric capabilities include LIMDEP, SAS, and STATA, all of which
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offer an impressive range of canned routines and additionally support user-defined pro-
cedures using a matrix programming language. Other packages that are also widely
used include EVIEWS, PCGIVE, and TSP. Despite their time-series orientation, these
can support some cross-section data analysis. Users who wish to do their own pro-
gramming also have available a variety of options including GAUSS, MATLAB, OX,
and SAS/IML. The latest detailed information about these packages and many others
can be efficiently located via an Internet browser and a search engine.

1.6. Notation and Conventions

Vector and matrix algebra are used extensively.

Vectors are defined as column vectors and represented using lowercase bold. For
example, for linear regression the regressor vector X is a K x 1 column vector with jth
entry x; and the parameter vector 3 is a K x 1 column vector with jth entry §;, so

X1 B
X = : and Jé] = :
(K x1 Xk (K x1) Bx

Then the linear regression model y = Byx| + Boxo + - - - + Bxxkx + u is expressed as
y = X3 4+ u. At times a subscript i is added to denote the typical ith observation. The
linear regression equation for the ith observation is then

vi = X0+ u;.

The sample is one of N observations, {(y;,X;),i =1, ..., N}. In this book observa-
tions are usually assumed to be independent over i.

Matrices are represented using uppercase bold. In matrix notation the sample is
(y, X), where y is an N x 1 vector with ith entry y; and X is a matrix with ith row X;,
SO

» X|
y =] : and X =
(N x 1) (N x dim(x))

7
YN Xy

The linear regression model upon stacking all N observations is then
y=XB+u,

where u is an N x 1 column vector with ith entry u;.

Matrix notation is compact but at times it is clearer to write products of matrices
as summations of products of vectors. For example, the OLS estimator can be equiva-
lently written in either of the following ways:

N - N
B=XX)'Xy= (Z Xi";) in)’i-
i=1

i=1
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1.6. NOTATION AND CONVENTIONS

Table 1.3. Commonly Used Acronyms and Abbreviations

Linear

Nonlinear

General

OLS
GLS
FGLS
v
2SLS
3SLS

NLS
FGNLS
NIV
NL2SLS
NL3SLS

LS
ML
QML
GMM
GEE

Ordinary least squares
Generalized least squares
Feasible generalized least squares
Instrumental variables

Two-stage least squares
Three-stage least squares

Nonlinear least squares

Feasible generalized nonlinear least squares
Nonlinear instrumental variables

Nonlinear two-stage least squares
Nonlinear three-stage least squares

Least squares

Maximum likelihood
Quasi-maximum likelihood
Generalized method of moments
Generalized estimating equations

Generic notation for a parameter is the ¢ x 1 vector 8. The regression parameters
are represented by the K x 1 vector 3, which may equal @ or may be a subset of 6

depending on the context.

The book uses many abbreviations and acronyms. Table 1.3 summarizes abbrevia-
tions used for some common estimation methods, ordered by whether the estimator is
developed for linear or nonlinear regression models. We also use the following: dgp
(data-generating process), iid (independently and identically distributed), pdf (prob-
ability density function), cdf (cumulative distribution function), L (likelihood), In L

(log-likelihood), FE (fixed effects), and RE (random effects).
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CHAPTER 2

Causal and Noncausal Models

2.1. Introduction

Microeconometrics deals with the theory and applications of methods of data analysis
developed for microdata pertaining to individuals, households, and firms. A broader
definition might also include regional- and state-level data. Microdata are usually
either cross sectional, in which case they refer to conditions at the same point in
time, or longitudinal (panel) in which case they refer to the same observational units
over several periods. Such observations are generated from both nonexperimental
setups, such as censuses and surveys, and quasi-experimental or experimental setups,
such as social experiments implemented by governments with the participation of
volunteers.

A microeconometric model may be a full specification of the probability distribu-
tion of a set of microeconomic observations; it may also be a partial specification of
some distributional properties, such as moments, of a subset of variables. The mean of
a single dependent variable conditional on regressors is of particular interest.

There are several objectives of microeconometrics. They include both data descrip-
tion and causal inference. The first can be defined broadly to include moment prop-
erties of response variables, or regression equations that highlight associations rather
than causal relations. The second category includes causal relationships that aim at
measurement and/or empirical confirmation or refutation of conjectures and proposi-
tions regarding microeconomic behavior. The type and style of empirical investigations
therefore span a wide spectrum. At one end of the spectrum can be found very highly
structured models, derived from detailed specification of the underlying economic be-
havior, that analyze causal (behavioral) or structural relationships for interdependent
microeconomic variables. At the other end are reduced form studies that aim to un-
cover correlations and associations among variables, without necessarily relying on
a detailed specification of all relevant interdependencies. Both approaches share the
common goal of uncovering important and striking relationships that could be helpful
in understanding microeconomic behavior, but they differ in the extent to which they
rely on economic theory to guide their empirical investigations.
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2.1. INTRODUCTION

As a subdiscipline microeconometrics is newer than macroeconometrics, which is
concerned with modeling of market and aggregate data. A great deal of the early
work in applied econometrics was based on aggregate time-series data collected by
government agencies. Much of the early work on statistical demand analysis up until
about 1940 used market rather than individual or household data (Hendry and Morgan,
1996). Morgan’s (1990) book on the history of econometric ideas makes no reference
to microeconometric work before the 1940s, with one important exception. That ex-
ception is the work on household budget data that was instigated by concern with the
living standards of the less well-off in many countries. This led to the collection of
household budget data that provided the raw material for some of the earlier microe-
conometric studies such as those pioneered by Allen and Bowley (1935). Nevertheless,
it is only since the 1950s that microeconometrics has emerged as a distinctive and rec-
ognized subdiscipline. Even into the 1960s the core of microeconometrics consisted
of demand analyses based on household surveys.

With the award of the year 2000 Nobel Prize in Economics to James Heckman
and Daniel McFadden for their contributions to microeconometrics, the subject area
has achieved clear recognition as a distinct subdiscipline. The award cited Heckman
“for his development of theory and methods for analyzing selective samples” and
McFadden “for his development of theory and methods for analyzing discrete choice.”
Examples of the type of topics that microeconometrics deals with were also men-
tioned in the citation: “... what factors determine whether an individual decides to
work and, if so, how many hours? How do economic incentives affect individual
choices regarding education, occupation or place of residence? What are the effects
of different labor-market and educational programs on an individual’s income and
employment?”

Applications of microeconometric methods can be found not only in every area of
microeconomics but also in other cognate social sciences such as political science,
sociology, and geography.

Beginning with the 1970s and especially within the past two decades revolution-
ary advances in our capacity for handling large data sets and associated computations
have taken place. These, together with the accompanying explosion in the availability
of large microeconomic data sets, have greatly expanded the scope of microecono-
metrics. As a result, although empirical demand analysis continues to be one of the
most important areas of application for microeconometric methods, its style and con-
tent have been heavily influenced by newer methods and models. Further, applications
in economic development, finance, health, industrial organization, labor and public
economics, and applied microeconomics generally are now commonplace, and these
applications will be encountered at various places in this book.

The primary focus of this book is on the newer material that has emerged in the
past three decades. Our goal is to survey concepts, models, and methods that we re-
gard as standard components of a modern microeconometrician’s tool kit. Of course,
the notion of standard methods and models is inevitably both subjective and elastic,
being a function of the presumed clientele of this book as well as the authors’ own
backgrounds. There may also be topics we regard as too advanced for an introductory
book such as this that others would place in a different category.
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CAUSAL AND NONCAUSAL MODELS

Microeconometrics focuses on the complications of nonlinear models and on ob-
taining estimates that can be given a structural interpretation. Much of this book, es-
pecially Parts 2—4, presents methods for nonlinear models. These nonlinear methods
overlap with many areas of applied statistics including biostatistics. By contrast, the
distinguishing feature of econometrics is the emphasis placed on causal modeling.
This chapter introduces the key concepts related to causal (and noncausal) modeling,
concepts that are germane to both linear and nonlinear models.

Sections 2.2 and 2.3 introduce the key concepts of structure and exogeneity.
Section 2.4 uses the linear simultaneous equations model as a specific illustration
of a structural model and connects it with the other important concepts of reduced
form models. Identification definitions are given in Section 2.5. Section 2.6 considers
single-equation structural models. Section 2.7 introduces the potential outcome model
and compares the causal parameters and interpretations in the potential outcome model
with those in the simultaneous equations model. Section 2.8 provides a brief discus-
sion of modeling and estimation strategies designed to handle computational and data
challenges.

2.2. Structural Models

Structure consists of

1. a set of variables W (“data”) partitioned for convenience as [Y Z];
2. a joint probability distribution of W, F'(W);

3. an a priori ordering of W according to hypothetical cause-and-effect relationships and
specification of a priori restrictions on the hypothesized model; and

4. a parametric, semiparametric, or nonparametric specification of functional forms and
the restrictions on the parameters of the model.

This general description of a structural model is consistent with a well-established
Cowles Commission definition of a structure. For example, Sargan (1988, p. 27) states:

A model is the specification of the probability distribution for a set of observations.
A structure is the specification of the parameters of that distribution. Therefore, a
structure is a model in which all the parameters are assigned numerical values.

We consider the case in which the modeling objective is to explain the values of
observable vector-valued variable y, ¥y = (y1, ... , y¢). Each element of y is a func-
tion of some other elements of y and of explanatory variables z and a purely random
disturbance u. Note that the variables y are assumed to be interdependent. By contrast,
interdependence between z; is not modeled. The ith observation satisfies the set of
implicit equations

g(yi.z,u16) =0, 2.1)

where g is a known function. We refer to this as the structural model, and we refer to
0 as structural parameters. This corresponds to property 4 given earlier in this section.
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2.2. STRUCTURAL MODELS

Assume that there is a unique solution for y; for every (z;, u;). Then we can write
the equations in an explicit form with y as function of (z, u):

yi =1z, um). (2.2)

This is referred to as the reduced form of the structural model, where 7 is a vector
of reduced form parameters that are functions of 6. The reduced form is obtained
by solving the structural model for the endogenous variables y;, given (z;, u;). The
reduced form parameters 7 are functions of 6.

If the objective of modeling is inference about elements of 8, then (2.1) provides a
direct route. This involves estimation of the structural model. However, because ele-
ments of 7 are functions of 8, (2.2) also provides an indirect route to inference on 6.
If f(z;, u;|7) has a known functional form, and if it is additively separable in z; and u;,
such that we can write

Vi =gz|m™) +w =Elyilz] +u, (2.3)

then the regression of y on z is a natural prediction function for y given z. In this
sense the reduced form equation has a useful role for making conditional predictions
of y; given (z;, u;). To generate predictions of the left-hand-side variable for assigned
values of the right-hand-side variables of (2.2) requires estimates of 7r, which may be
computationally simpler.

An important extension of (2.3) is the transformation model, which for scalar y
takes the form

A(Y) =77 +u, (2.4)

where A(y) is a transformation function (e.g., A(y) = In(y) or A(y) = y'/?). In some
cases the transformation function may depend on unknown parameters. A transfor-
mation model is distinct from a regression, but it too can be used to make estimates
of E[y|z]. An important example is the accelerated failure time model analyzed in
Chapter 17.

One of the most important, and potentially controversial, steps in the specification
of the structural model is property 3, in which an a priori ordering of variables into
causes and effects is assigned. In essence this involves drawing a distinction between
those variables whose variation the model is designed to explain and those whose
variation is externally determined and hence lie outside the scope of investigation. In
microeconometrics, examples of the former are years of schooling and hours worked;
examples of the latter are gender, ethnicity, age, and similar demographic variables.
The former, denoted y, are referred to as endogenous and the latter, denoted z, are
called exogenous variables.

Exogeneity of a variable is an important simplification because in essence it jus-
tifies the decision to treat that variable as ancillary, and not to model that variable
because the parameters of that relationship have no direct bearing on the variable
under study. This important notion needs a more formal definition, which we now
provide.
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2.3. Exogeneity

We begin by considering the representation of a general finite dimensional parametric
case in which the joint distribution of W, with parameters 6 partitioned as (8, 0,), is
factored into the conditional density of Y given Z, and the marginal distribution of Z,
giving

f1(W10) = fc(Y|Z,0) x fu (Z]6). 2.5)

A special case of this result occurs if
f1(W10) = fc (Y|Z,0)) x fu (Z16,),

where 6, and 0, are functionally independent. Then we say that Z is exogenous with
respect to 01; this means that knowledge of f3,(Z|8,) is not required for inference on
61, and hence we can validly condition the distribution of Y on Z.

Models can always be reparameterized. So next consider the case in which the
model is reparameterized in terms of parameters ¢, with one-to-one transformation
of 0, say ¢ = h(0), where ¢ is partitioned into (¢, ¢,). This reparametrization may
be of interest if, for example, ¢, is structurally invariant to a class of policy interven-
tions. Suppose ¢, is the parameter of interest. In such a case one is interested in the
exogeneity of Z with respect to ¢,. Then, the condition for exogeneity is that

1 (Wlp) = fc (YIZ, ) x fu (Zlp,), (2.6)

where ¢, is independent of ¢,.

Finally consider the case in which the interest is in a parameter A that is a function
of ¢, say h(yp). Then for exogeneity of Z with respect to A, we need two conditions:
(1) A depends only on ¢, i.e., . = h(¢,), and hence only the conditional distribution is
of interest; and (ii) ¢, and ¢, are “variation free” which means that the parameters of
the joint distribution are not subject to cross-restrictions, i.e. (@, ¢,) € ®; x P, =
{p1 € P1, ¢, € Do}

The factorization in (2.5)-(2.6) plays an important role in the development of the
exogeneity concept. Of special interest in this book are the following three con-
cepts related to exogeneity: (1) weak exogeneity; (2) Granger noncausality; (3) strong
exogeneity.

Definition 2.1 (Weak Exogeneity): Z is weakly exogenous for A if (i) and (ii)
hold.

If the marginal model parameters are uninformative for inference on A, then infer-
ence on A can proceed on the basis of the conditional distribution f(Y|Z, ¢;) alone.
The operational implication is that weakly exogenous variables can be taken as given
if one’s main interest is in inference on A or ¢,. This does not mean that there is no
statistical model for Z; it means that the parameters of that model play no role in the
inference on ¢, and hence are irrelevant.
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2.3.1. Conditional Independence

Originally, the Granger causality concept was defined in the context of prediction in a
time-series environment. More generally, it can be interpreted as a form of conditional
independence (Holland, 1986, p. 957).

Partition z into two subsets z; and z; let W = [y, z,, z,] be the matrices of vari-
ables of interest. Then z; and y are conditionally independent given z;, if

flzi,2) = f(ylzo) . (2.8)
This is stronger than the mean independence assumption, which would imply
Elylzi, z2] = E[ylz]. (2.9)

Then z; has no predictive value for y, after conditioning on z,. In a predictive sense
this means that z; does not Granger-cause y.

In a time-series context, z; and z, would be mutually exclusive lagged values of
subsets of y.

Definition 2.2 (Strong Exogeneity): z, is strongly exogenous for ¢ if it is
weakly exogenous for ¢ and does not Granger-cause y so (2.8) holds.

2.3.2. Exogenizing Variables

Exogeneity is a strong assumption. It is a property of random variables relative to
parameters of interest. Hence a variable may be validly treated as exogenous in one
structural model but not in another; the key issue is the parameters that are the subject
of inference. Arbitrary imposition of this property will have some undesirable conse-
quences that will be discussed in Section 2.4.

The exogeneity assumption may be justified by a priori theorizing, in which case it
is a part of the maintained hypothesis of the model. It may in some cases be justified
as a valid approximation, in which case it may be subject to testing, as discussed in
Section 8.4.3. In cross-section analysis it may be justified as being a consequence of
a natural experiment or a quasi-experiment in which the value of the variable is de-
termined by an external intervention; for example, government or regulatory authority
may determine the setting of a tax rate or a policy parameter. Of special interest is the
case in which an external intervention results in a change in the value of an impor-
tant policy variable. Such a natural experiment is tantamount to exogenization of some
variable. As we shall see in Chapter 3, this creates a quasi-experimental opportunity to
study the impact of a variable in the absence of other complicating factors.

2.4. Linear Simultaneous Equations Model

An important special case of the general structural model specified in (2.1) is the linear
simultaneous equation model developed by the Cowles Commission econometricians.
Comprehensive treatment of this model is available in many textbooks (e.g., Sargan,
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1988). The treatment here is brief and selective; also see Section 6.9.6. The objective is
to bring into the discussion several key ideas and concepts that have more general rele-
vance. Although the analysis is restricted to linear models, many insights are routinely
applied to nonlinear models.

2.4.1. The SEM Setup

The linear simultaneous equations model (SEM) setup is as follows:

viBi + -+ yeiBic + ziiyn + -+ 2kiVik = Ui

yiiBe1 + -+ Y6iBcG + 21ivG1 + - - + 2kiV6K = UGi,

where i is the observation subscript.

A clear a priori distinction or preordering is made between endogenous variables,
Y; = Vi, - - -, Ygi), and exogenous variables, z; = (zi;, ..., 2k;). By definition the ex-
ogenous variables are uncorrelated with the purely random disturbances (u1;, . . ., Ug;).
In its unrestricted form every variable enters every equation.

In matrix notation, the G-equation SEM for the ith equation is written as

yB+zT =u, (2.10)

where y;, B, z;, ', and u; have dimensions G x 1,G x G, K x 1, K x G,and G x 1,
respectively. For specified values of (B, I') and (z;, u;) G linear simultaneous equa-
tions can in principle be solved for y;.

The standard assumptions of SEM are as follows:

. B is nonsingular and has rank G.
. rank[Z] = K. The N x K matrix Z is formed by stacking z;,i =1, ..., N.
. plim N~'Z'Z = X,, is a symmetric K x K positive definite matrix.

. u; ~ N0, 3; that is, E[u;] = 0 and E[u;u;] = ¥ =[o;;], where ¥ is a symmetric
G x G positive definite matrix.

AW N =

5. The errors in each equation are serially independent.

In this model the structure (or structural parameters) consists of (B, I, 33). Writing

u
/ / 1
Y1 Z )
Y = . 7= . U=
/ ’ :
yN zN /
Uy

allows us to express the structural model more compactly as
YB+ZI' =1, (2.11)

where the arrays Y, B, Z, I', and U have dimensions N x G, G x G, N x K, K x
G, and N x G, respectively. Solving for all the endogenous variables in terms of all
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the exogenous variables, we obtain the reduced form of the SEM:

Y +ZTB~! = UB !,
Y =ZI1+V, (2.12)

where IT = —T'B~! and V = UB™!. Given Assumption 4, v; ~ N[0, B""SB™'].

In the SEM framework the structural model has primacy for several reasons. First,
the equations themselves have interpretations as economic relationships such as de-
mand or supply relations, production functions, and so forth, and they are subject to
restrictions of economic theory. Consequently, B and I'" are parameters that describe
economic behavior. Hence a priori theory can be invoked to form expectations about
the sign and size of individual coefficients. By contrast, the unrestricted reduced form
parameters are potentially complicated functions of the structural parameters, and as
such it may be difficult to evaluate them postestimation. This consideration may have
little weight if the goal of econometric modeling is prediction rather than inference on
parameters with behavioral interpretation.

Consider, without loss of generality, the first equation in the model (2.11), with y;
as the dependent variable. In addition, some of the remaining G — 1 endogenous vari-
ables and K — 1 exogenous variables may be absent from this equation. From (2.12)
we see that in general the endogenous variables Y depend stochastically on V, which
in turn is a function of the structural errors U. Therefore, in general plim N ~'Y'U # 0.
Generally, the application of the least-squares estimator in the simultaneous equation
setting yields inconsistent estimates. This is a well-known and basic result from the si-
multaneous equations literature, often referred to as the “simultaneous equations bias”
problem. The vast literature on simultaneous equations models deals with identifica-
tion and consistent estimation when the least-squares approach fails; see Sargan (1988)
and Schmidt (1976), and Section 6.9.6.

The reduced form of SEM expresses every endogenous variable as a linear function
of all exogenous variables and all structural disturbances. The reduced form distur-
bances are linear combinations of the structural disturbances. From the reduced form
for the ith observation

Ely;|zi] = zII, (2.13)
Viyilzl=Q = B"EB . (2.14)

The reduced form parameters II are derived parameters defined as functions of the
structural parameters. If IT can be consistently estimated then the reduced form can
be used to make predictive statements about variations in Y due to exogenous changes
in Z. This is possible even if B and I' are not known. Given the exogeneity of Z,
the full set of reduced form regressions is a multivariate regression model that can be
estimated consistently by least squares. The reduced form provides a basis for making
conditional predictions of Y given Z.

The restricted reduced form is the unrestricted reduced form model subject to re-
strictions. If these are the same restrictions as those that apply to the structure, then
structural information can be recovered from the reduced form.

25



CAUSAL AND NONCAUSAL MODELS

In the SEM framework, the unknown structural parameters, the nonzero elements
of B, I', and X, play a key role because they reflect the causal structure of the
model. The interdependence between endogenous variables is described by B, and
the responses of endogenous variables to exogenous shocks in Z is reflected in the
parameter matrix I'. In this setup the causal parameters of interest are those that
measure the direct marginal impact of a change in an explanatory variable, y; or
Zx on the outcome of interest y;, [ # j, and functions of such parameters and data.
The elements of 3 describe the dispersion and dependence properties of the ran-
dom disturbances, and hence they measure some properties of the way the data are
generated.

2.4.2. Causal Interpretation in SEM

A simple example will illustrate the causal interpretation of parameters in SEM. The
structural model has two continuous endogenous variables y; and y,, a single con-
tinuous exogenous variable z;, one stochastic relationship linking y; and y;, and one
definitional identity linking all three variables in the model:

vi=vi+piy2+u, 0<p <1,
Y2a=Y1+21.

In this model u; is a stochastic disturbance, independent of z;, with a well-defined
distribution. The parameter §; is subject to an inequality constraint that is also a part
of the model specification. The variable z; is exogenous and therefore its variation is
induced by external sources that we may regard as interventions. These interventions
have a direct impact on y, through the identity and also an indirect one through the
first equation. The impact is measured by the reduced form of the model, which is

Vi Bi 1
y = + 71+ u
R T R
= E[y1lz1] + v,
Y1 1 1
= + 21+ u
PET e T T
= E[y2lz1] +v1,

where v; = u;/(1 — B1). The reduced form coefficients S, /(1 — 8;) and 1/(1 — By)
have a causal interpretation. Any externally induced unit change in z; will cause the
value of y; and y, to change by these amounts. Note that in this model y; and y; also
respond to u;. In order not to confound the impact of the two sources of variation we
require that z; and u; are independent.

Also note that

91 g1
—=p= =
dy> 1-81 1-8;
_ 9. oy
8Z1 ’ 821.
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In what sense does ; measure the causal effect of y, on y,? To see a possible diffi-
culty, observe that y; and y, are interdependent or jointly determined, so it is unclear
in what sense y, “causes” y;. Although z; (and u;) is the ultimate cause of changes
in the reduced form sense, y, is a proximate or an intermediate cause of y;. That is,
the first structural equation provides a snapshot of the impact of y, on y;, whereas
the reduced form gives the (equilibrium) impact after allowing for all interactions be-
tween the endogenous variables to work themselves out. In a SEM framework even
endogenous variables are viewed as causal variables, and their coefficients as causal
parameters. This approach can cause puzzlement for those who view causality in an
experimental setting where independent sources of variation are the causal variables.
The SEM approach makes sense if y, has an independent and exogenous source of
variation, which in this model is z;. Hence the marginal response coefficient 8, is a
function of how y; and y, respond to a change in z;, as the immediately preceding
equation makes clear.

Of course this model is but a special case. More generally, we may ask under what
conditions will the SEM parameters have a meaningful causal interpretation. We return
to this issue when discussing identification concepts in Section 2.5.

2.4.3. Extensions to Nonlinear and Latent Variable Models

If the simultaneous model is nonlinear in parameters only, the structural model can
be written as

YB(6) + ZT'(6) = U, (2.15)

where B(0) and I'(0) are matrices whose elements are functions of the structural pa-
rameters 8. An explicit reduced form can be derived as before.

If nonlinearity is instead in variables then an explicit (analytical) reduced form
may not be possible, although linearized approximations or numerical solutions of the
dependent variables, given (z, u), can usually be obtained.

Many microeconometric models involve latent or unobserved variables as well as
observed endogenous variables. For example, search and auction theory models use the
concept of reservation wage or reservation price, choice models invoke indirect utility,
and so forth. In the case of such models the structural model (2.1) may be replaced by

g(yi.z.u0) =0, (2.16)

where the latent variables y; replace the observed variables y;. The corresponding
reduced form solves for y; in terms of (z;, w;), yielding

y; =f(zi,u|m). (2.17)

This reduced form has limited usefulness as y; is not fully observed. However, if we
have functions y; = h(y}) that relate observable with latent counterparts of y;, then the
reduced form in terms of observables is

yi = h{f(z;, v;|m)). (2.18)
See Section 16.8.2 for further details.
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When the structural model involves nonlinearities in variables, or when latent vari-
ables are involved, an explicit derivation of the functional form of this reduced form
may be difficult to obtain. In such cases practitioners use approximations. By citing
mathematical or computational convenience, a specific functional form may be used
to relate an endogenous variable to all exogenous variables, and the result would be
referred to as a “reduced form type relationship.”

2.4.4. Interpretations of Structural Relationships

Marschak (1953, p. 26) in an influential essay gave the following definition of a
structure:

Structure was defined as a set of conditions which did not change while observations
were being made but which might change in future. If a specified change of struc-
ture is expected or intended, prediction of variables of interest to the policy maker
requires some knowledge of past structure. . . . In economics, the conditions that con-
stitute a structure are (1) a set of relations describing human behavior and institutions
as well as technological laws and involving, in general, nonobservable random dis-
turbances and nonobservable random errors of measurement; (2) the joint probability
distribution of these random quantities.

Marschak argued that the structure was fundamental for a quantitative evaluation or
tests of economic theory and that the choice of the best policy requires knowledge of
the structure.

In the SEM literature a structural model refers to “autonomous” (not “derived”)
relationships. There are other closely related concepts of a structure. One such concept
refers to “deep parameters,” by which is meant technology and preference parameters
that are invariant to interventions.

In recent years an alternative usage of the term structure has emerged, one that refers
to econometric models based on the hypothesis of dynamic stochastic optimization by
rational agents. In this approach the starting point for any structural estimation prob-
lem is the first-order necessary conditions that define the agent’s optimizing behavior.
For example, in a standard problem of maximizing utility subject to constraints, the
behavioral relations are the deterministic first-order marginal utility conditions. If the
relevant functional forms are explicitly stated, and stochastic errors of optimization are
introduced, then the first-order conditions define a behavioral model whose parameters
characterize the utility function — the so-called deep or policy-invariant parameters.
Examples are given in Sections 6.2.7 and 16.8.1.

Two features of this highly structural approach should be mentioned. First, they
rely on a priori economic theory in a serious manner. Economic theory is not used
simply to generate a list of relevant variables that one can use in a more or less arbi-
trarily specified functional form. Rather, the underlying economic theory has a major
(but not exclusive) role in specification, estimation, and inference. The second feature
is that identification, specification, and estimation of the resulting model can be very
complicated, because the agent’s optimization problem is potentially very complex,
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especially if dynamic optimization under uncertainty is postulated and discreteness
and discontinuities are present; see Rust (1994).

2.5. Identification Concepts

The goal of the SEM approach is to consistently estimate (B, I', 3J) and conduct statis-
tical inference. An important precondition for consistent estimation is that the model
should be identified. We briefly discuss the important twin concepts of observational
equivalence and identifiability in the context of parametric models.

Identification is concerned with determination of a parameter given sufficient ob-
servations. In this sense, it is an asymptotic concept. Statistical uncertainty necessarily
affects any inference based on a finite number of observations. By hypothetically con-
sidering the possibility that sufficient number of observations are available, it is pos-
sible to consider whether it is logically possible to determine a parameter of interest
either in the sense of its point value or in the sense of determining the set of which
the parameter is an element. Therefore, identification is a fundamental consideration
and logically occurs prior to and is separate from statistical estimation. A great deal of
econometric literature on identification focuses on point identification. This is also the
emphasis of this section. However, set identification, or bounds identification, is an
important approach that will be used in selected places in this book (e.g., Chapters 25
and 27; see Manski, 1995).

Definition 2.3 (Observational Equivalence): Two structures of a model defined
as joint probability distribution function Pr[x|0], x € W, 0 € ©®, are observa-
tionally equivalent if Pr[x|0'] = Pr[x|02] VxeW.

Less formally, if, given the data, two structural models imply identical joint proba-
bility distributions of the variables, then the two structures are observationally equiva-
lent. The existence of multiple observationally equivalent structures implies the failure
of identification.

Definition 2.4 (Identification): A structure 0° is identified if there is no other
observationally equivalent structure in ©.

A simple example of nonidentification occurs when there is perfect collinearity be-
tween regressors in the linear regression y = X3 + u. Then we can identify the linear
combination C3, where rank[C] < rank[3], but we cannot identify 3 itself.

This definition concerns uniqueness of the structure. In the context of the SEM
we have given, this definition means that identification requires that there is a unique
triple (B, I', 32) consistent with the observed data. In SEM, as in other cases, identi-
fication involves being able to obtain unique estimates of structural parameters given
the sample moments of the data. For example, in the case of the reduced form (2.12),
under the stated assumptions the least-squares estimator provides unique estimates of
I, thatis, IT = [Z'Z]~'Z’Y, and identification of B, T requires that there is a solution
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for the unknown elements of I' and B from the equations IT + TB™' = 0, given a
priori restrictions on the model. A unique solution implies just identification of the
model.

A complete model is said to be identified if all the model parameters are identified.
It is possible that for some models only a subset of parameters is identified. In some
situations it may be important to be able to identify some function of parameters, and
not necessarily all the individual parameters. Identification of a function of parameters
means that function can be recovered uniquely from F(W|©).

How does one ensure that the structures of alternative model specifications can be
“ruled out”? In SEM the solution to this problem depends on augmenting the sample
information by a priori restrictions on (B, I', 33). The a priori restrictions must intro-
duce sufficient additional information into the model to rule out the existence of other
observationally equivalent structures.

The need for a priori restrictions is demonstrated by the following argument. First
note that given the assumptions of Section 2.4.1 the reduced form, defined by (I1, €2),
is always unique. Initially suppose there are no restrictions on (B, I', 33). Next suppose
that there are two observationally equivalent structures (B, I', 331) and (B,, I, 3,).
Then

II=-IB;'=-I,B,". (2.19)

Let Hbe a G x G nonsingular matrix. Then I‘lel = I‘IHH*IBTl = I‘ZB;', which
means that I', = I')H, B, = B{H. Thus the second structure is a linear transformation
of the first.

The SEM solution to this problem is to introduce restrictions on (B, I', 3J) such
that we can rule out the existence of linear transformations that lead to observation-
ally equivalent structures. In other words, the restrictions on (B, I', ) must be such
that there is no matrix H that would yield another structure with the same reduced
form; given (I, ©2) there will be a unique solution to the equations II = —T'B~! and
Q=B1ZB .

In practice a variety of restrictions can be imposed including (1) normalizations,
such as setting diagonal elements of B equal to 1, (2) zero (exclusion) and linear ho-
mogeneous and inhomogeneous restrictions, and (3) covariance and inequality restric-
tions. Details of the necessary and sufficient conditions for identification in linear and
nonlinear models can be found in many texts including Sargan (1988).

Meaningful imposition of identifying restrictions requires that the a priori restric-
tions imposed should be valid a posteriori. This idea is pursued further in several chap-
ters where identification issues are considered (e.g., Section 6.9).

Exclusion restrictions essentially state that the model contains some variables that
have zero impact on some endogenous variables. That is, certain directions of causa-
tion are ruled out a priori. This makes it possible to identify other directions of cau-
sation. For example, in the simple two-variable example given earlier, z; did not enter
the y;-equation, making it possible to identify the direct impact of y, on y;. Although
exclusion restrictions are the simplest to apply, in parametric models identification can
also be secured by inequality restrictions and covariance restrictions.
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If there are no restrictions on X, and the diagonal elements of B are normalized to
1, then a necessary condition for identification is the order condition, which states
that the number of excluded exogenous variables must at least equal the number of
included endogenous variables. A sufficient condition is the rank condition given in
many texts that ensures for the jth equation parameters IIT'; = —B; yields a unique
solution for (I';, B;) given IL.

Given identification, the term just (exact) identification refers to the case when
the order condition is exactly satisfied; overidentification refers to the case when the
number of restrictions on the system exceeds that required for exact identification.

Identification in nonlinear SEM has been discussed in Sargan (1988), who also
gives references to earlier related work.

2.6. Single-Equation Models

Without loss of generality consider the first equation of a linear SEM subject to nor-
malization §;; = 1. Let y = yy, let y; denote the endogenous components of y other
than yj, and let z; denote the exogenous components of z with

y=Yaa+zv+u. (2.20)

Many studies skip the formal steps involved in going from a system to a single equation
and begin by writing the regression equation

y=xXpB+u,

where some components of x are endogenous (implicitly y;) and others are exogenous
(implicitly z;). The focus lies then on estimating the impact of changes in key regres-
sor(s) that may be endogenous or exogenous, depending on the assumptions. Instru-
mental variable or two-stage least-squares estimation is the most obvious estimation
strategy (see Sections 4.8, 6.4, and 6.5).

In the SEM approach it is natural to specify at least some of the remaining equa-
tions in the model, even if they are not the focus of inquiry. Suppose y; has dimen-
sion 1. Then the first possibility is to specify the structural equation for y; and for
the other endogenous variables that may appear in this structural equation for y;.
A second possibility is to specify the reduced form equation for y;. This will show
exogenous variables that affect y; but do not directly affect y. An advantage is that
in such a setting instrumental variables emerge naturally. However, in recent empir-
ical work using instrumental variables in a single-equation setting, even the formal
step of writing down a reduced form for the endogenous right-hand-side variable is
avoided.

2.7. Potential Outcome Model

Motivation for causal inference in econometric models is especially strong when the
focus is on the impact of public policy and/or private decision variables on some
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specific outcomes. Specific examples include the impact of transfer payments on labor
supply, the impact of class size on student learning, and the impact of health insurance
on utilization of health care. In many cases the causal variables themselves reflect
individual decisions and hence are potentially endogenous. When, as is usually the
case, econometric estimation and inference are based on observational data, iden-
tification of and inference on causal parameters pose many challenges. These chal-
lenges can become potentially less serious if the causal issues are addressed using
data from a controlled social experiment with a proper statistical design. Although
such experiments have been implemented (see Section 3.3 for examples and details)
they are generally expensive to organize and run. Therefore, it is more attractive
to implement causal modeling using data generated by a natural experiment or in
a quasi-experimental setting. Section 3.4 discusses the pros and cons of these data
structures; but for present purposes one should think of a natural or quasi experi-
ment as a setting in which some causal variable changes exogenously and indepen-
dently of other explanatory variables, making it relatively easier to identify causal
parameters.

A major obstacle for causality modeling stems from the fundamental problem of
causal inference (Holland, 1986). Let X be the hypothesized cause and Y the outcome.
By manipulating the value of X we can change the value of Y. Suppose the value of X
is changed from x; to x,. Then a measure of the causal impact of the change on Y is
formed by comparing the two values of Y: y,, which results from the change, and y,
which would have resulted had no change in x occurred. However, if X did change,
then the value of Y, in the absence of the change, would not be observed. Hence noth-
ing more can be said about causal impact without some hypothesis about what value
Y would have assumed in the absence of the change in X. The latter is referred to
as a counterfactual, which means hypothetical unobserved value. Briefly stated, all
causal inference involves comparison of a factual with a counterfactual outcome. In
the conventional econometric model (e.g., SEM) a counterfactual does not need to be
explicitly stated.

A relatively newer strand in the microeconometric literature — program evalua-
tion or treatment evaluation — provides a statistical framework for the estimation
of causal parameters. In the statistical literature this framework is also known as the
Rubin causal model (RCM) in recognition of a key early contribution by Rubin
(1974, 1978), who in turn cites R.A. Fisher as originator of the approach. Al-
though, following recent convention, we refer to this as the Rubin causal model,
Neyman (Splawa-Neyman) also proposed a similar statistical model in an article
published in Polish in 1923; see Neyman (1990). Models involving counterfactuals
have been independently developed in econometrics following the seminal work of
Roy (1951). In the remainder of this section the salient features of RCM will be
analyzed.

Causal parameters based on counterfactuals provide statistically meaningful and
operational definitions of causality that in some respects differ from the traditional
Cowles foundation definition. First, in ideal settings this framework leads to consider-
able simplicity of econometric methods. Second, this framework typically focuses on
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the fewer causal parameters that are thought to be most relevant to policy issues that
are examined. This contrasts with the traditional econometric approach that focuses
simultaneously on all structural parameters. Third, the approach provides additional
insights into the properties of causal parameters estimated by the standard structural
methods.

2.7.1. The Rubin Causal Model

The term “treatment” is used interchangeably with “cause.” In medical studies of new
drug evaluation, involving groups of those who receive the treatment and those who
do not, the drug response of the treated is compared with that of the untreated. A mea-
sure of causal impact is the average difference in the outcomes of the treated and the
nontreated groups. In economics, the term treatment is used very broadly. Essentially
it covers variables whose impact on some outcome is the object of study. Examples of
treatment—outcome pairs include schooling and wages, class size and scholastic per-
formance, and job training and earnings. Note that a treatment need not be exogenous,
and in many situations it is an endogenous (choice) variable.

Within the framework of a potential outcome model (POM), which assumes that
every element of the target population is potentially exposed to the treatment, the triple
(»i» yoi, Di), i =1, ..., N, forms the basis of treatment evaluation. The categorical
variable D takes the values 1 and 0, respectively, when treatment is or is not received;
y1; measures the response for individual i receiving treatment, and y,; measures that
when not receiving treatment. That is,

JifD; =1,
J’i={y1

Since the receipt and nonreceipt of treatment are mutually exclusive states for indi-
vidual i, only one of the two measures is available for any given i, the unavailable
measure being the counterfactual. The effect of the cause D on outcome of individual
i is measured by (y;; — yo;). The average causal effect of D; = 1, relative to D; = 0,
is measured by the average treatment effect (ATE):

ATE = E[y|D = 1] — E[y|D = 0], (2.22)

where expectations are with respect to the probability distribution over the target pop-
ulation. Unlike the conventional structural model that emphasizes marginal effects, the
POM framework emphasizes ATE and parameters related to it.

The experimental approach to the estimation of ATE-type parameters involves a
random assignment of treatment followed by a comparison of the outcomes with a
set of nontreated cases that serve as controls. Such an experimental design is explained
in greater detail in Chapter 3. Random assignment implies that individuals exposed to
treatment are chosen randomly, and hence the treatment assignment does not depend
on the outcome and is uncorrelated with the attributes of treated subjects. Two ma-
jor simplifications follow. The treatment variable can be treated as exogenous and its
coefficient in a linear regression will not suffer from omitted variable bias if some
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relevant variables are unavoidably omitted from the regression. Under certain condi-
tions, discussed at greater length in Chapters 3 and 25, the mean difference between
the outcomes of the treated and the control groups will provide an estimate of ATE.
The payoff to the well-designed experiment is the relative simplicity with which causal
statements can be made. Of course, to ensure high statistical precision for the treatment
effect estimate, one should still control for those attributes that also independently in-
fluence the outcomes.

Because random assignment of treatment is generally not feasible in economics,
estimation of ATE-type parameters must be based on observational data generated
under nonrandom treatment assignment. Then the consistent estimation of ATE will
be threatened by several complications that include, for example, possible correlation
between the outcomes and treatment, omitted variables, and endogeneity of the treat-
ment variable. Some econometricians have suggested that the absence of randomiza-
tion comprises the major impediment to convincing statistical inference about causal
relationships.

The potential outcome model can lead to causal statements if the counterfactual can
be clearly stated and made operational. An explicit statement of the counterfactual,
with a clear implication of what should be compared, is an important feature of this
model. If, as may be the case with observational data, there is lack of a clear distinc-
tion between observed and counterfactual quantities, then the answer to the question
of who is affected by the treatment remains unclear. ATE is a measure that weights and
combines marginal responses of specific subpopulations. Specific assumptions are re-
quired to operationalize the counterfactual. Information on both treated and untreated
units that can be observed is needed to estimate ATE. For example, it is necessary to
identify the untreated group that proxies the treated group if the treatment were not
applied. It is not necessarily true that this step can always be implemented. The exact
way in which the treated are selected involves issues of sampling design that are also
discussed in Chapters 3 and 25.

A second useful feature of the POM is that it identifies opportunities for causal
modeling created by natural or quasi-experiments. When data are generated in such
settings, and provided certain other conditions are satisfied, causal modeling can occur
without the full complexities of the SEM framework. This issue is analyzed further in
Chapters 3 and 25.

Third, unlike the structural form of the SEM where all variables other than that be-
ing explained can be labeled as “causes,” in the POM not all explanatory variables can
be regarded as causal. Many are simply attributes of the units that must be controlled
for in regression analysis, and attributes are not causes (Holland, 1986). Causal param-
eters must relate to variables that are actually or potentially, and directly or indirectly,
subject to intervention.

Finally, identifiability of the ATE parameter may be an easier research goal and
hence feasible in situations where the identifiability of a full SEM may not be (Angrist,
2001). Whether this is so has to be determined on a case-by-case basis. However,
many available applications of the POM typically employ a limited, rather than full,
information framework. However, even within the SEM framework the use of a limited
information framework is also feasible, as was previously discussed.
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2.8. Causal Modeling and Estimation Strategies

In this section we briefly sketch some of the ways in which econometricians approach
the modeling of causal relationships. These approaches can be used within both SEM
and POM frameworks, but they are typically identified with the former.

2.8.1. Identification Frameworks
Full-Information Structural Models

One variant of this approach is based on the parametric specification of the joint distri-
bution of endogenous variables conditional on exogenous variables. The relationships
are not necessarily derived from an optimizing model of behavior. Parametric restric-
tions are placed to ensure identification of the model parameters that are the target
of statistical inference. The entire model is estimated simultaneously using maximum
likelihood or moments-based estimation. We call this approach the full-information
structural approach. For well-specified models this is an attractive approach but in
general its potential limitation is that it may contain some equations that are poorly
specified. Under joint estimation the effects of localized misspecification may also
affect other estimates.

Statistically we may interpret the full-information approach as one in which the
joint probability distribution of endogenous variables, given the exogenous variables,
forms the basis of inference about causality. The jointness may derive from contem-
poraneous or dynamic interdependence between endogenous variables and/or the dis-
turbances on the equations.

Limited-Information Structural Models

By contrast, when the central object of statistical inference is estimation of one or two
key parameters, a limited-information approach may be used. A feature of this ap-
proach is that, although one equation is the focus of inference, the joint dependence
between it and other endogenous variables is exploited. This requires that explicit as-
sumptions are made about some features of the model that are not the main object of
inference. Instrumental variable methods, sequential multistep methods, and limited
information maximum likelihood methods are specific examples of this approach. To
implement the approach one typically works with one (or more) structural equations
and some implicitly or explicitly stated reduced form equations. This contrasts with the
full-information approach where all equations are structural. The limited-information
approach is often computationally more tractable than the full-information one.

Statistically we may interpret the limited-information approach as one in which the
joint distribution is factored into the product of a conditional model for the endogenous
variable(s) of interest, say y;, and a marginal model for other endogenous variables,
say y», which are in the set of the conditioning variables, as in

F(yIx, 0) = g(y1lx, y2, ODh(y2[x, 6,), 60 € ©. (2.23)
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Modeling may be based on the component g(y;|X, y2, €) with minimal attention to
h(yz|x, 8,) if 8, are regarded as nuisance parameters. Of course, such a factorization
is not unique, and hence the limited-information approach can have several variants.

Identified Reduced Forms

A third variant of the SEM approach works with an identified reduced form. Here too
one is interested in structural parameters. However, it may be convenient to estimate
these from the reduced form subject to restrictions. In time series the identified vector
autoregressions provide an example.

2.8.2. Identification Strategies

There are numerous potential ways in which the identification of key model parameters
can be jeopardized. Omitted variables, functional form misspecifications, measure-
ment errors in explanatory variables, using data unrepresentative of the population, and
ignoring endogeneity of explanatory variables are leading examples. Microeconomet-
rics contains many specific examples of how these challenges can be tackled. Angrist
and Krueger (2000) provide a comprehensive survey of popular identification strate-
gies in labor economics, with emphasis on the POM framework. Most of the issues are
developed elsewhere in the book, but a brief mention is made here.

Exogenization

Data are sometimes generated by natural experiments and quasi-experiments. The idea
here is simply that a policy variable may exogenously change for some subpopulation
while it remains the same for other subpopulations. For example, minimum wage laws
in one state may change while they remain unchanged in a neighboring state. Such
events naturally create treatment and control groups. If the natural experiment ap-
proximates a randomized treatment assignment, then exploiting such data to estimate
structural parameters can be simpler than estimation of a larger simultaneous equa-
tions model with endogenous treatment variables. It is also possible that the treatment
variable in a natural experiment can be regarded as exogenous, but the treatment itself
is not randomly assigned.

Elimination of Nuisance Parameters

Identification may be threatened by the presence of a large number of nuisance param-
eters. For example, in a cross-section regression model the conditional mean function
E[y;|x;] may involve an individual specific fixed effect «;, assumed to be correlated
with the regression error. This effect cannot be identified without many observations
on each individual (i.e., panel data). However, with just a short panel it could be elim-
inated by a transformation of the model. Another example is the presence of timein-
variant unobserved exogenous variables that may be common to groups of individuals.

36



2.8. CAUSAL MODELING AND ESTIMATION STRATEGIES

An example of a transformation that eliminates fixed effects is taking differences and
working with the differences-in-differences form of the model.

Controlling for Confounders

When variables are omitted from a regression, and when omitted factors are correlated
with the included variables, a confounding bias results. For example, in a regression
with earnings as a dependent variable and schooling as an explanatory variable, indi-
vidual ability may be regarded as an omitted variable because only imperfect proxies
for it are typically available. This means that potentially the coefficient of the school-
ing variable may not be identified. One possible strategy is to introduce control vari-
ables in the model; the general approach is called the control function approach.
These variables are an attempt to approximate the influence of the omitted variables.
For example, various types of scholastic achievement scores may serve as controls for
ability.

Creating Synthetic Samples

Within the POM framework a causal parameter may be unidentified because no suit-
able comparison or control group can provide the benchmark for estimation. A poten-
tial solution is to create a synthetic sample that includes a comparison group that are
proxies for controls. Such a sample is created by matching (discussed in Chapter 25).
If treated samples can be augmented by well-matched controls, then identification of
causal parameters can be achieved in the sense that a parameter related to ATE can be
estimated.

Instrumental Variables

If identification is jeopardized because the treatment variable is endogenous, then a
standard solution is to use valid instrumental variables. This is easier said than done.
The choice of the instrumental variable as well as the interpretation of the results
obtained must be done carefully because the results may be sensitive to the choice of
instruments. The approach is analyzed in Sections 4.8, 4.9, 6.4, 6.5, and 25.7, as well
as in several other places in the book as the need arises. Again a natural experiment
may provide a valid instrument.

Reweighting Samples

Sample-based inferences about the population are only valid if the sample data are
representative of the population. The problem of sample selection or biased sampling
arises when the sample data are not representative, in which case the population param-
eters are not identified. This problem can be approached as one that requires correction
for sample selection (Chapter 16) or one that requires reweighting of the sample infor-
mation (Chapter 24).
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2.9. Bibliographic Notes

The 2001 Nobel lectures by Heckman and McFadden are excellent sources for both his-
torical and current information about the developments in microeconometrics. Heckman’s
lecture is remarkable for its comprehensive scope and offers numerous insights into many
aspects of microeconometrics. His discussion of heterogeneity has many points of contact
with several topics covered in this book.

Marschak (1953) gives a classic statement of the primacy of structural modeling for policy
evaluation. He makes an early mention of the idea of parameter invariance.

Engle, Hendry, and Richard (1983) provide definitions of weak and strong exogeneity in
terms of the distribution of observable variables. They make links with previous literature
on exogeneity concepts.

and 2.5 The term “identification” was used by Koopmans (1949). Point identification in
linear parametric models is covered in most textbooks including those by Sargan (1988)
who gives a comprehensive and succint treatment, Davidson and MacKinnon (2004), and
Greene (2003). Gouriéroux and Monfort (1989, chapter 3.4) provide a different perspective
using Fisher and Kullback information measures. Bounds identification in several leading
cases is developed in Manski (1995).

Heckman (2000) provides a historical overview and modern interpretations of causality in
the traditional econometric model. Causality concepts within the POM framework are care-
fully and incisively analyzed by Holland (1986), who also relates them to other definitions.
A sample of the statisticians’ viewpoints of causality from a historical perspective can be
found in Freedman (1999). Pearl (2000) gives insightful schematic exposition of the idea
of “treating causation as a summary of behavior under interventions,” as well as numerous
problems of inferring causality in a nonexperimental situation.

Angrist and Krueger (1999) survey solutions to identification pitfalls with examples from
labor economics.
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CHAPTER 3

Microeconomic Data Structures

3.1. Introduction

This chapter surveys issues concerning the potential usefulness and limitations of dif-
ferent types of microeconomic data. By far the most common data structure used in
microeconometrics is survey or census data. These data are usually called observa-
tional data to distinguish them from experimental data.

This chapter discusses the potential limitation of the aforementioned data struc-
tures. The inherent limitations of observational data may be further compounded by
the manner in which the data are collected, that is, by the sample frame (the way the
sample is generated), sample design (simple random sample versus stratified random
sample), and sample scope (cross-section versus longitudinal data). Hence we also
discuss sampling issues in connection with the use of observational data. Some of this
terminology is new at this stage but will be explained later in this chapter.

Microeconometrics goes beyond the analysis of survey data under the assumptions
of simple random sampling. This chapter considers extensions. Section 3.2 outlines
the structure of multistage sample surveys and some common forms of departure from
random sampling; a more detailed analysis of their statistical implications is provided
in later chapters. It also considers some commonly occurring complications that result
in the data not being necessarily representative of the population. Given the deficien-
cies of observational data in estimating causal parameters, there has been an increased
attempt at exploiting experimental and quasi-experimental data and frameworks. Sec-
tion 3.3 examines the potential of data from social experiments. Section 3.4 considers
the modeling opportunities arising from a special type of observational data, generated
under quasi-experimental conditions, that naturally provide treated and untreated sub-
jects and hence are called natural experiments. Section 3.5 covers practical issues of
microdata management.
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MICROECONOMIC DATA STRUCTURES
3.2. Observational Data

The major source of microeconomic observational data is surveys of households, firms,
and government administrative data. Census data can also be used to generate samples.
Many other samples are often generated at points of contact between transacting par-
ties. For example, marketing data may be generated at the point of sale and/or surveys
among (actual or potential) purchasers. The Internet (e.g., online auctions) is also a
source of data.

There is a huge literature on sample surveys from the viewpoint of both survey
statisticians and users of survey data. The first discusses how to sample from the pop-
ulation and the results from different sampling designs, and the second deals with the
issues of estimation and inference that arise when survey data are collected using dif-
ferent sampling designs. A key issue is how well the sample represents the population.
This chapter deals with both strands of the literature in an introductory fashion. Many
additional details are given in Chapter 24.

3.2.1. Nature of Survey Data

The term observational data usually refers to survey data collected by sampling the
relevant population of subjects without any attempt to control the characteristics of
the sampled data. Let ¢ denote the time subscript, let w denote a set of variables
of interest. In the present context ¢ can be a point in time or time interval. Let
S; denote a sample from population probability distribution F(w,|0,); S; is a draw
from F(w;|0;), where 0 is a parameter vector. The population should be thought
of as a set of points with characteristics of interest, and for simplicity we assume
that the form of the probability distribution F' is known. A simple random sam-
pling scheme allows every element of the population to have an equal probability of
being included in the sample. More complex sampling schemes will be considered
later.

The abstract concept of a stationary population provides a useful benchmark. If
the moments of the characteristics of the population are constant, then we can write
0, = 0, for all ¢. This is a strong assumption because it implies that the moments of
the characteristics of the population are time-invariant. For example, the age—sex dis-
tribution should be constant. More realistically, some population characteristics would
not be constant. To handle such a possibility, (the parameters of ) each population may
be regarded as a draw from a superpopulation with constant characteristics. Specif-
ically, we think of each 6, as a draw from a probability distribution with constant
(hyper)parameter 6. The terms superpopulation and hyperparameters occur frequently
in the literature on hierarchical models discussed in Chapter 24. Additional complica-
tions arise if 8; has an evolutionary component, for example through dependence on
t, or if successive values are interdependent. Using hierarchical models, discussed in
Chapters 13 and 26, provides one approach for modeling the relation between hyper-
parameters and subpopulation characteristics.
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3.2. OBSERVATIONAL DATA

3.2.2. Simple Random Samples

As a benchmark for subsequent discussion, consider simple random sampling in which
the probability of sampling unit i from a population of size N, with N large, is 1 /N for
all i. Partition w as [y : x]. Suppose our interest is in modeling y, a possibly vector-
valued outcome variable, conditional on the exogenous covariate vector X, whose joint
distribution is denoted f;(y, x). This can be always be factored as the product of the
conditional distribution fc(y|x, @) and the marginal distribution f3;(x):

f1(y,x) = fe(yIx, 0) fu(x). (3.1)

Simple random sampling involves drawing the (y, X) combinations uniformly from
the entire population.

3.2.3. Multistage Surveys

One alternative is a stratified multistage cluster sampling, also referred to as a com-
plex survey method. Large-scale surveys like the Current Population Survey (CPS)
and the Panel Survey of Income Dynamics (PSID) take this approach. Section 24.2
provides additional detail on the structure of the CPS.

The complex survey design has advantages. It is more cost effective because it
reduces geographical dispersion, and it becomes possible to sample certain subpop-
ulations more intensively. For example, “oversampling” of small subpopulations ex-
hibiting some relevant characteristic becomes feasible whereas a random sample of the
population would produce too few observations to support reliable results. A disadvan-
tage is that stratified sampling will reduce interindividual variation, which is essential
for greater precision.

The sample survey literature focuses on multistage surveys that sequentially parti-
tion the population into the following categories:

1. Strata: Nonoverlapping subpopulations that exhaust the population.
2. Primary sampling units (PSUs): Nonoverlapping subsets of the strata.

3. Secondary sampling units (SSUs): Sub-units of the PSU, which may in turn be parti-
tioned, and so on.

4. Ultimate sampling unit (USU): The final unit chosen for interview, which could be a
household or a collection of households (a segment).

As an example, the strata may be the various states or provinces in a country, the
PSU may be regions within the state or province, and the USU may be a small cluster
of households in the same neighborhood.

Usually all strata are surveyed so that, for example, all states will be included in
the sample with certainty. But not all of the PSUs and their subdivisions are surveyed,
and they may be sampled at different rates. In two-stage sampling the surveyed PSUs
are drawn at random and the USU is then drawn at random from the selected PSUs. In
multistage sampling intermediate sampling units such as SSUs also appear.
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A consequence of these sampling methods is that different households will have
different probabilities of being sampled. The sample is then unrepresentative of the
population. Many surveys provide sampling weights that are intended to be inversely
proportional to the probability of being sampled, in which case these weights can be
used to obtain unbiased estimators of population characteristics.

Survey data may be clustered due to, for example, sampling of many households
in the same small neighborhood. Observations in the same cluster are likely to be de-
pendent or correlated because they may depend on some observable or unobservable
factor that could affect all observations in a stratum. For example, a suburb may be
dominated by high-income households or by households that are relatively homoge-
neous in some dimension of their preferences. Data from these households will tend
to be correlated, at least unconditionally, though it is possible that such correlation
is negligible after conditioning on observable characteristics of the households. Sta-
tistical inference ignoring correlation between sampled observations yields erroneous
estimates of variances that are smaller than those from the correct formula. These is-
sues are covered in greater depth in Section 24.5. Two-stage and multistage samples
potentially further complicate the computation of standard errors.

In summary, (1) stratification with different sampling rates within strata means that
the sample is unrepresentative of the population; (2) sampling weights inversely pro-
portional to the probability of being sampled can be used to obtain unbiased estimation
of population characteristics; and (3) clustering may lead to correlation of observations
and understatement of the true standard errors of estimators unless appropriate adjust-
ments are made.

3.2.4. Biased Samples

If a random sample is drawn then the probability distribution for the data is the same
as the population distribution. Certain departures from random sampling cause a di-
vergence between the two; this is referred to as biased sampling. The data distribution
differs from the population distribution in a manner that depends on the nature of the
deviation from random sampling. Deviation from random sampling occurs because it
is sometimes more convenient or cost effective to obtain the data from a subpopulation
even though it is not representative of the entire population. We now consider several
examples of such departures, beginning with a case in which there is no departure from
randomness.

Exogenous Sampling

Exogenous sampling from survey data occurs if the analyst segments the available
sample into subsamples based only on a set of exogenous variables x, but not on the
response variable. For example, in a study of hospitalizations in Germany, Geil et al.
(1997) segmented the data into two categories, those with and without chronic condi-
tions. Classification by income categories is also common. Perhaps it is more accurate
to depict this type of sampling as exogenous subsampling because it is done by ref-
erence to an existing sample that has already been collected. Segmenting an existing

42



3.2. OBSERVATIONAL DATA

sample by gender, health, or socioeconomic status is very common. Under the assump-
tions of exogenous sampling the probability distribution of the exogenous variables
is independent of y and contains no information about the population parameters of
interest, 8. Therefore, one may ignore the marginal distribution of the exogenous vari-
ables and simply base estimation on the conditional distribution f(y|x, 8). Of course,
the assumption may be wrong and the observed distribution of the outcome variable
may depend on the selected segmenting variable, which may be correlated with the
outcome, thus causing departure from exogenous sampling.

Response-Based Sampling

Response-based sampling occurs if the probability of an individual being included
in the sample depends on the responses or choices made by that individual. In this
case sample selection proceeds in terms of rules defined in terms of the endogenous
variable under study.

Three examples are as follows: (1) In a study of the effect of negative income tax or
Aid to Families with Dependent Children (AFDC) on labor supply only those below
the poverty line are surveyed. (2) In a study of determinants of public transport modal
choice, only users of public transport (a subpopulation) are surveyed. (3) In a study of
the determinants of number of visits to a recreational site, only those with at least one
visit are included.

Lower survey costs provide an important motivation for using choice-based samples
in preference to simple random samples. It would require a very large random sample
to generate enough observations (information) about a relatively infrequent outcome
or choice, and hence it is cheaper to collect a sample from those who have actually
made the choice.

The practical significance of this is that consistent estimation of population param-
eters 0 can no longer be carried out using the conditional population density f(y|x)
alone. The effect of the sampling scheme must also be taken into account. This topic
is discussed further in Section 24.4.

Length-Biased Sampling

Length-biased sampling illustrates how biases may result from sampling one popu-
lation to make inferences about a different population. Strictly speaking, it is not so
much an example of departure from randomness in sampling as one of sampling the
“wrong” population.

Econometric studies of transitions model the time spent in origin state j by indi-
vidual i before transiting to another destination state s. An example is when j cor-
responds to unemployment and s to employment. The data used in such studies can
come from one of several possible sources. One source is sampling individuals who
are unemployed on a particular date, another is to sample those who are in the labor
force regardless of their current state, and a third is to sample individuals who are ei-
ther entering or leaving unemployment during a specified period of time. Each type
of sampling scheme is based on a different concept of the relevant population. In the
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first case the relevant population is the stock of unemployed individuals, in the second
the labor force, and in the third individuals with transitioning employment status. This
topic is discussed further in Section 18.6.

Suppose that the purpose of the survey is to calculate a measure of the average
duration of unemployment. This is the average length of time a randomly chosen indi-
vidual will spend in unemployment if he or she becomes unemployed. The answer to
this apparently straightforward question may vary depending on how the sample data
are obtained. The flow distribution of completed durations is in general quite differ-
ent from the stock distribution. When we sample the stock, the probability of being in
the sample is higher for individuals with longer durations. When we sample the flow
out of the state, the probability does not depend on the time spent in the state. This
is the well-known example of length-biased sampling in which the estimate obtained
by sampling the stock is a biased estimate of the average length of an unemployment
spell of a random entrant to unemployment.

The following simple schematic diagram may clarify the point:

[ N ]
o e —> e OO0 e
Entry flow ®° Exit flow
Stock

Here we use the symbol e to denote slow movers and the symbol o to denote fast
movers. Suppose the two types are equally represented in the flow, but the slow movers
stay in the stock longer than the fast movers. Then the stock population has a higher
proportion of slow movers. Finally, the exit population has a higher proportion of fast
movers. The argument will generalize to other types of heterogeneity.

The point of this example is not that flow sampling is a better thing to do than stock
sampling. Rather, it is that, depending on what the question is, stock sampling may not
yield a random sample of the relevant population.

3.2.5. Bias due to Sample Selection

Consider the following problem. A researcher is interested in measuring the effect of
training, denoted z (treatment), on posttraining wages, denoted y (outcome), given the
worker’s characteristics, denoted x. The variable z takes the value 1 if the worker has
received training and is O otherwise. Observations are available on (x, D) for all work-
ers but on y only for those who received training (D = 1). One would like to make
inferences about the average impact of training on the posttraining wage of a ran-
domly chosen worker with known characteristics who is currently untrained (D = 0).
The problem of sample selection concerns the difficulty of making such an inference.

Manski (1995), who views this as a problem of identification, defines the selection
problem formally as follows:

This is the problem of identifying conditional probability distributions from random
sample data in which the realizations of the conditioning variables are always ob-
served but realizations of the outcomes are censored.
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Suppose y is the outcome to be predicted, and the conditioning variables are denoted
by x. The variable z is a censoring indicator that takes the value 1 if the outcome y is
observed and 0 otherwise. Because the variables (D, x) are always observed, but y is
observed only when D = 1, Manski views this as a censored sampling process. The
censored sampling process does not identify Pr[y|x], as can be seen from

Pr{y|x] = Prly|x, D = 1]Pt[D = 1|x] + Pr[y|x, D = 0] Pt[D = O|x]. (3.2)

The sampling process can identify three of the four terms on the right-hand side,
but provides no information about the term Pr[y|x, D = 0]. Because

Ely|x] = E[y|x, D = 1] - Pr[D = 1|x] + E[y|x, D = 0] - Pr[D = 0O|x],

whenever the censoring probability Pr[D = 0|x] is positive, the available empirical
evidence places no restrictions on E[y|x]. Consequently, the censored-sampling pro-
cess can identify Pr[y|x] only for some unknown value of Pr[y|x, D = 0]. To learn
anything about the E[y|x], restrictions will need to be placed on Pr[y|x].

The alternative approaches for solving this problem are discussed in Section 16.5.

3.2.6. Quality of Survey Data

The quality of sample data depends not only on the sample design and the survey
instrument but also on the survey responses. This observation applies especially to
observational data. We consider several ways in which the quality of the sample data
may be compromised. Some of the problems (e.g., attrition) can also occur with other
types of data. This topic overlaps with that of biased sampling.

Problem of Survey Nonresponse

Surveys are normally voluntary, and incentive to participate may vary systematically
according to household characteristics and type of question asked. Individuals may
refuse to answer some questions. If there is a systematic relationship between refusal
to answer a question and the characteristics of the individual, then the issue of the
representativeness of a survey after allowing for nonresponse arises. If nonresponse
is ignored, and if the analysis is carried out using the data from respondents only, how
will the estimation of parameters of interest be affected?

Survey nonresponse is a special case of the selection problem mentioned in the
preceding section. Both involve biased samples. To illustrate how it leads to distorted
inference consider the following model:

/ 2
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where y; is a continuous random variable of interest (e.g., expenditure) that depends
on x, and y; is a latent variable that measures the “propensity to participate” in a survey
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and depends on z. The individual participates if y, > 0; otherwise the individual does
not. The variables x and z are assumed to be exogenous. The formulation allows y;
and y; to be correlated.

Suppose we estimate 3 from the data supplied by participants by least squares.
Is this estimator unbiased in the presence of nonparticipation? The answer is that if
nonparticipation is random and independent of y;, the variable of interest, then there
is no bias, but otherwise there will be.

The argument is as follows:

B = [XX]™' XYy,
E[3— 8] =E [[X’X]‘1 XEly, — XB/X, Z,y, > o] ,

where the first line gives the least-squares formula for the estimates of 3 and the second
line gives its bias. If y; and y, are independent, conditional on X and Z, oy, = 0,
then

Ely —XB8IX,Z,y, > 0] =E[y, —XBIX,Z] =0,

and there is no bias.

Missing and Mismeasured Data

Survey respondents dealing with an extensive questionnaire will not necessarily an-
swer every question and even if they do, the answers may be deliberately or fortu-
itously false. Suppose that the sample survey attempts to obtain a vector of responses
denoted as x; =(x;1, . ..., X;jx) from N individuals, i = 1, ..., N. Suppose now that
if an individual fails to provide information on any one or more elements of x;, then
the entire vector is discarded. The first problem resulting from missing data is that the
sample size is reduced. The second potentially more serious problem is that missing
data can potentially lead to biases similar to the selection bias. If the data are missing
in a systematic manner, then the sample that is left to analyze may not be represen-
tative of the population. A form of selection bias may be induced by any systematic
pattern of nonresponse. For example, high-income respondents may systematically not
respond to questions about income. Conversely, if the data are missing completely at
random then discarding incomplete observations will reduce precision but not gen-
erate biases. Chapter 27 discusses the missing-data problem and solutions in greater
depth.

Measurement errors in survey responses are a pervasive problem. They can arise
from a variety of causes, including incorrect responses arising from carelessness, de-
liberate misreporting, faulty recall of past events, incorrect interpretation of questions,
and data-processing errors. A deeper source of measurement error is due to the mea-
sured variable being at best an imperfect proxy for the relevant theoretical concept.
The consequences of such measurement errors is a major topic and is discussed in
Chapter 26.
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Sample Attrition

In panel data situations the survey involves repeated observations on a set of individu-
als. In this case we can have

e full response in all periods (full participation),
* nonresponse in the first period and in all subsequent periods (nonparticipation), or

e partial response in the sense of response in the initial periods but nonresponse in later
periods (incomplete participation) — a situation referred to as sample attrition.

Sample attrition leads to missing data, and the presence of any nonrandom pattern
of “missingness” will lead to the sample selection type problems already mentioned.
This can be interpreted as a special case of the sample selection problem. Sample
attrition is discussed briefly in Sections 21.8.5 and 23.5.2.

3.2.7. Types of Observational Data

Cross-section data are obtained by observing w, for the sample S; for some ¢. Al-
though it is usually impractical to sample all households at the same point of time,
cross-section data are still a snapshot of characteristics of each element of a subset of
the population that will be used to make inferences about the population. If the pop-
ulation is stationary, then inferences made about 8, using S, may be valid also for
t' # t. If there is significant dependence between past and current behavior, then lon-
gitudinal data are required to identify the relationship of interest. For example, past
decisions may affect current outcomes; inertia or habit persistence may account for
current purchases, but such dependence cannot be modeled if the history of purchases
is not available. This is one of the limitations imposed by cross-section data.

Repeated cross-section data are obtained by a sequence of independent samples
S; taken from F(w;|0;),t =1, ..., T. Because the sample design does not attempt to
retain the same units in the sample, information about dynamic dependence in behavior
is lost. If the population is stationary then repeated cross-section data are obtained by
a sampling process somewhat akin to sampling with replacement from the constant
population. If the population is nonstationary, repeated cross sections are related in a
manner that depends on how the population is changing over time. In such a case the
objective is to make inferences about the underlying constant (hyper)parameters. The
analysis of repeated cross sections is discussed in Section 22.7.

Panel or longitudinal data are obtained by initially selecting a sample S and
then collecting observations for a sequence of time periods, t = 1, ..., T. This can
be achieved by interviewing subjects and collecting both present and past data at the
same time, or by tracking the subjects once they have been inducted into the survey.
This produces a sequence of data vectors {wy, ..., wr} that are used to make infer-
ences about either the behavior of the population or that of the particular sample of
individuals. The appropriate methodology in each case may not be the same. If the
data are drawn from a nonstationary population, the appropriate objective should be
inference on (hyper)parameters of the superpopulation.
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Some limitations of these types of data are immediately obvious. Cross-section
samples and repeated cross-sections do not in general provide suitable data for mod-
eling intertemporal dependence in outcomes. Such data are only suitable for modeling
static relationships. In contrast, longitudinal data, especially if they span a sufficiently
long time period, are suitable for modeling both static and dynamic relationships.

Longitudinal data are not free from problems. The first issue is representativeness of
the panel. Problems of inference regarding population behavior using longitudinal data
become more difficult if the population is not stationary. For analyzing dynamics of be-
havior, retaining original households in the panel for as long as possible is an attractive
option. In practice, longitudinal data sets suffer from the problem of “sample attrition,”
perhaps due to “sample fatigue.” This simply means that survey respondents do not
continue to provide responses to questionnaires. This creates two problems: (1) The
panel becomes unbalanced and (2) there is the danger that the retained household may
not be “typical” and that the sample becomes unrepresentative of the population. When
the available sample data are not a random draw from the population, results based on
different types of data will be susceptible to biases to different degrees. The problem
of “sample fatigue” arises because over time it becomes more difficult to retain in-
dividuals within the panel or they may be “lost” (censored) for some other reason,
such as a change of location. These issues are dealt with later in the book. Analysis
of longitudinal data may nevertheless provide information about some aspects of the
behavior of the sampled units, although extrapolation to population behavior may not
be straightforward.

3.3. Data from Social Experiments

Observational and experimental data are distinct because an experimental environment
can in principle be closely monitored and controlled. This makes it possible to vary
a causal variable of interest, holding other covariates at controlled settings. In con-
trast, observational data are generated in an uncontrolled environment, leaving open
the possibility that the presence of confounding factors will make it more difficult to
identify the causal relationship of interest. For example, when one attempts to study
the earnings—schooling relationship using observational data, one must accept that the
years of schooling of an individual is itself an outcome of an individual’s decision-
making process, and hence one cannot regard the level of schooling as if it had been
set by a hypothetical experimenter.

In social sciences, data analogous to experimental data come from either social
experiments, defined and described in greater detail in the following, or from “labo-
ratory” experiments on small groups of voluntary participants that mimic the behavior
of economic agents in the real-life counterpart of the experiment. Social experiments
are relatively uncommon, and yet experimental concepts, methods, and data serve as a
benchmark for evaluating econometric studies based on observational data.

This section provides a brief account of the methodology of social experiments, the
nature of the data emanating from them, and some problems and issues of econometric
methodology that they generate.
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The central feature of the experimental methodology involves a comparison be-
tween the outcomes of the randomly selected experimental group that is subjected to a
“treatment”’with those of a control (comparison) group. In a good experiment consid-
erable care is exercised in matching the control and experimental (“treated”) groups,
and in avoiding potential biases in outcomes. Such conditions may not be realized
in observational environments, thereby leading to a possible lack of identification of
causal parameters of interest. Sometimes, however, experimental conditions may be
approximately replicated in observational data. Consider, for example, two contigu-
ous regions or states, one of which pursues a different minimum-wage policy from the
other, creating the conditions of a natural experiment in which observations from the
“treated” state can be compared with those from the “control” state. The data structure
of a natural experiment has also attracted attention in econometrics.

A social experiment involves exogenous variations in the economic environment
facing the set of experimental subjects, which is partitioned into one subset that re-
ceives the experimental treatment and another that serves as a control group. In con-
trast to observational studies in which changes in exogenous and endogenous factors
are often confounded, a well-designed social experiment aims to isolate the role of
treatment variables. In some experimental designs there may be no explicit control
group, but varying levels of the treatment are applied, in which case it becomes pos-
sible in principle to estimate the entire response surface of experimental outcomes.

The primary object of a social experiment is to estimate the impact of an actual
or potential social program. The potential outcome model of Section 2.7 provides a
relevant background for modeling the impact of social experiments. Several alternative
measures of impact have been proposed and these will be discussed in the chapter on
program evaluation (Chapter 25).

Burtless (1995) summarizes the case for social experiments, while noting some
potential limitations. In a companion article Heckman and Smith (1995) focus on
limitations of actual social experiments that have been implemented. The remaining
discussion in this section borrows significantly from these papers.

3.3.1. Leading Features of Social Experiments

Social experiments are motivated by policy issues about how subjects would react to a
type of policy that has never been tried and hence one for which no observed response
data exist. The idea of a social experiment is to enlist a group of willing participants,
some of whom are randomly assigned to a treatment group and the rest to a control
group. The difference between the responses of those in the treatment group, subjected
to the policy change, and those in the control group, who are not, is the estimated
effect of the policy. Schematically the standard experimental design is as depicted in
Figure 3.1.

The term “experimentals” refers to the group receiving treatments, “controls” to the
group not receiving treatment, and “random assignment” to the process of assigning
individuals to the two groups.

Randomized trials were introduced in statistics by R. A. Fisher (1928) and his
co-workers. A typical agricultural experiment would consist of a trial in which a new
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Figure 3.1: Social experiment with random assignment.

treatment such as fertilizer application would be applied to plants growing on ran-
domly chosen blocks of land and then the responses would be compared with those
of a control group of plants, similar to the experimentals in all relevant respects but
not given experimental treatment. If the effect of all other differences between the ex-
perimental and control groups can be eliminated, the estimated difference between the
two sets of responses can be attributed to the treatment. In the simplest situation one
can concentrate on a comparison of the mean outcome of the treated group and of the
untreated group.

Although in agricultural and biomedical sciences, the randomized experiments
methodology has been long established, in economics and social sciences it is new.
It is attractive for studying responses to policy changes for which no observational
data exist, perhaps because the policy changes of interest have never occurred. Ran-
domized experiments also permit a greater variation in policy variables and parameters
than are present in observational data, thereby making it easier to identify and study
responses to policy changes. In many cases the social experiment may try out a pol-
icy that has never been tried, so the observational data remain completely silent on its
potential impact.

Social experiments are still rather rare outside the United States, partly because
they are expensive to run. In the United States a number of such experiments have
taken place since the early 1970s. Table 3.1 summarizes features of some relatively
well-known examples; for a more extensive coverage see Burtless (1995).

An experiment may produce either cross-section or longitudinal data, although cost
considerations will usually limit the time dimension well below what is typical in ob-
servational data. When an experiment lasts several years and has multiple stages and/or
geographical locations, as in the case of RHIE, interim analyses based on “incomplete”
data are not uncommon (Newhouse et al., 1993).

3.3.2. Advantages of Social Experiments

Burtless (1995) surveys the advantages of social experiments with great clarity.
The key advantage stems from randomized trials that remove any correlation be-
tween the observed and unobserved characteristics of program participants. Hence the
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Table 3.1. Features of Some Selected Social Experiments

Experiment Tested Treatments Target Population

Rand Health Health insurance plans with ~ Low- and moderate-level
Insurance Experiment ~ varying copayment rate and  income persons and families
(RHIE), 1974-1982 differing levels of maximum

out-of-pocket expenses

Negative Income Tax ~ NIT plans with alternative Low- and moderate-level
(NIT), 1968-1978 income guarantees and income persons and families

tax rates with nonaged head of household
Job Training Job search assistance, Out-of-school youths and
Partnership Act (JTPA), on-the-job training, classroom disadvantaged adults
(1986-1994) training financed under JTPA

contribution of the treatment to the outcome difference between the treated and control
groups can be estimated without confounding bias even if one cannot control for the
confounding variables. The presence of correlation between treatment and confound-
ing variables often plagues observational studies and complicates causal inference. By
contrast, an experimental study conducted under ideal circumstances can produce a
consistent estimate of the average difference in outcomes of the treated and nontreated
groups without much computational complexity.

If, however, an outcome depends on treatment as well as other observable fac-
tors, then controlling for the latter will in general improve the precision of the impact
estimate.

Even if observational data are available, the generation and use of experimental data
has great appeal because it offers the possibility of exogenizing a policy variable, and
randomization of treatments can potentially lead to great simplification of statistical
analysis. Conclusions based on observational data often lack generality because they
are based on a nonrandom sample from the population — the problem of selection bias.
An example is the aforementioned RHIE study whose major focus is on the price re-
sponsiveness of the demand for health services. Availability of health insurance affects
the user price of health services and thereby its use. An important policy issue is the ex-
tent to which “overutilization” of health services would result from subsidized health
insurance. One can, of course, use observational data to model the relation between
the demand for health services and the level of insurance. However, such analyses are
subject to the criticism that the level of health insurance should not be treated as ex-
ogenous. Theoretical analyses show that the demand for health insurance and health
care are jointly determined, so causation is not unidirectional. This fact can potentially
make it difficult to identify the role of health insurance. Treating health insurance as
exogenous biases the estimate of price responsiveness. However, in an experimental
setup the participating households could be assigned an insurance policy, making it an
exogenous variable. The role of insurance is then identifiable. Once the key variable
of interest is exogenized, the direction of causation becomes clear and the impact of
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the treatment can be studied unambiguously. Furthermore, if the experiment is free
from some of the problems that we mention in the following, this greatly simplifies
statistical analysis relative to what is often necessary in survey data.

3.3.3. Limitations of Social Experiments

The application of a nonhuman methodology, initially that is, one developed for and
applied to nonhuman subjects, to human subjects has generated a lively debate in the
literature. See especially Heckman and Smith (1995), who argue that many social ex-
periments may suffer from limitations that apply to observational studies. These is-
sues concern general points such as the merits of experimental versus observational
methodology, as well as specific issues concerning the biases and problems inherent
in the use of human subjects. Several of the issues are covered in more detail in later
chapters but a brief overview follows.

Social experiments are very costly to run. Sometimes, perhaps often, they do not
correspond to “clean” randomized trials. Hence the results from such experiments are
not always unambiguous and easily interpretable, or free from biases. If the treatment
variable has many alternative settings of interest, or if extrapolation is an important
objective, then a very large sample must be collected to ensure sufficient data variation
and to precisely gauge the effect of treatment variation. In that case the cost of the
experiment will also increase. If the cost factor prevents a large enough experiment, its
utility relative to observational studies may be questionable; see the papers by Rosen
and Stafford in Hausman and Wise (1985).

Unfortunately the design of some social experiments is flawed. Hausman and Wise
(1985) argue that the data from the New Jersey negative income tax experiment was
subject to endogenous stratification, which they describe as follows:

... [T]he reason for an experiment is, by randomization, to eliminate correlation
between the treatment variable and other determinants of the response variable that
is under study. In each of the income-maintenance experiments, however, the exper-
imental sample was selected in part on the basis of the dependent variable, and the
assignment to treatment versus control group was based in part on the dependent
variable as well. In general, the group eligible for selection — based on family status,
race, age of family head, etc. — was stratified on the basis of income (and other vari-
ables) and persons were selected from within the strata. (Hausman and Wise, 1985,
pp- 190-191)

The authors conclude that, in the presence of endogenous stratification, unbiased es-
timation of treatment effects is not straightforward. Unfortunately, a fully randomized
trial in which treatment assignment within a randomly selected experimental group
from the population is independent of income would be much more costly and may
not be feasible.

There are several other issues that detract from the ideal simplicity of a random-
ized experiment. First, if experimental sites are selected randomly, cooperation of
administrators and potential participants at that site would be required. If this is not
forthcoming, then alternative treatment sites where such cooperation is obtainable
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will be substituted, thereby compromising the random assignment principle; see Hotz
(1992).

A second problem is that of sample selection, which is relevant because participa-
tion is voluntary. For ethical reasons there are many experiments that simply cannot
be done (e.g., random assignment of students to years of education). Unlike medical
experiments that can achieve the gold standard of a double-blind protocol, in social
experiments experimenters and subjects know whether they are in treatment or con-
trol groups. Furthermore, those in control groups may obtain treatment, (e.g., training)
from alternative sources. If the decision to participate is uncorrelated with either x or
&, the analysis of the experimental data is simplified.

A third problem is sample attrition caused by subjects dropping out of the experi-
ment after it has started. Even if the initial sample was random the effect of nonran-
dom attrition may well lead to a problem similar to the attrition bias in panels. Finally,
there is the problem of Hawthorne effect. The term originates in social psychology
research conducted jointly by the Harvard Graduate School of Business Administra-
tion and the management of the Western Electric Company at the latter’s Hawthorne
works in Chicago from 1926 to 1932. Human subjects, unlike inanimate objects, may
change or adapt their behavior while participating in the experiment. In this case the
variation in the response observed under experimental conditions cannot be attributed
solely to treatment.

Heckman and Smith (1995) mention several other difficulties in implementing a
randomized treatment. Because the administration of a social experiment involves a
bureaucracy, there is a potential for biases. Randomization bias occurs if the assign-
ment introduces a systematic difference between the experimental participant and the
participant during its normal operation. Heckman and Smith document the possibilities
of such bias in actual experiments. Another type of bias, called substitution bias, is
introduced when the controls may be receiving some form of treatment that substitutes
for the experimental treatment. Finally, analysis of social experiments is inevitably of
a partial equilibrium nature. One cannot reliably extrapolate the treatment effects to
the entire population because the ceteris paribus assumption will not hold when the
entire population is involved.

Specifically, the key issue is whether one can extrapolate the results from the exper-
iment to the population at large. If the experiment is conducted as a pilot program on a
small scale, but the intention is to predict the impact of policies that are more broadly
applied, then the obvious limitation is that the pilot program cannot incorporate the
broader impact of the treatment. A broadly applied treatment may change the eco-
nomic environment sufficiently to invalidate the predictions from a partial equilibrium
setup. So the treatment will not be like the actual policy that it mimics.

In summary, social experiments, in principle, could yield data that are easier to an-
alyze and to understand in terms of cause and effect than observational data. Whether
this promise is realized depends on the experimental design. A poor experimen-
tal design generates its own statistical complications, which affect the precision of
the conclusions. Social experiments differ fundamentally from those in biology and
agriculture because human subjects and treatment administrators tend to be both
active and forward-looking individuals with personal preferences, rather than
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Table 3.2. Features of Some Selected Natural Experiments

Experiment Treatments Studied Reference

Outcomes for identical twins Differences in returns to Ashenfelter and

with different schooling levels schooling through correlation Krueger (1994)
between schooling and wages

Transition to National Health Labor market effects of NHI Gruber and

Insurance in Canada as Sasketchwan based on comparison of Hanratty (1995)

moves to NHI and other states provinces with and without NHI

follow several years later

New Jersey increases minimum Minimum wage effects on Card and

wage while neighboring employment Krueger (1994)

Pennsylvania does not

passive administrators of a standard protocol or willing recipients of randomly as-
signed treatment.

3.4. Data from Natural Experiments

Sometimes, however, a researcher may have available data from a “natural experi-
ment.” A natural experiment occurs when a subset of the population is subjected to
an exogenous variation in a variable, perhaps as a result of a policy shift, that would
ordinarily be subject to endogenous variation. Ideally, the source of the variation is
well understood.

In microeconometrics there are broadly two ways in which the idea of a natural
experiment is exploited. For concreteness consider the simple regression model

y=p1+ px +u, (34)

where x is an endogenous treatment variable correlated with u.

Suppose that there is an exogenous intervention that changes x. Examples of such
external intervention are administrative rules, unanticipated legislation, natural events
such as twin births, weather-related shocks, and geographical variation; see Table 3.2
for examples. Exogenous intervention creates an opportunity for evaluating its im-
pact by comparing the behavior of the impacted group both pre- and postintervention,
or with that of a nonimpacted group postintervention. That is, “natural” comparison
groups are generated by the event that facilitates estimation of the 8,. Estimation is
simplified because x can be treated as exogenous.

The second way in which a natural experiment can assist inference is by generating
natural instrumental variables. Suppose z is a variable that is correlated with x, or
perhaps causally related to x, and uncorrelated with u. Then an instrumental variable
estimator of 8, expressed in terms of sample covariances, is

-~ Covlz, y]

27 Cov|z, x] (3-5)
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(see Section 4.8.5). In an observational data setup an instrumental variable with the
right properties may be difficult to find, but it could arise naturally in a favorable
natural experiment. Then estimation would be simplified. We consider the first case
in the next section; the topic of naturally generated instruments will be covered in
Chapter 25.

3.4.1. Natural Exogenous Interventions

Such data are less expensive to collect and they also allow the researcher to evaluate the
role of some specific factor in isolation, as in a controlled experiment, because “nature”
holds constant variations attributed to other factors that are not of direct interest. Such
natural experiments are attractive because they generate treatment and control groups
inexpensively and in a real-world setting. Whether a natural experiment can support
convincing inference depends, in part, on whether the supposed natural intervention
is genuinely exogenous, whether its impact is sufficiently large to be measurable, and
whether there are good treatment and control groups. Just because a change is legis-
lated, for example, does not mean that it is an exogenous intervention. However, in
appropriate cases, opportunistic exploitation of such data sets can yield valuable em-
pirical insights.

Investigations based on natural experiments have several potential limitations
whose importance in any given study can only be assessed through a careful con-
sideration of the relevant theory, facts, and institutional setting. Following Campbell
(1969) and Meyer (1995), these are grouped into limitations that affect a study’s inter-
nal validity (i.e., the inferences about policy impact drawn from the study) and those
that affect a study’s external validity (i.e., the generalization of the conclusions to other
members of the population).

Consider an investigation of a policy change in which conclusions are drawn from
a comparison of pre- and postintervention data, using the regression method briefly
described in the following and in greater detail in Chapter 25. In any study there will
be omitted variables that may have also changed in the time interval between policy
change and its impact. The characteristics of sampled individuals such as age, health
status, and their actual or anticipated economic environment may also change. These
omitted factors will directly affect the measured impact of the policy change. Whether
the results can be generalized to other members of the population will depend on the
absence of bias due to nonrandom sampling, existence of significant interaction effects
between the policy change and its setting, and an absence of the role of historical
factors that would cause the impact to vary from one situation to another. Of course,
these considerations are not unique to data from natural experiments; rather, the point
is that the latter are not necessarily free from these problems.

3.4.2. Differences in Differences

One simple regression method is based on a comparison of outcomes in one group
before and after a policy intervention. For example, consider

yo=a+BDi+¢ey, i=1,...,N, t=0,1,
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where D, = 1 in period 1 (postintervention), D, = 0 in period O (preintervention), and
vi; measures the outcome. The regression estimated from the pooled data will yield an
estimate of policy impact parameter §. This is easily shown to be equal to the average
difference in the pre- and postintervention outcome,

B=N" Zi (yir — Yio)
= Y1 = Yo

The one-group before and after design makes the strong assumption that the group
remains comparable over time. This is required for identifiability of 8. If, for exam-
ple, we allowed « to vary between the two periods, § would no longer be identified.
Changes in « are confounded with the policy impact.

One way to improve on the previous design is to include an additional untreated
comparison group, that is, one not impacted by policy, and for which the data are avail-
able in both periods. Using Meyer’s (1995) notation, the relevant regression now is

yijr:ot+a1D,+a1Dj+ﬂDtj+£ij,, i=1,...,N,t=0,1,

where j is the group superscript, D/ = 1if j equals 1 and D’/ = 0 otherwise, Dtj =1
if both j and ¢ equal 1 and D! = 0 otherwise, and ¢ is a zero-mean constant-variance
error term. The equation does not include covariates but they can be added, and those
that do not vary are already subsumed under «. This relation implies that, for the
treated group, we have preintervention

yl-lo —a+a'D' + 8}0
and postintervention
yi=a+a +a'D'+ B+
The impact is therefore
yill — yilo =u;+ B8+ 81-11 — 81-10. (3.6)
The corresponding equations for the untreated group are

0 0
Yio = o + €y,

W =ata +el,
and hence the difference is

Yh = Yio =1 + &) — ey, (3.7

Both the first-difference equations include the period-1 specific effect «;, which can
be eliminated by taking the difference between Equations (3.6) and (3.7):

()’i11 - yilo) - ()’?1 - yloo) =B+ (8,'11 - 8,'10) - (8?1 - 8?0)- (3.83)

Assuming that E[(s), — &) — (% — &%)] equals zero, we can obtain an unbiased
estimate of 8 by the sample average of (yi'1 - yilo) - (yio1 - yiOO). This method uses
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differences in differences. If time-varying covariates are present, they can be
included in the relevant equations and their differences will appear in the regression
equation (3.8).

For simplicity our analysis ignored the possibility that there remain observable dif-
ferences in the distribution of characteristics between the treatment and control groups.
If so, then such differences must be controlled for. The standard solution is to include
such controlling variables in the regression.

An example of a study based on a natural experiment is that of Ashenfelter and
Krueger (1994). They estimate the returns to schooling by contrasting the wage rates
of identical twins with different schooling levels. In this case running a regular exper-
iment in which individuals are exogenously assigned different levels of schooling is
simply not feasible. Nonetheless, some experimental-type controls are needed. As the
authors explain:

Our goal is to ensure that the correlation we observe between schooling and wage
rates is not due to a correlation between schooling and a worker’s ability or other
characteristics. We do this by taking advantage of the fact that monozygotic twins
are genetically identical and have similar family backgrounds.

Data on twins have served as a basis for a number of other econometric studies
(Rosenzweig and Wolpin, 1980; Bronars and Grogger, 1994). Since the twinning prob-
ability in the population is not high, an important issue is generating a sufficiently
large representative sample, allowing for some nonresponse. One source of such data
is the census. Another source is the “twins festivals™ that are held in the United States.
Ashenfelter and Krueger (1994, p. 1158) report that their data were obtained from in-
terviews conducted at the 16th Annual Twins Day Festival, Twinsburg, Ohio, August
1991, which is the largest gathering of twins, triplets, and quadruplets in the world.

The attraction of using the twins data is that the presence of common effects from
both observable and unobservable factors can be eliminated by modeling the differ-
ences between the outcomes of the twins. For example, Ashenfelter and Krueger esti-
mate a regression model of the difference in the log of wage rates between the first and
the second twin. The first differencing operation eliminates the effects of age, gender,
ethnicity, and so forth. The remaining explanatory variables are differences between
schooling levels, which is the variable of main interest, and variables such as differ-
ences in years of tenure and marital status.

3.4.3. Identification through Natural Experiments

The natural experiments school has had a useful impact on econometric practice. By
encouraging the opportunistic exploitation of quasi-experimental data, and by using
modeling frameworks such as the POM of Chapter 2, econometric practice bridges the
gap between observational and experimental data. The notions of parameter identifica-
tion rooted in the SEM framework are broadened to include identification of measures
that are interesting from a policy viewpoint. The main advantage of using data from a
natural experiment is that a policy variable of interest might be validly treated as ex-
ogenous. However, in using data from natural experiments, as in the case of social
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experiments, the choice of control groups plays a critical role in determining the
reliability of the conclusions. Several potential problems that affect a social experi-
ment, such as selectivity and attrition bias, will also remain potential problems in the
case of natural experiments. Only a subset of interesting policy problems may lend
themselves to analysis within the natural experiment framework. The experiment may
apply only to a small part of the population, and the conditions under which it occurs
may not replicate themselves easily. An example given in Section 22.6 illustrates this
point in the context of difference in differences.

3.5. Practical Considerations

Although there has been an explosion in the number and type of microdata sets that
are available, certain well-established databases have supported numerous studies. We
provide a very partial list of some of very well known U.S. micro databases. For fur-
ther details, see the respective Web sites for these data sets or the data clearinghouses
mentioned in the following. Many of these allow you to download the data directly.

3.5.1. Some Sources of Microdata

Panel Study in Income Dynamics (PSID): Based at the Survey Research Center at
the University of Michigan, PSID is a national survey that has been running since
1968. Today it covers over 40,000 individuals and collects economic and demo-
graphic data. These data have been used to support a wide variety of microecono-
metric analyses. Brown, Duncan and Stafford (1996) summarize recent develop-
ments in PSID data.

Current Population Survey (CPS): This is a monthly national survey of about 50,000
households that provides information on labor force characteristics. The survey has
been conducted for more than 50 years. Major revisions in the sample have fol-
lowed each of the decennial censuses. For additional details about this survey see
Section 24.2. It is the basis of many federal government statistics on earnings and
unemployment. It is also an important source of microdata that have supported nu-
merous studies especially of labor markets. The survey was redesigned in 1994
(Polivka, 1996).

National Longitudinal Survey (NLS): The NLS has four original cohorts: NLS Older
Men, NLS Young Men, NLS Mature Women, and NLS Young Women. Each of
the original cohorts is a national yearly survey of over 5,000 individuals who have
been repeatedly interviewed since the mid-1960s. Surveys collect information on
each respondent’s work experiences, education, training, family income, household
composition, marital status, and health. Supplementary data on age, sex, etc. are
available.

National Longitudinal Surveys of Youth (NLSY): The NLSY is a national annual
survey of 12,686 young men and young women who where 14 to 22 years of age
when they were first surveyed in 1979. It contains three subsamples. The data
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provide a unique opportunity to study the life-course experiences of a large sam-
ple of young adults who are representative of American men and women born in
the late 1950s and early 1960s. A second NLSY began in 1997.

Survey of Income and Program Participation (SIPP): SIPP is a longitudinal survey
of around 8,000 housing units per month. It covers income sources, participation in
entitlement programs, correlation between these items, and individual attachments
to the job market over time. It is a multipanel survey with a new panel being intro-
duced at the beginning of each calendar year. The first panel of SIPP was initiated
in October 1983. Compared with CPS, SIPP has fewer employed and more unem-
ployed persons.

Health and Retirement Study (HRS): The HRS is a longitudinal national study.
The baseline consists of interviews with members of 7,600 households in 1992
(respondents aged from 51 to 61) with follow-ups every two years for 12 years. The
data contain a wealth of economic, demographic, and health information.

World Bank’s Living Standards Measurement Study (LSMS): The World Bank’s
LSMS household surveys collect data “on many dimensions of household well-
being that can be used to assess household welfare, understand household behavior,
and evaluate the effects of various government policies on the living conditions of
the population” in many developing countries. Many examples of the use of these
data can be found in Deaton (1997) and in the economic development literature.
Grosh and Glewwe (1998) outline the nature of the data and provide references to
research studies that have used them.

Data clearinghouses: The Interuniversity Consortium for Political and Social Re-
search (ICPSR) provides access to many data sets, including the PSID, CPS, NLS,
SIPP, National Medical Expenditure Survey (NMES), and many others. The U.S.
Bureau of Labor Statistics handles the CPS and NLS surveys. The U.S. Bureau of
Census handles the SIPP. The U.S. National Center for Health Statistics provides
access to many health data sets. A useful gateway to European data archives is
the Council of European Social Science Data Archives (CESSDA), which provides
links to several European national data archives.

Journal data archives: For some purposes, such as replication of published results
for classroom work, you can get the data from journal archives. Two archives in
particular have well-established procedures for data uploads and downloads using
an Internet browser. The Journal of Business and Economic Statistics archives data
used in most but not all articles published in that journal. The Journal of Applied
Econometrics data archive is also organized along similar lines and contains data
pertaining to most articles published since 1994.

3.5.2. Handling Microdata

Microeconomic data sets tend to be quite large. Samples of several hundreds or thou-
sands are common and even those of tens of thousands are not unusual. The distribu-
tions of outcomes of interest are often nonnormal, in part because one is often dealing
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with discrete data such as binary outcomes, or with data that have limited variation
such as proportions or shares, or with truncated or censored continuous outcomes.
Handling large nonnormal data sets poses some problems of summarizing and report-
ing the important features of data. Often it is useful to use one computing environment
(program) for data extraction, reduction, and preparation and a different one for model
estimation.

3.5.3. Data Preparation

The most basic feature of microeconometric analysis is that the process of arriving at
the sample finally used in the econometric investigation is likely to be a long one. It
is important to accurately document decisions and choices made by the investigator in
the process of “cleaning up” the data. Let us consider some specific examples.

One of the most common features of sample survey data is nonresponse or par-
tial response. The problems of nonresponse have already been discussed. Partial res-
ponse usually means that some parts of survey questionnaires were not answered. If
this means that some of the required information is not available, the observations in
question are deleted. This is called listwise deletion. If this problem occurs in a sig-
nificant number of cases, it should be properly analyzed and reported because it could
lead to an unrepresentative sample and biases in estimation. The issue is analyzed in
Chapter 27. For example, consider a question in a household survey to which high-
income households do not respond, leading to a sample in which these households are
underrepresented. Hence the end effect is no different from one in which there is a full
response but the sample is not representative.

A second problem is measurement error in reported data. Microeconomic data are
typically noisy. The extent, type, and seriousness of measurement error depends on the
type of survey cross section or panel, the individual who responds to the survey, and
the variable about which information is sought. For example, self-reported income data
from panel surveys are strongly suspected to have serially correlated measurement er-
ror. In contrast, reported expenditure magnitudes are usually thought to have a smaller
measurement error. Deaton (1997) surveys some of the sources of measurement er-
ror with special reference to the World Bank’s Living Standards Measurement Survey,
although several of the issues raised have wider relevance. The biases from measure-
ment error depend on what is done to the data in terms of transformations (e.g., first
differencing) and the estimator used. Hence to make informative statements about the
seriousness of biases from measurement error, one must analyze well-defined mod-
els. Later chapters will give examples of the impact of measurement error in specific
contexts.

3.5.4. Checking Data

In large data sets it is easy to have erroneous data resulting from keyboard and cod-
ing errors. One should therefore apply some elementary checks that would reveal the
existence of problems. One can check the data before analyzing it by examining some
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descriptive statistics. The following techniques are useful. First, use summary statistics
(min, max, mean, and median) to make sure that the data are in the proper interval and
on the proper scale. For instance, categorical variables should be between zero and
one, counts should be greater than or equal to zero. Sometimes missing data are coded
as —999, or some other integer, so take care not to treat these entries as data. Second,
one should know whether changes are fractional or on a percentage scale. Third, use
box and whisker plots to identify problematic observations. For instance, using box
and whisker plots one researcher found a country that had negative population growth
(owing to a war) and another country that had recorded investment as more than GDP
(because foreign aid had been excluded from the GDP calculation). Checking observa-
tions before proceeding with estimation may also suggest normalizing transformations
and/or distributional assumptions with features appropriate for modeling a particular
data set. Third, screening data may suggest appropriate data transforms. For example,
box and whisker plots and histograms could suggest which variables might be better
modeled via a log or power transform. Finally, it may be important to check the scales
of measurement. For some purposes, such as the use of nonlinear estimators, it may
be desirable to scale variables so that they have roughly similar scale. Summary statis-
tics can be used to check that the means, variances, and covariances of the variables
indicate proper scaling.

3.5.5. Presenting Descriptive Statistics

Because microdata sets are usually large, it is essential to provide the reader with an
initial table of descriptive statistics, usually mean, standard deviation, minimum, and
maximum for every variable. In some cases unexpectedly large or small values may
reveal the presence of a gross recording error or erroneous inclusion of an incorrect
data point. Two-way scatter diagrams are usually not helpful, but tabulation of cate-
gorical variables (contingency tables) can be. For discrete variables histograms can be
useful and for continuous variables density plots can be informative.

3.6. Bibliographic Notes

3.2 Deaton (1997) provides an introduction to sample surveys especially for developing
economies. Several specific references to complex surveys are provided in Chapter 24.
Becketti et al. (1988) investigate the importance of the issue of representativeness of the
PSID.

3.3 The collective volume edited by Hausman and Wise (1985) contains several papers on indi-
vidual social experiments including the RHIE, NIT, and Time-of-Use pricing experiments.
Several studies question the usefulness of the experimental data and there is extensive dis-
cussion of the flaws in experimental designs that preclude clear conclusions. Pros and cons
of social experiments versus observational data are discussed in an excellent pair of papers
by Burtless (1995) and Heckman and Smith (1995).

3.4 A special issue of the Journal of Business and Economic Statistics (1995) carries a number
of articles that use the methodology of quasi- or natural experiments. The collection in-
cludes an article by Meyer who surveys the issues in and the methodology of econometric
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studies that use data from natural experiments. He also provides a valuable set of guidelines
on the credible use of natural variation in making inferences about the impact of economic
policies, partly based on the work of Campbell (1969). Kim and Singal (1993) study the
impact of changes in market concentration on price using the data generated by a airline
mergers. Rosenzweig and Wolpin (2000) review an extensive literature based on natural
experiments such as identical twins. Isacsson (1999) uses the twins approach to study re-
turns to schooling using Swedish data. Angrist and Lavy (1999) study the impact of class
size on test scores using data from schools that are subject to “Maimonides’ Rule” (briefly
reviewed in Section 25.6), which states that class size should not exceed 40. The rule gen-
erates an instrument.
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PART TWO

Core Methods

Part 2 presents the core estimation methods — least squares, maximum likelihood and
method of moments — and associated methods of inference for nonlinear regression
models that are central in microeconometrics. The material also includes modern top-
ics such as quantile regression, sequential estimation, empirical likelihood, semipara-
metric and nonparametric regression, and statistical inference based on the bootstrap.
In general the discussion is at a level intended to provide enough background and
detail to enable the practitioner to read and comprehend articles in the leading econo-
metrics journals and, where needed, subsequent chapters of this book. We presume
prior familiarity with linear regression analysis.

The essential estimation theory is presented in three chapters. Chapter 4 begins with
the linear regression model. It then covers at an introductory level quantile regression,
which models distributional features other than the conditional mean. It provides a
lengthy expository treatment of instrumental variables estimation, a major method of
causal inference. Chapter 5 presents the most commonly-used estimation methods for
nonlinear models, beginning with the topic of m-estimation, before specialization to
maximum likelihood and nonlinear least squares regression. Chapter 6 provides a com-
prehensive treatment of generalized method of moments, which is a quite general esti-
mation framework that is applicable for linear and nonlinear models in single-equation
and multi-equation settings. The chapter emphasizes the special case of instrumental
variables estimation.

We then turn to model testing. Chapter 7 covers both the classical and bootstrap
approaches to hypothesis testing, while Chapter 8 presents relatively more modern
methods of model selection and specification analysis. Because of their importance
the computationally-intensive bootstrap methods are also the subject of a more de-
tailed chapter, Chapter 11 in Part 3. A distinctive feature of this book is that, as much
as possible, testing procedures are presented in a unified manner in just these three
chapters. The procedures are then illustrated in specific applications throughout the
book.

Chapter 9 is a stand-alone chapter that presents nonparametric and semiparametric
estimation methods that place a flexible structure on the econometric model.
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Chapter 10 presents the computational methods used to compute the nonlinear esti-
mators presented in chapters 5 and 6. This material becomes especially relevant to the
practitioner if an estimator is not automatically computed by an econometrics package,
or if numerical difficulties are encountered in model estimation.
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CHAPTER 4

Linear Models

4.1. Introduction

A great deal of empirical microeconometrics research uses linear regression and its
various extensions. Before moving to nonlinear models, the emphasis of this book,
we provide a summary of some important results for the single-equation linear regres-
sion model with cross-section data. Several different estimators in the linear regression
model are presented.

Ordinary least-squares (OLS) estimation is especially popular. For typical microe-
conometric cross-section data the model error terms are likely to be heteroskedas-
tic. Then statistical inference should be robust to heteroskedastic errors and efficiency
gains are possible by use of weighted rather than ordinary least squares.

The OLS estimator minimizes the sum of squared residuals. One alternative is to
minimize the sum of the absolute value of residuals, leading to the least absolute de-
viations estimator. This estimator is also presented, along with extension to quantile
regression.

Various model misspecifications can lead to inconsistency of least-squares estima-
tors. In such cases inference about economically interesting parameters may require
more advanced procedures and these are pursued at considerable length and depth else-
where in the book. One commonly used procedure is instrumental variables regression.
The current chapter provides an introductory treatment of this important method and
additionally addresses the complication of weak instruments.

Section 4.2 provides a definition of regression and presents various loss functions
that lead to different estimators for the regression function. An example is introduced
in Section 4.3. Some leading estimation procedures, specifically ordinary least squares,
weighted least squares, and quantile regression, are presented in, respectively, Sec-
tions 4.4, 4.5, and 4.6. Model misspecification is considered in Section 4.7. Instru-
mental variables regression is presented in Sections 4.8 and 4.9. Sections 4.34.5, 4.7,
and 4.8 cover standard material in introductory courses, whereas Sections 4.2, 4.6, and
4.9 introduce more advanced material.

65



LINEAR MODELS
4.2. Regressions and Loss Functions

In modern microeconometrics the term regression refers to a bewildering range of
procedures for studying the relationship between an outcome variable y and a set of
regressors X. It is helpful, therefore, to state at the beginning the motivation and justi-
fication for some of the leading types of regressions.

For exposition it is convenient to think of the purpose of regression to be condi-
tional prediction of y given x. In practice, regression models are also used for other
purposes, most notably causal inference. Even then a prediction function constitutes a
useful data summary and is still of interest. In particular, see Section 4.2.3 for the dis-
tinction between linear prediction and causal inference based on a linear causal mean.

4.2.1. Loss Functions

Let y denote the predictor defined as a function of x. Let e = y —y denote the pre-
diction error, and let

Lie) =L(y — ) (4.1)

denote the loss associated with the error e. As in decision analysis we assume that the
predictor forms the basis of some decision, and the prediction error leads to disutility
on the part of the decision maker that is captured by L(e), whose precise functional
form is a choice of the decision maker. The loss function has the property that it is
increasing in |e|.

Treating (y, y) as random, the decision maker minimizes the expected value of the
loss function, denoted E[L(e)] . If the predictor depends on x, a K -dimensional vector,
then expected loss is expressed as

E[L((y = M)]. (4.2)

The choice of the loss function should depend in a substantive way on the losses
associated with prediction errors. In some situations, such as weather forecasting, there
may be a sound basis for choosing one loss function over another.

In econometrics, there is often no clear guide and the convention is to specify
quadratic loss. Then (4.1) specializes to L(e) = ¢ and by (4.2) the optimal predic-
tor minimizes the expected loss E[L(e|x)] = E[¢?|x]. It follows that in this case the
minimum mean-squared prediction error criterion is used to compare predictors.

4.2.2. Optimal Prediction

The decision theory approach to choosing the optimal predictor is framed in terms of
minimizing expected loss,

myan Ly —MX].

Thus the optimality property is relative to the loss function of the decision maker.
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4.2. REGRESSIONS AND LOSS FUNCTIONS

Table 4.1. Loss Functions and Corresponding Optimal Predictors

Type of Loss Function Definition Optimal Predictor
Squared error loss L(e) = ¢? E[y|x]
Absolute error loss L(e) = |e| med[y|x]
. _Jd—a)lelife <0
Asymmetric absolute loss L(e) = wlel ife>0 qq [VIX]
Oife <0
Step loss L(e) = life>0 mod[y|x]

Four leading examples of loss function, and the associated optimal predictor func-
tion, are given in Table 4.1. We provide a brief presentation for each in turn. A detailed
analysis is given in Manski (1988a).

The most well known loss function is the squared error loss (or mean-square loss)
function. Then the optimal predictor of y is the conditional mean function, E[y|x]. In
the most general case no structure is placed on E[y|x] and estimation is by nonpara-
metric regression (see Chapter 9). More often a model for E[y|x] is specified, with
E[y|x] = g(x, B), where g(-) is a specified function and 3 is a finite-dimensional vec-
tor of parameters that needs to be estimated. The optimal prediction is y = g(x,B),
where ,’é is chosen to minimize the in-sample loss

N N N
D le =Y e = (i —gx.B)
i=1 i=1 i=1

The loss function is the sum of squared residuals, so estimation is by nonlinear least
squares (see Section 5.8). If the conditional mean function g(-) is restrAicted to bE linear
in x and 3, so that E[y|x] = x'@3, then the optimal predictor is y = x'3, where 3 is the
ordinary least-squares estimator detailed in Section 4.4.

If the loss criterion is absolute error loss, then the optimal predictor is the con-
ditional median, denoted med[y|x]. If the conditional median function is linear, so
that med[y|x] = x'3, then the optimal predictor is y = x'3, where 3 is the least abso-
lute deviations estimator that minimizes ), |y; — x;3|. This estimator is presented in
Section 4.6.

Both the squared error and absolute error loss functions are symmetric, so the same
penalty is imposed for prediction error of a given magnitude regardless of the direc-
tion of the prediction error. Asymmetric absolute error loss instead places a penalty
of (1 — ) |e] on overprediction and a different penalty « |e| on underprediction. The
asymmetry parameter « is specified. It lies in the interval (0, 1) with symmetry when
o = 0.5 and increasing asymmetry as « approaches 0 or 1. The optimal predictor can
be shown to be the conditional quantile, denoted g, [y|x]; a special case is the condi-
tional median when « = 0.5. Conditional quantiles are defined in Section 4.6, which
presents quantile regression (Koenker and Bassett, 1978).

The last loss function given in Table 4.1 is step loss, which bases the loss simply on
the sign of the prediction error regardless of the magnitude. The optimal predictor is the
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conditional mode, denoted mod[y|x]. This provides motivation for mode regression
(Lee, 1989).

Maximum likelihood does not fall as easily into the prediction framework of this
section. It can, however, be given an expected loss interpretation in terms of predicting
the density and minimizing Kullback—Liebler information (see Section 5.7).

The results just stated imply that the econometrician interested in estimating a pre-
diction function from the data (y, x) should choose the prediction function according
to the loss function. The use of the popular linear regression implies, at least implicitly,
that the decision maker has a quadratic loss function and believes that the conditional
mean function is linear. However, if one of the other three loss functions is specified,
then the optimal predictor will be based on one of the three other types of regressions.
In practice there can be no clear reason for preferring a particular loss function.

Regressions are often used as data summaries, rather than for prediction per se.
Then it can be useful to consider a range of estimators, as alternative estimators may
provide useful information about the sensitivity of estimates. Manski (1988a, 1991)
has pointed out that the quadratic and absolute error loss functions are both convex. If
the conditional distribution of y|x is symmetric then the conditional mean and median
estimators are both consistent and can be expected to be quite close. Furthermore, if
one avoids assumptions about the distribution of y|x, then differences in alternative
estimators provide a way of learning about the data distribution.

4.2.3. Linear Prediction

The optimal predictor under squared error loss is the conditional mean E[y|x]. If this
conditional mean is linear in x, so that E[y|x] = x'3, the parameter (3 has a structural
or causal interpretation and consistent estimation of 3 by OLS implies consistent esti-
mation of E[y|x] = x’3. This permits meaningful policy analysis of effects of changes
in regressors on the conditional mean.

If instead the conditional mean is nonlinear in x, so that E[ y|x] # x’(3, the structural
interpretation of OLS disappears. However, it is still possible to interpret 3 as the best
linear predictor under squared error loss. Differentiation of the expected loss E[(y —
x'3)%] with respect to 3 yields first-order conditions —2E[x(y — X'3)] = 0, so the opti-
mal linear predictor is 3 = (E[xx’])_lE[xy] with sample analogue the OLS estimator.

Usually we specialize to models with intercept. In a change of notation we define x
to denote regressors excluding the intercept, and we replace x'3 by o + x'+. The first-
order conditions with respect to « and ~y are that —2E[u] = 0 and —2E[xu] = 0, where
u =y — (¢ + xX'). These imply that E[#] = 0 and Cov[x,u] = 0. Solving yields

~ = (VIx])~! Cov[x, yl, 4.3)
a = E[y]-E[x]v;

see, for example, Goldberger (1991, p. 52).
From the derivation of (4.3) it should be clear that for data (y, X) we can always
write a linear regression model

y=o+xv+u, (4.4)
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where the parameters « and -y are defined in (4.3) and the error term u satisfies E[u] =
0 and Cov[x,u] = 0.

A linear regression model can therefore always be given the nonstructural or re-
duced form interpretation as the best linear prediction (or linear projection) un-
der squared error loss. However, for the conditional mean to be linear in X, so that
E[y|x] = a+Xx'7, requires the assumption that E[u|x] = 0, in addition to E[u] = 0 and
Cov[x,u] = 0.

This distinction is of practical importance. For example, if E[u|x] = 0, so that
E[y|x] = a+x', then the probability limit of a least-squares (LS) estimator 7 is ~y
regardless of whether the LS estimator is weighted or unweighted, or whether the
sample is obtained by simple random sampling or by exogenous stratified sampling. If
instead E[y|x] #a+x'~ then these different LS estimators may have different proba-
bility limits. This example is discussed further in Section 24.3.

A structural interpretation of OLS requires that the conditional mean of the error
term, given regressors, equals zero.

4.3. Example: Returns to Schooling

A leading linear regression application from labor economics concerns measuring the
impact of education on wages or earnings.
A typical returns to schooling model specifies

Inw; =as; +x,,8+u;, i=1,.,N, 4.5)

where w denotes hourly wage or annual earnings, s denotes years of completed school-
ing, and X, denotes control variables such as work experience, gender, and family
background. The subscript i denotes the ith person in the sample. Since the dependent
variable is log wage, the model is a log-linear model and the coefficient & measures
the proportionate change in earnings associated with a one-year increase in education.

Estimation of this model is most often by ordinary least squares. The transforma-
tion to Inw in practice ensures that errors are approximately homoskedastic, but it
is still best to obtain heteroskedastic consistent standard errors as detailed in Sec-
tion 4.4. Estimation can also be by quantile regression (see Section 4.6), if interest
lies in distributional issues such as behavior in the lower quartile.

The regression (4.5) can be used immediately in a descriptive manner. For exam-
ple, if @ = 0.10 then a one-year increase in schooling is associated with 10% higher
earnings, controlling for all the factors included in x;. It is important to add the last
qualifier as in this example the estimate & usually becomes smaller as x, is expanded
to include additional controls likely to influence earnings.

Policy interest lies in determining the impact of an exogenous change in schooling
on earnings. However, schooling is not randomly assigned; rather, it is an outcome that
depends on choices made by the individual. Human capital theory treats schooling as
investment by individuals in themselves, and « is interpreted as a measure of return to
human capital. The regression (4.5) is then a regression of one endogenous variable,
¥, on another, s, and so does not measure the causal impact of an exogenous change
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in s. The conditional mean function here is not causally meaningful because one is
conditioning on a factor, schooling, that is endogenous. Indeed, unless we can argue
that s is itself a function of variables at least one of which can vary independently of
u, it is unclear just what it means to regard « as a causal parameter.

Such concern about endogenous regressors with observational data on individuals
pervades microeconometric analysis. The standard assumptions of the linear regres-
sion model given in Section 4.4 are that regressors are exogenous. The consequences
of endogenous regressors are considered in Section 4.7. One method to control for
endogenous regressors, instrumental variables, is detailed in Section 4.8. A recent ex-
tensive review of ways to control for endogeneity in this wage—schooling example is
given in Angrist and Krueger (1999). These methods are summarized in Section 2.8
and presented throughout this book.

4.4. Ordinary Least Squares

The simplest example of regression is the OLS estimator in the linear regression model.

After first defining the model and estimator, a quite detailed presentation of the
asymptotic distribution of the OLS estimator is given. The exposition presumes pre-
vious exposure to a more introductory treatment. The model assumptions made here
permit stochastic regressors and heteroskedastic errors and accommodate data that are
obtained by exogenous stratified sampling.

The key result of how to obtain heteroskedastic-robust standard errors of the OLS
estimator is given in Section 4.4.5.

4.4.1. Linear Regression Model

In a standard cross-section regression model with N observations on a scalar
dependent variable and several regressors, the data are specified as (y, X), where y
denotes observations on the dependent variable and X denotes a matrix of explanatory
variables.

The general regression model with additive errors is written in vector notation as

y=E[yX] +u, (4.6)

where E[y|X] denotes the conditional expectation of the random variable y given X,
and u denotes a vector of unobserved random errors or disturbances. The right-hand
side of this equation decomposes y into two components, one that is deterministic
given the regressors and one that is attributed to random variation or noise. We think
of E[y|X] as a conditional prediction function that yields the average value, or more
formally the expected value, of y given X.

A linear regression model is obtained when E[y|X] is specified to be a linear func-
tion of X. Notation for this model has been presented in detail in Section 1.6. In vector
notation the ith observation is

yi = X;B+u;, “4.7)
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where x; is a K x 1 regressor vector and 3 is a K x 1 parameter vector. At times
it is simpler to drop the subscript i and write the model for typical observation as
y = X'3 4+ u. In matrix notation the N observations are stacked by row to yield

y=XB8+u, (4.8)

where y is an N x 1 vector of dependent variables, X is an N x K regression ma-
trix, and uis an N x 1 error vector.

Equations (4.7) and (4.8) are equivalent expressions for the linear regression model
and will be used interchangeably. The latter is more concise and is usually the most
convenient representation.

In this setting y is referred to as the dependent variable or endogenous variable
whose variation we wish to study in terms of variation in x and u; u is referred to as
the error term or disturbance term; and x is referred to as regressors or predictors
or couariates. If Assumption 4 in Section 4.4.6 holds, then all components of x are
exogenous variables or independent variables.

4.4.2. OLS Estimator

The OLS estimator is defined to be the estimator that minimizes the sum of squared
errors

uj =u'u=(y—XB)(y — XB). (4.9)
i=1
Setting the derivative with respect to 3 equal to 0 and solving for 3 yields the OLS
estimator,

BoLs = (X'X)"'XYy, (4.10)

see Exercise 4.5 for a more general result, where it is assumed that the matrix inverse of
X'X exists. If X'X is of less than full rank, the inverse can be replaced by a generalized
inverse. Then OLS estimation still yields the optimal linear predictor of y given x if
squared error loss is used, but many different linear combinations of x will yield this
optimal predictor.

4.4.3. Identification

The OLS estimator can always be computed, provided that X'X is nonsingular. The
more interesting issue is what 3 g tells us about the data.

We focus on the ability of the OLS estimator to permit identification (see Section
2.5) of the conditional mean E[y|X]. For the linear model the parameter 3 is identified
if

1. E[y|X] = X3 and
2. XBW = X3 if and only if 3 = B2.
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The first condition that the conditional mean is correctly specified ensures that 3 is
of intrinsic interest; the second assumption implies that X'X is nonsingular, which is
the same condition needed to compute the unique OLS estimate (4.10).

4.4.4. Distribution of the OLS Estimator

We focus on the asymptotic properties of the OLS estimator. Consistency is estab-
lished and then the limit distribution is obtained by rescaling the OLS estimator.
Statistical inference then requires consistent estimation of the variance matrix of the
estimator. The analysis makes extensive use of asymptotic theory, which is summa-
rized in Appendix A.

Consistency

The properties of an estimator depend on the process that actually generated the data,
the data generating process (dgp). We assume the dgp is y = X3 + u, so that the
model (4.8) is correctly specified. In some places, notably Chapters 5 and 6 and Ap-
pendix A the subscript 0 is added to 3, so the dgp is y = X3¢ + u. See Section 5.2.3
for discussion.

Then

EOLS = (X'X)"'Xy
= X'X)"'X'(X3 +u)
= X'X)"'X'X3 + (X'X)" ' X'u,

and the OLS estimator can be expressed as
Bows = B+ XX)™'Xu. @.11)
To prove consistency we rewrite (4.11) as
Bos = B+ (N*'X’X)_l N~'X'u. (4.12)

The reason for renormalization in the right-hand side is that N7'X'X = N7! Y. x;x]
is an average that converges in probability to a finite nonzero matrix if x; satisfies
assumptions that permit a law of large numbers to be applied to x;X; (see Section 4.4.8
for detail). Then

plim Bors = B + (plim N'X'X) ™" (plim N~'Xu),
using ASlutsky’s Theorem (Theorem A.3). The OLS estimator is consistent for 3 (i.e.,
plimBg s = B) if
plim N~'X'u = 0. (4.13)

If a law of large numbers can be applied to the average N~ 'X'u = N~! > X;u; then
a necessary condition for (4.13) to hold is that E[x;u;] = 0.
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Limit Distribution

Given consistency, the limit distribution of /301_5 is degenerate with all the mass at 3.
To obtain the limit distribution we multiply ,BOLS by +/N, as this rescaling leads to a
random variable that under standard cross-section assumptions has nonzero yet finite
variance asymptotically. Then (4.11) becomes

VNBors — B) = (N'X'X)”

The proof of consistency assumed that plim N ~'X’X exists and is finite and nonzero.
We assume that a central limit theorem can be applied to N ~'/?X'u to yield a multi-
variate normal limit distribution with finite, nonsingular covariance matrix. Applying
the product rule for limit normal distributions (Theorem A.17) implies that the product
in the right-hand side of (4.14) has a limit normal distribution. Details are provided in
Section 4.4.8.

This leads to the following proposition, which permits regressors to be stochastic
and does not restrict model errors to be homoskedastic and uncorrelated.

' N2 (4.14)

Proposition 4.1 (Distribution of OLS Estimator). Make the following assump-
tions:

(i) The dgp is model (4.8), that is, y = X3 + u.

(i) Data are independent over i with E[u|X] = 0 and E[uu’'|X] = Q2 = Diag[aiz].
(iii) The matrix X is of full rank so that XB" = X3 iff gV = 3@.
(iv) The K x K matrix

1 g 1 <
M,y = plim N~'X'X = plim ¥ Y xix; =lim 5 Y Elxixj]  (4.15)

i=l1 i=l1

exists and is finite nonsingular.

(v) The K x 1 vector N~'/?X'u =N~ 1/22 | Xy —> N[0, Myqx], where

Miox = plim N ™ X'uu'X = plim — Zu X; X = lim — ZE[U X;X; 1.
(4.16)
Then the OLS estimator EOLS defined in (4.10) is consistent for 3 and
VNBors — B) > N[0, My MyoxM ] @.17)

Assumption (i) is used to obtain (4.11). Assumption (ii) ensures E[y|X] = X3 and
permits heterostedastic errors with variance O’l-z, more general than the homoskedastic
uncorrelated errors that restrict Q = o2I. Assumption (iii) rules out perfect collinear-
ity among the regressors. Assumption (iv) leads to the rescaling of X'X by N~!
(4.12) and (4.14). Note that by a law of large numbers plim = lim E (see Appendix
Section A.3).

The essential condition for consistency is (4.13). Rather than directly assume this
we have used the stronger assumption (v) which is needed to obtain result (4.17).
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Given that N~!/2X'u has a limit distribution with zero mean and finite variance, mul-
tiplication by N~!/2 yields a random variable that converges in probability to zero and
so (4.13) holds as desired. Assumption (V) is required, along with assumption (iv), to
obtain the limit normal result (4.17), which by Theorem A.17 then follows immedi-
ately from (4.14). More primitive assumptions on u; and x; that ensure (iv) and (v) are
satisfied are given in Section 4.4.6, with formal proof in Section 4.4.8.

Asymptotic Distribution

Proposition 4.1 gives the limit distribution of /N (EOLS — ), a rescaling of ,’BOLS.
Many practitioners prefer to see asymptotic results written directly in terms of the dis-
tribution of ﬁOLS, in which case the distribution is called an asymptotic distribution.
This asymptotic distribution is interpreted as being applicable in large samples, mean-
ing samples large enough for the limit distribution to be a good approximation but not
so large that EOLS S (3 as then its asymptotic distribution would be degenerate. The
discussion mirrors that in Appendix A.6.4.

The asymptotic distribution is obtained from (4.17) by division by +/N and addition
of 3. This yields the asymptotic distribution

Bos ~ N [B,N "M MeoM/], (4.18)

where the symbol < means is “asymptotically dzsmbuted as.” The variance matrlx
in (4.18) is called the asymptotic variance matrix of 50Ls and is denoted V[ﬁOLS]
Even simpler notation drops the limits and expectations in the definitions of My, and
M, qx and the asymptotic distribution is denoted

Bows “ N [B.X%)7 XXX X) ], (4.19)

and V[BOLS] is defined to be the variance matrix in (4.19).

We use both (4.18) and (4.19) to represent the asymptotic distribution in later chap-
ters. Their use is for convenience of presentation. Formal asymptotic results for statisti-
cal inference are based on the limit distribution rather than the asymptotic distribution.

For 1mplementat10n the matrlces M;x and My in (4.17) or (4.18) are replaced by
con51stent estimates MXX and MXQX Then the estimated asymptotic variance matrix

of 30Ls 1S
VBors] = N~ My Mo M. (4.20)

This estlmate is called a sandwich estimate, with ngx sandwiched between M 1
and M )

4.4.5. Heteroskedasticity-Robust Standard Errors for OLS

The obvious choice for MXX in (4.20) is N~ 'X’X. Estimation of Myqyx defined in (4.16)
depends on assumptions made about the error term.

In microeconometrics applications the model errors are often conditionally het-
eroskedastic, with V[u;|x;] = E[u?|x;] = o} varying over i. White (1980a) proposed
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using llegx =N"'Y". 'u?xi x.. This estimate requires additional assumptions given in
Section 4.4.8.

Combining these estimates Mxx and MXQX and simplifying yields the estimated
asymptotic variance matrix estimate

ViBows] = XX) ' X'OXX'X) ' 421

N -1y N -1
’ ~2 / /
= E X;X; E U;XiX; E X X; s
i=1 i=1 i=1

where =Diag[u?] and u; = y; — x;/,B\ is the OLS residual. This estimate, due to
White (1980a), is called the heteroskedastic-consistent estimate of the asymptotic
variance matrix of the OLS estimator, and it leads to standard errors that are called
heteroskedasticity-robust standard errors, or even more simply robust standard
errors. It provides a consistent estimate of V[3q; 5] even though %? is not consistent
for o2

In introductory courses the errors are restricted to be homoskedastic. Then 2 = 0’1
so that X’QX = 62X’X and hence Myqy = 0 2Myy. The limit distribution variance ma-
trix in (4.17) simplifies to o>M_Z!, and many computer packages instead use what is

XX °

sometimes called the default OLS variance estimate
ViBos] = s>X'X) 7", (4.22)

where s? = (N — K)~' >, u?.

Inference based on (4.22) rather than (4.21) is invalid, unless errors are ho-
moskedastic and uncorrelated. In general the erroneous use of (4.22) when errors are
heteroskedastic, as is often the case for cross-section data, can lead to either inflation
or deflation of the true standard errors.

In practice MXQX is calculated using division by (N — K), rather than by N, to be
consistent with the similar division in forming s? in the homoskedastic case. Then
if\[ﬁOLS] in (4.21) is multiplied by N/(N — K). With heteroskedastic errors there is
no theoretical basis for this adjustment for degrees of freedom, but some simulation
studies provide support (see MacKinnon and White, 1985, and Long and Ervin, 2000).

Microeconometric analysis uses robust standard errors wherever possible. Here the
errors are robust to heteroskedasticity. Guarding against other misspecifications may
also be warranted. In particular, when data are clustered the standard errors should
additionally be robust to clustering; see Sections 21.2.3 and 24.5.

4.4.6. Assumptions for Cross-Section Regression

Proposition 4.1 is a quite generic theorem that relies on assumptions about N~!X'X
and N~!/2X’u. In practice these assumptions are verified by application of laws of
large numbers and central limit theorems to averages of x;X; and x;u;. These in turn
require assumptions about how the observations x; and errors u; are generated, and
consequently how y; defined in (4.7) is generated. The assumptions are referred to
collectively as assumptions regarding the data-generating process (dgp). A simple
pedagogical example is given in Exercise 4.4.
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Our objective at this stage is to make assumptions that are appropriate in many ap-
plied settings where cross-section data are used. The assumptions, are those in White
(1980a), and include three important departures from those in introductory treatments.
First, the regressors may be stochastic (Assumptions 1 and 3 that follow), so assump-
tions on the error are made conditional on regressors. Second, the conditional variance
of the error may vary across observations (Assumption 5). Third, the errors are not
restricted to be normally distributed.

Here are the assumptions:

1. The data (y;, x;) are independent and not identically distributed (inid) over i.

2. The model is correctly specified so that
yi = X B+u;.

3. The regressor vector X; is possibly stochastic with finite second moment, additionally
E[|x;;xi]' ] < oo forall j,k =1,..., K for some § > 0, and the matrix My defined
in (4.15) exists and is a finite positive definite matrix of rank K. Also, X has rank K in
the sample being analyzed.

4. The errors have zero mean, conditional on regressors
E[u;|x;] = 0.
5. The errors are heteroskedastic, conditional on regressors, with

1

Q = E[uw'|X] = Diag [07],

o?=E [uiz|x,v] ,
(4.23)

where € is an N x N positive definite matrix. Also, for some § > 0, E[|u?|'**] < 0.

6. The matrix Moy defined in (4.16) exists and is a finite positive definite matrix of rank
K, where Myqx = plim N -1 D uizx,- x; given independence over i. Also, for some § >
0, E[Ju?x;jxi|'"] < oo forall j,k=1,..., K.

4.4.7. Remarks on Assumptions

For completeness we provide a detailed discussion of each assumption, before proving
the key results in the following section.

Stratified Random Sampling

Assumption 1 is one that is often implicitly made for cross-section data. Here we make
it explicit. It restricts (y;, X;) to be independent over i, but permits the distribution to
differ over i. Many microeconometrics data sets come from stratified random sam-
pling (see Section 3.2). Then the population is partitioned into strata and random draws
are made within strata, but some strata are oversampled with the consequence that the
sampled (y;, X;) are inid rather than iid. If instead the data come from simple ran-
dom sampling then (y;, X;) are iid, a stronger assumption that is a special case of inid.
Many introductory treatments assumed that regressors are fixed in repeated samples.
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Then (y;, X;) are inid since only y; is random with a value that depends on the value of
x;. The fixed regressors assumption is rarely appropriate for microeconometrics data,
which are usually observational data. It is used instead for experimental data, where x
is the treatment level.

These different assumptions on the distribution of (y;, x;) affect the particular laws
of large numbers and central limit theorems used to obtain the asymptotic properties
of the OLS estimator. Note that even if (y;, X;) are iid, y; given X; is not iid since, for
example, E[y;|x;] = x_3 varies with x;.

Assumption 1 rules out most time-series data since they are dependent over obser-
vations. It will also be violated if the sampling scheme involves clustering of observa-
tions. The OLS estimator can still be consistent in these cases, provided Assumptions
2-4 hold, but usually it has a variance matrix different from that presented in this
chapter.

Correctly Specified Model

Assumption 2 seems very obvious as it is an essential ingredient in the derivation of
the OLS estimator. It still needs to be made explicitly, however, since B = (X'X) Xy
is a function of y and so its properties depend on y.

If Assumption 2 holds then it is being assumed that the regression model is linear in
X, rather than nonlinear, that there are no omitted variables in the regression, and that
there is no measurement error in the regressors, as the regressors X used to calculate
3 are the same regressors X that are in the dgp. Also, the parameters 3 are the same
across individuals, ruling out random parameter models.

If Assumption 2 fails then OLS can only be interpreted as an optimal linear predic-
tor; see Section 4.2.3.

Stochastic Regressors

Assumption 3 permits regressors to be stochastic regressors, as is usually the case
when survey data rather than experimental data are used. It is assumed that in the limit
the sample second-moment matrix is constant and nonsingular.

If the regressors are iid, as is assumed under simple random sampling, then
M, =E[xx'] and Assumption 3 can be reduced to an assumption that the second
moment exists. If the regressors are stochastic but inid, as is the case for stratified
random sampling, then we need the stronger Assumption 3, which permits applica-
tion of the Markov LLN to obtain plim N ~!X'X. If the regressors are fixed in repeated
samples, the common less-satisfactory assumption made in introductory courses, then
M, = lim N~'X’X and Assumption 3 becomes assumption that this limit exists.

Weakly Exogenous Regressors

Assumption 4 of zero conditional mean errors is crucial because when combined
with Assumption 2 it implies that E[y|X] = X3, so that the conditional mean is indeed

X3.
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The assumption that E[u|x] = 0 implies that Cov[x,u] = 0, so that the error is un-
correlated with regressors. This follows as Cov[x,u] =E[xu]—E[x]E[u] and E[u|x] =
0 implies E[xu] = 0 and E[u] = 0 by the law of iterated expectations. The weaker
assumption that Cov[x,u] = 0 can be sufficient for consistency of OLS, whereas the
stronger assumption that E[u|x] = 0 is needed for unbiasedness of OLS.

The economic meaning of Assumption 4 is that the error term represents all the
excluded factors that are assumed to be uncorrelated with X and these have, on av-
erage, zero impact on y. This is a key assumption that was referred to in Section 2.3
as the weak exogeneity assumption. Essentially this means that the knowledge of the
data-generating process for X variables does not contribute useful information for es-
timating 3. When the assumption fails, one or more of the K regressor variables is
said to be jointly dependent with y, or simply endogenous. A general term for cor-
relation of regressors with errors is endogeneity or endogenous regressors, where
the term “endogenous” means caused by factors inside the system. As we will show
in Section 4.7, the violation of weak exogeneity may lead to inconsistent estimation.
There are many ways in which weak exogeneity can be violated, but one of the most
common involves a variable in x that is a choice or a decision variable that is related
to y in a larger model. Ignoring these other relationships, and treating x; as if it were
randomly assigned to observation i, and hence uncorrelated with u;, will have non-
trivial consequences. Endogenous sampling is ruled out by Assumption 4. Instead,
if data are collected by stratified random sampling it must be exogenous stratified
sampling.

Conditionally Heteroskedastic Errors

Independent regression errors uncorrelated with regressors are assumed, a conse-
quence of Assumptions 1, 2, and 4. Introductory courses usually further restrict at-
tention to errors that are homoskedastic with homogeneous or constant variances, in
which case 07 = o2 for all i. Then the errors are iid (0, 0%) and are called spherical
errors since Q = oL

Assumption 5 is instead one of conditionally heteroskedastic regression errors,
where heteroskedastic means heterogeneous variances or different variances. The as-
sumption is stated in terms of the second moment E[u?|x], but this equals the vari-
ance V[u|x] since E[u|x] = 0 by Assumption 4. This more general assumption of het-
eroskedastic errors is made because empirically this is often the case for cross-section
regression. Furthermore, relaxing the homoskedasticity assumption is not costly as it
is possible to obtain valid standard errors for the OLS estimator even if the functional
form for the heteroskedasticity is unknown.

The term conditionally heteroskedastic is used for the following reason. Even if
(yi, x;) are iid, as is the case for simple random sampling, once we condition on X;
the conditional mean and conditional variance can vary with x;. Similarly, the errors
u; = y; — X.[3 are iid under simple random sampling, and they are therefore uncon-
ditionally homoskedastic. Once we condition on X;, and consider the distribution of
u; conditional on x;, the variance of this conditional distribution is permitted to vary
with x;.
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Limit Variance Matrix of N ~1/2X'u

Assumption 6 is needed to obtain the limit variance matrix of N~/2X'u. If regressors
are independent of the errors, a stronger assumption than that made in Assumption
4, then Assumption 5 that E[|u?|'*?] < oo and Assumption 3 that E[|x;;x;x|' "] < oo
imply the Assumption 6 condition that E[|ui2x,~_,-x,-k|1+5] < 00.

We have deliberately not made a seventh assumption, that the error u is normally
distributed conditional on X. An assumption such as normality is needed to obtain the
exact small-sample distribution of the OLS estimator. However, we focus on asymp-
totic methods throughout this book, because exact small-sample distributional results
are rarely available for the estimators used in microeconometrics, and then the normal-
ity assumption is no longer needed.

4.4.8. Derivations for the OLS Estimator

Here we present both small-sample and limit distributions of the OLS estimator and
justify White’s estimator of the variance matrix of the OLS estimator under Assump-
tions 1-6.

Small-Sample Distribution

The parameter 3 is identified under Assumptions 1-4 since then E[y|X] = X3 and X
has rank K.

In small samples the OLS estimator is unbiased under Assumptions 1-4 and its vari-
ance matrix is easily obtained given Assumption 5. These results are obtained by using
the law of iterated expectations to first take expectation with respect to u conditional
on X and then take the unconditional expectation. Then from (4.11)

ElBovs] = B + Ex.u [(X'X)™'X'u] (4.24)
= 8+ Ex [Bux [XX) " X'u[X]]
= B + Ex [(X'X)"'X'Eyx[ulX]]
= ﬁ’

using the law of iterated expectations (Theorem A.23) and given Assumptions 1 and
4, which together imply that E[u|X] = 0. Similarly, (4.11) yields

VIBos] = ExIX'X) ' X'QX(X'X) '], (4.25)

given Assumption 5, where E[uu’lX] = 2 and we use Theorem A.23, which tells us
that in general

Vx.ulgX, w)] = Ex[Vyx[gX, W]] + Vx[Euyx[gX, w]].

This simplifies here as the second term is zero since Eu‘x[(X’X)_lX’u] =0.

The OLS estimator is therefore unbiased if E[u|X] = 0. This valuable property
generally does not extend to nonlinear estimators. Most nonlinear estimators, such
as nonlinear least squares, are biased and even linear estimators such as instrumental
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variables estimators can be biased. The OLS estimator is inefficient, as its variance
is not the smallest possible variance matrix among linear unbiased estimators, unless
Q =0"71. The inefficiency of OLS provides motivation for more efficient estimators
such as generalized least squares, though the efficiency loss of OLS is not necessarily
great. Under the additional assumption of normality of the errors conditional on X, an
assumption not usually made in microeconometrics applications, the OLS estimator is
normally distributed conditional on X.

Consistency

The term plim (N ’1X’X)_1 =M,/ since plim N7'X'X = My by Assumption 3.
Consistency then requires that condition (4.13) holds. This is established using a law
of large numbers applied to the average N ~'X'u =N""! > . X;u;, which converges in
probability to zero if E[x;u;] = 0. Given Assumptions 1 and 2, the x;u; are inid and
Assumptions 1-5 permit use of the Markov LLN (Theorem A.9). If Assumption 1 is
simplified to (y;, X;) iid then x;u; are iid and Assumptions 1-4 permit simpler use of
the Kolmogorov LLN (Theorem A.8).

Limit Distribution

By Assumption 3, plim (N "X’X)71 = M_. The key is to obtain the limit distribu-
tion of N='/2X'u = N~"2%". x;u; by application of a central limit theorem. Given
Assumptions 1 and 2, the x;u; are inid and Assumptions 1-6 permit use of the Lia-
pounov CLT (Theorem A.15). If assumption 1 is strengthened to (y;, X;) iid then x;u;
are iid and Assumptions 1-5 permit simpler use of the Lindeberg—Levy CLT (Theo-
rem A.14).

This yields

1
ﬁx/u L NT0, Myoyd, (4.26)

where Myox = plim N ™' X'uu'’X =plim N ! > ul.zx,-x; given independence over i.
Application of a law of large numbers yields Myax = lim N~ > iEx, [orizx,-x;], us-
ing E, x, [u%x[xg] =Ey, [E[ul.zlx,-]x,-x;] and oiz = E[ul.z|x,-]. It follows that Myax =
lim N~'E[X'QX], where =Diag[al.2] and the expectation is with respect to only
X, rather than both X and u.

The presentation here assumes independence over i. More generally we can permit
correlated observations. Then Myqx = plim N -1 > juiu jxix; and €2 has ijth en-
try o;j = Cov[u;, u;]. This complication is deferred to treatment of the nonlinear LS
estimator in Section 5.8.

Heteroskedasticity-Robust Standard Errors

We consider the key step of consistent estimation of Myqx. Beginning with the original
definition of Myqx = plim N~! Z,N: L u?x;x;, we replace u; by u; = y; — x[3, where
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asymptotically u; L u; since ﬁ 4 3. This yields the consistent estimate
1 & ~
= Zﬁfxix; =N"'X'OX, (4.27)
i=1

where Q = Diag[12]. The additional assumption thatE[|x x, wxir] '] < A for positive
constants § and A and j, k,/ =1, ..., K isneeded, as u; 2% X, = (u; — X, (B ,6))2X,
involves up to the fourth power of X; (see White (1980a)).

Note that © does not converge to the N x N matrix €2, a seemingly impos-
sible task without additional structure as there are N variances 02 to be esti-
mated. But all that 1s needed is that N~!X'OX converges to the K x K matrix
plim N~'X'QX =N~!plim )", 0x;x/. This is easier to achieve because the number
of regressors K is fixed. To understand White’s estimator, consider OLS estimation of
the intercept-only model y; = B + u; with heteroskedastic error. Then in our notation
we can show that B = 3, My = lim N~ Iy 1_1 and Moy = lim N1 Y, E[u?].
An obvious estimator for Myay 18 MXQX =N~ Z u , where u; =y, — ,3 To obtain
the probablllty 11m1t of this estimate, it is enough to cons1der N~y u?, since u; —

u; 20 given ,3 LS B. If a law of large numbers can be applied thls average converges
to the limit of its expected value, so plim N~ Zi ui =1limN~ Zi E[uiz] =M,y as
desired. Eicker (1967) gave the formal conditions for this example.

4.5. Weighted Least Squares

If robust standard errors need to be used efficiency gains are usually possible. For
example, if heteroskedasticity is present then the feasible generalized least-squares
(GLS) estimator is more efficient than the OLS estimator.

In this section we present the feasible GLS estimator, an estimator that makes
stronger distributional assumptions about the variance of the error term. It is nonethe-
less possible to obtain standard errors of the feasible GLS estimator that are robust to
misspecification of the error variance, just as in the OLS case.

Many studies in microeconometrics do not take advantage of the potential efficiency
gains of GLS, for reasons of convenience and because the efficiency gains may be felt
to be relatively small. Instead, it is common to use less efficient weighted least-squares
estimators, most notably OLS, with robust estimates of the standard errors.

4.5.1. GLS and Feasible GLS

By the Gauss—Markov theorem, presented in introductory texts, the OLS estimator is
efficient among linear unbiased estimators if the linear regression model errors are
independent and homoskedastic.

Instead, we assume that the error variance matrix Q;éazl. If © is known and
nonsingular, we can premultiply the linear regression model (4.8) by Q~'/2, where
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Q2012 = Q, to yield
Q 2y = Q7 12XB8 + Q7.

Some algebra yields VIQ 2] = E[(Q?u)(Q?u)|X] = L. The errors in this
transformed model are therefore zero mean, uncorrelated, and homoskedastic. So 3
can be efficiently estimated by OLS regression of Q~!/%y on Q~1/°X.

This argument yields the generalized least-squares estimator

Bas = X'Q7'X)"'X'Qy. (4.28)

The GLS estimator cannot be directly implemented because in practice €2 is not
known. Instead, we specify that 2 = (), where -y is a finite-dimensional parameter
vector, obtain a consistent estimate 7 of ~y, and form Q= Q). For example, if errors
are heteroskedastic then specify V[u|x] = exp(z'~y), where z is a subset of x and the
exponential function is used to ensure a positive variance. Then 7 can be consistently
estimated by nonlinear least-squares regression (see Section 5.8) of the squared OLS
residual u? =(y — x ,GOLS)2 on exp(z'y). This estimate § € can be used in place of
in (4.28). Note that we cannot replace €2 in (4.28) by Q= Dlag[uz] as this yields an
inconsistent estimator (see Section 5.8.6).

The feasible generalized least-squares (FGLS) estimator is

2 'S v lv !
BraoLs = X'Q X) 'X'Q y. 4.29)

If Assumptions 1-6 hold and €2(-y) is correctly specified, a strong assumption that is
relaxed in the following, and ¥ is consistent for =, it can be shown that

‘/N(BFGLS -8 4 N [0, (plim N_IX’Q_IX)_I} . (4.30)

The FGLS estimator has the same limiting variance matrix as the GLS estimator and
so is second-moment efficient. For implementation replace Q by Qin (4.30).

It can be shown that the GLS estimator minimizes u’Q ™" u, see Exercise 4.5, which
simplifies to Y, u? /o if errors are heteroskedastic but uncorrelated. The motivation
provided for GLS was efficient estimation of 3. In terms of the Section 4.2 discussion
of loss function and optimal prediction, with heteroskedastic errors the loss function is
L(e) = ¢?/o%. Compared to OLS with L(e) = ¢?, the GLS loss function places a rel-
atively smaller penalty on the prediction error for observations with large conditional
error variance.

4.5.2. Weighted Least Squares

The result in (4.30) assumes correct specification of the error variance matrix €2(-y).
If instead €2(-y) is misspecified then the FGLS estimator is still consistent, but (4.30)
gives the wrong variance. Fortunately, a robust estimate of the variance of the GLS
estimator can be found even if €2(-y) is misspecified.

Specifically, define 3 = X(7) to be a working variance matrix that does not nec-
essarily equal the true variance matrix 2 = E[uu’|X]. Form an estimate ¥ = 3(7),
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Table 4.2. Least-Squares Estimators and Their Asymptotic Variance

Estimator Definition Estimated Asymptotic Variance
OLS B=(XX)"' XYy (X'X)™ X'OX (X'X) "

FGLS B=Xa'x"'xa 'y xQ 'x)"!

WLS B=xE ') xsy x='xIxsT'osxxs X

¢ Estimators are for linear regression model with error conditional variance matrix €2. For FGLS it is
assumed that €2 is consistent for 2. For OLS and WLS the heteroskedastic robust variance matrix of 8
uses €2 equal to a diagonal matrix with squared residuals on the diagonals.

where 7 is an estimate of ~. Then use weighted least squares with weighting ma-
trix fi_l.
This yields the weighted least-squares (WLS) estimator

Bus = X2'X) XSy, 4.31)
Statistical inference is then done without the assumption that 3 = €2, the true variance
matrix of the error term. In the statistics literature this approach is referred to as a
working matrix approach. We call it weighted least squares, but be aware that others
instead use weighted least squares to mean GLS or FGLS in the special case that Q!
is diagonal. Here there is no presumption that the weighting matrix X' = Q'
Similar algebra to that for OLS given in Section 4.4.5 yields the estimated asymp-
totic variance matrix

ViBwisl = XS %) X808 'xxs "0, (4.32)
where € is such that
plim N'X'ET'OS7'X = plim NIX'E=1QS'X.

In the heteroskedastic case € = Diag[@2], where @ = y; — X! Byrs-

For heteroskedastic errors the basic approach is to choose a simple model for het-
eroskedasticity such as error variance depending on only one or two key regressors. For
example, in a linear regression model of the level of wages as a function of schooling
and other variables, the heteroskedasticity might be modeled as a function of school-
ing alone. Suppose this model yields S = I?\iag[&‘iz]. Then OLS regression of y; /&; on
x;/0; (with the no-constant option) yields By, ¢ and the White robust standard errors
from this regression can be shown to equal those based on (4.32).

The weighted least-squares or working matrix approach is especially convenient
when there is more than one complication. For example, in the random effects panel
data model of Chapter 21 the errors may be viewed as both correlated over time for a
given individual and heteroskedastic. One may use the random effects estimator, which
controls only for the first complication, but then compute heteroskedastic-consistent
standard errors for this estimator.

The various least-squares estimators are summarized in Table 4.2.
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Table 4.3. Least Squares: Example with
Conditionally Heteroskedastic Errors®

OLS WLS GLS

Constant 2.213 1.060 0.996
(0.823) (0.150) (0.007)
[0.820] [0.051] [0.006]

X 0.979 0.957 0.952
(0.178) (0.190) (0.209)
[0.275] [0.232] [0.208]

R? 0.236 0.205 0.174

¢ Generated data for sample size of 100. OLS, WLS, and GLS
are all consistent but OLS and WLS are inefficient. Two differ-
ent standard errors are given: default standard errors assuming
homoskedastic errors in parentheses and heteroskedastic-robust
standard errors in square brackets. The data-generating process
is given in the text.

4.5.3. Robust Standard Errors for LS Example

As an example of robust standard error estimation, consider estimation of the standard
error of least-squares estimates of the slope coefficient for a dgp with multiplicative
heteroskedasticity

y=14+1xx+u,

u = xe,

where the scalar regressor x ~ N[0, 25] and ¢ ~ N[0, 4].

The errors are conditionally heteroskedastic, since V[u|x]=V[xg|x]=
x2V[e|x] = 4x?, which depends on the regressor x. This differs from the unconditional
variance, where V[u]=V[xe] = E[(x¢)?] — (E[x¢])> =E[x?]E[¢?] = V[x]V[¢] =
100, given x and € independent and the particular dgp here.

Standard errors for the OLS estimator should be calculated using the
heteroskedastic-consistent or robust variance estimate (4.21). Since OLS is not fully
efficient, WLS may provide efficiency gains. GLS will definitely provide efficiency
gains and in this simulated data example we have the advantage of knowing that
V[u|x]=4x?. All estimation methods yield a consistent estimate of the intercept and
slope coefficients.

Various least-squares estimates and associated standard errors from a generated data
sample of size 100 are given in Table 4.3. We focus on the slope coefficient.

The OLS slope coefficient estimate is 0.979. Two standard error estimates are re-
ported, with the correct heteroskedasticity-robust standard error of 0.275 using (4.21)
much larger here than the incorrect estimate of 0.177 that uses s>(X'X)~!. Such a large
difference in standard error estimates could lead to quite different conclusions in statis-
tical inference. In general the direction of bias in the standard errors could be in either
direction. For this example it can be shown theoretically that, in the limit, the robust
standard errors are /3 times larger than the incorrect one. Specifically, for this dgp
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and for sample size N the correct and incorrect standard errors of the OLS estimate of
the slope coefficient converge to, respectively, «/12/N and +/4/N.

As an example of the WLS estimator, assume that u = /|x|e rather than u = xe,
so that it is assumed that V[u] = o%|x|. The WLS estimator can be computed by OLS
regression after dividing y, the intercept, and x by 4/]x][. Since this is the wrong model
for the heteroskedastic error the correct standard error for the slope coefficient is the
robust estimate of 0.232, computed using (4.32).

The GLS estimator for this dgp can be computed by OLS regression after dividing
v, the intercept, and x by |x|, since the transformed error is then homoskedastic. The
usual and robust standard errors for the slope coefficient are similar (0.209 and 0.208).
This is expected as both are asymptotically correct because the GLS estimator here
uses the correct model for heteroskedasticity. It can be shown theoretically that for this
dgp the standard error of the GLS estimate of the slope coefficient converges to/4/N.

Both OLS and WLS are less efficient than GLS, as expected, with standard errors
for the slope coefficient of, respectively, 0.275 > 0.232 > 0.208.

The setup in this example is a standard one used in estimation theory for cross-
section data. Both y and x are stochastic random variables. The pair (y;, X;) are inde-
pendent over i and identically distributed, as is the case under random sampling. The
conditional distribution of y;|x; differs over i, however, since the conditional mean and
variance of y; depend on X;.

4.6. Median and Quantile Regression

In an intercept-only model, summary statistics for the sample distribution include
quantiles, such as the median, lower and upper quartiles, and percentiles, in addition
to the sample mean.

In the regression context we might similarly be interested in conditional quantiles.
For example, interest may lie in how the percentiles of the earnings distribution for
lowly educated workers are much more compressed than those for highly educated
workers. In this simple example one can just do separate computations for lowly ed-
ucated workers and for highly educated workers. However, this approach becomes
infeasible if there are several regressors taking several values. Instead, quantile regres-
sion methods are needed to estimate the quantiles of the conditional distribution of y
given X.

From Table 4.1, quantile regression corresponds to use of asymmetric absolute loss,
whereas the special case of median regression uses absolute error loss. These methods
provide an alternative to OLS, which uses squared error loss.

Quantile regression methods have advantages beyond providing a richer charac-
terization of the data. Median regression is more robust to outliers than least-squares
regression. Moreover, quantile regression estimators can be consistent under weaker
stochastic assumptions than possible with least-squares estimation. Leading examples
are the maximum score estimator of Manski (1975) for binary outcome models (see
Section 14.6) and the censored least absolute deviations estimator of Powell (1984) for
censored models (see Section 16.6).
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We begin with a brief explanation of population quantiles before turning to estima-
tion of sample quantiles.

4.6.1. Population Quantiles

For a continuous random variable y, the population gth quantile is that value 1, such
that y is less than or equal to u, with probability g. Thus

q = Prly < ugl = Fy(ug),

where F) is the cumulative distribution function (cdf) of y. For example, if po75 =3
then the probability that y < 3 equals 0.75. It follows that

g = F, (@)

Leading examples are the median, g = 0.5, the upper quartile, ¢ = 0.75, and the lower
quartile, ¢ = 0.25. For the standard normal distribution pgs = 0.0, @95 = 1.645, and
1Lo.975 = 1.960. The 100gth percentile is the gth quantile.

For the regression model, the population gth quantile of y conditional on x is
that function p,(x) such that y conditional on x is less than or equal to 1,(x) with
probability g, where the probability is evaluated using the conditional distribution of
y given x. It follows that

1g(X) = Fy 1 (q), (4.33)

where Fy|x is the conditional cdf of y given x and we have suppressed the role of the
parameters of this distribution.

It is insightful to derive the quantile function u,(x) if the dgp is assumed to be the
linear model with multiplicative heteroskedasticity

y=xB+u,
u=xaxe,
e ~iid [0, o2],

where it is assumed that x'a > 0. Then the population gth quantile of y conditional
on x is that function u,(x, 3, ) such that

g = Prly = py(x, 8, )]
= Pru < py(x, B, ) —x'B]
= Prle < [1uy(x, B, ) —xX'Bl/X a]
= F; ([1g(x, B, @) =X Bl/X ),

where we use u =y —x'3 and ¢ = u/x'cx, and F; is the cdf of ¢. It follows that
[I’Lq(xv 167 a) - X/,B]/X/a = stl(q) so that

1q(x. B, ) =X B +xXa x F'(q)
=X (B+axF (g).
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Thus for the linear model with multiplicative heteroskedasticity of the form u = xX'a x
¢ the conditional quantiles are linear in x. In the special case of homoskedasticity, X' c
equals a constant and all conditional quantiles have the same slope and differ only in
their intercept, which becomes larger as g increases.

In more general examples the quantile function may be nonlinear in X, owing to
other forms of heteroskedasticity such as u = hA(X, o) x &, where A(-) is nonlinear in
X, or because the regression function itself is of nonlinear form g(x, 3). It is standard
to still estimate quantile functions that are linear and interpret them as the best lin-
ear predictor under the quantile regression loss function given in (4.34) in the next
section.

4.6.2. Sample Quantiles

For univariate random variable y the usual way to obtain the sample quantile estimate
is to first order the sample. Then ﬁq equals the [ Ng]th smallest value, where N is the
sample size and [Ng] denotes Ng rounded up to the nearest integer. For example, if
N = 97, the lower quartile is the 25th observation since [97 x 0.25] = [24.25] = 25.

Koenker and Bassett (1978) observed that the sample gth quantile '/Zq can equiv-
alently be expressed as the solution to the optimization problem of minimizing with
respect to 8

N N
Y alyi—Bl+ Y. (—q)lyi—Bl.
iyizp iyi<p

This result is not obvious. To gain some understanding, consider the median, where
g = 0.5. Then the median is the minimum of ), |y; — B|. Suppose in a sample
of 99 observations that the 50th smallest observation, the median, equals 10 and
the 51st smallest observation equals 12. If we let 8 equal 12 rather than 10, then
> lvi — Bl will increase by 2 for the first 50 ordered observations and decrease by
2 for the remaining 49 observations, leading to an overall net increase of 50 x 2 —
49 x 2 = 2. So the 51st smallest observation is a worse choice than the 50th. Simi-
larly the 49th smallest observation can be shown to be a worse choice than the 50th
observation.

This objective function is then readily expanded to the linear regression case, so
that the gth quantile regression estimator Eq minimizes over 3,

N N
OvB) = Y qlyi—xB,l+ Y. (1—lyi—xB,l. (4.34)
ity >x.3 i1y <x;3

where we use 3, rather than B to make clear that different choices of g estimate
different values of 3. Note that this is the asymmetric absolute loss function given in
Table 4.1, where y is restricted to be linear in x so thate = y — x'3,. The special case
g = 0.5 is called the median regression estimator or the least absolute deviations
estimator.
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4.6.3. Properties of Quantile Regression Estimators

The objective function (4.34) is not differentiable and so the gradient optimization
methods presented in Chapter 10 are not applicable. Fortunately, linear programming
methods can be used and these provide relatively fast computation of Bq.

Since there is no explicit solution for Eq the asymptotic distribution of Bq cannot
be obtained using the approach of Section 4.4 for OLS. The methods of Chapter 5 also
require adaptation, as the objective function is nondifferentiable. It can be shown that

VN@B, - B,) > N[0,A7'BA], (4.35)
(see, for example, Buchinsky, 1998, p. 85), where

1 N
A = plim ; Fu, O1X)X; X, (4.36)

g ,
B = plim v ;q(l — q)XiX;,

and f,, (O[x) is the conditional density of the error term u, = y —x'3, evaluated
at u, = 0. Estimation of the variance of 3, is complicated by the need to estimate

JSu,(O[x). It is easier to instead obtain standard errors for Bq using the bootstrap pairs
procedure of Chapter 11.

4.6.4. Quantile Regression Example

In this section we perform conditional quantile estimation and compare it with the
usual conditional mean estimation using OLS regression. The application involves En-
gel curve estimation for household annual medical expenditure. More specifically, we
consider the regression relationship between the log of medical expenditure and the
log of total household expenditure. This regression yields an estimate of the (constant)
elasticity of medical expenditure with respect to total expenditure.

The data are from the World Bank’s 1997 Vietnam Living Standards Survey. The
sample consists of 5,006 households that have positive level of medical expenditures,
after dropping 16.6% of the sample that has zero expenditures to permit taking the
natural logarithm. Zero values can be handled using the censored quantile regression
methods of Powell (1986a), presented in Section 16.9.2. For simplicity we simply
dropped observations with zero expenditures. The largest component of medical ex-
penditure, especially at low levels of income, consists of medications purchased from
pharmacies. Although several household characteristic variables are available, for sim-
plicity we only consider one regressor, the log of total household expenditure, to serve
as a proxy for household income.

The linear least-squares regression yields an elasticity estimate of 0.57. This esti-
mate would be usually interpreted to mean that medicines are a “necessity” and hence
their demand is income inelastic. This estimate is not very surprising, but before ac-
cepting it at face value we should acknowledge that there may be considerable hetero-
geneity in the elasticity across different income groups.
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Figure 4.1: Quantile regression estimates of slope coefficient for g = 0.05,0.10,...,
0.90, 0.95 and associated 95% confidence bands plotted against g from regression of the
natural logarithm of medical expenditure on the natural logarithm of total expenditure.

Quantile regression is a useful tool for studying such heterogeneity, as emphasized
by Koenker and Hallock (2001). We minimize the quantity (4.34), where y is log of
medical expenditure and x'3 = B + B,x, where x is log of total household expendi-
ture. This is done for the nineteen quantile values g = {0.05, 0.10, ..., 0.95}, where
g = 0.5 is the median. In each case the standard errors were estimated using the boot-
strap method with 50 resamples. The results of this exercise are condensed into Fig-
ures 4.1 and 4.2.

Figure 4.1 plots the slope coefficient 73\2, 4 for the different values of g, along with
the associated 95% confidence interval. This shows how the quantile estimates of the
elasticity varies with quantile value g. The elasticity estimate increases systematically
with the level of household income, rising from 0.15 for ¢ = 0.05 to a maximum of
0.80 for ¢ = 0.85. The least-squares slope estimate of 0.57 is also presented as a hori-
zontal line that does not vary with quantile. The elasticity estimates at lower and higher
quantiles are clearly statistically significantly different from each other and from the
OLS estimate, which has standard error 0.032. It seems that the aggregate elasticity es-
timate will vary according to changes in the underlying income distribution. This graph
supports the observation of Mosteller and Tukey (1977, p. 236), quoted by Koenker
and Hallock (2001), that by focusing only on the conditional mean function the least-
squares regression gives an incomplete summary of the joint distribution of dependent
and explanatory variables.

Figure 4.2 superimposes three estimated quantile regression lines y, = 73\1, ¢t
Ezyqx forg =0.1,0.2,...,0.9 and the OLS regression line. The OLS regression line,
not graphed, is similar to the median (¢ = 0.5) regression line. There is a fanning out
of the quantile regression lines in Figure 4.2. This is not surprising given the increase
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Regression Lines as Quantile Varies
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Figure 4.2: Quantile regression estimated lines for g =0.1,g= 0.5 and g = 0.9 from re-
gression of natural logarithm of medical expenditure on natural logarithm of total expenditure.
Data for 5006 Vietnamese households with positive medical expenditures in 1997.

in estimated slopes as g increases as evident in Figure 4.1. Koenker and Bassett (1982)
developed quantile regression as a means to test for heteroskedastic errors when the
dgp is the linear model. For such a case a fanning out of the quantile regression lines
is interpreted as evidence of heteroskedasticity. Another interpretation is that the con-
ditional mean is nonlinear in x with increasing slope and this leads to quantile slope
coefficients that increase with quantile g.

More detailed illustrations of quantile regression are given in Buchinsky (1994) and
Koenker and Hallock (2001).

4.7. Model Misspecification

The term “model misspecification” in its broadest sense means that one or more of the
assumptions made on the data generating process are incorrect. Misspecifications may
occur individually or in combination, but analysis is simpler if only the consequences
of a single misspecification are considered.

In the following discussion we emphasize misspecifications that lead to inconsis-
tency of the least-squares estimator and loss of identifiability of parameters of inter-
est. The least-squares estimator may nonetheless continue to have a meaningful inter-
pretation, only one different from that intended under the assumption of a correctly
specified model. Specifically, the estimator may converge asymptotically to a param-
eter that differs from the true population value, a concept defined in Section 4.7.5 as
the pseudo-true value.

The issues raised here for consistency of OLS are relevant to other estimators in
other models. Consistency can then require stronger assumptions than those needed
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for consistency of OLS, so that inconsistency resulting from model misspecification is
more likely.

4.7.1. Inconsistency of OLS

The most serious consequence of a model misspecification is inconsistent estimation
of the regression parameters 3. From Section 4.4, the two key conditions needed to
demonstrate consistency of the OLS estimator are (1) the dgp is y = X3 + u and (2)
the dgp is such that plim N ~'X'u = 0. Then

Bos = B+ (N7'X'X)"' N"'X'u
P
- B,
where the first equality follows if y = X3 + u (see (4.12)) and the second line uses
plim N~'X'u = 0.
The OLS estimator is likely to be inconsistent if model misspecification leads to

either specification of the wrong model for y, so that condition 1 is violated, or corre-
lation of regressors with the error, so that condition 2 is violated.

(4.37)

4.7.2. Functional Form Misspecification

A linear specification of the conditional mean function is merely an approximation in
R to the true unknown conditional mean function in parameter space of indeterminate
dimension. Even if the correct regressors are chosen, it is possible that the conditional
mean is incorrectly specified.

Suppose the dgp is one with a nonlinear regression function

y=g8x) +v,
where the dependence of g(x) on unknown parameters is suppressed, and assume
E[v|x] = 0. The linear regression model

y=xpB+u

is erroneously specified. The question is whether the OLS estimator can be given any
meaningful interpretation, even though the dgp is in fact nonlinear.

The usual way to interpret regression coefficients is through the true micro relation-
ship, which here is

ElyiIx;] = g(x;).

In this case EOLS does not measure the micro response of E[y; |x;] |toa change in x;, as
it does not converge to dg(x;)/0x;. So the usual interpretation of B g is not possible.

White (1980b) showed that the OLS estimator converges to that value of 3 that
minimizes the mean-squared prediction error

Exl(g(x) — X' B)°].
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Hence prediction from OLS is the best linear predictor of the nonlinear regression
function if the mean-squared error is used as the loss function. This useful property
has already been noted in Section 4.2.3, but it adds little in interpretation of B g-

In summary, if the true regression function is nonlinear, OLS is not useful for indi-
vidual prediction. OLS can still be useful for prediction of aggregate changes, giving
the sample average change in E[y|x] due to change in x (see Stoker, 1982). However,
microeconometric analyses usually seek models that are meaningful at the individual
level.

Much of this book presents alternatives to the linear model that are more likely to
be correctly specified. For example, Chapter 14 on binary outcomes presents model
specifications that ensure that predicted probabilities are restricted to lie between 0
and 1. Also, models and methods that rely on minimal distributional assumptions are
preferred because there is then less scope for misspecification.

4.7.3. Endogeneity

Endogeneity is formally defined in Section 2.3. A broad definition is that a regressor
is endogenous when it is correlated with the error term. If any one regressor is en-
dogenous then in general OLS estimates of all regression parameters are inconsistent
(unless the exogenous regressor is uncorrelated with the endogenous regressor).

Leading examples of endogeneity, dealt with extensively in this book in both linear
and nonlinear model settings, include simultaneous equations bias (Section 2.4), omit-
ted variable bias (Section 4.7.4), sample selection bias (Section 16.5), and measure-
ment error bias (Chapter 26). Endogeneity is quite likely to occur when cross-section
observational data are used, and economists are very concerned with this complication.

A quite general approach to control for endogeneity is the instrumental variables
method, presented in Sections 4.8 and 4.9 and in Sections 6.4 and 6.5. This method
cannot always be applied, however, as necessary instruments may not be available.

Other methods to control for endogeneity, reviewed in Section 2.8, include con-
trol for confounding variables, differences in differences if repeated cross-section or
panel data are available (see Chapter 21), fixed effects if panel data are available and
endogeneity arises owing to a time-invariant omitted variable (see Section 21.6), and
regression-discontinuity design (see Section 25.6).

4.7.4. Omitted Variables

Omission of a variable in a linear regression equation is often the first example of
inconsistency of OLS presented in introductory courses. Such omission may be the
consequence of an erroneous exclusion of a variable for which data are available or of
exclusion of a variable that is not directly observed. For example, omission of ability in
a regression of earnings (or more usually its natural logarithm) on schooling is usually
due to unavailability of a comprehensive measure of ability.

Let the true dgp be

y=XB+za+v, (4.38)
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where x and z are regressors, with z a scalar regressor for simplicity, and v is an error
term that is assumed to be uncorrelated with the regressors x and z. OLS estimation of
y on x and z will yield consistent parameter estimates of 3 and «.

Suppose instead that y is regressed on x alone, with z omitted owing to unavailabil-
ity. Then the term za is moved into the error term. The estimated model is

y=xXB+ (za +v), (4.39)

where the error term is now (za + v). As before v is uncorrelated with x, but if z is
correlated with x the error term (zoe + v) will be correlated with the regressors x. The
OLS estimator will be inconsistent for 3 if z is correlated with x.

There is enough structure in this example to determine the direction of the inconsis-
tency. Stacking all observations in an obvious manner gives the dgpy = X0 + za + v.
Substituting this into Bo; s = (X'X) "' X'y yields

BoLs=B+ (Nle,X)il (N7'X'z) o+ (Nle,X)il (N7'Xv).

Under the usual assumption that X is uncorrelated with v, the final term has probability
limit zero. X is correlated with z, however, and

plim By = B+de, (4.40)
where
§ = plim[(N'X'X)"! (N~'X'z)]

is the probability limit of the OLS estimator in regression of the omitted regressor (z)
on the included regressors (X).

This inconsistency is called omitted variables bias, where common terminology
states that various misspecifications lead to bias even though formally they lead to
inconsistency. The inconsistency exists as long as & # 0, that is, as long as the omitted
variable is correlated with the included regressors. In general the inconsistency could
be positive or negative and could even lead to a sign reversal of the OLS coefficient.

For the returns to schooling example, the correlation between schooling and ability
is expected to be positive, so § > 0, and the return to ability is expected to be positive,
so o > 0. It follows that §a > 0, so the omitted variables bias is positive in this ex-
ample. OLS of earnings on schooling alone will overstate the effect of education on
earnings.

A related form of misspecification is inclusion of irrelevant regressors. For ex-
ample, the regression may be of y on x and z, even though the dgp is more simply
y = X'3 4 v. In this case it is straightforward to show that OLS is consistent, but there
is a loss of efficiency.

Controlling for omitted variables bias is necessary if parameter estimates are to be
given a causal interpretation. Since too many regressors cause little harm, but too few
regressors can lead to inconsistency, microeconometric models estimated from large
data sets tend to include many regressors. If omitted variables are still present then one
of the methods given at the end of Section 4.7.3 is needed.
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4.7.5. Pseudo-True Value

In the omitted variables example the least-squares estimator is subject to confounding
in the sense that it does not estimate 3, but instead estimates a function of 3, §, and «.

The OLS estimate cannot be used as an estimate of 3, which, for example, measures
the effect of an exogenous change in a regressor x such as schooling holding all other
regressors including ability constant.

From (4.40), however, B, 5 is a consistent estimator of Athe function (3 + d«) and
has a meaningful interpretation. The probability limit of By g of 8% = (8 + d«) is
referred to as the pseudo-true value, see Section 5.7.1 for a formal definition, corre-
sponding to B¢ - R

Furthermore, one can obtain the distribution of B¢ g even though it is inconsis-
tent for 3. The estimated asymptotic variance of B3y ¢ measures dispersion around
(B + 6a) and is given by the usual estimator, for example by s2(X'X) ™! if the error in
(4.38) is homoskedastic.

4.7.6. Parameter Heterogeneity

The presentation to date has permitted regressors and error terms to vary across indi-
viduals but has restricted the regression parameters 3 to be the same across individuals.
Instead, suppose that the dgp is

Vi = X;ﬂi+u,-, (441)

with subscript i on the parameters. This is an example of parameter heterogeneity,
where the marginal effect E[y;|x;] = 3; is now permitted to differ across individuals.

The random coefficients model or random parameters model specifies 8; to be
independently and identically distributed over i with distribution that does not depend
on the observables x;. Let the common mean of 3; be denoted 3. The dgp can be
rewritten as

i = X8+ u; +x:(8; — B)),

and enough assumptions have been made to ensure that the regressors x; are uncorre-
lated with the error term (u; + X;(3; — 3)). OLS regression of y on x will therefore
consistently estimate 3, though note that the error is heteroskedastic even if u; is ho-
moskedastic.

For panel data a standard model is the random effects model (see Section 21.7) that
lets the intercept vary across individuals while the slope coefficients are not random.

For nonlinear models a similar result need not hold, and random parameter models
can be preferred as they permit a richer parameterization. Random parameter models
are consistent with existence of heterogeneous responses of individuals to changes in
X. A leading example is random parameters logit in Section 15.7.

More serious complications can arise when the regression parameters 3; for an
individual are related to observed individual characteristics. Then OLS estimation can
lead to inconsistent parameter estimation. An example is the fixed effects model for
panel data (see Section 21.6) for which OLS estimation of y on X is inconsistent. In
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this example, but not in all such examples, alternative consistent estimators for a subset
of the regression parameters are available.

4.8. Instrumental Variables

A major complication that is emphasized in microeconometrics is the possibility of
inconsistent parameter estimation caused by endogenous regressors. Then regression
estimates measure only the magnitude of association, rather than the magnitude and
direction of causation, both of which are needed for policy analysis.

The instrumental variables estimator provides a way to nonetheless obtain consis-
tent parameter estimates. This method, widely used in econometrics and rarely used
elsewhere, is conceptually difficult and easily misused.

We provide a lengthy expository treatment that defines an instrumental variable and
explains how the instrumental variables method works in a simple setting.

4.8.1. Inconsistency of OLS

Consider the scalar regression model with dependent variable y and single regressor x.
The goal of regression analysis is to estimate the conditional mean function E[y|x]. A
linear conditional mean model, without intercept for notational convenience, specifies

Ely|x] = Bx. (4.42)

This model without intercept subsumes the model with intercept if dependent and

regressor variables are deviations from their respective means. Interest lies in obtaining

a consistent estimate of 8 as this gives the change in the conditional mean given an

exogenous change in x. For example, interest may lie in the effect in earnings caused

by an increase in schooling attributed to exogenous reasons, such as an increase in the

minimum age at which students leave school, that are not a choice of the individual.
The OLS regression model specifies

y=Bx+u, 4.43)

where u is an error term. Regression of y on x yields OLS estimate E of B.

Standard regression results make the assumption that the regressors are uncorrelated
with the errors in the model (4.43). Then the only effect of x on y is a direct effect via
the term Bx. We have the following path analysis diagram:

X —>y

/

u

where there is no association between x and u. So x and u are independent causes
of y.

However, in some situations there may be an association between regressors and
errors. For example, consider regression of log-earnings (y) on years of schooling (x).
The error term u embodies all factors other than schooling that determine earnings,
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such as ability. Suppose a person has a high level of u, as a result of high (unobserved)
ability. This increases earnings, since y = Sx + u, but it may also lead to higher lev-
els of x, since schooling is likely to be higher for those with high ability. A more
appropriate path diagram is then the following:

X —>Yy

T/

u

where now there is an association between x and u.

What are the consequences of this correlation between x and u? Now higher levels
of x have two effects on y. From (4.43) there is both a direct effect via Sx and an
indirect effect via u affecting x, which in turn affects y. The goal of regression is
to estimate only the first effect, yielding an estimate of 5. The OLS estimate will
instead combine these two effects, giving ,/3\ > B in this example where both effects
are positive. Using calculus, we have y = Bx + u(x) with total derivative

dy

y
The data give information on dy/dx, so OLS estimates the total effect 8 4+ du/dx
rather than 8 alone. The OLS estimator is therefore biased and inconsistent for 3,
unless there is no association between x and u.

A more formal treatment of the linear regression model with K regressors leads to
the same conclusion. From Section 4.7.1 a necessary condition for consistency of OLS
is that plim N~'X'u = 0. Consistency requires that the regressors are asymptotically
uncorrelated with the errors. From (4.37) the magnitude of the inconsistency of OLS
is (X’X)_l X'u, the OLS coefficient from regression of u on x. This is just the OLS
estimate of du/dx, confirming the intuitive result in (4.44).

du
B+ I (4.44)

4.8.2. Instrumental Variable

The inconsistency of OLS is due to endogeneity of x, meaning that changes in x are
associated not only with changes in y but also changes in the error #. What is needed
is a method to generate only exogenous variation in x. An obvious way is through a
randomized experiment, but for most economics applications such experiments are too
expensive or even infeasible.

Definition of an Instrument

A crude experimental or treatment approach is still possible using observational data,
provided there exists an instrument z that has the property that changes in z are asso-
ciated with changes in x but do not lead to change in y (aside from the indirect route
via x). This leads to the following path diagram:

Z— X — Yy

T/

u
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which introduces a variable z that is causally associated with x but not u. It is still
the case that z and y will be correlated, but the only source of such correlation is the
indirect path of z being correlated with x, which in turn determines y. The more direct
path of z being a regressor in the model for y is ruled out.

More formally, a variable z is called an instrument or instrumental variable for
the regressor x in the scalar regression model y = Sx + u if (1) z is uncorrelated with
the error u and (2) z is correlated with the regressor x.

The first assumption excludes the instrument z from being a regressor in the model
for y, since if instead y depended on both x and z, and y is regressed on x alone, then
z 1s being absorbed into the error so that z will then be correlated with the error. The
second assumption requires that there is some association between the instrument and
the variable being instrumented.

Examples of an Instrument

In many microeconometric applications it is difficult to find legitimate instruments.
Here we provide two examples.

Suppose we want to estimate the response of market demand to exogenous changes
in market price. Quantity demanded clearly depends on price, but prices are not ex-
ogenously given since they are determined in part by market demand. A suitable in-
strument for price is a variable that is correlated with price but does not directly affect
quantity demanded. An obvious candidate is a variable that affects market supply, since
this also affect prices, but is not a direct determinant of demand. An example is a mea-
sure of favorable growing conditions if an agricultural product is being modeled. The
choice of instrument here is uncontroversial, provided favorable growing conditions
do not directly affect demand, and is helped greatly by the formal economic model of
supply and demand.

Next suppose we want to estimate the returns to exogenous changes in schooling.
Most observational data sets lack measures of individual ability, so regression of earn-
ings on schooling has error that includes unobserved ability and hence is correlated
with the regressor schooling. We need an instrument z that is correlated with school-
ing, uncorrelated with ability, and more generally uncorrelated with the error term,
which means that it cannot directly determine earnings.

One popular candidate for z is proximity to a college or university (Card, 1995).
This clearly satisfies condition 2 because, for example, people whose home is a long
way from a community college or state university are less likely to attend college. It
most likely satisfies 1, though since it can be argued that people who live a long way
from a college are more likely to be in low-wage labor markets one needs to estimate
a multiple regression for y that includes additional regressors such as indicators for
nonmetropolitan area.

A second candidate for the instrument is month of birth (Angrist and Krueger,
1991). This clearly satisfies condition 1 as there is no reason to believe that month
of birth has a direct effect on earnings if the regression includes age in years. Surpris-
ingly condition 2 may also be satisfied, as birth month determines age of first entry
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into school in the USA, which in turn may affect years of schooling since laws often
specify a minimum school-leaving age. Bound, Jaeger, and Baker (1995) provide a
critique of this instrument.

The consequences of choosing poor instruments are considered in detail in Sec-
tion 4.9.

4.8.3. Instrumental Variables Estimator

For regression with scalar regressor x and scalar instrument z, the instrumental vari-
ables (IV) estimator is defined as

EIV = (Zx) "'z, (4.45)

where, in the scalar regressor case z, x and y are N x 1 vectors. This estimator provides
a consistent estimator for the slope coefficient 8 in the linear model y = Bx 4+ u if
is correlated with x and uncorrelated with the error term.

There are several ways to derive (4.45). We provide an intuitive derivation, one that
differs from derivations usually presented such as that in Section 6.2.5.

Return to the earnings—schooling example. Suppose a one-unit change in the in-
strument z is as