
http://www.cambridge.org/9780521848053


This page intentionally left blank



Microeconometrics

This book provides a comprehensive treatment of microeconometrics, the analysis of
individual-level data on the economic behavior of individuals or firms using regres-
sion methods applied to cross-section and panel data. The book is oriented to the prac-
titioner. A good understanding of the linear regression model with matrix algebra is
assumed. The text can be used for Ph.D. courses in microeconometrics, in applied
econometrics, or in data-oriented microeconomics sub-disciplines; and as a reference
work for graduate students and applied researchers who wish to fill in gaps in their
tool kit. Distinguishing features include emphasis on nonlinear models and robust
inference, as well as chapter-length treatments of GMM estimation, nonparametric
regression, simulation-based estimation, bootstrap methods, Bayesian methods, strati-
fied and clustered samples, treatment evaluation, measurement error, and missing data.
The book makes frequent use of empirical illustrations, many based on seven large and
rich data sets.

A. Colin Cameron is Professor of Economics at the University of California, Davis. He
currently serves as Director of that university’s Center on Quantitative Social Science
Research. He has also taught at The Ohio State University and has held short-term
visiting positions at Indiana University at Bloomington and at a number of Australian
and European universities. His research in microeconometrics has appeared in leading
econometrics and economics journals. He is coauthor with Pravin Trivedi of Regres-
sion Analysis of Count Data.

Pravin K. Trivedi is John H. Rudy Professor of Economics at Indiana University at
Bloomington. He has also taught at The Australian National University and University
of Southampton and has held short-term visiting positions at a number of European
universities. His research in microeconometrics has appeared in most leading econo-
metrics and health economics journals. He coauthored Regression Analysis of Count
Data with A. Colin Cameron and is on the editorial boards of the Econometrics Journal
and the Journal of Applied Econometrics.





Microeconometrics

Methods and Applications

A. Colin Cameron Pravin K. Trivedi
University of California, Indiana University

Davis



  
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge  , UK

First published in print format

- ----

- ----

© A. Colin Cameron and Pravin K. Trivedi 2005

2005

Information on this title: www.cambridg e.org /9780521848053

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

- ---

- ---

Cambridge University Press has no responsibility for the persistence or accuracy of s
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

hardback

eBook (NetLibrary)
eBook (NetLibrary)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521848053


To

my mother and the memory of my father

the memory of my parents





Contents

List of Figures page xv
List of Tables xvii
Preface xxi

I Preliminaries

1 Overview 3
1.1 Introduction 3
1.2 Distinctive Aspects of Microeconometrics 5
1.3 Book Outline 10
1.4 How to Use This Book 14
1.5 Software 15
1.6 Notation and Conventions 16

2 Causal and Noncausal Models 18
2.1 Introduction 18
2.2 Structural Models 20
2.3 Exogeneity 22
2.4 Linear Simultaneous Equations Model 23
2.5 Identification Concepts 29
2.6 Single-Equation Models 31
2.7 Potential Outcome Model 31
2.8 Causal Modeling and Estimation Strategies 35
2.9 Bibliographic Notes 38

3 Microeconomic Data Structures 39
3.1 Introduction 39
3.2 Observational Data 40
3.3 Data from Social Experiments 48
3.4 Data from Natural Experiments 54

vii



CONTENTS

3.5 Practical Considerations 58
3.6 Bibliographic Notes 61

II Core Methods

4 Linear Models 65
4.1 Introduction 65
4.2 Regressions and Loss Functions 66
4.3 Example: Returns to Schooling 69
4.4 Ordinary Least Squares 70
4.5 Weighted Least Squares 81
4.6 Median and Quantile Regression 85
4.7 Model Misspecification 90
4.8 Instrumental Variables 95
4.9 Instrumental Variables in Practice 103
4.10 Practical Considerations 112
4.11 Bibliographic Notes 112

5 Maximum Likelihood and Nonlinear Least-Squares Estimation 116
5.1 Introduction 116
5.2 Overview of Nonlinear Estimators 117
5.3 Extremum Estimators 124
5.4 Estimating Equations 133
5.5 Statistical Inference 135
5.6 Maximum Likelihood 139
5.7 Quasi-Maximum Likelihood 146
5.8 Nonlinear Least Squares 150
5.9 Example: ML and NLS Estimation 159
5.10 Practical Considerations 163
5.11 Bibliographic Notes 163

6 Generalized Method of Moments and Systems Estimation 166
6.1 Introduction 166
6.2 Examples 167
6.3 Generalized Method of Moments 172
6.4 Linear Instrumental Variables 183
6.5 Nonlinear Instrumental Variables 192
6.6 Sequential Two-Step m-Estimation 200
6.7 Minimum Distance Estimation 202
6.8 Empirical Likelihood 203
6.9 Linear Systems of Equations 206
6.10 Nonlinear Sets of Equations 214
6.11 Practical Considerations 219
6.12 Bibliographic Notes 220

viii



CONTENTS

7 Hypothesis Tests 223
7.1 Introduction 223
7.2 Wald Test 224
7.3 Likelihood-Based Tests 233
7.4 Example: Likelihood-Based Hypothesis

Tests
241

7.5 Tests in Non-ML Settings 243
7.6 Power and Size of Tests 246
7.7 Monte Carlo Studies 250
7.8 Bootstrap Example 254
7.9 Practical Considerations 256
7.10 Bibliographic Notes 257

8 Specification Tests and Model Selection 259
8.1 Introduction 259
8.2 m-Tests 260
8.3 Hausman Test 271
8.4 Tests for Some Common Misspecifications 274
8.5 Discriminating between Nonnested

Models
278

8.6 Consequences of Testing 285
8.7 Model Diagnostics 287
8.8 Practical Considerations 291
8.9 Bibliographic Notes 292

9 Semiparametric Methods 294
9.1 Introduction 294
9.2 Nonparametric Example: Hourly Wage 295
9.3 Kernel Density Estimation 298
9.4 Nonparametric Local Regression 307
9.5 Kernel Regression 311
9.6 Alternative Nonparametric Regression

Estimators
319

9.7 Semiparametric Regression 322
9.8 Derivations of Mean and Variance

of Kernel Estimators
330

9.9 Practical Considerations 333
9.10 Bibliographic Notes 333

10 Numerical Optimization 336
10.1 Introduction 336
10.2 General Considerations 336
10.3 Specific Methods 341
10.4 Practical Considerations 348
10.5 Bibliographic Notes 352

ix



CONTENTS

III Simulation-Based Methods

11 Bootstrap Methods 357
11.1 Introduction 357
11.2 Bootstrap Summary 358
11.3 Bootstrap Example 366
11.4 Bootstrap Theory 368
11.5 Bootstrap Extensions 373
11.6 Bootstrap Applications 376
11.7 Practical Considerations 382
11.8 Bibliographic Notes 382

12 Simulation-Based Methods 384
12.1 Introduction 384
12.2 Examples 385
12.3 Basics of Computing Integrals 387
12.4 Maximum Simulated Likelihood Estimation 393
12.5 Moment-Based Simulation Estimation 398
12.6 Indirect Inference 404
12.7 Simulators 406
12.8 Methods of Drawing Random Variates 410
12.9 Bibliographic Notes 416

13 Bayesian Methods 419
13.1 Introduction 419
13.2 Bayesian Approach 420
13.3 Bayesian Analysis of Linear Regression 435
13.4 Monte Carlo Integration 443
13.5 Markov Chain Monte Carlo Simulation 445
13.6 MCMC Example: Gibbs Sampler for SUR 452
13.7 Data Augmentation 454
13.8 Bayesian Model Selection 456
13.9 Practical Considerations 458
13.10 Bibliographic Notes 458

IV Models for Cross-Section Data

14 Binary Outcome Models 463
14.1 Introduction 463
14.2 Binary Outcome Example: Fishing Mode Choice 464
14.3 Logit and Probit Models 465
14.4 Latent Variable Models 475
14.5 Choice-Based Samples 478
14.6 Grouped and Aggregate Data 480
14.7 Semiparametric Estimation 482

x



CONTENTS

14.8 Derivation of Logit from Type I Extreme Value 486
14.9 Practical Considerations 487
14.10 Bibliographic Notes 487

15 Multinomial Models 490
15.1 Introduction 490
15.2 Example: Choice of Fishing Mode 491
15.3 General Results 495
15.4 Multinomial Logit 500
15.5 Additive Random Utility Models 504
15.6 Nested Logit 507
15.7 Random Parameters Logit 512
15.8 Multinomial Probit 516
15.9 Ordered, Sequential, and Ranked Outcomes 519
15.10 Multivariate Discrete Outcomes 521
15.11 Semiparametric Estimation 523
15.12 Derivations for MNL, CL, and NL Models 524
15.13 Practical Considerations 527
15.14 Bibliographic Notes 528

16 Tobit and Selection Models 529
16.1 Introduction 529
16.2 Censored and Truncated Models 530
16.3 Tobit Model 536
16.4 Two-Part Model 544
16.5 Sample Selection Models 546
16.6 Selection Example: Health Expenditures 553
16.7 Roy Model 555
16.8 Structural Models 558
16.9 Semiparametric Estimation 562
16.10 Derivations for the Tobit Model 566
16.11 Practical Considerations 568
16.12 Bibliographic Notes 569

17 Transition Data: Survival Analysis 573
17.1 Introduction 573
17.2 Example: Duration of Strikes 574
17.3 Basic Concepts 576
17.4 Censoring 579
17.5 Nonparametric Models 580
17.6 Parametric Regression Models 584
17.7 Some Important Duration Models 591
17.8 Cox PH Model 592
17.9 Time-Varying Regressors 597
17.10 Discrete-Time Proportional Hazards 600
17.11 Duration Example: Unemployment Duration 603

xi



CONTENTS

17.12 Practical Considerations 608
17.13 Bibliographic Notes 608

18 Mixture Models and Unobserved Heterogeneity 611
18.1 Introduction 611
18.2 Unobserved Heterogeneity and Dispersion 612
18.3 Identification in Mixture Models 618
18.4 Specification of the Heterogeneity Distribution 620
18.5 Discrete Heterogeneity and Latent Class Analysis 621
18.6 Stock and Flow Sampling 625
18.7 Specification Testing 628
18.8 Unobserved Heterogeneity Example: Unemployment Duration 632
18.9 Practical Considerations 637
18.10 Bibliographic Notes 637

19 Models of Multiple Hazards 640
19.1 Introduction 640
19.2 Competing Risks 642
19.3 Joint Duration Distributions 648
19.4 Multiple Spells 655
19.5 Competing Risks Example: Unemployment Duration 658
19.6 Practical Considerations 662
19.7 Bibliographic Notes 663

20 Models of Count Data 665
20.1 Introduction 665
20.2 Basic Count Data Regression 666
20.3 Count Example: Contacts with Medical Doctor 671
20.4 Parametric Count Regression Models 674
20.5 Partially Parametric Models 682
20.6 Multivariate Counts and Endogenous Regressors 685
20.7 Count Example: Further Analysis 690
20.8 Practical Considerations 690
20.9 Bibliographic Notes 691

V Models for Panel Data

21 Linear Panel Models: Basics 697
21.1 Introduction 697
21.2 Overview of Models and Estimators 698
21.3 Linear Panel Example: Hours and Wages 708
21.4 Fixed Effects versus Random Effects Models 715
21.5 Pooled Models 720
21.6 Fixed Effects Model 726
21.7 Random Effects Model 734

xii



CONTENTS

21.8 Modeling Issues 737
21.9 Practical Considerations 740
21.10 Bibliographic Notes 740

22 Linear Panel Models: Extensions 743
22.1 Introduction 743
22.2 GMM Estimation of Linear Panel Models 744
22.3 Panel GMM Example: Hours and Wages 754
22.4 Random and Fixed Effects Panel GMM 756
22.5 Dynamic Models 763
22.6 Difference-in-Differences Estimator 768
22.7 Repeated Cross Sections and Pseudo Panels 770
22.8 Mixed Linear Models 774
22.9 Practical Considerations 776
22.10 Bibliographic Notes 777

23 Nonlinear Panel Models 779
23.1 Introduction 779
23.2 General Results 779
23.3 Nonlinear Panel Example: Patents and R&D 762
23.4 Binary Outcome Data 795
23.5 Tobit and Selection Models 800
23.6 Transition Data 801
23.7 Count Data 802
23.8 Semiparametric Estimation 808
23.9 Practical Considerations 808
23.10 Bibliographic Notes 809

VI Further Topics

24 Stratified and Clustered Samples 813
24.1 Introduction 813
24.2 Survey Sampling 814
24.3 Weighting 817
24.4 Endogenous Stratification 822
24.5 Clustering 829
24.6 Hierarchical Linear Models 845
24.7 Clustering Example: Vietnam Health Care Use 848
24.8 Complex Surveys 853
24.9 Practical Considerations 857
24.10 Bibliographic Notes 857

25 Treatment Evaluation 860
25.1 Introduction 860
25.2 Setup and Assumptions 862

xiii



CONTENTS

25.3 Treatment Effects and Selection Bias 865
25.4 Matching and Propensity Score Estimators 871
25.5 Differences-in-Differences Estimators 878
25.6 Regression Discontinuity Design 879
25.7 Instrumental Variable Methods 883
25.8 Example: The Effect of Training on Earnings 889
25.9 Bibliographic Notes 896

26 Measurement Error Models 899
26.1 Introduction 899
26.2 Measurement Error in Linear Regression 900
26.3 Identification Strategies 905
26.4 Measurement Errors in Nonlinear Models 911
26.5 Attenuation Bias Simulation Examples 919
26.6 Bibliographic Notes 920

27 Missing Data and Imputation 923
27.1 Introduction 923
27.2 Missing Data Assumptions 925
27.3 Handling Missing Data without Models 928
27.4 Observed-Data Likelihood 929
27.5 Regression-Based Imputation 930
27.6 Data Augmentation and MCMC 932
27.7 Multiple Imputation 934
27.8 Missing Data MCMC Imputation Example 935
27.9 Practical Considerations 939
27.10 Bibliographic Notes 940

A Asymptotic Theory 943
A.1 Introduction 943
A.2 Convergence in Probability 944
A.3 Laws of Large Numbers 947
A.4 Convergence in Distribution 948
A.5 Central Limit Theorems 949
A.6 Multivariate Normal Limit Distributions 951
A.7 Stochastic Order of Magnitude 954
A.8 Other Results 955
A.9 Bibliographic Notes 956

B Making Pseudo-Random Draws 957

References 961
Index 999

xiv



List of Figures

3.1 Social experiment with random assignment page 50
4.1 Quantile regression estimates of slope coefficient 89
4.2 Quantile regression estimated lines 90
7.1 Power of Wald chi-square test 249
7.2 Density of Wald test on slope coefficient 253
9.1 Histogram for log wage 296
9.2 Kernel density estimates for log wage 296
9.3 Nonparametric regression of log wage on education 297
9.4 Kernel density estimates using different kernels 300
9.5 k-nearest neighbors regression 309
9.6 Nonparametric regression using Lowess 310
9.7 Nonparametric estimate of derivative of y with respect to x 317

11.1 Bootstrap estimate of the density of t-test statistic 368
12.1 Halton sequence draws compared to pseudo-random draws 411
12.2 Inverse transformation method for unit exponential draws 413
12.3 Accept–reject method for random draws 414
13.1 Bayesian analysis for mean parameter of normal density 424
14.1 Charter boat fishing: probit and logit predictions 466
15.1 Generalized random utility model 516
16.1 Tobit regression example 531
16.2 Inverse Mills ratio as censoring point c increases 540
17.1 Strike duration: Kaplan–Meier survival function 575
17.2 Weibull distribution: density, survivor, hazard, and cumulative

hazard functions
585

17.3 Unemployment duration: Kaplan–Meier survival function 604
17.4 Unemployment duration: survival functions by unemployment insurance 605
17.5 Unemployment duration: Nelson–Aalen cumulated hazard function 606
17.6 Unemployment duration: cumulative hazard function by

unemployment insurance
606

xv



LIST OF FIGURES

18.1 Length-biased sampling under stock sampling: example 627
18.2 Unemployment duration: exponential model generalized residuals 633
18.3 Unemployment duration: exponential-gamma model generalized

residuals
633

18.4 Unemployment duration: Weibull model generalized residuals 635
18.5 Unemployment duration: Weibull-IG model generalized residuals 636
19.1 Unemployment duration: Cox CR baseline survival functions 661
19.2 Unemployment duration: Cox CR baseline cumulative hazards 662
21.1 Hours and wages: pooled (overall) regression 712
21.2 Hours and wages: between regression 713
21.3 Hours and wages: within (fixed effects) regression 713
21.4 Hours and wages: first differences regression 714
23.1 Patents and R&D: pooled (overall) regression 793
25.1 Regression-discontinuity design: example 880
25.2 RD design: treatment assignment in sharp and fuzzy designs 883
25.3 Training impact: earnings against propensity score by treatment 892
27.1 Missing data: examples of missing regressors 924

xvi



List of Tables

1.1 Book Outline page 11
1.2 Outline of a 20-Lecture 10-Week Course 15
1.3 Commonly Used Acronyms and Abbreviations 17
3.1 Features of Some Selected Social Experiments 51
3.2 Features of Some Selected Natural Experiments 54
4.1 Loss Functions and Corresponding Optimal Predictors 67
4.2 Least Squares Estimators and Their Asymptotic Variance 83
4.3 Least Squares: Example with Conditionally Heteroskedastic Errors 84
4.4 Instrumental Variables Example 103
4.5 Returns to Schooling: Instrumental Variables Estimates 111
5.1 Asymptotic Properties of M-Estimators 121
5.2 Marginal Effect: Three Different Estimates 122
5.3 Maximum Likelihood: Commonly Used Densities 140
5.4 Linear Exponential Family Densities: Leading Examples 148
5.5 Nonlinear Least Squares: Common Examples 151
5.6 Nonlinear Least-Squares Estimators and Their Asymptotic Variance 156
5.7 Exponential Example: Least-Squares and ML Estimates 161
6.1 Generalized Method of Moments: Examples 172
6.2 GMM Estimators in Linear IV Model and Their Asymptotic Variance 186
6.3 GMM Estimators in Nonlinear IV Model and Their Asymptotic Variance 195
6.4 Nonlinear Two-Stage Least-Squares Example 199
7.1 Test Statistics for Poisson Regression Example 242
7.2 Wald Test Size and Power for Probit Regression Example 253
8.1 Specification m-Tests for Poisson Regression Example 270
8.2 Nonnested Model Comparisons for Poisson Regression Example 284
8.3 Pseudo R2s: Poisson Regression Example 291
9.1 Kernel Functions: Commonly Used Examples 300
9.2 Semiparametric Models: Leading Examples 323
10.1 Gradient Method Results 339
10.2 Computational Difficulties: A Partial Checklist 350

xvii



LIST OF TABLES

11.1 Bootstrap Statistical Inference on a Slope Coefficient: Example 367
11.2 Bootstrap Theory Notation 369
12.1 Monte Carlo Integration: Example for x Standard Normal 392
12.2 Maximum Simulated Likelihood Estimation: Example 398
12.3 Method of Simulated Moments Estimation: Example 404
13.1 Bayesian Analysis: Essential Components 425
13.2 Conjugate Families: Leading Examples 428
13.3 Gibbs Sampling: Seemingly Unrelated Regressions Example 454
13.4 Interpretation of Bayes Factors 457
14.1 Fishing Mode Choice: Data Summary 464
14.2 Fishing Mode Choice: Logit and Probit Estimates 465
14.3 Binary Outcome Data: Commonly Used Models 467
15.1 Fishing Mode Multinomial Choice: Data Summary 492
15.2 Fishing Mode Multinomial Choice: Logit Estimates 493
15.3 Fishing Mode Choice: Marginal Effects for Conditional Logit Model 493
16.1 Health Expenditure Data: Two-Part and Selection Models 554
17.1 Survival Analysis: Definitions of Key Concepts 577
17.2 Hazard Rate and Survivor Function Computation: Example 582
17.3 Strike Duration: Kaplan–Meier Survivor Function Estimates 583
17.4 Exponential and Weibull Distributions: pdf, cdf, Survivor Function,

Hazard, Cumulative Hazard, Mean, and Variance
584

17.5 Standard Parametric Models and Their Hazard and Survivor Functions 585
17.6 Unemployment Duration: Description of Variables 603
17.7 Unemployment Duration: Kaplan–Meier Survival and Nelson–Aalen

Cumulated Hazard Functions
605

17.8 Unemployment Duration: Estimated Parameters from Four
Parametric Models

607

17.9 Unemployment Duration: Estimated Hazard Ratios from Four
Parametric Models

608

18.1 Unemployment Duration: Exponential Model with Gamma and IG
Heterogeneity

634

18.2 Unemployment Duration: Weibull Model with and without
Heterogeneity

635

19.1 Some Standard Copula Functions 654
19.2 Unemployment Duration: Competing and Independent Risk

Estimates of Exponential Model with and without IG Frailty
659

19.3 Unemployment Duration: Competing and Independent Risk
Estimates of Weibull Model with and without IG Frailty

660

20.1 Proportion of Zero Counts in Selected Empirical Studies 666
20.2 Summary of Data Sets Used in Recent Patent–R&D Studies 667
20.3 Contacts with Medical Doctor: Frequency Distribution 672
20.4 Contacts with Medical Doctor: Variable Descriptions 672
20.5 Contacts with Medical Doctor: Count Model Estimates 673
20.6 Contacts with Medical Doctor: Observed and Fitted Frequencies 674

xviii



LIST OF TABLES

21.1 Linear Panel Model: Common Estimators and Models 699
21.2 Hours and Wages: Standard Linear Panel Model Estimators 710
21.3 Hours and Wages: Autocorrelations of Pooled OLS Residuals 714
21.4 Hours and Wages: Autocorrelations of Within Regression Residuals 715
21.5 Pooled Least-Squares Estimators and Their Asymptotic Variances 721
21.6 Variances of Pooled OLS Estimator with Equicorrelated Errors 724
21.7 Hours and Wages: Pooled OLS and GLS Estimates 725
22.1 Panel Exogeneity Assumptions and Resulting Instruments 752
22.2 Hours and Wages: GMM-IV Linear Panel Model Estimators 755
23.1 Patents and R&D Spending: Nonlinear Panel Model Estimators 794
24.1 Stratification Schemes with Random Sampling within Strata 823
24.2 Properties of Estimators for Different Clustering Models 832
24.3 Vietnam Health Care Use: Data Description 850
24.4 Vietnam Health Care Use: FE and RE Models for Positive Expenditure 851
24.5 Vietnam Health Care Use: Frequencies for Pharmacy Visits 852
24.6 Vietnam Health Care Use: RE and FE Models for Pharmacy Visits 852
25.1 Treatment Effects Framework 865
25.2 Treatment Effects Measures: ATE and ATET 868
25.3 Training Impact: Sample Means in Treated and Control Samples 890
25.4 Training Impact: Various Estimates of Treatment Effect 891
25.5 Training Impact: Distribution of Propensity Score for Treated and

Control Units Using DW (1999) Specification
894

25.6 Training Impact: Estimates of ATET 895
25.7 Training Evaluation: DW (2002) Estimates of ATET 896
26.1 Attenuation Bias in a Logit Regression with Measurement Error 919
26.2 Attenuation Bias in a Nonlinear Regression with Additive

Measurement Error
920

27.1 Relative Efficiency of Multiple Imputation 935
27.2 Missing Data Imputation: Linear Regression Estimates with 10%

Missing Data and High Correlation Using MCMC Algorithm
936

27.3 Missing Data Imputation: Linear Regression Estimates with 25%
Missing Data and High Correlation Using MCMC Algorithm

937

27.4 Missing Data Imputation: Linear Regression Estimates with 10%
Missing Data and Low Correlation Using MCMC Algorithm

937

27.5 Missing Data Imputation: Logistic Regression Estimates with 10%
Missing Data and High Correlation Using MCMC Algorithm

938

27.6 Missing Data Imputation: Logistic Regression Estimates with 25%
Missing Data and Low Correlation Using MCMC Algorithm

939

A.1 Asymptotic Theory: Definitions and Theorems 944
B.1 Continuous Random Variable Densities and Moments 957
B.2 Continuous Random Variable Generators 958
B.3 Discrete Random Variable Probability Mass Functions and Moments 959
B.4 Discrete Random Variable Generators 959

xix





Preface

This book provides a detailed treatment of microeconometric analysis, the analysis of
individual-level data on the economic behavior of individuals or firms. This type of
analysis usually entails applying regression methods to cross-section and panel data.

The book aims at providing the practitioner with a comprehensive coverage of sta-
tistical methods and their application in modern applied microeconometrics research.
These methods include nonlinear modeling, inference under minimal distributional
assumptions, identifying and measuring causation rather than mere association, and
correcting departures from simple random sampling. Many of these features are of
relevance to individual-level data analysis throughout the social sciences.

The ambitious agenda has determined the characteristics of this book. First, al-
though oriented to the practitioner, the book is relatively advanced in places. A cook-
book approach is inadequate because when two or more complications occur simulta-
neously – a common situation – the practitioner must know enough to be able to adapt
available methods. Second, the book provides considerable coverage of practical data
problems (see especially the last three chapters). Third, the book includes substantial
empirical examples in many chapters to illustrate some of the methods covered. Fi-
nally, the book is unusually long. Despite this length we have been space-constrained.
We had intended to include even more empirical examples, and abbreviated presen-
tations will at times fail to recognize the accomplishments of researchers who have
made substantive contributions.

The book assumes a good understanding of the linear regression model with matrix
algebra. It is written at the mathematical level of the first-year economics Ph.D. se-
quence, comparable to Greene (2003). We have two types of readers in mind. First, the
book can be used as a course text for a microeconometrics course, typically taught in
the second year of the Ph.D., or for data-oriented microeconomics field courses such
as labor economics, public economics, and industrial organization. Second, the book
can be used as a reference work for graduate students and applied researchers who
despite training in microeconometrics will inevitably have gaps that they wish to fill.

For instructors using this book as an econometrics course text it is best to introduce
the basic nonlinear cross-section and linear panel data models as early as possible,
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PREFACE

initially skipping many of the methods chapters. The key methods chapter (Chapter 5)
covers maximum-likelihood and nonlinear least-squares estimation. Knowledge of
maximum likelihood and nonlinear least-squares estimators provides adequate back-
ground for the most commonly used nonlinear cross-section models (Chapters 14–17
and 20), basic linear panel data models (Chapter 21), and treatment evaluation meth-
ods (Chapter 25). Generalized method of moments estimation (Chapter 6) is needed
especially for advanced linear panel data methods (Chapter 22).

For readers using this book as a reference work, the chapters have been written to be
as self-contained as possible. The notable exception is that some command of general
estimation results in Chapter 5, and occasionally Chapter 6, will be necessary. Most
chapters on models are structured to begin with a discussion and example that is acces-
sible to a wide audience.

The Web site www.econ.ucdavis.edu/faculty/cameron provides all the data and
computer programs used in this book and related materials useful for instructional
purposes.

This project has been long and arduous, and at times seemingly without an end. Its
completion has been greatly aided by our colleagues, friends, and graduate students.
We thank especially the following for reading and commenting on specific chapters:
Bijan Borah, Kurt Brännäs, Pian Chen, Tim Cogley, Partha Deb, Massimiliano De
Santis, David Drukker, Jeff Gill, Tue Gorgens, Shiferaw Gurmu, Lu Ji, Oscar Jorda,
Roger Koenker, Chenghui Li, Tong Li, Doug Miller, Murat Munkin, Jim Prieger,
Ahmed Rahmen, Sunil Sapra, Haruki Seitani, Yacheng Sun, Xiaoyong Zheng, and
David Zimmer. Pian Chen gave detailed comments on most of the book. We thank
Rajeev Dehejia, Bronwyn Hall, Cathy Kling, Jeffrey Kling, Will Manning, Brian
McCall, and Jim Ziliak for making their data available for empirical illustrations. We
thank our respective departments for facilitating our collaboration and for the produc-
tion and distribution of the draft manuscript at various stages. We benefited from the
comments of two anonymous reviewers. Guidance, advice, and encouragement from
our Cambridge editor, Scott Parris, have been invaluable.

Our interest in econometrics owes much to the training and environments we en-
countered as students and in the initial stages of our academic careers. The first author
thanks The Australian National University; Stanford University, especially Takeshi
Amemiya and Tom MaCurdy; and The Ohio State University. The second author thanks
the London School of Economics and The Australian National University.

Our interest in writing a book oriented to the practitioner owes much to our exposure
to the research of graduate students and colleagues at our respective institutions, UC-
Davis and IU-Bloomington.

Finally, we thank our families for their patience and understanding without which
completion of this project would not have been possible.

A. Colin Cameron
Davis, California

Pravin K. Trivedi
Bloomington, Indiana
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P A R T O N E

Preliminaries

Part 1 covers the essential components of microeconometric analysis – an economic
specification, a statistical model and a data set.

Chapter 1 discusses the distinctive aspects of microeconometrics, and provides an
outline of the book. It emphasizes that discreteness of data, and nonlinearity and het-
erogeneity of behavioral relationships are key aspects of individual-level microecono-
metric models. It concludes by presenting the notation and conventions used through-
out the book.

Chapters 2 and 3 set the scene for the remainder of the book by introducing the
reader to key model and data concepts that shape the analyses of later chapters.

A key distinction in econometrics is between essentially descriptive models and
data summaries at various levels of statistical sophistication and models that go be-
yond associations and attempt to estimate causal parameters. The classic definitions
of causality in econometrics derive from the Cowles Commission simultaneous equa-
tions models that draw sharp distinctions between exogenous and endogenous vari-
ables, and between structural and reduced form parameters. Although reduced form
models are very useful for some purposes, knowledge of structural or causal parame-
ters is essential for policy analyses. Identification of structural parameters within the
simultaneous equations framework poses numerous conceptual and practical difficul-
ties. An increasingly-used alternative approach based on the potential outcome model,
also attempts to identify causal parameters but it does so by posing limited questions
within a more manageable framework. Chapter 2 attempts to provide an overview of
the fundamental issues that arise in these and other alternative frameworks. Readers
who initially find this material challenging should return to this chapter after gaining
greater familiarity with specific models covered later in the book.

The empirical researcher’s ability to identify causal parameters depends not only
on the statistical tools and models but also on the type of data available. An experi-
mental framework provides a standard for establishing causal connections. However,
observational, not experimental, data form the basis of much of econometric inference.
Chapter 3 surveys the pros and cons of three main types of data: observational data,
data from social experiments, and data from natural experiments. The strengths and
weaknesses of conducting causal inference based on each type of data are reviewed.
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C H A P T E R 1

Overview

1.1. Introduction

This book provides a detailed treatment of microeconometric analysis, the analysis
of individual-level data on the economic behavior of individuals or firms. A broader
definition would also include grouped data. Usually regression methods are applied to
cross-section or panel data.

Analysis of individual data has a long history. Ernst Engel (1857) was among the
earliest quantitative investigators of household budgets. Allen and Bowley (1935),
Houthakker (1957), and Prais and Houthakker (1955) made important contributions
following the same research and modeling tradition. Other landmark studies that were
also influential in stimulating the development of microeconometrics, even though
they did not always use individual-level information, include those by Marschak and
Andrews (1944) in production theory and by Wold and Jureen (1953), Stone (1953),
and Tobin (1958) in consumer demand.

As important as the above earlier cited work is on household budgets and demand
analysis, the material covered in this book has stronger connections with the work on
discrete choice analysis and censored and truncated variable models that saw their first
serious econometric applications in the work of McFadden (1973, 1984) and Heckman
(1974, 1979), respectively. These works involved a major departure from the over-
whelming reliance on linear models that characterized earlier work. Subsequently, they
have led to significant methodological innovations in econometrics. Among the earlier
textbook-level treatments of this material (and more) are the works of Maddala (1983)
and Amemiya (1985). As emphasized by Heckman (2001), McFadden (2001), and oth-
ers, many of the fundamental issues that dominated earlier work based on market data
remain important, especially concerning the conditions necessary for identifiability of
causal economic relations. Nonetheless, the style of microeconometrics is sufficiently
distinct to justify writing a text that is exclusively devoted to it.

Modern microeconometrics based on individual-, household-, and establishment-
level data owes a great deal to the greater availability of data from cross-section
and longitudinal sample surveys and census data. In the past two decades, with the
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expansion of electronic recording and collection of data at the individual level, data
volume has grown explosively. So too has the available computing power for analyzing
large and complex data sets. In many cases event-level data are available; for example,
marketing science often deals with purchase data collected by electronic scanners in
supermarkets, and industrial organization literature contains econometric analyses of
airline travel data collected by online booking systems. There are now new branches of
economics, such as social experimentation and experimental economics, that generate
“experimental” data. These developments have created many new modeling opportu-
nities that are absent when only aggregated market-level data are available. Meanwhile
the explosive growth in the volume and types of data has also given rise to numerous
methodological issues. Processing and econometric analysis of such large microdata-
bases, with the objective of uncovering patterns of economic behavior, constitutes the
core of microeconometrics. Econometric analysis of such data is the subject matter of
this book.

Key precursors of this book are the books by Maddala (1983) and Amemiya (1985).
Like them it covers topics that are presented only briefly, or not at all, in undergraduate
and first-year graduate econometrics courses. Especially compared to Amemiya (1985)
this book is more oriented to the practitioner. The level of presentation is nonetheless
advanced in places, especially for applied researchers in disciplines that are less math-
ematically oriented than economics.

A relatively advanced presentation is needed for several reasons. First, the data are
often discrete or censored, in which case nonlinear methods such as logit, probit,
and Tobit models are used. This leads to statistical inference based on more difficult
asymptotic theory.

Second, distributional assumptions for such data become critically important. One
response is to develop highly parametric models that are sufficiently detailed to capture
the complexities of data, but these models can be challenging to estimate. A more com-
mon response is to minimize parametric assumptions and perform statistical inference
based on standard errors that are “robust” to complications such as heteroskedasticity
and clustering. In such cases considerable knowledge can be needed to ensure valid
statistical inference even if a standard regression package is used.

Third, economic studies often aim to determine causation rather than merely mea-
sure correlation, despite access to observational rather than experimental data. This
leads to methods to isolate causation such as instrumental variables, simultaneous
equations, measurement error correction, selection bias correction, panel data fixed
effects, and differences-in-differences.

Fourth, microeconomic data are typically collected using cross-section and panel
surveys, censuses, or social experiments. Survey data collected using these methods
are subject to problems of complex survey methodology, departures from simple ran-
dom sampling assumptions, and problems of sample selection, measurement errors,
and incomplete, and/or missing data. Dealing with such issues in a way that can sup-
port valid population inferences from the estimated econometric models population
requires use of advanced methods.

Finally, it is not unusual that two or more complications occur simultaneously,
such as endogeneity in a logit model with panel data. Then a cookbook approach
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becomes very difficult to implement. Instead, considerable understanding of the the-
ory underlying the methods is needed, as the researcher may need to read econometrics
journal articles and adapt standard econometrics software.

1.2. Distinctive Aspects of Microeconometrics

We now consider several advantages of microeconometrics that derive from its distinc-
tive features.

1.2.1. Discreteness and Nonlinearity

The first and most obvious point is that microeconometric data are usually at a low
level of aggregation. This has a major consequence for the functional forms used to
analyze the variables of interest. In many, if not most, cases linear functional forms
turn out to be simply inappropriate. More fundamentally, disaggregation brings to the
forefront heterogeneity of individuals, firms, and organizations that should be prop-
erly controlled (modeled) if one wants to make valid inferences about the underlying
relationships. We discuss these issues in greater detail in the following sections.

Although aggregation is not entirely absent in microdata, as for example when
household- or establishment-level data are collected, the level of aggregation is usu-
ally orders of magnitude lower than is common in macro analyses. In the latter case the
process of aggregation leads to smoothing, with many of the movements in opposite
directions canceling in the course of summation. The aggregated variables often show
smoother behavior than their components, and the relationships between the aggre-
gates frequently show greater smoothness than the components. For example, a rela-
tion between two variables at a micro level may be piecewise linear with many nodes.
After aggregation the relationship is likely to be well approximated by a smooth func-
tion. Hence an immediate consequence of disaggregation is the absence of features of
continuity and smoothness both of the variables themselves and of the relationships
between them.

Usually individual- and firm-level data cover a huge range of variation, both in the
cross-section and time-series dimensions. For example, average weekly consumption
of (say) beef is highly likely to be positive and smoothly varying, whereas that of an in-
dividual household in a given week may be frequently zero and may also switch to pos-
itive values from time to time. The average number of hours worked by female workers
is unlikely to be zero, but many individual females have zero market hours of work
(corner solutions), switching to positive values at other times in the course of their la-
bor market history. Average household expenditure on vacations is usually positive, but
many individual households may have zero expenditure on vacations in any given year.
Average per capita consumption of tobacco products will usually be positive, but many
individuals in the population have never consumed these products and never will, irre-
spective of price and income considerations. As Pudney (1989) has observed, micro-
data exhibit “holes, kinks and corners.” The holes correspond to nonparticipation in the
activity of interest, kinks correspond to the switching behavior, and corners correspond
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to the incidence of nonconsumption or nonparticipation at specific points of time.
That is, discreteness and nonlinearity of response are intrinsic to microeconometrics.

An important class of nonlinear models in microeconometrics deals with limited
dependent variables (Maddala, 1983). This class includes many models that provide
suitable frameworks for analyzing discrete responses and responses with limited range
of variation. Such tools of analyses are of course also available for analyzing macro-
data, if required. The point is that they are indispensable in microeconometrics and
give it its distinctive feature.

1.2.2. Greater Realism

Macroeconometrics is sometimes based on strong assumptions; the representative
agent assumption is a leading example. A frequent appeal is made to microeconomic
reasoning to justify certain specifications and interpretations of empirical results. How-
ever, it is rarely possible to say explicitly how these are affected by aggregation over
time and micro units. Alternatively, very extreme aggregation assumptions are made.
For example, aggregates are said to reflect the behavior of a hypothetical representative
agent. Such assumptions also are not credible.

From the viewpoint of microeconomic theory, quantitative analysis founded on
microdata may be regarded as more realistic than that based on aggregated data. There
are three justifications for this claim. First, the measurement of the variables involved
in such hypotheses is often more direct (though not necessarily free from measurement
error) and has greater correspondence to the theory being tested. Second, hypotheses
about economic behavior are usually developed from theories of individual behavior. If
these hypotheses are tested using aggregated data, then many approximations and sim-
plifying assumptions have to be made. The simplifying assumption of a representative
agent causes a great loss of information and severely limits the scope of an empirical
investigation. Because such assumptions can be avoided in microeconometrics, and
usually are, in principle the microdata provide a more realistic framework for testing
microeconomic hypotheses. This is not a claim that the promise of microdata is nec-
essarily achieved in empirical work. Such a claim must be assessed on a case-by-case
basis. Finally, a realistic portrayal of economic activity should accommodate a broad
range of outcomes and responses that are a consequence of individual heterogeneity
and that are predicted by underlying theory. In this sense microeconomic data sets can
support more realistic models.

Microeconometric data are often derived from household or firm surveys, typically
encompassing a wide range of behavior, with many of the behavioral outcomes tak-
ing the form of discrete or categorical responses. Such data sets have many awkward
features that call for special tools in the formulation and analysis that, although not
entirely absent from macroeconometric work, nevertheless are less widely used.

1.2.3. Greater Information Content

The potential advantages of microdata sets can be realized if such data are informa-
tive. Because sample surveys often provide independent observations on thousands of
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cross-sectional units, such data are thought to be more informative than the standard,
usually highly serially correlated, macro time series typically consisting of at most a
few hundred observations.

As will be explained in the next chapter, in practice the situation is not so clear-cut
because the microdata may be quite noisy. At the individual level many (idiosyncratic)
factors may play a large role in determining responses. Often these cannot be observed,
leading one to treat them under the heading of a random component, which can be a
very large part of observed variation. In this sense randomness plays a larger role in
microdata than in macrodata. Of course, this affects measures of goodness of fit of the
regressions. Students whose initial exposure to econometrics comes through aggregate
time-series analysis are often conditioned to see large R2 values. When encountering
cross-section regressions for the first time, they express disappointment or even alarm
at the “low explanatory power” of the regression equation. Nevertheless, there remains
a strong presumption that, at least in certain dimensions, large microdata sets are highly
informative.

Another qualification is that when one is dealing with purely cross-section data,
very little can be said about the intertemporal aspects of relationships under study.
This particular aspect of behavior can be studied using panel and transition data.

In many cases one is interested in the behavioral responses of a specific group of
economic agents under some specified economic environment. One example is the
impact of unemployment insurance on the job search behavior of young unemployed
persons. Another example is the labor supply responses of low-income individuals
receiving income support. Unless microdata are used such issues cannot be addressed
directly in empirical work.

1.2.4. Microeconomic Foundations

Econometric models vary in the explicit role given to economic theory. At one end of
the spectrum there are models in which the a priori theorizing may play a dominant
role in the specification of the model and in the choice of an estimation procedure. At
the other end of the spectrum are empirical investigations that make much less use of
economic theory.

The goal of the analysis in the first case is to identify and estimate fundamental
parameters, sometimes called deep parameters, that characterize individual taste and
preferences and/or technological relationships. As a shorthand designation, we call
this the structural approach. Its hallmark is a heavy dependence on economic theory
and emphasis on causal inference. Such models may require many assumptions, such
as the precise specification of a cost or production function or specification of the
distribution of error terms. The empirical conclusions of such an exercise may not
be robust with respect to the departures from the assumptions. In Section 2.4.4 we
shall say more about this approach. At the present stage we simply emphasize that if
the structural approach is implemented with aggregated data, it will yield estimates
of the fundamental parameters only under very stringent (and possibly unrealistic)
conditions. Microdata sets provide a more promising environment for the structural
approach, essentially because they permit greater flexibility in model specification.
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The goal of the analysis in the second case is to model relationship(s) between re-
sponse variables of interest conditionally on variables the researcher takes as given, or
exogenous. More formal definitions of endogeneity and exogeneity are given in Chap-
ter 2. As a shorthand designation, we call this a reduced form approach. The essential
point is that reduced form analysis does not always take into account all causal inter-
dependencies. A regression model in which the focus is on the prediction of y given
regressors x, and not on the causal interpretation of the regression parameters, is often
referred to as a reduced form regression. As will be explained in Chapter 2, in general
the parameters of the reduced form model are functions of structural parameters. They
may not be interpretable without some information about the structural parameters.

1.2.5. Disaggregation and Heterogeneity

It is sometimes said that many problems and issues of macroeconometrics arise from
serial correlation of macro time series, and those of microeconometrics arise from
heteroskedasticity of individual-level data. Although this is a useful characterization of
the modeling effort in many microeconometric analyses, it needs amplification and is
subject to important qualifications. In a range of microeconometric models, modeling
of dynamic dependence may be an important issue.

The benefits of disaggregation, which were emphasized earlier in this section, come
at a cost: As the data become more disaggregated the importance of controlling for
interindividual heterogeneity increases. Heterogeneity, or more precisely unobserved
heterogeneity, plays a very important role in microeconometrics. Obviously, many
variables that reflect interindividual heterogeneity, such as gender, race, educational
background, and social and demographic factors, are directly observed and hence can
be controlled for. In contrast, differences in individual motivation, ability, intelligence,
and so forth are either not observed or, at best, imperfectly observed.

The simplest response is to ignore such heterogeneity, that is, to absorb it into the
regression disturbance. After all this is how one treats the myriad small unobserved
factors. This step of course increases the unexplained part of the variation. More seri-
ously, ignoring persistent interindividual differences leads to confounding with other
factors that are also sources of persistent interindividual differences. Confounding is
said to occur when the individual contributions of different regressors (predictor vari-
ables) to the variation in the variable of interest cannot be statistically separated. Sup-
pose, for example, that the factor x1 (schooling) is said to be the source of variation in
y (earnings), when another variable x2 (ability), which is another source of variation,
does not appear in the model. Then that part of total variation that is attributable to
the second variable may be incorrectly attributed to the first variable. Intuitively, their
relative importances are confounded. A leading source of confounding bias is the in-
correct omission of regressors from the model and the inclusion of other variables that
are proxies for the omitted variable.

Consider, for example, the case in which a program participation (0/1 dummy)
variable D is included in the regression mean function with a vector of regressors x,

y = x′β + αD + u, (1.1)
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where u is an error term. The term “treatment” is used in biological and experimental
sciences to refer to an administered regimen involving participants in some trial. In
econometrics it commonly refers to participation in some activity that may impact an
outcome of interest. This activity may be randomly assigned to the participants or may
be self-selected by the participant. Thus, although it is acknowledged that individuals
choose their years of schooling, one still thinks of years of schooling as a “treatment”
variable. Suppose that program participation is taken to be a discrete variable. The
coefficient α of the “treatment variable” measures the average impact of the program
participation (D = 1), conditional on covariates. If one does not control for unob-
served heterogeneity, then a potential ambiguity affects the interpretation of the results.
If d is found to have a significant impact, then the following question arises: Is α sig-
nificantly different from zero because D is correlated with some unobserved variable
that affects y or because there is a causal relationship between D and y? For example,
if the program considered is university education, and the covariates do not include a
measure of ability, giving a fully causal interpretation becomes questionable. Because
the issue is important, more attention should be given to how to control for unobserved
heterogeneity.

In some cases where dynamic considerations are involved the type of data available
may put restrictions on how one can control for heterogeneity. Consider the example
of two households, identical in all relevant respects except that one exhibits a sys-
tematically higher preference for consuming good A. One could control for this by
allowing individual utility functions to include a heterogeneity parameter that reflects
their different preferences. Suppose now that there is a theory of consumer behavior
that claims that consumers become addicted to good A, in the sense that the more they
consume of it in one period, the greater is the probability that they will consume more
of it in the future. This theory provides another explanation of persistent interindi-
vidual differences in the consumption of good A. By controlling for heterogeneous
preferences it becomes possible to test which source of persistence in consumption –
preference heterogeneity or addiction – accounts for different consumption patterns.
This type of problem arises whenever some dynamic element generates persistence
in the observed outcomes. Several examples of this type of problem arise in various
places in the book.

A variety of approaches for modeling heterogeneity coexist in microeconometrics.
A brief mention of some of these follows, with details postponed until later.

An extreme solution is to ignore all unobserved interindividual differences. If unob-
served heterogeneity is uncorrelated with observed heterogeneity, and if the outcome
being studied has no intertemporal dependence, then the aforementioned problems will
not arise. Of course, these are strong assumptions and even with these assumptions not
all econometric difficulties disappear.

One approach for handling heterogeneity is to treat it as a fixed effect and to esti-
mate it as a coefficient of an individual specific 0/1 dummy variable. For example, in
a cross-section regression, each micro unit is allowed its own dummy variable (inter-
cept). This leads to an extreme proliferation of parameters because when a new individ-
ual is added to the sample, a new intercept parameter is also added. Thus this approach
will not work if our data are cross sectional. The availability of multiple observations
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per individual unit, most commonly in the form of panel data with T time-series ob-
servations for each of the N cross-section units, makes it possible to either estimate
or eliminate the fixed effect, for example by first differencing if the model is linear
and the fixed effect is additive. If the model is nonlinear, as is often the case, the fixed
effect will usually not be additive and other approaches will need to be considered.

A second approach to modeling unobserved heterogeneity is through a random ef-
fects model. There are a number of ways in which the random effects model can be
formulated. One popular formulation assumes that one or more regression parameters,
often just the regression intercept, varies randomly across the cross section. In another
formulation the regression error is given a component structure, with an individual
specific random component. The random effects model then attempts to estimate the
parameters of the distribution from which the random component is drawn. In some
cases, such as demand analysis, the random term can be interpreted as random prefer-
ence variation. Random effects models can be estimated using either cross-section or
panel data.

1.2.6. Dynamics

A very common assumption in cross-section analysis is the absence of intertempo-
ral dependence, that is, an absence of dynamics. Thus, implicitly it is assumed that
the observations correspond to a stochastic equilibrium, with the deviation from the
equilibrium being represented by serially independent random disturbances. Even in
microeconometrics for some data situations such an assumption may be too strong.
For example, it is inconsistent with the presence of serially correlated unobserved het-
erogeneity. Dependence on lagged dependent variables also violates this assumption.

The foregoing discussion illustrates some of the potential limitations of a single
cross-section analysis. Some limitations may be overcome if repeated cross sections
are available. However, if there is dynamic dependence, the least problematic approach
might well be to use panel data.

1.3. Book Outline

The book is split into six parts. Part 1 presents the issues involved in microeconometric
modeling. Parts 2 and 3 present general theory for estimation and statistical inference
for nonlinear regression models. Parts 4 and 5 specialize to the core models used in
applied microeconometrics for, respectively, cross-section and panel data. Part 6 covers
broader topics that make considerable use of material presented in the earlier chapters.

The book outline is summarized in Table 1.1. The remainder of this section details
each part in turn.

1.3.1. Part 1: Preliminaries

Chapters 2 and 3 expand on the special features of the microeconometric approach
to modeling and microeconomic data structures within the more general statistical
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Table 1.1. Book Outline

Part and Chapter Backgrounda Example

1. Preliminaries
1. Overview –
2. Causal and Noncausal Models – Simultaneous equations models
3. Microeconomic Data

Structures
– Observational data

2. Core Methods
4. Linear Models – Ordinary least squares
5. Maximum Likelihood and

Nonlinear Least-Squares
Estimation

– m-estimation or extremum
estimation

6. Generalized Method of
Moments and Systems
Estimation

5 Instrumental variables

7. Hypothesis Tests 5 Wald, score, and likelihood ratio
tests

8. Specification Tests and Model
Selection

5,7 Conditional moment test

9. Semiparametric Methods – Kernel regression
10. Numerical Optimization 5 Newton–Raphson iterative method

3. Simulation-Based Methods
11. Bootstrap Methods 7 Percentile t-method
12. Simulation-Based Methods 5 Maximum simulated likelihood
13. Bayesian Methods – Markov chain Monte Carlo

4. Models for Cross-Section Data
14. Binary Outcome Models 5 Logit, probit for y = (0, 1)
15. Multinomial Models 5,14 Multinomial logit for

y = (1, . . ,m)
16. Tobit and Selection Models 5,14 Tobit for y = max(y∗, 0)
17. Transition Data: Survival

Analysis
5 Cox proportional hazards for

y = min(y∗, c)
18. Mixture Models and

Unobserved Heterogeneity
5,17 Unobserved heterogeneity

19. Models for Multiple Hazards 5,17 Multiple hazards
20. Models of Count Data 5 Poisson for y = 0, 1, 2, . . .

5. Models for Panel Data
21. Linear Panel Models: Basics – Fixed and random effects
22. Linear Panel Models:

Extensions
6,21 Dynamic and endogenous

regressors
23. Nonlinear Panel Models 5,6,21,22 Panel logit, Tobit, and Poisson

6. Further Topics
24. Stratified and Clustered

Samples
5 Data (yi j , xi j ) correlated over j

25. Treatment Evaluation 5,21 Regressor d = 1 if in program
26. Measurement Error Models 5 Logit model with measurement

errors
27. Missing Data and Imputation 5 Regression with missing

observations

a The background gives the essential chapter needed in addition to the treatment of ordinary and weighted LS in
Chapter 4. Note that the first panel data chapter (Chapter 21) requires only Chapter 4.
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arena of regression analysis. Many of the issues raised in these chapters are pursued
throughout the book as the reader develops the necessary tools.

1.3.2. Part 2: Core Methods

Chapters 4–10 detail the main general methods used in classical estimation and sta-
tistical inference. The results given in Chapter 5 in particular are extensively used
throughout the book.

Chapter 4 presents some results for the linear regression model, emphasizing those
issues and methods that are most relevant for the rest of the book. Analysis is relatively
straightforward as there is an explicit expression for linear model estimators such as
ordinary least squares.

Chapters 5 and 6 present estimation theory that can be applied to nonlinear models
for which there is usually no explicit solution for the estimator. Asymptotic theory
is used to obtain the distribution of estimators, with emphasis on obtaining robust
standard error estimates that rely on relatively weak distributional assumptions. A quite
general treatment of estimation, along with specialization to nonlinear least-squares
and maximum likelihood estimation, is presented in Chapter 5. The more challenging
generalized method of moments estimator and specialization to instrumental variables
estimation are given separate treatment in Chapter 6.

Chapter 7 presents classical hypothesis testing when estimators are nonlinear and
the hypothesis being tested is possibly nonlinear in parameters. Specification tests in
addition to hypothesis tests are the subject of Chapter 8.

Chapter 9 presents semiparametric estimation methods such as kernel regression.
The leading example is flexible modeling of the conditional mean. For the patents ex-
ample, the nonparametric regression model is E[y|x] = g(x), where the function g(·)
is unspecified and is instead estimated. Then estimation has an infinite-dimensional
component g(·) leading to a nonstandard asymptotic theory. With additional regres-
sors some further structure is needed and the methods are called semiparametric or
seminonparametric.

Chapter 10 presents the computational methods used to compute a parameter esti-
mate when the estimator is defined implicitly, usually as the solution to some first-order
conditions.

1.3.3. Part 3: Simulation-Based Methods

Chapters 11–13 consider methods of estimation and inference that rely on simulation.
These methods are generally more computationally intensive and, currently, less uti-
lized than the methods presented in Part 2.

Chapter 11 presents the bootstrap method for statistical inference. This yields the
empirical distribution of an estimator by obtaining new samples by simulation, such
as by repeated resampling with replacement from the original sample. The bootstrap
can provide a simple way to obtain standard errors when the formulas from asymp-
totic theory are complex, as is the case for some two-step estimators. Furthermore, if
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implemented appropriately, the bootstrap can lead to better statistical inference in
small samples.

Chapter 12 presents simulation-based estimation methods, developed for models
that involve an integral over a probability distribution for which there is no closed-
form solution. Estimation is still possible by making multiple draws from the relevant
distribution and averaging.

Chapter 13 presents Bayesian methods, which combine a distribution for the ob-
served data with a specified prior distribution for parameters to obtain a posterior dis-
tribution of the parameters that is the basis for estimation. Recent advances make com-
putation possible even if there is no closed-form solution for the posterior distribution.
Bayesian analysis can provide an approach to estimation and inference that is quite dif-
ferent from the classical approach. However, in many cases only the Bayesian tool kit
is adopted to permit classical estimation and inference for problems that are otherwise
intractable.

1.3.4. Part 4: Models for Cross-Section Data

Chapters 14–20 present the main nonlinear models for cross-section data. This part is
the heart of the book and presents advanced topics such as models for limited depen-
dent variables and sample selection. The classes of models are defined by the range of
values taken by the dependent variable.

Binary data models for dependent variable that can take only two possible values,
say y = 0 or y = 1, are presented in Chapter 14. In Chapter 15 an extension is made to
multinomial models, for dependent variable that takes several discrete values. Exam-
ples include employment status (employed, unemployed, and out of the labor force)
and mode of transportation to work (car, bus, or train). Linear models can be informa-
tive but are not appropriate, as they can lead to predicted probabilities outside the unit
interval. Instead logit, probit, and related models are used.

Chapter 16 presents models with censoring, truncation, sample selection. Exam-
ples include annual hours of work, conditional on choosing to work, and hospital ex-
penditures, conditional on being hospitalized. In these cases the data are incompletely
observed with a bunching of observations at y = 0 and with the remaining y > 0.
The model for the observed data can be shown to be nonlinear even if the underlying
process is linear, and linear regression on the observed data can be very misleading.
Simple corrections for censoring, truncation, or sample selection such as the Tobit
model exist, but these are very dependent on distributional assumptions.

Models for duration data are presented in Chapters 17–19. An example is length
of unemployment spell. Standard regression models include the exponential, Weibull,
and Cox proportional hazards model. Additionally, as in Chapter 16, the dependent
variable is often incompletely observed. For example, the data may be on the length of
a current spell that is incomplete, rather than the length of a completed spell.

Chapter 20 presents count data models. Examples include various measures of
health utilization such as number of doctor visits and number of days hospitalized.
Again the model is nonlinear, as counts and hence the conditional mean are nonnega-
tive. Leading parametric models include the Poisson and negative binomial.
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1.3.5. Part 5: Models for Panel Data

Chapters 21–23 present methods for panel data. Here the data are observed in several
time periods for each of the many individuals in the sample, so the dependent variable
and regressors are indexed by both individual and time. Any analysis needs to control
for the likely positive correlation of error terms in different time periods for a given in-
dividual. Additionally, panel data can provide sufficient data to control for unobserved
time-invariant individual-specific effects, permitting identification of causation under
weaker assumptions than those needed if only cross-section data are available.

The basic linear panel data model is presented in Chapter 21, with emphasis on
fixed effects and random effects models. Extensions of linear models to permit lagged
dependent variables and endogenous regressors are presented in Chapter 22. Panel
methods for the nonlinear models of Part 4 are presented in Chapter 23.

The panel data methods are placed late in the book to permit a unified self-contained
treatment. Chapter 21 could have been placed immediately after Chapter 4 and is writ-
ten in an accessible manner that relies on little more than knowledge of least-squares
estimation.

1.3.6. Part 6: Further Topics

This part considers important topics that can generally relate to any and all models
covered in Parts 4 and 5. Chapter 24 deals with modeling of clustered data in sev-
eral different models. Chapter 25 discusses treatment evaluation. Treatment evaluation
is a general term that can cover a wide variety of models in which the focus is on
measuring the impact of some “treatment” that is either exogenously or randomly as-
signed to an individual on some measure of interest, denoted an “outcome variable.”
Chapter 26 deals with the consequences of measurement errors in outcome and/or
regressor variables, with emphasis on some leading nonlinear models. Chapter 27
considers some methods of handling missing data in linear and nonlinear regression
models.

1.4. How to Use This Book

The book assumes a basic understanding of the linear regression model with matrix
algebra. It is written at the mathematical level of the first-year economics Ph.D. se-
quence, comparable to Greene (2003).

Although some of the material in this book is covered in a first-year sequence,
most of it appears in second-year econometrics Ph.D. courses or in data-oriented mi-
croeconomics field courses such as labor economics, public economics, or industrial
organization. This book is intended to be used as both an econometrics text and as an
adjunct for such field courses. More generally, the book is intended to be useful as a
reference work for applied researchers in economics, in related social sciences such as
sociology and political science, and in epidemiology.

For readers using this book as a reference work, the models chapters have been
written to be as self-contained as possible. For the specific models presented in Parts 4
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Table 1.2. Outline of a 20-Lecture 10-Week Course

Lectures Chapter Topic

1–3 4, Appx. A Review of linear models and asymptotic theory
4–7 5 Estimation: m-estimation, ML, and NLS
8 10 Estimation: numerical optimization
9–11 14, 15 Models: binary and multinomial
12–14 16 Models: censored and truncated
15 6 Estimation: GMM
16 7 Testing: hypothesis tests
17–19 21 Models: basic linear panel
20 9 Estimation: semiparametric

and 5 it will generally be sufficient to read the relevant chapter in isolation, except
that some command of the general estimation results in Chapter 5 and in some cases
Chapter 6 will be necessary. Most chapters are structured to begin with a discussion
and example that is accessible to a wide audience.

For instructors using this book as a course text it is best to introduce the basic non-
linear cross-section and linear panel data models as early as possible, skipping many
of the methods chapters. The most commonly used nonlinear cross-section models
are presented in Chapters 14–16; these require knowledge of maximum likelihood
and least-squares estimation, presented in Chapter 5. Chapter 21 on linear panel data
models requires even less preparation, essentially just Chapter 4.

Table 1.2 provides an outline for a one-quarter second-year graduate course taught
at the University of California, Davis, immediately following the required first-year
statistics and econometrics sequence. A quarter provides sufficient time to cover the
basic results given in the first half of the chapters in this outline. With additional time
one can go into further detail or cover a subset of Chapters 11–13 on computation-
ally intensive estimation methods (simulation-based estimation, the bootstrap, which
is also briefly presented in Chapter 7, and Bayesian methods); additional cross-section
models (durations and counts) presented in Chapters 17–20; and additional panel data
models (linear model extensions and nonlinear models) given in Chapters 22 and 23.

At Indiana University, Bloomington, a 15-week semester-long field course in mi-
croeconometrics is based on material in most of Parts 4 and 5. The prerequisite courses
for this course cover material similar to that in Part 2.

Some exercises are provided at the end of each chapter after the first three intro-
ductory chapters. These exercises are usually learning-by-doing exercises; some are
purely methodological whereas others entail analysis of generated or actual data. The
level of difficulty of the questions is mostly related to the level of difficulty of the topic.

1.5. Software

There are many software packages available for data analysis. Popular packages with
strong microeconometric capabilities include LIMDEP, SAS, and STATA, all of which
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offer an impressive range of canned routines and additionally support user-defined pro-
cedures using a matrix programming language. Other packages that are also widely
used include EVIEWS, PCGIVE, and TSP. Despite their time-series orientation, these
can support some cross-section data analysis. Users who wish to do their own pro-
gramming also have available a variety of options including GAUSS, MATLAB, OX,
and SAS/IML. The latest detailed information about these packages and many others
can be efficiently located via an Internet browser and a search engine.

1.6. Notation and Conventions

Vector and matrix algebra are used extensively.
Vectors are defined as column vectors and represented using lowercase bold. For

example, for linear regression the regressor vector x is a K × 1 column vector with j th
entry x j and the parameter vector β is a K × 1 column vector with j th entry β j , so

x
(K × 1)

=

 x1
...

xK

 and β

(K × 1)
=

 β1
...
βK

 .
Then the linear regression model y = β1x1 + β2x2 + · · · + βK xK + u is expressed as
y = x′β + u. At times a subscript i is added to denote the typical i th observation. The
linear regression equation for the i th observation is then

yi = x′
iβ + ui .

The sample is one of N observations, {(yi , xi ), i = 1, . . . , N }. In this book observa-
tions are usually assumed to be independent over i.

Matrices are represented using uppercase bold. In matrix notation the sample is
(y,X), where y is an N × 1 vector with i th entry yi and X is a matrix with i th row x′

i ,
so

y
(N × 1)

=

 y1
...

yN

 and X
(N × dim(x))

=

 x′
1
...

x′
N

 .
The linear regression model upon stacking all N observations is then

y = Xβ + u,

where u is an N × 1 column vector with i th entry ui .

Matrix notation is compact but at times it is clearer to write products of matrices
as summations of products of vectors. For example, the OLS estimator can be equiva-
lently written in either of the following ways:

β̂ = (X′X)−1X′y =
(

N∑
i=1

xi x′
i

)−1 N∑
i=1

xi yi .
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Table 1.3. Commonly Used Acronyms and Abbreviations

Linear



OLS
GLS
FGLS
IV
2SLS
3SLS

Ordinary least squares
Generalized least squares
Feasible generalized least squares
Instrumental variables
Two-stage least squares
Three-stage least squares

NLS
FGNLS
NIV
NL2SLS
NL3SLS

Nonlinear least squares
Feasible generalized nonlinear least squares

Nonlinear Nonlinear instrumental variables
Nonlinear two-stage least squares
Nonlinear three-stage least squares

LS
ML
QML
GMM
GEE

Least squares
Maximum likelihood

General Quasi-maximum likelihood
Generalized method of moments
Generalized estimating equations

Generic notation for a parameter is the q × 1 vector θ. The regression parameters
are represented by the K × 1 vector β, which may equal θ or may be a subset of θ
depending on the context.

The book uses many abbreviations and acronyms. Table 1.3 summarizes abbrevia-
tions used for some common estimation methods, ordered by whether the estimator is
developed for linear or nonlinear regression models. We also use the following: dgp
(data-generating process), iid (independently and identically distributed), pdf (prob-
ability density function), cdf (cumulative distribution function), L (likelihood), ln L
(log-likelihood), FE (fixed effects), and RE (random effects).
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C H A P T E R 2

Causal and Noncausal Models

2.1. Introduction

Microeconometrics deals with the theory and applications of methods of data analysis
developed for microdata pertaining to individuals, households, and firms. A broader
definition might also include regional- and state-level data. Microdata are usually
either cross sectional, in which case they refer to conditions at the same point in
time, or longitudinal (panel) in which case they refer to the same observational units
over several periods. Such observations are generated from both nonexperimental
setups, such as censuses and surveys, and quasi-experimental or experimental setups,
such as social experiments implemented by governments with the participation of
volunteers.

A microeconometric model may be a full specification of the probability distribu-
tion of a set of microeconomic observations; it may also be a partial specification of
some distributional properties, such as moments, of a subset of variables. The mean of
a single dependent variable conditional on regressors is of particular interest.

There are several objectives of microeconometrics. They include both data descrip-
tion and causal inference. The first can be defined broadly to include moment prop-
erties of response variables, or regression equations that highlight associations rather
than causal relations. The second category includes causal relationships that aim at
measurement and/or empirical confirmation or refutation of conjectures and proposi-
tions regarding microeconomic behavior. The type and style of empirical investigations
therefore span a wide spectrum. At one end of the spectrum can be found very highly
structured models, derived from detailed specification of the underlying economic be-
havior, that analyze causal (behavioral) or structural relationships for interdependent
microeconomic variables. At the other end are reduced form studies that aim to un-
cover correlations and associations among variables, without necessarily relying on
a detailed specification of all relevant interdependencies. Both approaches share the
common goal of uncovering important and striking relationships that could be helpful
in understanding microeconomic behavior, but they differ in the extent to which they
rely on economic theory to guide their empirical investigations.
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As a subdiscipline microeconometrics is newer than macroeconometrics, which is
concerned with modeling of market and aggregate data. A great deal of the early
work in applied econometrics was based on aggregate time-series data collected by
government agencies. Much of the early work on statistical demand analysis up until
about 1940 used market rather than individual or household data (Hendry and Morgan,
1996). Morgan’s (1990) book on the history of econometric ideas makes no reference
to microeconometric work before the 1940s, with one important exception. That ex-
ception is the work on household budget data that was instigated by concern with the
living standards of the less well-off in many countries. This led to the collection of
household budget data that provided the raw material for some of the earlier microe-
conometric studies such as those pioneered by Allen and Bowley (1935). Nevertheless,
it is only since the 1950s that microeconometrics has emerged as a distinctive and rec-
ognized subdiscipline. Even into the 1960s the core of microeconometrics consisted
of demand analyses based on household surveys.

With the award of the year 2000 Nobel Prize in Economics to James Heckman
and Daniel McFadden for their contributions to microeconometrics, the subject area
has achieved clear recognition as a distinct subdiscipline. The award cited Heckman
“for his development of theory and methods for analyzing selective samples” and
McFadden “for his development of theory and methods for analyzing discrete choice.”
Examples of the type of topics that microeconometrics deals with were also men-
tioned in the citation: “ . . . what factors determine whether an individual decides to
work and, if so, how many hours? How do economic incentives affect individual
choices regarding education, occupation or place of residence? What are the effects
of different labor-market and educational programs on an individual’s income and
employment?”

Applications of microeconometric methods can be found not only in every area of
microeconomics but also in other cognate social sciences such as political science,
sociology, and geography.

Beginning with the 1970s and especially within the past two decades revolution-
ary advances in our capacity for handling large data sets and associated computations
have taken place. These, together with the accompanying explosion in the availability
of large microeconomic data sets, have greatly expanded the scope of microecono-
metrics. As a result, although empirical demand analysis continues to be one of the
most important areas of application for microeconometric methods, its style and con-
tent have been heavily influenced by newer methods and models. Further, applications
in economic development, finance, health, industrial organization, labor and public
economics, and applied microeconomics generally are now commonplace, and these
applications will be encountered at various places in this book.

The primary focus of this book is on the newer material that has emerged in the
past three decades. Our goal is to survey concepts, models, and methods that we re-
gard as standard components of a modern microeconometrician’s tool kit. Of course,
the notion of standard methods and models is inevitably both subjective and elastic,
being a function of the presumed clientele of this book as well as the authors’ own
backgrounds. There may also be topics we regard as too advanced for an introductory
book such as this that others would place in a different category.

19



CAUSAL AND NONCAUSAL MODELS

Microeconometrics focuses on the complications of nonlinear models and on ob-
taining estimates that can be given a structural interpretation. Much of this book, es-
pecially Parts 2–4, presents methods for nonlinear models. These nonlinear methods
overlap with many areas of applied statistics including biostatistics. By contrast, the
distinguishing feature of econometrics is the emphasis placed on causal modeling.
This chapter introduces the key concepts related to causal (and noncausal) modeling,
concepts that are germane to both linear and nonlinear models.

Sections 2.2 and 2.3 introduce the key concepts of structure and exogeneity.
Section 2.4 uses the linear simultaneous equations model as a specific illustration
of a structural model and connects it with the other important concepts of reduced
form models. Identification definitions are given in Section 2.5. Section 2.6 considers
single-equation structural models. Section 2.7 introduces the potential outcome model
and compares the causal parameters and interpretations in the potential outcome model
with those in the simultaneous equations model. Section 2.8 provides a brief discus-
sion of modeling and estimation strategies designed to handle computational and data
challenges.

2.2. Structural Models

Structure consists of

1. a set of variables W (“data”) partitioned for convenience as [Y Z];

2. a joint probability distribution of W, F(W);

3. an a priori ordering of W according to hypothetical cause-and-effect relationships and
specification of a priori restrictions on the hypothesized model; and

4. a parametric, semiparametric, or nonparametric specification of functional forms and
the restrictions on the parameters of the model.

This general description of a structural model is consistent with a well-established
Cowles Commission definition of a structure. For example, Sargan (1988, p. 27) states:

A model is the specification of the probability distribution for a set of observations.
A structure is the specification of the parameters of that distribution. Therefore, a
structure is a model in which all the parameters are assigned numerical values.

We consider the case in which the modeling objective is to explain the values of
observable vector-valued variable y, y′ = (y1, . . . , yG). Each element of y is a func-
tion of some other elements of y and of explanatory variables z and a purely random
disturbance u. Note that the variables y are assumed to be interdependent. By contrast,
interdependence between zi is not modeled. The i th observation satisfies the set of
implicit equations

g
(
yi , zi ,ui |θ

) = 0, (2.1)

where g is a known function. We refer to this as the structural model, and we refer to
θ as structural parameters. This corresponds to property 4 given earlier in this section.

20



2.2 . STRUCTURAL MODELS

Assume that there is a unique solution for yi for every (zi ,ui ). Then we can write
the equations in an explicit form with y as function of (z,u):

yi = f (zi ,ui |π) . (2.2)

This is referred to as the reduced form of the structural model, where π is a vector
of reduced form parameters that are functions of θ. The reduced form is obtained
by solving the structural model for the endogenous variables yi , given (zi ,ui ). The
reduced form parameters π are functions of θ.

If the objective of modeling is inference about elements of θ, then (2.1) provides a
direct route. This involves estimation of the structural model. However, because ele-
ments of π are functions of θ, (2.2) also provides an indirect route to inference on θ.
If f(zi ,ui |π) has a known functional form, and if it is additively separable in zi and ui ,
such that we can write

yi = g (zi |π) + ui = E [yi |zi ] + ui , (2.3)

then the regression of y on z is a natural prediction function for y given z. In this
sense the reduced form equation has a useful role for making conditional predictions
of yi given (zi ,ui ). To generate predictions of the left-hand-side variable for assigned
values of the right-hand-side variables of (2.2) requires estimates of π, which may be
computationally simpler.

An important extension of (2.3) is the transformation model, which for scalar y
takes the form

�(y) = z′π + u, (2.4)

where �(y) is a transformation function (e.g., �(y) = ln(y) or �(y) = y1/2). In some
cases the transformation function may depend on unknown parameters. A transfor-
mation model is distinct from a regression, but it too can be used to make estimates
of E [y|z]. An important example is the accelerated failure time model analyzed in
Chapter 17.

One of the most important, and potentially controversial, steps in the specification
of the structural model is property 3, in which an a priori ordering of variables into
causes and effects is assigned. In essence this involves drawing a distinction between
those variables whose variation the model is designed to explain and those whose
variation is externally determined and hence lie outside the scope of investigation. In
microeconometrics, examples of the former are years of schooling and hours worked;
examples of the latter are gender, ethnicity, age, and similar demographic variables.
The former, denoted y, are referred to as endogenous and the latter, denoted z, are
called exogenous variables.

Exogeneity of a variable is an important simplification because in essence it jus-
tifies the decision to treat that variable as ancillary, and not to model that variable
because the parameters of that relationship have no direct bearing on the variable
under study. This important notion needs a more formal definition, which we now
provide.
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2.3. Exogeneity

We begin by considering the representation of a general finite dimensional parametric
case in which the joint distribution of W, with parameters θ partitioned as (θ1 θ2), is
factored into the conditional density of Y given Z, and the marginal distribution of Z,
giving

f J (W|θ) = fC (Y|Z,θ) × fM (Z|θ) . (2.5)

A special case of this result occurs if

f J (W|θ) = fC (Y|Z,θ1) × fM
(
Z|θ2

)
,

where θ1 and θ2 are functionally independent. Then we say that Z is exogenous with
respect to θ1; this means that knowledge of fM (Z|θ2) is not required for inference on
θ1, and hence we can validly condition the distribution of Y on Z.

Models can always be reparameterized. So next consider the case in which the
model is reparameterized in terms of parameters ϕ, with one-to-one transformation
of θ, say ϕ = h(θ), where ϕ is partitioned into (ϕ1,ϕ2). This reparametrization may
be of interest if, for example, ϕ1 is structurally invariant to a class of policy interven-
tions. Suppose ϕ1 is the parameter of interest. In such a case one is interested in the
exogeneity of Z with respect to ϕ1. Then, the condition for exogeneity is that

f J (W|ϕ) = fC
(
Y|Z,ϕ1

)× fM
(
Z|ϕ2

)
, (2.6)

where ϕ1 is independent of ϕ2.

Finally consider the case in which the interest is in a parameter λ that is a function
of ϕ, say h(ϕ). Then for exogeneity of Z with respect to λ, we need two conditions:
(i) λ depends only on ϕ1, i.e., λ= h(ϕ1), and hence only the conditional distribution is
of interest; and (ii) ϕ1 and ϕ2 are “variation free” which means that the parameters of
the joint distribution are not subject to cross-restrictions, i.e. (ϕ1,ϕ2) ∈ Φ1 × Φ2 =
{ϕ1 ∈ �1,ϕ2 ∈ �2}.

The factorization in (2.5)-(2.6) plays an important role in the development of the
exogeneity concept. Of special interest in this book are the following three con-
cepts related to exogeneity: (1) weak exogeneity; (2) Granger noncausality; (3) strong
exogeneity.

Definition 2.1 (Weak Exogeneity): Z is weakly exogenous for λ if (i) and (ii)
hold.

If the marginal model parameters are uninformative for inference on λ, then infer-
ence on λ can proceed on the basis of the conditional distribution f (Y|Z,ϕ1) alone.
The operational implication is that weakly exogenous variables can be taken as given
if one’s main interest is in inference on λ or ϕ1. This does not mean that there is no
statistical model for Z; it means that the parameters of that model play no role in the
inference on ϕ1, and hence are irrelevant.
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2.3.1. Conditional Independence

Originally, the Granger causality concept was defined in the context of prediction in a
time-series environment. More generally, it can be interpreted as a form of conditional
independence (Holland, 1986, p. 957).

Partition z into two subsets z1 and z2; let W = [y, z1, z2] be the matrices of vari-
ables of interest. Then z1 and y are conditionally independent given z2 if

f (y|z1, z2) = f (y|z2) . (2.8)

This is stronger than the mean independence assumption, which would imply

E [y|z1, z2] = E [y|z2] . (2.9)

Then z1 has no predictive value for y, after conditioning on z2. In a predictive sense
this means that z1 does not Granger-cause y.

In a time-series context, z1 and z2 would be mutually exclusive lagged values of
subsets of y.

Definition 2.2 (Strong Exogeneity): z1 is strongly exogenous for ϕ if it is
weakly exogenous for ϕ and does not Granger-cause y so (2.8) holds.

2.3.2. Exogenizing Variables

Exogeneity is a strong assumption. It is a property of random variables relative to
parameters of interest. Hence a variable may be validly treated as exogenous in one
structural model but not in another; the key issue is the parameters that are the subject
of inference. Arbitrary imposition of this property will have some undesirable conse-
quences that will be discussed in Section 2.4.

The exogeneity assumption may be justified by a priori theorizing, in which case it
is a part of the maintained hypothesis of the model. It may in some cases be justified
as a valid approximation, in which case it may be subject to testing, as discussed in
Section 8.4.3. In cross-section analysis it may be justified as being a consequence of
a natural experiment or a quasi-experiment in which the value of the variable is de-
termined by an external intervention; for example, government or regulatory authority
may determine the setting of a tax rate or a policy parameter. Of special interest is the
case in which an external intervention results in a change in the value of an impor-
tant policy variable. Such a natural experiment is tantamount to exogenization of some
variable. As we shall see in Chapter 3, this creates a quasi-experimental opportunity to
study the impact of a variable in the absence of other complicating factors.

2.4. Linear Simultaneous Equations Model

An important special case of the general structural model specified in (2.1) is the linear
simultaneous equation model developed by the Cowles Commission econometricians.
Comprehensive treatment of this model is available in many textbooks (e.g., Sargan,
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1988). The treatment here is brief and selective; also see Section 6.9.6. The objective is
to bring into the discussion several key ideas and concepts that have more general rele-
vance. Although the analysis is restricted to linear models, many insights are routinely
applied to nonlinear models.

2.4.1. The SEM Setup

The linear simultaneous equations model (SEM) setup is as follows:

y1iβ11 + · · · + yGiβ1G + z1iγ11 + · · · + zK iγ1K = u1i
...

... = ...
y1iβG1 + · · · + yGiβGG + z1iγG1 + · · · + zK iγG K = uGi ,

where i is the observation subscript.
A clear a priori distinction or preordering is made between endogenous variables,

y′
i = (y1i , . . . , yGi ), and exogenous variables, z′

i = (z1i , . . . , zK i ). By definition the ex-
ogenous variables are uncorrelated with the purely random disturbances (u1i , . . . , uGi ).
In its unrestricted form every variable enters every equation.

In matrix notation, the G-equation SEM for the i th equation is written as

y′
i B + z′

iΓ = u′
i , (2.10)

where yi ,B, zi ,Γ, and ui have dimensions G × 1,G × G, K × 1, K × G, and G × 1,
respectively. For specified values of (B,Γ) and (zi ,ui ) G linear simultaneous equa-
tions can in principle be solved for yi .

The standard assumptions of SEM are as follows:

1. B is nonsingular and has rank G.

2. rank[Z] = K . The N × K matrix Z is formed by stacking z′
i , i = 1, . . . , N .

3. plim N−1Z′Z = Σzz is a symmetric K × K positive definite matrix.

4. ui ∼ N [0,Σ]; that is, E[ui ] = 0 and E[ui u′
i ] = � =[σi j ], where Σ is a symmetric

G × G positive definite matrix.

5. The errors in each equation are serially independent.

In this model the structure (or structural parameters) consists of (B,Γ,Σ). Writing

Y =


y′

1

·
·

y′
N

 , Z =


z′

1

·
·

z′
N

 , U =


u′

1

·
·
·

u′
N


allows us to express the structural model more compactly as

YB + ZΓ = U, (2.11)

where the arrays Y,B,Z,Γ, and U have dimensions N × G, G × G, N × K , K ×
G, and N × G, respectively. Solving for all the endogenous variables in terms of all

24



2.4 . LINEAR SIMULTANEOUS EQUATIONS MODEL

the exogenous variables, we obtain the reduced form of the SEM:

Y + ZΓB−1 = UB−1,

Y = ZΠ + V, (2.12)

where Π = −ΓB−1 and V = UB−1. Given Assumption 4, vi ∼ N [0,B−1′
ΣB−1].

In the SEM framework the structural model has primacy for several reasons. First,
the equations themselves have interpretations as economic relationships such as de-
mand or supply relations, production functions, and so forth, and they are subject to
restrictions of economic theory. Consequently, B and Γ are parameters that describe
economic behavior. Hence a priori theory can be invoked to form expectations about
the sign and size of individual coefficients. By contrast, the unrestricted reduced form
parameters are potentially complicated functions of the structural parameters, and as
such it may be difficult to evaluate them postestimation. This consideration may have
little weight if the goal of econometric modeling is prediction rather than inference on
parameters with behavioral interpretation.

Consider, without loss of generality, the first equation in the model (2.11), with y1

as the dependent variable. In addition, some of the remaining G − 1 endogenous vari-
ables and K − 1 exogenous variables may be absent from this equation. From (2.12)
we see that in general the endogenous variables Y depend stochastically on V, which
in turn is a function of the structural errors U. Therefore, in general plim N−1Y′U �= 0.
Generally, the application of the least-squares estimator in the simultaneous equation
setting yields inconsistent estimates. This is a well-known and basic result from the si-
multaneous equations literature, often referred to as the “simultaneous equations bias”
problem. The vast literature on simultaneous equations models deals with identifica-
tion and consistent estimation when the least-squares approach fails; see Sargan (1988)
and Schmidt (1976), and Section 6.9.6.

The reduced form of SEM expresses every endogenous variable as a linear function
of all exogenous variables and all structural disturbances. The reduced form distur-
bances are linear combinations of the structural disturbances. From the reduced form
for the i th observation

E [yi |zi ] = z′
iΠ, (2.13)

V [yi |zi ] = Ω ≡ B−1′ΣB−1. (2.14)

The reduced form parameters Π are derived parameters defined as functions of the
structural parameters. If Π can be consistently estimated then the reduced form can
be used to make predictive statements about variations in Y due to exogenous changes
in Z. This is possible even if B and Γ are not known. Given the exogeneity of Z,
the full set of reduced form regressions is a multivariate regression model that can be
estimated consistently by least squares. The reduced form provides a basis for making
conditional predictions of Y given Z.

The restricted reduced form is the unrestricted reduced form model subject to re-
strictions. If these are the same restrictions as those that apply to the structure, then
structural information can be recovered from the reduced form.
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In the SEM framework, the unknown structural parameters, the nonzero elements
of B, Γ, and Σ, play a key role because they reflect the causal structure of the
model. The interdependence between endogenous variables is described by B, and
the responses of endogenous variables to exogenous shocks in Z is reflected in the
parameter matrix Γ. In this setup the causal parameters of interest are those that
measure the direct marginal impact of a change in an explanatory variable, y j or
zk on the outcome of interest yl , l �= j, and functions of such parameters and data.
The elements of Σ describe the dispersion and dependence properties of the ran-
dom disturbances, and hence they measure some properties of the way the data are
generated.

2.4.2. Causal Interpretation in SEM

A simple example will illustrate the causal interpretation of parameters in SEM. The
structural model has two continuous endogenous variables y1 and y2, a single con-
tinuous exogenous variable z1, one stochastic relationship linking y1 and y2, and one
definitional identity linking all three variables in the model:

y1 = γ1 + β1 y2 + u1, 0 < β1 < 1,

y2 = y1 + z1.

In this model u1 is a stochastic disturbance, independent of z1, with a well-defined
distribution. The parameter β1 is subject to an inequality constraint that is also a part
of the model specification. The variable z1 is exogenous and therefore its variation is
induced by external sources that we may regard as interventions. These interventions
have a direct impact on y2 through the identity and also an indirect one through the
first equation. The impact is measured by the reduced form of the model, which is

y1 = γ1

1 − β1
+ β1

1 − β1
z1 + 1

1 − β1
u1

= E[y1|z1] + v1,

y2 = γ1

1 − β1
+ 1

1 − β1
z1 + 1

1 − β1
u1

= E[y2|z1] + v1,

where v1 = u1/(1 − β1). The reduced form coefficients β1/(1 − β1) and 1/(1 − β1)
have a causal interpretation. Any externally induced unit change in z1 will cause the
value of y1 and y2 to change by these amounts. Note that in this model y1 and y2 also
respond to u1. In order not to confound the impact of the two sources of variation we
require that z1 and u1 are independent.

Also note that

∂y1

∂y2
= β1 = β1

1 − β1
÷ 1

1 − β1

= ∂y1

∂z1
÷∂y2

∂z1
.
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In what sense does β1 measure the causal effect of y2 on y1? To see a possible diffi-
culty, observe that y1 and y2 are interdependent or jointly determined, so it is unclear
in what sense y2 “causes” y1. Although z1 (and u1) is the ultimate cause of changes
in the reduced form sense, y2 is a proximate or an intermediate cause of y1. That is,
the first structural equation provides a snapshot of the impact of y2 on y1, whereas
the reduced form gives the (equilibrium) impact after allowing for all interactions be-
tween the endogenous variables to work themselves out. In a SEM framework even
endogenous variables are viewed as causal variables, and their coefficients as causal
parameters. This approach can cause puzzlement for those who view causality in an
experimental setting where independent sources of variation are the causal variables.
The SEM approach makes sense if y2 has an independent and exogenous source of
variation, which in this model is z1. Hence the marginal response coefficient β1 is a
function of how y1 and y2 respond to a change in z1, as the immediately preceding
equation makes clear.

Of course this model is but a special case. More generally, we may ask under what
conditions will the SEM parameters have a meaningful causal interpretation. We return
to this issue when discussing identification concepts in Section 2.5.

2.4.3. Extensions to Nonlinear and Latent Variable Models

If the simultaneous model is nonlinear in parameters only, the structural model can
be written as

YB(θ) + ZΓ(θ) = U, (2.15)

where B(θ) and Γ(θ) are matrices whose elements are functions of the structural pa-
rameters θ. An explicit reduced form can be derived as before.

If nonlinearity is instead in variables then an explicit (analytical) reduced form
may not be possible, although linearized approximations or numerical solutions of the
dependent variables, given (z,u), can usually be obtained.

Many microeconometric models involve latent or unobserved variables as well as
observed endogenous variables. For example, search and auction theory models use the
concept of reservation wage or reservation price, choice models invoke indirect utility,
and so forth. In the case of such models the structural model (2.1) may be replaced by

g
(
y∗

i , zi ,ui |θ
) = 0, (2.16)

where the latent variables y∗
i replace the observed variables yi . The corresponding

reduced form solves for y∗
i in terms of (zi ,ui ), yielding

y∗
i = f (zi ,ui |π) . (2.17)

This reduced form has limited usefulness as y∗
i is not fully observed. However, if we

have functions yi = h(y∗
i ) that relate observable with latent counterparts of yi , then the

reduced form in terms of observables is

yi = h (f (zi ,ui |π)) . (2.18)

See Section 16.8.2 for further details.
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When the structural model involves nonlinearities in variables, or when latent vari-
ables are involved, an explicit derivation of the functional form of this reduced form
may be difficult to obtain. In such cases practitioners use approximations. By citing
mathematical or computational convenience, a specific functional form may be used
to relate an endogenous variable to all exogenous variables, and the result would be
referred to as a “reduced form type relationship.”

2.4.4. Interpretations of Structural Relationships

Marschak (1953, p. 26) in an influential essay gave the following definition of a
structure:

Structure was defined as a set of conditions which did not change while observations
were being made but which might change in future. If a specified change of struc-
ture is expected or intended, prediction of variables of interest to the policy maker
requires some knowledge of past structure. . . . In economics, the conditions that con-
stitute a structure are (1) a set of relations describing human behavior and institutions
as well as technological laws and involving, in general, nonobservable random dis-
turbances and nonobservable random errors of measurement; (2) the joint probability
distribution of these random quantities.

Marschak argued that the structure was fundamental for a quantitative evaluation or
tests of economic theory and that the choice of the best policy requires knowledge of
the structure.

In the SEM literature a structural model refers to “autonomous” (not “derived”)
relationships. There are other closely related concepts of a structure. One such concept
refers to “deep parameters,” by which is meant technology and preference parameters
that are invariant to interventions.

In recent years an alternative usage of the term structure has emerged, one that refers
to econometric models based on the hypothesis of dynamic stochastic optimization by
rational agents. In this approach the starting point for any structural estimation prob-
lem is the first-order necessary conditions that define the agent’s optimizing behavior.
For example, in a standard problem of maximizing utility subject to constraints, the
behavioral relations are the deterministic first-order marginal utility conditions. If the
relevant functional forms are explicitly stated, and stochastic errors of optimization are
introduced, then the first-order conditions define a behavioral model whose parameters
characterize the utility function – the so-called deep or policy-invariant parameters.
Examples are given in Sections 6.2.7 and 16.8.1.

Two features of this highly structural approach should be mentioned. First, they
rely on a priori economic theory in a serious manner. Economic theory is not used
simply to generate a list of relevant variables that one can use in a more or less arbi-
trarily specified functional form. Rather, the underlying economic theory has a major
(but not exclusive) role in specification, estimation, and inference. The second feature
is that identification, specification, and estimation of the resulting model can be very
complicated, because the agent’s optimization problem is potentially very complex,
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especially if dynamic optimization under uncertainty is postulated and discreteness
and discontinuities are present; see Rust (1994).

2.5. Identification Concepts

The goal of the SEM approach is to consistently estimate (B,Γ,Σ) and conduct statis-
tical inference. An important precondition for consistent estimation is that the model
should be identified. We briefly discuss the important twin concepts of observational
equivalence and identifiability in the context of parametric models.

Identification is concerned with determination of a parameter given sufficient ob-
servations. In this sense, it is an asymptotic concept. Statistical uncertainty necessarily
affects any inference based on a finite number of observations. By hypothetically con-
sidering the possibility that sufficient number of observations are available, it is pos-
sible to consider whether it is logically possible to determine a parameter of interest
either in the sense of its point value or in the sense of determining the set of which
the parameter is an element. Therefore, identification is a fundamental consideration
and logically occurs prior to and is separate from statistical estimation. A great deal of
econometric literature on identification focuses on point identification. This is also the
emphasis of this section. However, set identification, or bounds identification, is an
important approach that will be used in selected places in this book (e.g., Chapters 25
and 27; see Manski, 1995).

Definition 2.3 (Observational Equivalence): Two structures of a model defined
as joint probability distribution function Pr[x|θ], x ∈ W, θ ∈ Θ, are observa-
tionally equivalent if Pr[x|θ1] = Pr[x|θ2] ∀ x ∈ W.

Less formally, if, given the data, two structural models imply identical joint proba-
bility distributions of the variables, then the two structures are observationally equiva-
lent. The existence of multiple observationally equivalent structures implies the failure
of identification.

Definition 2.4 (Identification): A structure θ0 is identified if there is no other
observationally equivalent structure in Θ.

A simple example of nonidentification occurs when there is perfect collinearity be-
tween regressors in the linear regression y = Xβ + u. Then we can identify the linear
combination Cβ, where rank[C] < rank[β], but we cannot identify β itself.

This definition concerns uniqueness of the structure. In the context of the SEM
we have given, this definition means that identification requires that there is a unique
triple (B,Γ,Σ) consistent with the observed data. In SEM, as in other cases, identi-
fication involves being able to obtain unique estimates of structural parameters given
the sample moments of the data. For example, in the case of the reduced form (2.12),
under the stated assumptions the least-squares estimator provides unique estimates of
Π, that is, Π̂ = [Z′Z]−1Z′Y, and identification of B,Γ requires that there is a solution
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for the unknown elements of Γ and B from the equations Π + ΓB−1 = 0, given a
priori restrictions on the model. A unique solution implies just identification of the
model.

A complete model is said to be identified if all the model parameters are identified.
It is possible that for some models only a subset of parameters is identified. In some
situations it may be important to be able to identify some function of parameters, and
not necessarily all the individual parameters. Identification of a function of parameters
means that function can be recovered uniquely from F(W|Θ).

How does one ensure that the structures of alternative model specifications can be
“ruled out”? In SEM the solution to this problem depends on augmenting the sample
information by a priori restrictions on (B,Γ,Σ). The a priori restrictions must intro-
duce sufficient additional information into the model to rule out the existence of other
observationally equivalent structures.

The need for a priori restrictions is demonstrated by the following argument. First
note that given the assumptions of Section 2.4.1 the reduced form, defined by (Π,Ω),
is always unique. Initially suppose there are no restrictions on (B,Γ,Σ).Next suppose
that there are two observationally equivalent structures (B1,Γ1,Σ1) and (B2,Γ2,Σ2).
Then

Π = −Γ1B−1
1 = −Γ2B−1

2 . (2.19)

Let H be a G × G nonsingular matrix. Then Γ1B−1
1 = Γ1HH−1B−1

1 = Γ2B−1
2 , which

means that Γ2 = Γ1H, B2 = B1H. Thus the second structure is a linear transformation
of the first.

The SEM solution to this problem is to introduce restrictions on (B,Γ,Σ) such
that we can rule out the existence of linear transformations that lead to observation-
ally equivalent structures. In other words, the restrictions on (B,Γ,Σ) must be such
that there is no matrix H that would yield another structure with the same reduced
form; given (Π,Ω) there will be a unique solution to the equations Π = −ΓB−1 and
Ω ≡ (B−1)′ΣB−1.

In practice a variety of restrictions can be imposed including (1) normalizations,
such as setting diagonal elements of B equal to 1, (2) zero (exclusion) and linear ho-
mogeneous and inhomogeneous restrictions, and (3) covariance and inequality restric-
tions. Details of the necessary and sufficient conditions for identification in linear and
nonlinear models can be found in many texts including Sargan (1988).

Meaningful imposition of identifying restrictions requires that the a priori restric-
tions imposed should be valid a posteriori. This idea is pursued further in several chap-
ters where identification issues are considered (e.g., Section 6.9).

Exclusion restrictions essentially state that the model contains some variables that
have zero impact on some endogenous variables. That is, certain directions of causa-
tion are ruled out a priori. This makes it possible to identify other directions of cau-
sation. For example, in the simple two-variable example given earlier, z1 did not enter
the y1-equation, making it possible to identify the direct impact of y2 on y1. Although
exclusion restrictions are the simplest to apply, in parametric models identification can
also be secured by inequality restrictions and covariance restrictions.
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If there are no restrictions on Σ, and the diagonal elements of B are normalized to
1, then a necessary condition for identification is the order condition, which states
that the number of excluded exogenous variables must at least equal the number of
included endogenous variables. A sufficient condition is the rank condition given in
many texts that ensures for the j th equation parameters ΠΓ j = −B j yields a unique
solution for (Γ j ,B j ) given Π.

Given identification, the term just (exact) identification refers to the case when
the order condition is exactly satisfied; overidentification refers to the case when the
number of restrictions on the system exceeds that required for exact identification.

Identification in nonlinear SEM has been discussed in Sargan (1988), who also
gives references to earlier related work.

2.6. Single-Equation Models

Without loss of generality consider the first equation of a linear SEM subject to nor-
malization β11 = 1. Let y = y1, let y1 denote the endogenous components of y other
than y1, and let z1 denote the exogenous components of z with

y = y′
1α + z′

1γ + u. (2.20)

Many studies skip the formal steps involved in going from a system to a single equation
and begin by writing the regression equation

y = x′β + u,

where some components of x are endogenous (implicitly y1) and others are exogenous
(implicitly z1). The focus lies then on estimating the impact of changes in key regres-
sor(s) that may be endogenous or exogenous, depending on the assumptions. Instru-
mental variable or two-stage least-squares estimation is the most obvious estimation
strategy (see Sections 4.8, 6.4, and 6.5).

In the SEM approach it is natural to specify at least some of the remaining equa-
tions in the model, even if they are not the focus of inquiry. Suppose y1 has dimen-
sion 1. Then the first possibility is to specify the structural equation for y1 and for
the other endogenous variables that may appear in this structural equation for y1.
A second possibility is to specify the reduced form equation for y1. This will show
exogenous variables that affect y1 but do not directly affect y. An advantage is that
in such a setting instrumental variables emerge naturally. However, in recent empir-
ical work using instrumental variables in a single-equation setting, even the formal
step of writing down a reduced form for the endogenous right-hand-side variable is
avoided.

2.7. Potential Outcome Model

Motivation for causal inference in econometric models is especially strong when the
focus is on the impact of public policy and/or private decision variables on some
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specific outcomes. Specific examples include the impact of transfer payments on labor
supply, the impact of class size on student learning, and the impact of health insurance
on utilization of health care. In many cases the causal variables themselves reflect
individual decisions and hence are potentially endogenous. When, as is usually the
case, econometric estimation and inference are based on observational data, iden-
tification of and inference on causal parameters pose many challenges. These chal-
lenges can become potentially less serious if the causal issues are addressed using
data from a controlled social experiment with a proper statistical design. Although
such experiments have been implemented (see Section 3.3 for examples and details)
they are generally expensive to organize and run. Therefore, it is more attractive
to implement causal modeling using data generated by a natural experiment or in
a quasi-experimental setting. Section 3.4 discusses the pros and cons of these data
structures; but for present purposes one should think of a natural or quasi experi-
ment as a setting in which some causal variable changes exogenously and indepen-
dently of other explanatory variables, making it relatively easier to identify causal
parameters.

A major obstacle for causality modeling stems from the fundamental problem of
causal inference (Holland, 1986). Let X be the hypothesized cause and Y the outcome.
By manipulating the value of X we can change the value of Y. Suppose the value of X
is changed from x1 to x2. Then a measure of the causal impact of the change on Y is
formed by comparing the two values of Y : y2, which results from the change, and y1,
which would have resulted had no change in x occurred. However, if X did change,
then the value of Y, in the absence of the change, would not be observed. Hence noth-
ing more can be said about causal impact without some hypothesis about what value
Y would have assumed in the absence of the change in X . The latter is referred to
as a counterfactual, which means hypothetical unobserved value. Briefly stated, all
causal inference involves comparison of a factual with a counterfactual outcome. In
the conventional econometric model (e.g., SEM) a counterfactual does not need to be
explicitly stated.

A relatively newer strand in the microeconometric literature – program evalua-
tion or treatment evaluation – provides a statistical framework for the estimation
of causal parameters. In the statistical literature this framework is also known as the
Rubin causal model (RCM) in recognition of a key early contribution by Rubin
(1974, 1978), who in turn cites R.A. Fisher as originator of the approach. Al-
though, following recent convention, we refer to this as the Rubin causal model,
Neyman (Splawa-Neyman) also proposed a similar statistical model in an article
published in Polish in 1923; see Neyman (1990). Models involving counterfactuals
have been independently developed in econometrics following the seminal work of
Roy (1951). In the remainder of this section the salient features of RCM will be
analyzed.

Causal parameters based on counterfactuals provide statistically meaningful and
operational definitions of causality that in some respects differ from the traditional
Cowles foundation definition. First, in ideal settings this framework leads to consider-
able simplicity of econometric methods. Second, this framework typically focuses on
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the fewer causal parameters that are thought to be most relevant to policy issues that
are examined. This contrasts with the traditional econometric approach that focuses
simultaneously on all structural parameters. Third, the approach provides additional
insights into the properties of causal parameters estimated by the standard structural
methods.

2.7.1. The Rubin Causal Model

The term “treatment” is used interchangeably with “cause.” In medical studies of new
drug evaluation, involving groups of those who receive the treatment and those who
do not, the drug response of the treated is compared with that of the untreated. A mea-
sure of causal impact is the average difference in the outcomes of the treated and the
nontreated groups. In economics, the term treatment is used very broadly. Essentially
it covers variables whose impact on some outcome is the object of study. Examples of
treatment–outcome pairs include schooling and wages, class size and scholastic per-
formance, and job training and earnings. Note that a treatment need not be exogenous,
and in many situations it is an endogenous (choice) variable.

Within the framework of a potential outcome model (POM), which assumes that
every element of the target population is potentially exposed to the treatment, the triple
(y1i , y0i , Di ), i = 1, . . . , N , forms the basis of treatment evaluation. The categorical
variable D takes the values 1 and 0, respectively, when treatment is or is not received;
y1i measures the response for individual i receiving treatment, and y0i measures that
when not receiving treatment. That is,

yi =
{

y1i if Di = 1,
y0i if Di = 0.

(2.21)

Since the receipt and nonreceipt of treatment are mutually exclusive states for indi-
vidual i , only one of the two measures is available for any given i , the unavailable
measure being the counterfactual. The effect of the cause D on outcome of individual
i is measured by (y1i − y0i ). The average causal effect of Di = 1, relative to Di = 0,
is measured by the average treatment effect (ATE):

ATE = E[y|D = 1] − E[y|D = 0], (2.22)

where expectations are with respect to the probability distribution over the target pop-
ulation. Unlike the conventional structural model that emphasizes marginal effects, the
POM framework emphasizes ATE and parameters related to it.

The experimental approach to the estimation of ATE-type parameters involves a
random assignment of treatment followed by a comparison of the outcomes with a
set of nontreated cases that serve as controls. Such an experimental design is explained
in greater detail in Chapter 3. Random assignment implies that individuals exposed to
treatment are chosen randomly, and hence the treatment assignment does not depend
on the outcome and is uncorrelated with the attributes of treated subjects. Two ma-
jor simplifications follow. The treatment variable can be treated as exogenous and its
coefficient in a linear regression will not suffer from omitted variable bias if some
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relevant variables are unavoidably omitted from the regression. Under certain condi-
tions, discussed at greater length in Chapters 3 and 25, the mean difference between
the outcomes of the treated and the control groups will provide an estimate of ATE.
The payoff to the well-designed experiment is the relative simplicity with which causal
statements can be made. Of course, to ensure high statistical precision for the treatment
effect estimate, one should still control for those attributes that also independently in-
fluence the outcomes.

Because random assignment of treatment is generally not feasible in economics,
estimation of ATE-type parameters must be based on observational data generated
under nonrandom treatment assignment. Then the consistent estimation of ATE will
be threatened by several complications that include, for example, possible correlation
between the outcomes and treatment, omitted variables, and endogeneity of the treat-
ment variable. Some econometricians have suggested that the absence of randomiza-
tion comprises the major impediment to convincing statistical inference about causal
relationships.

The potential outcome model can lead to causal statements if the counterfactual can
be clearly stated and made operational. An explicit statement of the counterfactual,
with a clear implication of what should be compared, is an important feature of this
model. If, as may be the case with observational data, there is lack of a clear distinc-
tion between observed and counterfactual quantities, then the answer to the question
of who is affected by the treatment remains unclear. ATE is a measure that weights and
combines marginal responses of specific subpopulations. Specific assumptions are re-
quired to operationalize the counterfactual. Information on both treated and untreated
units that can be observed is needed to estimate ATE. For example, it is necessary to
identify the untreated group that proxies the treated group if the treatment were not
applied. It is not necessarily true that this step can always be implemented. The exact
way in which the treated are selected involves issues of sampling design that are also
discussed in Chapters 3 and 25.

A second useful feature of the POM is that it identifies opportunities for causal
modeling created by natural or quasi-experiments. When data are generated in such
settings, and provided certain other conditions are satisfied, causal modeling can occur
without the full complexities of the SEM framework. This issue is analyzed further in
Chapters 3 and 25.

Third, unlike the structural form of the SEM where all variables other than that be-
ing explained can be labeled as “causes,” in the POM not all explanatory variables can
be regarded as causal. Many are simply attributes of the units that must be controlled
for in regression analysis, and attributes are not causes (Holland, 1986). Causal param-
eters must relate to variables that are actually or potentially, and directly or indirectly,
subject to intervention.

Finally, identifiability of the ATE parameter may be an easier research goal and
hence feasible in situations where the identifiability of a full SEM may not be (Angrist,
2001). Whether this is so has to be determined on a case-by-case basis. However,
many available applications of the POM typically employ a limited, rather than full,
information framework. However, even within the SEM framework the use of a limited
information framework is also feasible, as was previously discussed.
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2.8. Causal Modeling and Estimation Strategies

In this section we briefly sketch some of the ways in which econometricians approach
the modeling of causal relationships. These approaches can be used within both SEM
and POM frameworks, but they are typically identified with the former.

2.8.1. Identification Frameworks

Full-Information Structural Models

One variant of this approach is based on the parametric specification of the joint distri-
bution of endogenous variables conditional on exogenous variables. The relationships
are not necessarily derived from an optimizing model of behavior. Parametric restric-
tions are placed to ensure identification of the model parameters that are the target
of statistical inference. The entire model is estimated simultaneously using maximum
likelihood or moments-based estimation. We call this approach the full-information
structural approach. For well-specified models this is an attractive approach but in
general its potential limitation is that it may contain some equations that are poorly
specified. Under joint estimation the effects of localized misspecification may also
affect other estimates.

Statistically we may interpret the full-information approach as one in which the
joint probability distribution of endogenous variables, given the exogenous variables,
forms the basis of inference about causality. The jointness may derive from contem-
poraneous or dynamic interdependence between endogenous variables and/or the dis-
turbances on the equations.

Limited-Information Structural Models

By contrast, when the central object of statistical inference is estimation of one or two
key parameters, a limited-information approach may be used. A feature of this ap-
proach is that, although one equation is the focus of inference, the joint dependence
between it and other endogenous variables is exploited. This requires that explicit as-
sumptions are made about some features of the model that are not the main object of
inference. Instrumental variable methods, sequential multistep methods, and limited
information maximum likelihood methods are specific examples of this approach. To
implement the approach one typically works with one (or more) structural equations
and some implicitly or explicitly stated reduced form equations. This contrasts with the
full-information approach where all equations are structural. The limited-information
approach is often computationally more tractable than the full-information one.

Statistically we may interpret the limited-information approach as one in which the
joint distribution is factored into the product of a conditional model for the endogenous
variable(s) of interest, say y1, and a marginal model for other endogenous variables,
say y2, which are in the set of the conditioning variables, as in

f (y|x,θ) = g(y1|x, y2,θ1)h(y2|x,θ2), θ ∈ Θ. (2.23)
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Modeling may be based on the component g(y1|x, y2,θ1) with minimal attention to
h(y2|x,θ2) if θ2 are regarded as nuisance parameters. Of course, such a factorization
is not unique, and hence the limited-information approach can have several variants.

Identified Reduced Forms

A third variant of the SEM approach works with an identified reduced form. Here too
one is interested in structural parameters. However, it may be convenient to estimate
these from the reduced form subject to restrictions. In time series the identified vector
autoregressions provide an example.

2.8.2. Identification Strategies

There are numerous potential ways in which the identification of key model parameters
can be jeopardized. Omitted variables, functional form misspecifications, measure-
ment errors in explanatory variables, using data unrepresentative of the population, and
ignoring endogeneity of explanatory variables are leading examples. Microeconomet-
rics contains many specific examples of how these challenges can be tackled. Angrist
and Krueger (2000) provide a comprehensive survey of popular identification strate-
gies in labor economics, with emphasis on the POM framework. Most of the issues are
developed elsewhere in the book, but a brief mention is made here.

Exogenization

Data are sometimes generated by natural experiments and quasi-experiments. The idea
here is simply that a policy variable may exogenously change for some subpopulation
while it remains the same for other subpopulations. For example, minimum wage laws
in one state may change while they remain unchanged in a neighboring state. Such
events naturally create treatment and control groups. If the natural experiment ap-
proximates a randomized treatment assignment, then exploiting such data to estimate
structural parameters can be simpler than estimation of a larger simultaneous equa-
tions model with endogenous treatment variables. It is also possible that the treatment
variable in a natural experiment can be regarded as exogenous, but the treatment itself
is not randomly assigned.

Elimination of Nuisance Parameters

Identification may be threatened by the presence of a large number of nuisance param-
eters. For example, in a cross-section regression model the conditional mean function
E[yi |xi ] may involve an individual specific fixed effect αi , assumed to be correlated
with the regression error. This effect cannot be identified without many observations
on each individual (i.e., panel data). However, with just a short panel it could be elim-
inated by a transformation of the model. Another example is the presence of timein-
variant unobserved exogenous variables that may be common to groups of individuals.
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An example of a transformation that eliminates fixed effects is taking differences and
working with the differences-in-differences form of the model.

Controlling for Confounders

When variables are omitted from a regression, and when omitted factors are correlated
with the included variables, a confounding bias results. For example, in a regression
with earnings as a dependent variable and schooling as an explanatory variable, indi-
vidual ability may be regarded as an omitted variable because only imperfect proxies
for it are typically available. This means that potentially the coefficient of the school-
ing variable may not be identified. One possible strategy is to introduce control vari-
ables in the model; the general approach is called the control function approach.
These variables are an attempt to approximate the influence of the omitted variables.
For example, various types of scholastic achievement scores may serve as controls for
ability.

Creating Synthetic Samples

Within the POM framework a causal parameter may be unidentified because no suit-
able comparison or control group can provide the benchmark for estimation. A poten-
tial solution is to create a synthetic sample that includes a comparison group that are
proxies for controls. Such a sample is created by matching (discussed in Chapter 25).
If treated samples can be augmented by well-matched controls, then identification of
causal parameters can be achieved in the sense that a parameter related to ATE can be
estimated.

Instrumental Variables

If identification is jeopardized because the treatment variable is endogenous, then a
standard solution is to use valid instrumental variables. This is easier said than done.
The choice of the instrumental variable as well as the interpretation of the results
obtained must be done carefully because the results may be sensitive to the choice of
instruments. The approach is analyzed in Sections 4.8, 4.9, 6.4, 6.5, and 25.7, as well
as in several other places in the book as the need arises. Again a natural experiment
may provide a valid instrument.

Reweighting Samples

Sample-based inferences about the population are only valid if the sample data are
representative of the population. The problem of sample selection or biased sampling
arises when the sample data are not representative, in which case the population param-
eters are not identified. This problem can be approached as one that requires correction
for sample selection (Chapter 16) or one that requires reweighting of the sample infor-
mation (Chapter 24).
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2.9. Bibliographic Notes

2.1 The 2001 Nobel lectures by Heckman and McFadden are excellent sources for both his-
torical and current information about the developments in microeconometrics. Heckman’s
lecture is remarkable for its comprehensive scope and offers numerous insights into many
aspects of microeconometrics. His discussion of heterogeneity has many points of contact
with several topics covered in this book.

2.2 Marschak (1953) gives a classic statement of the primacy of structural modeling for policy
evaluation. He makes an early mention of the idea of parameter invariance.

2.3 Engle, Hendry, and Richard (1983) provide definitions of weak and strong exogeneity in
terms of the distribution of observable variables. They make links with previous literature
on exogeneity concepts.

2.4 and 2.5 The term “identification” was used by Koopmans (1949). Point identification in
linear parametric models is covered in most textbooks including those by Sargan (1988)
who gives a comprehensive and succint treatment, Davidson and MacKinnon (2004), and
Greene (2003). Gouriéroux and Monfort (1989, chapter 3.4) provide a different perspective
using Fisher and Kullback information measures. Bounds identification in several leading
cases is developed in Manski (1995).

2.6 Heckman (2000) provides a historical overview and modern interpretations of causality in
the traditional econometric model. Causality concepts within the POM framework are care-
fully and incisively analyzed by Holland (1986), who also relates them to other definitions.
A sample of the statisticians’ viewpoints of causality from a historical perspective can be
found in Freedman (1999). Pearl (2000) gives insightful schematic exposition of the idea
of “treating causation as a summary of behavior under interventions,” as well as numerous
problems of inferring causality in a nonexperimental situation.

2.7 Angrist and Krueger (1999) survey solutions to identification pitfalls with examples from
labor economics.
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C H A P T E R 3

Microeconomic Data Structures

3.1. Introduction

This chapter surveys issues concerning the potential usefulness and limitations of dif-
ferent types of microeconomic data. By far the most common data structure used in
microeconometrics is survey or census data. These data are usually called observa-
tional data to distinguish them from experimental data.

This chapter discusses the potential limitation of the aforementioned data struc-
tures. The inherent limitations of observational data may be further compounded by
the manner in which the data are collected, that is, by the sample frame (the way the
sample is generated), sample design (simple random sample versus stratified random
sample), and sample scope (cross-section versus longitudinal data). Hence we also
discuss sampling issues in connection with the use of observational data. Some of this
terminology is new at this stage but will be explained later in this chapter.

Microeconometrics goes beyond the analysis of survey data under the assumptions
of simple random sampling. This chapter considers extensions. Section 3.2 outlines
the structure of multistage sample surveys and some common forms of departure from
random sampling; a more detailed analysis of their statistical implications is provided
in later chapters. It also considers some commonly occurring complications that result
in the data not being necessarily representative of the population. Given the deficien-
cies of observational data in estimating causal parameters, there has been an increased
attempt at exploiting experimental and quasi-experimental data and frameworks. Sec-
tion 3.3 examines the potential of data from social experiments. Section 3.4 considers
the modeling opportunities arising from a special type of observational data, generated
under quasi-experimental conditions, that naturally provide treated and untreated sub-
jects and hence are called natural experiments. Section 3.5 covers practical issues of
microdata management.
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3.2. Observational Data

The major source of microeconomic observational data is surveys of households, firms,
and government administrative data. Census data can also be used to generate samples.
Many other samples are often generated at points of contact between transacting par-
ties. For example, marketing data may be generated at the point of sale and/or surveys
among (actual or potential) purchasers. The Internet (e.g., online auctions) is also a
source of data.

There is a huge literature on sample surveys from the viewpoint of both survey
statisticians and users of survey data. The first discusses how to sample from the pop-
ulation and the results from different sampling designs, and the second deals with the
issues of estimation and inference that arise when survey data are collected using dif-
ferent sampling designs. A key issue is how well the sample represents the population.
This chapter deals with both strands of the literature in an introductory fashion. Many
additional details are given in Chapter 24.

3.2.1. Nature of Survey Data

The term observational data usually refers to survey data collected by sampling the
relevant population of subjects without any attempt to control the characteristics of
the sampled data. Let t denote the time subscript, let w denote a set of variables
of interest. In the present context t can be a point in time or time interval. Let
St denote a sample from population probability distribution F(wt |θt ); St is a draw
from F(wt |θt ), where θ is a parameter vector. The population should be thought
of as a set of points with characteristics of interest, and for simplicity we assume
that the form of the probability distribution F is known. A simple random sam-
pling scheme allows every element of the population to have an equal probability of
being included in the sample. More complex sampling schemes will be considered
later.

The abstract concept of a stationary population provides a useful benchmark. If
the moments of the characteristics of the population are constant, then we can write
θt = θ, for all t. This is a strong assumption because it implies that the moments of
the characteristics of the population are time-invariant. For example, the age–sex dis-
tribution should be constant. More realistically, some population characteristics would
not be constant. To handle such a possibility, (the parameters of) each population may
be regarded as a draw from a superpopulation with constant characteristics. Specif-
ically, we think of each θt as a draw from a probability distribution with constant
(hyper)parameter θ. The terms superpopulation and hyperparameters occur frequently
in the literature on hierarchical models discussed in Chapter 24. Additional complica-
tions arise if θt has an evolutionary component, for example through dependence on
t, or if successive values are interdependent. Using hierarchical models, discussed in
Chapters 13 and 26, provides one approach for modeling the relation between hyper-
parameters and subpopulation characteristics.
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3.2.2. Simple Random Samples

As a benchmark for subsequent discussion, consider simple random sampling in which
the probability of sampling unit i from a population of size N , with N large, is 1/N for
all i . Partition w as [y : x]. Suppose our interest is in modeling y, a possibly vector-
valued outcome variable, conditional on the exogenous covariate vector x, whose joint
distribution is denoted f J (y, x). This can be always be factored as the product of the
conditional distribution fC (y|x,θ) and the marginal distribution fM (x):

f J (y, x) = fC (y|x,θ) fM (x). (3.1)

Simple random sampling involves drawing the (y, x) combinations uniformly from
the entire population.

3.2.3. Multistage Surveys

One alternative is a stratified multistage cluster sampling, also referred to as a com-
plex survey method. Large-scale surveys like the Current Population Survey (CPS)
and the Panel Survey of Income Dynamics (PSID) take this approach. Section 24.2
provides additional detail on the structure of the CPS.

The complex survey design has advantages. It is more cost effective because it
reduces geographical dispersion, and it becomes possible to sample certain subpop-
ulations more intensively. For example, “oversampling” of small subpopulations ex-
hibiting some relevant characteristic becomes feasible whereas a random sample of the
population would produce too few observations to support reliable results. A disadvan-
tage is that stratified sampling will reduce interindividual variation, which is essential
for greater precision.

The sample survey literature focuses on multistage surveys that sequentially parti-
tion the population into the following categories:

1. Strata: Nonoverlapping subpopulations that exhaust the population.

2. Primary sampling units (PSUs): Nonoverlapping subsets of the strata.

3. Secondary sampling units (SSUs): Sub-units of the PSU, which may in turn be parti-
tioned, and so on.

4. Ultimate sampling unit (USU): The final unit chosen for interview, which could be a
household or a collection of households (a segment).

As an example, the strata may be the various states or provinces in a country, the
PSU may be regions within the state or province, and the USU may be a small cluster
of households in the same neighborhood.

Usually all strata are surveyed so that, for example, all states will be included in
the sample with certainty. But not all of the PSUs and their subdivisions are surveyed,
and they may be sampled at different rates. In two-stage sampling the surveyed PSUs
are drawn at random and the USU is then drawn at random from the selected PSUs. In
multistage sampling intermediate sampling units such as SSUs also appear.
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A consequence of these sampling methods is that different households will have
different probabilities of being sampled. The sample is then unrepresentative of the
population. Many surveys provide sampling weights that are intended to be inversely
proportional to the probability of being sampled, in which case these weights can be
used to obtain unbiased estimators of population characteristics.

Survey data may be clustered due to, for example, sampling of many households
in the same small neighborhood. Observations in the same cluster are likely to be de-
pendent or correlated because they may depend on some observable or unobservable
factor that could affect all observations in a stratum. For example, a suburb may be
dominated by high-income households or by households that are relatively homoge-
neous in some dimension of their preferences. Data from these households will tend
to be correlated, at least unconditionally, though it is possible that such correlation
is negligible after conditioning on observable characteristics of the households. Sta-
tistical inference ignoring correlation between sampled observations yields erroneous
estimates of variances that are smaller than those from the correct formula. These is-
sues are covered in greater depth in Section 24.5. Two-stage and multistage samples
potentially further complicate the computation of standard errors.

In summary, (1) stratification with different sampling rates within strata means that
the sample is unrepresentative of the population; (2) sampling weights inversely pro-
portional to the probability of being sampled can be used to obtain unbiased estimation
of population characteristics; and (3) clustering may lead to correlation of observations
and understatement of the true standard errors of estimators unless appropriate adjust-
ments are made.

3.2.4. Biased Samples

If a random sample is drawn then the probability distribution for the data is the same
as the population distribution. Certain departures from random sampling cause a di-
vergence between the two; this is referred to as biased sampling. The data distribution
differs from the population distribution in a manner that depends on the nature of the
deviation from random sampling. Deviation from random sampling occurs because it
is sometimes more convenient or cost effective to obtain the data from a subpopulation
even though it is not representative of the entire population. We now consider several
examples of such departures, beginning with a case in which there is no departure from
randomness.

Exogenous Sampling

Exogenous sampling from survey data occurs if the analyst segments the available
sample into subsamples based only on a set of exogenous variables x, but not on the
response variable. For example, in a study of hospitalizations in Germany, Geil et al.
(1997) segmented the data into two categories, those with and without chronic condi-
tions. Classification by income categories is also common. Perhaps it is more accurate
to depict this type of sampling as exogenous subsampling because it is done by ref-
erence to an existing sample that has already been collected. Segmenting an existing
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sample by gender, health, or socioeconomic status is very common. Under the assump-
tions of exogenous sampling the probability distribution of the exogenous variables
is independent of y and contains no information about the population parameters of
interest, θ. Therefore, one may ignore the marginal distribution of the exogenous vari-
ables and simply base estimation on the conditional distribution f (y|x,θ). Of course,
the assumption may be wrong and the observed distribution of the outcome variable
may depend on the selected segmenting variable, which may be correlated with the
outcome, thus causing departure from exogenous sampling.

Response-Based Sampling

Response-based sampling occurs if the probability of an individual being included
in the sample depends on the responses or choices made by that individual. In this
case sample selection proceeds in terms of rules defined in terms of the endogenous
variable under study.

Three examples are as follows: (1) In a study of the effect of negative income tax or
Aid to Families with Dependent Children (AFDC) on labor supply only those below
the poverty line are surveyed. (2) In a study of determinants of public transport modal
choice, only users of public transport (a subpopulation) are surveyed. (3) In a study of
the determinants of number of visits to a recreational site, only those with at least one
visit are included.

Lower survey costs provide an important motivation for using choice-based samples
in preference to simple random samples. It would require a very large random sample
to generate enough observations (information) about a relatively infrequent outcome
or choice, and hence it is cheaper to collect a sample from those who have actually
made the choice.

The practical significance of this is that consistent estimation of population param-
eters θ can no longer be carried out using the conditional population density f (y|x)
alone. The effect of the sampling scheme must also be taken into account. This topic
is discussed further in Section 24.4.

Length-Biased Sampling

Length-biased sampling illustrates how biases may result from sampling one popu-
lation to make inferences about a different population. Strictly speaking, it is not so
much an example of departure from randomness in sampling as one of sampling the
“wrong” population.

Econometric studies of transitions model the time spent in origin state j by indi-
vidual i before transiting to another destination state s. An example is when j cor-
responds to unemployment and s to employment. The data used in such studies can
come from one of several possible sources. One source is sampling individuals who
are unemployed on a particular date, another is to sample those who are in the labor
force regardless of their current state, and a third is to sample individuals who are ei-
ther entering or leaving unemployment during a specified period of time. Each type
of sampling scheme is based on a different concept of the relevant population. In the
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first case the relevant population is the stock of unemployed individuals, in the second
the labor force, and in the third individuals with transitioning employment status. This
topic is discussed further in Section 18.6.

Suppose that the purpose of the survey is to calculate a measure of the average
duration of unemployment. This is the average length of time a randomly chosen indi-
vidual will spend in unemployment if he or she becomes unemployed. The answer to
this apparently straightforward question may vary depending on how the sample data
are obtained. The flow distribution of completed durations is in general quite differ-
ent from the stock distribution. When we sample the stock, the probability of being in
the sample is higher for individuals with longer durations. When we sample the flow
out of the state, the probability does not depend on the time spent in the state. This
is the well-known example of length-biased sampling in which the estimate obtained
by sampling the stock is a biased estimate of the average length of an unemployment
spell of a random entrant to unemployment.

The following simple schematic diagram may clarify the point:

◦ •
Entry f low

→ • •
• ◦
Stock

→ ◦ ◦ •
Exit f low

Here we use the symbol • to denote slow movers and the symbol ◦ to denote fast
movers. Suppose the two types are equally represented in the flow, but the slow movers
stay in the stock longer than the fast movers. Then the stock population has a higher
proportion of slow movers. Finally, the exit population has a higher proportion of fast
movers. The argument will generalize to other types of heterogeneity.

The point of this example is not that flow sampling is a better thing to do than stock
sampling. Rather, it is that, depending on what the question is, stock sampling may not
yield a random sample of the relevant population.

3.2.5. Bias due to Sample Selection

Consider the following problem. A researcher is interested in measuring the effect of
training, denoted z (treatment), on posttraining wages, denoted y (outcome), given the
worker’s characteristics, denoted x . The variable z takes the value 1 if the worker has
received training and is 0 otherwise. Observations are available on (x, D) for all work-
ers but on y only for those who received training (D = 1). One would like to make
inferences about the average impact of training on the posttraining wage of a ran-
domly chosen worker with known characteristics who is currently untrained (D = 0).
The problem of sample selection concerns the difficulty of making such an inference.

Manski (1995), who views this as a problem of identification, defines the selection
problem formally as follows:

This is the problem of identifying conditional probability distributions from random
sample data in which the realizations of the conditioning variables are always ob-
served but realizations of the outcomes are censored.
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Suppose y is the outcome to be predicted, and the conditioning variables are denoted
by x . The variable z is a censoring indicator that takes the value 1 if the outcome y is
observed and 0 otherwise. Because the variables (D, x) are always observed, but y is
observed only when D = 1, Manski views this as a censored sampling process. The
censored sampling process does not identify Pr[y|x], as can be seen from

Pr[y|x] = Pr[y|x, D = 1] Pr[D = 1|x] + Pr[y|x, D = 0] Pr[D = 0|x]. (3.2)

The sampling process can identify three of the four terms on the right-hand side,
but provides no information about the term Pr[y|x, D = 0]. Because

E[y|x] = E[y|x, D = 1] · Pr[D = 1|x] + E[y|x, D = 0] · Pr[D = 0|x],

whenever the censoring probability Pr[D = 0|x] is positive, the available empirical
evidence places no restrictions on E[y|x]. Consequently, the censored-sampling pro-
cess can identify Pr[y|x] only for some unknown value of Pr[y|x, D = 0]. To learn
anything about the E[y|x], restrictions will need to be placed on Pr[y|x].

The alternative approaches for solving this problem are discussed in Section 16.5.

3.2.6. Quality of Survey Data

The quality of sample data depends not only on the sample design and the survey
instrument but also on the survey responses. This observation applies especially to
observational data. We consider several ways in which the quality of the sample data
may be compromised. Some of the problems (e.g., attrition) can also occur with other
types of data. This topic overlaps with that of biased sampling.

Problem of Survey Nonresponse

Surveys are normally voluntary, and incentive to participate may vary systematically
according to household characteristics and type of question asked. Individuals may
refuse to answer some questions. If there is a systematic relationship between refusal
to answer a question and the characteristics of the individual, then the issue of the
representativeness of a survey after allowing for nonresponse arises. If nonresponse
is ignored, and if the analysis is carried out using the data from respondents only, how
will the estimation of parameters of interest be affected?

Survey nonresponse is a special case of the selection problem mentioned in the
preceding section. Both involve biased samples. To illustrate how it leads to distorted
inference consider the following model:[

y1

y2

]∣∣∣∣ x, z ∼ N
([

x′β
z′γ

]
,

[
σ 2

1 σ12

σ12 σ
2
2

])
, (3.3)

where y1 is a continuous random variable of interest (e.g., expenditure) that depends
on x, and y2 is a latent variable that measures the “propensity to participate” in a survey
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and depends on z. The individual participates if y2 > 0; otherwise the individual does
not. The variables x and z are assumed to be exogenous. The formulation allows y1

and y2 to be correlated.
Suppose we estimate β from the data supplied by participants by least squares.

Is this estimator unbiased in the presence of nonparticipation? The answer is that if
nonparticipation is random and independent of y1, the variable of interest, then there
is no bias, but otherwise there will be.

The argument is as follows:

β̂ = [X′X
]−1

X′y1,

E[β̂ − β] = E
[[

X′X
]−1

X′E[y1 − Xβ|X,Z, y2 > 0
]
,

where the first line gives the least-squares formula for the estimates of β and the second
line gives its bias. If y1 and y2 are independent, conditional on X and Z, σ12 = 0,
then

E[y1 − Xβ|X,Z, y2 > 0] = E[y1 − Xβ|X,Z] = 0,

and there is no bias.

Missing and Mismeasured Data

Survey respondents dealing with an extensive questionnaire will not necessarily an-
swer every question and even if they do, the answers may be deliberately or fortu-
itously false. Suppose that the sample survey attempts to obtain a vector of responses
denoted as xi =(xi1, . . . ., xi K ) from N individuals, i = 1, . . . , N . Suppose now that
if an individual fails to provide information on any one or more elements of xi , then
the entire vector is discarded. The first problem resulting from missing data is that the
sample size is reduced. The second potentially more serious problem is that missing
data can potentially lead to biases similar to the selection bias. If the data are missing
in a systematic manner, then the sample that is left to analyze may not be represen-
tative of the population. A form of selection bias may be induced by any systematic
pattern of nonresponse. For example, high-income respondents may systematically not
respond to questions about income. Conversely, if the data are missing completely at
random then discarding incomplete observations will reduce precision but not gen-
erate biases. Chapter 27 discusses the missing-data problem and solutions in greater
depth.

Measurement errors in survey responses are a pervasive problem. They can arise
from a variety of causes, including incorrect responses arising from carelessness, de-
liberate misreporting, faulty recall of past events, incorrect interpretation of questions,
and data-processing errors. A deeper source of measurement error is due to the mea-
sured variable being at best an imperfect proxy for the relevant theoretical concept.
The consequences of such measurement errors is a major topic and is discussed in
Chapter 26.
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Sample Attrition

In panel data situations the survey involves repeated observations on a set of individu-
als. In this case we can have

� full response in all periods (full participation),
� nonresponse in the first period and in all subsequent periods (nonparticipation), or
� partial response in the sense of response in the initial periods but nonresponse in later

periods (incomplete participation) – a situation referred to as sample attrition.

Sample attrition leads to missing data, and the presence of any nonrandom pattern
of “missingness” will lead to the sample selection type problems already mentioned.
This can be interpreted as a special case of the sample selection problem. Sample
attrition is discussed briefly in Sections 21.8.5 and 23.5.2.

3.2.7. Types of Observational Data

Cross-section data are obtained by observing w, for the sample St for some t. Al-
though it is usually impractical to sample all households at the same point of time,
cross-section data are still a snapshot of characteristics of each element of a subset of
the population that will be used to make inferences about the population. If the pop-
ulation is stationary, then inferences made about θt using St may be valid also for
t ′ �= t. If there is significant dependence between past and current behavior, then lon-
gitudinal data are required to identify the relationship of interest. For example, past
decisions may affect current outcomes; inertia or habit persistence may account for
current purchases, but such dependence cannot be modeled if the history of purchases
is not available. This is one of the limitations imposed by cross-section data.

Repeated cross-section data are obtained by a sequence of independent samples
St taken from F(wt |θt ), t = 1, . . . , T . Because the sample design does not attempt to
retain the same units in the sample, information about dynamic dependence in behavior
is lost. If the population is stationary then repeated cross-section data are obtained by
a sampling process somewhat akin to sampling with replacement from the constant
population. If the population is nonstationary, repeated cross sections are related in a
manner that depends on how the population is changing over time. In such a case the
objective is to make inferences about the underlying constant (hyper)parameters. The
analysis of repeated cross sections is discussed in Section 22.7.

Panel or longitudinal data are obtained by initially selecting a sample S and
then collecting observations for a sequence of time periods, t = 1, . . . , T . This can
be achieved by interviewing subjects and collecting both present and past data at the
same time, or by tracking the subjects once they have been inducted into the survey.
This produces a sequence of data vectors {w1, . . . ,wT } that are used to make infer-
ences about either the behavior of the population or that of the particular sample of
individuals. The appropriate methodology in each case may not be the same. If the
data are drawn from a nonstationary population, the appropriate objective should be
inference on (hyper)parameters of the superpopulation.
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Some limitations of these types of data are immediately obvious. Cross-section
samples and repeated cross-sections do not in general provide suitable data for mod-
eling intertemporal dependence in outcomes. Such data are only suitable for modeling
static relationships. In contrast, longitudinal data, especially if they span a sufficiently
long time period, are suitable for modeling both static and dynamic relationships.

Longitudinal data are not free from problems. The first issue is representativeness of
the panel. Problems of inference regarding population behavior using longitudinal data
become more difficult if the population is not stationary. For analyzing dynamics of be-
havior, retaining original households in the panel for as long as possible is an attractive
option. In practice, longitudinal data sets suffer from the problem of “sample attrition,”
perhaps due to “sample fatigue.” This simply means that survey respondents do not
continue to provide responses to questionnaires. This creates two problems: (1) The
panel becomes unbalanced and (2) there is the danger that the retained household may
not be “typical” and that the sample becomes unrepresentative of the population. When
the available sample data are not a random draw from the population, results based on
different types of data will be susceptible to biases to different degrees. The problem
of “sample fatigue” arises because over time it becomes more difficult to retain in-
dividuals within the panel or they may be “lost” (censored) for some other reason,
such as a change of location. These issues are dealt with later in the book. Analysis
of longitudinal data may nevertheless provide information about some aspects of the
behavior of the sampled units, although extrapolation to population behavior may not
be straightforward.

3.3. Data from Social Experiments

Observational and experimental data are distinct because an experimental environment
can in principle be closely monitored and controlled. This makes it possible to vary
a causal variable of interest, holding other covariates at controlled settings. In con-
trast, observational data are generated in an uncontrolled environment, leaving open
the possibility that the presence of confounding factors will make it more difficult to
identify the causal relationship of interest. For example, when one attempts to study
the earnings–schooling relationship using observational data, one must accept that the
years of schooling of an individual is itself an outcome of an individual’s decision-
making process, and hence one cannot regard the level of schooling as if it had been
set by a hypothetical experimenter.

In social sciences, data analogous to experimental data come from either social
experiments, defined and described in greater detail in the following, or from “labo-
ratory” experiments on small groups of voluntary participants that mimic the behavior
of economic agents in the real-life counterpart of the experiment. Social experiments
are relatively uncommon, and yet experimental concepts, methods, and data serve as a
benchmark for evaluating econometric studies based on observational data.

This section provides a brief account of the methodology of social experiments, the
nature of the data emanating from them, and some problems and issues of econometric
methodology that they generate.

48



3.3 . DATA FROM SOCIAL EXPERIMENTS

The central feature of the experimental methodology involves a comparison be-
tween the outcomes of the randomly selected experimental group that is subjected to a
“treatment”with those of a control (comparison) group. In a good experiment consid-
erable care is exercised in matching the control and experimental (“treated”) groups,
and in avoiding potential biases in outcomes. Such conditions may not be realized
in observational environments, thereby leading to a possible lack of identification of
causal parameters of interest. Sometimes, however, experimental conditions may be
approximately replicated in observational data. Consider, for example, two contigu-
ous regions or states, one of which pursues a different minimum-wage policy from the
other, creating the conditions of a natural experiment in which observations from the
“treated” state can be compared with those from the “control” state. The data structure
of a natural experiment has also attracted attention in econometrics.

A social experiment involves exogenous variations in the economic environment
facing the set of experimental subjects, which is partitioned into one subset that re-
ceives the experimental treatment and another that serves as a control group. In con-
trast to observational studies in which changes in exogenous and endogenous factors
are often confounded, a well-designed social experiment aims to isolate the role of
treatment variables. In some experimental designs there may be no explicit control
group, but varying levels of the treatment are applied, in which case it becomes pos-
sible in principle to estimate the entire response surface of experimental outcomes.

The primary object of a social experiment is to estimate the impact of an actual
or potential social program. The potential outcome model of Section 2.7 provides a
relevant background for modeling the impact of social experiments. Several alternative
measures of impact have been proposed and these will be discussed in the chapter on
program evaluation (Chapter 25).

Burtless (1995) summarizes the case for social experiments, while noting some
potential limitations. In a companion article Heckman and Smith (1995) focus on
limitations of actual social experiments that have been implemented. The remaining
discussion in this section borrows significantly from these papers.

3.3.1. Leading Features of Social Experiments

Social experiments are motivated by policy issues about how subjects would react to a
type of policy that has never been tried and hence one for which no observed response
data exist. The idea of a social experiment is to enlist a group of willing participants,
some of whom are randomly assigned to a treatment group and the rest to a control
group. The difference between the responses of those in the treatment group, subjected
to the policy change, and those in the control group, who are not, is the estimated
effect of the policy. Schematically the standard experimental design is as depicted in
Figure 3.1.

The term “experimentals” refers to the group receiving treatments, “controls” to the
group not receiving treatment, and “random assignment” to the process of assigning
individuals to the two groups.

Randomized trials were introduced in statistics by R. A. Fisher (1928) and his
co-workers. A typical agricultural experiment would consist of a trial in which a new
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Figure 3.1: Social experiment with random assignment.

treatment such as fertilizer application would be applied to plants growing on ran-
domly chosen blocks of land and then the responses would be compared with those
of a control group of plants, similar to the experimentals in all relevant respects but
not given experimental treatment. If the effect of all other differences between the ex-
perimental and control groups can be eliminated, the estimated difference between the
two sets of responses can be attributed to the treatment. In the simplest situation one
can concentrate on a comparison of the mean outcome of the treated group and of the
untreated group.

Although in agricultural and biomedical sciences, the randomized experiments
methodology has been long established, in economics and social sciences it is new.
It is attractive for studying responses to policy changes for which no observational
data exist, perhaps because the policy changes of interest have never occurred. Ran-
domized experiments also permit a greater variation in policy variables and parameters
than are present in observational data, thereby making it easier to identify and study
responses to policy changes. In many cases the social experiment may try out a pol-
icy that has never been tried, so the observational data remain completely silent on its
potential impact.

Social experiments are still rather rare outside the United States, partly because
they are expensive to run. In the United States a number of such experiments have
taken place since the early 1970s. Table 3.1 summarizes features of some relatively
well-known examples; for a more extensive coverage see Burtless (1995).

An experiment may produce either cross-section or longitudinal data, although cost
considerations will usually limit the time dimension well below what is typical in ob-
servational data. When an experiment lasts several years and has multiple stages and/or
geographical locations, as in the case of RHIE, interim analyses based on “incomplete”
data are not uncommon (Newhouse et al., 1993).

3.3.2. Advantages of Social Experiments

Burtless (1995) surveys the advantages of social experiments with great clarity.
The key advantage stems from randomized trials that remove any correlation be-
tween the observed and unobserved characteristics of program participants. Hence the
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Table 3.1. Features of Some Selected Social Experiments

Experiment Tested Treatments Target Population

Rand Health Health insurance plans with Low- and moderate-level
Insurance Experiment varying copayment rate and income persons and families
(RHIE), 1974–1982 differing levels of maximum

out-of-pocket expenses

Negative Income Tax NIT plans with alternative Low- and moderate-level
(NIT), 1968–1978 income guarantees and income persons and families

tax rates with nonaged head of household

Job Training Job search assistance, Out-of-school youths and
Partnership Act (JTPA), on-the-job training, classroom disadvantaged adults
(1986–1994) training financed under JTPA

contribution of the treatment to the outcome difference between the treated and control
groups can be estimated without confounding bias even if one cannot control for the
confounding variables. The presence of correlation between treatment and confound-
ing variables often plagues observational studies and complicates causal inference. By
contrast, an experimental study conducted under ideal circumstances can produce a
consistent estimate of the average difference in outcomes of the treated and nontreated
groups without much computational complexity.

If, however, an outcome depends on treatment as well as other observable fac-
tors, then controlling for the latter will in general improve the precision of the impact
estimate.

Even if observational data are available, the generation and use of experimental data
has great appeal because it offers the possibility of exogenizing a policy variable, and
randomization of treatments can potentially lead to great simplification of statistical
analysis. Conclusions based on observational data often lack generality because they
are based on a nonrandom sample from the population – the problem of selection bias.
An example is the aforementioned RHIE study whose major focus is on the price re-
sponsiveness of the demand for health services. Availability of health insurance affects
the user price of health services and thereby its use. An important policy issue is the ex-
tent to which “overutilization” of health services would result from subsidized health
insurance. One can, of course, use observational data to model the relation between
the demand for health services and the level of insurance. However, such analyses are
subject to the criticism that the level of health insurance should not be treated as ex-
ogenous. Theoretical analyses show that the demand for health insurance and health
care are jointly determined, so causation is not unidirectional. This fact can potentially
make it difficult to identify the role of health insurance. Treating health insurance as
exogenous biases the estimate of price responsiveness. However, in an experimental
setup the participating households could be assigned an insurance policy, making it an
exogenous variable. The role of insurance is then identifiable. Once the key variable
of interest is exogenized, the direction of causation becomes clear and the impact of
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the treatment can be studied unambiguously. Furthermore, if the experiment is free
from some of the problems that we mention in the following, this greatly simplifies
statistical analysis relative to what is often necessary in survey data.

3.3.3. Limitations of Social Experiments

The application of a nonhuman methodology, initially that is, one developed for and
applied to nonhuman subjects, to human subjects has generated a lively debate in the
literature. See especially Heckman and Smith (1995), who argue that many social ex-
periments may suffer from limitations that apply to observational studies. These is-
sues concern general points such as the merits of experimental versus observational
methodology, as well as specific issues concerning the biases and problems inherent
in the use of human subjects. Several of the issues are covered in more detail in later
chapters but a brief overview follows.

Social experiments are very costly to run. Sometimes, perhaps often, they do not
correspond to “clean” randomized trials. Hence the results from such experiments are
not always unambiguous and easily interpretable, or free from biases. If the treatment
variable has many alternative settings of interest, or if extrapolation is an important
objective, then a very large sample must be collected to ensure sufficient data variation
and to precisely gauge the effect of treatment variation. In that case the cost of the
experiment will also increase. If the cost factor prevents a large enough experiment, its
utility relative to observational studies may be questionable; see the papers by Rosen
and Stafford in Hausman and Wise (1985).

Unfortunately the design of some social experiments is flawed. Hausman and Wise
(1985) argue that the data from the New Jersey negative income tax experiment was
subject to endogenous stratification, which they describe as follows:

. . . [T]he reason for an experiment is, by randomization, to eliminate correlation
between the treatment variable and other determinants of the response variable that
is under study. In each of the income-maintenance experiments, however, the exper-
imental sample was selected in part on the basis of the dependent variable, and the
assignment to treatment versus control group was based in part on the dependent
variable as well. In general, the group eligible for selection – based on family status,
race, age of family head, etc. – was stratified on the basis of income (and other vari-
ables) and persons were selected from within the strata. (Hausman and Wise, 1985,
pp. 190–191)

The authors conclude that, in the presence of endogenous stratification, unbiased es-
timation of treatment effects is not straightforward. Unfortunately, a fully randomized
trial in which treatment assignment within a randomly selected experimental group
from the population is independent of income would be much more costly and may
not be feasible.

There are several other issues that detract from the ideal simplicity of a random-
ized experiment. First, if experimental sites are selected randomly, cooperation of
administrators and potential participants at that site would be required. If this is not
forthcoming, then alternative treatment sites where such cooperation is obtainable
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will be substituted, thereby compromising the random assignment principle; see Hotz
(1992).

A second problem is that of sample selection, which is relevant because participa-
tion is voluntary. For ethical reasons there are many experiments that simply cannot
be done (e.g., random assignment of students to years of education). Unlike medical
experiments that can achieve the gold standard of a double-blind protocol, in social
experiments experimenters and subjects know whether they are in treatment or con-
trol groups. Furthermore, those in control groups may obtain treatment, (e.g., training)
from alternative sources. If the decision to participate is uncorrelated with either x or
ε, the analysis of the experimental data is simplified.

A third problem is sample attrition caused by subjects dropping out of the experi-
ment after it has started. Even if the initial sample was random the effect of nonran-
dom attrition may well lead to a problem similar to the attrition bias in panels. Finally,
there is the problem of Hawthorne effect. The term originates in social psychology
research conducted jointly by the Harvard Graduate School of Business Administra-
tion and the management of the Western Electric Company at the latter’s Hawthorne
works in Chicago from 1926 to 1932. Human subjects, unlike inanimate objects, may
change or adapt their behavior while participating in the experiment. In this case the
variation in the response observed under experimental conditions cannot be attributed
solely to treatment.

Heckman and Smith (1995) mention several other difficulties in implementing a
randomized treatment. Because the administration of a social experiment involves a
bureaucracy, there is a potential for biases. Randomization bias occurs if the assign-
ment introduces a systematic difference between the experimental participant and the
participant during its normal operation. Heckman and Smith document the possibilities
of such bias in actual experiments. Another type of bias, called substitution bias, is
introduced when the controls may be receiving some form of treatment that substitutes
for the experimental treatment. Finally, analysis of social experiments is inevitably of
a partial equilibrium nature. One cannot reliably extrapolate the treatment effects to
the entire population because the ceteris paribus assumption will not hold when the
entire population is involved.

Specifically, the key issue is whether one can extrapolate the results from the exper-
iment to the population at large. If the experiment is conducted as a pilot program on a
small scale, but the intention is to predict the impact of policies that are more broadly
applied, then the obvious limitation is that the pilot program cannot incorporate the
broader impact of the treatment. A broadly applied treatment may change the eco-
nomic environment sufficiently to invalidate the predictions from a partial equilibrium
setup. So the treatment will not be like the actual policy that it mimics.

In summary, social experiments, in principle, could yield data that are easier to an-
alyze and to understand in terms of cause and effect than observational data. Whether
this promise is realized depends on the experimental design. A poor experimen-
tal design generates its own statistical complications, which affect the precision of
the conclusions. Social experiments differ fundamentally from those in biology and
agriculture because human subjects and treatment administrators tend to be both
active and forward-looking individuals with personal preferences, rather than
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Table 3.2. Features of Some Selected Natural Experiments

Experiment Treatments Studied Reference

Outcomes for identical twins Differences in returns to Ashenfelter and
with different schooling levels schooling through correlation Krueger (1994)

between schooling and wages

Transition to National Health Labor market effects of NHI Gruber and
Insurance in Canada as Sasketchwan based on comparison of Hanratty (1995)
moves to NHI and other states provinces with and without NHI
follow several years later

New Jersey increases minimum Minimum wage effects on Card and
wage while neighboring employment Krueger (1994)
Pennsylvania does not

passive administrators of a standard protocol or willing recipients of randomly as-
signed treatment.

3.4. Data from Natural Experiments

Sometimes, however, a researcher may have available data from a “natural experi-
ment.” A natural experiment occurs when a subset of the population is subjected to
an exogenous variation in a variable, perhaps as a result of a policy shift, that would
ordinarily be subject to endogenous variation. Ideally, the source of the variation is
well understood.

In microeconometrics there are broadly two ways in which the idea of a natural
experiment is exploited. For concreteness consider the simple regression model

y = β1 + β2x + u, (3.4)

where x is an endogenous treatment variable correlated with u.
Suppose that there is an exogenous intervention that changes x . Examples of such

external intervention are administrative rules, unanticipated legislation, natural events
such as twin births, weather-related shocks, and geographical variation; see Table 3.2
for examples. Exogenous intervention creates an opportunity for evaluating its im-
pact by comparing the behavior of the impacted group both pre- and postintervention,
or with that of a nonimpacted group postintervention. That is, “natural” comparison
groups are generated by the event that facilitates estimation of the β2. Estimation is
simplified because x can be treated as exogenous.

The second way in which a natural experiment can assist inference is by generating
natural instrumental variables. Suppose z is a variable that is correlated with x , or
perhaps causally related to x , and uncorrelated with u. Then an instrumental variable
estimator of β2, expressed in terms of sample covariances, is

β̂2 = Cov[z, y]

Cov[z, x]
(3.5)
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(see Section 4.8.5). In an observational data setup an instrumental variable with the
right properties may be difficult to find, but it could arise naturally in a favorable
natural experiment. Then estimation would be simplified. We consider the first case
in the next section; the topic of naturally generated instruments will be covered in
Chapter 25.

3.4.1. Natural Exogenous Interventions

Such data are less expensive to collect and they also allow the researcher to evaluate the
role of some specific factor in isolation, as in a controlled experiment, because “nature”
holds constant variations attributed to other factors that are not of direct interest. Such
natural experiments are attractive because they generate treatment and control groups
inexpensively and in a real-world setting. Whether a natural experiment can support
convincing inference depends, in part, on whether the supposed natural intervention
is genuinely exogenous, whether its impact is sufficiently large to be measurable, and
whether there are good treatment and control groups. Just because a change is legis-
lated, for example, does not mean that it is an exogenous intervention. However, in
appropriate cases, opportunistic exploitation of such data sets can yield valuable em-
pirical insights.

Investigations based on natural experiments have several potential limitations
whose importance in any given study can only be assessed through a careful con-
sideration of the relevant theory, facts, and institutional setting. Following Campbell
(1969) and Meyer (1995), these are grouped into limitations that affect a study’s inter-
nal validity (i.e., the inferences about policy impact drawn from the study) and those
that affect a study’s external validity (i.e., the generalization of the conclusions to other
members of the population).

Consider an investigation of a policy change in which conclusions are drawn from
a comparison of pre- and postintervention data, using the regression method briefly
described in the following and in greater detail in Chapter 25. In any study there will
be omitted variables that may have also changed in the time interval between policy
change and its impact. The characteristics of sampled individuals such as age, health
status, and their actual or anticipated economic environment may also change. These
omitted factors will directly affect the measured impact of the policy change. Whether
the results can be generalized to other members of the population will depend on the
absence of bias due to nonrandom sampling, existence of significant interaction effects
between the policy change and its setting, and an absence of the role of historical
factors that would cause the impact to vary from one situation to another. Of course,
these considerations are not unique to data from natural experiments; rather, the point
is that the latter are not necessarily free from these problems.

3.4.2. Differences in Differences

One simple regression method is based on a comparison of outcomes in one group
before and after a policy intervention. For example, consider

yit = α + βDt + εi t , i = 1, . . . , N , t = 0, 1,
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where Dt = 1 in period 1 (postintervention), Dt = 0 in period 0 (preintervention), and
yit measures the outcome. The regression estimated from the pooled data will yield an
estimate of policy impact parameter β. This is easily shown to be equal to the average
difference in the pre- and postintervention outcome,

β̂ = N−1
∑

i
(yi1 − yi0)

= y1 − y0.

The one-group before and after design makes the strong assumption that the group
remains comparable over time. This is required for identifiability of β. If, for exam-
ple, we allowed α to vary between the two periods, β would no longer be identified.
Changes in α are confounded with the policy impact.

One way to improve on the previous design is to include an additional untreated
comparison group, that is, one not impacted by policy, and for which the data are avail-
able in both periods. Using Meyer’s (1995) notation, the relevant regression now is

y j
i t = α + α1 Dt + α1 D j + βD j

t + ε j
i t , i = 1, . . . , N , t = 0, 1,

where j is the group superscript, D j = 1 if j equals 1 and D j = 0 otherwise, D j
t = 1

if both j and t equal 1 and D j
t = 0 otherwise, and ε is a zero-mean constant-variance

error term. The equation does not include covariates but they can be added, and those
that do not vary are already subsumed under α. This relation implies that, for the
treated group, we have preintervention

y1
i0 = α + α1 D1 + ε1

i0

and postintervention

y1
i1 = α + α1 + α1 D1 + β + ε1

i1.

The impact is therefore

y1
i1 − y1

i0 = α1 + β + ε1
i1 − ε1

i0. (3.6)

The corresponding equations for the untreated group are

y0
i0 = α + ε0

i0,

y0
i1 = α + α1 + ε0

i1,

and hence the difference is

y1
i1 − y0

i0 = α1 + ε0
i1 − ε0

i0. (3.7)

Both the first-difference equations include the period-1 specific effect α1, which can
be eliminated by taking the difference between Equations (3.6) and (3.7):(

y1
i1 − y1

i0

)− (y0
i1 − y0

i0

) = β + (ε1
i1 − ε1

i0

)− (ε0
i1 − ε0

i0

)
. (3.8)

Assuming that E[(ε1
i1 − ε1

i0) − (ε0
i1 − ε0

i0)] equals zero, we can obtain an unbiased
estimate of β by the sample average of (y1

i1 − y1
i0) − (y0

i1 − y0
i0). This method uses
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differences in differences. If time-varying covariates are present, they can be
included in the relevant equations and their differences will appear in the regression
equation (3.8).

For simplicity our analysis ignored the possibility that there remain observable dif-
ferences in the distribution of characteristics between the treatment and control groups.
If so, then such differences must be controlled for. The standard solution is to include
such controlling variables in the regression.

An example of a study based on a natural experiment is that of Ashenfelter and
Krueger (1994). They estimate the returns to schooling by contrasting the wage rates
of identical twins with different schooling levels. In this case running a regular exper-
iment in which individuals are exogenously assigned different levels of schooling is
simply not feasible. Nonetheless, some experimental-type controls are needed. As the
authors explain:

Our goal is to ensure that the correlation we observe between schooling and wage
rates is not due to a correlation between schooling and a worker’s ability or other
characteristics. We do this by taking advantage of the fact that monozygotic twins
are genetically identical and have similar family backgrounds.

Data on twins have served as a basis for a number of other econometric studies
(Rosenzweig and Wolpin, 1980; Bronars and Grogger, 1994). Since the twinning prob-
ability in the population is not high, an important issue is generating a sufficiently
large representative sample, allowing for some nonresponse. One source of such data
is the census. Another source is the “twins festivals” that are held in the United States.
Ashenfelter and Krueger (1994, p. 1158) report that their data were obtained from in-
terviews conducted at the 16th Annual Twins Day Festival, Twinsburg, Ohio, August
1991, which is the largest gathering of twins, triplets, and quadruplets in the world.

The attraction of using the twins data is that the presence of common effects from
both observable and unobservable factors can be eliminated by modeling the differ-
ences between the outcomes of the twins. For example, Ashenfelter and Krueger esti-
mate a regression model of the difference in the log of wage rates between the first and
the second twin. The first differencing operation eliminates the effects of age, gender,
ethnicity, and so forth. The remaining explanatory variables are differences between
schooling levels, which is the variable of main interest, and variables such as differ-
ences in years of tenure and marital status.

3.4.3. Identification through Natural Experiments

The natural experiments school has had a useful impact on econometric practice. By
encouraging the opportunistic exploitation of quasi-experimental data, and by using
modeling frameworks such as the POM of Chapter 2, econometric practice bridges the
gap between observational and experimental data. The notions of parameter identifica-
tion rooted in the SEM framework are broadened to include identification of measures
that are interesting from a policy viewpoint. The main advantage of using data from a
natural experiment is that a policy variable of interest might be validly treated as ex-
ogenous. However, in using data from natural experiments, as in the case of social
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experiments, the choice of control groups plays a critical role in determining the
reliability of the conclusions. Several potential problems that affect a social experi-
ment, such as selectivity and attrition bias, will also remain potential problems in the
case of natural experiments. Only a subset of interesting policy problems may lend
themselves to analysis within the natural experiment framework. The experiment may
apply only to a small part of the population, and the conditions under which it occurs
may not replicate themselves easily. An example given in Section 22.6 illustrates this
point in the context of difference in differences.

3.5. Practical Considerations

Although there has been an explosion in the number and type of microdata sets that
are available, certain well-established databases have supported numerous studies. We
provide a very partial list of some of very well known U.S. micro databases. For fur-
ther details, see the respective Web sites for these data sets or the data clearinghouses
mentioned in the following. Many of these allow you to download the data directly.

3.5.1. Some Sources of Microdata

Panel Study in Income Dynamics (PSID): Based at the Survey Research Center at
the University of Michigan, PSID is a national survey that has been running since
1968. Today it covers over 40,000 individuals and collects economic and demo-
graphic data. These data have been used to support a wide variety of microecono-
metric analyses. Brown, Duncan and Stafford (1996) summarize recent develop-
ments in PSID data.

Current Population Survey (CPS): This is a monthly national survey of about 50,000
households that provides information on labor force characteristics. The survey has
been conducted for more than 50 years. Major revisions in the sample have fol-
lowed each of the decennial censuses. For additional details about this survey see
Section 24.2. It is the basis of many federal government statistics on earnings and
unemployment. It is also an important source of microdata that have supported nu-
merous studies especially of labor markets. The survey was redesigned in 1994
(Polivka, 1996).

National Longitudinal Survey (NLS): The NLS has four original cohorts: NLS Older
Men, NLS Young Men, NLS Mature Women, and NLS Young Women. Each of
the original cohorts is a national yearly survey of over 5,000 individuals who have
been repeatedly interviewed since the mid-1960s. Surveys collect information on
each respondent’s work experiences, education, training, family income, household
composition, marital status, and health. Supplementary data on age, sex, etc. are
available.

National Longitudinal Surveys of Youth (NLSY): The NLSY is a national annual
survey of 12,686 young men and young women who where 14 to 22 years of age
when they were first surveyed in 1979. It contains three subsamples. The data
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provide a unique opportunity to study the life-course experiences of a large sam-
ple of young adults who are representative of American men and women born in
the late 1950s and early 1960s. A second NLSY began in 1997.

Survey of Income and Program Participation (SIPP): SIPP is a longitudinal survey
of around 8,000 housing units per month. It covers income sources, participation in
entitlement programs, correlation between these items, and individual attachments
to the job market over time. It is a multipanel survey with a new panel being intro-
duced at the beginning of each calendar year. The first panel of SIPP was initiated
in October 1983. Compared with CPS, SIPP has fewer employed and more unem-
ployed persons.

Health and Retirement Study (HRS): The HRS is a longitudinal national study.
The baseline consists of interviews with members of 7,600 households in 1992
(respondents aged from 51 to 61) with follow-ups every two years for 12 years. The
data contain a wealth of economic, demographic, and health information.

World Bank’s Living Standards Measurement Study (LSMS): The World Bank’s
LSMS household surveys collect data “on many dimensions of household well-
being that can be used to assess household welfare, understand household behavior,
and evaluate the effects of various government policies on the living conditions of
the population” in many developing countries. Many examples of the use of these
data can be found in Deaton (1997) and in the economic development literature.
Grosh and Glewwe (1998) outline the nature of the data and provide references to
research studies that have used them.

Data clearinghouses: The Interuniversity Consortium for Political and Social Re-
search (ICPSR) provides access to many data sets, including the PSID, CPS, NLS,
SIPP, National Medical Expenditure Survey (NMES), and many others. The U.S.
Bureau of Labor Statistics handles the CPS and NLS surveys. The U.S. Bureau of
Census handles the SIPP. The U.S. National Center for Health Statistics provides
access to many health data sets. A useful gateway to European data archives is
the Council of European Social Science Data Archives (CESSDA), which provides
links to several European national data archives.

Journal data archives: For some purposes, such as replication of published results
for classroom work, you can get the data from journal archives. Two archives in
particular have well-established procedures for data uploads and downloads using
an Internet browser. The Journal of Business and Economic Statistics archives data
used in most but not all articles published in that journal. The Journal of Applied
Econometrics data archive is also organized along similar lines and contains data
pertaining to most articles published since 1994.

3.5.2. Handling Microdata

Microeconomic data sets tend to be quite large. Samples of several hundreds or thou-
sands are common and even those of tens of thousands are not unusual. The distribu-
tions of outcomes of interest are often nonnormal, in part because one is often dealing
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with discrete data such as binary outcomes, or with data that have limited variation
such as proportions or shares, or with truncated or censored continuous outcomes.
Handling large nonnormal data sets poses some problems of summarizing and report-
ing the important features of data. Often it is useful to use one computing environment
(program) for data extraction, reduction, and preparation and a different one for model
estimation.

3.5.3. Data Preparation

The most basic feature of microeconometric analysis is that the process of arriving at
the sample finally used in the econometric investigation is likely to be a long one. It
is important to accurately document decisions and choices made by the investigator in
the process of “cleaning up” the data. Let us consider some specific examples.

One of the most common features of sample survey data is nonresponse or par-
tial response. The problems of nonresponse have already been discussed. Partial res-
ponse usually means that some parts of survey questionnaires were not answered. If
this means that some of the required information is not available, the observations in
question are deleted. This is called listwise deletion. If this problem occurs in a sig-
nificant number of cases, it should be properly analyzed and reported because it could
lead to an unrepresentative sample and biases in estimation. The issue is analyzed in
Chapter 27. For example, consider a question in a household survey to which high-
income households do not respond, leading to a sample in which these households are
underrepresented. Hence the end effect is no different from one in which there is a full
response but the sample is not representative.

A second problem is measurement error in reported data. Microeconomic data are
typically noisy. The extent, type, and seriousness of measurement error depends on the
type of survey cross section or panel, the individual who responds to the survey, and
the variable about which information is sought. For example, self-reported income data
from panel surveys are strongly suspected to have serially correlated measurement er-
ror. In contrast, reported expenditure magnitudes are usually thought to have a smaller
measurement error. Deaton (1997) surveys some of the sources of measurement er-
ror with special reference to the World Bank’s Living Standards Measurement Survey,
although several of the issues raised have wider relevance. The biases from measure-
ment error depend on what is done to the data in terms of transformations (e.g., first
differencing) and the estimator used. Hence to make informative statements about the
seriousness of biases from measurement error, one must analyze well-defined mod-
els. Later chapters will give examples of the impact of measurement error in specific
contexts.

3.5.4. Checking Data

In large data sets it is easy to have erroneous data resulting from keyboard and cod-
ing errors. One should therefore apply some elementary checks that would reveal the
existence of problems. One can check the data before analyzing it by examining some
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descriptive statistics. The following techniques are useful. First, use summary statistics
(min, max, mean, and median) to make sure that the data are in the proper interval and
on the proper scale. For instance, categorical variables should be between zero and
one, counts should be greater than or equal to zero. Sometimes missing data are coded
as −999, or some other integer, so take care not to treat these entries as data. Second,
one should know whether changes are fractional or on a percentage scale. Third, use
box and whisker plots to identify problematic observations. For instance, using box
and whisker plots one researcher found a country that had negative population growth
(owing to a war) and another country that had recorded investment as more than GDP
(because foreign aid had been excluded from the GDP calculation). Checking observa-
tions before proceeding with estimation may also suggest normalizing transformations
and/or distributional assumptions with features appropriate for modeling a particular
data set. Third, screening data may suggest appropriate data transforms. For example,
box and whisker plots and histograms could suggest which variables might be better
modeled via a log or power transform. Finally, it may be important to check the scales
of measurement. For some purposes, such as the use of nonlinear estimators, it may
be desirable to scale variables so that they have roughly similar scale. Summary statis-
tics can be used to check that the means, variances, and covariances of the variables
indicate proper scaling.

3.5.5. Presenting Descriptive Statistics

Because microdata sets are usually large, it is essential to provide the reader with an
initial table of descriptive statistics, usually mean, standard deviation, minimum, and
maximum for every variable. In some cases unexpectedly large or small values may
reveal the presence of a gross recording error or erroneous inclusion of an incorrect
data point. Two-way scatter diagrams are usually not helpful, but tabulation of cate-
gorical variables (contingency tables) can be. For discrete variables histograms can be
useful and for continuous variables density plots can be informative.

3.6. Bibliographic Notes

3.2 Deaton (1997) provides an introduction to sample surveys especially for developing
economies. Several specific references to complex surveys are provided in Chapter 24.
Becketti et al. (1988) investigate the importance of the issue of representativeness of the
PSID.

3.3 The collective volume edited by Hausman and Wise (1985) contains several papers on indi-
vidual social experiments including the RHIE, NIT, and Time-of-Use pricing experiments.
Several studies question the usefulness of the experimental data and there is extensive dis-
cussion of the flaws in experimental designs that preclude clear conclusions. Pros and cons
of social experiments versus observational data are discussed in an excellent pair of papers
by Burtless (1995) and Heckman and Smith (1995).

3.4 A special issue of the Journal of Business and Economic Statistics (1995) carries a number
of articles that use the methodology of quasi- or natural experiments. The collection in-
cludes an article by Meyer who surveys the issues in and the methodology of econometric
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studies that use data from natural experiments. He also provides a valuable set of guidelines
on the credible use of natural variation in making inferences about the impact of economic
policies, partly based on the work of Campbell (1969). Kim and Singal (1993) study the
impact of changes in market concentration on price using the data generated by a airline
mergers. Rosenzweig and Wolpin (2000) review an extensive literature based on natural
experiments such as identical twins. Isacsson (1999) uses the twins approach to study re-
turns to schooling using Swedish data. Angrist and Lavy (1999) study the impact of class
size on test scores using data from schools that are subject to “Maimonides’ Rule” (briefly
reviewed in Section 25.6), which states that class size should not exceed 40. The rule gen-
erates an instrument.
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Core Methods

Part 2 presents the core estimation methods – least squares, maximum likelihood and
method of moments – and associated methods of inference for nonlinear regression
models that are central in microeconometrics. The material also includes modern top-
ics such as quantile regression, sequential estimation, empirical likelihood, semipara-
metric and nonparametric regression, and statistical inference based on the bootstrap.
In general the discussion is at a level intended to provide enough background and
detail to enable the practitioner to read and comprehend articles in the leading econo-
metrics journals and, where needed, subsequent chapters of this book. We presume
prior familiarity with linear regression analysis.

The essential estimation theory is presented in three chapters. Chapter 4 begins with
the linear regression model. It then covers at an introductory level quantile regression,
which models distributional features other than the conditional mean. It provides a
lengthy expository treatment of instrumental variables estimation, a major method of
causal inference. Chapter 5 presents the most commonly-used estimation methods for
nonlinear models, beginning with the topic of m-estimation, before specialization to
maximum likelihood and nonlinear least squares regression. Chapter 6 provides a com-
prehensive treatment of generalized method of moments, which is a quite general esti-
mation framework that is applicable for linear and nonlinear models in single-equation
and multi-equation settings. The chapter emphasizes the special case of instrumental
variables estimation.

We then turn to model testing. Chapter 7 covers both the classical and bootstrap
approaches to hypothesis testing, while Chapter 8 presents relatively more modern
methods of model selection and specification analysis. Because of their importance
the computationally-intensive bootstrap methods are also the subject of a more de-
tailed chapter, Chapter 11 in Part 3. A distinctive feature of this book is that, as much
as possible, testing procedures are presented in a unified manner in just these three
chapters. The procedures are then illustrated in specific applications throughout the
book.

Chapter 9 is a stand-alone chapter that presents nonparametric and semiparametric
estimation methods that place a flexible structure on the econometric model.
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Chapter 10 presents the computational methods used to compute the nonlinear esti-
mators presented in chapters 5 and 6. This material becomes especially relevant to the
practitioner if an estimator is not automatically computed by an econometrics package,
or if numerical difficulties are encountered in model estimation.
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Linear Models

4.1. Introduction

A great deal of empirical microeconometrics research uses linear regression and its
various extensions. Before moving to nonlinear models, the emphasis of this book,
we provide a summary of some important results for the single-equation linear regres-
sion model with cross-section data. Several different estimators in the linear regression
model are presented.

Ordinary least-squares (OLS) estimation is especially popular. For typical microe-
conometric cross-section data the model error terms are likely to be heteroskedas-
tic. Then statistical inference should be robust to heteroskedastic errors and efficiency
gains are possible by use of weighted rather than ordinary least squares.

The OLS estimator minimizes the sum of squared residuals. One alternative is to
minimize the sum of the absolute value of residuals, leading to the least absolute de-
viations estimator. This estimator is also presented, along with extension to quantile
regression.

Various model misspecifications can lead to inconsistency of least-squares estima-
tors. In such cases inference about economically interesting parameters may require
more advanced procedures and these are pursued at considerable length and depth else-
where in the book. One commonly used procedure is instrumental variables regression.
The current chapter provides an introductory treatment of this important method and
additionally addresses the complication of weak instruments.

Section 4.2 provides a definition of regression and presents various loss functions
that lead to different estimators for the regression function. An example is introduced
in Section 4.3. Some leading estimation procedures, specifically ordinary least squares,
weighted least squares, and quantile regression, are presented in, respectively, Sec-
tions 4.4, 4.5, and 4.6. Model misspecification is considered in Section 4.7. Instru-
mental variables regression is presented in Sections 4.8 and 4.9. Sections 4.3–4.5, 4.7,
and 4.8 cover standard material in introductory courses, whereas Sections 4.2, 4.6, and
4.9 introduce more advanced material.
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4.2. Regressions and Loss Functions

In modern microeconometrics the term regression refers to a bewildering range of
procedures for studying the relationship between an outcome variable y and a set of
regressors x. It is helpful, therefore, to state at the beginning the motivation and justi-
fication for some of the leading types of regressions.

For exposition it is convenient to think of the purpose of regression to be condi-
tional prediction of y given x. In practice, regression models are also used for other
purposes, most notably causal inference. Even then a prediction function constitutes a
useful data summary and is still of interest. In particular, see Section 4.2.3 for the dis-
tinction between linear prediction and causal inference based on a linear causal mean.

4.2.1. Loss Functions

Let ŷ denote the predictor defined as a function of x. Let e ≡ y − ŷ denote the pre-
diction error, and let

L(e) = L(y − ŷ) (4.1)

denote the loss associated with the error e. As in decision analysis we assume that the
predictor forms the basis of some decision, and the prediction error leads to disutility
on the part of the decision maker that is captured by L(e), whose precise functional
form is a choice of the decision maker. The loss function has the property that it is
increasing in |e|.

Treating (y, ŷ) as random, the decision maker minimizes the expected value of the
loss function, denoted E[L(e)] . If the predictor depends on x, a K -dimensional vector,
then expected loss is expressed as

E [L((y − ŷ)|x)] . (4.2)

The choice of the loss function should depend in a substantive way on the losses
associated with prediction errors. In some situations, such as weather forecasting, there
may be a sound basis for choosing one loss function over another.

In econometrics, there is often no clear guide and the convention is to specify
quadratic loss. Then (4.1) specializes to L(e) = e2 and by (4.2) the optimal predic-
tor minimizes the expected loss E[L(e|x)] = E[e2|x]. It follows that in this case the
minimum mean-squared prediction error criterion is used to compare predictors.

4.2.2. Optimal Prediction

The decision theory approach to choosing the optimal predictor is framed in terms of
minimizing expected loss,

min
ŷ

E [L (y − ŷ)|x)] .

Thus the optimality property is relative to the loss function of the decision maker.
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Table 4.1. Loss Functions and Corresponding Optimal Predictors

Type of Loss Function Definition Optimal Predictor

Squared error loss L(e) = e2 E[y|x]
Absolute error loss L(e) = |e| med[y|x]

Asymmetric absolute loss L(e) =
{

(1 − α) |e|
α |e|

if e < 0
if e � 0

qα [y|x]

Step loss L(e) =
{

0
1

if e < 0
if e � 0

mod[y|x]

Four leading examples of loss function, and the associated optimal predictor func-
tion, are given in Table 4.1. We provide a brief presentation for each in turn. A detailed
analysis is given in Manski (1988a).

The most well known loss function is the squared error loss (or mean-square loss)
function. Then the optimal predictor of y is the conditional mean function, E[y|x]. In
the most general case no structure is placed on E[y|x] and estimation is by nonpara-
metric regression (see Chapter 9). More often a model for E[y|x] is specified, with
E[y|x] = g(x,β), where g(·) is a specified function and β is a finite-dimensional vec-
tor of parameters that needs to be estimated. The optimal prediction is ŷ = g(x,β̂),
where β̂ is chosen to minimize the in-sample loss

N∑
i=1

L(ei ) =
N∑

i=1

e2
i =

N∑
i=1

(yi − g(xi ,β))2.

The loss function is the sum of squared residuals, so estimation is by nonlinear least
squares (see Section 5.8). If the conditional mean function g(·) is restricted to be linear
in x and β, so that E[y|x] = x′β, then the optimal predictor is ŷ = x′β̂, where β̂ is the
ordinary least-squares estimator detailed in Section 4.4.

If the loss criterion is absolute error loss, then the optimal predictor is the con-
ditional median, denoted med[y|x]. If the conditional median function is linear, so
that med[y|x] = x′β, then the optimal predictor is ŷ = x′β̂, where β̂ is the least abso-
lute deviations estimator that minimizes

∑
i |yi − x′

iβ|. This estimator is presented in
Section 4.6.

Both the squared error and absolute error loss functions are symmetric, so the same
penalty is imposed for prediction error of a given magnitude regardless of the direc-
tion of the prediction error. Asymmetric absolute error loss instead places a penalty
of (1 − α) |e| on overprediction and a different penalty α |e| on underprediction. The
asymmetry parameter α is specified. It lies in the interval (0, 1) with symmetry when
α = 0.5 and increasing asymmetry as α approaches 0 or 1. The optimal predictor can
be shown to be the conditional quantile, denoted qα [y|x]; a special case is the condi-
tional median when α = 0.5. Conditional quantiles are defined in Section 4.6, which
presents quantile regression (Koenker and Bassett, 1978).

The last loss function given in Table 4.1 is step loss, which bases the loss simply on
the sign of the prediction error regardless of the magnitude. The optimal predictor is the
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conditional mode, denoted mod[y|x]. This provides motivation for mode regression
(Lee, 1989).

Maximum likelihood does not fall as easily into the prediction framework of this
section. It can, however, be given an expected loss interpretation in terms of predicting
the density and minimizing Kullback–Liebler information (see Section 5.7).

The results just stated imply that the econometrician interested in estimating a pre-
diction function from the data (y, x) should choose the prediction function according
to the loss function. The use of the popular linear regression implies, at least implicitly,
that the decision maker has a quadratic loss function and believes that the conditional
mean function is linear. However, if one of the other three loss functions is specified,
then the optimal predictor will be based on one of the three other types of regressions.
In practice there can be no clear reason for preferring a particular loss function.

Regressions are often used as data summaries, rather than for prediction per se.
Then it can be useful to consider a range of estimators, as alternative estimators may
provide useful information about the sensitivity of estimates. Manski (1988a, 1991)
has pointed out that the quadratic and absolute error loss functions are both convex. If
the conditional distribution of y|x is symmetric then the conditional mean and median
estimators are both consistent and can be expected to be quite close. Furthermore, if
one avoids assumptions about the distribution of y|x, then differences in alternative
estimators provide a way of learning about the data distribution.

4.2.3. Linear Prediction

The optimal predictor under squared error loss is the conditional mean E[y|x]. If this
conditional mean is linear in x, so that E[y|x] = x′β, the parameter β has a structural
or causal interpretation and consistent estimation of β by OLS implies consistent esti-
mation of E[y|x] = x′β. This permits meaningful policy analysis of effects of changes
in regressors on the conditional mean.

If instead the conditional mean is nonlinear in x, so that E[y|x] �= x′β, the structural
interpretation of OLS disappears. However, it is still possible to interpret β as the best
linear predictor under squared error loss. Differentiation of the expected loss E[(y −
x′β)2] with respect to β yields first-order conditions −2E[x(y − x′β)] = 0, so the opti-
mal linear predictor is β = (E[xx′]

)−1
E[xy] with sample analogue the OLS estimator.

Usually we specialize to models with intercept. In a change of notation we define x
to denote regressors excluding the intercept, and we replace x′β by α + x′γ. The first-
order conditions with respect to α and γ are that −2E[u] = 0 and −2E[xu] = 0, where
u = y − (α + x′γ). These imply that E[u] = 0 and Cov[x,u] = 0. Solving yields

γ = (V[x])−1 Cov[x, y], (4.3)

α = E[y]−E[x′]γ;

see, for example, Goldberger (1991, p. 52).
From the derivation of (4.3) it should be clear that for data (y, x) we can always

write a linear regression model

y = α + x′γ + u, (4.4)
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where the parameters α and γ are defined in (4.3) and the error term u satisfies E[u] =
0 and Cov[x,u] = 0.

A linear regression model can therefore always be given the nonstructural or re-
duced form interpretation as the best linear prediction (or linear projection) un-
der squared error loss. However, for the conditional mean to be linear in x, so that
E[y|x] = α+x′γ, requires the assumption that E[u|x] = 0, in addition to E[u] = 0 and
Cov[x,u] = 0.

This distinction is of practical importance. For example, if E[u|x] = 0, so that
E[y|x] =α+x′γ, then the probability limit of a least-squares (LS) estimator γ̂ is γ
regardless of whether the LS estimator is weighted or unweighted, or whether the
sample is obtained by simple random sampling or by exogenous stratified sampling. If
instead E[y|x] �=α+x′γ then these different LS estimators may have different proba-
bility limits. This example is discussed further in Section 24.3.

A structural interpretation of OLS requires that the conditional mean of the error
term, given regressors, equals zero.

4.3. Example: Returns to Schooling

A leading linear regression application from labor economics concerns measuring the
impact of education on wages or earnings.

A typical returns to schooling model specifies

lnwi = αsi + x′
2iβ + ui , i = 1, ..., N , (4.5)

wherew denotes hourly wage or annual earnings, s denotes years of completed school-
ing, and x2 denotes control variables such as work experience, gender, and family
background. The subscript i denotes the i th person in the sample. Since the dependent
variable is log wage, the model is a log-linear model and the coefficient α measures
the proportionate change in earnings associated with a one-year increase in education.

Estimation of this model is most often by ordinary least squares. The transforma-
tion to lnw in practice ensures that errors are approximately homoskedastic, but it
is still best to obtain heteroskedastic consistent standard errors as detailed in Sec-
tion 4.4. Estimation can also be by quantile regression (see Section 4.6), if interest
lies in distributional issues such as behavior in the lower quartile.

The regression (4.5) can be used immediately in a descriptive manner. For exam-
ple, if α̂ = 0.10 then a one-year increase in schooling is associated with 10% higher
earnings, controlling for all the factors included in x2. It is important to add the last
qualifier as in this example the estimate α̂ usually becomes smaller as x2 is expanded
to include additional controls likely to influence earnings.

Policy interest lies in determining the impact of an exogenous change in schooling
on earnings. However, schooling is not randomly assigned; rather, it is an outcome that
depends on choices made by the individual. Human capital theory treats schooling as
investment by individuals in themselves, and α is interpreted as a measure of return to
human capital. The regression (4.5) is then a regression of one endogenous variable,
y, on another, s, and so does not measure the causal impact of an exogenous change
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in s. The conditional mean function here is not causally meaningful because one is
conditioning on a factor, schooling, that is endogenous. Indeed, unless we can argue
that s is itself a function of variables at least one of which can vary independently of
u, it is unclear just what it means to regard α as a causal parameter.

Such concern about endogenous regressors with observational data on individuals
pervades microeconometric analysis. The standard assumptions of the linear regres-
sion model given in Section 4.4 are that regressors are exogenous. The consequences
of endogenous regressors are considered in Section 4.7. One method to control for
endogenous regressors, instrumental variables, is detailed in Section 4.8. A recent ex-
tensive review of ways to control for endogeneity in this wage–schooling example is
given in Angrist and Krueger (1999). These methods are summarized in Section 2.8
and presented throughout this book.

4.4. Ordinary Least Squares

The simplest example of regression is the OLS estimator in the linear regression model.
After first defining the model and estimator, a quite detailed presentation of the

asymptotic distribution of the OLS estimator is given. The exposition presumes pre-
vious exposure to a more introductory treatment. The model assumptions made here
permit stochastic regressors and heteroskedastic errors and accommodate data that are
obtained by exogenous stratified sampling.

The key result of how to obtain heteroskedastic-robust standard errors of the OLS
estimator is given in Section 4.4.5.

4.4.1. Linear Regression Model

In a standard cross-section regression model with N observations on a scalar
dependent variable and several regressors, the data are specified as (y,X), where y
denotes observations on the dependent variable and X denotes a matrix of explanatory
variables.

The general regression model with additive errors is written in vector notation as

y = E [y|X] + u, (4.6)

where E[y|X] denotes the conditional expectation of the random variable y given X,
and u denotes a vector of unobserved random errors or disturbances. The right-hand
side of this equation decomposes y into two components, one that is deterministic
given the regressors and one that is attributed to random variation or noise. We think
of E[y|X] as a conditional prediction function that yields the average value, or more
formally the expected value, of y given X.

A linear regression model is obtained when E[y|X] is specified to be a linear func-
tion of X. Notation for this model has been presented in detail in Section 1.6. In vector
notation the i th observation is

yi = x′
iβ+ui , (4.7)
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where xi is a K × 1 regressor vector and β is a K × 1 parameter vector. At times
it is simpler to drop the subscript i and write the model for typical observation as
y = x′β + u. In matrix notation the N observations are stacked by row to yield

y = Xβ + u, (4.8)

where y is an N × 1 vector of dependent variables, X is an N × K regression ma-
trix, and u is an N × 1 error vector.

Equations (4.7) and (4.8) are equivalent expressions for the linear regression model
and will be used interchangeably. The latter is more concise and is usually the most
convenient representation.

In this setting y is referred to as the dependent variable or endogenous variable
whose variation we wish to study in terms of variation in x and u; u is referred to as
the error term or disturbance term; and x is referred to as regressors or predictors
or couariates. If Assumption 4 in Section 4.4.6 holds, then all components of x are
exogenous variables or independent variables.

4.4.2. OLS Estimator

The OLS estimator is defined to be the estimator that minimizes the sum of squared
errors

N∑
i=1

u2
i = u′u = (y − Xβ)′(y − Xβ). (4.9)

Setting the derivative with respect to β equal to 0 and solving for β yields the OLS
estimator,

β̂OLS = (X′X)−1X′y, (4.10)

see Exercise 4.5 for a more general result, where it is assumed that the matrix inverse of
X′X exists. If X′X is of less than full rank, the inverse can be replaced by a generalized
inverse. Then OLS estimation still yields the optimal linear predictor of y given x if
squared error loss is used, but many different linear combinations of x will yield this
optimal predictor.

4.4.3. Identification

The OLS estimator can always be computed, provided that X′X is nonsingular. The
more interesting issue is what β̂OLS tells us about the data.

We focus on the ability of the OLS estimator to permit identification (see Section
2.5) of the conditional mean E[y|X]. For the linear model the parameter β is identified
if

1. E[y|X] = Xβ and

2. Xβ(1) = Xβ(2) if and only if β(1) = β(2).

71



LINEAR MODELS

The first condition that the conditional mean is correctly specified ensures that β is
of intrinsic interest; the second assumption implies that X′X is nonsingular, which is
the same condition needed to compute the unique OLS estimate (4.10).

4.4.4. Distribution of the OLS Estimator

We focus on the asymptotic properties of the OLS estimator. Consistency is estab-
lished and then the limit distribution is obtained by rescaling the OLS estimator.
Statistical inference then requires consistent estimation of the variance matrix of the
estimator. The analysis makes extensive use of asymptotic theory, which is summa-
rized in Appendix A.

Consistency

The properties of an estimator depend on the process that actually generated the data,
the data generating process (dgp). We assume the dgp is y = Xβ + u, so that the
model (4.8) is correctly specified. In some places, notably Chapters 5 and 6 and Ap-
pendix A the subscript 0 is added to β, so the dgp is y = Xβ0 + u. See Section 5.2.3
for discussion.

Then

β̂OLS = (X′X)−1X′y

= (X′X)−1X′(Xβ + u)

= (X′X)−1X′Xβ + (X′X)−1X′u,

and the OLS estimator can be expressed as

β̂OLS = β + (X′X)−1X′u. (4.11)

To prove consistency we rewrite (4.11) as

β̂OLS = β + (N−1X′X
)−1

N−1X′u. (4.12)

The reason for renormalization in the right-hand side is that N−1X′X = N−1∑
i xi x′

i
is an average that converges in probability to a finite nonzero matrix if xi satisfies
assumptions that permit a law of large numbers to be applied to xi x′

i (see Section 4.4.8
for detail). Then

plim β̂OLS = β + (plim N−1X′X
)−1 (

plim N−1X′u
)
,

using Slutsky’s Theorem (Theorem A.3). The OLS estimator is consistent for β (i.e.,
plim β̂OLS = β) if

plim N−1X′u = 0. (4.13)

If a law of large numbers can be applied to the average N−1X′u = N−1∑
i xi ui then

a necessary condition for (4.13) to hold is that E[xi ui ] = 0.
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Limit Distribution

Given consistency, the limit distribution of β̂OLS is degenerate with all the mass at β.
To obtain the limit distribution we multiply β̂OLS by

√
N , as this rescaling leads to a

random variable that under standard cross-section assumptions has nonzero yet finite
variance asymptotically. Then (4.11) becomes

√
N (β̂OLS − β) = (N−1X′X

)−1
N−1/2X′u. (4.14)

The proof of consistency assumed that plim N−1X′X exists and is finite and nonzero.
We assume that a central limit theorem can be applied to N−1/2X′u to yield a multi-
variate normal limit distribution with finite, nonsingular covariance matrix. Applying
the product rule for limit normal distributions (Theorem A.17) implies that the product
in the right-hand side of (4.14) has a limit normal distribution. Details are provided in
Section 4.4.8.

This leads to the following proposition, which permits regressors to be stochastic
and does not restrict model errors to be homoskedastic and uncorrelated.

Proposition 4.1 (Distribution of OLS Estimator). Make the following assump-
tions:

(i) The dgp is model (4.8), that is, y = Xβ + u.

(ii) Data are independent over i with E[u|X] = 0 and E[uu′|X] = Ω = Diag[σ 2
i ].

(iii) The matrix X is of full rank so that Xβ(1) = Xβ(2) iff β(1) = β(2).

(iv) The K × K matrix

Mxx = plim N−1X′X = plim
1

N

N∑
i=1

xi x′
i = lim

1

N

N∑
i=1

E[xi x′
i ] (4.15)

exists and is finite nonsingular.

(v) The K × 1 vector N−1/2X′u =N−1/2∑N
i=1 xi ui

d→ N [0,MxΩx], where

MxΩx = plim N−1X′uu′X = plim
1

N

N∑
i=1

u2
i xi x′

i = lim
1

N

N∑
i=1

E[u2
i xi x′

i ].

(4.16)

Then the OLS estimator β̂OLS defined in (4.10) is consistent for β and
√

N (β̂OLS − β)
d→ N

[
0,M−1

xx MxΩxM−1
xx

]
. (4.17)

Assumption (i) is used to obtain (4.11). Assumption (ii) ensures E[y|X] = Xβ and
permits heterostedastic errors with variance σ 2

i , more general than the homoskedastic
uncorrelated errors that restrict Ω = σ 2I. Assumption (iii) rules out perfect collinear-
ity among the regressors. Assumption (iv) leads to the rescaling of X′X by N−1 in
(4.12) and (4.14). Note that by a law of large numbers plim = lim E (see Appendix
Section A.3).

The essential condition for consistency is (4.13). Rather than directly assume this
we have used the stronger assumption (v) which is needed to obtain result (4.17).

73



LINEAR MODELS

Given that N−1/2X′u has a limit distribution with zero mean and finite variance, mul-
tiplication by N−1/2 yields a random variable that converges in probability to zero and
so (4.13) holds as desired. Assumption (v) is required, along with assumption (iv), to
obtain the limit normal result (4.17), which by Theorem A.17 then follows immedi-
ately from (4.14). More primitive assumptions on ui and xi that ensure (iv) and (v) are
satisfied are given in Section 4.4.6, with formal proof in Section 4.4.8.

Asymptotic Distribution

Proposition 4.1 gives the limit distribution of
√

N (β̂OLS − β), a rescaling of β̂OLS.
Many practitioners prefer to see asymptotic results written directly in terms of the dis-
tribution of β̂OLS, in which case the distribution is called an asymptotic distribution.
This asymptotic distribution is interpreted as being applicable in large samples, mean-
ing samples large enough for the limit distribution to be a good approximation but not
so large that β̂OLS

p→ β as then its asymptotic distribution would be degenerate. The
discussion mirrors that in Appendix A.6.4.

The asymptotic distribution is obtained from (4.17) by division by
√

N and addition
of β. This yields the asymptotic distribution

β̂OLS
a∼ N

[
β,N−1M−1

xx MxΩxM−1
xx

]
, (4.18)

where the symbol
a∼ means is “asymptotically distributed as.” The variance matrix

in (4.18) is called the asymptotic variance matrix of β̂OLS and is denoted V[β̂OLS].
Even simpler notation drops the limits and expectations in the definitions of Mxx and
MxΩx and the asymptotic distribution is denoted

β̂OLS
a∼ N

[
β,(X′X)−1X′ΩX(X′X)−1

]
, (4.19)

and V[β̂OLS] is defined to be the variance matrix in (4.19).
We use both (4.18) and (4.19) to represent the asymptotic distribution in later chap-

ters. Their use is for convenience of presentation. Formal asymptotic results for statisti-
cal inference are based on the limit distribution rather than the asymptotic distribution.

For implementation, the matrices Mxx and MxΩx in (4.17) or (4.18) are replaced by
consistent estimates M̂xx and M̂xΩx. Then the estimated asymptotic variance matrix
of β̂OLS is

V̂[β̂OLS] = N−1M̂−1
xx M̂xΩxM̂−1

xx . (4.20)

This estimate is called a sandwich estimate, with M̂xΩx sandwiched between M̂−1
xx

and M̂−1
xx .

4.4.5. Heteroskedasticity-Robust Standard Errors for OLS

The obvious choice for M̂xx in (4.20) is N−1X′X. Estimation of MxΩx defined in (4.16)
depends on assumptions made about the error term.

In microeconometrics applications the model errors are often conditionally het-
eroskedastic, with V[ui |xi ] = E[u2

i |xi ] = σ 2
i varying over i . White (1980a) proposed
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using M̂xΩx = N−1∑
i û2

i xi x′
i . This estimate requires additional assumptions given in

Section 4.4.8.
Combining these estimates M̂xx and M̂xΩx and simplifying yields the estimated

asymptotic variance matrix estimate

V̂[β̂OLS] = (X′X)−1X′Ω̂X(X′X)−1 (4.21)

=
(

N∑
i=1

xi x′
i

)−1 N∑
i=1

û2
i xi x′

i

(
N∑

i=1

xi x′
i

)−1

,

where Ω̂ = Diag[̂u2
i ] and ûi = yi − x′

i β̂ is the OLS residual. This estimate, due to
White (1980a), is called the heteroskedastic-consistent estimate of the asymptotic
variance matrix of the OLS estimator, and it leads to standard errors that are called
heteroskedasticity-robust standard errors, or even more simply robust standard
errors. It provides a consistent estimate of V[β̂OLS] even though û2

i is not consistent
for σ 2

i .
In introductory courses the errors are restricted to be homoskedastic. Then Ω=σ2I

so that X′ΩX = σ 2X′X and hence MxΩx = σ 2Mxx. The limit distribution variance ma-
trix in (4.17) simplifies to σ 2M−1

xx , and many computer packages instead use what is
sometimes called the default OLS variance estimate

Ṽ[β̂OLS] = s2(X′X)−1, (4.22)

where s2 = (N − K )−1∑
i û2

i .
Inference based on (4.22) rather than (4.21) is invalid, unless errors are ho-

moskedastic and uncorrelated. In general the erroneous use of (4.22) when errors are
heteroskedastic, as is often the case for cross-section data, can lead to either inflation
or deflation of the true standard errors.

In practice M̂xΩx is calculated using division by (N − K ), rather than by N , to be
consistent with the similar division in forming s2 in the homoskedastic case. Then
V̂[β̂OLS] in (4.21) is multiplied by N/(N − K ). With heteroskedastic errors there is
no theoretical basis for this adjustment for degrees of freedom, but some simulation
studies provide support (see MacKinnon and White, 1985, and Long and Ervin, 2000).

Microeconometric analysis uses robust standard errors wherever possible. Here the
errors are robust to heteroskedasticity. Guarding against other misspecifications may
also be warranted. In particular, when data are clustered the standard errors should
additionally be robust to clustering; see Sections 21.2.3 and 24.5.

4.4.6. Assumptions for Cross-Section Regression

Proposition 4.1 is a quite generic theorem that relies on assumptions about N−1X′X
and N−1/2X′u. In practice these assumptions are verified by application of laws of
large numbers and central limit theorems to averages of xi x′

i and xi ui . These in turn
require assumptions about how the observations xi and errors ui are generated, and
consequently how yi defined in (4.7) is generated. The assumptions are referred to
collectively as assumptions regarding the data-generating process (dgp). A simple
pedagogical example is given in Exercise 4.4.
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Our objective at this stage is to make assumptions that are appropriate in many ap-
plied settings where cross-section data are used. The assumptions, are those in White
(1980a), and include three important departures from those in introductory treatments.
First, the regressors may be stochastic (Assumptions 1 and 3 that follow), so assump-
tions on the error are made conditional on regressors. Second, the conditional variance
of the error may vary across observations (Assumption 5). Third, the errors are not
restricted to be normally distributed.

Here are the assumptions:

1. The data (yi , xi ) are independent and not identically distributed (inid) over i.

2. The model is correctly specified so that

yi = x′
iβ+ui .

3. The regressor vector xi is possibly stochastic with finite second moment, additionally
E[|xi j xik |1+δ] ≤ ∞ for all j, k = 1, . . . , K for some δ > 0, and the matrix Mxx defined
in (4.15) exists and is a finite positive definite matrix of rank K . Also, X has rank K in
the sample being analyzed.

4. The errors have zero mean, conditional on regressors

E [ui |xi ] = 0.

5. The errors are heteroskedastic, conditional on regressors, with

σ 2
i = E

[
u2

i |xi
]
,

Ω = E
[
uu′|X] = Diag

[
σ 2

i

]
,

(4.23)

where Ω is an N × N positive definite matrix. Also, for some δ > 0, E[|u2
i |1+δ] <∞.

6. The matrix MxΩx defined in (4.16) exists and is a finite positive definite matrix of rank
K , where MxΩx = plim N−1∑

i u2
i xi x′

i given independence over i . Also, for some δ >
0, E[|u2

i xi j xik |1+δ] <∞ for all j, k = 1, . . . , K .

4.4.7. Remarks on Assumptions

For completeness we provide a detailed discussion of each assumption, before proving
the key results in the following section.

Stratified Random Sampling

Assumption 1 is one that is often implicitly made for cross-section data. Here we make
it explicit. It restricts (yi , xi ) to be independent over i , but permits the distribution to
differ over i . Many microeconometrics data sets come from stratified random sam-
pling (see Section 3.2). Then the population is partitioned into strata and random draws
are made within strata, but some strata are oversampled with the consequence that the
sampled (yi , xi ) are inid rather than iid. If instead the data come from simple ran-
dom sampling then (yi , xi ) are iid, a stronger assumption that is a special case of inid.
Many introductory treatments assumed that regressors are fixed in repeated samples.

76



4.4 . ORDINARY LEAST SQUARES

Then (yi , xi ) are inid since only yi is random with a value that depends on the value of
xi . The fixed regressors assumption is rarely appropriate for microeconometrics data,
which are usually observational data. It is used instead for experimental data, where x
is the treatment level.

These different assumptions on the distribution of (yi , xi ) affect the particular laws
of large numbers and central limit theorems used to obtain the asymptotic properties
of the OLS estimator. Note that even if (yi , xi ) are iid, yi given xi is not iid since, for
example, E[yi |xi ] = x′

iβ varies with xi .
Assumption 1 rules out most time-series data since they are dependent over obser-

vations. It will also be violated if the sampling scheme involves clustering of observa-
tions. The OLS estimator can still be consistent in these cases, provided Assumptions
2–4 hold, but usually it has a variance matrix different from that presented in this
chapter.

Correctly Specified Model

Assumption 2 seems very obvious as it is an essential ingredient in the derivation of
the OLS estimator. It still needs to be made explicitly, however, since β̂ = (X′X)−1X′y
is a function of y and so its properties depend on y.

If Assumption 2 holds then it is being assumed that the regression model is linear in
x, rather than nonlinear, that there are no omitted variables in the regression, and that
there is no measurement error in the regressors, as the regressors x used to calculate
β̂ are the same regressors x that are in the dgp. Also, the parameters β are the same
across individuals, ruling out random parameter models.

If Assumption 2 fails then OLS can only be interpreted as an optimal linear predic-
tor; see Section 4.2.3.

Stochastic Regressors

Assumption 3 permits regressors to be stochastic regressors, as is usually the case
when survey data rather than experimental data are used. It is assumed that in the limit
the sample second-moment matrix is constant and nonsingular.

If the regressors are iid, as is assumed under simple random sampling, then
Mxx =E[xx′] and Assumption 3 can be reduced to an assumption that the second
moment exists. If the regressors are stochastic but inid, as is the case for stratified
random sampling, then we need the stronger Assumption 3, which permits applica-
tion of the Markov LLN to obtain plim N−1X′X. If the regressors are fixed in repeated
samples, the common less-satisfactory assumption made in introductory courses, then
Mxx = lim N−1X′X and Assumption 3 becomes assumption that this limit exists.

Weakly Exogenous Regressors

Assumption 4 of zero conditional mean errors is crucial because when combined
with Assumption 2 it implies that E[y|X] = Xβ, so that the conditional mean is indeed
Xβ.
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The assumption that E[u|x] = 0 implies that Cov[x,u] = 0, so that the error is un-
correlated with regressors. This follows as Cov[x,u] =E[xu]−E[x]E[u] and E[u|x] =
0 implies E[xu] = 0 and E[u] = 0 by the law of iterated expectations. The weaker
assumption that Cov[x,u] = 0 can be sufficient for consistency of OLS, whereas the
stronger assumption that E[u|x] = 0 is needed for unbiasedness of OLS.

The economic meaning of Assumption 4 is that the error term represents all the
excluded factors that are assumed to be uncorrelated with X and these have, on av-
erage, zero impact on y. This is a key assumption that was referred to in Section 2.3
as the weak exogeneity assumption. Essentially this means that the knowledge of the
data-generating process for X variables does not contribute useful information for es-
timating β. When the assumption fails, one or more of the K regressor variables is
said to be jointly dependent with y, or simply endogenous. A general term for cor-
relation of regressors with errors is endogeneity or endogenous regressors, where
the term “endogenous” means caused by factors inside the system. As we will show
in Section 4.7, the violation of weak exogeneity may lead to inconsistent estimation.
There are many ways in which weak exogeneity can be violated, but one of the most
common involves a variable in x that is a choice or a decision variable that is related
to y in a larger model. Ignoring these other relationships, and treating xi as if it were
randomly assigned to observation i , and hence uncorrelated with ui , will have non-
trivial consequences. Endogenous sampling is ruled out by Assumption 4. Instead,
if data are collected by stratified random sampling it must be exogenous stratified
sampling.

Conditionally Heteroskedastic Errors

Independent regression errors uncorrelated with regressors are assumed, a conse-
quence of Assumptions 1, 2, and 4. Introductory courses usually further restrict at-
tention to errors that are homoskedastic with homogeneous or constant variances, in
which case σ 2

i = σ 2 for all i . Then the errors are iid (0, σ 2) and are called spherical
errors since Ω = σ2I.

Assumption 5 is instead one of conditionally heteroskedastic regression errors,
where heteroskedastic means heterogeneous variances or different variances. The as-
sumption is stated in terms of the second moment E[u2|x], but this equals the vari-
ance V[u|x] since E[u|x] = 0 by Assumption 4. This more general assumption of het-
eroskedastic errors is made because empirically this is often the case for cross-section
regression. Furthermore, relaxing the homoskedasticity assumption is not costly as it
is possible to obtain valid standard errors for the OLS estimator even if the functional
form for the heteroskedasticity is unknown.

The term conditionally heteroskedastic is used for the following reason. Even if
(yi , xi ) are iid, as is the case for simple random sampling, once we condition on xi

the conditional mean and conditional variance can vary with xi . Similarly, the errors
ui = yi − x′

iβ are iid under simple random sampling, and they are therefore uncon-
ditionally homoskedastic. Once we condition on xi , and consider the distribution of
ui conditional on xi , the variance of this conditional distribution is permitted to vary
with xi .
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Limit Variance Matrix of N−1/2X′u

Assumption 6 is needed to obtain the limit variance matrix of N−1/2X′u. If regressors
are independent of the errors, a stronger assumption than that made in Assumption
4, then Assumption 5 that E[|u2

i |1+δ] <∞ and Assumption 3 that E[|xi j xik |1+δ] <∞
imply the Assumption 6 condition that E[|u2

i xi j xik |1+δ] <∞.
We have deliberately not made a seventh assumption, that the error u is normally

distributed conditional on X. An assumption such as normality is needed to obtain the
exact small-sample distribution of the OLS estimator. However, we focus on asymp-
totic methods throughout this book, because exact small-sample distributional results
are rarely available for the estimators used in microeconometrics, and then the normal-
ity assumption is no longer needed.

4.4.8. Derivations for the OLS Estimator

Here we present both small-sample and limit distributions of the OLS estimator and
justify White’s estimator of the variance matrix of the OLS estimator under Assump-
tions 1–6.

Small-Sample Distribution

The parameter β is identified under Assumptions 1–4 since then E[y|X] = Xβ and X
has rank K .

In small samples the OLS estimator is unbiased under Assumptions 1–4 and its vari-
ance matrix is easily obtained given Assumption 5. These results are obtained by using
the law of iterated expectations to first take expectation with respect to u conditional
on X and then take the unconditional expectation. Then from (4.11)

E[β̂OLS] = β + EX,u
[
(X′X)−1X′u

]
(4.24)

= β + EX
[
Eu|X

[
(X′X)−1X′u|X]]

= β + EX
[
(X′X)−1X′Eu|X[u|X]

]
= β,

using the law of iterated expectations (Theorem A.23) and given Assumptions 1 and
4, which together imply that E[u|X] = 0. Similarly, (4.11) yields

V[β̂OLS] = EX[(X′X)−1X′ΩX(X′X)−1], (4.25)

given Assumption 5, where E
[
uu′|X] = Ω and we use Theorem A.23, which tells us

that in general

VX,u[g(X,u)] = EX[Vu|X[g(X,u)]] + VX[Eu|X[g(X,u)]].

This simplifies here as the second term is zero since Eu|X[(X′X)−1X′u] = 0.
The OLS estimator is therefore unbiased if E[u|X] = 0. This valuable property

generally does not extend to nonlinear estimators. Most nonlinear estimators, such
as nonlinear least squares, are biased and even linear estimators such as instrumental
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variables estimators can be biased. The OLS estimator is inefficient, as its variance
is not the smallest possible variance matrix among linear unbiased estimators, unless
Ω= σ 2I. The inefficiency of OLS provides motivation for more efficient estimators
such as generalized least squares, though the efficiency loss of OLS is not necessarily
great. Under the additional assumption of normality of the errors conditional on X, an
assumption not usually made in microeconometrics applications, the OLS estimator is
normally distributed conditional on X.

Consistency

The term plim
(
N−1X′X

)−1 = M−1
xx since plim N−1X′X = Mxx by Assumption 3.

Consistency then requires that condition (4.13) holds. This is established using a law
of large numbers applied to the average N−1X′u =N−1∑

i xi ui , which converges in
probability to zero if E[xi ui ] = 0. Given Assumptions 1 and 2, the xi ui are inid and
Assumptions 1–5 permit use of the Markov LLN (Theorem A.9). If Assumption 1 is
simplified to (yi , xi ) iid then xi ui are iid and Assumptions 1–4 permit simpler use of
the Kolmogorov LLN (Theorem A.8).

Limit Distribution

By Assumption 3, plim
(
N−1X′X

)−1 = M−1
xx . The key is to obtain the limit distribu-

tion of N−1/2X′u = N−1/2∑
i xi ui by application of a central limit theorem. Given

Assumptions 1 and 2, the xi ui are inid and Assumptions 1–6 permit use of the Lia-
pounov CLT (Theorem A.15). If assumption 1 is strengthened to (yi , xi ) iid then xi ui

are iid and Assumptions 1–5 permit simpler use of the Lindeberg–Levy CLT (Theo-
rem A.14).

This yields

1√
N

X′u
d→ N [0,MxΩx] , (4.26)

where MxΩx = plim N−1X′uu′X = plim N−1∑
i u2

i xi x′
i given independence over i .

Application of a law of large numbers yields MxΩx = lim N−1∑
i Exi [σ

2
i xi x′

i ], us-
ing Eui ,xi [u

2
i xi x′

i ] = Exi [E[u2
i |xi ]xi x′

i ] and σ 2
i = E[u2

i |xi ]. It follows that MxΩx =
lim N−1E[X′ΩX], where Ω= Diag[σ 2

i ] and the expectation is with respect to only
X, rather than both X and u.

The presentation here assumes independence over i . More generally we can permit
correlated observations. Then MxΩx = plim N−1∑

i

∑
j ui u j xi x′

j and Ω has i j th en-
try σi j = Cov[ui , u j ]. This complication is deferred to treatment of the nonlinear LS
estimator in Section 5.8.

Heteroskedasticity-Robust Standard Errors

We consider the key step of consistent estimation of MxΩx. Beginning with the original
definition of MxΩx = plim N−1∑N

i=1 u2
i xi x′

i , we replace ui by ûi = yi − x′
i β̂, where
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asymptotically ûi
p→ ui since β̂

p→ β. This yields the consistent estimate

M̂xΩx = 1

N

N∑
i=1

û2
i xi x′

i = N−1X′Ω̂X, (4.27)

where Ω̂= Diag[̂u2
i ]. The additional assumption that E[|x2

i j xik xil |1+δ] < � for positive

constants δ and� and j, k, l = 1, . . . , K is needed, as û2
i xi x′

i = (ui − x′
i (β̂ − β))2xi x′

i
involves up to the fourth power of xi (see White (1980a)).

Note that Ω̂ does not converge to the N × N matrix Ω, a seemingly impos-
sible task without additional structure as there are N variances σ 2

i to be esti-
mated. But all that is needed is that N−1X′Ω̂X converges to the K × K matrix
plim N−1X′ΩX =N−1 plim

∑
i σ

2
i xi x′

i . This is easier to achieve because the number
of regressors K is fixed. To understand White’s estimator, consider OLS estimation of
the intercept-only model yi = β + ui with heteroskedastic error. Then in our notation
we can show that β̂ = ȳ, Mxx = lim N−1∑

i 1 = 1, and MxΩx = lim N−1∑
i E[u2

i ].
An obvious estimator for MxΩx is M̂xΩx = N−1∑

i û2
i , where ûi = yi − β̂. To obtain

the probability limit of this estimate, it is enough to consider N−1∑
i u2

i , since ûi −
ui

p→ 0 given β̂
p→ β. If a law of large numbers can be applied this average converges

to the limit of its expected value, so plim N−1∑
i u2

i = lim N−1∑
i E[u2

i ] = MxΩx as
desired. Eicker (1967) gave the formal conditions for this example.

4.5. Weighted Least Squares

If robust standard errors need to be used efficiency gains are usually possible. For
example, if heteroskedasticity is present then the feasible generalized least-squares
(GLS) estimator is more efficient than the OLS estimator.

In this section we present the feasible GLS estimator, an estimator that makes
stronger distributional assumptions about the variance of the error term. It is nonethe-
less possible to obtain standard errors of the feasible GLS estimator that are robust to
misspecification of the error variance, just as in the OLS case.

Many studies in microeconometrics do not take advantage of the potential efficiency
gains of GLS, for reasons of convenience and because the efficiency gains may be felt
to be relatively small. Instead, it is common to use less efficient weighted least-squares
estimators, most notably OLS, with robust estimates of the standard errors.

4.5.1. GLS and Feasible GLS

By the Gauss–Markov theorem, presented in introductory texts, the OLS estimator is
efficient among linear unbiased estimators if the linear regression model errors are
independent and homoskedastic.

Instead, we assume that the error variance matrix Ω �= σ 2I. If Ω is known and
nonsingular, we can premultiply the linear regression model (4.8) by Ω−1/2, where
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Ω1/2Ω1/2 = Ω, to yield

Ω−1/2y = Ω−1/2Xβ + Ω−1/2u.

Some algebra yields V[Ω−1/2u] = E[(Ω−1/2u)(Ω−1/2u)′|X] = I. The errors in this
transformed model are therefore zero mean, uncorrelated, and homoskedastic. So β
can be efficiently estimated by OLS regression of Ω−1/2y on Ω−1/2X.

This argument yields the generalized least-squares estimator

β̂GLS = (X′Ω−1X)−1X′Ω−1y. (4.28)

The GLS estimator cannot be directly implemented because in practice Ω is not
known. Instead, we specify that Ω = Ω(γ), where γ is a finite-dimensional parameter
vector, obtain a consistent estimate γ̂ of γ, and form Ω̂ = Ω(γ̂). For example, if errors
are heteroskedastic then specify V[u|x] = exp(z′γ), where z is a subset of x and the
exponential function is used to ensure a positive variance. Then γ̂ can be consistently
estimated by nonlinear least-squares regression (see Section 5.8) of the squared OLS
residual û2

i = (y − x′β̂OLS)2 on exp(z′γ). This estimate Ω̂ can be used in place of Ω
in (4.28). Note that we cannot replace Ω in (4.28) by Ω̂= Diag[̂u2

i ] as this yields an
inconsistent estimator (see Section 5.8.6).

The feasible generalized least-squares (FGLS) estimator is

β̂FGLS = (X′Ω̂
−1

X)−1X′Ω̂
−1

y. (4.29)

If Assumptions 1–6 hold and Ω(γ) is correctly specified, a strong assumption that is
relaxed in the following, and γ̂ is consistent for γ, it can be shown that

√
N (β̂FGLS − β)

d→ N
[

0,
(

plim N−1X′Ω−1X
)−1
]
. (4.30)

The FGLS estimator has the same limiting variance matrix as the GLS estimator and
so is second-moment efficient. For implementation replace Ω by Ω̂ in (4.30).

It can be shown that the GLS estimator minimizes u′Ω−1u, see Exercise 4.5, which
simplifies to

∑
i u2

i /σ
2
i if errors are heteroskedastic but uncorrelated. The motivation

provided for GLS was efficient estimation of β. In terms of the Section 4.2 discussion
of loss function and optimal prediction, with heteroskedastic errors the loss function is
L(e) = e2/σ 2. Compared to OLS with L(e) = e2, the GLS loss function places a rel-
atively smaller penalty on the prediction error for observations with large conditional
error variance.

4.5.2. Weighted Least Squares

The result in (4.30) assumes correct specification of the error variance matrix Ω(γ).
If instead Ω(γ) is misspecified then the FGLS estimator is still consistent, but (4.30)
gives the wrong variance. Fortunately, a robust estimate of the variance of the GLS
estimator can be found even if Ω(γ) is misspecified.

Specifically, define Σ = Σ(γ) to be a working variance matrix that does not nec-
essarily equal the true variance matrix Ω = E[uu′|X]. Form an estimate Σ̂= Σ(γ̂),
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Table 4.2. Least-Squares Estimators and Their Asymptotic Variance

Estimatora Definition Estimated Asymptotic Variance

OLS β̂ = (X′X
)−1

X′y
(
X′X
)−1

X′Ω̂X
(
X′X
)−1

FGLS β̂ = (X′Ω̂
−1

X)−1X′Ω̂
−1

y (X′Ω̂
−1

X)−1

WLS β̂ = (X′Σ̂
−1

X)−1X′Σ̂
−1

y (X′Σ̂
−1

X)−1X′Σ̂
−1

Ω̂Σ̂
−1

X(X′Σ̂
−1

X)−1.

a Estimators are for linear regression model with error conditional variance matrix 
. For FGLS it is
assumed that 
̂ is consistent for 
. For OLS and WLS the heteroskedastic robust variance matrix of β̂
uses 
̂ equal to a diagonal matrix with squared residuals on the diagonals.

where γ̂ is an estimate of γ. Then use weighted least squares with weighting ma-

trix Σ̂
−1

.
This yields the weighted least-squares (WLS) estimator

β̂WLS = (X′Σ̂
−1

X)−1X′Σ̂
−1

y. (4.31)

Statistical inference is then done without the assumption that Σ = Ω, the true variance
matrix of the error term. In the statistics literature this approach is referred to as a
working matrix approach. We call it weighted least squares, but be aware that others
instead use weighted least squares to mean GLS or FGLS in the special case that Ω−1

is diagonal. Here there is no presumption that the weighting matrix Σ−1 = Ω−1.
Similar algebra to that for OLS given in Section 4.4.5 yields the estimated asymp-

totic variance matrix

V̂[β̂WLS] = (X′Σ̂
−1

X)−1X′Σ̂
−1

Ω̂Σ̂
−1

X(X′Σ̂
−1

X)−1, (4.32)

where Ω̂ is such that

plim N−1X′Σ̂
−1

Ω̂Σ̂
−1

X = plim N−1X′Σ−1ΩΣ−1X.

In the heteroskedastic case Ω̂ = Diag[̂u∗2
i ], where û∗

i = yi − x′
i β̂WLS.

For heteroskedastic errors the basic approach is to choose a simple model for het-
eroskedasticity such as error variance depending on only one or two key regressors. For
example, in a linear regression model of the level of wages as a function of schooling
and other variables, the heteroskedasticity might be modeled as a function of school-
ing alone. Suppose this model yields Σ̂ = Diag[σ̂ 2

i ]. Then OLS regression of yi/σ̂ i on
xi/σ̂ i (with the no-constant option) yields β̂WLS and the White robust standard errors
from this regression can be shown to equal those based on (4.32).

The weighted least-squares or working matrix approach is especially convenient
when there is more than one complication. For example, in the random effects panel
data model of Chapter 21 the errors may be viewed as both correlated over time for a
given individual and heteroskedastic. One may use the random effects estimator, which
controls only for the first complication, but then compute heteroskedastic-consistent
standard errors for this estimator.

The various least-squares estimators are summarized in Table 4.2.
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Table 4.3. Least Squares: Example with
Conditionally Heteroskedastic Errorsa

OLS WLS GLS

Constant 2.213 1.060 0.996
(0.823) (0.150) (0.007)
[0.820] [0.051] [0.006]

x 0.979 0.957 0.952
(0.178) (0.190) (0.209)
[0.275] [0.232] [0.208]

R2 0.236 0.205 0.174

a Generated data for sample size of 100. OLS, WLS, and GLS
are all consistent but OLS and WLS are inefficient. Two differ-
ent standard errors are given: default standard errors assuming
homoskedastic errors in parentheses and heteroskedastic-robust
standard errors in square brackets. The data-generating process
is given in the text.

4.5.3. Robust Standard Errors for LS Example

As an example of robust standard error estimation, consider estimation of the standard
error of least-squares estimates of the slope coefficient for a dgp with multiplicative
heteroskedasticity

y = 1 + 1 × x + u,

u = xε,

where the scalar regressor x ∼ N [0, 25] and ε ∼ N [0, 4].
The errors are conditionally heteroskedastic, since V[u|x] = V[xε|x] =

x2V[ε|x] = 4x2, which depends on the regressor x . This differs from the unconditional
variance, where V[u] = V[xε] = E[(xε)2] − (E[xε])2 = E[x2]E[ε2] = V[x]V[ε] =
100, given x and ε independent and the particular dgp here.

Standard errors for the OLS estimator should be calculated using the
heteroskedastic-consistent or robust variance estimate (4.21). Since OLS is not fully
efficient, WLS may provide efficiency gains. GLS will definitely provide efficiency
gains and in this simulated data example we have the advantage of knowing that
V[u|x] = 4x2. All estimation methods yield a consistent estimate of the intercept and
slope coefficients.

Various least-squares estimates and associated standard errors from a generated data
sample of size 100 are given in Table 4.3. We focus on the slope coefficient.

The OLS slope coefficient estimate is 0.979. Two standard error estimates are re-
ported, with the correct heteroskedasticity-robust standard error of 0.275 using (4.21)
much larger here than the incorrect estimate of 0.177 that uses s2(X′X)−1. Such a large
difference in standard error estimates could lead to quite different conclusions in statis-
tical inference. In general the direction of bias in the standard errors could be in either
direction. For this example it can be shown theoretically that, in the limit, the robust
standard errors are

√
3 times larger than the incorrect one. Specifically, for this dgp
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and for sample size N the correct and incorrect standard errors of the OLS estimate of
the slope coefficient converge to, respectively,

√
12/N and

√
4/N .

As an example of the WLS estimator, assume that u = √|x |ε rather than u = xε,
so that it is assumed that V[u] = σ 2|x |. The WLS estimator can be computed by OLS
regression after dividing y, the intercept, and x by

√|x |. Since this is the wrong model
for the heteroskedastic error the correct standard error for the slope coefficient is the
robust estimate of 0.232, computed using (4.32).

The GLS estimator for this dgp can be computed by OLS regression after dividing
y, the intercept, and x by |x |, since the transformed error is then homoskedastic. The
usual and robust standard errors for the slope coefficient are similar (0.209 and 0.208).
This is expected as both are asymptotically correct because the GLS estimator here
uses the correct model for heteroskedasticity. It can be shown theoretically that for this
dgp the standard error of the GLS estimate of the slope coefficient converges to

√
4/N .

Both OLS and WLS are less efficient than GLS, as expected, with standard errors
for the slope coefficient of, respectively, 0.275 > 0.232 > 0.208.

The setup in this example is a standard one used in estimation theory for cross-
section data. Both y and x are stochastic random variables. The pair (yi , xi ) are inde-
pendent over i and identically distributed, as is the case under random sampling. The
conditional distribution of yi |xi differs over i , however, since the conditional mean and
variance of yi depend on xi .

4.6. Median and Quantile Regression

In an intercept-only model, summary statistics for the sample distribution include
quantiles, such as the median, lower and upper quartiles, and percentiles, in addition
to the sample mean.

In the regression context we might similarly be interested in conditional quantiles.
For example, interest may lie in how the percentiles of the earnings distribution for
lowly educated workers are much more compressed than those for highly educated
workers. In this simple example one can just do separate computations for lowly ed-
ucated workers and for highly educated workers. However, this approach becomes
infeasible if there are several regressors taking several values. Instead, quantile regres-
sion methods are needed to estimate the quantiles of the conditional distribution of y
given x.

From Table 4.1, quantile regression corresponds to use of asymmetric absolute loss,
whereas the special case of median regression uses absolute error loss. These methods
provide an alternative to OLS, which uses squared error loss.

Quantile regression methods have advantages beyond providing a richer charac-
terization of the data. Median regression is more robust to outliers than least-squares
regression. Moreover, quantile regression estimators can be consistent under weaker
stochastic assumptions than possible with least-squares estimation. Leading examples
are the maximum score estimator of Manski (1975) for binary outcome models (see
Section 14.6) and the censored least absolute deviations estimator of Powell (1984) for
censored models (see Section 16.6).
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We begin with a brief explanation of population quantiles before turning to estima-
tion of sample quantiles.

4.6.1. Population Quantiles

For a continuous random variable y, the population qth quantile is that value µq such
that y is less than or equal to µq with probability q. Thus

q = Pr[y ≤ µq ] = Fy(µq ),

where Fy is the cumulative distribution function (cdf) of y. For example, if µ0.75 = 3
then the probability that y ≤ 3 equals 0.75. It follows that

µq = F−1
y (q).

Leading examples are the median, q = 0.5, the upper quartile, q = 0.75, and the lower
quartile, q = 0.25. For the standard normal distribution µ0.5 = 0.0, µ0.95 = 1.645, and
µ0.975 = 1.960. The 100qth percentile is the qth quantile.

For the regression model, the population qth quantile of y conditional on x is
that function µq (x) such that y conditional on x is less than or equal to µq (x) with
probability q, where the probability is evaluated using the conditional distribution of
y given x. It follows that

µq (x) = F−1
y|x (q), (4.33)

where Fy|x is the conditional cdf of y given x and we have suppressed the role of the
parameters of this distribution.

It is insightful to derive the quantile function µq (x) if the dgp is assumed to be the
linear model with multiplicative heteroskedasticity

y = x′β + u,

u = x′α × ε,
ε ∼ iid [0, σ 2],

where it is assumed that x′α > 0. Then the population qth quantile of y conditional
on x is that function µq (x,β,α) such that

q = Pr[y ≤ µq (x,β,α)]

= Pr
[
u ≤ µq (x,β,α) − x′β

]
= Pr

[
ε ≤ [µq (x,β,α) − x′β]/x′α

]
= Fε

(
[µq (x,β,α) − x′β]/x′α

)
,

where we use u = y − x′β and ε = u/x′α, and Fε is the cdf of ε. It follows that
[µq (x,β,α) − x′β]/x′α = F−1

ε (q) so that

µq (x,β,α) = x′β + x′α × F−1
ε (q)

= x′ (β + α × F−1
ε (q)

)
.
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Thus for the linear model with multiplicative heteroskedasticity of the form u = x′α ×
ε the conditional quantiles are linear in x. In the special case of homoskedasticity, x′α
equals a constant and all conditional quantiles have the same slope and differ only in
their intercept, which becomes larger as q increases.

In more general examples the quantile function may be nonlinear in x, owing to
other forms of heteroskedasticity such as u = h(x,α) × ε, where h(·) is nonlinear in
x, or because the regression function itself is of nonlinear form g(x,β). It is standard
to still estimate quantile functions that are linear and interpret them as the best lin-
ear predictor under the quantile regression loss function given in (4.34) in the next
section.

4.6.2. Sample Quantiles

For univariate random variable y the usual way to obtain the sample quantile estimate
is to first order the sample. Then µ̂q equals the [Nq]th smallest value, where N is the
sample size and [Nq] denotes Nq rounded up to the nearest integer. For example, if
N = 97, the lower quartile is the 25th observation since [97 × 0.25] = [24.25] = 25.

Koenker and Bassett (1978) observed that the sample qth quantile µ̂q can equiv-
alently be expressed as the solution to the optimization problem of minimizing with
respect to β

N∑
i :yi ≥β

q|yi − β| +
N∑

i :yi<β

(1 − q)|yi − β|.

This result is not obvious. To gain some understanding, consider the median, where
q = 0.5. Then the median is the minimum of

∑
i |yi − β|. Suppose in a sample

of 99 observations that the 50th smallest observation, the median, equals 10 and
the 51st smallest observation equals 12. If we let β equal 12 rather than 10, then∑

i |yi − β| will increase by 2 for the first 50 ordered observations and decrease by
2 for the remaining 49 observations, leading to an overall net increase of 50 × 2 −
49 × 2 = 2. So the 51st smallest observation is a worse choice than the 50th. Simi-
larly the 49th smallest observation can be shown to be a worse choice than the 50th
observation.

This objective function is then readily expanded to the linear regression case, so
that the qth quantile regression estimator β̂q minimizes over βq

QN (βq ) =
N∑

i :yi ≥x′
iβ

q|yi − x′
iβq | +

N∑
i :yi<x′

iβ

(1 − q)|yi − x′
iβq |, (4.34)

where we use βq rather than β to make clear that different choices of q estimate
different values of β. Note that this is the asymmetric absolute loss function given in
Table 4.1, where ŷ is restricted to be linear in x so that e = y − x′βq . The special case
q = 0.5 is called the median regression estimator or the least absolute deviations
estimator.
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4.6.3. Properties of Quantile Regression Estimators

The objective function (4.34) is not differentiable and so the gradient optimization
methods presented in Chapter 10 are not applicable. Fortunately, linear programming
methods can be used and these provide relatively fast computation of β̂q .

Since there is no explicit solution for β̂q the asymptotic distribution of β̂q cannot
be obtained using the approach of Section 4.4 for OLS. The methods of Chapter 5 also
require adaptation, as the objective function is nondifferentiable. It can be shown that

√
N (β̂q − βq )

d→ N
[
0,A−1BA−1

]
, (4.35)

(see, for example, Buchinsky, 1998, p. 85), where

A = plim
1

N

N∑
i=1

fuq (0|xi )xi x′
i , (4.36)

B = plim
1

N

N∑
i=1

q(1 − q)xi x′
i ,

and fuq (0|x) is the conditional density of the error term uq = y − x′βq evaluated
at uq = 0. Estimation of the variance of β̂q is complicated by the need to estimate
fuq (0|x). It is easier to instead obtain standard errors for β̂q using the bootstrap pairs
procedure of Chapter 11.

4.6.4. Quantile Regression Example

In this section we perform conditional quantile estimation and compare it with the
usual conditional mean estimation using OLS regression. The application involves En-
gel curve estimation for household annual medical expenditure. More specifically, we
consider the regression relationship between the log of medical expenditure and the
log of total household expenditure. This regression yields an estimate of the (constant)
elasticity of medical expenditure with respect to total expenditure.

The data are from the World Bank’s 1997 Vietnam Living Standards Survey. The
sample consists of 5,006 households that have positive level of medical expenditures,
after dropping 16.6% of the sample that has zero expenditures to permit taking the
natural logarithm. Zero values can be handled using the censored quantile regression
methods of Powell (1986a), presented in Section 16.9.2. For simplicity we simply
dropped observations with zero expenditures. The largest component of medical ex-
penditure, especially at low levels of income, consists of medications purchased from
pharmacies. Although several household characteristic variables are available, for sim-
plicity we only consider one regressor, the log of total household expenditure, to serve
as a proxy for household income.

The linear least-squares regression yields an elasticity estimate of 0.57. This esti-
mate would be usually interpreted to mean that medicines are a “necessity” and hence
their demand is income inelastic. This estimate is not very surprising, but before ac-
cepting it at face value we should acknowledge that there may be considerable hetero-
geneity in the elasticity across different income groups.
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4.6 . MEDIAN AND QUANTILE REGRESSION

Figure 4.1: Quantile regression estimates of slope coefficient for q = 0.05,0.10, . . . ,
0.90,0.95 and associated 95% confidence bands plotted against q from regression of the
natural logarithm of medical expenditure on the natural logarithm of total expenditure.

Quantile regression is a useful tool for studying such heterogeneity, as emphasized
by Koenker and Hallock (2001). We minimize the quantity (4.34), where y is log of
medical expenditure and x′β =β1 + β2x , where x is log of total household expendi-
ture. This is done for the nineteen quantile values q = {0.05, 0.10, ..., 0.95} , where
q = 0.5 is the median. In each case the standard errors were estimated using the boot-
strap method with 50 resamples. The results of this exercise are condensed into Fig-
ures 4.1 and 4.2.

Figure 4.1 plots the slope coefficient β̂2,q for the different values of q , along with
the associated 95% confidence interval. This shows how the quantile estimates of the
elasticity varies with quantile value q. The elasticity estimate increases systematically
with the level of household income, rising from 0.15 for q = 0.05 to a maximum of
0.80 for q = 0.85. The least-squares slope estimate of 0.57 is also presented as a hori-
zontal line that does not vary with quantile. The elasticity estimates at lower and higher
quantiles are clearly statistically significantly different from each other and from the
OLS estimate, which has standard error 0.032. It seems that the aggregate elasticity es-
timate will vary according to changes in the underlying income distribution. This graph
supports the observation of Mosteller and Tukey (1977, p. 236), quoted by Koenker
and Hallock (2001), that by focusing only on the conditional mean function the least-
squares regression gives an incomplete summary of the joint distribution of dependent
and explanatory variables.

Figure 4.2 superimposes three estimated quantile regression lines ŷq = β̂1,q +
β̂2,q x for q = 0.1, 0.2, . . . , 0.9 and the OLS regression line. The OLS regression line,
not graphed, is similar to the median (q = 0.5) regression line. There is a fanning out
of the quantile regression lines in Figure 4.2. This is not surprising given the increase
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Figure 4.2: Quantile regression estimated lines for q = 0.1,q = 0.5 and q = 0.9 from re-
gression of natural logarithm of medical expenditure on natural logarithm of total expenditure.
Data for 5006 Vietnamese households with positive medical expenditures in 1997.

in estimated slopes as q increases as evident in Figure 4.1. Koenker and Bassett (1982)
developed quantile regression as a means to test for heteroskedastic errors when the
dgp is the linear model. For such a case a fanning out of the quantile regression lines
is interpreted as evidence of heteroskedasticity. Another interpretation is that the con-
ditional mean is nonlinear in x with increasing slope and this leads to quantile slope
coefficients that increase with quantile q.

More detailed illustrations of quantile regression are given in Buchinsky (1994) and
Koenker and Hallock (2001).

4.7. Model Misspecification

The term “model misspecification” in its broadest sense means that one or more of the
assumptions made on the data generating process are incorrect. Misspecifications may
occur individually or in combination, but analysis is simpler if only the consequences
of a single misspecification are considered.

In the following discussion we emphasize misspecifications that lead to inconsis-
tency of the least-squares estimator and loss of identifiability of parameters of inter-
est. The least-squares estimator may nonetheless continue to have a meaningful inter-
pretation, only one different from that intended under the assumption of a correctly
specified model. Specifically, the estimator may converge asymptotically to a param-
eter that differs from the true population value, a concept defined in Section 4.7.5 as
the pseudo-true value.

The issues raised here for consistency of OLS are relevant to other estimators in
other models. Consistency can then require stronger assumptions than those needed
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for consistency of OLS, so that inconsistency resulting from model misspecification is
more likely.

4.7.1. Inconsistency of OLS

The most serious consequence of a model misspecification is inconsistent estimation
of the regression parameters β. From Section 4.4, the two key conditions needed to
demonstrate consistency of the OLS estimator are (1) the dgp is y = Xβ + u and (2)
the dgp is such that plim N−1X′u = 0. Then

β̂OLS = β + (N−1X′X
)−1

N−1X′u
p→ β,

(4.37)

where the first equality follows if y = Xβ + u (see (4.12)) and the second line uses
plim N−1X′u = 0.

The OLS estimator is likely to be inconsistent if model misspecification leads to
either specification of the wrong model for y, so that condition 1 is violated, or corre-
lation of regressors with the error, so that condition 2 is violated.

4.7.2. Functional Form Misspecification

A linear specification of the conditional mean function is merely an approximation in
RK to the true unknown conditional mean function in parameter space of indeterminate
dimension. Even if the correct regressors are chosen, it is possible that the conditional
mean is incorrectly specified.

Suppose the dgp is one with a nonlinear regression function

y = g(x) + v,
where the dependence of g(x) on unknown parameters is suppressed, and assume
E[v|x] = 0. The linear regression model

y = x′β + u

is erroneously specified. The question is whether the OLS estimator can be given any
meaningful interpretation, even though the dgp is in fact nonlinear.

The usual way to interpret regression coefficients is through the true micro relation-
ship, which here is

E[yi |xi ] = g(xi ).

In this case β̂OLS does not measure the micro response of E[yi |xi ] to a change in xi , as
it does not converge to ∂g(xi )/∂xi . So the usual interpretation of β̂OLS is not possible.

White (1980b) showed that the OLS estimator converges to that value of β that
minimizes the mean-squared prediction error

Ex[(g(x) − x′β)2].
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Hence prediction from OLS is the best linear predictor of the nonlinear regression
function if the mean-squared error is used as the loss function. This useful property
has already been noted in Section 4.2.3, but it adds little in interpretation of β̂OLS.

In summary, if the true regression function is nonlinear, OLS is not useful for indi-
vidual prediction. OLS can still be useful for prediction of aggregate changes, giving
the sample average change in E[y|x] due to change in x (see Stoker, 1982). However,
microeconometric analyses usually seek models that are meaningful at the individual
level.

Much of this book presents alternatives to the linear model that are more likely to
be correctly specified. For example, Chapter 14 on binary outcomes presents model
specifications that ensure that predicted probabilities are restricted to lie between 0
and 1. Also, models and methods that rely on minimal distributional assumptions are
preferred because there is then less scope for misspecification.

4.7.3. Endogeneity

Endogeneity is formally defined in Section 2.3. A broad definition is that a regressor
is endogenous when it is correlated with the error term. If any one regressor is en-
dogenous then in general OLS estimates of all regression parameters are inconsistent
(unless the exogenous regressor is uncorrelated with the endogenous regressor).

Leading examples of endogeneity, dealt with extensively in this book in both linear
and nonlinear model settings, include simultaneous equations bias (Section 2.4), omit-
ted variable bias (Section 4.7.4), sample selection bias (Section 16.5), and measure-
ment error bias (Chapter 26). Endogeneity is quite likely to occur when cross-section
observational data are used, and economists are very concerned with this complication.

A quite general approach to control for endogeneity is the instrumental variables
method, presented in Sections 4.8 and 4.9 and in Sections 6.4 and 6.5. This method
cannot always be applied, however, as necessary instruments may not be available.

Other methods to control for endogeneity, reviewed in Section 2.8, include con-
trol for confounding variables, differences in differences if repeated cross-section or
panel data are available (see Chapter 21), fixed effects if panel data are available and
endogeneity arises owing to a time-invariant omitted variable (see Section 21.6), and
regression-discontinuity design (see Section 25.6).

4.7.4. Omitted Variables

Omission of a variable in a linear regression equation is often the first example of
inconsistency of OLS presented in introductory courses. Such omission may be the
consequence of an erroneous exclusion of a variable for which data are available or of
exclusion of a variable that is not directly observed. For example, omission of ability in
a regression of earnings (or more usually its natural logarithm) on schooling is usually
due to unavailability of a comprehensive measure of ability.

Let the true dgp be

y = x′β + zα + v, (4.38)
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where x and z are regressors, with z a scalar regressor for simplicity, and v is an error
term that is assumed to be uncorrelated with the regressors x and z. OLS estimation of
y on x and z will yield consistent parameter estimates of β and α.

Suppose instead that y is regressed on x alone, with z omitted owing to unavailabil-
ity. Then the term zα is moved into the error term. The estimated model is

y = x′β + (zα + v), (4.39)

where the error term is now (zα + v). As before v is uncorrelated with x, but if z is
correlated with x the error term (zα + v) will be correlated with the regressors x. The
OLS estimator will be inconsistent for β if z is correlated with x.

There is enough structure in this example to determine the direction of the inconsis-
tency. Stacking all observations in an obvious manner gives the dgp y = Xβ + zα + v.
Substituting this into β̂OLS = (X′X)−1X′y yields

β̂OLS=β+ (N−1X′X
)−1 (

N−1X′z
)
α+ (N−1X′X

)−1 (
N−1X′v

)
.

Under the usual assumption that X is uncorrelated with v, the final term has probability
limit zero. X is correlated with z, however, and

plim β̂OLS = β+δα, (4.40)

where

δ = plim
[
(N−1X′X)−1

(
N−1X′z

)]
is the probability limit of the OLS estimator in regression of the omitted regressor (z)
on the included regressors (X).

This inconsistency is called omitted variables bias, where common terminology
states that various misspecifications lead to bias even though formally they lead to
inconsistency. The inconsistency exists as long as δ �= 0, that is, as long as the omitted
variable is correlated with the included regressors. In general the inconsistency could
be positive or negative and could even lead to a sign reversal of the OLS coefficient.

For the returns to schooling example, the correlation between schooling and ability
is expected to be positive, so δ > 0, and the return to ability is expected to be positive,
so α > 0. It follows that δα > 0, so the omitted variables bias is positive in this ex-
ample. OLS of earnings on schooling alone will overstate the effect of education on
earnings.

A related form of misspecification is inclusion of irrelevant regressors. For ex-
ample, the regression may be of y on x and z, even though the dgp is more simply
y = x′β + v. In this case it is straightforward to show that OLS is consistent, but there
is a loss of efficiency.

Controlling for omitted variables bias is necessary if parameter estimates are to be
given a causal interpretation. Since too many regressors cause little harm, but too few
regressors can lead to inconsistency, microeconometric models estimated from large
data sets tend to include many regressors. If omitted variables are still present then one
of the methods given at the end of Section 4.7.3 is needed.
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4.7.5. Pseudo-True Value

In the omitted variables example the least-squares estimator is subject to confounding
in the sense that it does not estimate β, but instead estimates a function of β, δ, and α.

The OLS estimate cannot be used as an estimate of β, which, for example, measures
the effect of an exogenous change in a regressor x such as schooling holding all other
regressors including ability constant.

From (4.40), however, β̂OLS is a consistent estimator of the function (β+ δα) and
has a meaningful interpretation. The probability limit of β̂OLS of β∗ = (β + δα) is
referred to as the pseudo-true value, see Section 5.7.1 for a formal definition, corre-
sponding to β̂OLS.

Furthermore, one can obtain the distribution of β̂OLS even though it is inconsis-
tent for β. The estimated asymptotic variance of β̂OLS measures dispersion around
(β + δα) and is given by the usual estimator, for example by s2(X′X)−1 if the error in
(4.38) is homoskedastic.

4.7.6. Parameter Heterogeneity

The presentation to date has permitted regressors and error terms to vary across indi-
viduals but has restricted the regression parameters β to be the same across individuals.

Instead, suppose that the dgp is

yi = x′
iβi+ui , (4.41)

with subscript i on the parameters. This is an example of parameter heterogeneity,
where the marginal effect E[yi |xi ] = βi is now permitted to differ across individuals.

The random coefficients model or random parameters model specifies βi to be
independently and identically distributed over i with distribution that does not depend
on the observables xi . Let the common mean of βi be denoted β. The dgp can be
rewritten as

yi = x′
iβ + (ui + x′

i (βi − β)),

and enough assumptions have been made to ensure that the regressors xi are uncorre-
lated with the error term (ui + x′

i (βi − β)). OLS regression of y on x will therefore
consistently estimate β, though note that the error is heteroskedastic even if ui is ho-
moskedastic.

For panel data a standard model is the random effects model (see Section 21.7) that
lets the intercept vary across individuals while the slope coefficients are not random.

For nonlinear models a similar result need not hold, and random parameter models
can be preferred as they permit a richer parameterization. Random parameter models
are consistent with existence of heterogeneous responses of individuals to changes in
x. A leading example is random parameters logit in Section 15.7.

More serious complications can arise when the regression parameters βi for an
individual are related to observed individual characteristics. Then OLS estimation can
lead to inconsistent parameter estimation. An example is the fixed effects model for
panel data (see Section 21.6) for which OLS estimation of y on x is inconsistent. In
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this example, but not in all such examples, alternative consistent estimators for a subset
of the regression parameters are available.

4.8. Instrumental Variables

A major complication that is emphasized in microeconometrics is the possibility of
inconsistent parameter estimation caused by endogenous regressors. Then regression
estimates measure only the magnitude of association, rather than the magnitude and
direction of causation, both of which are needed for policy analysis.

The instrumental variables estimator provides a way to nonetheless obtain consis-
tent parameter estimates. This method, widely used in econometrics and rarely used
elsewhere, is conceptually difficult and easily misused.

We provide a lengthy expository treatment that defines an instrumental variable and
explains how the instrumental variables method works in a simple setting.

4.8.1. Inconsistency of OLS

Consider the scalar regression model with dependent variable y and single regressor x .
The goal of regression analysis is to estimate the conditional mean function E[y|x]. A
linear conditional mean model, without intercept for notational convenience, specifies

E[y|x] = βx . (4.42)

This model without intercept subsumes the model with intercept if dependent and
regressor variables are deviations from their respective means. Interest lies in obtaining
a consistent estimate of β as this gives the change in the conditional mean given an
exogenous change in x . For example, interest may lie in the effect in earnings caused
by an increase in schooling attributed to exogenous reasons, such as an increase in the
minimum age at which students leave school, that are not a choice of the individual.

The OLS regression model specifies

y = βx + u, (4.43)

where u is an error term. Regression of y on x yields OLS estimate β̂ of β.
Standard regression results make the assumption that the regressors are uncorrelated

with the errors in the model (4.43). Then the only effect of x on y is a direct effect via
the term βx . We have the following path analysis diagram:

x −→ y
↗

u

where there is no association between x and u. So x and u are independent causes
of y.

However, in some situations there may be an association between regressors and
errors. For example, consider regression of log-earnings (y) on years of schooling (x).
The error term u embodies all factors other than schooling that determine earnings,
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such as ability. Suppose a person has a high level of u, as a result of high (unobserved)
ability. This increases earnings, since y = βx + u, but it may also lead to higher lev-
els of x , since schooling is likely to be higher for those with high ability. A more
appropriate path diagram is then the following:

x −→ y
↑ ↗
u

where now there is an association between x and u.
What are the consequences of this correlation between x and u? Now higher levels

of x have two effects on y. From (4.43) there is both a direct effect via βx and an
indirect effect via u affecting x , which in turn affects y. The goal of regression is
to estimate only the first effect, yielding an estimate of β. The OLS estimate will
instead combine these two effects, giving β̂ > β in this example where both effects
are positive. Using calculus, we have y = βx + u(x) with total derivative

dy

dx
= β + du

dx
. (4.44)

The data give information on dy/dx , so OLS estimates the total effect β + du/dx
rather than β alone. The OLS estimator is therefore biased and inconsistent for β,
unless there is no association between x and u.

A more formal treatment of the linear regression model with K regressors leads to
the same conclusion. From Section 4.7.1 a necessary condition for consistency of OLS
is that plim N−1X′u = 0. Consistency requires that the regressors are asymptotically
uncorrelated with the errors. From (4.37) the magnitude of the inconsistency of OLS
is
(
X′X
)−1

X′u, the OLS coefficient from regression of u on x. This is just the OLS
estimate of du/dx, confirming the intuitive result in (4.44).

4.8.2. Instrumental Variable

The inconsistency of OLS is due to endogeneity of x , meaning that changes in x are
associated not only with changes in y but also changes in the error u. What is needed
is a method to generate only exogenous variation in x . An obvious way is through a
randomized experiment, but for most economics applications such experiments are too
expensive or even infeasible.

Definition of an Instrument

A crude experimental or treatment approach is still possible using observational data,
provided there exists an instrument z that has the property that changes in z are asso-
ciated with changes in x but do not lead to change in y (aside from the indirect route
via x). This leads to the following path diagram:

z −→ x −→ y
↑ ↗
u
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which introduces a variable z that is causally associated with x but not u. It is still
the case that z and y will be correlated, but the only source of such correlation is the
indirect path of z being correlated with x , which in turn determines y. The more direct
path of z being a regressor in the model for y is ruled out.

More formally, a variable z is called an instrument or instrumental variable for
the regressor x in the scalar regression model y = βx + u if (1) z is uncorrelated with
the error u and (2) z is correlated with the regressor x .

The first assumption excludes the instrument z from being a regressor in the model
for y, since if instead y depended on both x and z, and y is regressed on x alone, then
z is being absorbed into the error so that z will then be correlated with the error. The
second assumption requires that there is some association between the instrument and
the variable being instrumented.

Examples of an Instrument

In many microeconometric applications it is difficult to find legitimate instruments.
Here we provide two examples.

Suppose we want to estimate the response of market demand to exogenous changes
in market price. Quantity demanded clearly depends on price, but prices are not ex-
ogenously given since they are determined in part by market demand. A suitable in-
strument for price is a variable that is correlated with price but does not directly affect
quantity demanded. An obvious candidate is a variable that affects market supply, since
this also affect prices, but is not a direct determinant of demand. An example is a mea-
sure of favorable growing conditions if an agricultural product is being modeled. The
choice of instrument here is uncontroversial, provided favorable growing conditions
do not directly affect demand, and is helped greatly by the formal economic model of
supply and demand.

Next suppose we want to estimate the returns to exogenous changes in schooling.
Most observational data sets lack measures of individual ability, so regression of earn-
ings on schooling has error that includes unobserved ability and hence is correlated
with the regressor schooling. We need an instrument z that is correlated with school-
ing, uncorrelated with ability, and more generally uncorrelated with the error term,
which means that it cannot directly determine earnings.

One popular candidate for z is proximity to a college or university (Card, 1995).
This clearly satisfies condition 2 because, for example, people whose home is a long
way from a community college or state university are less likely to attend college. It
most likely satisfies 1, though since it can be argued that people who live a long way
from a college are more likely to be in low-wage labor markets one needs to estimate
a multiple regression for y that includes additional regressors such as indicators for
nonmetropolitan area.

A second candidate for the instrument is month of birth (Angrist and Krueger,
1991). This clearly satisfies condition 1 as there is no reason to believe that month
of birth has a direct effect on earnings if the regression includes age in years. Surpris-
ingly condition 2 may also be satisfied, as birth month determines age of first entry
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into school in the USA, which in turn may affect years of schooling since laws often
specify a minimum school-leaving age. Bound, Jaeger, and Baker (1995) provide a
critique of this instrument.

The consequences of choosing poor instruments are considered in detail in Sec-
tion 4.9.

4.8.3. Instrumental Variables Estimator

For regression with scalar regressor x and scalar instrument z, the instrumental vari-
ables (IV) estimator is defined as

β̂ IV = (z′x)−1z′y, (4.45)

where, in the scalar regressor case z, x and y are N × 1 vectors. This estimator provides
a consistent estimator for the slope coefficient β in the linear model y = βx + u if z
is correlated with x and uncorrelated with the error term.

There are several ways to derive (4.45). We provide an intuitive derivation, one that
differs from derivations usually presented such as that in Section 6.2.5.

Return to the earnings–schooling example. Suppose a one-unit change in the in-
strument z is associated with 0.2 more years of schooling and with a $500 increase
in annual earnings. This increase in earnings is a consequence of the indirect effect
that increase in z led to increase in schooling, which in turn increases income. Then it
follows that 0.2 years additional schooling is associated with a $500 increase in earn-
ings, so that a one-year increase in schooling is associated with a $500/0.2 = $2,500
increase in earnings. The causal estimate of β is therefore 2,500. In mathematical
notation we have estimated the changes dx/dz and dy/dz and calculated the causal
estimator as

βIV = dy/dz

dx/dz
. (4.46)

This approach to identification of the causal parameter β is given in Heckman (2000,
p. 58); see also the example in Section 2.4.2.

All that remains is consistent estimation of dy/dz and dx/dz. The obvious way to
estimate dy/dz is by OLS regression of y on z with slope estimate (z′z)−1z′y. Sim-
ilarly, estimate dx/dz by OLS regression of x on z with slope estimate (z′z)−1z′x.
Then

β̂ IV = (z′z)−1z′y
(z′z)−1z′x

= (z′x)−1z′y. (4.47)

4.8.4. Wald Estimator

A leading simple example of IV is one where the instrument z is a binary instru-
ment. Denote the subsample averages of y and x by ȳ1 and x̄1, respectively, when
z = 1 and by ȳ0 and x̄0, respectively, when z = 0. Then �y/�z = (ȳ1 − ȳ0) and

98



4.8 . INSTRUMENTAL VARIABLES

�x/�z = (x̄1 − x̄0), and (4.46) yields

β̂Wald = (ȳ1 − ȳ0)

(x̄1 − x̄0)
. (4.48)

This estimator is called the Wald estimator, after Wald (1940), or the grouping esti-
mator.

The Wald estimator can also be obtained from the formula (4.45). For the no-
intercept model variables are measured in deviations from means, so z′y =∑i (zi − z)
(yi − ȳ). For binary z this yields z′y = N1(ȳ1 − ȳ) = N1 N0(ȳ1 − ȳ0)/N , where N0

and N1 are the number of observations for which z = 0 and z = 1. This result uses
ȳ1 − ȳ = (N0 ȳ1 + N1 ȳ1)/N − (N0 ȳ0 + N1 ȳ1)/N = N0(ȳ1 − ȳ0)/N . Similarly, z′x =
N1 N0(x̄1 − x̄0)/N . Combining these results, we have that (4.45) yields (4.48).

For the earnings–schooling example it is being assumed that we can define two
groups where group membership does not directly determine earnings, though it does
affect level of schooling and hence indirectly affects earnings. Then the IV estimate is
the difference in average earnings across the two groups divided by the difference in
average schooling across the two groups.

4.8.5. Sample Covariance and Correlation Analysis

The IV estimator can also be interpreted in terms of covariances or correlations.
For sample covariances we have directly from (4.45) that

β̂ IV = Cov[z, y]

Cov[z, x]
, (4.49)

where here Cov[ ] is being used to denote sample covariance.
For sample correlations, note that the OLS estimator for the model (4.43) can be

written as β̂OLS = rxy
√

y′y/
√

x′x, where rxy = x′y/
√

(x′x)(y′y) is the sample correla-
tion between x and y. This leads to the interpretation of the OLS estimator as implying
that a one standard deviation change in x is associated with an rxy standard deviation
change in y. The problem is that the correlation rxy is contaminated by correlation
between x and u. An alternative approach is to measure the correlation between x and
y indirectly by the correlation between z and y divided by the correlation between z
and x . Then

β̂ IV = rzy

rzx

√
y′y√
x′x
, (4.50)

which can be shown to equal β̂ IV in (4.45).

4.8.6. IV Estimation for Multiple Regression

Now consider the multiple regression model with typical observation

y = x′β + u,

with K regressor variables, so that x and β are K × 1 vectors.
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Instruments

Assume the existence of an r × 1 vector of instruments z, with r ≥ K , satisfying the
following:

1. z is uncorrelated with the error u.

2. z is correlated with the regressor vector x.

3. z is strongly correlated, rather than weakly correlated, with the regressor vector x.

The first two properties are necessary for consistency and were presented earlier in
the scalar case. The third property, defined in Section 4.9.1, is a strengthening of the
second to ensure good finite-sample performance of the IV estimator.

In the multiple regression case z and x may share some common components.
Some components of x, called exogenous regressors, may be uncorrelated with u.
These components are clearly suitable instruments as they satisfy conditions 1 and
2. Other components of x, called endogenous regressors, may be correlated with u.
These components lead to inconsistency of OLS and are also clearly unsuitable in-
struments as they do not satisfy condition 1. Partition x into x = [x′

1 x′
2]′, where x1

contains endogenous regressors and x2 contains exogenous regressors. Then a valid
instrument is z = [z′

1 x′
2]′, where x2 can be an instrument for itself, but we need to find

at least as many instruments z1 as there are endogenous variables x1.

Identification

Identification in a simultaneous equations model was presented in Section 2.5. Here we
have a single equation. The order condition requires that the number of instruments
must at least equal the number of independent endogenous components, so that r ≥ K .
The model is said to be just-identified if r = K and overidentified if r > K .

In many multiple regression applications there is only one endogenous regressor.
For example, the earnings on schooling regression will include many other regressors
such as age, geographic location, and family background. Interest lies in the coefficient
on schooling, but this is an endogenous variable most likely correlated with the error
because ability is unobserved. Possible candidates for the necessary single instrument
for schooling have already been given in Section 4.8.2.

If an instrument fails the first condition the instrument is an invalid instrument. If
an instrument fails the second condition the instrument is an irrelevant instrument,
and the model may be unidentified if too few instruments are relevant. The third con-
dition fails when very low correlation exists between the instrument and the endoge-
nous variable being instrumented. The model is said to be weakly identified and the
instrument is called a weak instrument.

Instrumental Variables Estimator

When the model is just-identified, so that r = K , the instrumental variables estima-
tor is the obvious matrix generalization of (4.45)

β̂IV = (Z′X
)−1

Z′y, (4.51)
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where Z is an N × K matrix with i th row z′
i . Substituting the regression model y =

Xβ + u for y in (4.51) yields

β̂IV = (Z′X
)−1

Z′[Xβ + u]

= β + (Z′X
)−1

Z′u

= β + (N−1Z′X
)−1

N−1Z′u.

It follows immediately that the IV estimator is consistent if

plim N−1Z′u = 0

and

plim N−1Z′X �= 0.

These are essentially conditions 1 and 2 that z is uncorrelated with u and correlated
with x. To ensure that the inverse of N−1Z′X exists it is assumed that Z′X is of full
rank K , a stronger assumption than the order condition that r = K .

With heteroskedastic errors the IV estimator is asymptotically normal with mean β
and variance matrix consistently estimated by

V̂[β̂IV] = (Z′X)−1Z′Ω̂Z(Z′X)−1, (4.52)

where Ω̂= Diag[̂u2
i ]. This result is obtained in a manner similar to that for OLS given

in Section 4.4.4.
The IV estimator, although consistent, leads to a loss of efficiency that can be very

large in practice. Intuitively IV will not work well if the instrument z has low correla-
tion with the regressor x (see Section 4.9.3).

4.8.7. Two-Stage Least Squares

The IV estimator in (4.51) requires that the number of instruments equals the number
of regressors. For overidentified models the IV estimator can be used, by discarding
some of the instruments so that the model is just-identified. However, an asymptotic
efficiency loss can occur when discarding these instruments.

Instead, a common procedure is to use the two-stage least-squares (2SLS) estima-
tor

β̂2SLS = [X′Z(Z′Z)−1Z′X
]−1 [

X′Z(Z′Z)−1Z′y
]
, (4.53)

presented and motivated in Section 6.4.
The 2SLS estimator is an IV estimator. In a just-identified model it simplifies to

the IV estimator given in (4.51) with instruments Z. In an overidentified model the
2SLS estimator equals the IV estimator given in (4.51) if the instruments are X̂, where
X̂ = Z(Z′Z)−1Z′X is the predicted value of x from OLS regression of x on z.

The 2SLS estimator gets its name from the result that it can be obtained by two
consecutive OLS regressions: OLS regression of x on z to get x̂ followed by OLS
of y on x̂, which gives β̂2SLS. This interpretation does not necessarily generalize to
nonlinear regressions; see Section 6.5.6.

101



LINEAR MODELS

The 2SLS estimator is often expressed more compactly as

β̂2SLS = [X′PZX
]−1 [

X′PZy
]
, (4.54)

where

PZ = Z(Z′Z)−1Z′

is an idempotent projection matrix that satisfies PZ = P′
Z, PZP′

Z = PZ, and PZZ = Z.
The 2SLS estimator can be shown to be asymptotically normal distributed with esti-
mated asymptotic variance

V̂[β̂2SLS] = N
[
X′PZX

]−1
[
X′Z(Z′Z)−1Ŝ(Z′Z)−1Z′X

] [
X′PZX

]−1
, (4.55)

where in the usual case of heteroskedastic errors Ŝ = N−1∑
i û2

i zi z′
i and ûi = yi −

x′
i β̂2SLS. A commonly used small-sample adjustment is to divide by N − K rather

than N in the formula for Ŝ.
In the special case that errors are homoskedastic, simplification occurs and

V̂[β̂2SLS] = s2[X′PZX]−1. This latter result is given in many introductory treatments,
but the more general formula (4.55) is preferred as the modern approach is to treat
errors as potentially heteroskedastic.

For overidentified models with heteroskedastic errors an estimator that White
(1982) calls the two-stage instrumental variables estimator is more efficient than
2SLS. Moreover, some commonly used model specification tests require estimation
by this estimator rather than 2SLS. For details see Section 6.4.2.

4.8.8. IV Example

As an example of IV estimation, consider estimation of the slope coefficient of x for
the dgp

y = 0 + 0.5x + u,

x = 0 + z + v,
where z ∼ N [2, 1] and (u, v) are joint normal with means 0, variances 1, and correla-
tion 0.8.

OLS of y on x yields inconsistent estimates as x is correlated with u since by
construction x is correlated with v, which in turn is correlated with u. IV estimation
yields consistent estimates. The variable z is a valid instrument since by construction
is uncorrelated with u but is correlated with x . Transformations of z, such as z3, are
also valid instruments.

Various estimates and associated standard errors from a generated data sample of
size 10,000 are given in Table 4.4. We focus on the slope coefficient.

The OLS estimator is inconsistent, with slope coefficient estimate of 0.902 being
more than 50 standard errors from the true value of 0.5. The remaining estimates are
consistent and are all within two standard errors of 0.5.

There are several ways to compute the IV estimator. The slope coefficient from
OLS regression of y on z is 0.5168 and from OLS regression of x on z it is 1.0124,
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Table 4.4. Instrumental Variables Examplea

OLS IV 2SLS IV (z3)

Constant −0.804 −0.017 −0.017 −0.014
(0.014) (0.022) (0.032) (0.025)

x 0.902 0.510 0.510 0.509
(0.006) (0.010) (0.014) (0.012)

R2 0.709 0.576 0.576 0.574

a Generated data for a sample size of 10,000. OLS is inconsistent and other esti-
mators are consistent. Robust standard errors are reported though they are unnec-
essary here as errors are homoskedastic. The 2SLS standard errors are incorrect.
The data-generating process is given in the text.

yielding an IV estimate of 0.5168/1.0124 = 0.510 using (4.47). In practice one instead
directly computes the IV estimator using (4.45) or (4.51), with z used as the instrument
for x and standard errors computed using (4.52). The 2SLS estimator (see (4.54))
can be computed by OLS regression of y on x̂ , where x̂ is the prediction from OLS
regression of x on z. The 2SLS estimates exactly equal the IV estimates in this just-
identified model, though the standard errors from this OLS regression of y on x̂ are
incorrect as will be explained in Section 6.4.5.

The final column uses z3 rather than z as the instrument for x . This alternative IV
estimator is consistent, since z3 is uncorrelated with u and correlated with x . However,
it is less efficient for this particular dgp, and the standard error of the slope coefficient
rises from 0.010 to 0.012.

There is an efficiency loss in IV estimation compared to OLS estimation, see (4.61)
for a general result for the case of single regressor and single instrument. Here r2

x,z =
0.510, not given in Table 4.4, is high so the loss is not great and the standard error of
the slope coefficient increases somewhat from 0.006 to 0.010. In practice the efficiency
loss can be much greater than this.

4.9. Instrumental Variables in Practice

Important practical issues include determining whether IV methods are necessary and,
if necessary, determining whether the instruments are valid. The relevant specification
tests are presented in Section 8.4. Unfortunately, the validity of tests are limited. They
require the assumption that in a just-identified model the instruments are valid and test
only overidentifying restrictions.

Although IV estimators are consistent given valid instruments, as detailed in the
following, IV estimators can be much less efficient than the OLS estimator and can
have a finite-sample distribution that for usual finite-sample sizes differs greatly from
the asymptotic distribution. These problems are greatly magnified if instruments are
weakly correlated with the variables being instrumented. One way that weak instru-
ments can arise is if there are many more instruments than needed. This is simply
dealt with by dropping some of the instruments (see also Donald and Newey, 2001). A
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more fundamental problem arises when even with the minimal number of instruments
one or more of the instruments is weak.

This section focuses on the problem of weak instruments.

4.9.1. Weak Instruments

There is no single definition of a weak instrument. Many authors use the following
signals of a weak instrument, presented here for progressively more complex models.

� Scalar regressor x and scalar instrument z: A weak instrument is one for which r2
x,z is

small.
� Scalar regressor x and vector of instruments z: The instruments are weak if the R2 from

regression of x on z, denoted R2
x,z, is small or if the F-statistic for test of overall fit in

this regression is small.
� Multiple regressors x with only one endogenous: A weak instrument is one for which

the partial R2 is low or the partial F-statistic is small, where these partial statistics are
defined toward the end of Section 4.9.1.

� Multiple regressors x with several endogenous: There are several measures.

R2 Measures

Consider a single equation

y = β1x1 + x′
2β2 + u, (4.56)

where just one regressor x1 is endogenous and the remaining regressors in the vector
x2 are exogenous. Assume that the instrument vector z includes the exogenous instru-
ments x2, as well as least one other instrument.

One possible R2 measure is the usual R2 from regression of x1 on z. However, this
could be high only because x1 is highly correlated with x2 whereas intuitively we really
need x1 to be highly correlated with the instrument(s) other than x2.

Bound, Jaeger, and Baker (1995) therefore proposed use of a partial R2, denoted
R2

p, that purges the effect of x2. R2
p is obtained as R2 from the regression

(x1 − x̃1) = (z−̃z)′γ + v, (4.57)

where x̃1 and z̃ are the fitted values from regressions of x1 on x2 and z on x2. In the
just-identified case z − z̃ will reduce to z1 − z̃1, where z1 is the single instrument other
than x2 and z̃1 is the fitted value from regression of z1 on x2.

It is not unusual for R2
p to be much lower than R2

x1,z. The formula for R2
p simplifies

to r2
x z when there is only one regressor and it is endogenous. It further simplifies to

Cor[x, z] when there is only one instrument.
When there is more than one endogenous variable, analysis is less straightforward

as a number of generalizations of R2
p have been proposed.

Consider a single equation with more than one endogenous variable model and fo-
cus on estimation of the coefficient of the first endogenous variable. Then in (4.56)

104



4.9 . INSTRUMENTAL VARIABLES IN PRACTICE

x1 is endogenous and additionally some of the variables in x2 are also endogenous.
Several alternative measures replace the right-hand side of (4.57) with a residual that
controls for the presence of other endogenous regressors. Shea (1997) proposed a par-
tial R2, say R∗2

p , that is computed as the squared sample correlation between (x1 − x̃1)

and (̂x1 − ˜̂x1). Here (x1 − x̃1) is again the residual from regression of x1 on x2, whereas
(̂x1 − ˜̂x1) is the residual from regression of x̂1 (the fitted value from regression of x1

on z) on x̂2 (the fitted value from regression of x2 on z). Poskitt and Skeels (2002) pro-
posed an alternative partial R2, which, like Shea’s R∗2

p , simplifies to R2
p when there is

only one endogenous regressor. Hall, Rudebusch, and Wilcox (1996) instead proposed
use of canonical correlations.

These measures for the coefficient for the first endogenous variable can be repeated
for the other endogenous variables. Poskitt and Skeels (2002) additionally consider an
R2 measure that applies jointly to instrumentation of all the endogenous variables.

The problems of inconsistency of estimators and loss of precision are magnified
as the partial R2 measures fall, as detailed in Sections 4.9.2 and 4.9.3. See especially
(4.60) and (4.62).

Partial F-Statistics

For poor finite-sample performance, considered in Section 4.9.4, it is common to use
a related measure, the F-statistic for whether coefficients are zero in regression of the
endogenous regressor on instruments.

For a single regressor that is endogenous we use the usual overall F-statistic, for a
test of π = 0 in the regression x = z′π + v of the endogenous regressor on the instru-
ments. This F-statistic is a function of R2

x,z.
More commonly, some exogenous regressors also appear in the model, and in model

(4.56) with single endogenous regressor x1 we use the F-statistic for a test of π1 = 0
in the regression

x = z′
1π1 + x′

2π2 + v, (4.58)

where z1 are the instruments other than the exogenous regressors and x2 are the ex-
ogenous regressors. This is the first-stage regression in the two-stage least-squares
interpretation of IV.

This statistic is used as a signal of potential finite-sample bias in the IV estimator.
In Section 4.9.4 we explain results of Staiger and Stock (1997) that suggest a value
less than 10 is problematic and a value of 5 or less is a sign of extreme finite-sample
bias and we consider extension to more than one endogenous regressor.

4.9.2. Inconsistency of IV Estimators

The essential condition for consistency of IV is condition 1 in Section 4.8.6, that
the instrument should be uncorrelated with the error term. No test is possible in the
just-identified case. In the overidentified case a test of the overidentifying assump-
tions is possible (see Section 6.4.3). Rejection then could be due to either instrument
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endogeneity or model failure. Thus condition 1 is difficult to test directly and deter-
mining whether an instrument is exogenous is usually a subjective decision, albeit one
often guided by economic theory.

It is always possible to create an exogenous instrument through functional form
restrictions. For example, suppose there are two regressors so that y = β1x1 + β2x2 +
u, with x1 uncorrelated with u and x2 correlated with u. Note that throughout this
section all variables are assumed to be measured in departures from means, so that
without loss of generality the intercept term can be omitted. Then OLS is inconsistent,
as x2 is endogenous. A seemingly good instrument for x2 is x2

1 , since x2
1 is likely to

be uncorrelated with u because x1 is uncorrelated with u. However, the validity of
this instrument requires the functional form restriction on the conditional mean that
x1 only enters the model linearly and not quadratically. In practice one should view a
linear model as only an approximation, and obtaining instruments in such an artificial
way can be easily criticized.

A better way to create a valid instrument is through alternative exclusion restric-
tions that do not rely so heavily on choice of functional form. Some practical examples
have been given in Section 4.8.2.

Structural models such as the classical linear simultaneous equations model (see
Sections 2.4 and 6.10.6) make such exclusion restrictions very explicit. Even then the
restrictions can often be criticized for being too ad hoc, unless compelling economic
theory supports the restrictions.

For panel data applications it may be reasonable to assume that only current data
may belong in the equation of interest – an exclusion restriction permitting past data
to be used as instruments under the assumption that errors are serially uncorrelated
(see Section 22.2.4). Similarly, in models of decision making under uncertainty (see
Section 6.2.7), lagged variables can be used as instruments as they are part of the
information set.

There is no formal test of instrument exogeneity that does not additionally test
whether the regression equation is correctly specified. Instrument exogeneity in-
evitably relies on a priori information, such as that from economic or statistical theory.
The evaluation by Bound et al. (1995, pp. 446–447) of the validity of the instruments
used by Angrist and Krueger (1991) provides an insightful example of the subtleties
involved in determining instrument exogeneity.

It is especially important that an instrument be exogenous if an instrument is weak,
because with weak instruments even very mild endogeneity of the instrument can lead
to IV parameter estimates that are much more inconsistent than the already inconsistent
OLS parameter estimates.

For simplicity consider linear regression with one regressor and one instrument;
hence y = βx + u. Then performing some algebra, left as an exercise, yields

plim β̂ IV − β
plim β̂OLS − β = Cor[z, u]

Cor[x, u]
× 1

Cor[z, x]
. (4.59)

Thus with an invalid instrument and low correlation between the instrument and the
regressor, the IV estimator can be even more inconsistent than OLS. For example,
suppose the correlation between z and x is 0.1, which is not unusual for cross-section
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data. Then IV becomes more inconsistent than OLS as soon as the correlation coeffi-
cient between z and u exceeds a mere 0.1 times the correlation coefficient between x
and u.

Result (4.59) can be extended to the model (4.56) with one endogenous regressor
and several exogenous regressors, iid errors, and instruments that include all the ex-
ogenous regressors. Then

plim β̂1,2SLS − β1

plim β̂1,OLS − β1
= Cor[̂x, u]

Cor[x, u]
× 1

R2
p

, (4.60)

where R2
p is defined after (4.56). For extension to more than one endogenous regressor

see Shea (1997).
These results, emphasized by Bound et al. (1995), have profound implications for

the use of IV. If instruments are weak then even mild instrument endogeneity can lead
to IV being even more inconsistent than OLS. Perhaps because the conclusion is so
negative, the literature has neglected this aspect of weak instruments. A notable recent
exception is Hahn and Hausman (2003a).

Most of the literature assumes that condition 1 is satisfied, so that IV is consistent,
and focuses on other complications attributable to weak instruments.

4.9.3. Low Precision

Although IV estimation can lead to consistent estimation when OLS is inconsistent, it
also leads to a loss in precision. Intuitively, from Section 4.8.2 the instrument z is a
treatment that leads to exogenous movement in x but does so with considerable noise.

The loss in precision increases, and standard errors increase, with weaker instru-
ments. This is easily seen in the simplest case of a single endogenous regressor and
single instrument with iid errors. Then the asymptotic variance is

V[̂β IV] = σ 2(x′z)−1z′z(z′x)−1 (4.61)

= [σ 2/x′x]/[(z′x)2/(z′z)(x′x)]

= V[̂βOLS]/r2
x z .

For example, if the squared sample correlation coefficient between z and x equals 0.1,
then IV standard errors are 10 times those of OLS. Moreover, the IV estimator has
larger variance than the OLS estimator unless Cor[z, x] = 1.

Result (4.61) can be extended to the model (4.56) with one endogenous regressor
and several exogenous regressors, iid errors, and instruments that include all the ex-
ogenous regressors. Then

se[̂β1,2SLS] = se[̂β1,OLS]/Rp, (4.62)

where se[·] denotes asymptotic standard error and R2
p is defined after (4.56). For exten-

sion to more than one endogenous regressor this R2
p is replaced by the R∗2

p proposed
by Shea (1997). This provided the motivation for Shea’s test statistic.

The poor precision is concentrated on the coefficients for endogenous variables. For
exogenous variables the standard errors for 2SLS coefficient estimates are similar to
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those for OLS. Intuitively, exogenous variables are being instrumented by themselves,
so they have a very strong instrument.

For the coefficients of an endogenous regressor it is a low partial R2, rather than R2,
that leads to a loss of estimator precision. This explains why 2SLS standard errors can
be much higher than OLS standard errors despite the high raw correlation between the
endogenous variable and the instruments. Going the other way, 2SLS standard errors
for coefficients of endogenous variables that are much larger than OLS standard errors
provide a clear signal that instruments are weak.

Statistics used to detect low precision of IV caused by weak instruments are called
measures of instrument relevance. To some extent they are unnecessary as the prob-
lem is easily detected if IV standard errors are much larger than OLS standard errors.

4.9.4. Finite-Sample Bias

This section summarizes a relatively challenging and as yet unfinished literature on
“weak instruments” that focuses on the practical problem that even in “large” samples
asymptotic theory can provide a poor approximation to the distribution of the IV esti-
mator. In particular the IV estimator is biased in finite samples even if asymptotically
consistent. The bias can be especially pronounced when instruments are weak.

This bias of IV, which is toward the inconsistent OLS estimator, can be remark-
ably large, as demonstrated in a simple Monte Carlo experiment by Nelson and Startz
(1990), and by a real data application involving several hundred thousand observations
but very weak instruments by Bound et al. (1995). Moreover, the standard errors can
also be very biased, as also demonstrated by Nelson and Startz (1990).

The theoretical literature entails quite specialized and advanced econometric theory,
as it is actually difficult to obtain the sample mean of the IV estimator. To see this,
consider adapting to the IV estimator the usual proof of unbiasedness of the OLS
estimator given in Section 4.4.8. For β̂IV defined in (4.51) for the just-identified case
this yields

E[β̂IV] = β+ EZ,X,u[(Z′X)−1Z′u]

= β+ EZ,X
[
(Z′X)−1Z′ × [E[u|Z,X]

]
,

where the unconditional expectation with respect to all stochastic variables, Z, X,
and u, is obtained by first taking expectation with respect to u conditional on Z
and X, using the law of Iterated Expectations (see Section A.8.). An obvious suf-
ficient condition for the IV estimator to have mean β is that E[u|Z,X] = 0. This
assumption is too strong, however, because it implies E[u|X] = 0, in which case
there would be no need to instrument in the first place. So there is no simple way
to obtain E[β̂IV]. A similar problem does not arise in establishing consistency. Then
β̂IV = β + (N−1Z′X

)−1
N−1Z′u, where the term N−1Z′u can be considered in isola-

tion of X and the assumption E[u|Z] = 0 leads to plim N−1Z′u = 0.
Therefore we need to use alternative methods to obtain the mean of the IV estimator.

Here we merely summarize key results.
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Initial research made the strong assumption of joint normality of variables and ho-
moskedastic errors. Then the IV estimator has a Wishart distribution (defined in Chap-
ter 13). Surprisingly, the mean of the IV estimator does not even exist in the just-
identified case, a signal that there may be finite-sample problems. The mean does exist
if there is at least one overidentifying restriction, and the variance exists if there are at
least two overidentifying restrictions. Even when the mean exists the IV estimator is
biased, with bias in the direction of OLS. With more overidentifying restrictions the
bias increases, eventually equaling the bias of the OLS estimator. A detailed discussion
is given in Davidson and MacKinnon (1993, pp. 221–224). Approximations based on
power-series expansions have also been used.

What determines the size of the finite-sample bias? For regression with a single
regressor x that is endogenous and is related to the instruments z by the reduced form
model x = zπ + v, the concentration parameter τ 2 is defined as τ 2 = π′ZZ′π/σ 2

v .
The bias of IV can be shown to be an increasing function of τ 2. The quantity τ 2/K ,
where K is the number of instruments, is the population analogue of the F-statistic
for a test of whether π = 0. The statistic F − 1, where F is the actual F-statistic in
the first-stage reduced form model, can be shown to be an approximately unbiased
estimate of τ 2/K . This leads to tests for finite-sample bias being based on the F-
statistic given in Section 4.9.2.

Staiger and Stock (1997) obtained results under weaker distributional assumptions.
In particular, normality is no longer needed. Their approach uses weak instrument
asymptotics that find the limit distribution of IV estimators for a sequence of models
with τ 2/K held constant as N → ∞. In a simple model 1/F provides an approximate
estimate of the finite-sample bias of the IV estimator relative to OLS. More generally,
the extent of the bias for given F varies with the number of endogenous regressors and
the number of instruments. Simulations show that to ensure that the maximal bias in
IV is no more than 10% that of OLS we need F > 10. This threshold is widely cited
but falls to around 6.5, for example, if one is comfortable with bias in IV of 20% of
that for OLS. So a less strict rule of thumb is F > 5. Shea (1997) demonstrated that
low partial R2 is also associated with finite-sample bias but there is no similar rule of
thumb for use of partial R2 as a diagnostic for finite-sample bias.

For models with more than one endogenous regressor, separate F-statistics can be
computed for each endogenous regressor. For a joint statistic Stock, Wright and Yogo
(2002) propose using the minimum eigenvalue of a matrix analogue of the first-stage
test F-statistic. Stock and Yogo (2003) present relevant critical values for this eigen-
value as the desired degree of bias, the number of endogenous variables, and the num-
ber of overidentifying restrictions vary. These tables include the single endogenous
regressor as a special case and presume at least two overidentifying restrictions, so
they do not apply to just-identified models.

Finite-sample bias problems arise not only for the IV estimate but also for IV stan-
dard errors and test statistics. Stock et al. (2002) present a similar approach to Wald
tests whereby a test of β = β0 at a nominal level of 5% is to have actual size of, say,
no more than 15%. Stock and Yogo (2003) also present detailed tables taking this size
distortion approach that include just-identified models.
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4.9.5. Responses to Weak Instruments

What can the practitioner do in the face of weak instruments?
As already noted one approach is to limit the number of instruments used. This can

be done by dropping instruments or by combining instruments.
If finite-sample bias is a concern then alternative estimators may have better small-

sample properties than 2SLS. A number of alternatives, many variants of IV, are pre-
sented in Section 6.4.4.

Despite the emphasis on finite-sample bias the other problems created by weak
instruments may be of greater importance in applications. It is possible with a large
enough sample for the first-stage reduced form F-statistic to be large enough that
finite-sample bias is not a problem. Meanwhile, the partial R2 may be very small,
leading to fragility to even slight correlation between the model error and instrument.
This is difficult to test for and to overcome.

There also can be great loss in estimator precision, as detailed in Sections 4.9.3
and 4.9.4. In such cases either larger samples are needed or alternative approaches to
estimating causal marginal effects must be used. These methods are summarized in
Section 2.8 and presented elsewhere in this book.

4.9.6. IV Application

Kling (2001) analyzed in detail the use of college proximity as an instrument for
schooling. Here we use the same data from the NLS young men’s cohort on 3,010
males aged 24 to 34 years old in 1976 as used to produce Table 1 of Kling (2001) and
originally used by Card (1995). The model estimated is

lnwi = α + β1si + β2ei + β3e2
i + x′

2iγ + ui ,

where s denotes years of schooling, e denotes years of work experience, e2 denotes ex-
perience squared, and x2 is a vector of 26 control variables that are mainly geographic
indicators and measure of parental education.

The schooling variable is considered endogenous, owing to lack of data on ability.
Additionally, the two work experience variables are endogenous, since work experi-
ence is calculated as age minus years of schooling minus six, as is common in this
literature, and schooling is endogenous. At least three instruments are needed.

Here exactly three instruments are used, so the model is just-identified. The first
instrument is col4, an indicator for whether a four-year college is nearby. This instru-
ment has already been discussed in Section 4.8.2. The other two instruments are age
and age squared. These are highly correlated with experience and experience squared,
yet it is believed they can be omitted from the model for log-wage since it is work
experience that matters. The remaining regressor vector x2 is used as an instrument for
itself.

Although age is clearly exogenous, some unobservables such as social skills may be
correlated with both age and wage. Then the use of age and age squared as instruments
can be questioned. This illustrates the general point that there can be disagreement on
assumptions of instrument validity.
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Table 4.5. Returns to Schooling: Instrumental
Variables Estimatesa

OLS IV

Schooling (s) 0.073 0.132
(0.004) (0.049)

R2 0.304 0.207
Shea’s partial R2 – 0.006
First-stage F-statistic for s – 8.07

a Sample of 3,010 young males. Dependent variable is log hourly
wage. Coefficient and standard error for schooling given; esti-
mates for experience, experience squared, 26 control variables,
and an intercept are not reported. For the three endogenous re-
gressors – schooling (s), experience (e), and experience squared
(e2) – the three instruments are an indicator for whether a four-
year college (col) is nearby, age, and age squared. The partial
R2 and first-stage F-statistic are weak instruments diagnostics
explained in the test.

Results are given in Table 4.5. The OLS estimate of β1 is 0.073, so that wages
rise by 7.6% (= 100 × (e.073 − 1)) on average with each extra year of schooling. This
estimate is an inconsistent estimate of β1 given omitted ability. The IV estimate, or
equivalently the 2SLS estimate since the model is just-identified, is 0.132. An extra
year of schooling is estimated to lead to a 14.1% (= 100 × (e.132 − 1)) increase in
wage.

The IV estimator is much less efficient than OLS. A formal test does not reject ho-
moskedasticity and we follow Kling (2001) and use the usual standard errors, which
are very close to the heteroskedastic-robust standard errors. The standard error of
β̂1,OLS is 0.004 whereas that for β̂1,IV is 0.049, over 10 times larger. The standard
errors for the other two endogenous regressors are about 4 times larger and the stan-
dard errors for the exogenous regressors are about 1.2 times larger. The R2 falls from
0.304 to 0.207.

R2 measures confirm that the instruments are not very relevant for schooling. A
simple test is to note that the regression (4.58) of schooling on all of the instruments
yields R2 = 0.297, which only falls a little to R2 = 0.291 if the three additional in-
struments are dropped. More formally, Shea’s partial R2 here equals 0.0064 = 0.082,
which from (4.62) predicts that the standard error of β̂1,IV will be inflated by a multiple
12.5 = 1/0.08, very close to the inflation observed here. This reduces the t-statistic on
schooling from 19.64 to 2.68. In many applications such a reduction would lead to sta-
tistical insignificance. In addition, from Section 4.9.2 even slight correlation between
the instrument col4i and the error term ui will lead to inconsistency of IV.

To see whether finite-sample bias may also be a problem we run the regression
(4.58) of schooling on all of the instruments. Testing the joint significance of the three
additional instruments yields an F-statistic of 8.07, suggesting that the bias of IV may
be 10 or 20% that of OLS. A similar regression for the other two endogenous variables
yields much higher F-statistics since, for example, age is a good additional instrument
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for experience. Given that there are three endogenous regressors it is actually bet-
ter to use the method of Stock et al. (2002) discussed in Section 4.9.4, though here the
problem is restricted to schooling since for experience and experience squared, respec-
tively, Shea’s partial R2 equals 0.0876 and 0.0138, whereas the first-stage F-statistics
are 1,772 and 1,542.

If additional instruments are available then the model becomes overidentified and
standard procedure is to additionally perform a test of overidentifying restrictions (see
Section 8.4.4).

4.10. Practical Considerations

The estimation procedures in this chapter are implemented in all standard economet-
rics packages for cross-section data, except that not all packages implement quantile
regression. Most provide robust standard errors as an option rather than the default.

The most difficult estimator to apply can be the instrumental variables estimator, as
in many potential applications it can be difficult to obtain instruments that are uncor-
related with the error yet reasonably correlated with the regressor or regressors being
instrumented. Such instruments can be obtained through specification of a complete
structural model, such as a simultaneous equations system. Current applied research
emphasizes alternative approaches such as natural experiments.

4.11. Bibliographic Notes

The results in this chapter are presented in many first-year graduate texts, such as those by
Davidson and MacKinnon (2004), Greene (2003), Hayashi (2000), Johnston and diNardo
(1997), Mittelhammer, Judge, and Miller (2000), and Ruud (2000). We have emphasized re-
gression with stochastic regressors, robust standard errors, quantile regression, endogeneity,
and instrumental variables.

4.2 Manski (1991) has a nice discussion of regression in a general setting that includes discus-
sion of the loss functions given in Section 4.2.

4.3 The returns to schooling example is well studied. Angrist and Krueger (1999) and Card
(1999) provide recent surveys.

4.4 For a history of least squares see Stigler (1986). The method was introduced by Legendre
in 1805. Gauss in 1810 applied least squares to the linear model with normally distributed
error and proposed the elimination method for computation, and in later work he proposed
the theorem now called the Gauss–Markov theorem. Galton introduced the concept of re-
gression, meaning mean-reversion in the context of inheritance of family traits, in 1887.
For an early “modern” treatment with application to pauperism and welfare availability see
Yule (1897). Statistical inference based on least-squares estimates of the linear regression
model was developed most notably by Fisher. The heteroskedastic-consistent estimate of
the variance matrix of the OLS estimator, due to White (1980a) building on earlier work
by Eicker (1963), has had a profound impact on statistical inference in microeconometrics
and has been extended to many settings.

4.6 Boscovich in 1757 proposed a least absolute deviations estimator that predates least
squares; see Stigler (1986). A review of quantile regression, introduced by Koenker and
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Bassett (1978), is given in Buchinsky (1994). A more elementary exposition is given in
Koenker and Hallock (2001).

4.7 The earliest known use of instrumental variables estimation to secure identification in a
simultaneous equations setting was by Wright (1928). Another oft-cited early reference is
Reiersol (1941), who used instrumental variables methods to control for measurement error
in the regressors. Sargan (1958) gives a classic early treatment of IV estimation. Stock and
Trebbi (2003) provide additional early references.

4.8 Instrumental variables estimation is presented in econometrics texts, with emphasis on al-
gebra but not necessarily intuition. The method is widely used in econometrics because of
the desirability of obtaining estimates with a causal interpretation.

4.9 The problem of weak instruments was drawn to the attention of applied researchers by
Nelson and Startz (1990) and Bound et al. (1995). There are a number of theoretical an-
tecedents, most notably the work of Nagar (1959). The problem has dampened enthusiasm
for IV estimation, and small-sample bias owing to weak instruments is currently a very
active research topic. Results often assume iid normal errors and restrict analysis to one
endogenous regressor. The survey by Stock et al. (2002) provides many references with
emphasis on weak instrument asymptotics. It also briefly considers extensions to nonlinear
models. The survey by Hahn and Hausman (2003b) presents additional methods and results
that we have not reviewed here. For recent work on bias in standard errors see Bond and
Windmeijer (2002). For a careful application see C.-I. Lee (2001).

Exercises

4–1 Consider the linear regression model yi = x′
iβ + ui with nonstochastic regressors

xi and error ui that has mean zero but is correlated as follows: E[ui u j ] = σ 2 if
i = j , E[ui u j ] = ρσ 2 if |i − j | = 1, and E[ui u j ] = 0 if |i − j | > 1. Thus errors for
immediately adjacent observations are correlated whereas errors are otherwise
uncorrelated. In matrix notation we have y = Xβ + u, where Ω = E[uu′]. For this
model answer each of the following questions using results given in Section 4.4.

(a) Verify that Ω is a band matrix with nonzero terms only on the diagonal and
on the first off–diagonal; and give these nonzero terms.

(b) Obtain the asymptotic distribution of β̂OLS using (4.19).
(c) State how to obtain a consistent estimate of V[β̂OLS] that does not depend on

unknown parameters.
(d) Is the usual OLS output estimate s2(X′X)−1 a consistent estimate of V[β̂OLS]?
(e) Is White’s heteroskedasticity robust estimate of V[β̂OLS] consistent here?

4–2 Suppose we estimate the model yi = µ+ ui , where ui ∼ N [0, σ 2
i ].

(a) Show that the OLS estimator of µ simplifies to µ̂ = y.
(b) Hence directly obtain the variance of y. Show that this equals White’s het-

eroskedastic consistent estimate of the variance given in (4.21).

4–3 Suppose the dgp is yi = β0xi + ui , ui = xi εi , xi ∼ N [0,1], and εi ∼ N [0,1]. As-
sume that data are independent over i and that xi is independent of εi . Note that
the first four central moments of N [0, σ 2] are 0, σ 2, 0, and 3σ 4.

(a) Show that the error term ui is conditionally heteroskedastic.
(b) Obtain plim N−1X′X. [Hint: Obtain E[x2

i ] and apply a law of large numbers.]
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(c) Obtain σ 2
0 = V[ui ], where the expectation is with respect to all stochastic vari-

ables in the model.
(d) Obtain plim N−1X′Ω0X = lim N−1E[X′Ω0X], where Ω0 = Diag[V[ui |xi ]].
(e) Using answers to the preceding parts give the default OLS result (4.22) for the

variance matrix in the limit distribution of
√

N (̂βOLS − β0), ignoring potential
heteroskedasticity. Your ultimate answer should be numerical.

(f) Now give the variance in the limit distribution of
√

N (̂βOLS − β0), taking ac-
count of any heteroskedasticity. Your ultimate answer should be numerical.

(g) Do any differences between answers to parts (e) and (f) accord with your
prior beliefs?

4–4 Consider the linear regression model with scalar regressor yi = βxi + ui with data
(yi , xi ) iid over i though the error may be conditionally heteroskedastic.

(a) Show that (̂βOLS − β) = (N−1∑
i x2

i )−1 N−1∑
i xi ui .

(b) Apply Kolmogorov law of large numbers (Theorem A.8) to the averages of x2
i

and xi ui to show that β̂OLS
p→ β. State any additional assumptions made on

the dgp for xi and ui .
(c) Apply the Lindeberg-Levy central limit theorem (Theorem A.14) to the aver-

ages of xi ui to show that N−1∑
i xi ui /N−2∑

i E[u2
i x2

i ]
p→ N [0,1]. State any

additional assumptions made on the dgp for xi and ui .
(d) Use the product limit normal rule (Theorem A.17) to show that part (c) implies

N−1/2∑
i xi ui

p→ N [0, limN−1∑
i E[u2

i x2
i ]]. State any assumptions made on

the dgp for xi and ui .
(e) Combine results using (2.14) and the product limit normal rule (Theorem

A.17) to obtain the limit distribution of β.

4–5 Consider the linear regression model y = Xβ + u.

(a) Obtain the formula for β̂ that minimizes Q(β) = u′Wu, where W is of full rank.
[Hint: The chain rule for matrix differentiation for column vectors x and z is
∂ f (x)/∂x = (∂z′

/∂x) × (∂ f (z)/∂z), for f (x) = f (g(x)) = f (z) where z =g(x)].
(b) Show that this simplifies to the OLS estimator if W = I.
(c) Show that this gives the GLS estimator if W = Ω−1.
(d) Show that this gives the 2SLS estimator if W = Z(Z′Z)−1Z′.

4–6 Consider IV estimation (Section 4.8) of the model y = x′β+ u using instruments
z in the just-identified case with Z an N × K matrix of full rank.

(a) What essential assumptions must z satisfy for the IV estimator to be consis-
tent for β? Explain.

(b) Show that given just identification the 2SLS estimator defined in (4.53) re-
duces to the IV estimator given in (4.51).

(c) Give a real-world example of a situation where IV estimation is needed be-
cause of inconsistency of OLS, and specify suitable instruments.

4–7 (Adapted from Nelson and Startz, 1990.) Consider the three-equation model, y =
βx + u; x = λu + ε; z = γ ε + v, where the mutually independent errors u, ε, and
v are iid normal with mean 0 and variances, respectively, σ 2

u , σ 2
ε , and σ 2

v .

(a) Show that plim(̂βOLS − β) = λσ 2
u /
(
λ2σ 2

u + σ 2
ε

)
.

(b) Show that ρ2
XZ = γ σ 2

ε /(λ
2σ 2

u + σ 2
ε )(γ 2σ 2

ε + σ 2
v ).

(c) Show that β̂ IV = mzy/mzx = β + mzu/ (λmzu + mzε), where, for example, mzy =∑
i zi yi .
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(d) Show that β̂ IV − β → 1/λ as γ (or ρxz) → 0.
(e) Show that β̂ IV − β → ∞ as mzu → −γ σ 2

ε /λ.
(f) What do the last two results imply regarding finite-sample biases and the

moments of β̂ IV − β when the instruments are poor?

4–8 Select a 50% random subsample of the Section 4.6.4 data on log health expen-
diture (y) and log total expenditure (x).

(a) Obtain OLS estimates and contrast usual and White standard errors for the
slope coefficient.

(b) Obtain median regression estimates and compare these to the OLS esti-
mates.

(c) Obtain quantile regression estimates for q = 0.25 and q = 0.75.
(d) Reproduce Figure 4.2 using your answers from parts (a)–(c).

4–9 Select a 50% random subsample of the Section 4.9.6 data on earnings and edu-
cation, and reproduce as much of Table 4.5 as possible and provide appropriate
interpretation.
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C H A P T E R 5

Maximum Likelihood and
Nonlinear Least-Squares

Estimation

5.1. Introduction

A nonlinear estimator is one that is a nonlinear function of the dependent variable.
Most estimators used in microeconometrics, aside from the OLS and IV estimators in
the linear regression model presented in Chapter 4, are nonlinear estimators. Nonlin-
earity can arise in many ways. The conditional mean may be nonlinear in parameters.
The loss function may lead to a nonlinear estimator even if the conditional mean is
linear in parameters. Censoring and truncation also lead to nonlinear estimators even
if the original model has conditional mean that is linear in parameters.

Here we present the essential statistical inference results for nonlinear estimation.
Very limited small-sample results are available for nonlinear estimators. Statistical in-
ference is instead based on asymptotic theory that is applicable for large samples. The
estimators commonly used in microeconometrics are consistent and asymptotically
normal.

The asymptotic theory entails two major departures from the treatment of the linear
regression model given in an introductory graduate course. First, alternative methods
of proof are needed since there is no direct formula for most nonlinear estimators.
Second, the asymptotic distribution is generally obtained under the weakest distri-
butional assumptions possible. This departure was introduced in Section 4.4 to permit
heteroskedasticity-robust inference for the OLS estimator. Under such weaker assump-
tions the default standard errors reported by a simple regression program are invalid.
Some care is needed, however, as these weaker assumptions can lead to inconsistency
of the estimator itself, a much more fundamental problem.

As much as possible the presentation here is expository. Definitions of conver-
gence in probability and distribution, laws of large numbers (LLN), and central limit
theorems (CLT) are presented in many texts, and here these topics are relegated to
Appendix A. Applied researchers rarely aim to formally prove consistency and asymp-
totic normality. It is not unusual, however, to encounter data applications with estima-
tion problems sufficiently recent or complex as to demand reading recent econometric
journal articles. Then familiarity with proofs of consistency and asymptotic normality
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is very helpful, especially to obtain a good idea in advance of the likely form of the
variance matrix of the estimator.

Section 5.2 provides an overview of key results. A more formal treatment of
extremum estimators that maximize or minimize any objective function is given in Sec-
tion 5.3. Estimators based on estimating equations are defined and presented in Sec-
tion 5.4. Statistical inference based on robust standard errors is presented briefly in
Section 5.5, with complete treatment deferred to Chapter 7. Maximum likelihood es-
timation and quasi-maximum likelihood estimation are presented in Sections 5.6 and
5.7. Nonlinear least-squares estimation is given in Section 5.8. Section 5.9 presents a
detailed example.

The remaining leading parametric estimation procedures – generalized method
of moments and nonlinear instrumental variables – are given separate treatment in
Chapter 6.

5.2. Overview of Nonlinear Estimators

This section provides a summary of asymptotic properties of nonlinear estimators,
given more rigorously in Section 5.3, and presents ways to interpret regression co-
efficients in nonlinear models. The material is essential for understanding use of the
cross-section and panel data models presented in later chapters.

5.2.1. Poisson Regression Example

It is helpful to introduce a specific example of nonlinear estimation. Here we consider
Poisson regression, analyzed in more detail in Chapter 20.

The Poisson distribution is appropriate for a dependent variable y that takes only
nonnegative integer values 0, 1, 2, . . . . It can be used to model the number of occur-
rences of an event, such as number of patent applications by a firm and number of
doctor visits by an individual.

The Poisson density, or more formally the Poisson probability mass function, with
rate parameter λ is

f (y|λ) = e−λλy/y!, y = 0, 1, 2, . . . ,

where it can be shown that E[y] = λ and V[y] = λ.
A regression model specifies the parameter λ to vary across individuals according

to a specific function of regressor vector x and parameter vector β. The usual Poisson
specification is

λ = exp(x′β),

which has the advantage of ensuring that the mean λ > 0. The density of the Poisson
regression model for a single observation is therefore

f (y|x,β) = e− exp(x′β) exp(x′β)y/y!. (5.1)
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Consider maximum likelihood estimation based on the sample {(yi , xi ),i =
1, . . . , N }. The maximum likelihood (ML) estimator maximizes the log-likelihood
function (see Section 5.6). The likelihood function is the joint density, which given
independent observations is the product

∏
i f (yi |xi ,β) of the individual densities,

where we have conditioned on the regressors. The log-likelihood function is then the
log of a product, which equals the sum of logs, or

∑
i ln f (yi |xi ,β).

For the Poisson density (5.1), the log-density for the i th observation is

ln f (yi |xi ,β) = − exp(x′
iβ) + yi x′

iβ − ln yi !.

So the Poisson ML estimator β̂ maximizes

QN (β) = 1

N

∑N

i=1

{− exp(x′
iβ) + yi x′

iβ − ln yi !
}
, (5.2)

where the scale factor 1/N is included so that QN (β) remains finite as N → ∞. The
Poisson ML estimator is the solution to the first-order conditions ∂QN (β)/∂β|β̂ = 0,
or

1

N

∑N

i=1
(yi − exp(x′

iβ))xi

∣∣
β̂

= 0. (5.3)

There is no explicit solution for β̂ in (5.3). Numerical methods to compute β̂ are
given in Chapter 10. In this chapter we instead focus on the statistical properties of the
resulting estimate β̂.

5.2.2. m-Estimators

More generally, we define an m-estimator θ̂ of the q × 1 parameter vector θ as an esti-
mator that maximizes an objective function that is a sum or average of N subfunctions

QN (θ) = 1

N

∑N

i=1
q(yi , xi ,θ), (5.4)

where q(·) is a scalar function, yi is the dependent variable, xi is a regressor vector,
and the results in this section assume independence over i .

For simplicity yi is written as a scalar, but the results extend to vector yi and so
cover multivariate and panel data and systems of equations. The objective function is
subscripted by N to denote that it depends on the sample data. Throughout the book
q is used to denote the dimension of θ. Note that here q is additionally being used to
denote the subfunction q(·) in (5.4).

Many econometrics estimators and models are m-estimators, corresponding to spe-
cific functional forms for q(y, x,θ). Leading examples are maximum likelihood (see
(5.39) later) and nonlinear least squares (NLS) (see (5.67) later). The Poisson ML
estimator that maximizes (5.2) is an example of (5.4) with θ=β and q(y, x,β) =
− exp(x′β) + yx′β − ln y!.

We focus attention on the estimator θ̂ that is computed as the solution to the asso-
ciated first-order conditions ∂QN (θ)/∂θ|̂θ = 0, or equivalently

1

N

∑N

i=1

∂q(yi , xi ,θ)

∂θ

∣∣∣∣̂
θ

= 0. (5.5)
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5.2 . OVERVIEW OF NONLINEAR ESTIMATORS

This is a system of q equations in q unknowns that generally has no explicit solution
for θ̂.

The term m-estimator, attributed to Huber (1967), is interpreted as an abbrevia-
tion for maximum-likelihood-like estimator. Many econometrics authors, including
Amemiya (1985, p. 105), Greene (2003, p. 461), and Wooldridge (2002, p. 344), define
an m-estimator as optimizing over a sum of terms, as in (5.4). Other authors, including
Serfling (1980), define an m-estimator as solutions of equations such as (5.5). Huber
(1967) considered both cases and Huber (1981, p. 43) explicitly defined an m-estimator
in both ways. In this book we call the former type of estimator an m-estimator
and the latter an estimating equations estimator (which will be treated separately in
Section 5.4).

5.2.3. Asymptotic Properties of m-Estimators

The key desirable asymptotic properties of an estimator are that it be consistent and
that it have an asymptotic distribution to permit statistical inference at least in large
samples.

Consistency

The first step in determining the properties of θ̂ is to define exactly what θ̂ is intended
to estimate. We suppose that there is a unique value of θ, denoted θ0 and called the
true parameter value, that generates the data. This identification condition (see Sec-
tion 2.5) requires both correct specification of the component of the dgp of interest and
uniqueness of this representation. Thus for the Poisson example it may be assumed that
the dgp is one with Poisson parameter exp(x′β0) and x is such that x′β(1) = x′β(2) if
and only if β(1) = β(2).

The formal notation with subscript 0 for the true parameter value is used extensively
in Chapters 5 to 8. The motivation is that θ can take many different values, but interest
lies in two particular values – the true value θ0 and the estimated value θ̂.

The estimate θ̂ will never exactly equal θ0, even in large samples, because of the
intrinsic randomness of a sample. Instead, we require θ̂ to be consistent for θ0 (see
Definition A.2 in Appendix A), meaning that θ̂ must converge in probability to θ0,

denoted θ̂
p→ θ0.

Rigorously establishing consistency of m-estimators is difficult. Formal results are
given in Section 5.3.2 and a useful informal condition is given in Section 5.3.7. Spe-
cializations to ML and NLS estimators are given in later sections.

Limit Normal Distribution

Given consistency, as N → ∞ the estimator θ̂ has a distribution with all mass at θ0. As
for OLS, we magnify or rescale θ̂ by multiplication by

√
N to obtain a random variable

that has nondegenerate distribution as N → ∞. Statistical inference is then conducted
assuming N is large enough for asymptotic theory to provide a good approximation,
but not so large that θ̂ collapses on θ0.
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We therefore consider the behavior of
√

N (̂θ − θ0). For most estimators this has a
finite-sample distribution that is too complicated to use for inference. Instead, asymp-
totic theory is used to obtain the limit of this distribution as N → ∞. For most microe-
conometrics estimators this limit is the multivariate normal distribution. More formally√

N (̂θ − θ0) converges in distribution to the multivariate normal, where convergence
in distribution is defined in Appendix A.

Recall from Section 4.4 that the OLS estimator can be expressed as

√
N (β̂ − β0) =

(
1

N

∑N

i=1
xi x′

i

)−1 1√
N

∑N

i=1
xi ui ,

and the limit distribution was derived by obtaining the probability limit of the first term
on the right-hand side and the limit normal distribution of the second term. The limit
distribution of an m-estimator is obtained in a similar way. In Section 5.3.3 we show
that for an estimator that solves (5.5) we can always write

√
N (̂θ − θ0) = −

(
1

N

∑N

i=1

∂2qi (θ)

∂θ∂θ′

∣∣∣∣
θ+

)−1
1√
N

∑N

i=1

∂qi (θ)

∂θ

∣∣∣∣
θ0

, (5.6)

where qi (θ) = q(yi , xi ,θ), for some θ+ between θ̂ and θ0, provided second derivatives
and the inverse exist. This result is obtained by a Taylor series expansion.

Under appropriate assumptions this yields the following limit distribution of an
m-estimator:

√
N (̂θ − θ0)

d→ N [0,A−1
0 B0A−1

0 ], (5.7)

where A−1
0 is the probability limit of the first term in the right-hand side of (5.6), and

the second term is assumed to converge to the N [0,B0] distribution. The expressions
for A0 and B0 are given in Table 5.1.

Asymptotic Normality

To obtain the distribution of θ̂ from the limit distribution result (5.7), divide the left-
hand side of (5.7) by

√
N and hence divide the variance by N . Then

θ̂
a∼ N

[
θ0,V[̂θ]

]
, (5.8)

where
a∼ means “is asymptotically distributed as,” and V[̂θ] denotes the asymptotic

variance of θ̂ with

V[̂θ] = N−1A−1
0 B0A−1

0 . (5.9)

A complete discussion of the term asymptotic distribution has already been given in
Section 4.4.4, and is also given in Section A.6.4.

The result (5.9) depends on the unknown true parameter θ0. It is implemented by
computing the estimated asymptotic variance

V̂[̂θ]=N−1Â
−1

B̂Â−1, (5.10)

where Â and B̂ are consistent estimates of A0 and B0.
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Table 5.1. Asymptotic Properties of m-Estimators

Propertya Algebraic Formula

Objective function QN (θ) = N−1∑
i q(yi , xi ,θ) is maximized wrt θ

Examples ML: qi = ln f (yi |xi ,θ) is the log-density
NLS: qi = −(yi − g(xi ,θ))2 is minus the squared error

First-order conditions ∂QN (θ)/∂θ= N−1∑N
i=1 ∂q(yi , xi ,θ)/∂θ|̂θ = 0.

Consistency Is plim QN (θ) maximized at θ = θ0?

Consistency (informal) Does E
[
∂q(yi , xi ,θ)/∂θ|θ0

]= 0?

Limit distribution
√

N (̂θ − θ0)
d→ N [0,A−1

0 B0A−1
0 ]

A0 = plimN−1∑N
i=1 ∂

2qi (θ)/∂θ∂θ′∣∣
θ0

B0 = plimN−1∑N
i=1 ∂qi/∂θ×∂qi/∂θ

′∣∣
θ0
.

Asymptotic distribution θ̂
a∼ N [θ0, N−1Â−1B̂Â−1]

Â = N−1∑N
i=1 ∂

2qi (θ)/∂θ∂θ′∣∣̂
θ

B̂ = N−1∑N
i=1 ∂qi/∂θ×∂qi/∂θ

′∣∣̂
θ

a The limit distribution variance and asymptotic variance estimate are robust sandwich forms that assume
independence over i . See Section 5.5.2 for other variance estimates.

The default output for many econometrics packages instead often uses a simpler
estimate V̂[̂θ] = −N−1Â−1 that is only valid in some special cases. See Section 5.5
for further discussion, including various ways to estimate A0 and B0 and then perform
hypothesis tests.

The two leading examples of m-estimators are the ML and the NLS estimators.
Formal results for these estimators are given in, respectively, Propositions 5.5 and 5.6.
Simpler representations of the asymptotic distributions of these estimators are given
in, respectively, (5.48) and (5.77).

Poisson ML Example

Like other ML estimators, the Poisson ML estimator is consistent if the density is
correctly specified. However, applying (5.25) from Section 5.3.7 to (5.3) reveals that
the essential condition for consistency is actually the weaker condition that E[y|x] =
exp(x′β0), that is, correct specification of the mean. Similar robustness of the ML
estimator to partial misspecification of the distribution holds for some other special
cases detailed in Section 5.7.

For the Poisson ML estimator ∂q(β)/∂β= (y − exp(x′β0))x, leading to

A0 = − plim N−1
∑

i
exp(x′

iβ0)xi x
′
i

and

B0 = plim N−1
∑

i
V [yi |xi ] xi x′

i .

Then β̂
a∼ N [θ0,N−1Â−1B̂Â−1], where Â = −N−1∑

i exp(x′
i β̂)xi x

′
i and B̂ =

N−1∑
i (yi − exp(x′

i β̂))2xi x′
i .
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Table 5.2. Marginal Effect: Three Different Estimates

Formula Description

N−1∑
i ∂E[yi |xi ]/∂xi Average response of all individuals

∂E[y|x]/∂x|x̄ Response of the average individual
∂E[y|x]/∂x|x∗ Response of a representative individual with x = x∗

If the data are actually Poisson distributed, then V[y|x] = E[y|x] = exp(x′β0), lead-
ing to possible simplification since A0 = −B0 so that A−1

0 B0A−1
0 = −A−1

0 . However,
in most applications with count data V[y|x] >E[y|x], so it is best not to impose this
restriction.

5.2.4. Coefficient Interpretation in Nonlinear Regression

An important goal of estimation is often prediction, rather than testing the statistical
significance of regressors.

Marginal Effects

Interest often lies in measuring marginal effects, the change in the conditional mean
of y when regressors x change by one unit.

For the linear regression model, E[y|x] = x′β implies ∂E[y|x]/∂x = β so that the
coefficient has a direct interpretation as the marginal effect. For nonlinear regression
models, this interpretation is no longer possible. For example, if E[y|x] = exp(x′β),
then ∂E[y|x]/∂x = exp(x′β)β is a function of both parameters and regressors, and the
size of the marginal effect depends on x in addition to β.

General Regression Function

For a general regression function

E[y|x] =g(x,β),

the marginal effect varies with the evaluation value of x.
It is customary to present one of the estimates of the marginal effect given in

Table 5.2. The first estimate averages the marginal effects for all individuals. The sec-
ond estimate evaluates the marginal effect at x = x̄. The third estimate evaluates at
specific characteristics x = x∗. For example, x∗ may represent a person who is female
with 12 years of schooling and so on. More than one representative individual might be
considered.

These three measures differ in nonlinear models, whereas in the linear model they
all equal β. Even the sign of the effect may be unrelated to the sign of the pa-
rameter, with ∂E[y|x]/∂x j positive for some values of x and negative for other val-
ues of x. Considerable care must be taken in interpreting coefficients in nonlinear
models.
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5.2 . OVERVIEW OF NONLINEAR ESTIMATORS

Computer programs and applied studies often report the second of these measures.
This can be useful in getting a sense for the magnitude of the marginal effect, but
policy interest usually lies in the overall effect, the first measure, or the effect on a
representative individual or group, the third measure. The first measure tends to change
relatively little across different choices of functional form g(·), whereas the other two
measures can change considerably. One can also present the full distribution of the
marginal effects using a histogram or nonparametric density estimate.

Single-Index Models

Direct interpretation of regression coefficients is possible for single-index models that
specify

E[y|x] = g(x′β), (5.11)

so that the data and parameters enter the nonlinear mean function g(·) by way of the
single index x′β. Then nonlinearity is of the mild form that the mean is a nonlinear
function of a linear combination of the regressors and parameters. For single-index
models the effect on the conditional mean of a change in the j th regressor using cal-
culus methods is

∂E[y|x]

∂x j
= g′(x′β)β j ,

where g′(z) = ∂g(z)/∂z. It follows that the relative effects of changes in regressors
are given by the ratio of the coefficients since

∂E[y|x]/∂x j

∂E[y|x]/∂xk
= β j

βk
,

because the common factor g′(x′β) cancels. Thus if β j is two times βk then a one-
unit change in x j has twice the effect as a one-unit change in xk . If g(·) is additionally
monotonic then it follows that the signs of the coefficients give the signs of the effects,
for all possible x.

Single-index models are advantageous owing to their simple interpretation. Many
standard nonlinear models such as logit, probit, and Tobit are of single-index form.
Moreover, some choices of function g(·) permit additional interpretation, notably the
exponential function considered later in this section and the logistic cdf analyzed in
Section 14.3.4.

Finite-Difference Method

We have emphasized the use of calculus methods. The finite-difference method in-
stead computes the marginal effect by comparing the conditional mean when x j is
increased by one unit with the value before the increase. Thus

�E[y|x]

�x j
= g(x + e j ,β) − g(x,β),

where e j is a vector with j th entry one and other entries zero.
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For the linear model finite-difference and calculus methods lead to the same es-
timated effects, since �E[y|x]/�x j = (x′β+β j ) − x′β = β j . For nonlinear models,
however, the two approaches give different estimates of the marginal effect, unless the
change in x j is infinitesimally small.

Often calculus methods are used for continuous regressors and finite-difference
methods are used for integer-valued regressors, such as a (0, 1) indicator variable.

Exponential Conditional Mean

As an example, consider coefficient interpretation for an exponential conditional mean
function, so that E[y|x] = exp(x′β). Many count and duration models use the expo-
nential form.

A little algebra yields ∂E[y|x]/∂x j = E[y|x] × β j . So the parameters can be inter-
preted as semi-elasticities, with a one-unit change in x j increasing the conditional
mean by the multiple β j . For example, if β j = 0.2 then a one-unit change in x j

is predicted to lead to a 0.2 times proportionate increase in E[y|x], or an increase
of 20%.

If instead the finite-difference method is used, the marginal effect is computed as
�E[y|x]/�x j = exp(x′β+β j ) − exp(x′β) = exp(x′β)(eβ j − 1). This differs from the
calculus result, unless β j is small so that eβ j � 1 + β j . For example, if β j = 0.2 the
increase is 22.14% rather than 20%.

5.3. Extremum Estimators

This section is intended for use in an advanced graduate course in microeconomet-
rics. It presents the key results on consistency and asymptotic normality of extremum
estimators, a very general class of estimators that minimize or maximize an objective
function. The presentation is very condensed. A more complete understanding requires
an advanced treatment such as that in Amemiya (1985), the basis of the treatment here,
or in Newey and McFadden (1994).

5.3.1. Extremum Estimators

For cross-section analysis of a single dependent variable the sample is one of N ob-
servations, {(yi , xi ), i = 1, . . . , N }, on a dependent variable yi , and a column vector
xi of regressors. In matrix notation the sample is (y,X), where y is an N × 1 vector
with i th entry yi and X is a matrix with i th row x′

i , as defined more completely in
Section 1.6.

Interest lies in estimating the q × 1 parameter vector θ= [θ1. . . . θq ]′. The value
θ0, termed the true parameter value, is the particular value of θ in the process that
generated the data, called the data-generating process.

We consider estimators θ̂ that maximize over θ ∈ Θ the stochastic objective func-
tion QN (θ) = QN (y,X,θ), where for notational simplicity the dependence of QN (θ)
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on the data is indicated only via the subscript N . Such estimators are called extremum
estimators, since they solve a maximization or minimization problem.

The extremum estimator may be a global maximum, so

θ̂ = arg max θ∈Θ QN (θ). (5.12)

Usually the extremum estimator is a local maximum, computed as the solution to the
associated first-order conditions

∂QN (θ)

∂θ

∣∣∣∣̂
θ

= 0, (5.13)

where ∂QN (θ)/∂θ is a q × 1 column vector with kth entry ∂QN (θ)/∂θk . The lo-
cal maximum is emphasized because it is the local maximum that may be asymp-
totic normal distributed. The local and global maxima coincide if QN (θ) is globally
concave.

There are two leading examples of extremum estimators. For m-estimators consid-
ered in this chapter, notably ML and NLS estimators, QN (θ) is a sample average such
as average of squared residuals. For the generalized method of moments estimator (see
Section 6.3) QN (θ) is a quadratic form in sample averages.

For concreteness the discussion focuses on single-equation cross-section regression.
But the results are quite general and apply to any estimator based on optimization that
satisfies properties given in this section. In particular there is no restriction to a scalar
dependent variable and several authors use the notation zi in place of (yi , xi ). Then
QN (θ) equals QN (Z,θ) rather than QN (y,X,θ).

5.3.2. Formal Consistency Theorems

We first consider parameter identification, introduced in Section 2.5. Intuitively the
parameter θ0 is identified if the distribution of the data, or feature of the distribution of
interest, is determined by θ0 whereas any other value of θ leads to a different distribu-
tion. For example, in linear regression we required E[y|X] = Xβ0 and Xβ(1) = Xβ(2)

if and only if β(1) = β(2).
An estimation procedure may not identify θ0. For example, this is the case if the es-

timation procedure omits some relevant regressors. We say that an estimation method
identifies θ0 if the probability limit of the objective function, taken with respect to
the dgp with parameter θ = θ0, is maximized uniquely at θ = θ0. This identification
condition is an asymptotic one. Practical estimation problems that can arise in a finite
sample are discussed in Chapter 10.

Consistency is established in the following manner. As N → ∞ the stochastic ob-
jective function QN (θ), an average in the case of m-estimation, may converge in prob-
ability to a limit function, denoted Q0(θ), that in the simplest case is nonstochas-
tic. The corresponding maxima (global or local) of QN (θ) and Q0(θ) should then
occur for values of θ close to each other. Since the maximum of QN (θ) is θ̂ by
definition, it follows that θ̂ converges in probability to θ0 provided θ0 maximizes
Q0(θ).
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Clearly, consistency and identification are closely related, and Amemiya (1985,
p. 230) states that a simple approach is to view identification to mean existence of a
consistent estimator. For further discussion see Newey and McFadden (1994, p. 2124)
and Deistler and Seifert (1978).

Key applications of this approach include Jennrich (1969) and Amemiya (1973).
Amemiya (1985) and Newey and McFadden (1994) present quite general theorems.
These theorems require several assumptions, including smoothness (continuity) and
existence of necessary derivatives of the objective function, assumptions on the dgp
to ensure convergence of QN (θ) to Q0(θ), and maximization of Q0(θ) at θ = θ0.
Different consistency theorems use slightly different assumptions.

We present two consistency theorems due to Amemiya (1985), one for a global
maximum and one for a local maximum. The notation in Amemiya’s theorems has
been modified as Amemiya (1985) defines the objective function without the normal-
ization 1/N present in, for example, (5.4).

Theorem 5.1 (Consistency of Global Maximum) (Amemiya, 1985, Theo-
rem 4.1.1): Make the following assumptions:

(i) The parameter space Θ is a compact subset of Rq .

(ii) The objective function QN (θ) is a measurable function of the data for all θ ∈
Θ, and QN (θ) is continuous in θ ∈ Θ.

(iii) QN (θ) converges uniformly in probability to a nonstochastic function Q0(θ),
and Q0(θ) attains a unique global maximum at θ0.

Then the estimator θ̂= arg maxθ∈Θ QN (θ) is consistent for θ0, that is, θ̂
p→ θ0.

Uniform convergence in probability of QN (θ) to

Q0(θ) = plim QN (θ) (5.14)

in condition (iii) means that supθ∈Θ |QN (θ) − Q0(θ)| p→ 0.
For a local maximum, first derivatives need to exist, but one need then only consider

the behavior of QN (θ) and its derivative in the neighborhood of θ0.

Theorem 5.2 (Consistency of Local Maximum) (Amemiya, 1985, Theo-
rem 4.1.2): Make the following assumptions:

(i) The parameter space Θ is an open subset of Rq .

(ii) QN (θ) is a measurable function of the data for all θ ∈ Θ, and ∂QN (θ)/∂θ
exists and is continuous in an open neighborhood of θ0.

(iii) The objective function QN (θ) converges uniformly in probability to Q0(θ) in
an open neighborhood of θ0, and Q0(θ) attains a unique local maximum at θ0.

Then one of the solutions to ∂QN (θ)/∂θ= 0 is consistent for θ0.
An example of use of Theorem 5.2 is given later in Section 5.3.4.
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Condition (i) in Theorem 5.1 permits a global maximum to be at the boundary of the
parameter space, whereas in Theorem 5.2 a local maximum has to be in the interior of
the parameter space. Condition (ii) in Theorem 5.2 also implies continuity of QN (θ)
in the open neighborhood of θ0, where a neighborhood N (θ0) of θ0 is open if and
only if there exists a ball with center θ0 entirely contained in N (θ0). In both theorems
condition (iii) is the essential condition. The maximum, global or local, of Q0(θ) must
occur at θ = θ0. The second part of (iii) provides the identification condition that θ0

has a meaningful interpretation and is unique.
For a local maximum, analysis is straightforward if there is only one local maxi-

mum. Then θ̂ is uniquely defined by ∂QN (θ)/∂θ|̂θ = 0. When there is more than one
local maximum, the theorem simply says that one of the local maxima is consistent,
but no guidance is given as to which one is consistent. It is best in such cases to con-
sider the global maximum and apply Theorem 5.1. See Newey and McFadden (1994,
p. 2117) for a discussion.

An important distinction is made between model specification, reflected in the
choice of objective function QN (θ), and the actual dgp of (y,X) used in obtaining
Q0(θ) in (5.14). For some dgps an estimator may be consistent, whereas for other dgps
an estimator may be inconsistent. In some cases, such as the Poisson ML and OLS es-
timators, consistency arises under a wide range of dgps provided the conditional mean
is correctly specified. In other cases consistency requires stronger assumptions on the
dgp such as correct specification of the density.

5.3.3. Asymptotic Normality

Results on asymptotic normality are usually restricted to the local maximum of QN (θ).
Then θ̂ solves (5.13), which in general is nonlinear in θ̂ and has no explicit solution
for θ̂. Instead, we replace the left-hand side of this equation by a linear function of θ̂,
by use of a Taylor series expansion, and then solve for θ̂.

The most often used version of Taylor’s theorem is an approximation with a re-
mainder term. Here we instead consider an exact first-order Taylor expansion. For
the differentiable function f (·) there always exists a point x+ between x and x0 such
that

f (x) = f (x0) + f ′(x+)(x − x0),

where f ′(x) = ∂ f (x)/∂x is the derivative of f (x). This result is also known as the
mean value theorem.

Application to the current setting requires several changes. The scalar function f (·)
is replaced by a vector function f(·) and the scalar arguments x , x0, and x+ are replaced
by the vectors θ̂, θ0, and θ+. Then

f (̂θ) = f(θ0) + ∂f(θ)

∂θ′

∣∣∣∣
θ+

(̂θ − θ0), (5.15)

where ∂f(θ)/∂θ is a matrix, for some unknown θ+ between θ̂ and θ0, and formally
θ+ differs for each row of this matrix (see Newey and McFadden, 1994, p. 2141).
For the local extremum estimator the function f(θ) = ∂QN (θ)/∂θ is already a first
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derivative. Then an exact first-order Taylor series expansion around θ0 yields

∂QN (θ)

∂θ

∣∣∣∣̂
θ

= ∂QN (θ)

∂θ

∣∣∣∣
θ0

+ ∂2 QN (θ)

∂θ∂θ′

∣∣∣∣
θ+

(̂θ − θ0), (5.16)

where ∂2 QN (θ)/∂θ∂θ′ is a q × q matrix with ( j, k)th entry ∂2 QN (θ)/∂θ j∂θk , and
θ+ is a point between θ̂ and θ0.

The first-order conditions set the left-hand side of (5.16) to zero. Setting the right-
hand side to 0 and solving for (̂θ − θ0) yields

√
N (̂θ − θ0) = −

(
∂2 QN (θ)

∂θ∂θ′

∣∣∣∣
θ+

)−1 √
N
∂QN (θ)

∂θ

∣∣∣∣
θ0

, (5.17)

where we rescale by
√

N to ensure a nondegenerate limit distribution (discussed fur-
ther in the following).

Result (5.17) provides a solution for θ̂. It is of no use for numerical computation
of θ̂, since it depends on θ0 and θ+, both of which are unknown, but it is fine for
theoretical analysis. In particular, if it has been established that θ̂ is consistent for θ0

then the unknown θ+ converges in probability to θ0, because it lies between θ̂ and θ0

and by consistency θ̂ converges in probability to θ0.
The result (5.17) expresses

√
N (̂θ − θ0) in a form similar to that used to obtain the

limit distribution of the OLS estimator (see Section 5.2.3). All we need do is assume
a probability limit for the first term on the right-hand side of (5.17) and a limit normal
distribution for the second term.

This leads to the following theorem, from Amemiya (1985), for an extremum esti-
mator satisfying a local maximum. Again note that Amemiya (1985) defines the ob-
jective function without the normalization 1/N . Also, Amemiya defines A0 and B0 in
terms of limE rather than plim.

Theorem 5.3 (Limit Distribution of Local Maximum) (Amemiya, 1985, The-
orem 4.1.3): In addition to the assumptions of the preceding theorem for consis-
tency of the local maximum make the following assumptions:

(i) ∂2 QN (θ)/∂θ∂θ′ exists and is continuous in an open convex neighborhood of
θ0.

(ii) ∂2 QN (θ)/∂θ∂θ′∣∣
θ+ converges in probability to the finite nonsingular matrix

A0 = plim ∂2 QN (θ)/∂θ∂θ′∣∣
θ0

(5.18)

for any sequence θ+ such that θ+ p→ θ0.

(iii)
√

N ∂QN (θ)/∂θ|θ0

d→ N [0,B0], where

B0 = plim
[

N ∂QN (θ)/∂θ × ∂QN (θ)/∂θ′∣∣
θ0

]
. (5.19)

Then the limit distribution of the extremum estimator is
√

N (̂θ − θ0)
d→ N [0,A−1

0 B0A−1
0 ], (5.20)

where the estimator θ̂ is the consistent solution to ∂QN (θ)/∂θ = 0.
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The proof follows directly from the Limit Normal Product Rule (Theorem A.17)
applied to (5.17). Note that the proof assumes that consistency of θ̂ has already been
established. The expressions for A0 and B0 given in Table 5.1 are specializations to the
case QN (θ) = N−1∑

i qi (θ) with independence over i .
The probability limits in (5.18) and (5.19) are obtained with respect to the dgp

for (y,X). In some applications the regressors are assumed to be nonstochastic and
the expectation is with respect to y only. In other cases the regressors are treated as
stochastic and the expectations are then with respect to both y and X.

5.3.4. Poisson ML Estimator Asymptotic Properties Example

We formally prove consistency and asymptotic normality of the Poisson ML estimator,
under exogenous stratified sampling with stochastic regressors so that (yi , xi ) are inid,
without necessarily assuming that yi is Poisson distributed.

The key step to prove consistency is to obtain Q0(β) = plim QN (β) and verify that
Q0(β) attains a maximum at β = β0. For QN (β) defined in (5.1), we have

Q0(β) = plimN−1
∑

i

{
−ex′

iβ + yi x′
iβ − ln yi !

}
= lim N−1

∑
i

{
−E
[
ex′

iβ
]

+ E[yi x′
iβ] − E [ln yi !]

}
= lim N−1

∑
i

{
−E
[
ex′

iβ
]

+ E
[
ex′

iβ0 x′
iβ
]

− E [ln yi !]
}
.

The second equality assumes a law of large numbers can be applied to each term. Since
(yi , xi ) are inid, the Markov LLN (Theorem A.8) can be applied if each of the expected
values given in the second line exists and additionally the corresponding (1 + δ)th
absolute moment exists for some δ > 0 and the side condition given in Theorem A.8
is satisfied. For example, set δ = 1 so that second moments are used. The third line
requires the assumption that the dgp is such that E[y|x] = exp(x′β0). The first two
expectations in the third line are with respect to x, which is stochastic. Note that Q0(β)
depends on both β and β0. Differentiating with respect to β, and assuming that limits,
derivatives, and expectations can be interchanged, we get

∂Q0(β)

∂β
= − lim N−1

∑
i
E
[
ex′

iβxi

]
+ lim N−1

∑
i
E
[
ex′

iβ0 xi

]
,

where the derivative of E[ln y!] with respect to β is zero since E[ln y!] will depend
on β0, the true parameter value in the dgp, but not on β. Clearly, ∂Q0(β)/∂β = 0 at
β = β0 and ∂2 Q0(β)/∂β∂β′ = − lim N−1∑

i E
[
exp(x′

iβ)xi x′
i

]
is negative definite, so

Q0(β) attains a local maximum at β = β0 and the Poisson ML estimator is consistent
by Theorem 5.2. Since here QN (β) is globally concave the local maximum equals the
global maximum and consistency can also be established using Theorem 5.1.

For asymptotic normality of the Poisson ML estimator, the exact first-order Taylor
series expansion of the Poisson ML estimator first-order conditions (5.3) yields

√
N (β̂ − β0) = −

[
−N−1

∑
i
ex′

iβ
+
xi x′

i

]−1
N−1/2

∑
i
(yi − ex′

iβ0 )xi , (5.21)
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for some unknown β+ between β̂ and β0. Making sufficient assumptions on regressors
x so that the Markov LLN can be applied to the first term, and using β+ p→ β0 since
β̂

p→ β0, we have

−N−1
∑

i
ex′

iβ
+
xi x′

i
p→ A0 = − lim N−1

∑
i
E[ex′

iβ0 xi x′
i ]. (5.22)

For the second term in (5.21) begin by assuming scalar regressor x . Then X = (y −
exp(xβ0))x has mean E[X ] = 0, as E[y|x] = exp(xβ0) has already been assumed for
consistency, and variance V[X ] =E

[
V[y|x]x2

]
. The Liapounov CLT (Theorem A.15)

can be applied if the side condition involving a (2 + δ)th absolute moment of y −
exp(xβ0))x is satisfied. For this example with y ≥ 0 it is sufficient to assume that the
third moment of y exists, that is, δ = 1, and x is bounded. Applying the CLT gives

Z N =
∑

i (yi − eβ0xi )xi√∑
i E
[
V[yi |xi ]x2

i

] d→ N [0, 1],

so

N−1/2
∑

i
(yi − eβ0xi )xi

d→ N
[
0, lim N−1

∑
i
E
[
V[yi |xi ]xi

2
]]
,

assuming the limit in the expression for the asymptotic variance exists. This result can
be extended to the vector regressor case using the Cramer–Wold device (see Theo-
rem A.16). Then

N−1/2
∑

i
(yi − ex′

iβ0 )xi
d→ N

[
0,B0 = lim N−1

∑
i
E
[
V[yi |xi ]xi x

′
i

]]
. (5.23)

Thus (5.21) yields
√

N (β̂ − β0)
d→ N [0,A−1

0 B0A−1
0 ], where A0 is defined in (5.22)

and B0 is defined in (5.23).
Note that for this particular example y|x need not be Poisson distributed for the

Poisson ML estimator to be consistent and asymptotically normal. The essential as-
sumption for consistency of the Poisson ML estimator is that the dgp is such that
E[y|x] = exp(x′β0).

For asymptotic normality the essential assumption is that V[y|x] exists, though
additional assumptions on existence of higher moments are needed to permit use
of LLN and CLT. If in fact V[y|x] = exp(x′β0) then A0= −B0 and more simply√

N (β̂ − β0)
d→ N [0,−A−1

0 ]. The results for this ML example extend to the LEF
class of densities defined in Section 5.7.3.

5.3.5. Proofs of Consistency and Asymptotic Normality

The assumptions made in Theorems 5.1–5.3 are quite general and need not hold in
every application. These assumptions need to be verified on a case-by-case basis, in a
manner similar to the preceding Poisson ML estimator example. Here we sketch out
details for m-estimators.

For consistency, the key step is to obtain the probability limit of QN (θ). This is
done by application of an LLN because for an m-estimator QN (θ) is the average
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N−1∑
i qi (θ). Different assumptions on the dgp lead to the use of different LLNs

and more substantively to different expressions for Q0(θ ).
Asymptotic normality requires assumptions on the dgp in addition to those required

for consistency. Specifically, we need assumptions on the dgp to enable application of
an LLN to obtain A0 and to enable application of a CLT to obtain B0.

For an m-estimator an LLN is likely to verify condition (ii) of Theorem 5.3 as each
entry in the matrix ∂2 QN (θ)/∂θ∂θ′ is an average since QN (θ) is an average. A CLT
is likely to yield condition (iii) of Theorem 5.3, since

√
N ∂QN (θ)/∂θ|θ0

has mean
0 from the informal consistency condition (5.24) in Section 5.3.7 and finite variance
E[N ∂QN (θ)/∂θ × ∂QN (θ)/∂θ′∣∣

θ0
].

The particular CLT and LLN used to obtain the limit distribution of the estimator
vary with assumptions about the dgp for (y,X). In all cases the dependent variable is
stochastic. However, the regressors may be fixed or stochastic, and in the latter case
they may exhibit time-series dependence. These issues have already been considered
for OLS in Section 4.4.7.

The common microeconometrics assumption is that regressors are stochastic with
independence across observations, which is reasonable for cross-section data from na-
tional surveys. For simple random sampling, the data (yi , xi ) are iid and Kolmogorov
LLN and Lindeberg–Levy CLT (Theorems A.8 and A.14) can be used. Furthermore,
under simple random sampling (5.18) and (5.19) then simplify to

A0 = E

[
∂2q(y, x,θ)

∂θ∂θ′

∣∣∣∣
θ0

]
and

B0 = E

[
∂q(y, x,θ)

∂θ

∂q(y, x,θ)

∂θ′

∣∣∣∣
θ0

]
,

where (y, x) denotes a single observation and expectations are with respect to the joint
distribution of (y, x). This simpler notation is used in several texts.

For stratified random sampling and for fixed regressors the data (yi , xi ) are inid and
Markov LLN and Liapounov CLT (Theorems A.9 and A.15) need to be used. These
require moment assumptions additional to those made in the iid case. In the stochastic
regressors case, expectations are with respect to the joint distribution of (y, x), whereas
in the fixed regressors case, such as in a controlled experiment where the level of x can
be set, the expectations in (5.18) and (5.19) are with respect to y only.

For time-series data the regressors are assumed to be stochastic, but they are also
assumed to be dependent across observations, a necessary framework to accommo-
date lagged dependent variables. Hamilton (1994) focuses on this case, which is also
studied extensively by White (2001a). The simplest treatments restrict the random vari-
ables (y, x) to have stationary distribution. If instead the data are nonstationary with
unit roots then rates of convergence may no longer be

√
N and the limit distributions

may be nonnormal.
Despite these important conceptual and theoretical differences about the stochastic

nature of (y, x), however, for cross-section regression the eventual limit theorem is
usually of the general form given in Theorem 5.3.
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5.3.6. Discussion

The form of the variance matrix in (5.20) is called the sandwich form, with B0 sand-
wiched between A−1

0 and A−1
0 . The sandwich form, introduced in Section 4.4.4, will

be discussed in more detail in Section 5.5.2.
The asymptotic results can be extended to inconsistent estimators. Then θ0 is re-

placed by the pseudo-true value θ∗, defined to be that value of θ that yields the local
maximum of Q0(θ). This is considered in further detail for quasi-ML estimation in
Section 5.7.1. In most cases, however, the estimator is consistent and in later chapters
the subscript 0 is often dropped to simplify notation.

In the preceding results the objective function QN (θ) is initially defined with nor-
malization by 1/N , the first derivative of QN (θ) is then normalized by

√
N , and the

second derivative is not normalized, leading to a
√

N -consistent estimator. In some
cases alternative normalizations may be needed, most notably time series with nonsta-
tionary trend.

The results assume that QN (θ) is a continuous differentiable function. This
excludes some estimators such as least absolute deviations, for which QN (θ) =
N−1∑

i |yi − x′
iβ|. One way to proceed in this case is to obtain a differentiable ap-

proximating function Q∗
N (θ) such that Q∗

N (θ) − QN (θ)
p→ 0 and apply the preceding

theorem to Q∗
N (θ).

The key component to obtaining the limit distribution is linearization using a Taylor
series expansion. Taylor series expansions can be a poor global approximation to a
function. They work well in the statistical application here as the approximation is
asymptotically a local one, since consistency implies that for large sample sizes θ̂ is
close to the point of expansion θ0. More refined asymptotic theory is possible using the
Edgeworth expansion (see Section 11.4.3). The bootstrap (see Chapter 11) is a method
to empirically implement an Edgeworth expansion.

5.3.7. Informal Approach to Consistency of an m-Estimator

For the practitioner the limit normal result of Theorem 5.3 is much easier to prove than
formal proof of consistency using Theorem 5.1 or 5.2. Here we present an informal
approach to determining the nature and strength of distributional assumptions needed
for an m-estimator to be consistent.

For an m-estimator that is a local maximum, the first-order conditions (5.4) imply
that θ̂ is chosen so that the average of ∂qi (θ)/∂θ|̂θ equals zero. Intuitively, a necessary
condition for this to yield a consistent estimator for θ0 is that in the limit the average
of ∂q(θ)/∂θ|θ0

goes to 0, or that

plim
∂QN (θ)

∂θ

∣∣∣∣
θ0

= lim
1

N

N∑
i=1

E

[
∂qi (θ)

∂θ

∣∣∣∣
θ0

]
= 0, (5.24)

where the first equality requires the assumption that a law of large numbers can be
applied and expectation in (5.24) is taken with respect to the population dgp for (y,X).
The limit is used as the equality need not be exact, provided any departure from zero
disappears as N → ∞. For example, consistency should hold if the expectation equals
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1/N . The condition (5.24) provides a very useful check for the practitioner. An infor-
mal approach to consistency is to look at the first-order conditions for the estimator
θ̂ and determine whether in the limit these have expectation zero when evaluated at
θ = θ0.

Even less formally, if we consider the components in the sum, the essential condi-
tion for consistency is whether for the typical observation

E
[
∂q(θ)/∂θ|θ0

] = 0. (5.25)

This condition can provide a very useful guide to the practitioner. However, it is neither
a necessary nor a sufficient condition. If the expectation in (5.25) equals 1/N then it
is still likely that the probability limit in (5.24) equals zero, so the condition (5.25) is
not necessary. To see that it is not sufficient, consider y iid with mean µ0 estimated
using just one observation, say the first observation y1. Then µ̂ solves y1 − µ = 0 and
(5.25) is satisfied. But clearly y1

p
� µ0 as the single observation y1 has a variance that

does not go to zero. The problem is that here the plim in (5.24) does not equal limE.
Formal proof of consistency requires use of theorems such as Theorem 5.1 or 5.2.

For Poisson regression use of (5.25) reveals that the essential condition for consis-
tency is correct specification of the conditional mean of y|x (see Section 5.2.3). Simi-
larly, the OLS estimator solves N−1∑

i xi (yi − x′
iβ) = 0, so from (5.25) consistency

essentially requires that E
[
x(y − x′β0)

] = 0. This condition fails if E[y|x] �= x′β0,
which can happen for many reasons, as given in Section 4.7. In other examples use
of (5.25) can indicate that consistency will require considerably more parametric as-
sumptions than correct specification of the conditional mean.

To link use of (5.24) to condition (iii) in Theorem 5.2, note the following:

∂Q0(θ)/∂θ = 0 (condition (iii) in Theorem 5.2)

⇒ ∂(plim QN (θ))/∂θ = 0 (from definition of Q0(θ))

⇒ ∂(lim E[QN (θ)])/∂θ = 0 (as an LLN ⇒ Q0 = plimQN = lim E[QN ])

⇒ lim ∂E[QN (θ)]/∂θ = 0 (interchanging limits and differentiation), and

⇒ lim E[∂QN (θ)/∂θ] = 0 (interchanging differentiation and expectation).

The last line is the informal condition (5.24). However, obtaining this result re-
quires additional assumptions, including restriction to local maximum, application
of a law of large numbers, interchangeability of limits and differentiation, and in-
terchangeability of differentiation and expectation (i.e., integration). In the scalar
case a sufficient condition for interchanging differentiation and limits is limh→0

(E[QN (θ + h)] − E[QN (θ )]) /h = dE[QN (θ )]/dθ uniformly in θ .

5.4. Estimating Equations

The derivation of the limit distribution given in Section 5.3.3 can be extended from a
local extremum estimator to estimators defined as being the solution of an estimating
equation that sets an average to zero. Several examples are given in Chapter 6.
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5.4.1. Estimating Equations Estimator

Let θ̂ be defined as the solution to the system of q estimating equations

hN (̂θ) = 1

N

∑N

i=1
h(yi , xi , θ̂) = 0, (5.26)

where h(·) is a q × 1 vector, and independence over i is assumed. Examples of h(·) are
given later in Section 5.4.2.

Since θ̂ is chosen so that the sample average of h(y, x, θ̂) equals zero, we expect that

θ̂
p→ θ0 if in the limit the average of h(y, x,θ0) goes to zero, that is, if plim hN (θ0) =

0. If an LLN can be applied this requires that limE[hN (θ0)] = 0, or more loosely that
for the i th observation

E[h(yi , xi ,θ0)] = 0. (5.27)

The easiest way to formally establish consistency is actually to derive (5.26) as the
first-order conditions for an m-estimator.

Assuming consistency, the limit distribution of the estimating equations estimator
can be obtained in the same manner as in Section 5.3.3 for the extremum estimator.
Take an exact first-order Taylor series expansion of hN (θ) around θ0, as in (5.15) with
f(θ) = hN (θ), and set the right-hand side to 0 and solve. Then

√
N (̂θ − θ0) = −

(
∂hN (θ)

∂θ′

∣∣∣∣
θ+

)−1 √
NhN (θ0). (5.28)

This leads to the following theorem.

Theorem 5.4 (Limit Distribution of Estimating Equations Estimator):
Assume that the estimating equations estimator that solves (5.26) is consistent
for θ0 and make the following assumptions:

(i) ∂hN (θ)/∂θ′ exists and is continuous in an open convex neighborhood of θ0.

(ii) ∂hN (θ)/∂θ′∣∣
θ+ converges in probability to the finite nonsingular matrix

A0 = plim
∂hN (θ)

∂θ′

∣∣∣∣
θ0

= plim
1

N

∑N

i=1

∂hi (θ)

∂θ′

∣∣∣∣
θ0

, (5.29)

for any sequence θ+ such that θ+ p→ θ0.

(iii)
√

NhN (θ0)
d→ N [0,B0], where

B0 = plimNhN (θ0)hN (θ0)′ = plim
1

N

∑N

i=1

∑N

j=1
hi (θ0)h j (θ0)′. (5.30)

Then the limit distribution of the estimating equations estimator is
√

N (̂θ − θ0)
d→ N [0,A−1

0 B0A′−1
0 ], (5.31)

where, unlike for the extremum estimator, the matrix A0 may not be symmetric
since it is no longer necessarily a Hessian matrix.
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This theorem can be proved by adaptation of Amemiya’s proof of Theorem 5.3.
Note that Theorem 5.4 assumes that consistency has already been established.

Godambe (1960) showed that for analysis conditional on regressors the most effi-
cient estimating equations estimator sets hi (θ) = ∂ ln f (yi |xi ,θ)/∂θ. Then (5.26) are
the first-order conditions for the ML estimator.

5.4.2. Analogy Principle

The analogy principle uses population conditions to motivate estimators. The book
by Manski (1988a) emphasizes the importance of the analogy principle as a unify-
ing theme for estimation. Manski (1988a, p. xi) provides the following quote from
Goldberger (1968, p. 4):

The analogy principle of estimation . . . proposes that population parameters be
estimated by sample statistics which have the same property in the sample as the
parameters do in the population.

Analogue estimators are estimators obtained by application of the analogy prin-
ciple. Population moment conditions suggest as estimator the solution to the corre-
sponding sample moment condition.

Extremum estimator examples of application of the analogy principle have been
given in Section 4.2. For instance, if the goal of prediction is to minimize expected
loss in the population and squared error loss is used, then the regression parameters β
are estimated by minimizing the sample sum of squared errors.

Method of moments estimators are also examples. For instance, in the iid case if
E[yi − µ] = 0 in the population then we use as estimator µ̂ that solves the correspond-
ing sample moment conditions N−1∑

i (yi − µ) = 0, leading to µ̂ = ȳ, the sample
mean.

An estimating equations estimator may be motivated as an analogue estimator. If
(5.27) holds in the population then estimate θ by solving the corresponding sample
moment condition (5.26).

Estimating equations estimators are extensively used in microeconometrics. The
relevant theory can be subsumed within that for generalized method of moments,
presented in the next chapter, which is an extension that permits there to be more
moment conditions than parameters. In applied statistics the approach is used in the
context of generalized estimating equations.

5.5. Statistical Inference

A detailed treatment of hypothesis tests and confidence intervals is given in Chapter 7.
Here we outline how to test linear restrictions, including exclusion restrictions, using
the most common method, the Wald test for estimators that may be nonlinear. Asymp-
totic theory is used, so formal results lead to chi-square and normal distributions rather
than the small sample F- and t-distributions from linear regression under normality.
Moreover, there are several ways to consistently estimate the variance matrix of an
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extremum estimator, leading to alternative estimates of standard errors and associated
test statistics and p-values.

5.5.1. Wald Hypothesis Tests of Linear Restrictions

Consider testing h linearly independent restrictions, say H0 against Ha , where

H0 : Rθ0 − r = 0,
Ha : Rθ0 − r �= 0,

with R an h × q matrix of constants and r an h × 1 vector of constants. For example,
if θ= [θ1, θ2, θ3] then to test whether θ10 − θ20 = 2, R = [1,−1, 0] and r = −2.

The Wald test rejects H0 if Rθ̂ − r, the sample estimate of Rθ0 − r, is signifi-
cantly different from 0. This requires knowledge of the distribution of Rθ̂ − r. Sup-

pose
√

N (̂θ − θ0)
d→ N [0,C0], where C0= A−1

0 B0A−1
0 from (5.20). Then

θ̂
a∼ N

[
θ0,N

−1C0
]
,

so that under H0 the linear combination

Rθ̂ − r
a∼ N

[
0,R(N−1C0)R′] ,

where the mean is zero since Rθ0 − r = 0 under H0.

Chi-Square Tests

It is convenient to move from the multivariate normal distribution to the chi-square
distribution by taking the quadratic form. This yields the Wald statistic

W= (Rθ̂ − r)′
(
R(N−1Ĉ)R′)−1

(Rθ̂ − r)
d→ χ2(h) (5.32)

under H0, where R(N−1C0)R′ is of full rank h under the assumption of linearly inde-
pendent restrictions, and Ĉ is a consistent estimator of C0. Large values of W lead to
rejection, and H0 is rejected at level α if W > χ2

α(h) and is not rejected otherwise.
Practitioners frequently instead use the F-statistic F = W/h. Inference is then based

on the F(h, N − q) distribution in the hope that this might provide a better finite sam-
ple approximation. Note that h times the F(h, N ) distribution converges to the χ2(h)
distribution as N → ∞.

The replacement of C0 by Ĉ in obtaining (5.32) makes no difference asymptotically,
but in finite samples different Ĉ will lead to different values of W. In the case of
classical linear regression this step corresponds to replacing σ 2 by s2. Then W/h is
exactly F distributed if the errors are normally distributed (see Section 7.2.1).

Tests of a Single Coefficient

Often attention is focused on testing difference from zero of a single coefficient, say the
j th coefficient. Then Rθ − r = θ j and W = θ̂2

j/(N−1̂c j j ), where ĉ j j is the j th diagonal
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element in Ĉ. Taking the square root of W yields

t = θ̂ j

se[̂θ j ]

d→ N [0, 1] (5.33)

under H0, where se[̂θ j ] = √N−1̂c j j is the asymptotic standard error of θ̂ j . Large val-
ues of t lead to rejection, and unlike W the statistic t can be used for one-sided tests.

Formally
√

W is an asymptotic z-statistic, but we use the notation t as it yields
the usual “t-statistic,” the estimate divided by its standard error. In finite samples,
some statistical packages use the standard normal distribution whereas others use the
t-distribution to compute critical values, p-values, and confidence intervals. Neither is
exactly correct in finite samples, except in the very special case of linear regression
with errors assumed to be normally distributed, in which case the t-distribution is
exact. Both lead to the same results in infinitely large samples as the t-distribution
then collapses to the standard normal.

5.5.2. Variance Matrix Estimation

There are many possible ways to estimate A−1
0 B0A′−1

0 , because there are many ways to
consistently estimate A0 and B0. Thus different econometrics programs should give the
same coefficient estimates but, quite reasonably, can give standard errors, t-statistics,
and p-values that differ in finite samples. It is up to the practitioner to determine the
method used and the strength of the associated distributional assumptions on the dgp.

Sandwich Estimate of the Variance Matrix

The limit distribution of
√

N (̂θ − θ0) has variance matrix A−1
0 B0A′−1

0 . It follows that
θ̂ has asymptotic variance matrix N−1A−1

0 B0A′−1
0 , where division by N arises because

we are considering θ̂ rather than
√

N (̂θ − θ0).
A sandwich estimate of the asymptotic variance of θ̂ is any estimate of the form

V̂[̂θ] = N−1Â−1B̂Â′−1, (5.34)

where Â is consistent for A0 and B̂ is consistent for B0. This is called the sandwich
form since B̂ is sandwiched between Â −1 and Â′ −1. For many estimators A is a
Hessian matrix so Â −1 is symmetric, but this need not always be the case.

A robust sandwich estimate is a sandwich estimate where the estimate B̂ is con-
sistent for B0 under relatively weak assumptions. It leads to what are termed robust
standard errors. A leading example is White’s heteroskedastic-consistent estimate of
the variance matrix of the OLS estimator (see Section 4.4.5). In various specific con-
texts, detailed in later sections, robust sandwich estimates are called Huber estimates,
after Huber (1967); Eicker–White estimates, after Eicker (1967) and White (1980a,b,
1982); and in stationary time-series applications Newey–West estimates, after Newey
and West (1987b).
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Estimation of A and B

Here we present different estimators for A0 and B0 for both the estimating equa-
tions estimator that solves hN (̂θ) = 0 and the local extremum estimator that solves
∂QN (θ)/∂θ|̂θ = 0.

Two standard estimates of A0 in (5.29) and (5.18) are the Hessian estimate

ÂH = ∂hN (θ)

∂θ′

∣∣∣∣̂
θ

= ∂2 QN (θ)

∂θ∂θ′

∣∣∣∣̂
θ

, (5.35)

where the second equality explains the use of the term Hessian, and the expected
Hessian estimate

ÂEH = E

[
∂hN (θ)

∂θ′

]∣∣∣∣̂
θ

= E

[
∂2 QN (θ)

∂θ∂θ′

]∣∣∣∣̂
θ

. (5.36)

The first is analytically simpler and potentially relies on fewer distributional assump-
tions; the latter is more likely to be negative definite and invertible.

For B0 in (5.30) or (5.19) it is not possible to use the obvious estimate
NhN (̂θ)hN (̂θ)′, since this equals zero as θ̂ is defined to satisfy hN (̂θ) = 0. One es-
timate is to make potentially strong distributional assumptions to get

B̂E = E
[
NhN (θ)hN (θ)′

]∣∣̂
θ

= E

[
N
∂QN (θ)

∂θ

∂QN (θ)

∂θ′

]∣∣∣∣̂
θ

. (5.37)

Weaker assumptions are possible for m-estimators and estimating equations estimators
with data independent over i . Then (5.30) simplifies to

B0 = E

[
1

N

∑N

i=1
hi (θ)hi (θ)′

]
,

since independence implies that, for i �= j , E
[
hi h j

′]= E[hi ]E[h j
′], which in turn

equals zero given E[hi (θ)] = 0. This leads to the outer product (OP) estimate or
BHHH estimate (after Berndt, Hall, Hall, and Hausman, 1974)

B̂OP = 1

N

∑N

i=1
hi (̂θ)hi (̂θ)′ = 1

N

∑N

i=1

∂qi (θ)

∂θ

∣∣∣∣̂
θ

∂qi (θ)

∂θ′

∣∣∣∣̂
θ

. (5.38)

B̂OP requires fewer assumptions than B̂E.
In practice a degrees of freedom adjustment is often used in estimating B0, with

division in (5.38) for B̂OP by (N − q) rather than N , and similar multiplication of B̂E

in (5.37) by N/(N − q). There is no theoretical justification for this adjustment in
nonlinear models, but in some simulation studies this adjustment leads to better finite-
sample performance and it does coincide with the degrees of freedom adjustment made
for OLS with homoskedastic errors. No similar adjustment is made for ÂH or ÂEH.

Simplification occurs in some special cases with A0 = − B0. Leading examples are
OLS or NLS with homoskedastic errors (see Section 5.8.3) and maximum likelihood
with correctly specified distribution (see Section 5.6.4). Then either −Â−1 or B̂−1 may
be used to estimate the variance of

√
N (̂θ − θ0). These estimates are less robust to

misspecification of the dgp than those using the sandwich form. Misspecification of
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the dgp, however, may additionally lead to inconsistency of θ̂, in which case even
inference based on the robust sandwich estimate will be invalid.

For the Poisson example of Section 5.2, ÂH = ÂEH = −N−1∑
i exp(x′

i β̂)xi x
′
i and

B̂OP = (N − q)−1∑
i (yi − exp(x′

i β̂))2xi x′
i . If V[y|x] = exp(x′β0), the case if y|x is

actually Poisson distributed, then B̂E = −[N/(N − q)]ÂEH and simplification occurs.

5.6. Maximum Likelihood

The ML estimator holds special place among estimators. It is the most efficient estima-
tor among consistent asymptotically normal estimators. It is also important pedagog-
ically, as many methods for nonlinear regression such as m-estimation can be viewed
as extensions and adaptations of results first obtained for ML estimation.

5.6.1. Likelihood Function

The Likelihood Principle

The likelihood principle, due to R. A. Fisher (1922), is to choose as estimator of the
parameter vector θ0 that value of θ that maximizes the likelihood of observing the ac-
tual sample. In the discrete case this likelihood is the probability obtained from the
probability mass function; in the continuous case this is the density. Consider the dis-
crete case. If one value of θ implies that the probability of the observed data occurring
is .0012, whereas a second value of θ gives a higher probability of .0014, then the
second value of θ is a better estimator.

The joint probability mass function or density f (y,X|θ) is viewed here as a func-
tion of θ given the data (y,X). This is called the likelihood function and is denoted
by LN (θ|y,X). Maximizing LN (θ) is equivalent to maximizing the log-likelihood
function

LN (θ) = ln LN (θ).

We take the natural logarithm because in application this leads to an objective function
that is the sum rather than the product of N terms.

Conditional Likelihood

The likelihood function LN (θ) = f (y,X|θ) = f (y|X,θ) f (X|θ) requires specification
of both the conditional density of y given X and the marginal density of X.

Instead, estimation is usually based on the conditional likelihood function
LN (θ) = f (y|X,θ), since the goal of regression is to model the behavior of y given
X. This is not a restriction if f (y|X) and f (X) depend on mutually exclusive sets
of parameters. When this is the case it is common terminology to drop the adjective
conditional. For rare exceptions such as endogenous sampling (see Chapters 3 and
24) consistent estimation requires that estimation is based on the full joint density
f (y,X|θ) rather than the conditional density f (y|X,θ).
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Table 5.3. Maximum Likelihood: Commonly Used Densities

Model Range of y Density f (y) Common Parameterization

Normal (−∞,∞) [2πσ 2]−1/2e−(y−µ)2/2σ 2
µ = x′β, σ 2 = σ 2

Bernoulli 0 or 1 py(1 − p)1−y Logit p = ex′β/(1 + ex′β)
Exponential (0,∞) λe−λy λ = ex′β or 1/λ = ex′β

Poisson 0, 1, 2, . . . e−λλy/y! λ = ex′β

For cross-section data the observations (yi , xi ) are independent over i with condi-
tional density function f (yi |xi ,θ). Then by independence the joint conditional density
f (y|X,θ) =∏N

i=1 f (yi |xi ,θ), leading to the (conditional) log-likelihood function

QN (θ) = N−1LN (θ) = 1

N

N∑
i=1

ln f (yi |xi ,θ), (5.39)

where we divide by N so that the objective function is an average.
Results extend to multivariate data, systems of equations, and panel data by re-

placing the scalar yi by vector yi and letting f (yi |xi ,θ) be the joint density of yi

conditional on xi . See also Section 5.7.5.

Examples

Across a wide range of data types the following method is used to generate fully
parametric cross-section regression models. First choose the one-parameter or two-
parameter (or in some rare cases three-parameter) distribution that would be used for
the dependent variable y in the iid case studied in a basic statistics course. Then pa-
rameterize the one or two underlying parameters in terms of regressors x and para-
meters θ.

Some commonly used distributions and parameterizations are given in Table 5.3.
Additional distributions are given in Appendix B, which also presents methods to draw
pseudo-random variates.

For continuous data on (−∞,∞), the normal is the standard distribution. The clas-
sical linear regression model sets µ = x′β and assumes σ 2 is constant.

For discrete binary data taking values 0 or 1, the density is always the Bernoulli,
a special case of the binomial with one trial. The usual parameterizations for the
Bernoulli probability lead to the logit model, given in Table 5.3, and the probit model
with p = Φ(x′β), where Φ(·) is the standard normal cumulative distribution function.
These models are analyzed in Chapter 14.

For positive continuous data on (0,∞), notably duration data considered in Chap-
ters 17–19, the richer Weibull, gamma, and log-normal models are often used in addi-
tion to the exponential given in Table 5.3.

For integer-valued count data taking values 0, 1, 2, . . . (see Chapter 20) the richer
negative binomial is often used in addition to the Poisson presented in Section 5.2.1.
Setting λ = exp(x′β) ensures a positive conditional mean.
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For incompletely observed data, censored or truncated variants of these distributions
may be used. The most common example is the censored normal, which is called the
Tobit model and is presented in Section 16.3.

Standard likelihood-based models are rarely specified by making assumptions on
the distribution of an error term. They are instead defined directly in terms of the
distribution of the dependent variable. In the special case that y ∼ N [x′β,σ 2] we can
equivalently define y = x′β + u, where the error term u ∼ N [0,σ 2]. However, this
relies on an additive property of the normal shared by few other distributions. For
example, if y is Poisson distributed with mean exp(x′β) we can always write y =
exp(x′β) + u, but the error u no longer has a familiar distribution.

5.6.2. Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) is the estimator that maximizes the (con-
ditional) log-likelihood function and is clearly an extremum estimator. Usually the
MLE is the local maximum that solves the first-order conditions

1

N

∂LN (θ)

∂θ
= 1

N

N∑
i=1

∂ ln f (yi |xi ,θ)

∂θ
= 0. (5.40)

More formally this estimator is the conditional MLE, as it is based on the conditional
density of y given x, but it is common practice to use the simpler term MLE.

The gradient vector ∂LN (θ)/∂θ is called the score vector, as it sums the first deriva-
tives of the log density, and when evaluated at θ0 it is called the efficient score.

5.6.3. Information Matrix Equality

The results of Section 5.3 simplify for the MLE, provided the density is correctly
specified and is one for which the range of y does not depend on θ.

Regularity Conditions

The ML regularity conditions are that

E f

[
∂ ln f (y|x,θ)

∂θ

]
=
∫
∂ ln f (y|x,θ)

∂θ
f (y|x,θ) = 0 (5.41)

and

−E f

[
∂2 ln f (y|x,θ)

∂θ∂θ′

]
= E f

[
∂ ln f (y|x,θ)

∂θ

∂ ln f (y|x,θ)

∂θ′

]
, (5.42)

where the notation E f [·] is used to make explicit that the expectation is with respect to
the specified density f (y|x,θ). Result (5.41) implies that the score vector has expected
value zero, and (5.42) yields (5.44).

Derivation given in Section 5.6.7 requires that the range of y does not depend on θ
so that integration and differentiation can be interchanged.
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Information Matrix Equality

The information matrix is the expectation of the outer product of the score vector,

I = E

[
∂LN (θ)

∂θ

∂LN (θ)

∂θ′

]
. (5.43)

The terminology information matrix is used as I is the variance of ∂LN (θ)/∂θ, since
by (5.41) ∂LN (θ)/∂θ has mean zero. Then large values of I mean that small changes
in θ lead to large changes in the log-likelihood, which accordingly contains consider-
able information about θ. The quantity I is more precisely called Fisher Information,
as there are alternative information measures.

For log-likelihood function (5.39), the regularity condition (5.42) implies that

−E f

[
∂2LN (θ)

∂θ∂θ′

∣∣∣∣
θ0

]
= E f

[
∂LN (θ)

∂θ

∂LN (θ)

∂θ′

∣∣∣∣
θ0

]
, (5.44)

if the expectation is with respect to f (y|x,θ0). The relationship (5.44) is called the
information matrix (IM) equality and implies that the information matrix also equals
−E[∂2LN (θ)/∂θ∂θ′]. The IM equality (5.44) implies that −A0 = B0, where A0 and
B0 are defined in (5.18) and (5.19). Theorem 5.3 then simplifies since A−1

0 B0A−1
0 =

−A−1
0 = B−1

0 .
The equality (5.42) is in turn a special case of the generalized information matrix

equality

E f

[
∂m(y,θ)

∂θ′

]
= −E f

[
m(y,θ)

∂ ln f (y|θ)

∂θ′

]
, (5.45)

where m(·) is a vector moment function with E f [m(y,θ)] = 0 and expectations are
with respect to the density f (y|θ). This result, also obtained in Section 5.6.7, is used
in Chapters 7 and 8 to obtain simpler forms of some test statistics.

5.6.4. Distribution of the ML Estimator

The regularity conditions (5.41) and (5.42) lead to simplification of the general results
of Section 5.3.

The essential consistency condition (5.25) is that E[∂ ln f (y|x,θ)/∂θ|θ0
] = 0. This

holds by the regularity condition (5.41), provided the expectation is with respect to
f (y|x,θ0). Thus if the dgp is f (y|x,θ0), that is, the density has been correctly speci-
fied, the MLE is consistent for θ0.

For the asymptotic distribution, simplification occurs since −A0 = B0 by the IM
equality, which again assumes that the density is correctly specified.

These results can be collected into the following proposition.

Proposition 5.5 (Distribution of ML Estimator): Make the following assump-
tions:

(i) The dgp is the conditional density f (yi |xi ,θ0) used to define the likelihood
function.
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(ii) The density function f (·) satisfies f (y,θ(1)) = f (y,θ(2)) iff θ(1) = θ(2)

(iii) The matrix

A0 = plim
1

N

∂2LN (θ)

∂θ∂θ′

∣∣∣∣
θ0

(5.46)

exists and is finite nonsingular.

(iv) The order of differentiation and integration of the log-likelihood can be re-
versed.

Then the ML estimator θ̂ML, defined to be a solution of the first-order conditions
∂N−1LN (θ)/∂θ = 0, is consistent for θ0, and

√
N (̂θML − θ0)

d→ N
[
0,−A−1

0

]
. (5.47)

Condition (i) states that the conditional density is correctly specified; conditions
(i) and (ii) ensure that θ0 is identified; condition (iii) is analogous to the assumption
on plim N−1X′X in the case of OLS estimation; and condition (iv) is necessary for the
regularity conditions to hold. As in the general case probability limits and expectations
are with respect to the dgp for (y,X), or with respect to just y if regressors are assumed
to be nonstochastic or analysis is conditional on X.

Relaxation of condition (i) is considered in detail in Section 5.7. Most ML examples
satisfy condition (iv), but it does rule out some models such as y uniformly distributed
on the interval [0, θ ] since in this case the range of y varies with θ . Then not only
does A0 �= −B0 but the global MLE converges at a rate other than

√
N and has limit

distribution that is nonnormal. See, for example, Hirano and Porter (2003).
Given Proposition 5.5, the resulting asymptotic distribution of the MLE is often

expressed as

θ̂ML
a∼ N

[
θ,−

(
E

[
∂2LN (θ)

∂θ∂θ′

])−1
]
, (5.48)

where for notational simplicity the evaluation at θ0 is suppressed and we assume that
an LLN applies so that the plim operator in the definition of A0 is replaced by limE
and then drop the limit. This notation is often used in later chapters.

The right-hand side of (5.48) is the Cramer–Rao lower bound (CRLB), which from
basic statistics courses is the lower bound of the variance of unbiased estimators in
small samples. For large samples, considered here, the CRLB is the lower bound for
the variance matrix of consistent asymptotically normal (CAN) estimators with con-
vergence to normality of

√
N (̂θ − θ0) uniform in compact intervals of θ0 (see Rao,

1973, pp. 344–351). Loosely speaking the MLE has the strong attraction of having
the smallest asymptotic variance among root−N consistent estimators. This result re-
quires the strong assumption of correct specification of the conditional density.

5.6.5. Weibull Regression Example

As an example, consider regression based on the Weibull distribution, which is used to
model duration data such as length of unemployment spell (see Chapter 17).
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The density for the Weibull distribution is f (y) = γαyα−1 exp(−γ yα), where y > 0
and the parameters α > 0 and γ > 0. It can be shown that E[y] = γ−1/αΓ(α−1 + 1),
where Γ(·) is the gamma function. The standard Weibull regression model is obtained
by specifying γ = exp(x′β), in which case E[y|x] = exp(−x′β/α)Γ(α−1 + 1). Given
independence over i the log-likelihood function is

N−1LN (θ) = N−1
∑

i
{x′

iβ + lnα + (α − 1) ln yi − exp(x′
iβ)yαi }.

Differentiation with respect to β and α leads to the first-order conditions

N−1∑
i {1 − exp(x′

iβ)yαi }xi = 0,

N−1∑
i { 1
α

+ ln yi − exp(x′
iβ)yαi ln yi } = 0.

Unlike the Poisson example, consistency essentially requires correct specification
of the distribution. To see this, consider the first-order conditions for β. The informal
condition (5.25) that E[{1 − exp(x′β)yα}x] = 0 requires that E[yα|x] = exp(−x′β),
where the power α is not restricted to be an integer. The first-order conditions for α
lead to an even more esoteric moment condition on y.

So we need to proceed on the assumption that the density is indeed Weibull with
γ = exp(x′β0) and α = α0. Theorem 5.5 can be applied as the range of y does not de-
pend on the parameters. Then, from (5.48), the Weibull MLE is asymptotically normal
with asymptotic variance

V

[
β̂

α̂

]
=
(

−E

[ ∑
i −ex′

iβ0 yα0
i xi x′

i

∑
i −ex′

iβ0 yα0
i ln(yi )xi∑

i −ex′
iβ0 yα0

i ln(yi )x′
i

∑
i di

])−1

, (5.49)

where di = −(1/α2
0) − ex′

iβ0 yα0
i (ln yi )2. The matrix inverse in (5.49) needs to be ob-

tained by partitioned inversion because the off-diagonal term ∂2LN (β,α)/∂β∂α does
not have expected value zero. Simplification occurs in models with zero expected
cross-derivative E[∂2LN (β,α)/∂β∂α′] = 0, such as regression with normally dis-
tributed errors, in which case the information matrix is said to be block diagonal
in β and α.

5.6.6. Variance Matrix Estimation for MLE

There are several ways to consistently estimate the variance matrix of an extremum
estimator, as already noted in Section 5.5.2. For the MLE additional possibilities arise
if the information matrix equality is assumed to hold. Then A−1

0 B0A−1
0 , −A−1

0 , and B−1
0

are all asymptotically equivalent, as are the corresponding consistent estimates of these
quantities. A detailed discussion for the MLE is given in Davidson and MacKinnon
(1993, chapter 18).

The sandwich estimate Â−1B̂Â−1 is called the Huber estimate, after Huber (1967),
or White estimate, after White (1982), who considered the distribution of the MLE
without imposing the information matrix equality. The sandwich estimate is in theory
more robust than −Â−1 or B̂−1. It is important to note, however, that the cause of fail-
ure of the information matrix equality may additionally lead to the more fundamental
complication of inconsistency of θ̂ML. This is the subject of Section 5.7.
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5.6.7. Derivation of ML Regularity Conditions

We now formally derive the regularity conditions stated in Section 5.6.3. For notational
simplicity the subscript i and the regressor vector are suppressed.

Begin by deriving the first condition (5.41). The density integrates to one, that is,∫
f (y|θ)dy = 1.

Differentiating both sides with respect to θ yields ∂
∂θ

∫
f (y|θ)dy = 0. If the range of

integration (the range of y) does not depend on θ this implies∫
∂ f (y|θ)

∂θ
dy = 0. (5.50)

Now ∂ ln f (y|θ)/∂θ = [∂ f (y|θ)/∂θ]/[ f (y|θ )], which implies

∂ f (y|θ)

∂θ
= ∂ ln f (y|θ)

∂θ
f (y|θ). (5.51)

Substituting (5.51) in (5.50) yields∫
∂ ln f (y|θ)

∂θ
f (y|θ)dy = 0, (5.52)

which is (5.41) provided the expectation is with respect to the density f (y|θ).
Now consider the second condition (5.42), initially deriving a more general result.

Suppose

E[m(y,θ)] = 0,

for some (possibly vector) function m(·). Then when the expectation is taken with
respect to the density f (y|θ) ∫

m(y,θ) f (y|θ)dy = 0. (5.53)

Differentiating both sides with respect to θ′ and assuming differentiation and integra-
tion are interchangeable yields∫ (

∂m(y,θ)

∂θ′ f (y|θ) + m(y,θ)
∂ f (y|θ)

∂θ′

)
dy = 0. (5.54)

Substituting (5.51) in (5.54) yields∫ (
∂m(y,θ)

∂θ′ f (y|θ) + m(y,θ)
∂ ln f (y|θ)

∂θ′ f (y|θ)

)
dy = 0, (5.55)

or

E

[
∂m(y,θ)

∂θ′

]
= −E

[
m(y,θ)

∂ ln f (y|θ)

∂θ′

]
, (5.56)

when the expectation is taken with respect to the density f (y|θ). The regularity con-
dition (5.42) is the special case m(y,θ) = ∂ ln f (y|θ)/∂θ and leads to the IM equality
(5.44). The more general result (5.56) leads to the generalized IM equality (5.45).
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What happens when integration and differentiation cannot be interchanged? The
starting point (5.50) no longer holds, as by the fundamental theorem of calculus
the derivative with respect to θ of

∫
f (y|θ)dy includes an additional term reflecting

the presence of a function θ in the range of the integral. Then E[∂ ln f (y|θ)/∂θ] �= 0.
What happens when the density is misspecified? Then (5.52) still holds, but it does

not necessarily imply (5.41), since in (5.41) the expectation will no longer be with
respect to the specified density f (y|θ).

5.7. Quasi-Maximum Likelihood

The quasi-MLE θ̂QML is defined to be the estimator that maximizes a log-likelihood
function that is misspecified, as the result of specification of the wrong density. Gen-
erally such misspecification leads to inconsistent estimation.

In this section general properties of the quasi-MLE are presented, followed by some
special cases where the quasi-MLE retains consistency.

5.7.1. Psuedo-True Value

In principle any misspecification of the density may lead to inconsistency, as then the
expectation in evaluation of E[∂ ln f (y|x,θ)/∂θ|θ0

] (see Section 5.6.4) is no longer
with respect to f (y|x,θ0).

By adaptation of the general consistency proof in Section 5.3.2, the quasi-MLE
θ̂QML converges in probability to the pseudo-true value θ∗ defined as

θ∗ = arg max θ∈Θ(plim N−1LN (θ)). (5.57)

The probability limit is taken with respect to the true dgp. If the true dgp differs
from the assumed density f (y|x,θ) used to form LN (θ), then usually θ∗ �= θ0 and
the quasi-MLE is inconsistent.

Huber (1967) and White (1982) showed that the asymptotic distribution of the
quasi-MLE is similar to that for the MLE, except that it is centered around θ∗ and
the IM equality no longer holds. Then

√
N (̂θQML − θ∗)

d→ N
[
0,A∗−1B∗A∗−1

]
, (5.58)

where A∗ and B∗ are as defined in (5.18) and (5.19) except that probability limits
are taken with respect to the unknown true dgp and are evaluated at θ∗. Consistent
estimates Â∗ and B̂∗ can be obtained as in Section 5.5.2, with evaluation at θ̂QML.

This distributional result is used for statistical inference if the quasi-MLE retains
consistency. If the quasi-MLE is inconsistent then usually θ∗ has no simple interpre-
tation, aside from that given in the next section. However, (5.58) may still be useful if
nonetheless there is interest in knowing the precision of estimation. The result (5.58)
also provides motivation for White’s information matrix test (see Section 8.2.8) and
for Vuong’s test for discriminating between parametric models (see Section 8.5.3).
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5.7.2. Kullback–Liebler Distance

Recall from Section 4.2.3 that if E[y|x] �= x′β0 then the OLS estimator can still be
interpreted as the best linear predictor of E[y|x] under squared error loss. White (1982)
proposed a qualitatively similar interpretation for the quasi-MLE.

Let f (y|θ) denote the assumed joint density of y1, . . . , yN and let h(y) denote the
true density, which is unknown, where for simplicity dependence on regressors is sup-
pressed. Define the Kullback–Leibler information criterion (KLIC)

KLIC = E

[
ln

(
h(y)

f (y|θ)

)]
, (5.59)

where expectation is with respect to h(y). KLIC takes a minimum value of 0 when
there is a θ0 such that h(y) = f (y|θ0), that is, the density is correctly specified, and
larger values of KLIC indicate greater ignorance about the true density.

Then the quasi-MLE θ̂QML minimizes the distance between f (y|θ) and h(y), where
distance is measured using KLIC. To obtain this result, note that under suitable
assumptions plim N−1LN (θ) = E[ln f (y|θ)], so θ̂QML converges to θ∗ that maxi-
mizes E[ln f (y|θ)]. However, this is equivalent to minimizing KLIC, since KLIC =
E[ln h(y)] − E[ln f (y|θ)] and the first term does not depend on θ as the expectation is
with respect to h(y).

5.7.3. Linear Exponential Family

In some special cases the quasi-MLE is consistent even when the density is partially
misspecified. One well-known example is that the quasi-MLE for the linear regres-
sion model with normality is consistent even if the errors are nonnormal, provided
E[y|x] = x′β0. The Poisson MLE provides a second example (see Section 5.3.4).

Similar robustness to misspecification is enjoyed by other models based on densities
in the linear exponential family (LEF). An LEF density can be expressed as

f (y|µ) = exp{a(µ) + b(y) + c(µ)y}, (5.60)

where we have given the mean parameterization of the LEF, so that µ = E[y]. It can
be shown that for this density E[y] = −[c′(µ)]−1a′(µ) and V[y] = [c′(µ)]−1, where
c′(µ) = ∂c(µ)/∂µ and a′(µ) = ∂a(µ)/∂µ. Different functions a(·) and c(·) lead to
different densities in the family. The term b(y) in (5.60) is a normalizing constant that
ensures probabilities sum or integrate to one. The remainder of the density exp{a(µ) +
c(µ)y} is an exponential function that is linear in y, hence explaining the term linear
exponential.

Most densities cannot be expressed in this form. Several important densities are
LEF densities, however, including those given in Table 5.4. These densities, already
presented in Table 5.3, are reexpressed in Table 5.4 in the form (5.60). Other LEF
densities are the binomial with number of trials known (the Bernoulli being a special
case), some negative binomials models (the geometric and the Poisson being special
cases), and the one-parameter gamma (the exponential being a special case).
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Table 5.4. Linear Exponential Family Densities: Leading Examples

Distribution f (y) = exp{a(·) + b(y) + c(·)y} E[y] V[y] = [c′(µ)]−1

Normal (σ 2 known) exp{−µ2

2σ 2 − 1
2 ln(2πσ 2) − y2

2σ 2 + µ

σ 2 y} µ σ 2

Bernoulli exp{ln(1 − p) + ln[p/(1 − p)]y} µ = p µ(1 − µ)
Exponential exp{ln λ− λy} µ = 1/λ µ2

Poisson exp{−λ− ln y! + y ln λ} µ = λ µ

For regression the parameter µ = E[y|x] is modeled as

µ = g(x,β), (5.61)

for specified function g(·) that varies across models (see Section 5.7.4) depending
in part on restrictions on the range of y and hence µ. The LEF log-likelihood is
then

LN (β) =
N∑

i=1

{a(g(xi ,β)) + b(yi ) + c(g(xi ,β))yi }, (5.62)

with first-order conditions that can be reexpressed, using the aforementioned informa-
tion on the first-two moments of y, as

∂LN (β)

∂β
=

N∑
i=1

yi − g(xi ,β)

σ 2
i

× ∂g(xi ,β)

∂β
= 0, (5.63)

where σ 2
i = [c′(g(xi ,β))]−1 is the assumed variance function corresponding to the par-

ticular LEF density. For example, for Bernoulli, exponential, and Poisson, σ 2
i equals,

respectively, gi (1 − gi ), 1/g2
i , and gi , where gi = g(xi ,β).

The quasi-MLE solves these equations, but it is no longer assumed that the LEF
density is correctly specified. Gouriéroux, Monfort, and Trognon (1984a) proved that
the quasi-MLE β̂QML is consistent provided E[y|x] = g(x,β0). This is clear from
taking the expected value of the first-order conditions (5.63), which evaluated at
β = β0 are a weighted sum of errors y − g(x,β0) with expected value equal to zero
if E[y|x] = g(x,β0).

Thus the quasi-MLE based on an LEF density is consistent provided only that the
conditional mean of y given x is correctly specified. Note that the actual dgp for y
need not be LEF. It is the specified density, potentially incorrectly specified, that is
LEF.

Even with correct conditional mean, however, adjustment of default ML output for
variance, standard errors, and t-statistics based on −A−1

0 is warranted. In general the
sandwich form A−1

0 B0A−1
0 should be used, unless the conditional variance of y given

x is also correctly specified, in which case A0 = −B0. For Bernoulli models, how-
ever, A0 = −B0 always. Consistent standard errors can be obtained using (5.36) and
(5.38).

The LEF is a very special case. In general, misspecification of any aspect of the
density leads to inconsistency of the MLE. Even in the LEF case the quasi-MLE can
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be used only to predict the conditional mean whereas with a correctly specified density
one can predict the conditional distribution.

5.7.4. Generalized Linear Models

Models based on an assumed LEF density are called generalized linear models
(GLMs) in the statistics literature (see the book with this title by McCullagh and
Nelder, 1989). The class of generalized linear models is the most widely used frame-
work in applied statistics for nonlinear cross-section regression, as from Table 5.3 it
includes nonlinear least squares, Poisson, geometric, probit, logit, binomial (known
number of trials), gamma, and exponential regression models. We provide a short
overview that introduces standard GLM terminology.

Standard GLMs specify the conditional mean g(x,β) in (5.61) to be of the simpler
single-index form, so that µ = g(x′β). Then g−1(µ) = x′β, and the function g−1(·) is
called the link function. For example, the usual specification for the Poisson model
corresponds to the log-link function since if µ = exp(x′β) then lnµ = x′β.

The first-order conditions (5.63) become
∑

i [(yi − gi )/c′(gi )]g′
i xi = 0, where gi =

g(x′
iβ) and g′

i = g′(x′
iβ). There are computational advantages in choosing the link

function so that c′(g(µ)) = g′(µ), since then these first-order conditions reduce to∑
i (yi − gi )xi = 0, or the error (yi − gi ) is orthogonal to the regressors. The canonical

link function is defined to be that function g−1(·) which leads to c′(g(µ)) = g′(µ) and
varies with c(µ) and hence the GLM. The canonical link function leads to µ = x′β for
normal, µ = exp(x′β) for Poisson, and µ = exp(x′β)/[1 + exp(x′β)] for binary data.
The last of these is the logit form given earlier in Table 5.3.

Two times the difference between the maximum achievable log-likelihood and the
fitted log-likelihood is called the deviance, a measure that generalizes the residual sum
of squares in linear regression to other LEF regression models.

Models based on the LEF are very restrictive as all moments depend on just one un-
derlying parameter, µ = g(x′β). The GLM literature places some additional structure
by making the convenient assumption that the LEF variance is potentially misspecified
by a scalar multiple α, so that V[y|x] = α × [c′(g(x,β)]−1, where α �= 1 necessarily.
For example, for the Poisson model let V[y|x] = αg(x,β) rather than g(x,β). Given
such variance misspecification it can be shown that B0 = −αA0, so the variance matrix
of the quasi-MLE is −αA−1

0 , which requires only a rescaling of the nonsandwich ML
variance matrix −A−1

0 by multiplication by α. A commonly used consistent estimate
for α is α̂ = (N − K )−1∑

i (yi − ĝi )2/σ̂ 2
i , where ĝi = g(xi , β̂QML), σ̂ 2

i = [c′(̂gi )]−1,
and division is by (N − K ) rather than N is felt to provide a better estimate in small
samples. See the preceding references and Cameron and Trivedi (1986, 1998) for fur-
ther details.

Many statistical packages include a GLM module that as a default gives standard
errors that are correct provided V[y|x] = α[c′(g(x,β))]−1. Alternatively, one can es-
timate using ML, with standard errors obtained using the robust sandwich formula
A−1

0 B0A−1
0 . In practice the sandwich standard errors are similar to those obtained us-

ing the simple GLM correction. Yet another way to estimate a GLM is by weighted
nonlinear least squares, as detailed at the end of Section 5.8.6.
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5.7.5. Quasi-MLE for Multivariate Dependent Variables

This chapter has focused on scalar dependent variables, but the theory applies also to
the multivariate case. Suppose the dependent variable y is an m × 1 vector, and the data
(yi , xi ), i = 1, . . . , N , are independent over i . Examples given in later chapters include
seemingly unrelated equations, panel data with m observations for the i th individual
on the same dependent variable, and clustered data where data for the i j th observation
are correlated over m possible values of j .

Given specification of f (y|x,θ), the joint density of y =(y1, . . . , ym) conditional on
x, the fully efficient MLE maximizes N−1∑

i ln f (yi |xi ,θ) as noted after (5.39). How-
ever, in multivariate applications the joint density of y can be complicated. A simpler
estimator is possible given knowledge only of the m univariate densities f j (y j |x,θ),
j = 1, . . . ,m, where y j is the j th component of y. For example, for multivariate count
data one might work with m independent univariate negative binomial densities for
each count rather than a richer multivariate count model that permits correlation.

Consider then the quasi-MLE θ̂QML based on the product of the univariate densities,∏
j f j (y j |x,θ), that maximizes

QN (θ) = 1

N

N∑
i=1

m∑
j=1

ln f (yi j |xi ,θ). (5.64)

Wooldridge (2002) calls this estimator the partial MLE, since the density has been
only partially specified.

The partial MLE is an m-estimator with qi =∑ j ln f (yi j |xi ,θ). The essential con-
sistency condition (5.25) requires that E[

∑
j ∂ f (yi j |xi ,θ)/∂θ

∣∣
θ0

] = 0. This condi-
tion holds if the marginal densities f (yi j |xi ,θ0) are correctly specified, since then
E[∂ f (yi j |xi ,θ)/∂θ

∣∣
θ0

] = 0 by the regularity condition (5.41).
Thus the partial MLE is consistent provided the univariate densities f j (y j |x,θ) are

correctly specified. Consistency does not require that f (y|x,θ) =∏ j f j (y j |x,θ). De-
pendence of y1, . . . , ym will lead to failure of the information matrix equality, however,
so standard errors should be computed using the sandwich form for the variance matrix
with

A0 = 1

N

∑N

i=1

∑m

j=1

∂2 ln fi j

∂θ∂θ′

∣∣∣∣
θ0

, (5.65)

B0 = 1

N

∑N

i=1

∑m

j=1

∑m

k=1

∂ ln fi j

∂θ

∣∣∣∣
θ0

∂ ln fik

∂θ′

∣∣∣∣
θ0

where fi j = f (yi j |xi ,θ). Furthermore, the partial MLE is inefficient compared to the
MLE based on the joint density. Further discussion is given in Sections 6.9 and 6.10.

5.8. Nonlinear Least Squares

The NLS estimator is the natural extension of LS estimation for the linear model to the
nonlinear model with E[y|x] = g(x,β), where g(·) is nonlinear in β. The analysis and
results are essentially the same as for linear least squares, with the single change that in
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Table 5.5. Nonlinear Least Squares: Common Examples

Model Regression Function g(x,β)

Exponential exp(β1x1 + β2x2 + β3x3)
Regressor raised to power β1x1 + β2xβ3

2

Cobb–Douglas production β1xβ2
1 xβ3

2

CES production [β1xβ3
1 + β2xβ3

2 ]1/β3

Nonlinear restrictions β1x1 + β2x2 + β3x3, where β3 = −β2β1

the formulas for variance matrices the regressor vector x is replaced by ∂g(x,β)/∂β|β̂,

the derivative of the conditional mean function evaluated at β = β̂.
For microeconometric analysis, controlling for heteroskedastic errors may be neces-

sary, as in the linear case. The NLS estimator and extensions that model heteroskedas-
tic errors are generally less efficient than the MLE, but they are widely used in microe-
conometrics because they rely on weaker distributional assumptions.

5.8.1. Nonlinear Regression Model

The nonlinear regression model defines the scalar dependent variable y to have con-
ditional mean

E[yi |xi ] = g(xi ,β), (5.66)

where g(·) is a specified function, x is a vector of explanatory variables, and β is a
K × 1 vector of parameters. The linear regression model of Chapter 4 is the special
case g(x,β) = x′β.

Common reasons for specifying a nonlinear function for E[y|x] include range re-
striction (e.g., to ensure that E[y|x] > 0) and specification of supply or demand or
cost or expenditure models that satisfy restrictions from producer or consumer theory.
Some commonly used nonlinear regression models are given in Table 5.5.

5.8.2. NLS Estimator

The error term is defined to be the difference between the dependent variable
and its conditional mean, yi − g(xi ,β). The nonlinear least-squares estimator
β̂NLS minimizes the sum of squared residuals,

∑
i (yi − g(xi ,β))2, or equivalently

maximizes

QN (β) = − 1

2N

N∑
i=1

(yi − g(xi ,β))2, (5.67)

where the scale factor 1/2 simplifies the subsequent analysis.
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Differentiation leads to the NLS first-order conditions

∂QN (β)

∂β
= 1

N

N∑
i=1

∂gi

∂β
(yi − gi ) = 0, (5.68)

where gi = g(xi , β). These conditions restrict the residual (y − g) to be orthogonal to
∂g/∂β, rather than to x as in the linear case. There is no explicit solution for β̂NLS,
which instead is computed using iterative methods (given in Chapter 10).

The nonlinear regression model can be more compactly represented in matrix nota-
tion. Stacking observations yields y1

...
yN

 =

 g1
...

gN

+

 u1
...

uN

 , (5.69)

where gi = g(xi ,β), or equivalently

y = g + u, (5.70)

where y, g, and u are N × 1 vectors with i th entries of, respectively, yi , gi , and ui .
Then

QN (β) = − 1

2N
(y − g)′(y − g)

and

∂QN (β)

∂β
= 1

N

∂g′

∂β
(y − g), (5.71)

where

∂g′

∂β
=


∂g1

∂β1
· · · ∂gN

∂β1

...
...

∂g1

∂βK
· · · ∂gN

∂βK

 (5.72)

is the K × N matrix of partial derivatives of g(x,β)′ with respect to β.

5.8.3. Distribution of the NLS Estimator

The distribution of the NLS estimator will vary with the dgp. The dgp can always be
written as

yi = g(xi ,β0) + ui , (5.73)

a nonlinear regression model with additive error u. The conditional mean is correctly
specified if E[y|x] = g(x,β0) in the dgp. Then the error must satisfy E[u|x] = 0.

Given the NLS first-order conditions (5.68), the essential consistency condition
(5.25) becomes

E[∂g(x,β)/∂β|β0
× (y − g(xi ,β0))] = 0.
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Equivalently, given (5.73), we need E[∂g(x,β)/∂β|β0
× u] = 0. This holds if

E[u|x] = 0, so consistency requires correct specification of the conditional mean as
in the linear case. If instead E[u|x] �= 0 then consistent estimation requires nonlinear
instrumental methods (which are presented in Section 6.5).

The limit distribution of
√

N (β̂NLS − β0) is obtained using an exact first-order
Taylor series expansion of the first-order conditions (5.68). This yields

√
N (β̂NLS − β0) = −

−1

N

N∑
i=1

∂gi

∂β

∂gi

∂β′ + 1

N

N∑
i=1

∂2gi

∂β∂β′ (yi − gi )

∣∣∣∣∣
β+

−1

× 1√
N

N∑
i=1

∂gi

∂β
ui

∣∣∣∣
β0

,

for some β+ between β̂NLS and β0. For A0 in (5.18) simplification occurs because
the term involving

(
∂2g/∂β∂β′) drops out since E[u|x] = 0. Thus asymptotically we

need consider only

√
N (β̂NLS − β0) =

 1

N

N∑
i=1

∂gi

∂β

∂gi

∂β′

∣∣∣∣∣
β0

−1

1√
N

N∑
i=1

∂gi

∂β
ui

∣∣∣∣
β0

,

which is exactly the same as OLS, see Section 4.4.4, except xi is replaced by
∂gi/∂β

′∣∣
β0

.
This yields the following proposition, analogous to Proposition 4.1 for the OLS

estimator.

Proposition 5.6 (Distribution of NLS Estimator): Make the following
assumptions:

(i) The model is (5.73); that is, yi = g(xi ,β0) + ui .

(ii) In the dgp E[ui |xi ] = 0 and E[uu′|X] = Ω0, where Ω0,i j = σi j .

(iii) The mean function g(·) satisfies g(x,β(1)) = g(x,β(2)) iff β(1) = β(2).

(iv) The matrix

A0 = plim
1

N

N∑
i=1

∂gi

∂β

∂gi

∂β′

∣∣∣∣
β0

= plim
1

N

∂g′

∂β

∂g
∂β′

∣∣∣∣
β0

(5.74)

exists and is finite nonsingular.

(v) N−1/2∑N
i=1 ∂gi/∂β×ui |β0

d→ N [0,B0], where

B0 = plim
1

N

N∑
i=1

N∑
j=1

σi j
∂gi

∂β

∂g j

∂β′

∣∣∣∣
β0

= plim
1

N

∂g′

∂β
Ω0
∂g
∂β′

∣∣∣∣
β0

. (5.75)

Then the NLS estimator β̂NLS, defined to be a root of the first-order conditions
∂N−1 QN (β)/∂β = 0, is consistent for β0 and

√
N (β̂NLS − β0)

d→ N
[
0,A−1

0 B0A−1
0

]
. (5.76)
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Conditions (i) to (iii) imply that the regression function is correctly specified and
the regressors are uncorrelated with the errors and that β0 is identified. The errors can
be heteroskedastic and correlated over i . Conditions (iv) and (v) assume the relevant
limit results necessary for application of Theorem 5.3. For condition (v) to be satisfied
some restrictions will need to be placed on the error correlation over i . The probability
limits in (5.74) and (5.75) are with respect to the dgp for X; they become regular limits
if X is nonstochastic.

The matrices A0 and B0 in Proposition 5.6 are the same as the matrices Mxx

and MxΩx in Section 4.4.4 for the OLS estimator with xi replaced by ∂gi/∂β|β0
.

The asymptotic theory for NLS is the same as that for OLS, with this single
change.

In the special case of spherical errors, Ω0 = σ 2
0 I, so B0 = σ 2

0 A0 and V[β̂NLS] =
σ 2

0 A−1
0 . Nonlinear least squares is then asymptotically efficient among LS estimators.

However, cross-section data errors are not necessarily heteroskedastic.
Given Proposition 5.6, the resulting asymptotic distribution of the NLS estimator

can be expressed as

β̂NLS
a∼ N

[
β,(D′D)−1D′Ω0D(D′D)−1

]
, (5.77)

where the derivative matrix D = ∂g/∂β′∣∣
β0

has i th row ∂gi/∂β
′∣∣
β0

(see (5.72)), for
notational simplicity the evaluation at β0 is suppressed, and we assume that an LLN
applies, so that the plim operator in the definitions of A0 and B0 are replaced by limE,
and then drop the limit. This notation is often used in later chapters.

5.8.4. Variance Matrix Estimation for NLS

We consider statistical inference for the usual microeconometrics situation of inde-
pendent errors with heteroskedasticity of unknown functional form. This requires a
consistent estimate of A−1

0 B0A−1
0 defined in Proposition 5.6.

For A0 defined in (5.74) it is straightforward to use the obvious estimator

Â = 1

N

N∑
i=1

∂gi

∂β

∣∣∣∣
β̂

∂gi

∂β′

∣∣∣∣
β̂

, (5.78)

as A0 does not involve moments of the errors.
Given independence over i the double sum in B0 defined in (5.75) simplifies to the

single sum

B0 = plim
1

N

N∑
i=1

σ 2
i

∂gi

∂β

∂gi

∂β′

∣∣∣∣
β0

.

As for the OLS estimator (see Section 4.4.5) it is only necessary to consistently esti-
mate the K × K matrix sum B0. This does not require consistent estimation of σ 2

i , the
N individual components in the sum.
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White (1980b) gave conditions under which

B̂ = 1

N

N∑
i=1

û2
i

∂gi

∂β

∂gi

∂β′

∣∣∣∣
β̂

= 1

N

∂g′

∂β

∣∣∣∣
β̂

Ω̂
∂g
∂β′

∣∣∣∣
β̂

(5.79)

is consistent for B0, where ûi = yi − g(xi , β̂), β̂ is consistent for β0, and

Ω̂ = Diag[̂u2
i ]. (5.80)

This leads to the following heteroskedastic-consistent estimate of the asymptotic
variance matrix of the NLS estimator:

V̂[β̂NLS] = (D̂′D̂)−1D̂′Ω̂D̂(D̂′D̂)−1, (5.81)

where D̂ = ∂g/∂β′∣∣
β̂

. This equation is the same as the OLS result in Section 4.4.5,

with the regressor matrix X replaced by D̂. In practice, a degrees of freedom correction
may be used, so that B̂ in (5.79) is computed using division by (N − K ) rather than by
N . Then the right-hand side in (5.81) should be multiplied by N/(N − K ).

Generalization to errors correlated over i is given in Section 5.8.7.

5.8.5. Exponential Regression Example

As an example, suppose that y given x has exponential conditional mean, so that
E[y|x] = exp(x′β). The model can be expressed as a nonlinear regression with

y = exp(x′β) + u,

where the error term u has E[u|x] = 0 and the error is potentially heteroskedastic.
The NLS estimator has first-order conditions

N−1
∑

i

(
yi − exp(x′

iβ)
)

exp(x′
iβ)xi = 0, (5.82)

so consistency of β̂NLS requires only that the conditional mean be correctly specified
with E[y|x] = exp(x′β0). Here ∂g/∂β = exp(x′β)x, so the general NLS result (5.81)
yields the heteroskedastic-robust estimate

V̂[β̂NLS] =
(∑

i
e2x′

i β̂xi x′
i

)−1∑
i
û2

i e2x′
i β̂xi x′

i

(∑
i
e2x′

i β̂xi x′
i

)−1
, (5.83)

where ûi = yi − exp(x′
i β̂NLS).

5.8.6. Weighted NLS and FGNLS

For cross-section data the errors are often heteroskedastic. Then feasible generalized
NLS that controls for the heteroskedasticity is more efficient than NLS.

Feasible generalized nonlinear least squares (FGNLS) is still generally less efficient
than ML. The notable exception is that FGNLS is asymptotically equivalent to the
MLE when the conditional density for y is an LEF density. A special case is that FGLS
is asymptotically equivalent to the MLE in the linear regression under normality.
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Table 5.6. Nonlinear Least-Squares Estimators and Their Asymptotic Variancea

Estimator Objective Function Estimated Asymptotic Variance

NLS QN (β) = −1
2N u′u (D̂′D̂)−1D̂′Ω̂D̂(D̂′D̂)−1

FGNLS QN (β) = −1
2N u′Ω(γ̂)−1u (D̂′Ω̂

−1
D̂)−1

WNLS QN (β) = −1
2N u′Σ̂

−1
u (D̂′Σ̂

−1
D̂)−1D̂′Σ̂

−1
Ω̂Σ̂

−1
D̂(D̂′Σ̂

−1
D̂)−1.

a Functions are for a nonlinear regression model with error u = y − g defined in (5.70) and error conditional vari-
ance matrix 
. D̂ is the derivative of the conditional mean vector with respect to β′ evaluated at β̂. For FGNLS
it is assumed that 
̂ is consistent for 
. For NLS and WNLS the heteroskedastic robust variance matrix uses 
̂
equal to a diagonal matrix with squared residuals on the diagonals, an estimate that need not be consistent for
.

If heteroskedasticity is incorrectly modeled then the FGNLS estimator retains con-
sistency but one should then obtain standard errors that are robust to misspecification
of the model for heteroskedasticity. The analysis is very similar to that for the linear
model given in Section 4.5.

Feasible Generalized Nonlinear Least Squares

The feasible generalized nonlinear least-squares estimator β̂FGNLS maximizes

QN (β) = − 1

2N
(y − g)′Ω(γ̂)−1(y − g), (5.84)

where it is assumed that E[uu′|X] = Ω(γ0) and γ̂ is a consistent estimate γ̂ of γ0.
If the assumptions made for the NLS estimator are satisfied and in fact Ω0 =Ω(γ0),

then the FGNLS estimator is consistent and asymptotically normal with estimated
asymptotic variance matrix given in Table 5.6. The variance matrix estimate is similar
to that for linear FGLS,

[
X′Ω(γ̂)−1X

]−1
, except that X is replaced by D̂ = ∂g/∂β′∣∣

β̂
.

The FGNLS estimator is the most efficient consistent estimator that minimizes
quadratic loss functions of the form (y − g)′V(y − g), where V is a weighting matrix.

In general, implementation of FGNLS requires inversion of the N × N matrix
Ω(γ̂). This may be computationally impossible for large N , but in practice Ω(γ̂) usu-
ally has a structure, such as diagonality, that leads to an analytical solution for the
inverse.

Weighted NLS

The FGNLS approach is fully efficient but leads to invalid standard error estimates if
the model for Ω0 is misspecified. Here we consider an approach between NLS and
FGNLS that specifies a model for the variance matrix of the errors but then obtains
robust standard errors. The discussion mirrors that in Section 4.5.2.

The weighted nonlinear least squares (WNLS) estimator β̂WNLS maximizes

QN (β) = − 1

2N
(y − g)′Σ̂

−1
(y − g), (5.85)

where Σ = Σ(γ) is a working error variance matrix, Σ̂=Σ(γ̂), where γ̂ is an
estimate of γ, and, in a departure from FGNLS, Σ �= Ω0.
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Under assumptions similar to those for the NLS estimator and assuming that Σ0 =
plim Σ̂, the WNLS estimator is consistent and asymptotically normal with estimated
asymptotic variance matrix given in Table 5.6.

This estimator is called WNLS to distinguish it from FGNLS, which assumed that
Σ = Ω0. The WNLS estimator hopefully lies between NLS and FGNLS in terms of
efficiency, though it may be less efficient than NLS if a poor model of the error vari-
ance matrix is chosen. The NLS and OLS estimators are special cases of WNLS with
Σ= σ 2I.

Heteroskedastic Errors

An obvious working model for heteroskedasticity is σ 2
i = E[u2

i |xi ] = exp(z′
iγ0),

where the vector z is a specified function of x (such as selected subcomponents of
x) and using the exponential ensures a positive variance.

Then Σ = Diag[exp(z′
iγ)] and Σ̂ = Diag[exp(z′

i γ̂)], where γ̂ can be obtained by
nonlinear regression of squared NLS residuals (yi − g(xi , β̂NLS))2 on exp(z′

iγ). Since
Σ is diagonal, Σ−1 = Diag[1/σ 2

i ]. Then (5.84) simplifies and the WNLS estimator
maximizes

QN (β) = − 1

2N

N∑
i−1

(yi − g(xi ,β))2

σ̂ 2
i

. (5.86)

The variance matrix of the WNLS estimator given in Table 5.6 yields

V̂[β̂WNLS] =
(

N∑
i=1

1

σ̂ 2
i

d̂i d̂′
i

)−1 ( N∑
i=1

û2
i

1

σ̂ 4
i

d̂i d̂′
i

)(
N∑

i=1

1

σ̂ 2
i

d̂i d̂′
i

)−1

, (5.87)

where d̂i = ∂g(xi ,β)/∂β|β̂ and ûi = yi − g(xi , β̂WNLS) is the residual. In practice
a degrees of freedom correction may be used, so that the right-hand side of (5.87)
is multiplied by N/(N − K ). If the stronger assumption is made that Σ = Ω0, then
WNLS becomes FGNLS and

V̂[β̂FGNLS] =
(

N∑
i=1

1

σ̂ 2
i

d̂i d̂′
i

)−1

. (5.88)

The WNLS and FGNLS estimators can be implemented using an NLS program.
First, do NLS regression of yi on g(xi ,β). Second, obtain γ̂ by, for example, NLS re-
gression of (yi − g(xi , β̂NLS))2 on exp(z′

iγ) if σ 2
i = exp(z′

iγ). Third, perform an NLS
regression of yi/σ̂ i on g(xi ,β)/σ̂ i , where σ̂ 2

i = exp(z′
i γ̂). This is equivalent to max-

imizing (5.86). White robust sandwich standard errors from this transformed regres-
sion give robust WNLS standard errors based on (5.87). The usual nonrobust stan-
dard errors from this transformed regression give FGNLS standard errors based on
(5.88).

With heteroskedastic errors it is very tempting to go one step further and attempt
FGNLS using Ω̂ = Diag[̂u2

i ]. This will give inconsistent parameter estimates of β0,
however, as FGNLS regression of yi on g(xi ,β) then reduces to NLS regression
of yi/|̂ui | on g(xi ,β)/|̂ui |. The technique suffers from the fundamental problem of
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correlation between regressors and error term. Alternative semiparametric methods
that enable an estimator as efficient as feasible GLS, without specifying a functional
form for Ω0, are presented in Section 9.7.6.

Generalized Linear Models

Implementation of the weighted NLS approach requires a reasonable specification for
the working matrix. A somewhat ad-hoc approach, already presented, is to let σ 2

i =
exp(z′

iγ), where z is often a subset of x. For example, in regression of earnings on
schooling and other control variables we might model heteroskedasticity more simply
as being a function of just a few of the regressors, most notably schooling.

Some types of cross-section data provide a natural model for heteroskedasticity
that is very parsimonious. For example, for count data the Poisson density specifies
that the variance equals the mean, so σ 2

i = g(xi ,β). This provides a working model
for heteroskedasticity that introduces no further parameters than those already used in
modeling the conditional mean.

This approach of letting the working model for the variance be a function of the
mean arises naturally for generalized linear models, introduced in Sections 5.7.3 and
5.7.4. From (5.63) the first-order conditions for the quasi-MLE based on an LEF den-
sity are of the form

N∑
i=1

yi − g(xi ,β)

σ 2
i

× ∂g(xi ,β)

∂β
= 0,

where σ 2
i = [c′(g(xi ,β))]−1 is the assumed variance function corresponding to the

particular GLM (see (5.60)). For example, for Poisson, Bernoulli, and exponential
distributions σ 2

i equals, respectively, gi , gi (1 − gi ), and 1/g2
i , where gi = g(xi ,β).

These first-order conditions can be solved for β in one step that allows for depen-
dence of σ 2

i on β. In a simpler two-step method one computes σ̂ 2
i = c′(g(xi , β̂)) given

an initial NLS estimate of β̂ and then does a weighted NLS regression of yi/σ̂ i on
g(xi ,β)/σ̂ i . The resulting estimator of β is asymptotically equivalent to the quasi-
MLE that directly solves (5.63) (see Gouriéroux, Monfort, and Trognan 1984a, or
Cameron and Trivedi, 1986). Thus FGNLS is asymptotically equivalent to ML estima-
tion when the density is an LEF density. To guard against misspecification of σ 2

i infer-
ence is based on robust sandwich standard errors, or one lets σ̂ 2

i = α̂[c′(g(xi , β̂))]−1,
where the estimate α̂ is given in Section 5.7.4.

5.8.7. Time Series

The general NLS result in Proposition 5.6 applies to all types of data, including time-
series data. The subsequent results on variance matrix estimation focused on the cross-
section case of heteroskedastic errors, but they are easily adapted to the case of time-
series data with serially correlated errors. Indeed, results on robust variance matrix
estimation using spectral methods for the time-series case preceded those for the cross-
section case.
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The time-series nonlinear regression model is

yt = g(xt ,β)+ut , t = 1, . . . , T .

If the error ut is serially correlated it is common to use the autoregressive moving
average or ARMA(p, q) model

ut = ρ1ut−1 + · · · + ρput−p + εt + α1εt−1 + · · · + αqεt−q ,

where εt is iid with mean 0 and variance σ 2, and restrictions may be placed on ARMA
model parameters to ensure stationarity and invertibility. The ARMA error model im-
plies a particular structure to the error variance matrix Ω0 = Ω(ρ,α).

The ARMA model provides a good model for Ω0 in the time-series case. In con-
trast, in the cross-section case, it is more difficult to correctly model heteroskedasticity,
leading to greater emphasis on robust inference that does not require specification of a
model for Ω0.

What if errors are both heteroskedastic and serially correlated? The NLS estimator
is consistent though inefficient if errors are serially correlated, provided xt does not
include lagged dependent variables in which case it becomes inconsistent. White and
Domowitz (1984) generalized (5.79) to obtain a robust estimate of the variance matrix
of the NLS estimator given heteroskedasticity and serial correlation of unknown func-
tional form, assuming serial correlation of no more than say, l, lags. In practice a minor
refinement due to Newey and West (1987b) is used. This refinement is a rescaling that
ensures that the variance matrix estimate is semi-positive definite. Several other refine-
ments have also been proposed and the assumption of fixed lag length has been relaxed
so that it is possible for l → ∞ at a sufficiently slower rate than N → ∞. This permits
an AR component for the error.

5.9. Example: ML and NLS Estimation

Maximum likelihood and NLS estimation, standard error calculation, and coefficient
interpretation are illustrated using simulation data.

5.9.1. Model and Estimators

The exponential distribution is used for continuous positive data, notably duration data
studied in Chapter 17. The exponential density is

f (y) = λe−λy, y > 0, λ > 0,

with mean 1/λ and variance 1/λ2. We introduce regressors into this model by setting

λ = exp(x′β),

which ensures λ > 0. Note that this implies that

E[y|x] = exp(−x′β).
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An alternative parameterization instead specifies E[y|x] = exp(x′β), so that λ =
exp(−x′β). Note that the exponential is used in two different ways: for the density
and for the conditional mean.

The OLS estimator from regression of y on x is inconsistent, since it fits a straight
line when the regression function is in fact an exponential curve.

The MLE is easily obtained. The log-density is ln f (y|x) = x′β − y exp(x′β), lead-
ing to ML first-order conditions N−1∑

i (1 − yi exp(x′
iβ))xi = 0, or

N−1
∑

i

yi − exp(−x′β)

exp(−x′β)
xi = 0.

To perform NLS regression, note that the model can also be expressed as a nonlinear
regression with

y = exp(−x′β) + u,

where the error term u has E[u|x] = 0, though it is heteroskedastic. The first-order
conditions for an exponential conditional mean for this model, aside from a sign rever-
sal, have already been given in (5.82) and clearly lead to an estimator that differs from
the MLE.

As an example of weighted NLS we suppose that the error variance is propor-
tional to the mean. Then the working variance is V[y] = E[y] and weighted least
squares can be implemented by NLS regression of yi/σ̂ i on exp(−x′

iβ)/σ̂ i , where
σ̂ 2

i = exp(−x′
i β̂NLS). This estimator is less efficient than the MLE and may or may not

be more efficient than NLS.
Feasible generalized NLS can be implemented here, since we know the dgp.

Since V[y] = 1/λ2 for the exponential density, so the variance equals the mean
squared, it follows that V[u|x] = [exp(−x′β)]2. The FGNLS estimator estimates σ 2

i
by σ̂ 2

i = [exp(−x′
i β̂NLS)]2 and can be implemented by NLS regression of yi/σ̂ i on

exp(−x′
iβ)/σ̂ i . In general FGNLS is less efficient than the MLE. In this example it is

actually fully efficient as the exponential density is an LEF density (see the discussion
at the end of Section 5.8.6).

5.9.2. Simulation and Results

For simplicity we consider regression on an intercept and a regressor. The data-
generating process is

y|x ∼ exponential[λ],

λ = exp(β1 + β2x),

where x ∼ N [1, 12] and (β1, β2) = (2,−1). A large sample of size 10,000 was drawn
to minimize differences in estimates, particularly standard errors, arising from sam-
pling variability. For the particular sample of 10,000 drawn here the sample mean of
y is 0.62 and the sample standard deviation of y is 1.29.

Table 5.7 presents OLS, ML, NLS, WNLS, and FGNLS estimates. Up to three
different standard error estimates are also given. The default regression output yields
nonrobust standard errors, given in parentheses. For OLS and NLS estimators these
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Table 5.7. Exponential Example: Least-Squares and ML Estimatesa

Estimator

Variable OLS ML NLS WNLS FGNLS

Constant −0.0093 1.9829 1.8876 1.9906 1.9840
(0.0161) (0.0141) (0.0307) (0.0225) (0.0148)
[0.0172] [0.0144] [0.1421] [0.0359] [0.0146]

{0.2110}
x 0.6198 −0.9896 −0.9575 −0.9961 −0.9907

(0.0113) (0.0099) (0.0097) (0.0098) (0.0100)
[0.0254] [0.0099] [0.0612] [0.0224] [0.0101]

{0.0880}
lnL – −208.71 −232.98 −208.93 −208.72
R2 0.2326 0.3906 0.3913 0.3902 0.3906

a All estimators are consistent, aside from OLS. Up to three alternative standard error estimates are given:
nonrobust in parentheses, robust outer product in square brackets, and an alternative robust estimate for NLS
in braces. The conditional dgp is an exponential distribution with intercept 2 and slope parameter −1. Sample
size N = 10,000.

assume iid errors, an erroneous assumption here, and for the MLE these impose the
IM equality, a valid assumption here since the assumed density is the dgp. The robust
standard errors, given in square brackets, use the robust sandwich variance estimate
N−1Â−1

H B̂OPÂ−1
H , where B̂OP is the outer product estimated given in (5.38). These

estimates are heteroskedastic consistent. For standard errors of the NLS estimator an
alternative better estimate is given in braces (and is explained in the next section). The
standard error estimates presented here use numerical rather than analytical derivatives
in computing Â and B̂.

5.9.3. Comparison of Estimates and Standard Errors

The OLS estimator is inconsistent, yielding estimates unrelated to (β1, β2) in the ex-
ponential dgp.

The remaining estimators are consistent, and the ML, NLS, WNLS, and FGNLS
estimators are within two standard errors of the true parameter values of (2,−1), where
the robust standard errors need to be used for NLS. The FGNLS estimates are quite
close to the ML estimates, a consequence of using a dgp in the LEF.

For the MLE the nonrobust and robust ML standard errors are quite similar. This is
expected as they are asymptotically equivalent (since the information matrix equality
holds if the MLE is based on the true density) and the sample size here is large.

For NLS the nonrobust standard errors are invalid, because the dgp has het-
eroskedastic errors, and greatly overstate the precision of the NLS estimates. The for-
mula for the robust variance matrix estimate for NLS is given in (5.81), where Ω̂ =
Diag[̂u2

i ]. An alternative that uses Ω̂ = Diag[̂E
[
u2

i

]
], where Ê

[
u2

i

] = [exp(−x′
i β̂)]2,

is given in braces. The two estimates differ: 0.0612 compared to 0.0880 for the
slope coefficient. The difference arises because û2

i = (yi − exp(x′
i β̂))2 differs from
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[exp(−x′
i β̂)]2. More generally standard errors estimated using the outer product (see

Section 5.5.2) can be biased even in quite large samples. NLS is considerably less effi-
cient than MLE, with standard errors many times those of the MLE using the preferred
estimates in braces.

The WNLS estimator does not use the correct model for heteroskedasticity, so the
nonrobust and robust standard errors again differ. Using the robust standard errors the
WNLS estimator is more efficient than NLS and less efficient than the MLE.

In this example the FGNLS estimator is as efficient as the MLE, a consequence
of the known dgp being in the LEF. The results indicate this, with coefficients and
standard errors very close to those for the MLE. The robust and nonrobust standard
errors for the FGNLS estimator are essentially the same, as expected since here the
model for heteroskedasticity is correctly specified.

Table 5.7 also reports the estimated log-likelihood, ln L =∑i [x
′
i β̂ −

exp(−x′
i β̂)yi ], and an R-squared measure, R2 = 1 −∑i (yi − ŷi )2/

∑
i (yi − ȳ)2,

where ŷi = exp(−x′
i β̂), evaluated at the ML, NLS, WNLS, and FGNLS estimates.

The R2 differs little across models and is lowest for the NLS estimator, as expected
since NLS minimizes

∑
i (yi − ŷi )2. The log-likelihood is maximized by the MLE, as

expected, and is considerably lower for the NLS estimator.

5.9.4. Coefficient Interpretation

Interest lies in changes in E[y|x] when x changes. We consider the ML estimates of
β̂2 = −0.99 given in Table 5.7.

The conditional mean exp(−β1 − β2x) is of single-index form, so that if an ad-
ditional regressor z with coefficient β3 were included, then the marginal effect of a
one-unit change in z would be β̂3/β̂2 times that of a one-unit change in x (see Sec-
tion 5.2.4).

The conditional mean is monotonically decreasing in x , so the sign of β̂2 is the re-
verse of the marginal effect (see Section 5.2.4). Here the marginal effect of an increase
in x is an increase in the conditional mean, since β̂2 is negative.

We now consider the magnitude of the marginal effect of changes in x using cal-
culus methods. Here ∂E[y|x]/∂x = −β2 exp(−x′β) varies with the evaluation point
x and ranges from 0.01 to 19.09 in the sample. The sample-average response is
0.99N−1∑

i exp(x′
i β̂) = 0.61. The response evaluated at the sample mean of x ,

0.99 exp(x̄′β̂) = 0.37, is considerably smaller. Since ∂E[y|x]/∂x = −β2E[y|x], yet
another estimate of the marginal effect is 0.99ȳ = 0.61.

Finite-difference methods lead to a different estimated marginal effect. For�x = 1
we obtain �E[y|x] = (eβ2 − 1) exp(−x′β) (see Section 5.2.4). This yields an average
response over the sample of 1.04, rather than 0.61. The finite-difference and calculus
methods coincide, however, if �x is small.

The preceding marginal effects are additive. For the exponential conditional mean
we can also consider multiplicative or proportionate marginal effects (see Sec-
tion 5.2.4). For example, a 0.1-unit change in x is predicted to lead to a proportionate
increase in E[y|x] of 0.1 × 0.99 or a 9.9% increase. Again a finite-difference approach
will yield a different estimate.
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Which of these measures is most useful? The restriction to single-index form is
very useful as the relative impact of regressors can be immediately calculated. For the
magnitude of the response it is most accurate to compute the average response across
the sample, using noncalculus methods, of a c-unit change in the regressor, where
the magnitude of c is a meaningful amount such as a one standard deviation change
in x .

Similar calculations can be done for the NLS, WNLS, and FGNLS estimates, with
similar results. For the OLS estimator, note that the coefficient of x can be interpreted
as giving the sample-average marginal effect of a change in x (see Section 4.7.2). Here
the OLS estimate β̂2 = 0.61 equals to two decimal places the sample-average response
computed earlier using the exponential MLE. Here OLS provides a good estimate of
the sample-average marginal response, even though it can provide a very poor estimate
of the marginal response for any particular value of x .

5.10. Practical Considerations

Most econometrics packages provide simple commands to obtain the maximum like-
lihood estimators for the standard models introduced in Section 5.6.1. For other den-
sities many packages provide an ML routine to which the user provides the equation
for the density and possibly first derivatives or even second derivatives. Similarly, for
NLS one provides the equation for the conditional mean to an NLS routine. For some
nonlinear models and data sets the ML and NLS routines provided in packages can en-
counter computational difficulties in obtaining estimates. In such circumstances it may
be necessary to use more robust optimization routines provided as add-on modules to
Gauss, Matlab and OX. Gauss, Matlab and OX are better tools for nonlinear modeling,
but require a higher initial learning investment.

For cross-section data it is becoming standard to use standard errors based on the
sandwich form of the variance matrix. These are often provided as a command option.
For LS estimators this gives heteroskedastic-consistent standard errors. For maximum
likelihood one should be aware that misspecification of the density can lead to incon-
sistency in addition to requiring the use of sandwich errors.

The parameters of nonlinear models are usually not directly interpretable, and it is
good practice to additionally compute the implied marginal effects caused by changes
in regressors (see Section 5.2.4). Some packages do this automatically; for others sev-
eral lines of postestimation code using saved regression coefficients may be needed.

5.11. Bibliographic Notes

A brief history of the development of asymptotic theory results for extremum estimators is
given in Newey and McFadden (1994, p. 2115). A major econometrics advance was made
by Amemiya (1973), who developed quite general theorems that were applied to the Tobit
model MLE. Useful book-length treatments include those by Gallant (1987), Gallant and White
(1987), Bierens (1993), and White (1994, 2001a). Statistical foundations are given in many
books, including Amemiya (1985, Chapter 3), Davidson and MacKinnon (1993, Chapter 4),
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Greene (2003, appendix D), Davidson (1994), and Zaman (1996).

5.3 The presentation of general extremum estimation results draws heavily on Amemiya (1985,
Chapter 4), and to a lesser extent on Newey and McFadden (1994). The latter reference is
very comprehensive.

5.4 The estimating equations approach is used in the generalized linear models literature (see
McCullagh and Nelder, 1989). Econometricians subsume this in generalized method of
moments (see Chapter 6).

5.5 Statistical inference is presented in detail in Chapter 7.
5.6 See the pioneering article by Fisher (1922) for general results for ML estimation, including

efficiency, and for comparison of the likelihood approach with the inverse-probability or
Bayesian approach and with method of moments estimation.

5.7 Modern applications frequently use the quasi-ML framework and sandwich estimates of
the variance matrix (see White, 1982, 1994). In statistics the approach is called generalized
linear models, with McCullagh and Nelder (1989) a standard reference.

5.8 Similarly for NLS estimation, sandwich estimates of the variance matrix are used that re-
quire relatively weak assumptions on the error process. The papers by White (1980a,c) had
a big impact on statistical inference in econometrics. Generalization and a detailed review
of the asymptotic theory is given in White and Domowitz (1984). Amemiya (1983) has
extensively surveyed methods for nonlinear regression.

Exercises

5–1 Suppose we obtain model estimates that yield predicted conditional mean
Ê[y|x] = exp(1 + 0.01x)/[1 + exp(1 + 0.01x)]. Suppose the sample is of size 100
and x takes integer values 1, 2, . . . ,100. Obtain the following estimates of the
estimated marginal effect ∂Ê[y|x]/∂x.

(a) The average marginal effect over all observations.
(b) The marginal effect of the average observation.
(c) The marginal effect when x = 90.
(d) The marginal effect of a one-unit change when x = 90, computed using the

finite-difference method.

5–2 Consider the following special one-parameter case of the gamma distribution,
f (y) = (y/λ2) exp (−y/λ), y > 0, λ > 0. For this distribution it can be shown that
E[y] = 2λ and V[y] = 2λ2. Here we introduce regressors and suppose that in the
true model the parameter λ depends on regressors according to λi = exp(x′

iβ)/2.
Thus E[yi |xi ] = exp(x′

iβ) and V[yi |xi ] = [exp(x′
iβ)]2/2. Assume the data are inde-

pendent over i and xi is nonstochastic and β = β0 in the dgp.

(a) Show that the log-likelihood function (scaled by N−1) for this gamma model
is QN(β) = N−1∑

i

{
ln yi − 2x′

iβ + 2 ln 2 − 2yi exp(−x′
iβ)
}
.

(b) Obtain plim QN(β). You can assume that assumptions for any LLN used are
satisfied. [Hint: E[ln yi ] depends on β0 but not β.]

(c) Prove that β̂ that is the local maximum of QN(β) is consistent for β0. State
any assumptions made.

(d) Now state what LLN you would use to verify part (b) and what additional
information, if any, is needed to apply this law. A brief answer will do. There
is no need for a formal proof.
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5–3 Continue with the gamma model of Exercise 5–2.

(a) Show that ∂QN(β)/∂β = N−1∑
i 2[(yi − exp(x′

iβ))/exp(x′
iβ)]xi .

(b) What essential condition indicated by the first-order conditions needs to be
satisfied for β̂ to be consistent?

(c) Apply a central limit theorem to obtain the limit distribution of
√

N∂QN/∂β|β0
.

Here you can assume that the assumptions necessary for a CLT are satisfied.
(d) State what CLT you would use to verify part (c) and what additional informa-

tion, if any, is needed to apply this law. A brief answer will do. There is no
need for a formal proof.

(e) Obtain the probability limit of ∂2 QN/∂β∂β
′|β0

.
(f) Combine the previous results to obtain the limit distribution of

√
N(β̂ − β0).

(g) Given part (f ), state how to test H0 : β0 j ≥ β∗
j against Ha : β0 j < β

∗
j at level

0.05, where β j is the j th component of β.

5–4 A nonnegative integer variable y that is geometric distributed has density (or
more formally probability mass function) f (y) = (y + 1)(2λ)y(1 + 2λ)−(y+0.5), y =
0,1,2, . . . , λ > 0. Then E[y] = λ and V[y] = λ(1 + 2λ). Introduce regressors and
suppose γi = exp(x′

iβ). Assume the data are independent over i and xi is non-
stochastic and β = β0 in the dgp.

(a) Repeat Exercise 5–2 for this model.
(b) Repeat Exercise 5–3 for this model.

5–5 Suppose a sample yields estimates θ̂1 = 5, θ̂2 = 3, se[̂θ1] = 2, and se[̂θ2] = 1 and
the correlation coefficient between θ̂1 and θ̂2 equals 0.5. Perform the following
tests at level 0.05, assuming asymptotic normality of the parameter estimates.

(a) Test H0 : θ1 = 0 against Ha : θ1 �= 0.
(b) Test H0 : θ1 = 2θ2 against Ha : θ1 �= 2θ2.
(c) Test H0 : θ1 = 0, θ2 = 0 against Ha : at least one of θ1, θ2 �= 0.

5–6 Consider the nonlinear regression model y = exp (x′β)/[1 + exp (x′β)] + u, where
the error term is possibly heteroskedastic.

(a) Within what range does this restrict E[y|x] to lie?
(b) Give the first-order conditions for the NLS estimator.
(c) Obtain the asymptotic distribution of the NLS estimator using result (5.77).

5–7 This question presumes access to software that allows NLS and ML estimation.
Consider the gamma regression model of Exercise 5–2. An appropriate gamma
variate can be generated using y = −λ ln r1 − λ ln r2, where λ = exp (x′β)/2 and
r1 and r2 are random draws from Uniform[0,1]. Let x′β = β1 + β2x. Generate a
sample of size 1,000 when β1 = −1.0 and β2 = 1 and x ∼N [0,1].

(a) Obtain estimates of β1 and β2 from NLS regression of y on exp(β1 + β2x).
(b) Should sandwich standard errors be used here?
(c) Obtain ML estimates of β1 and β2 from NLS regression of y on exp(β1 + β2x).
(d) Should sandwich standard errors be used here?
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C H A P T E R 6

Generalized Method of Moments
and Systems Estimation

6.1. Introduction

The previous chapter focused on m-estimation, including ML and NLS estimation.
Now we consider a much broader class of extremum estimators, those based on method
of moments (MM) and generalized method of moments (GMM).

The basis of MM and GMM is specification of a set of population moment condi-
tions involving data and unknown parameters. The MM estimator solves the sample
moment conditions that correspond to the population moment conditions. For exam-
ple, the sample mean is the MM estimator of the population mean. In some cases there
may be no explicit analytical solution for the MM estimator, but numerical solution
may still be possible. Then the estimator is an example of the estimating equations
estimator introduced briefly in Section 5.4.

In some situations, however, MM estimation may be infeasible because there are
more moment conditions and hence equations to solve than there are parameters. A
leading example is IV estimation in an overidentified model. The GMM estimator, due
to Hansen (1982), extends the MM approach to accommodate this case.

The GMM estimator defines a class of estimators, with different GMM estimators
obtained by using different population moment conditions, just as different specified
densities lead to different ML estimators. We emphasize this moment-based approach
to estimation, even in cases where alternative presentations are possible, as it provides
a unified approach to estimation and can provide an obvious way to extend methods
from linear to nonlinear models.

The basics of GMM estimation are given in Sections 6.2 and 6.3, which present,
respectively, expository examples and asymptotic results for statistical inference. The
remainder of the chapter details more specialized estimators. Instrumental variables
estimators are presented in Sections 6.4 and 6.5. For linear models the treatment in
Sections 4.8 and 4.9 may be sufficient, but extension to nonlinear models uses the
GMM approach. Section 6.6 covers methods to compute standard errors of sequential
two-step m-estimators. Sections 6.7 and 6.8 present the minimum distance estimator,
a variant of GMM, and the empirical likelihood estimator, an alternative estimator to
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GMM. Systems estimation methods, used in a relatively small fraction of microecono-
metrics studies, are discussed in Sections 6.9 and 6.10.

This chapter reviews many estimation methods from a GMM perspective. Applica-
tions of these methods to actual data include a linear IV application in Section 4.9.6
and a linear panel GMM application in Section 22.3.

6.2. Examples

GMM estimators are based on the analogy principle (see Section 5.4.2) that population
moment conditions lead to sample moment conditions that can be used to estimate
parameters. This section provides several leading applications of this principle, with
properties of the resulting estimator deferred to Section 6.3.

6.2.1. Linear Regression

A classic example of method of moments is estimation of the population mean when
y is iid with mean µ. In the population

E[y − µ] = 0.

Replacing the expectations operator E[·] for the population by the average operator
N−1∑N

i=1(·) for the sample yields the corresponding sample moment

1

N

N∑
i=1

(yi − µ) = 0.

Solving for µ leads to the estimator µ̂MM = N−1∑
i yi = ȳ. The MM estimate of the

population mean is the sample mean.
This approach can be extended to the linear regression model y = x′β + u, where

x and β are K × 1 vectors. Suppose the error term u has zero mean conditional on
regressors. The single conditional moment restriction E[u|x] = 0 leads to K uncondi-
tional moment conditions E[xu] = 0, since

E[xu] = Ex[E[xu|x]] = Ex[xE[u|x]] = Ex[x·0] = 0, (6.1)

using the law of iterated expectations (see Section A.8) and the assumption that
E[u|x] = 0. Thus

E[x(y − x′β)] = 0,

if the error has conditional mean zero. The MM estimator is the solution to the corre-
sponding sample moment condition

1

N

N∑
i=1

xi (yi − x′
iβ) = 0.

This yields β̂MM = (
∑

i xi x′
i )

−1∑
i xi yi .
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The OLS estimator is therefore a special case of MM estimation. The MM deriva-
tion of the OLS estimator, however, differs significantly from the usual one of mini-
mization of a sum of squared residuals.

6.2.2. Nonlinear Regression

For nonlinear regression the method of moments approach reduces to NLS if regres-
sion errors are additive. For more general nonlinear regression with nonadditive errors
(defined in the following) method of moments yields a consistent estimator whereas
NLS is inconsistent.

From Section 5.8.3 the nonlinear regression model with additive error is a model
that specifies

y = g(x,β) + u.

A moment approach similar to that for the linear model yields that E[u|x] = 0 im-
plies that E[h(x)(y − x′β)] = 0, where h(x) is any function of x. The particular choice
h(x) = ∂g(x,β)/∂β, motivated in Section 6.3.7, leads to corresponding sample mo-
ment condition that equals the first-order conditions for the NLS estimator given in
Section 5.8.2.

The more general nonlinear regression model with nonadditive error specifies

u = r (y, x,β),

where again E[u|x] = 0 but now y is no longer restricted to being an additive func-
tion of u. For example, in Poisson regression one may define the standardized error
u = [y − exp (x′β)]/[exp (x′β)]1/2 that has E[u|x] = 0 and V[u|x] = 1 since y has
conditional mean and variance equal to exp (x′β).

The NLS estimator is inconsistent given nonadditive error. Minimizing
N−1∑

i ui
2 = N−1∑

i r (yi , xi ,β)2 leads to first-order conditions

1

N

N∑
i=1

∂r (yi , xi ,β)

∂β
r (yi , xi ,β) = 0.

Here yi appears in both terms in the product and there is no guarantee that this prod-
uct has expected value of zero even if E[r (·)|x] = 0. This inconsistency did not arise
with additive errors r (·) = y − g(x,β), as then ∂r (·)/∂β = −∂g(x,β)/∂β, so only
the second term in the product depended on y.

A moment-based approach yields a consistent estimator. The assumption that
E[u|x] = 0 implies

E[h(x)r (y, x,β)] = 0,

where h(x) is a function of x. If dim[h(x)] = K then the corresponding sample mo-
ment

1

N

N∑
i=1

h(xi )r (yi , xi ,β) = 0

yields a consistent estimate of β, where solution is by numerical methods.
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6.2.3. Maximum Likelihood

The Kullback–Leibler information criterion was defined in Section 5.7.2. From
this definition, a local maximum of KLIC occurs if E[s(θ)]= 0, where s(θ) =
∂ ln f (y|x,θ)/∂θ and f (y|x,θ) is the conditional density.

Replacing population moments by sample moments yields an estimator θ̂ that
solves N−1∑

i si (θ) = 0. These are the ML first-order conditions, so the MLE can
be motivated as an MM estimator.

6.2.4. Additional Moment Restrictions

Using additional moments can improve the efficiency of estimation but requires adap-
tation of regular method of moments if there are more moment conditions than param-
eters to estimate.

A simple example of an inefficient estimator is the sample mean. This is an ineffi-
cient estimator of the population mean unless the data are a random sample from the
normal distribution or some other member of the exponential family of distributions.
One way to improve efficiency is to use alternative estimators. The sample median,
consistent for µ if the distribution is symmetric, may be more efficient. Obviously the
MLE could be used if the distribution is fully specified, but here we instead improve
efficiency by using additional moment restrictions.

Consider estimation of β in the linear regression model. The OLS estimator is in-
efficient even assuming homoskedastic errors, unless errors are normally distributed.
From Section 6.2.1, the OLS estimator is an MM estimator based on E[xu] = 0. Now
make the additional moment assumption that errors are conditionally symmetric, so
that E[u3|x] = 0 and hence E[xu3] = 0. Then estimation of β may be based on the
2K moment conditions

[
E[x(y − x′β)]
E[x(y − x′β)3]

]
=
[

0
0

]
.

The MM estimator would attempt to estimate β as the solution to the corresponding
sample moment conditions N−1∑

i xi (yi − x′
iβ) = 0 and N−1∑

i xi (yi − x′
iβ)3 = 0.

However, with 2K equations and only K unknown parameters β, it is not possible for
all of these sample moment conditions to be satisfied.

The GMM estimator instead sets the sample moments as close to zero as possible
using quadratic loss. Then β̂GMM minimizes

QN (β) =
[ 1

N

∑
i xi ui

1
N

∑
i xi u3

i

]′
WN

[ 1
N

∑
i xi ui

1
N

∑
i xi u3

i

]
, (6.2)

where ui = yi − x′
iβ and WN is a 2K × 2K weighting matrix. For some choices

of WN this estimator is more efficient than OLS. This example is analyzed in Sec-
tion 6.3.6.
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6.2.5. Instrumental Variables Regression

Instrumental variables estimation is a leading example of generalized method of mo-
ments estimation.

Consider the linear regression model y = x′β + u, with the complication that some
components of x are correlated with the error term so that OLS is inconsistent for β.
Assume the existence of instruments z (introduced in Section 4.8) that are correlated
with x but satisfy E[u|z] = 0. Then E[y − x′β|z] = 0. Using algebra similar to that
used to obtain (6.1) for the OLS example, we multiply by z to get the K unconditional
population moment conditions

E[z(y − x′β)] = 0. (6.3)

The method of moments estimator solves the corresponding sample moment condition

1

N

N∑
i=1

zi (yi − x′
iβ) = 0.

If dim(z) = K this yields β̂MM = (
∑

i zi x′
i )

−1∑
i zi yi , which is the linear IV estimator

introduced in Section 4.8.6.
No unique solution exists if there are more potential instruments than regressors,

since then dim(z) > K and there are more equations than unknowns. One possibility
is to use just K instruments, but there is then an efficiency loss. The GMM estimator
instead chooses β̂ to make the vector N−1∑

i zi (yi − x′
iβ) as small as possible using

quadratic loss, so that β̂GMM minimizes

QN (β) =
[

1

N

N∑
i=1

zi (yi − x′
iβ)

]′
WN

[
1

N

N∑
i=1

zi (yi − x′
iβ)

]
, (6.4)

where WN is a dim(z) × dim(z) weighting matrix. The 2SLS estimator (see Sec-
tion 4.8.6) corresponds to a particular choice of WN .

Instrumental variables methods for linear models are presented in considerable de-
tail in Section 6.4. An advantage of the GMM approach is that it provides a way to
specify the optimal choice of weighting matrix WN , leading to an estimator more effi-
cient than 2SLS.

Section 6.5 covers IV methods for nonlinear models. One advantage of the GMM
approach is that generalization to nonlinear regression is straightforward. Then we
simply replace y − x′β in the preceding expression for QN (β) by the nonlinear model
error u = y − g(x′β) or u = r (y, x,β).

6.2.6. Panel Data

Another leading application of GMM and related estimation methods is to panel data
regression.

As an example, suppose yit = x′
i tβ+uit , where i denotes individual and t denotes

time. From Section 6.2.1, pooled OLS regression of yit on xi t is an MM estimator
based on the condition E[xi t uit ] = 0. Suppose it is additionally assumed that the er-
ror uit is uncorrelated with regressors in periods other than the current period. Then
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E[xisuit ] = 0 for s �= t provides additional moment conditions that can be used to ob-
tain more efficient estimators.

Chapters 22 and 23 provide many applications of GMM methods to panel data.

6.2.7. Moment Conditions from Economic Theory

Economic theory can generate moment conditions that can be used as the basis for
estimation.

Begin with the model

yt = E[yt |xt ,β] + ut ,

where the first term on the right-hand side measures the “anticipated” component of
y conditional on x and the second component measures the “unanticipated” compo-
nent. As examples, y may denote return on an asset or the rate of inflation. Under the
twin assumptions of rational expectations and market clearing or market efficiency,
we may obtain the result that the unanticipated component is unpredictable using any
information that was available at time t for determining E[y|x]. Then

E[(yt − E[yt |xt ,β])|It ] = 0,

where It denotes information available at time t .
By the law of iterated expectations, E[zt (yt−E[yt |xt ,β])] = 0, where zt is formed

from any subset of It . Since any part of the information set can be used as an instru-
ment, this provides many moment conditions that can be the basis of estimation. If
time-series data are available then GMM minimizes the quadratic form

QT (β) =
[

1

T

∑T

t=1
zt ut

]′
WT

[
1

T

∑T

t=1
zt ut

]
,

where ut = yt − E[yt |xt ,β]. If cross-section data are available at a single time point t
then GMM minimizes the quadratic form

QN (β) =
[

1

N

∑N

i=1
zi ui

]′
WN

[
1

N

∑N

i=1
zi ui

]
,

where ui = yi − E[yi |xi ,β] and the subscript t can be dropped as only one time period
is analyzed.

This approach is not restricted to the additive structure used in motivation. All
that is needed is an error ut with the property that E[ut |It ] = 0. Such conditions
arise from the Euler conditions from intertemporal models of decision making un-
der certainty. For example, Hansen and Singleton (1982) present a model of maxi-
mization of expected lifetime utility that leads to the Euler condition E[ut |It ] = 0,
where ut = βgαt+1rt+1 − 1, gt+1 = ct+1/ct is the ratio of consumption in two periods,
and rt+1 is asset return. The parameters β and α, the intertemporal discount rate and
the coefficient of relative risk aversion, respectively, can be estimated by GMM using
either time-series or cross-section data as was done previously, with this new defini-
tion of ut . Hansen (1982) and Hansen and Singleton (1982) consider time-series data;
MaCurdy (1983) modeled both consumption and labor supply using panel data.
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Table 6.1. Generalized Method of Moments: Examples

Moment Function h(·) Estimation Method

y − µ Method of moments for population mean
x(y − x′β) Ordinary least-squares regression
z(y − x′β) Instrumental variables regression
∂ ln f (y|x,θ)/∂θ Maximum likelihood estimation

6.3. Generalized Method of Moments

This section presents the general theory of GMM estimation. Generalized method of
moments defines a class of estimators. Different choice of moment condition and
weighting matrix lead to different GMM estimators, just as different choices of dis-
tribution lead to different ML estimators. We address these issues, in addition to pre-
senting the usual properties of consistency and asymptotic normality and methods to
estimate the variance matrix of the GMM estimator.

6.3.1. Method of Moments Estimator

The starting point is to assume the existence of r moment conditions for q parameters,

E[h(wi ,θ0)] = 0, (6.5)

where θ is a q × 1 vector, h(·) is an r × 1 vector function with r ≥ q , and θ0 denotes
the value of θ in the dgp. The vector w includes all observables including, where
relevant, a dependent variable y, potentially endogenous regressors x, and instrumental
variables z. The dependent variable y may be a vector, so that applications with systems
of equations or with panel data are subsumed. The expectation is with respect to all
stochastic components of w and hence y, x, and z.

The choice of functional form for h(·) is qualitatively similar to the choice of model
and will vary with application. Table 6.1 summarizes some single-equation examples
of h(w) = h(y, x, z,θ) already presented in Section 6.2.

If r = q then method of moments can be applied. Equality to zero of the population
moment is replaced by equality to zero of the corresponding sample moment, and the
method of moments estimator θ̂MM is defined to be the solution to

1

N

N∑
i=1

h(wi , θ̂) = 0. (6.6)

This is an estimating equations estimator that equivalently minimizes

QN (θ) =
[

1

N

N∑
i=1

h(wi ,θ)

]′ [
1

N

N∑
i=1

h(wi ,θ)

]
,

with asymptotic distribution presented in Section 5.4 and reproduced in (6.13) in Sec-
tion 6.3.3.
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6.3.2. GMM Estimator

The GMM estimator is based on r independent moment conditions (6.5) while q pa-
rameters are estimated.

If r = q the model is said to be just-identified and the MM estimator in (6.6) can be
used. More formally r = q is only a necessary condition for just-identification and we
additionally require that G0 in Proposition 5.1 is of rank q . Identification is addressed
in Section 6.3.9.

If r > q the model is said to be overidentified and (6.6) has no solution for θ̂ as
there are more equations (r ) than unknowns (q). Instead, θ̂ is chosen so that a quadratic
form in N−1∑

i h(wi , θ̂) is as close to zero as possible. Specifically, the generalized
methods of moments estimator θ̂GMM minimizes the objective function

QN (θ) =
[

1

N

N∑
i=1

h(wi ,θ)

]′
WN

[
1

N

N∑
i=1

h(wi ,θ)

]
, (6.7)

where the r × r weighting matrix WN is symmetric positive definite, possibly stochas-
tic with finite probability limit, and does not depend on θ. The subscript N on WN is
used to indicate that its value may depend on the sample. The dimension r of WN ,
however, is fixed as N → ∞. The objective function can also be expressed in matrix
notation as QN (θ) = N−1l′H(θ) × WN × N−1H(θ)′l, where l is an N × 1 vector of
ones and H(θ) is an N × r matrix with i th row h(yi , xi ,θ)′.

Different choices of weighting matrix WN lead to different estimators that, although
consistent, have different variances if r > q. A simple choice, though often a poor
choice, is to let WN be the identity matrix. Then QN (θ) = h̄2

1 + h̄2
2 + · · · + h̄2

r is the
sum of r squared sample averages, where h̄ j = N−1∑

i h j (wi ,θ) and h j (·) is the j th
component of h(·). The optimal choice of WN is given in Section 6.3.5.

Differentiating QN (θ) in (6.7) with respect to θ yields the GMM first-order
conditions [

1

N

N∑
i=1

∂hi (̂θ)′

∂θ

∣∣∣∣∣̂
θ

]
× WN ×

[
1

N

N∑
i=1

hi (̂θ)

]
= 0, (6.8)

where hi (θ) = hi (wi ,θ) and we have multiplied by the scaling factor 1/2. These equa-
tions will generally be nonlinear in θ̂ and can be quite complicated to solve as θ̂ may
appear in both the first and third terms. Numerical solution methods are presented in
Chapter 10.

6.3.3. Distribution of GMM Estimator

The asymptotic distribution of the GMM estimator is given in the following proposi-
tion, derived in Section 6.3.9.

Proposition 6.1 (Distribution of GMM Estimator): Make the following as-
sumptions:

(i) The dgp imposes the moment condition (6.5); that is, E[h(w,θ0)] = 0.

(ii) The r × 1 vector function h(·) satisfies h(w,θ(1)) = h(w,θ(2)) iff θ(1) = θ(2).
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(iii) The following r × q matrix exists and is finite with rank q:

G0 = plim
1

N

N∑
i=1

[
∂hi

∂θ′

∣∣∣∣
θ0

]
. (6.9)

(iv) WN
p→ W0, where W0 is finite symmetric positive definite.

(v) N−1/2∑N
i=1 hi |θ0

d→ N [0,S(θ0)], where

S0 = plimN−1
N∑

i=1

N∑
j=1

[
hi h′

j

∣∣
θ0

]
. (6.10)

Then the GMM estimator θ̂GMM, defined to be a root of the first-order conditions
∂QN (θ)/∂θ = 0 given in (6.8), is consistent for θ0 and

√
N (̂θGMM − θ0)

d→ N
[
0, (G′

0W0G0)−1(G′
0W0S0W0G0)(G′

0W0G0)−1
]
. (6.11)

Some leading specializations are the following.
First, in microeconometric analysis data are usually assumed to be independent over

i , so (6.10) simplifies to

S0 = plim
1

N

N∑
i=1

[
hi h′

i

∣∣
θ0

]
. (6.12)

If additionally the data are assumed to be identically distributed then (6.9) and
(6.10) simplify to G0 = E[∂h/∂θ′ ∣∣

θ0
] and S0 = E[hh′ ∣∣

θ0
], a notation used by many

authors.
Second, in the just-identified case that r = q, the situation for many estimators

including ML and LS, the results simplify to those already presented in Section 5.4 for
the estimating equations estimator. To see this note that when r = q the matrices G0,
W0, and S0 are square matrices that are invertible, so (G′

0W0G0)−1 = G−1
0 W−1

0 (G′
0)−1

and the variance matrix in (6.11) simplifies. It follows that, for the MM estimator in
(6.6),

√
N (̂θMM − θ0)

d→ N
[
0,G−1

0 S0(G′
0)−1
]
. (6.13)

An MM estimator can always be computed as a GMM estimator and will be invariant
to the choice of full rank weighting matrix.

Third, the best choice of matrix WN is one such that W0 = S−1
0 . Then the variance

matrix in (6.11) simplifies to (G′
0S−1

0 G0)−1. This is expanded on in Section 6.3.5.

6.3.4. Variance Matrix Estimation

Statistical inference for the GMM estimator is possible given consistent estimates Ĝ
of G0, Ŵ of W0, and Ŝ of S0 in (6.11). Consistent estimates are easily obtained under
relatively weak distributional assumptions.
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For G0 the obvious estimator is

Ĝ = 1

N

N∑
i=1

∂hi

∂θ′

∣∣∣∣
θ̂

. (6.14)

For W0 the sample weighting matrix WN is used. The estimator for the r × r matrix S0

varies with the stochastic assumptions made about the dgp. Microeconometric analysis
usually assumes independence over i , so that S0 is of the simpler form (6.12). An
obvious estimator is then

Ŝ = 1

N

N∑
i=1

hi (̂θ)hi (̂θ)′. (6.15)

Since h(·) is r × 1, there are at most a finite number of r (r + 1)/2 unique entries in S0

to be estimated. So Ŝ is consistent as N → ∞ without need to parameterize the
variance E[hi h′

i ], assumed to exist, to depend on fewer parameters. All that is re-
quired are some mild additional assumptions to ensure that plim N−1∑

i ĥi ĥ′
i =

plim N−1∑
i hi h′

i . For example, if ĥi = xi ûi , where ûi is the OLS residual, we know
from Section 4.4 that existence of fourth moments of the regressors needs to be
assumed.

Combining these results, we have that the GMM estimator is asymptotically nor-
mally distributed with mean θ0 and estimated asymptotic variance

V̂[̂θGMM] = 1

N

(
Ĝ′WN Ĝ

)−1
Ĝ′WN ŜWN Ĝ

(
Ĝ′WN Ĝ

)−1
. (6.16)

This variance matrix estimator is a robust estimator that is an extension of the Eicker–
White heteroskedastic-consistent estimator for least-squares estimators.

One can also take expectations and use ĜE = N−1∑
i E[∂hi/∂θ

′]
∣∣
θ̂

for G0 and
ŜE = N−1∑

i E[hi h′
i ]
∣∣
θ̂

for S0. However, this usually requires additional distribu-
tional assumptions to take the expectation, and the variance matrix estimate will not
be as robust to distributional misspecification.

In the time-series case ht is subscripted by time t , and asymptotic theory is based
on the number of time periods T → ∞. For time-series data, with ht a vector
MA(q) process, the usual estimator of V[̂θGMM] is one proposed by Newey and
West (1987b) that uses (6.16) with Ŝ = Ω̂0 +∑q

j=1(1 − j
q+1 )(Ω̂ j + Ω̂′

j ), where Ω̂ j =
T −1∑T

t= j+1 ĥt ĥ′
t− j . This permits time-series correlation in ht in addition to contem-

poraneous correlation. Further details on covariance matrix estimation, including im-
provements in the time-series case, are given in Davidson and MacKinnon (1993, Sec-
tion 17.5), Hamilton (1994), and Haan and Levin (1997).

6.3.5. Optimal Weighting Matrix

Application of GMM requires specification of moment function h(·) and weighting
matrix WN in (6.7).

The easy part is choosing WN to obtain the GMM estimator with the smallest
asymptotic variance given a specified function h(·). This is often called optimal GMM
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even though it is a limited form of optimality since a poor choice of h(·) could still lead
to a very inefficient estimator.

For just-identified models the same estimator (the MM estimator) is obtained for
any full rank weighting matrix, so one might just as well set WN = Iq .

For overidentified models with r > q, and S0 known, the most efficient GMM es-
timator is obtained by choosing the weighting matrix WN = S−1

0 . Then the variance
matrix given in the proposition simplifies and

√
N (̂θGMM − θ0)

d→ N
[
0, (G′

0S−1
0 G0)−1

]
, (6.17)

a result due to Hansen (1982).
This result can be obtained using matrix arguments similar to those that establish

that GLS is the most efficient WLS estimator in the linear model. Even more simply,
one can work directly with the objective function. For LS estimators that minimize the
quadratic form u′Wu the most efficient estimator is GLS that sets W = Σ−1 = V[u]−1.
The GMM objective function in (6.7) is of this quadratic form with u = N−1∑

i hi (θ)
and so the optimal W = (V[N−1∑

i hi (θ)])−1 = S−1
0 . The optimal GMM estimator

weights by the inverse of the variance matrix of the sample moment conditions.

Optimal GMM

In practice S0 is unknown and we let WN = Ŝ−1, where Ŝ is consistent for S0. The
optimal GMM estimator can be obtained using a two-step procedure. At the first step
a GMM estimator is obtained using a suboptimal choice of WN , such as WN = Ir

for simplicity. From this first step, form estimate Ŝ using (6.15). At the second step
perform an optimal GMM estimator with optimal weighting matrix WN = Ŝ−1.

Then the optimal GMM estimator or two-step GMM estimator θ̂OGMM based on
hi (θ) minimizes

QN (θ) =
[

1

N

N∑
i=1

hi (θ)

]′
Ŝ−1

[
1

N

N∑
i=1

hi (θ)

]
. (6.18)

The limit distribution is given in (6.17). The optimal GMM estimator is asymptoti-
cally normally distributed with mean θ0 and estimated asymptotic variance with the
relatively simple formula

V[̂θOGMM] = N−1(Ĝ′̃S−1Ĝ)−1. (6.19)

Usually evaluation of Ĝ and S̃ is at θ̂OGMM, so S̃ uses the same formula as Ŝ except that
evaluation is at θ̂OGMM. An alternative is to continue to evaluate (6.19) at the first-step
estimator, as any consistent estimate of θ0 can be used.

Remarkably, the optimal GMM estimator in (6.18) requires no additional stochastic
assumptions beyond those needed to permit use of (6.16) to estimate the variance
matrix of suboptimal GMM. In both cases Ŝ needs to be consistent for S0 and from the
discussion after (6.15) this requires few additional assumptions. This stands in stark
contrast to the additional assumptions needed for GLS to be more efficient than OLS
when errors are heteroskedastic. Heteroskedasticity in the errors will affect the optimal
choice of hi (θ), however (see Section 6.3.7).
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Small-Sample Bias of Two-Step GMM

Theory suggests that for overidentified models it is best to use optimal GMM. In imple-
mentation, however, the theoretical optimal weighting matrix WN = S−1

0 needs to be
replaced by a consistent estimate Ŝ−1. This replacement makes no difference asymp-
totically, but it will make a difference in finite samples. In particular, individual obser-
vations that increase hi (θ) in (6.18) are likely to increase Ŝ = N−1∑

i ĥi ĥ′
i in (6.18),

leading to correlation between N−1∑
i hi (θ) and Ŝ. Note that S0 = plim N−1∑

i hi h′
i

is not similarly affected because the probability limit is taken.
Altonji and Segal (1996) demonstrated this problem in estimation of covariance

structure models using panel data (see Section 22.5). They used the related minimum
distance estimator (see Section 6.7) but in the literature their results are intrepreted as
being relevant to GMM estimation with cross-section data or short panels. In simula-
tions the optimal estimator was more efficient than a one-step estimator, as expected.
However, the optimal estimator had finite-sample bias so large that its root mean-
squared error was much larger than that for the one-step estimator.

Altonji and Segal (1996) also proposed a variant, an independently weighted op-
timal estimator that forms the weighting matrix using observations other than used to
construct the sample moments. They split the sample into G groups, with G = 2 an
obvious choice, and minimize

QN (θ) = 1

G

∑
g

hg(θ)̂S−1
(−g)hg(θ), (6.20)

where hg(θ) is computed for the gth group and Ŝ(−g) is computed using all but the gth
group. This estimator is less biased, since the weighting matrix Ŝ−1

(−g) is by construction
independent of hg(θ). However, splitting the sample leads to efficiency loss. Horowitz
(1998a) instead used the bootstrap (see Section 11.6.4).

In the Altonji and Segal (1996) example hi involves second moments, so Ŝ involves
fourth moments. Finite-sample problems for the optimal estimator may not be as sig-
nificant in other examples where hi involves only first moments. Nonetheless, Altonji
and Segal’s results do suggest caution in using optimal GMM and that differences
between one-step GMM and optimal GMM estimates may indicate problems of finite-
sample bias in optimal GMM.

Number of Moment Restrictions

In general adding further moment restrictions improves asymptotic efficiency, as it
reduces the limit variance (G′

0S−1
0 G0)−1 of the optimal GMM estimator or at worst

leaves it unchanged.
The benefits of adding further moment conditions vary with the application. For ex-

ample, if the estimator is the MLE then there is no gain since the MLE is already fully
efficient. The literature has focused on IV estimation where gains may be considerable
because the variable being instrumented may be much more highly correlated with a
combination of many instruments than with a single instrument.

There is a limit, however, as the number of moment restrictions cannot exceed
the number of observations. Moreover, adding more moment conditions increases the
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likelihood of finite-sample bias and related problems similar to those of weak instru-
ments in linear models (see Section 4.9). Stock et al. (2002) briefly consider weak
instruments in nonlinear models.

6.3.6. Regression with Symmetric Error Example

To demonstrate the GMM asymptotic results we return to the additional moment re-
strictions example introduced in Section 6.2.4. For this example the objective function
for β̂GMM has already been given in (6.2). All that is required is specification of WN ,
such as WN = I.

To obtain the distribution of this estimator we use the general notation of Section
6.3. The function h(·) in (6.5) specializes to

h(y, x,β) =
[

x(y − x′β)
x(y − x′β)3

]
⇒ ∂h(y, x,β)

∂β′ =
[ −xx′

−3xx′(y − x′β)2

]
.

These expressions lead directly to expressions for G0 and S0 using (6.9) and (6.12), so
that (6.14) and (6.15) then yield consistent estimates

Ĝ =
[ − 1

N

∑
i xi x′

i

− 1
N

∑
i 3̂u2

i xi x′
i

]
(6.21)

and

Ŝ =
[ 1

N

∑
i û2

i xi x′
i

1
N

∑
i û4

i xi x′
i

1
N

∑
i û4

i xi x′
i

1
N

∑
i û6

i xi x′
i

]
, (6.22)

where ûi = y − x′
i β̂. Alternative estimates can be obtained by first evaluating the ex-

pectations in G0 and S0, but this will require assumptions on E[u2|x], E[u4|x], and
E[u6|x]. Substituting Ĝ, Ŝ, and WN into (6.16) gives the estimated asymptotic vari-
ance matrix for β̂GMM.

Now consider GMM with an optimal weighting matrix. This again minimizes (6.2),
but from (6.18) now WN = Ŝ−1, where Ŝ is defined in (6.22). Computation of Ŝ re-
quires first-step consistent estimates β̂. An obvious choice is GMM with WN = I.
In this example the OLS estimator is also consistent and could instead be used.
Using (6.19) gives this two-step estimator an estimated asymptotic variance matrix
V̂[β̂OGMM] equal to([∑

i ũi xi x′
i∑

i ũ3
i xi x′

i

]′ [∑
i ũ2

i xi x′
i

∑
i ũ4

i xi x′
i∑

i ũ4
i xi x′

i

∑
i ũ6

i xi x′
i

]−1 [∑
i ũi xi x′

i∑
i ũ3

i xi x′
i

])−1

,

where ũi = yi − x′
i β̂OGMM and the various divisions by N have canceled out.

Analytical results for the efficiency gain of optimal GMM in this example are eas-
ily obtained by specialization to the nonregression case where y is iid with mean µ.
Furthermore, assume that y is Laplace distributed with scale parameter equal to unity,
in which case the density is f (y) = (1/2) × exp{−|y − µ|} with E[y] = µ, V[y] = 2,
and higher central moments E[(y − µ)r ] equal to zero for r odd and equal to r ! for
r even. The sample median is fully efficient as it is the MLE, and it can be shown to
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have asymptotic variance 1/N . The sample mean ȳ is inefficient with variance V[ȳ] =
V[y]/N = 2/N . The optimal GMM estimator µ̂opt based on the two moment condi-
tions E[(y − µ)] = 0 and E[(y − µ)3] = 0 has weighting matrix that places much less
weight on the second moment condition, because it has relatively high variance, and
has negative off-diagonal entries. The optimal GMM estimator µ̂OGMM can be shown
to have asymptotic variance 1.7143/N (see Exercise 6.3). It is therefore more efficient
than the sample mean (variance 2/N ), though is still considerably less efficient than
the sample median.

For this example the identity matrix is an exceptionally poor choice of weighting
matrix. It places too much weight on the second moment condition, yielding a sub-
optimal GMM estimator of µ with asymptotic variance 19.14/N that is many times
greater than even V[ȳ] = 2/N . For details see Exercise 6.3.

6.3.7. Optimal Moment Condition

Section 6.3.5 gives the surprising result that optimal GMM requires essentially no
more assumptions than does GMM without an optimal weighting matrix. However,
this optimality is very limited as it is conditional on the choice of moment function
h(·) in (6.5) or (6.18).

The GMM defines a class of estimators, with different choice of h(·) correspond-
ing to different members of the class. Some choices of h(·) are better than others, de-
pending on additional stochastic assumptions. For example, hi = xi ui yields the OLS
estimator whereas hi = xi ui/V[ui |xi ] yields the GLS estimator when errors are het-
eroskedastic. This multitude of potential choices for h(·) can make any particular
GMM estimator appear ad hoc. However, qualitatively similar decisions have to be
made in m-estimation in choosing, for example, to minimize the sum of squared errors
rather than the weighted sum of squared errors or the sum of absolute deviations of
errors.

If complete distributional assumptions are made the most efficient estimator is the
MLE. Thus the optimal choice of h(·) in (6.5) is

h(w,θ) = ∂ ln f (w,θ)

∂θ
,

where f (w,θ) is the joint density of w. For regression with dependent variable(s) y
and regressors x this is the unconditional MLE based on the unconditional joint den-
sity f (y, x,θ) of y and x. In many applications f (y, x,θ) = f (y|x,θ)g(x), where the
(suppressed) parameters of the marginal density of x do not depend on the parameters
of interest θ. Then it is just as efficient to use the conditional MLE based on the con-
ditional density f (y|x,θ). This can be used as the basis for MM estimation, or GMM
estimation with weighting matrix WN = Iq , though any full-rank matrix WN will also
give the MLE. This result is of limited practical use, however, as the purpose of GMM
estimation is to avoid making a full set of distributional assumptions.

When incomplete distributional assumptions are made, a common starting point is
specification of a conditional moment condition, where conditioning is on exoge-
nous variables. This is usually a low-order moment condition for the model error such
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as E[u|x] = 0 or E[u|z] = 0. This conditional moment condition can lead to many
unconditional moment conditions that might be the basis for GMM estimation, such
as E[zu] = 0. Newey (1990a, 1993) obtained results on the optimal choice of uncon-
ditional moment condition for data independent over i .

Specifically, begin with s conditional moment condition restrictions

E[r(y, x,θ0)|z] = 0, (6.23)

where r(·) is a residual-type s × 1 vector function introduced in Section 6.2.2. A scalar
example is E[y − x′θ0|z] = 0. The instrumental variables notation is being used where
x are regressors, some potentially endogenous, and z are instruments that include the
exogenous components of x. In simpler models without endogeneity z = x.

GMM estimation of the q parameters θ based on (6.23) is not possible, as typically
there are only a few conditional moment restrictions, and often just one, so s ≤ q .
Instead, we introduce an r × s matrix function of the instruments D(z), where r ≥ q ,
and note that by the law of iterated expectations E[D(z)r(y, x,θ0)] = 0, which can be
used as the basis for GMM estimation. The optimal instruments or optimal choice of
matrix function D(z) can be shown to be the q × s matrix

D∗(z,θ0) = E

[
∂r(y, x,θ0)′

∂θ
|z
]

{V [r(y, x,θ0)|z]}−1 . (6.24)

A derivation is given in, for example, Davidson and MacKinnon (1993, p. 604). The
optimal instrument matrix D∗(z) is a q × s matrix, so the unconditional moment con-
dition E[D∗(z)r(y, x,θ0)] = 0 yields exactly as many moment conditions as param-
eters. The optimal GMM estimator simply solves the corresponding sample moment
conditions

1

N

N∑
i=1

D∗(zi ,θ)r(yi , xi ,θ) = 0. (6.25)

The optimal estimator requires additional assumptions, namely the expectations
used in forming D∗(z,θ0) in (6.24), and implementation requires replacing unknown
parameters by known parameters so that generated regressors D̂ are used.

For example, if r (y, x,θ) = y − exp(x′θ) then ∂r/∂θ = − exp(x′θ)x and (6.24)
requires specification of E[exp(x′θ0)x|z] and V[y − exp(x′θ)|z]. One possibility is
to assume E[exp(x′θ0)x|z] is a low-order polynomial in z, in which case there will
be more moment conditions than parameters and so estimation is by GMM rather
than simply by solving (6.25), and to assume errors are homoskedastic. If these addi-
tional assumptions are wrong then the estimator is still consistent, provided (6.23) is
valid, and consistent standard errors can be obtained using the robust form of the vari-
ance matrix in (6.16). It is common to more simply use z rather than D∗(z,θ) as the
instrument.

Optimal Moment Condition for Nonlinear Regression Example

The result (6.24) is useful in some cases, especially those where z = x. Here we con-
firm that GLS is the most efficient GMM estimator based on E[u|x] = 0.
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Consider the nonlinear regression model y = g(x,β) + u. If the starting point is
the conditional moment restriction E[u|x] = 0, or E[y − g(x,β)|x] = 0, then z = x in
(6.23), and (6.24) yields

D∗(x,β) = E

[
∂

∂β
(y − g(x,β0))|x

] {
V
[
y − g(x,β0)|x]}−1

= −∂g(x,β0)

∂β
× 1

V [u|x]
,

which requires only specification of V[u|x]. From (6.25) the optimal GMM estimator
directly solves the corresponding sample moment conditions

1

N

N∑
i=1

−∂g(xi ,β)

∂β
× (yi − g(xi ,β))

σ 2
i

= 0,

where σ 2
i = V[ui |xi ] is functionally independent of β. These are the first-order condi-

tions for generalized NLS when the error is heteroskedastic. Implementation is possi-
ble using a consistent estimate σ̂ 2

i of σ 2
i , in which case GMM estimation is the same

as FGNLS. One can obtain standard errors robust to misspecification of σ 2
i as detailed

in Section 5.8.
Specializing to the linear model, g(x,β) = x′β and the optimal GMM estimator

based on E[u|x] = 0 is GLS, and specializing further to the case of homoskedastic
errors, the optimal GMM estimator based on E[u|x] = 0 is OLS. As already seen in
the example in Section 6.3.6, more efficient estimation may be possible if additional
conditional moment conditions are used.

6.3.8. Tests of Overidentifying Restrictions

Hypothesis tests on θ can be performed using the Wald test (see Section 5.5), or with
other methods given in Section 7.5.

In addition there is a quite general model specification test that can be used for over-
identified models with more moment conditions (r ) than parameters (q). The test is one
of the closeness of N−1∑

i ĥi to 0, where ĥi = h(wi , θ̂). This is an obvious test of H0:
E[h(w,θ0)] = 0, the initial population moment conditions. For just-identified models,
estimation imposes N−1∑

i ĥi = 0 and the test is not possible. For over-identified
models, however, the first-order conditions (6.8) set a q × r matrix times N−1∑

i ĥi

to zero, where q < r , so
∑

i ĥi �= 0.
In the special case that θ is estimated by θ̂OGMM defined in (6.18), Hansen (1982)

showed that the overidentifying restrictions (OIR) test statistic

OIR =
(

N−1
∑

i
ĥi

)′
Ŝ−1
(

N−1
∑

i
ĥi

)
(6.26)

is asymptotically distributed as χ2(r − q) under H0 :E[h(w,θ0)] = 0. Note that OIR
equals the GMM objective function (6.18) evaluated at θ̂OGMM. If OIR is large then
the population moment conditions are rejected and the GMM estimator is inconsistent
for θ.
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It is not obvious a priori that the particular quadratic form in N−1∑
i ĥi given in

(6.26) is χ2(r − q) distributed under H0. A formal derivation is given in the next
section and an intuitive explanation in the case of linear IV estimation is provided
in Section 8.4.4.

A classic application is to life-cycle models of consumption (see Section 6.2.7), in
which case the orthogonality conditions are Euler conditions. A large chi-square test
statistic is then often stated to mean rejection of the life-cycle hypothesis. However, it
should instead be more narrowly interpreted as rejection of the particular specification
of utility function and set of stochastic assumptions used in the study.

6.3.9. Derivations for the GMM Estimator

The algebra is simplified by introducing a more compact notation. The GMM estimator
minimizes

QN (θ) = gN (θ)′WN gN (θ), (6.27)

where gN (θ) = N−1∑
i hi (θ). Then the GMM first-order conditions (6.8) are

GN (̂θ)′WN gN (̂θ) = 0, (6.28)

where GN (θ) = ∂gN (θ)/∂θ′ = N−1∑
i ∂hi (θ)/∂θ′.

For consistency we consider the informal condition that the probability limit of
∂QN (θ)/∂θ|θ0

equals zero. From (6.28) this will be the case as GN (θ0) and WN

have finite probability limits, by assumptions (iii) and (iv) of Proposition 6.1, and
plim gN (θ0) = 0 as a consequence of assumption (v). More intuitively, gN (θ0) =
N−1∑

i hi (θ0) has probability limit zero if a law of large numbers can be applied
and E[hi (θ0)] = 0, which was assumed at the outset in (6.5).

The parameter θ0 is identified by the key assumption (ii) and additionally assump-
tions (iii) and (iv), which restrict the probability limits of GN (θ0) and WN to be full-
rank matrices. The assumption that G0 = plim GN (θ0) is a full-rank matrix is called
the rank condition for identification. A weaker necessary condition for identification
is the order condition that r ≥ q.

For asymptotic normality, a more general theory is needed than that for an m-
estimator based on an objective function QN (β) =N−1∑

i q(wi ,θ) that involves just
one sum. We rescale (6.28) by multiplication by

√
N , so that

GN (̂θ)′WN

√
NgN (̂θ) = 0. (6.29)

The approach of the general Theorem 5.3 is to take a Taylor series expansion around
θ0 of the entire left-hand side of (6.28). Since θ̂ appears in both the first and third
terms this is complicated and requires existence of first derivatives of GN (θ) and hence
second derivatives of gN (θ). Since GN (̂θ) and WN have finite probability limits it is
sufficient to more simply take an exact Taylor series expansion of only

√
NgN (̂θ). This

yields an expression similar to that in the Chapter 5 discussion of m-estimation, with
√

NgN (̂θ) =
√

NgN (θ0) + GN (θ+)
√

N (̂θ − θ0), (6.30)
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recalling that GN (θ) = ∂gN (θ)/∂θ′, where θ+ is a point between θ0 and θ̂. Substitut-
ing (6.30) back into (6.29) yields

GN (̂θ)′WN

[√
NgN (θ0) + GN (θ+)

√
N (̂θ − θ0)

]
= 0.

Solving for
√

N (̂θ − θ0) yields
√

N (̂θ − θ0) = − [GN (̂θ)′WN GN (θ+)
]−1

GN (̂θ)′WN

√
NgN (θ0). (6.31)

Equation (6.31) is the key result for obtaining the limit distribution of the GMM

estimator. We obtain the probability limits of each of the first five terms using θ̂
p→ θ0,

given consistency, in which case θ+ p→ θ0. The last term on the right-hand side of
(6.31) has a limit normal distribution by assumption (v). Thus

√
N (̂θ − θ0)

d→ −(G′
0W0G0)−1G′

0W0 × N [0,S0],

where G0, W0, and S0 have been defined in Proposition 6.1. Applying the limit normal
product rule (Theorem A.17) yields (6.11).

This derivation treats the GMM first-order conditions as being q linear combina-
tions of the r sample moments gN (̂θ), since GN (̂θ)′WN is a q × r matrix. The MM
estimator is the special case q = r , since then GN (̂θ)′WN is a full-rank square matrix,
so GN (̂θ)′WN gN (̂θ) = 0 implies that gN (̂θ) = 0.

To derive the distribution of the OIR test statistic in (6.26), begin with a first-order
Taylor series expansion of

√
NgN (̂θ) around θ0 to obtain

√
NgN (̂θOGMM) =

√
NgN (θ0) + GN (θ+)

√
N (̂θOGMM − θ0)

=
√

NgN (θ0) − G0(G′
0S−1

0 G0)−1G′
0S−1

0

√
NgN (θ0) + op(1)

= [I − M0S−1
0 ]

√
NgN (θ0) + op(1),

where the second equality uses (6.31) with WN consistent for S−1
0 , M0 =

G0(G′
0S−1

0 G0)−1G′
0, and op(1) is defined in Definition A.22. It follows that

S−1/2
0

√
NgN (̂θOGMM) = S−1/2

0 [I − M0S−1
0 ]

√
NgN (θ0) + op(1) (6.32)

= [I − S−1/2
0 M0S−1/2

0 ]S−1/2
0

√
NgN (θ0) + op(1).

Now [I − S−1/2
0 M0S−1/2

0 ] = [I − S−1/2
0 G0(G′

0S−1
0 G0)−1G′

0S−1/2
0 ] is an idempotent

matrix of rank (r − q), and S−1/2
0

√
NgN (θ0)

d→ N [0, I] given
√

NgN (θ0)
d→

N [0,S0]. From standard results for quadratic forms of normal variables it follows
that the inner product

τN = (S−1/2
0

√
NgN (̂θOGMM))′(S−1/2

0

√
NgN (̂θOGMM))

converges to the χ2(r − q) distribution.

6.4. Linear Instrumental Variables

Correlation of regressors with the error term leads to inconsistency of least-
squares methods. Examples of such failure include omitted variables, simultaneity,
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measurement error in the regressors, and sample selection bias. Instrumental variables
methods provide a general approach that can handle any of these problems, provided
suitable instruments exist.

Instrumental variables methods fall naturally into the GMM framework as a surplus
of instruments leads to an excess of moment conditions that can be used for estimation.
Many IV results are most easily obtained using the GMM framework.

Linear IV is important enough to appear in many places in this book. An introduc-
tion was given in Sections 4.8 and 4.9. This section presents single-equation linear IV
as a particular application of GMM. For completeness the section also presents the
earlier literature on a special case, the two-stage least-squares estimator. Systems lin-
ear IV estimation is summarized in Section 6.9.5. Tests of endogeneity and tests of
overidentifying restrictions for linear models are detailed in Section 8.4. Chapter 22
presents linear IV estimation with panel data.

6.4.1. Linear GMM with Instruments

Consider the linear regression model

yi = x′
iβ+ui , (6.33)

where each component of x is viewed as being an exogenous regressor if it is uncor-
related with the error in model (6.33) or an endogenous regressor if it is correlated.
If all regressors are exogenous then LS estimators can be used, but if any components
of x are endogenous then LS estimators are inconsistent for β.

From Section 4.8, consistent estimates can be obtained by IV estimation. The key
assumption is the existence of an r × 1 vector of instruments z that satisfies

E[ui |zi ] = 0. (6.34)

Exogenous regressors can be instrumented by themselves. As there must be at least as
many instruments as regressors, the challenge is to find additional instruments that at
least equal the number of endogenous variables in the model. Some examples of such
instruments have been given in Section 4.8.2.

Linear GMM Estimator

From Section 6.2.5, the conditional moment restriction (6.34) and model (6.33) imply
the unconditional moment restriction

E[zi (yi−x′
iβ)] = 0, (6.35)

where for notational simplicity the following analysis uses β rather than the more
formal β0 to denote the true parameter value. A quadratic form in the corresponding
sample moments leads to the GMM objective function QN (β) given in (6.4).

In matrix notation define y = Xβ + u as usual and let Z denote the N × r matrix
of instruments with i th row z′

i . Then
∑

i zi (yi−x′
iβ) = Z′u and (6.4) becomes

QN (β) =
[

1

N
(y − Xβ)′Z

]
WN

[
1

N
Z′(y − Xβ)

]
, (6.36)
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where WN is an r × r full-rank symmetric weighting matrix with leading examples
given at the end of this section. The first-order conditions

∂QN (β)

∂β
= −2

[
1

N
X′Z
]

WN

[
1

N
Z′(y − Xβ)

]
= 0

can actually be solved for β in this special case of GMM, leading to the GMM esti-
mator in the linear IV model

β̂GMM = [X′ZWN Z′X
]−1

X′ZWN Z′y, (6.37)

where the divisions by N have canceled out.

Distribution of Linear GMM Estimator

The general results of Section 6.3 can be used to derive the asymptotic distribution.
Alternatively, since an explicit solution for β̂GMM exists the analysis for OLS given in
Section 4.4. can be adapted. Substituting y = Xβ + u into (6.37) yields

β̂GMM = β + [(N−1X′Z
)

WN
(
N−1Z′X

)]−1 (
N−1X′Z

)
WN
(
N−1Z′u

)
. (6.38)

From the last term, consistency of the GMM estimator essentially requires that
plim N−1Z′u = 0. Under pure random sampling this requires that (6.35) holds,
whereas under other common sampling schemes (see Section 24.3) the stronger as-
sumption (6.34) is needed.

Additionally, the rank condition for identification of β that plim N−1Z′X is of
rank K ensures that the inverse in the right-hand side exists, provided WN is of full
rank. A weaker order condition is that r ≥ K .

The limit distribution is based on the expression for
√

N (β̂GMM − β) obtained by
simple manipulation of (6.38). This yields an asymptotic normal distribution for β̂GMM

with mean β and estimated asymptotic variance

V̂[β̂GMM] = N
[
X′ZWN Z′X

]−1 [
X′ZWN ŜWN Z′X

] [
X′ZWN Z′X

]−1
, (6.39)

where Ŝ is a consistent estimate of

S = lim
1

N

N∑
i=1

E
[
u2

i zi z′
i

]
,

given the usual cross-section assumption of independence over i . The essential addi-

tional assumption needed for (6.39) is that N−1/2Z′u
d→ N [0,S]. Result (6.39) also

follows from Proposition 6.1 with h(·) = z(y − x′β) and hence ∂h/∂β′ = −zx′.
For cross-section data with heteroskedastic errors, S is consistently estimated by

Ŝ = 1

N

N∑
i=1

û2
i zi z′

i = Z′DZ/N, (6.40)

where ûi = yi − x′
i β̂GMM is the GMM residual and D is an N × N diagonal matrix

with entries û2
i . A commonly used small-sample adjustment is to divide by N − K
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Table 6.2. GMM Estimators in Linear IV Model and Their Asymptotic Variancea

Estimator Definition and Asymptotic Variance

GMM β̂GMM = [X′ZWN Z′X]−1X′ZWN Z′y
(general WN ) V̂[β̂] = N [X′ZWN Z′X]−1[X′ZWN ŜWN Z′X][X′ZWN Z′X]−1

Optimal GMM β̂OGMM = [X′ZŜ
−1

Z′X]−1X′ZŜ
−1

Z′y
(WN = Ŝ−1) V̂[β̂] = N [X′ZŜ

−1
Z′X]−1

2SLS β̂2SLS = [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y
(WN = [N−1Z′Z]−1) V̂[β̂] = N [X′Z(Z′Z)−1Z′X]−1[X′Z(Z′Z)−1Ŝ(Z′Z)−1Z′X]

× [X′Z(Z′Z)−1Z′X]−1

V̂[β̂] = s2[X′Z(Z′Z)−1Z′X]−1 if homoskedastic errors
IV β̂IV = [Z′X]−1Z′y
( just-identified) V̂[β̂] = N (Z′X)−1Ŝ(X′Z)−1

a Equations are based on a linear regression model with dependent variable y, regressors X, and instruments
Z. Ŝ is defined in (6.40) and s2 is defined after (6.41). All variance matrix estimates assume errors that are
independent across observations and heteroskedastic, aside from the simplification for homoskedastic errors
given for the 2SLS estimator. Optimal GMM uses the optimal weighting matrix.

rather than N in the formula for Ŝ. In the more restrictive case of homoskedastic errors,
E[u2

i |zi ] = σ 2 and so S = lim N−1∑
i σ

2E[zi z′
i ], leading to estimate

Ŝ = s2Z′Z/N , (6.41)

where s2 = (N − K )−1∑N
i=1 û2

i is consistent for σ 2. These results mimic similar re-
sults for OLS presented in Section 4.4.5.

6.4.2. Different Linear GMM Estimators

Implementation of the results of Section 6.4.1 requires specification of the weighting
matrix WN . For just-identified models all choices of WN lead to the same estima-
tor. For overidentified models there are two common choices of WN , given in the
following.

Table 6.2 summarizes these estimators and gives the appropriate specialization of
the estimated variance matrix formula given in (6.39), assuming independent het-
eroskedastic errors.

Instrumental Variables Estimator

In the just-identified case r = K and X′Z is a square matrix that is invertible. Then
[X′ZWN Z′X]−1 = (Z′X)−1W−1

N (X′Z)−1 and (6.37) simplifies to the instrumental
variables estimator

β̂IV = (Z′X)−1Z′y, (6.42)

introduced in Section 4.8.6. For just-identified models the GMM estimator for any
choice of WN equals the IV estimator.
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The simple IV estimator can also be used in overidentified models, by discarding
some of the instruments so that the model is just-identified, but this results in an effi-
ciency loss compared to using all the instruments.

Optimal-Weighted GMM

From Section 6.3.5, for overidentified models the most efficient GMM estimator,
meaning GMM with optimal choice of weighting matrix, sets WN = Ŝ−1 in (6.37).

The optimal GMM estimator or two-step GMM estimator in the linear IV model
is

β̂OGMM = [(X′Z)̂S−1(Z′X)
]−1

(X′Z)̂S−1(Z′y). (6.43)

For heteroskedastic errors, Ŝ is computed using (6.40) based on a consistent first-step
estimate β̂ such as the 2SLS estimator defined in (6.44). White (1982) called this
estimator a two-stage IV estimator, since both steps entail IV estimation.

The estimated asymptotic variance matrix for optimal GMM given in Table 6.2
is of relatively simple form as (6.39) simplifies when WN = Ŝ−1. In computing the
estimated variance one can use Ŝ as presented in Table 6.2, but it is more common to
instead use an estimator S̃, say, that is also computed using (6.40) but evaluates the
residual at the optimal GMM estimator rather than the first-step estimate used to form
Ŝ in (6.43).

Two-Stage Least Squares

If errors are homoskedastic rather than heteroskedastic, Ŝ−1 = [s2 N−1Z′Z]−1 from
(6.41). Then WN = (N−1Z′Z)−1 in (6.37), leading to the two-stage least-squares
estimator, introduced in Section 4.8.7, that can be expressed compactly as

β̂2SLS = [X′PZX
]−1 [

X′PZy
]
, (6.44)

where PZ = Z(ZZ′)−1Z′. The basis of the term two-stage least-squares is presented
in the next section. The 2SLS estimator is also called the generalized instrumental
variables (GIV) estimator as it generalizes the IV estimator to the overidentified
case of more instruments than regressors. It is also called the one-step GMM because
(6.44) can be calculated in one step, whereas optimal GMM requires two steps.

The 2SLS estimator is asymptotically normal distributed with estimated asymptotic
variance given in Table 6.2. The general form should be used if one wishes to guard
against heteroskedastic errors whereas the simpler form, presented in many introduc-
tory textbooks, is consistent only if errors are indeed homoskedastic.

Optimal GMM versus 2SLS

Both the optimal GMM and the 2SLS estimator lead to efficiency gains in overiden-
tified models. Optimal GMM has the advantage of being more efficient than 2SLS,
if errors are heteroskedastic, though the efficiency gain need not be great. Some of
the GMM testing procedures given in Section 7.5 and Chapter 8 assume estimation
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using the optimal weighting matrix. Optimal GMM has the disadvantage of requiring
additional computation compared to 2SLS. Moreover, as discussed in Section 6.3.5,
asymptotic theory may provide a poor small-sample approximation to the distribution
of the optimal GMM estimator.

In cross-section applications it is common to use the less efficient 2SLS, though
with inference based on heteroskedastic robust standard errors.

Even More Efficient GMM Estimation

The estimator β̂OGMM is the most efficient estimator based on the unconditional mo-
ment condition E[zi ui ] = 0, where ui = yi−x′

iβ. However, this is not the best moment
condition to use if the starting point is the conditional moment condition E[ui |zi ] = 0
and errors are heteroskedastic, meaning V[ui |zi ] varies with zi .

Applying the general results of Section 6.3.7, we can write the optimal moment
condition for GMM estimation based on E[ui |zi ] = 0 as

E
[
E
[
xi |zi

]
ui/V [ui |zi ]

]= 0. (6.45)

As with the LS regression example in Section 6.3.7, one should divide by the error
variance V[u|z]. Implementation is more difficult than in the LS case, however, as
a model for E[x|z] needs to be specified in addition to one for V[u|z]. This may be
possible with additional structure. In particular, for a linear simultaneous equations
system E[xi |zi ] is linear in z so that estimation is based on E[xi ui/V[ui |zi ]] = 0.

For linear models the GMM estimator is usually based on the simpler condition
E[zi ui ] = 0. Given this condition, the optimal GMM estimator defined in (6.43) is the
most efficient GMM estimator.

6.4.3. Alternative Derivations of Two-Stage Least Squares

The 2SLS estimator, the standard IV estimator for overidentified models, was derived
in Section 6.4.2 as a GMM estimator.

Here we present three other derivations of the 2SLS estimator. One of these deriva-
tions, due to Theil, provided the original motivation for 2SLS, which predates GMM.
Theil’s interpretation is emphasized in introductory treatments. However, it does not
generalize to nonlinear models, whereas the GMM interpretation does.

We consider the linear model

y = Xβ + u, (6.46)

with E[u|Z] = 0 and additionally V[u|Z] = σ 2I.

GLS in a Transformed Model

Premultiplication of (6.46) by the instruments Z′ yields the transformed model

Z′y = Z′Xβ + Z′u. (6.47)
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This transformed model is often used as motivation for the IV estimator when r = K ,
since ignoring Z′u since N−1Z′u → 0 and solving yields β̂= (Z′X)−1Z′y.

Here instead we consider the overidentified case. Conditional on Z the error Z′u has
mean zero and variance σ 2Z′Z given the assumptions after (6.46). The efficient GLS
estimator of β in model (6.46) is then

β̂ = [X′Z(σ 2Z′Z)−1Z′X
]−1

X′Z(σ 2Z′Z)−1Z′y, (6.48)

which equals the 2SLS estimator in (6.44) since the multipliers σ 2 cancel out. More
generally, note that if the transformed model (6.47) is instead estimated by WLS with
weighting matrix WN then the more general estimator (6.37) is obtained.

Theil’s Interpretation

Theil (1953) proposed estimation by OLS regression of the original model (6.46),
except that the regressors X are replaced by a prediction X̂ that is asymptotically un-
correlated with the error term.

Suppose that in the reduced form model the regressors X are a linear combination
of the instruments plus some error, so that

X = ZΠ + v, (6.49)

where Π is a K × r matrix. Multivariate OLS regression of X on Z yields estimator
Π̂ = (Z′Z)−1Z′X and OLS predictions X̂ = ZΠ̂ or

X̂ = PZX,

where PZ = Z(Z′Z)−1Z′. OLS regression of y on X̂ rather than y on X yields estimator

β̂Theil = (X̂′X̂)−1X̂′y. (6.50)

Theil’s interpretation permits computation by two OLS regressions, with the first-stage
OLS giving X̂ and the second-stage OLS giving β̂, leading to the term two-stage least-
squares estimator.

To establish consistency of this estimator reexpress the linear model (6.46) as

y = X̂β + (X−X̂)β + u.

The second-stage OLS regression of y on X̂ yields a consistent estimator of β if the re-
gressor X̂ is asymptotically uncorrelated with the composite error term (X−X̂)β + u.
If X̂ were any proxy variable there is no reason for this to hold; however, here X̂ is un-
correlated with (X−X̂) as an OLS prediction is orthogonal to the OLS residual. Thus
plim N−1X̂′(X−X̂)β = 0. Also,

N−1X̂′u = N−1X′PZu = N−1X′Z(N−1Z′Z)−1 N−1Z′u.

Then X̂ is asymptotically uncorrelated with u provided Z is a valid instrument so that
plim N−1Z′u = 0. This consistency result for β̂Theil depends heavily on the linearity
of the model and does not generalize to nonlinear models.
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Theil’s estimator in (6.50) equals the 2SLS estimator defined earlier in (6.44). We
have

β̂Theil = (X̂′X̂)−1X̂′y

= (X′P′
ZPZX)−1X′PZy

= (X′PZX)−1X′PZy,

the 2SLS estimator, using P′
ZPZ = PZ in the final equality.

Care is needed in implementing 2SLS using Theil’s method. The second-stage OLS
will give the wrong standard errors, even if errors are homoskedastic, as it will esti-
mate σ 2 using the second-stage OLS regression residuals (y − X̂β̂) rather than the ac-
tual residuals (y − Xβ̂). In practice one may also make adjustment for heteroskedastic
errors. It is much easier to use a program that offers 2SLS as an option and directly
computes (6.44) and the associated variance matrix given in Table 6.2.

The 2SLS interpretation does not always carry over to nonlinear models, as detailed
in Section 6.5.4. The GMM interpretation does, and for this reason it is emphasized
here more than Theil’s original derivation of linear 2SLS.

Theil actually considered a model where only some of the regressors X are endoge-
nous and the remaining are exogenous. The preceding analysis still applies, provided
all the exogenous components of X are included in the instruments Z. Then the first-
stage OLS regression of the exogenous regressors on the instruments fits perfectly and
the predictions of the exogenous regressors equal their actual values. So in practice at
the first-stage just the endogenous variables are regressed on the instruments, and the
second-stage regression is of y on the exogenous regressors and the first-stage predic-
tions of the endogenous regressors.

Basmann’s Interpretation

Basmann (1957) proposed using as instruments the OLS reduced form predictions
X̂ = PZX for the simple IV estimator in the just-identified case, since there are then
exactly as many instruments X̂ as regressors X. This yields

β̂Basmann = (X̂′X)−1X̂′y. (6.51)

This is consistent since plim N−1X̂′u = 0, as already shown for Theil’s estimator.
The estimator (6.51) actually equals the 2SLS estimator defined in (6.44), since

X̂′ = X′PZ.
This IV approach will lead to correct standard errors and can be extended to non-

linear settings.

6.4.4. Alternatives to Standard IV Estimators

The IV-based optimal GMM and 2SLS estimators presented in Section 6.4.2 are the
standard estimators used when regressors are endogenous. Chernozhukov and Hansen
(2005) present an IV estimator for quantile regression.
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Here we briefly discuss leading alternative estimators that have received renewed
interest given the poor finite-sample properties of 2SLS with weak instruments detailed
in Section 4.9. We focus on single-equation linear models. At this stage there is no
method that is relatively efficient yet has small bias in small samples.

Limited-Information Maximum Likelihood

The limited-information maximum likelihood (LIML) estimator is obtained by
joint ML estimation of the single equation (6.46) plus the reduced form for the en-
dogenous regressors in the right-hand side of (6.46) assuming homoskedastic normal
errors. For details see Greene (2003, p. 402) or Davidson and MacKinnon (1993,
pp. 644–651). More generally the k class of estimators (see, for example, Greene,
2003, p. 403) includes LIML, 2SLS, and OLS.

The LIML estimator due to Anderson and Rubin (1949) predates the 2SLS esti-
mator. Unlike 2SLS, the LIML estimator is invariant to the normalization used in a
simultaneous equations system. Moreover, LIML and 2SLS are asymptotically equiv-
alent given homoskedastic errors. Yet LIML is rarely used as it is more difficult to
implement and harder to explain than 2SLS. Bekker (1994) presents small-sample re-
sults for LIML and a generalization of LIML. See also Hahn and Hausman (2002).

Split-Sample IV

Begin with Basmann’s interpretation of 2SLS as an IV estimator given in (6.51). Sub-
stituting for y from (6.46) yields

β̂ = β+ (X̂′X)−1X̂′u.

By assumption plim N−1Z′u = 0 so plim N−1X̂′u = 0 and β̂ is consistent. However,
correlation between X and u, the reason for IV estimation, means that X̂ = PZX is
correlated with u. Thus E[X̂′u] �= 0, which leads to bias in the IV estimator. This bias
arises from using X̂ = ZΠ̂ rather than X̂ = ZΠ as the instrument.

An alternative is to instead use as instrument predictions X̃, which have the property
that E[X̃′u] = 0 in addition to plim N−1X̂′u = 0, and use estimator

β̃ = (X̃′X)−1X̃′y.

Since E[X̃′u] = 0 does not imply E[(X̃′X)−1X̃′u] = 0, this estimator will still be bi-
ased, but the bias may be reduced.

Angrist and Krueger (1995) proposed obtaining such instruments by splitting the
sample into two subsamples (y1,X1,Z1) and (y2,X2,Z2). The first sample is used
to obtain estimate Π̂1 from regression of X1 on Z1. The second sample is used to
obtain the IV estimator where the instrument X̃2 = Z2Π̂1 uses Π̂1 obtained from the
separate first sample. Angrist and Krueger (1995) define the unbiased split-sample
IV estimator as

β̃USSIV = (X̃′
2X2)−1X̃′

2y2.
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The split-sample IV estimator β̃SSIV = (X̃′
2X̃2)−1X̃′

2y2 is a variant based on Theil’s
interpretation of 2SLS. These estimators have finite-sample bias toward zero, unlike
2SLS, which is biased toward OLS. However, considerable efficiency loss occurs be-
cause only half the sample is used at the final stage.

Jackknife IV

A more efficient variant of this estimator implements a similar procedure but generates
instruments observation by observation.

Let the subscript (−i) denote the leave-one-out operation that drops the i th obser-
vation. Then for the i th observation we obtain estimate Π̂i from regression of X(−i) on
Z(−i) and use as instrument x̃′

i = z′
iΠ̂i . Repeating N times gives an instrument vector

denoted X̃(−i) with i th row x̃′
i . This leads to the jackknife IV estimator

β̃JIV = (X̃′
(−i)X)−1X̃′

(−i)y2.

This estimator was originally proposed by Phillips and Hale (1977). Angrist,
Imbens and Krueger (1999) and Blomquist and Dahlberg (1999) called it a jackknife
estimator since the jackknife (see Section 11.5.5) is a leave-one-out method for bias
reduction. The computational burden of obtaining the N jackknife predicted values x̃′

i
is modest by use of the recursive formula given in Section 11.5.5. The Monte Carlo
evidence given in the two recent papers is mixed, however, indicating a potential for
bias reduction but also an increase in the variance. So the jackknife version may not be
better than the conventional version in terms of mean-square error. The earlier paper
by Phillips and Hale (1977) presents analytical results that the finite-sample bias of the
JIV estimator is smaller than that of 2SLS only for appreciably overidentified models
with r > 2(K + 1). See also Hahn, Hausman and Kuersteiner (2001).

Independently Weighted 2SLS

A related method to split-sample IV is the independently weighted GMM estimator of
Altonji and Segal (1996) given in Section 6.3.5. Splitting the sample into G groups
and specializing to linear IV yields the independently weighted IV estimator

β̂IWIV = 1

G

G∑
g=1

[
X′

gZgŜ−1
(−g)Z

′
gXg

]−1
X′

gZgŜ−1
(−g)Z

′
gyg,

where Ŝ(−g) is computed using Ŝ defined in (6.40) except that observations from the
gth group are excluded. In a panel application Ziliak (1997) found that the indepen-
dently weighted IV estimator performed much better than the unbiased split-sample
IV estimator.

6.5. Nonlinear Instrumental Variables

Nonlinear IV methods, notably nonlinear 2SLS proposed by Amemiya (1974), per-
mit consistent estimates of nonlinear regression models in situations where the NLS
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estimator is inconsistent because to regressors are correlated with the error term. We
present these methods as a straightforward extension of the GMM approach for linear
models.

Unlike the linear case the estimators have no explicit formula, but the asymptotic
distribution can be obtained as a special case of the Section 6.3 results. This section
presents single-equation results, with systems results given in Section 6.10.4. A fun-
damentally important result is that a natural extension of Theil’s 2SLS method for
linear models to nonlinear models can lead to inconsistent parameter estimates (see
Section 6.5.4). Instead, the GMM approach should be used.

An alternative nonlinearity can arise when the model for the dependent variable is
a linear model, but the reduced form for the endogenous regressor(s) is a nonlinear
model owing to special features of the dependent variable. For example, the endoge-
nous regressor may be a count or a binary outcome. In that case the linear methods
of the previous section still apply. One approach is to ignore the special nature of the
endogenous regressor and just do regular linear 2SLS or optimal GMM. Alternatively,
obtain fitted values for the endogenous regressor by appropriate nonlinear regression,
such as Poisson regression on all the instruments if the endogenous regressor is a count,
and then do regular linear IV using this fitted value as the instrument for the count, fol-
lowing Basmann’s approach. Both estimators are consistent, though they have different
asymptotic distributions. The first simpler approach is the usual procedure.

6.5.1. Nonlinear GMM with Instruments

Consider the quite general nonlinear regression model where the error term may be
additive or nonadditive (see Section 6.2.2). Thus

ui = r (yi , xi ,β), (6.52)

where the nonlinear model with additive error is the special case

ui = yi − g(xi ,β), (6.53)

where g(·) is a specified function. The estimators given in Section 6.2.2 are inconsis-
tent if E[ui |xi ] �= 0.

Assume the existence of r instruments z, where r ≥ K , that satisfy

E[ui |zi ] = 0. (6.54)

This is the same conditional moment condition as in the linear case, except that ui =
r (yi , xi ,β) rather than ui = yi − x′

iβ.

Nonlinear GMM Estimator

By the law of iterated expectations, (6.54) leads to

E[zi ui ] = 0. (6.55)

The GMM estimator minimizes the quadratic form in the corresponding sample mo-
ment condition.
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In matrix notation let u denote the N × 1 error vector with i th entry ui given in
(6.52) and let Z to be an N × r matrix of instruments with i th row z′

i . Then
∑

i zi ui =
Z′u and the GMM estimator in the nonlinear IV model β̂GMM minimizes

QN (β) =
(

1

N
u′Z
)

WN

(
1

N
Z′u
)
, (6.56)

where WN is an r × r weighting matrix. Unlike linear GMM, the first-order conditions
do not lead to a closed-form solution for β̂GMM.

Distribution of Nonlinear GMM Estimator

The GMM estimator is consistent for β given (6.54) and asymptotically normally dis-
tributed with estimated asymptotic variance

V̂
[
β̂GMM

] = N
[
D̂′ZWN Z′D̂

]−1 [
D̂′ZWN ŜWN Z′D̂

] [
D̂′ZWN Z′D̂

]−1
(6.57)

using the results from Section 6.3.3 with h(·) = zu, where Ŝ is given in the following
and D̂ is an N × K matrix of derivatives of the error term

D̂ = ∂u
∂β′

∣∣∣∣
β̂

GMM

. (6.58)

With nonadditive errors, D̂ has i th row ∂r (yi , xi ,β)/∂β′∣∣
β̂

. With additive errors, D̂

has i th row ∂g(xi ,β)/∂β′∣∣
β̂

, ignoring the minus sign that cancels out in (6.57).
For independent heteroskedastic errors,

Ŝ = N−1
∑

i

û2
i zi z′

i , (6.59)

similar to the linear case except now ûi = r (yi , x, β̂) or ûi = yi − g(x, β̂).
The asymptotic variance of the GMM estimator in the nonlinear model is therefore

the same as that in the linear case given in (6.39), with the change that the regressor
matrix X is replaced by the derivative ∂u/∂β′∣∣

β̂
. This is exactly the same change as

observed in Section 5.8 in going from linear to nonlinear least squares. By analogy
with linear IV, the rank condition for identification is that plim N−1Z′ ∂u/∂β′∣∣

β0
is

of rank K and the weaker order condition is that r ≥ K .

6.5.2. Different Nonlinear GMM Estimators.

Two leading specializations of the GMM estimator, which differ in the choice of
weighting matrix, are optimal GMM that sets WN = Ŝ−1 and nonlinear two-stage least
squares (NL2SLS) that sets WN = (Z′Z)−1. Table 6.3 summarizes these estimators
and their associated variance matrices, assuming independent heteroskedastic errors,
and gives results for general WN and results for nonlinear IV in the just-identified
model.
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Table 6.3. GMM Estimators in Nonlinear IV Model and Their Asymptotic Variancea

Estimator Definition and Asymptotic Variance

GMM QGMM(β) = u′ZWN Z′u
(general WN ) V̂[β̂] = N [D̂′ZWN Z′D̂]−1[D̂′ZWN ŜWN Z′D̂][D̂′ZWN Z′D̂]−1

Optimal GMM QOGMM(β) = u′ZŜ
−1

Z′u
(WN = Ŝ−1) V̂[β̂] = N [D̂′ZŜ

−1
Z′D̂]−1

NL2SLS QNL2SLS(β) = u′Z(Z′Z)−1Z
′
u

(WN = [N−1Z′Z]−1) V̂[β̂] = N [D̂′Z(Z′Z)−1Z′D̂]−1[D̂′Z(Z′Z)−1Ŝ(Z′Z)−1Z′D̂]
× [D̂′Z(Z′Z)−1Z′D̂]−1

V̂[β̂] = s2[D̂′Z(Z′Z)−1Z′D̂]−1 if homoskedastic errors
NLIV β̂NLIV solves Z′u = 0
( just-identified) V̂[β̂] = N (Z′D̂)−1Ŝ(D̂′Z)−1

a Equations are for a nonlinear regression model with error u defined in (6.53) or (6.52) and instruments Z. D̂
is the derivative of the error vector with respect to β′ evaluated at β̂ and simplifies for models with additive
error to the derivative of the conditional mean function with respect to β′ evaluated at β̂. Ŝ is defined in (6.59).
All variance matrix estimates assume errors that are independent across observations and heteroskedastic, aside
from the simplification for homoskedastic errors given for the NL2SLS estimator.

Nonlinear Instrumental Variables

In the just-identified case one can directly use the sample moment conditions corre-
sponding to (6.55). This yields the method of moments estimator in the nonlinear
IV model β̂NLIV that solves

1

N

N∑
i=1

zi ui= 0, (6.60)

or equivalently Z′u = 0 with asymptotic variance matrix given in Table 6.3.
Nonlinear estimators are often computed using iterative methods that obtain an op-

timum to an objective function rather than solve nonlinear systems of estimating equa-
tions. For the just-identified case β̂NLIV can be computed as a GMM estimator mini-
mizing (6.56) with any choice of weighting matrix, most simply WN = I, leading to
the same estimate.

Optimal Nonlinear GMM

For overidentified models the optimal GMM estimator uses weighting matrix WN =
Ŝ−1. The optimal GMM estimator in the nonlinear IV model β̂OGMM therefore
minimizes

QN (β) =
(

1

N
u′Z
)

Ŝ−1

(
1

N
Z′u
)
. (6.61)

The estimated asymptotic variance matrix given in Table 6.3 is of relatively simple
form as (6.57) simplifies when WN = Ŝ−1.

195



GENERALIZED METHOD OF MOMENTS AND SYSTEMS ESTIMATION

As in the linear case the optimal GMM estimator is a two-step estimator when errors
are heteroskedastic. In computing the estimated variance one can use Ŝ as presented
in Table 6.3, but it is more common to instead use an estimator S̃, say, that is also
computed using (6.59) but evaluates the residual at the optimal GMM estimator rather
than the first-step estimate used to form Ŝ in (6.61).

Nonlinear 2SLS

A special case of the GMM estimator with instruments sets WN = (N−1Z′Z)−1 in
(6.56). This gives the nonlinear two-stage least-squares estimator β̂NL2SLS that
minimizes

QN (β) = 1

N
u′Z(Z′Z)−1Z′u. (6.62)

This estimator has the attraction of being the optimal GMM estimator if errors are
homoskedastic, as then Ŝ = s2Z′Z/N , where s2 is a consistent estimate of the constant
V[u|z] so Ŝ−1 is a multiple of (Z′Z)−1.

With homoskedastic error this estimator has the simpler estimated asymptotic vari-
ance given in Table 6.3, a result often given in textbooks. However, in microecono-
metrics applications it is common to permit heteroskedastic errors and use the more
complicated robust estimate also given in Table 6.3.

The NL2SLS estimator, proposed by Amemiya (1974), was an important precursor
to GMM. The estimator can be motivated along similar lines to the first motivation
for linear 2SLS given in Section 6.4.3. Thus premultiply the model error u by the
instruments Z′ to obtain Z′u, where E[Z′u] = 0 since E[u|Z] = 0. Then do nonlinear
GLS regression. Assuming homoskedastic errors this minimizes

QN (β) = u′Z[σ 2Z′Z]−1Z′u,

as V[u|Z] = σ 2I implies V[Z′u|Z] = σ 2Z′Z. This objective function is just a scalar
multiple of (6.62).

The Theil two-stage interpretation of linear 2SLS does not always carry over to non-
linear models (see Section 6.5.4). Moreover, NL2SLS is clearly a one-step estimator.
Amemiya chose the name NL2SLS because, as in the linear case, it permits consistent
estimation using instrumental variables. The name should not be taken literally, and
clearer terms are nonlinear IV or nonlinear generalized IV estimation.

Instrument Choice in Nonlinear Models

The preceding estimators presume the existence of instruments such that E[u|z] = 0
and that estimation is best if based on the unconditional moment condition E[zu] = 0.

Consider the nonlinear model with additive error so that u = y − g(x,β). To be
relevant the instrument must be correlated with the regressors x; yet to be valid it
cannot be a direct causal variable for y. From the variance matrix given in (6.57) it is
actually correlation of z with ∂g/∂β rather than just x that matters, to ensure that D̂′Z
should be large. Weak instruments concerns are just as relevant here as in the linear
case studied in Section 4.9.

196



6.5 . NONLINEAR INSTRUMENTAL VARIABLES

Given likely heteroskedasticity the optimal moment condition on which to base es-
timation, given E[u|z] = 0, is not E[zu] = 0. From Section 6.3.7, however, the optimal
moment condition requires additional moment assumptions that are difficult to make,
so it is standard to use E[zu] = 0 as has been done here.

An alternative way to control for heteroskedasticity is to base GMM estimation on
an error term defined to be close to homoskedastic. For example, with count data rather
than use u = y − exp (x′β), work with the standardized error u∗ = u/

√
exp (x′β)

(see Section 6.2.2). Note, however, that E[u∗|z] = 0 and E[u|z] = 0 are different
assumptions.

Often just one component of x is correlated with u. Then, as in the linear case, the
exogenous components can be used as instruments for themselves and the challenge is
to find an additional instrument that is uncorrelated with u. There are some nonlinear
applications that arise from formal economic models as in Section 6.2.7, in which case
the many subcomponents of the information set are available as instruments.

6.5.3. Poisson IV Example

The Poisson regression model with exogenous regressors specifies E[y|x] = exp(x′β).
This can be viewed as a model with additive error u = y − exp(x′β). If regressors
are endogenous then E[u|x] �= 0 and the Poisson MLE will then be inconsistent. Con-
sistent estimation assumes the existence of instruments z that satisfy E[u|z] = 0 or,
equivalently,

E[y − exp(x′β)|z] = 0.

The preceding results can be directly applied. The objective function is

QN (β) =
[

N−1
∑

i
zi ui

]′
WN

[
N−1

∑
i
zi ui

]
,

where ui = yi − exp(x′
iβ). The first-order conditions are then[∑

i
exp(x′

iβ)xi z
′
i

]
WN

[∑
i
zi (yi − exp(x′

iβ))
]

= 0.

The asymptotic distribution is given in Table 6.3, with D̂′Z =∑i ex′
i β̂xi z′

i since
∂g/∂β = exp(x′β)x and Ŝ defined in (6.39) with ûi = yi − exp(x′

i β̂). The opti-
mal GMM and NL2SLS estimators differ in whether the weighting matrix is Ŝ−1 or
(N−1Z′Z)−1, where Z′Z =∑i zi z′

i .
An alternative consistent estimator follows the Basmann approach. First, estimate

by OLS the reduced form xi = Πzi + vi giving K predictions x̂i = Π̂zi . Second, es-
timate by nonlinear IV as in (6.60) with instruments x̂i rather than zi . Given the OLS
formula for Π̂ this estimator solves[∑

i
xi z′

i

] [∑
i
zi z′

i

]−1 [∑
i
(yi − exp(x′

iβ))zi

]
= 0.

This estimator differs from the NL2SLS estimator because the first term in the left-
hand side differs. Potential problems with instead generalizing Theil’s method for lin-
ear models are detailed in the next section.
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Similar issues arise in nonlinear models other than Poisson regression, such as mod-
els for binary data.

6.5.4. Two-Stage Estimation in Nonlinear Models

The usual interpretation of linear 2SLS can fail in nonlinear models. Thus suppose y
has mean g(x,β) and there are instruments z for the regressors x. Then OLS regression
of x on instruments z to get fitted values x̂ followed by NLS regression of y on g(̂x,β)
can lead to inconsistent parameter estimates of β, as we now demonstrate. Instead, one
needs to use the NL2SLS estimator presented in the previous section.

Consider the following simple model, based on one presented in Amemiya (1984),
that is nonlinear in variables though still linear in parameters. Let

y = βx2 + u, (6.63)

x = π z + v,
where the zero-mean errors u and v are correlated. The regressor x2 is endogenous,
since x is a function of v and by assumption u and v are correlated. As a result the
OLS estimator of β is inconsistent. If z is generated independently of the other random
variables in the model it is a valid instrument as it is clearly then independent of u but
correlated with x .

The IV estimator is β̂ IV = (
∑

i zi x2
i )−1∑

i zi yi . This can be implemented by a reg-
ular IV regression of y on x2 with instrument z. Some algebra shows that, as expected,
β̂ IV equals the nonlinear IV estimator defined in (6.60).

Suppose instead we perform the following two-stage least-squares estimation.
First, regress x on z to get x̂ = π̂ z and then regress y on x̂2. Then β̂2SLS =
(
∑

i x̂2
i x̂2

i )−1∑
i x̂2

i yi , where x̂2
i is the square of the prediction x̂i obtained from OLS

regression of x on z. This yields an inconsistent estimate. Adapting the proof for the
linear case in Section 6.4.3 we have

yi = βx2
i + ui

= β x̂2
i +wi ,

where wi = β(x2
i − x̂2

i ) + ui . An OLS regression of yi on x̂2
i is inconsistent for β

because the regressor x̂2
i is asymptotically correlated with the composite error termwi .

Formally, (x2
i − x̂2

i ) = (π zi + vi )2 − (π̂ zi )2 = π2z2
i + 2π zivi + v2

i − π̂2z2
i implies,

using plim π̂ = π and some algebra, that plim N−1∑
i x̂2

i (x2
i − x̂2

i ) = plim N−1∑
i π

2z2
i v

2
i �= 0 even if zi and vi are independent. Hence plim N−1∑

i x̂2
i wi �= plim

N−1∑
i x̂2

i β(xi − x̂i )2 = 0.
A variation that is consistent, however, is to regress x2 rather than x on z at the first

stage and use the prediction x̂2 �= (̂x)2 at the second stage. It can be shown that this
equals β̂ IV. The instrument for x2 needs to be the fitted value for x2 rather than the
square of the fitted value for x .

This example generalizes to other nonlinear models where the nonlinearity is in
regressors only, so that

y = g(x)′β + u,
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Table 6.4. Nonlinear Two-Stage Least-Squares Examplea

Estimator

Variable OLS NL2SLS Two-Stage

x2 1.189 0.960 1.642
(0.025) (0.046) (0.172)

R2 0.88 0.85 0.80

a The dgp given in the text has true coefficient equal to one. The sample
size is N = 200.

where g(x) is a nonlinear function of x. Common examples are use of powers and nat-
ural logarithm. Suppose E[u|z] = 0. Inconsistent estimates are obtained by regressing
x on z to get predictions x̂, and then regressing y on g(̂x). Consistent estimates can be
obtained by instead regressing g(x) on z to get predictions ĝ(x), and then regressing y
on ĝ(x) at the second stage. We use ĝ(x) rather than g(̂x) as instrument for g(x). Even
then the second-stage regression gives invalid standard errors as OLS output will use
residuals û = y − ĝ(x)′β̂ rather than û = y − g(x)′β̂. It is best to directly use a GMM
or NL2SLS command.

More generally models may be nonlinear in both variables and parameters. Consider
a single-index model with additive error, so that

y = g(x′β) + u.

Inconsistent estimates may be obtained by OLS of x on z to get predictions x̂, and then
NLS regression of y on g(̂x′β). Either GMM or NL2SLS needs to be used. Essentially,
for consistency we want ĝ(x′β), not g(̂x′β).

NL2SLS Example

We consider NL2SLS estimation in a model with a simple nonlinearity resulting from
the square of an endogenous variable appearing as a regressor, as in the previous
section.

The dgp is (6.63), so y = βx2 + u and x = π z + v, where β = 1, and π = 1, and
z = 1 for all observations and (u, v) are joint normal with means 0, variances 1, and
correlation 0.8. A sample of size 200 is drawn. Results are shown in Table 6.4.

The nonlinearity here is quite mild with the square of x rather than x appearing as
regressor. Interest lies in estimating its coefficient β. The OLS estimator is inconsis-
tent, whereas NL2SLS is consistent. The two-stage method where first an OLS regres-
sion of x on z is used to form x̂ and then an OLS regression of y on (̂x)2 is performed
that yields an estimate that is more than two standard errors from the true value of
β = 1. The simulation also indicates a loss in goodness of fit and precision with larger
standard errors and lower R2, similar to linear IV.
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6.6. Sequential Two-Step m-Estimation

Sequential two-step estimation procedures are estimation procedures where the es-
timate of a parameter of ultimate interest is based on initial estimation of an un-
known parameter. An example is feasible GLS when the error has conditional vari-
ance exp(z′γ). Given an estimate γ̃ of γ, the FGLS estimator β̂ solves

∑N
i=1(yi −

x′
i β̂)2/ exp(z′

i γ̃). A second example is the Heckman two-step estimator given in Sec-
tion 16.10.2.

These estimators are attractive as they can provide a relatively simple way to obtain
consistent parameter estimates. However, for valid statistical inference it may be nec-
essary to adjust the asymptotic variance of the second-step estimator to allow for the
first-step estimation. We present results for the special case where the estimating equa-
tions for both the first- and second-step estimators set a sample average to zero, which
is the case for m-estimators, method of moments, and estimating equations estimators.

Partition the parameter vector θ into θ1 and θ2, with ultimate interest in θ2. The
model is estimated sequentially by first obtaining θ̂1 that solves

∑N
i=1 h1i (̂θ1) = 0 and

then, given θ̂1, obtaining θ̂2 that solves N−1∑N
i=1 h2i (̂θ1, θ̂2) = 0. In general the dis-

tribution of θ̂2 given estimation of θ̂1 differs from, and is more complicated than,
the distribution of θ̂2 if θ1 is known. Statistical inference is invalid if it fails to take
into account this complication, except in some special cases given at the end of this
section.

The following derivation is given in Newey (1984), with similar results obtained by
Murphy and Topel (1985) and Pagan (1986). The two-step estimator can be rewritten
as a one-step estimator where (θ1,θ2) jointly solve the equations

N−1
N∑

i=1

h1(wi , θ̂1) = 0, (6.64)

N−1
N∑

i=1

h2(wi , θ̂1, θ̂2) = 0.

Defining θ = (θ′
1 θ′

2)′ and hi = (h′
1i h′

2i )
′, we can write the equations as

N−1
N∑

i=1

h(wi , θ̂) = 0.

In this setup it is assumed that dim(h1) = dim(θ1) and dim(h2) = dim(θ2), so that the
number of estimating equations equals the number of parameters. Then (6.64) is an
estimating equations estimator or MM estimator.

Consistency requires that plim N−1∑
i h(wi ,θ0) = 0, where θ0 = [θ1

10,θ
1
20]. This

condition should be satisfied if θ̂1 is consistent for θ10 in the first step, and if second-
step estimation of θ̂2 with θ10 known (rather than estimated by θ̂1) would lead to
a consistent estimate of θ20. Within a method of moments framework we require
E[h1i (θ1)] = 0 and E[h2i (θ1,θ2)] = 0. We assume that consistency is established.

For the asymptotic distribution we apply the general result that
√

N (̂θ − θ0)
d→ N

[
0,G−1

0 S0(G−1
0 )′
]
,
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where G0 and S0 are defined in Proposition 6.1. Partition G0 and S0 in a similar way
to the partitioning of θ and hi . Then

G0 = lim
1

N

N∑
i=1

E

[
∂h1i/∂θ

′
1 0

∂h2i/∂θ
′
1 ∂h2i/∂θ

′
2

]
=
[

G11 0
G21 G22

]
,

using ∂h1i (θ)/∂θ′
2 = 0 since h1i (θ) is not a function of θ2 from (6.64). Since G0, G11,

and G22 are square matrices

G−1
0 =

[
G−1

11 0
−G−1

22 G21G−1
11 G−1

22

]
.

Clearly,

S0 = lim
1

N

N∑
i=1

E

[
h1i h1i

′ h1i h2i
′

h2i h1i
′ h2i h2i

′

]
=
[

S11 S12

S21 S22

]
.

The asymptotic variance of θ̂2 is the (2, 2) submatrix of the variance matrix of θ̂. After
some algebra, we get

V[̂θ2] = G−1
22

{
S22 + G21[G−1

11 S11G−1
11 ]G′

21

−G21G−1
11 S12 − S21G−1

11 G′
21

}
G−1

22 . (6.65)

The usual computer output yields standard errors that are incorrect and understate
the true standard errors, since V[̂θ2] is then assumed to be G−1

22 S22G−1
22 , which can be

shown to be smaller than the true variance given in (6.65).
There is no need to account for additional variability in the second-step caused by

estimation in the first step in the special case that E[∂h2i (θ)/∂θ1] = 0, as then G21 = 0
and V[̂θ2] in (6.65) reduces to G−1

22 S22G−1
22 .

A well-known example of G21 = 0 is FGLS. Then for heteroskedastic errors

h2i (θ) =x2i (yi − x′
iθ2)

σ (xi ,θ1)
,

where V[yi |xi ] = σ 2(xi ,θ1), and

E[∂h2i (θ)/∂θ1] = E

[
−x2i

(yi − x′
iθ2)

σ (xi ,θ1)2

∂σ (xi ,θ1)

∂θ1

]
,

which equals zero since E[yi |xi ] = x′
iθ2. Furthermore, for FGLS consistency of θ̂2

does not require that θ̂1 be consistent since E[h2i (θ)] = 0 just requires that E[yi |xi ] =
x′

iθ2, which does not depend on θ1.
A second example of G21 = 0 is ML estimation with a block diagonal matrix so that

E[∂2L(θ)/∂θ1∂θ
′
2] = 0. This is the case for example for regression under normality,

where θ1 are the variance parameters and θ2 are the regression parameters.
In other examples, however, G21 �= 0 and the more cumbersome expression (6.65)

needs to be used. This is done automatically by computer packages for some standard
two-step estimators, most notably Heckman’s two-step estimator of the sample selec-
tion model given in Section 16.5.4. Otherwise, V[̂θ2] needs to be computed manually.
Many of the components come from earlier estimation. In particular, G−1

11 S11G−1
11 is
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the robust variance matrix of θ̂1 and G−1
22 S22G−1

22 is the robust variance matrix esti-
mate of θ̂2 that incorrectly ignores the estimation error in θ̂1. For data independent
over i the subcomponents of the S0 submatrix are consistently estimated by Ŝ jk =
N−1∑

i ĥ j i ĥki
′, j, k = 1, 2. This leaves computation of Ĝ21 = N−1∑

i ∂h2i/∂θ
′
1

∣∣̂
θ

as the main challenge.
A recommended simpler approach is to obtain bootstrap standard errors (see Sec-

tion 16.2.5), or directly jointly estimate θ1 and θ2 in the combined model (6.64), as-
suming access to a GMM routine.

These simpler approaches can also be applied to sequential estimators that are
GMM estimators rather than m-estimators. Then combining the two estimators will
lead to a set of conditions more complicated than (6.64) and we no longer get (6.65).
However, one can still bootstrap or estimate jointly rather than sequentially.

6.7. Minimum Distance Estimation

Minimum distance estimation provides a way to estimate structural parameters θ that
are a specified function of reduced form parameters π, given a consistent estimate
π̂ of π.

A standard reference is Ferguson (1958). Rothenberg (1973) applied this method
to linear simultaneous equations models, though the alternative methods given in Sec-
tion 6.9.6 are the standard methods used. Minimum distance estimation is most often
used in panel data analysis. In the initial work by Chamberlain (1982, 1984) (see Sec-
tion 22.2.7) he lets π̂ be OLS estimates from linear regression of the current-period
dependent variable on regressors in all periods. Subsequent applications to covariance
structures (see Section 22.5.4) let π̂ be estimated variances and autocovariances of the
panel data. See also the indirect inference method (Section 12.6).

Suppose that the relationship between q structural parameters and r > q reduced
form parameters is that π0 = g(θ0). Further suppose that we have a consistent estimate
π̂ of the reduced form parameters. An obvious estimator is θ̂ such that π̂= g(̂θ), but
this is infeasible since q < r . Instead, the minimum distance (MD) estimator θ̂MD

minimizes with respect to θ the objective function

QN (θ) = (π̂ − g(θ))′WN (π̂ − g(θ)), (6.66)

where WN is an r × r weighting matrix.
If π̂

p→ π0 and WN
p→ W0, where W0 is finite positive semidefinite then

QN (̂θ)
p→ Q0(θ) = (π0−g(θ))′W0(π0−g(θ)). It follows that θ0 is locally identified

if Rank[W0 × ∂g(θ)/∂θ′] = q, while consistency essentially requires that π0= g(θ0).
For the MD estimator

√
N (̂θMD − θ0)

d→ N [0,V[̂θMD]], where

V[̂θMD] = (G′
0W0G0)−1(G′

0W0V[π̂]W0G0)(G′
0W0G0)−1, (6.67)

G0 = ∂g(θ)/∂θ′∣∣
θ0

, and it is assumed that the reduced form parameters π̂ have limit
distribution

√
N (π̂ − π0)

d→ N [0,V[π̂]]. More efficient reduced form estimators lead
to more efficient MD estimators, since smaller V[π̂] leads to smaller V[̂θMD] in (6.67).
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To obtain the result (6.67), begin with the following rescaling of the first-order
conditions for the MD estimator:

G N (̂θ)′WN

√
N (π̂ − g(̂θ)) = 0, (6.68)

where G N (θ) = ∂g(θ)/∂θ′. An exact first-order Taylor series expansion about θ0

yields
√

Nh(π̂ − g(̂θ)) =
√

N (π̂ − π0) − G N (θ+)
√

N (̂θ − θ0), (6.69)

where θ+ lies between θ̂ and θ0 and we have used g(θ0) = π0. Substituting (6.69)
back into (6.68) and solving for

√
N (̂θ − θ0) yields

√
N (̂θ − θ0) = [G N (̂θ)′WN G N (θ+)]−1G N (̂θ)′WN

√
N (π̂ − π0), (6.70)

which leads directly to (6.67).
For given reduced form estimator π̂, the most efficient MD estimator uses weighting

matrix WN = V̂[π̂]−1 in (6.66). This estimator is called the optimal MD (OMD)
estimator, and sometimes the minimum chi-square estimator following Ferguson
(1958).

A common alternative special case is the equally weighted minimum distance
(EWMD) estimator, which sets WN = I. This is less efficient than the OMD estima-
tor, but it does not have the finite-sample bias problems analogous to those discussed
in Section 6.3.5 that arise when the optimal weighting matrix is used. The EWMD es-
timator can be simply obtained by NLS regression of π̂ j on g j (̂θ), j = 1, . . . , r , since
minimizing (π̂ − g(̂θ))′(π̂ − g(̂θ)) yields the same first-order conditions as those in
(6.68) with WN = I.

The maximized value of the objective function for the OMD is chi-squared dis-
tributed. Specifically,

(π̂ − g(̂θOMD))′V̂[π̂]−1(π̂ − g(̂θOMD)) (6.71)

is asymptotically distributed as χ2(r − q) under H0 : g(θ0) = π0. This provides a
model specification test analogous to the OIR test of Section 6.3.8.

The MD estimator is qualitatively similar to the GMM estimator. The GMM frame-
work is the standard one employed. MD estimation is most often used in panel studies
of covariance structures, since then π̂ comprises easily estimated sample moments
(variances and covariances) that can then be used to obtain θ̂.

6.8. Empirical Likelihood

The MM and GMM approaches do not require complete specification of the con-
ditional density. Instead, estimation is based on moment conditions of the form
E[h(y, x,θ)] = 0. The empirical likelihood approach, due to Owen (1988), is an alter-
native estimation procedure based on the same moment condition.

An attraction of the empirical likelihood estimator is that, although it is asymptoti-
cally equivalent to the GMM estimator, it has different finite-sample properties, and in
some examples it outperforms the GMM estimator.
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6.8.1. Empirical Likelihood Estimation of Population Mean

We begin with empirical likelihood in the case of a scalar iid random variable y
with density f (y) and sample likelihood function

∏
i f (yi ). The complication con-

sidered here is that the density f (y) is not specified, so the usual ML approach is not
possible.

A completely nonparametric approach seeks to estimate the density f (y) evaluated
at each of the sample values of y. Let πi = f (yi ) denote the probability that the i th
observation on y takes the realized value yi . Then the goal is to maximize the so-
called empirical likelihood function

∏
i πi , or equivalently to maximize the empirical

log-likelihood function N−1∑
i lnπi , which is a multinomial model with no structure

placed on πi . This log-likelihood is unbounded, unless a constraint is placed on the
range of values taken by πi . The normalization used is that

∑
i πi = 1. This yields the

standard estimate of the cumulative distribution function in the fully nonparametric
case, as we now demonstrate.

The empirical likelihood estimator maximizes with respect to π and η the
Lagrangian

LEL(π, η) = 1

N

N∑
i=1

lnπi − η
(

N∑
i=1

πi − 1

)
, (6.72)

where π= [π1. . . πN ]′ and η is a Lagrange multiplier. Although the data yi do not
explicitly appear in (6.72) they appear implicitly as πi = f (yi ). Setting the derivatives
with respect to πi (i = 1, . . . , N ), and η to zero and solving yields π̂ i = 1/N and η =
1. Thus the estimated density function f̂ (y) has mass 1/N at each of the realized values
yi , i = 1, . . . , N . The resulting distribution function is F̂(y) = N−1∑N

i=1 1(y ≤ yi ),
where 1(A) = 1 if event A occurs and 0 otherwise. F̂(y) is just the usual empirical
distribution function.

Now introduce parameters. As a simple example, suppose we introduce the moment
restriction that E[y − µ] = 0, where µ is the unknown population mean. In the empir-
ical likelihood context this population moment is replaced by a sample moment, where
the sample moment weights sample values by the probabilities πi . Thus we introduce
the constraint that

∑
i πi (yi − µ) = 0. The Lagrangian for the maximum empirical

likelihood estimator is

LEL(π, η, λ, µ) = 1

N

N∑
i=1

lnπi − η
(

N∑
i=1

πi − 1

)
− λ

N∑
i=1

πi (yi − µ), (6.73)

where η and λ are Lagrange multipliers.
Begin by differentiating the Lagrangian with respect to πi (i = 1, . . . , N ), η, and

λ but not µ. Setting these derivatives to zero yields equations that are functions
of µ. Solving leads to the solution πi = πi (µ) and hence an empirical likelihood
N−1∑

i lnπi (µ) that is then maximized with respect to µ. This solution method leads
to nonlinear equations that need to be solved numerically.

For this particular problem an easier way to solve for µ is to note that the max-
imized value of L(π, η, λ, µ) must be less than or equal to N−1∑

i ln N−1, since
this is the maximized value without the last constraint. However, L(π, η, λ, µ) equals
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N−1∑
i ln N−1 if πi = 1/N and µ̂ = N−1∑

i yi = ȳ. So the maximum empirical
likelihood estimator of the population mean is the sample mean.

6.8.2. Empirical Likelihood Estimation of Regression Parameters

Now consider regression data that are iid over i . The only structure placed on the
model are r moment conditions

E[h(wi ,θ)] = 0, (6.74)

where h(·) and wi are defined in Section 6.3.1. For example, h(w,θ) = x(y − x′θ) for
OLS estimation and h(y, x,θ) = (∂g/∂θ)(y − g(x,θ)) for NLS estimation.

The empirical likelihood approach maximizes the empirical likelihood function
N−1∑

i lnπi subject to the constraint
∑

i πi = 1 (see (6.72)) and the additional sam-
ple constraint based on the population moment condition (6.74) that

N∑
i=1

πi h(wi ,θ) = 0. (6.75)

Thus we maximize with respect to π, η,λ, and θ

LEL(π, η,λ,θ) = 1

N

N∑
i=1

lnπi − η
(

N∑
i=1

πi − 1

)
− λ′

N∑
i=1

πi h(wi ,θ), (6.76)

where the Lagrangian multipliers are a scalar η and column vector λ of the same
dimension as h(·).

First, concentrate out the N parameters π1, . . . , πN . Differentiating L(π, η,λ,θ)
with respect to πi yields 1/(Nπi ) − η − λ′hi = 0. Then we obtain η = 1 by multiply-
ing by πi and summing over i and using

∑
i πi hi = 0. It follows that

πi (θ,λ) = 1

N (1 + λ′h(wi ,θ))
. (6.77)

The problem is now reduced to a maximization problem with respect to (r + q) vari-
ables λ and θ, the Lagrangian multipliers associated with the r moment conditions
(6.74), and the q parameters θ.

Solution at this stage requires numerical methods, even for just-identified mod-
els. One can maximize with respect to θ and λ the function N−1∑

i ln[1/N (1 +
λ′h(wi ,θ))].

Alternatively, first concentrate out λ. Differentiating L(π(θ,λ), η,λ) with respect
to λ yields

∑
i πi hi = 0. Define λ(θ) to be the implicit solution to the system of

dim(λ) equations

N∑
i=1

1

N (1 + λ′h(wi ,θ))
h(wi ,θ) = 0.

In implementation numerical methods are needed to obtain λ(θ). Then (6.77) becomes

πi (θ) = 1

N (1 + λ(θ)′h(wi ,θ))
. (6.78)
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By substituting (6.78) into the empirical likelihood function N−1∑
i lnπi , the empir-

ical log-likelihood function evaluated at θ becomes

LEL(θ) = −N−1
N∑

i=1

ln[N (1 + λ(θ)′h(wi ,θ))].

The maximum empirical likelihood (MEL) estimator θ̂MEL maximizes this function
with respect to θ.

Qin and Lawless (1994) show that

√
N (̂θMEL − θ0)

d→ N [0,A(θ0)−1B(θ0)A(θ0)′−1],

where A(θ0) = plimE[∂h(θ)/∂θ′|θ0 ] and B(θ0) = plimE[h(θ)h(θ)′|θ0 ]. This is the
same limit distribution as the method of moments (see (6.13)). In finite samples θ̂MEL

differs from θ̂GMM, however, and inference is based on sample estimates

Â =
∑N

i=1
π̂ i
∂h′

i

∂θ

∣∣∣∣̂
θ

,

B̂ =
∑N

i=1
π̂ i hi (̂θ)hi (̂θ)′

that weight by the estimated probabilities π̂ i rather than the proportions 1/N .
Imbens (2002) provides a recent survey of empirical likelihood that contrasts em-

pirical likelihood with GMM. Variations include replacing N−1∑
i lnπi in (6.26)

by N−1∑
i πi lnπi . Empirical likelihood is computationally more burdensome; see

Imbens (2002) for a discussion. The advantage is that the asymptotic theory provides
a better finite-sample approximation to the distribution of the empirical likelihood es-
timator than it does to that for the GMM estimator. This is pursued further in Sec-
tion 11.6.4.

6.9. Linear Systems of Equations

The preceding estimation theory covers single-equation estimation methods used in
the majority of applied studies. We now consider joint estimation of several equations.
Equations linear in parameters with an additive error are presented in this section, with
extensions to nonlinear systems given in the subsequent section.

The main advantage of joint estimation is the gain in efficiency that results from
incorporation of correlation in unobservables across equations for a given individual.
Additionally, joint estimation may be necessary if there are restrictions on parameters
across equations. With exogenous regressors systems estimation is a minor extension
of single-equation OLS and GLS estimation, whereas with endogenous regressors it is
single-equation IV methods that are adapted.

One leading example is systems of equations such as those for observed demand of
several commodities at a point in time for many individuals. For seemingly unrelated
regression all regressors are exogenous whereas for simultaneous equations models
some regressors are endogenous.
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A second leading example is panel data, where a single equation is observed at
several points in time for many individuals, and each time period is treated as a separate
equation. By viewing a panel data model as an example of a system it is possible to
improve efficiency, obtain panel robust standard errors, and derive instruments when
some regressors are endogenous.

Many econometrics texts provide lengthy presentations of linear systems. The treat-
ment here is very brief. It is mainly directed toward generalization to nonlinear systems
(see Section 6.10) and application to panel data (see Chapters 21–23).

6.9.1. Linear Systems of Equations

The single-equation linear model is given by yi = x′
iβ + ui , where yi and ui are scalars

and xi and β are column vectors. The multiple-equation linear model, or multivari-
ate linear model, with G dependent variables is given by

yi = Xiβ + ui , i = 1, . . . , N , (6.79)

where yi and ui are G × 1 vectors, Xi is a G × K matrix, and β is a K × 1 column
vector.

Throughout this section we make the cross-section assumption that the error vector
ui is independent over i , so E[ui u′

j ] = 0 for i �= j . However, components of ui for
given i may be correlated and have variances and covariances that vary over i , leading
to conditional error variance matrix for the i th individual

Ωi = E[ui u′
i |Xi ]. (6.80)

There are various ways that a multiple-equation model may arise. At one extreme
the seemingly unrelated equations model combines G equations, such as demands for
different consumer goods, where parameters vary across equations and regressors may
or may not vary across equations. At the other extreme the linear panel data combines
G periods of data for the same equation, with parameters that are constant across
periods and regressors that may or may not vary across periods. These two cases are
presented in detail in Sections 6.9.3 and 6.9.4.

Stacking (6.79) over N individuals gives y1
...

yN

 =

 X1
...

XN

β +

 u1
...

uN

 , (6.81)

or

y = Xβ + u, (6.82)

where y and u are N G × 1 vectors and X is a N G × K matrix.
The results given in the following can be obtained by treating the stacked model

(6.82) in the same way as in the single-equation case. Thus the OLS estimator is β̂ =
(X′X)−1X′y and in the just-identified case with instrument matrix Z the IV estimator
is β̂ = (Z′X)−1Z′y. The only real change is that the usual cross-section assumption of
a diagonal error variance matrix is replaced by assumption of a block-diagonal error
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matrix. This block-diagonality needs to be accommodated in computing the estimated
variance matrix of a systems estimator and in forming feasible GLS estimators and
efficient GMM estimators.

6.9.2. Systems OLS and FGLS Estimation

An OLS estimation of the system (6.82) yields the systems OLS estimator
(X′X)−1X′y. Using (6.81) it follows immediately that

β̂SOLS =
[

N∑
i=1

X′
i Xi

]−1 N∑
i=1

X′
i yi . (6.83)

The estimator is asymptotically normal and, assuming the data are independent over i ,
the usual robust sandwich result applies and

V̂
[
β̂SOLS

] =
[

N∑
i=1

X′
i Xi

]−1 N∑
i=1

X′
i ûi û′

i Xi

[
N∑

i=1

X′
i Xi

]−1

, (6.84)

where ûi = yi − Xi β̂. This variance matrix estimate permits conditional variances and
covariances of the errors to differ across individuals.

Given correlation of the components of the error vector for a given individual,
more efficient estimation is possible by GLS or FGLS. If observations are indepen-
dent over i , the systems GLS estimator is systems OLS applied to the transformed
system

Ω−1/2
i yi = Ω−1/2

i Xiβ + Ω−1/2
i ui , (6.85)

where Ωi is the error variance matrix defined in (6.80). The transformed error Ω−1/2
i ui

has mean zero and variance

E

[(
Ω−1/2

i ui

)′ (
Ω−1/2

i ui

)
|Xi

]
= Ω−1/2

i E
[
u′

i ui |Xi
]
Ω−1/2

i

= Ω−1/2
i ΩiΩ

−1/2
i

= IG .

So the transformed system has errors that are homoskedastic and uncorrelated over G
equations and OLS is efficient.

To implement this estimator, a model for Ωi needs to be specified, say Ωi = Ωi (γ).
Then perform systems OLS estimation in the transformed system where Ωi is replaced
by Ωi (γ̂), where γ̂ is a consistent estimate of γ. This yields the systems feasible GLS
(SFGLS) estimator

β̂SFGLS =
[

N∑
i=1

X′
iΩ̂

−1
i Xi

]−1 N∑
i=1

X′
iΩ̂

−1
i yi . (6.86)
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This estimator is asymptotically normal and to guard against possible misspecification
of Ωi (γ) we can use the robust sandwich estimate of the variance matrix

V̂
[
β̂SFGLS

] =
[

N∑
i=1

X′
iΩ̂i

−1Xi

]−1 N∑
i=1

X′
iΩ̂

−1
i ûi û′

iΩ̂i
−1Xi

[
N∑

i=1

X′
iΩ̂i

−1Xi

]−1

, (6.87)

where Ω̂i = Ωi (γ̂).
The most common specification used for Ωi is to assume that it does not vary over

i . Then Ωi = Ω is a G × G matrix that can be consistently estimated for finite G and
N → ∞ by

Ω̂ = 1

N

N∑
i=1

ûi û′
i , (6.88)

where ûi = yi − Xi β̂SOLS. Then the SFGLS estimator is (6.86) with Ω̂ instead of Ω̂i ,
and after some algebra the SFGLS estimator can also be written as

β̂SFGLS =
[
X′
(
Ω̂

−1 ⊗ IN

)
X
]−1

X′
(
Ω̂

−1 ⊗ IN

)
y′, (6.89)

where ⊗ denotes the Kronecker product. The assumption that Ωi = Ω rules out, for
example, heteroskedasticity over i . This is a strong assumption, and in many applica-
tions it is best to use robust standard errors calculated using (6.87), which gives correct
standard errors even if Ωi does vary over i .

6.9.3. Seemingly Unrelated Regressions

The seemingly unrelated regressions (SUR) model specifies the gth of G equations
for the i th of N individuals to be given by

yig = x′
igβg + uig, g = 1, . . . ,G, i = 1, . . . , N , (6.90)

where xig are regressors that are assumed to be exogenous and βg are Kg × 1 param-
eter vectors. For example, for demand data on G goods for N individuals, yig may
be the i th individual’s expenditure on good g or budget share for good g. In all that
follows G is assumed fixed and reasonably small while N → ∞. Note that we use the
subscript order yig as results then transfer easily to panel data with variable yit (see
Section 6.9.4). Other authors use the reverse order ygi .

The SUR model was proposed by Zellner (1962). The term seemingly unrelated
regressions is deceptive, as clearly the equations are related if the errors uig in different
equations are correlated. For the SUR model the relationship between yig and yih is
indirect; it comes through correlation in the errors across different equations.

Estimation combines observations over both equations and individuals. For microe-
conometrics applications, where independence over i is assumed, it is most convenient
to first stack all equations for a given individual. Stacking all G equations for the i th
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individual we get  yi1
...

yiG

 =

x′
i1 0 0

0
. . . 0

0 0 x′
iG


 β1

...
βG

+

 ui1
...

uiG

 , (6.91)

which is of the form yi = Xiβ + ui in (6.79), where yi and ui are G × 1 vectors
with gth entries yig and uig, Xi is a G × K matrix with gth row [0· · · x′

ig· · · 0], and
β = [β′

1. . .β
′
G]′ is a K × 1 vector where K = K1 + · · · KG . Some authors instead

first stack all individuals for a given equation, leading to different algebraic expressions
for the same estimators.

Given the definitions of Xi and yi it is easy to show that β̂SOLS in (6.83) is

 β̂1
...

β̂G

 =


[∑N

i=1 xi1x′
i1

]−1∑N
i=1 xi1 yi1

...[∑N
i=1 xiGx′

iG

]−1∑N
i=1 xiG yiG

 ,
so that systems OLS is the same as separate equation-by-equation OLS. As might be
expected a priori, if the only link across equations is the error and the errors are treated
as being uncorrelated then joint estimation reduces to single-equation estimation.

A better estimator is the feasible GLS estimator defined in (6.86) using Ω̂ in (6.88)
and statistical inference based on the asymptotic variance given in (6.87). This estima-
tor is generally more efficient than systems OLS, though it can be shown to collapse
to OLS if the errors are uncorrelated across equations or if exactly the same regressors
appear in each equation.

Seemingly unrelated regression models may impose cross-equation parameter
restrictions. For example, a symmetry restriction may imply that the coefficient of
the second regressor in the first equation equals the coefficient of the first regressor
in the second equation. If such restrictions are equality restrictions one can easily
estimate the model by appropriate redefinition of Xi and β given in (6.79). For ex-
ample, if there are two equations and the restriction is that β2 = −β1 then define
Xi = [xi1 − xi2]′ and β = β1. Alternatively, one can estimate using systems exten-
sions of single-equation OLS and GLS with linear restrictions on the parameters.

Also, in systems of equations it is possible that the variance matrix of the error
vector ui is singular, as a result of adding-up constraints. For example, suppose yig

is the i th budget share, and the model is yig = αg + z′
iβg + uig, where the same re-

gressors appear in each equation. Then
∑

g yig = 1 since budget shares sum to one,
which requires

∑
g αg = 1,

∑
g βg = 0, and

∑
g uig = 0. The last restriction means

Ωi is singular and hence noninvertible. One can eliminate one equation, say the last,
and estimate the model by systems estimation applied to the remaining G − 1 equa-
tions. Then the parameter estimates for the Gth equation can be obtained using the
adding-up constraint. For example, α̂G = 1 − (̂α1 + · · · + α̂G−1). It is also possible
to impose equality restrictions on the parameters in this setup. A literature exists on
methods that ensure that estimates obtained are invariant to the equation deleted; see,
for example, Berndt and Savin (1975).
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6.9.4. Panel Data

Another leading application of systems GLS methods is to panel data, where a scalar
dependent variable is observed in each of T time periods for N individuals. Panel data
can be viewed as a system of equations, either T equations for N individuals or N
equations for T time periods. In microeconometrics we assume a short panel, with T
small and N → ∞ so it is natural to set it up as a scalar dependent variable yit , where
the gth equation in the preceding discussion is now interpreted as the t th time period
and G = T .

A simple panel data model is

yit = x′
i tβ + uit , t = 1, . . . , T, i = 1, . . . , N , (6.92)

a specialization of (6.90) with β now constant. Then in (6.79) the regressor matrix
becomes Xi = [xi1· · · xiT ]′. After some algebra the systems OLS estimator defined in
(6.83) can be reexpressed as

β̂POLS =
[

N∑
i=1

T∑
t=1

xi t x′
i t

]−1 N∑
i=1

T∑
t=1

xi t yi t . (6.93)

This estimator is called the pooled OLS estimator as it pools or combines the cross-
section and time-series aspects of the data.

The pooled estimator is obtained simply by OLS estimation of yit on xi t . However,
if uit are correlated over t for given i , the default OLS standard errors that assume
independence of the error over both i and t are invalid and can be greatly downward
biased. Instead, statistical inference should be based on the robust form of the co-
variance matrix given in (6.84). This is detailed in Section 21.2.3. In practice models
more complicated than (6.92) that include individual specific effects are estimated (see
Section 21.2).

6.9.5. Systems IV Estimation

Estimation of a single linear equation with endogenous regressors was presented
in Section 6.4. Now we extend this to the multivariate linear model (6.79) when
E[ui |Xi ] �= 0. Brundy and Jorgenson (1971) considered IV estimation applied to the
system of equations to produce estimates that are both consistent and efficient.

We assume the existence of a G × r matrix of instruments Zi that satisfy E[ui |Zi ] =
0 and hence

E[Z′
i (yi − Xiβ)] = 0. (6.94)

These instruments can be used to obtain consistent parameter estimates using single-
equation IV methods, but joint equation estimation can improve efficiency. The sys-
tems GMM estimator minimizes

QN (β) =
[

N∑
i=1

Z′
i (yi − Xiβ)

]′
WN

[
N∑

i=1

Z′
i (yi − Xiβ)

]
, (6.95)
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where WN is an r × r weighting matrix. Performing some algebra yields

β̂SGMM = [X′ZWN Z′X
]−1 [

X′ZWN Z′y
]
, (6.96)

where X is an N G × K matrix obtained by stacking X1, . . . ,XN (see (6.81)) and Z
is an N G × r matrix obtained by similarly stacking Z1, . . . ,ZN . The systems GMM
estimator has exactly the same form as (6.37), and the asymptotic variance matrix is
that given in (6.39). It follows that a robust estimate of the variance matrix is

V̂[β̂SGMM] = N
[
X′ZWN Z′X

]−1 [
X′ZWN ŜWN Z′X

] [
X′ZWN Z′X

]−1
, (6.97)

where, in the systems case and assuming independence over i ,

Ŝ = 1

N

N∑
i=1

Z′
i ûi û′

i Zi . (6.98)

Several choices of weighting matrix receive particular attention.
First, the optimal systems GMM estimator is (6.96) with WN = Ŝ−1, where Ŝ is

defined in (6.98). The variance matrix then simplifies to

V̂[β̂OSGMM] = N
[
X′ZŜ

−1
Z′X
]−1
.

This estimator is the most efficient GMM estimator based on moment conditions
(6.94). The efficiency gain arises from two factors: (1) systems estimation, which per-
mits errors in different equations to be correlated, so that V[ui |Zi ] is not restricted to
being block diagonal, and (2) an allowance for quite general heteroskedasticity and
correlation, so that Ωi can vary over i .

Second, the systems 2SLS estimator arises when WN = (N−1Z′Z)−1. Consider
the SUR model defined in (6.91), with some of the regressors xig now endogenous.
Then systems 2SLS reduces to equation-by-equation 2SLS, with instruments zg for
the gth equation, if we define the instrument matrix to be

Zi =

 z′
i1 0 0

0
. . . 0

0 0 z′
iG

 . (6.99)

In many applications z1 = z2 = · · · = zg so that a common set of instruments is used
in all equations, but we need not restrict analysis to this case. For the panel data model
(6.92) systems 2SLS reduces to pooled 2SLS if we define Zi = [zi1· · · ziT ]′.

Third, suppose that V[ui |Zi ] does not vary over i , so that V[ui |Zi ] = Ω. This is a
systems analogue of the single-equation assumption of homoskedasticity. Then as with
(6.88) a consistent estimate of Ω is Ω̂ = N−1∑

i ûi û′
i , where ûi are residuals based

on a consistent IV estimator such as systems 2SLS. Then the optimal GMM estimator
is (6.96) with WN = IN ⊗ Ω̂. This estimator should be contrasted with the three-stage
least-squares estimator presented at the end of the next section.
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6.9.6. Linear Simultaneous Equations Systems

The linear simultaneous equations model, introduced in Section 2.4, is a very impor-
tant model that is often presented in considerable length in introductory graduate-level
econometrics courses. In this section we provide a very brief self-contained summary.
The discussion of identification overlaps with that in Chapter 2. Due to the presence
of endogenous variables OLS and SUR estimators are inconsistent. Consistent estima-
tion methods are placed in the context of GMM estimation, even though the standard
methods were developed well before GMM.

The linear simultaneous equations model specifies the gth of G equations for the
i th of N individuals to be given by

yig = z′
igγg + Y′

igβg + uig, g = 1, . . . ,G, (6.100)

where the order of subscripts is that of Section 6.9 rather than Section 2.4, zg is
a vector of exogenous regressors that are assumed to be uncorrelated with the er-
ror term ug and Yg is a vector that contains a subset of the dependent variables
y1, . . . , yg−1, yg+1, . . . , yG of the other G − 1 equations. Yg is endogenous as it is
correlated with model errors. The model for the i th individual can equivalently be
written as

y′
i B + z′

iΓ = ui , (6.101)

where yi = [yi1. . . yiG]′ is a G × 1 vector of endogenous variables, zi is an r × 1
vector of exogenous variables that is the union of zi1, . . . , ziG , ui = [ui1. . . uiG]′ is
a G × 1 error vector, B is a G × G parameter matrix with diagonal entries unity, Γ is
an r × G parameter matrix, and some of the entries in B and Γ are constrained to be
unity. It is assumed that ui is iid over i with mean 0 and variance matrix Σ.

The model (6.101) is called the structural form with different restrictions on B
and Γ corresponding to different structures. Solving for the endogenous variables as a
function of the exogenous variables yields the reduced form

yi = −z′
iΓB−1 + ui B−1 (6.102)

= z′
iΠ + vi ,

where Π= −ΓB−1 is the r × G matrix of reduced form parameters and vi = ui B−1

is the reduced form error vector with variance Ω = (B−1)′ΣB−1.
The reduced form can be consistently estimated by OLS, yielding estimates of

Π = −ΓB−1 and Ω = (B−1)′ΣB−1. The problem of identification, see Section 2.5,
is one of whether these lead to unique estimates of the structural form parameters B,
Γ and Σ. This requires some parameter restrictions since without restrictions B, Γ,
and Σ contain G2 more parameters than Π and Ω. A necessary condition for identi-
fication of parameters in the gth equation is the order condition that the number of
exogenous variables excluded from the gth equation must be at least equal to the num-
ber of endogenous variables included. This is the same as the order condition given
in Section 6.4.1. For example, if Yig in (6.100) has one component, so there is one
endogenous variable in the equation, then at least one of the components of xi must
not be included. This will ensure that there are as many instruments as regressors.
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GENERALIZED METHOD OF MOMENTS AND SYSTEMS ESTIMATION

A sufficient condition for identification is the stronger rank condition. This is given
in many books such as Greene’s (2003) and for brevity is not given here. Other restric-
tions, such as covariance restrictions, may also lead to identification.

Given identification, the structural model parameters can be consistently estimated
by separate estimation of each equation by two-stage least squares defined in (6.44).
The same set of instruments zi is used for each equation. In the gth equation the sub-
component zig is used as instrument for itself and the remainder of zi is used as instru-
ment for Yig.

More efficient systems estimates are obtained using the three-stage least-squares
(3SLS) estimator of Zellner and Theil (1962), which assumes errors are homoskedas-
tic but are correlated across equations. First, estimate the reduced form coefficients Π
in (6.102) by OLS regression of y on z. Second, obtain the 2SLS estimates by OLS re-
gression of (6.100), where Yg is replaced by the reduced form predictions Ŷg = z′Π̂G .
This is OLS regression of yg on Ŷg and zg, or equivalently of yg on x̂g, where x̂g are the
predictions of Yg and zg from OLS regression on z. Third, obtain the 3SLS estimates
by systems OLS regression of yg on x̂g, g = 1, . . . ,G. Then from (6.89)

θ̂3SLS =
[
X̂′
(
Ω̂

−1 ⊗ IN

)
X̂
]−1

X̂′
(
Ω̂

−1 ⊗ IN

)
y,

where X̂ is obtained by first forming a block-diagonal matrix X̂i with diagonal blocks
x̂i1, . . . , x̂iG and then stacking X̂1, . . . , X̂N , and Ω̂ = N−1∑

i ûi û′
i with ûi the residual

vectors calculated using the 2SLS estimates.
This estimator coincides with the systems GMM estimator with WN = IN ⊗ Ω̂ in

the case that the systems GMM estimator uses the same instruments in every equation.
Otherwise, 3SLS and systems GMM differ, though both yield consistent estimates if
E[ui |zi ] = 0.

6.9.7. Linear Systems ML Estimation

The systems estimators for the linear model are essentially LS or IV estimators with in-
ference based on robust standard errors. Now additionally assume normally distributed
iid errors, so that ui ∼ N [0,Ω].

For systems with exogenous regressors the resulting MLE is asymptotically equiva-
lent to the GLS estimator. These estimators do use different estimators of Ω and hence
β, however, so that there are small-sample differences between the MLE and the GLS
estimator. For example, see Chapter 21 for the random effects panel data model.

For the linear SEM (6.101), the limited information maximum likelihood es-
timator, a single-equation ML estimator, is asymptotically equivalent to 2SLS. The
full information maximum likelihood estimator, the systems MLE, is asymptotically
equivalent to 3SLS. See, for example, Schmidt (1976) and Greene (2003).

6.10. Nonlinear Sets of Equations

We now consider systems of equations that are nonlinear in parameters. For example,
demand equation systems obtained from a specified direct or indirect utility may be
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nonlinear in parameters. More generally, if a nonlinear model is appropriate for a de-
pendent variable studied in isolation, for example a logit or Poisson model, then any
joint model for two or more such variables will necessarily be nonlinear.

We begin with a discussion of fully parametric joint modeling, before focusing on
partially parametric modeling. As in the linear case we present models with exogenous
regressors before considering the complication of endogenous regressors.

6.10.1. Nonlinear Systems ML Estimation

Maximum likelihood estimation for a single dependent variable was presented in Sec-
tion 5.6. These results can be immediately applied to joint models of several dependent
variables, with the very minor change that the single dependent variable conditional
density f (yi |xi ,θ) becomes f (yi |Xi ,θ), where yi denotes the vector of dependent
variables, Xi denotes all the regressors, and θ denotes all the parameters.

For example, if y1 ∼ N [exp(x′
1β1), σ 2

1 ] and y2 ∼ N [exp(x′
2β2), σ 2

2 ] then a suitable
joint model may be to assume that (y1, y2) are bivariate normal with means exp(x′

1β1)
and exp(x′

2β2), variances σ 2
1 and σ 2

2 , and correlation ρ.
For data that are not normally distributed there can be challenges in specifying and

selecting a sufficiently flexible joint distribution. For example, for univariate counts
a standard starting model is the negative binomial (see Chapter 20). However, in ex-
tending this to a bivariate or multivariate model for counts there are several alternative
bivariate negative binomial models to choose from. These might differ, for example,
as to whether the univariate conditional distribution or the univariate marginal distri-
bution is negative binomial. In contrast the multivariate normal distribution has condi-
tional and marginal distributions that are both normal. All of these multivariate nega-
tive binomial distributions place some restrictions on the range of correlation such as
restricting to positive correlation, whereas for the multivariate normal there is no such
restriction.

Fortunately, modern computational advances permit richer models to be specified.
For example, a reasonably flexible model for correlated bivariate counts is to assume
that, conditional on unobservables ε1 and ε2, y1 is Poisson with mean exp(x′

1β1 + ε1)
and y2 is Poisson with mean exp(x′

1β1 + ε2). An estimable bivariate distribution can
be obtained by assuming that the unobservables ε1 and ε2 are bivariate normal and in-
tegrating them out. There is no closed-form solution for this bivariate distribution, but
the parameters can nonetheless be estimated using the method of maximum simulated
likelihood presented in Section 12.4.

A number of examples of nonlinear joint models are given throughout Part 4 of the
book. The simplest joint models can be inflexible, so consistency can rely on distribu-
tional assumptions that are too restrictive. However, there is generally no theoretical
impediment to specifying more flexible models that can be estimated using computa-
tionally intensive methods.

In particular, two leading methods for generating rich multivariate parametric mod-
els are presented in detail in Section 19.3. These methods are given in the context of
duration data models, but they have much wider applicability. First, one can introduce
correlated unobserved heterogeneity, as in the bivariate count example just given.
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Second, one can use copulas, which provide a way to generate a joint distribution
given specified univariate marginals.

For ML estimation a simpler though less efficient quasi-ML approach is to specify
separate parametric models for y1 and y2 and obtain ML estimates assuming inde-
pendence of y1 and y2 but then do statistical inference permitting y1 and y2 to be
correlated. This has been presented in Section 5.7.5. In the remainder of this section
we consider such partially parametric approaches.

The challenges became greater if there is endogeneity, so that a dependent variable
in one equation appears as a regressor in another equation. Few models for nonlinear
simultaneous equations exist, aside from nonlinear regression models with additive
errors that are normally distributed.

6.10.2. Nonlinear Systems of Equations

For linear regression the movement from single equation to multiple equations is clear
as the starting point is the linear model y = x′β+ u and estimation is by least squares.
Efficient systems estimation is then by systems GLS estimation. For nonlinear models
there can be much more variety in the starting point and estimation method.

We define the multivariate nonlinear model with G dependent variables to be

r(yi ,Xi ,β) = ui , (6.103)

where yi and ui are G × 1 vectors, r(yi ,Xi ,β) is a G × 1 vector function, Xi is a
G × L matrix, and β is a K × 1 column vector. Throughout this section we make the
cross-section assumption that the error vector ui is independent over i , but components
of ui for given i may be correlated with variances and covariances that vary over i .

One example of (6.103) is a nonlinear seemingly unrelated regression model.
Then the gth of G equations for the i th of N individuals is given by

rg(yig, xig,βg) = uig, g = 1, . . . ,G. (6.104)

For example, uig = yig − exp(x′
igβg). Then ui and r(·) in (6.103) are G × 1 vectors

with gth entries uig and rg(·), Xi is the same block-diagonal matrix as that defined in
(6.91), and β is obtained by stacking β1 to βG .

A second example is a nonlinear panel data model. Then for individual i in
period t

r (yit , xi t ,β) = uit , t = 1, . . . , T . (6.105)

Then ui and r(·) in (6.103) are T × 1 vectors, so G = T , with t th entries uit and
r (yit , xi t ,β). The panel model differs from the SUR model by having the same func-
tion r (·) and parameters β in each period.

6.10.3. Nonlinear Systems Estimation

When the regressors Xi in the model (6.103) are exogenous

E[ui |Xi ] = 0, (6.106)
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where ui is the error term defined in (6.103). We assume that the error term is inde-
pendent over i , and the variance matrix is

Ωi = E[ui u′
i |Xi ]. (6.107)

Additive Errors

Systems estimation is a straightforward adaptation of systems OLS and FGLS estima-
tion of the linear models when the nonlinear model is additive in the error term, so that
(6.103) specializes to

ui = yi − g(Xi ,β). (6.108)

Then the systems NLS estimator minimizes the sum of squared residuals
∑

i u′
i ui ,

whereas the systems FGNLS estimator minimizes

QN (β) =
∑

i

u′
iΩ̂

−1
i ui , (6.109)

where we specify a model Ωi (γ) for Ωi and Ω̂i = Ωi (γ̂). To guard against possible
misspecification of Ωi one can use robust standard errors that essentially require only
that ui is independent and satisfies (6.106). Then the estimated variance of the systems
FGNLS estimator is the same as that for the linear systems FGLS estimator in (6.87),
with Xi replaced by ∂g(yi ,β)/∂β′∣∣

β̂
and now ûi = yi − g(Xi ,β̂). The estimated vari-

ance of the simpler systems NLS estimator is obtained by additionally replacing Ω̂i

by IG .
The main challenge can be specifying a useful model for Ωi . As an example, sup-

pose we wish to jointly model two count data variables. In Chapter 20 we show
that a standard model for counts, a little more general than the Poisson model,
specifies the conditional mean to be exp(x′β) and the conditional variance to be a
multiple of exp(x′β). Then a joint model might specify u = [u1 u2]′, where u1 =
y1 − exp(x′

1β1) and u2 = y2 − exp(x′
2β2). The variance matrix Ωi then has diagonal

entries α1 exp(x′
i1β1) and α2 exp(x′

i2β2), and one possible parameterization for the co-
variance is α3[exp(x′

i1β1) exp(x′
i2β2)]1/2. The estimate Ω̂i then requires estimates of

β1, β2, α1, α2, and α3 that may be obtained from first-step single-equation estimation.

Nonadditive Errors

With nonadditive errors least-squares regression is no longer appropriate, as shown
in the single-equation case in Section 6.2.2. Wooldridge (2002) presents consistent
method of moments estimation.

The conditional moment restriction (6.106) leads to many possible unconditional
moment conditions that can be used for estimation. The obvious starting point is to
base estimation on the moment conditions E[X′

i ui ] = 0. However, other moment con-
ditions may be used. We more generally consider estimation based on K moment
conditions

E[R(Xi ,β)′ui ] = 0, (6.110)
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where R(Xi ,β) is a K × G matrix of functions of Xi and β. The specification of
R(Xi ,β) and possible dependence on β are discussed in the following.

By construction there are as many moment conditions as parameters. The sys-
tems method of moments estimator β̂SMM solves the corresponding sample moment
conditions

1

N

N∑
i=1

R(Xi ,β)′r(yi ,Xi , β̂SMM) = 0, (6.111)

where in practice R(Xi ,β) is evaluated at a first-step estimate β̃. This estimator is
asymptotically normal with variance matrix

V̂
[
β̂SMM

] =
[

N∑
i=1

D̂′
i R̂i

]−1 N∑
i=1

R̂′
i ûi û′

i R̂i

[
N∑

i=1

R̂′
i D̂i

]−1

, (6.112)

where D̂i = ∂ri/∂β
′∣∣
β̂

, R̂i = R(Xi , β̂), and ûi = r(yi ,Xi , β̂SMM).
The main issue is specification of R(X,β) in (6.110). From Section 6.3.7, the most

efficient estimator based on (6.106) specifies

R∗(Xi ,β) = E

[
∂r(yi ,Xi ,β)′

∂β
|Xi

]
Ω−1

i . (6.113)

In general the first expectation on the right-hand side requires strong distributional
assumptions, making optimal estimation difficult.

Simplification does occur, however, if the nonlinear model is one with additive er-
ror defined in (6.108). Then R∗(Xi ,β) = ∂g(Xi ,β)′/∂β × Ω−1

i , and the estimating
equations (6.110) become

N−1
N∑

i=1

∂g(Xi ,β)′

∂β
Ω−1

i (yi − X′
i β̂SMM) = 0.

This estimator is asymptotically equivalent to the systems FGNLS estimator that min-
imizes (6.109).

6.10.4. Nonlinear Systems IV Estimation

When the regressors Xi in the model (6.103) are endogenous, so that E[ui |Xi ] �= 0, we
assume the existence of a G × r matrix of instruments Zi such that

E[ui |Zi ] = 0, (6.114)

where ui is the error term defined in (6.103). We assume that the error term is indepen-
dent over i , and the variance matrix is Ωi = E[ui u′

i |Zi ]. For the nonlinear SUR model
Zi is as defined in (6.99).

The approach is similar to that used in the preceding section for the systems MM
estimator, with the additional complication that now there may be a surplus of instru-
ments leading to a need for GMM estimation rather than just MM estimation. Condi-
tional moment restriction (6.106) leads to many possible unconditional moment condi-
tions that can be used for estimation. Here we follow many others in basing estimation
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on the moment conditions E[Z′
i ui ] = 0. Then a systems GMM estimator minimizes

QN (β) =
[

N∑
i=1

Z′
i r(yi ,Xi ,β)

]′
WN

[
N∑

i=1

Z′
i r(yi ,Xi ,β)

]
. (6.115)

This estimator is asymptotically normal with estimated variance

V̂
[
β̂SGMM

] = N
[
D̂′ZWN Z′D̂

]−1 [
D̂′ZWN ŜWN Z′D̂

] [
D̂′ZWN Z′D̂

]−1
, (6.116)

where D̂′Z =∑i ∂r
′
i/∂β

∣∣
β̂

Zi and Ŝ = N−1∑
i Zi ûi û′

i Z
′
i and we assume ui is inde-

pendent over i with variance matrix V[ui |Xi ] = Ωi .
The choice WN = [N−1∑

i Zi Z′
i ]

−1 corresponds to NL2SLS in the case
that r(yi ,Xi ,β) is obtained from a nonlinear SUR model. The choice WN =
[N−1∑

i ZiΩ̂Z′
i ]

−1, where Ω̂ = N−1∑
i ûi û′

i , is called nonlinear 3SLS (NL3SLS)
and is the most efficient estimator based on the moment condition E[Z′

i ui ] = 0 in the
special case that Ωi = Ω. The choice WN = Ŝ−1 gives the most efficient estimator un-
der the more general assumption that Ωi may vary with i . As usual, however, moment
conditions other than E[Z′

i ui ] = 0 may lead to more efficient estimators.

6.10.5. Nonlinear Simultaneous Equations Systems

The nonlinear simultaneous equations model specifies that the gth of G equations
for the i th of N individuals is given by

uig = rg(yi , xig,βg), g = 1, . . . ,G. (6.117)

This is the nonlinear SUR model with regressors that now include dependent variables
from other equations. Unlike the linear SEM, there are few practically useful results to
help ensure that a nonlinear SEM is identified.

Given identification, consistent estimates can be obtained using the GMM estima-
tors presented in the previous section. Alternatively, we can assume that ui ∼ N [0,Ω]
and obtain the nonlinear full-information maximum likelihood estimator. In a de-
parture from the linear SEM, the nonlinear full-information MLE in general has an
asymptotic distribution that differs from NL3SLS, and consistency of the nonlinear
full-information MLE requires that the errors are actually normally distributed. For
details see Amemiya (1985).

Handling endogeneity in nonlinear models can be complicated. Section 16.8 con-
siders simultaneity in Tobit models, where analysis is simpler when the model is linear
in the latent variables. Section 20.6.2 considers a more highly nonlinear example, en-
dogenous regressors in count data models.

6.11. Practical Considerations

Ideally GMM could be implemented using an econometrics package, requiring little
more difficulty and knowledge than that needed, say, for nonlinear least-squares esti-
mation with heteroskedastic errors. However, not all leading econometrics packages
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provide a broad GMM module. Depending on the specific application, GMM estima-
tion may require a switch to a more suitable package or use of a matrix programming
language along with familiarity with the algebra of GMM.

A common application of GMM is IV estimation. Most econometrics packages in-
clude linear IV but not all include nonlinear IV estimators. The default standard errors
may assume homoskedastic errors rather than being heteroskedastic-robust. As already
emphasized in Chapter 4, it can be difficult to obtain instruments that are uncorrelated
with the error yet reasonably correlated with the regressor or, in the nonlinear case, the
appropriate derivative of the error with respect to parameters.

Econometrics packages usually include linear systems but not nonlinear systems.
Again, default standard errors may not be robust to heteroskedasticity.

6.12. Bibliographic Notes

Textbook treatments of GMM include chapters by Davidson and MacKinnon (1993, 2004),
Hamilton (1994), and Greene (2003). The more recent books by Hayashi (2000) and
Wooldridge (2002) place considerable emphasis on GMM estimation. Bera and Bilias (2002)
provide a synthesis and history of many of the estimators presented in Chapters 5 and 6.

6.3 The original reference for GMM is Hansen (1982). A good explanation of optimal mo-
ments for GMM is given in the appendix of Arellano (2003). The October 2002 issue of
Journal of Business and Economic Statistics is devoted to GMM estimation.

6.4 The classic treatment of linear IV estimation by Sargan (1958) is a key precursor to GMM.
6.5 The nonlinear 2SLS estimator introduced by Amemiya (1974) generalizes easily to the

GMM estimator.
6.6 Standard references for sequential two-step estimation are Newey (1984), Murphy and

Topel (1985), and Pagan (1986).
6.7 A standard reference for minimum distance estimation is Chamberlain (1982).
6.8 A good overview of empirical likelihood is provided by Mittelhammer, Judge, and Miller

(2000) and key references are Owen (1988, 2001) and Qin and Lawless (1994). Imbens
(2002) provides a review and application of this relatively new method.

6.9 Texts such as Greene’s (2003) provide a more detailed coverage of systems estimation
than that provided here, especially for linear seemingly unrelated regressions and linear
simultaneous equations models.

6.10 Amemiya (1985) presents nonlinear simultaneous equations in detail.

Exercises

6–1 For the gamma regression model of Exercise 5.2, E[y|x] = exp(x′β) and V[y|x] =
(exp(x′β))2/2.

(a) Show that these conditions imply that E[x{(y − x′β)2 − (exp(x′β))2
/2}] = 0.

(b) Use the moment condition in part (a) to form a method of moments estimator
β̂MM.

(c) Give the asymptotic distribution of β̂MM using result (6.13) .
(d) Suppose we use the moment condition E[x(y − exp(x′β))] in addition to that

in part (a). Give the objective function for a GMM estimator of β.
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6–2 Consider the linear regression model for data independent over i with yi =
x′

iβ+ ui . Suppose E[ui |xi ] �= 0 but there are available instruments zi with
E[ui |zi ] = 0 and V[ui |zi ] = σ 2

i , where dim(z) >dim(x). We consider the GMM es-
timator β̂ that minimizes

QN(β) = [N−1
∑

i

zi (yi − x′
iβ)]′WN [N−1

∑
i

zi (yi − x′
iβ)].

(a) Derive the limit distribution of
√

N(β̂ − β0) using the general GMM result
(6.11).

(b) State how to obtain a consistent estimate of the asymptotic variance of β̂.
(c) If errors are homoskedastic what choice of WN would you use? Explain your

answer.
(d) If errors are heteroskedastic what choice of WN would you use? Explain your

answer.

6–3 Consider the Laplace intercept-only example at the end of Section 6.3.6, so
y = µ+ u. Then GMM estimation is based on E[h(µ)] = 0, where h(µ) = [(y −
µ), (y − µ)3]′.

(a) Using knowledge of the central moments of y given in Section 6.3.6, show
that G0 = E[∂h/∂µ] = [−1,−6]′ and that S0 = E[hh′] has diagonal entries 2
and 720 and off-diagonal entries 24.

(b) Hence show that G′
0S−1

0 G0 = 252/432.
(c) Hence show that µ̂OGMM has asymptotic variance 1.7143/N.
(d) Show that the GMM estimator of µ with W = I2 has asymptotic variance

19.14/N.

6–4 This question uses the probit model but requires little knowledge of the model.
Let y denote a binary variable that takes value 0 or 1 according to whether or
not an event occurs, let x denote a regressor vector, and assume independent
observations.

(a) Suppose E[y|x] = Φ(x′β), where Φ(·) is the standard normal cdf. Show that
E[(y − Φ(x′β))x] = 0. Hence give the estimating equations for a method of
moments estimator for β.

(b) Will this estimator yield the same estimates as the probit MLE? [For just this
part you need to read Section 14.3.]

(c) Give a GMM objective function corresponding to the estimator in part (a).
That is, give an objective function that yields the same first-order conditions,
up to a full-rank matrix transformation, as those obtained in part (a).

(d) Now suppose that because of endogeneity in some of the components
E[y|x] �= Φ(x′β). Assume there exists a vector z, dim[z] > dim[x], such that
E[y − Φ(x′β)|z] = 0. Give the objective function for a consistent estimator of
β. The estimator need not be fully efficient.

(e) For your estimator in part (d) give the asymptotic distribution of the estimator.
State clearly any assumptions made on the dgp to obtain this result.

(f) Give the weighting matrix, and a way to calculate it, for the optimal GMM
estimator in part (d).

(g) Give a real-world example of part (d). That is, give a meaningful example of
a probit model with endogenous regressor(s) and valid instrument(s). State
the dependent variable, the endogenous regressor(s), and the instrument(s)
used to permit consistent estimation. [This part is surprisingly difficult.]
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6–5 Suppose we impose the constraint that E[wi ] = g(θ), where dim[w] > dim[θ].

(a) Obtain the objective function for the GMM estimator.
(b) Obtain the objective function for the minimum distance estimator (see Sec-

tion 6.7) with π = E[wi ] and π̂ = w̄.
(c) Show that MD and GMM are equivalent in this example.

6–6 The MD estimator (see Section 6.7) uses the restriction π − g(θ) = 0. Suppose
more generally that the restriction is h(θ,π) = 0 and we estimate using the gen-
eralized MD estimator that minimizes QN(θ) = h(θ, π̂)′WNh(θ, π̂). Adapt (6.68)–
(6.70) to show that (6.67) holds with G0 = ∂h(θ,π)/∂θ

∣∣
θ0,π0

and V[π̂] replaced by

H′
0V[π̂]H0, where H0 = ∂h(θ,π)/∂π

∣∣
θ0,π0

.

6–7 For data generated from the dgp given in Section 6.6.4 with N = 1,000, obtain
NL2SLS estimates and compare these to the two-stage estimates.
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C H A P T E R 7

Hypothesis Tests

7.1. Introduction

In this chapter we consider tests of hypotheses, possibly nonlinear in the parameters,
using estimators appropriate for nonlinear models.

The distribution of test statistics can be obtained using the same statistical theory as
that used for estimators, since test statistics like estimators are statistics, that is, func-
tions of the sample. Given appropriate linearization of estimators and hypotheses, the
results closely resemble to those for testing linear restrictions in the linear regression
model. The results rely on asymptotic theory, however, and exact t- and F-distributed
test statistics for the linear model under normality are replaced by test statistics that
are asymptotically standard normal distributed (z-tests) or chi-square distributed.

There are two main practical concerns in hypothesis testing. First, tests may have
the wrong size, so that in testing at a nominal significance level of, say, 5%, the ac-
tual probability of rejection of the null hypothesis may be much more or less than
5%. Such a wrong size is almost certain to arise in moderate size samples as the un-
derlying asymptotic distribution theory is only an approximation. One remedy is the
bootstrap method, introduced in this chapter but sufficiently important and broad to be
treated separately in Chapter 11. Second, tests may have low power, so that there is low
probability of rejecting the null hypothesis when it should be rejected. This potential
weakness of tests is often neglected. Size and power are given more prominence here
than in most textbook treatments of testing.

The Wald test, the most widely used testing procedure, is defined in Section 7.2.
Section 7.3 additionally presents the likelihood ratio test and score or Lagrange mul-
tiplier tests, applicable when estimation is by ML. The various tests are illustrated in
Section 7.4. Section 7.5 extends these tests to estimators other than ML, including ro-
bust forms of tests. Sections 7.6, 7.7, and 7.8 present, respectively, test power, Monte
Carlo simulation methods, and the bootstrap.

Methods for determining model specification and selection, rather than hypothesis
tests per se, are given separate treatment in Chapter 8.
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7.2. Wald Test

The Wald test, due to Wald (1943), is the preeminent hypothesis test in microecono-
metrics. It requires estimation of the unrestricted model, that is, the model without
imposition of the restrictions of the null hypothesis. The Wald test is widely used be-
cause modern software usually permits estimation of the unrestricted model even if
it is more complicated than the restricted model, and modern software increasingly
provides robust variance matrix estimates that permit Wald tests under relatively weak
distributional assumptions. The usual statistics for tests of statistical significance of
regressors reported by computer packages are examples of Wald test statistics.

This section presents the Wald test of nonlinear hypotheses in considerable detail,
presenting both theory and examples. The closely related delta method, used to form
confidence intervals or regions for nonlinear functions of parameters, is also presented.
A weakness of the Wald test – its lack of invariance to algebraically equivalent param-
eterizations of the null hypothesis – is detailed at the end of the section.

7.2.1. Linear Hypotheses in Linear Models

We first review standard linear model results, as the Wald test is a generalization of the
usual test for linear restrictions in the linear regression model.

The null and alternative hypotheses for a two-sided test of linear restrictions on the
regression parameters in the linear regression model y = X′β + u are

H0 : Rβ0 − r = 0,
Ha : Rβ0 − r �= 0,

(7.1)

where in the notation used here there are h restrictions, R is an h × K matrix of con-
stants of full rank h, β is the K × 1 parameter vector, r is an h × 1 vector of constants,
and h ≤ K .

For example, a joint test that β1 = 1 and β2 − β3 = 2 when K = 4 can be expressed
as (7.1) with

R =
[

1 0 0 0
0 1 −1 0

]
, r =

[
1
2

]
.

The Wald test of Rβ0 − r = 0 is a test of closeness to zero of the sample analogue
Rβ̂ − r, where β̂ is the unrestricted OLS estimator. Under the strong assumption that
u ∼ N [0, σ 2

0 I], the estimator β̂ ∼ N
[
β0, σ

2
0 (X′X)−1

]
and so

Rβ̂ − r ∼ N
[
0, σ 2

0 R(X′X)−1R′] ,
under H0, where Rβ0 − r = 0 has led to simplification to a mean of 0. Taking the
quadratic form leads to the test statistic

W1 = (Rβ̂ − r)′
[
σ 2

0 R(X′X)−1R′]−1
(Rβ̂ − r),

which is exactly χ2(h) distributed under H0. In practice the test statistic W1 cannot be
calculated, however, as σ 2

0 is not known.
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In large samples replacing σ 2
0 by its estimate s2 does not affect the limit distribution

of W1, since this is equivalent to premultiplication of W1 by σ 2
0 /s

2 and plim(σ 2
0 /s

2) =
1 (see the Transformation Theorem A.12). Thus

W2 = (Rβ̂ − r )′
[
s2R(X′X)−1R′]−1

(Rβ̂ − r ) (7.2)

converges to the χ2(h) distribution under H0.
The test statistic W2 is chi-square distributed only asymptotically. In this linear

example with normal errors an alternative exact small-sample result can be obtained.
A standard result derived in many introductory texts is that

W3 = W2/h

is exactly F(h, N − K ) distributed under H0, if s2 = (N − K )−1∑
i û2

i , where ûi is
the OLS residual. This is the familiar F−test statistic, which is often reexpressed in
terms of sums of squared residuals.

Exact results such as that for W3 are not possible in nonlinear models, and even in
linear models they require very strong assumptions. Instead, the nonlinear analogue of
W2 is employed, with distributional results that are asymptotic only.

7.2.2. Nonlinear Hypotheses

We consider hypothesis tests of h restrictions, possibly nonlinear in parameters, on
the q × 1 parameter vector θ, where h ≤ q. For linear regression θ = β and q = K .

The null and alternative hypotheses for a two-sided test are

H0 : h(θ0) = 0,
Ha : h(θ0) �= 0,

(7.3)

where h(·) is a h × 1 vector function of θ. Note that h(θ) in this chapter is used to
denote the restrictions of the null hypothesis. This should not be confused with the use
of h(w,θ) in the previous chapter to denote the moment conditions used to form an
MM or GMM estimator.

Familiar linear examples include tests of statistical significance of a single coeffi-
cient, h(θ) = θ j = 0, and tests of subsets of coefficients, h(θ) = θ2 = 0. A nonlinear
example of a single restriction is h(θ) = θ1/θ2 − 1 = 0. These examples are studied
in later sections.

It is assumed that h(θ) is such that the h × q matrix

R(θ) =∂h(θ)

∂θ′ (7.4)

is of full rank h when evaluated at θ = θ0. This assumption is equivalent to linear inde-
pendence of restrictions in the linear model, in which case R(θ) = R does not depend
on θ and has rank h. It is also assumed that the parameters are not at the boundary
of the parameter space under the null hypothesis. This rules out, for example, testing
H0 : θ1 = 0 if the model requires θ1 ≥ 0.
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7.2.3. Wald Test Statistic

The intuition behind the Wald test is very simple. The obvious test of whether h(θ0) =
0 is to obtain estimate θ̂ without imposing the restrictions and see whether h(̂θ) � 0.
If h(̂θ)

a∼ N [0,V[h(̂θ)]] under H0 then the test statistic

W = h(̂θ)′[V[h(̂θ)]]
−1

h(̂θ)
a∼ χ2(h).

The only complication is finding V[h(̂θ)], which will depend on the restrictions h(·)
and the estimator θ̂.

By a first-order Taylor series expansion (see section 7.2.4) under the null hypoth-
esis, h(̂θ) has the same limit distribution as R(θ0)(̂θ − θ0 ), where R(θ) is defined in
(7.4). Then h(̂θ) is asymptotically normal under H0 with mean zero and variance ma-
trix R(θ0)V[̂θ]R(θ0)′. A consistent estimate is R̂N−1ĈR̂′, where R̂ = R(̂θ) and it is
assumed that the estimator θ̂ is root-N consistent with

√
N (̂θ − θ0 )

d→ N [0,C0], (7.5)

and Ĉ is any consistent estimate of C0.

Common Versions of the Wald Test

The preceding discussion leads to the Wald test statistic

W = N ĥ ′[R̂ĈR̂′]−1ĥ, (7.6)

where ĥ = h(̂θ) and R̂ = ∂h(θ)/∂θ′∣∣̂
θ
. An equivalent expression is W = ĥ ′[R̂V̂

[̂θ]R̂′]−1ĥ, where V̂[̂θ] = N−1Ĉ is the estimated asymptotic variance of θ̂.
The test statistic W is asymptotically χ2(h ) distributed under H0. So H0 is rejected

against Ha at significance level α if W > χ2
α(h) and is not rejected otherwise. Equiv-

alently, H0 is rejected at level α if the p-value, which equals Pr[χ2(h) >W], is less
than α.

One can also implement the Wald test statistic as an F−test. The Wald asymptotic
F-statistic

F = W/h (7.7)

is asymptotically F(h, N − q) distributed. This yields the same p-value as W in (7.6)
as N → ∞ though in finite samples the p-values will differ. For nonlinear models it
is most common to report W, though F is also used in the hope that it might provide a
better approximation in small samples.

For a test of just one restriction, the square root of the Wald chi-square test is a
standard normal test statistic. This result is useful as it permits testing a one-sided
hypothesis. Specifically, for scalar h(θ) the Wald z-test statistic is

Wz = ĥ√̂
rN−1Ĉ̂r′

, (7.8)

where ĥ = h (̂θ) and r̂ = ∂h(θ)/∂θ′∣∣̂
θ

is a 1 × k vector. Result (7.6) implies that
Wz is asymptotically standard normal distributed under H0. Equivalently, Wz is
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asymptotically t distributed with (N − q) degrees of freedom, since the t goes to the
normal as N → ∞. So Wz can also be a Wald t-test statistic.

Discussion

The Wald test statistic (7.6) for the nonlinear case has the same form as the linear
model statistic W2 given in (7.2). The estimated deviation from the null hypothesis is
h(̂θ) rather than (Rβ̂ − r). The matrix R is replaced by the estimated derivative matrix
R̂, and the assumption that R is of full rank is replaced by the assumption that R0 is of
full rank. Finally, the estimated asymptotic variance of the estimator is N−1Ĉ rather
than s2(X′X)−1.

There is a range of possible consistent estimates of C0 (see Section 5.5.2), lead-
ing in practice to different computed values of W or F or Wz that are asymptotically
equivalent. In particular, C0 is often of the sandwich form A−1

0 B0A−1
0 , consistently es-

timated by a robust estimate Â−1B̂Â−1. An advantage of the Wald test is that it is easy
to robustify to ensure valid statistical inference under relatively weak distributional
assumptions, such as potentially heteroskedastic errors.

Rejection of H0 is more likely the larger is W or F or, for two-sided tests, Wz .
This happens the further h(̂θ) is from the null hypothesis value 0; the more efficient
the estimator θ̂, since then Ĉ is small; and the larger the sample size since then N−1

is small. The last result is a consequence of testing at unchanged significance level
α as sample size increases. In principle one could decrease α as the sample size is
increased. Such penalties for fully parametric models are presented in Section 8.5.1.

7.2.4. Derivation of the Wald Statistic

By an exact first-order Taylor series expansion around θ0

h(̂θ) = h(θ0) + ∂h
∂θ′

∣∣∣∣
θ+

(̂θ − θ0),

for some θ+ between θ̂ and θ0. It follows that
√

N (h(̂θ) − h(θ0)) = R(θ+)
√

N (̂θ − θ0),

where R(θ) is defined in (7.4), which implies that
√

N (h(̂θ) − h(θ0))
d→ N

[
0,R0C0R0

′] (7.9)

by direct application of the limit normal product rule (Theorem A.7) as R(θ+)
p→

R0 = R(θ0) and using the limit distribution for
√

N (̂θ − θ0) given in (7.5).
Under the null hypothesis (7.9) simplifies since h(θ0) = 0, and hence

√
Nh(̂θ)

d→ N
[
0,R0C0R0

′] (7.10)

under H0. One could in theory use this multivariate normal distribution to define a
rejection region, but it is much simpler to transform to a chi-square distribution. Re-
call that z ∼ N [0,Ω] with Ω of full rank implies z′Ω−1z ∼ χ2(dim(Ω)). Then (7.10)
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implies that

Nh(̂θ)′[R0C0R0
′]−1h(̂θ)

d→ χ2(h ),

under H0, where the matrix inverse in this expression exists by the assumptions that R0

and C0 are of full rank. The Wald statistic defined in (7.6) is obtained upon replacing
R0 and C0 by consistent estimates.

7.2.5. Wald Test Examples

The most common tests are tests of one or more exclusion restrictions. We also provide
an example of test of a nonlinear hypothesis.

Tests of Exclusion Restrictions

Consider the exclusion restrictions that the last h components of θ are equal to zero.
Then h(θ) = θ2 = 0 where we partition θ = (θ′

1,θ
′
2)′. It follows that

R(θ) = ∂h(θ)

∂θ′ =
[
∂θ2

∂θ′
1

∂θ2

∂θ′
2

]
= [0 Ih] ,

where 0 is a (q − h) × q matrix of zeros and Ih is an h × h identity matrix, so

R(θ)C(θ)R(θ)′ = [0 Ih]

[
C11 C12

C21 C22

] [
0
Ih

]
= C22.

The Wald test statistic for exclusion restrictions is therefore

W = θ̂2
′[N−1Ĉ22]−1θ̂2, (7.11)

where N−1Ĉ22 = V̂[̂θ2], and is asymptotically distributed as χ2(h ) under H0.
This test statistic is a generalization of the test of subsets of regressors in the linear

regression model. In that case small-sample results are available if errors are normally
distributed and the related F-test is instead used.

Tests of Statistical Significance

Tests of significance of a single coefficient are tests of whether or not θ j , the j th
component of θ, differs from zero. Then h(θ) = θ j and r(θ) = ∂h/∂θ′ is a vector of
zeros except for a j th entry of 1, so (7.8) simplifies to

Wz = θ̂ j

se[̂θ j ]
, (7.12)

where se[̂θ j ] = √N−1̂c j j is the standard error of θ̂ j and ĉ j j is the j th diagonal entry
in Ĉ.

The test statistic Wz in (7.12) is often called a “t-statistic”, owing to results for
the linear regression model under normality, but strictly speaking it is an asymptotic
“z-statistic.”
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For a two-sided test of H0 : θ j0 = 0 against Ha : θ j0 �= 0, H0 is rejected at signifi-
cance level α if |Wz| > zα/2 and is not rejected otherwise. This yields exactly the same
results as the Wald chi-square test, since W2

z = W, where W is defined in (7.6), and
z2
α/2 = χ2

α(1).
Often there is prior information about the sign of θ j . Then one should use a one-

sided hypothesis test. For example, suppose it is felt based on economic reasoning or
past studies that θ j > 0. It makes a difference whether θ j > 0 is specified to be the null
or the alternative hypothesis. For one-sided tests it is customary to specify the claim
made as the alternative hypothesis, as it can be shown that then stronger evidence is
required to support the claim. Here H0 : θ j0 ≤ 0 is rejected against Ha : θ j0 > 0 at
significance level α if Wz > zα . Similarly, for a claim that θ j < 0, test H0 : θ j0 ≥ 0
against Ha : θ j0 < 0 and reject H0 at significance level α if Wz < −zα .

Computer output usually gives the p-value for a two-sided test, but in many cases
it is more appropriate to use a one-sided test. If θ̂ j has the “correct” sign then the
p-value for the one-sided test is half that reported for a two-sided test.

Tests of Nonlinear Restriction

Consider a test of the single nonlinear restriction

H0 : h(θ) = θ1/θ2 − 1 = 0.

Then R(θ) is a 1 × q vector with first element ∂h/∂θ1 = 1/θ2, second element
∂h/∂θ2 = −θ1/θ

2
2 , and remaining elements zero. By letting ĉ jk denote the jkth el-

ement of Ĉ, (7.6) becomes

W = N

(
θ̂1

θ̂2
− 1

)2

[ 1

θ̂2
− θ̂1

θ̂
2
2

0

] ĉ11 ĉ12 · · ·
ĉ21 ĉ22 · · ·
...

...
. . .


 1/̂θ2

−θ̂1/̂θ
2
2

0




−1

,

where 0 is a (q − 2) × q matrix of zeros, yielding

W = N [̂θ2(̂θ1 − θ̂2)]2(̂θ
2
2̂c11 − 2̂θ1θ̂ 2̂c12 + θ̂2

1̂c22)−1, (7.13)

which is asymptotically χ2(1) distributed under H0. Equivalently,
√

W is asymptoti-
cally standard normal distributed.

7.2.6. Tests in Misspecified Models

Most treatments of hypothesis testing, including that given in Chapters 7 and 8 of
this book, assume that the null hypothesis model is correctly specified, aside from
relatively minor misspecification that does not affect estimator consistency but requires
robustification of standard errors.

In practice this is a considerable oversimplification. For example, in testing for het-
eroskedastic errors it is assumed that this is the only respect in which the regression
is deficient. However, if the conditional mean is misspecified then the true size of
the test will differ from the nominal size, even asymptotically. Moreover, asymptotic
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equivalence of tests, such as that for the Wald, likelihood ratio, and Lagrange mul-
tiplier tests, will no longer hold. The better specified the model, however, the more
useful are the tests.

Also, note that tests often have some power against hypotheses other than the ex-
plicitly stated alternative hypothesis. For example, suppose the null hypothesis model
is y = β1 + β2x + u, where u is homoskedastic. A test of whether to also include z as
a regressor will also have some power against the alternative that the model is nonlin-
ear in x , for example y = β1 + β2x + β3x2 + u, if x and z are correlated. Similarly, a
test against heteroskedastic errors will also have some power against nonlinearity in x .
Rejection of the null hypothesis does not mean that the alternative hypothesis model
is the only possible model.

7.2.7. Joint Versus Separate Tests

In applied work one often wants to know which coefficients out of a set of coefficients
are “significant.” When there are several hypotheses under test, one can either do a
joint test or simultaneous test of all hypotheses of interest or perform separate tests
of the hypotheses.

A leading example in linear regression concerns the use of separate t-tests for test-
ing the null hypotheses H10 : β1 = 0 and H20 : β2 = 0 versus using an F-test of the
joint hypothesis H0 : β1 = β2 = 0, where throughout the alternative is that at least
one of the parameters does not equal zero. The F-test is an explicit joint test, with
rejection of H0 if the estimated point (̂β1, β̂2) falls outside an elliptical probability
contour. Alternatively, the two separate t-tests can be conducted. This procedure is an
implicit joint test, called an induced test (Savin, 1984). The separate tests reject H0 if
either H10 or H20 is rejected, which occurs if (̂β1, β̂2) falls outside a rectangle whose
boundaries are the critical values of the two test statistics. Even if the same signifi-
cance level is used to test H0, so that the ellipse and rectangles have the same area,
the rejection regions for the joint and separate tests differ and there is a potential for a
conflict between them. For example, (̂β1, β̂2) may lie within the ellipse but outside the
rectangle.

Let e1 and e2 denote the event of type I error (see Section 7.5.1) in the two separate
tests, and let eI = e1 ∪ e2 denote the event of a type I error in the induced joint test.
Then Pr[eI] = Pr[e1] + Pr[e2] − Pr[eI ∩ e2], which implies that

αI ≤ α1 + α2, (7.14)

where αI, α1, and α2 denote the sizes of, respectively, the induced joint test, the first
separate test, and the second separate test. In the special case where the separate tests
are statistically independent, Pr[eI ∩ e2] = Pr[e1] Pr[e2] = α1α2 and hence αI = α1 +
α2 − α1α2. For a typically low value of α1 and α2, such as .05 or .01, α1α2 is very
small and the upper bound (7.14) is a good indicator of the size of the test.

A substantial literature on induced tests examines the problem of choosing critical
values for the separate tests such that the induced test has a known size. We do not pur-
sue this issue at length but mention the Bonferroni t-test as an example. The critical
values of this test have been tabulated; see Savin (1984).
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Statistically independent tests arise in linear regression with orthogonal regressors
and in likelihood-based testing (see Section 7.3) if relevant parts of the information
matrix are diagonal. Then the induced joint test statistic is based on the two statistically
independent separate test statistics, whereas the explicit joint null test statistic is the
sum of the two separate test statistics. The joint null may be rejected because either
one component or both components of the null are rejected. The use of separate tests
will reveal which situation applies.

In the more general case of correlated regressors or a nondiagonal information ma-
trix, the explicit joint test suffers from the disadvantage that the rejection of the null
does not indicate the source of the rejection. If the induced joint test is used then set-
ting the size of the test requires some variant of the Bonferroni test or approximation
using the upper bound in (7.14). Similar issues also arise when separate tests are ap-
plied sequentially, with each stage conditioned on the outcome of the previous stage.
Section 18.7.1 presents an example with discussion of a joint test of two hypotheses
where the two components of the test are correlated.

7.2.8. Delta Method for Confidence Intervals

The method used to derive the Wald test statistic is called the delta method, as Taylor
series approximation of h(̂θ) entails taking the derivative of h(θ). This method can
also be used to obtain the distribution of a nonlinear combination of parameters and
hence form confidence intervals or regions.

One example is estimating the ratio θ1/θ2 by θ̂1/̂θ2. A second example is prediction
of the conditional mean g(x′β), say, using g(x′β̂). A third example is the estimated
elasticity with respect to change in one component of x.

Confidence Intervals

Consider inference on the parameter vector γ = h(θ) that is estimated by

γ̂ = h(̂θ), (7.15)

where the limit distribution of
√

N (̂θ − θ0 ) is that given in (7.5). Then direct ap-

plication of (7.9) yields
√

N (γ̂ − γ0)
d→ N

[
0,R0C0R0

′], where R(θ) is defined in
(7.4). Equivalently, we say that γ̂ is asymptotically normally distributed with estimated
asymptotic variance matrix

V̂[γ̂] = R̂N−1ĈR̂′, (7.16)

a result that can be used to form confidence intervals or regions.
In particular, a 100(1 − α)% confidence interval for the scalar parameter γ is

γ ∈ γ̂ ± zα/2se[γ̂ ], (7.17)

where

se[γ̂ ] =
√

r̂N−1Ĉ̂r′, (7.18)

where r̂ = r(̂θ) and r(θ) = ∂γ /∂θ′ = ∂h(θ)/∂θ′.
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Confidence Interval Examples

As an example, suppose that E[y|x] = exp (x′β) and we wish to obtain a confidence
interval for the predicted conditional mean when x = xp. Then h(β) = exp (x′

pβ), so
∂h/∂β′ = exp (x′

pβ)xp and (7.18) yields

se[exp (x′
pβ̂)] = exp (x′

pβ̂)
√

x′
p N−1Ĉxp,

where Ĉ is a consistent estimate of the variance matrix in the limit distribution of√
N (β̂ − β0 ).
As a second example, suppose we wish to obtain a confidence interval for eβ rather

than for β, a scalar coefficient. Then h(β) = eβ , so ∂h/∂β = eβ and (7.18) yields
se[eβ̂] = eβ̂se[̂β]. This yields a 95% confidence interval for eβ of eβ̂ ± 1.96eβ̂se[̂β].

The delta method is not always the best method to obtain a confidence interval,
because it restricts the confidence interval to being symmetric about γ̂ . Moreover, in
the preceding example the confidence interval can include negative values even though
eβ > 0. An alternative confidence interval is obtained by exponentiation of the terms
in the confidence interval for β. Then

Pr
[
β̂ − 1.96se[̂β] < β < β̂ + 1.96se[̂β]

] = 0.95

⇒ Pr
[
exp(̂β − 1.96se[̂β]) < eβ < exp(̂β + 1.96se[̂β])

] = 0.95.

This confidence interval has the advantage of being asymmetric and including only
positive values. This transformation is often used for confidence intervals for slope
parameters in binary outcome models and in duration models. The approach can be
generalized to other transformations γ = h(θ), provided h(·) is monotonic.

7.2.9. Lack of Invariance of the Wald Test

The Wald test statistic is easily obtained, provided estimates of the unrestricted model
can be obtained, and is no less powerful than other possible test procedures, as dis-
cussed in later sections. For these reasons it is the most commonly used test procedure.

However, the Wald test has a fundamental problem: It is not invariant to alge-
braically equivalent parameterizations of the null hypothesis. For example, consider
the example of Section 7.2.5. Then H0 : θ1/θ2 − 1 = 0 can equivalently be expressed
as H0 : θ1 − θ2 = 0, leading to Wald chi-square test statistic

W∗ = N (̂θ1 − θ̂2)2 (̂c11 − 2̂c12 + ĉ22)−1 , (7.19)

which differs from W in (7.13). The statistics W and W∗ can differ substantially in
finite samples, even though asymptotically they are equivalent. The small-sample dif-
ference can be quite substantial, as demonstrated in a Monte Carlo exercise by Gregory
and Veall (1985), who considered a very similar example. For tests with nominal size
0.05, one variant of the Wald test had actual size between 0.04 and 0.06 across all sim-
ulations, so asymptotic theory provided a good small-sample approximation, whereas
an alternative asymptotically equivalent variant of the Wald test had actual size that in
some simulations exceeded 0.20.
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Phillips and Park (1988) explained the differences by showing that, although differ-
ent representations of the null hypothesis restrictions have the same chi-square distri-
bution using conventional asymptotic methods, they have different asymptotic distri-
butions using a more refined asymptotic theory based on Edgeworth expansions (see
Section 11.4.3). Furthermore, in particular settings such as the previous example, the
Edgeworth expansions can be used to indicate parameterizations of H0 and regions
of the parameter space where the usual asymptotic theory is likely to provide a poor
small-sample approximation.

The lesson is that care is needed when nonlinear restrictions are being tested. As
a robustness check one can perform several Wald tests using different algebraically
equivalent representations of the null hypothesis restrictions. If these lead to substan-
tially different conclusions there may be a problem. One solution is to perform a boot-
strap version of the Wald test. This can provide better small-sample performance and
eliminate much of the difference between Wald tests that use different representations
of H0, because from Section 11.4.4 the bootstrap essentially implements an Edgeworth
expansion. A second solution is to use other testing methods, given in the next section,
that are invariant to different representations of H0.

7.3. Likelihood-Based Tests

In this section we consider hypothesis testing when the likelihood function is known,
that is, the distribution is fully specified. There are then three classical statistical tech-
niques for testing hypotheses – the Wald test, the likelihood ratio (LR) test, and the
Lagrange multiplier (LM) test. A fourth test, the C(α) test, due to Neyman (1959), is
less commonly used and is not presented here; see Davidson and MacKinnon (1993).
All four tests are asymptotically equivalent, so one chooses among them based on ease
of computation and on finite-sample performance. We also do not cover the smooth
test of Neyman (1937), which Bera and Ghosh (2002) argue is optimal and is as fun-
damental as the other tests.

These results assume correct specification of the likelihood function. Extension to
tests based on quasi-ML estimators, as well as on m-estimators and efficient GMM
estimators, is given in Section 7.5.

7.3.1. Wald, Likelihood Ratio, and Lagrange Multiplier (Score) Tests

Let L(θ) denote the likelihood function, the joint conditional density of y given X and
parameters θ. We wish to test the null hypothesis given in (7.3) that h(θ0) = 0.

Tests other than the Wald test require estimation that imposes the restrictions of the
null hypothesis. Define the estimators

θ̂u (unrestricted MLE),
θ̃r (restricted MLE).

(7.20)

The unrestricted MLE θ̂u maximizes ln L(θ); it was more simply denoted θ̂ in ear-
lier discussion of the Wald test. The restricted MLE θ̃r maximizes the Lagrangian
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ln L(θ) − λ′h(θ), where λ is an h × 1 vector of Lagrangian multipliers. In the simple
case of exclusion restrictions h(θ) = θ2 = 0, where θ = (θ′

1,θ
′
2)′, the restricted MLE

is θ̃r = (̃θ
′
1r , 0

′), where θ̃
′
1r is obtained simply as the maximum with respect to θ1 of

the restricted likelihood ln L(θ1, 0) and 0 is a (q − h) × 1 vector of zeros.
We motivate and define the three test statistics here, with derivation deferred to

Section 7.3.3. All three test statistics converge in distribution to χ2(h ) under H0. So
H0 is rejected at significance level α if the computed test statistic exceeds χ2

α(h ).
Equivalently, reject H0 at level α if p ≤ α, where p = Pr

[
χ2(h ) > t

]
is the p-value

and t is the computed value of the test statistic.

Likelihood Ratio Test

The motivation for the LR test statistic is that if H0 is true, the unconstrained and
constrained maxima of the log-likelihood function should be the same. This suggests
using a function of the difference between ln L (̂θu) and ln L (̃θr ).

Implementation requires obtaining the limit distribution of this difference. It can be
shown that twice the difference is asymptotically chi-square distributed under H0. This
leads immediately to the likelihood ratio test statistic

LR = −2
[
ln L (̃θr ) − ln L (̂θu)

]
. (7.21)

Wald Test

The motivation for the Wald test is that if H0 is true, the unrestricted MLE θ̂u should
satisfy the restrictions of H0, so h (̂θu) should be close to zero.

Implementation requires obtaining the asymptotic distribution of h(̂θu). The general
form of the Wald test is given in (7.6). Specialization occurs for the MLE because by
the IM equality V[̂θu] = −N−1A0

−1, where

A0 = plim N−1 ∂
2 ln L

∂θ∂θ′

∣∣∣∣
θ0

. (7.22)

This leads to the Wald test statistic

W = −N ĥ′ [R̂Â−1R̂′]−1
ĥ, (7.23)

where ĥ = h(̂θu), R̂ = R(̂θu), R(θ) = ∂h(θ)/∂θ′, and Â is a consistent estimate of A0.
The minus sign appears since A0 is negative definite.

Lagrange Multiplier Test or Score Test

One motivation for the LM test statistic is that the gradient ∂ ln L/∂θ|̂θu
= 0 at the

maximum of the likelihood function. If H0 is true, then this maximum should also
occur at the restricted MLE (i.e., ∂ ln L/∂θ|̃θr

� 0) because imposing the constraint
will have little impact on the estimated value of θ. Using this motivation LM is called
the score test because ∂ ln L/∂θ is the score vector.

An alternative motivation is to measure the closeness to zero of the Lagrange mul-
tipliers of the constrained optimization problem for the restricted MLE. Maximizing
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ln L(θ) − λ′h(θ) with respect to θ implies that

∂ ln L

∂θ

∣∣∣∣̃
θr

= ∂h(θ)′

∂θ

∣∣∣∣̃
θr

× λ̃r . (7.24)

It follows that tests based on the estimated Lagrange multipliers λ̃r are equivalent to
tests based on the score ∂ ln L/∂θ|̃θr

, since ∂h/∂θ′ is assumed to be of full rank.
Implementation requires obtaining the asymptotic distribution of ∂ ln L/∂θ|̃θr

. This
leads to the Lagrange multiplier test or score test statistic

LM = −N−1 ∂ ln L

∂θ′

∣∣∣∣̃
θr

Ã−1 ∂ ln L

∂θ

∣∣∣∣̃
θr

, (7.25)

where Ã is a consistent estimate of A0 in (7.22) evaluated at θ̃r rather than θ̂u .
The LM test, due to Aitchison and Silvey (1958) and Silvey (1959), is equivalent to

the score test, due to Rao (1947). The test statistic LM is usually derived by obtaining
an analytical expression for the score rather than the Lagrange multipliers. Econome-
tricians usually call the test an LM test, even though a clearer terminology is to call it
a score test.

Discussion

Good intuition is provided by the expository graphical treatment of the three tests by
Buse (1982) that views all three tests as measuring the change in the log-likelihood.
Here we provide a verbal summary.

Consider scalar parameter and a Wald test of whether θ0 − θ∗ = 0. Then a given
departure of θ̂u from θ∗ will translate into a larger change in ln L , the more curved
is the log-likelihood function. A natural measure of curvature is the second derivative
H (θ ) = ∂2 ln L/∂θ2. This suggests W= −(̂θu − θ∗)2 H (̂θu). The statistic W in (7.23)
can be viewed as a generalization to vector θ and more general restrictions h(θ0) with
N Â measuring the curvature.

For the score test Buse shows that a given value of ∂ ln L/∂θ |̃θ r
translates into a

larger change in ln L , the less curved is the log-likelihood function. This leads to use
of (N Ã)−1 in (7.25). And the statistic LR directly compares the log-likelihoods.

An Illustration

To illustrate the three tests consider an iid example with yi ∼ N [µ0, 1] and test of
H0 : µ0 = µ∗. Then µ̂u = ȳ and µ̃r = µ∗.

For the LR test, ln L(µ) = − N
2 ln 2π − 1

2

∑
i (yi − µ)2 and some algebra yields

LR = 2[ln L(ȳ) − ln L(µ∗)] = N (ȳ − µ∗)2.

The Wald test is based on whether ȳ − µ∗ � 0. Here it is easy to show that ȳ −
µ∗ ∼ N [0, 1/N ] under H0, leading to the quadratic form

W = (ȳ − µ∗)[1/N ]−1(ȳ − µ∗).

This simplifies to N (ȳ − µ∗)2 and so here W = LR.
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The LM test is based on closeness to zero of ∂ ln L(µ)/∂µ|µ∗ =∑i (yi − µ)|µ∗ =
N (ȳ − µ∗). This is just a rescaling of (ȳ − µ∗) so LM = W. More formally, Ã(µ∗) = −
1 since ∂2 ln L(µ)/∂µ2 = −N and (7.25) yields

LM = N−1(N (ȳ − µ∗))[1]−1(N (ȳ − µ∗)).

This also simplifies to N (ȳ − µ∗)2 and verifies that LM = W = LR.
Despite their quite different motivations, the three test statistics are equivalent here.

This exact equivalence is special to this example with constant curvature owing to a
log-likelihood quadratic in µ. More generally the three test statistics differ in finite
samples but are equivalent asymptotically (see Section 7.3.4).

7.3.2. Poisson Regression Example

Consider testing exclusion restrictions in the Poisson regression model introduced in
Section 5.2. This example is mainly pedagogical as in practice one should perform
statistical inference for count data under weaker distributional assumptions than those
of the Poisson model (see Chapter 20).

If y given x is Poisson distributed with conditional mean exp(x′β) then the log-
likelihood function is

ln L(β) =
∑N

i=1

{− exp(x′
iβ) + yi x′

iβ − ln yi !
}
. (7.26)

For h exclusion restrictions the null hypothesis is H0 : h(β) = β2 = 0, where β =
(β′

1,β
′
2)′.

The unrestricted MLE β̂ maximizes (7.26) with respect to β and has first-order
conditions

∑
i (yi − exp(x′

iβ))xi = 0. The limit variance matrix is −A−1, where

A = − plim N−1
∑

i
exp (x′

iβ)xi x′
i .

The restricted MLE is β̃ = (β̃
′
1, 0

′)′, where β̃1 maximizes (7.26) with respect to β1,
with x′

iβ replaced by x′
1iβ1 since β2 = 0. Thus β̃1 solves the first-order conditions∑

i (yi − exp(x′
1iβ1))x1i = 0.

The LR test statistic (7.21) is easily calculated from the fitted log-likelihoods of the
restricted and unrestricted models.

The Wald test statistic for exclusion restrictions from Section 7.2.5 is W =
−N β̂2

′Â22β̂2, where Â22 is the (2,2) block of Â−1 and Â = −N−1∑
i exp (x′

i β̂)xi x′
i .

The LM test is based on ∂ ln L(β)/∂β =∑i xi (yi − exp (x′
iβ)). At the restricted

MLE this equals
∑

i xi ũi , where ũi = yi − exp (x′
1i β̃1) is the residual from estimation

of the restricted model. The LM test statistic (7.25) is

LM =
[∑N

i=1
xi ũi

]′ [∑N

i=1
exp (x′

1i β̃1)xi x′
i

]−1 [∑N

i=1
xi ũi

]
. (7.27)

Some further simplification is possible since
∑

i x1i ũi = 0 from the first-order condi-
tions for the restricted MLE given earlier. The LM test here is based on the correlation
between the omitted regressors and the residual, a result that is extended to other ex-
amples in Section 7.3.5.
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In general it can be difficult to obtain an algebraic expression for the LM test. For
standard applications of the LM test this has been done and is incorporated into com-
puter packages. Computation by auxiliary regression may also be possible (see Sec-
tion 3.5).

7.3.3. Derivation of Tests

The distribution of the Wald test was formally derived in Section 7.2.4. Proofs for the
likelihood ratio and Lagrange multiplier tests are more complicated and we merely
sketch them here.

Likelihood Ratio Test

For simplicity consider the special case where the null hypothesis is θ = θ, so that
there is no estimation error in θ̃r = θ. Taking a second-order Taylor series expansion
of ln L(θ) about ln L (̂θu) yields

ln L(θ) = ln L (̂θu) + ∂ ln L

∂θ′

∣∣∣∣̂
θu

(θ − θ̂u) + 1

2
(θ − θ̂u)′

∂2 ln L

∂θ∂θ′

∣∣∣∣̂
θu

(θ − θ̂u) + R,

where R is a remainder term. Since ∂ ln L/∂θ|̂θu
= 0 by the first-order conditions, this

implies upon rearrangement that

−2
[
ln L(θ) − ln L (̂θu)

]
= −(θ − θ̂u)′

∂2 ln L

∂θ∂θ′

∣∣∣∣̂
θu

(θ − θ̂u) + R. (7.28)

The right-hand side of (7.28) is χ2(h) under H0 : θ = θ since by standard results√
N (̂θu − θ)

d→ N
[
0,−[plim N−1∂2 ln L/∂θ∂θ′]−1

]
. For derivation of the limit dis-

tribution of LR in the general case see, for example, Amemiya (1985, p. 143).
A reason for preferring LR is that by the Neyman–Pearson (1933) lemma the uni-

formly most powerful test for testing a simple null hypothesis versus simple alternative
hypothesis is a function of the likelihood ratio L (̃θr )/L (̂θu), though not necessarily the
specific function −2 ln(L (̃θr )/L (̂θu)) that equals LR given in (7.21) and gives the test
statistic its name.

LM or Score Test

By a first-order Taylor series expansion

1√
N

∂ ln L

∂θ

∣∣∣∣̃
θr

= 1√
N

∂ ln L

∂θ

∣∣∣∣
θ0

+ 1

N

∂2 ln L

∂θ∂θ′
√

N (̃θr − θ0),

and both terms in the right-hand side contribute to the limit distribution. Then the
χ2(h) distribution of LM defined in (7.25) follows since it can be shown that

R0A−1
0

1√
N

∂ ln L

∂θ

∣∣∣∣̃
θr

d→ N
[
0,R0A−1

0 B0A−1
0 R′

0

]
, (7.29)
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where details are provided in Wooldridge (2002, p. 365), for example, and R0 and A0

are defined in (7.4) and (7.22) and

B0 = plim N−1 ∂ ln L

∂θ

∂ ln L

∂θ′

∣∣∣∣
θ0

. (7.30)

Result (7.29) leads to a chi-square statistic that is much more complicated
than (7.25), but simplification to (7.25) then occurs by the information matrix
equality.

7.3.4. Which Test?

Choice of test procedure is usually made based on existence of robust versions, finite-
sample performance, and ease of computation.

Asymptotic Equivalence

All three test statistics are asymptotically distributed as χ2(h) under H0. Further-
more, all three can be shown to be noncentral χ2(h; λ) distributed with the same
noncentrality parameter under local alternatives. Details are provided for the Wald
test in Section 7.6.3. So the tests all have the same asymptotic power against local
alternatives.

The finite-sample distributions of the three statistics differ. In the linear regression
model with normality, a variant of the Wald test statistic for h linear restrictions on
θ exactly equals the F(h, N − K ) statistic (see Section 7.2.1) whereas no analytical
results exist for the LR and LM statistics. More generally, in nonlinear models exact
small-sample results do not exist.

In some cases an ordering of the values taken by the three test statistics can be
obtained. In particular for tests of linear restrictions in the linear regression model
under normality, Berndt and Savin (1977) showed that Wald ≥ LR ≥ LM. This result
is of little theoretical consequence, as the test least likely to reject under the null will
have the smallest actual size but also the smallest power. However, it is of practical
consequence for the linear model, as it means when testing at fixed nominal size α
that the Wald test will always reject H0 more often than the LR, which in turn will
reject more often than the LM test. The Wald test would be preferred by a researcher
determined to reject H0. This result is restricted to linear models.

Invariance to Reparameterization

The Wald test is not invariant to algebraically equivalent parameterizations of the null
hypothesis (see Section 7.2.9) whereas the LR test is invariant. Some but not all ver-
sions of the LM test are invariant. The LM test is generally invariant if the expected
Hessian (see Section 5.5.2) is used to estimate A0 and not invariant if the Hessian is
used. The test LM∗ defined later in (7.34) is invariant. The lack of invariance for the
Wald test is a major weakness.
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Robust Versions

In some cases with misspecified density the quasi-MLE (see Section 5.7) remains con-
sistent. The Wald test is then easily robustified (see Section 7.2). The LM test can be
robustified with more difficulty; see (7.38) in Section 7.5.1 for a general result for m-
estimators and Section 8.4 for some robust LM test examples. The LR test is no longer
chi-square distributed, except in a special case given later in (7.39). Instead, the LR
test is a mixture of chi-squares (see Section 8.5.3).

Convenience

Convenience in computation is also a consideration. LR requires estimation of the
model twice, once with and once without the restrictions of the null hypothesis. If
done by a package, it is easily implemented as one need only read off the printed log-
likelihood routinely printed out, subtract, and multiply by 2. Wald requires estimation
only under Ha and is best to use when the unrestricted model is easy to estimate. For
example, this is the case for restrictions on the parameters of the conditional mean
in nonlinear models such as NLS, probit, Tobit, and logit. The LM statistic requires
estimation only under H0 and is best to use when the restricted model is easy to esti-
mate. Examples are tests for autocorrelation and heteroskedasticity, where it is easiest
to estimate the null hypothesis model that does not have these complications.

The Wald test is often used for tests of statistical significance whereas the LM test
is often used for tests of correct model specification.

7.3.5. Interpretation and Computation of the LM test

Lagrange multiplier tests have the additional advantages of simple interpretation in
some leading examples and computation by auxiliary regression.

In this section attention is restricted to the usual cross-section data case of a scalar
dependent variable independent over i , so that ∂ ln L(θ)/∂θ =∑i si (θ), where

si (θ) = ∂ ln f (yi |xi ,θ)

∂θ
(7.31)

is the contribution of the i th observation to the score vector of the unrestricted model.
From (7.25) the LM test is a test of the closeness to zero of

∑
i si (̃θr ).

Simple Interpretation of the LM Test

Suppose that the density is such that s(θ) factorizes as

s(θ)= g(x,θ)r (y, x,θ) (7.32)

for some q × 1 vector function g(·) and scalar function r (y, x,θ), the latter of which
may be interpreted as a generalized residual because y appears in r (·) but not g(·). For
example, for Poisson regression ∂ ln f /∂θ = x(y − exp(x′β)).
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Given (7.32) and independence over i , ∂ ln L/∂θ|̃θr
=∑i g̃i r̃i , where g̃i =

g(xi , θ̃r ) and r̃i = r (yi , xi , θ̃r ). The LM test can therefore be simply interpreted as
a score test of the correlation between g̃i and the residual r̃i . This interpretation was
given in Section 7.3.2 for the LM test with Poisson regression, where g̃i = xi and
r̃i = yi − exp(x′

1i β̃1).
The partition (7.32) will arise whenever f (y) is based on a one-parameter den-

sity. In particular, many common likelihood models are based on one-parameter LEF
densities, with parameter µ then modeled as a function of x and β. In the LEF case
r (y, x,θ) = (y − E[y|x]) (see Section 5.7.3), so the generalized residual r (·) in (7.32)
is then the usual residual.

More generally a partition similar to (7.32) will also arise when f (y) is based on a
two-parameter density, the information matrix is block diagonal in the two parameters,
and the two parameters in turn depend on regressors and parameter vectors β and α
that are distinct. Then LM tests on β are tests of correlation of g̃βi and r̃βi , where
s(β) = gβ(x,θ)rβ(y, x,θ), with similar interpretation for LM tests on α.

A leading example is linear regression under normality with two parameters µ and
σ 2 modeled asµ = x′β and σ 2 = α or σ 2 = σ 2(z,α). For exclusion restrictions in lin-
ear regression under normality, si (β) = xi (yi − x′

iβ) and the LM test is one of correla-
tion between regressors xi and the restricted model residual ũi = yi − x′

1i β̃1. For tests
of heteroskedasticity with σ 2

i = exp(α1 + z′
iα2), si (α) = 1

2 zi ((yi − x′
iβ)2/σ 2

i ) − 1),
and the LM test is one of correlation between zi and the squared residual ũ2

i =
(yi − x′

i β̃)2, since σ 2
i is constant under the null hypothesis that α2 = 0.

Outer Product of the Gradient Versions of the LM Test

Now return to the general si (θ) defined in (7.31). We show in the following that an
asymptotically equivalent version of the LM test statistic (7.25) can be obtained by
running the auxiliary regression or artificial regression

1 = s̃ ′
i γ + vi , (7.33)

where s̃i = si (̃θr ), and computing

LM∗ = N R2
u, (7.34)

where R2
u is the uncentered R2 defined after (7.36). LM∗ is asymptotically χ2(h) under

H0. Equivalently, LM∗ equals ESSu , the uncentered explained sum of squares (the sum
of squares of the fitted values), or equals N− RSS, where RSS is the residual sum of
squares, from regression (7.33).

This result can be easy to implement as in many applications it can be quite simple
to analytically obtain si (θ), generate data for the q components s̃1i , . . . , s̃qi , and regress
1 on s̃1i , . . . , s̃qi . Note that here f (yi |xi ,θ) in (7.31) is the density of the unrestricted
model.

For the exclusion restrictions in the Poisson model example in Section 7.3.2,
si (β) = (yi − exp (x′

iβ))xi and x′
i β̃r = x′

1i β̃1r . It follows that LM∗ can be computed
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as N R2
u from regressing 1 on (yi − exp (x′

1i β̃1r ))xi , where xi contains both x1i and x2i ,
and β̃1r is obtained from Poisson regression of yi on x1i alone.

Equations (7.33) and (7.34) require only independence over i . Other auxiliary re-
gressions are possible if further structure is assumed. In particular, specialize to cases
where s(θ) factorizes as in (7.32), and define r (y, x,θ) so that V[r (y, x,θ)] = 1. Then
an alternative asymptotically equivalent version of the LM test is N R2

u from regression
of r̃i on g̃i . This includes LM tests for linear regression under normality, such as the
Breusch–Pagan LM test for heteroskedasticity.

These alternative versions of the LM test are called outer-product-of-the-gradient
versions of the LM test, as they replace −A0 in (7.22) by an outer-product-of-the-
gradient (OPG) estimate or BHHH estimate of B0. Although they are easily computed,
OPG variants of LM tests can have poor small-sample properties with large size distor-
tions. This has discouraged use of the OPG form of the LM test. These small-sample
problems can be greatly reduced by bootstrapping (see Section 11.6.3). Davidson and
MacKinnon (1984) propose double-length auxiliary regressions that also perform bet-
ter in finite samples.

Derivation of the OPG Version

To derive LM∗, first note that in (7.25), ∂ ln L(θ )/∂θ|̃θr
=∑ s̃i . Second, by the

information matrix equality A0 = −B0 and, from Section 5.5.2, B0 can be consis-
tently estimated under H0 by the OPG estimate or BHHH estimate N−1∑ s̃ĩ s′

i . Com-
bining, these results gives an asymptotically equivalent version of the LM test sta-
tistic (7.25):

LM∗ =
(∑N

i=1
s̃′

i

) [∑N

i=1
s̃ĩ s′

i

]−1 (∑N

i=1
s̃i

)
. (7.35)

This statistic can be computed from an auxiliary regression of 1 on s̃i as follows.
Define S to be the N × q matrix with i th row s̃′

i , and define l to be the N × 1 vector of
ones. Then

LM∗ = l′S[S′S]−1S′l = ESSu = N R2
u . (7.36)

In general for regression of y on X the uncentered explained sums of squares (ESSu)
is y′X (X′X)−1X′y, which is exactly of the form (7.36), whereas the uncentered R2 is
R2

u = y′X (X′X)−1X′y/y′y, which here is (7.36) divided by l′l = N . The term uncen-
tered is used because in R2

u division is by the sum of squared deviations of y around
zero rather than around the sample mean.

7.4. Example: Likelihood-Based Hypothesis Tests

The various test procedures – Wald, LR, and LM – are illustrated using generated data
from the dgp y|x Poisson distributed with mean exp(β1 + β2x2 + β3x3 + β4x4), where
β1 = 0 and β2 = β3 = β4 = 0.1 and the three regressors are iid draws from N [0, 1].
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Table 7.1. Test Statistics for Poisson Regression Examplea

Test Statistic Result
Null Hypothesis Wald LR LM LM* ln L at level 0.05

H10 : β3 = 0 5.904 5.754 5.916 6.218 −241.648 Reject
(0.015) (0.016) (0.015) (0.013)

H20 : β3 = 0, β4 = 0 8.570 8.302 8.575 9.186 −242.922 Reject
(0.014) (0.016) (0.014) (0.010)

H30 : β3 − β4 = 0 0.293 0.293 0.293 0.315 −238.918 Do not reject
(0.588) (0.589) (0.588) (0.575)

H40 : β3/β4 − 1 = 0 0.158 0.293 0.293 0.315 −238.918 Do not reject
(0.691) (0.589) (0.588) (0.575)

a The dgp for y is the Poisson distribution with parameter exp(0.0 + 0.1x2 + 0.1x3 + 0.1x4) and sample size
N = 200. Test statistics are given with associated p-values in parentheses. Tests of the second hypothesis are
χ2(2) and the other tests are χ2(1) distributed. Log-likelihoods for restricted ML estimation are also given; the
log-likelihood in the unrestricted model is −238.772.

Poisson regression of y on an intercept, x2, x3, and x4 for a generated sample of size
200 yielded unrestricted MLE

Ê[y|x] = exp(−0.165
(−2.14)

− 0.028
(−0.36)

x2 + 0.163
(2.43)

x3 + 0.103
(0.08)

x4),

where associated t-statistics are given in parentheses and the unrestricted log-
likelihood is −238.772.

The analysis tests four different hypotheses, detailed in the first column of Table 7.1.
The estimator is nonlinear, whereas the hypotheses are examples of, respectively, sin-
gle exclusion restriction, multiple exclusion restriction, linear restrictions, and nonlin-
ear restrictions. The remainder of the table gives four asymptotically equivalent test
statistics of these hypotheses and their associated p-values. For this sample all tests re-
ject the first two hypotheses and do not reject the remaining two, at significance level
0.05.

The Wald test statistic is computed using (7.23). This requires estimation of the un-
restricted model, given previously, to obtain the variance matrix estimate of the unre-
stricted MLE. Wald tests of different hypotheses then require computation of different
h and R and simplify in some cases. The Wald chi-square test of the single exclu-
sion restriction is just the square of the usual t-test, with 2.432 � 5.90. The Wald test
statistic of the joint exclusion restrictions is detailed in Section 7.2.5. Here x3 is sta-
tistically significant and x4 is statistically insignificant, whereas jointly x3 and x4 are
statistically significant at level 0.05. The Wald test for the third hypothesis is given in
(7.19) and leads to nonrejection. The third and fourth hypotheses are equivalent, since
β3/β4 − 1 = 0 implies β3 = β4, but the Wald test statistic for the fourth hypothesis,
given in (7.13), differs from (7.19). The statistic (7.13) was calculated using matrix
operations, as most packages will at best calculate Wald tests of linear hypotheses.

The LR test statistic is especially easy to compute, using (7.21), given estima-
tion of the restricted model. For the first three hypotheses the restricted model is
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estimated by Poisson regression of y on, respectively, regressors (1, x2, x4), (1, x2), and
(1, x2, x3 + x4), where the third regression uses β3x3 + β4x4 = β3(x3 + x4) if β3 = β4.
As an example of the LR test, for the second hypothesis LR = −2[−238.772 −
(−242.922)] = 8.30. The fourth restricted model in theory requires ML estimation
subject to nonlinear constraints on the parameters, which few packages do. However,
constrained ML estimation is invariant to the way the restrictions are expressed, so
here the same estimates are obtained as for the third restricted model, leading to the
same LR test statistic.

The LM test statistic is computed using (7.25), which for the Poisson model spe-
cializes to (7.27). This statistic is computed using matrix commands, with different
restrictions leading to the different restricted MLE estimates β̃. As for the LR test,
the LM test is invariant to transformations, so the LM tests of the third and fourth
hypotheses are equivalent.

An asymptotically equivalent version of the LM test statistic is the statistic
LM∗ given in (7.35). This can be computed as the explained sum of squares
from the auxiliary regression (7.33). For the Poisson model s ji = ∂ ln f (yi )/∂β j =
(yi − exp(x′

iβ))x ji , with evaluation at the appropriate restricted MLE for the hypothe-
sis under consideration. The statistic LM∗ is simpler to compute than LM, though like
LM it requires restricted ML estimates.

In this example with generated data the various test statistics are very similar. This
is not always the case. In particular, the test statistic LM∗ can have poorer finite-sample
size properties than LM, even if the dgp is known. Also, in applications with real data
the dgp is unlikely to be perfectly specified, leading to divergence of the various test
statistics even in infinitely large samples.

7.5. Tests in Non-ML Settings

The Wald test is the standard test to use in non-ML settings. From Section 7.2 it is a
general testing procedure that can always be implemented, using an appropriate sand-
wich estimator of the variance matrix of the parameter estimates. The only limitation
is that in some applications unrestricted estimation may be much more difficult to
perform than restricted estimation.

The LM or score test, based on departures from zero of the gradient vector of the
unrestricted model evaluated at the restricted estimates, can also be generalized to
non-ML estimators. The form of the LM test, however, is usually considerably more
complicated than in the ML case. Moreover, the simplest forms of the LM test statistic
based on auxiliary regressions are usually not robust to distributional misspecification.

The LR test is based on the difference between the maximized values of the objec-
tive function with and without restrictions imposed. This usually does not generalize
to objective functions other than the likelihood function, as this difference is usually
not chi–square distributed.

For completeness we provide a condensed presentation of extension of the ML tests
to m-estimators and to efficient GMM estimators. As already noted, in most applica-
tions use of the simpler Wald test is sufficient.
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7.5.1. Tests Based on m-Estimators

Tests for m-estimators are straightforward extensions of those for ML estimators, ex-
cept that it is no longer possible to use the information matrix equality to simplify the
test statistics and the LR test generalizes in only very special cases. The resulting test
statistics are asymptotically χ2(h) distributed under H0 : h(θ) = 0 and have the same
noncentral chi-square distribution under local alternatives.

Consider m-estimators that maximize QN (θ) = N−1∑
i qi (θ) with first-order con-

ditions N−1∑
i si (θ) = 0. Define the q × q matrices A(θ) = N−1∑

i ∂si (θ)/∂θ′ and
B(θ) = N−1∑

i si (θ)si (θ)′ and the h × q matrix R(θ) = ∂ ln h(θ)/∂θ′. Let θ̂u and
θ̃r denote unrestricted and restricted estimators, respectively, and let Â = A(̂θu)
and Ã = A(̃θr ) with similar notation for B and R. Finally, let ĥ = h(̂θu) and s̃i =
si (̃θr ).

The Wald test statistic is based on closeness of ĥ to zero. Here

W = ĥ′
[
R̂N−1Â−1B̂Â−1R̂

′]−1
ĥ, (7.37)

since from Section 5.5.1 the robust variance matrix estimate for θ̂u is N−1Â−1B̂Â−1.
Packages with the option of robust standard errors use this more general form to com-
pute Wald tests of statistical significance.

Let g(θ) = ∂ ln QN (θ)/∂θ denote the gradient vector, and let g̃ = g(̃θr ) =∑i s̃i .
The LM test statistic is based on the closeness of g̃ to 0 and is given by

LM = N g̃′
[

Ã−1R̃′
(

R̃Ã−1B̂Ã′−1R̃
′)−1

R̃Ã−1

]−1

g̃, (7.38)

a result obtained by forming a chi-square test statistic based on (7.29), where N g̃ re-
places |∂ ln L/∂θ|̃θr

. This test is clearly not as simple to implement as a robust Wald
test. Some examples of computation of the robust form of LM tests are given in Sec-
tion 8.4. The standard implementations of LM tests in computer packages are often
not robust versions of the LM test.

The LR test does not generalize easily. It does generalize to m-estimators if
B0 = −αA0 for some scalar α, a weaker version of the IM equality. In such special
cases the quasi-likelihood ratio (QLR) test statistic is

QLR = −2N
[
QN (̃θr ) − QN (̂θu)

]
/α̂u, (7.39)

where α̂u is a consistent estimate of α obtained from unrestricted estimation (see
Wooldridge, 2002, p. 370). The condition B0 = −αA0 holds for generalized linear
models (see Section 5.7.4). Then the statistic QLR is equivalent to the difference of de-
viances for the restricted and unrestricted models, a generalization of the F-test based
on the difference between restricted and unrestricted sum of squared residuals for OLS
and NLS estimation with homoskedastic errors. For general quasi-ML estimation, with
B0 �= −αA0, the LR test statistic can be distributed as a weighted sum of chi-squares
(see Section 8.5.3).
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7.5.2. Tests Based on Efficient GMM Estimators

For GMM the various test statistics are simplest for efficient GMM, meaning GMM
estimation using the optimal weighting matrix. This poses no great practical restriction
as the optimal weighting matrix can always be estimated, as detailed in Section 6.3.5.

Consider GMM estimation based on the moment condition E[mi (θ)] = 0. (Note
the change in notation from Chapter 6: h(θ) is being used in the current chapter to
denote the restrictions under H0.) Using the notation introduced in Section 6.3.5, the
efficient unrestricted GMM estimator θ̂u minimizes QN (θ) = gN (θ)′S−1

N gN (θ), where
gN (θ) = N−1∑

i mi (θ) and SN is consistent for S0 = V[gN (θ)]. The restricted GMM
estimator θ̃r is assumed to minimize QN (θ) with the same weighting matrix S−1

N ,
subject to the restriction h(θ) = 0.

The three following test statistics, summarized by Newey and West (1987a) are
asymptotically χ2(h) distributed under H0 : h(θ) = 0 and have the same noncentral
chi-square distribution under local alternatives.

The Wald test statistic as usual is based on closeness of ĥ to zero. This yields

W = ĥ′
[
R̂N−1(Ĝ′S−1Ĝ)−1R̂

′]−1
ĥ, (7.40)

since the variance of the efficient GMM estimator is N−1(Ĝ′S−1Ĝ)−1 from Section
6.3.5, where GN (θ) = ∂gN (θ)/∂θ′ and the carat denotes evaluation at θ̂u .

The first-order conditions of efficient GMM are Ĝ′S−1̂g = 0. The LM statistic tests
whether this gradient vector is close to zero when instead evaluated at θ̃r , leading to

LM = N g̃′S−1G̃(G̃′S−1G̃)−1G̃′S−1̃g, (7.41)

where the tilda denotes evaluation at θ̃r and we use the Section 6.3.3 assumption that√
NgN (θ0)

d→ N [0,S0], so
√

NG′S−1g
d→ N

[
0, plim N−1G′S−1G

]
.

For the efficient GMM estimator the difference in maximized values of the objective
function can also be compared, leading to the difference test statistic

D = N
[
QN (̃θr ) − QN (̂θu)

]
. (7.42)

Like W and LM, the statistic D is asymptotically χ2(h) distributed under H0 :
h(θ) = 0.

Even in the likelihood case, this last statistic differs from the LR statistic be-
cause it uses a different objective function. The MLE minimizes QN (θ) = −N−1∑

i ln f (yi |θ). From Section 6.3.7, the asymptotically equivalent efficient GMM es-
timator instead minimizes the quadratic form QN (θ) = N−1

(∑
i si (θ)

)′ (∑
i si (θ)

)
,

where si (θ) = ∂ ln f (yi |θ)/∂θ. The statistic D can be used in general, provided the
GMM estimator used is the efficient GMM estimator, whereas the LR test can only be
generalized for some special cases of m-estimators mentioned after (7.39).

For MM estimators, that is, in the just-identified GMM model, D = LM =
N QN (̃θr ), so the LM and difference tests are equivalent. For D this simplification oc-
curs because gN (̂θu) = 0 and so QN (̂θu) = 0. For LM simplification occurs in (7.41)
as then G̃N is invertible.
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7.6. Power and Size of Tests

The remaining sections of this chapter study two limitations in using the usual com-
puter output to test hypotheses.

First, a test can have little ability to discriminate between the null and alternative
hypotheses. Then the test has low power, meaning there is a low probability of rejecting
the null hypothesis when it is false. Standard computer output does not calculate test
power, but it can be evaluated using asymptotic methods (see this section) or finite-
sample Monte Carlo methods (see Section 7.7). If a major contribution of an empirical
paper is the rejection or nonrejection of a particular hypothesis, there is no reason for
the paper not to additionally present the power of the test against some meaningful
alternative hypothesis.

Second, the true size of the test may differ substantially from the nominal size of
the test obtained from asymptotic theory. The rule of thumb that sample size N > 30
is sufficient for asymptotic theory to provide a good approximation for inference on a
single variable does not extend to models with regressors. Poor approximation is most
likely in the tails of the approximating distribution, but the tails are used to obtain
critical values of tests at common significance levels such as 5%. In practice the critical
value for a test statistic obtained from large-sample approximation is often smaller
than the correct critical value based on the unknown true distribution. Small-sample
refinements are attempts to get closer to the exact critical value. For linear regression
under normality exact critical values can be obtained, using the t rather than z and the
F rather than χ2 distribution, but similar results are not exact for nonlinear regression.
Instead, small-sample refinements may be obtained through Monte Carlo methods (see
Section 7.7) or by use of the bootstrap (see Section 7.8 and Chapter 11).

With modern computers it is relatively easy to correct the size and investigate the
power of tests used in an applied study. We present this neglected topic in some
detail.

7.6.1. Test Size and Power

Hypothesis tests lead to either rejection or nonrejection of the null hypothesis. Correct
decisions are made if H0 is rejected when H0 is false or if H0 is not rejected when H0

is true.
There are also two possible incorrect decisions: (1) rejecting H0 when H0 is true,

called a type I error, and (2) nonrejection of H0 when H0 is false, called a type II
error. Ideally the probabilities of both errors will be low, but in practice decreasing
the probability of one type of error comes at the expense of increasing the probability
of the other. The classical hypothesis testing solution is to fix the probability of a type
I error at a particular level, usually 0.05, while leaving the probability of a type II error
unspecified.

Define the size of a test or significance level

α = Pr
[
type I error

]
= Pr

[
reject H0|H0 true

]
,

(7.43)
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with common choices of α being 0.01, 0.05, or 0.10. A hypothesis is rejected if the test
statistic falls into a rejection region defined so that the test significance level equals the
specified value of α. A closely related equivalent method computes the p-value of a
test, the marginal significance level at which the null hypothesis is just rejected, and
rejects H0 if the p-value is less than the specified value of α. Both methods require only
knowledge of the distribution of the test statistic under the null hypothesis, presented
in Section 7.2 for the Wald test statistic.

Consideration should also be given to the probability of a type II error. The power
of a test is defined to be

Power = Pr
[
reject H0|Ha true

]
= 1 − Pr

[
accept H0|Ha true

]
= 1 − Pr

[
Type II error

]
.

(7.44)

Ideally, test power is close to one since then the probability of a type II error is close to
zero. Determining the power requires knowledge of the distribution of the test statistic
under Ha .

Analysis of test power is typically ignored in empirical work, except that test proce-
dures are usually chosen to be ones that are known theoretically to have power that, for
given level α, is high relative to other alternative test statistics. Ideally, the uniformly
most powerful (UMP) test is used. This is the test that has the greatest power, for given
level α, for all alternative hypotheses. UMP tests do exist when testing a simple null
hypothesis against a simple alternative hypothesis. Then the Neyman–Pearson lemma
gives the result that the UMP test is a function of the likelihood ratio. For more gen-
eral testing situations involving composite hypotheses there is usually no UMP test,
and further restrictions are placed such as UMP one-sided tests. In practice, power
considerations are left to theoretical econometricians who use theory and simulations
applied to various testing procedures to suggest which testing procedures are the most
powerful.

It is nonetheless possible to determine test power in any given application. In the
following we detail how to compute the asymptotic power of the Wald test, which
equals that of the LR and LM tests in the fully parametric case.

7.6.2. Local Alternative Hypotheses

Since power is the probability of rejecting H0 when Ha is true, the computation
of power requires obtaining the distribution of the test statistic under the alterna-
tive hypothesis. For a Wald chi-square test at significance level α the power equals
Pr[W> χ2

α(h)|Ha]. Calculation of this probability requires specification of a particular
alternative hypothesis, because Ha : h(θ) �= 0 is very broad.

The obvious choice is the fixed alternative h(θ) = δ, where δ is an h × 1 finite
vector of nonzero constants. The quantity δ is sometimes referred to as the hypoth-
esis error, and larger hypothesis errors lead to greater power. For a fixed alternative
the Wald test statistic asymptotically has power one as it rejects the null hypothesis
all the time. To see this note that if h(θ) = δ then the Wald test statistic becomes
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infinite, since

W = ĥ(R̂N−1ĈR̂′)−1 ĥ
p→ δ′ (R0 N−1C0R′

0

)−1
δ,

using θ̂
p→ θ0, so ĥ = h(̂θu)

p→ h(θ) = δ, and Ĉ
p→ C0. It follows that W

p→ ∞ since
all the terms except N are finite and nonzero. This infinite value leads to H0 being
always rejected, as it should be, and hence having perfect power of one.

The Wald test statistic is therefore a consistent test statistic, that is, one whose
power goes to one as N → ∞. Many test statistics are consistent, just as many estima-
tors are consistent. More stringent criteria are needed to discriminate among the test
statistics, just as relative efficiency is used to choose among estimators.

For estimators that are root-N consistent, we consider a sequence of local alter-
natives

Ha : h(θ) = δ/
√

N , (7.45)

where δ is a vector of fixed constants with δ �= 0. This sequence of alternative hy-
potheses, called Pitman drift, gets closer to the null hypothesis value of zero as the
sample size gets larger, at the same rate

√
N as used to scale up θ̂ to get a nonde-

generate distribution for the consistent estimator. The alternative hypothesis value of
h(θ) therefore moves toward zero at a rate that negates any improved efficiency with
increased sample size. For a much more detailed account of local alternatives and re-
lated literatures see McManus (1991).

7.6.3. Asymptotic Power of the Wald Test

Under the sequence of local alternatives (7.45) the Wald test statistic has a nondegen-
erate distribution, the noncentral chi-square distribution. This permits determination
of the power of the Wald test.

Specifically, as is shown in Section 7.7.4, under Ha the Wald statistic W defined in
(7.6) is asymptotically χ2(h ; λ) distributed, where χ2(h; λ) denotes the noncentral
chi-square distribution with noncentrality parameter

λ = 1

2
δ′ (R0C0R0

′)−1
δ, (7.46)

and R0 and C0 are defined in (7.4) and (7.5). The power of the Wald test, the proba-
bility of rejecting H0 given the local alternative Ha is true, is therefore

Power = Pr[W > χ2
α (h)|W ∼ χ2

α (h; λ)]. (7.47)

Figure 7.1 plots power against λ for tests of a scalar hypothesis (h = 1) at the com-
monly used sizes or significance levels of 10%, 5%, and 1%. For λ close to zero the
power equals the size, and for large λ the power goes to one.

These features hold also for h > 1. In particular power is monotonically increasing
in the noncentrality parameter λ defined in (7.46). Several general results follow.

First, power is increasing in the distance between the null and alternative hypo-
theses, as then δ and hence λ increase.
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Figure 7.1: Power of Wald chi-square test with one degree of freedom for three different
test sizes as the noncentrality parameter ranges from 0 to 20.

Second, for given alternative δ power increases with efficiency of the estimator θ̂,
as then C0 is smaller and hence λ is larger.

Third, as the size of the test increases power increases and the probability of a type II
error decreases.

Fourth, if several different test statistics are all χ2(h) under the null hypothesis
and noncentral-χ2(h) under the alternative, the preferred test statistic is that with the
highest noncentrality parameter λ since then power is the highest. Furthermore, two
tests that have the same noncentrality parameter are asymptotically equivalent under
local alternatives.

Finally, in actual applications one can calculate the power as a function of δ. Speci-
fically, for a specified alternative δ, an estimated noncentrality parameter λ̂ can be
computed using (7.46) using parameter estimate θ̂ with associated estimates R̂ and Ĉ.
Such power calculations are illustrated in Section 7.6.5.

7.6.4. Derivation of Asymptotic Power

To obtain the distribution of W under Ha , begin with the Taylor series expansion result
(7.9). This simplifies to

√
Nh(̂θ)

d→ N
[
δ, R0C0R0

′] , (7.48)

under Ha , since then
√

Nh(θ) = δ. Thus a quadratic form centered at δ would be
chi-square distributed under Ha .

The Wald test statistic W defined in (7.6) instead forms a quadratic form centered
at 0 and is no longer chi-squared distributed under Ha . In general if z ∼ N [µ,Ω],
where rank(Ω) = h, then z′Ω−1z ∼ χ2(h; λ), where χ2(h; λ) denotes the noncentral
chi-square distribution with noncentrality parameter λ = 1

2µ
′Ω−1µ. Applying this re-

sult to (7.48) yields

Nh(̂θ)′(R0C0R′
0)−1h(̂θ)

d→ χ2(h; λ), (7.49)

under Ha , where λ is defined in (7.49).
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7.6.5. Calculation of Asymptotic Power

To shed light on how power changes with δ, consider tests of coefficient significance
in the scalar case. Then the noncentrality parameter defined in (7.46) is

λ = δ2

2c
�
(
δ/

√
N
)2

2(se[̂θ ])2
, (7.50)

where the approximation arises because of estimation of c, the limit variance of√
N (̂θ − θ ), by N (se[̂θ ])2, where se[̂θ ] is the standard error of θ̂ .
Consider a Wald chi-square test of H0 : θ = 0 against the alternative hypothesis that

θ is within a standard errors of zero, that is, against

Ha : θ = a × se[̂θ ],

where se[̂θ ] is treated here as a constant. Then δ/
√

N in (7.45) equals a × se[̂θ ], so
that (7.50) simplifies to λ = a2/2. Thus the Wald test is asymptotically χ2

α(1; λ) under
Ha where λ = a2/2.

From Figure 7.1 it is clear for the common case of significance level tests at 5% that
if a = 2 the power is well below 0.5, if a = 4 the power is around 0.5, and if a = 6 the
power is still below 0.9. A borderline test of statistical significance can therefore have
low power against alternatives that are many standard errors from zero. Intuitively, if
θ̂ = 2se[̂θ ] then a test of θ = 0 against θ = 4se[̂θ ] has power of approximately 0.5,
because a 95% confidence interval for θ is approximately (0, 4se[̂θ ]), implying that
values of θ = 0 or θ = 4se[̂θ ] are just as likely.

As a more concrete example, suppose θ measures the percentage increase in wage
resulting from a training program, and that a study finds θ̂ = 6 with se[̂θ ] = 4. Then
the Wald test at 5% significance level leads to nonrejection of H0, since W = (6/4)2 =
2.25 < χ2

.05(1) = 3.96. The conclusion of such a study will often state that the training
program is not statistically significant. One should not interpret this as meaning that
there is a high probability that the training program has no effect, however, as this test
has low power. For example, the preceding analysis indicates that a test of H0 : θ = 0
against Ha : θ = 16, a relatively large training effect, has power of only 0.5, since
4 × se[̂θ ] = 16. Reasons for low power include small sample size, large model error
variance, and small spread in the regressors.

In simple cases, solving the inverse problem of estimating the minimum sample size
needed to achieve a given desired level of power is possible. This is especially popular
in medical studies.

Andrews (1989) gives a more formal treatment of using the noncentrality parameter
to determine regions of the parameter space against which a test in an empirical setting
is likely to have low power. He provides many applied examples where it is easy to
determine that tests have low power against meaningful alternatives.

7.7. Monte Carlo Studies

Our discussion of statistical inference has so far relied on asymptotic results. For small
samples analytical results are rarely available, aside from tests of linear restrictions in
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the linear regression model under normality. Small-sample results can nonetheless be
obtained by performing a Monte Carlo study.

7.7.1. Overview

An example of a Monte Carlo study of the small-sample properties of a test statistic is
the following. Set the sample size N to 40, say, and randomly generate 10,000 samples
of size 40 under the H0 model. For each replication (sample) form the test statistic of
interest and test H0, rejecting H0 if the test statistic falls in the rejection region, usually
determined by asymptotic results.

The true size or actual size of the test statistic is simply the fraction of replications
for which the test statistic falls in the rejection region. Ideally, this is close to the
nominal size, which is the chosen significance level of the test. For example, if testing
at 5% the nominal test size is 0.05 and the true size is hopefully close to 0.05.

Determining test power in small samples requires additional simulation, with sam-
ples generated under one or more particular specification of the possible models that
lie in the composite alternative hypothesis Ha . The power is calculated as the fraction
of replications for that the null hypothesis is rejected, using either the same test as used
in determining the true size, or a size-corrected version of the test that uses a rejection
region such that the nominal size equals the true size.

Monte Carlo studies are simple to implement, but there are many subtleties involved
in designing a good Monte Carlo study. For an excellent discussion see Davidson and
MacKinnon (1993).

7.7.2. Monte Carlo Details

As an example of a Monte Carlo study we consider statistical inference on the slope
coefficient in a probit model. The following analysis does not rely on knowledge of
the probit model.

The data-generating process is a probit model, with binary regressor y equal to one
with probability

Pr[y = 1|x] =�(β1 + β2x),

where �(·) is the standard normal cdf, x ∼ N [0, 1], and (β1, β2) = (0, 1).
The data (y, x) are easily generated for this dgp. The regressor x is first obtained as

a random draw from the standard normal distribution. Then, from Section 14.4.2 the
dependent variable y is set equal to 1 if x + u > 0 and is set to 0 otherwise, where u
is a random draw from the standard normal. For this dgp y = 1 roughly half the time
and y = 0 the other half.

In each simulation N new observations of both x and y are drawn, and the MLE
from probit regression of y on x is obtained. An alternative is to use the same N draws
of the regressor x in each simulation and only redraw y. The former setup corresponds
to simple random sampling and the latter corresponds to analysis conditional on x or
“fixed in repeated trials”; see Section 4.4.7.

Monte Carlo studies often consider a range of sample sizes. Here we simply
set N = 40. Programs can be checked by also setting a very large value of N ,
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say N = 10,000, as then Monte Carlo results should be very close to asymptotic
results.

Numerous simulations are needed to determine actual test size, because this de-
pends on behavior in the tails of the distribution rather than the center. If S simulations
are run for a test of true size α, then the proportion of times the null hypothesis is
correctly rejected is an outcome from S binomial trials with mean α and variance
α(1 − α)/S. So 95% of Monte Carlos will estimate the test size to be in the inter-
val α ± 1.96

√
α(1 − α)/S. A mere 100 simulations is not enough since, for example,

this interval is (0.007, 0.093) when α = 0.05. For 10,000 simulations the 95% inter-
val is much more precise, equalling (0.008, 0.012), (0.046, 0.054), (0.094, 0.106), and
(0.192, 0.208) for α equal to, respectively, 0.01, 0.05, 0.10, and 0.20. Here S = 10,000
simulations are used.

A problem that can arise in Monte Carlo simulations is that for some simulation
samples the model may not be estimable. For example, consider linear regression on
just an intercept and an indicator variable. If the indicator variable happens to always
take the same value, say 0, in a simulation sample then its coefficient cannot be sepa-
rately identified from that for the intercept. A similar problem arises in the probit and
other binary outcome models, if all ys are 0 or all ys are 1 in a simulation sample. The
standard procedure, which can be criticized, is to drop such simulation samples, and to
write computer code that permits the simulation loop to continue when such a problem
arises. In this example the problem did not arise with N = 40, but it did for N = 30.

7.7.3. Small-Sample Bias

Before moving to testing we look at the small-sample properties of the MLE β̂2 and
its estimated standard error se[̂β2].

Across the 10,000 simulations β̂2 had mean 1.201 and standard deviation 0.452,
whereas se[̂β2] had mean 0.359. The MLE is therefore biased upward in small sam-
ples, as the average of β̂2 is considerably greater than β2 = 1. The standard errors are
biased downward in small samples since the average of se[̂β2] is considerably smaller
than the standard deviation of β̂2.

7.7.4. Test Size

We consider a two-sided test of H0 : β2 = 1 against Ha : β2 �= 1, using the Wald test

z = Wz = β̂2 − 1

se[̂β2]
,

where se[̂β2] is the standard error of the MLE estimated using the variance matrix
given in Section 14.3.2, which is minus the inverse of the expected Hessian. Given the
dgp, asymptotically z is standard normal distributed and z2 is chi-squared distributed.
The goal is to find how well this approximates the small-sample distribution.

Figure 7.2 gives the density for the S = 10,000 computed values of z, where the den-
sity is plotted using the kernel density estimate of Chapter 9 rather than a histogram.
This is superimposed on the standard normal density. Clearly the asymptotic result is
not exact, especially in the upper tail where the difference is clearly large enough to
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Table 7.2. Wald Test Size and Power for Probit Regression Examplea

Nominal Size (α) Actual Size Actual Power Asymptotic Power

0.01 0.005 0.007 0.272
0.05 0.029 0.226 0.504
0.10 0.081 0.608 0.628
0.20 0.192 0.858 0.755

a The dgp for y is the Probit with Pr[y = 1] = �(0 + β2x) and sample size N = 40. The test is a two-
sided Wald test of whether or not the slope coefficient equals 1. Actual size is calculated from S =
10,000 simulations with β2 = 1 and power is calculated from 10,000 simulations with β2 = 2.

lead to size distortions when testing at, say, 5%. Also, across the simulations z has
mean 0.114 �= 0 and standard deviation 0.956 �= 1.

The first two columns of Table 7.2 give the nominal size and the actual size of
the Wald test for nominal sizes α = 0.01, 0.05, 0.10, and 0.20. The actual size is the
proportion of the 10,000 simulations in which |z| > zα/2, or equivalently that z2 >

χ2
α(1). Clearly the actual size of the test is much less than the nominal size for α ≤

0.10. An ad hoc small-sample correction is to instead assume that z is t distributed
with 38 degrees of freedom, and reject if |z| > tα/2(38). However, this leads to even
smaller actual size, since tα/2(38) > zα/2.

The Monte Carlo simulations can also be used to obtain size-corrected critical val-
ues. Thus the lower and upper 2.5 percentiles of the 10,000 simulated values of z are
−1.905 and 2.003. It follows that an asymmetric rejection region with actual size 0.05
is z < −1.905 and z > 2.003, a larger rejection region than |z2| > 1.960.

7.7.5. Test Power

We consider power of the Wald test under Ha : β2 = 2. We would expect the power to
be reasonable because this value of β2 lies two to three standard errors away from the
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Figure 7.2: Density of Wald test statistic that slope coefficient equals one computed by
Monte Carlo simulation with standard normal density also plotted for comparison. Data are
generated from a probit regression model.
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null hypothesis value of β2 = 1, given that se[̂β2] has average value 0.359. The actual
and nominal power of the Wald test are given in the last two columns of Table 7.2.

The actual power is obtained in the same way as actual size, being the proportion
of the 10,000 simulations in which |z| > zα/2. The only change is that, in generating y
in the simulation, β2 = 2 rather than 1. The actual power is very low for α = 0.01 and
0.05, cases where the actual size is much less than the nominal size.

The nominal power of the Wald test is determined using the asymptotic non-
central χ2(1, λ) distribution under Ha , where from (7.50) λ = 1

2 (δ/
√

N )2/se[̂β2]2 =
1
2 × 12/0.3592 � 3.88, since the local alternative is that Ha : β2 − 1 = δ/√N , so
δ/

√
N = 1 for β2 = 2. The asymptotic result is not exact, but it does provide a useful

estimate of the power for α = 0.10 and 0.20, cases where the true size closely matches
the nominal size.

7.7.6. Monte Carlo in Practice

The preceding discussion has emphasized use of the Monte Carlo analysis to calculate
test power and size. A Monte Carlo analysis can also be very useful for determining
small-sample bias in an estimator and, by setting N large, for determining that an
estimator is actually consistent. Such Monte Carlo routines are very simple to run
using current computer packages.

A Monte Carlo analysis can be applied to real data if the conditional distribution
of y given x is fully parametrized. For example, consider a probit model estimated
with real data. In each simulation the regressors are set at their sample values, if the
sampling framework is one of fixed regressors in repeated samples, while a new set of
values for the binary dependent variable y needs to be generated. This will depend on
what values of the parameters β are used. Let β̂1, . . . , β̂K denote the probit estimates
from the original sample and consider a Wald test of H0 : β j = 0. To calculate test size,
generate S simulation samples by setting βk = β̂k for j �= k and setting β j = 0, and
then calculate the proportion of simulations in which H0 : β j = 0 is rejected. To esti-
mate the power of the Wald test against a specific alternative Ha : β j = 1, say, generate
y with βk = β̂k for j �= k and β j = 1 in generating y, and calculate the proportion of
simulations in which H0 : β j = 0 is rejected.

In practice much microeconometric analysis is based on estimators that are not
based on fully parametric models. Then additional distributional assumptions are
needed to perform a Monte Carlo analysis.

Alternatively, power can be calculated using asymptotic methods rather than finite-
sample methods. Additionally the bootstrap, presented next, can be used to obtain size
using a more refined asymptotic theory.

7.8. Bootstrap Example

The bootstrap is a variant of Monte Carlo simulation that has the attraction of being
implementable with fewer parametric assumptions and with little additional program
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code beyond that required to estimate the model in the first place. Essential ingredients
for the bootstrap to be valid are that the estimator actually has a limit distribution and
that the bootstrap resamples quantities that are iid.

The bootstrap has two general uses. First, it can be used as an alternative way to
compute statistics without asymptotic refinement. This is particularly useful for com-
puting standard errors when analytical formulas are complex. Second, it can be used
to implement a refinement of the usual asymptotic theory that may provide a better
finite-sample approximation to the distribution of test statistics.

We illustrate the bootstrap to implement a Wald test, ahead of a complete treatment
in Chapter 11.

7.8.1. Inference Using Standard Asymptotics

Consider again a probit example with binary regressor y equal to one with probability
p = �(γ + βx), where �(·) is the standard normal cdf. Interest lies in testing H0 :
β = 1 against Ha : β �= 1 at significance level 0.05. The analysis here does not require
knowledge of the probit model.

One sample of size N = 30 is generated. Probit ML estimation yields β̂ = 0.817
and sβ̂ = 0.294, where the standard error is based on −Â−1, so the test statistic z =
(1 − 0.817)/0.294 = −0.623.

Using standard asymptotic theory we obtain 5% critical values of −1.96 and 1.96,
since z.025 = 1.96, and H0 is not rejected.

7.8.2. Bootstrap without Asymptotic Refinement

The departure point of the bootstrap method is to resample from an approximation to
the population; see Section 11.2.1. The paired bootstrap does so by resampling from
the original sample.

Thus form B pseudo-samples of size N by drawing with replacement from the orig-
inal data {(yi , xi ), i = 1, . . . , N }. For example, the first pseudo-sample of size 30 may
have (y1, x1) once, (y2, x2) not at all, (y3, x3) twice, and so on. This yields B estimates
β̂

∗
1, . . . , β̂

∗
B of the parameter of interest β, that can be used to estimate features of the

distribution of the original estimate β̂.
For example, suppose the computer program used to estimate a probit model reports

β̂ but not the standard error sβ̂ . The bootstrap solves this problem since we can use

the estimated standard deviation sβ̂,boot of β̂
∗
1, . . . , β̂

∗
B from the B bootstrap pseudo-

samples. Given this standard error estimate it is possible to perform a Wald hypothesis
test on β.

For the probit Wald test example, the resulting bootstrap estimate of the standard
error of β̂ is 0.376, leading to z = (1 − 0.817)/0.376 = −0.487. Since −0.487 lies in
(−1.96, 1.96) we do not reject H0 at 5%.

This use of the bootstrap to test hypotheses does not lead to size improvements in
small samples. However, it can lead to great time savings in many applications if it is
difficult to otherwise obtain the standard errors for an estimator.
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7.8.3. Bootstrap with Asymptotic Refinement

Some bootstraps can lead to a better asymptotic approximation to the distribution of
z. This is likely to lead to finite-sample critical values that are better in the sense that
the actual size is likely to be closer to the nominal size of 0.05. Details are provided in
Chapter 11. Here we illustrate the method.

Again form B pseudo-samples of size N by drawing with replacement from the
original data. Estimate the probit model in each pseudo-sample and for the bth
pseudo-sample compute z∗

b = (̂β
∗
b − β̂)/sβ̂∗

b
, where β̂ is the original estimate. The

bootstrap distribution for the original test statistic z is then the empirical distribution
of z∗

i , . . . , z
∗
B rather than the standard normal. The lower and upper 2.5 percentiles of

this empirical distribution give the bootstrap critical values.
For the example here with B = 1,000 the lower and upper 2.5 percentiles of the

empirical bootstrap distribution of z were found to be −2.62 and 1.83. The bootstrap
critical values for testing at 5% are then −2.62 and 1.83, rather than the usual ±1.96.
Since the initial sample test statistic z = −0.623 lies in (−2.62, 1.83) we do not reject
H0 : β = 1. A bootstrap p−value can also be computed.

Unlike the bootstrap in the previous section, an asymptotic improvement occurs
here because the studentized test statistic z is asymptotically pivotal (see Section
11.2.3) whereas the estimator β̂ is not.

7.9. Practical Considerations

Microeconometrics research places emphasis on statistical inference based on min-
imal distributional assumptions, using robust estimates of the variance matrix of an
estimator. There is no sense in robust inference, however, if failure of distributional
assumptions leads to the more serious complication of estimator inconsistency as can
happen for some though not all ML estimators.

Many packages provide a “robust” standard errors option in estimator commands.
In micreconometrics packages robust often means heteroskedastic consistent and does
not guard against other complications such as clustering, see Section 24.5, that can
also lead to invalid statistical inference.

Robust inference is usually implemented using a Wald test. The Wald test has the
weakness of invariance to reparametrization of nonlinear hypotheses, though this may
be diminished by performing an appropriate bootstrap. Standard auxiliary regressions
for the LM test and implementations of LM tests on computer packages are usually
not robustified, though in some cases relatively simple robustification of the LM test
is possible (see Section 8.4).

The power of tests can be weak. Ideally, power against some meaningful alternative
would be reported. Failing this, as Section 7.6 indicates, one should be careful about
overstating the conclusions from a hypothesis test unless parameters are very precisely
estimated.

The finite sample size of tests derived from asymptotic theory is also an issue. The
bootstrap method, detailed in Chapter 11, has the potential to yield hypothesis tests
and confidence intervals with much better finite-sample properties.
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Statistical inference can be quite fragile, so these issues are of importance to the
practitioner. Consider a two-tailed Wald test of statistical significance when θ̂ = 1.96,
and assume the test statistic is indeed standard normal distributed. If ŝθ = 1.0 then
t = 1.96 and the p−value is 0.050. However, the true p−value is a much higher 0.117
if the standard error was underestimated by 20% (so correct t = 1.57), and a much
lower 0.014 if the standard error was overestimated by 20% (so t = 2.35).

7.10. Bibliographic Notes

The econometrics texts by Gouriéroux and Monfort (1989) and Davidson and MacKinnon
(1993) give quite lengthy treatment of hypothesis testing. The presentation here considers only
equality restrictions. For tests of inequality restrictions see Gouriéroux, Holly, and Monfort
(1982) for the linear case and Wolak (1991) for the nonlinear case. For hypothesis testing when
the parameters are at the boundary of the parameter space under the null hypothesis the tests
can break down; see Andrews (2001).

7.3 A useful graphical treatment of the three classical test procedures is given by Buse (1982).
7.5 Newey and West (1987a) present extension of the classical tests to GMM estimation.
7.6 Davidson and MacKinnon (1993) give considerable discussion of power and explain the

distinction between explicit and implicit null and alternative hypotheses.
7.7 For Monte Carlo studies see Davidson and MacKinnon (1993) and Hendry (1984).
7.8 The bootstrap method due to Efron (1979) is detailed in Chapter 11.

Exercises

7–1 Suppose a sample yields estimates θ̂1 = 5, θ̂2 = 3 with asymptotic variance es-
timates 4 and 2 and the correlation coefficient between θ̂1 and θ̂2 equals 0.5.
Assume asymptotic normality of the parameter estimates.

(a) Test H0 : θ1e θ2 = 100 against Ha : θ1 �= 100 at level 0.05.
(b) Obtain a 95% confidence interval for γ = θ1e θ2 .

7–2 Consider NLS regression for the model y = exp(α + βx) + ε, where α, β, and
x are scalars and ε ∼ N [0,1]. Note that for simplicity σ 2

ε = 1 and need not be
estimated. We want to test H0 : β = 0 against Ha : β �= 0.

(a) Give the first-order conditions for the unrestricted MLE of α and β.
(b) Give the asymptotic variance matrix for the unrestricted MLE of α and β.
(c) Give the explicit solution for the restricted MLE of α and β.
(d) Give the auxiliary regression to compute the OPG form of the LM test.
(e) Give the complete expression for the original form of the LM test. Note that

it involves derivatives of the unrestricted log-likelihood evaluated at the re-
stricted MLE of α and β. [This is more difficult than parts (a)–(d).]

7–3 Suppose we wish to choose between two nested parametric models. The relation-
ship between the densities of the two models is that g(y|x,β,α = 0) = f (y|x,β),
where for simplicity both β and α are scalars. If g is the correct density then the
MLE of β based on density f is inconsistent. A test of model f against model
g is a test of H0 : α = 0 against Ha : α �= 0. Suppose ML estimation yields the
following results: (1) model f : β̂ = 5.0, se[̂β] = 0.5, and ln L = −106; (2) model
g: β̂ = 3.0, se[̂β] = 1.0, α̂ = 2.5, se[̂α] = 1.0, and ln L = −103. Not all of the
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following tests are possible given the preceding information. If there is enough
information, perform the tests and state your conclusions. If there is not enough
information, then state this.

(a) Perform a Wald test of H0 at level 0.05.
(b) Perform a Lagrange multiplier test of H0 at level 0.05.
(c) Perform a likelihood ratio test of H0 at level 0.05.
(d) Perform a Hausman test of H0 at level 0.05.

7–4 Consider test of H0 : µ = 0 against Ha : µ �= 0 at nominal size 0.05 when the
dgp is y ∼ N [µ,100], so the standard deviation is 10, and the sample size is
N = 10. The test statistic is the usual t-test statistic t = µ̂/√s/10, where s2 =
(1/9)

∑
i (yi − ȳ)2. Perform 1,000 simulations to answer the following.

(a) Obtain the actual size of the t-test if the correct finite-sample critical values
±t.025(8) = ±2.306 are used. Is there size distortion?

(b) Obtain the actual size of the t-test if the asymptotic approximation critical
values ±z.025 = ±1.960 are used. Is there size distortion?

(c) Obtain the power of the t-test against the alternative Ha : µ = 1, when the
critical values ±t.025(8) = ±2.306 are used. Is the test powerful against this
particular alternative?

7–5 Use the health expenditure data of Section 16.6. The model is a probit regression
of DMED, an indicator variable for positive health expenditures, against the 17
regressors listed in the second paragraph of Section 16.6. You should obtain the
estimates given in the first column of Table 16.1. Consider joint test of the statisti-
cal significance of the self-rated health indicators HLTHG, HLTHF, and HLTHP at
level 0.05.

(a) Perform a Wald test.
(b) Perform a likelihood ratio test.
(c) Perform an auxiliary regression to implement an LM test. [This will require

some additional coding.]
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Specification Tests and Model
Selection

8.1. Introduction

Two important practical aspects of microeconometric modeling are determining
whether a model is correctly specified and selecting from alternative models. For these
purposes it is often possible to use the hypothesis testing methods presented in the pre-
vious chapter, especially when models are nested. In this chapter we present several
other methods.

First, m-tests such as conditional moment tests are tests of whether moment con-
ditions imposed by a model are satisfied. The approach is similar in spirit to GMM,
except that the moment conditions are not imposed in estimation and are instead used
for testing. Such tests are conceptually very different from the hypothesis tests of
Chapter 7, as there is no explicit statement of an alternative hypothesis model.

Second, Hausman tests are tests of the difference between two estimators that are
both consistent if the model is correctly specified but diverge if the model is incorrectly
specified.

Third, tests of nonnested models require special methods because the usual hypoth-
esis testing approach can only be applied when one model is nested within another.

Finally, it can be useful to compute and report statistics of model adequacy that are
not test statistics. For example, an analogue of R2 may be used to measure the good-
ness of fit of a nonlinear model.

Ideally, these methods are used in a cycle of model specification, estimating, testing,
and evaluation. This cycle can move from a general model toward a specific model, or
from a specific model to a more general one that is felt to capture the most important
features of the data.

Section 8.2 presents m-tests, including conditional moment tests, the information
matrix test, and chi-square goodness of fit tests. The Hausman test is presented in
Section 8.3. Tests for several common misspecifications are discussed in Section 8.4.
Discrimination between nonnested models is the focus of Section 8.5. Commonly used
convenient implementations of the tests of Sections 8.2–8.5 can rely on strong distri-
butions and/or perform poorly in finite samples. These concerns have discouraged use
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of some of these tests, but such concerns are outdated because in many cases the boot-
strap methods presented in Chapter 11 can correct for these weaknesses. Section 8.6
considers the consequences of testing a model on subsequent inference. Model diag-
nostics are presented in the stand-alone Section 8.7.

8.2. m-Tests

m-Tests, such as conditional moment tests, are a general specification testing proce-
dure that encompasses many common specification tests. The tests are easily imple-
mented using auxiliary regressions when estimation is by ML, a situation where tests
of model assumptions are especially desirable. Implementation is usually more diffi-
cult when estimators are instead based on minimal distributional assumptions.

We first introduce the test statistic and computational methods, followed by leading
examples and an illustration of the tests.

8.2.1. m-Test Statistic

Suppose a model implies the population moment condition

H0 : E[mi (wi ,θ)] = 0, (8.1)

where w is a vector of observables, usually the dependent variable y and regressors
x and sometimes additional variables z, θ is a q × 1 vector of parameters, and mi (·)
is an h × 1 vector. A simple example is that E[(y − x′β)z] = 0 if z can be omitted in
the linear model y = x′β + u. Especially for fully parametric models there are many
candidates for mi (·).

An m-test is a test of the closeness to zero of the corresponding sample moment

m̂N (̂θ) = N−1
N∑

i=1

mi (wi , θ̂). (8.2)

This approach is similar to that for the Wald test, where h(θ) = 0 is tested by testing
the closeness to zero of h(̂θ).

A test statistic is obtained by a method similar to that detailed in Section 7.2.4 for
the Wald test. In Section 8.2.3 it is shown that if (8.1) holds then

√
Nm̂N (̂θ)

d→ N [0,Vm], (8.3)

where Vm defined later in (8.10) is more complicated than in the case of the Wald test
because mi (wi , θ̂) has two sources of stochastic variation as both wi and θ̂ are random.

A chi-square test statistic can then be obtained by taking the corresponding
quadratic form. Thus the m-test statistic for (8.1) is

M = Nm̂N (̂θ)′V̂−1
m m̂N (̂θ), (8.4)

which is asymptotically χ2(rank[Vm]) distributed if the moment conditions (8.1) are
correct. An m-test rejects the moment conditions (8.1) at significance level α if M >

χ2
α(h) and does not reject otherwise.
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A complication is that Vm may not be of full rank h. For example, this is the case
if the estimator θ̂ itself sets a linear combination of components of m̂N (̂θ) to 0. In
some cases, such as the OIR test, V̂m is still of full rank and M can be computed but
the chi-square test statistic has only rank[Vm] degrees of freedom. In other cases V̂m

itself is not of full rank. Then it is simplest to drop (h − rank[Vm]) of the moment
conditions and perform an m-test using just this subset of the moment conditions. Al-
ternatively, the full set of moment conditions can be used, but V̂−1

m in (8.4) is replaced
by V̂−

m, the generalized inverse of V̂m. The Moore–Penrose generalized inverse V−

of a matrix V satisfies VV−V = V, V−VV− = V−, (VV−)′ = VV−, and (V−V)′ =
V−V. When Vm is less than full rank then strictly speaking (8.3) no longer helds,
since the multivariate normal requires full rank Vm, but (8.4) still holds given these
adjustments.

The m-test approach is conceptually very simple. The moment restriction (8.1) is
rejected if a quadratic form in the sample estimate (8.2) is far enough from zero. The
challenges are in calculating M since V̂m can be quite complex (see Section 8.2.2),
selecting moments m(·) to test (see Sections 8.2.3–8.2.6 for leading examples), and
interpreting reasons for rejection of (8.1) (see Section 8.2.8).

8.2.2. Computation of the m-Statistic

There are several ways to compute the m-statistic.
First, one can always directly compute V̂m, and hence M, using the consistent es-

timates of the components of Vm given in Section 8.2.3. Most practitioners shy away
from this approach as it entails matrix computations.

Second, the bootstrap can always be used (see Section 11.6.3), since the bootstrap
can provide an estimate of Vm that controls for all sources of variation in m̂N (̂θ) =
N−1∑

i mi (wi , θ̂).
Third, in some cases auxiliary regressions similar to those for the LM test given

in Section 7.3.5 can be run to compute asymptotically equivalent versions of M that
do not require computation of V̂m. These auxiliary regressions may in turn be boot-
strapped to obtain an asymptotic refinement (see Section 11.6.3). We present several
leading auxiliary regressions.

Auxiliary Regressions Using the ML Estimator

Model specification tests are especially desirable when inference is done within the
likelihood framework, as in general any misspecification of the density can lead to in-
consistency of the MLE. Fortunately, an m-test is easily implemented when estimation
is by maximum likelihood.

Specifically, when θ̂ is the MLE, generalizing the LM test result of Section 7.3.5
(see Section 8.2.3) yields an asymptotically equivalent version of the m-test is obtained
from the auxiliary regression

1 = m̂′
iδ + ŝ ′

i γ + ui , (8.5)
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where m̂i = mi (yi , xi , θ̂ML), ŝi = ∂ ln f (yi |xi ,θ)/∂θ|̂θML
is the contribution of the

i th observation to the score and f (yi |xi ,θ) is the conditional density function, by
calculating

M∗ = N R2
u, (8.6)

where R2
u is the uncentered R2 defined at the end of Section 7.3.5. Equivalently, M∗

equals ESSu , the uncentered explained sum of squares (the sum of squares of the fitted
values) from regression (8.5), or M∗ equals N − RSS, where RSS is the residual sum
of squares from regression (8.5). M∗ is asymptotically χ2(h) under H0.

The test statistic M∗ is called the outer product of the gradient form of the m-test,
and it is a generalization of the auxiliary regression for the LM test (see Section 7.3.5).
Although the OPG form can be easily computed, it has poor small-sample properties
with large size distortions. Similar to the LM test, however, these small-sample prob-
lems can be greatly reduced by using bootstrap methods (see Section 11.6.3).

The test statistic M∗ may also be appropriate in some non-ML settings. The auxil-
iary regression is applicable whenever E[∂m/∂θ′] = −E[ms′] (see Section 8.2.3). By
the generalized IM equality (see Section 5.6.3), this condition holds for the MLE when
expectation is with respect to the specified density f (·). It can also hold under weaker
distributional assumptions in some cases.

Auxiliary Regressions When E[∂m/∂θ′] = 0

In some applications mi (wi ,θ) satisfies

E
[
∂mi (wi ,θ)/∂θ′∣∣

θ0

]
= 0, (8.7)

in addition to (8.1).
Then it can be shown that the asymptotic distribution of

√
Nm̂N (̂θ) is the same

as that of
√

NmN (θ0), so Vm = plim N−1∑
i mi0m′

i0, which can be consistently esti-
mated by V̂m = N−1∑

i m̂i m̂′
i . The test statistic can be computed in a similar manner

to (8.5), except the auxiliary regression is more simply

1 = m̂′
iδ + ui , (8.8)

with test statistic M∗∗ equal to N times the uncentered R2.
This auxiliary regression is valid for any root-N consistent estimator θ̂, not just

the MLE, provided (8.7) holds. The condition (8.7) is met in a few examples; see
Section 8.2.9 for an example.

Even if (8.7) does not hold the simpler regression (8.8) might still be run as a guide,
as it places a lower bound on the correct value of M, the m-test statistic. If this simpler
regression leads to rejection then (8.1) is certainly rejected.

Other Auxiliary Regressions

Alternative auxiliary regressions to (8.5) and (8.8) are possible if m(y, x,θ) and
s(y, x,θ) can be appropriately factorized.
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First, if s(y, x,θ) = g(x,θ)r (y, x,θ) and m(y, x,θ) = h(x,θ)r (y, x,θ) for some
common scalar function r (·) with V[r (y, x,θ)] = 1 and estimation is by ML, then an
asymptotically equivalent regression to (8.5) is N R2

u from regression of r̂i on ĝi and ĥi .
Second, if m(y, x,θ) = h(x,θ)v(y, x,θ) for some scalar function v(·) with

V[v(y, x,θ)] = 1 and E[∂m/∂θ′] = 0, then an asymptotically equivalent regression
to (8.8) is N R2

u from regression of v̂i on ĥi . For further details see Wooldridge (1991).
Additional auxiliary regressions exist in special settings. Examples are given in

Section 8.4, and White (1994) gives a quite general treatment.

8.2.3. Derivations for the m-Test Statistic

To avoid the need to compute Vm, the variance matrix in (8.3), m-tests are usually
implemented using auxiliary regressions or bootstrap methods. For completeness this
section derives the actual expression for Vm and provides justification for the auxiliary
regressions (8.5) and (8.8).

The key is obtaining the distribution of m̂N (̂θ) defined in (8.2). This is complicated
because mN (̂θ) is stochastic for two reasons: the random variables wi and evaluation
at the estimator θ̂.

Assume that θ̂ is an m-estimator or estimating equations estimator that solves

1

N

N∑
i=1

si (wi , θ̂) = 0, (8.9)

for some function s(·), here not necessarily ∂ ln f (y|x,θ)/∂θ, and make the usual
cross-section assumption that data are independent over i . Then we shall show that√

Nm̂N (̂θ)
d→ N [0,Vm], as in (8.3), where

Vm = H0J0H′
0, (8.10)

the h × (h + q) matrix

H0 = [Ih − C0A−1
0 ], (8.11)

where C0 = plim N−1∑
i ∂mi0/∂θ

′ and A0 = plim N−1∑
i ∂si0/∂θ

′, and the (h +
q) × (h + q) matrix

J0 = plim N−1

[∑N
i=1 mi0m′

i0

∑N
i=1 mi0s′

i0∑N
i=1 si0m′

i0

∑N
i=1 si0s′

i0

]
, (8.12)

where mi0 = mi (wi ,θ0) and si0 = si (wi ,θ0).
To derive (8.10), take a first-order Taylor series expansion around θ0 to obtain

√
Nm̂N (̂θ) =

√
NmN (θ0) + ∂mN (θ0)

∂θ′
√

N (̂θ − θ0) + op(1). (8.13)

For θ̂ defined in (8.9) this implies that

√
Nm̂N (̂θ) = 1√

N

N∑
i=1

mi (θ0) − C0A−1
0

1√
N

N∑
i=1

si0 + op(1), (8.14)
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where we use mN = N−1∑
i mi , ∂mN/∂θ

′ = N−1∑
i ∂mi/∂θ

′ p→ C0, and
√

N (̂θ −
θ0) has the same limit distribution as A−1

0 N−1/2∑
i si0 by applying the usual first-order

Taylor series expansion to (8.9). Equation (8.14) can be written as

√
Nm̂N (̂θ) = [ Ih −C0A−1

0

] 1√
N

∑N
i=1 mi0

1√
N

∑N
i=1 si0

+ op(1). (8.15)

Equation (8.10) follows by application of the limit normal product rule (Theo-
rem A.17) as the second term in the product in (8.15) has limit normal distribution
under H0 with mean 0 and variance J0.

To compute M in (8.4), a consistent estimate V̂m for Vm can be obtained by replac-
ing each component of Vm by a consistent estimate. For example, C0 can be consis-
tently estimated by Ĉ=N−1∑

i ∂mi/∂θ
′∣∣̂
θ
, and so on. Although this can always be

done, using auxiliary regressions is easier when they are available.
First, consider the auxiliary regression (8.5) when θ̂ is the MLE. By the generalized

IM equality (see Section 5.6.3) E[∂mi0/∂θ
′] = −E[mi0s′

i0], where for the MLE we
specialize to si = ∂ ln f (yi , xi ,θ)/∂θ′. Considerable simplification occurs since then
C0 = −plimN−1∑

i mi0s′
i0 and A0 = −plimN−1∑

i si0s′
i0, which also appear in the

J0 matrix. This leads to the OPG form of the test. For further details see Newey (1985)
or Pagan and Vella (1989).

Second, for the auxiliary regression (8.8), note that if E[∂mi0/∂θ
′] = 0 then C0 =

0, so H0 = [Ih 0] and hence H0J0H′
0 = plimN−1∑

i mi0m′
i0.

8.2.4. Conditional Moment Tests

Conditional moment tests, due to Newey (1985) and Tauchen (1985), are m-tests of
unconditional moment restrictions that are obtained from an underlying conditional
moment restriction.

As an example, consider the linear regression model y = x′β + u. A standard as-
sumption for consistency of the OLS estimator is that the error has conditional mean
zero, or equivalently the conditional moment restriction

E[y − x′β|x] = 0. (8.16)

In Chapter 6 we considered using some of the implied unconditional moment restric-
tions as the basis of MM or GMM estimation. In particular (8.16) implies that E[x(y −
x′β)] = 0. Solving the corresponding sample moment condition

∑
i xi (yi − x′

iβ) = 0
leads to the OLS estimator for β. However, (8.16) implies many other moment condi-
tions that are not used in estimation. Consider the unconditional moment restriction

E[g(x)(y − x′β)] = 0,

where the vector g(x) should differ from x, already used in OLS estimation. For exam-
ple, g(x) may contain the squares and cross-products of the components of the regres-
sor vector x. This suggests a test based on whether or not the corresponding sample
moment m̂N (β̂) = N−1∑

i g(xi )(yi − x′
i β̂) is close to zero.

264



8.2 . M-TESTS

More generally, consider the conditional moment restriction

E[r (y, x,θ)|x] = 0, (8.17)

for some scalar function r (·). The conditional (CM) moment test is an m-test based
on the implied unconditional moment restrictions

E[g(x)r (y, x,θ)] = 0, (8.18)

where g(x) and/or r (y, x,θ) are chosen so that these restrictions are not already used
in estimation.

Likelihood-based models lead to many potential restrictions. For less than fully
parametric models examples of r (y, x,θ) include y − µ(x,θ), where µ(·) is the spec-
ified conditional mean function, and (y − µ(x,θ))2 − σ 2(x,θ), where σ 2(x,θ) is a
specified conditional variance function.

8.2.5. White’s Information Matrix Test

For ML estimation the information matrix equality implies moment restrictions that
may be used in an m-test, as they are usually not imposed in obtaining the MLE.

Specifically, from Section 5.6.3 the IM equality implies

E[Vech [Di (yi , xi ,θ0)]] = 0, (8.19)

where the q × q matrix Di is given by

Di (yi , xi ,θ0) = ∂2 ln fi

∂θ∂θ′ + ∂ ln fi

∂θ

∂ ln fi

∂θ′ , (8.20)

and the expectation is taken with respect to the assumed conditional density fi =
f (yi |xi ,θ). Here Vech is the vector-half operator that stacks the columns of the ma-
trix Di in the same way as the Vec operator, except that only the q(q + 1)/2 unique
elements of the symmetric matrix Di are stacked.

White (1982) proposed the information matrix test of whether the corresponding
sample moment

d̂N (̂θ) = N−1
N∑

i=1

Vech[Di (yi , xi , θ̂ML)] (8.21)

is close to zero. Using (8.4) the IM test statistic is

IM = N d̂N (̂θ)′V̂−1d̂N (̂θ), (8.22)

where the expression for V̂ given in White (1982) is quite complicated. A much easier
way to implement the test, due to Lancaster (1984) and Chesher (1984), is to use the
auxiliary regression (8.5), which is applicable since the MLE is used in (8.21).

The IM test can also be applied to a subset of the restrictions in (8.19). This should
be done if q is large as then the number of restrictions q(q + 1)/2 being tested is very
large.

Large values of the IM test statistic lead to rejection of the restrictions of the
IM equality and the conclusion that the density is incorrectly specified. In general
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this means that the ML estimator is inconsistent. In some special cases, detailed in
Section 5.7, the MLE may still be consistent though standard errors need then to be
based on the sandwich form of the variance matrix.

8.2.6. Chi-Square Goodness-of-Fit Test

A useful specification test for fully parametric models is to compare predicted prob-
abilities with sample relative frequencies. The model is a poor one if these differ
considerably.

Begin with discrete iid random variable y that can take one of J possible values
with probabilities p1, p2, . . . , pJ ,

∑J
j=1 p j = 1. The correct specification of the prob-

abilities can be tested by testing the equality of theoretical frequencies N p j to the
observed frequencies N p̄ j , where p̄ j is the fraction of the sample that takes the j th
possible value. The Pearson chi-square goodness-of-fit test (PCGF) statistic is

PCGF =
J∑

j=1

(N p̄ j − N p j )2

N p j
. (8.23)

This statistic is asymptotically χ2(J − 1) distributed under the null hypothesis that the
probabilities p1, p2, . . . , pJ are correct. The test can be extended to permit the prob-
abilities to be predicted from regression (see Exercise 8.2). Consider a multinomial
model for discrete y with probabilities pi j = pi j (xi ,θ). Then p j in (8.23) is replaced
by p̂ j = N−1∑

i Fj (xi , θ̂) and if θ̂ is the multinomial MLE we again get a chi-square
distribution, but with reduced number of degrees of freedom (J − dim(θ) − 1) result-
ing from the estimation of θ (see Andrews, 1988a).

For regression models other than multinomial models, the statistic PCGF in (8.23)
can be computed by grouping y into cells, but the statistic PCGF is then no longer
chi-square distributed. Instead, a closely related m-test statistic is used. To derive this
statistic, break the range of y into J mutually exclusive cells, where the J cells span
all possible values of y. Let di j (yi ) be an indicator variable equal to one if yi ∈ cell
j and equal to zero otherwise. Let pi j (xi ,θ) = ∫yi ∈cell j f (yi |xi ,θ)dyi be the predicted
probability that observation i falls in cell j , where f (y|x,θ) is the conditional density
of y and to begin with we assume the parameter vector θ is known. If the conditional
density is correctly specified, then

E[di j (yi ) − pi j (xi ,θ)] = 0, j = 1, . . . , J. (8.24)

Stacking all J moments in obvious vector notation, we have

E[di (yi ) − pi (xi ,θ)] = 0, (8.25)

where di and pi are J × 1 vectors with j th entries di j and pi j . This suggests an m-test
of the closeness to zero of the corresponding sample moment

d̂pN (̂θ) = N−1
N∑

i=1

(di (yi ) − pi (xi , θ̂)), (8.26)

which is the difference between the vector of sample relative frequencies N−1∑
i di

and the vector of predicted frequencies N−1∑
i p̂i . Using (8.5) we obtain the
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chi-square goodness-of-fit (CGF) test statistic of Andrews (1988a, 1988b):

CGF = N d̂pN (̂θ)′V̂−1d̂pN (̂θ), (8.27)

where the expression for V̂ is quite complicated. The CGF test statistic is easily com-
puted using the auxiliary regression (8.5), with m̂i = di − p̂i . This auxiliary regression
is appropriate here because a fully parametric model is being tested and so θ̂ will be
the MLE.

One of the categories needs to be dropped because of the restriction that probabil-
ities sum to one, yielding a test statistic that is asymptotically χ2(J − 1) under the
null hypothesis that f (y|x,θ) is correctly specified. Further categories may need to
be dropped in some special cases, such as the multinomial example already discussed
after (8.23). In addition to reporting the calculated test statistic it can be informative to
report the components of N−1∑

i di and N−1∑
i p̂i .

The relevant asymptotic theory is provided by Andrews (1988a), with a simpler
presentation and several applications given in Andrews (1988b). For simplicity we
presented cells determined by the range of y, but the partitioning can be on both y
and x. Cells should be chosen so that no cell has only a few observations. For further
details and a history of this test see these articles.

For continuous random variable y in the iid case a more general test than the SCGF
test is the Kolmogorov test; this uses the entire distribution of y, not just cells formed
from y. Andrews (1997) presents a regression version of the Kolmogorov test, but it is
much more difficult to implement than the CGF test.

8.2.7. Test of Overidentifying Restrictions

Tests of overidentifying assumptions (see Section 6.3.8) are examples of m-tests.
In the notation of Chapter 6, the GMM estimator is based on the assumption that

E[h(wi ,θ0)] = 0. If the model is overidentified, then only q of these moment re-
strictions are used in estimation, leading to (r − q) linearly dependent orthogonal-
ity conditions, where r = dim[h(·)], that can be used to form an m-test. Then we
use M in (8.4), where m̂N = N−1∑

i h(wi , θ̂). As shown in Section 6.3.9, if θ̂ is
the optimal GMM estimator then m̂N (̂θ)′̂S−1

N m̂N (̂θ), where ŜN = N−1∑N
i=1 ĥi ĥ′

i , is
asymptotically χ2(r − q) distributed. A more intuitive linear IV example is given in
Section 8.4.4.

8.2.8. Power and Consistency of Conditional Moment Tests

Because there is no explicit alternative hypothesis, m-tests differ from the tests of
Chapter 7.

Several authors have given examples where the IM test can be shown to be equiv-
alent to a conventional LM test of null against alternative hypotheses. Chesher (1984)
interpreted the IM test as a test for random parameter heterogeneity. For the linear
model under normality, A. Hall (1987) showed that subcomponents of the IM test
correspond to LM tests of heteroskedasticity, symmetry, and kurtosis. Cameron and
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Trivedi (1998) give some additional examples and reference to results for the linear
exponential family.

More generally, m-tests can be interpreted in a conditional moment framework
as follows. Begin with an added variable test in a linear regression model. Suppose
we want to test whether β2 = 0 in the model y = x′

1β1 + x′
2β2 + u. This is a test of

H0 : E[y − x′
1β1|x] = 0 against Ha : E[y − x′

1β1|x] = x′
2β2. The most powerful test

of H0 : β2 = 0 in regression of y − x′
1β1 on x2 is based on the efficient GLS estimator

β̂2 =
[

N∑
i=1

x2i x′
2i

σ 2
i

]−1 N∑
i=1

x2i (yi − x′
1iβ1)

σ 2
i

,

where σ 2
i = V[yi |xi ] under H0 and independence over i is assumed. This test is equiv-

alent to a test based on the second sum alone, which is an m-test of

E

[
x2i (yi − x′

1iβ1)

σ 2
i

]
= 0. (8.28)

Reversing the process, we can interpret an m-test based on (8.28) as a CM test of
H0 : E[y − x′

1β1|x] = 0 against Ha : E[y − x′
1β1|x] = x′

2β2. Also, an m-test based
on E

[
x2
(
y − x′

1β1

)]= 0 can be interpreted as a CM test of H0 : E[y − x′
1β1|x] = 0

against Ha : E[y − x′
1β1|x] = σ 2

y|xx′
2β2, where σ 2

y|x = V[y|x] under H0.
More generally, suppose we start with the conditional moment restriction

E[r (yi , xi ,θ)|xi ] = 0, (8.29)

for some scalar function r (·). Then an m-test based on the unconditional moment
restriction

E[g(xi )r (yi , xi ,θ)] = 0 (8.30)

can be interpreted as a CM test with null and alternative hypotheses

H0 : E[r (yi , xi ,θ)|xi ] = 0, (8.31)

Ha : E[r (yi , xi ,θ)|xi ] = σ 2
i g(xi )

′γ,

where σ 2
i = V[r (yi , xi ,θ)|xi ] under H0.

This approach gives a guide to the directions in which a CM test has power. Al-
though (8.30) suggests power is in the general direction of g(x), from (8.31) a more
precise statement is that it is instead the direction of g(x) multiplied by the variance
of r (y, x,θ). The distinction is important because many cross-section applications this
variance is not constant across observations. For further details and references see
Cameron and Trivedi (1998), who call this a regression-based CM test. The approach
generalizes to vector r(·), though with more cumbersome algebra.

An m-test is a test of a finite number of moment conditions. It is therefore possible to
construct a dgp for which the underlying conditional moment condition, such as that in
(8.29), is false yet the moment conditions are satisfied. Then the CM test is inconsistent
as it fails to reject with probability one as N → ∞. Bierens (1990) proposed a way
to specify g(x) in (8.30) that ensures a consistent conditional moment test, for tests
of functional form in the nonlinear regression model where r (y, x,θ) = y − f (x,θ).
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Ensuring the consistency of the test does not, however, ensure that it will have high
power against particular alternatives.

8.2.9. m-Tests Example

To illustrate various m-tests we consider the Poisson regression model introduced in
Section 5.2, with Poisson density f (y) = e−µµy/y! and µ = exp(x′β).

We wish to test

H0 : E[m(y, x,β)] = 0,

for various choices of m(·). This test will be conducted under the assumption that the
dgp is indeed the specified Poisson density.

Auxiliary Regressions

Since estimation is by ML we can use the m-test statistic M∗ computed as N times the
uncentered R2 from auxiliary regression (8.5), where

1 = m̂(yi , xi , β̂)′δ + (yi − exp(x′
i β̂))x′

iγ+ui , (8.32)

since ŝ = |∂ ln f (y)/∂β|β̂ = (y − exp(x′β̂))x and β̂ is the MLE. Under H0 the test is
χ2(dim(m)) distributed.

An alternative is the M∗∗ statistic from auxiliary regression

1 = m̂(y, x, z, β̂)′δ+u. (8.33)

This test is asymptotically equivalent to LM∗ if m(·) is such that E[∂m/∂β] = 0, but
otherwise it is not chi-squared distributed.

Moments Tested

Correct specification of the conditional mean function, that is, E[y − exp(x′β)|x] = 0,
can be tested by an m-test of

E[(y − exp(x′β))z] = 0,

where z may be a function of x. For the Poisson and other LEF models, z cannot
equal x because the first-order conditions for β̂ML impose the restriction that

∑
i (yi −

exp(x′
i β̂))xi = 0, leading to M = 0 if z = x. Instead, z could include squares and cross-

products of the regressors.
Correct specification of the variance may also be tested, as the Poisson distribution

implies conditional mean–variance equality. Since V[y|x]−E[y|x] = 0, with E[y|x] =
exp(x′β), this suggests an m-test of

E[{(y − exp(x′β))2 − exp(x′β)}x] = 0.

A variation instead tests

E[{(y − exp(x′β))2 − y}x] = 0,
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as E[y|x] = exp(x′β). Then m(β) = {(y − exp(xβ))2 − y}x has the property that
E[∂m/∂β] = 0, so (8.7) holds and the alternative regression (8.33) yields an asymp-
totically equivalent test to the regression (8.32).

A standard specification test for parametric models is the IM test. For the Poisson
density, D defined in (8.19) becomes D(y, x,β) = {(y − exp(x′β))2 − y}xx′, and we
test

E[{(y − exp(x′β))2 − y}Vech[xx′]] = 0.

Clearly for the Poisson example the IM test is a test of the first and second moment con-
ditions implied by the Poisson model, a result that holds more generally for LEF mod-
els. The test statistic M∗∗ is asymptotically equivalent to M∗ since here E[∂m/∂β] = 0.

The Poisson assumption can also be tested using a chi-square goodness-of-fit test.
For example, since few counts exceed three in the subsequent simulation example,
form four cells corresponding to y = 0, 1, 2, and 3 or more, where in implementing
the test the cell with y = 3 or more are dropped because probabilities sum to one.
So for j = 0, . . . , 2 compute indicator di j = 1 if yi = j and di j = 0 otherwise and
compute predicted probability p̂i j = e−µ̂i µ̂

j
i /j!, where µ̂i = exp(x′

i β̂). Then test

E[(d − p)] = 0,

where di = [di0, di1, di2] and pi = [pi0, pi1, pi2] by the auxiliary regression (8.33)
where m̂i = di − p̂i .

Simulation Results

Data were generated from a Poisson model with mean E[y|x] = exp(β1 + β2x2),
where x2 ∼ N [0, 1] and (β1, β2) = (0, 1). Poisson ML regression of y on x for a sam-
ple of size 200 yielded

Ê[y|x] = exp(−0.165
(0.089)

+ 1.124
(0.069)

x2),

where associated standard errors are in parentheses.
The results of the various M-tests are given in Table 8.1.

Table 8.1. Specification m-Tests for Poisson Regression Examplea

Test Type H0 where µ = exp(x′β) M∗ dof p-value M∗∗

1. Correct mean E[(y − µ)x2
2 ] = 0 3.27 1 0.07 0.44

2. Variance = mean E[{(y − µ)2 − µ}x] = 0 2.43 2 0.30 1.89
3. Variance = mean E[{(y − µ)2 − y}x] = 0 2.43 2 0.30 2.41
4. Information Matrix E[{(y − µ)2 − y}Vech[xx′]] = 0 2.95 3 0.40 2.73
5. Chi-square GOF E[d − p] = 0 2.50 3 0.48 0.75

a The dgp for y is the Poisson distribution with mean parameter exp(0 + x2) and sample size N = 200. The
m-test statistic M∗ is chi-squared with degrees of freedom given in the dof column and p-value given in the
p-value column. The alternative test statistic M∗∗ is valid for tests 3 and 4 only.
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As an example of computation of M∗ using (8.32) consider the IM test. Since x =
[1, x2]′ and Vech[xx′] = [1, x2, x2

2 ]′, the auxiliary regression is of 1 on {(y − µ̂)2 − y},
{(y − µ̂)2 − y}x2, {(y − µ̂)2 − y}x2

2 , (y − µ̂), and (y − µ̂)x2 and yields uncentered
R2 = 0.01473 and N = 200, leading to M∗ = 2.95. The same value of M∗ is obtained
directly from the uncentered explained sum of squares of 2.95, and indirectly as N
minus 197.05, the residual sum of squares from this regression. The test statistic is
χ2(3) distributed with p = 0.40, so the null hypothesis is not rejected at significance
level 0.05.

For the chi-square goodness-of-fit test the actual frequencies are, respectively,
0.435, 0.255, and 0.110; and the corresponding predicted frequencies are 0.429, 0.241,
and 0.124. This yields PCGF = 0.47 using (8.23), but this statistic is not chi-squared
as it does not control for error in estimating β̂. The auxiliary regression for the correct
statistic CGF in (8.27) leads to M∗ = 2.50, which is chi-square distributed.

In this simulation all five moment conditions are not rejected at level 0.05 since
the p-value for M∗ exceeds 0.05. This is as expected, as the data in this simulation
example are generated from the specified density so that tests at level 0.05 should re-
ject only 5% of the time. The alternative statistic M∗∗ is valid only for tests 3 and
4 since only then does E[∂m/∂β] = 0; otherwise, it only provides a lower bound
for M.

8.3. Hausman Test

Tests based on comparisons between two different estimators are called Hausman tests,
after Hausman (1978), or Wu–Hausman tests or even Durbin–Wu–Hausman tests after
Wu (1973) and Durbin (1954) who proposed similar tests.

8.3.1. Hausman Test

Consider a test for endogeneity of a regressor in a single equation. Two alternative es-
timators are the OLS and 2SLS estimators, where the 2SLS estimator uses instruments
to control for possible endogeneity of the regressor. If there is endogeneity then OLS
is inconsistent, so the two estimators will have different probability limit. If there is no
endogeneity both estimators are consistent, so the two estimators have the same prob-
ability limit. This suggests testing for endogeneity by testing for difference between
the OLS and 2SLS estimators, see Section 8.4.3 for further discussion.

More generally, consider two estimators θ̂ and θ̃. We consider the testing situation
where

H0 : plim(̂θ − θ̃) = 0,
Ha : plim(̂θ − θ̃) �= 0.

(8.34)

Assume the difference between the two root-N consistent estimators is also root-N
consistent under H0 with mean 0 and a limit normal distribution, so that

√
N (̂θ − θ̃)

d→ N [0,VH] ,
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where VH denotes the variance matrix in the limiting distribution. Then the Hausman
test statistic

H = (̂θ − θ̃)′(N−1V̂H)−1(̂θ − θ̃) (8.35)

is asymptotically χ2(q) distributed under H0. We reject H0 at level α if H > χ2
α(q).

In some applications, such as tests of endogeneity, V[̂θ − θ̃] is of less than full rank.
Then the generalized inverse is used in (8.35) and the chi-square test has degrees of
freedom equal to the rank of V[̂θ − θ̃].

The Hausman test can be applied to just a subset of the parameters. For example,
interest may lie solely in the coefficient of the possibly endogenous regressor and
whether it changes in moving from OLS to 2SLS. Then just one component of θ is
used and the test statistic is χ2(1) distributed. As in other settings, this test on a subset
of parameters can lead to a conclusion different from that of a test on all parameters.

8.3.2. Computation of the Hausman Test

Computing the Hausman test is easy in principle but difficult in practice owing to the
need to obtain a consistent estimate of VH, the limit variance matrix of

√
N (̂θ − θ̃). In

general

N−1VH = V[̂θ − θ̃] = V[̂θ] + V[̃θ] − 2Cov[̂θ, θ̃]. (8.36)

The first two quantities are readily computed from the usual output, but the third is
not.

Computation for Fully Efficient Estimator under the Null Hypothesis

Although the essential null and alternative hypotheses of the Hausman test are as in
(8.34), in applications there is usually a specific null hypothesis model and alternative
hypothesis in mind. For example, in comparing OLS and 2SLS estimators the null hy-
pothesis model has all regressors exogenous whereas the alternative hypothesis model
permits some regressors to be endogenous.

If θ̂ is the efficient estimator in the null hypothesis model, then Cov[̂θ, θ̃] = V[̂θ].
For proof see Exercise 8.3. This implies V[̂θ − θ̃] = V[̃θ]−V[̂θ], so

H = (̂θ − θ̃)′
(
V̂[̃θ] − V̂[̂θ]

)−1
(̂θ − θ̃). (8.37)

This statistic has the considerable advantage of requiring only the estimated asymptotic
variance matrices of the parameter estimates θ̂ and θ̃. It is helpful to use a program
that permits saving parameter and variance matrix estimates and computation using
matrix commands.

For example, this simplification can be applied to endogeneity tests in a linear re-
gression model if the errors are assumed to be homoskedastic. Then θ̂ is the OLS
estimator that is fully efficient under the null hypothesis of no endogeneity, and θ̃ is
the 2SLS estimator. Care is needed, however, to ensure the consistent estimates of the
variance matrices are such that V̂[̃θ] − V̂[̂θ] is positive definite (see Ruud, 1984). In
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the OLS–2SLS comparison the variance matrix estimators V̂[̃θ] and V̂[̂θ] should use
the same estimate of the error variance σ 2.

Version (8.37) of the Hausman test is especially easy to calculate by hand if θ is a
scalar, or if only one component of the parameter vector is tested. Then

H = (̂θ − θ̃ )2/(̃s2 − ŝ2)

is χ2(1) distributed, where ŝ and s̃ are the reported standard errors of θ̂ and θ̃ .

Auxiliary Regressions

In some leading cases the Hausman test can be more simply computed as a standard
test for the significance of a subset of regressors in an augmented OLS regression,
derived under the assumption that θ̂ is fully efficient. Examples are given in Section
8.4.3 and in Section 21.4.3.

Robust Hausman Tests

The simpler version (8.37) of the Hausman test, and standard auxiliary regressions,
requires the strong distributional assumption that θ̂ is fully efficient. This is counter
to the approach of performing robust inference under relatively weak distributional
assumptions.

Direct estimation of Cov[̂θ, θ̃] and hence VH is in principle possible. Suppose θ̂ and
θ̃ are m-estimators that solve

∑
i h1i (̂θ) = 0 and

∑
i h2i (̃θ) = 0. Define δ̂

′ = [̂θ, θ̃].
Then V[̂δ] = G−1

0 S0(G−1
0 )′, where G0 and S0 are defined in Section 6.6, with the sim-

plification that here G12 = 0. The desired V[̂θ − θ̃] = RV[̂δ]R′, where R = [Iq ,−Iq ].
Implementation can require additional coding that may be application specific.

A simpler approach is to bootstrap (see Section 11.6.3), though care is needed in
some applications to ensure use of the correct degrees of freedom in the chi-square
test.

Another possible approach for less than fully efficient θ̂ is to use an auxiliary re-
gression that is appropriate in the efficient case but to perform the subsets of regres-
sors test using robust standard errors. This robust test is simple to implement and will
have power in testing the misspecification of interest, though it may not necessarily be
equivalent to the Hausman test that uses the more general form of H given in (8.35).
An example is given in Section 21.4.3.

Finally, bounds can be calculated that do not require computation of Cov[̂θ, θ̃]. For
scalar random variables, Cov[x, y] ≤ sx sy . For the scalar case this suggests an upper
bound for H of N (̂θ − θ̃ )2/(̂s2 + s̃2 − 2̂s̃s), where ŝ2 = V̂[̂θ ] and s̃2 = V̂[̃θ ]. A lower
bound for H is N (̂θ − θ̃ )2/(̂s2 + s̃2), under the assumption that θ̂ and θ̃ are positively
correlated. In practice, however, these bounds are quite wide.

8.3.3. Power of the Hausman Test

The Hausman test is a quite general procedure that does not explicitly state an alterna-
tive hypothesis and therefore need not have high power against particular alternatives.

273



SPECIFICATION TESTS AND MODEL SELECTION

For example, consider tests of exclusion restrictions in fully parametric models. De-
note the null hypothesis H0 : θ2 = 0, where θ is partitioned as (θ′

1,θ
′
2)′. An obvious

specification test is a Hausman test of the difference θ̂1 − θ̃1, where (̂θ1, θ̂2) is the un-
restricted MLE and (̃θ1, 0) is the restricted MLE of θ. Holly (1982) showed that this
Hausman test coincides with a classical test (Wald, LR, or LM) of H0 : I−1

11 I12θ2 = 0,
where Ii j = E

[
∂2L(θ1,θ2)/∂θi∂θ j

]
, rather than of H0 : θ2 = 0. The two tests co-

incide if I12 is of full column rank and dim(θ1) ≥dim(θ2), as then I−1
11 I12θ2 = 0

iff θ2 = 0. Otherwise, they can differ. Clearly, the Hausman test will have no power
against H0 if the information matrix is block diagonal as then I12 = 0. Holly (1987)
extended analysis to nonlinear hypotheses.

8.4. Tests for Some Common Misspecifications

In this section we present tests for some common model misspecifications. Attention
is focused on test statistics that can be computed using auxiliary regressions, using
minimal assumptions to permit inference robust to heteroskedastic errors.

8.4.1. Tests for Omitted Variables

Omitted variables usually lead to inconsistent parameter estimates, except for special
cases such as an omitted regressor in the linear model that is uncorrelated with the
other regressors. It is therefore important to test for potential omitted variables.

The Wald test is most often used as it is usually no more difficult to estimate the
model with omitted variables included than to estimate the restricted model with omit-
ted variables excluded. Furthermore, this test can use robust sandwich standard errors,
though this really only makes sense if the estimator retains consistency in situations
where robust sandwich errors are necessary.

If attention is restricted to ML estimation an alternative is to estimate models with
and without the potentially irrelevant regressors and perform an LR test.

Robust forms of the LM test can be easily computed in some settings. For example,
consider a test of H0 : β2 = 0 in the Poisson model with mean exp(x′

1β1 + x′
2β2). The

LM test statistic is based on the score statistic
∑

i xi ũi , where ũi = yi − exp (x′
1i β̃1)

(see Section 7.3.2). Now a heteroskedastic robust estimate for the variance of
N−1/2∑

i xi ui , where ui = yi − E[yi |xi ], is N−1∑
i u2

i xi x′
i , and it can be shown that

LM+ =
[

n∑
i=1

xi ũi

]′ [ n∑
i=1

ũ2
i xi x′

i

]−1 [ n∑
i=1

xi ũi

]
is a robust LM test statistic that does not require the Poisson restriction that V[ui |xi ] =
exp (x′

1iβ1) under H0. This can be computed as N times the uncentered R2 from re-
gression of 1 on x1i ũi and x2i ũi . Such robust LM tests are possible more generally for
assumed models in the linear exponential family, as the score statistic in such models is
again a weighted average of a residual ũi (see Wooldridge, 1991). This class includes
OLS, and adaptations are also possible when estimation is by 2SLS or by NLS; see
Wooldridge (2002).
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8.4.2. Tests for Heteroskedasticity

Parameter estimates in linear or nonlinear regression models of the conditional mean
estimated by LS or IV methods retain their consistency in the presence of het-
eroskedasticity. The only correction needed is to the standard errors of these estimates.
This does not require modeling heteroskedasticity, as heteroskedastic-robust standard
errors can be computed under minimal distributional assumptions using the result of
White (1980). So there is little need to test for heteroskedasticity, unless estimator
efficiency is of great concern. Nonetheless, we summarize some results on tests for
heteroskedasticity.

We begin with LS estimation of the linear regression model y = x′β + u. Suppose
heteroskedasticity is modeled by V[u|x] = g(α1 + z′α2), where z is usually a sub-
set of x and g(·) is often the exponential function. The literature focuses on tests of
H0 : α2 = 0 using the LM approach because, unlike Wald and LR tests, these require
only OLS estimation of β. The standard LM test of Breusch and Pagan (1979) depends
heavily on the assumption of normally distributed errors, as it uses the restriction that
E[u4|x4] = 3σ 4 under H0. Koenker (1981) proposed a more robust version of the LM
test, N R2 from regression of û2

i on 1 and zi , where ûi is the OLS residual. This test re-
quires the weaker assumption that E[u4|x] is constant. Like the Breusch–Pagan test it
is invariant to choice of the function g(·). The White (1980a) test for heteroskedasticity
is equivalent to this LM test, with z = Vech[xx′]. The test can be further generalized
to let E[u4|x] vary with x, though constancy may be a reasonable assumption for the
test since H0 already specifies that E[u2|x] is constant.

Qualitatively similar results carry over to nonlinear models of the conditional mean
that assume a particular form of heteroskedasticity that may be tested for misspec-
ification. For example, the Poisson regression model sets V[y|x] = exp (x′β). More
generally, for models in the linear exponential family, the quasi-MLE is consistent
despite misspecified heteroskedasticity and qualitatively similar results to those here
apply. Then valid inference is possible even if the model for heteroskedasticity is mis-
specified, provided the robust standard errors presented in Section 5.7.4 are used. If
one still wishes to test for correct specification of heteroskedasticity then robust LM
tests are possible (see Wooldridge, 1991).

Heteroskedasticity can lead to the more serious consequence of inconsistency of pa-
rameter estimates in some nonlinear models. A leading example is the Tobit model (see
Chapter 16), a linear regression model with normal homoskedastic errors that becomes
nonlinear as the result of censoring or truncation. Then testing for heteroskedasticity
becomes more important. A model for V[u|x] can be specified and Wald, LR, or LM
tests can be performed or m-tests for heteroskedasticity can be used (see Pagan and
Vella, 1989).

8.4.3. Hausman Tests for Endogeneity

Instrumental variables estimators should only be used where there is a need for them,
since LS estimators are more efficient if all regressors are exogenous and from Sec-
tion 4.9 this loss of efficiency can be substantial. It can therefore be useful to test
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whether IV methods are needed. A test for endogeneity of regressors compares IV
estimates with LS estimates. If regressors are endogenous then in the limit these esti-
mates will differ, whereas if regressors are exogenous the two estimators will not differ.
Thus large differences between LS and IV estimates can be interpreted as evidence of
endogeneity.

This example provides the original motivation for the Hausman test. Consider the
linear regression model

y = x′
1β1 + x′

2β2 + u, (8.38)

where x1 is potentially endogenous and x2 is exogenous. Let β̂ be the OLS estimator
and β̃ be the 2SLS estimator in (8.38). Assuming homoskedastic errors so that OLS is
efficient under the null hypothesis of no endogeneity, a Hausman test of endogeneity of
x1 can be calculated using the test statistic H defined in (8.37). Because V[β̂] − V[β̃]
can be shown to be not of full rank, however, a generalized inverse is needed and the
degrees of freedom are dim(β1) rather than dim(β).

Hausman (1978) showed that the test can more simply be implemented by test of
γ = 0 in the augmented OLS regression

y = x′
1β1 + x′

2β2 + x̂′
1γ + u,

where x̂1 is the predicted value of the endogenous regressors x1 from reduced form
multivariate regression of x1 on the instruments z. Equivalently, we can test γ = 0 in
the augmented OLS regression

y = x′
1β1 + x′

2β2 + v̂′
1γ+u,

where v̂1 is the residual from the reduced form multivariate regression of x1 on the
instruments z. Intuition for these tests is that if u in (8.38) is uncorrelated with x1

and x2, then γ = 0. If instead u is correlated with x1, then this will be picked up by
significance of additional transformations of x1 such as x̂1 and v̂1.

For cross-section data it is customary to presume heteroskedastic errors. Then the
OLS estimator β̂ is inefficient in (8.38) and the simpler version (8.37) of the Haus-
man test cannot be used. However, the preceding augmented OLS regressions can
still be used, provided γ = 0 is tested using the heteroskedastic-consistent estimate of
the variance matrix. This should actually be equivalent to the Hausman test, as from
Davidson and MacKinnon (1993, p. 239) γ̂OLS in these augmented regressions equals
AN (β̂ − β̃), where AN is a full-rank matrix with finite probability limit.

Additional Hausman tests for endogeneity are possible. Suppose y = x′
1β1 +

x′
2β2 + x′

3β3 + u, where x1 is potentially endogenous x2 is assumed to be endoge-
nous, and x3 is assumed to be exogenous. Then endogeneity of x1 can be tested
by comparing the 2SLS estimator with just x2 instrumented to the 2SLS estima-
tor with both x1 and x2 instrumented. The Hausman test can also be generalized
to nonlinear regression models, with OLS replaced by NLS and 2SLS replaced
by NL2SLS. Davidson and MacKinnon (1993) present augmented regressions that
can be used to compute the relevant Hausman test, assuming homoskedastic errors.
Mroz (1987) provides a good application of endogeneity tests including examples of
computation of V[̂θ − θ̃] when θ̂ is not efficient.
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8.4.4. OIR Tests for Exogeneity

If an IV estimator is used then the instruments must be exogenous for the IV estimator
to be consistent. For just-identified models it is not possible to test for instrument
exogeneity. Instead, a priori arguments need to be used to justify instrument validity.
Some examples are given in Section 4.8.2. For overidentified models, however, a test
for exogeneity of instruments is possible.

We begin with linear regression. Then y = x′β + u and instruments z are valid
if E[u|z] = 0 or if E[zu] = 0. An obvious test of H0 : E[zu] = 0 is based on depar-
tures of N−1∑

i zi ûi from zero. In the just-identified case the IV estimator solves
N−1∑

i zi ûi = 0 so this test is not useful. In the overidentified case the overidentify-
ing restrictions test presented in Section 6.3.8 is

OIR = û′ZŜ−1Z′̂u, (8.39)

where û = y − Xβ̂, β̂ is the optimal GMM estimator that minimizes u′ZŜ−1Z′u, and
Ŝ is consistent for plim N−1∑

i u2
i zi z′

i . The OIR test of Hansen (1982) is an extension
of a test proposed by Sargan (1958) for linear IV, and the test statistic (8.39) is often
called a Sargan test. If OIR is large then the moment conditions are rejected and the
IV estimator is inconsistent. Rejection of H0 is usually interpreted as evidence that the
instruments z are endogenous, but it could also be evidence of model misspecifica-
tion so that in fact y �= x′β + u. In either case rejection indicates problems for the IV
estimator.

As formally derived in Section 6.3.9, OIR is distributed as χ2(r − K ) under H0,
where (r − K ) is the number of overidentifying restrictions. To gain some intuition for
this result it is useful to specialize to homoskedastic errors. Then Ŝ = σ̂ 2Z′Z, where
σ̂ 2 = û′ û/(N − K ), so

OIR = û′PZû
û′̂u/(N − K )

,

where PZ = Z(Z′Z)−1Z′. Thus OIR is a ratio of quadratic forms in û. Under H0 the
numerator has probability limit σ 2(r − K ) and the denominator has plim σ̂ 2 = σ 2, so
the ratio is centered on r − K , but this is the mean of a χ2(r − K ) random variable.

The test statistic in (8.39) extends immediately to nonlinear regression, by simply
defining ui = y − g(x,β) or u = r (y, x,β) as in Section 6.5, and to linear systems
and panel estimators by appropriate definition of u (see Sections 6.9 and 6.10).

For linear IV with homoskedastic errors alternative OIR tests to (8.39) have been
proposed. Magdalinos (1988) contrasts a number of these tests. One can also use in-
cremental OIR tests of a subset of overidentifying restrictions.

8.4.5. RESET Test

A common functional form misspecification may involve neglected nonlinearity in
some of the regressors. Consider the regression y = x′β + u, where we assume that the
regressors enter linearly and are asymptotically uncorrelated with the error u. To test
for nonlinearity one straightforward approach is to enter power functions of exogenous
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variables, most commonly squares, as additional independent regressors and test the
statistical significance of these additional variables using a Wald test or an F-test.
This requires the investigator to have specific reasons for considering nonlinearity, and
clearly the technique will not work for categorical x variables.

Ramsey (1969) suggested a test of omitted variables from the regression that can
be formulated as a test of functional form. The proposal is to fit the initial regres-
sion and generate new regressors that are functions of fitted values ŷ = x′β̂, such
as w = [(x′β̂)2, (x′β̂)3, . . . , (x′β̂)p]. Then estimate the model y = x′β + w′γ + u,
and the test of nonlinearity is the Wald test of p restrictions, H0 : γ = 0 against
Ha : γ �= 0. Typically a low value of p such as 2 or 3 is used. This test can be made
robust to heteroskedasticity.

8.5. Discriminating between Nonnested Models

Two models are nested if one is a special case of the other; they are nonnested if
neither can be represented as a special case of the other. Discriminating between nested
models is possible using a standard hypothesis test of the parametric restrictions that
reduce one model to the other. In the nonnested case, however, alternative methods
need to be developed.

The presentation focuses on nonnested model discrimination within the likelihood
framework, where results are well developed. A brief discussion of the nonlikelihood
case is given in Section 8.5.4. Bayesian methods for model discrimination are pre-
sented in Section 13.8.

8.5.1. Information Criteria

Information criteria are log-likelihood criteria with degrees of freedom adjustment.
The model with the smallest information criterion is preferred.

The essential intuition is that there exists a tension between model fit, as measured
by the maximized log-likelihood value, and the principle of parsimony that favors a
simple model. The fit of the model can be improved by increasing model complexity.
However, parameters are only added if the resulting improvement in fit sufficiently
compensates for loss of parsimony. Note that in this viewpoint it is not necessary
that the set of models under consideration should include the “true dgp.” Different
information criteria vary in how steeply they penalize model complexity.

Akaike (1973) originally proposed the Akaike information criterion

AIC = −2 ln L + 2q, (8.40)

where q is the number of parameters, with the model with lowest AIC preferred. The
term information criterion is used because the underlying theory, presented more sim-
ply in Amemiya (1980), discriminates among models using the Kullback–Liebler in-
formation criterion (KLIC).

A considerable number of modifications to AIC have been proposed, all of the form
−2 lnL+g(q, N ) for specified penalty function g(·) that exceeds 2q . The most popular
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variation is the Bayesian information criterion

BIC = −2 ln L + (ln N )q, (8.41)

proposed by Schwarz (1978). Schwarz assumed y has density in the exponential family
with parameter θ, the j th model has parameter θ j with dim[θ j ] = q j < dim[θ], and
the prior across models is a weighted sum of the prior for each θ j . He showed that un-
der these assumptions maximizing the posterior probability (see Chapter 13) is asymp-
totically equivalent to choosing the model for which ln L − (ln N )q j/2 is largest. Since
this is equivalent to minimizing (8.41), the procedure of Schwarz has been labeled the
Bayesian information criterion. A refinement of AIC based on minimization of KLIC
that is similar to BIC is the consistent AIC, CAIC= −2 ln L + (1 + ln N ) q . Some
authors define criteria such as AIC and BIC by additionally dividing by N in the right-
hand sides of (8.40) and (8.41).

If model parsimony is important, then BIC is more widely used as the model-size
penalty for AIC is relatively low. Consider two nested models with q1 and q2 parame-
ters, respectively, where q2 = q1 + h. An LR test is then possible and favors the larger
model at significance level 5% if 2 ln L increases by χ2

.05(h). AIC favors the larger
model if 2 ln L increases by more than 2h, a lesser penalty for model size than the LR
test if h < 7. In particular for h = 1, that is, one restriction, the LR test uses a 5%
critical value of 3.84 whereas AIC uses a much lower value of 2. The BIC favors the
larger model if 2 ln L increases by h ln N , a much larger penalty than either AIC or an
LR test of size 0.05 (unless N is exceptionally small).

The Bayesian information criterion increases the penalty as sample size increases,
whereas traditional hypothesis tests at a significance level such as 5% do not. For
nested models with q2 = q1 + 1 choosing the larger model on the basis of lower BIC
is equivalent to using a two-sided t-test critical value of

√
ln N , which equals 2.15,

3.03, and 3.72, respectively, for N = 102, 104, and 106. By comparison traditional hy-
pothesis tests with size 0.05 use an unchanging critical value of 1.96. More generally,
for a χ2(h) distributed test statistic the BIC suggests using a critical value of h ln N
rather than the customary χ2

.05(h).
Given their simplicity, penalized likelihood criteria are often used for selecting “the

best model.” However, there is no clear answer as to which criterion, if any, should
be preferred. Considerable approximation is involved in deriving the formulas for AIC
and related measures, and loss functions other than minimization of KLIC, or max-
imization of the posterior probability in the case of BIC, might be much more ap-
propriate. From a decision-theoretic viewpoint, the choice of the model from a set of
models should depend on the intended use of that model. For example, the purpose of
the model may be to summarize the main features of a complex reality, or to predict
some outcome, or to test some important hypothesis. In applied work it is quite rare to
see an explicit statement of the intended use of an econometric model.

8.5.2. Cox Likelihood Ratio Test of Nonnested Models

Consider choosing between two parametric models. Let model Fθ have density
f (y|x,θ) and model Gγ have density g(y|x,γ).
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A likelihood ratio test of the model Fθ against Gγ is based on

LR(̂θ, γ̂) ≡ L f (̂θ) − Lg(γ̂) =
N∑

i=1

ln
f (yi |xi , θ̂)

g(yi |xi , γ̂)
. (8.42)

If Gγ is nested in Fθ then, from Section 7.3.1, 2LR(̂θ, γ̂) is chi-square distributed
under the null hypothesis that Fθ = Gγ . However, this result no longer holds if the
models are nonnested.

Cox (1961, 1962b) proposed solving this problem in the special case that Fθ is the
true model but the models are not nested, by applying a central limit theorem under
the assumption that Fθ is the true model.

This approach is computationally awkward to implement if one cannot analytically
obtain E f [ln( f (y|x,θ)/g(y|x,γ))], where E f denotes expectation with respect to the
density f (y|x,θ). Furthermore, if a similar test statistic is obtained with the roles of
Fθ and Gγ reversed it is possible to find both that model Fθ is rejected in favor of
Gγ and that model Gγ is rejected in favor of Fθ. The test is therefore not necessarily
one of model selection as it does not necessarily select one or the other; instead it is a
model specification test that zero, one, or two of the models can pass.

The Cox statistic has been obtained analytically in some cases. For nonnested
linear regression models y = x′ β + u and y = z′γ + v with homoskedastic nor-
mally distributed errors (see Pesaran, 1974). For nonnested transformation models
h(y) = x′β + u and g (y) = z′γ + v, where h(y) and g(y) are known transforma-
tions; see Pesaran and Pesaran (1995), who use a simulation-based approach. This
permits, for example, discrimination between linear and log-linear parametric mod-
els, with h(·) the identity transformation and g(·) the log transformation. Pesaran and
Pesaran (1995) apply the idea to choosing between logit and probit models presented in
Chapter 14.

8.5.3. Vuong Likelihood Ratio Test of Nonnested Models

Vuong (1989) provided a very general distribution theory for the LR test statistic that
covers both nested and nonnested models and more remarkably permits the dgp to be
an unknown density that differs from both f (·) and g(·).

The asymptotic results of Vuong, presented here to aid understanding of the variety
of tests presented in Vuong’s paper, are relatively complex as in some cases the test
statistic is a weighted sum of chi-squares with weights that can be difficult to compute.

Vuong proposed a test of

H0 : E0

[
ln

f (y|x,θ)

g(y|x,γ)

]
= 0, (8.43)

where E0 denotes expectation with respect to the true dgp h(y|x), which may be un-
known. This is equivalent to testing Eh[ln(h/g)]−Eh[ln(h/ f )] = 0, or testing whether
the two densities f and g have the same Kullback–Liebler information criterion
(see Section 5.7.2). One-sided alternatives are possible with H f : E0[ln( f/g)] > 0 and
Hg : E0[ln( f/g)] < 0.
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An obvious test of H0 is an m-test of whether the sample analogue LR(̂θ, γ̂) defined
in (8.42) differs from zero. Here the distribution of the test statistic is to be obtained
with possibly unknown dgp. This is possible because from Section 5.7.1 the quasi-
MLE θ̂ converges to the pseudo-true value θ∗ and

√
N (̂θ − θ∗) has a limit normal

distribution, with a similar result for the quasi-MLE γ̂.

General Result

The resulting distribution of LR(̂θ, γ̂) varies according to whether or not the two mod-
els, both possibly incorrect, are equivalent in the sense that f (y|x,θ∗) = g(y|x,γ∗),
where θ∗ and γ∗ are the pseudo-true values of θ and γ.

If f (y|x,θ∗) = g(y|x,γ∗) then

2LR(̂θ, γ̂)
d→ Mp+q (λ∗), (8.44)

where p and q are the dimensions of θ and γ and Mp+q (λ∗) denotes the cdf of the
weighted sum of chi-squared variables

∑p+q
j=1 λ∗ j Z2

j . The Z2
j are iid χ2(1) and λ∗ j are

the eigenvalues of the (p + q) × (p + q) matrix

W =
[ −B f (θ∗)A f (θ∗)−1 −B f g(θ∗,γ∗)Ag(γ∗)−1

−Bg f (γ∗,θ∗)A f (θ∗)−1 −Bg(γ∗)Ag(γ∗)−1

]
, (8.45)

where A f (θ∗) = E0[∂2 ln f/∂θ∂θ′], B f (θ∗) = E0[(∂ ln f/∂θ)(∂ ln f/∂θ′)], the matri-
ces Ag(γ∗) and Bg(γ∗) are similarly defined for the density g(·), the cross-matrix
B f g(θ∗,γ∗) = E0[(∂ ln f/∂θ)(∂ ln g/∂γ ′)], and expectations are with respect to the
true dgp. For explanation and derivation of these results see Vuong (1989).

If instead f (y|x,θ∗) �= g(y|x,γ∗), then under H0

N−1/2LR(̂θ, γ̂)
d→ N [0, ω2

∗], (8.46)

where

ω2
∗ = V0

[
ln

f (y|x,θ∗)

g(y|x,γ∗)

]
, (8.47)

and the variance is with respect to the true dgp. For derivation again see Vuong (1989).
Use of these results varies with whether or not one model is assumed to be correctly

specified and with the nesting relationship between the two models.
Vuong differentiated among three types of model comparisons. The models Fθ and

Gγ are (1) nested with Gγ nested in Fθ if Gγ ⊂ Fθ; (2) strictly nonnested models
if and only if Fθ ∩ Gγ = φ so that neither model can specialize to the other; and
(3) overlapping if Fθ ∩ Gγ �= φ and Fθ � Gγ and Gγ � Fθ. Similar distinctions are
made by Pesaran and Pesaran (1995).

Both (2) and (3) are nonnested models, but they require different testing procedures.
Examples of strictly nonnested models are linear models with different error distribu-
tions and nonlinear regression models with the same error distributions but different
functional forms for the conditional mean. For overlapping models some specializa-
tions of the two models are equal. An example is linear models with some regressors
in common and some regressors not in common.
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Nested Models

For nested models it is necessarily the case that f (y|x,θ∗) = g(y|x,γ∗). For Gγ

nested in Fθ, H0 is tested against H f : E0[ln( f/g)] > 0.
For density possibly misspecified the weighted chi-square result (8.44) is appropri-

ate, using the eigenvalues λ̂ j of the sample analogue of W in (8.45). Alternatively, one
can use eigenvalues λ̃ j of the sample analogue of the smaller matrix

W = B f (θ∗)[D(γ∗)Ag(γ∗)−1D(γ∗)′ − A f (θ∗)−1],

where D(γ∗) = ∂φ(γ∗)/∂γ and the constrained quasi-MLE θ̃ = φ(γ̂), see Vuong
(1989). This result provides a robustified version of the standard LR test for nested
models.

If the density f (·) is actually correctly specified, or more generally satisfies the IM

equality, we get the expected result that 2LR(̂θ, γ̂)
d→ χ2(p − q) as then (p − q) of

the eigenvalues of W or W equal one whereas the others equal zero.

Strictly Nonnested Models

For strictly nonnested models it is necessarily the case that f (y|x,θ∗) �= g(y|x,γ∗).
The normal distribution result (8.46) is applicable, and a consistent estimate of ω2

∗ is

ω̂2 = 1

N

N∑
i=1

(
ln

f (yi |xi , θ̂)

g(yi |xi , γ̂)

)2

−
(

1

N

N∑
i=1

ln
f (yi |xi , θ̂)

g(yi |xi , γ̂)

)2

. (8.48)

Thus form

TLR = N−1/2LR(̂θ, γ̂)
/
ω̂

d→ N [0, 1]. (8.49)

For tests with critical value c, H0 is rejected in favor of H f : E0[ln( f/g)] > 0 if
TLR > c, H0 is rejected in favor of Hg : E0[ln( f/g)] < 0 if TLR < −c, and discrimi-
nation between the two models is not possible if |TLR| < c. The test can be modified
to permit log-likelihood penalties similar to AIC and BIC; see Vuong (1989, p. 316).
An asymptotically equivalent statistic to (8.49) replaces ω̂2 by ω̃2 equal to just the first
term in the right-hand side of (8.48).

This test assumes that both models are misspecified. If instead one of the models is
assumed to be correctly specified, the Cox test approach of Section 8.5.2 needs to be
used.

Overlapping Models

For overlapping models it is not clear a priori as to whether or not f (y|x,θ∗) =
g(y|x,γ∗), and one needs to first test this condition.

Vuong (1989) proposes testing whether or not the variance ω2
∗ defined in (8.47)

equals zero, since ω2
∗ = 0 if and only if f (·) = g(·). Thus compute ω̂2 in (8.48). Under

Hω
0 : ω2

∗ = 0

N ω̂2 d→ Mp+q (λ∗), (8.50)
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where the Mp+q (λ∗) distribution is defined after (8.44). Hypothesis Hω
0 is rejected at

level α if N ω̂2 exceeds the upper α percentile of the Mp+q (λ̂) distribution, using the
eigenvalues λ̂ j of the sample analogue of W in (8.45). Alternatively, and more simply,
one can test the conditions that θ∗ and γ∗ must satisfy for f (·) = g(·). Examples are
given in Lien and Vuong (1987).

If Hω
0 is not rejected, or the conditions for f (·) = g(·) are not rejected, conclude

that it is not possible to discriminate between the two models given the data. If Hω
0 is

rejected, or the conditions for f (·) = g(·) are rejected, then test H0 against H f or Hg

using TLR as detailed in the strictly nonnested case. In this latter case the significance
level is at most the maximum of the significance levels for each of the two tests.

This test assumes that both models are misspecified. If instead one of the models is
assumed to be correctly specified, then the other model must also be correctly specified
for the two models to be equivalent. Thus f (y|x,θ∗) = g(y|x,γ∗) under H0, and one
can directly move to the LR test using the weighted chi-square result (8.44). Let c1 and
c2 be upper tail and lower tail critical values, respectively. If 2LR(̂θ, γ̂) > c1 then H0

is rejected in favor of H f ; if 2LR(̂θ, γ̂) < c2 then H0 is rejected in favor of Hg; and
the test is otherwise inconclusive.

8.5.4. Other Nonnested Model Comparisons

The preceding methods are restricted to fully parametric models. Methods for discrim-
inating between models that are only partially parameterized, such as linear regression
without the assumption of normality, are less clear-cut.

The information criteria of Section 8.5.1 can be replaced by criteria developed using
loss functions other than KLIC. A variety of measures corresponding to different loss
functions are presented in Amemiya (1980). These measures are often motivated for
nested models but may also be applicable to nonnested models.

A simple approach is to compare predictive ability, selecting the model with low-
est value of mean-squared error (N − q)−1∑

i (yi − ŷi )2. For linear regression this is
equivalent to choosing the model with highest adjusted R2, which is generally viewed
as providing too small a penalty for model complexity. An adaptation for nonparamet-
ric regression is leave-one-out cross-validation (see Section 9.5.3).

Formal tests to discriminate between nonnested models in the nonlikelihood case
often take one of two approaches. Artificial nesting, proposed by Davidson and
MacKinnon (1984), embeds the two nonnested models into a more general artificial
model and leads to so-called J tests and P tests and related tests. The encompassing
principle, proposed by Mizon and Richard (1986), leads to a quite general framework
for testing one model against a competing nonnested model. White (1994) links this
approach with CM tests. For a summary of this literature see Davidson and MacKinnon
(1993, chapter 11).

8.5.5. Nonnested Models Example

A sample of 100 observations is generated from a Poisson model with mean E[y|x] =
exp(β1 + β2x2 + β3x3), where x2, x3 ∼ N [0, 1], and (β1, β2, β3) = (0.5, 0.5, 0.5).

283



SPECIFICATION TESTS AND MODEL SELECTION

Table 8.2. Nonnested Model Comparisons for Poisson Regression Examplea

Test Type Model 1 Model 2 Conclusion

−2ln L 366.86 352.18 Model 2 preferred
AIC 370.86 358.18 Model 2 preferred
BIC 376.07 366.00 Model 2 preferred
N ω̂2 7.84 with p = 0.000 Can discriminate
TLR = N−1/2LR/ω̂ −0.883 with p = 0.377 No model favored

a N = 100. Model 1 is Poisson regression of y on intercept and x2. Model 2 is Poisson regression
of y on intercept, x3, and x2

3 . The final two rows are for the Vuong test for nonoverlapping models
(see the text).

The dependent variable y has sample mean 1.92 and standard deviation 1.84. Two
incorrect nonnested models were estimated by Poisson regression:

Model 1: Ê[y|x] = exp(0.608
(8.08)

+ 0.291
(4.03)

x2),

Model 2: Ê[y|x] = exp(0.493
(5.14)

+ 0.359
(5.10)

x3 + 0.091
(1.78)

x2
3 ),

where t−statistics are given in parentheses.
The first three rows of Table 8.2 give various information criteria, with the model

with smallest value preferred. The first does not penalize number of parameters and
favors model 2. The second and third measures defined in (8.40) and (8.41) give larger
penalty to model 2, which has an additional parameter, but still lead to the larger model
2 being favored.

The final two rows of the Table 8.2 summarize Vuong’s test, here a test of overlap-
ping models.

First, test the condition of equality of the densities when evaluated at the pseudo-
true values. The statistic ω̂2 in (8.48) is easily computed given expressions for the
densities. The difficult part is computing an estimate of the matrix W in (8.45). For
the Poisson density we can use Â and B̂ defined at the end of Section 5.2.3 and
B̂ f g = N−1∑

i (yi − µ̂ f i )x f i × (yi − µ̂gi )x
′
gi . The eigenvalues of Ŵ are λ1 = 0.29,

λ2 = 1.00, λ3 = 1.06, λ4 = 1.48, and λ5 = 2.75. The p-value for the test statis-
tic N ω̂2 with distribution given in (8.44) is obtained as the proportion of draws of∑5

j=1 λ j z2
j , say 10,000 draws, which exceed N ω̂2 = 69.14. Here p = 0.000 < 0.05

and we conclude that it is possible to discriminate between the models. The critical
value at level 0.05 in this example equals 16.10, quite a bit higher than χ2

.05(5) =
11.07.

Given discrimination is possible, then the second test can be applied. Here TLR =
−0.883 favors the second model, since it is negative. However, using a standard normal
two-tail test at 5% the difference is not statistically significant. In this example ω̂2 is
quite large, which means the first test statistic N ω̂2 is large but the second test statistic
N−1/2LR(̂θ, γ̂)

/
ω̂ is small.
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8.6. Consequences of Testing

In practice more than one test is performed before one reaches a preferred model. This
leads to several complications that practitioners usually ignore.

8.6.1. Pretest Estimation

The use of specification tests to choose a model complicates the distribution of an
estimator. For example, suppose we choose between two estimators θ̂ and θ̃ on the
basis of a statistical test at 5%. For instance, θ̂ and θ̃ may be estimators in unrestricted
and restricted models. Then the actual estimator is θ+ = wθ̂ + (1 − w)̃θ, where the
random variable w takes value 1 if the test favors θ̂ and 0 if the test favors θ̃. In short,
the estimator depends on the restricted and unrestricted estimators and on a random
variable w, which in turn depends on the significance level of the test. Hence θ+ is an
estimator with complex properties. This is called a pretest estimator, as the estimator
is based on an initial test. The distribution of θ+ has been obtained for the linear
regression model under normality and is nonstandard.

In theory statistical inference should be based on the distribution of θ+. In practice
inference is based on the distribution of θ̂ if w = 1 or of θ̃ if w = 0, ignoring the
randomness in w. This is done for simplicity, as even in the simplest models the dis-
tribution of the estimator becomes intractable when several such tests are performed.

8.6.2. Order of Testing

Different conclusions can be drawn according to the order in which tests are con-
ducted.

One possible ordering is from general to specific model. For example, one may
estimate a general model for demand before testing restrictions from consumer de-
mand theory such as homogeneity and symmetry. Or the cycle may go from specific
to general model, with regressors added as needed and additional complications such
as endogeneity controlled for if present. Such orderings are natural when choosing
which regressors to include in a model, but when specification tests are also being
performed it is not uncommon to use both general to specific and specific to general
orderings in the same study.

A related issue is that of joint versus separate tests. For example, the significance
of two regressors can be tested by either two individual t−tests of significance or a
joint F−test or χ2(2) test of significance. A general discussion was given in Sec-
tion 7.2.7 and an example is given later in Section 18.7.

8.6.3. Data Mining

Taken to its extreme, the extensive use of tests to select a model has been called data
mining (Lovell, 1983). For example, one may search among several hundred possible
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predictors of y and choose just those predictors that are significant at 5% on a two-
sided test. Computer programs exist that automate such searches and are commonly
used in some branches of applied statistics. Unfortunately, such broad searches will
lead to discovery of spurious relationships, since a test with size 0.05 leads to er-
roneous findings of statistical significance 5% of the time. Lovell pointed out that
the application of such a methodology tends to overestimate the goodness-of-fit mea-
sures (e.g., R2) and underestimate the sampling variances of regression coefficients,
even when it succeeds in uncovering the variables that feature in the data-generating
process. Using standard tests and reporting p-values without taking account of the
model-search procedure is misleading because nominal and actual p-values are not
the same. White (2001b) and Sullivan, Timmermann, and White (2001) show how to
use bootstrap methods to calculate the true statistical significance of regressors. See
also P. Hansen (2003).

The motivation for data mining is sometimes to conserve degrees of freedom or
to avoid overparameterization (“clutter”). More importantly, many aspects of speci-
fication, such as the functional form of covariates, are left unresolved by underlying
theory. Given specification uncertainty, justification exists for specification searching
(Sargan, 2001). However, care needs to be taken especially if small samples are an-
alyzed and the number of specification searches is large relative to the sample size.
When the specification search is sequential, with a large number of steps, and with
each step determined by a previous test outcome, the statistical properties of the pro-
cedure as a whole are complex and analytically intractable.

8.6.4. A Practical Approach

Applied microeconometrics research generally minimizes the problem of pretest esti-
mation by making judicious use of hypothesis tests. Economic theory is used to guide
the selection of regressors, to greatly reduce the number of potential regressors. If the
sample size is large there is little purpose served by dropping “insignificant” variables.
Final results often use regressions that include statistically insignificant regressors for
control variables, such as region, industry, and occupation dummies in an earnings
regression. Clutter can be avoided by not reporting unimportant coefficients in a full
model specification but noting that fact in an appropriate place. This can lead to some
loss of precision in estimating the key regressors of interest, such as years of school-
ing in an earnings regression, but guards against bias caused by erroneously dropping
variables that should be included.

Good practice is to use only part of the sample (“training sample”) for specification
searches and model selection, and then report results using the preferred model esti-
mated using a completely separate part of the sample (“estimation sample”). In such
circumstances pretesting does not affect the distribution of the estimator, if the sub-
samples are independent. This procedure is usually only implemented when sample
sizes are very large, because using less than the full sample in final estimation leads to
a loss in estimator precision.
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8.7. Model Diagnostics

In this section we discuss goodness-of-fit measures and definitions of residuals in non-
linear models. Useful measures are those that reveal model deficiency in some partic-
ular dimension.

8.7.1. Pseudo-R2 Measures

Goodness of fit is interpreted as closeness of fitted values to sample values of the
dependent variable.

For linear models with K regressors the most direct measure is the standard error
of the regression, which is the estimated standard deviation of the error term,

s =
[

1

N − K

N∑
i=1

(yi − ŷi )
2

]1/2

.

For example, a standard error of regression of 0.10 in a log-earnings regression means
that approximately 95% of the fitted values are within 0.20 of the actual value of
log-earnings, or within 22% of actual earnings using e0.2 � 1.22. This measure is the
same as the in-sample root mean squared error where ŷi is viewed as a forecast of of
yi , aside from a degrees of freedom correction. Alternatively, one can use the mean
absolute error (N − K )−1∑

i |yi − ŷi |. The same measures can be used for nonlinear
regression models, provided the nonlinear models lead to a predicted value ŷi of the
dependent variable.

A related measure in linear models is R2, the coefficient of multiple determina-
tion. This explains the fraction of variation of the dependent variable explained by the
regressors. The statistic R2 is more commonly reported than s, even though s may be
more informative in evaluating the goodness of fit.

A pseudo-R2 is an extension of R2 to nonlinear regression model. There are several
interpretations of R2 in the linear model. These lead to several possible pseudo-R2

measures that in nonlinear models differ and do not necessarily have the properties of
lying between zero and one and increasing as regressors are added. We present several
of these measures that, for simplicity, are not adjusted for degrees of freedom.

One approach bases R2 on decomposition of the total sum of squares (TSS), with∑
i

(yi − ȳ)2 =
∑

i

(yi − ŷi )
2 +
∑

i

(̂yi − ȳ)2 + 2
∑

i

(yi − ŷi )(̂yi − ȳ).

The first sum in the right-hand side is the residual sum of squares (RSS) and the second
term is the explained sum of squares (ESS). This leads to two possible measures:

R2
RES = 1 − RSS/TSS,

R2
EXP = ESS/TSS.

For OLS regression in the linear model with intercept the third sum equals zero, so
R2

RES = R2
EXP. However, this simplification does not occur in other models and in gen-

eral R2
RES �= R2

EXP in nonlinear models. The measure R2
RES can be less than zero, R2

EXP
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can exceed one, and both measures may decrease as regressors are added though R2
RES

will increase for NLS regression of the nonlinear model as then the estimator is mini-
mizing RSS.

A closely related measure uses

R2
COR = Ĉor2 [yi , ŷi ] ,

the squared correlation between actual and fitted values. The measure R2
COR lies be-

tween zero and one and equals R2 in OLS regression for the linear model with inter-
cept. In nonlinear models R2

COR can decrease as regressors are added.
A third approach uses weighted sums of squares that control for the intrinsic het-

eroskedasticity of cross-section data. Let σ̂ 2
i be the fitted conditional variance of yi ,

where it is assumed that heteroskedasticity is explicitly modeled as is the case for
FGLS and for models such as logit and Poisson. Then we can use

R2
WSS = 1 − WRSS/WTSS,

where the weighted residual sum of squares WRSS =∑i (yi − ŷi )2/σ̂ 2
i , WTSS =∑

i (yi − µ̂)2/σ̂ 2, and µ̂ and σ̂ 2 are the estimated mean and variance in the intercept-
only model. This can be called a Pearson R2 because WRSS equals the Pearson
statistic, which, aside from any finite-sample corrections, should equal N if het-
eroskedasticity is correctly modeled. Note that R2

WSS can be less than zero and decrease
as regressors are added.

A fourth approach is a generalization of R2 to objective functions other than the sum
of squared residuals. Let QN (θ) denote the objective function being maximized, Q0

denote its value in the intercept-only model, Qfit denote the value in the fitted model,
and Qmax denote the largest possible value of QN (θ). Then the maximum potential
gain in the objective function resulting from inclusion of regressors is Qmax − Q0 and
the actual gain is Qfit − Q0. This suggests the measure

R2
RG = Qfit − Q0

Qmax − Q0
= 1 − Qmax − Qfit

Qmax − Q0
,

where the subscript RG means relative gain. For least-squares estimation the loss
function maximized is minus the residual sum of squares. Then Q0 = −TSS, Qfit =
−RSS, and Qmax = 0, so R2

RG = ESS/TSS for OLS or NLS regression. The measure
R2

RG has the advantage of lying between zero and one and increasing as regressors are
added. For ML estimation the loss function is QN (θ) = ln L N (θ). Then R2

RG cannot
always be used as in some models there may be no bound on Qmax. For example, for
the linear model under normality L N (β,σ 2) →∞ as σ 2→0. For ML and quasi-ML
estimation of linear exponential family models, such as logit and Poisson, Qmax is
usually known and R2

RG can be shown to be an R2 based on the deviance residuals
defined in the next section.

A related measure to R2
RG is R2

Q = 1 − Qfit/Q0. This measure increases as re-
gressors are added. It equals R2

RG if Qmax = 0, which is the case for OLS regres-
sion and for binary and multinomial models. Otherwise, for discrete data this mea-
sure may have upper bound less than one, whereas for continuous data the measure
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may not be bounded between zero and one as the log-likelihood can be negative or
positive. For example, for ML estimation with continuous density it is possible that
Q0 = 1 and Qfit = 4, leading to R2

Q = −3, or that Q0 = −1 and Qfit = 4, leading
to R2

Q = 5.
For nonlinear models there is therefore no universal pseudo-R2. The most useful

measures may be R2
COR, as correlation coefficients are easily interpreted, and R2

RG in
special cases that Qmax is known. Cameron and Windmeijer (1997) analyze many of
the measures and Cameron and Windmeijer (1996) apply these measures to count data
models.

8.7.2. Residual Analysis

Microeconometrics analysis actually places little emphasis on residual analysis, com-
pared to some other areas of statistics. If data sets are small then there is concern that
residual analysis may lead to overfitting of the model. If the data set is large then
there is a belief that residual analysis may be unnecessary as a single observation will
have little impact on the analysis. We therefore give a brief summary. A more exten-
sive discussion is given in, for example, McCullagh and Nelder (1989) and Cameron
and Trivedi (1998, chapter 5). Econometricians have had particular interest in defining
residuals in censored and truncated models.

A wide range of residuals have been proposed for nonlinear regression models.
Consider a scalar dependent variable yi with fitted value ŷi = µ̂i = µ(xi ,̂θ). The raw
residual is ri = yi − µ̂i . The Pearson residual is the obvious correction for het-
eroskedasticity pi = (yi − µ̂i )/σ̂ i , where σ̂ i is an estimate of the conditional variance
of yi . This requires a specification of the variance for yi , which is done for models
such as the Poisson. For an LEF density (see Section 5.7.3) the deviance residual is
di = sign(yi − µ̂i )

√
2[l(yi ) − l(µ̂i )], where l(y) denotes the log-density of y|µ eval-

uated at µ = y and l(µ̂) denotes evaluation at µ = µ̂. A motivation for the deviance
residual is that the sum of squares of these residuals is the deviance statistic that is
the generalization for LEF models of the sum of raw residuals in the linear model. The
Anscombe residual is defined to be the transformation of y that is closest to normality,
then standardized to mean zero and variance 1. This transformation has been obtained
for LEF densities.

Small-sample corrections to residuals have been proposed to account for estima-
tion error in µ̂i . For the linear model this entails division of residuals by

√
1 − hii ,

where hii is the i th diagonal entry in the hat matrix H = X(X′X)−1X. These residu-
als are felt to have better finite-sample performance. Since H has rank K , the num-
ber of regressors, the average value of hii is K/N and values of hii in excess of
2K/N are viewed as having high leverage. These results extend to LEF models
with H = W1/2X(X′WX)−1XW1/2, where W = Diag[wi i ] andwi i = g′(x′

iβ)/σ 2
i with

g(x′
iβ) and σ 2

i the specified conditional mean and variance, respectively. McCullagh
and Nelder (1989) provide a summary.

More generally, Cox and Snell (1968) define a generalized residual to be any scalar
function ri = r (yi , xi , θ̂) that satisfies some relatively weak conditions. One way that
such residuals arise is that many estimators have first-order conditions of the form
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∑
i g(xi ,θ)r (yi , xi , θ̂) = 0, where yi appears in the scalar r (·) but not in the vector g(·).

See also White (1994).
For regression models based on a normal latent variable (see Chapters 14 and 16)

Chesher and Irish (1987) propose using E[ε∗i |yi ] as the residual, where y∗
i = µi + ε∗i

is the unobserved latent variable and yi = g(y∗
i ) is the observed dependent variable.

Particular choices of g(·) correspond to the probit and Tobit models. Gouriéroux et al.
(1987) generalize this approach to LEF densities. A natural approach in this context
is to treat residuals as missing data, along the lines of the expectation maximum algo-
rithm in Section 10.3.

A common use of residuals is in plots against other variables of interest. Plots of
residuals against fitted values can reveal poor model fit; plots of residuals against omit-
ted variables can suggest further regressors to include in the model; and plots of resid-
uals against included regressors can suggest need for a different functional form. It can
be helpful to include a nonparametric regression line in such plots, (see Chapter 9). If
data take only a few discrete values the plots can be difficult to interpret because of
clustering at just a few values, and it can be helpful to use a so-called jitter feature that
adds some random noise to the data to reduce the clustering.

Some parametric models imply that an appropriately defined residual should be
normally distributed. This can be checked by a normal scores plot that orders residuals
ri from smallest to largest and plots them against the values predicted if the resid-
uals were exactly normally distributed. Thus plot ordered ri against r + srΦ−1((i −
0.5)/N ), where r and sr are the sample mean and standard deviation of r and Φ−1(·)
is the inverse of the standard normal cdf.

8.7.3. Diagnostics Example

Table 8.3 uses the same data-generating process as in Section 8.5.5. The dependent
variable y has sample mean 1.92 and standard deviation 1.84. Poisson regression of y
on x3 and of y on x3 and x2

3 yields

Model 1: Ê[y|x] = exp(0.586
(5.20)

+ 0.389
(7.60)

x3),

Model 2: Ê[y|x] = exp(0.493
(5.14)

+ 0.359
(5.10)

x3 + 0.091
(1.78)

x2
3 ),

where t-statistics are given in parentheses.
In this example all R2 measures increase with addition of x2

3 as regressor, though
by quite different amounts given that in this example all but the last R2 have similar
values. More generally the first three R2 are scaled similarly and R2

RES and R2
COR can

be quite close, but the remaining three measures are scaled quite differently. Only the
last two R2 measures are guaranteed to increase as a regressor is added, unless the
objective function is the sum of squared errors. The measure R2

RG can be constructed
here, as the Poisson log-likelihood is maximized if the fitted mean µ̂i = yi for all i ,
leading to Qmax =∑i [yi ln yi − yi − ln yi !], where y ln y = 0 when y = 0.

Additionally, three residuals were calculated for the second model. The sample
mean and standard deviation of residuals were, respectively, 0 and 1.65 for the raw
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Table 8.3. Pseudo R2s: Poisson Regression Examplea

Diagnostic Model 1 Model 2 Difference

s where s2 = RSS/(N-K) 0.1662 0.1661 0.0001
R2

RES = 1 − RSS/TSS 0.1885 0.1962 +0.0077

R2
EXP = ESS/TSS 0.1667 0.2087 +0.0402

R2
COR = Ĉor2 [yi , ŷi ] 0.1893 0.1964 +0.0067

R2
WSS = 1 − WRSS/WTSS 0.1562 0.1695 +0.0233

R2
RG = (Qfit−Q0)/(Qmax−Q0) 0.1552 0.1712 +0.0160

R2
Q = 1−Qfit/Q0 0.0733 0.0808 +0.0075

a N = 100. Model 1 is Poisson regression of y on intercept and x3. Model 2 is Poisson regression of y
on intercept, x3, and x2

3 . RSS is residual sum of squares (SS), ESS is explained SS, TSS is total sum
of squares, WRSS is weighted RSS, WTSS is weighted TSS,Qfit is fitted value of objective function,
Q0 is fitted value in intercept-only model, and Qmax is the maximum possible value of the objective
function given the data and exists only for some objective functions.

residuals, 0.01 and 1.97 for the Pearson residuals, and −0.21 and 1.22 for the deviance
residuals. The zero mean for the raw residual is a property of Poisson regression with
intercept included that is shared by very few other models. The larger standard devia-
tion of the raw residuals reflects the lack of scaling and the fact that here the standard
deviation of y exceeds 1. The correlations between pairs of these residuals all exceed
0.96. This is likely to happen when R2 is low so that ŷi � ȳ.

8.8. Practical Considerations

m-Tests and Hausman tests are most easily implemented by use of auxiliary regres-
sions. One should be aware that these auxiliary regressions may be valid only under
distributional assumptions that are stronger than those made to obtain the usual robust
standard errors of regression coefficients. Some robust tests have been presented in
Section 8.4.

With a large enough data set and fixed significance level such as 5% the sample mo-
ment conditions implied by a model will be rejected, except in the unrealistic case that
all aspects of the model–functional form, regressors, and distribution – are correctly
specified. In classical testing situations this is often a desired result. In particular, with
a large enough sample, regression coefficients will always be significantly different
from zero and many studies seek such a result. However, for specification tests the
desire is usually to not reject, so that one can say that the model is correctly specified.
Perhaps for this reason specification tests are under-utilized.

As an illustration, consider tests of correct specification of life-cycle models of
consumption. Unless samples are small a dedicated specification tester is likely to
reject the model at 5%. For example, suppose a model specification test statistic
is χ2(12) distributed when applied to a sample with N = 3,000 has a p-value of
0.02. It is not clear that the life-cycle model is providing a poor explanation of the
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data, even though it would be formally rejected at the 5% significance level. One
possibility is to increase the critical value as sample size increases using BIC (see
Section 8.5.1).

Another reason for underutilization of specification tests is difficulty in computation
and poor size property of tests when more convenient auxiliary regressions are used
to implement an asymptotically equivalent version of a test. These drawbacks can be
greatly reduced by use of the bootstrap. Chapter 11 presents bootstrap methods to
implement many of the tests given in this chapter.

8.9. Bibliographic Notes

8.2 The conditional moment test, due to Newey (1985) and Tauchen (1985), is a generalization
of the information matrix test of White (1982). For ML estimation, the computation of the
m-test by auxiliary regression generalizes methods of Lancaster (1984) and Chesher (1984)
for the IM test. A good overview of m-tests is given in Pagan and Vella (1989). The m-test
provides a very general framework for viewing testing. It can be shown to nest all tests,
such as Wald, LM, LR, and Hausman tests. This unifying element is emphasized in White
(1994).

8.3 The Hausman test was proposed by Hausman (1978), with earlier references already given
in Section 8.3 and a good survey provided by Ruud (1984).

8.4 The econometrics texts by Greene (2003), Davidson and McKinnon (1993) and Wooldridge
(2002) present many of the standard specification tests.

8.5 Pesaran and Pesaran (1993) discuss how the Cox (1961, 1962b) nonnested test can be
implemented when an analytical expression for the expectation of the log-likelihood is not
available. Alternatively, the test of Vuong (1989) can be used.

8.7 Model diagnostics for nonlinear models are often obtained by extension of results for the
linear regression model to generalized linear models such as logit and Poisson models. A
detailed discussion with references to the literature is given in Cameron and Trivedi (1998,
Chapter 5).

Exercises

8–1 Suppose y = x′β + u, where u ∼ N [0,σ 2], with parameter vector θ = [β′, σ 2]′ and
density f (y|θ ) = (1/

√
2πσ ) exp[−(y − x′β)2/2σ 2]. We have a sample of N inde-

pendent observations.

(a) Explain why a test of the moment condition E[x(y − x′β)3] is a test of the
assumption of normally distributed errors.

(b) Give the expressions for m̂i and ŝi given in (8.5) necessary to implement the
m-test based on the moment condition in part (a).

(c) Suppose dim[x] =10, N = 100, and the auxiliary regression in (8.5) yields an
uncentered R 2 of 0.2. What do you conclude at level 0.05?

(d) For this example give the moment conditions tested by White’s information
matrix test.

8–2 Consider the multinomial version of the PCGF test given in (8.23) with pj replaced
by p̂j = N−1∑

i Fj (xi , θ̂). Show that PCGF can be expressed as CGF in (8.27)
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with V̂ = Diag[N p̂j ]. [Conclude that in the multinomial case Andrew’s test statistic
simplifies to Pearson’s statistic.]

8–3 (Adapted from Amemiya, 1985). For the Hausman test given in Section 8.4.1 let
V11 = V[̂θ],V22 = V[̃θ], and V12 = Cov[̂θ, θ̃].

(a) Show that the estimator θ̄ = θ̂ + [V11 + V22 − 2V12]−1(̃θ, θ̂) has asymptotic
variance matrix V[θ̄] = V11 − [V11 − V12][V11 + V22 − 2V12]−1[V11 − V12].

(b) Hence show that V[θ̄] is less than V[̂θ] in the matrix sense unless Cov[̂θ, θ̃] =
V[̂θ].

(c) Now suppose that θ̂ is fully efficient. Can V[θ̄] be less than V[̂θ]? What do
you conclude?

8–4 Suppose that two models are non-nested and there are N = 200 observations.
For model 1, the number of parameters q = 10 and ln L = −400. For model 3,
q = 10 and ln L = −380.

(a) Which model is favored using AIC?
(b) Which model is favored using BIC?
(c) Which model would be favored if the models were actually nested and we

used a likelihood ratio test at level 0.05?

8–5 Use the health expenditure data of Section 16.6. The model is a probit regres-
sion of DMED, an indicator variable for positive health expenditures, against the
17 regressors listed in the second paragraph of Section 16.6. You should obtain
the estimates given in the first column of Table 16.1.

(a) Test the joint statistical significance of the self-rated health indicators HLTHG,
HLTHF, and HLTHP at level 0.05 using a Hausman test. [This may require
some additional coding, depending on the package used.]

(b) Is the Hausman test the best test to use here?
(c) Does an information matrix test at level 0.05 support the restrictions of this

model? [This will require some additional coding.]
(d) Discriminate between a model that drops HLTHG, HLTHF, and HLTHP and a

model that drops LC, IDP, and LPI on the basis of R 2
RES, R 2

EXP, R 2
COR, and

R 2
RG.
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C H A P T E R 9

Semiparametric Methods

9.1. Introduction

In this chapter we present methods for data analysis that require less model specifica-
tion than the methods of the preceding chapters.

We begin with nonparametric estimation. This makes very minimal assumptions
regarding the process that generated the data. One leading example is estimation of
a continuous density using a kernel density estimate. This has the attraction of pro-
viding a smoother estimate than the familiar histogram. A second leading example
is nonparametric regression, such as kernel regression, on a scalar regressor. This
places a flexible curve on an (x, y) scatterplot with no parametric restrictions on the
form of the curve. Nonparametric estimates have numerous uses, including data de-
scription, exploratory analysis of data and of fitted residuals from a regression model,
and summary across simulations of parameter estimates obtained from a Monte Carlo
study.

Econometric analysis emphasizes multivariate regression of a scalar y on a vector
of regressors x. However, nonparametric methods, although theoretically possible with
an infinitely large sample, break down in practice because the data need to be sliced in
several dimensions, leading to too few data points in each slice.

As a result econometricians have focused on semiparametric methods. These com-
bine a parametric component, greatly reducing the dimensionality, with a nonpara-
metric component. One important application is to permit more flexible models of the
conditional mean. For example, the conditional mean E[y|x] may be parameterized to
be of the single-index form g(x′β), where the functional form for g(·) is not specified
but is instead nonparametrically estimated, along with the unknown parameters β. An-
other important application relaxes distributional assumptions that if misspecified lead
to inconsistent parameter estimates. For example, we may wish to obtain consistent
estimates of β in a linear regression model y = x′β + ε when data on y are trun-
cated or censored (see Chapter 16), without having to correctly specify the particular
distribution of the error term ε.
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The asymptotic theory for nonparametric methods differs from that for more para-
metric methods. Estimates are obtained by cutting the data into ever smaller slices as
N → ∞ and estimating local behavior within each slice. Since less than N observa-
tions are being used in estimating each slice the convergence rate is slower than that
obtained in the preceding chapters. Nonetheless, in the simplest cases nonparamet-
ric estimates are still asymptotically normally distributed. In some leading cases of
semiparametric regression the estimators of parameters β have the usual property of
converging at rate N−1/2, so that scaling by

√
N leads to a limit normal distribution,

whereas the nonparametric component of the model converges at a slower rate N−r ,
r < 1/2.

Because nonparametric methods are local averaging methods, different choices of
localness lead to different finite-sample results. In some restrictive cases there are rules
or methods to determine the bandwidth or window width used in local averaging, just
as there are rules for determining the number of bins in a histogram given the number
of observations. In addition, it is common practice to use the nonscientific method of
choosing the bandwidth that gives a graph that to the eye looks reasonably smooth yet
is still capable of picking up details in the relationship of interest.

Nonparametric methods form the bulk of this chapter, both because they are of
intrinsic interest and because they are an essential input for semiparametric methods,
presented most notably in the chapters on discrete and censored dependent-variable
models. Kernel methods are emphasized as they are relatively simple to present and
because “It is argued that all smoothing methods are in an asymptotic sense essentially
equivalent to kernel smoothing” (Härdle, 1990, p. xi).

Section 9.2 provides examples of nonparametric density estimation and nonpara-
metric regression applied to data. Kernel density estimation is presented in Section
9.3. Local regression is discussed in Section 9.4, to provide motivation for the formal
treatment of kernel regression given in Section 9.5. Section 9.6 presents nonparamet-
ric regression methods other than kernel methods. The vast topic of semiparametric
regression is then introduced in Section 9.7.

9.2. Nonparametric Example: Hourly Wage

As an example we consider the hourly wage and education for 175 women aged
36 years who worked in 1993. The data are from the Michigan Panel Survey of In-
come Dynamics. It is easily established that the distribution of the hourly wage is
right-skewed and so we model ln wage, the natural logarithm of the hourly wage.

We give just one example of nonparametric density estimation and one of nonpara-
metric regression and illustrate the important role of bandwidth selection. Sections 9.3
to 9.6 then provide the underlying theory.

9.2.1. Nonparametric Density Estimate

A histogram of the natural logarithm of wage is given in Figure 9.1. To provide detail
the bin width is chosen so that there are 30 bins, each of width about 0.20. This is an
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Figure 9.1: Histogram for natural logarithm of hourly wage. Data for 175 U.S. women aged
36 years who worked in 1993.

unusually narrow bin width for only 175 observations, but many details are lost with
a larger bin width. The log-wage data seem to be reasonably symmetric, though they
are possibly slightly left-skewed.

The standard smoothed nonparametric density estimate is the kernel density esti-
mate defined in (9.3). Here we use the Epanechnikov kernel defined in Table 9.1.

The essential decision in implementation is the choice of bandwidth. For this ex-
ample Silverman’s plug-in estimate defined in (9.13) yields bandwidth of h = 0.545.
Then the kernel estimate is a weighted average of those observations that have log
wage within 0.21 units of the log wage at the current point of evaluation, with great-
est weight placed on data closest to the current point of evaluation. Figure 9.2 presents
three kernel density estimates, with bandwidths of 0.273, 0.545 and 1.091, respectively
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Density Estimates as Bandwidth Varies

Figure 9.2: Kernel density estimates for log wage for three different bandwidths using the
Epanechnikov kernel. The plug-in bandwidth is h = 0.545. Same data as Figure 9.1.
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corresponding to one-half the plug-in, the plug-in, and two times the plug-in band-
width. Clearly the smallest bandwidth is too small as it leads to too jagged a density es-
timate. The largest bandwidth oversmooths the data. The middle bandwidth, the plug-
in value of 0.545, seems the best choice. It gives a reasonably smooth density estimate.

What might we do with this kernel density estimate? One possibility is to compare
the density to the normal, by superimposing a normal density with mean equal to the
sample mean and variance equal to the sample variance. The graph is not reproduced
here but reveals that the kernel density estimate with preferred bandwidth 0.545 is con-
siderably more peaked than the normal. A second possibility is to compare log-wage
kernel density estimates for different subgroups, such as by educational attainment or
by full-time or part-time work status.

9.2.2. Nonparametric Regression

We consider the relationship between log wage and education. The nonparametric
method used here is the Lowess local regression method, a local weighted average
estimator (see Equation (9.16) and Section 9.6.2).

A local weighted regression line at each point x is fitted using centered subsets that
include the closest 0.8N observations, the program default, where N is the sample
size, and the weights decline as we move away from x . For values of x near the end
points, smaller uncentered subsets are used.

Figure 9.3 gives a scatter plot of log wage against education and three Lowess
regression curves for bandwidths of 0.8, 0.4 and 0.1. The first two bandwidths give
similar curves. The relationship appears to be quadratic, but this may be speculative as
the data are relatively sparse at low education levels, with less than 10% of the sample
having less than 10 years of schooling. For the majority of the data a linear relationship
may also work well. For simplicity we have not presented 95% confidence intervals or
bands that might also be provided.
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Figure 9.3: Nonparametric regression of log wage on education for three different band-
widths using Lowess regression. Same sample as Figure 9.1.
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9.3. Kernel Density Estimation

Nonparametric density estimates are useful for comparison across different groups and
for comparison to a benchmark density such as the normal. Compared to a histogram
they have the advantage of providing a smoother density estimate. A key decision,
analogous to choosing the number of bins in a histogram, is bandwidth choice. We
focus on the standard nonparametric density estimator, the kernel density estimator. A
detailed presentation is given as results also relevant for regression are more simply
obtained for density estimation.

9.3.1. Histogram

A histogram is an estimate of the density formed by splitting the range of x into
equally spaced intervals and calculating the fraction of the sample in each interval.

We give a more formal presentation of the histogram, one that extends naturally to
the smoother kernel density estimator. Consider estimation of the density f (x0) of a
scalar continuous random variable x evaluated at x0. Since the density is the derivative
of the cdf F(x0) (i.e., f (x0) = d F(x0)/dx) we have

f (x0) = lim
h→0

F(x0 + h) − F(x0 − h)

2h

= lim
h→0

Pr [x0 − h < x < x0 + h]

2h
.

For a sample {xi , i = 1, . . . , N } of size N , this suggests using the estimator

f̂HIST(x0) = 1

N

N∑
i=1

1(x0 − h < xi < x0 + h)

2h
, (9.1)

where the indicator function

1(A) =
{

1 if event A occurs,
0 otherwise.

The estimator f̂HIST(x0) is a histogram estimate centered at x0 with bin width 2h, since
it equals the fraction of the sample that lies between x0 − h and x0 + h divided by the
bin width 2h. If f̂HIST is evaluated over the range of x at equally spaced values of x ,
each 2h units apart, it yields a histogram.

The estimator f̂HIST(x0) gives all observations in x0 ± h equal weight as is clear
from rewriting (9.1) as

f̂HIST(x0) = 1

Nh

N∑
i=1

1

2
× 1
(∣∣∣∣ xi − x0

h

∣∣∣∣ < 1

)
. (9.2)

This leads to a density estimate that is a step function, even if the underlying density
is continuous. Smoother estimates can be obtained by using weighting functions other
than the indicator function chosen here.

298
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9.3.2. Kernel Density Estimator

The kernel density estimator, introduced by Rosenblatt (1956), generalizes the his-
togram estimate (9.2) by using an alternative weighting function, so

f̂ (x0) = 1

Nh

N∑
i=1

K

(
xi − x0

h

)
. (9.3)

The weighting function K (·) is called a kernel function and satisfies restrictions given
in the next section. The parameter h is a smoothing parameter called the bandwidth,
and two times h is the window width. The density is estimated by evaluating f̂ (x0) at
a wider range of values of x0 than used in forming a histogram; usually evaluation is
at the sample values x1, . . . , xN . This also helps provide a density estimate smoother
than a histogram.

9.3.3. Kernel Functions

The kernel function K (·) is a continuous function, symmetric around zero, that inte-
grates to unity and satisfies additional boundedness conditions. Following Lee (1996)
we assume that the kernel satisfies the following conditions:

(i) K (z) is symmetric around 0 and is continuous.

(ii)
∫

K (z)dz = 1,
∫

zK (z)dz = 0, and
∫ |K (z)|dz <∞.

(iii) Either (a) K (z) = 0 if |z| ≥ z0 for some z0 or (b) |z|K (z) → 0 as |z| → ∞.
(iv)

∫
z2 K (z)dz = κ , where κ is a constant.

In practice kernel functions work better if they satisfy condition (iiia) rather than
just the weaker condition (iiib). Then restricting attention to the interval [−1, 1] rather
than [−z0, z0] is simply a normalization for convenience, and usually K (z) is restricted
to z ∈ [−1, 1].

Some commonly used kernel functions are given in Table 9.1. The uniform kernel
uses the same weights as a histogram of bin width 2h, except that it produces a running
histogram that is evaluated at a series of points x0 rather than using fixed bins. The
Gaussian kernel satisfies (iiib) rather than (iiia) because it does not restrict z ∈ [−1, 1].
A pth-order kernel is one whose first nonzero moment is the pth moment. The first
seven kernels are of second order and satisfy the second condition in (ii). The last
two kernels are fourth-order kernels. Such higher order kernels can increase rates of
convergence if f (x) is more than twice differentiable (see Section 9.3.10), though they
can take negative values. Table 9.1 also gives the parameter δ, defined in (9.11) and
used in Section 9.3.6 to aid bandwidth choice, for some of the kernels.

Given K (·) and h the estimator is very simple to implement. If the kernel estimator
is evaluated at r distinct values of x0 then computation of the kernel estimator requires
at most Nr operations, when the kernel has unbounded support. Considerable compu-
tational savings on this are possible; see, for example, Härdle (1990, p. 35).
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Table 9.1. Kernel Functions: Commonly Used Examplesa

Kernel Kernel Function K (z) δ

Uniform (or box or rectangular) 1
2 × 1(|z| < 1) 1.3510

Triangular (or triangle) (1 − |z|) × 1(|z| < 1) –

Epanechnikov (or quadratic) 3
4 (1 − z2) × 1(|z| < 1) 1.7188

Quartic (or biweight) 15
16 (1 − z2)2 × 1(|z| < 1) 2.0362

Triweight 35
32 (1 − z2)3 × 1(|z| < 1) 2.3122

Tricubic 70
81 (1 − |z|3)3 × 1(|z| < 1) –

Gaussian (or normal) (2π )−1/2 exp(−z2/2) 0.7764

Fourth-order Gaussian 1
2 (3 − z)2(2π )−1/2 exp(−z2/2) –

Fourth-order quartic 15
32 (3 − 10z2 + 7z4) × 1(|z| < 1) –

a The constant δ is defined in (9.11) and is used to obtain Silverman’s plug-in estimate given in (9.13).

9.3.4. Kernel Density Example

The key choice of bandwidth h has already been illustrated in Figure 9.2.
Here we illustrate the choice of kernel using generated data, a random sample of

size 100 drawn from the N [0, 252] distribution. For the particular sample drawn the
sample mean is 2.81 and the sample standard deviation is 25.27.

Figure 9.4 shows the effect of using different kernels. For Epanechnikov, Gaussian,
quartic and uniform kernels, Silverman’s plug-in estimate given in (9.13) yields band-
widths of, respectively, 0.545, 0.246, 0.246, and 0.214. The resulting kernel density
estimates are very similar, even for the uniform kernel which produces a running
histogram. The variation in density estimate with kernel choice is much less than the
variation with bandwidth choice evident in Figure 9.2.
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Figure 9.4: Kernel density estimates for log wage for four different kernels using the corre-
sponding Silverman’s plug-in estimate for bandwidth. Same data as Figure 9.1.
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9.3.5. Statistical Inference

We present the distribution of the kernel density estimator f̂ (x) for given choice of
K (·) and h, assuming the data x are iid. The estimate f̂ (x) is biased. This bias goes to
zero asymptotically if the bandwidth h → 0 as N → ∞, so f̂ (x) is consistent. How-
ever, the bias term does not necessarily disappear in the asymptotic normal distribution
for f̂ (x), complicating statistical inference.

Mean and Variance

The mean and variance of f̂ (x0) are obtained in Section 9.8.1, assuming that the second
derivative of f (x) exists and is bounded and that the kernel satisfies

∫
zK (z)dz = 0,

as assumed in property (ii) of Section 9.3.3.
The kernel density estimator is biased with bias term b(x0) that depends on the

bandwidth, the curvature of the true density, and the kernel used according to

b(x0) = E[ f̂ (x0)] − f (x0) = 1

2
h2 f

′′
(x0)
∫

z2 K (z)dz. (9.4)

The kernel estimator is biased of size O(h2), where we use the order of magnitude
notation that a function a(h) is O(hk) if a(h)/hk is finite. The bias disappears asymp-
totically if h → 0 as N → ∞.

Assuming h → 0 and N → ∞, the variance of the kernel density estimator is

V[ f̂ (x0)] = 1

Nh
f (x0)

∫
K (z)2dz + o

(
1

Nh

)
, (9.5)

where a function a(h) is o(hk) if a(h)/hk → 0. The variance depends on the sample
size, bandwidth, the true density, and the kernel. The variance disappears if Nh → ∞,
which requires that while h → 0 it must do so at a slower rate than N → ∞.

Consistency

The kernel estimator is pointwise consistent, that is, consistent at a particular point
x = x0, if both the bias and variance disappear. This is the case if h → 0 and
Nh → ∞.

For estimation of f (x) at all values of x the stronger condition of uniform conver-
gence, that is, supx0

| f̂ (x0) − f (x0)| p→ 0, can be shown to occur if Nh/ ln N → ∞.
This requires h larger than for pointwise convergence.

Asymptotic Normality

The preceding results show that asymptotically f̂ (x0) has mean f (x0) + b(x0) and
variance (Nh)−1 f (x0)

∫
K (z)2dz. It follows that if a central limit theorem can be
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applied, the kernel density estimator has limit distribution

√
Nh( f̂ (x0) − f (x0) − b(x0))

d→ N
[

0, f (x0)
∫

K (z)2dz

]
. (9.6)

The central limit theorem applied is a nonstandard one and requires condition (iv); see,
for example, Lee (1996, p. 139) or Pagan and Ullah (1999, p. 40).

It is important to note the presence of the bias term b(x0), defined in (9.4). For
typical choices of bandwidth this term does not disappear, complicating computation
of confidence intervals (presented in Section 9.3.7).

9.3.6. Bandwidth Choice

The choice of bandwidth h is much more important than choice of kernel function
K (·). There is a tension between setting h small to reduce bias and setting h large to
ensure smoothness. A natural metric to use is therefore mean-squared error (MSE),
the sum of bias squared and variance.

From (9.4) the bias is O(h2) and from (9.5) the variance is O((Nh)−1). Intu-
itively MSE is minimized by choosing h so that bias squared and variance are of the
same order, so h4 = (Nh)−1, which implies the optimal bandwidth h = O(N−0.2) and√

Nh = O(N 0.4). We now give a more formal treatment that includes a practical plug-
in estimate for h.

Mean Integrated Squared Error

A local measure of the performance of the kernel density estimate at x0 is the MSE

MSE[ f̂ (x0)] = E[( f̂ (x0) − f (x0))2], (9.7)

where the expectation is with respect to the density f (x). Since MSE equals variance
plus squared bias, (9.4) and (9.5) yield the MSE of the kernel density estimate

MSE[ f̂ (x0)] � 1

Nh
f (x0)

∫
K (z)2dz +

{
1

2
h2 f

′′
(x0)
∫

z2 K (z)dz

}2

. (9.8)

To obtain a global measure of performance at all values of x0 we begin by defining
the integrated squared error (ISE)

ISE(h) =
∫

( f̂ (x0) − f (x0))2dx0, (9.9)

the continuous analogue of summing squared error over all x0 in the discrete case.
This is written as a function of h to emphasize dependence on the bandwidth. We then
eliminate the dependence of f̂ (x0) on x values other than x0 by taking the expected
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value of the ISE with respect to the density f (x). This yields the mean integrated
squared error (MISE),

MISE(h) = E [ISE(h)]

= E

[∫
( f̂ (x0) − f (x0))2dx0

]
=
∫

E[( f̂ (x0) − f (x0))2]dx0

=
∫

MSE[ f̂ (x0)]dx0,

where MSE[ f̂ (x)] is defined in (9.8). From the preceding algebra MISE equals the
integrated mean-squared error (IMSE).

Optimal Bandwidth

The optimal bandwidth minimizes MISE. Differentiating MISE(h) with respect to h
and setting the derivative to zero yields the optimal bandwidth

h∗ = δ
(∫

f ′′(x0)2dx0

)−0.2

N−0.2, (9.10)

where δ depends on the kernel function used, with

δ =
( ∫

K (z)2dz(∫
z2 K (z)dz

)2
)0.2

. (9.11)

This result is due to Silverman (1986).
Since h∗ = O(N−0.2), we have h∗ → 0 as N → ∞ and Nh∗ = O(N 0.8) → ∞

as required for consistency. The bias in f̂ (x0) is O(h∗2) = O(N−0.4), which disap-
pears as N → ∞. For a histogram estimate it can be shown that h∗ = O(N−0.2)
and MISE(h∗) = O(N−2/3), inferior to MISE(h∗) = O(N−4/5) for the kernel density
estimate.

The optimal bandwidth depends on the curvature of the density, with h∗ lower if
f (x) is highly variable.

Optimal Kernel

The optimal bandwidth varies with the kernel (see (9.10) and (9.11)). It can be shown
that MISE(h∗) varies little across kernels, provided different optimal h∗ are used for
different kernels (Figure 9.4 provides an illustration). It can be shown that the optimal
kernel is the Epanechnikov, though this advantage is slight.

Bandwidth choice is much more important than kernel choice and from (9.10) this
varies with the kernel.
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Plug-in Bandwidth Estimate

A plug-in estimate for the bandwidth is a simple formula for h that depends on the
sample size N and the sample standard deviation s.

A useful starting point is to assume that the data are normally distributed. Then∫
f

′′
(x0)2dx0 = 3/(8

√
πσ 5) = 0.2116/σ 5, in which case (9.10) specializes to

h∗ = 1.3643δN−0.2s, (9.12)

where s is the sample standard deviation of x and δ is given in Table 9.1 for several
kernels. For the Epanechnikov kernel h∗ = 2.345N−0.2s, and for the Gaussian kernel
h∗ = 1.059N−0.2s. The considerably lower bandwidth for the normal kernel arises
because, unlike most kernels, the normal kernel gives some weight to xi even if |xi −
x0| > h. In practice one uses Silverman’s plug-in estimate

h∗ = 1.3643δN−0.2 min(s, iqr/1.349), (9.13)

where iqr is the sample interquartile range. This uses iqr/1.349 as an alternative
estimate of σ that protects against outliers, which can increase s and lead to too large
an h.

These plug-in estimates for h work well in practice, especially for symmetric uni-
modal densities, even if f (x) is not the normal density. Nonetheless, one should also
check by using variations such as twice and half the plug-in estimate.

For the example in Figures 9.2 and 9.4 we have 177−0.2 = 0.3551, s = 0.8282, and
iqr/1.349 = 0.6459, so (9.13) yields h∗ = 0.3173δ. For the Epanechnikov kernel, for
example, this yields h∗ = 0.545 since δ = 1.7188 from Table 9.1.

Cross-Validation

From (9.9), ISE(h) = ∫ f̂ 2(x0)dx0 − 2
∫

f̂ (x0) f (x0)dx0 + ∫ f 2(x0)dx0. The third
term does not depend on h. An alternative data-driven approach estimates the first
two terms in ISE(h) by

CV(h) = 1

N 2h

∑
i

∑
j

K (2)

(
xi − x j

h

)
− 2

N

N∑
i=1

f̂−i (xi ) , (9.14)

where K (2)(u) = ∫ K (u − t)K (t)dt is the convolution of K with itself, and f̂−i (xi ) is
the leave-one-out kernel estimator of f (xi ). See Lee (1996, p. 137) or Pagan and Ullah
(1999, p. 51) for a derivation. The cross-validation estimate hCV is chosen to mini-

mize ĈV(h). It can be shown that hCV
p→ h∗ as N → ∞, but the rate of convergence

is very slow.
Obtaining hCV is computationally burdensome because ÎSE(h) needs to be com-

puted for a range of values of h. It is often not necessary to cross-validate for kernel
density estimation as the plug-in estimate usually provides a good starting point.
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9.3.7. Confidence Intervals

Kernel density estimates are usually presented without confidence intervals, but it is
possible to construct pointwise confidence intervals for f (x0), where pointwise means
evaluated at a particular value of x0. A simple procedure is to obtain confidence inter-
vals at a small number of evaluation points x0, say 10, that are evenly distributed over
the range of x and plot these along with the estimated density curves.

The result (9.6) yields the following 95% confidence interval for f (x0):

f (x0) ∈ f̂ (x0) − b(x0) ± 1.96 ×
√

1

Nh
f̂ (x0)

∫
K (z)2dz.

For most kernels
∫

K (z)2dz is easily obtained by analytical methods.
The situation is complicated by the bias term, which should not be ignored in finite

samples, even though asymptotically b(x0)
p→ 0. This is because with optimal band-

width h∗ = O(N−0.2) the bias of the rescaled random variable
√

Nh( f̂ (x0) − f (x0))
given in (9.6) does not disappear, since

√
Nh∗ times O(h∗2) = O(1). The bias can be

estimated using (9.4) and a kernel estimate of f
′′
(x0), but in practice the estimate of

f
′′
(x0) is noisy. Instead, the usual method is to reduce the bias in computing the confi-

dence interval, but not f̂ (x0) itself, by undersmoothing, that is, by choosing h < h∗ so
that h∗ = o(N−0.2). Other approaches include using a higher order kernel, such as the
fourth-order kernels given in Table 9.1, or bootstrapping (see Section 11.6.5).

One can also compute confidence bands for f (x) over all possible values of x .
These are wider than the pointwise confidence intervals for each value x0.

9.3.8. Estimation of Derivatives of a Density

In some cases estimates of the derivatives of a density need to be made. For example,
estimation of the bias term of f̂ (x0) given in (9.4) requires an estimate of f ′′(x0).

For simplicity we present estimates of the first derivative. A finite-difference
approach uses f̂ ′(x0) = [ f̂ (x0 +�) − f̂ (x0 −�)]/2�. A calculus approach in-
stead takes the first derivative of f̂ (x0) in (9.3), yielding f̂ ′(x0) = −(Nh2)−1∑

i K ′ ((xi − x0)/h).
Intuitively, a larger bandwidth should be used to estimate derivatives, which can be

more variable than f (x0). The bias of f̂ (s)(x0) is as before but the variance converges
more slowly, leading to optimal bandwidth h∗ = O(N−1/(2s+2p+1)) if f (x0) is p times
differentiable. For kernel estimation of the first derivative we need p ≥ 3.

9.3.9. Multivariate Kernel Density Estimate

The preceding discussion considered kernel density estimation for scalar x . For the
density of the k-dimensional random variable x, the multivariate kernel density esti-
mator is

f̂ (x0) = 1

Nhk

N∑
i=1

K

(
xi − x0

h

)
,
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where K (·) is now a k-dimensional kernel. Usually K (·) is a product kernel, the prod-
uct of one-dimensional kernels. Multivariate kernels such as the multivariate normal
density or spherical kernels proportionate to K (z′z) can also be used. The kernel K (·)
satisfies properties similar to properties given in the one-dimensional case; see Lee
(1996, p. 125).

The analytical results and expressions are similar to those before, except that the
variance of f̂ (x0) declines at rate O(Nhk), which for k > 1 is slower than O(Nh) in
the one-dimensional case. Then

√
Nhk( f̂ (x0) − f (x0) − b(x0))

d→ N
[

0, f (x0)
∫

K (z)2dz
]
.

The optimal bandwidth choice is h = O(N−1/(k+4)), which is larger than O(N−0.2) in
the one-dimensional case, and implies

√
Nhk = O(N 2/(4+k)). The plug-in and cross-

validation methods can be extended to the multivariate case. For the product normal
kernel Scott’s plug-in estimate for the j th component of x is h j = N−1/(k+4)s j , where
s j is the sample standard deviation of x j .

Problems of sparseness of data are more likely to arise with a multivariate kernel.
There is a curse of dimensionality, as fewer observations in the vicinity of x0 receive
substantial weight when x is of higher dimension. Even when this is not a problem,
plotting even a bivariate kernel density estimate requires a three-dimensional plot that
can be difficult to read and interpret.

One use of a multivariate kernel density estimate is to permit estimation of a
conditional density. Since f (y|x) = f (x, y)/ f (x), an obvious estimator is f̂ (y|x) =
f̂ (x, y)/ f̂ (x), where f̂ (x, y) and f̂ (x) are bivariate and univariate kernel density
estimates.

9.3.10. Higher Order Kernels

The preceding analysis assumes f (x) is twice differentiable, a necessary assumption to
obtain the bias term in (9.4). If f (x) is more than twice differentiable then using higher
order kernels (see Section 9.3.3 for fourth-order examples) reduces the order of the
bias, leading to smaller h∗ and faster rates of convergence. A general statement is that
if x is k dimensional and f (x) is p times differentiable and a pth-order kernel is used,
then the kernel estimate f̂ (x0) of f (x) has optimal rate of convergence N−p/(2p+k)

when h∗ = O(N−1/(2p+k)).

9.3.11. Alternative Nonparametric Density Estimates

The kernel density estimate is the standard nonparametric estimate. Other density es-
timates are presented, for example, in Pagan and Ullah (1999). These often use ap-
proaches such as nearest-neighbors methods that are more commonly used in non-
parametric regression and are presented briefly in Section 9.6.
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9.4. Nonparametric Local Regression

We consider regression of scalar dependent variable y on a scalar regressor variable x .
The regression model is

yi = m(xi ) + εi , i = 1, . . . , N ,
εi ∼ iid [0, σ 2

ε ].
(9.15)

The complication is that the functional form m(·) is not specified, so NLS estimation
is not possible.

This section provides a simple general treatment of nonparametric regression us-
ing local weighted averages. Specialization to kernel regression is given in Section 9.5
and other commonly used local weighted methods are presented in Section 9.6.

9.4.1. Local Weighted Averages

Suppose that for a distinct value of the regressor, say x0, there are multiple obser-
vations on y, say N0 observations. Then an obvious simple estimator for m(x0) is
the sample average of these N0 values of y, which we denote m̃(x0). It follows that
m̃(x0) ∼ [m(x0), N−1

0 σ
2
ε

]
, since it is the average of N0 observations that by (9.15) are

iid with mean m(x0) and variance σ 2
ε .

The estimator m̃(x0) is unbiased but not necessarily consistent. Consistency requires
N0 → ∞ as N → ∞, so that V[m̃(x0)] → 0. With discrete regressors this estimator
may be very noisy in finite samples because N0 may be small. Even worse, for con-
tinuous regressors there may be only one observation for which xi takes the particular
value x0, even as N → ∞.

The problem of sparseness in data can be overcome by averaging observed values
of y when x is close to x0, in addition to when x exactly equals x0. We begin by noting
that the estimator m̃(x0) can be expressed as a weighted average of the dependent
variable, with m̃(x0) =∑i wi0 yi , where the weights wi0 equal 1/N0 if xi = x0 and
equal 0 if xi �= x0. Thus the weights vary with both the evaluation point x0 and the
sample values of the regressors.

More generally we consider the local weighted average estimator

m̂(x0) =
N∑

i=1

wi0,h yi , (9.16)

where the weights

wi0,h = w(xi , x0, h)

sum to one, so
∑

i wi0,h = 1. The weights are specified to increase as xi becomes
closer to x0.

The additional parameter h is generic notation for a window width parameter. It
is defined so that smaller values of h lead to a smaller window and more weight being
placed on those observations with xi close to x0. In the specific example of kernel
regression, h is the bandwidth. Other methods given in Section 9.6 have alternative
smoothing parameters that play a similar role to h here. As h becomes smaller m̂(x0)
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becomes less biased, as only observations close to x0 are being used, but more variable,
as fewer observations are being used.

The OLS predictor for the linear regression model is a weighted average of yi , since
some algebra yields

m̂OLS(x0) =
N∑

i=1

{
1

N
+ (x0 − x̄)(xi − x̄)∑

j (x j − x̄)2

}
yi .

The OLS weights, however, can actually increase with increasing distance between x0

and xi if, for example, xi > x0 > x̄ . Local regression instead uses weights that are
decreasing in |xi − x0|.

9.4.2. K-Nearest Neighbors Example

We consider a simple example, the unweighted average of the y values correspond-
ing to the closest (k − 1)/2 observations on x less than x0 and the closest (k − 1)/2
observations on x greater than x0.

Order the observations by increasing x values. Then evaluation at x0 = xi yields

m̂k(xi ) = 1

k
(yi−(k−1)/2 + · · · + yi+(k−1)/2),

where for simplicity k is odd, and potential modifications caused by ties and values of
x0 close to the end points x1 or xN are ignored. This estimator can be expressed as a
special case of (9.16) with weight

wi0,k = 1

k
× 1
(

|i − 0| < k − 1

2

)
, x1 < x2 < · · · < x0 < · · · < xN .

This estimator has many names. We refer to it as a (symmetrized) k–nearest neigh-
bors estimator (k−NN), defined in Section 9.6.1. It is also a standard local running
average or running mean or moving average of length k centered at x0 that is used,
for example, to plot a time series y against time x . The parameter k plays the role of
the window width h in Section 9.4.1, with small k corresponding to small h.

As an illustration, consider data generated from the model

yi = 150 + 6.5xi − 0.15x2
i + 0.001x3

i + εi , i = 1, . . . , 100, (9.17)

xi = i,

εi ∼ N [0, 252].

The mean of y is a cubic in x , with x taking values 1, 2, . . . , 100, with turning points
at x = 20 and x = 80. To this is added a normally distributed error term with standard
deviation 25.

Figure 9.5 plots the symmetrized k–NN estimator with k = 5 and 25. Both moving
averages suggest a cubic relationship. The second is smoother than the first but is still
quite jagged despite one-quarter of the sample being used to form the average. The
OLS regression line is also given on the diagram.
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Figure 9.5: k-nearest neighbors regression curve for two different choices of k, as well as
OLS regression line. The data are generated from a cubic polynomial model.

The slope of m̂k(x) is flatter at the end points when k = 25 rather than k = 5. This
illustrates a boundary problem in estimating m(x) at the end points. For example,
for the smallest regressor value x1 there are no lower valued observations on x
to be included, and the average becomes a one-sided average m̂k(x1) = (y1 + · · · +
y1+(k−1)/2)/[(k + 1)/2]. Since for these data mk(x) is increasing in x in this region,
this leads to m̂k(x1) being an overestimate and the overstatement is increasing in k.
Such boundary problems are reduced by instead using methods given in Section 9.6.2.

9.4.3. Lowess Regression Example

Using alternative weights to those used to form the symmetrized k–NN estimator can
lead to better estimates of m(x).

An example is the Lowess estimator, defined in Section 9.6.2. This provides a
smoother estimate of m(x) as it uses kernel weights rather than an indicator func-
tion, analogous to a kernel density estimate being smoother than a running histogram.
It also has smaller bias (see Section 9.6.2), which is especially beneficial in estimating
m(x) at the end points.

Figure 9.6 plots, for data generated by (9.17), the Lowess estimate with k = 25. This
local regression estimate is quite close to the true cubic conditional mean function,
which is also drawn. Comparing Figure 9.6 to Figure 9.5 for symmetrized k–NN with
k = 25, we see that Lowess regression leads to a much smoother regression function
estimate and more precise estimation at the boundaries.

9.4.4. Statistical Inference

When the error term is normally distributed and analysis is conditional on x1, . . . , xN ,
the exact small-sample distribution of m̂(x0) in (9.16) can be easily obtained.
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Figure 9.6: Nonparametric regression curve using Lowess, as well as a cubic regression
curve. Same generated data as Figure 9.5.

Substituting yi = m(xi ) + εi into the definition of m̂(x0) leads directly to

m̂(x0) −
N∑

i=1

wi0,hm(xi ) =
N∑

i=1

wi0,hεi ,

which implies with fixed regressors, and if εi are iid N [0, σ 2
ε ], that

m̂(x0) ∼ N
[

N∑
i=1

wi0,hm(xi ), σ
2
ε

N∑
i=1

w2
i0,h

]
. (9.18)

Note that in general m̂(x0) is biased and the distribution is not necessarily centered
around m(x0).

With stochastic regressors and nonnormal errors, we condition on x1, . . . , xN and
apply a central limit theorem for U-statistics that is appropriate for double summations
(see, for example, Pagan and Ullah, 1999, p. 359). Then for εi iid [0, σ 2

ε ],

c(N )
N∑

i=1

wi0,hεi
d→ N

[
0, σ 2

ε lim c(N )2
N∑

i=1

w2
i0,h

]
, (9.19)

where c(N ) is a function of the sample size with O(c(N )) < N 1/2 that can vary with
the local estimator. For example, c(N ) = √

Nh for kernel regression and c(N ) = N 0.4

for kernel regression with optimal bandwidth. Then

c(N ) (m̂(x0) − m(x0) − b(x0))
d→ N

[
0, σ 2

ε lim c(N )2
N∑

i=1

w2
i0,h

]
, (9.20)

where b(x0) = m(x0)− ∑i wi0,hm(xi ). Note that (9.20) yields (9.18) for the asymp-
totic distribution of m̂(x0).

Clearly, the distribution of m̂(x0), a simple weighted average, can be obtained un-
der alternative distributional assumptions. For example, for heteroskedastic errors
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the variance in (9.19) and (9.20) is replaced by lim c(N )2∑
i σ

2
ε,iw

2
i0,h , which can be

consistently estimated by replacing σ 2
ε,i by the squared residual (yi − m̂(xi ))2. Alter-

natively, one can bootstrap (see Section 11.6.5).

9.4.5. Bandwidth Choice

Throughout this chapter we follow the nonparametric terminology that an estimator
θ̂ of θ0 has convergence rate N−r if θ̂ = θ0 + Op(N−r ), so that Nr (̂θ − θ0) = Op(1)
and ideally Nr (̂θ − θ0) has a limit normal distribution. Note in particular that an esti-
mator that is commonly called a

√
N -consistent estimator is converging at rate N−1/2.

Nonparametric estimators typically have a slower rate of convergence than this, with
r < 1/2, because small bandwidth h is needed to eliminate bias but then less than N
observations are being used to estimate m̂(x0).

As an example, consider the k–NN example of Section 9.4.2. Suppose k = N 4/5, so
that for example k = 251 if N = 1,000. Then the estimator is consistent as the moving
average uses N 4/5/N = N−1/5 of the sample and is therefore collapsing around x0 as
N → ∞. Using (9.18), the variance of the moving average estimator is σ 2

ε

∑
i w

2
i0,k =

σ 2
ε × k × (1/k)2 = σ 2

ε × 1/k = σ 2
ε N−4/5, so in (9.19) c(N ) = √

k =
√

N 4/5 = N 0.4,
which is less than N 1/2. Other values of k also ensure consistency, provided k < O(N ).

More generally, a range of values of the bandwidth parameter eliminates asymptotic
bias, but smaller bandwidth increases variability. In this literature this trade-off is ac-
counted for by minimizing mean-squared error, the sum of variance and bias squared.

Stone (1980) showed that if x is k dimensional and m(x) is p times differentiable
then the fastest possible rate of convergence for a nonparametric estimator of an sth-
order derivative of m(x) is N−r , where r = (p − s)/(2p + k). This rate decreases as
the order of the derivative increases and as the dimension of x increases. It increases the
more differentiable m(x) is assumed to be, approaching N−1/2 if m(x) has derivatives
of order approaching infinity. For scalar regression estimation of m(x) it is customary
to assume existence of m ′′(x), in which case r = 2/5 and the fastest convergence rate
is N−0.4.

9.5. Kernel Regression

Kernel regression is a weighted average estimator using kernel weights. Issues such as
bias and choice of bandwidth presented for kernel density estimation are also relevant
here. However, there is less guidance for choice of bandwidth than in the regression
case. Also, while we present kernel regression for pedagogical reasons, kernel local
regression estimators are often used in practice (see Section 9.6).

9.5.1. Kernel Regression Estimator

The goal in kernel regression is to estimate the regression function m(x) in the model
y = m(x) + ε defined in (9.15).
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From Section 9.4.1, an obvious estimator of m(x0) is the average of the sample
values yi of the dependent variable corresponding to the xi s close to x0. A variation
on this is to find the average of the yi s for all observations with xi within distance h of
x0. This can be formally expressed as

m̂(x0) ≡
∑N

i=1 1
(∣∣ xi −x0

h

∣∣ < 1
)

yi∑N
i=1 1

(∣∣ xi −x0
h

∣∣ < 1
) ,

where as before 1(A) = 1 if event A occurs and equals 0 otherwise. The numerator
sums the y values and the denominator gives the number of y values that are summed.

This expression gives equal weights to all observations close to x0, but it may be
preferable to give the greatest weight at x0 and decrease the weight as we move away.
Thus more generally we consider a kernel weighting function K (·), introduced in Sec-
tion 9.3.2. This yields the kernel regression estimator

m̂(x0) ≡
1

Nh

∑N
i=1 K

( xi −x0
h

)
yi

1
Nh

∑N
i=1 K

( xi −x0
h

) . (9.21)

Several common kernel functions – uniform, Gaussian, Epanechnikov, and quartic –
have already been given in Table 9.1.

The constant h is called the bandwidth, and 2h is called the window width. The
bandwidth plays the same role as k in the k–NN example of Section 9.4.2.

The estimator (9.21) was proposed by Nadaraya (1964) and Watson (1964),
who gave an alternative derivation. The conditional mean m(x) = ∫ y f (y|x)dy =∫

y[ f (y, x)/ f (x)]dy, which can be estimated by m̂(x) = ∫ y[ f̂ (y, x)/ f̂ (x)]dy, where
f̂ (y, x) and f̂ (x) are bivariate and univariate kernel density estimators. It can be shown
that this equals the estimator in (9.21). The statistics literature also considers kernel re-
gression in the fixed design or fixed regressors case where f (x) is known and need not
be estimated, whereas we consider only the case of stochastic regressors that arises
with observational data.

The kernel regression estimator is a special case of the weighted average (9.16),
with weights

wi0,h =
1

Nh K
( xi −x0

h

)
1

Nh

∑N
i=1 K

( xi −x0
h

) , (9.22)

which by construction sum over i to one. The general results of Section 9.4 are relevant,
but we give a more detailed analysis.

9.5.2. Statistical Inference

We present the distribution of the kernel regression estimator m̂(x) for given choice
of K (·) and h, assuming the data x are iid. We implicitly assume that regressors are
continuous. With discrete regressors m̂(x0) will still collapse on m(x0), and both m̂(x0)
in the limit and m(x0) are step functions.
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Consistency

Consistency of m̂(x0) for the conditional mean function m(x0) requires h → 0, so that
substantial weight is given only to xi very close to x0. At the same time we need many
xi close to x0, so that many observations are used in forming the weighted average.

Formally, m̂(x0)
p→ m(x0) if h → 0 and Nh → ∞ as N → ∞.

Bias

The kernel regression estimator is biased of size O(h2), with bias term

b(x0) = h2

(
m ′(x0)

f ′(x0)

f (x0)
+ 1

2
m ′′(x0)

)∫
z2 K (z)dz (9.23)

(see Section 9.8.2) assuming m(x) is twice differentiable. As for kernel density estima-
tion, the bias varies with the kernel function used. More importantly, the bias depends
on the slope and curvature of the regression function m(x0) and the slope of the density
f (x0) of the regressors, whereas for density estimation the bias depended only on the
second derivatives of f (x0). The bias can be particularly large at the end points, as
illustrated in Section 9.4.2.

The bias can be reduced by using higher order kernels, defined in Section 9.3.3, and
boundary modifications such as specific boundary kernels. Local polynomial regres-
sion and modifications such as Lowess (see Section 9.6.2) have the attraction that the
term in (9.23) depending on m ′(x0) drops out and perform well at the boundaries.

Asymptotic Normality

In Section 9.8.2 it is shown that, for xi iid with density f (xi ), the kernel regression
estimator has limit distribution

√
Nh(m̂(x0) − m(x0) − b(x0))

d→ N
[

0,
σ 2
ε

f (x0)

∫
K (z)2dz

]
. (9.24)

The variance term in (9.24) is larger for small f (x0), so as expected the variance of
m̂(x0) is larger in regions where x is sparse.

9.5.3. Bandwidth Choice

Incorporating values of yi for which xi �= x0 into the weighted average introduces bias,
since E[yi |xi ] = m(xi ) �= m(x0) for xi �= x0. However, using these additional points
reduces the variance of the estimator, since we are averaging over more data. The opti-
mal bandwidth balances the trade-off between increased bias and decreased variance,
using squared error loss. Unlike kernel density estimation, plug-in approaches are im-
practical and cross-validation is used more extensively.

For simplicity most studies focus on choosing one bandwidth for all values of x0.
Some methods with variable bandwidths, notably k–NN and Lowess, are given in
Section 9.6.
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Mean Integrated Squared Error

The local performance of m̂(·) at x0 is measured by the mean-squared error, given
by

MSE[m̂(x0)] = E[(m̂(x0) − m (x0))2],

where the expectation eliminates dependence of m̂(x0) on x . Since MSE equals vari-
ance plus squared bias, the MSE can be obtained using (9.23) and (9.24).

Similar to Section 9.3.6, the integrated square error is

ISE(h) =
∫

(m̂(x0) − m (x0))2 f (x0)dx0,

where f (x) denotes the density of the regressors x , and the mean integrated square
error, or equivalently the integrated mean-squared error, is

MISE(h) =
∫

MSE[m̂(x0)] f (x0)dx0.

Optimal Bandwidth

The optimal bandwidth h∗ minimizes MISE(h). This yields h∗ = O(N−0.2) since
the bias is O(h2) from (9.23); the variance is O((Nh)−1) from (9.24) since an O(1)
variance is obtained after scaling m̂(x0) by

√
Nh; and for bias squared and variance to

be of the same order (h2)2 = (Nh)−1 or h = N−0.2. The kernel estimate then converges
to m(x0) at rate (Nh∗)−1/2 = N−0.4 rather than the usual N−0.5 for parametric analysis.

Plug-in Bandwidth Estimate

One can obtain an exact expression for h∗ that minimizes MISE(h), using calculus
methods similar to those in Section 9.3.5 for the kernel density estimator. Then h∗

depends on the bias and variance expressions in (9.23) and (9.24).
A plug-in approach calculates h∗ using estimates of these unknowns. However,

estimation of m ′′(x), for example, requires nonparametric methods that in turn require
an initial bandwidth choice, but h∗ also depends on unknowns such as m ′′(x). Given
these complications one should be wary of plug-in estimates. More common is to use
cross-validation, presented in the following.

It can also be shown that MISE(h∗) is minimized if the Epanichnikov kernel is
used (see Härdle, 1990, p. 186, or Härdle and Linton, 1994, p. 2321), though as in the
kernel regression case MISE(h∗) is not much larger for other kernels. The key issue is
determination of h∗, which will vary with kernel and the data.

Cross-Validation

An empirical estimate of the optimal h can be obtained by the leave-one-out cross-
validation procedure. This chooses ĥ∗ that minimizes

CV(h) =
N∑

i=1

(yi − m̂−i (xi ))
2π (xi ), (9.25)
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where π (xi ) is a weighting function (discussed in the following) and

m̂−i (xi ) =
∑
j �=i

w j i,h y j/
∑
j �=i

w j i,h (9.26)

is a leave-one-out estimate of m(xi ) obtained by the kernel formula (9.21), or more
generally by a weighted procedure (9.16), with the modification that yi is dropped.

Cross-validation is not as computationally intensive as it first appears. It can be
shown that

yi − m̂−i (xi ) = yi − m̂(xi )

1 − [wi i,h/
∑

j w j i,h]
, (9.27)

so that for each value of h cross-validation requires only one computation of the
weighted averages m̂(xi ), i = 1, . . . , N .

The weights π (xi ) are introduced to potentially downweight the end points, which
otherwise may receive too much importance since local weighted estimates can be
quite highly biased at the end points as illustrated in Section 9.4.2. For example, ob-
servations with xi outside the 5th to 95th percentiles may not be used in calculating
CV(h), in which case π (xi ) = 0 for these observations and π (xi ) = 1 otherwise. The
term cross-validation is used as it validates the ability to predict the i th observation us-
ing all the other observations in the data set. The i th observation is dropped because if
instead it was additionally used in the prediction, then CV(h) would be trivially mini-
mized when m̂h(xi ) = yi , i = 1, . . . , N . CV(h) is also called the estimated prediction
error.

Härdle and Marron (1985) showed that minimizing CV(h) is asymptotically equiv-
alent to minimizing a modification of ISE(h) and MISE(h). The modification includes
weight function π (x0) in the integrand, as well as the averaged squared error (ASE)
N−1∑

i (m̂(xi ) − m(xi ))2π (xi ), which is a discrete sample approximation to ISE(h).
The measure CV(h) converges at the slow rate of O(N−0.1) however, so CV(h) can be
quite variable in finite samples.

Generalized Cross-Validation

An alternative to leave-one-out cross validation is to use a measure similar to CV(h)
but one that more simply uses m̂(xi ) rather than m̂−i (xi ) and then adds a model com-
plexity penalty that increases as the bandwidth h decreases. This leads to

PV(h) =
N∑

i=1

(yi − m̂(xi ))
2π (xi )p(wi i,h),

where p(·) is the penalty function and wi i,h is the weight given to the i th observation
in m̂(xi ) =∑ j w j i,h y j .

A popular example is the generalized cross-validation measure that uses the
penalty function p(wi i,h) = (1 − wi i,h)2. Other penalties are given in Härdle (1990,
p. 167) and Härdle and Linton (1994, p. 2323).
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Cross-Validation Example

For the local running average example in Section 9.4.2, CV(k) = 54,811, 56,666,
63,456, 65,605, and 69,939 for k = 3, 5, 7, 9, and 25, respectively. In this case all
observations were used to calculate CV(k), with π (xi ) = 1, despite possible end-point
problems. There is no real gain after k = 5, though from Figure 9.5 this value pro-
duced too rough an estimate and in practice one would choose a higher value of k to
get a smoother curve.

More generally cross-validation is by no means perfect and it is common to “eye-
ball” fitted nonparametric curves to select h to achieve a desired degree of smoothness.

Trimming

The denominator of the kernel estimator in (9.21) is f̂ (x0), the kernel estimate of the
density of the regressor at x0. At some evaluation points f̂ (xi ) can be very small,
leading to a very large estimate m̂(xi ). Trimming eliminates or greatly downweights
all points with f̂ (xi ) < b, say, where b → 0 at an appropriate rate as N → ∞. Such
problems are most likely to occur in the tails of the distribution. For nonparametric
estimation one can just focus on estimation of m(xi ) for more central values of xi , and
values in the tails may be downweighted in cross-validation. However, the semipara-
metric methods of Section 9.7 can entail computation of m̂(xi ) at all values of xi , in
which case it is not unusual to trim. Ideally, the trimming function should make no
difference asymptotically, though it will make a difference in finite samples.

9.5.4. Confidence Intervals

Kernel regression estimates should generally be presented with pointwise confidence
intervals. A simple procedure is to present pointwise confidence intervals for f (x0)
evaluated at, for example, x0 equal to the first through ninth deciles of x .

If the bias b(x0) in m̂(x0) is ignored, (9.24) yields the following 95% confidence
interval:

m(x0) ∈ m̂(x0) ± 1.96

√
1

Nh

σ̂ 2
ε

f̂ (x0)

∫
K (z)2dz,

where σ̂ 2
ε =∑i wi0,h ε̂

2
i and wi0,h is defined in (9.22) and f̂ (x0) is the kernel density

estimate at x0. This estimate assumes homoskedastic errors, though is likely to be
somewhat robust to heteroskedasticity since observations close to x0 are given the
greatest weight. Alternatively, from the discussion after (9.20) a heteroskedastic robust
95% confidence interval is m̂(x0) ± 1.96̂s0, where ŝ2

0 =∑i w
2
i0,h ε̂

2
i .

As in the kernel density case, the bias in m̂(x0) should not be ignored. As already
noted, estimation of the bias is difficult. Instead, the standard procedure is to under-
smooth, with smaller bandwidth h satisfying h = o(N−0.2) rather than the optimal
h∗ = O(N−0.2).
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Härdle (1990) gives a detailed presentation of confidence intervals, including uni-
form confidence bands rather than pointwise intervals, and the bootstrap methods given
in Section 11.6.5.

9.5.5. Derivative Estimation

In regression we are often interested in how the conditional mean of y changes with
changes in x , the marginal effect, rather than the conditional mean per se.

Kernel estimates can be easily used to form the derivative. The general result is that
the sth derivative of the kernel regression estimate, m̂(s)(x0), is consistent for m(s)(x0),
the sth derivative of the conditional mean m(x0). Either calculus or finite-difference
approaches can be taken.

As an example, consider estimation of the first derivative in the generated-data
example of the previous section. Let z1, . . . , zN denote the ordered points at which
the kernel regression function is evaluated and m̂(z1), . . . , m̂(zN ) denote the estimates
at these points. A finite-difference estimate is m̂ ′(zi ) = [m̂(zi ) − m̂(zi−1)]/[zi − zi−1].
This is plotted in Figure 9.7, along with the true derivative, which for the dgp given
in (9.17) is the quadratic m ′(zi ) = 6.5 − 0.30zi + 0.003z2

i . As expected the derivative
estimate is somewhat noisy, but it picks up the essentials. Derivative estimates should
be based on oversmoothed estimates of the conditional mean. For further details see
Pagan and Ullah (1999, chapter 4). Härdle (1990, p. 160) presents adaptation of cross-
validation to derivative estimation.

In addition to the local derivative m ′(x0) we may also be interested in the average
derivative E[m ′(x)]. The average derivative estimator given in Section 9.7.4 provides
a

√
N -consistent and asymptotically normal estimate of E[m ′(x)].

9.5.6. Conditional Moment Estimation

The kernel regression methods for the conditional mean E[y|x] = m(x) can be ex-
tended to nonparametric estimation of other conditional moments.
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Figure 9.7: Nonparametric derivative estimate using previously estimated Lowess re-
gression curve, as well as using a cubic regression curve. Same generated data as
Figure 9.5.
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For raw conditional moments such as E[yk |x] we use the weighted average

Ê[yk |x0] =
N∑

i=1

wi0,h yk
i , (9.28)

where the weights wi0,h may be the same weights as used for estimation of m(x0).
Central conditional moments can then be computed by reexpressing them as

weighted sums of raw moments. For example, since V[y|x] = E[y2|x] − (E[y|x])2, the
conditional variance can be estimated by Ê[y2|x0] − m̂(x0)2. One expects that higher
order conditional moments will be estimated with more noise than will be the condi-
tional mean.

9.5.7. Multivariate Kernel Regression

We have focused on kernel regression on a single regressor. For regression of scalar y
on k-dimensional vector x, that is, yi = m(xi ) + εi = m(x1i , . . . , xki ) + εi , the kernel
estimator of m(x0) becomes

m̂(x0) ≡
1

Nhk

∑N
i=1 K

( xi −x0
h

)
yi

1
Nhk

∑N
i=1 K

( xi −x0
h

) ,
where K (·) is now a multivariate kernel. Often K (·) is the product of k one-
dimensional kernels, though multivariate kernels such as the multivariate normal den-
sity can be used.

If a product kernel is used the regressors should be transformed to a common scale
by dividing by the standard deviation. Then the cross-validation measure (9.25) can
be used to determine a common optimal bandwidth h∗, though determining which xi

should be downweighted as the result of closeness to the end points is more compli-
cated when x is multivariate. Alternatively, regressors need not be rescaled, but then
different bandwidths should be used for each regressor.

The asymptotic results and expressions are similar to those considered before, as the
estimate is again a local average of the yi . The bias b(x0) is again O(h2) as before, but
the variance of m̂(x0) declines at a rate O(Nhk), slower than in the one-dimensional
case since essentially a smaller fraction of the sample is being used to form m̂(x0).
Then √

Nhk(m̂(x0) − m(x0) − b(x0))
d→ N

[
0,

σ 2
ε

f (x0)

∫
K (z)2dz

]
.

The optimal bandwidth choice is h∗ = O(N−1/(k+4)), which is larger than O(N−0.2) in
the one-dimensional case. The corresponding optimal rate of convergence of m̂(x0) is
N−2/(k+4).

This result and the earlier scalar result assumes that m(x) is twice differentiable, a
necessary assumption to obtain the bias term in (9.23). If m(x) is instead p times dif-
ferentiable then kernel estimation using a pth order kernel (see Section 9.3.3) reduces
the order of the bias, leading to smaller h∗ and faster rates of convergence that attain
Stone’s bound given in Section 9.4.5; see Härdle (1990, p. 93) for further details. Other
nonparametric estimators given in the next section can also attain Stone’s bound.
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The convergence rate decreases as the number of regressors increases, approaching
N 0 as the number of regressors approaches infinity. This curse of dimensionality
greatly restricts the use of nonparametric methods in regression models with several
regressors. Semiparametric models (see Section 9.7) place additional structure so that
the nonparametric components are of low dimension.

9.5.8. Tests of Parametric Models

An obvious test of correct specification of a parametric model of the conditional mean
is to compare the fitted mean with that obtained from a nonparametric model.

Let m̂θ(x) denote a parametric estimator of E[y|x] and m̂h(x) denote a nonparamet-
ric estimator such as a kernel estimator. One approach is to compare m̂θ(x) with m̂h(x)
at a range of values of x. This is complicated by the need to correct for asymptotic
bias in m̂h(x) (see Härdle and Mammen, 1993). A second approach is to consider con-
ditional moment tests of the form N−1∑

i wi (yi − m̂θ(xi )), where different weights,
based in part on kernel regression, test failure of E[y|x] = mθ(x) in different direc-
tions. For example, Horowitz and Härdle (1994) use wi = m̂h(xi ) − m̂θ(xi ). Pagan
and Ullah (1999, pp. 141–150) and Yatchew (2003, pp. 119–124) survey some of the
methods used.

9.6. Alternative Nonparametric Regression Estimators

Section 9.4 introduced local regression methods that estimate the regression function
m(x0) by a local weighted average m̂(x0) =∑i wi0,h yi , where the weights wi0,h =
w(xi , x0, h) differ with the point of evaluation x0 and the sample value of xi . Section
9.5 presented detailed results when the weights are kernel weights.

Here we consider other commonly used local estimators that correspond to other
weights. Many of the results of Section 9.5 carry through, with similar optimal rates
of convergence and use of cross-validation for bandwidth selection, though the exact
expressions for bias and variance differ from those in (9.23) and (9.24). The estimators
given in Section 9.6.2 are especially popular.

9.6.1. Nearest Neighbors Estimator

The k–nearest neighbor estimator is the equally weighted average of the y values for
the k observations of xi closest to x0. Define Nk(x0) to be the set of k observations of
xi closest to x0. Then

m̂k−N N (x0) = 1

k

N∑
i=1

1(xi ∈ Nk(x0))yi . (9.29)

This estimator is a kernel estimator with uniform weights (see Table 9.1) except that
the bandwidth is variable. Here the bandwidth h0 at x0 equals the distance between
x0 and the furthest of the k nearest neighbors, and more formally h0 � k/(2N f (x0)).
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The quantity k/N is called the span. Smoother curves can be obtained by using kernel
weights in (9.29).

The estimator has the attraction of providing a simple rule for variable bandwidth
selection. It is computationally faster to use a symmetrized version that uses the k/2
nearest neighbors to the left and a similar number to the right, which is the local run-
ning average method used in Section 9.4.2. Then one can use an updating formula on
observations ordered by increasing xi , as then one observation leaves the data and one
enters as x0 increases.

9.6.2. Local Linear Regression and Lowess

The kernel regression estimator is a local constant estimator because it assumes that
m(x) equals a constant in the local neighborhood of x0. Instead, one can let m(x) be
linear in the neighborhood of x0, so that m(x) = a0 + b0(x − x0) in the neighborhood
of x0.

To implement this idea, note that the kernel regression estimator m̂(x0) can be ob-
tained by minimizing

∑
i K ((xi − x0)/h) (yi − m0)2 with respect to m0. The local

linear regression estimator minimizes

N∑
i=1

K

(
xi − x0

h

)
(yi − a0 − b0(xi − x0))2, (9.30)

with respect to a0 and b0, where K (·) is a kernel weighting function. Then m̂(x) =
â0 + b̂0(x − x0) in the neighborhood of x0. The estimate at exactly x0 is then m̂(x) =
â0, and b̂0 provides an estimate of the first derivative m̂ ′(x0). More generally, a local
polynomial estimator of degree p minimizes

N∑
i=1

K

(
xi − x0

h

)
(yi − a0,0 − a0,1(xi − x0) − · · · − a0,p

(xi − x0)p

p!
)2, (9.31)

yielding m̂(s)(x0) = â0,s .
Fan and Gijbels (1996) list many properties and attractions of this method. Esti-

mation entails only weighted least-squares regression at each evaluation point x0. The
estimators can be expressed as a weighted average of yi , since they are LS estimators.
The local linear estimator has bias term b(x0) = h2

(
1
2 m ′′(x0)

) ∫
z2 K (z)dz, which, un-

like the bias for kernel regression given in (9.23), does not depend on m ′(x0). This
is especially beneficial for overcoming the boundary problems illustrated in Section
9.4.2. For estimating an sth-order derivative a good choice of p is p = s + 1 so that,
for example, one uses a local quadratic estimator to estimate the first derivative.

A standard local regression estimator is the locally weighted scatterplot smoothing
or Lowess estimator of Cleveland (1979). This is a variant of local polynomial estima-
tion that in (9.31) uses a variable bandwidth h0,k determined by the distance from x0 to
its kth nearest neighbor; uses the tricubic kernel K (z) = (70/81)(1 − |z|3)31(|z| < 1);
and downweights observations with large residuals yi − m̂(xi ), which requires passing
through the data N times. For a summary see Fan and Gijbels (1996, p. 24). Lowess
is attractive compared to kernel regression as it uses a variable bandwidth, robustifies
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against outliers, and uses a local polynomial estimator to minimize boundary prob-
lems. However, it is computationally intensive.

Another popular variation is the supersmoother of Friedman (1984) (see Härdle,
1990, p. 181). The starting point is symmetrized k–NN, using local linear fit rather than
local constant fit for better fit at the boundary. Rather than use a fixed span or fixed
k, however, the supersmoother is a variable span smoother where the variable span is
determined by local cross-validation that entails nine passes over the data. Compared
to Lowess the supersmoother does not robustify against outliers, but it permits the span
to vary and is fast to compute.

9.6.3. Smoothing Spline Estimator

The cubic smoothing spline estimator m̂λ(x) minimizes the penalized residual sum
of squares

PRSS(λ) =
N∑

i=1

(yi − m(xi ))
2 + λ

∫
(m ′′(x))2dx, (9.32)

where λ is a smoothing parameter. As elsewhere in this chapter squared error loss is
used. The first term alone leads to a very rough fit since then m̂(xi ) = yi . The second
term is introduced to penalize roughness. The cross-validation methods of Section
9.5.3 can be used to determine λ, with larger values of λ leading to a smoother curve.

Härdle (1990, pp. 56–65) shows that m̂λ(x) is a cubic polynomial between succes-
sive x-values and that the estimator can be expressed as a local weighted average of
the ys and is asymptotically equivalent to a kernel estimator with a particular variable
kernel. In microeconometrics smoothing splines are used less frequently than the other
methods presented here. The approach can be adapted to other roughness penalties and
other loss functions.

9.6.4. Series Estimators

Series estimators approximate a regression function by a weighted sum of K functions
z1(x), . . . , zK (x),

m̂K (x) =
K∑

j=1

β̂ j z j (x), (9.33)

where the coefficients β̂1, . . . , β̂K are simply obtained by OLS regression of y on
z1(x), . . . , zK (x). The functions z1(x), . . . , zK (x) form a truncated series. Examples
include a (K − 1)th-order polynomial approximation or power series with z j (x) =
x j−1, j = 1, . . . , K ; orthogonal and orthonormal polynomial variants (see Section
12.3.1); truncated Fourier series where the regressor is rescaled so that x ∈ [0, 2π ];
the Fourier flexible functional form of Gallant (1981), which is a truncated Fourier
series plus the terms x and x2; and regression splines that approximate the regres-
sion function m(x) by polynomial functions between a given number of knots that are
joined at the knots.
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The approach differs from that in Section 9.4 as it is a global approximation ap-
proach to estimation of m(x), rather than a local approach to estimation of m(x0).

Nonetheless, m̂K (x)
p→ m(x0) if K → ∞ at an appropriate rate as N → ∞. From

Newey (1997) if x is k dimensional and m(x) is p times differentiable the mean in-
tegrated squared error (see Section 9.5.3) MISE(h) = O(K −2p/k + K/N ), where the
first term reflects bias and the second term variance. Equating these gives the optimal
K ∗ = N k/(2p+k), so K grows but at slower rate than the sample size. The convergence
rate of m̂K ∗(x) equals the fastest possible rate of Stone (1980), given in Section 9.4.5.
Intuitively, series estimators may not be robust as outliers may have a global rather
than merely local impact on m̂(x), but this conjecture is not tested in typical examples
given in texts.

Andrews (1991) and Newey (1997) give a very general treatment that includes
the multivariate case, estimation of functionals other than the conditional mean,
and extensions to semiparametric models where series methods are most often
used.

9.7. Semiparametric Regression

The preceding analysis has emphasized regression models without any structure. In
microeconometrics some structure is usually placed on the regression model.

First, economic theory may place some structure, such as symmetry and homo-
geneity restrictions, in a demand function. Such information may be incorporated into
nonparametric regression; see, for example, Matzkin (1994).

Second, and more frequently, econometric models include so many potential regres-
sors that the curse of dimensionality makes fully nonparametric analysis impractical.
Instead, it is common to estimate a semiparametric model that loosely speaking com-
bines a parametric component with a nonparametric component; see Powell (1994) for
a careful discussion of the term semiparametric.

There are many different semiparametric models and myriad methods are often
available to consistently estimate these models. In this section we present just a few
leading examples. Applications are given elsewhere in this book, including the binary
outcome models and censored regression models given in Chapters 14 and 16.

9.7.1. Examples

Table 9.2 presents several leading examples of semiparametric regression. The first
two examples, detailed in the following, generalize the linear model x′β by adding
an unspecified component λ(z) or by permitting an unspecified transformation g(x′β),
whereas the third combines the first two. The next three models, used more in ap-
plied statistics than econometrics, reduce the dimensionality by assuming additivity
or separability of the regressors but are otherwise nonparametric. We detail the gen-
eralized additive model. Related to these are neural network models; see Kuan and
White (1994). The last example, also detailed in the following, is a flexible model of
the conditional variance. Care needs to be taken to ensure that semiparametric models
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Table 9.2. Semiparametric Models: Leading Examples

Name Model Parametric Nonparametric

Partially linear E[y|x, z] = x′β + λ(z) β λ( · )
Single index E[y|x] = g(x′β) β g(·)
Generalized partial E[y|x, z] = g(x′β + λ(z)) β g(·),λ( · )

linear
Generalized additive E[y|x] = c+∑k

j=1 g j (x j ) – g j (·)
Partial additive E[y|x, z] = x′β + c+∑k

j=1 g j (z j ) β g j (·)
Projection pursuit E[y|x] =∑M

j=1 g j (x′
jβ j ) β j g j (·)

Heteroskedastic E[y|x] = x′β; V[y|x] = σ 2(x) β σ 2(·)
linear

are identified. For example, see the discussion of single-index models. In addition to
estimation of β, interest also lies in the marginal effects such as ∂E[y|x, z]/∂x.

9.7.2. Efficiency of Semiparametric Estimators

We consider loss of efficiency in estimating by semiparametric rather than parametric
methods, ahead of presenting results for several leading semiparametric models.

Our summary follows Robinson (1988b), who considers a semiparametric model
with parametric component denoted β and nonparametric component denoted G that
depends on infinitely many nuisance parameters. Examples of G include the shape of
the distribution of a symmetrically distributed iid error and the single-index function
g(·) given in (9.37) in Section 9.7.4. The estimator β̂ = β(Ĝ), where Ĝ is a nonpara-
metric estimator of G.

Ideally, the estimator β̂ is adaptive, meaning that there is no efficiency loss in
having to estimate G by nonparametric methods, so that

√
N (β̂ − β)

d→ N [0,VG],

where VG is the covariance matrix for any shape function G in the particular class be-
ing considered. Within the likelihood framework VG is the Cramer–Rao lower bound.
In the second-moment context VG is given by the Gauss–Markov theorem or a gener-
alization such as to GMM. A leading example of an adaptive estimator is estimation
with specified conditional mean function but with unknown functional form for het-
eroskedasticity (see Section 9.7.6).

If the estimator β̂ is not adaptive then the next best optimality property is for the
estimator to attain the semiparametric efficiency bound V∗

G , so that
√

N (β̂ − β)
d→ N [0,V∗

G],

where V∗
G is a generalization of the Cramer–Rao lower bound or its second-moment

analogue that provides the smallest variance matrix possible given the specified
semiparametric model. For an adaptive estimator V∗

G = VG , but usually V∗
G exceeds

VG . Semiparametric efficiency bounds are introduced in Section 9.7.8. They can be
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obtained only in some semiparametric settings, and even when they are known no
estimator may exist that attains the bound. An example that attains the bound is the
binary choice model estimator of Klein and Spady (1993) (see Section 14.7.4).

If the semiparametric efficiency bound is not attained or is not known, then the next

best property is that
√

N (β̂ − β)
d→ N [0,V∗∗

G ] for V∗∗
G greater than V∗

G , which permits
the usual statistical inference. More generally,

√
N (β̂ − β) = Op(1) but is not neces-

sarily normally distributed. Finally, consistent but less than
√

N -consistent estimators
have the property that Nr (β̂ − β) = Op(1), where r < 0.5. Often asymptotic normal-
ity cannot be established. This often arises when the parametric and nonparametric
parts are treated equally, so that maximization occurs jointly over β and G. There are
many examples, particularly in discrete and truncated choice models.

Despite their potential inefficiency, semiparametric estimators are attractive because
they can retain consistency in settings where a fully parametric estimator is inconsis-
tent. Powell (1994, p. 2513) presents a table that summarizes the existence of consis-
tent and

√
N -consistent asymptotic normal estimators for a range of semiparametric

models.

9.7.3. Partially Linear Model

The partially linear model specifies the conditional mean to be the usual linear re-
gression function plus an unspecified nonlinear component, so

E[y|x, z] = x′β + λ(z), (9.34)

where the scalar function λ(·) is unspecified.
An example is the estimation of a demand function for electricity, where z reflects

time-of-day or weather indicators such as temperature. A second example is the sample
selection model given in Section 16.5. Ignoring λ(z) leads to inconsistent β owing to
omitted variables bias, unless Cov[x, λ(z)] = 0. In applications interest may lie in β,
λ(z) or both. Fully nonparametric estimation of E[y|x, z] is possible but leads to less
than

√
N -consistent estimation of β.

Robinson Difference Estimator

Instead, Robinson (1988a) proposed the following method. The regression model
implies

y = x′β + λ(z) + u,

where the error u = y − E[y|x, z]. This in turn implies

E[y|z] = E[x|z]′β + λ(z)

since E[u|x, z] = 0 implies E[u|z] = 0. Subtracting the two equations yields

y − E[y|z] = (x − E[x|z])′β + u. (9.35)

The conditional moments in (9.35) are unknown, but they can be replaced by nonpara-
metric estimates.
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Thus Robinson proposed the OLS regression estimation of

yi − m̂ yi = (x − m̂xi )
′β + v, (9.36)

where m̂ yi and m̂xi are predictions from nonparametric regression of, respectively, yi

and xi on zi . Given independence over i , the OLS estimator of β in (9.36) is
√

N
consistent and asymptotically normal with

√
N (β̂PL − β)

d→ N

0, σ 2

(
plim

1

N

N∑
i=1

(xi − E[xi |zi ])(xi − E[xi |zi ])
′
)−1
 ,

assuming ui is iid [0, σ 2]. Not specifying λ(z) generally leads to an efficiency loss,
though there is no loss if E[x|z] is linear in z. To estimate V[β̂PL] simply replace
(xi−E[xi |zi ]) by (xi − m̂xi ). The asymptotic result generalizes to heteroskedastic er-
rors, in which case one just uses the usual Eicker–White standard errors from the OLS
regression (9.36). Since λ(z) = E[y|z] − E[x|z]′β it can be consistently estimated by
λ̂(z) = m̂ yi − m̂xi

′β̂.
A variety of nonparametric estimators m̂ yi and m̂xi can be used. Robinson (1988a)

used kernel estimates that require convergence at rate no slower than N−1/4 so that
oversmoothing or higher order kernels are needed if the dimension of z is large; see
Pagan and Ullah (1999, p. 205). Note also that the kernel estimators may be trimmed
(see Section 9.5.3).

Other Estimators

Several other methods lead to
√

N -consistent estimates of β in the partially linear
model. Speckman (1988) also used kernels. Engle et al. (1986) used a generalization
of the cubic smoothing spline estimator. Andrews (1991) presented regression of y on
x and a series approximation for λ(z) given in Section 9.6.4. Yatchew (1997) presents
a simple differencing estimator.

9.7.4. Single-Index Models

A single-index model specifies the conditional mean to be an unknown scalar function
of a linear combination of the regressors, with

E[y|x] = g(x′β), (9.37)

where the scalar function g(·) is unspecified. The advantages of single-index models
have been presented in Section 5.2.4. Here the function g(·) is obtained from the data,
whereas previous examples specified, for example, E[y|x] = exp(x′β).

Identification

Ichimura (1993) presents identification conditions for the single-index model. For
unknown function g(·) the single-index model β is only identified up to location and
scale. To see this note that for scalar v the function g∗(a + bv) can always be expressed
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as g(v), so the function g∗(a + bx′β) is equivalent to g(x′β). Additionally, g(·) must
be differentiable. In the simplest case all regressors are continuous. If instead some
regressors are discrete, then at least one regressor must be continuous and if g(·) is
monotonic then bounds can be obtained for β.

Average Derivative Estimator

For continuous regressors, Stoker (1986) observed that if the conditional mean is single
index then the vector of average derivatives of the conditional mean determines β up
to scale, since for m(xi ) = g(x′

iβ)

δ ≡ E

[
∂m(x)

∂x

]
= E[g′(x′β)]β, (9.38)

and E[g′(x′
iβ)] is a scalar. Furthermore, by the generalized information matrix equal-

ity given in Section 5.6.3, for any function h(x), E[∂h(x)/∂x] = −E[h(x)s(x)], where
s(x) = ∂ ln f (x)/∂x = f ′(x)/ f (x) and f (x) is the density of x. Thus

δ = −E [m(x)s(x)] = −E [E[y|x]s(x)] . (9.39)

It follows that δ, and hence β up to scale, can be estimated by the average derivative
(AD) estimator

δ̂AD = − 1

N

N∑
i=1

yi ŝ(xi ), (9.40)

where ŝ(xi ) = f̂ ′(xi )/ f̂ (xi ) can be obtained by kernel estimation of the density of xi

and its first derivative. The estimator δ̂ is
√

N consistent and its asymptotic normal
distribution was derived by Härdle and Stoker (1989). The function g(·) can be esti-
mated by nonparametric regression of yi on x′

i δ̂. Note that δ̂AD provides an estimate
of E
[
m ′(x)

]
regardless of whether a single-index model is relevant.

A weakness of δ̂AD is that ŝ(xi ) can be very large if f̂ (xi ) is small. One possibility is
to trim when f̂ (xi ) is small. Powell, Stock, and Stoker (1989) instead observed that the
result (9.38) extends to weighted derivatives with δ ≡ E[w(x)m ′(x)]. Especially con-
venient is to choose w(x) = f (x), which yields the density weighted average deriva-
tive (DWAD) estimator

δ̂DWAD = − 1

N

N∑
i=1

yi f̂ ′(xi ), (9.41)

which no longer divides by f̂ (xi ). This yields a
√

N -consistent and asymptotically
normal estimate of β up to scale. For example, if the first component of β is normalized
to one then β̂1 = 1 and β̂ j = δ̂ j /̂δ1 for j > 1.

These methods require continuous regressors so that the derivatives exist. Horowitz
and Härdle (1996) present extension to discrete regressors.
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Semiparametric Least Squares

An alternative estimator of the single-index model was proposed by Ichimura (1993).
Begin by assuming that g(·) is known, in which case the WLS estimator of β
minimizes

SN (β) = 1

N

N∑
i=1

wi (x)(yi − g(x′
iβ))2.

For unknown g(·) Ichimura proposed replacing g(x′
iβ) by a nonparametric estimate

ĝ(x′
iβ), leading to the weighted semiparametric least-squares (WSLS) estimator

β̂WSLS that minimizes

QN (β) = 1

N

N∑
i=1

π (xi )wi (x)(yi − ĝ(x′
iβ))2,

where π (xi ) is a trimming function that drops observations if the kernel regression
estimate of the scalar x′

iβ is small, and ĝ(x′
iβ) is a leave-one-out kernel estimator

from regression of yi on x′
iβ. This is a

√
N -consistent and asymptotically normal

estimate of β up to scale that is generaly more efficient than the DWAD estimator. For
heteroskedastic data the most efficient estimator is the analogue of feasible GLS that
uses estimated weight function ŵi (x) = 1/σ̂ 2

i , where σ̂ 2
i is the kernel estimate given

in (9.43) of Section 9.7.6 and where ûi = yi − ĝ(x′
i β̂) and β̂ is obtained from initial

minimization of QN (β) with wi (x) = 1.
The WSLS estimator is computed by iterative methods. Begin with an initial esti-

mator β̂
(1)

, such as the DWAD estimator with first component normalized to one. Form

the kernel estimate ĝ(x′
i β̂

(1)
) and hence QN (β̂

(1)
), perturb β̂

(1)
to obtain the gradient

gN (β̂
(1)

) = ∂QN (β)/∂β|
β̂

(1) and hence an update β̂
(2) = β̂

(1) + AN gN (β̂
(1)

), and so
on. This estimator is considerably more difficult to calculate than the DWAD estima-
tor, especially as QN (β) can be nonconvex and multimodal.

9.7.5. Generalized Additive Models

Generalized additive models specify E[y|x] = g1(x1) + · · · +gk(xk), a specializa-
tion of the fully nonparametric model E[y|x] = g(x1, . . . , gk). This specialization re-
sults in the estimated subfunctions ĝ j (x j ) converging at the rate for a one-dimensional
nonparametric regression rather than the slower rate of a k-dimensional nonparametric
regression.

A well-developed methodology exists for estimating such models (see Hastie and
Tibsharani, 1990). This is automated in some statistical packages such as S-Plus. Plots
of the estimated subfunctions ĝ j (x j ) on x j trace out the marginal effects of x j on
E[y|x], so the additive model can provide a useful tool for exploratory data analy-
sis. The model sees little use in microeconometrics in part because many applications
such as censoring, truncation, and discrete outcomes lead naturally to single-index and
partially linear models.
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9.7.6. Heteroskedastic Linear Model

The heteroskedastic linear model specifies

E[y|x] = x′β,

V[y|x] = σ 2(x),

where the variance function σ 2(·) is unspecified.
The assumption that errors are heteroskedastic is the standard cross-section data

assumption in modern microecometrics. One can obtain consistent but inefficient esti-
mates of β by doing OLS and using the Eicker–White heteroskedastic-consistent esti-
mate of the variance matrix of the OLS estimator. Cragg (1983) and Amemiya (1983)
proposed an IV estimator that is more efficient than OLS but still not fully efficient.
Feasible GLS provides a fully efficient second-moment estimator but is not attractive
as it requires specification of a functional form for σ 2(x) such as σ 2(x) = exp(x′γ).

Robinson (1987) proposed a variant of FGLS using a nonparametric estimator of
σ 2

i = σ 2(xi ). Then

β̂HLM =
(

N∑
i=1

σ̂−2
i xi x′

i

)−1 ( N∑
i=1

σ̂−2
i xi yi

)
, (9.42)

where Robinson (1987) used a k–NN estimator of σ 2
i with uniform weight, so

σ̂ 2
i = 1

k

N∑
j=1

1(x j ∈ Nk(xi ))̂u
2
j , (9.43)

where ûi = yi − x′
i β̂OLS is the residual from first-stage OLS regression of yi on xi and

Nk(xi ) is the set of k observations of x j closest to xi in weighted Euclidean norm. Then

√
N (β̂HLM − β)

d→ N [0,N

0,

(
plim

1

N

N∑
i=1

σ−2(xi )xi xi
′
)−1
 ,

assuming ui is iid [0, σ 2(xi )]. This estimator is adaptive as it attains the Gauss–
Markov bound so is as as efficient as the GLS estimator when σ 2

i is known. The

variance matrix is consistently estimated by
(
N−1∑

i σ̂
−2
i xi x′

i

)−1
.

In principle other nonparametric estimators of σ 2(xi ) might be used, but Carroll
(1982) and others originally proposed use of a kernel estimator of σ 2

i and found that
proof of efficiency was possible only under very restrictive assumptions on xi . The
Robinson method extends to models with nonlinear mean function.

9.7.7. Seminonparametric MLE

Suppose yi is iid with specified density f (yi |xi ,β). In general, misspecification of the
density leads to inconsistent parameter estimates. Gallant and Nychka (1987) proposed
approximating the unknown true density by a power-series expansion around the den-
sity f (y|x,β). To ensure a positive density they actually use a squared power-series
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expansion around f (y|x,β), yielding

h p(y|x,β,α) = (p(y|α))2 f (y|x,β)∫
(p(z|α))2 f (y|z,β)dz

, (9.44)

where p(y|α) is a pth order polynomial in y,α is the vector of coefficients of the poly-
nomial, and division by the denominator ensures that probabilities integrate or sum to
one. The estimator of β and α maximizes the log-likelihood

∑N
i=1 ln h p(yi |x,β,α).

The approach generalizes immediately to multivariate yi . The estimator is called the
seminonparametric maximum likelihood estimator because it is a nonparametric
estimator that can be estimated in the same way as a maximum likelihood estimator.
Gallant and Nychka (1987) showed that under fairly general conditions the estimator
yields consistent estimates of the density if the order p of the polynomial increases
with sample size N at an appropriate rate.

This result provides a strong basis for using (9.44) to obtain a class of flexible dis-
tributions for any particular data. The method is particularly simple if the polynomial
series p(y|α) is the orthogonal or orthonormal polynomial series (see Section 12.3.1)
for the baseline density f (y|x,β), as then the normalizing factor in the denominator
can be simply constructed. The order of the polynomial can be chosen using infor-
mation criteria, with measures that penalize model complexity more than AIC used in
practice. Regular ML statistical inference is possible if one ignores the data-dependent
selection of the polynomial order and assumes that the resulting density h p(y|x,β,α)
is correctly specified. An example of this approach for count data regression is given
in Cameron and Johansson (1997).

9.7.8. Semiparametric Efficiency Bounds

Semiparametric efficiency bounds extend efficiency bounds such as Cramer–Rao or
the Gauss–Markov theorem to cases where the dgp has a nonparametric component.
The best semiparametric methods achieve this efficiency bound.

We use β to denote parameters we wish to estimate, which may include variance
components such as σ 2, and η to denote nuisance parameters. For simplicity we con-
sider ML estimation with a nonparametric component.

We begin with the fully parametric case. The MLE (β̂, η̂) maximizes L(β,η) =
ln L(β,η). Let θ = (β,η) and let Iθθ be the information matrix defined in (5.43).

Then
√

N (̂θ − θ)
d→ N [0, I−1

θθ ]. For
√

N (β̂ − β), partitioned inversion of Iθθ leads
to

V∗ = (Iββ − IβηI−1
ηηIηβ)−1 (9.45)

as the efficiency bound for estimation of β when η is unknown. There is an efficiency
loss when η is unknown, unless the information matrix is block diagonal so that Iβη =
0 and the variance reduces to I−1

ββ.
Now consider extension to the nonparametric case. Suppose we have a paramet-

ric submodel, say L0(β), that involves β alone. Consider the family of all possible
parametric models L(β,η) that nest L0(β) for some value of η. The semiparametric
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efficiency bound is the largest value of V∗ given in (9.45) over all possible parametric
models L(β,η), but this is difficult to obtain.

Simplification is possible by considering

s̃β = sβ − E[sβ|sη],

where sθ denotes the score ∂L/∂θ, and s̃β is the score for β after concentrating out
η. For finite-dimensional η it can be shown that E[N−1̃sβ̃s′

β] = V∗. Here η is instead
infinite dimensional. Assume iid data and let sθi denote the i th component in the sum
that leads to the score sθ. Begun et al. (1983) define the tangent set to be the set of all
linear combinations of sηi . When this tangent set is linear and closed the largest value
of V∗ in (9.45) equals

Ω = (plim N−1̃sβ̃s′
β

)−1 = (E[̃sβĩ s′
βi ])

−1.

The matrix Ω is then the semiparametric efficiency bound.
In applications one first obtains sη =∑i sηi

. Then obtain E[sβi
|sηi

], which may
entail assumptions such as symmetry of errors that place restrictions on the class of
semiparametric models being considered. This yields s̃βi and hence Ω. For more de-
tails and applications see Newey (1990b), Pagan and Ullah (1999), and Severini and
Tripathi (2001).

9.8. Derivations of Mean and Variance of Kernel Estimators

Nonparametric estimation entails a balance between smoothness (variance) and bias
(mean). Here we derive the mean and variance of kernel density and kernel regression
estimators. The derivations follow those of M. J. Lee (1996).

9.8.1. Mean and Variance of Kernel Density Estimator

Since xi are iid each term in the summation has the same expected value and

E[ f̂ (x0)] = E
[

1
h K
( x−x0

h

)]
= ∫ 1

h K
( x−x0

h

)
f (x)dx .

By change of variable to z = (x − x0)/h so that x = x0 + hz and dx/dz = h we
obtain

E[ f̂ (x0)] =
∫

K (z) f (x0 + hz)dz.

A second-order Taylor series expansion of f (x0 + hz) around f (x0) yields

E[ f̂ (x0)] = ∫ K (z){ f (x0) + f ′(x0)hz + 1
2 f

′′
(x0)(hz)2}dz

= f (x0)
∫

K (z)dz + h f ′(x0)
∫

zK (z)dz + 1
2 h2 f

′′
(x0)
∫

z2 K (z)dz.
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Since the kernel K (z) integrates to unity this simplifies to

E[ f̂ (x0)] − f (x0) = h f ′(x0)
∫

zK (z)dz + 1

2
h2 f

′′
(x0)
∫

z2 K (z)dz.

If additionally the kernel satisfies
∫

zK (z)dz = 0, assumed in condition (ii) in Section
9.3.3, and second derivatives of f are bounded, then the first term on the right-hand
side disappears, yielding E[ f̂ (x0)] − f (x0) = b(x0), where b(x0) is defined in (9.4).

To obtain the variance of f̂ (x0), begin by noting that if yi are iid then V[ȳ] =
N−1V[y] = N−1E[y2] − N−1(E[y])2. Thus

V[ f̂ (x0)] = 1
N E
[(

1
h K
( x−x0

h

))2]− 1
N

(
E
[

1
h K
( x−x0

h

)])2
.

Now by change of variables and first-order Taylor series expansion

E
[(

1
h K
( x−x0

h

))2] = ∫ 1
h K (z)2{ f (x0) + f ′(x0)hz}dz

= 1
h f (x0)

∫
K (z)2dz + f ′(x0)

∫
zK (z)2dz.

It follows that

V[ f̂ (x0)] = 1
Nh f (x0)

∫
K (z)2dz + 1

N f ′(x)
∫

zK (z)2dz

− 1
N [ f (x0) + h2

2 f
′′
(x0)[

∫
z2 K (z)dz]]2.

For h → 0 and N → ∞ this is dominated by the first term, leading to Equation (9.5).

9.8.2. Distribution of Kernel Regression Estimator

We obtain the distribution for regressors xi that are iid with density f (x). From Section
9.5.1 the kernel estimator is a weighted average m̂(x0) =∑i wi0,h yi , where the kernel
weights wi0,h are given in (9.22). Since the weights sum to unity we have m̂(x0) −
m(x0) =∑i wi0,h(yi − m(x0)). Substituting (9.15) for yi , and normalizing by

√
Nh

as in the kernel density estimator case we have

√
Nh(m̂(x0) − m(x0)) = √

Nh
N∑

i=1

wi0,h(m(xi ) − m(x0) + εi ). (9.46)

One approach to obtaining the limit distribution of (9.46) is to take a second-order
Taylor series expansion of m(xi ) around x0. This approach is not always taken be-
cause the weights wi0,h are complicated by the normalization that they sum to one (see
(9.22)).

Instead, we take the approach of Lee (1996, pp. 148–151) following Bierens (1987,
pp. 106–108). Note that the denominator of the weight function is the kernel estimate
of the density of x0, since f̂ (x0) = (Nh)−1∑

i K ((xi − x0)/h). Then (9.46) yields

√
Nh(m̂(x0) − m(x0)) = 1√

Nh

N∑
i=1

K

(
xi − x0

h

)
(m(xi ) − m(x0) + εi )

/
f̂ (x0).

(9.47)

We apply the Transformation Theorem (Theorem A.12) to (9.47), using f̂ (x0)
p→

f (x0) for the denominator, while several steps are needed to obtain a limit normal
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distribution for the numerator:

1√
Nh

N∑
i=1

K

(
xi − x0

h

)
(m(xi ) − m(x0) + εi ) (9.48)

= 1√
Nh

N∑
i=1

K

(
xi − x0

h

)
(m(xi ) − m(x0)) + 1√

Nh

N∑
i=1

K

(
xi − x0

h

)
εi .

Consider the first sum in (9.48); if a law of large numbers can be applied it converges
in probability to its mean

E

[
1√
Nh

N∑
i=1

K

(
xi − x0

h

)
(m(xi ) − m(x0))

]
(9.49)

=
√

N√
h

∫
K

(
x − x0

h

)
(m(x) − m(x0)) f (x)dx

= √
Nh
∫

K (z)(m(x0 + hz) − m(x0)) f (x0 + hz)dz

= √
Nh
∫

K (z)

(
hzm ′(x0) + 1

2
h2z2m ′′(x0)

) (
f (x0) + hz f ′(x0)

)
dz

= √
Nh

{∫
K (z)h2z2m ′(x0) f ′(x0)dz +

∫
K (z)

1

2
h2z2m ′′(x0) f (x0)dz

}
= √

Nhh2

(
m ′(x0) f ′(x0) + 1

2
m ′′(x0) f (x0)

)∫
z2 K (z)dz

= √
Nh f (x0)b(x0),

where b(x0) is defined in (9.23). The first equality uses xi iid; the second equality is
change of variables to z = (x − x0)/h; the third equality applies a second-order Taylor
series expansion to m(x0 + hz) and a first-order Taylor series expansion to f (x0 + hz);
the fourth equality follows because upon expanding the product to four terms, the two
terms given dominate the others (see, e.g., Lee, 1996, p. 150).

Now consider the second sum in (9.48); the terms in the sum clearly have mean
zero, and the variance of each term, dropping subscript i , is

V

[
K

(
x − x0

h

)
ε

]
= E

[
K 2

(
x − x0

h

)
ε2

]
(9.50)

=
∫

K 2

(
x − x0

h

)
V[ε|x] f (x)dx

= h
∫

K 2 (z) V[ε|x0 + hz] f (x0 + hz)dz

= hV[ε|x0] f (x0)
∫

K 2 (z) dz,

by change of variables to z = (x − x0)/h with dx = hdz in the third-line term, and
letting h → 0 to get the last line. It follows upon applying a central limit theorem that

1√
Nh

N∑
i=1

K

(
xi − x0

h

)
εi

d→ N
[

0,V[ε|x0] f (x0)
∫

K 2 (z) dz

]
. (9.51)
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Combining (9.49) and (9.51), we have that
√

Nh(m̂(x0) − m(x0)) defined in (9.47)
converges to 1/ f (x0) times N

[√
Nh f (x0)b(x0), V[ε|x0] f (x0)

∫
K 2 (z) dz

]
. Division

of the mean by f (x0) and the variance by f (x0)2 leads to the limit distribution given
in (9.24).

9.9. Practical Considerations

All-purpose regression packages increasingly offer adequate methods for univariate
nonparametric density estimation and regression. The programming language XPlore
emphasizes nonparametric and graphical methods; details on many of the methods are
provided at its Web site.

Nonparametric univariate density estimation is straightforward, using a kernel den-
sity estimate based on a kernel such as the Gaussian or Epanechnikov. Easily computed
plug-in estimates for the bandwidth provide a useful starting point that one may then,
say, halve or double to see if there is an improvement.

Nonparametric univariate regression is also straightforward, aside from bandwidth
selection. If relatively unbiased estimates of the regression function at the end points
are desired, then local linear regression or Lowess estimates are better than kernel
regression. Plug-in estimates for the bandwidth are more difficult to obtain and cross-
validation is instead used (see Section 9.5.3) along with eyeballing the scatterplot with
a fitted line. The degree of desired smoothness can vary with application. For nonpara-
metric multivariate regression such eyeballing may be impossible.

Semiparametric regression is more complicated. It can entail subtleties such as trim-
ming and undersmoothing the nonparametric component since typically estimation
of the parametric component involves averaging the nonparametric component. For
such purposes one generally uses specialized code written in languages such as Gauss,
Matlab, Splus, or XPlore. For the nonparametric estimation component considerable
computational savings can be obtained through use of fast computing algorithms such
as binning and updating; see, for example, Fan and Gijbels (1996) and Härdle and
Linton (1994).

All methods require at some stage specification of a bandwidth or window width.
Different choices lead to different estimates in finite samples, and the differences can
be quite large as illustrated in many of the figures in this chapter. By contrast, within
a fully parametric framework different researchers estimating the same model by ML
will all obtain the same parameter estimates. This indeterminedness is a detraction of
nonparametric methods, though the hope is that in semiparametric methods at least the
spillover effects to the parametric component of the model may be small.

9.10. Bibliographic Notes

Nonparametric estimation is well presented in many statistics texts, including Fan and Gijbels
(1996). Ruppert, Wand, and Carroll (2003) present application of many semiparametric meth-
ods. The econometrics books by Härdle (1990), M. J. Lee (1996), Horowitz (1998b), Pagan and
Ullah (1999), and Yatchew (2003) cover both nonparametric and semiparametric estimation.
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Pagan and Ullah (1999) is particularly comprehensive. Yatchew (2003) is oriented to the ap-
plied econometrician. He emphasizes the partial linear and single-index models and practical
aspects of their implementation such as computation of confidence intervals.

9.3 Key early references for kernel density estimation are Rosenblatt (1956) and Parzen (1962).
Silverman’s (1986) is a classic book on nonparametric density estimation.

9.4 A quite general statement of optimal rates of convergence for nonparametric estimators is
given in Stone (1980).

9.5 Kernel regression estimation was proposed by Nadaraya (1964) and Watson (1964). A
very helpful and relatively simple survey of kernel and nearest-neighbors regression is by
Altman (1992). There are many other surveys in the statistics literature. Härdle (1990, chap-
ter 5) has a lengthy discussion of bandwidth choice and confidence intervals.

9.6 Many approaches to nonparametric local regression are contained in Stone (1977). For
series estimators see Andrews (1991) and Newey (1997).

9.6 For semiparametric efficiency bounds see the survey by Newey (1990b) and the more recent
paper by Severini and Tripathi (2001). An early econometrics application was given by
Chamberlain (1987).

9.7 The econometrics literature focuses on semiparametric regression. Survey papers include
those by Powell (1994), Robinson (1988b), and, at a more introductory level, Yatchew
(1998). Additional references are given in elsewhere in this book, notably in Sections 14.7,
15.11, 16.9, 20.5, and 23.8. The applied study by Bellemare, Melenberg, and Van Soest
(2002) illustrates several semiparametric methods.

Exercises

9–1 Suppose we obtain a kernel density estimate using the uniform kernel (see
Table 9.1) with h = 1 and a sample of size N = 100. Suppose in fact the data
x ∼ N [0,1].

(a) Calculate the bias of the kernel density estimate at x0 = 1 using (9.4).
(b) Is the bias large relative to the true value φ(1), where φ(·) is the standard

normal pdf?
(c) Calculate the variance of the kernel density estimate at x0 = 1 using (9.5).
(d) Which is making a bigger contribution to MSE at x0 = 1, variance or bias

squared?
(e) Using results in Section 9.3.7, give a 95% confidence interval for the density

at x0 = 1 based on the kernel density estimate f̂ (1).
(f) For this example, what is the optimal bandwidth h∗ from (9.10).

9–2 Suppose we obtain a kernel regression estimate using a uniform kernel (see
Table 9.1) with h = 1 and a sample of size N = 100. Suppose in fact the data
x ∼ N [0,1] and the conditional mean function is m(x) = x 2.

(a) Calculate the bias of the kernel regression estimate at x0 = 1 using (9.23).
(b) Is the bias large relative to the true value m(1) = 1?
(c) Calculate the variance of the kernel regression estimate at x0 = 1 using

(9.24).
(d) Which is making a bigger contribution to MSE at x0 = 1, variance or bias

squared?
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(e) Using results in Section 9.5.4, give a 95% confidence interval for E[y |x0 = 1]
based on the kernel regression estimate m̂(1).

9–3 This question assumes access to a nonparametric density estimation program.
Use the Section 4.6.4 data on health expenditure. Use a kernel density estimate
with Gaussian kernel (if available).

(a) Obtain the kernel density estimate for health expenditure, choosing a suitable
bandwidth by eyeballing and trial and error. State the bandwidth chosen.

(b) Obtain the kernel density estimate for natural logarithm of health expenditure,
choosing a suitable bandwidth by eyeballing and trial and error. State the
bandwidth chosen.

(c) Compare your answer in part (b) to an appropriate histogram.
(d) If possible superimpose a fitted normal density on the same graph as the

kernel density estimate from part (b). Do health expenditures appear to be
log-normally distributed?

9–4 This question assumes access to a kernel regression program or other non-
parametric smoother. Use the complete sample of the Section 4.6.4 data
on natural logarithm of health expenditure (y) and natural logarithm of total
expenditure (x).

(a) Obtain the kernel regression density estimate for health expenditure, choos-
ing a good bandwidth by eyeballing and trial and error. State the bandwidth
chosen.

(b) Given part (a), does health appear to be a normal good?
(c) Given part (a), does health appear to be a superior good?
(d) Compare your nonparametric estimates with predictions from linear and

quadratic regression.
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C H A P T E R 10

Numerical Optimization

10.1. Introduction

Theoretical results on consistency and the asymptotic distribution of an estimator de-
fined as the solution to an optimization problem were presented in Chapters 5 and 6.
The more practical issue of how to numerically obtain the optimum, that is, how to
calculate the parameter estimates, when there is no explicit formula for the estimator,
comprises the subject of this chapter.

For the applied researcher estimation of standard nonlinear models, such as logit,
probit, Tobit, proportional hazards, and Poisson, is seemingly no different from es-
timation of an OLS model. A statistical package obtains the estimates and reports
coefficients, standard errors, t-statistics, and p-values. Computational problems gen-
erally only arise for the same reasons that OLS may fail, such as multicollinearity or
incorrect data input.

Estimation of less standard nonlinear models, including minor variants of a standard
model, may require writing a program. This may be possible within a standard statisti-
cal package. If not, then a programming language is used. Especially in the latter case
a knowledge of optimization methods becomes necessary.

General considerations for optimization are presented in Section 10.2. Various iter-
ative methods, including the Newton–Raphson and Gauss–Newton gradient methods,
are described in Section 10.3. Practical issues, including some common pitfalls, are
presented in Section 10.4. These issues become especially relevant when the opti-
mization method fails to produce parameter estimates.

10.2. General Considerations

Microeconometric analysis is often based on an estimator θ̂ that maximizes a stochas-
tic objective function QN (θ), where usually θ̂ solves the first-order conditions
∂QN (θ)/∂θ = 0. A minimization problem can be recast as a maximization by mul-
tiplying the objective function by minus one. In nonlinear applications there will
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generally be no explicit solution to the first-order conditions, a nonlinear system of
q equations in the q unknowns θ.

A grid search procedure is usually impractical and iterative methods, usually gradi-
ent methods, are employed.

10.2.1. Grid Search

In grid search methods, the procedure is to select many values of θ along a grid,
compute QN (θ) for each of these values, and choose as the estimator θ̂ the value that
provides the largest (locally or globally depending on the application) value of QN (θ).

If a fine enough grid can be chosen this method will always work. It is generally
impractical, however, to choose a fine enough grid without further restrictions. For
example, if 10 parameters need to be estimated and the grid evaluates each parameter
at just 10 points, a very sparse grid, there are 1010 or 10 billion evaluations.

Grid search methods are nonetheless useful in applications where the grid search
need only be performed among a subset of the parameters. They also permit viewing
the response surface to verify that in using iterative methods one need not be concerned
about multiple maxima. For example, many time-series packages do this for the scalar
AR(1) coefficient in a regression model with AR(1) error. A second example is doing a
grid search for the scalar inclusive parameter in a nested logit model (see Section 15.6).
Of course, grid search methods may have to be used if nothing else works.

10.2.2. Iterative Methods

Virtually all microeconometric applications instead use iterative methods. These
update the current estimate of θ using a particular rule. Given an sth-round estimate θ̂s

the iterative method provides a rule that yields a new estimate θ̂s+1, where θ̂s denotes
the sth-round estimate rather than the sth component of θ̂. Ideally, the new estimate is
a move toward the maximum, so that QN (̂θs+1) > QN (̂θs), but in general this cannot
be guaranteed. Also, gradient estimates may find a local maximum but not necessarily
the global maximum.

10.2.3. Gradient Methods

Most iterative methods are gradient methods that change θ̂s in a direction determined
by the gradient. The update formula is a matrix weighted average of the gradient

θ̂s+1 = θ̂s + Asgs, s = 1, . . . , S, (10.1)

where As is a q × q matrix that depends on θ̂s , and

gs = ∂QN (θ)

∂θ

∣∣∣∣̂
θs

(10.2)

is the q × 1 gradient vector evaluated at θ̂s . Different gradient methods use differ-
ent matrices As , detailed in Section 10.3. A leading example is the Newton–Raphson
method, which sets As = −H−1

s , where Hs is the Hessian matrix defined later in (10.6).
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Note that in this chapter A and g denote quantities that differ from those in other chap-
ters. Here A is not the matrix that appears in the limit distribution of an estimator and
g is not the conditional mean of y in the nonlinear regression model.

Ideally, the matrix As is positive definite for a maximum (or negative definite for
a minimum), as then it is likely that QN (̂θs+1) > QN (̂θs). This follows from the first-
order Taylor series expansion QN (̂θs+1) = QN (̂θs) + g′

s (̂θs+1 − θ̂s) + R, where R is
a remainder. Substituting in the update formula (10.1) yields

QN (̂θs+1) − QN (̂θs) = g′
sAsgs + R,

which is greater than zero if As is positive definite and the remainder R is sufficiently
small, since for a positive definite square matrix A the quadratic form x′Ax > 0 for
all column vectors x �= 0. Too small a value of As leads to an iterative procedure that
is too slow; however, too large a value of As may lead to overshooting, even if As is
positive definite, as the remainder term cannot be ignored for large changes.

A common modification to gradient methods is to add a step-size adjustment to
prevent possible overshooting or undershooting, so

θ̂s+1 = θ̂s + λ̂sAsgs, (10.3)

where the stepsize λ̂s is a scalar chosen to maximize QN (̂θs+1). At the sth round
first calculate Asgs , which may involve considerable computation. Then calculate
QN (̂θ), where θ̂ = θ̂s + λAsgs for a range of values of λ (called a line search),
and choose λ̂s as that λ that maximizes QN (̂θ). Considerable computational savings
are possible because the gradient and As are not recomputed along the line search.

A second modification is sometimes made when the matrix As is defined as the
inverse of a matrix Bs , say, so that As = B−1

s . Then if Bs is close to singular a matrix
of constants, say C, is added or subtracted to permit inversion, so As = (Bs + C)−1.
Similar adjustments can be made if As is not positive definite. Further discussion of
computation of As is given in Section 10.3.

Gradient methods are most likely to converge to the local maximum nearest the
starting values. If the objective function has multiple local optima then a range of
starting values should be used to increase the chance of finding the global maximum.

10.2.4. Gradient Method Example

Consider calculation of the NLS estimator in the exponential regression model when
the only regressor is the intercept. Then E[y] = eβ and a little algebra yields the gra-
dient g = N−1∑

i (yi − eβ)eβ = (ȳ − eβ)eβ . Suppose in (10.1) we use As = e−2β̂s ,
which corresponds to the method of scoring variant of the Newton–Raphson algo-
rithm presented later in Section 10.3.2. The iterative method simplifies to β̂s+1 =
β̂s + (ȳ − eβ̂s )/eβ̂s .

As an example of the performance of this algorithm, suppose ȳ = 2 and the starting
value is β̂1 = 0. This leads to the iterations listed in Table 10.1. There is very rapid
convergence to the NLS estimate, which for this simple example can be analytically
obtained as β̂ = ln ȳ = ln 2 = 0.693147. The objective function increases throughout,
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Table 10.1. Gradient Method Results

Round Estimate Gradient Objective Function

s β̂s gs QN (̂βs) = − 1
2N

∑
i (yi − eβ)2

1 0.000000 1.000000 1.500000 −∑i y2
i /2N

2 1.000000 −1.952492 1.742036 −∑i y2
i /2N

3 0.735758 −0.181711 1.996210 −∑i y2
i /2N

4 0.694042 −0.003585 1.999998 −∑i y2
i /2N

5 0.693147 −0.000002 2.000000 −∑i y2
i /2N

a consequence of use of the NR algorithm with globally concave objective function.
Note that overshooting occurs in the first iteration, from β̂1 = 0.0 to β̂2 = 1.0, greater
than β̂ = 0.693.

Quick convergence usually occurs when the NR algorithm is used and the objective
function is globally concave. The challenge in practice is that nonstandard nonlinear
models often have objective functions that are not globally concave.

10.2.5. Method of Moments and GMM Estimators

For m-estimators QN (θ) = N−1∑
i qi (θ) and the gradient g(θ) = N−1∑

i
∂qi (θ)/∂θ.

For GMM estimators QN (θ) is a quadratic form (see Section 6.3.2) and the gradient
takes the more complicated form

g(θ) =
[

N−1
∑

i

∂hi (θ)′/∂θ

]
× WN ×

[
N−1

∑
i

hi (θ)

]
.

Some gradient methods can then no longer be used as they work only for averages.
Methods given in Section 10.3 that can still be used include Newton-Raphson, steepest
ascent, DFP, BFG, and simulated annealing.

Method of moments and estimating equations estimators are defined as solving a
system of equations, but they can be converted to a numerical optimization problem
similar to GMM. The estimator θ̂ that solves the q equations N−1∑

i hi (θ) = 0 can
be obtained by minimizing QN (θ) = [N−1∑

i hi (θ)]′[N−1∑
i hi (θ)].

10.2.6. Convergence Criteria

Iterations continue until there is virtually no change. Programs ideally stop when all
of the following occur: (1) A small relative change occurs in the objective function
QN (̂θs); (2) a small change of the gradient vector gs occurs relative to the Hessian;
and (3) a small relative change occurs in the parameter estimates θ̂s . Statistical pack-
ages typically choose default threshold values for these three changes, called conver-
gence criteria. These values can often be changed by the user. A conservative value
is 10−6.
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In addition there is usually a maximum number of iterations that will be
attempted. If this maximum is reached estimates are typically reported. The estimates
should not be used, however, unless convergence has been achieved.

If convergence is achieved then a local maximum has been obtained. However, there
is no guarantee that the global maximum is obtained, unless the objective function is
globally concave.

10.2.7. Starting Values

The number of iterations is considerably reduced if the initial starting values θ̂1 are
close to θ̂. Consistent parameter estimates are obviously good estimates to use as start-
ing values. A poor choice of starting values can lead to failure of iterative methods. In
particular, for some estimators and gradient methods it may not be possible to compute
g1 or A1 if the starting value is θ̂1 = 0.

If the objective function is not globally concave it is good practice to use a range of
starting values to increase the chance of obtaining a global maximum.

10.2.8. Numerical and Analytical Derivatives

Any gradient method by definition uses derivatives of the objective function. Either
numerical derivatives or analytical derivatives may be used.

Numerical derivatives are computed using

�QN (̂θs)

�θ j
= QN (̂θs + he j ) − QN (̂θs − he j )

2h
, j = 1, . . . , q, (10.4)

where h is small and e j = (0 . . . 0 1 0 . . . 0)′ is a vector with unity in the j th row and
zeros elsewhere.

In theory h should be very small, as formally ∂QN (θ)/∂θ j equals the limit of
�QN (θ)/�θ j as h → 0. In practice too small a value of h leads to inaccuracy ow-
ing to rounding error. For this reason calculations using numerical derivatives should
always be done in double precision or quadruple precision rather than single precision.
Although a program may use a default value such as h = 10−6, other values will be
better for any particular problem. For example, a smaller value of h is appropriate if the
dependent variable y in NLS regression is measured in thousands of dollars rather than
dollars (with regressors not rescaled), since then θ will be one-thousandth the size.

A drawback of using numerical derivatives is that these derivatives have to be com-
puted many times – for each of the q parameters, for each of the N observations, and
for each of the S iterations. This requires 2q N S evaluations of the objective function,
where each evaluation itself may be computationally burdensome.

An alternative is to use analytical derivatives. These will be more accurate than
numerical derivatives and may be much quicker to compute, especially if the analytical
derivatives are simpler than the objective function itself. Moreover, only q N S function
evaluations are needed.

For methods that additionally require calculation of second derivatives to form As

there is even greater benefit to providing analytical derivatives. Even if just analyt-
ical first derivatives are given, the second derivative may then be more quickly and
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accurately obtained as the numerical first derivative of the analytical first derivative.
Statistical packages often provide the user with the option of providing analytical first
and second derivatives.

Numerical derivatives have the advantage of requiring no coding beyond providing
the objective function. This saves coding time and eliminates one possible source of
user error, though some packages have the ability to take analytical derivatives.

If computational time is a factor or if there is concern about accuracy of calcula-
tions, however, it is worthwhile going to the trouble of providing analytical derivatives.
It is still good practice then to check that the analytical derivatives have been correctly
coded by obtaining parameter estimates using numerical derivatives, with starting val-
ues the estimates obtained using analytical derivatives.

10.2.9. Nongradient Methods

Gradient methods presume the objective function is sufficiently smooth to ensure ex-
istence of the gradient. For some examples, notably least absolute deviations (LAD),
quantile regression, and maximum score estimation, there is no gradient and alterna-
tive iterative methods are used.

For example, for LAD the objective function QN (θs) = N−1∑
i |yi − xiβ| has no

derivative and linear programming methods are used in place of gradient methods.
Such examples are sufficiently rare in microeconometrics that we focus almost exclu-
sively on gradient methods.

For objective functions that are difficult to maximize, particularly because of multi-
ple local optima, use can be made of nongradient methods such as simulated annealing
(presented in Section 10.3.8) and genetic algorithms (see Dorsey and Mayer, 1995).

10.3. Specific Methods

The leading method for obtaining a globally concave objective function is the Newton–
Raphson iterative method. The other methods, such as steepest descent and DFP, are
usually learnt and employed when the Newton–Raphson method fails. Another com-
mon method is the Gauss–Newton method for the NLS estimator. This method is
not as universal as the Newton–Raphson method, as it is applicable only to least-
squares problems, and it can be obtained as a minor adaptation of the Newton–Raphson
method. These various methods are designed to obtain a local optimum given some
starting values for the parameters.

This section also presents the expectation method, which is particularly useful in
missing data problems, and the method of simulated annealing, which is an example of
a nongradient method and is more likely to yield a global rather than local maximum.

10.3.1. Newton–Raphson Method

The Newton–Raphson (NR) method is a popular gradient method that works espe-
cially well if the objective function is globally concave in θ. In this method

θ̂s+1 = θ̂s − H−1
s gs, (10.5)
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where gs is defined in (10.2) and

Hs = ∂2 QN (θ)

∂θ∂θ′

∣∣∣∣̂
θs

(10.6)

is the q × q Hessian matrix evaluated at θ̂s . These formulas apply to both maximiza-
tion and minimization of QN (θ) since premultiplying QN (θ) by minus one changes
the sign of both H−1

s and gs .
To motivate the NR method, begin with the sth-round estimate θ̂s for θ. Then by

second-order Taylor series expansion around θ̂s

QN (θ) = QN (̂θs) + ∂QN (θ )

∂θ′

∣∣∣∣̂
θs

(θ − θ̂s) + 1

2
(θ − θ̂s)′

∂2 QN (θ)

∂θ∂θ′

∣∣∣∣̂
θs

(θ − θ̂s) + R.

Ignoring the remainder term R and using more compact notation, we approximate
QN (θ) by

Q∗
N (θ) = QN (̂θs) + g′

s(θ − θ̂s) + 1

2
(θ − θ̂s)′Hs(θ − θ̂s),

where gs and Hs are defined in (10.2) and (10.6). To maximize the approxima-
tion Q∗

N (θ) with respect to θ we set the derivative to zero. Then gs + Hs(θ − θ̂s) = 0,
and solving for θ yields θ̂s+1 = θ̂s − H−1

s gs , which is (10.5). The NR update therefore
maximizes a second-order Taylor series approximation to QN (θ) evaluated at θ̂s .

To see whether NR iterations will necessarily increase QN (θ), substitute the
(s + 1)th-round estimate back into the Taylor series approximation to obtain

QN (̂θs+1) = QN (̂θs) − 1

2
(̂θs+1 − θ̂s)′Hs (̂θs+1 − θ̂s) + R.

Ignoring the remainder term, we see that this increases (or decreases) if Hs is negative
(or positive) definite. At a local maximum the Hessian is negative semi-definite, but
away from the maximum this may not be the case even for well-defined problems. If
the NR method strays into such territory it may not necessarily move toward the max-
imum. Furthermore the Hessian is then singular, in which case H−1

s in (10.5) cannot
be computed. Clearly, the NR method works best for maximization (or minimization)
problems if the objective function is globally concave (or convex), as then Hs is al-
ways negative (or positive) definite. In such cases convergence often occurs within
10 iterations.

An additional attraction of the NR method arises if the starting value θ̂1 is root-N
consistent, that is, if

√
N (̂θ1 − θ0) has a proper limiting distribution. Then the second-

round estimator θ̂2 can be shown to have the same asymptotic distribution as the es-
timator obtained by iterating to convergence. There is therefore no theoretical gain to
further iteration. An example is feasible GLS, where initial OLS leads to consistent
regression parameter estimates, and these in turn are used to obtain consistent variance
parameter estimates, which are then used to obtain efficient GLS. A second example
is use of easily obtained consistent estimates as starting values before maximizing a
complicated likelihood function. Although there is no need to iterate further, in practice
most researchers still prefer to iterate to convergence unless this is computationally too
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time consuming. One advantage of iterating to convergence is that different researchers
should obtain the same parameter estimates, whereas different initial root-N consistent
estimates lead to second-round parameter estimates that will differ even though they
are asymptotically equivalent.

10.3.2. Method of Scoring

A common modification of the NR method is the method of scoring (MS). In this
method the Hessian matrix is replaced by its expected value

HMS,s = E

[
∂2 QN (θ)

∂θ∂θ′

]∣∣∣∣̂
θs

. (10.7)

This substitution is especially advantageous when applied to the MLE (i.e., QN (θ) =
N−1LN (θ)), because the expected value should be negative definite, since by the infor-
mation matrix equality (see Section 5.6.3), HMS,s = E

[
∂LN/∂θ× ∂LN/∂θ

′], which
is positive definite since it is a covariance matrix. Obtaining the expectation in (10.7)
is possible only for m-estimators and even then may be analytically difficult.

The method of scoring algorithm for the MLE of generalized linear models, such
as the Poisson, probit, and logit, can be shown to be implementable using iteratively
reweighted least squares (see McCullagh and Nelder, 1989). This was advantageous to
early adopters of these models who only had access to an OLS program.

The method of scoring can also be applied to m-estimators other than the MLE,
though then HMS,s may not be negative definite.

10.3.3. BHHH Method

The BHHH method of Berndt, Hall, Hall, and Hausman (1974) uses (10.1) with
weighting matrix As = −H−1

BHHH,s where the matrix

HBHHH,s = −
N∑

i=1

∂qi (θ)

∂θ

∂qi (θ)

∂θ′

∣∣∣∣∣̂
θs

, (10.8)

and QN (θ) =∑i qi (θ). Compared to NR, this has the advantage of requiring evalua-
tion of first derivatives only, offering considerable computational savings.

To justify this method, begin with the method of scoring for the MLE, in which case
QN (θ) =∑i ln fi (θ), where fi (θ) is the log-density. The information matrix equality
can be expressed as

E

[
∂2LN (θ)

∂θ∂θ′

]
= −E

[
N∑

i=1

∂ ln fi (θ)

∂θ

N∑
j=1

∂ ln f j (θ)

∂θ′

]
,

and independence over i implies

E

[
∂2LN (θ)

∂θ∂θ′

]
= −

N∑
i=1

E

[
∂ ln fi (θ)

∂θ

∂ ln fi (θ)

∂θ′

]
.

Dropping the expectation leads to (10.8).
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The BHHH method can also be applied to estimators other than the MLE, in which
case it is viewed as simply another choice of matrix As in (10.1) rather than as an
estimate of the Hessian matrix Hs .

The BHHH method is used for many cross-section m-estimators as it can work well
and requires only first derivatives.

10.3.4. Method of Steepest Ascent

The method of steepest ascent sets As = Iq , the simplest choice of weighting matrix.
A line search is then done (see (10.3)) to scale Iq by a constant λs .

The line search can be down manually. In practice it is common to use the optimal
λ for the line search, which can be shown to be λs = −g′

sgs/g′
sHsgs , where Hs is the

Hessian matrix. This optimal λs requires computation of the Hessian, in which case
one might instead use NR. The advantage of steepest ascent rather than NR is that Hs

can be singular, though Hs still needs to be negative definite to ensure λs < 0 so that
λsIq is negative definite.

10.3.5. DFP and BFGS Methods

The DFP algorithm due to Davidon, Fletcher, and Powell is a gradient method with
weighting matrix As that is positive definite and requires computation of only first
derivatives, unlike NR, which requires computation of the Hessian. Here the method
is presented without derivation.

The weighting matrix As is computed by the recursion

As = As−1 + δs−1δ
′
s−1

δ′
s−1γs−1

+ As−1γs−1γ
′
s−1As−1

γ ′
s−1As−1γs−1

, (10.9)

where δs−1 = As−1gs−1 and γs−1 = gs − gs−1. By inspection of the right-hand side
of (10.9), As will be positive definite provided the initial A0 is positive definite (e.g.,
A0 = Iq ).

The procedure converges quite well in many statistical applications. Eventually As

goes to the theoretically preferred −H−1
s . In principle this method can also provide

an approximate estimate of the inverse of the Hessian for use in computation of stan-
dard errors, without needing either second derivatives or matrix inversion. In practice,
however, this estimate can be a poor one.

A refinement of the DFP algorithm is the BFGS algorithm of Boyden, Fletcher,
Goldfarb, and Shannon with

As = As−1 + δs−1δ
′
s−1

δ′
s−1γs−1

+ As−1γs−1γ
′
s−1As−1

γ ′
s−1As−1γs−1

− (γ ′
s−1As−1γs−1)ηs−1η

′
s−1, (10.10)

where ηs−1 = (δs−1/δ
′
s−1γs−1) − (As−1γs−1/γ

′
s−1As−1γs−1).
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10.3.6. Gauss–Newton Method

The Gauss–Newton (GN) method is an iterative method for the NLS estimator that
can be implemented by iterative OLS.

Specifically, for NLS with conditional mean function g(xi ,β), the GN method sets
the parameter change vector (β̂s+1 − β̂s) equal to the OLS coefficient estimates from
the artificial regression

yi − g(xi , β̂s) = ∂gi

∂β′

∣∣∣∣
β̂s

β + vi . (10.11)

Equivalently, β̂s+1 equals the OLS coefficient estimates from the artificial regression

yi − g(xi , β̂s) − ∂gi

∂β′

∣∣∣∣
β̂s

β̂s = ∂gi

∂β′

∣∣∣∣
β̂s

β + vi . (10.12)

To derive this method, let β̂s be a starting value, approximate g(xi ,β) by a first-
order Taylor series expansion

g(xi ,β) = g(xi , β̂s) + ∂gi

∂β′

∣∣∣∣
β̂s

(β − β̂s),

and substitute this in the least-squares objective function QN (β) to obtain the
approximation

Q∗
N (β) =

∑N

i=1

(
yi − g(xi , β̂s) − ∂gi

∂β′

∣∣∣∣
β̂s

(β − β̂s)

)2

.

But this is the sum of squared residuals for OLS regression of yi − g(xi , β̂s) on
∂gi/∂β

′∣∣
β̂s

with parameter vector (β − β̂s), leading to (10.11). More formally,

β̂s+1 = β̂s +
[∑

i

∂gi

∂β

∣∣∣∣
β̂s

∂gi

∂β′

∣∣∣∣
β̂s

]−1∑
i

∂gi

∂β

∣∣∣∣
β̂s

(yi − g(xi , β̂s)). (10.13)

This is the gradient method (10.1) with vector gs =∑i ∂gi/∂β|β̂s
(yi − g(xi , β̂s))

weighted by matrix As = [
∑

i ∂gi/∂β×∂gi/∂β
′|β̂s

]−1.

The iterative method (10.13) equals the method of scoring variant of the Newton–
Raphson algorithm for NLS estimation since, from Section 5.8, the second sum on the
right-hand side is the gradient vector and the first sum is minus the expected value
of the Hessian (see also Section 10.3.9). The Gauss–Newton algorithm is therefore a
special case of the Newton–Raphson, and NR is emphasized more here as it can be
applied to a much wider range of problems than can GN.

10.3.7. Expectation Maximization

There are a number of data and model formulations considered in this book that can be
thought of as involving incomplete or missing data. For example, outcome variables of
interest (e.g., expenditure or the length of a spell in some state) may be right-censored.
That is, for some cases we may observe the actual expenditure or spell length, whereas
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in other cases we may only know that the outcome exceeded some specific value, say
c∗. A second example involves a multiple regression in which the data matrix looks as
follows: [

y1 X1

? X2

]
,

where ? stands for missing data. Here we envisage a situation in which we wish to
estimate a linear regression model y = Xβ + u, where y′ = [y1 ?

]
, X′ = [X1 X2

]
,

but a subset of variables y is missing. A third example involves estimating the parame-
ters (θ1, θ2, . . . ,θC , π1, . . . , πC ) of a C-component mixture distribution, also called a
latent class model, h (y|X) =∑C

j=1 π j f j
(
y j |X j ,θ j

)
, where f j

(
y j |X j ,θ j

)
are well-

defined pdfs. Here π j ( j = 1, . . . ,C) are unknown sampling fractions corresponding
to the C latent densities from which the observations are sampled. It is convenient to
think of this problem also as a missing data problem in the sense that if the sampling
fractions were known constants then estimation would be simpler.

The expectation maximization (EM) framework provides a unifying framework
for developing algorithms for problems that can be interpreted as involving miss-
ing data. Although particular solutions to this type of estimation problem have long
been found in the literature, Dempster, Laird, and Rubin (1977) provided a definitive
treatment.

Let y denote the vector dependent variable of interest, determined by the under-
lying latent variable vector y∗. Let f ∗(y∗|X,θ) denote the joint density of the latent
variables, conditional on regressors X, and let f (y|X,θ) denote the joint density of
the observed variables. Let there be a many-to-one mapping from the sample space
of y to that of y∗; that is, the value of the latent variable y∗ uniquely determines
y, but the value of y does not uniquely determine y∗. It follows that f (y|X,θ) =
f ∗(y∗|X,θ)/ f (y∗|y,X,θ), since from Bayes rule the conditional density f (y∗|y) =
f (y, y∗)/ f (y) = f ∗(y∗)/ f (y), where the final equality uses f (y∗, y) = f ∗(y∗) as y∗

uniquely determines y. Rearranging gives f (y) = f ∗(y∗)/ f (y∗|y).
The MLE maximizes

QN (θ) = 1

N
LN (θ) = 1

N
ln f ∗(y∗|X,θ) − 1

N
ln f (y∗|y,X,θ). (10.14)

Because y∗ is unobserved the first term in the log-likelihood is ignored. The second
term is replaced by its expected value, which will not involve y∗, where at the sth
round this expectation is evaluated at θ = θ̂s .

The expectation (E) part of the EM algorithm calculates

QN (θ|̂θs) = −E

[
1

N
ln f (y∗|y,X,θ)|y,X,̂θs

]
, (10.15)

where expectation is with respect to the density f (y∗|y,X,̂θs). The maximization (M)
part of the EM algorithm maximizes QN (θ|̂θs) to obtain θ̂s+1.

The full EM algorithm is iterative. The likelihood is maximized, given the expected
value of the latent variable; the expected value is evaluated afresh given the current
value of θ. The iterative process continues until convergence is achieved. The EM
algorithm has the advantage of always leading to an increase or constancy in QN (θ);
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see Amemiya (1985, p. 376). The EM algorithm is applied to a latent class model in
Section 18.5.3 and to missing data in Section 27.5.

There is a very extensive literature on situations where the EM algorithm can be
usefully applied, even though it can be applied to only a subset of optimization prob-
lems. The EM algorithm is easy to program in many cases and its use was further en-
couraged by considerations of limited computing power and storage that are no longer
paramount. Despite these attractions, for censored data models and latent class models
direct estimation using Newton–Raphson type iterative procedures is often found to be
faster and more efficient computationally.

10.3.8. Simulated Annealing

Simulated annealing (SA) is a nongradient iterative method reviewed by Goffe,
Ferrier, and Rogers (1994). It differs from gradient methods in permitting movements
that decrease rather than increase the objective function to be maximized, so that one
is not locked in to moving steadily toward one particular local maximum.

Given a value θ̂s at the sth round we perturb the j th component of θ̂s to obtain a
new trial value of

θ∗
s = θ̂s + [0 · · · 0 (λ j r j ) 0 · · · 0

]′
, (10.16)

where λ j is a prespecified step length and r j is a draw from a uniform distribution on
(−1, 1). The new trial value is used, that is, the method sets θ̂s+1 = θ∗

s , if it increases
the objective function, or if it does not increase the value of the objective function but
does pass the Metropolis criterion that

exp
(
(QN (θ∗

s ) − QN (̂θs))/Ts
)
> u, (10.17)

where u is a drawing from a uniform (0, 1) distribution and Ts is a scaling parameter
called the temperature. Thus not only uphill moves are accepted, but downhill moves
are also accepted with a probability that decreases with the difference between QN (θ∗

s )
and QN (̂θs) and that increases with the temperature. The terms simulated annealing
and temperature come from analogy with minimizing thermal energy by slowly cool-
ing (annealing) a molten metal.

The user needs to set the step-size parameter λ j . Goffe et al. (1994) suggest period-
ically adjusting λ j so that 50% of all moves over a number of iterations are accepted.
The temperature also needs to be chosen and reduced during the course of iterations.
Then the algorithm initially is searching over a wide range of parameter values before
steadily locking in on a particular region.

Fast simulated annealing (FSA), proposed by Szu and Hartley (1987), is a faster
method. It replaces the uniform (−1, 1) random number r j by a Cauchy random vari-
able r j scaled by the temperature and permits a fixed step length v j . The method also
uses a simpler adjustment of the temperature over iterations with Ts equal to the ini-
tial temperature divided by the number of FSA iterations, where one iteration is a full
cycle over the q components of θ.

Cameron and Johansson (1997) discuss and use simulated annealing, following the
methods of Horowitz (1992). This begins with FSA but on grounds of computational
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savings switches to gradient methods (BFGS) when relatively little change in QN (·)
occurs over a number of iterations or after many (250) FSA iterations. In a simulation
they find that NR with a number of different starting values offers a considerable im-
provement over NR with just one set of starting values, but even better is FSA with a
number of different starting values.

10.3.9. Example: Exponential Regression

Consider the nonlinear regression model with exponential conditional mean

E[yi |xi ] = exp(x′
iβ), (10.18)

where xi and β are K × 1 vectors. The NLS estimator β̂ minimizes

QN (β) =
∑

i

(yi − exp(x′
iβ))2, (10.19)

where for notational simplicity scaling by 2/N is ignored. The first-order conditions
are nonlinear in β and there is no explicit solution for β. Instead, gradient methods
need to be used.

For this example the gradient and Hessian are, respectively,

g = −2
∑

i

(yi − ex′
iβ)ex′

iβxi (10.20)

and

H = 2
∑

i

{
ex′

iβex′
iβxi x′

i − 2(yi − ex′
iβ)ex′

iβxi x′
i

}
. (10.21)

The NR iterative method (10.5) uses gs and Hs equal to (10.20) and (10.21) evaluated
at β̂s .

A simpler method of scoring variation of NR notes that (10.18) implies

E[H] = 2
∑

i

ex′
iβex′

iβxi x′
i . (10.22)

Using E[Hs] in place of Hs yields

β̂s+1 − β̂s =
[∑

i

ex′
i β̂s ex′

i β̂s xi x′
i

]−1∑
i

ex′
i β̂s xi (yi − ex′

i β̂s ).

It follows that β̂s+1 − β̂s can be computed from OLS regression of (yi − ex′
i β̂s ) on

ex′
i β̂s xi . This is also the Gauss–Newton regression (10.11), since ∂g(xi ,β)/∂β =

exp(x′
i β̂s)xi for the exponential conditional mean (10.18). Specialization to

exp(x′
iβ) = exp(β) gives the iterative procedure presented in Section 10.2.4.

10.4. Practical Considerations

Some practical issues have already been presented in Section 10.2, notably conver-
gence criteria, modifications such as step-size adjustment, and the use of numerical
rather than analytical derivatives. In this section a brief overview of statistical packages
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is given, followed by a discussion of common pitfalls that can arise in computation of
a nonlinear estimator.

10.4.1. Statistical Packages

All standard microeconometric packages such as Limdep, Stata, PCTSP, and SAS have
built-in procedures to estimate basic nonlinear models such as logit and probit. These
packages are simple to use, requiring no knowledge of iterative methods or even of the
model being used. For example, the command for logit regression might be “logit y
x” rather than the command “ols y x” for OLS. Nonlinear least squares requires some
code to convey to the package the particular functional form for g(x,β) one wishes
to specify. Estimation should be quick and accurate as the program should exploit the
structure of the particular model. For example, if the objective function is globally
concave then the method of scoring might be used.

If a statistical package does not contain a particular model then one needs to write
one’s own code. This situation can arise with even minor variation of standard mod-
els, such as imposing restrictions on parameters or using parameterizations that are
not of single-index form. The code may be written using one’s own favorite statistical
package or using other more specialized programming languages. Possibilities include
(1) built-in optimization procedures within the statistical package that require spec-
ification of the objective function and possibly its derivatives; (2) matrix commands
within the statistical package to compute As and gs and iterate; (3) a matrix program-
ming language such as Gauss, Matlab, OX, SAS/IML, or S-Plus, and possibly add-on
optimization routines; (4) a programming language such as Fortran or C++; and (5) an
optimization package such as those in GAMS, GQOPT, or NAGLIB.

The first and second methods are attractive because they do not force the user to
learn a new program. The first method is particularly simple for m-estimation as it can
require merely specification of the subfunction qi (θ) for the i th observation rather than
specification of QN (θ). In practice, however, the optimization procedures for user-
defined functions in the standard packages are more likely to encounter numerical
problems than if more specialized programs are used. Moreover, for some packages
the second method can require learning arcane forms of matrix commands.

For nonlinear problems, the third method is the best, although this might require the
user to learn a matrix programming language from scratch. One then is set up to han-
dle virtually any econometric problem encountered, and the optimization routines that
come with matrix programming languages are usually adequate. Also, many authors
make available the code used in specific papers.

The fourth and fifth methods generally require a higher level of programming so-
phistication than the third method. The fourth method can lead to much faster compu-
tation and the fifth method can solve the most numerically challenging optimization
problems.

Other practical issues include cost of software; the software used by colleagues; and
whether the software has clear error messages and useful debugging features, such as a
trace program that tracks line-by-line program execution. The value of using software
similar to that used by other colleagues cannot be underestimated.

349



NUMERICAL OPTIMIZATION

Table 10.2. Computational Difficulties: A Partial Checklist

Problem Check

Data read incorrectly Print full descriptive statistics.
Imprecise calculation Use analytical derivatives or numerical with different

step size h.
Multicollinearity Check condition number of X′X. Try subset of regressors.
Singular matrix in iterations Try method not requiring matrix inversion such as DFP.
Poor starting values Try a range of different starting values.
Model not identified Difficult to check. Obvious are dummy variable traps.
Strange parameter values Constant included/excluded? Iterations actually

converged?
Different standard errors Which method was used to calculate variance matrix?

10.4.2. Computational Difficulties

Computational difficulties are, in practice, situations where it is not possible to obtain
an estimate of the parameters. For example, an error message may indicate that the
estimator cannot be calculated because the Hessian is singular. There are many possi-
ble reasons for this, as detailed in the following and summarized in Table 10.2. These
reasons may also provide explanation for another common situation of parameter esti-
mates that are obtained but are seemingly in error.

First, the data may not have been read in correctly. This is a remarkably common
oversight. With large data sets it is not practical to print out all the data. However, at a
minimum one should always obtain descriptive statistics and check for anomilies such
as incorrect range for a variable, unusually large or small sample mean, and unusu-
ally large or small standard deviation (including a value of zero, which indicates no
variation). See Section 3.5.4 for further details.

Second, there may be calculation errors. To minimize these all calculations should
be done in double precision or even quadruple precision rather then single precision.
It is helpful to rescale the data so that the regressors have similar means and variances.
For example, it may be better to use annual income in thousands of dollars rather than
in dollars. If numerical derivatives are used it may be necessary to alter the change
value h in (10.4). Care needs to be paid to how functions are evaluated. For example,
the function ln Γ(y), where Γ(·) is the gamma function, is best evaluated using the
log-gamma function. If instead one evaluates the gamma function followed by the log
function considerable numerical error arises even for moderate sized y.

Third, multicollinearity may be a problem. In single-index models (see Sec-
tion 5.2.4) the usual checks for multicollinearity will carry over. The correlation matrix
for the regressors can be printed, though this only considers pairwise correlation. Bet-
ter is to use the condition number of X′X, that is, the square root of the ratio of the
largest to smallest eigenvalue of X′X. If this exceeds 100 then problems may arise. For
more highly nonlinear models than single-index ones it is possible to have problems
even if the condition number is not large. If one suspects multicollinearity is causing
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numerical problems then see whether it is possible to estimate the model with a subset
of the variables that are less likely to be collinear.

Fourth, a noninvertible Hessian during iterations does not necessarily imply singu-
larity at the true maximum. It is worthwhile trying a range of iterative methods such
as steepest ascent with line search and DFP, not just Newton–Raphson. This problem
may also result from multicollinearity.

Fifth, try different starting values. The iterative gradient methods are designed to
obtain a local maximum rather than the global maximum. One way to guard against
this is to begin iterations at a wide range of starting values. A second way is to per-
form a grid search. Both of these approaches theoretically require evaluations at many
different points if the dimension of θ is large, but it may be sufficient to do a detailed
analysis for a stripped-down version of the model that includes just the few regressors
thought to be most statistically significant.

Lastly, the model may not be identified. Indeed a standard necessary condition for
model identification is that the Hessian be invertible. As with linear models, sim-
ple checks include avoiding dummy variable traps and, if a subset of data is being
used in initial analysis, determining that all variables in the subset of the data have
some variation. For example, if data are ordered by gender or by age or by region
then problems can arise if these appear as indicator variables and the chosen subset
is of individuals of a particular gender, age, or region. For nonlinear models it can
be difficult to theoretically determine that the model is not identified. Often one first
eliminates all other potential causes before returning to a careful analysis of model
identification.

Even after parameter estimates are successfully obtained computational problems
can still arise, as it may not be possible to obtain estimates of the variance matrix
A−1BA′−1. This situation can arise when the iterative method used, such as DFP, does
not use the Hessian matrix A−1 as the weighting matrix in the iterations. First check
that the iterative method has indeed converged rather than, for example, stopping at
a default maximum number of iterations. If convergence has occurred, try alternative
estimates of A, using the expected Hessian or using more accurate numerical com-
putations by, for example, using analytical rather than numerical derivatives. If such
solutions still fail it is possible that the model is not identified, with this nonidentifica-
tion being finessed at the parameter estimation stage by using an iterative method that
did not compute the Hessian.

Other perceived computational problems are parameter and variance estimates that
do not accord with prior beliefs. For parameter estimates obvious checks include en-
suring correct treatment of an intercept term (inclusion or exclusion, depending on the
context), that convergence has been achieved, and that a global maximum is obtained
(by trying a range of starting values). If standard errors of parameter estimates dif-
fer across statistical packages that give the same parameter estimates, the most likely
cause is that a different method has been used to construct the variance matrix estimate
(see Section 5.5.2).

A good computational strategy is to start with a small subset of the data and regres-
sors, say one regressor and 100 observations. This simplifies detailed tracing of the
program either manually, such as by printing out key output along the way, or using
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a built-in trace facility if the program has one. If the program passes this test then
computational problems with the full model and data are less likely to be due to in-
correct data input or coding errors and are more likely due to genuine computational
difficulties such as multicollinearity or poor starting values.

A good way to test program validity is to construct a simulated data set where the
true parameters are known. For a large sample size, say N = 10,000, the estimated
parameter values should be close to the true values.

Finally, note that obtaining reasonable computational results from estimation of a
nonlinear model does not guarantee correct results. For example, many early pub-
lished applications of multinomial probit models reported apparently sensible results,
yet the models estimated have subsequently been determined to be not identified (see
Section 15.8.1).

10.5. Bibliographic Notes

Numerical problems can arise even in linear models, and it is instructive to read Davidson and
MacKinnon (1993, Section 1.5) and Greene (2003, appendix E). Standard references for statis-
tical computation are Kennedy and Gentle (1980) and especially Press et al. (1993) and related
co-authored books by Press. For evaluation of functions the standard reference is Abramowitz
and Stegun (1971). Quandt (1983) presents many computational issues, including optimization.

5.3 Summaries of iterative methods are given in Amemiya (1985, Section 4.4), Davidson and
MacKinnon (1993, Section 6.7), Maddala (1977, Section 9.8), and especially Greene (2003,
appendix E.6). Harvey (1990) gives many applications of the GN algorithm, which, owing
to its simplicity, is the usual iterative method for NLS estimation. For the EM algorithm see
especially Amemiya (1985, pp. 375–378). For SA see Goffe et al. (1994).

Exercises

10–1 Consider calculation of the MLE in the logit regression model when the only re-
gressor is the intercept. Then E[y ] = 1/(1 + e−β ) and the gradient of the scaled
log-likelihood function g(β) = (y − 1/(1 + e−β )). Suppose a sample yields ȳ =
0.8 and the starting value is β = 0.0.

(a) Calculate β for the first six iterations of the Newton–Raphson algorithm.
(b) Calculate the first six iterations of a gradient algorithm that sets As = 1 in

(10.1), so β̂s+1 = β̂s + gs.
(c) Compare the performance of the methods in parts (a) and (b).

10–2 Consider the nonlinear regression model y = αx1 + γ /(x2 − δ) + u, where x1

and x2 are exogenous regressors independent of the iid error u ∼ N [0, σ 2].

(a) Derive the equation for the Gauss–Newton algorithm for estimating (α, γ, δ).
(b) Derive the equation for the Newton–Raphson algorithm for estimating

(α, γ, δ).
(c) Explain the importance of not arbitrarily choosing the starting values of the

algorithm.

10–3 Suppose that the pdf of y has a C-component mixture form, f (y |π) =∑C
j =1 π j f j (y ), where π = (π1, . . . , πC), π j > 0,

∑C
j =1 π j = 1. The π j are
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unknown mixing proportions whereas the parameters of the densities f j (y) are
presumed known.

(a) Given a random sample on yi , i = 1, . . . , N, write the general log-likelihood
function and obtain the first-order conditions for π̂ML. Verify that there is no
explicit solution for π̂ML.

(b) Let zi be a C × 1 vector of latent categorical variables, i = 1, . . . , N, such
that zj i = 1 if y comes from the j th component of the mixture and zj i = 0
otherwise. Write down the likelihood function in terms of the observed and
latent variables as if the latent variable were observed.

(c) Devise an EM algorithm for estimating π. [Hint: If zj i were observable the
MLE of π̂ j = N−1∑

i zj i . The E step requires calculation of E[zj i |yi ]; the M
step requires replacing zj i by E[zj i |yi ] and then solving for π.]

10–4 Let (y1i , y2i ), i = 1, . . . , N, have a bivariate normal distribution with mean
(µ1, µ2) and covariance parameters (σ11, σ12, σ22) and correlation coefficient
ρ. Suppose that all N observations on y1 are available but there are m< N
missing observations on y2. Using the fact that the marginal distribution of yj

is N [µ j , σ j j ], and that conditionally y2|y1 ∼ N [µ2.1, σ22.1], where µ2.1 = µ2 +
σ12/σ22(y1 − µ1), σ22.1 = (1 − ρ2)σ22, devise an EM algorithm for imputing the
missing observations on y1.
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Simulation-Based
Methods

Part 1 emphasized that microeconometric models are frequently nonlinear models es-
timated using large and heterogeneous data sets drawn from surveys that are complex
and subject to a variety of sampling biases. A realistic depiction of the economic phe-
nomena in such settings often requires the use of models for which estimation and
subsequent statistical inference are difficult. Advances in computing hardware and
software now make it feasible to tackle such tasks. Part 3 presents modern, computer-
intensive, simulation-based methods of estimation and inference that mitigate some of
these difficulties. The background required to cover this material varies somewhat with
the chapter, but the essential base is least squares and maximum likelihood estimation.

Chapter 11 presents bootstrap methods for statistical inference. These methods have
the attraction of providing a simple way to obtain standard errors when the formulae
from asymptotic theory are complex, as is the case, for example, for some two-step
estimators. Furthermore, if implemented appropriately, a bootstrap can lead to a more
refined asymptotic theory that may then lead to better statistical inference in small
samples.

Chapter 12 presents simulation-based estimation methods. These methods permit
estimation in situations where standard computational methods may not permit calcu-
lation of an estimator, because of the presence of an integral over a probability distri-
bution that leads to no closed-form solution.

Chapter 13 surveys Bayesian methods that provide an approach to estimation and
inference that is quite different from the classical approach used in other chapters
of this book. Despite this different approach, in practice in large sample settings the
Bayesian approach produces similar results to those from classical methods. Further,
they often do so in a computationally more efficient manner.
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Bootstrap Methods

11.1. Introduction

Exact finite-sample results are unavailable for most microeconometrics estimators
and related test statistics. The statistical inference methods presented in preceding
chapters rely on asymptotic theory that usually leads to limit normal and chi-square
distributions.

An alternative approximation is provided by the bootstrap, due to Efron (1979,
1982). This approximates the distribution of a statistic by a Monte Carlo simulation,
with sampling done from the empirical distribution or the fitted distribution of the ob-
served data. The additional computation required is usually feasible given advances
in computing power. Like conventional methods, however, bootstrap methods rely on
asymptotic theory and are only exact in infinitely large samples.

The wide range of bootstrap methods can be classified into two broad approaches.
First, the simplest bootstrap methods can permit statistical inference when conven-
tional methods such as standard error computation are difficult to implement. Second,
more complicated bootstraps can have the additional advantage of providing asymp-
totic refinements that can lead to a better approximation in-finite samples. Applied
researchers are most often interested in the first aspect of the bootstrap. Theoreticians
emphasize the second, especially in settings where the usual asymptotic methods work
poorly in finite samples.

The econometrics literature focuses on use of the bootstrap in hypothesis test-
ing, which relies on approximation of probabilities in the tails of the distributions
of statistics. Other applications are to confidence intervals, estimation of standard er-
rors, and bias reduction. The bootstrap is straightforward to implement for smooth√

N -consistent estimators based on iid samples, though bootstraps with asymptotic re-
finements are underutilized. Caution is needed in other settings, including nonsmooth
estimators such as the median, nonparametric estimators, and inference for data that
are not iid.

A reasonably self-contained summary of the bootstrap is provided in Section 11.2,
an example is given in Section 11.3, and some theory is provided in Section 11.4.
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Further variations of the bootstrap are presented in Section 11.5. Section 11.6 presents
use of the bootstrap for specific types of data and specific methods used often in
microeconometrics.

11.2. Bootstrap Summary

We summarize key bootstrap methods for estimator θ̂ and associated statistics based
on an iid sample {w1, . . . ,wN }, where usually wi = (yi , xi ) and θ̂ is a smooth esti-
mator that is

√
N consistent and asymptotically normally distributed. For notational

simplicity we generally present results for scalar θ . For vector θ in most instances
replace θ by θ j , the j th component of θ.

Statistics of interest include the usual regression output: the estimate θ̂ ; standard er-
rors s θ̂ ; t-statistic t = (̂θ − θ0)/s θ̂ , where θ0 is the null hypothesis value; the associated
critical value or p-value for this statistic; and a confidence interval.

This section presents bootstraps for each of these statistics. Some motivation is also
provided, with the underlying theory sketched in Section 11.4.

11.2.1. Bootstrap without Refinement

Consider estimation of the variance of the sample mean µ̂ = ȳ = N−1∑N
i=1 yi , where

the scalar random variable yi is iid [µ, σ 2], when it is not known that V[µ̂] = σ 2/N .
The variance of µ̂ could be obtained by obtaining S such samples of size N from the

population, leading to S sample means and hence S estimates µ̂s = ȳs , s = 1, . . . , S.
Then we could estimate V[µ̂] by (S − 1)−1∑S

s=1(µ̂s − µ̂)2, where µ̂ = S−1∑S
s=1 µ̂s .

Of course this approach is not possible, as we only have one sample. A bootstrap
can implement this approach by viewing the sample as the population. Then the finite
population is now the actual data y1, . . . , yN . The distribution of µ̂ can be obtained
by drawing B bootstrap samples from this population of size N , where each bootstrap
sample of size N is obtained by sampling from y1, . . . , yN with replacement. This
leads to B sample means and hence B estimates µ̂b = ȳb, b = 1, . . . , B. Then esti-
mate V[µ̂] by (B − 1)−1∑B

b=1(µ̂b − µ̂)2, where µ̂ = B−1∑B
b=1 µ̂b. Sampling with

replacement may seem to be a departure from usual sampling methods, but in fact
standard sampling theory assumes sampling with replacement rather than without re-
placement (see Section 24.2.2).

With additional information other ways to obtain bootstrap samples may be possi-
ble. For example, if it is known that yi ∼ N [µ, σ 2] then we could obtain B bootstrap
samples of size N by drawing from the N [µ̂, s2] distribution. This bootstrap is an
example of a parametric bootstrap, whereas the preceding bootstrap was from the em-
pirical distribution.

More generally, for estimator θ̂ similar bootstraps can be used to, for example,
estimate V[̂θ] and hence standard errors when analytical formulas for V[̂θ] are com-
plex. Such bootstraps are usually valid for observations wi that are iid over i , and they
have similar properties to estimates obtained using the usual asymptotic theory.
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11.2.2. Asymptotic Refinements

In some settings it is possible to improve on the preceding bootstrap and obtain es-
timates that are equivalent to those obtained using a more refined asymptotic theory
that may better approximate the finite-sample distribution of θ̂. Much of this chapter
is directed to such asymptotic refinements.

Usual asymptotic theory uses the result that
√

N (̂θ − θ0)
d→ N [0, σ 2]. Thus

Pr[
√

N (̂θ − θ0)/σ ≤ z] = Φ(z) + R1, (11.1)

where Φ(·) is the standard normal cdf and R1 is a remainder term that disappears as
N → ∞.

This result is based on asymptotic theory detailed in Section 5.3 that includes ap-
plication of a central limit theorem. The CLT is based on a truncated power-series
expansion. The Edgeworth expansion, detailed in Section 11.4.3, includes additional
terms in the expansion. With one extra term this yields

Pr[
√

N (̂θ − θ0)/σ ≤ z] = Φ(z) + g1(z)φ(z)√
N

+ R2, (11.2)

where φ(·) is the standard normal density, g1(·) is a bounded function given after
(11.13) in Section 11.4.3 and R2 is a remainder term that disappears as N → ∞.

The Edgeworth expansion is difficult to implement theoretically as the function
g1(·) is data dependent in a complicated way. A bootstrap with asymptotic refinement
provides a simple computational method to implement the Edgeworth expansion. The
theory is given in Section 11.4.4.

Since R1 = O(N−1/2) and R2 = O(N−1), asymptotically R2 < R1, leading to a
better approximation as N → ∞. However, in finite samples it is possible that R2 >

R1. A bootstrap with asymptotic refinement provides a better approximation asymptot-
ically that hopefully leads to a better approximation in samples of the finite sizes typ-
ically used. Nevertheless, there is no guarantee and simulation studies are frequently
used to verify that finite-sample gains do indeed occur.

11.2.3. Asymptotically Pivotal Statistic

For asymptotic refinement to occur, the statistic being bootstrapped must be an asymp-
totically pivotal statistic, meaning a statistic whose limit distribution does not depend
on unknown parameters. This result is explained in Section 11.4.4.

As an example, consider sampling from yi ∼ [µ, σ 2]. Then the estimate µ̂ = ȳ
a∼

N [µ, σ 2/N ] is not asymptotically pivotal even given a null hypothesis value µ = µ0

since its distribution depends on the unknown parameter σ 2. However, the studentized
statistic t = (µ̂− µ0)/sµ̂

a∼ N [0, 1] is asymptotically pivotal.
Estimators are usually not asymptotically pivotal. However, conventional asymp-

totically standard normal or chi-squared distributed test statistics, including Wald,
Lagrange multiplier, and likelihood ratio tests, and related confidence intervals, are
asymptotically pivotal.
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11.2.4. The Bootstrap

In this section we provide a broad description of the bootstrap, with further details
given in subsequent sections.

Bootstrap Algorithm

A general bootstrap algorithm is as follows:

1. Given data w1, . . . ,wN , draw a bootstrap sample of size N using a method given in the
following and denote this new sample w∗

1, . . . ,w
∗
N .

2. Calculate an appropriate statistic using the bootstrap sample. Examples include (a) the
estimate θ̂

∗
of θ , (b) the standard error ŝθ ∗ of the estimate θ̂

∗
, and (c) a t-statistic

t∗ = (̂θ
∗ − θ̂ )/ŝθ ∗ centered at the original estimate θ̂ . Here θ̂

∗
and ŝθ ∗ are calculated in

the usual way but using the new bootstrap sample rather than the original sample.

3. Repeat steps 1 and 2 B independent times, where B is a large number, obtaining B
bootstrap replications of the statistic of interest, such as θ̂

∗
1 , . . . , θ̂

∗
B or t∗

1 , . . . , t
∗
B .

4. Use these B bootstrap replications to obtain a bootstrapped version of the statistic, as
detailed in the following subsections.

Implementation can vary according to how bootstrap samples are obtained, how
many bootstraps are performed, what statistic is being bootstrapped, and whether or
not that statistic is asymptotically pivotal.

Bootstrap Sampling Methods

The bootstrap dgp in step 1 is used to approximate the true unknown dgp.
The simplest bootstrapping method is to use the empirical distribution of the data,

which treats the sample as being the population. Then w∗
1, . . . ,w

∗
N are obtained by

sampling with replacement from w1, . . . ,wN . In each bootstrap sample so obtained,
some of the original data points will appear multiple times whereas others will not
appear at all. This method is an empirical distribution function (EDF) bootstrap
or nonparametric bootstrap. It is also called a paired bootstrap since in single-
equation regression models wi = (yi , xi ), so here both yi and xi are resampled.

Suppose the conditional distribution of the data is specified, say y|x ∼ F(x,θ0), and

an estimate θ̂
p→ θ0 is available. Then in step 1 we can instead form a bootstrap sample

by using the original xi while generating yi by random draws from F(xi , θ̂). This
corresponds to regressors fixed in repeated samples (see Section 4.4.5). Alternatively,
we may first resample x∗

i from x1, . . . , xN and then generate yi from F(x∗
i , θ̂), i =

1, . . . , N . Both are examples of a parametric bootstrap that can be applied in fully
parametric models.

For regression model with additive iid error, say yi = g(xi ,β) + ui , we can form
fitted residuals û1, . . . , ûN , where ûi = yi − g(xi , β̂). Then in step 1 bootstrap from
these residuals to get a new draw of residuals, say (̂u ∗

1 , . . . , û
∗
N ), leading to a bootstrap

sample (y∗
1 , x1), . . . , (y∗

N , xN ), where y∗
i = g(xi , β̂) + u∗

i . This bootstrap is called a
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residual bootstrap. It uses information intermediate between the nonparametric and
parametric bootstrap. It can be applied if the error term has distribution that does not
depend on unknown parameters.

We emphasize the paired bootstrap on grounds of its simplicity, applicability to
a wide range of nonlinear models, and reliance on weak distributional assumptions.
However, the other bootstraps generally provide a better approximation (see Horowitz,
2001, p. 3185) and should be used if the stronger model assumptions they entail are
warranted.

The Number of Bootstraps

The bootstrap asymptotics rely on N → ∞ and so the bootstrap can be asymptotically
valid even for low B. However, clearly the bootstrap is more accurate as B → ∞. A
sufficiently large value of B varies with one’s tolerance for bootstrap-induced simula-
tion error and with the purpose of the bootstrap.

Andrews and Buchinsky (2000) present an application-specific numerical method
to determine the number of replications B needed to ensure a given level of accuracy
or, equivalently, the level of accuracy obtained for a given value of B. Let λ denote
the quantity of interest, such as a standard error or a critical value, λ̂∞ denote the ideal
bootstrap estimate with B = ∞, and λ̂B denote the estimate with B bootstraps. Then
Andrews and Buchinsky (2000) show that

√
B (̂λB − λ̂∞)/̂λ∞

d→ N [0, ω],

where ω varies with the application and is defined in Table III of Andrews and Buchin-
sky (2000). It follows that Pr[δ ≤ zτ/2

√
ω/B] = 1 − τ , where δ = |̂λB − λ̂∞|/̂λ∞

denotes the relative discrepancy caused by only B replications. Thus B ≥ ωz2
τ/2/δ

2

ensures the relative discrepancy is less than δ with probability at least 1 − τ . Alterna-
tively, given B replications the relative discrepancy is less than δ = zτ/2

√
ω/B.

To provide concrete guidelines we propose the rule of thumb that

B = 384ω.

This ensures that the relative discrepancy is less than 10% with probability at least
0.95, since z2

.025/0.1
2 = 384. The only difficult part in implementation is estimation of

ω, which varies with the application.
For standard error estimation ω = (2 + γ4)/4, where γ4 is the coefficient of excess

kurtosis for the bootstrap estimator θ̂
∗
. Intuitively, fatter tails in the distribution of the

estimator mean outliers are more likely, contaminating standard error estimation. It
follows that B = 384 × (1/2) = 192 is enough if γ4 = 0 whereas B = 960 is needed
if γ4 = 8. These values are higher than those proposed by Efron and Tibsharani (1993,
p. 52), who state that B = 200 is almost always enough.

For a symmetric two-sided test or confidence interval at level α, ω = α(1 −
α)/[2zα/2φ(zα/2)]2. This leads to B = 348 for α = 0.05 and B = 685 for α = 0.01.
As expected more bootstraps are needed the further one goes into the tails of the
distribution.
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For a one-sided test or nonsymmetric two-sided test or confidence interval at level
α, ω = α(1 − α)/[zαφ(zα)]2. This leads to B = 634 for α = 0.05 and B = 989 for
α = 0.01. More bootstraps are needed when testing in one tail. For chi-squared tests
with h degrees of freedom ω = α(1 − α)/[χ2

α(h) f (χ2
α(h))]2, where f (·) is the χ2(h)

density.
For test p-values ω = (1 − p)/p. For example, if p = 0.05 then ω = 19 and B =

7,296. Many more bootstraps are needed for precise calculation of the test p-value
compared to hypothesis rejection if a critical value is exceeded.

For bias-corrected estimation of θ a simple rule uses ω̂ = σ̂ 2/̂θ
2
, where the esti-

mator θ̂ has standard error σ̂ . For example, if the usual t-statistic t = θ̂/σ̂ = 2 then
ω̂ = 1/4 and B = 96. Andrews and Buchinsky (2000) provide many more details and
refinements of these results.

For hypothesis testing, Davidson and MacKinnon (2000) provide an alternative
approach. They focus on the loss of power caused by bootstrapping with finite B.
(Note that there is no power loss if B = ∞.) On the basis of simulations they recom-
mend at least B = 399 for tests at level 0.05, and at least B = 1,499 for tests at level
0.01. They argue that for testing their approach is superior to that of Andrews and
Buchinsky.

Several other papers by Davidson and MacKinnon, summarized in MacKinnon
(2002), emphasize practical considerations in bootstrap inference. For hypothesis test-
ing at level α choose B so that α(B + 1) is an integer. For example, at α = 0.05 let
B = 399 rather than 400. If instead B = 400 it is unclear on an upper one-sided al-
ternative test whether the 20th or 21st largest bootstrap t-statistic is the critical value.
For nonlinear models computation can be reduced by performing only a few Newton–
Raphson iterations in each bootstrap sample from starting values equal to the initial
parameter estimates.

11.2.5. Standard Error Estimation

The bootstrap estimate of variance of an estimator is the usual formula for estimating
a variance, applied to the B bootstrap replications θ̂

∗
1 , . . . , θ̂

∗
B :

s2
θ̂ ,Boot = 1

B − 1

B∑
b=1

(̂θ
∗
b − θ̂ ∗

)2, (11.3)

where

θ̂
∗ = B−1

B∑
b=1

θ̂
∗
b . (11.4)

Taking the square root yields s θ̂ ,Boot, the bootstrap estimate of the standard error.
This bootstrap provides no asymptotic refinement. Nonetheless, it can be ex-

traordinarily useful when it is difficult to obtain standard errors using conventional
methods. There are many examples. The estimate θ̂ may be a sequential two-step
m-estimator whose standard error is difficult to compute using the results given in
Secttion 6.8. The estimate θ̂ may be a 2SLS estimator estimated using a package that
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only reports standard errors assuming homoskedastic errors but the errors are actu-
ally heteroskedastic. The estimate θ̂ may be a function of other parameters that are
actually estimated, for example, θ̂ = α̂/β̂, and the bootstrap can be used instead of
the delta method. For clustered data with many small clusters, such as short panels,
cluster-robust standard errors can be obtained by resampling the clusters.

Since the bootstrap estimate s θ̂ ,Boot is consistent, it can be used in place of s θ̂ in
the usual asymptotic formula to form confidence intervals and hypothesis tests that
are asymptotically valid. Thus asymptotic statistical inference is possible in settings
where it is difficult to obtain standard errors by other methods. However, there will be
no improvement in finite-sample performance. To obtain an asymptotic refinement
the methods of the next section are needed.

11.2.6. Hypothesis Testing

Here we consider tests on an individual coefficient, denoted θ . The test may be either
an upper one-tailed alternative of H0 : θ ≤ θ0 against Ha : θ > θ0 or a two-sided test
of H0 : θ = θ0 against Ha : θ �= θ0. Other tests are deferred to Section 11.6.3.

Tests with Asymptotic Refinement

The usual test statistic TN = (̂θ − θ0)/s θ̂ provides the potential for asymptotic refine-
ment, as it is asymptotically pivotal since its asymptotic standard normal distribution
does not depend on unknown parameters. We perform B bootstrap replications pro-
ducing B test statistics t∗

1 , . . . , t
∗
B , where

t∗
b = (̂θ

∗
b − θ̂ )/ŝθ ∗

b
. (11.5)

The estimates t∗
b are centered around the original estimate θ̂ since resampling is

from a distribution centered around θ̂ . The empirical distribution of t∗
1 , . . . , t

∗
B , or-

dered from smallest to largest, is then used to approximate the distribution of TN as
follows.

For an upper one-tailed alternative test the bootstrap critical value (at level α)
is the upper α quantile of the B ordered test statistics. For example, if B = 999 and
α = 0.05 then the critical value is the 950th highest value of t∗, since then (B + 1)(1 −
α) = 950. For a similar lower tail one-sided test the critical value is the 50th smallest
value of t∗.

One can also compute a bootstrap p-value in the obvious way. For example, if the
original statstistic t lies between the 914th and 915th largest values of 999 bootstrap
replicates then the p-value for a upper one-tailed alternative test is 1 − 914/(B + 1) =
0.086.

For a two-sided test a distinction needs to be made between symmetrical and
nonsymmetrical tests. For a nonsymmetrical test or equal-tailed test the bootstrap
critical values (at level α) are the lower α/2 and upper α/2 quantiles of the ordered
test statistics t∗, and the null hypothesis is rejected at level α if the original t-statistic
lies outside this range. For a symmetrical test we instead order |t∗| and the bootstrap
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critical value (at level α) is the upper α quantile of the ordered |t∗|. The null hypoth-
esis is rejected at level α if |t | exceeds this critical value.

These tests, using the percentile-t method, provide asymptotic refinements. For a
one-sided t-test and for a nonsymmetrical two-sided t-test the true size of the test is
α + O(N−1/2) with standard asymptotic critical values and α + O(N−1) with boot-
strap critical values. For a two-sided symmetrical t-test or for an asymptotic chi-
square test the asymptotic approximations work better, and the true size of the test
is α + O(N−1) using standard asymptotic critical values and α + O(N−2) using boot-
strap critical values.

Tests without Asymptotic Refinement

Alternative bootstrap methods can be used that although asymptotically valid do not
provide an asymptotic refinement.

One approach already mentioned at the end of Section 11.2.5 is to compute t =
(̂θ − θ0)/s θ̂ ,boot, where the bootstrap estimate s θ̂ ,boot given in (11.3) replaces the usual
estimate s θ̂ , and compare this test statistic to critical values from the standard normal
distribution.

A second approach, exposited here for a two-sided test of H0 : θ = θ0 against
Ha : θ �= θ0, finds the lower α/2 and upper α/2 quantiles of the bootstrap estimates
θ̂

∗
1 , . . . , θ̂

∗
B and rejects H0 if θ0 falls outside this region. This is called the percentile

method. Asymptotic refinement is obtained by using t∗
b in (11.5) that centers around

θ̂ rather than θ0 and using a different standard error s ∗
θ̂

in each bootstrap.
These two bootstraps have the attraction of not requiring computation of ŝθ , the

usual standard error estimate based on asymptotic theory.

11.2.7. Confidence Intervals

Much of the statistics literature considers confidence interval estimation rather than its
flip side of hypothesis tests. Here instead we began with hypothesis tests, so only a
brief presentation of confidence intervals is necessary.

An asymptotic refinement is based on the t-statistic, which is asymptotically piv-
otal. Thus from steps 1–3 in Section 11.2.4 we obtain bootstrap replication t-statistics
t∗
1 , . . . , t

∗
B . Then let t∗

[1−α/2] and t∗
[α/2] denote the lower and upper α/2 quantiles of these

t-statistics. The percentile-t method 100(1 − α) percent confidence interval is(
θ̂ − t∗

[1−α/2] × s θ̂ , θ̂ + t∗
[α/2] × s θ̂

)
, (11.6)

where θ̂ and s θ̂ are the estimate and standard error from the original sample.
An alternative is the bias-corrected and accelerated (BCa) method detailed in

Efron (1987). This offers an asymptotic refinement in a wider class of problems than
the percentile-t method.

Other methods provide an asymptotically valid confidence interval, but without
asymptotic refinement. First, one can use the bootstrap estimate of the standard
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error in the usual confidence interval formula, leading to interval (̂θ − z[1−α/2] ×
s θ̂ ,boot, θ̂ + z[α/2] × s θ̂ ,boot). Second, the percentile method confidence interval is the
distance between the lower α/2 and upper α/2 quantiles of the B bootstrap estimates
θ̂

∗
1 , . . . , θ̂

∗
B of θ .

11.2.8. Bias Reduction

Nonlinear estimators are usually biased in finite samples, though this bias goes to zero
asymptotically if the estimator is consistent. For example, ifµ3 is estimated by θ̂ = ȳ3,
where yi is iid [µ, σ 2], then E[̂θ − µ3] = 3µσ 2/N+E[(y − µ)3]/N 2.

More generally, for a
√

N -consistent estimator

E[̂θ − θ0] = aN

N
+ bN

N 2
+ cN

N 3
+ . . . , (11.7)

where aN , bN , and cN are bounded constants that vary with the data and estimator (see
Hall, 1992, p. 53). An alternative estimator θ̃ provides an asymptotic refinement if

E[̃θ − θ0] = BN

N 2
+ CN

N 3
+ . . . , (11.8)

where BN and CN are bounded constants. For both estimators the bias disappears as
N → ∞. The latter estimator has the attraction that the bias goes to zero at a faster
rate, and hence it is an asymptotic refinement, though in finite samples it is possible
that (BN/N 2) > (aN/N + bN/N 2).

We wish to estimate the bias E[̂θ ] − θ . This is the distance between the expected
value or population average value of the parameter and the parameter value generating
the data. The bootstrap replaces the population with the sample, so that the bootstrap

samples are generated by parameter θ̂ , which has average value θ̂
∗

over the bootstraps.
The bootstrap estimate of the bias is then

Biaŝθ = (̂θ
∗ − θ̂ ), (11.9)

where θ̂
∗

is defined in (11.4).

Suppose, for example, that θ̂ = 4 and θ̂
∗ = 5. Then the estimated bias is (5 − 4) =

1, an upward bias of 1. Since θ̂ overestimates by 1, bias correction requires subtracting
1 from θ̂ , giving a bias-corrected estimate of 3. More generally, the bootstrap bias-
corrected estimator of θ is

θ̂Boot = θ̂ − (̂θ
∗ − θ̂ ) (11.10)

= 2̂θ − θ̂∗
.

Note that θ̂
∗

itself is not the bias-corrected estimate. For more details on the direction
of the correction, which may seem puzzling, see Efron and Tibsharani (1993, p. 138).
For typical

√
N -consistent estimators the asymptotic bias of θ̂ is O(N−1) whereas the

asymptotic bias of θ̂Boot is instead O(N−2).
In practice bias correction is seldom used for

√
N -consistent estimators, as the boot-

strap estimate can be more variable than the original estimate θ̂ and the bias is often
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small relative to the standard error of the estimate. Bootstrap bias correction is used
for estimators that converge at rate less than

√
N , notably nonparametric regression

and density estimators.

11.3. Bootstrap Example

As a bootstrap example, consider the exponential regression model introduced in Sec-
tion 5.9. Here the data are generated from an exponential distribution with an expo-
nential mean with two regressors:

yi |xi ∼ exponential(λi ), i = 1, . . . , 50,
λi = exp(β1 + β2x2i + β3x3i ),

(x2i , x3i ) ∼ N [0.1, 0.1; 0.12, 0.12, 0.005],
(β1, β2, β3) = (−2, 2, 2).

Maximum likelihood estimation on a sample of 50 observations yields β̂1 =
−2.192; β̂2 = 0.267, s2 = 1.417, and t2 = 0.188; and β̂3 = 4.664, s3 = 1.741, and
t3 = 2.679. For this ML example the standard errors were based on −Â−1, minus the
inverse of the estimated Hessian matrix.

We concentrate on statistical inference for β3 and demonstrate the bootstrap for
standard error computation, test of statistical significance, confidence intervals, and
bias correction. The differences between bootstrap and usual asymptotic estimates are
relatively small in this example and can be much larger in other examples.

The results reported here are based on the paired bootstrap (see Section 11.2.4) with
(yi , x2i , x3i ) jointly resampled with replacement B = 999 times. From Table 11.1, the
999 bootstrap replication estimates β̂

∗
3,b, b = 1, . . . , 999, had mean 4.716 and standard

deviation of 1.939. Table 11.1 also gives key percentiles for β̂
∗
3 and t∗

3 (defined in the
following).

A parametric bootstrap could have been used instead. Then bootstrap samples
would be obtained by drawing yi from the exponential distribution with parameter
exp(̂β1 + β̂2x2i + β̂3x3i ). In the case of tests of H0 : β3 = 0 the exponential param-
eter could instead be exp(̃β1 + β̃2x2i ), where β̃1 and β̃2 are then the restricted ML
estimates from the original sample.

Standard errors: From (11.3) the bootstrap estimate of standard error is computed
using the usual standard deviation formula for the 999 bootstrap replication esti-
mates of β3. This yields estimate 1.939 compared to the usual asymptotic standard
error estimate of 1.741. Note that this bootstrap offers no refinement and would
only be used as a check or if finding the standard error by other means proved
difficult.

Hypothesis testing with asymptotic refinement: We consider test of H0 : β3 = 0
against Ha : β3 �= 0 at level 0.05. A test with asymptotic refinement is based on the
t-statistic, which is asymptotically pivotal. From Section 11.2.6 for each bootstrap
we compute t∗

3 = (̂β
∗
3 − 4.664)/sβ̂ ∗

3
, which is centered on the estimate β̂3 = 4.664

from the original sample. For a nonsymmetrical test the bootstrap critical values
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Table 11.1. Bootstrap Statistical Inference on a Slope Coefficient:
Examplea

β̂
∗
3 t∗

3 z = t(∞) t(47)

Mean 4.716 0.026 1.021 1.000
SDb 1.939 1.047 1.000 1.021
1% −.336 −2.664 −2.326 −2.408

2.5% 0.501 −2.183 −1.960 −2.012
5% 1.545 −1.728 −1.645 −1.678

25% 3.570 −0.621 −0.675 −0.680
50% 4.772 0.062 0.000 0.000
75% 5.971 0.703 0.675 0.680
95% 7.811 1.706 1.645 1.678

97.5% 8.484 2.066 1.960 2.012
99.0% 9.427 2.529 2.326 2.408

a Summary statistics and percentiles based on 999 paired bootstrap resamples for
(1) estimate β̂

∗
3; (2) the associated statistics t∗3 = (̂β

∗
3−β̂3)/s

β̂
∗
3
; (3) student t-

distribution with 47 degrees of freedom; (4) standard normal distribution. Original
dgp is one draw from the exponential distribution given in the text; the sample size
is 50.

b SD, standard deviation.

equal the lower and upper 2.5 percentiles of the 999 values of t∗
3 , the 25th lowest

and 25th highest values. From Table 11.1 these are −2.183 and 2.066. Since the
t-statistic computed from the original sample t3 = (4.664 − 0)/1.741 = 2.679 >
2.066, the null hypothesis is rejected. A symmetrical test that instead uses the upper
5 percentile of |t∗

3 | yields bootstrap critical value 2.078 that again leads to rejection
of H0 at level 0.05.

The bootstrap critical values in this example exceed those using the asymptotic
approximation of either standard normal or t(47), an ad hoc finite-sample adjust-
ment motivated by the exact result for linear regression under normality. So the
usual asymptotic results in this example lead to overrejection and have actual size
that exceeds the nominal size. For example, at 5% the z critical region values
of (−1.960, 1.960) are smaller than the bootstrap critical values (−2.183, 2.066).
Figure 11.1 plots the bootstrap estimate based on t∗

3 of the density of the t-test,
smoothed using kernel methods, and compares it to the standard normal. The two
densities appear close, though the left tail is notably fatter for the bootstrap estimate.
Table 11.1 makes clearer the difference in the tails.

Hypothesis testing without asymptotic refinement: Alternative bootstrap testing
methods can be used but do not offer an asymptotic refinement. First, using the
bootstrap standard error estimate of 1.939, rather than the asymptotic standard error
estimate of 1.741, yields t3 = (4.664 − 0)/1.939 = 2.405. This leads to rejection at
level 0.05 using either standard normal or t(47) critical values. Second, from Table
11.1, 95% of the bootstrap estimates β̂

∗
3 lie in the range (0.501, 8.484), which does

not include the hypothesized value of 0, so again we reject H0 : β3 = 0.
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Figure 11.1: Bootstrap density of t-test statistic for slope equal to zero obtained from
999 bootstrap replications with standard normal density plotted for comparison. Data are
generated from an exponential distribution regression model.

Confidence intervals: An asymptotic refinement is obtained using the 95% percentile-
t confidence interval. Applying (11.6) yields (4.664 − 2.183 × 1.741, 4.664 +
2.066 × 1.741) or (0.864, 8.260). This compares to a conventional 95% asymptotic
confidence interval of 4.664 ± 1.960 × 1.741 or (1.25, 8.08).

Other confidence intervals can be constructed, but these do not have an asymp-
totic refinement. Using the bootstrap standard error estimate leads to a 95% con-
fidence interval 4.664 ± 1.960 × 1.939 = (0.864, 8.464). The percentile method
uses the lower and upper 2.5 percentiles of the 999 bootstrap coefficient estimates,
leading to a 95% confidence interval of (0.501, 8.484).

Bias correction: The mean of the 999 bootstrap replication estimates of β3 is
4.716, compared to the original estimate of 4.664. The estimated bias of (4.716 −
4.664) = 0.052 is quite small, especially compared to the standard error of s3 =
1.741. The estimated bias is upward and (11.10) yields a bias-corrected estimate of
β3 equal to 4.664 − 0.052 = 4.612.

The bootstrap relies on asymptotic theory and may actually provide a finite-
sample approximation worse than that of conventional methods. To determine that
the bootstrap is really an improvement here we need a full Monte Carlo analysis
with, say, 1, 000 samples of size 50 drawn from the exponential dgp, with each of
these samples then bootstrapped, say, 999 times.

11.4. Bootstrap Theory

The exposition here follows the comprehensive survey of Horowitz (2001). Key results
are consistency of the bootstrap and, if the bootstrap is applied to an asymptotically
pivotal statistic, asymptotic refinement.
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11.4.1. The Bootstrap

We use X1, . . . , X N as generic notation for the data, where for notational simplicity
bold is not used for Xi even though it is usually a vector, such as (yi , xi ). The data are
assumed to be independent draws from distribution with cdf F0(x) = Pr[X ≤ x]. In
the simplest applications F0 is in a finite-dimensional family, with F0 = F0(x,θ0).

The statistic being considered is denoted TN = TN (X1, . . . , X N ). The exact finite-
sample distribution of TN is G N = G N (t, F0) = Pr[TN ≤ t]. The problem is to find a
good approximation to G N .

Conventional asymptotic theory uses the asymptotic distribution of TN , denoted
G∞ = G∞(t, F0). This may theoretically depend on unknown F0, in which case we
use a consistent estimate of F0. For example, use F̂0 = F0(·, θ̂), where θ̂ is consistent
for θ0.

The empirical bootstrap takes a quite different approach to approximating
G N (·, F0). Rather than replace G N by G∞, the population cdf F0 is replaced by a
consistent estimator FN of F0, such as the empirical distribution of the sample.

G N (·, FN ) cannot be determined analytically but can be approximated by boot-
strapping. One bootstrap resample with replacement yields the statistic T ∗

N =
TN (X∗

1, . . . , X∗
N ). Repeating this step B independent times yields replications

T ∗
N ,1, . . . , T ∗

N ,B . The empirical cdf of T ∗
N ,1, . . . , T ∗

N ,B is the bootstrap estimate of the
distribution of T , yielding

Ĝ N (t, FN ) = 1

B

B∑
b=1

1(T ∗
N ,b ≤ t), (11.11)

where 1(A) equals one if event A occurs and equals zero otherwise. This is just the
proportion of the bootstrap resamples for which the realized T ∗

N ≤ t .
The notation is summarized in Table 11.2.

11.4.2. Consistency of the Bootstrap

The bootstrap estimate Ĝ N (t, FN ) clearly converges to G N (t, FN ) as the number of
bootstraps B → ∞. Consistency of the bootstrap estimate Ĝ N (t, FN ) for G N (t, F0)

Table 11.2. Bootstrap Theory Notation

Quantity Notation

Sample (iid) X1, . . . , X N , where Xi is usually a vector
Population cdf of X F0 = F0(x,θ0) = Pr[X ≤ x]
Statistic of interest TN = TN (X1, . . . , X N )
Finite sample cdf of TN G N = G N (t, F0) = Pr[TN ≤ t]
Limit cdf of TN G∞ = G∞(t, F0)
Asymptotic cdf of TN Ĝ∞ = G∞(t, F̂0), where F̂0 = F0(x, θ̂)
Bootstrap cdf of TN Ĝ N (t, FN ) = B−1∑B

b=1 1(T ∗
N ,b ≤ t)
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therefore requires that

G N (t, FN )
p→ G N (t, F0),

uniformly in the statistic t and for all F0 in the space of permitted cdfs.
Clearly, FN must be consistent for F0. Additionally, smoothness in the dgp F0(x) is

needed, so that FN (x) and F0(x) are close to each other uniformly in the observations
x for large N . Moreover, smoothness in G N (·, F), the cdf of the statistic considered as
a functional of F , is required so that G N (·, FN ) is close to G N (·, F0) when N is large.

Horowitz (2001, pp. 3166–3168) gives two formal theorems, one general and one
for iid data, and provides examples of potential failure of the bootstrap, including
estimation of the median and estimation with boundary constraints on parameters.

Subject to consistency of FN for F0 and smoothness requirements on F0 and G N ,
the bootstrap leads to consistent estimates and asymptotically valid inference. The
bootstrap is consistent in a very wide range of settings.

11.4.3. Edgeworth Expansions

An additional attraction of the bootstrap is that it allows for asymptotic refinement.
Singh (1981) provided a proof using Edgeworth expansions, which we now introduce.

Consider the asymptotic behavior of Z N =∑i Xi/
√

N , where for simplicity Xi are
standardized scalar random variables that are iid [0, 1]. Then application of a central
limit theorem leads to a limit standard normal distribution for Z N . More precisely, Z N

has cdf

G N (z) = Pr[Z N ≤ z] = �(z) + O(N−1/2), (11.12)

where �(·) is the standard normal cdf. The remainder term is ignored and regular
asymptotic theory approximates G N (z) by G∞(z) = �(z).

The CLT leading to (11.12) is formally derived by a simple approximation of the
characteristic function of Z N , E[eis Z N ], where i = −√

1. A better approximation
expands this characteristic function in powers of N−1/2. The usual Edgeworth expan-
sion adds two additional terms, leading to

G N (z) = Pr[Z N ≤ z] = �(z) + g1(z)√
N

+ g2(z)

N
+ O(N−3/2), (11.13)

where g1(z) = −(z2 − 1)φ(z)κ3/6, φ(·) denotes the standard normal density, κ3 is the
third cumulant of Z N , and the lengthy expression for g2(·) is given in Rothenberg
(1984, p. 895) or Amemiya (1985, p. 93). In general the r th cumulant κr is the r th
coefficient in the series expansion ln(E[eis Z N ]) =∑∞

r=0 κr (is)r/r ! of the log charac-
teristic function or cumulant generating function.

The remainder term in (11.13) is ignored and an Edgeworth expansion approximates
G N (z, F0) by G∞(z, F0) = �(z) + N−1/2g1(z) + N−1g2(z). If Z N is a test statistic
this can be used to compute p-values and critical values. Alternatively, (11.13) can be
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inverted to

Pr

[
Z N + h1(z)√

N
+ h2(z)

N
≤ z

]
� Φ(z), (11.14)

for functions h1(z) and h2(z) given in Rothenberg (1984, p. 895). The left-hand side
gives a modified statistic that will be better approximated by the standard normal than
the original statistic Z N .

The problem in application is that the cumulants of Z N are needed to evaluate the
functions g1(z) and g2(z) or h1(z) and h2(z). It can be very difficult to obtain analytical
expressions for these cumulants (e.g., Sargan, 1980, and Phillips, 1983). The bootstrap
provides a numerical method to implement the Edgeworth expansion without the need
to calculate cumulants, as shown in the following.

11.4.4. Asymptotic Refinement via Bootstrap

We now return to the more general setting of Section 11.4.1, with the additional as-
sumption that TN has a limit normal distribution and usual

√
N asymptotics apply.

Conventional asymptotic methods use the limit cdf G∞(t, F0) as an approximation
to the true cdf G N (t, F0). For

√
N -consistent asymptotically normal estimators this

has an error that in the limit behaves as a multiple of N−1/2. We write this as

G N (t, F0) = G∞(t, F0) + O(N−1/2), (11.15)

where in our example G∞(t, F0) = Φ(t).
A better approximation is possible using an Edgeworth expansion. Then

G N (t, F0) = G∞(t, F0) + g1(t, F0)√
N

+ g2(t, F0)

N
+ O(N−3/2). (11.16)

Unfortunately, as already noted, the functions g1(·) and g2(·) on the right-hand side
can be difficult to construct.

Now consider the bootstrap estimator G N (t, FN ). An Edgeworth expansion yields

G N (t, FN ) = G∞(t, FN ) + g1(t, FN )√
N

+ g2(t, FN )

N
+ O(N−3/2); (11.17)

see Hall (1992) for details. The bootstrap estimator G N (t, FN ) is used to approximate
the finite-sample cdf G N (t, F0). Subtracting (11.16) from (11.17), we get

G N (t, FN ) − G N (t, F0) = [G∞(t, FN ) − G∞(t, F0)] (11.18)

+ [g1(t, FN ) − g1(t, F0)]√
N

+ O(N−1).

Assume that FN is
√

N consistent for the true cdf F0, so that FN − F0 = O(N−1/2).
For continuous function G∞ the first term on the right-hand side of (11.18),
[G∞(t, FN ) − G∞(t, F0)], is therefore O(N−1/2), so G N (t, FN ) − G N (t, F0) =
O(N−1/2).

The bootstrap approximation G N (t, FN ) is therefore in general no closer asymptot-
ically to G N (t, F0) than is the usual asymptotic approximation G∞(t, F0); see (11.15).
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Now suppose the statistic TN is asymptotically pivotal, so that its asymptotic dis-
tribution G∞ does not depend on unknown parameters. Here this is the case if TN is
standardized so that its limit distribution is the standard normal. Then G∞(t, FN ) =
G∞(t, F0), so (11.18) simplifies to

G N (t, FN ) − G N (t, F0) = N−1/2[g1(t, FN ) − g1(t, F0)] + O(N−1). (11.19)

However, because FN − F0 = O(N−1/2) we have that [g1(t, FN ) − g1(t, F0)] =
O(N−1/2) for g1 continuous in F . It follows upon simplification that G N (t, FN ) =
G N (t, F0) + O(N−1). The bootstrap approximation G N (t, FN ) is now a better asymp-
totic approximation to G N (t, F0) as the error is now O(N−1).

In summary, for a bootstrap on an asymptotically pivotal statistic we have

G N (t, F0) = G N (t, FN ) + O(N−1), (11.20)

an improvement on the conventional approximation G N (t, F0) = G∞(t, F0) +
O(N−1/2).

The bootstrap on an asymptotically pivotal statistic therefore leads to an improved
small-sample performance in the following sense. Let α be the nominal size for a test
procedure. Usual asymptotic theory produces t-tests with actual size α + O(N−1/2),
whereas the bootstrap produces t-tests with actual size α + O(N−1).

For symmetric two-sided hypothesis tests and confidence intervals the bootstrap on
an asymptotically pivotal statistic can be shown to have approximation error O(N−3/2)
compared to error O(N−1) using usual asymptotic theory.

The preceding results are restricted to asymptotically normal statistics. For chi-
squared distributed test statistics the asymptotic gains are similar to those for sym-
metric two-sided hypothesis tests. For proof of bias reduction by bootstrapping, see
Horowitz (2001, p. 3172).

The theoretical analysis leads to the following points. The bootstrap should be from
distribution FN consistent for F0. The bootstrap requires smoothness and continuity in
F0 and G N , so that a modification of the standard bootstrap is needed if, for example,
there is a discontinuity because of a boundary constraint on the parameters such as
θ ≥ 0. The bootstrap assumes existence of low-order moments, as low-order cumu-
lants appear in the function g1 in the Edgeworth expansions. Asymptotic refinement
requires use of an asymptotically pivotal statistic. The bootstrap refinement presented
assumes iid data, so that modification is needed even for heteroskedastic errors. For
more complete discussion see Horowitz (2001).

11.4.5. Power of Bootstrapped Tests

The analysis of the bootstrap has focused on getting tests with correct size in small
samples. The size correction of the bootstrap will lead to changes in the power of tests,
as will any size correction.

Intuitively, if the actual size of a test using first-order asymptotics exceeds the nom-
inal size, then bootstrapping with asymptotic refinement will not only reduce the size
toward the nominal size but, because of less frequent rejection, will also reduce the
power of the test. Conversely, if the actual size is less than the nominal size then
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bootstrapping will increase test power. This is observed in the simulation exercise of
Horowitz (1994, p. 409). Interestingly, in his simulation he finds that although boot-
strapping first-order asymptotically equivalent tests leads to tests with similar actual
size (essentially equal to the nominal size) there can be considerable difference in test
power across the bootstrapped tests.

11.5. Bootstrap Extensions

The bootstrap methods presented so far emphasize smooth
√

N -consistent asymp-
totically normal estimators based on iid data. The following extensions of the boot-
strap permit for a wider range of applications a consistent bootstrap (Sections 11.5.1
and 11.5.2) or a consistent bootstrap with asymptotic refinement (Sections 11.5.3–
11.5.5). The presentation of these more advanced methods is brief. Some are used in
Section 11.6.

11.5.1. Subsampling Method

The subsampling method uses a sample of size m that is substantially smaller than
the sample size N . The subsampling may be with replacement (Bickel, Gotze, and van
Zwet, 1997) or without replacement (Politis and Romano, 1994).

Replacement subsampling provides subsamples that are random samples of the pop-
ulation, rather than random samples of an estimate of the distribution such as the sam-
ple in the case of a paired bootstrap. Replacement subsampling can then be consistent
when failure of the smoothness conditions discussed in Section 11.4.2 leads to in-
consistency of a full sample bootstrap. The associated asymptotic error for testing or
confidence intervals, however, is of higher order of magnitude than the usual 0(N−1/2)
obtained when a full sample bootstrap without refinement can be used.

Subsample bootstraps are useful when full sample bootstraps are invalid, or as a
way to verify that a full sample bootstrap is valid. Results will differ with the choice of
subsample size. And there is a considerable increase in sample error because a smaller
fraction of the sample is being used. Indeed, we should have (m/N ) → 0 and N → ∞.
Politis, Romano, and Wolf (1999) and Horowitz (2001) provide further details.

11.5.2. Moving Blocks Bootstrap

The moving blocks bootstrap is used for data that are dependent rather than indepen-
dent. This splits the sample into r nonoverlapping blocks of length l, where rl � N .
First, one samples with replacement from these blocks, to give r new blocks, which
will have a different temporal ordering from the original r blocks. Then one estimates
the parameters using this bootstrap sample.

The moving blocks method treats the randomly drawn blocks as being independent
of each other, but allows dependence within the blocks. A similar blocking was ac-
tually used by Anderson (1971) to derive a central limit theorem for an m-dependent
process. The moving blocks process requires r → ∞ as N → ∞ to ensure that we

373



BOOTSTRAP METHODS

are likely to draw consecutive blocks uncorrelated with each other. It also requires the
block length l → ∞ as N → ∞. See, for example, Götze and Künsch (1996).

11.5.3. Nested Bootstrap

A nested bootstrap, introduced by Hall (1986), Beran (1987), and Loh (1987), is
a bootstrap within a bootstrap. This method is especially useful if the bootstrap is
on a statistic that is not asympotically pivotal. In particular, if the standard error of
the estimate is difficult to compute one can bootstrap the current bootstrap sample
to obtain a bootstrap standard error estimate ŝθ ∗

,Boot and form t∗ = (̂θ
∗ − θ̂ )/ŝθ ∗

,Boot,
and then apply the percentile-t method to the bootstrap replications t∗

1 , . . . , t
∗
B . This

permits asymptotic refinements where a single round of bootstrap would not.
More generally, iterated bootstrapping is a way to improve the performance of

the bootstrap by estimating the errors (i.e., bias) that arise from a single pass of the
bootstrap, and correcting for these errors. In general each further iteration of the boot-
strap reduces bias by a factor N−1 if the statistic is asymptotically pivotal and by a
factor N−1/2 otherwise. For a good exposition see Hall and Martin (1988). If B boot-
straps are performed at each iteration then Bk bootstraps need to be performed if there
are k iterations. For this reason at most two iterations, called a double bootstrap or
calibrated bootstrap, are done.

Davison, Hinkley, and Schechtman (1986) proposed balanced bootstrapping. This
method ensures that each sample observation is reused exactly the same number of
times over all B bootstraps, leading to better bootstrap estimates. For implementation
see Gleason (1988), whose algorithms add little to computational time compared to
the usual unbalanced bootstrap.

11.5.4. Recentering and Rescaling

To yield an asymptotic refinement the bootstrap should be based on an estimate F̂ of
the dgp F0 that imposes all the conditions of the model under consideration. A leading
example arises with the residual bootstrap.

Least-squares residuals do not sum to zero in nonlinear models, or even in lin-
ear models if there is no intercept. The residual bootstrap (see Section 11.2.4) based
on least-squares residuals will then fail to impose the restriction that E[ui ] = 0. The
residual bootstrap should instead bootstrap the recentered residual ûi − ū, where
ū = N−1∑N

i=1 ûi . Similar recentering should be done for paired bootstraps of GMM
estimators in overidentified models (see Section 11.6.4).

Rescaling of residuals can also be useful. For example, in the linear regression
model with iid errors resample from (N/(N − K ))1/2ûi since these have variance s2.
Other adjustments include using the standardized residual ûi/

√
(1 − hii )s2, where hii

is the i th diagonal entry in the projection matrix X(X′X)−1X′.

11.5.5. The Jackknife

The bootstrap can be used for bias correction (see Section 11.2.8). An alternative re-
sampling method is the jackknife, a precursor of the bootstrap. The jackknife uses N
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deterministically defined subsamples of size N − 1 obtained by dropping in turn each
of the N observations and recomputing the estimator.

To see how the jackknife works, let θ̂ N denote the estimate of θ using all N obser-
vations, and let θ̂ N−1 denote the estimate of θ using the first (N − 1) observations.
If (11.7) holds then E[̂θ N ] = θ + aN/N + bN/N 2 + O(N−3) and E[̂θ N−1] = θ +
aN/(N − 1) + bN/(N − 1)2 + O(N−3), which implies E[N θ̂ N − (N − 1)̂θ N−1] =
θ + O(N−2). Thus N θ̂ N − (N − 1)̂θ N−1 has smaller bias than θ̂ N .

The estimator can be more variable, however, as it uses less of the data. As an
extreme example, if θ̂ = ȳ then the new estimator is simply yN , the N th observation.
The variation can be reduced by dropping each observation in turn and averaging.

More formally then, consider the estimator θ̂ of a parameter vector θ based on a
sample of size N from iid data. For i = 1, . . . , N sequentially delete the i th observa-
tion and obtain N jacknife replication estimates θ̂(−i) from the N jackknife resamples

of size (N − 1). The jacknife estimate of the bias of θ̂ is (N − 1)(̂θ − θ̂), where

θ̂ = N−1∑
i θ̂(−i) is the average of the N jacknife replications θ̂(−i). The bias appears

large because of multiplication by (N − 1), but the differences (̂θ(−i) − θ̂) are much
smaller than in the bootstrap case since a jackknife resample differs from the original
sample in only one observation.

This leads to the bias-corrected jackknife estimate of θ:

θ̂Jack = θ̂ − (N − 1)(̂θ − θ̂) (11.21)

= N θ̂ − (N − 1)̂θ.

This reduces the bias from O(N−1) to O(N−2), which is the same order of bias re-
duction as for the bootstrap. It is assumed that, as for the bootstrap, the estimator is
a smooth

√
N -consistent estimator. The jackknife estimate can have increased vari-

ance compared with θ̂, and examples where the jackknife fails are given in Miller
(1974).

A simple example is estimation of σ 2 from an iid sample with yi ∼ [µ, σ 2]. The es-
timate σ̂ 2 = N−1∑

i (yi − ȳ)2, the MLE under normality, has E[σ̂ 2] = σ 2(N − 1)/N
so that the bias equals σ 2/N , which is O(N−1). In this example the jackknife estimate
can be shown to simplify to σ̂ 2

Jack = (N − 1)−1∑
i (yi − ȳ)2, so one does not need not

to compute N separate estimates σ̂ 2
(−i). This is an unbiased estimate of σ 2, so the bias

is actually zero rather than the general result of O(N−2).
The jackknife is due to Quenouille (1956). Tukey (1958) considered application to

a wider range of statistics. In particular, the jackknife estimate of the standard error
of an estimator θ̂ is

ŝeJack[̂θ ] =
[

N − 1

N

N∑
i=1

(̂θ (−i) − θ̂ )2

]1/2

. (11.22)

Tukey proposed the term jackknife by analogy to a Boy Scout jackknife that solves
a variety of problems, each of which could be solved more efficiently by a specially
constructed tool. The jackknife is a “rough and ready” method for bias reduction in
many situations, but it is not the ideal method in any. The jackknife can be viewed as a
linear approximation of the bootstrap (Efron and Tibsharani, 1993, p. 146). It requires
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less computation than the bootstrap in small samples, as then N < B is likely, but is
outperformed by the bootstrap as B → ∞.

Consider the linear regression model y = Xβ + u, with β̂ = (X′X
)−1

X′y. An ex-
ample of a biased estimator from OLS regression is a time-series model with lagged
dependent variable as regressor. The regression estimator based on the i th jackknife
sample (X(−i), y(−i)) is given by

β̂(−i) = [X′
(−i)X(−i)]

−1X′
(−i)y(−i)

= [X′X − xi x′
i ]

−1(X′y − xi yi )

= β̂ − [X′X]−1xi (yi − x′
i β̂(−i)).

The third equality avoids the need to invert X′
(−i)X(−i) for each i and is obtained using

[X′X]−1 = [X′
(−i)X(−i)]

−1 − [X′
(−i)X(−i)]−1xi x′

i

[
X′

(−i)X(−i)
]−1

1 + x′
i

[
X′

(−i)X(−i)
]−1

xi

.

Here the pseudo-values are given by N β̂ − (N − 1) β̂(−i), and the jackknife estimator
of β̂ is given by

β̂Jack = N β̂ − (N − 1)
1

N

N∑
i=1

β̂(−i). (11.23)

An interesting application of the jackknife to bias reduction is the jackknife IV
estimator (see Section 6.4.4).

11.6. Bootstrap Applications

We consider application of the bootstrap taking into account typical microeconometric
complications such as heteroskedasticity and clustering and more complicated estima-
tors that can lead to failure of simple bootstraps.

11.6.1. Heteroskedastic Errors

For least squares in models with additive errors that are heteroskedastic, the standard
procedure is to use White’s heteroskedastic-consistent covariance matrix estimator
(HCCME). This is well known to perform poorly in small samples. When done cor-
rectly, the bootstrap can provide an improvement.

The paired bootstrap leads to valid inference, since the essential assumption that
(yi , xi ) is iid still permits V[ui |xi ] to vary with xi (see Section 4.4.7). However, it
does not offer an asymptotic refinement because it does not impose the condition that
E[ui |xi ] = 0.

The usual residual bootstrap actually leads to invalid inference, since it assumes
that ui |xi is iid and hence erroneously imposes the condition of homoskedastic er-
rors. In terms of Section 11.4 theory, F̂ is then inconsistent for F . One can specify a
formal model for heteroskedasticity, say ui = exp(z′

iα)εi , where εi are iid, obtain esti-
mate exp(z′

i α̂), and then bootstrap the implied residuals ε̂i . Consistency and asymptotic

376



11.6 . BOOTSTRAP APPLICATIONS

refinement of this bootstrap requires correct specification of the functional form for the
heteroskedasticity.

The wild bootstrap, introduced by Wu (1986) and Liu (1988) and studied further
by Mammen (1993), provides asymptotic refinement without imposing such structure
on the heteroskedasticity. This bootstrap replaces the OLS residual ûi by the following
residual:

û∗
i =
{

1−√
5

2 ûi � −0.6180̂ui with probability 1+√
5

2
√

5
� 0.7236,

[1 − 1−√
5

2 ]̂ui � 1.6180̂ui with probability 1 − 1+√
5

2
√

5
� 0.2764.

Taking expectations with respect to only this two-point distribution and perform-
ing some algebra yields E[̂u ∗

i ] = 0, E[̂u ∗2
i ] = û2

i , and E[̂u ∗3
i ] = û3

i . Thus û ∗
i leads

to a residual with zero conditional mean as desired, since E[̂u ∗
i |̂ui , xi ] = 0 implies

E[̂u ∗
i |xi ] = 0, while the second and third moments are unchanged.

The wild bootstrap resamples have i th observation (y∗
i , xi ), where y∗

i = x′
i β̂ + û∗

i .
The resamples vary because of different realizations of û∗

i . Simulations by Horowitz
(1997, 2001) show that this bootstrap works much better than a paired bootstrap when
there is heteroskedasticity and works well compared to other bootstrap methods even
if there is no heteroskedasticity.

It seems surprising that this bootstrap should work because for the i th observa-
tion it draws from only two possible values for the residual, −0.6180̂ui or 1.6180̂ui .
However, a similar draw is being made over all N observations and over B bootstrap
iterations. Recall also that White’s estimator replaces E[u2

i ] by û2
i , which, although

incorrect for one observation, is valid when averaged over the sample. The wild boot-
strap is instead drawing from a two-point distribution with mean 0 and variance û2

i .

11.6.2. Panel Data and Clustered Data

Consider a linear panel regression model

ỹi t = w̃i t
′θ+ũi t ,

where i denotes individual and t denotes time period. Following the notation of Sec-
tion 21.2.3, the tilda is added as the original data yit and xi t may first be transformed
to eliminate fixed effects, for example. We assume that the errors ũi t are independent
over i , though they may be heteroskedastic and correlated over t for given i .

If the panel is short, so that T is finite and asymptotic theory relies on N → ∞,
then consistent standard errors for θ̂ can be obtained by a paired or EDF bootstrap
that resamples over i but does not resample over t . In the preceding presentation wi

becomes [yi1, xi1, . . . , yiT , xiT ] and we resample over i and obtain all T observations
for the chosen i .

This panel bootstrap, also called a block bootstrap, can also be applied to the
nonlinear panel models of Chapter 23. The key assumptions are that the panel is short
and the data are independent over i . More generally, this bootstrap can be applied
whenever data are clustered (see Section 24.5), provided cluster size is finite and the
number of clusters goes to infinity.
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The panel bootstrap produces standard errors that are asymptotically equivalent to
panel robust sandwich standard errors (see Section 21.2.3). It does not provide an
asymptotic refinement. However, it is quite simple to implement and is practically very
useful as many packages do not automatically provide panel robust standard errors
even for quite basic panel estimators such as the fixed effects estimator. Depending
on the application, other bootstraps such as parametric and residual bootstraps may be
possible, provided again that resampling is over i only.

Asymptotic refinement is straightforward if the errors are iid. More realistically,
however, ũi t will be heteroskedastic and correlated over t for given i . The wild boot-
strap (see Section 11.6.1) should provide an asymptotic refinement in a linear model
if the panel is short. Then wild bootstrap resamples have (i, t)th observation (̃y∗

i t , w̃i t ),
where ỹ∗

i t = w̃i t
′θ+̂̃u∗

i t , ̂̃uit = ỹi t − w̃i t
′θ̂ and ̂̃u∗

i t is a draw from the two-point distri-
bution given in Section 11.6.1.

11.6.3. Hypothesis and Specification Tests

Section 11.2.6 focused on tests of the hypothesis θ = θ0. Here we consider more gen-
eral tests. As in Section 11.2.6, the bootstrap can be used to perform hypothesis tests
with or without asymptotic refinement.

Tests without Asymptotic Refinement

A leading example of the usefulness of the bootstrap is the Hausman test (see Sec-
tion 8.3). Standard implementation of this test requires estimation of V[̂θ − θ̃], where
θ̂ and θ̃ are the two estimators being contrasted. Obtaining this estimate can be diffi-
cult unless the strong assumption is made that one of the estimators is fully efficient
under H0. The paired bootstrap can be used instead, leading to consistent estimate

V̂Boot[̂θ − θ̃] = 1

B − 1

B∑
b=1

[(̂θ
∗
b − θ̃

∗
b) − (̂θ

∗ − θ̃
∗
)][(̂θ

∗
b − θ̃

∗
b) − (̂θ

∗ − θ̃
∗
)]′,

where θ̂
∗ = B−1∑

b θ̂
∗
b and θ̃

∗ = B−1∑
b θ̃

∗
b. Then compute

H = (̂θ − θ̃)′
(
V̂Boot[̂θ − θ̃]

)−1
(̂θ − θ̃) (11.24)

and compare to chi-square critical values. As mentioned in Chapter 8, a generalized
inverse may need to be used and care may be needed to ensure chi-square critical
values are obtained using the correct degrees of freedom.

More generally, this approach can be used for any standard normal test or chi-square
distributed test where implementation is difficult because a variance matrix must be
estimated. Examples include hypothesis tests based on a two-step estimator and the
m-tests of Chapter 8.

Tests with Asymptotic Refinement

Many tests, especially those for fully parametric models such as the LM test and IM
test, can be simply implemented using an auxiliary regression (see Sections 7.3.5 and
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8.2.2). The resulting test statistics, however, perform poorly in finite samples as docu-
mented in many Monte Carlo studies. Such test statistics are easily computed and are
asymptotically pivotal as the chi-square distribution does not depend on unknown pa-
rameters. They are therefore prime candidates for asymptotic refinement by bootstrap.

Consider the m-test of H0 : E[mi (yi |xi ,θ)] = 0 against Ha : E[mi (yi |xi ,θ)] �= 0
(see Section 8.2). From the original data estimate θ̂ by ML, and calculate the test
statistic M. Using a parametric bootstrap, resample y∗

i from the fitted conditional den-
sity f (yi |xi ,̂θ), for fixed regressors in repeated samples, or from f (yi |x∗

i ,̂θ). Compute
M∗

b, b = 1, . . . , B, in the bootstrap resamples. Reject H0 at level α if the original cal-
culated statistic M exceeds the α quantile of M∗

b, b = 1, . . . , B.
Horowitz (1994) presented this bootstrap for the IM test and demonstrated with

simulation examples that there are substantial finite-sample gains to this bootstrap. A
detailed application by Drukker (2002) to specification tests for the tobit model sug-
gests that conditional moment specification tests can be easily applied to fully para-
metric models, since any size distortion in the auxiliary regressions can be corrected
through bootstrap.

Note that bootstrap tests without asymptotic refinement, such as the Hausman test
given here, can be refined by use of the nested bootstrap given in Section 11.5.3.

11.6.4. GMM, Minimum Distance, and Empirical Likelihood in
Overidentified Models

The GMM estimator is based on population moment conditions E[h(wi ,θ)] = 0
(see Section 6.3.1). In a just-identified model a consistent estimator simply solves
N−1∑

i h(wi , θ̂) = 0. In overidentified models this estimator is no longer feasible.
Instead, the GMM estimator is used (see Section 6.3.2).

Now consider bootstrapping, using the paired or EDF bootstrap. For GMM in an
overidentified model N−1∑

i h(wi , θ̂) �= 0, so this bootstrap does not impose on the
bootstrap resamples the original population restriction that E[h(wi ,θ)] = 0. As a re-
sult even if the asymptotically pivotal t-statistic is used there is no longer a bootstrap
refinement, though bootstraps on θ̂ and related confidence intervals and t-test statis-
tics remain consistent. More fundamentally, the bootstrap of the OIR test (see Sec-
tion 6.3.8) can be shown to be inconsistent. We focus on cross-section data but similar
issues arise for panel GMM estimators (see Chapter 22) in overidentified models.

Hall and Horowitz (1996) propose correcting this by recentering. Then the boot-
strap is based on h∗(wi , θ̂) = h(wi , θ̂)−N−1∑

i h(wi , θ̂) and asymptotic refinements
can be obtained for statistics based on θ̂ including the OIR test.

Horowitz (1998) does similar recentering for the minimum distance estimator (see
Section 6.7). He then applies the bootstrap to the covariance structure example of
Altonji and Segal (1996) discussed in Section 6.3.5.

An alternative adjustment proposed by Brown and Newey (2002) is to not recenter
but to instead resample the observations wi with probabilities that vary across observa-
tions rather than using equal weights 1/N . Specifically, let Pr[w∗= wi ] = π̂ i , where
π̂ i = (1 + λ̂

′
ĥi ), ĥi = h(wi , θ̂), and λ̂ maximizes

∑
i ln(1 + λ̂

′̂
hi ). The motivation is

that the probabilities π̂ i equivalently are the solution to an empirical likelihood (EL)
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problem (see Section 6.8.2) of maximizing
∑

i lnπi with respect to π1, . . . , πN subject
to the constraints

∑
i πi ĥi = 0 and

∑
i πi = 1. This empirical likelihood bootstrap

of the GMM estimator therefore imposes the constraint
∑

i π̂ i ĥi = 0.
One could instead work directly with EL from the beginning, letting θ̂ be the EL

estimator rather than the GMM estimator. The advantage of the Brown and Newey
(2002) approach is that it avoids the more challenging computation of the EL estimator.
Instead, one needs only the GMM estimator and solution of the concave programming
problem of minimizing

∑
i ln(1 + λ̂

′
ĥi ).

11.6.5. Nonparametric Regression

Nonparametric density and regression estimators converge at rate less than
√

N and
are asymptotically biased. This complicates inference such as confidence intervals (see
Sections 9.3.7 and 9.5.4).

We consider the kernel regression estimator m̂(x0) of m(x0) = E[y|x = x0] for ob-
servations (y, x) that are iid, though conditional heteroskedasticity is permitted. From
Horowitz (2001, p. 3204), an asymptotically pivotal statistic is

t = m̂(x0) − m(x0)

sm̂(x0)
,

where m̂(x0) is an undersmoothed kernel regression estimator with bandwidth h =
o(N−1/3) rather than the optimal h∗ = O(N−1/5) and

s2
m̂(x0) = 1

Nh[ f̂ (x0)]2

N∑
i=1

(yi − m̂(xi ))
2 K

(
xi − x0

h

)2

,

where f̂ (x0) is a kernel estimate of the density f (x) at x = x0. A paired bootstrap
resamples (y∗, x∗) and forms t∗

b = [m̂∗
b(x0) − m(x0)]/s∗

m̂(x0),b, where s∗
m̂(x0),b is com-

puted using bootstrap sample kernel estimates m̂∗
b(xi ) and f̂ ∗

b (x0). The percentile-t
confidence interval of Section 11.2.7 then provides an asymptotic refinement. For a
symmetrical confidence interval or symmetrical test at level α the error is o((Nh−1))
rather than O((Nh−1)) using first-order asymptotic approximation.

Several variations on this bootstrap are possible. Rather than using undersmoothing,
bias can be eliminated by directly estimating the bias term given in Section 9.5.2.
Also rather than using s2

m̂(x0), the variance term given in Section 9.5.2 can be directly
estimated.

Yatchew (2003) provides considerable detail on implementing the bootstrap in non-
parametric and semiparametric regression.

11.6.6. Nonsmooth Estimators

From Section 11.4.2 the bootstrap assumes smoothness in estimators and statistics.
Otherwise the bootstrap may not offer an asymptotic refinement and may even be
invalid.

As illustration we consider the LAD estimator and extension to binary data. The
LAD estimator (see Section 4.6.2) has objective function

∑
i |yi − x′

iβ| that has
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discontinuous first derivative. A bootstrap can provide a valid asymptotic approx-
imation but does not provide an asymptotic refinement. For binary outcomes, the
LAD estimator extends to the maximum score estimator of Manski (1975) (see
Section 14.7.2). For this estimator the bootstrap is not even consistent.

In these examples bootstraps with asymptotic refinements can be obtained by us-
ing a smoothed version of the original objective function for the estimator. For ex-
ample, the smoothed maximum score estimator of Horowitz (1992) is presented in
Section 14.7.2.

11.6.7. Time Series

The bootstrap relies on resampling from an iid distribution. Time-series data therefore
present obvious problems as the result of dependence.

The bootstrap is straightforward in the linear model with an ARMA error structure
and resampling the underlying white noise error. As an example, suppose yt = βxt +
ut , where ut = ρut−1 + εt and εt is white noise. Then given estimates β̂ and ρ̂ we
can recursively compute residuals as ε̂t = ût − ρ̂ût−1 = yt − xt β̂ − ρ̂(yt−1 − xt−1β̂).
Bootstrapping these residuals to give ε̂ ∗

t , t = 1, . . . , T , we can then recursively com-
pute û ∗

t = ρû ∗
t−1 + ε̂ ∗

t and hence y∗
t = β̂xt + û ∗

t . Then regress y∗
t on xt with AR(1)

error. An early example was presented by Freedman (1984), who bootstrapped a dy-
namic linear simultaneous equations regression model estimated by 2SLS. Given lin-
earity, simultaneity adds little problems. The dynamic nature of the model is handled
by recursively constructing y∗

t = f (y∗
t−1, xt ,u∗

t ), where u∗
t are obtained by resampling

from the 2SLS structural equation residuals and y∗
0 = y0. Then perform 2SLS on each

bootstrap sample.
This method assumes the underlying error is iid. For general dependent data without

an ARMA specification, for example, nonstationary data, the moving blocks bootstrap
presented in Section 11.5.2 can be used.

For testing unit roots or cointegration special care is needed in applying the boot-
strap as the behavior of the test statistic changes discontinuously at the unit root.
See, for example, Li and Maddala (1997). Although it is possible to implement a
valid bootstrap in this situation, to date these bootstraps do not provide an asymptotic
refinement.

11.7. Practical Considerations

The bootstrap without asymptotic refinement can be a very useful tool for the applied
researcher in situations where it is difficult to perform inference by other means. This
need can vary with available software and the practitioner’s tool kit. The most common
application of the bootstrap to date is computation of standard errors needed to conduct
a Wald hypothesis test. Examples include heteroskedasticity-robust and panel-robust
inference, inference for two-step estimators, and inference on transformations of es-
timators. Other potential applications include computation of m-test statistics such as
the Hausman test.
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The bootstrap can additionally provide an asymptotic refinement. Many Monte
Carlo studies show that quite standard procedures can perform poorly in finite sam-
ples. There appears to be great potential for use of bootstrap refinements, currently
unrealized. In some cases this could improve existing inference, such as use of the
wild bootstrap in models with additive errors that are heteroskedastic. In other cases it
should encourage increased use of methods that are currently under-utilized. In partic-
ular, model specification tests with good small-sample properties can be implemented
by bootstrapping easily computed auxiliary regressions.

There are two barriers to the use of the bootstrap. First, the bootstrap is not always
built into statistical packages. This will change over time, and for now constructing
code for a bootstrap is not too difficult provided the package includes looping and the
ability to save regression output. Second, there are subtleties involved. Asymptotic re-
finement requires use of an asymptotically pivotal statistic and the simplest bootstraps
presume iid data and smoothness of estimators and statistics. This covers a wide class
of applications but not all applications.

11.8. Bibliographic Notes

The bootstrap was proposed by Efron (1979) for the iid case. Singh (1981) and Bickel and
Freedman (1981) provided early theory. A good introductory statistics treatment is by Efron
and Tibsharani (1993), and a more advanced treatment is by Hall (1992). Extensions to
the regression case were considered early on; see, for example, Freedman (1984). Most of
the work by econometricians has occurred in the past 10 years. The survey of Horowitz
(2001) is very comprehensive and is well complemented by the survey of Brownstone and
Kazimi (1998), which considers many econometrics applications, and the paper by MacKinnon
(2002).

Exercises

11–1 Consider the model y = α + βx + ε, where α, β, and x are scalars and ε ∼
N [0, σ 2]. Generate a sample of size N = 20 with α = 2, β = 1, and σ 2 = 1 and
suppose that x ∼ N [2,2]. We wish to test H0 : β = 1 against Ha : β �= 1 at level
0.05 using the t-statistic t = (̂β − 1)/se[̂β]. Do as much of the following as your
software permits. Use B = 499 bootstrap replications.

(a) Estimate the model by OLS, giving slope estimate β̂.
(b) Use a paired bootstrap to compute the standard error and compare this to

the original sample estimate. Use the bootstrap standard error to test H0.
(c) Use a paired bootstrap with asymptotic refinement to test H0.
(d) Use a residual bootstrap to compute the standard error and compare this to

the original sample estimate. Use the bootstrap standard error to test H0.
(e) Use a residual bootstrap with asymptotic refinement to test H0.

11–2 Generate a sample of size 20 according from the following dgp. The two regres-
sors are generated by x1 ∼ χ2(4) − 4 and x2 ∼ 3.5 + U [1,2]; the error is from a
mixture of normals with u ∼ N [0,25] with probability 0.3 and u ∼ N [0,5] with
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probability 0.7; and the dependent variable is y = 1.3x1 + 0.7x2 + 0.5u.

(a) Estimate by OLS the model y = β0 + β1x1 + β2x2 + u.
(b) Suppose we are interested in estimating the quantity γ = β1 + β2

2 from the
data. Use the least-squares estimates to estimate this quantity. Use the
delta method to obtain approximate standard error for this function.

(c) Then estimate the standard error of γ̂ using a paired bootstrap. Compare
this to se[γ̂ ] from part (b) and explain the difference. For the bootstrap use
B = 25 and B = 200.

(d) Now test H0 : γ = 1.0 at level 0.05 using a paired bootstrap with B = 999.
Perform bootstrap tests without and with asymptotic refinement.

11–3 Use 200 observations from the Section 4.6.4 data on natural logarithm of health
expenditure (y) and natural logarithm of total expenditure (x). Obtain OLS esti-
mates of the model y = α + βx + u. Use the paired bootstrap with B = 999.

(a) Obtain a bootstrap estimate of the standard error of β̂.
(b) Use this standard error estimate to test H0 : β = 1 against Ha : β �= 1.
(c) Do a bootstrap test with refinement of H0 : β = 1 against Ha : β �= 1 under

the assumption that u is homoskedastic.
(d) If u is heteroskedastic what happens to your method in (c)? Is the test still

asymptotically valid, and if so does it offer an asymptotic refinement?
(e) Do a bootstrap to obtain a bias-corrected estimate of β.
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Simulation-Based Methods

12.1. Introduction

The nonlinear methods presented in the preceding chapters do not require closed-form
solutions for the estimator. Nonetheless, they rely considerably on analytical tractabil-
ity. In particular, the objective function for the estimator has been assumed to have a
closed-form expression, and the asymptotic distribution of the estimator is based on a
linearization of the estimating equations.

In the current chapter we present simulation-based estimation methods. The treat-
ment of ML estimation in Chapter 5 presumed that the density f (y|x,θ) has a closed-
form expression. If there is no closed-form solution, ML estimation may still be
possible if we instead use a good approximation f̂ (y|x,θ) of f (y|x,θ) to form the
likelihood function. A common reason for lack of a closed-form expression for the
density is the presence of an intractable expectation in the definition of f (y|x,θ). For
example, in a random coefficients model it may be difficult to integrate out the ran-
dom parameters. If the expectation is replaced by a Monte Carlo approximation the
resulting estimator is called a simulation-based estimator. A similar simulation ap-
proach can be applied to method of moments estimation based on a moment, such as
the conditional mean, for which there is no closed-form solution. In the method of
moments case it can be possible to obtain consistent parameter estimates with much
less simulation than is necessary for consistency in the ML case.

These estimation methods are computer intensive because they make extensive use
of Monte Carlo sampling methods. Their use raises questions of accuracy of approxi-
mations, efficiency of computation, and the sampling properties of the estimators that
use such approximations.

Section 12.2 gives motivating examples for simulation-based estimation. Sec-
tion 12.3 covers the basics of computing integrals, as an expectation with respect
to a continuous random variable is an integral. Sections 12.4 and 12.5 present max-
imum simulated likelihood estimation and simulated moment-based estimation; Sec-
tion 12.6 deals with indirect inference. These estimators require simulators, detailed
in Section 12.7, and pseudo-random numbers, detailed in Section 12.8.
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12.2. Examples

We consider examples where the conditional density of y given regressors x and pa-
rameters θ is an integral

f (y|x,θ) =
∫

h(y|x,θ,u)g(u)du, (12.1)

where the functional forms of h(·) and g(·) are known and u denotes a random variable,
not necessarily an error term, that needs to be integrated out. If there is no analytical
solution for the integral, and hence no closed-form expression for the likelihood func-
tion, then simulation-based estimation methods are warranted.

12.2.1. Random Parameters Models

A random parameters model or random coefficients model permits regression pa-
rameters to vary across individuals according to some distribution. A fully parametric
random parameters model specifies the dependent variable yi conditional on regres-
sors xi and given parameters γ i to have conditional density f (yi |xi ,γ i ), where γ i are
iid with density g(γ i |θ). Inference is based on the density of yi conditional on xi and
given θ,

f (y|x,θ) =
∫

f (y|x,γ)g(γ|θ)dγ. (12.2)

This integral will not have a closed-form solution except in some special cases. A
common specification is to assume normally distributed random parameters, with γ i ∼
N [µ,Σ]. Then γ i = µ + Σ−1/2ui , where ui ∼ N [0, I] and we can rewrite (12.2) in
the form (12.1), where θ is a vector containing µ and the distinct components of Σ,
and g(u) is the N [0, I] density.

A simple example of a random parameters model is neglected heterogeneity. Then
often just one parameter, usually the intercept, is assumed to be random and the integral
is a one-dimensional integral that is easily approximated numerically. More generally,
however, the dimension of the integral may be high.

Leading examples of random parameters and unobserved heterogeneity include (1)
normally distributed random parameters in multinomial logit models (the random pa-
rameters logit model; see Chapter 15), (2) gamma distributed unobserved heterogene-
ity in Weibull duration models (see Chapter 19), (3) gamma distributed unobserved
heterogeneity in Poisson count data models (see Chapter 20), and (4) individual-
specific random effects in panel data models (see Chapter 21). Closed-form solutions
for the resulting marginal density after integration over the distribution of heterogene-
ity are available in example 3 and for the linear model under normality in example 4.
However, for examples 1 and 2 and many nonlinear applications of example 4 closed-
form solutions are not available.
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12.2.2. Limited Dependent Variable Models

A limited dependent variable (LDV) is a dependent variable that is observed only
over part of its range, owing to censoring and truncation. Then the density of the ob-
served variable involves integrals that may not have a closed-form expression.

A leading class of LDV models are discrete choice models, detailed in Chapters
14 and 15. We introduce discrete choice models here because they have been the focus
of the econometrics literature on simulation-based estimation.

As an example, consider consumer choice among three mutually exclusive alterna-
tives, such as among three different durable goods, only one of which is chosen by
the individual. Suppose the consumer maximizes utility, and let the utilities of alterna-
tives 1, 2, and 3 be given by U1, U2, and U3, respectively. The utilities U1, U2, and U3

are not observed. Instead, we observe only a discrete outcome variable y = 1, 2, or 3
depending on which alternative is chosen.

Suppose alternative 1 is chosen, because it has the highest utility. Then the proba-
bility mass function is p1 = Pr[y = 1], where

p1 = Pr[U1 − U2 ≥ 0, U1 − U3 ≥ 0]
= Pr[(x1 − x2)′β+ε1 − ε2 ≥ 0, (x1 − x3)′β+ε1 − ε3 ≥ 0],

if we make the common assumption (see Section 15.5.1) that U j = x′
jβ + ε j , j =

1, 2, 3, where the regressor x measures the different attributes of the three goods and
the error ε can range over (−∞,∞). Defining u1 = U1 − U2 and u2 = U1 − U3, we
have that

p1 =
∫ ∞

0

∫ ∞

0
g(u1, u2)du1du2, (12.3)

where g(u1, u2), or more formally g(u1, u2|x,θ), is the bivariate density of (u1, u2), or
equivalently

p1 =
∫ ∞

−∞

∫ ∞

∞
1[u1 ≥ 0, u2 ≥ 0]g(u1, u2)du1du2, (12.4)

where 1[A] is the indicator function equal to 1 if event A happens and equal to 0
otherwise.

The integral (12.4) is of the form (12.1). Because the integral is over only part of
the range of (u1, u2) (see (12.3)) a closed-form solution may not exist, even though we
know that

∫ ∫
g(u1, u2)du1du2 = 1 if integration is over the entire range of (u1, u2).

In particular, if the errors ε are normally distributed, as in the multinomial probit
model, the integral (12.3) is over the positive orthant of a bivariate normal distribution.
There is no closed-form solution for p, and hence no tractable expression for the den-
sity f (y|x,θ) exists. In practice the dimension of the integral can be very high, making
numerical approximation difficult, because for choice among m mutually exclusive al-
ternatives the integral has dimension m − 1. Until simulation-based estimators were
developed researchers either used models with m ≤ 4 or chose other error distribu-
tions such as that leading to the much more restricted multinomial logit model.
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12.2.3. ML Estimation

For simplicity consider the MLE. Assume independence over observations and that y
has conditional density f (y|x,θ).

The complication in the preceding two examples is that ML estimation is not practi-
cal as there is no closed-form expression for f (y|x,θ), which is defined by an integral
that does not simplify. Instead, we replace the integral by a numerical approximation
f̂ (y|x,θ), and we maximize

ln L̂N (θ) =
N∑

i=1

ln f̂ (yi |xi ,θ)

with respect to θ. The estimator will be consistent and have the same asymptotic dis-
tribution as the MLE if f̂ (y|x,θ) is a good approximation to f (y|x,θ).

The resulting first-order conditions are usually nonlinear and are solved by iterative
methods. Because f̂ (yi |xi ,θ) varies with i and θ, evaluation of the gradient using
numerical derivatives will require at least Nqr evaluations, where N is the sample
size, q is the dimension of θ, and r is the number of iterations. For example, with
1,000 observations, 10 parameters, and 50 iterations there are at least 500,000 function
evaluations.

This standard computational demand for nonlinear models now needs to be mul-
tiplied by the number of evaluations needed to compute an adequate approximation
to the integral f (y|x,θ). Clearly, methods that require relatively few evaluations are
desired.

12.2.4. Bayesian Methods

Bayesian methods are given a separate treatment in Chapter 13. They involve compu-
tation of integrals that appear similar to (12.2), but they go one step further and obtain
the (posterior) distribution of parameters rather than a point estimate such as the MLE.

12.3. Basics of Computing Integrals

We consider the integral

I =
∫ b

a
f (x) dx, (12.5)

where f (·) is continuous on [a, b], and the bounds of the integral need not be finite,
so a = −∞ and/or b = ∞ are possible. In this section x is initially a scalar and is
used to denote the variable being integrated out. In regression applications integration
is often with respect to a vector that is denoted u since x then denotes the regressors
(see (12.1)). It is assumed that the integral exists, an important qualification that needs
to be checked as approximation methods will yield a finite estimate of I even if the
integral diverges.
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We first present numerical integration or quadrature, useful for low-dimensional
integrals. This is followed by Monte Carlo integration, which works better for high-
dimensional integrals and is the focus of this chapter.

The material in this section pertains to the implementation phase of simulation-
based estimation; therefore, some readers may prefer to read it after covering
Sections 12.4–12.6.

12.3.1. Deterministic Numerical Integration

An integral can be interpreted as an area or a volume measure. Deterministic numer-
ical integration or quadrature replaces the volume by a series of slices of smaller
volumes that are then added up. Formally this involves evaluating the integrand at sev-
eral points and taking a weighted sum of these values. The prefix deterministic is used
to indicate that this method of approximation of an integral does not entail simulation.

Simpson’s Rule

By the definition of an integral,

I = lim
�xi →0

n∑
j=1

f (x j )�x j , (12.6)

where the range of [a, b] of x is split into (n + 1) points, x0 < x1 < · · · < xn , and
n → ∞. Standard approximation methods are refinements of (12.6) that provide more
accurate approximations for finite n. We present results for equally spaced points,
though the methods can be generalized to evaluation at points that are not equally
spaced. For simplicity we assume that f (x) can be evaluated at the limit points a
and b.

The midpoint rule evaluates at the midpoint x̄ j = 1
2 (x j−1 + x j ) of the interval

[x j−1, x j ] and sums n rectangles that have base (b − a)/n and height f (x̄ j ). Thus
I is approximated by

ÎM =
n∑

j=1

b − a

n
f (x̄ j ). (12.7)

The trapezoidal rule is an improvement that draws a straight line between f (x j−1) and
f (x j ) and sums n trapezoids that have base (b − a)/n and average height ( f (x j−1) +
f (x j ))/2. Thus I is approximated by

ÎT =
n∑

j=1

(b − a)

n

f (x j−1) + f (x j )

2
. (12.8)

Simpson’s rule uses a quadratic curve among three successive points f (x j−1), f (x j ),
and f (x j+1), whereas the trapezoidal rule used a line between two successive points.
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This leads to the approximation

ÎS =
n∑

j=0

(b − a)

3n
w j f (x j ), (12.9)

where n is even, w j = 4 if j is odd, and w j = 2 if j is even, except w0 = wn = 1.
Further generalization to permit a polynomial of degree p among p + 1 successive
points is possible.

Error bounds for these approximations increase as a power function of the range
of integration, b − a, and decrease as a power function of the number of intervals.
For Simpson’s rule, |IS − I | ≤ M4(b − a)5/180n4, where M4 is the maximum abso-
lute value of the fourth derivative of x on [a, b]. For the trapezoidal rule, |IT − I | ≤
M2(b − a)3/12n2, where M2 is the maximum absolute value of the second derivative
of x on [a, b]. Clearly, the number of intervals needs to increase with the range of x ,
and one should test for sensitivity to the number of intervals.

Simpson’s rule and related rules can work well for definite integrals over a bounded
interval, but problems can clearly arise with indefinite integrals because of problems
in evaluating in the tails. For example, suppose [a, b] = [0,∞). Then in choosing
xn there is a trade-off because the upper bound xn should be large, but then the dis-
tance between evaluation points is large. At the least one should test for sensitivity to
increases in xn .

Gaussian Quadrature

Gaussian quadrature, where quadrature is an alternative name for numerical inte-
gration, was proposed by Gauss in 1814. It provides a rule for good choice of the
evaluation points x j , no longer equally spaced, and is especially useful for evaluating
indefinite integrals.

We first reexpress the integral (12.5) as

I =
∫ d

c
w(x)r (x)dx, (12.10)

where w(x) is usually one of the following three functions, depending on the range
of x : Gauss–Hermite quadrature sets w(x) = e−x2

and is used for [c, d] = (−∞,∞),
Gauss–Laguerre quadrature sets w(x) = e−x and is used when [c, d] = (0,∞), and
Gauss–Legendre quadrature sets w(x) = 1 and is used when [c, d] = [−1, 1].

In the simplest case (12.10) can be obtained from (12.5) by defining r (x) =
f (x)/w(x). More generally, a transformation of x may be needed so that, for example,
the range [2,∞) in (12.5) becomes [0,∞) in (12.10). Some routines permit the user
to simply provide f (x) and the range of integration and automatically take care of any
necessary transformations.

Gaussian quadrature approximates the integral (12.10) by the weighted sum

ÎG =
m∑

j=1

w j r (x j ), (12.11)
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where the researcher chooses m; the m points of evaluation x j and the weights w j are
given in books such as Abramowitz and Stegun’s (1971) or in computer code such as
that provided in Press et al. (1993).

The theory behind the approximation is based on the orthogonal polynomials of
w(x), denoted p j (x), j = 0, . . . ,m, that satisfy

∫ d

c
w(x)p j (x)pk(x)dx = 0, j �= k, j, k = 0, . . . ,m.

If additionally
∫ d

c w(x)p2
j (x)dx = 1 then the polynomials are said to be orthonormal.

The approximation (12.11) is exact if r (x) is a polynomial of order 2m − 1 or less,
so the approximation works best if r (x) in (12.10) is well approximated by a polyno-
mial of order 2m − 1. A good choice of the number of evaluation points m requires
experimentation, but many applications use m no more than 20 or 30.

As an example consider Gauss–Hermite quadrature, commonly used in econo-
metrics since integration is often over (−∞,∞). Forw(x) = e−x2

the orthogonal poly-
nomials p j (x) are the Hermite polynomials Hj (x), which in the orthonormal form are
generated using the recursion Hj+1(x) = √

2/( j + 1)x Hj (x) − √
j/( j + 1)Hj−1(x),

j = 1, . . . ,m, where H−1 = 0 and H0 = π−1/4. The m abscissas x j are obtained as the
m roots to Hm(x) = 0 and, for orthonormal Hermite polynomials, the weights w j =
1/
[

j Hj−1(x j )2
]
. As already noted x j andw j for given m are readily available in tables

or computer code.
For definite integrals Gauss–Legendre quadrature usually performs better than

Simpson’s rule. The real advantage of Gaussian quadrature, however, is for indefi-
nite integrals. Note that if integration is over (−∞,∞) it may be possible by change
of variable techniques to transform to an integral over (0,∞) and use Gauss–Laguerre
quadrature rather than Gauss–Hermite quadrature.

There are many additional deterministic methods for computing integrals, including
Laplace approximation (Tierney, Kass, and Kadane, 1989).

12.3.2. Integration by Direct Monte Carlo Sampling

Monte Carlo integration provides an alternative to deterministic numerical integration.
In general the Monte Carlo integral estimate of I = ∫ b

a f (x) dx is

ÎMC =
S∑

s=1

f (xs), (12.12)

where x1, . . . , xs are S uniform draws of x in the range [a, b]. Compared to the mid-
point rule we evaluate f (x) at S randomly chosen points rather than n deterministic
midpoints.

We focus on regression applications such as those given in Section 12.2. Then
integration arises because we wish to obtain an expected value E[h(x)], say, where
the expectation is with respect to a random variable x that has, say, pdf g(x). In the
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continuous case we wish to evaluate

E [h(x)] =
∫ b

a
h(x)g(x)dx, (12.13)

where throughout this chapter it is assumed that E[h(x)] <∞, that is, the integral con-
verges. Then E[h(x)] can be estimated by the direct Monte Carlo integral estimate

ÎDMC = Ê [h(x)] = S−1
S∑

s=1

h(xs), (12.14)

where {xs, s = 1, . . . , S} is a Monte Carlo sample of S pseudo-random numbers from
the density g(x), obtained using methods given later in Section 12.8. The estimate
(12.14) evaluates h(x) using draws of x from the density g(x), whereas the estimate
(12.12) evaluates h(x)g(x) using uniform draws of x as in (12.12). An advantage of
(12.14) is that it can be applied to indefinite integrals, whereas obtaining uniform draws
in (12.12) is problematic if the limits a or b are unbounded.

The estimate Ê [h(x)] is an average of the function f (·) evaluated at each of the
random draws xs . Equivalently, Ê [h(x)] is an average of the random variable h(xs),
and its properties as S → ∞ can be obtained if we can apply a law of large numbers
and a central limit theorem. Here xs is iid, so h(xs) is iid and we can apply Kolmogorov
LLN (see Appendix A, Theorem A.8) since the existence of E[h(x)] has already been
assumed. It follows that

Ê [h(x)]
p→ E [h(x)] as S → ∞.

Also, since h(xs) is iid, the variance of Ê [h(x)] equals S−1V[h(x)] assuming V[h(x)]
exists. The approximation is likely to be good for moderate size S if S−1V[h(xs)] is
small.

12.3.3. Integral Computation Example

Suppose x ∼ N [0, 1], and we wish to compute the mean

E [x] = (
√

2π )−1
∫ ∞

−∞
x exp

(−x2/2
)

dx

and the moment E[exp(− exp(x))], defined as the integral

E
[
exp (− exp(x))

] = (
√

2π )−1
∫ ∞

−∞
exp (− exp(x)) exp

(−x2/2
)

dx .

An analytical expression for E[x] exists and yields E[x] = 0. By contrast an analyt-
ical solution for E

[
exp (− exp(x))

]
does not exist. Before seeking a numerical approxi-

mation, we first confirm that the integral does indeed converge. Since exp (− exp(x)) is
strictly positive and monotonically decreasing with maximum value of 1 it follows that
| exp (− exp(x)) | < 1, so E

[
exp (− exp(x))

]
< E[1] = 1 and the integral converges.

These one-dimensional integrals are easily calculated using a deterministic numeri-
cal approximation. For example, consider using the midpoint rule with n = 20 equally
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spaced evaluations between x0 = −5 and x20 = 5. Then

Ê [x] = (
√

2π )−1
20∑
j=1

10

20
x̄i exp

(−x̄2
j /2
)
,

Ê
[
exp (− exp(x))

] = (
√

2π )−1
20∑
j=1

10

20
exp
(− exp(x̄ j )

)
exp
(−x̄2

j /2
)
,

where x̄ j = −5.25 + j/2. This yields Ê [x] = 0 to many decimal places, as expected,
whereas Ê[exp(− exp(x))] = 0.38175656. The latter estimate changes little, not until
the eighth decimal place, if instead we do n = 200 evaluations between −10 and 10.
Clearly deterministic numerical approximations work well here.

These integrals are also easily calculated using a Monte Carlo approximation, with

Ê [x] = 1

S

S∑
s=1

xs,

Ê
[
exp (− exp(x))

] = 1

S

S∑
s=1

exp
(− exp(xs)

)
,

where xs is the sth draw of S draws from the N [0, 1] distribution, and a method
to make such draws is given in Appendix B. Table 12.1 gives estimates of Ê [x]
and Ê[exp(− exp(x))] for various numbers of simulations S. Observe the tendency
of the estimators to stabilize as S → ∞, and to go to their respective true values of
0 and 0.38175656, where the latter is obtained by deterministic numerical approxi-
mation. However, even with S = 106 the estimate Ê [x] still differs from zero in the
fourth decimal place. Here V[ Ê[x]] = S−1V[xs] = 1/S since V[xs] = 1, so even with
S = 106 the standard deviation of Ê [x] is a relatively large 0.001. Alternative methods
that yield a Monte Carlo approximation with lower variance are given in Section 12.7.

Table 12.1. Monte Carlo Integration: Example for x
Standard Normal

S = Number of simulations Ê [x] Ê [exp (−exp(x))]

10 0.145 0.336
25 −0.209 0.435
50 0.050 0.369
100 −0.120 0.409
500 −0.059 0.398
1,000 0.005 0.382
10,000 −0.007 0.383
100,000 −0.000 0.382
1,000,000 −0.000 0.381
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12.3.4. Higher Dimensional Integrals

Higher dimensional integrals can be evaluated using either deterministic or Monte
Carlo integration, with the latter method preferred as the dimension increases.

Deterministic integration is best done using multivariate Gaussian quadrature or, if
the limits of integration are not too complicated, by reducing an m-dimensional inte-
gral to a series of m one-dimensional integrals evaluated using, say, Gaussian quadra-
ture. However, from the definition of the integral in (12.6) it is clear that the number
of evaluations will have to go up by the power m. For example, if 20 function evalua-
tions are needed for a one-dimensional integral, then a five-dimensional integral may
require 520 or 95 trillion function evaluations. Such high precision may not be needed
in an estimation setting where similar computations are being done for each individ-
ual observation and then summed, but even then the number of evaluations will rise
substantially with the dimension of the integral.

Performing Monte Carlo integration in higher dimensions is straightforward: Just
define x in (12.13) and (12.14) be a vector, and make draws from the multivariate den-
sity g(x). There is apparently no curse of dimensionality. One should bear in mind,
however, that simple Monte Carlo integration will not work if the integrand is strongly
peaked, and it is possible that such peaks may become more prominent in higher di-
mensions. In particular, for the discrete choice example in Section 12.2.2 the integrand
in (12.4) may be nonzero over only a small part of the range of (u, v), a complication
pursued in Section 12.7. Moreover, drawing from a multivariate distribution can be
more difficult than drawing from a univariate distribution.

12.4. Maximum Simulated Likelihood Estimation

We now consider application of these ideas to ML estimation when no analytical ex-
pression is available for the density. The key result is that simulation can lead to an
estimator with the same distribution as the MLE, provided that the number of simula-
tion draws made to compute the density for each observation goes to infinity.

12.4.1. Simulators

Suppose the conditional density f (y|x,θ) for an observation involves an intractable
integral. Specifically, suppose that, as in (12.1),

f (yi |xi ,θ) =
∫

h(yi |xi ,θ,ui )g(ui )dui , (12.15)

which needs to be estimated if there is no closed-form solution.
The direct simulator for f (yi |xi ,θ) is the obvious Monte Carlo integral estimate

f̂ (yi |xi ,ui S,θ) = 1

S

S∑
s=1

h(yi |xi ,θ,us
i ), (12.16)
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where ui S is a vector of S draws us
i , s = 1, . . . , S, that are independent draws from

g(ui ). This simply averages h(yi |xi ,θ,us
i ) over the S draws. From Section 12.3.2, f̂ i

is unbiased for fi and is consistent for fi as the number of draws S → ∞.
Simulators other than the direct simulator can be used, and these are detailed in Sec-

tion 12.7. These can yield an estimate f̂ i that better approximates fi for a finite number
of draws by, for example, permitting correlation among the draws provided they still
have marginal distribution g(ui ). More generally, then, a simulator for f (yi |xi ,θ) is
a Monte Carlo estimate

f̂ (yi |xi ,ui S,θ) = 1

S

S∑
s=1

f̃ (yi |xi ,θ,us
i ), (12.17)

where us
i , s = 1, . . . , S, are S draws with marginal density g(ui ) but not necessarily

independent over s. To be useful the simulator f̂ i
p→ fi as S → ∞. This is likely if

the subsimulator f̃ (·) is an unbiased simulator with the property that

E
[

f̃ (y|x,θ,us)
] = f (y|x,θ). (12.18)

A desirable property of a simulator is that f̂ i be differentiable in θ, so that stan-
dard iterative gradient methods can be used to compute the estimate of θ. To elimi-
nate “chatter” caused by simulation and ensure numerical convergence, the underlying
Monte Carlo draws used to construct f̂ i should not be redrawn as θ changes across
iterations.

12.4.2. MSL Estimator

Given independence over i , the maximum likelihood estimator θ̂ML maximizes
ln LN (θ) =∑N

i=1 ln f (yi |xi ,θ). The maximum simulated likelihood (MSL) estima-
tor θ̂MSL instead maximizes the log-likelihood based on a simulated estimate of the
density, or

ln L̂N (θ) =
N∑

i=1

ln f̂ (yi |xi ,ui S,θ), (12.19)

where the simulator f̂ (·) is defined in (12.17). If f̂ (·) is differentiable in θ then θ̂MSL

can be computed using the standard gradient methods of Chapter 10, with either ana-
lytical or numerical derivatives used.

12.4.3. Distribution of the MSL Estimator

From the general consistency proof method outlined in Section 5.3.2, the MSL esti-
mator will have the same probability limit as the ML estimator if the approximating
objective function N−1 ln L̂N (θ) has the same probability limit as the original objec-

tive function N−1 ln L̂N (θ). This occurs if ln f̂ i − ln fi
p→ 0, which in turn happens if

f̂ i − fi
p→ 0 as S → ∞.

Even if the MSL estimator is consistent, it is possible that simulation error will in-
flate the variance of the MSL estimator compared to the ML estimator. As an example
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of a formal statement of conditions under which the MSL estimator is fully efficient
we give the following proposition, which is a rephrasing of a theorem in Gouriéroux
and Monfort (1991).

Proposition 12.1 (Distribution of MSL Estimator) (Gouriéroux and Monfort
1991): Assume the following:

(i) The data are from a simple random sample from a dgp with conditional density
f (y|x,θ0) that satisfies the regularity conditions so that the ML estimator is
consistent and asymptotically normal with limit variance matrix A−1(θ0), where

A(θ0) = −plim

[
N−1

N∑
i=1

∂2 ln f (yi |xi ,θ)

∂θ∂θ′

∣∣∣∣∣
θ0

]
.

(ii) The density f is estimated using the simulator f̂ in (12.17) with f̃ unbiased
for f.

Then the maximum simulated likelihood estimator defined in (12.19) is asymptoti-
cally equivalent to the ML estimator if S, N → ∞ and

√
N/S → 0, and it has a limit

normal distribution with
√

N (̂θMSL − θ0)
d→ N

[
0,A−1(θ0)

]
. (12.20)

The MSL estimator is actually consistent under the weaker condition that S, N →
∞. This is satisfied if, for example, S = N 0.4/a for some constant a. However, then√

N/S = aN 0.1 → ∞, so the MSL estimator is not fully efficient according to Propo-
sition 12.1. By the usual first-order Taylor series expansion the limit distribution of√

N (̂θMSL − θ0) is a matrix multiple of N−1/2∑
i ∂ ln f̂ i/∂θ

∣∣
θ0

, which depends on

both variability of ∂ ln fi/∂θ and simulation error in the approximation f̂ i . Proposi-
tion 12.1 says that for this simulation error to disappear asymptotically the number of
draws S must increase with sample size at rate in excess of

√
N .

The variance matrix of the MSL estimator requires estimation of A(θ0). It is eas-
iest to use a simulated variant of the BHHH estimate defined in Section 5.5.2. Since
∂ ln fi/∂θ = (∂ fi/∂θ) / fi , the BHHH estimate for the information matrix is

B̂ = 1

N

N∑
i=1

∂ fi (̂θ)/∂θ

fi (̂θ)

∂ fi (̂θ)/∂θ′

fi (̂θ)
.

Because there is no closed-form solution for fi and ∂ fi/∂θ this expression cannot
be computed. So we replace fi by the simulator f̂ i defined in (12.17), yielding the
simulated estimate of the asymptotic variance

V̂[̂θMSL] =
(

N∑
i=1

(∑S
s=1 ∂ f̃ s

i (̂θ)/∂θ∑S
s=1 f s

i (̂θ)

∑S
s=1 ∂ f̃ s

i (̂θ)/∂θ′∑S
s=1 f s

i (̂θ)

))−1

, (12.21)

where f̃ s
i (̂θ) = f̃ (yi |xi , us

i , θ̂MSL). Alternative estimates of the variance matrix can be
obtained by similar adaptation of the Hessian estimate and sandwich estimates defined
in Section 5.5.2.
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An important practical issue concerns the number of simulations. One can increase
the number of simulations as the sample size increases, but the level or the absolute
value of S remains indeterminate. If there is little difference in the estimates using
2,400 simulations, say, rather than 2,600, then we might take this as an indication that
2,400 simulations is an adequate number. Suppose now that the sample increases four
fold. By how much should we increase the number of simulations? Proposition 12.1
suggests that we should more than double S to more than 4,800, so that the ratio

√
N/S

decreases toward zero. However, notice that in this case we may not be sure if
√

N/S,
here equal to 1/30 if S = 2,400 and N = 6,400, say, is sufficiently close to zero. So
the question of whether one has done enough simulations is difficult to answer. Many
practitioners rely on rough indicators of convergence of point estimates, informally
based on checking the gradients of LN (θ). A formal test-based approach to choosing
S is discussed in Hajivassiliou (2000).

12.4.4. Asymptotic Bias-Adjusted MSL

The MSL estimator is inconsistent, or asymptotically biased, when the number of sim-
ulations S <∞. This bias arises for finite S because ln f̂ i is biased for ln fi even if
the simulator f̂ i is unbiased for fi , as the consequence of taking the natural logarithm.
Thus N−1ln L̂N (θ) and N−1ln LN (θ) have different probability limits for finite S. This
motivates a search for alternative simulation-based estimators, since we can never set
S = ∞ and it may be computationally expensive to set S to be large.

The obvious approach is to find an unbiased simulator for the log-density ln fi ,
rather than for fi , but in practice this is not possible. Instead, in this section we present
a bias-corrected version of MSL, and in the following section we present an alternative,
less efficient estimator than MSL that is consistent for finite S.

Gouriéroux and Monfort (1991) give an expression for the bias of the MSL estima-
tor. The inconsistency of the MSL estimator for fixed S comes from the fact that then
ln f̂ is an inconsistent estimator of ln f . A way of reducing the inconsistency is to use
a bias-adjusted log-likelihood function. Write

ln f̂ = ln[ f + ( f̂ − f )].

Taking a second-order Taylor expansion around ln f yields

ln f̂ � ln f + f̂ − f

f
− 1

2

( f̂ − f )2

f 2
.

Integrating with respect to the density of u, and solving for ln f , yields

ln f � Eu[ln f̂ ] + 1

2

Eu[( f̂ − f )2]

f 2
, (12.22)

assuming f̂ is an unbiased simulator so that Eu[ f̂ ] = f . This expression makes it clear
that a simulator f̂ with small variance leads to lower bias.

A bias-corrected estimator uses an adjusted log-likelihood based on the right-hand
side of (12.22). For the simulator (12.17), f̂ equals S−1∑

s f̃ s and Eu[( f̂ − f )2]
equals S−1∑

sEu[( f̃ s − f )2]. Given draws independent over s the latter can be
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approximated by S−1∑
s( f̃ s − f̂ )2. Then (12.22) yields the first-order asymptotic

bias-corrected MSL estimator, θ̂BCMSL, which maximizes

ln L̂B,N (θ) =
N∑

i=1

[
ln f̂ (yi |xi ,ui S,θ) + 1

2S

∑S
s=1

[
f̃ (yi , xi , us

i ,θ) − f̂ (yi |xi ,ui S,θ)
]2

f̂ (yi |xi ,ui S,θ)2

]
,

where f̂ (yi |xi ,ui S,θ) = S−1∑
s f̃ (yi , xi ,us

i ,θ). The usefulness of this bias-reduction
technique will vary from case to case, as the assumption that bias is small may not
always hold.

12.4.5. Unobserved Heterogeneity Example

Suppose that yi ∼ N [θi , 1], where the scalar parameter θi varies across individuals
with θi = θ + ui , with ui representing unobserved heterogeneity that is assumed to
have a known distribution. The density of y conditional on u is simply

f (y|u, θ ) = 1√
2π

exp
{−(y − θ − u)2/2

}
. (12.23)

However, inference on θ needs to be based on the marginal density of y (i.e., marginal
with respect to u), which requires integrating out u. Here we assume that u has density

g(u) = e−u exp(−e−u), (12.24)

a skewed distribution that has nonzero mean and for simplicity does not depend on
unknown parameters.

Maximum likelihood estimation is not possible as the marginal density f (y|θ ),
which equals

∫
f (y|θ, u)g(u)du, has no closed-form solution. We instead use the MSL

estimator using the the direct simulator in (12.16), so that θ̂MSL maximizes

ln L̂N (θ ) = 1

N

N∑
i=1

ln

(
1

S

S∑
s=1

1√
2π

exp
{−(yi − θ − us

i )2/2
})
, (12.25)

where us
i , s = 1, . . . , S, are draws from the extreme value density g(ui ) in (12.24).

The MSL estimator θ̂MSL is the solution to the first-order conditions

∂ ln L̂N (θ )

∂θ
= 1

N

N∑
i=1

∑S
s=1(yi − θ − us

i ) exp
{−(yi − θ − us

i )2/2
}∑S

s=1 exp
{−(yi − θ − us

i )2/2
} = 0, (12.26)

upon some simplification. There is no closed-form solution for θ , but standard iterative
methods can be used to compute θ̂MSL.

Consistency of the MSL estimator requires the number of draws S → ∞, in addi-
tion to the usual sample size N → ∞, so the method is potentially computationally
intensive. The MSL estimator is then asymptotically normally distributed as usual,
with asymptotic variance most easily estimated using the BHHH estimator (12.21),
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Table 12.2. Maximum Simulated Likelihood Estimation: Example

Number of Simulations S = 1 S = 10 S = 100 S = 1,000 S = 10,000

MSL estimate θ̂ 1.0416 1.0594 1.1775 1.1845 1.1828
Standard error (.0968) (.1093) (.1453) (.1448) (.0091)
ln L̂(̂θ ) −136.31 −174.38 −190.44 −192.43 −192.35

which yields

V̂[̂θMSL] =
 N∑

i=1

[∑S
s=1(yi − θ̂MSL − us

i ) exp
{−(yi − θ̂MSL − us

i )2/2
}∑S

s=1 exp
{−(yi − θ̂MSL − us

i )2/2
} ]2

−1

.

(12.27)

This estimator is fully efficient.
To illustrate we consider a sample {y1, . . . , y100} of size N = 100 generated from

the model of (12.23) and (12.24) with θ = 1. Table 12.2 gives estimates as the number
of draws S increases. For small S the MSL estimator is inconsistent. By S = 10,000
the estimator θ̂MSL has stabilized, though the estimated standard error bounces around
quite a bit. The simulated log-likelihood decreases as S increases but eventually sta-
bilizes. This decrease is expected as the simulator is unbiased for f (y|θ ) but is biased
upward for ln f (y|θ ) since by Jensen’s inequality ln E[ f̂ (y|θ ] > E[ln f̂ (y|θ ] because
the natural logarithm function is globally concave; see Appendix A (Section A.8).

12.5. Moment-Based Simulation Estimation

The simulation approach to estimation when there is no closed-form expression for
the objective function can be extended to estimators other than the MLE. Furthermore,
in some cases it is possible to obtain consistent parameter estimates with only a few
simulations per observation, though there is then an efficiency loss.

12.5.1. Simulated m-Estimators

Consider an m-estimator that has as its objective function (see Section 5.2.2)

QN (θ) = 1

N

N∑
i=1

q(yi , xi ,θ).

Maximum likelihood is the special case q(y, x,θ) = ln f (y|x,θ).
Suppose there is no closed-form expression for q(·), but a simulated estimate is

available. Then a simulated m-estimator minimizes

Q̂N (θ) = 1

N

N∑
i=1

q̂(yi , xi ,ui S,θ), (12.28)
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where, similar to Section 12.4.1, q̂i is an estimate of qi based on a vector ui S

of S draws us
i , s = 1, . . . , S, from an appropriate distribution. Usually, q̂(·) =

S−1∑
s q̃(yi |xi ,θ,us

i ), where us
i is the sth draw.

The simulated m-estimator will be consistent if the m-estimator is consistent and
additionally

plim Q̂N (θ) = plim QN (θ) , (12.29)

since from Section 5.3 the necessary condition for consistency of the original m-
estimator is that plim QN (θ) is maximized at θ = θ0. Here the first plim is with re-
spect to all stochastic variables, including the simulated draws ui S , whereas the second
plim does not depend on ui S .

Condition (12.29) is satisfied if the simulator is such that q̂i − qi
p→ 0 as S → ∞,

since then N−1∑
i q̂i − N−1∑

i qi
p→ 0. This was the assumption made in Sec-

tion 12.4. Furthermore, the simulated m-estimator should have the same limit dis-
tribution as the m-estimator if, as in Section 12.4, S increases with sample size so that√

N/S → 0. This requires many simulations.

12.5.2. Reducing the Number of Simulations

Now suppose the simulator q̂i is not only consistent but is unbiased. Then by applica-
tion of a law of large numbers, and for simplicity suppressing stochastic variables other
than the simulated draws, plim Q̂N (θ) = lim N−1∑

i Eui S [̂qi ] = lim N−1∑
i qi =

plim QN (θ) and condition (12.29) is satisfied. Thus the simulated m-estimator is con-
sistent with as little as one draw of ui per observation, provided Eui S [ q̂i ] = qi .

Unfortunately, this result is difficult to implement, as in applications it is rarely
possible to find an unbiased simulator for qi . For example, with ML estimation it can
be possible to find an unbiased simulator for the density fi , but it is not possible to
find an unbiased simulator for ln fi . Similarly, for NLS estimation it can be possible
to find an unbiased estimator for the conditional mean, but it is not possible to find an
unbiased simulator for the squared error, which involves the square of the conditional
mean.

In some cases this result can be implemented, however, if the estimator is a method
of moments or GMM estimator rather than an m-estimator.

12.5.3. Method of Simulated Moments

Suppose theory leads to a conditional moment condition

E[m(yi , xi ,θ0)|xi ] = 0, (12.30)

where m(·) is a scalar for simplicity. Let wi denote instruments, a function of xi and
possibly θ0, that satisfy

E[wi m(yi , xi ,θ0)] = 0. (12.31)
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The method of moments estimator θ̂MM (see Chapter 6.3.1) minimizes

QN (θ) =
[

1

N

N∑
i=1

wi m(yi , xi ,θ)

]′ [
1

N

N∑
i=1

wi m(yi , xi ,θ)

]
, (12.32)

where for simplicity the just-identified case that dim[wi ] = dim[θ] is assumed. Results
do generalize to the overidentified case, but the notation is more cumbersome as a
weighting matrix then needs to be introduced and estimation is by GMM.

The method of moments estimator is consistent and has limit normal distribution
with variance matrix that depends in part on the choice of instruments wi . An exam-
ple is nonlinear regression, where m(y, x,θ) = y − E[y|x] is the error term and the
conditional mean E[y|x] is a specified function of x and θ. Then the best choice of in-
strument is w = ∂E[y|x]/∂θ|θ0

if the error is homoskedastic, since then the method of
moments estimator has the same first-order conditions as those for the NLS estimator.

Now suppose there is no closed-form expression for m(y, x,θ). For example, a non-
linear regression model may lack a closed-form expression for the conditional mean.
Instead, m(y, x,θ) is an integral

m(yi , xi ,θ) =
∫

h(yi , xi ,ui ,θ)g(ui )dui , (12.33)

for some functions h(·) and g(·), that has no closed-form solution. Obtaining a method
of moments estimator is no longer feasible.

The method of simulated moments (MSM) estimator θ̂MSM instead minimizes

Q̂N (θ) =
[

1

N

N∑
i=1

wi m̂(yi , xi ,ui S,θ)

]′ [
1

N

N∑
i=1

wi m̂(yi , xi ,ui S,θ)

]
, (12.34)

where m̂(yi , xi ,ui S,θ) is an unbiased simulator for m(yi , xi ,θ) that satisfies the
condition

E[m̂(yi , xi ,ui S,θ)] = m(yi , xi ,θ), (12.35)

and ui S denotes S draws from the marginal density g(ui ) and S ≥ 1. Examples of mi

and unbiased simulator m̂i are given in the following.

12.5.4. Distribution of MSM Estimator

The MSM estimator was proposed by McFadden (1989), who proved the following
properties for the estimator.

Proposition 12.2 (Distribution of MSM Estimator) (McFadden 1989): As-
sume the following:

(i) The data are from a simple random sample from a dgp, where m(y, x,θ0) has zero
conditional expectation as in (12.30) and wi m(y, x,θ0) has zero unconditional
expectation as in (12.31) and assumptions are satisfied so that the MM estimator
that minimizes (12.32) is consistent and asymptotically normal.

(ii) The function m(y, x,θ0) is defined by (12.33) and is estimated using the unbiased
simulator m̂(y, x,θ0) that satisfies (12.35).
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Then with S fixed the method of simulated moments estimator that minimizes
(12.34) is consistent and asymptotically normal as N → ∞ and has a limit normal
distribution with

√
N (̂θMSM − θ0)

d→ N
[
0,A−1(θ0)B(θ0)A−1(θ0)′

]
, (12.36)

where

A(θ0) = plim
1

N

N∑
i=1

wi
∂mi (θ)

∂θ′

∣∣∣∣
θ0

(12.37)

and

B(θ0) = plim
1

N

N∑
i=1

wi V[m̂i (θ0)]w′
i , (12.38)

with the variance V[·] being with respect to both the conditional distribution of yi

given xi and the draws ui S given after (12.35).

Before giving a derivation for this proposition we note the following. First, the
MSM estimator has the remarkable property of being consistent even if S = 1. Second,
there is an efficiency loss for finite S. The variance matrix for θ̂MM is the same as that
for θ̂MSM, except that for MM estimation V[m̂i ] in (12.38) is replaced by the smaller
V[mi ]. Third, the efficiency loss caused by simulation disappears as S → ∞, since
then V[m̂i ] = V[mi ]. Fourth, as for MM estimation, the MSM estimator with S → ∞
may be inefficient compared to other estimators if the instruments w are poorly chosen.

Consistency of the MSM estimator requires that condition (12.29) is satisfied for
Q̂N (θ) and QN (θ) given in (12.34) and (12.32). By a law of large numbers

plim
1

N

N∑
i=1

wi m̂i = plim N−1
N∑

i=1

wi Eui S [m̂i ],

where the first plim is with respect to all stochastic variables whereas the second
plim is with respect to all stochastic variables aside from the simulated draws u. Here
Eui S [m̂i ] = mi since m̂i is an unbiased simulator, so

plim
1

N

N∑
i=1

wi m̂i = plim N−1
N∑

i=1

wi mi .

This in turn implies that plim Q̂N (θ) = plim QN (θ). So θ̂MSM is consistent, provided
θ0 maximizes plim QN (θ), which is necessary for the original MM estimator to be
consistent.

For the limit distribution, differentiating Q̂N (θ) with respect to θ yields(
1

N

N∑
i=1

wi
∂m̂i (θ)

∂θ′

)′
1

N

N∑
i=1

wi m̂i (̂θ) = 0.
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The first matrix is a full-rank square matrix, so equivalently θ̂MSM satisfies the first-
order conditions

1

N

N∑
i=1

wi m̂i (̂θ) = 0,

where m̂i (θ) = m̂i (yi , xi ,ui S,θ). By the usual exact first-order Taylor series expan-
sion about θ0

N∑
i=1

wi m̂i (θ0) +
N∑

i=1

wi
∂m̂i (θ)

∂θ′

∣∣∣∣
θ∗

(̂θ − θ0) = 0,

and hence

√
N (̂θ − θ0) = −

(
N−1

N∑
i=1

wi
∂m̂i (θ)

∂θ′

∣∣∣∣
θ∗

)−1

N−1/2
N∑

i=1

wi m̂i (θ0).

Now Eu [∂m̂(θ)/∂θ] = ∂Eu [m̂(θ)] /∂θ = ∂m(θ)/∂θ, so the first matrix on the right-
hand side converges to A(θ0) given in Proposition 12.2. The second term on the right-
hand side has a limit normal distribution with mean zero and variance matrix

B(θ0) = plim
1

N

N∑
i=1

wi V[m̂i (θ0)]w′
i ,

as in Proposition 12.2, where V[m̂i (θ0)] is a variance with respect to both ui S and the
distribution of yi given xi .

Since ui S is independent of yi we have

Vy,u[m̂(θ0)] = Vy [Eu [m̂(θ0)]] + Ey [Vu [m̂(θ0)]]

= Vy [m(θ0)] + Ey [Vu [m̂(θ0)]] .

Substitution yields a more detailed definition of B(θ0) given in Proposition 12.2.
Simulation inflates the variance of the MSM estimator because of the term

Ey[Vu[m̂(θ0)]], which goes to zero as S → ∞. In the special case that the simula-
tor is the frequency simulator, it can be shown that Vy,u[m̂(θ0)] =(1+1/S)Vy [m(θ0)],
so that the effect of simulation using the frequency simulator is to inflate the variance
of the MM estimator by (1 + (1/S))!

12.5.5. Choosing between MSM and MSL

The practitioner will weigh the pros and cons of MSL versus MSM. Given that MSM
is consistent for small S, and further given the difficulty of ensuring that one has set S
at a large enough value to ensure a good approximation to the MLE, why would MSL
be ever preferred to MSM?

First, observe that MSL is in principle straightforward and simple to implement.
Given the parametric assumptions, the optimal weighting of observations is inherent
to the MLE method. The MSM, analogous to the GMM, in contrast requires us to work
with products of weight (or instrumental variable) functions and residuals, and these
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components may be correlated. The numerical instability of the GMM estimator (with-
out simulation) has been documented by, for example, Altonji and Segal (1996) (see
Section 6.3.5). Similarly, Geweke, Keane, and Runkle (1997) and McFadden and Ruud
(1994) have provided evidence of the instability of the MSM estimator. Nevertheless,
although simplicity favors MSL, some of the problems associated with ensuring that
sufficient number of simulations are applied should not be underestimated.

12.5.6. Unobserved Heterogeneity Example

We return to the example of Section 12.4.5. Then yi ∼ N [θ + ui , 1], where ui has
density g(ui ) given in (12.24). Since E[yi − θ − ui ] = 0, we can estimate θ by the
method of moments estimator that solves

1

N

N∑
i=1

(yi − θ − E[ui ]) = 0, (12.39)

yielding θ̂MM = ȳ − E[ū]. Suppose that E[ū] is unknown. Then we can instead use
the MSM estimator θ̂MSM that solves

1

N

N∑
i=1

(
yi − θ − 1

S

S∑
s=1

us
i

)
= 0, (12.40)

where us
i are iid random draws from the extreme value distribution.

The estimating equation (12.40) can be solved, yielding

θ̂MSM = ȳ − ū, (12.41)

where ū = (N S)−1∑
i

∑
s us

i is an average over both N and S. More generally, how-
ever, an iterative method may be needed to compute the MSM estimator.

The variance of θ̂MSM is easily obtained. By construction the simulated draws of u
are independent of each other and of the original data y, so that V[̂θMSM] = V[ȳ] +
V[ū]. Now V[ȳ] = (σ 2

u + 1)/N . Since ū is the average of N S draws of u, V[ū] =
σ 2

u /N S, it follows that

V[̂θMSM] = V[ȳ] + V[ū] (12.42)

= σ 2
u + 1

N
+ σ 2

u

N S
.

This can be consistently estimated using σ̂ 2
u = (N S)−1∑N

i=1

∑S
s=1

(
us

i − ū
)2

.
We consider a sample {y1, . . . , y100} of size N = 100 generated from the model

(12.24) with θ = 1. Table 12.3 gives the MSM estimator as the number of draws
S → ∞. As the number of simulations S increases the MSM estimator approaches
the method of moments estimate, and the standard error falls.
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Table 12.3. Method of Simulated Moments Estimation: Example

Number of Simulations S = 1 S = 10 S = 100 S = 1,000 S = ∞ (MM)

MSM estimate θ̂ 1.0073 1.1096 1.2012 1.1887 1.1879
Standard error (.2471) (.1657) (.1681) (.1676) (.1684)

12.6. Indirect Inference

In this section we outline another simulation-based approach to model estimation
that is sometimes used when one wants to use or estimate a model that is relatively
simple to estimate, even when the underlying dgp is thought be more complex and
harder to estimate. There are several variants and interpretations of the approach; see
Gouriéroux, Monfort, and Renault (1993), Smith (1993), and Gallant and Tauchen
(1996). The approach has also been called the moment matching approach. Our ex-
position essentially follows the first of the aforementioned references.

Suppose that the parametrically specified dgp is denoted by the pdf f (y;θ) , θ ∈
Rq , whose parameters are relatively difficult to estimate. Suppose that we can specify
an auxiliary model with the dgp f a (y;β) , β ∈ Rr , which is easier to estimate by the
quasi-(sometimes also called “pseudo-”) maximum likelihood method. For reasons of
identification that are further discussed in the following, we assume that the dimension
of β is not smaller than the dimension of θ, that is, r ≥ q . For example, the auxiliary
model may be an approximation to the exact likelihood, or it may be an exact likeli-
hood of an approximate model. For a given sample, let β̂ denote the QML estimates.
Then, by the results covered in Section 5.7, we know that β̂ is in general an inconsis-
tent estimator of θ, and under some regularity conditions it converges in probability
to a value called the pseudo-true value, which is a function of θ. The function that
connects the parameters of the auxiliary model to those of the dgp is called the bind-
ing function, denoted as h (θ). The analytical form of this function may or may not be
known. Therefore, it may not always be possible to obtain θ = h−1 (β) or θ̂ = h−1(β̂).

The method of indirect inference can be used to obtain an improved QML estimator
with a smaller asymptotic bias than β̂. The idea is to use the model under f (y;θ) to
generate by simulation pseudo-observations y(s) and to use the auxiliary model under

f a
(
y(s);β

)
to estimate β̂

(s)
,where s refers to the sth simulation. The indirect estimator

is defined by the solution of

θ̂= arg min
θ

(β̂
(s) − β̂)′Ω(β̂

(s) − β̂), (12.43)

where Ω is a given symmetric positive definite matrix. This estimator is similar to the
minimum distance estimator considered in Section 6.7. That is, we sequentially gener-
ate pseudo-observations and estimate the parameters of the auxiliary model based on
the pseudo-observations. The iterations continue until the quadratic form in (12.43) is
minimized. A very important point is that the seed that generates the pseudo-random
observations y(s) is kept unchanged, so that variations in the pseudo-observations

across simulations are due to the variation in β̂
(s)
.
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Before further discussion, we consider a simple but specific example involving a
nonlinear dgp and a linear auxiliary model. The motivation is that the auxiliary model
should be easy to estimate, and the dgp should be easy to simulate.

Let the dgp be as follows:

yi = exp
(
x′

iγ
)+ ui , (12.44)

ui ∼ N
[
0, σ 2

]
.

Let the auxiliary model be the following:

yi = x′
iβ+ εi , (12.45)

εi ∼ N
[
0, σ 2

ε

]
.

Note the following interpretations:

∂E [y|x]

∂x
= β (under the auxiliary model),

∂ ln E [y|x]

∂x
= ∂E [y|x]

∂x
× 1

E [y|x]
= γ (under the dgp).

Therefore, the binding function is γE[y|x] = β, or γ = (E[y|x])−1 β. Note that
dim[β] equals dim[γ].

Given the data (xi , yi , i = 1, . . . , N ) and the least-squares estimator β̂, and given
a N -dimensional pseudo-random draw, denoted u(0), we generate y(1)

i (i = 1, . . . , N )
using

y(1)
i = exp(x′

i β̂) + u(0)
i

and obtain a revised estimator β̂
(1) = (

∑
xi x′

i )
−1∑ xi y(1)

i , which in turn is used to
generate another set of pseudo-observations. The entire simulation cycle is repeated,

holding u(0) fixed, until (β̂
(s) − β̂)′Ω(β̂

(s) − β̂) approaches a constant value to desired
accuracy. In the present case it is reasonable to set Ω equal to either the identity ma-
trix or X′X, the latter choice implying that prediction from the auxiliary model is a
modeling objective. The resulting estimate of γ is the indirect estimator.

In other applications dim(β) will exceed dim (θ), so a unique value of θ may not be
available. Indeed, in the absence of an analytical binding function, we cannot recover
θ, even if the two dimensions are the same. Then one settles for the best indirect
estimates of the auxiliary model parameters.

To see the connection between the indirect estimator and moment matching, set

Ω = X′X; then (β̂
(s) − β̂)′X′X(β̂

(s) − β̂) = (β̂
(s)

X − β̂X)′(β̂
(s)

X − β̂X), which indi-
cates that the indirect estimator is “matching” the first moment of distribution. If one
also wants to match the second moment, the vector β can be augmented by additional
parameters, such as the variance parameter. Thus one can match several moments if so
desired.

Under regularity conditions the indirect estimator is consistent and asymptotically
normal. The reader is referred to the previously cited works for additional detail.
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12.7. Simulators

As in Section 12.3.2 we consider computation of

I = E [h(x)] =
∫

h(x)g(x)dx, (12.46)

where for simplicity x is often a scalar. As in Section 12.3, x is being used here to
denote the variable being integrated out, whereas in application sections u denotes the
variable being integrated out as x denotes the regressors.

A simulator is a method to compute I . There are many ways to do so, aside from
direct Monte Carlo integration given in (12.14). Ideally, simulators should be unbiased,
because many of the results in Sections 12.4 and 12.5 assume an unbiased simulator,
and smooth so that standard iterative gradient methods can be used. Even then the
computing time for estimation of empirically interesting models can be a formidable
obstacle. We present a few of the many clever procedures that have been developed
to speed up simulation by reducing, for any given number of simulation draws, the
simulation variance relative to crude methods such as direct Monte Carlo integration.
A more complete survey is given in Geweke and Keane (2001).

12.7.1. Frequency Simulator

We begin with an example, the frequency simulator, that can be used for some discrete
models. This highlights well some of the complications that can arise in simulation.

Suppose the function h(x) is an indicator function that takes value 1 if x ∈ A and 0
otherwise. Then we wish to compute

I =
∫

1(x ∈ A)g(x)dx .

Direct Monte Carlo integration yields the estimate

ÎFREQ = 1

S

S∑
s=1

1(xs ∈ A),

where xs , s = 1, . . . , S, are S draws from g(x). This is called the frequency simulator
as it estimates I by the relative frequency with which the S draws of xs fall in A.

A leading potential application – one that has motivated much of the econometrics
literature on simulation methods – is the multinomial discrete choice model introduced
in Section 12.2.2. For a three-alternative model, the probability p1 of choosing the first
alternative is given by (12.3), an integral over the positive orthant of a bivariate normal
distribution. The frequency simulator p̂1 is then the proportion of draws (us

1, u
s
2) from

the bivariate normal with us
1 ≥ 0 and us

2 ≥ 0.
The frequency simulator has several limitations. First, it is neither differentiable nor

continuous in parameters θ, which appear in 1(x ∈ A) and/or g(x). So small changes
in θ lead to the same number of draws falling in the positive orthant. For this reason
McFadden (1989) and Pakes and Pollard (1989) presented a more general asymptotic
theory that covers such nonsmooth simulators. In practice, however, it is best to use
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alternative smooth simulators that are differentiable in parameters as this permits
computation using the usual gradient methods.

Second, this simulator is very inefficient if only a small fraction of x ∈ A. For ex-
ample, for a discrete choice model with p1 = 0.001, even with 10,000 draws of S the
estimate p̂1 will be very noisy. Similar problems arise more generally in direct Monte
Carlo evaluation of (12.46) with continuous h(x) if the probability of drawing x is low
in regions where h(x) is relatively large.

Third, this simulator may have problems at the boundary and give an estimate Î = 0
or Î = 1 even if the model imposes 0 < I < 1 and this condition is necessary for
model estimation.

12.7.2. Importance Sampling

The importance sampling simulator reexpresses the integral (12.46) as

I =
∫ (

h(x)g(x)

p(x)

)
p(x)dx (12.47)

=
∫
w(x)p(x)dx,

where p(x) is a density function chosen so that (a) it is easy to draw from p(x), (b)
p(x) has the same support as the original domain of integration, and (c) w (x) =
h(x)g(x)/p(x) is easy to evaluate, is bounded, and has finite variance. We then use
the direct Monte Carlo integral estimate based on (12.47) rather than (12.46),

ÎIS = 1

S

S∑
s=1

w(xs), (12.48)

where xs , s = 1, . . . , S, are draws from p(x) rather than g(x). The term importance
sampling is used because w(x) determines the weight or “importance” of different
points in the sample space. Importance sampling has been employed in the Bayesian
simulation literature for many years and was introduced into Bayesian econometrics by
Kloek and van Dijk (1978) as a way of evaluating posterior distributions. This material
is further discussed in Section 13.4.

The importance sampler ÎIS has variance S−1Vp[w(x)], given independent draws
from p(x). This variance is clearly minimized ifw(x) is a constant over the entire range
of integration, since then Vp[w(x)] is zero. This is done by setting w(x) = Eg[h(x)],
as then p(x) = h(x)g(x)/Eg[h(x)] is a density that integrates to 1. Unfortunately, this
theoretically ideal importance sampling estimate is not practicable, as Eg[h(x)] is un-
known. However, it does indicate the potential gains to importance sampling, espe-
cially if p(x) is chosen so that w(x) is fairly flat.

Even if importance sampling leads to an increased variance, which can occur in
practice, it does have other attractions. It produces a smooth sampler if w(x) is smooth
in the parameters to be estimated. Moreover, it is useful if draws from g(x) are difficult,
as can often be the case if x is a vector of correlated random variables.

For the multinomial probit discrete choice model a popular importance sampler is
the GHK simulator, due to Geweke (1992), Hajivassiliou and McFadden (1994), and
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Keane (1994). This recursively truncates the multivariate normal pdf so that draws
are restricted to the positive orthant. Advantages of this simulator compared to the
frequency simulator are that it is smooth, requires many fewer draws for alternatives
with low probability of being chosen, and is unlikely to have boundary problems.

12.7.3. Variance Reduction by Antithetic Acceleration

The preceding methods assume independent draws, using methods to be detailed in
Section 12.8, from an appropriate distribution such as g(x) or, if importance sampling
is used, from p(x).

Variance reduction methods instead use dependent draws as these can reduce the
variance of a simulator. A leading example is antithetic sampling that uses nega-
tively correlated draws. Ripley (1987, pp. 129–132), Geweke (1988), and Hajivassiliou
(2000) provide a discussion of this technique and Geweke (1995) surveys this and sev-
eral other variance reduction techniques.

Suppose we wish to evaluate the integral I in (12.46), where x is assumed to have
zero mean and symmetric density g(x). The direct Monte Carlo integral, based on 2S
simulated iid draws from g(x), is

ĥ2S (x) = 1

2S

2S∑
s=1

h(xs)

and, given independence of the 2S draws, has variance

V[̂h2S (x)] = 1

2S
V [h(x)] .

Antithetic sampling uses an alternative estimate based on only S iid draws,

ĥA,S(x) = 1

S

S∑
s=1

1

2
(h(xs) + h(−xs)), (12.49)

which is an average of h(x) evaluated at xs and −xs . The pair (xs,−xs) is said to be
an antithetic pair and yields an unbiased estimate of I since we assume x is symmet-
rically distributed with zero mean. If the mean is instead µ then (xs, 2µ− xs) is an
antithetic pair. Given S independent draws of xs the variance of ĥA,S (x) is

V[̂hA,S (x)] = 1

S2

S∑
s=1

1

4
(V[h(xs)] + 2Cov[h(xs), h(−xs)] + V[h(−xs)])

= 1

2S
(V[h(x)] + Cov[h(x), h(−x)]) .

Antithetic sampling will therefore be more efficient than regular iid sampling if the
covariance term is negative, since then the variance of ĥA,S (x) is smaller than that of
ĥ2S (x). By switching the sign of the draw, and then reusing the draw, an attempt is
made to induce negative correlation in the simulator. Negative correlation is assured
when the function is linear, and also if the nonlinearity is not too severe. However, in
general, one cannot be certain that efficiency gains will be realized. For example, if
h(·) is symmetric about zero then Cov[h(x), h(−x)] = V[h(x)].
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Antithetic sampling can be extended to asymmetric density g(x). Suppose x can be
drawn using the inverse transformation method given later in Section 12.8.2. Then one
can draw u, say, from the uniform [0, 1], generate the antithetic transform (1 − u), and
then use the inverse transformation method to draw from the distribution of choice, so
x1 = G−1 (u) and x2 = G−1 (1 − u), where G(·) is the known cdf of x . Then (x1, x2)
form an antithetic pair and variance reduction occurs if

Cov[h(G−1 (u)), h(G−1 (1 − u))] = Cov[ f (u) , f (1 − u)] < 0,

where f (u) is the composite function h(G−1 (u)). If f (·) is a monotonic function then
the variance is reduced (Robert and Casella, 1999, p. 112). However, this property
of the function may be difficult to verify. Further, the argument applies to the in-
verse transformation approach only, whereas in practice other methods are used in
pseudo-random number generation (see Section 12.8). Therefore it is difficult to ver-
ify in advance whether the conditions for efficiency gains are attainable in a specific
application.

Although the dramatic gains in efficiency possible in some special cases may not
materialize in more complex settings, worthwhile efficiency gains are realized in
many cases. Antithetic sampling can also be used to accelerate importance sampling
(Danielsson and Richard, 1993).

Antithetic sampling extends to multivariate draws. Consider bivariate draws of
(x, y), where the density is symmetric about (0, 0). In this case sign reversal is done
first element by element and then for the pair. Thus the antithetic quadruple consists of
((xs, ys) , (−xs, ys) , (xs,−ys) , (−xs,−ys)). For an m-dimensional draw the same
idea is repeated for all tuples.

12.7.4. Computation Using Quasi-Random Sequences

A second method of variance reduction involves replacing pseudo-random numbers by
quasi-random numbers, which are systematic simulation draws designed to provide
better coverage of the sample space. A potential limitation of the approach is that
randomness is required to apply the laws of large numbers and central limit theorems
that justify the simulation-based approach.

Quasi-Monte Carlo methods use nonrandom points within the domain of integration
instead of using S pseudo-random points. A leading example is Halton sequences,
summarized in Press et al. (1993) and introduced into the econometrics literature by
Bhat (2001) and Train (2003).

Halton sequences have two desirable properties. First, they are designed to give
fairly even coverage over the domain of the sampling distribution. With more evenly
spread draws for each observation, the simulated probabilities vary less over observa-
tions, relative to those calculated with random draws. This is similar to deterministic
evaluation of an integral over a specified grid. Second, with Halton sequences, the
draws for one observation tend to fill in the spaces left empty by the previous obser-
vations. The simulated probabilities are, therefore, negatively correlated over observa-
tions. As in the case of antithetic variates, this negative correlation reduces the vari-
ance of the simulated function. Under suitable regularity conditions it can be shown
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that the integration error using pseudo-random sequences is of order N−1, compared
to pseudo-random sequences where the convergence rate is N−1/2 (Bhat, 2001).

Halton sequences are best described by example. Suppose that the function to be
simulated depends on one random variable. The starting point is a prime number. The
Halton sequence based on the prime number 2 is constructed as follows. Divide the unit
interval (0, 1) into two parts. The dividing point 1/2 becomes the first element of the
Halton sequence. Next divide each part into two more parts. The dividing points, 1/4
and 3/4, become the next two elements of the sequence. Divide each of the four parts
into two parts each, and continue to obtain the sequence {1/2, 1/4, 3/4, 1/8, 3/8, . . .}.
Similarly, the sequence based on the prime number 3 is {1/3, 2/3, 1/9, 2/9, 4/9, . . .}.
Halton sequences on nonprime numbers are not unique because the Halton sequence
for a nonprime number divides the unit space in the same way as each of the prime
numbers that constitute the nonprime.

The length of each sequence is determined by the number of observations N and
the numbers of simulation draws S. One discards the first few (say 20) elements of the
sequence as the early elements have a tendency to be correlated over Halton sequences
with different primes (see Train, 2003, for an example). Consequently, one could begin
by generating Halton sequences of length N × S + 20 and discard the first 20 elements
of each sequence. For each element of each sequence, calculate the inverse of the
cumulative normal distribution. The resulting values are the Halton draws from the
sampling distribution.

One major advantage of quasi-random number draws is that the draws are designed
to cover the sample space of random numbers in a more uniform fashion than in
the case of pseudo-random numbers. This can be seen visually in Figure 12.1. In this
figure, Panel 2 shows a draw from a bivariate normal distribution constructed using
a Halton sequence. The remaining three panels show pseudo-random number draws
from the same distribution. The more even coverage of the sample space is evident in
the former case.

For more thorough discussion and examples of simulation-based estimation that use
Halton draws and impressive evidence of the relative efficiency of the approach in one
or more dimensions, see Train (2003, Chapter 9). The method works very well for
multinomial logit model with normally distributed random parameters (Section 15.7).

12.8. Methods of Drawing Random Variates

The preceding simulators require draws of random variates. In this section we summa-
rize methods to take such draws from a density, denoted g(x) or p(x) in Section 12.7
and denoted f (x) in this section. Usually it is sufficient to obtain draws from the
uniform or the standard normal (which is possible in most popular software) since
these can form the basis for making draws from distributions other than the uniform
or normal.

If the draws are to be used for simulation-based estimation then all draws from the
uniform or standard normal should be made before any estimation, to prevent “chatter,”
whereby iterative methods fail to converge owing to noise created by new draws at
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Panel 1: Pseudo-random draws Panel 2: Halton sequence draws

Panel 3: Pseudo-random draws Panel 4: Pseudo-random draws

Figure 12.1: Halton sequence draws (panel 2) compared to pseudo-random draws.

each iteration. For example, if x ∼ N [µ, σ 2] and estimates of µ and σ change over
iterations, then we make N S initial draws of z ∼ N [0, 1] and then over iterations
recompute x = µ+ σ z using the original draws of z.

This section provides a basic discussion of some standard methods for gener-
ating random variates. For more advanced or extensive treatments, there are many
good monographs and surveys, including those by Bradley, Fox, and Schrage (1983),
Dagpunar (1988), Devroye (1986), and Ripley (1987).

Before presenting the methods, note that the term random number generation is
an oxymoron. A more accurate description is given by the term pseudo-random
numbers. The essential characteristic of these generators is that they use determin-
istic devices to produce long chains of numbers that mimic the properties of the real-
izations from some target distribution. The specific target distribution will depend on
the context, but for the purposes of this book uniform, normal, exponential, gamma,
logistic, and Poisson distributions are standard. The chain process is started up by sup-
plying a seed. After some finite but large number of values have been generated the
cycle of numbers repeats itself. That is, the computer algorithms will generate exactly
the same numbers beginning with a given seed. Good random number generators are
those that generate a long chain of numbers without recycling and without any built-in
dependence. The key consideration in choosing generators is whether the generated
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distribution closely mimics the properties of the target distribution at a reasonable
computational cost.

12.8.1. Pseudo-Random Uniform Number Generators

Pseudo-random uniform numbers are constructed using a deterministic sequence
that mimics the statistical properties of a sequence of uniform random numbers. A
good generator has a long period, has a distribution close to uniform, and produces in-
dependent draws. It is important to have a good generator, as pseudo-random numbers
from virtually any distribution can then be obtained by transforming uniform pseudo-
random numbers (Bradley et al., 1983, p. 24).

A standard generator begins with the equation

X j = (k X j−1 + c
)

mod m,

where the modulus operator a mod b forms the remainder when a is divided by b. This
produces a sequence of integers between 0 and m, and the uniform random variable
is then obtained as R j = X j/m (Ripley, 1987, p. 20). A value for X0, referred to as
the seed, is needed to initiate the generator. The uniform random sequences generated
are deterministic, which permits replication as the same numbers should be drawn
if analysis is repeated with the same value of the seed. The periodicity of the cycle
depends on X0, k, and c. If computation is done using 32-bit integer arithmetic the
maximum periodicity is approximately 231 � 2.1 × 109. However, it is easy to choose
poor values of X0, k, and c so that the periodicity is much lower than this. Books such
as that by Press et al. (1993) should be consulted for potential pitfalls.

12.8.2. Nonuniform Variates

Random variables from many other distributions, including the normal itself, are usu-
ally based on an initial draw of a uniform random number. Four commonly used meth-
ods are (1) inverse transformation, (2) transformation, (3) accept–reject, and (4) mixing
and compounding.

Inverse Transformation

Let F(x) denote the cdf of the continuous random variable x , that is,

F (x) = Pr [X ≤ x] .

Given a draw of a uniform variate r, 0 ≤ r ≤ 1, the inverse transformation

x = F−1 (r )

gives a unique value of x because F is continuous and monotonically increasing.
For example, the cdf of the unit exponential is 1 − e−x . Solving r = 1 − e−x

yields x = − ln(1 − r ). If we make a draw from uniform [0, 1] and get 0.64, then
x = − ln(1 − 0.64) = 1.0217. Figure 12.2 plots the cdf of X and shows graphically
how this method works. An arbitrary point on the vertical axis at height r is selected
and the corresponding value on the horizontal axis is obtained by completing a rectan-
gle. This is the inverse transformation.
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Figure 12.2: Inverse transformation method for making draws from the unit exponential. A
random uniform draw of 0.64 (so F(x) = 1 − exp(−x) = 0.64) yields x = 1.02.

This method is particularly easy to use if the analytical form of F (·) is given and x
is a continuous random variable. If there is no closed-form expression available, then
the method is still often feasible, albeit computationally more costly, as the inverse
cdfs of standard distributions are often available as functions in programs.

The method can be extended to discrete random variables with a cdf that is a step
function. For example, if x takes integer values then a uniform draw r = 0.312 leads to
a draw of x = j , where the integer j is such that F( j − 1) < 0.312 and F( j) ≥ 0.312.

A standard method for generating normal random variates is the Box–Muller
method. This uses the inverse transformation method, applied to the joint distribu-
tion of two independent normal variates rather than to a single variate. Specifically, if
r1 and r2 are iid uniform then x1 = √−2 ln r1 cos(2πr2) and x2 = √−2 ln r1 sin(2πr2)
are iid N [0, 1].

Transformation

In some cases a random variable with the desired density can be obtained by suitable
transformation of a random variable whose distribution is easy to draw from. Then
random variates can be obtained by applying this same transformation.

This transformation method is an obvious way to make draws from distributions
based on the normal. Examples include squaring standard normal variates to obtain
random variables with central chi-square distribution, adding squared values of r inde-
pendent standard normal variates to yield chi-squared variates with r degrees of free-
dom, and computing the mean square of independent chi-squares to yield F-distributed
random variables. Transformation methods are not restricted to distributions based on
the normal.

Accept–Reject Methods

Suppose we want to draw from the density f (x) but this is difficult, however, there is
another density g(x) that covers f (x) in the sense that f (x) ≤ kg(x) for all x for some
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Figure 12.3: Accept-reject method draws from density g(x) where kg(x) envelopes the
desired density f (x).

finite constant k. This is depicted in Figure 12.3, where the thick line serves to mimic
the envelope kg(x).

The accept–reject method draws from g(x), rather than f (x). The draw is ac-
cepted, x = r, if

r ≤ f (x)

kg(x)
,

where r is a draw from the uniform distribution. If the condition is not satisfied then
the draw is rejected and further draws are made until the condition is satisfied. The
appeal of the method depends on the ease of drawing from g(x) rather than f (x). The
limitation is that on average a draw will be accepted with probability 1/k, so that many
draws are needed if k is large.

To see how this method works, let Y denote the random variable generated by the
accept–reject method, X denote a random variable with density g(x), and U denote a
draw from the uniform. Then Y has cdf

Pr[Y ≤ y] = Pr [X ≤ y|U ≤ f (x)/kg(x)]

= Pr [X ≤ y,U ≤ f (x)/kg(x)]

Pr [U ≤ f (x)/kg(x)]

=
∫ y
−∞
∫ f (x)/kg(x)

0 dug(x)dx∫∞
−∞
∫ f (x)/kg(x)

0 dug(x)dx

=
∫ y
−∞[ f (x)/kg(x)]g(x)dx∫∞
−∞[ f (x)/kg(x)]g(x)dx

=
∫ y
−∞[ f (x)/k]dx∫∞
−∞[ f (x)/k]dx

=
∫ y

−∞
f (x)dx,

which is the cdf corresponding to the density f (x) as desired.
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Composition

Sometimes the density f (x) can be expressed as being that from a mixture or a com-
pound distribution, with

f (x) =
∫

g(x |ε)h (ε) dε.

Then a draw from f (x) can be obtained by first making a draw of ε from density h (ε)
and then making a draw of x from the conditional density g(x |ε).

As an example, consider drawing from the negative binomial distribution with mean
λ and variance λ(1 + αλ), where both λ and α are given constants. Here we may use
the fact that the negative binomial distribution can be regarded as a Poisson–gamma
mixture (see Chapter 20). First, one draws ε from a gamma distribution with mean 1
and variance α, which can be done by a transformation of the exponential. Second,
one draws from the Poisson distribution with mean λε, given ε from the previous step.

If h(ε) is a discrete distribution with point mass p j at C points, j = 1, . . . ,C, then
the previous integration step is replaced by summation. Thus,

f (x) =
C∑

j=1

p j g(x |ε = ε j ).

Then, to make S draws from f (x), we draw Sp j observations each from g(x |ε = ε j ),
and “compose” the required sample of S values by pooling the draws.

Some Standard Generators

The tables in Appendix B describes pseudo-random number generation for several
standard continuous and discrete cases. They are based on the assumption that r, r1, r2,

. . . are values of independent uniform [0, 1] random variables R, R1, R2, . . . . Note
that there may exist different methods to generate the corresponding random variable;
we list only one or two of these methods.

12.8.3. Multivariate Distributions

Draws from multivariate distributions are generally much more complicated than
draws from univariate distributions. For example, methods such as inverse transfor-
mation and transformation may no longer be applicable. For many multivariate dis-
tributions the method of mixing or composition can be used, as many multivariate
distributions are mixture distributions.

Quite general methods are Gibbs sampling and other Markov chain Monte Carlo
methods. These are deferred to Section 13.5, as they are extensively applied in
Bayesian analysis, which uses complicated multivariate distributions. As will be ex-
plained the draws made using the Gibbs sampler may show some tendency to be cor-
related, a fact that will reduce the efficiency of the simulator.

Here we restrict attention to the multivariate normal. Then draws are easily obtained
by transformation of univariate standard normal draws. Specifically, suppose we wish
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to make draws from a q-dimensional normal distribution, so x ∼N (0, �). This can
be done by transformation based on the result that a positive definite � has Choleski
decomposition

Σ = LL′,

where L is a lower triangular matrix. For example, for q = 2 the Choleski decompo-
sition is [

σ11 σ12

σ12 σ22

]
=
[

l11 0
l21 l22

] [
l11 l21

0 l22

]
,

yielding three equations l2
11 = σ11, l11l21 = σ12, and l2

21 + l2
22 = σ22 that can be solved

for l11, l21, and l22. Given a q-dimensional vector ε whose elements have standard
normal distribution, it is easy to verify that if ε ∼ N (0, I), then x = Lε, a linear com-
bination of normals, has distribution N (0,Σ). Specifically, E[Lε] = 0, and V[Lε] =
E
[
Lεε′L′] = LL′ = Σ. The key to this method is that linear combinations of the nor-

mal are also normally distributed, result that does not hold for nonnormal distributions.

12.9. Bibliographic Notes

Press et al. (1993) provide a good starting point for both quadrature and Monte Carlo integration
and give further references, including some given elsewhere in this chapter.

The econometrics literature on simulation-based estimation emphasizes the multinomial pro-
bit model. The methods have much wider applicability, however, and can be more easily and
successfully implemented in other models that are less challenging to fit than the multinomial
probit. Lerman and Manski (1981) used simulated frequencies to estimate choice probabilities
and found that many draws were needed. McFadden (1989) proposed MSM and demonstrated
its consistency and asymptotic normality. Pakes and Pollard (1989) provide a quite general
treatment of the asymptotic theory for both MSM and MSL. The relatively accessible survey of
Stern (1997) is an excellent place to start. Gouriéroux and Monfort (1996) provide a textbook
treatment of the basic methods. Many other references are better read in the specific context
of models that are discussed in later chapters. In particular, Hajivassiliou and Ruud (1994) em-
phasize truncated normal models including the multinomial probit and Train (2003) considers
a range of discrete choice models including the random parameters logit.

Exercises

12–1 To estimate the integral I = ∫ t(x)g(x)dx by Monte Carlo, the sum Î = N−1∑
t(xi )g(xi )/p(xi ) is used, where xi are draws from the importance sampling distri-
bution p (x). Show that plim Î = I .

12–2 For f (θ ) = |�|−1/2 [1 + 1
ν
(θ − µ)′�−1(θ − µ)]−(ν+d)/2, consider the d-dimensio-

nal integral
∫

Rd f (θ )dθ . The integrand is the kernel of a multivariate-t density,
so the correct answer is the inverse of the normalizing constant.

(a) Evaluate this integral as a Monte Carlo average S−1∑S
s= 1 f (θ (s))/h(θ (s)),

θ (s) ∼ h(θ ), where the importance density h(θ ) is multivariate-t with the
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same location and scale as f (θ ), but with a different degrees-of-freedom
parameter.

(b) Explore the stability of this average as you vary the degrees of freedom of
h(θ ). Increase the mismatch between f (θ ) and h(θ ) by changing the location
and scale of h(θ ) and explore further.

12–3 For the MSM estimator in Section 12.5.3 suppose that the simulator is the fre-
quency simulator.

(a) Show that Vy,u[m̂(θ0)] = (1+1/S)Vy [m(θ0)].
(b) Hence show that the effect of simulation using the frequency simulator is to

inflate the variance of the method of moments estimator by (1 + (1/S)).
(c) How large is the efficiency loss for the standard errors if S = 10?

12–4 For the example in Section 12.5.6 consider the estimator α̂ that solves
∑N

i =1[yi −
1
S

∑S
s=1(α + us

i )] = 0. Obtain analytical expressions for this estimator and its
variance.

12–5 (a) Write an algorithm for drawing a pseudo-random sample from a three-
dimensional multivariate normal distribution N [0, �] with σ j j = 1, j = 1,2.3,
and covariances σ12 = σ13 = σ23 = 0.5. Draw a sample of 1,000 realizations
and compare the estimated means and variances with those of the dgp.

(b) Repeat part (a) with the trivariate normal being replaced by a Student’s
t-distribution with five degrees of freedom.

12–6 Write a computing procedure to make draws from a univariate truncated nor-
mal density T N [a,b][µ, σ 2] using the inverse transform method given in Section
12.8.2. Here [a,b] are lower and upper truncation points. Choose µ = 1, σ 2 = 4,
and a = 3, b = 4.

12–7 Consider the standard binary logit regression model (see Section 14.3).

(a) Write down the log-likelihood function.
(b) Introduce a random intercept assumption in which the intercept is drawn

from a suitable distribution with finite mean and variance. What justifica-
tion can you offer for introducing an unobserved heterogeneity term in this
way? If the logit model is derived from the random utility model with extreme
value errors, how does the random intercept affect that interpretation and/or
derivation? [See Revelt and Train, 1998.]

(c) Suggest a suitable distributional assumption for the random intercept;
rewrite the likelihood function conditional on unobserved heterogeneity. Next
write down the likelihood function with unobserved heterogeneity integrated
out.

(d) Describe in a step-by-step manner how to use the maximum simulated like-
lihood estimation procedure to estimate this model. Explain, with details,
how to calculate the variance matrix of unknown parameters. How would
you decide how many simulations you will use?

(e) Consider the method of simulated moments as an alternative to the MSL
procedure for the random parameter logit. Write down the moment condi-
tion(s) conditional on the unobserved heterogeneity term. Then outline an
MSM estimation procedure for this model.

12–8 Some computing packages allow you to draw both Poisson and Gamma pseudo-
random numbers directly. It is also known that the negative binomial distribution

417



SIMULATION-BASED METHODS

can be derived as a mixture of Poisson and gamma random variables (see Sec-
tion 20.4).

(a) Write down a procedure for drawing negative binomial–distributed variables
using the method of mixtures.

(b) Apply your method by drawing a sample of 10,000 on a Poisson-distributed
variable with mean 0.25.

(c) Draw a corresponding sample from a Gamma distribution with mean 1 and
variance α, with α set to produce negative binomial random variables with
variance 0.3125.
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C H A P T E R 13

Bayesian Methods

13.1. Introduction

This chapter serves as an introduction to Bayesian econometrics. Bayesian regres-
sion analysis has grown in a spectacular fashion since the publication of books by
Zellner (1971) and Leamer (1978). Application to routine data analysis has also ex-
panded enormously, greatly aided by revolutionary advances in computer hardware
and software technology. In the light of such major developments, a single chapter
can never do adequate justice to the many facets of this subject. This chapter therefore
has the very modest goal of providing a rough road map to the major ideas and devel-
opments in Bayesian econometrics. Despite this modest objective some parts are still
quite technical.

The Bayesian approach, unlike the likelihood or frequentist or classical approach
presented in previous chapters, requires the specification of a probabilistic model of
prior beliefs about the unknown parameters, given an initial specification of a model.
Many researchers are uncomfortable about this step, both philosophically and practi-
cally. This has traditionally been the basis of the concern that the Bayesian approach
is subjective rather than objective. It will be shown that in large samples the role of
the prior may be negligible, that relatively uninformative priors can be specified, and
that there are methods available for studying the sensitivity of inferences to priors.
Therefore, the charge of subjectivity may not always be as serious as many claim.

Bayesian approaches play a potentially large role in applied microeconometrics,
especially when dealing with complex models that lack analytically tractable likeli-
hood functions. Chapter 12 introduced simulation-based methods for such situations.
These methods, particularly simulated likelihood, are potentially problematic as they
generally require maximization of a function using a sufficiently large number of sim-
ulation draws that increases at an appropriate rate as the sample size grows. Even with
today’s powerful computers, analysis of large samples and high-dimensional models
can require a formidable amount of computation. Bayesian methods, in contrast, do
not require maximization algorithms. Bayesian procedures are flexible enough to be
adapted to produce estimates that are excellent (if not perfect) substitutes for maximum
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likelihood estimates, which are obtained in many cases more efficiently. Indeed, it is
not necessary that one goes through a philosophical conversion to use these proce-
dures; they can be adapted for pragmatic reasons.

The foregoing remarks do not mean that Bayesian procedures do not have a deeper
rationale and justification. They do. Three features in particular deserve to be men-
tioned. First, Bayesian procedures can yield the entire posterior distribution of the
parameters of interest, leaving the user to decide which moment or quantile of the
distribution to report, potentially on the basis of decision-theoretic criteria. One does
not need separate estimators for means, medians, quantiles, and so forth as the pos-
terior distribution has them all! Second, Bayesian analysis, being conditional on the
data, yields exact finite-sample results, obviating the need for finite-sample corrections
or adjustments. This distribution approaches the normal distribution in large samples
where the influence of the priors vanishes. Third, Bayesian methods provide a natural
way to select models.

Section 13.2 introduces the basic concepts and components of Bayesian analysis
and the key properties of Bayesian estimators. These ideas are illustrated in Section
13.3 for the relatively tractable linear regression model. More generally, no closed-
form solution exists for the posterior distribution. Section 13.4 presents Monte Carlo
integration methods, notably importance sampling, used to obtain numerical estimates
of posterior moments. Section 13.5 details Markov chain Monte Carlo methods, no-
tably Gibbs sampling and the Metropolis–Hastings algorithm, used to obtain draws
from the (intractable) posterior distribution. An example of these methods is given in
Section 13.6. The additional topics of data augmentation and Bayesian model selection
are presented in Sections 13.7 and 13.8.

13.2. Bayesian Approach

In the Bayesian approach uncertainty about the value of the parameters θ is explicitly
modeled by introducing a density π (θ) for the prior distribution, so named because it
is specified without considering the data currently in hand. It expresses subjective be-
liefs about the true unknown parameter in the language of probability. Specification of
the prior is studied in detail in Section 13.2.4. As an example, suppose that θ is an in-
come elasticity and on the basis of an economic model or previous studies it is felt that
θ lies between 0.8 and 1.2 with probability 0.95. Then a prior for θ is θ ∼ N [1, 0.12].

The other ingredient of Bayesian inference is the sample joint density or likelihood
f (y|θ), where in the single-equation case y is an N × 1 vector. Dependence on re-
gressors is suppressed throughout this section, for notational simplicity. Exogenous
regressors are introduced in Section 13.3, in which case f (y|θ) becomes f (y|X,θ)
and Bayesian analysis is then conditional on regressors. Note also that in this chapter
f (·) usually denotes the joint density of all observations, rather than the density of the
i th observation.

If no data are available then all we have is the prior. After data are observed, the clas-
sical approach is to estimate the unknown parameter θ using the maximum likelihood
principle. The Bayesian approach instead combines the likelihood of the sample with
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13.2 . BAYESIAN APPROACH

the prior, reflecting the view that any prior information should be exploited, even if it
is in the form of a probability distribution. This process can be thought of as a revision
of the prior given the data (likelihood). Indeed, we can derive a distribution of θ after
combining the likelihood and the prior. The resulting distribution is called a posterior
distribution, and it reflects the investigator’s beliefs about θ a posteriori, that is, after
observing the data.

13.2.1. Bayes’ Theorem

The basic result that delivers the posterior distribution is Bayes’ Theorem, also re-
ferred to sometimes as Bayes’ inverse law of probability, that

f (θ|y) = f (y|θ)π (θ)

f (y)
, (13.1)

where f (y) denotes the marginal probability distribution of y, formally defined as

f (y) = ∫
R(θ)

f (y|θ)π (θ)dθ, (13.2)

where R (θ) denotes the support of π (θ). This result is obtained by noting that, for
events A and B, the conditional probability

Pr[A|B] = Pr[A ∩ B]

Pr[B]

= Pr[B|A] Pr[A]

Pr[B]
,

where the second equality follows because Pr[B|A] = Pr[A ∩ B]/Pr[A].
Because the denominator f (y) in (13.1) is free of θ, we can more simply write

p(θ|y) as proportional to the product of the pdf and the prior; thus

p(θ|y) ∝ L(y|θ)π (θ). (13.3)

This simplifies derivation and representation of the posterior, by omitting inessential
constants that can be recovered later, as will be illustrated in Section 13.2.2. When a
density function is written without normalizing constants it is referred to as a density
kernel.

In many cases (13.1) or (13.3) do not yield a closed-form expression for the pos-
terior density. A closed-form expression is not needed, however, and later sections
present recent simulation-based techniques for obtaining good numerical approxima-
tions to the posterior density. These techniques permit Bayesian analysis for almost
any parametric microeconometrics application.

It is common to use a special symbol for the posterior density, so we will replace
f (θ|y) by p(θ|y). Also, the original joint density, f (y|θ) is the likelihood function
L(y|θ). Henceforth we will write the posterior density as

p(θ|y) ∝ L(y|θ)π (θ). (13.4)

This representation, the key one for the Bayesian approach, emphasizes an impor-
tant difference between the frequentist and Bayesian approaches. In the frequentist
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approach, the true value of the parameter is constant but parameter estimates are treated
as random variables. In contrast, in the Bayesian approach the parameter is treated as
if it is random.

13.2.2. Bayes’ Theorem Example

Suppose y ∼ N [θ, σ 2], where σ 2 is known but the scalar parameter θ is unknown.
Given a random sample (y1, . . . , yN ), the joint density of y is

L(y|θ ) =
N∏

i=1

(
2πσ 2

)−1/2
exp
{− (yi − θ )2 /2σ 2

}
= (2πσ 2

)−N/2
exp

{
−

N∑
i=1

(yi − θ )2 /2σ 2

}

∝ exp

{
− N

2σ 2
(ȳ − θ )2

}
,

where ȳ = N−1∑
i yi , and we use

∑
i (yi − θ )2 =∑i (yi − ȳ + ȳ − θ )2 =∑

i

(
yi − ȳ)2 +∑i (ȳ − θ)2. Multiplicative terms not involving θ, which are

absorbed in the constant of proportionality, are dropped. The frequentist approach
maximizes the log-likelihood with respect to θ , leading to the MLE θ̂ = ȳ.

The Bayesian approach additionally specifies a prior for θ . An analytically conve-
nient choice is the normal prior, with θ ∼ N [µ, τ 2], where we suppose that values
of the prior mean µ and prior variance τ 2 are specified. A large value of τ 2 indicates
greater prior uncertainty than a small value. Then the prior density is

π (θ ) = (2πτ 2
)−1/2

exp
{− (θ − µ)2 /2τ 2

}
∝ exp

{− (θ − µ)2 /2τ 2
}
,

where
(
2πτ 2

)−1/2
, which is free of θ , is absorbed into the factor of proportionality.

Using (13.4), we obtain the posterior density

p(θ |y) = L(y|θ )π (θ )∫∞
−∞ L(y|θ )π (θ )dθ

, −∞ < θ <∞. (13.5)

The denominator ensures that the posterior is proper (i.e., it integrates to 1). For some
purposes the denominator can be ignored, in which case we work with p(θ |y) ∝
L(y|θ )π (θ ). The numerator can be expanded as follows:

L(y|θ )π (θ )

= (2πσ 2
)−N/2

exp

{
−

N∑
i=1

(yi − θ )2

2σ 2

} (
2πτ 2

)−1/2
exp

{
− (θ − µ)2

2τ 2

}
= (2π )−(N+1)/2(σ 2)−N/2(τ 2)−1/2 exp

{
− 1

2σ 2

N∑
i=1

(yi − θ )2 − (θ − µ)2

2τ 2

}
.
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Because
N∑

i=1

(yi − θ )2 =
N∑

i=1

(yi − y )2 + N ( y − θ )2,

and noting that the constant of integration in (13.5) and other multiplicative constants
independent of θ can be absorbed into the proportionality constant, we have

p(θ |y) ∝ exp

{
− N

2σ 2
(θ − y)2

}
exp

{
−1

2

(θ − µ)2

τ 2

}
(13.6)

∝ exp

{
−1

2

[
(θ − µ)2

τ 2
+ ( y − θ )2

N−1σ 2

]}

∝ exp

{
−1

2

[
(θ − µ1)2

τ 2
1

]}
. (13.7)

The last line is the kernel of N [µ1, τ
2
1 ] distribution, where

µ1 = τ 2
1

(
N y/σ 2 + µ/τ 2

)
, (13.8)

τ 2
1 = (N/σ 2 + 1/τ 2

)−1
.

The final line in (13.7) is obtained by completing the square, using the result that for
arbitrary scalars z, y, a1, a2, c1, and c2, we have

c1(z − a1)2 + c2(z − a2)2 = (c1 + c2)

(
z −
(

c1a1 + c2a2

(c1 + c2)2

))2

+ c1c2

(c1 + c2)
(a1 − a2)2,

where z = θ , a1 = µ, a2 = y, c1 = 1/τ 2, and c2 = 1/(N−1σ 2 + τ 2). The terms free
of θ are dropped.

In summary, we have the following:

Data: y|θ ∼ N [θ, σ 2], σ 2 known.

Prior: θ ∼ N [µ, τ 2], µ, τ 2 specified.

Posterior: θ |y ∼ N [µ1, τ
2
1 ], µ1, τ

2
1 given in (13.8).

The posterior mean µ1 is a weighted sum of the prior mean µ and the sample mean y
with weights that reflect the precision of the likelihood via σ 2/N and the prior via τ 2.
Bayesian practice is to summarize variability using the precision parameter, defined
as the reciprocal of the variance. Here the posterior precision τ−2

1 is the sum of the
sample precision of y, N/σ 2, and the prior precision 1/τ 2, so precision is increased
by pooling the sample and prior information.

If the prior information is imprecise, so that 1/τ 2 is small, then the weight assigned
to the prior mean is also small relative to the sample information and the prior plays
a minor role in generating the posterior. Similarly, the sample information also dom-
inates as the sample size gets large, since then N/σ 2 gets large relative to 1/τ 2. The
posterior distribution tends to the familiar asymptotically normal, except the Bayesian
result is that θ

a∼ N [y, σ 2/N ] rather than y
a∼ N [θ, σ 2/N ].
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Figure 13.1: Bayesian analysis for mean parameter of normal density: plot of normal likeli-
hood (right), normal prior density (left), and resulting posterior density (center).

As a concrete example, suppose σ 2 = 100, the prior sets µ = 5 and τ 2 = 3, and a
sample of size N = 50 has sample mean ȳ = 10. Then the likelihood is N [10, 2], the
prior is N [5, 3], and from (13.7) and (13.8) the posterior is N [8, 1.2]. These densities
are plotted in Figure 13.1. The posterior mean lies between the prior mean and the
sample mean, whereas the posterior has variance that is smaller than the variance of
both the prior and the likelihood.

13.2.3. Bayesian and Non-Bayesian Approaches Compared

It is useful to draw parallels and contrasts between the frequentist and Bayesian
approaches.

In a parametric frequentist formulation the likelihood function is the main ba-
sis of statistical inference. Under suitable regularity conditions the MLE is consis-
tent and asymptotically normal. Sampling theory of estimators provides a basis for
probability statements about the estimated magnitudes, or functions thereof, or con-
ditional prediction. Prior information on parameters is incorporated by restricted ML
estimation.

In a Bayesian analysis, summarized in Table 13.1, the data-generating process and
the data are combined with a prior distribution on the parameters. Specification of this
prior distribution is discussed in detail in Section 13.2.4. The prior embodies prob-
abilistically specified information before the current data are analyzed and may be
based on “received information.” The prior information and the data are combined
using Bayes’ Theorem.

The outcome of this exercise is the posterior distribution of the parameters θ, which
we may think of as the translated likelihood function. Alternatively, given the data, the
posterior distribution reflects our “revised prior.” If the sample is small, and perhaps
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Table 13.1. Bayesian Analysis: Essential Components

Component Formula

Sampling model (y1, . . . . , yN ) iid from f (y|θ)
Joint density/likelihood f (y|θ), L(y|θ); θ ∈ Θ
Prior distribution π (θ), θ ∈ Θ

Posterior density p(θ|y) :


= f (y|θ)π (θ)/

∫
f (y|θ)π (θ)dθ

∝ f (y|θ)π (θ)
∝ L(y|θ)π (θ)

Posterior pdf → posterior inference →


parameter estimation
probability statements
prediction
model comparison

relatively uninformative, the posterior may look like the prior, but if the sample is
large, the posterior distribution will reflect the features of the data.

13.2.4. Specification of the Prior

Bayesian analysis requires specification of the dgp f (y|θ) and of the prior π (θ). The
dgp is usually specified to be the same as that used in a fully parametric likelihood-
based analysis. For binary outcomes a logit or probit model might be specified, for
count data the Poisson or negative binomial model would be specified, and so on.

The principle challenge introduced by Bayesian analysis, compared to classical
analysis, is the need to additionally specify a prior distribution. Results can vary with
the choice of prior, as different priors lead to different posterior distributions unless
the sample is large enough that the sample information dominates.

One approach is to choose a prior such that it has little impact on the posterior,
so that results essentially are based on the sampled data. An alternative approach,
warranted when strong prior information is available, is to specify a prior that reflects
this information. Both approaches, especially the latter, were historically constrained
by issues of tractability of the resulting posterior, but this has now become much less of
a consideration given recent computational advances. A popular intermediate approach
is to use hierarchical priors, with uncertainty about parameters expressed in terms of
probability functions that themselves involve other parameters about which we are also
uncertain.

Noninformative Priors

A noninformative prior is one that has little impact on the resulting posterior
distribution.

The obvious way to try to obtain a noninformative prior is to use a uniform prior
with π (θ) = c for all θ, where c > 0 is a constant, since this places equal weight on
all possible values of θ.
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One disadvantage of the uniform prior is that if it is used in settings where the pa-
rameters θ are unbounded then the prior is an improper density because then neces-
sarily

∫
π (θ)dθ = ∞. The resulting posterior distribution may then also be improper,

though in several leading examples the posterior is nonetheless proper.
Another disadvantage of the uniform prior is that it is not invariant to reparameteri-

zation. For example, for a scalar parameter θ > 0 an alternative obvious parameteriza-
tion of the density of y is in terms of the parameter γ = ln θ , as then −∞ < γ <∞.
If θ has a uniform prior, π (θ ) = c, then the corresponding prior π∗(γ ) for γ is not the
uniform since π∗(γ ) = π (θ ) |dθ/dγ | = ceγ . Although seemingly uninformative for
one parameterization, the prior is informative in another parameterization.

The uniform prior can be emulated by specifying a proper prior that has very large
variances. For example, suppose the scalar θ has N [µ, τ 2] prior, where τ 2 is very
large. Then for values of θ likely to be supported by the data the prior π (θ ) � 1/
(2πτ 2), a constant, because exp

[−(θ − µ)/2τ 2
] � 1. It is important to note that this

obvious approach, called a vague or diffuse or flat prior, has the same weakness as
the uniform prior. It is not invariant to reparameterization.

Instead, a widely used noninformative prior is Jeffreys’ prior,

π (θ) ∝ |I (θ)|1/2 , (13.9)

where for a vector θ, |I (θ)| is the determinant of the information matrix I (θ) =
−E
[
∂2L/∂θ ∂θ′] with L = ln L(y|θ). Jeffreys’ prior, named after the pioneering

Bayesian Harold Jeffreys, has the property of invariance to reparameterization or
transformation of model parameters, so that same prior information is being given
regardless of the particular parameterization chosen.

To verify Jeffrey’s rule, for simplicity consider the scalar parameter case. Given
transformation γ = h(θ ), ∂L/∂γ = ∂L/∂θ × ∂θ/∂γ and

∂2L
∂γ 2

= ∂2L
∂θ2

(
∂θ

∂γ

)2

+ ∂L
∂θ

∂2θ

∂γ 2
.

Taking expectations with respect to the sample density and noting that E[∂L/∂θ ] = 0
by the property of likelihood scores yields

I (γ ) = I (θ )

(
∂θ

∂γ

)2

.

It follows that

|I (γ )|1/2 = |I (θ )|1/2
∣∣∣∣ ∂θ∂γ
∣∣∣∣ .

In general the prior π (θ ) for θ implies the prior for γ is π∗(γ ) = π (θ ) × |dθ/dγ |. Spe-
cializing to prior (13.9), we have π∗(γ ) ∝ |I (θ )|1/2 × |dθ/dγ |, but this is |I (γ )|1/2
as desired.

As an example, suppose y ∼ N
[
µ, σ 2

]
, and consider three cases. First, if µ is the

unknown parameter and σ 2 is known, then the information measure for µ is I (µ) =
N/σ 2, and Jeffrey’s prior |I (µ)|1/2 ∝ c, a constant since here σ 2 is known. Note that
this prior is an improper prior. Second, if σ 2 is unknown and µ is known, then the
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information measure for σ 2 is I
(
σ 2
) = N/(2σ 4), and Jeffrey’s prior

∣∣I (σ 2
)∣∣1/2 ∝

σ−2. Third, if both µ and σ 2 are unknown then the information matrix
∣∣I (µ, σ 2

)∣∣ =(
N/σ 2

) (
N/2σ 4

) = N 2/2σ 6. Therefore, Jeffreys’ rule implies that the joint prior
π
(
µ, σ 2

)
∝ σ−3. Note that this is different from what we get if we apply Jeffreys’

rule to the separate priors for µ and σ 2, as π (µ) ∝ c and π
(
σ 2
)
∝ σ−2 yields

π (µ)π (σ 2) ∝ σ−2.

Jeffreys’ rule can serve as a method of generating a prior when there are no obvious
candidate priors available. However, the literature does not seem to have resolved the
issue of whether the rule produces a noninformative prior and if so in what sense.
Further, as is clear from the preceding example Jeffreys’ prior can be improper, which
may lead to an improper posterior.

Conjugate Priors

When a proper prior is specified, either as an informative prior or as a diffuse prior, it
is convenient to choose a functional form for the prior that, given the specified sample
density for the data, leads to a “nice” analytically tractable expression for the posterior,
such as (13.7).

Such tractable results most often arise if the sample and prior densities form a nat-
ural conjugate pair, defined as having the property that sample density and prior and
posterior distributions all lie in the same class of densities. Then the prior is called
a natural conjugate prior. Section 13.2.2 gave an example, where for normally dis-
tributed data a normal prior for the mean leads to a posterior that was also normal.

The exponential family is essentially the only class of densities to have natural
conjugate priors. A one-parameter member of the exponential family has a density
that for a single observation can be expressed as

f (y|θ ) = exp{a(θ ) + b(y) + c(θ )u(y)} (13.10)

∝ exp{a(θ ) + c(θ )u(y)},

where different functions a(·), c(·), and u(·) lead to different densities in the family, and
b(·) is a normalizing constant. For example, setting c(θ ) = µ/σ 2, a(θ ) = −µ2/2σ 2,
and u(y) = y yields the kernel of the N [µ, σ 2] distribution (for σ 2 known). Note
that setting u(y) = y yields the linear exponential family, presented in some detail in
Section 5.7.3. More generally, if θ is a vector then c(θ )u(y) is replaced by c(θ)′u(y),
where usually u(·) has the same dimension as θ.

For a random sample of size N the exponential family leads to sample density

L(y|θ ) ∝ exp{Na(θ ) + c(θ )t(y)}, (13.11)

where t(y) =∑i u(yi ). Consider the following prior on θ :

π (θ |β, α) ∝ exp {βa (θ ) + αc(θ )} , (13.12)

where α and β are specified parameters of the prior and the functions a (·) and c(·) are
the same as those in (13.10). This density is an exponential family density for θ once
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Table 13.2. Conjugate Families: Leading Examples

Distribution Sample Density Conjugate Prior Density

Normal N
[
θ, σ 2

]
θ ∼ N

[
µ, τ 2

]
Normal N

[
µ, 1/θ2

]
θ ∼ G [α, β]

Binomial B [N , θ ] θ ∼ Beta[α, β]
Poisson P [θ ] θ ∼ G [α, β]
Gamma G [ν, θ] θ ∼ G [α, β]
Multinomial MN [θ1, . . . , θk] θ1, . . . , θk ∼ Dirichlet[α1, . . . , αk]

α is viewed as fixed. Applying Bayes’ Theorem and simplifying, we get

p (θ |y) ∝ L(y|θ )π (θ |β, α) (13.13)

∝ exp {(β + N )a(θ ) + (α + t(y))c(θ )} ,

which is readily verified to have the same kernel as the original prior in (13.12). Com-
parison of the posterior with the sample density reveals that the prior is treated as
providing an additional β observations yp, say, with t(yp) = α.

Table 13.2 presents some standard conjugate families, where the relevant densi-
ties are provided in Appendix B. The gamma includes exponential and chi-square as
special cases. Negative binomial, uniform, and Pareto likelihoods also have conjugate
prior densities.

An attraction of a conjugate prior is the resulting computational and analytical sim-
plicity. Nevertheless, using a conjugate prior is a restriction and the justification for
imposing it is less compelling now than it was in the past when computational re-
sources available to a typical researcher were rather limited.

Another advantage of having a posterior that is in the same class as the prior is that
the posterior can easily replace the prior as a new (data-based) prior for a later analysis.
If a prior is to be interpreted as “received information,” then one may take the posterior
from one investigation as a prior for the next.

Hierarchical Priors

Hierarchical priors are those that arise when the parameters in a prior are themselves
modeled as having a distribution. The parameters that appear in such a “prior on a
prior” are called hyperparameters.

The data have joint density L (y|θ), as in Section 13.2.1, but now the prior on θ
depends on parameters τ , say, that are random rather than fixed. Thus the prior on
θ is π (θ|τ ), where the parameters τ in turn have a prior π (τ ). The joint prior is
π (θ, τ ) = π (θ|τ )π (τ ), and Bayes’ rule yields the joint posterior

p(θ, τ |y) ∝ L(y|θ)π (θ|τ )π (τ ).
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Interest will usually lie in the marginal posterior for θ, which is obtained by inte-
grating the joint posterior with respect to τ . The specified parameters of the prior
π (τ ) are called hyperparameters. Alternatively, these parameters in turn can be
given a prior, in which case another hierarchical level is introduced leading to joint
prior π (θ|τ )π (τ |φ)π (φ), and so on. Recent advances in computational methods for
Bayesian analysis, particularly the Gibbs sampler, are well suited to hierarchical priors
because of their recursive structure.

Hierarchical priors can be viewed as a Bayesian analogue of random coefficient
models in a classical setting. For example, for iid count data we might suppose that
yi ∼ P [θi ], where the Poisson parameter is now random. A convenient distribution
for θi is the conjugate gamma distribution, so θi ∼ G [α, β]. The classical approach
estimates α and β by maximum likelihood. A nonhierarchical Bayesian model speci-
fies values for α and β and obtains the posterior for θi . A hierarchical Bayesian model
specifies priors for α and β, such as the gamma that is conjugate, and first obtains the
joint posterior for θi , α, and β before finding the marginal posterior for θi .

Hierarchical priors arise naturally in the context of hierarchical models, also
known as multilevel models. Such models are widely applied in classical settings
using special purpose software (Bryk and Raudenbusch, 1992, 2002). An early con-
tribution by Lindley and Smith (1972) analyzed hierarchical regression models in a
Bayesian setting. Hierarchical modeling has a natural appeal when the data to be an-
alyzed naturally fall into strata, groups, or layers, and further one may expect to see
groupwise parameter variation in the relationship of interest. For example, observa-
tions on test scores could come from students in specific grades and schools. Modeling
of test scores could involve individual characteristics that by definition vary across in-
dividuals, class characteristics that vary across grades, and school characteristics that
only vary across schools. Because such data will involve clustering of observations,
this topic is also discussed in Chapter 24. Such models also have a close relationship
with random effects formulation for panel data.

As an example, suppose that data naturally fall into J groups, and that the pop-
ulation mean of y differs across the groups. For individual i in group j suppose
yi j ∼ N [θ j , σ

2], where for simplicity we assume σ 2 is known. Then the sample mean
in the j th group ȳ j ∼ N [θ j , σ

2/N j ], where N j denotes the number of individuals in
the group and independence is assumed. A hierarchical model specifies the means θ j

to have prior θ j ∼ N [µ, τ 2], for example, where additional priors are specified for the
parameters µ and τ 2 of the higher level prior.

Sensitivity Analysis

In a frequentist analysis one may entertain a variety of exact prior restrictions in for-
mulating a model for estimation. For example, a model may be estimated under one
or more sets of restrictions, and the results can be compared to form an idea of the
sensitivity of the estimates to prior assumptions.

The same logic and approach applies in Bayesian analysis. One need not take the
prior to be literally true, and one can perform a sensitivity analysis that studies how the
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posterior changes with different choice of prior. Similarly, one can vary assumptions
about the dgp and see how posterior beliefs change in response.

13.2.5. Densities and Measures Related to the Posterior

Bayesian analysis is based on the posterior distribution. For convenience Bayesian re-
gression results usually report only summary measures, such as posterior moments,
quantiles, or marginal distributions of components of θ. However, the posterior distri-
bution is also used for prediction and probability statements, detailed in this Section,
and for model comparison, presented in Section 13.8.

Several quantities play an important role in a Bayesian analysis.

Marginal Posterior

In general θ is multidimensional, denoted by θ′= (θ1, . . . , θq
)

and interest may lie
in the posterior distribution of individual components of θ. The marginal posterior
density of the kth parameter, θk, is obtained by integrating out of the joint posterior
all the remaining (q − 1) elements of θ. Formally, this is denoted as p(θk |y) and is
obtained by calculating the (q − 1)-fold integral

p(θk |y) =
∫

p(θ1, . . . , θp|y)dθ1..dθk−1dθk+1..dθq (13.14)

=
∫

p(θ|y)dθ−k,

where the more compact notation in the second line contains θ−k , which means all
elements of θ other than θk . The marginal posterior density is usually asymmetric and
need not be unimodal, whereas the asymptotic normal distribution for classical esti-
mators is symmetric and unimodal. It can be useful to graph the posterior, especially
if it departs considerably from a symmetric unimodal distribution.

Posterior Moments

Classical regression output reports the parameter estimate and standard error. For
Bayesian regression one can similarly report the mean or median and the standard
deviation of the marginal posterior density of each parameter.

Point Estimation

In classical analysis there is an unknown true parameter value θ0 such that the dgp
is f (y|θ0), and we seek a point estimate that is a good estimate of θ0. In Bayesian
analysis, in contrast, interest lies in the entire distribution of θ, which is determined by
both θ0 and prior beliefs about θ0.

Point estimation is therefore emphasized much less in Bayesian analysis. For conve-
nience the posterior mean or the posterior median are nonetheless commonly reported
as point estimates. By specifying a loss function an optimal point estimate of a param-
eter can be obtained; see Section 13.2.7.
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Posterior Intervals

Once the posterior distribution has been obtained, it can be used to make probability
statements analogous to those in the frequentist analysis. In particular, we can consider
Bayesian confidence intervals and regions.

For the kth parameter, a 100 (1 − α) % posterior density interval R(θk) is any
interval that θk falls into with posterior probability α, or formally

1 − α = Pr [θk ∈ R(θk)|y] =
∫
R(θk )

p(θk |y)dθ. (13.15)

There are many regions that correspond to this probability. The simplest posterior in-
terval is one between the α/2 and (1 − α/2) quantiles, such as between the 2.5 and
97.5 percentiles. More complicated is a highest posterior density (HPD) interval
that satisfies (13.15) and additionally the condition that no point in R(θ) has a smaller
probability density than any point outside the region. This interval need not be con-
tiguous if the posterior is multimodal, and it differs from the simpler interval unless
the posterior is symmetric and unimodal.

These intervals can be extended to regions. A 100 (1 − α) % highest posterior den-
sity region R(θ) is a region such that

1 − α = Pr [θ ∈ R(θ)|y] =
∫
R(θ)

p(θ|y)dθ. (13.16)

An attraction of the Bayesian approach is that a posterior interval is much simpler to
interpret than a confidence interval in frequentist analysis. If a 95% posterior interval
for θk is (1, 4), then θk lies between 1 and 4 with posterior probability 0.95. In contrast,
for a frequentist 95% confidence interval for θk equal to (1, 4) we can only say that if
it were possible to repeat the analysis with many different samples yielding many
different confidence intervals, then 95% of these confidence intervals will include the
true value of θk .

Hypothesis Testing

Hypothesis testing receives little attention in the Bayesian context. As noted in the
discussion of point estimation, interest does not lie in determining the true parameter
value θ0. Instead, interest lies in the distribution of the range of values that θ might
take given the data and a prior. For model comparison see Section 13.8.

Conditional Posterior Density

The conditional posterior density of θk , given θ j , can be obtained from the joint and
marginal posterior densities as

p(θk |θ j , θ j ∈ θ−k, y) = p(θk, θ j |y)

p(θ j |y)
. (13.17)

Of special interest and significance is the set of q conditional distributions p(θk |θ−k),
k = 1, . . . , q, also known as the set of full conditional distributions. These play an
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important role in the modern computational techniques for obtaining the joint posterior
distribution presented in later sections.

The definitions of marginal and conditional posteriors in (13.15) and (13.17) can be
extended from individual parameters to blocks of parameters.

Marginal Likelihood

The marginal probability or marginal likelihood is the denominator in Bayes’ rule
and is defined as

f (y) =
∫

L(y|θ)π (θ)dθ. (13.18)

It is the expected value of the likelihood, E[L(y|θ )], where the expectation is with
respect to the prior density. The marginal likelihood constitutes a basis for Bayesian
inference (see Section 13.8), as it contains information about the support in the data
for the prior.

Posterior Predictive Density

Consider out-of-sample prediction of a single observation y p. This has density
f (y p|θ), where θ is unknown. The posterior predictive density of y p weights this
density by the posterior probability distribution of θ, yielding

f P (y p) =
∫

f (y p|θ)p(θ|y)dθ. (13.19)

If covariates appear in the likelihood function as in a regression model, then these
densities are conditioned on them also.

13.2.6. Large-Sample Behavior of the Posterior

The influence of even informative priors on the posterior diminishes as the sample
becomes large, as illustrated in the Section 13.2.2 example. This is the basis of the
statement that asymptotically the likelihood dominates the inference or that the weight
assigned to the prior essentially goes to zero as the sample size grows.

Because the posterior distribution can be awkward to manipulate, an asymptotic
approximation to the posterior is of interest as it can be used in place of the true finite-
sample posterior distribution. This approximation is easy to obtain since asymptoti-
cally the posterior equals the likelihood. We follow Gelman et al. (1995), to which the
reader is referred for additional detail.

For simplicity assume that observations are iid. Then the log-posterior

N∑
i=1

ln p(θ|yi ) = lnπ (θ) +
N∑

i=1

ln f (yi |θ). (13.20)

This representation makes it clear that in a large sample the posterior is dominated by
the likelihood contribution, since the contribution of the prior to the posterior remains
fixed whereas the contribution of the sample to the posterior grows with N .
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Assume that the posterior p(θ|y) is unimodal and approximately symmetric. We
consider the asymptotic properties of the posterior mode, denoted by θ̂, which is then
the local and global maximum of the posterior.

To establish consistency of θ̂, we note that the posterior mode converges to the
MLE as N → ∞, since the second term in (13.20) dominates. The posterior mode is

therefore consistent if the MLE is consistent. So θ̂
p→ θ0 if the dgp for y has density

f (y|θ0) and the usual regularity conditions for ML estimation are satisfied.
To obtain the asymptotic distribution of θ̂, consider a second-order Taylor series

expansion of the log posterior density around the posterior mode θ̂. Then

ln p (θ|y) � ln p(̂θ|y) + 1

2
(θ−θ̂)′

[
∂2 ln p(θ|y)

∂θ∂θ′

∣∣∣∣
θ=θ̂

]
(θ−θ̂), (13.21)

where simplification occurs because ∂ ln p(θ|y)/∂θ = 0 when evaluated at the poste-
rior mode, and we assume that third- and higher order derivatives of θ can be ignored
asymptotically. Define

I (̂θ) = − ∂2 ln p(θ|y)

∂θ∂θ′

∣∣∣∣
θ=θ̂

to be the observed information based on the posterior density ln p (θ|y), evaluated at
the posterior mode. Then exponentiating (13.21) yields

p (θ|y) ∝ exp

(
−1

2
(θ−θ̂)′I (̂θ)(θ−θ̂)

)
,

which is the kernel of multivariate normal distribution with mean θ̂ and variance ma-
trix I (̂θ)−1. It follows that a posteriori

θ|y a∼ N
[
θ̂, I (̂θ)−1

]
. (13.22)

As the sample size N grows large, the likelihood component of the posterior be-
comes dominant and the influence of the prior becomes negligible. In this case we
may replace the mode θ̂ by the MLE, which is the mode of the likelihood density. This
yields a result that is sometimes called a Bayesian central limit theorem (Gamerman,
1997). Asymptotically, frequentist and Bayesian inferences will be based on the same
limiting multivariate normal distribution, and hence there should be no significant in-
consistency between them.

This result has been labeled as the Bernstein–von Mises Theorem in the literature;
see Train (2003, chapter 12) for an accessible discussion of the three components
of this theorem. These components comprise (1) the result that the posterior mean
converges in probability to the maximum likelihood estimator, (2) that it has a limiting
normal distribution, and (3) that the limiting distribution of the posterior mean is the
same as that of the maximum likelihood estimator. These results are all implicit in
the Bayesian central limit theorem. That theorem is of great interest and relevance to
those who wish to apply the likelihood principles of estimation and inference. The full
force of its implications will become apparent after we examine numerical methods
for approximating the posterior distribution.
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Do the preceding arguments imply that Bayesian and likelihood-based methods will
produce essentially similar results? Is the choice between the two approaches may
largely a matter of computational efficiency? A definitive treatment of these issues
is not available. However, there are a number of examples in the literature that show
not only that the two approaches may produce similar results, but also that Bayesian
methods are frequently computationally more efficient.

13.2.7. Bayesian Decision Analysis

Given the full posterior distribution p(θ|y), which point estimate of θ should be re-
ported? This question was studied in Section 4.2 for best prediction of y using, for
example, squared error loss. Here instead we consider best estimation of θ using, for
example, quadratic loss.

Let L(θ,̂θ) denote the specified loss function, where θ̂ is an estimate of the unknown
θ. The loss is unknown, as it depends on θ, which is unknown. We can, however, find
the expected value over θ of the loss since Bayesian analysis, unlike classical analysis,
provides the distribution of θ. The optimal estimator θ̂OPT is the estimator θ̂ that
minimizes expected posterior loss, or

min
θ̂

E[L(θ,̂θ)] = min
θ̂

∫
L(θ,̂θ)p(θ|y)dθ, (13.23)

Losses associated with different (θ,̂θ) are weighted by the posterior probability
p (θ|y).

It can be shown that the posterior mean is the optimal estimator under quadratic loss,
L(θ,̂θ) = (θ− θ̂)′(θ− θ̂). If instead absolute error loss is used, with L(θ,̂θ) = |θ−θ̂|,
then the posterior median is the optimal estimator. Once the posterior distribution
has been established these point estimates can be computed either analytically or
numerically.

Under some conditions minimizing expected posterior loss can be shown to be
equivalent to minimizing expected posterior risk. The risk function averages the pos-
sible loss over hypothetical samples of y from the population, so

R(θ,̂θ) =
∫

L(θ,̂θ) f (y|θ)dy.

To avoid the possible confusion between loss function and likelihood function, here
and in the next equation block, we have used f (y|θ) as equivalent to the likelihood
L(y|θ). Expected posterior risk averages this risk over different values of the parame-
ters θ ∈ Θ by weighting with respect to the posterior density, so

E[R(θ,̂θ)] =
∫
Θ

{∫
L(θ,̂θ) f (y|θ)dy

}
p(θ|y)dθ (13.24)

=
∫ {∫

Θ
L(θ,̂θ)p (θ|y) dθ

}
f (y|θ)dy

=
∫

E[L(θ,̂θ)] f (y|θ)dy,
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where in the first equality the outer integral ranges over the domain of θ, in the second
equality the order of integration is interchanged, and in the third line the conclusion
follows. These operations presume that appropriate restrictions on L(θ,̂θ) and p (θ|y)
are satisfied. For example, p (θ|y) must be a proper density function and the loss func-
tion must be integrable. Hence expected risk will remain bounded and minimizing it
is a well-defined operation.

The foregoing argument establishes a well-known and important result that the
Bayes estimator is admissible in the sense that it minimizes expected risk for a speci-
fied loss function.

13.3. Bayesian Analysis of Linear Regression

Because the analysis of linear regression is a familiar topic, it provides a useful por-
tal to more general nonlinear models. The data are assumed to be generated by the
standard linear regression model

y = Xβ + u,

where X denotes the N × K full column rank matrix of weakly exogenous re-
gressors. The errors are assumed to be independent, homoskedastic, and nor-
mally distributed, with u ∼ N [0,σ 2IN ]. The sample conditional density is therefore
y|X,β,σ 2 ∼N [Xβ,σ 2IN ]. Our exposition follows Zellner (1971).

We deal in turn with noninformative and informative priors. In both cases a closed-
form expression for the posterior can be obtained after some considerable algebra. For
noninformative prior it will be seen that the OLS estimator has a Bayesian interpreta-
tion as the mean of the posterior distribution. In the informative prior case it will be
seen that the posterior moments are weighted functions of the sample and prior means.

Subsequent sections present methods for less tractable models, but even then anal-
ysis is simplified if results similar to those given in this section can be applied to some
subcomponents of the model.

13.3.1. Noninformative Priors

For noninformative priors we use Jeffreys’ priors. From Section 13.2.4, for y ∼
N [µ, σ 2] this prior for µ (given σ 2 known) is a constant, whereas the prior for σ 2

(given µ known) is proportional to σ 2. For the regression case this extends to constant
prior for β j , j = 1, . . . , K , so π

(
β j
)
∝ c, and the prior for σ 2 is π

(
σ 2
)
∝ 1/σ 2.

The prior views all values of β j as equally likely, whereas smaller values of σ 2 are
viewed as being more likely. Assuming independence of β and σ 2 the joint prior is

π
(
β,σ 2

)
∝ 1/σ 2.
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The likelihood function can be reexpressed as

L(β,σ 2|y,X) = (2πσ 2
)−N/2

exp

{
− 1

2σ 2
(y − Xβ)′ (y − Xβ)

}
(13.25)

∝
(
σ 2
)−N/2

exp

(
− 1

2σ 2
{ û′̂u + (β−β̂)′X′X(β−β̂)}

)
∝
(
σ 2
)−N/2

exp

(
− 1

2σ 2
(N − K ) s2 + (β−β̂)′X′X(β−β̂)

)
,

where β̂ = (
X′X
)−1

X′y and û = y − Xβ̂; the second line uses y − Xβ = û −
X(β−β̂) and X′̂u = 0; and the third line uses s2 = û′̂u/ (N − K ).

Combining the likelihood in (13.25) and the prior, we obtain the posterior density

p(β,σ 2|y,X) (13.26)

∝
(

1

σ 2

)N/2

exp

(
− 1

2σ 2

{
(N − K ) s2 + (β−β̂)′X′X(β−β̂)

}) 1

σ 2

∝
(

1

σ 2

)N/2+1

exp

(
− 1

2σ 2

{
(N − K ) s2 + (β−β̂)′X′X(β−β̂)

})
∝
{(

1

σ 2

)K/2

exp

(
−1

2
(β−β̂)′

(
σ 2(X′X)−1

)−1
(β−β̂)

)}

×
{(

1

σ 2

)(N−K )/2+1

exp

(
− (N − K ) s2

2σ 2

)}
.

The conditional posterior distribution p(β|σ 2, y,X) of β, given σ 2, and the data
y,X, is clearly the K -dimensional multivariate normal with mean β̂ and variance
σ 2
(
X′X
)−1

, since β appears only in the first line of the final expression. The con-
ditional posterior of σ 2 given β is more difficult to obtain as σ 2 appears in both lines.

The marginal posterior of β, obtained by integrating out σ 2, is much more use-
ful for posterior inference about β. We integrate the second line of (13.26), change
variables to z = 1/σ 2 and use the result that

∫∞
0 zc exp (−az) dz = Γ(c + 1)/ac+1 for

given constants a > 0, c > −1, where here c = N/2 + 1 and a = {·} is the lengthy
term in braces. This yields the kernel of the marginal posterior distribution

p(β|y,X) ∝ {(N − K ) s2 + (β−β̂)′X′X(β−β̂)}−N/2 (13.27)

∝
{

1 + (β−β̂)′
(
s2 (N − K ) (X′X)−1

)−1
(β−β̂)

}−(N−K+K )/2
,

which from Section 13.3.5 is the kernel of a multivariate Student t-distribution cen-
tered at β̂ with N − K degrees of freedom and covariance matrix s2

(
X′X
)−1

multi-
plied by (N − K ) / (N − K − 2). Thus

β ∼ tK
(
β̂, s2(X′X)−1

)
. (13.28)

An individual element of β has a univariate Student t-distribution.
The marginal posterior for σ 2 is more easily obtained, by integrating the final ex-

pression in (13.26) with respect to β and noting that β appears in only the first line,
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which is the kernel of the N [β̂, σ 2(X′X)−1] density and integrates to one. It follows
that the marginal posterior for σ 2 is

p(σ 2|y,X) ∝
(
σ 2
)−(N−K+1)/2

exp

(
− (N − K ) s2

2σ 2

)
. (13.29)

This expression is known to be the kernel of an inverted square-root gamma density.
That is, it is the density of a random variable that is the reciprocal of the square-root
of a gamma-distributed random variable with degrees-of-freedom parameter N − K .
This result is identical to that obtained under the frequentist analysis of the distribution
of β̂.

For normal linear regression, Bayesian analysis with noninformative priors there-
fore yields qualitatively similar conclusions to those from the standard frequentist anal-
ysis in finite samples. Conditional on σ 2 the posterior of β is the N [β̂, σ 2(X′X)−1]
distribution, and unconditionally the posterior of β is the multivariate t-distribution.

The interpretation is quite different, however, as these distributions are of the un-
known parameter β with mean β̂, rather than of an estimate β̂ with unknown mean β.
For example, the Bayesian 95% HPD interval for β j is β̂ j ± t.025,N−K ×se[̂β j ], where
se[̂β j ] = (s2(X′X) j j )1/2. From Section 13.2.5 the interpretation is that β j lies in this
interval with posterior probability 0.95.

13.3.2. Informative Priors

Bayesian analysis of the normal linear regression model under informative priors is
especially insightful if we use independent conjugate priors for β and σ. From Sec-
tion 13.2.4, the conjugate prior for β is the normal, and the conjugate prior for 1/σ 2 is
the gamma. This leads to the normal–gamma prior

π (β,1/σ 2) = πN (β|1/σ 2)πγ (1/σ 2),

where πN
(
β|1/σ 2

)
is the N [β0, σ

2Ω−1
0 ] density, with β0 and Ω0 known, and the

kernel is

πN (β|1/σ 2) ∝ σ−K exp

[
−
(
β − β0

)′ Ω0
(
β − β0

)
2σ 2

]
, (13.30)

and πγ
(
1/σ 2

)
is the G

[
ν0, s2

0

]
density where ν0 and s2

0 are known constants, and

πγ (1/σ 2) = σ−(ν0+1) exp

[
−ν0s2

0

2σ 2

]
. (13.31)

Note that the prior for the (location) parameter β depends on the (scale) parameter
σ. This makes sense as σ reflects the scale on which y is measured and hence should
affect β. Given this prior and the likelihood in (13.25), the posterior density is of a
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normal–gamma type. After some algebra it is as follows:

p(β,1/σ |y,X) ∝
(
σ 2
)−N/2

exp

[
− s2(N − K )

2σ 2

]
exp

[
− (β−β̂)′X′X(β−β̂)

2σ 2

]

× (σ 2
)−K/2

exp

[
−
(
β − β0

)′ Ω0
(
β − β0

)
2σ 2

]

× (σ 2
)−(ν0/2)−1

exp

[
−ν0s2

0

2σ 2

]
∝
(
σ 2
)(ν0+N )/2−1

exp

[
− s2

1

2σ 2

] (
σ 2
)−K/2

× exp

[
− 1

2σ 2

(
β−β

)′
Ω1

(
β−β

)]
, (13.32)

where β and Ω−1
1 denote the posterior mean and variance of β and s2

1 denotes the
posterior mean of σ 2 defined as

β = (Ω0 + X′X
)−1

(Ω0β0 + X′Xβ̂), (13.33)

Ω1 = (Ω0 + X′X
)
,

s2
1 = s2

0 + û′̂u +
(
β−β

)′ [
Ω−1

0 + (X′X
)−1
] (

β−β
)
.

The posterior mean β is obtained by using the matrix version of the “completing the
square” operation. Specifically, given the K × 1 vectors β, β, β0, and β̂, and K × K
symmetric square matrices A and B, it can be shown that(

β − β0

)′
A
(
β − β0

)+ (β−β̂)′B(β−β̂)

=
(
β−β

)′
(A + B)

(
β−β

)
+
(
β0−β

)′
AB (A + B)−1

(
β0−β

)
,

where β = (A + B)−1 (Aβ0 + Bβ̂).
The joint marginal posterior of β and σ 2 is of the same normal–gamma form as the

prior.
The conditional posterior of β given σ 2 has mean β, a matrix-weighted average of

the prior mean β0 and the sample mean β̂.
In general using a conjugate prior is algebraically equivalent to augmenting the

data with a sample from the same distribution. In this case the normal–gamma prior
is equivalent to an additional sample of the same process with regression parameter
estimate of β0, X′X matrix equal to Ω0, degrees-of-freedom parameter equal to ν0, and
error sum of squares equal to ν0s2

0 . Since Ω0 is a fixed matrix, Ω0/N → 0 as N → ∞,
whereas X′X/N converges to a matrix of constants. Hence β → β̂, verifying that in
large samples the ML estimator and the posterior mean are equivalent. The posterior
variance Ω−1

1 is proportional to
(
Ω0 + X′X

)−1
. See Leamer (1978) for a more detailed

exposition.

438



13.3 . BAYESIAN ANALYSIS OF LINEAR REGRESSION

The marginal posterior of β is obtained by integrating σ 2 out of the joint posterior.
This yields

p(β|y,X) ∝
[

s2
1 +
(
β−β

)′ (
Ω0 + X′X

) (
β−β

)]−(ν1+K/2)

; (13.34)

hence a marginal posterior is a multivariate Student t-distribution, one that is centered
around β rather than around β̂ as in the case of uninformative prior.

Because the conjugate prior treats the prior information like a previous sample from
the same process, the sample and prior information are handled symmetrically even
though the information from the two sources may be in conflict. Thus the mathemat-
ical convenience of using conjugate priors comes at a price. If the prior information
and the sample information are apparently in conflict, the posterior distribution can be
expected to be bimodal with the modes corresponding to sample and prior means. A
prior distribution that allows one to capture such a feature is a prior that specifies that β
has a multivariate Student t-density independent of 1/σ 2 and 1/σ 2 has a gamma prior
distribution independent of Xβ. This has been called “Dickey’s prior” (Leamer, 1978,
p. 79). Under this assumption the marginal posterior is a product of two multi-
variate Student t-densities; this product can also be expressed as a mixture of two
t-distributions. Such a distribution can potentially exhibit bimodality. Leamer (1978)
has provided a more extensive analysis of this case.

13.3.3. Mixed Estimation

We seek to place Bayesian analysis of linear regression in a frequentist setting.
Frequentist analysis usually incorporates prior information as equality constraints,

which is a limiting case of Bayesian analysis where the variance parameters in the
prior go to zero. Prior information that is instead stochastic can also be incorporated
into frequentist analysis, by using mixed estimation. The algebra is simple, and the
approach also provides an intuitive understanding of how Bayesian procedures pool
prior and sample information.

We continue with the linear regression model under normality. Assume prior infor-
mation for the regression parameters that β ∼N [0,σ 2

v IK ], where extension to nonzero
mean is relatively easy. The prior information can be written as

β = 0 + v,

where v is a K × 1 error with v ∼N [0,σ 2
v IK ]. Now augment the sample informa-

tion y = Xβ + u by this prior, and write the full model as an augmented regression
model

[
y
0

]
=
[

X
IK

]
β +

[
u

−v

]
.

439



BAYESIAN METHODS

This can be reparameterized as

[
y
0

]
=
[

X
σ

σv
IK

]
β +

[
u

− σ
σv

v

]
(13.35)

=
[

X
λIK

]
β +

[
u
v∗

]
,

where λ= σ/σv and the transformation v∗ = −λv has been used so that all errors have
common variance σ 2.

The estimator based on this augmented data set is a pooled estimator or a mixed
estimator. Conditional on λ, the mixed estimator is

β̂λ = [X′X + λ2IK
]−1

X′y (13.36)

= [X′X(IK + λ2
(
X′X
)−1

)]−1X′y

= [IK + λ2
(
X′X
)−1

]−1
(
X′X
)−1

X′y

= Aλβ̂,

where Aλ = [IK +λ2
(
X′X
)−1

]−1, and β̂ = (X′X
)−1

X′y is the unrestricted OLS
estimator.

This estimator is the so-called ridge-regression estimator introduced without a
Bayesian justification by Hoerl and Kennard (1970) to combat the problem of mul-
ticollinearity in small samples. This estimator also belongs to a class of shrinkage
estimators, in which the estimator is shrunk toward (or pulled toward) a prior mean,
in this case the zero vector. This sometimes makes some sense in a finite sample with
highly multicollinear data where the “t-ratios” tend to zero, making it difficult to dis-
tinguish between variables whose coefficients are truly close to zero and those that
only appear to be that way. In the limit shrinkage leads to variable exclusion.

Several features of β̂λ are noteworthy: (1) Conditional on λ, β̂λ is the mean of a
posterior distribution of β. (2) The estimator is a matrix-weighted average of 0 vector
and β̂. (3) The algebra changes very little if we chose to shrink the estimator toward
some nonzero β, say β0. Then the resulting estimator is a matrix-weighted average
of vectors β0 and β̂.

The symmetric weighting matrix Aλ = [IK +(λ2/N )
(
N−1X′X

)−1
] → IK as N →

∞, since λ2/N → 0. Therefore,

β̂λ → β̂ as N → ∞,

so the effect of the prior on the posterior mean vanishes as the sample becomes large.
Similarly, the conditional posterior variance of β̂λ is given by

V[β̂λ] = AλV[β̂]Aλ

= σ 2Aλ(X′X)−1Aλ,

so V[β̂λ] → σ 2(X′X)−1 as the sample size N → ∞.
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For finite samples, conditional on λ and σ 2, the conditional posterior distribution
of β̂λ is

β̂λ|λ, σ 2 ∼ N [Aλβ̂, σ 2Aλ(X′X)−1A′
λ]. (13.37)

The marginal posterior distribution of β̂λ is obtained by integrating out λ and σ 2. Treat-
ing λ as given, and assuming a vague or uninformative prior on σ 2, we can integrate
out σ 2 as was shown in Section 13.3.1. This integration operation is analytically feasi-
ble and yields a marginal posterior of βλ that is the multivariate Student t-distribution.
Finally, we can specify a prior distribution on λ, possibly a gamma prior since λ > 0,
and proceed to integrate it out. However, λ enters the conditional posterior in an awk-
ward fashion and cannot be integrated out analytically. At this stage we would need
to resort to a numerical technique. Assuming that this is accomplished then we have a
Bayesian treatment of this model.

13.3.4. Hierarchical Priors

We consider a three-stage linear regression model that is hierarchical in regression
parameters but not in variance parameters.

The first stage is a linear regression model denoted y = X1β1 + u, where the sub-
script 1 is added to distinguish between first- and second-stage parameters and regres-
sors. The parameters β1 are random and are modeled to depend on both parameters
and data, so β1= X2β2 + v. For example, the first level models individual student
test performance and the second level brings in school characteristics. The errors are
assumed to be normally distributed. The second-level parameters β2 are treated as un-
known and a prior is specified. A prior is also specified for the variance parameter σ 2

1
in the first-stage model.

Assuming normally distributed errors and using conjugate priors leads to the fol-
lowing model:

y|X1,β1, σ
2
1 ∼ N [X1β1, σ

2
1 IN ], (13.38)

β1|X2,β2,Σ2 ∼ N [X2β2,Σ2], (13.39)

β2 ∼ N [β∗,Σ∗], (13.40)

σ−2
1 |ν∗, σ ∗2 ∼ G[ν∗/2, ν∗σ ∗2/2], (13.41)

where X1 is N × K , X2 is K × M , β1 is K × 1, β2 is M × 1, Σ2 is K × K , β∗ is
M × 1, and Σ∗ is M × M . For the regression parameter β1 the second line gives the
prior, and the third line gives the subsequent second-stage prior, or a prior on a prior,
for β2 (while Σ2 is assumed known). The parameters (β∗,Σ∗) are often referred to as
hyperparameters. For variance parameters, the fourth line gives a prior for the variance
parameter σ 2

1 with ν∗ and σ ∗2 specified. The innovation is the addition of (13.40).
Note that we can collapse the stages and convert this into a two-level model.

Specifically, we can write a two-stage model with an informative prior in one of two
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ways, either

y|X1,β1, σ
2
1 ∼ N [X1β1, σ

2
1 IN ],

β1|X2,Σ2 ∼ N [X2β
∗,Σ2 + X2Σ∗X′

2]

or

y|X1,X2,β2,Σ2, σ
2
1 ∼ N [X1X2β2, σ

2
1 IN + X1Σ2X′

1],

β2 ∼ N [β∗,Σ∗].

If σ 2
1 were, given this setup corresponds to conditionally conjugate normal priors.

Using results introduced earlier we can derive expressions for the posterior means of
either β1 or β2 as matrix-weighted averages of either β∗ and β̂1 or of β∗ and β̂2.

The use of the normal distribution is only illustrative. Hierarchical models for gen-
eralized linear models, members of the linear exponential family, have been widely
used (Albert, 1988).

In hierarchical models it may not be possible to obtain the full posterior probabil-
ity distribution of first-stage parameters such as β1 in an analytically tractable form.
Fortunately, the advances in computational methods presented in the next section are
especially well suited to models with a hierarchical structure.

Another approach, which is an application of the empirical Bayes method, involves
estimation of parameters in the higher stage priors, similar to that in the likelihood
approach. This approach avoids, for example, assuming that Σ2 and Σ∗ are known
matrices.

13.3.5. Multivariate t- and Wishart Distributions

Bayesian analysis makes use of a wider range of distributions than classical analysis.
Here we present details on two multivariate distributions that are used in Bayesian
analysis of linear regression under normality.

The multivariate t-distribution is a multivariate extension of the univariate student
t . It is similar to the multivariate normal, except that the tails of the distribution can be
considerably fatter. In Bayesian analysis it arises as the marginal posterior for β given
a conjugate normal prior (see Section 13.3.2) or can be used directly as the prior for β
if tails fatter than the normal are desired. A q × 1 random variable t that is multivariate
Student-t distributed with degrees-of-freedom parameter υ, mean parameters µ, and
dispersion parameters Σ, has joint density

ft (t|υ,µ, �) = �((υ + 1)/2)

�(υ/2)(πυ)(1/2)|�|1/2

×
{

1 + 1

υ
(t − µ)′Σ−1(t − µ)

}−(υ+q)/2

,

where �(·) is the gamma function. This distribution is symmetric with mode µ, mean
µ if υ > 1, and variance [υ/(υ − 2)]� if υ > 2. The tails can be much fatter than the
normal (e.g., the variance is 3� if υ = 3) and the normal is obtained as υ → ∞. If
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z ∼ N [0, I] and s ∼ χ2(υ) then t = µ +�−1/2z/
√

s/υ has the multivariate t-
distribution given here, providing an easy way to obtain draws.

The Wishart distribution is a multivariate extension of the univariate chi-square
distribution, or more generally the gamma distribution. In Bayesian analysis it is used
as the conjugate prior for the inverse of the covariance matrix of a multivariate normal
distribution. A q × q random positive definite matrix W that is Wishart distributed
with degrees of freedom parameter υ ≥ q and scale matrix S has joint density

fW(W|υ,S) = 2υq/2πq(q−1)/4
q∏

j=1
�
(
υ+1− j

2

)
× |S|−υ/2|W|(υ−q−1)/2 exp

(−tr(S−1W)/2
)
,

where �(·) is the gamma function and tr(·) denotes the trace of a matrix. This dis-
tribution has mean υS. The sample covariance matrix for iid multivariate normal
data is Wishart distributed. More generally, given υ(q), independent q × 1 vectors
x j ∼ N [0,S], j = 1, . . . , υ, then

∑υ
j=1 x j x′

j is Wishart distributed. If W−1 is Wishart
distributed with density fW(W−1|υ,S) then W is inverse-Wishart distributed with
density

fIW(W|υ,S)

= 2υq/2πq(q−1)/4
q∏

j=1
�
(
υ+1− j

2

)
|S|υ/2|W|−(υ+q+1)/2 exp

(−tr(S−1W)/2
)
.

13.4. Monte Carlo Integration

In many modeling situations the posterior distribution of the parameters of interest is
analytically intractable. In such cases numerical methods are needed to estimate either
the full posterior distribution or some key moments of this distribution such as the
posterior mean.

In this section we consider computation of key posterior moments, without explic-
itly obtaining the posterior distribution. The methods of Chapter 12 can be applied,
with potentially less computational burden since the integral needs to be computed
once for the entire sample rather than for every individual at every iteration. In the
subsequent section we present methods to simulate the posterior distribution.

13.4.1. Importance Sampling

Suppose the problem is to evaluate the posterior moment function E[m(θ|y)], where
expectation is with respect to the posterior density p(θ|y). We wish to compute

E [m(θ)] =
∫

R(θ)
m(θ)p(θ|y)dθ. (13.42)

For example, the posterior mean of the kth parameter is E[θk] = ∫ θk p(θ|y)dθ. Other
examples include posterior standard deviations, marginal posterior densities, posterior
intervals, and posterior expectations of a given function of parameters.
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From Chapter 12 a direct Monte Carlo integral estimate of E[m(θ)] is Ê [m(θ)] =
S−1∑

s m(θs), where θs , s = 1, . . . , S, are S draws of θ from the posterior density
p(θ|y). However, this estimate is infeasible in the current Bayesian setting if there is
no closed-form solution for the posterior density defined formally in (13.1), as then
it is not possible to make draws from the posterior p(θ|y). Instead, we use impor-
tance sampling, introduced in Section 12.7.2. The integral considered in (13.42) can
be rewritten as

E [m(θ)] =
∫

R(θ)

(
m(θ)p(θ|y)

g(θ)

)
g(θ)dθ, (13.43)

where g(θ) > 0 is a known density function, with the same support as p(θ|y), that is
easy to make draws from. The corresponding Monte Carlo integral estimate is

Ê [m(θ)] = 1

S

S∑
s=1

m(θs)p(θs |y)

g(θs)
,

where θs , s = 1, . . . , S, are S draws from of θ from the importance sampling den-
sity g(θ) rather than from the original target density p(θ|y). Note that the requirement
that p(θ|y) and g(θ) should have the same support is potentially problematic if p(θ|y)
depends on additional parameters or if the functional form of the full conditional den-
sities is known but that of the marginal posterior is not.

Application to the posterior density additionally needs to account for the constant
of integration in the denominator of (13.1). Let pker(θ|y) denote the kernel of the
posterior density, where pker(θ|y) = L (y|θ)π (θ) or a multiple of this quantity. How-
ever, for notational simplicity the dependence on y is suppressed in what follows. The
posterior density is then

p(θ) = pker(θ)∫
pker(θ)dθ

,

with corresponding posterior moment

E [m(θ)] =
∫

m(θ)

(
pker(θ)∫

pker(θ)dθ

)
dθ

=
∫

m(θ) pker(θ)dθ∫
pker(θ)dθ

=
∫ (

m(θ) pker(θ)/g(θ)
)

g(θ)dθ∫ (
pker(θ)/g(θ)

)
g(θ)dθ

.

The importance sampling-based estimate of the posterior moment E[m(θ)] is then

Ê [m(θ)] =
1
S

∑S
s=1 m(θs)pker(θs)/g(θs)

1
S

∑S
s=1 pker(θs)/g(θs)

, (13.44)

where θs , s = 1, . . . , S, are S draws of θ from the importance sampling density g(θ).
This method was proposed by Kloek and van Dijk (1978). Geweke (1989) estab-

lished consistency and asymptotic normality under some regularity conditions. These
conditions include the assumptions that the importance sampling density g(θ) > 0
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over the support R(θ) of p(θ); that E[m(θ)] <∞, so the posterior moment exists; and
that
∫

p(θ|y)dθ = 1, so the posterior density is proper. As previously noted, usually
we work with the kernel pker(θ|y) = L (y|θ)π (θ), which need not integrate to one.
The prior π (θ) need not be proper, but to ensure that

∫
p(θ|y)dθ = 1 it is necessary

that
∫
π (θ)dθ <∞.

The importance sampling approach is simple, but implementation entails subtleties
well explained in Geweke (1989). A critical requirement is that the g(θ) should
have thicker tails than the p(θ|y), to ensure that the importance weight w(θ) =
p(θ|y)/g(θ) remains bounded. In view of the asymptotic normality of the log pos-
terior, a good choice of g(θ) is a multivariate t-distribution, with the mean set to the
posterior mode, and the covariance matrix proportional to the inverse of the Hessian
of the log of the posterior, and degrees of freedom set to a value sufficiently small to
ensure thick tails. Geweke (1989) also provides a measure, called the relative numer-
ical efficiency, that estimates the number of replications required to achieve a given
level of precision of Ê [m(θ)] computed using draws from g(θ) relative to the number
of replications needed if draws from p(θ|y) were possible. From Chapter 12, for a
higher dimensional integral more simulation draws are required to get a good approxi-
mation to the integral and one might additionally use simulation acceleration methods
presented in Chapter 12, such as antithetic sampling.

The importance sampling method uses each draw θs from the sampling density
g(θ) with equal probability. A more efficient approximation would weight the draws
according to how close g(θs) is to the target p(θs |y). This can be done by importance
resampling (see Gelman et al., 1995).

The importance sampling method can be used to provide many useful summary
measures of the posterior, as presented in Section 13.2.5. This includes estimates of
the quantiles and percentiles of the posterior, permitting calculation of 95% posterior
intervals and plots of the posterior density of θk .

13.5. Markov Chain Monte Carlo Simulation

A modern idea in Bayesian analysis is that rather than concentrating on the estimation
of key summary measures of the posterior distribution (see the previous section) it is
desirable to obtain a large sample from the posterior distribution. Then the summary
statistics of this sample from the posterior will provide desired information about the
moment characteristics of the sample of estimates and about other interesting associ-
ated measures such as marginal distributions of parameters or functions of parameters.
For example, given S draws from the posterior distribution, E[θk] can be estimated by
S−1∑

s θ
s
k .

The challenge is to make draws from the joint posterior distribution when there is no
tractable closed-form expression for the posterior density. If a suitable density exists
for computation of posterior moments using importance sampling, then it might also be
suitable for making draws from the posterior using the accept–reject method presented
in Section 12.8. However, this method can be very inefficient as a high percentage of
draws may be rejected.
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Instead, sequential draws are made yielding simulated values that, if the sequence
is run long enough, converge to a stationary distribution that coincides with the tar-
get posterior density p(θ|y). The method is called Markov chain Monte Carlo
(MCMC), because it involves simulation (Monte Carlo) and the sequence is that of
a Markov chain. After convergence of the chain, S sequential draws can be used to
compute summary measures for the posterior, such as estimating E[θk] by Ê[θk] =
S−1∑

s θ
s
k . The draws are positively correlated, however, so the precision of the esti-

mate will be reduced for given S because its estimated variance will exceed the usual
(S − 1)−1∑

s(θ s
k − Ê[θk])2.

The sequential method entails constructing a Markov chain. Two widely used al-
gorithms are the Gibbs sampler and the Metropolis–Hastings algorithm, the former
being a special case of the latter, see Hastings (1970). Excellent detailed treatments of
the subject can be found in Gelman et al. (1995), Gamerman (1997), and Robert and
Casella (1999). What follows is a bare-bones sketch.

13.5.1. Markov Chains

Before presenting the Gibbs sampler and the Metropolis–Hastings algorithm we pro-
vide some key definitions and concepts used in the MCMC literature. These definitions
are given in the context of a model with discrete states. They can be extended to the
continuous state model, relevant to applications where the posterior is continuous in
the parameters.

A Markov chain is defined as a sequence of random variables xn (n = 0, 1, 2, . . .),
where xn takes values in a finite space A, together with a transition kernel K (·) that
defines the probability that xn equals a particular value given previous values xn− j . We
consider a Markov chain with the property that

Pr [xn+1 = x |xn, xn−1, . . . , x0] = Pr [xn+1 = x |xn] , (13.45)

so that the distribution of xn+1 given the past is completely determined only by the
preceding value xn . The transition kernel is a transition matrix T with element

txy = Pr [xn+1 = y|xn = x] , (13.46)

which informally is the probability of transition from x to y. For a finite-state Markov
chain the set A of values (or states) that xn may take is finite with, say, m elements.
Then

T =

 t11 · · · t1m
...

. . .
...

tm1 · · · tmm

 , (13.47)

with
∑m

j=1 ti j = 1, i = 1, . . . ,m.
Now consider the transition from x to y in n steps (stages). The transition probabil-

ity is given by Tn , the n-times matrix product of T. The rows of the matrix Tn give the
marginal distribution across the m states at the nth stage, and the j th row vector t(n)

j =
(t (n)

j1 , . . . , t
(n)
jm ) gives the marginal distribution of transition probabilities from state j to
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the other states at stage n. If the initial distribution of transition probabilities is denoted
t(0)

j , then t(n)
j = t(0)

j Tn = t(n−1)
j T. So the marginal distribution of transition probabilities

at the nth stage is determined solely by the initial distribution and the transition matrix.
In the Markov simulation context, the asymptotic behavior of the chain as n →

∞ is of interest. The chain is said to yield a stationary distribution or invariant
distribution with transition probabilities txy if

∑
x∈A

tx Tx,y = ty ∀ y ∈ A, (13.48)

where transition is from state tx to ty . Then applying the transition matrix leads to
no change in the marginal distribution of transition probabilities. The existence and
uniqueness of a stationary distribution is an important issue.

If the stationary distribution exists, and if limn→∞ tx Tn
x,y = ty , then the chain will

asymptotically approach ty independently of the initial distribution. In this sense ty is
a limiting distribution. Although here the stationary distribution is defined for a finite-
state Markov chain, MCMC methods can handle Markov chains that are not finite
state; see Gilks, Richardson, and Spiegelhalter (1996, pp. 60–61).

A state y may be recurrent or transient. A recurrent state is one that will be revis-
ited with probability one, and a transient state is one that will not be revisited with
some positive probability.

For Bayesian applications the goal is to obtain draws from the posterior p(θ). Ap-
plying a Markov chain to obtain these draws, the initial value of a parameter vector,
θ(0) (which is analogous to the distribution of states), is assigned or sampled from
the transition kernel. Using a suitable method of drawing pseudo-random numbers, a
new vector of values θ(1) is drawn from the transition kernel evaluated at θ(0), that is,
K (θ(0)). At the nth stage the draws are from a transition kernel K (θ(n−1)) and so forth.
The Markov chain used is one such that as n → ∞ the limiting distribution is the pos-
terior p(θ). Once convergence to the limiting distribution occurs all subsequent draws
are also from this distribution, though they will be correlated.

These ideas provide the intuitive basis for a class of MCMC procedures that can be
used to recover Bayesian posterior distributions for many different, and possibly high-
dimensional, models such as, for example, the linear hierarchical models discussed in
Section 13.3.4. Provided that one specifies a transition kernel K (θ(n−1), ·) from which
draws of θ can be made and within which is embedded the chain’s limiting distribution,
the target posterior distribution can be recovered in the sense of being approached
arbitrarily closely.

The current description is at a very general level. In practice, the choice of the tran-
sition kernel is not unique and there are many possible chains one can construct. Some
choices may be better than others in terms of speed of convergence to the limiting
distribution. If convergence is found to be very slow and computationally expensive,
alternative chains may need to be substituted. Clearly, criteria are needed to determine
whether convergence has occurred and how close to the target distribution the chain is
at the nth stage.

447



BAYESIAN METHODS

13.5.2. Gibbs Sampler

We begin with the Gibbs sampler, a member of the MCMC class that is easy to describe
and implement.

Let θ = [θ1 θ2]′ have posterior density p(θ) = p(θ1,θ2), where for notational sim-
plicity we suppress dependence on y. If the conditional densities are known, which is
not guaranteed as knowledge of both p(θ1|θ2) and p(θ2|θ1) is necessary, then alter-
nating sequential draws from p(θ1|θ2) and p(θ2|θ1) in the limit converge to draws
from p(θ1,θ2).

Example

A simple illustration is to consider bivariate normal data with uniform prior for the
mean and known covariance matrix. Let y = (y1, y2) ∼ N [θ,Σ], where θ = [θ1 θ2]′

and Σ has diagonal entries 1 and off-diagonal entries ρ. Then given a uniform prior
for θ the posterior can be shown to be θ|y ∼ N [ȳ, N−1Σ], a bivariate normal. Since
the conditional posterior distributions are

θ1|θ2, y ∼ N
[
(ȳ1 + ρ (θ2 − ȳ2)) , (1 − ρ2)/N

]
,

θ2|θ1, y ∼ N
[
(ȳ2 + ρ (θ1 − ȳ1)) , (1 − ρ2)/N

]
,

we can iteratively sample from each conditional normal distribution using updated
values of θ1 and θ2. If the chain is run long enough then it will converge to the bivariate
normal. In this example it is easy to make direct draws from the joint posterior of θ|y,
using Choleski’s transformation given in Section 12.8, but in other examples it can be
possible to draw from the conditionals but not the joint posterior.

Gibbs Sampler

More generally, consider a q-dimensional target distribution p(θ), where the notation
suppresses the dependence on data. Suppose that θ is partitioned into d blocks. For
example, θ′ = [β σ 2]′ in a linear regression example. Let θk denote the kth block
and θ−k denote all components of θ aside from θk . Assume that the full conditional
distributions p(θk |θ−k), k = 1, . . . , d, are known. Then sequential sampling from the
full conditionals can be set up as follows:

1. Let the initial values of θ be θ(0) = (θ(0)
1 , . . . ,θ

(0)
d ).

2. The next iteration involves sequentially revising all components of θ to yield θ(1) =
(θ(1)

1 , . . . ,θ
(1)
d ) generated using d draws from the d conditional distributions as follows:

p
(
θ(1)

1 |θ(0)
2 , . . . ,θ

(0)
d

)
p
(
θ(1)

2 |θ(1)
1 ,θ

(0)
3 . . .,θ

(0)
d

)
...

p
(
θ(1)

d |θ(1)
1 ,θ

(1)
2 , . . . ,θ

(1)
d−1

)
.
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3. Return to step 1, reinitialize the vector θ at θ(1), and cycle through step 2 again to obtain
the new draw θ(2). Repeat the steps until convergence is achieved.

Gilks et al. (1996, p. 7) provide a sketch of the proof of the statement that the
stationary distribution is the posterior. After convergence the draws are from the target
joint posterior. Geman and Geman (1984) showed that the stochastic sequence {θ(n)}
is a Markov chain with the correct stationary distribution. Gelfand and Smith (1990)
showed that, under some conditions, as the number of cycles of draws from the full
set of conditionals tends to infinity, the chain converges to the stationary posterior
distribution. See also Tanner and Wong (1987). Once convergence occurs, numerous
draws can be made and used to calculate sample analogues of the posterior moments
of marginal or joint distributions.

The results mentioned here do not tell us how many cycles are needed for conver-
gence, which is model dependent. It is very important to ensure that sufficient number
of cycles are executed for the chain to converge. A variety of diagnostic tests of con-
vergence are available. Because estimates of posterior moments should be based on
draws from the posterior distribution it is standard practice to discard the earlier results
from the chain, the so-called burn-in phase.

Sequential simulation algorithms can be modified so that each draw depends not
simply on the immediately preceding draw but also on earlier draws, the key require-
ment being that probability of improvement on the current approximation to the pos-
terior should be positive and (preferably) high. The attraction of the more restrictive
Markovian property is that it facilitates the proof that the transition distributions con-
verge to the target posterior.

For Bayesian analysis the Gibbs sampler is useful when the joint posterior is in-
tractable but the full conditional distributions are available in a convenient form. Many
applications use considerable ingenuity and knowledge of conjugate priors and related
Bayesian results, many from the earlier presimulation literature, to specify priors that
lead to known full conditional distributions.

We consider two examples that apply the MCMC methods.

Linear Regression Example

In Section 13.3.2 we analyzed the posterior distribution of the normal linear ho-
moskedastic regression model, given normal–gamma conjugate priors. The conditional
posterior of β given σ−2 was shown to be multivariate normal, and the conditional pos-
terior of σ−2 given β is the gamma. Even though integration is feasible and we can
derive the posterior in an explicit form (see (13.32)) it is actually easier to use the
Gibbs sampler to draw a large sample from the joint posterior distribution. The chain
consists of recursive draws from the normal conditional on the precision parameter
σ−2 and from the gamma distribution conditional on the β.

The structure of the algorithm resembles that given later in Section 13.6 for a
slightly more complicated case of a two-equation seemingly unrelated regressions
model.
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In many cases it would be natural to work with blocks of parameters. For example,
in a multiequation multivariate linear regression model with a nondiagonal contem-
poraneous covariance matrix, the conditional mean parameters

(
β1,β2, . . .

)
form one

block of parameters, and � forms a second. Then the full conditional distributions
will have the form β1,β2, . . .|data,Σ and Σ|data,β1,β2, . . . . Chib and Greenberg
(1996, pp. 418–419) outline the Gibbs algorithm for this case.

Hierarchical Prior Example

The Gibbs sampler has been deployed with much success in the analysis of the hi-
erarchical prior model. From the structure of the linear hierarchical model given in
(13.39)–(13.41), it can be seen that formulating a Markov chain based on a full set of
conditionals is feasible in this case. The same general approach can be extended to a
nonlinear hierarchical prior model, although some additional steps are necessary if the
nonlinearity occurs in conjunction with a latent variable model (Albert, 1988).

13.5.3. Metropolis Algorithm

The Gibbs sampler is the best-known MCMC algorithm. Its applicability is limited,
however, as it requires direct sampling from the full conditional distributions, which
may not be known. Two extensions that allow the MCMC to be applied more gener-
ally are the Metropolis algorithm and the Metropolis–Hastings algorithm. Chib and
Greenberg (1995) provide a tutorial and references. The following summary is sim-
pler but avoids many details that are necessary if the reader seeks a more complete
understanding.

The Metropolis algorithm constructs a sequence {θ(n), n = 1, 2, . . .} whose distri-
butions converge to the target posterior, assumed to be computable up to a normalizing
constant.

For notational simplicity we again suppress dependence of p (θ|y) on y. The algo-
rithm consists of the following steps:

1. Draw a starting point θ(0) from an initial approximation to the posterior for which
p(θ(0)) > 0. For example, the draw may be from a multivariate t-distribution centered
on the mode of the marginal posterior distribution.

2. Next set n = 1. Draw θ∗ from a symmetric jumping distribution J1(θ(1)|θ(0)), with
the property that for any arbitrary pair (θa,θb), Jn(θa|θb) = Jn(θb|θa). An example is
θ(1)|θ(0) ∼ N [θ(0),V] for some fixed V. Symmetry of the jumping distribution leads to
simplicity but is not otherwise essential.

3. Calculate the ratio of densities r = p(θ∗)/p(θ(0)).

4. Set

θ(1) =
{
θ∗ with probability min(r, 1),
θ(0) with probability (1 − min(r, 1)) ,

which means that the draw θ(1) is a draw from a mixture distribution with components
θ∗ and θ0.
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5. Return to step 2, increase the counter, and repeat the following steps.

6. After a suitably large number of iterations apply the necessary checks for the conver-
gence of the distribution. If convergence has occurred the target posterior has been
recovered.

This algorithm can be viewed as an iterative method to maximize p(θ). If θ∗ in-
creases p(θ) then θ(n) = θ∗ always, whereas if θ∗ decreases p(θ) then θ(n) = θ∗ with
probability r < 1.

The algorithm is similar in spirit to accept–reject sampling (see Section 12.8),
though there is no requirement here that a fixed multiple of the jumping distribution
always covers the posterior.

The Metropolis algorithm generates a Markov chain that has properties of re-
versibility, irreducibility, and Harris recurrence that ensure convergence to a stationary
distribution. Gelman et al. (1995) demonstrate that this stationary distribution is the
desired posterior p(θ) as follows. Let θa and θb be two points such that p(θb) ≥
p(θa). If θ(n−1) = θa and θ∗ = θb then θ(n) = θb with certainty and Pr[θ(n) =
θb,θ

(n−1) = θa] = Jn(θb|θa)p(θa). If the order is reversed and θ(n−1) = θb and
θ∗ = θa , then θ(n) = θa with probability r = p(θa)/p(θb) and Pr[θ(n) = θa,θ

(n−1) =
θb] = Jn(θa|θb)p(θb)[p(θa)/p(θb)] = Jn(θa|θb)p(θa) = Jn(θb|θa)p(θa) given the
assumption of symmetric jumping distribution. The marginal distributions of θ(n) and
θ(n−1) are therefore equal, since their joint distribution is symmetric, so p(θ ) is the
symmetric stationary distribution of the Markov chain.

13.5.4. The Metropolis–Hastings Algorithm

The performance of the Metropolis algorithm varies with the choice of initial approxi-
mating distribution and choice of jumping distribution. A potential problem is that the
Metropolis algorithm may be slow, as would be the case if the move from the current
to a new value is not made sufficiently often, causing the chain to move infrequently.
The algorithm can be speeded up by permitting use of jumping distributions that are
not symmetric.

The Metropolis–Hastings (M–H) algorithm is the same as the Metropolis algo-
rithm, except that in step 2 the jumping distribution need not be symmetric, and in
step 3 the acceptance probability r for general n becomes

rn = p(θ∗)/Jn(θ∗|θ(n−1))

p(θ(n−1))/Jn(θ(n−1)|θ∗)
= p(θ∗)Jn(θ(n−1)|θ∗)

p(θ(n−1))Jn(θ∗|θ(n−1))
.

The remaining steps are executed with this revised definition. Note that if any normal-
izing constants are present in either p(·) or Jn(·), then they cancel in this definition
of rn . So both posterior and jumping probabilities need only be computed up to this
constant. See Hastings (1970).
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13.5.5. M–H Examples

Different jumping distributions lead to different M–H algorithms with different ef-
ficiency in terms of the number of draws needed to obtain the desired draws from
the posterior. We give several examples, noting that there are few general guidelines
available for choice of jumping distribution, except to use the Gibbs sampler wherever
possible.

The Gibbs sampler is a special case of the M–H algorithm. If θ is partitioned into d
blocks, then there are d Metropolis steps at the nth step of the algorithm. The jumping
distribution is the conditional distribution given in Section 13.5.2 and it can be shown
that the acceptance probability is always 1. Gibbs sampling is also called alternating
conditional sampling.

It is possible to use mixed strategies, whereby different transition kernels are used
for different subsets of parameters. For example, an M–H step can be combined with
a Gibbs sampler, the latter being used for components for which direct sampling is
feasible.

The independence chain makes all draws from a fixed density g (θ), say, in which
case the acceptance probability simplifies to the ratio rn = w(θ∗)/w(θ(n−1)) of impor-
tance weights w(θ) = p(θ)/g(θ). A random walk chain sets the draw θ∗ = θ(n−1) +
ε, where ε is a draw from g(ε).

Gelman et al. (1995, p. 334) consider simulating the q-variate normal with variance
Σ. For a Metropolis algorithm with jumping distribution θ∗|θ(n−1) ∼ N [θ(n−1), c2Σ],
the choice c � 2.4/

√
q leads to greatest efficiency relative to direct draws from the

q-variate normal. The efficiency is about 0.3, compared to 1/q for the Gibbs sampler
in the case that Σ = σ 2Iq .

13.6. MCMC Example: Gibbs Sampler for SUR

We illustrate the application of the Gibbs sampler to the analysis of the seemingly
unrelated regression model. This example is slightly more challenging than an ap-
plication to single-equation regression, because errors correlated across equations are
introduced.

We consider a two-equation example with i th observation

y1i = x′
1iβ1 + ε1i ,

y2i = x′
2iβ2 + ε2i ,

where (ε1, ε2) are bivariate normal with zero mean and covariance matrix

Σ =
[
σ11 σ12

σ21 σ22

]
.

Combining the two equations gives the i th observation

yi = x′
iβ + εi ,

452



13.6 . MCMC EXAMPLE: GIBBS SAMPLER FOR SUR

where εi∼N [0,Σ]. In summary, the dgp is

yi |xi ,β,Σ ∼N [x′
iβ,Σ]

and interest lies in estimating the posterior means of the regression parameters β and
variance parameters Σ, given data y,X.

We consider independent informative priors, with

β ∼ N [β0,B
−1
0 ],

Σ−1 ∼ Wishart[υ0,D0],

where B0 is defined as precision, the inverse of the prior variance, and the inverse
Wishart, defined in Section 13.3.5, is a generalization of the inverse gamma. An al-
ternative approach, not taken here, uses dependent priors similar to those in Section
13.3.2, in which case β|� ∼N [β0, ω0Σ] for specified ω0.

Performing some algebra yields the conditional posteriors

β|Σ, y,X ∼ N
[

C0

(
B0β0 +

N∑
i=1

x′
i�

−1y
)

i

,C0

]
,

Σ−1|β, y,X ∼ Wishart

[
υ0 + N ,

(
D−1

0 +
N∑

i=1
ui

′ui

)−1
]
,

where C0 = (B0 +∑N
i=1 x′

i�
−1xi )−1 and ui = yi − x′

iβ. The Gibbs sampler can be
used since the conditional posteriors are known and sampling from both distributions
is straightforward.

For a simulation example we let the regressors in each equation be an inter-
cept plus a single scalar regressor, different in the two equations, generated from a
standard normal. Then y1 and y2 are generated with the four regression parameters
β11 = β12 = β21 = β22 = 1, the error variances σ11 = σ22 = 1, and the error covari-
ance σ12 = σ21 = −0.5. The sample size is either N = 1,000 or N = 10,000. Given
these data, we present Bayesian estimates of the parameters, where the prior distri-
butions set β0 = 0, B−1

0 = τ I, D0 = I, and υ0 = 5. To check the impact of different
priors three values of τ are considered, τ = 10, τ = 1, and τ = 1/10, with smaller
values of τ corresponding to tighter priors.

The Gibbs sampler makes draws recursively from the conditional posterior distri-
butions. We reject the first 5,000 replications that constitute the “burn-in” phase and
report results using the subsequent 50,000 and 100,000 replications.

A selection of the results is given in Table 13.3, which reports the mean and variance
of the marginal posterior distribution of each coefficient in five different samples that
themselves are independent draws. The first three columns present a sensitivity anal-
ysis for different values of τ , which shows that the results are not very sensitive. The
fourth column, compared to the first, shows that doubling the number of replications
has very little effect. The fifth column, compared to the first, shows that increasing the
sample size tenfold to 100,000 greatly increases the precision as expected, reducing
the standard deviation of the coefficient by a factor of more than 3, but with relatively
small impact on the point estimates.
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Table 13.3. Gibbs Sampling: Seemingly Unrelated Regressions Examplea

Prior parameter τ τ = 10 τ = 1 τ = 1/10 τ = 10 τ = 10
Sample size N 1,000 1,000 1,000 1,000 10,000
Gibbs sample replications 50,000 50,000 50,000 100,000 100,000

β11 (eq. 1 intercept) 0.971 1.013 0.983 1.020 1.010
(0.0310) (0.0312) (0.0316) (0.0324) (0.0100)

β12 (eq. 1 slope) 1.026 0.9835 1.006 1.006 1.015
(0.0265) (0.0271) (.0265) (.0268) (0.0086)

β21 (eq. 2 intercept) 1.016 0.972 0.993 1.017 0.991
(0.0309) (0.0325) (0.0322) (0.0326) (0.0100)

β22 (eq. 2 slope) 0.983 0.992 0.979 1.005 1.007
(0.0256) (0.0285) (0.0272) (0.0277) (0.0085)

σ11 (eq. 1 error variance) 0.960 0.969 1.012 1.043 1.010
(0.0429) (0.0434) (0.0453) (0.0466) (0.0143)

σ12 (error covariance) −0.499 −0.507 −0.519 −0.576 −0.515
(0.0340) (0.0358) (0.0368) (0.0379) (0.0113)

σ22 (eq. 2 error variance) 0.950 1.066 1.049 1.062 1.002
(0.425) (0.0476) (0.0467) (0.0472) (0.0141)

a Model is a two-equation seemingly unrelated regression. Table gives the mean and standard deviation of the
posterior distribution for each parameter. Smaller values of τ correspond to tighter priors.

One way to check for convergence is to look at the means and standard deviations
of the output and see whether they drift or stay at the same level. If the change is
small, say less than 0.1 for 10,000 replications, then convergence is presumed. One
also might look at several chains at a time. The draws will always be correlated but the
important question is how fast the autocorrelation function decays to zero. Sometimes
this problem cannot be fixed and it is simply inherent to the algorithm. One can also
take every tenth or hundredth observation to purge serial correlation.

To check whether the Gibbs sampler has converged to the stationary posterior dis-
tribution in the present case, we compute the first 20 autocorrelation coefficients of
draws from the posterior after convergence for each coefficient. Lack of convergence
would be indicated by the presence of serial correlation in the draws from the target
distribution. When the number of replications is small, say 1,000, the autocorrelation
coefficients are found to be as high as 0.06 in some cases. However, when the number
of replications is 50,000 and greater, there is virtually no evidence of serial correlation
up to order 20, and correlation disappears with the order. In most cases the estimates
are smaller than 0.005. It is easy to verify that for N = 1,000, the prior parameters τ
has very little impact on the posterior. This computation is very simple and takes little
more than a few seconds.

13.7. Data Augmentation

The Gibbs sampler can sometimes be applied to a wider range of models by introduc-
tion of auxiliary variables. In particular, this is the case for models involving latent
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variables, such as discrete choice models, truncated and censored models, and finite
mixture models introduced in later chapters.

In the scalar case the latent dependent variable y∗ is not observed; instead, we ob-
serve only y = g(y∗) for some specified function y. For example, in a logit or probit
model (see Chapter 14) we may observe only whether y∗ is positive or negative, in
which case y = 1(y∗ > 0) and we observe y = 1 if y∗ > 0 and y = 0 if y∗ ≤ 0.

Bayesian analysis of latent variable models, and especially the application of the
Gibbs sampler, is greatly aided by the replacement of the latent variable by imputed
values. This step is feasible if we can write down the predictive density of the latent
variables in terms of the observed variables. The procedure of adding imputed values
as if they were observed data is called data augmentation. (An example was given
in Section 10.3.7 where the EM algorithm was exposited.) The essential insight, due
to Tanner and Wong (1987), is that the posterior based only on the observed data is
intractable, but that obtained after data augmentation is often tractable using the Gibbs
sampler.

Consider the posterior expressed in terms of both directly observed variables y and
the latent variables y∗,

p(θ|y) ≡
∫

y∗
p(θ|y, y∗) f (y∗|y)dy∗, (13.49)

where the right-hand-side integral may be interpreted as an averaging operation with
respect to y∗.

Analogous to the EM method, data augmentation involves cycling between an im-
putation step, I-step, and a posterior step, P-step.

In the imputation step we make draws from the full conditional density of y∗. This
averages over the parameters ψ that appear in the probability distribution that links y∗

and y. The predictive distribution is

f (y∗|y) =
∫
ψ

f (y∗|y,ψ) f (ψ|y)dψ. (13.50)

Given the current draw from p(θ|y) we can make a draw of y∗ from f (y∗|y), repeating
both parts of the step m times to generate m multiple imputations y∗

i , i = 1, . . . ,m.
This completes the I-step.

Given the augmented data from the I-step, the P-step is implemented by updating
the current approximation to p(θ|y); thus,

updated p(θ|y) = 1

m

m∑
i=1

p(θ|y, y∗
i ). (13.51)

Then the algorithm returns to the I-step.
If m = 1, the procedure amounts to performing integration in (13.49) by Gibbs

sampling. If m is chosen to be sufficiently large, the posterior distribution is approx-
imated better. An extended example of the data augmentation method applied to the
missing data problem is given in Chapter 26.
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13.8. Bayesian Model Selection

Chapters 7 and 8 dealt with issues of hypothesis testing, specification diagnostics, and
model comparison from a frequentist viewpoint. In this section we consider the prin-
cipal tool, Bayes factors, that is used in Bayesian analysis to evaluate the strength
of evidence in favor of the null hypothesis (model). It also serves as a criterion for
model selection, irrespective of whether nested or nonnested pairs of models are un-
der consideration. In the econometrics literature, Zellner (1971, 1978) provided an
early discussion in the context of model selection. Our treatment is based on Kass and
Raftery’s (1995) review article.

Denote the data by y and the two hypotheses under consideration, possibly
nonnested, by H1 and H2. Prior probabilities of the two hypotheses are Pr[H1] and
Pr[H2]. The corresponding dgps are Pr[y|H1] and Pr[y|H2] = 1 − Pr[y|H1]. The prior
probabilities of the models are transformed to posterior probabilities by the sample ev-
idence as reflected in the likelihood. By Bayes’ Theorem

Pr[Hk |y] = Pr[y|Hk]Pr[Hk]

Pr[y|H1]Pr[H1] + Pr[y|H2]Pr[H2]
, k = 1, 2, (13.52)

and the posterior odds ratio

Pr[H1|y]

Pr[H2|y]
= Pr[y|H1]Pr[H1]

Pr[y|H2]Pr[H2]
≡ B12

Pr[H1]

Pr[H2]
, (13.53)

where B12 = Pr[y|H1] /Pr[y|H2], is called the Bayes factor. Hypothesis 1 is preferred
if the posterior odds ratio exceeds one. The right-hand side of (13.53) expresses the
posterior odds ratio as the product of the Bayes factor and the prior odds. If a priori the
two models are equally probable, so Pr[H1] = Pr[H2], then the Bayes factor equals
the posterior odds in favor of H1. If several hypotheses are involved the Bayes factor
can be computed for all pairs of hypotheses. The Bayes factor is defined even if the
hypotheses are not nested.

The Bayes factor has the form of a likelihood ratio. It depends on unknown parame-
ters, denoted by vectors θ1 and θ2, that are eliminated by averaging or integrating over
the parameter space with respect to the prior, so

Pr [y|Hk] =
∫

Pr [y|θk, Hk]π (θk |Hk) dθ, k = 1, 2. (13.54)

From Section 13.2.5, this equation gives the marginal and the predictive probability of
the data given the prior distribution.

A complication is that this expression depends on all the constants that appear in the
likelihood. These constants can be neglected when evaluating the posterior, but they
are required for the computation of the Bayes factor. The integral in (13.54) may need
to be numerically evaluated if it does not have an explicit solution using, for example,
importance sampling. There is a substantial literature, reviewed in Kass and Raftery
(1995), on the computation of the Bayes factor that we will not pursue here. We note
that there are some asymptotic approximations to the Bayes factors that are readily
computable using output from packages that maximize likelihoods.
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Table 13.4. Interpretation of Bayes Factors

Bayes Factor B12 2 ln(B12) Evidence against H1

1 to 3 0 to 2 weak
3 to 20 2 to 6 positive
20 to 150 6 to 10 strong
>150 >10 very strong

Interpretation of the Bayes factor is in terms of evidence against the H1. “The Bayes
factor is a summary of the evidence provided by the data in favor of one scientific
theory, represented by a statistical model, as opposed to another” (Kass and Raftery,
1995, p. 777). In the frequentist analysis twice the log-likelihood ratio is an often-used
quantity. Similarly, twice the log of the Bayes factor is a criterion used in evaluating
the evidence. Kass and Raftery present the following categorization of the strength of
evidence against the null model that they have found useful in their own work; see
Table 13.4.

Suppose that two models under comparison are nested. Denote by H0 the con-
strained model and H1 the model that is unconstrained. A pairwise comparison of the
two models using the posterior odds ratio requires computation of the Bayes factor, as
shown earlier. The Bayes factor for the null hypothesis model is defined as

B01 = m(y|H0)

m(y|H1)

where m(y|Hj ) is the marginal likelihood of the model specification Hj . If the models
H0 and H1 are nested, then the Savage-Dickey density ratio approach (see Verdinelli
and Wasserman, 1995) can be taken to calculate the Bayes factors.

An important insight due to Chib (1995) has made the computation of Bayes factors
a great deal easier than suggested by the earlier literature, irrespective of whether the
models are nested or nonnested. His approach consists of two related ideas. The first
rewrites the marginal density, for a given model Hk , m(y) as a ratio

m(y) = f (y|θ)π(θ)

π(θ|y)
, (13.54)

where the numerator is the product of the density (inclusive of constants) and the prior,
and the denominator is the posterior density of θ. This result is a rearrangement of the
terms in equation (13.1), with the qualification that we have used the notation m(y) in
place of f (y) or Pr[y|Hk] used earlier; it merely states that the marginal density is the
normalizing constant. Second, after a successful application of an MCMC algorithm,
we will have available a Monte Carlo estimate of the posterior density estimate π(̃θ|y)
at a given point θ̃. Then it follows that

ln m̂(y) = ln f (y|̃θ) + lnπ (̃θ) − lnπ(̃θ|y). (13.55)

Therefore, given estimates of the terms on the right-hand side, the marginal density can
be readily computed using the output from a Gibbs sampler. This approach has been
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extended in Chib and Jeliazkov (2001) to the case where the output is instead from a
Metropolis-Hastings algorithm.

In complex and highly parameterized models, the computation of the Bayes factor
is a nontrivial matter. However, it can be shown that the Schwarz criterion, also known
as the Bayes information criterion (see Section 8.5), gives a rough approximation to
the log of the Bayes factor. Recall that BIC = −2 ln L(̂θML) + ln Nq . This is easy to
compute if the value of the log-likelihood is available.

From (13.52) it is obvious that the ratio of prior probabilities of the model plays a
role in evaluating the evidence against the null. In many situations, the investigator may
have little to go on in assigning these probabilities. This consideration has received
some attention in the literature that deals with the sensitivity of the Bayes factor to the
prior model probabilities.

13.9. Practical Considerations

The use of Markov chain methods has now become dominant in the Bayesian lit-
erature. Because the methods are computer intensive, good software is essential. At
the time of writing, the WinBUGS package, a later version of the BUGS (Bayesian
inference Using Gibbs Sampling) package (Gilks et al., 1996), has been widely rec-
ommended and found to be especially useful for hierarchical models and missing data
problems. It is available at the BUGS Web site. More detailed information about other
Bayesian software can be found in Gamerman (1997, Section 5.6).

The issue of how long to run the chain continues to be an active area of research. Di-
agnostic checks for convergence are available and have been mentioned, but they often
do not have universal applicability. Cappè and Robert (2000) provide a review of the
issues of implementation including stopping rules. The complexity of the conditional
distributions is clearly an important factor. Graphs of output for scalar parameters from
the Markov are a visually attractive way of confirming convergence, but more formal
approaches are available (Geweke, 1992). Another suggestion, due to Gelman and
Rubin (1992), is to use multiple (parallel) Gibbs samplers, each beginning with differ-
ent starting values to see if different chains converge to the same posterior distribution.
Zellner and Min (1995) propose several convergence criteria that can be used if the
posterior can be written explicitly.

13.10. Bibliographic Notes

There are several excellent book-length treatments with emphasis on modern computational
methods for Bayesian analysis, including those by Gamerman (1997) and Gelman et al. (1995).
Relatively accessible treatments are provided by Gill (2002), Koop (2003), and Lancaster
(2004). Koop presents Bayesian methods for many standard nonlinear cross-section models and
for panel data. The older texts by Zellner (1971) and Leamer (1978) are still valuable sources
of results.

13.2 Stigler (1986) provides a good exposition of the work of Bayes (1764). Bayes first pre-
sented some properties of probability, notably Pr[A|B] = Pr[A ∩ B]/Pr[B]. Bayes then
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applied this result to obtaining the posterior probability Pr[a < θ < b|y], where a and
b are specified bounds, y is the number of successes in N binomial trials, and θ is the
unknown probability of success in each trial. Bayes chose a uniform prior, in which case
the posterior density f (θ |y) ∝ f (y|θ ). Bayes’ example was challenging as he could not
accurately calculate the posterior probability, which involved the incomplete gamma, not
tabulated until the 20th century. Bayes’ paper was initially neglected. A more commonly
used approach due to Laplace and others was the method of inverse probability that also let
f (θ |y) ∝ f (y|θ ). These methods were supplanted by maximum likelihood, introduced by
Fisher (1922), whose paper directly critiqued Bayesian and inverse-probability methods.

The regularity conditions for convergence to posterior normality are discussed in Heyde
and Johnstone (1979). Train (2003) provides an excellent but less formal treatment of the
so-called Bernstein–von Mises Theorem.

13.3 Zellner (1971) and Leamer (1978) are excellent sources for Bayesian analysis of linear
regression.

13.4 Geweke (1989) and Geweke and Keane (2001) are valuable references on Monte Carlo
integration.

13.5 Casella and George (1992) provide an expository treatment of the Gibbs sampler. Nu-
merous papers by Chib and his collaborators and Geweke and his collaborators cover
many topics of interest in microeconometrics. Chib and Greenberg (1996, Section 3) pro-
vide a number of applications of MCMC, including the seemingly unrelated regression
model and the Tobit and probit models. In the latter case they show the computational
simplification that results from combining Gibbs sampling with the data augmentation
approach. Data augmentation is used to handle latent variables that are introduced to
deal with the underlying unobservables that arise naturally in many censored and dis-
crete choice models. Chib (2001) provides a detailed and up-to-date survey that includes
MCMC algorithms for many leading linear and nonlinear regression models. Geweke and
Keane (2000) concentrate on the methods of integration; they cover both Bayesian and
non-Bayesian topics.

Exercises

21–1 Show that if β|λ ∼ N [µ, λ−1Σ], and λ ∼ Gamma[α/2, α/2], then the uncondi-
tional distribution of β is a multivariate t-distribution with parameters (µ,Σ, α).

21–2 (Adapted from Chib, 1992). Consider the censored regression or Tobit model
(see Section 16.3) where y ∗ = x′β + ε, ε ∼iid N [0, σ 2], and y is observed when
y ∗ > 0 but is not observed (censored) when y ∗ ≤ 0. There are N0 censored ob-
servations on y, and y0 refers to them. Introduce a latent variable z that cor-
responds to the censored observations such that zi < 0 if the i th observation
belongs to the censored set. The data augmentation method can be used to
draw latent variables zi , a set of independent random variables distributed as
truncated normal, with support (−∞,0) and pdf φ(zi |yi ,β,σ

2)/(1 −�(x′
iβ/σ )),

−∞ < zi < 0, where φ and � are, respectively the normal pdf and cdf. Use a
normal prior for β and a gamma prior for σ−2.

(a) Show that it is possible to specify a full set of conditionals for zi , β, and σ−2.
(b) Use the results of part (a) to outline the Gibbs algorithm for simulating zi , β,

and σ−2.
(c) Explain how suitable initial values of β and σ−2 may be obtained.
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Models for Cross-Section
Data

Part 4, consisting of chapters 14 to 20, covers the core nonlinear limited dependent
variable models for cross-section data, defined by the range of values taken by the
dependent variable. Topics covered include models for binary, multinomial, duration
and count data. The complications of censoring, truncation and sample selection are
also studied. The essential base for Part 4 is least squares and maximum likelihood
estimation.

Chapters 14–15 cover models for binary and multinomial data that are standard in
the analysis of discrete outcomes and discrete choice. Maximum likelihood methods
are dominant. Different parameterizations for the conditional probabilities in these
models lead to different models, notably logit and probit models, which are well-
established. Recent literature has focused on less restrictive modeling with more flex-
ible functional forms for conditional probabilities and on accommodating individual
unobserved heterogeneity. These objectives motivate the use of semiparametric meth-
ods and simulation-based estimation methods.

Censoring, truncation, or sample selection generate several important classes of
models that are analyzed in Chapter 16. The long-established Tobit model is central to
this literature, but its estimation and inference rely on strong distributional assumptions
to permit consistent estimation. We also examine the newer semiparametric methods
that rely on weaker assumptions.

Chapters 17–19 consider duration models in which the focus is on either the de-
terminants of spell lengths, such as length of an unemployment spell, or on modeling
the hazard rate of transitions from one initial state to another. The analysis covers
both discrete and continuous time models, and both parametric and semiparametric
formulations, including the standard models like the exponential, the Weibull, and
the proportional hazards model. Chapter 18 covers formulation and interpretation of
richer models that incorporate unobserved heterogeneity. The relative importance of
state dependence and unobserved heterogeneity as determinants of the average length
of spell is a central issue, whose resolution raises fundamental questions about alterna-
tive modeling approaches. Chapter 19 deals with models with several types of events
using the competing risks formulation and models of multiple spells.
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Chapter 20 covers the analysis of event count of the kind very common in health
economics. There are many strong connections and parallels between count data mod-
els and duration models because of their common foundation in stochastic processes.
We analyze the widely-used Poisson and negative binomial regression models, to-
gether with important variants such as the two-part or hurdle model, zero-inflated
models, latent class models, and endogenous regressor models, all of which accom-
modate different facets of the event processes.
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C H A P T E R 14

Binary Outcome Models

14.1. Introduction

Discrete outcome or qualitative response models are models for a dependent variable
that indicates in which one of m mutually exclusive categories the outcome of interest
falls. Often there is no natural ordering of the categories. For example, categorization
may be on the occupation of a worker.

This chapter considers the simplest case of binary outcomes, where there are
two possible outcomes. Examples include whether or not an individual is employed
and whether or not a consumer makes a purchase. Binary outcomes are simple
to model and estimation is usually by maximum likelihood because the distribu-
tion of the data is necessarily defined by the Bernoulli model. If the probabil-
ity of one outcome equals p, then the probability of the other outcome must be
(1 − p). For regression applications the probability p will vary across individuals
as a function of regressors. The two standard binary outcome models, the logit and
the probit models, specify different functional forms for this probability as a func-
tion of regressors. The difference between these estimators is qualitatively simi-
lar to use of different functional forms for the conditional mean in least-squares
regression.

Section 14.2 provides a data example. Section 14.3 presents a summary of
statistical results for standard models including logit and probit models. In Sec-
tion 14.4 binary outcome models are presented as arising from an underlying
latent variable. This formulation is useful as it extends readily to multinomial
models (see Chapter 15) and models for censored and selected samples (see
Chapter 16). Section 14.5 details necessary modifications to standard estimation
methods when one of the outcomes is deliberately oversampled. Aggregation is-
sues are considered in Section 14.6. Semiparametric methods for binary outcome
models that place less structure on the model for the probability p are given in
Section 14.7.
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BINARY OUTCOME MODELS

14.2. Binary Outcome Example: Fishing Mode Choice

This section models choice between fishing from a charter boat and fishing from a pier.
The dependent variable is binary with

yi =
{

1 if fishing from a charter boat,
0 if fishing from a pier,

where the values 1 and 0 are chosen for simplicity. The single explanatory variable is
xi = ln relpi = ln(relpi ) where relp denotes the price of charter fishing relative to the
price of fishing from the pier, so

xi = ln relpi = ln
(
pricecharter,i/pricepier,i

)
.

The prices of charter boat and pier fishing vary across individuals owing to various
factors, for example, to differences in access. It is expected that the probability of
charter boat fishing decreases as its relative price increases.

The data are summarized in Table 14.1. The sample of 630 individuals is a subset
of the data described in greater detail in Section 15.2, where four different modes of
fishing and additional regressors are considered. Charter boat fishing was selected by
71.7% of the sample. For people choosing to fish from the charter boat, the charter boat
was on average less expensive than pier fishing, as $75 < $121. For people choosing
to fish from the pier the reverse was true. So it appears that price has the expected
effect.

An OLS regression of yi on xi ignores the discreteness of the dependent variable
and does not constrain predicted probabilities to be between zero and one.

A more appropriate model is the logit model (see Section 14.3.4), which specifies

pi = Pr[yi = 1|xi ] = exp(β1 + β2xi )

1 + exp(β1 + β2xi )

and clearly ensures that 0 < pi < 1. Maximum likelihood estimation (see Sec-
tion 14.3.3) leads to parameter estimates given in the first column of Table 14.2. The
implied marginal effect for the logit model equals

dpi

dxi
= exp(β1 + β2xi )

(1 + exp(β1 + β2xi ))2
β2.

Table 14.1. Fishing Mode Choice: Data Summary

Subsample Averages

y = 1 y = 0 All y
Variable Charter Pier Overall

Price charter ($) 75 110 85
Price pier ($) 121 31 95
ln relp −0.264 1.643 0.275
Sample probability 0.717 0.283 1.000
Observations 452 178 630
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14.3 . LOGIT AND PROBIT MODELS

Table 14.2. Fishing Mode Choice: Logit and Probit Estimatesa

Regressor Logit Model Probit OLS

Constant 2.053 1.194 0.784
(12.15) (13.34) (65.58)

ln relp −1.823 −1.056 −0.243
(−12.61) (−13.87) (−28.15)

− ln L −206.83 −204.41 −
Pseudo R2 0.449 0.455 0.463

a Dependent variable y = 1 if charter boat fishing and y = 0 if pier fishing. Regressor
x = ln relp, the natural logarithm of the price of charter boat fishing relative to pier
fishing. Intercept and slope parameter estimates with t-statistics in parentheses are
from ML estimation of logit and probit models and from OLS estimation.

Since β̂2,LOGIT < 0 it follows that dpi/dxi < 0, as expected. The actual magnitude of
the marginal effect varies with the point of evaluation xi (see Section 14.3.2). An ap-
proximation for the logit model, though not other models, is that dpi/dxi � ȳ(1 −
ȳ )̂β2 = −0.370. An OLS regression instead provides a direct estimate of −0.243.

An alternative model is the probit model (see Section 14.3.5), which specifies

pi = Pr[yi = 1|xi ] = �(β1 + β2xi ),

where �(·) is the cumulative distribution function for the standard normal, so pi =∫ β1+β2xi

−∞ (2π )−1/2e−z2/2dz. The ML coefficients are given in the second column of Ta-
ble 14.2 and differ appreciably from the logit coefficients. Since different specifications
are being estimated the coefficients are not comparable. This is similar to our inabil-
ity to compare coefficients in models with conditional mean x′β and exp(x′β). For
the probit model dpi/dxi = φ(β1 + β2xi )β2, where φ(·) is the density for the standard
normal. So again dpi/dxi < 0 since β̂2,PROBIT < 0.

Although the slope coefficients necessarily differ across the models, from Ta-
ble 14.2 the t-statistics are similar and are all very high. The log-likelihood for
the probit model is 2.42 higher than that for the logit, favoring the probit model
since both models use the same number of parameters. In many other examples there
is little difference in ln L across the models. The predicted probabilities from the
three models are plotted as a function of x in Figure 14.1. In OLS we assume that
Pr[yi = 1|xi ] = β1 + β2xi is linear in xi , whereas the nonlinear functions for logit and
probit are essentially equivalent.

14.3. Logit and Probit Models

We now provide more formal theory for these models. We present binary outcomes
as a direct extension of the coin-toss example of introductory statistics to situations
where the probability of success is modeled to depend on regressors. Two commonly
used parameterizations lead to the logit and probit models. Motivation for these pa-
rameterizations, using latent variables, is deferred to Section 14.4.
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Figure 14.1: Charter boat fishing: predicted probability from logit and probit models and
OLS prediction when the single regressor is the natural logarithm of relative price. Actual
outcomes of 1 or 0 are also plotted after jittering for readability. Data for 620 individuals.

14.3.1. General Binary Outcome Model

For binary outcome data the dependent variable y takes one of two values. We let

y =
{

1 with probability p,
0 with probability 1 − p.

There is no loss of generality in setting the values to 1 and 0 if all that is being modeled
is p, which determines the probability of the outcome. In introductory statistics this
model describes the outcome of a coin toss where heads leads to y = 1 and occurs
with probability p.

A regression model is formed by parameterizing the probability p to depend on a
regressor vector x and a K × 1 parameter vector β. The commonly used models are
of single-index form with conditional probability given by

pi ≡ Pr[yi = 1|x] =F(x′
iβ), (14.1)

where F(·) is a specified function. To ensure that 0 ≤ p ≤ 1 it is natural to specify
F(·) to be a cumulative distribution function.

Table 14.3 presents the most commonly used binary outcome models. The logit
model arises if F(·) is the cdf of the logistic distribution and the probit model arises
if F(·) is the standard normal cdf. Note that if F(·) is a cdf, then this cdf is only
being used to model the parameter p and does not denote the cdf of y itself. The
less-used complementary log-log model arises if F(·) is the cdf of the extreme value
distribution. It differs from the other models in being asymmetric around zero and is
used when one of the outcomes is rare. The linear probability model does not use a
cdf and instead lets pi = x′

iβ.

466



14.3 . LOGIT AND PROBIT MODELS

Table 14.3. Binary Outcome Data: Commonly Used Models

Model Probability (p = Pr[y = 1|x]) Marginal Effect (∂p/∂xj)

Logit �(x′β) = ex′β

1 + ex′β �(x′β)[1 −�(x′β)]β j

Probit �(x′β) = ∫ x′β
−∞ φ(z)dz φ(x′β)β j

Complementary log-log C(x′β) = 1 − exp(− exp(x′β)) exp(− exp(x′β)) exp(x′β)β j

Linear probability x′β β j

14.3.2. Marginal Effects

Interest lies in determining the marginal effect of change in a regressor on the condi-
tional probability that y = 1. For general probability model (14.1) and change in the
j th regressor, assumed to be continuous, this is

∂ Pr[yi = 1|xi ]

∂xi j
= F ′(x′

iβ)β j , (14.2)

where F ′(z) = ∂F(z)/∂z. The marginal effects differ with the point of evaluation xi ,
as for any nonlinear model, and differ with different choices of F(·). The last column
of Table 14.3 gives the marginal effects for the common binary outcome models.

Marginal effects for nonlinear models are discussed in Section 5.2.4. Given a spe-
cific model there are several ways to compute an average marginal effect. It is best to
use N−1∑

i F ′(x′
i β̂)̂β j , the sample average of the marginal effects. Some programs

instead evaluate at the sample average of the regressors, F ′(x̄′β̂)̂β j . An easily con-
structed measure evaluates at ȳ, the sample average of y, so that F(x′β) = ȳ and
F ′(x′β) = F ′(F−1(ȳ)). This is especially simple for the logit model as then this yields
estimated marginal effect ȳ(1 − ȳ )̂β j . Further discussion for specific models is given
in Sections 14.3.4–14.3.7.

Many studies instead report only the regression coefficients. The standard binary
outcome models are single-index models, so the ratio of coefficients for two different
regressors equals the ratio of the marginal effects. The sign of the coefficient gives
the sign of the marginal effect, since F ′(·) > 0. The coefficients can be used to obtain
an upper bound on the marginal effects. For the logit model ∂p/∂x j ≤ 0.25β̂ j , since
�(x′β)(1 −�(x′β)) ≤ 0.25, with maximum when�(x′β) = 0.5 and x′β = 0. For the
probit model ∂p/∂x j ≤ 0.4β̂ j , since φ(x′β) ≤ 1/

√
2π � 0.4, with maximum when

�(x′β) = 0.5 and x′β = 0.

14.3.3. ML Estimation

We consider estimation given a sample (yi , xi ), i = 1, . . . , N , where we assume inde-
pendence over i . Results are given for pi defined in (14.1), with specialization to logit
and probit specifications given later.
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MLE for General Binary Outcome Models

The outcome is Bernoulli distributed, the binomial distribution with just one trial. A
very convenient compact notation for the density of yi , or more formally its probabil-
ity mass function, is

f (yi |xi ) = pyi

i (1 − pi )
1−yi , yi = 0, 1, (14.3)

where pi = F(x′
iβ). This yields probabilities pi and (1 − pi ) since f (1) = p1(1 −

p)0 = p and f (0) = p0(1 − p)1 = 1 − p.
The density (14.3) implies log density ln f (yi ) = yi ln pi + (1 − yi ) ln(1 − pi ).

Given independence over i and model (14.1) for pi , the log-likelihood function is

LN (β) =
N∑

i=1

{
yi ln F(x′

iβ) + (1 − yi ) ln(1 − F(x′
iβ))
}
. (14.4)

Differentiating with respect to β, we have that the MLE β̂ML solves

N∑
i=1

{
yi

Fi
F ′

i xi − 1 − yi

1 − Fi
F ′

i xi

}
= 0,

where Fi = F(x′
iβ), F ′

i = F ′(x′
iβ), and F ′(z) = ∂F(z)/∂z. Converting to fractions

with common denominator Fi (1 − Fi ) and simplifying yields the ML first-order con-
ditions

N∑
i=1

yi − F(x′
iβ)

F(x′
iβ)(1 − F(x′

iβ))
F ′(x′

iβ)xi = 0. (14.5)

There is no explicit solution for β̂MLE, but the Newton–Raphson iterative procedure
usually converges very quickly since for the probit and logit models, at least, the log-
likelihood is globally concave.

Consistency of the MLE

The MLE is consistent if the conditional density of y given x is correctly specified.
Since the density here must be the Bernoulli, the only possible misspecification is that
the Bernoulli probability is misspecified. So the MLE is consistent if pi ≡ F(x′

iβ) and
is inconsistent otherwise.

More formally, note that for binary data, E[y] = 1 × p + 0 × (1 − p) = p. Given
(14.1) this implies

E[yi |xi ] = F(x′
iβ), (14.6)

which in turn implies that the left-hand side of the first-order equations (14.5) has
expected value zero, the essential condition for consistency. This special result of con-
sistency provided the conditional mean is correctly specified holds for LEF densities
(see Section 5.7.3) and the Bernoulli is an LEF density.
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14.3 . LOGIT AND PROBIT MODELS

Distribution of the MLE

Given correct specification of the density, β̂ML
a∼ N [β,

(−E[∂2LN/∂β∂β
′]
)−1

] (see
Section 5.6.4). Differentiating (14.4) with respect to β′, and taking minus the expected
value yields the estimated asymptotic variance matrix

V̂[β̂ML] =
(

N∑
i=1

1

F(x′
i β̂)(1 − F(x′

i β̂))
F ′(x′

i β̂)2xi x′
i

)−1

, (14.7)

where simplification occurs because E[yi − F(x′
iβ)] = 0. This variance matrix is of

the simple form (
∑

i ŵi xi x′
i )

−1, where the weights ŵi are given in (14.7).
Since consistency requires only correct specification of the conditional mean or

probability, it is natural to consider the quasi-MLE (see Section 5.7) and base infer-
ence on the sandwich form of the variance matrix A−1BA−1 rather than −A−1 used in
(14.7). Here

V[yi |xi ] = F(x′
iβ)(1 − F(x′

iβ)), (14.8)

since V[y] = (1 − p)2 × p + (0 − p)2 × (1 − p) = p(1 − p). Some algebra shows
that this implies that A = −B and hence A−1BA−1 = −A−1, assuming independence
over i . The only way that (14.8) does not hold is if p �= F(x′β) in which case the MLE
would suffer from the more fundamental problem of inconsistency.

Binary outcome models are unusual in that there is no advantage in using the sand-
wich form if data are independent over i . The only reason for moving to a robust vari-
ance matrix estimate is if observations are correlated over i as the result of clustering.
Then the robust estimate needs to be one that is robust to clustering (see Section 24.5)
rather than to misspecification of the conditional variance.

14.3.4. Logit Model

The logit model or logistic regression model specifies

p = �(x′β) = ex′β

1 + ex′β , (14.9)

where �(·) is the logistic cdf (see Section 14.4.1 for further details), with �(z) =
ez/(1 + ez) = 1/(1 + e−z).

The logit MLE first-order conditions (14.5) simplify to

N∑
i=1

(yi −�(x′
iβ))xi = 0, (14.10)

since �′(z) = �(z)[1 −�(z)]. So the raw residual yi −�(x′
iβ) is orthogonal to the

regressors, similar to OLS regression. This simple form arises because �(·) is the
canonical link function (see Section 5.7.4) for the Bernoulli density.

If the regressors xi include an intercept, then (14.10) implies that
∑

i (yi −
�(x′

i β̂)) = 0, so the logit residuals sum to zero. This implies that the average in-sample
predicted probability N−1∑

i �(x′
i β̂) necessarily equals the sample frequency ȳ.
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The marginal effects for the logit model can be fairly easily obtained from the
coefficients, since ∂pi/∂xi j = pi (1 − pi )β j , where pi = �i = �(x′

iβ). Evaluating at
pi = ȳ yields a crude estimated marginal effect of ȳ(1 − ȳ )̂β j . For 0.3 < pi < 0.7,
for example, ∂pi/∂xi j lies between 0.21β j and 0.25β j . For data where pi � 0.0, in
which case most outcomes are zero, ∂pi/∂xi j = piβ j so β j gives the proportionate
effect on the probability that yi = 1 as xi j changes.

In the statistics literature a very common interpretation of the coefficients is in terms
of marginal effects on the odds ratio rather than on the probability. For the logit model

p = exp(x′β)/(1 + exp(x′β)
⇒ p

1−p = exp(x′β)

⇒ ln p
1−p = x′β.

(14.11)

Here p/(1 − p) measures the probability that y = 1 relative to the probability that
y = 0 and is called the odds ratio or relative risk. For example, consider a phar-
maceutical drug study where y = 1 denotes survival and y = 0 denotes death and
regressors include a measure of drug intake. An odds ratio of 2 means that the odds of
survival are twice those of death. For the logit model the log-odds ratio is linear in the
regressors.

Statistical analyses and packages use the second equality in (14.11). Suppose the
j th regressor increases by one unit. Then exp(x′β) increases to exp(x′β + β j ) =
exp(x′β) × exp (β j ). It follows from (14.11) that the odds ratio has increased by a mul-
tiple exp (β j ). Thus a logit model slope parameter of 0.1, for example, means that a
one unit increase in the regressor multiplies the initial odds ratio by exp(0.1) � 1.105.
This is a proportionate increase of 0.105 times the initial odds ratio, so the relative
probability of survival increases by 10.5%. This interpretation of the logit model is
widely used in biostatistics applications.

For economists it is more natural to interpret either the second or third equality in
(14.11) as implying that β j is a semi-elasticity. Then, taking a calculus approach, we
interpret a logit model slope parameter of 0.1 as meaning that a one-unit increase in
the regressor increases the odds ratio by a multiple 0.1. This coincides exactly with the
interpretation used in statistics for very small β j , since then exp(β j ) − 1 � β j .

14.3.5. Probit Model

The probit model specifies the conditional probability

p = �(x′β) =
∫ x′β

−∞
φ(z)dz, (14.12)

where �(·) is the standard normal cdf, with derivative φ(z) = (1/
√

2π ) exp(−z2/2),
which is the standard normal density function.

The probit MLE first-order conditions are that

N∑
i=1

wi (yi −�(x′
iβ))xi = 0,
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where, unlike the logit model, the weight wi = φ(x′
iβ)/[�(x′

iβ)(1 −�(x′
iβ))] varies

across observations.
The probit model marginal effects are ∂pi/∂xi j = φ(x′

iβ)β j = φ(�−1(pi ))β j ,
where pi = �(x′

iβ). There are no further simplifications similar to those for the logit
model, though ∂pi/∂xi j ≤ 0.40β j since φ(z) ≤ φ(0.5) = 1/

√
2π .

The probit model is not as simple as the logit model. It is nevertheless widely used
as it is the natural model if the starting point is a latent normal regression model (see
Section 14.4).

14.3.6. OLS Estimation

A simple alternative to either logit or probit is OLS regression of y on x. This has
the obvious deficiency that it is possible to obtain predicted probabilities x′

i β̂ that are
negative or that exceed one.

The OLS estimator is nonetheless useful as an exploratory tool. In practice it pro-
vides a reasonable direct estimate of the sample-average marginal effect on the prob-
ability that y = 1 as x changes, even though it provides a poor model for individual
probabilities. In practice it provides a good guide to which variables are statistically
significant. In many applications it turns out that 0 < x′

i β̂ < 1 for all sample observa-
tions, in which case OLS is more reasonable.

If the OLS estimator is used then standard errors should correct for heteroskedas-
ticity. Linear regression is justified if the probability pi = x′

iβ. Then yi |xi has mean
x′

iβ and heteroskedastic variance x′
iβ(1 − x′

iβ) that varies with xi .
In theory more efficient ML estimation is possible if pi = x′

iβ. From (14.5) the ML
first-order conditions are

∑
i xi (yi − x′

iβ)/[x′
iβ(1 − x′

iβ)] = 0. The estimator can be
numerically unstable as it places very high weight on to observations with x′

iβ close
to 0 or 1. Moreover, the efficiency gains compared to OLS are often small.

Although OLS estimation with heteroskedastic standard errors can be a useful ex-
ploratory data analysis tool, it is best to use the logit or probit MLE for final data
analysis.

14.3.7. Choosing a Binary Model

Which model should be used – logit or probit? This question is explored in this section.

Theoretical Considerations

Theoretically the answer depends on the dgp, which is unknown. Unlike other appli-
cations of ML there is no problem in specifying the distribution – the only possible
distribution for a (0, 1) variable is the Bernoulli. The problem lies in specifying a
functional form for the parameter of this distribution. If the dgp has p = �(x′β) then
a logit model should be used, and estimators based on other models such as probit
are potentially inconsistent. Similar qualitative conclusions hold if instead the dgp has
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p = �(x′β), in which case the probit model should be used. It is very unlikely that
p = x′β since then p is not restricted to be between 0 and 1.

The theoretical consequences of model misspecification, however, are not as great
as this. If the regressors are distributed such that the mean of each regressor, condi-
tional on the linear combination x′β, is linear in x′β, then choosing the wrong function
F can be shown to affect all slope parameters equally so that the ratio of slope param-
eters is constant across models; see Ruud (1983). This condition is satisfied by the
family of spherical distributions, including the multivariate normal.

The logit model has a relatively simple form for the first-order conditions and
asymptotic distribution. Berkson (1951), who popularized the logit model, gave this
as one of several reasons for preferring the logit model to the original probit model.
Within the framework of generalized linear models, which are widely used in biostatis-
tics, the logit model is the natural model as it corresponds to use of the canonical link
for the binomial distribution. The interpretation of coefficients in terms of the log-odds
ratio is also an attraction of the logit model.

Yet another motivation for the logit model is discriminant analysis. In discriminant
analysis both y and x are random variables; x is observed but y is not observed. Given
x we need to determine whether y equals zero or one. A classic example is classifying
what type of humanoid (y = 0 or 1) a skull belongs to given various dimensions (x) of
the skull. If the conditional distributions of the characteristics x given y are multivariate
normal distributed, the posterior probability of y given x is similar to the probability in
the logit model. For more details, see Amemiya (1981, pp. 1507–1510) and Maddala
(1983, pp. 17–21).

The probit model, in contrast, has the attraction of being motivated by a latent nor-
mal random variable (see Section 14.4) and extends naturally to Tobit models (see
Chapter 16). For these reasons many economists use the probit model.

Empirical Considerations

Empirically, either logit and probit can be used. There is often little difference be-
tween the predicted probabilities from probit and logit models. The difference is great-
est in the tails where probabilities are close to 0 or 1. The difference is much less if
interest lies only in marginal effects averaged over the sample rather than for each
individual.

The natural metric to use to compare models is the fitted log-likelihood, since there
is agreement that the log-likelihood is correct, given the model for pi , and the logit and
probit models have the same number of parameters. Thus for each model compute

LN (β̂) =
∑

i

{yi ln p̂i + (1 − yi ) ln(1 − p̂i )} ,

where p̂i = �(x′
i β̂Logit) or p̂i = �(x′

i β̂Probit). Often the fitted log-likelihoods are very
similar for the two models, again suggesting little additional gain to using one rather
than the other model. For more formal nonnested model tests see Pesaran and Pesaran
(1995) and Section 8.5.
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The different models do yield quite different estimates β̂ of regression parameters.
However, this is just an artifact of using different formulas for the probabilities. It is
more meaningful to compare the marginal effect across models, as this measure is
scaled similarly across the three models. From Section 14.2.3, ∂p/∂x j ≤ 0.25β̂ j for
logit, ∂p/∂x j ≤ 0.4β̂ j for probit, and ∂p/∂x j = β̂ j for OLS. This suggests the rule
of thumb

β̂Logit � 4β̂OLS, (14.13)

β̂Probit � 2.5β̂OLS,

β̂Logit � 1.6β̂Probit.

Amemiya (1981, p. 1488) demonstrates that these comparisons work quite well for
slope parameters if 0.1 ≤ p ≤ 0.9. Greater departures across the models occur in
the tails. For logit an alternative method, based on (14.18) given later; uses β̂Logit �
(π/

√
3)β̂Probit.

Endogenous Regressors

Logit and probit models can be extended to handle many of the complications that
commonly arise in microeconometric analysis. In particular, endogenous regressors
are accommodated using methods similar to those for censored data given in Sec-
tion 16.8.2, and panel data methods are presented in Chapter 23.

For such complications it is easier to work with the linear probability model, since
then standard linear model methods can be applied provided standard errors adjust for
heteroskedasticity. Even if logit and probit models are ultimately used, a linear model
can be useful for exploratory analysis.

14.3.8. Determining Model Adequacy

Model diagnostics and selection for nonlinear models were presented in Section 8.7.
Here we consider specialization to binary outcome models. There is no single best
measure, and statistical packages accordingly report several measures detailed in
Amemiya (1981) and Maddala (1983).

Pseudo-R2

A standard measure of goodness of fit in the linear regression model is R2. Generaliza-
tions to nonlinear models are called pseudo-R2, with several generalizations possible.

A preferred measure is the relative gain measure denoted R2
RG in Section 8.7.1. This

measure is not always computable, but it is for the binary outcome model since Qmax,
the maximum possible value of the log-likelihood, is zero. To obtain this result note
that the best possible fit is clearly a y∗ that predicts y = 1 with probability p = 1 and
y = 0 with probability 1 − p = 0, in which case f (y∗) = 1 and ln f (y∗) = 0. Then
R2

RG = 1 − (0 − Qfit)/(0 − Q0) = 1 − Qfit/Q0. This yields the R2 measure for binary
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outcome models proposed by McFadden (1974):

R2
Binary = 1 − LN (β̂)

LN (ȳ) (14.14)

= 1 −
∑

i {yi ln p̂i + (1 − yi ) ln(1 − p̂i )}
N [ȳ ln ȳ + (1 − ȳ) ln(1 − ȳ)] ,

where p̂i = F(x′
i β̂) and ȳ = N−1∑

i yi .
Additional R2 measures, many specific to binary data, are given in Amemiya (1981)

and Maddala (1983). An obvious one is the squared sample correlation between yi

and p̂i . One of these additional measures is also attributed to McFadden, and many
references give this measure rather than the R2 in (14.14).

Predicted Outcomes

In the linear regression model goodness of fit is often evaluated by comparison of
fitted and actual values. For binary data the fitted value ŷ should be binary since y
is binary. The criterion

∑
i (yi − ŷi )2 gives the number of wrong predictions, which

arise if (y, ŷ) equals (1, 0) or (0, 1). An obvious prediction rule is to set ŷ = 1 when
p̂ = F(x′β̂) > 0.5. However, this has the weakness that if most of the sample has
y = 1 then often

∑
i (yi − ŷi )2 = n(1 − ȳ) since it is likely that p̂ > 0.5 and hence

ŷ = 1 for all the observations. Similar problems arise if most of the sample has y = 0.
More generally, a range of cutoff values may be considered. Letting ŷ = 1 when

p̂ > c, we obtain the receiver operating characteristics (ROC) curve which plots
the fraction of y = 1 values correctly classified against the fraction of y = 0 values
incorrectly specified as the cutoff c varies. For c = 1 all values are predicted to be 1,
so all y = 1 values are correctly specified and all y = 0 values are incorrectly specified
and the ROC curve takes value (0, 0). Similarly, for c = 0 the ROC curve takes value
(1, 1).

If the model has no predictive ability the ROC curve is a straight line between these
points. The more bowed the curve, and the more area under it, the better the predictive
power of the model.

Predicted Probabilities

Since binary data have a simple discrete distribution, an obvious approach is to
compare the sample average predicted probability that y = 1, N−1∑

i p̂i , where
p̂i = F(x′

i β̂), with the sample frequency ȳ. However, this is not useful for the logit
model with an intercept, since N−1∑

i p̂i = ȳ always holds as the ML first-order con-
ditions imply

∑
i [yi −�(x′

i β̂)] = 0. A similar result holds for estimation by OLS; for
the probit model the result is not exact but in practice is quite close.

This approach can be used for predictions over subsamples, however, and can then
form the basis for the chi-square goodness-of-fit test given in Section 8.2.6.
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14.4. Latent Variable Models

A latent variable is a variable that is incompletely observed. Latent variables can be
introduced into binary outcome models in two different ways. In the first the latent
variable is an index of an unobserved propensity for the event of interest to occur.
In the second the latent variable is the difference in utility that occurs if the event
of interest occurs, which presumes that the binary outcome is a result of individual
choice. The latter method makes clear the need to distinguish between regressors that
vary across alternatives for a given individual and regressors such as socioeconomic
characteristics that for a given individual are invariant across alternatives.

It should be stressed that the binary outcome is Bernoulli distributed, as in Sec-
tion 14.3. Latent variable models merely provide a rationale for a particular functional
form for the Bernoulli parameter.

Latent variable models do provide extensions to multinomial outcomes and cen-
sored outcomes (detailed in Chapters 15 and 16). They also provide a framework that
permits Bayesian analysis using data augmentation (see Section 13.7). Brief discus-
sion of Bayesian analysis of binary and multinomial data is given in Sections 15.7.2
and 15.8.2.

14.4.1. Index Function Models

In the index function formulation interest lies in explaining an underlying unobserved
continuous random variable y∗, but all we observe is the binary variable y, which takes
value 1 or 0 according to whether or not y∗ crosses a threshold. Different distributions
for y∗ lead to different binary outcome models.

Let y∗ be a latent (or unobserved) variable, such as the desire to work if labor supply
is being modeled. The natural regression model for y∗ is the index function model

y∗ = x′β + u. (14.15)

However, this model cannot be estimated as y∗ is not observed. Instead, we observe

y =
{

1 if y∗ > 0,
0 if y∗ ≤ 0,

(14.16)

where the threshold of zero is a normalization explained in the following.
Given (14.16),

Pr[y = 1|x] = Pr[y∗ > 0] (14.17)

= Pr[x′β + u > 0]

= Pr[−u < x′β]

= F(x′β),

where F is the cdf of −u, which equals the cdf of u in the usual case of density
symmetric about 0.

The index function model therefore provides motivation for the functional form of
F(·) in (14.1).
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Probit and Logit Models

The probit model arises if the error u is standard normal distributed, since then (14.17)
yields Pr[−u < x′β] = �(x′β), where �(·) is the cdf of the standard normal.

Now introduce the logistic distribution. In its standard form the logistic has cdf

�(u) = eu/(1 + eu), −∞ < u <∞. (14.18)

The density function�′(u) = eu/(1 + eu)2 is symmetric about 0, and a logistic random
variable has mean 0 and variance π2/3 � 1.8142.

The logit model arises if the error u is logistic distributed, since then (14.17) yields
Pr[−u < x′β] = �(x′β). Note that β is scaled differently in the two models due to
different V[u].

Identification Considerations

Identification of the single-index model requires a restriction on the variance of u, as
the single-index model can only identify β up to scale. All that is observed is whether
or not y∗ > 0, or equivalently whether or not x′β + u > 0. However, this is equivalent
to whether or not x′β+ + u+ > 0, where β+ = aβ and u+ = au for any a > 0. Plac-
ing a restriction on the variance of the error (u or u+) secures uniqueness of β. The
error variance is set to one in the probit model and π2/3 in the logit model.

The threshold for the index model need not be zero. If more generally y = 1 when
y∗ > z′δ then (14.17) becomes Pr[y = 1] = F(x′β − z′δ). Then δ can be separately
identified if and only if all components of z and x differ. In particular, if both x and
z include intercepts these cannot be separately identified, so we normalize the thresh-
old intercept to be zero. Note also that the mean of the error distribution needs to be
normalized. For the logit and probit models it is set to zero.

Discussion

The index function model implies a direct interpretation of β as the change in the
latent variable y∗ when x changes by one unit. Even though y∗ is unobserved, this
interpretation is meaningful if one uses knowledge of the specified variance of u. For
example, a slope parameter of 0.5 in the probit model means a one-unit change in
the regressor leads to a 0.5 standard deviation change in y∗, since in this model the
variance of y∗ equals 1.

Commonly used extensions of the index function approach are to ordered discrete
choice models (see Section 15.9) and to models for censored and selected samples (see
Chapter 16).

14.4.2. Random Utility Models

In the random utility formulation a consumer chooses between alternatives 0 and 1
according to which has the higher satisfaction or utility. The discrete variable y then
takes value 1 if alternative 1 has higher utility, and it takes value 0 if alternative 0 has
higher utility.
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The additive random utility model (ARUM) specifies the utilities of alternatives
0 and 1 to be

U0 = V0 + ε0, (14.19)
U1 = V1 + ε1,

where V0 and V1 are deterministic components of utility and ε0 and ε1 are random
components of utility. A simple example is V0 = x′β0 and V1 = x′β1, though from
Section 14.4.3 only (β1 − β0) is then identified.

The alternative with higher utility is chosen. We observe y = 1, say, if U1 > U0.
Owing to the presence of the random components of utility this is a random event
with

Pr[y = 1] = Pr[U1 > U0] (14.20)
= Pr[V1 + ε1 > V0 + ε0]
= Pr[ε0 − ε1 < V1 − V0]
= F(V1 − V0),

where F is the cdf of (ε0 − ε1). This yields Pr[y = 1] = F(x′β) if V1 − V0 = x′β.
The ARUM requires a scale normalization since if U1 > U0 then aU1 > aU0. This

is usually done by specifying the variance of ε0 − ε1 or the variances of ε0 and ε1.
Different specifications for the distributions of ε0 and ε1 give different F(·) and

hence different discrete choice models. The random utility formulation is especially
useful for specifying unordered multinomial choice models (see Section 15.5).

Probit and Logit Models

An obvious choice for error distribution in (14.19) is that ε0 and ε1 are normal. Then
(ε0 − ε1) is normally distributed. Normalization of the variance of (ε0 − ε1) to unity
gives the probit model since then F(·) in (14.20) is the standard normal cdf.

Now introduce the type 1 extreme value distribution or log Weibull distribution.
Then the random variable ε has density

f (ε) = e−ε exp(−e−ε), −∞ < ε <∞, (14.21)

and cdf F(ε) = exp(−e−ε). The extreme value distributions, rarely used in economet-
rics, are obtained as limiting distributions as N → ∞ of the maximum of N random
variables drawn from the same distribution. The type 1 extreme value distribution is
a special case that is right-skewed over (−∞,∞) with most of the mass between −2
and 5. It has median − ln(− ln(0.5)) � 0.36651, mean �′(1) � 0.57722, where �′(x)
denotes the derivative of the gamma function, and variance π2/6 � 1.282552. The
distribution is well approximated by a log-normal.

The logit model arises if ε0 and ε1 are assumed to be independent type 1 extreme
value distributed. Then the difference (ε0 − ε1) can be shown to be logistic distributed
(see Johnson and Kotz, 1970), so F(·) in (14.20) is the logistic cdf.

An alternative derivation of this result, working directly with the extreme value
distribution, is given later in Section 14.8. The derivation indicates the difficulty in
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obtaining closed-form solutions for probabilities when the ARUM is extended to
choice among three or more alternatives in Section 15.5. Recent computational ad-
vances permit estimation even in the absence of a closed-form solution.

14.4.3. Alternative-Varying Regressors

In most applications of binary choice models, some regressors vary across individuals,
but regressors do not necessarily vary across alternatives.

At the one extreme regressors do not vary across alternatives. For example, in labor
supply models of the decision to work, socioeconomic characteristics such as income
and gender do not vary across alternatives. A potential regressor, the wage rate, does
vary across the alternatives of work or not work, but this regressor is usually not in-
cluded as it is only observed for those who choose to work.

At the other extreme all regressors may vary across alternatives. For example, in
transportation mode choice models the regressors may be the time cost and money
cost of the two models of transportation.

A general hybrid ARUM defines the deterministic components of utility in (14.19)
to be

Vi j = z′
i jα j + w′

iγ j , j = 0, 1, (14.22)

where zi j are regressors that take different values across the two alternatives, whereas
wi are individual characteristics that do not vary with the choice. Then (14.20) yields

Pr[yi = 1] = F(z′
i1α1 − zi0

′α0 + w′
i (γ1 − γ0)).

For alternative-invariant regressors only the parameter difference (γ1 − γ0) can be
identified. For alternative-varying regressors that do vary across alternatives and
across individuals the coefficients can vary over alternatives, but it is customary to set
α1 = α0 = α. For example, the loss of utility resulting from a one-dollar increase in
travel costs is expected to be the same across different transportation modes. Thus the
ARUM leads to

Pr[yi = 1] = F((zi1 − zi0)′α + w′
i (γ1 − γ0)), (14.23)

which is the original binary choice model (14.1) where the regressors are alternative-
invariant regressors w and the difference across alternatives of alternative-varying re-
gressors z.

14.5. Choice-Based Samples

Choice-based sampling arises whenever selection of the sample is determined in part
by values taken by the dependent variable y, rather than being completely random or
being based in part by values taken by x.

Discrete data models are a leading example since surveys often deliberately over-
sample choices that are made infrequently. For example, if few people choose to
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commute by bus, an oversampling of bus riders may be undertaken. In the medical
literature the same problem arises with case-control analysis where, for example, a
binary data analysis may be based on a full sample of those who had a heart attack and
a subsample of people with similar characteristics who did not have a heart attack. The
standard term choice-based sampling is a little misleading since it does not arise from
individual choice.

To see the inconsistency of standard binary choice methods, consider estimation
of the logit model when the only regressor is the intercept. Then �(x′

iβ) = �(β)
and the logit MLE first-order conditions become N−1∑

i (yi −�(β)) = 0, so β̂ =
ln(ȳ/(1 − ȳ)). Consistency of β̂ clearly requires a random sample because, for ex-
ample, oversampling y = 1 leads to overestimation of ȳ and hence β̂.

Methods to obtain consistent estimates given endogenous sampling such as choice-
based sampling are covered in detail in Section 24.4. Analysis is straight-forward if
the degree of oversampling is known. Let Q1 denote the fraction of the population
with y = 1 and H1 = ȳ denote the fraction of the sample with y = 1. Similarly de-
fine Q0 = 1 − Q1 and H0 = 1 − H1. Then consistent estimation is possible using the
weighted MLE proposed by Manski and Lerman (1977). For binary outcome models
this maximizes the weighted log-likelihood

LW
N (β) =

N∑
i=1

{(
Q1

H1

)
yi ln F(x′

iβ) +
(

Q0

H0

)
(1 − yi ) ln(1 − F(x′

iβ))

}
.

For example, if outcomes y = 1 are oversampled, then Q1/H1 < 1 and the oversam-
pled observations with y = 1 are downweighted. This estimator is easily implemented
using any program for binary outcome models that permits weighting of observations.
Then observations with y = 1 are given weight Q1/H1 and observations with y = 0
are given weight Q0/H0.

A detailed summary of ML methods for choice-based sampling of binary and
multinomial data, including methods when Q1 and Q0 are unknown, is given in
Amemiya (1985, Section 9.5). The weighted MLE is inefficient but simple to imple-
ment and the efficiency loss may not be great. Manski and McFadden (1981a) pro-
posed a variation that is more efficient (see Amemiya and Vuong, 1987). Cosslett
(1981a,b) proposed further refinements that are fully efficient but impractical to im-
plement. Imbens (1992) and Lancaster and Imbens (1996) proposed GMM estimation
as an alternative method that is feasible to implement and is fully efficient. King and
Zeng (2001) give a summary for the binary logit model; additionally, they consider
small-sample corrections that, even with oversampling, make a difference when the
population probability of interest occurs with low probability. For further details see
Section 24.4.

The epidemiological literature has focused on the logit model for case-control
studies. The method is attributed to Prentice and Pyke (1979). See Breslow (1996),
especially his Section 4.3, which discusses links between the econometrics and
epidemiological literature.
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14.6. Grouped and Aggregate Data

In some applications only grouped or aggregate data may be available, yet individual
behavior is felt to be best modeled by a binary choice model. Grouping poses no prob-
lem when the grouping is based on unique values of the regressors and there are many
observations per unique value of the regressors. We begin with this simple example
before moving to more realistic ones.

14.6.1. Berkson’s Minimum Chi-Square Estimator

Suppose the regressor vector xi , i = 1, . . . , N , takes only T distinct values, where
T is much smaller then N . Then for each value of the regressors we have multiple
observations on y. This type of grouped data is called many observations per cell. It
can arise particularly in experimental data where x is of low dimension and is set by
experimental design to just a few values. Let xt , t = 1, . . . , T, be the T distinct values,
Nt be the number of observations on yt for the t th distinct value of x, so

∑T
t=1 Nt = N ,

and p̄t be the proportion of times yi = 1 when xi = xt . Note that the subscript t is
being used to denote grouping and does not necessarily denote time.

For individual i with xi = xt , the Bernoulli probability is

pt = Pr[yi = 1|xi = xt ] = F(x′
tβ), (14.24)

as before. Inverting (14.24) implies that

F−1(pt ) = x′
tβ.

Now pt is unknown but can be estimated by p̄t , so Berkson proposed regressing
F−1( p̄t ) on xt . Thus we estimate by LS the transformation model

F−1( p̄t ) = x′
tβ + vt , t = 1, . . . , T . (14.25)

The error term vt = F−1( p̄t ) − F−1(pt ) is heteroskedastic with variance that will de-
crease as Nt increases, since then p̄t is a better estimate of pt , and will also depend
on the shape of F(·). By Taylor series expansion (see Amemiya (1981, p. 1498) or
Maddala (1983, p. 31)), vt has variance that can be consistently estimated by

σ̄ 2
t = p̄t (1 − p̄t )

Nt [F ′(F−1( p̄t ))]2
. (14.26)

Berkson’s minimum chi-square estimator β̂MC minimizes the weighted sum of
residuals

∑T
t=1(F−1( p̄t ) − x′

tβ)/σ̄ 2
t with respect to β. This is easily computed by OLS

regression of F−1( p̄t )/σ̄ t on xt/σ̄ t .
This estimator is simple to implement, as it only requires an OLS package. Yet it

is fully efficient, as it can be shown to have the same asymptotic distribution as the
MLE that treats each observation separately, rather than grouping them into cells with
common regressor value xt . For the logit model this estimator is especially simple, as
F−1( p̄t ) = ln( p̄t/(1 − p̄t )) and σ̄ 2

t = 1/[Nt p̄t (1 − p̄t )].
The advantage of the minimum chi-square estimator is its computational simplicity,

although advances in computer power now make this point moot. Grouped economics
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data are rarely such that there are many observations within group per unique value
of the regressors, unless the regressors are just a few indicator variables. The method
does provide insights to aggregation, however, a topic we now consider.

14.6.2. Estimation with Aggregate Data

Econometrics examples of data aggregation include data on the proportion of people
working and data on the proportion of those commuting by bus in different regions,
explained by data on the average characteristics of people in the region.

As a concrete example, suppose p̄t equals the unemployment rate in region t and
x̄t equals the average level of schooling in region t . One possible model is LS regres-
sion of p̄t on x̄t . Because 0 < p̄t < 1, many studies instead transform to a dependent
variable that is unbounded, estimating the model

ln

(
p̄t

1 − p̄t

)
= x̄′

tβ + ut , (14.27)

where ut is an error.
This model looks similar to the minimum chi-square estimator for the logit model,

when F−1( p̄t ) = ln( p̄t/(1 − p̄t )). However, it is not because Berkson’s estimator is
only appropriate if all regressors in the t th cell take the same value. Here instead the
regressors can take different values, as different people in region t will have different
levels of schooling.

To see the consequences of aggregation when there is within-cell heterogeneity
in the regressors, suppose the individual-level model is an index model (see Sec-
tion 14.4.1) with

y∗
i = x′

iβ + ui ,

ui ∼ N [0, 1].

We choose to work with normal errors, corresponding to a probit rather than logit
model, because it is then possible to obtain analytical results. Model the heterogene-
ity as

xi ∼ N [µt ,Σt ],

for individuals in cell t . This realistically permits variation across cells, and the com-
plication is that Σt �= 0, so there is within-cell heterogeneity. Then in region t , condi-
tional on β,µt , and Σt ,

Pr[yi = 1] = Pr[x′
iβ+ui > 0]

= Pr

[
x′

iβ+ui −µ′
tβ)√

1+β′�tβ
>

−µ′
tβ√

1+β′�tβ

]
= �

(
µ′

tβ√
1+β′�tβ

)
,

where we use x′
iβ + ui ∼ N [µ′

tβ, (1 + β′Σtβ)] given the preceding assumptions and
then subtract the mean and divide by the standard deviation to transform to a standard
normal variate.
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By similar argument to that leading to (14.25) given (14.24), the underlying
individual-level binary choice parameters β can be consistently estimated by nonlinear
LS estimation of β in the regression

�−1(ȳt ) = x̄′
tβ√

1 + β′Stβ
+ wt , (14.28)

where ȳt and x̄t are cell averages and St is the sample variance of xi in cell t . The Berk-
son minimum chi-square estimate instead regresses �−1(ȳt ) on x̄t and is inconsistent
for β unless Σt = 0.

14.6.3. Discussion

Aggregation issues are much more complicated in nonlinear models. If the original
individual-level model was the linear model yi = x′

iβ + ui with xi ∼ N [µt ,Σt ] in
the t th cell, then the corresponding linear regression of ȳt on x̄t would yield a con-
sistent estimate of β. With nonlinear models similar aggregation leads to inconsistent
estimation of individual-level parameters, unless adjustment such as that in (14.28) is
undertaken. Furthermore, the example in Section 14.6.2, due to McFadden and Reid
(1975), is unusual in that aggregation of a nonlinear model leads to tractable results.
This example is discussed in considerable detail by Cameron (1990), who considers it
in the wider context of aggregation in nonlinear models.

An active area of aggregation in discrete choice, usually multinomial choice, is the
marketing literature on market shares of branded goods. Allenby and Ross (1991)
present examples where the bias of fitting aggregate logit models may not be great.
More importantly, recent computational advances permit estimation of individual-level
parameters with aggregate data even if aggregation yields no closed-form solution.
See, for example, Berry (1994) and Nevo (2001), who estimate models qualitatively
similar to the random parameters logit model in Section 15.7.

Finally, note that in many applications with aggregate proportions data, such as un-
employment rate by region, there is no desire to estimate individual-level parameters.
The only goal is a reasonable model for dependent variable p̄t that lies between zero
and one. Then the linear regression (14.27) may be fine. The error ut in (14.27) will no
longer have the variance given in (14.26). It will still be heteroskedastic, however, so
statistical inference should be based on White heteroskedastic-robust standard errors.

14.7. Semiparametric Estimation

The binary outcome model is perhaps the leading example of semiparametric re-
gression. Most econometrics studies presume a single-index form F(x′

iβ), where the
functional form for F is not specified. The goal is to obtain an estimate of β that
is consistent for β, ideally

√
N -consistent and asymptotically normal, while F(·) is

viewed as a nuisance function. The single-index model semiparametric estimators of
Section 9.7.4 can be applied. Additional estimators exploit the index function model
interpretation for binary outcomes. In addition, semiparametric ML estimation that
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attains the semiparametric efficienccy bounds is possible with little need for additional
assumptions, since it is clear that the distribution is Bernoulli and only F(x′

iβ) is not
known.

14.7.1. Semiparametric Conditional Mean Estimation

The estimation problem in general is one where the dependent variable yi takes value
0 or 1 with conditional mean

E[yi |xi ] = m(xi ),

where m(·) is unknown. Note that m(xi ) also equals the conditional probability that
yi = 1.

The nonparametric regression methods of Sections 9.4–9.6 can be applied, despite
the binary nature of the dependent variable. This is easily seen from Figure 14.1, a
scatterplot of binary variable y on scalar regressor x , a natural candidate for kernel
regression of y on x . The fitted values will lie between 0 and 1, aside from unusual
cases such as when higher order kernels are used, in which case the fitted variable can
take negative values.

In many microeconometrics applications x is of too high a dimension for nonpara-
metric methods to work well (the curse of dimensionality). Semiparametric regression
models that partially specify m(·) are given in Section 9.7. Additive models are fairly
popular in statistical applications. In econometrics single-index models are instead
used, since a popular starting point is the index function model of Section 14.4.1. This
yields a single-index model if the latent variable y∗ = x′β + u. Thus we suppose

E[yi |xi ] = F(x′
iβ),

where we follow the notation of this chapter and use F(·) rather than g(·) to denote the
unknown function.

From Section 9.7.4, β is only identified up to location and scale. This is also clear
from Section 14.4.1, where the error u in the index model was normalized to have
mean 0 (location) and the variance needed to be specified (scale). Here restrictions are
not placed on u, so β is not completely identified but the ratios of slope coefficients
are identified. See Manski (1988b) for a detailed analysis of identification in binary
choice models.√

N -consistent asymptotically normal estimates of β can be obtained by average
derivative estimation or by semiparametric least squares (see Section 9.7.4). However,
alternative estimators, specific to binary outcomes, are more often used.

14.7.2. Maximum Score Estimation

Semiparametric estimators for binary outcomes are often based on the index function
model y∗ = x′β + u for binary outcomes. In such cases it is convenient to write the
model as

yi = 1(x′
iβ + ui > 0),

where 1(A) = 1 if event A occurs.
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Manski (1975) noted that the predicted value of yi is 1(x′
iβ > 0), setting ui = 0

since ui is unknown, in which case a score of the number of correct predictions is

SN (β) =
N∑

i=1

{yi 1(x′
iβ > 0) + (1 − yi )1(x′

iβ ≤ 0)}, (14.29)

since correct predictions occur if yi = 1 and 1(x′
iβ > 0), or if yi = 0 and 1(x′

iβ ≤ 0).
Manski’s maximum score estimator β̂MS maximizes SN (β). This is a nonstandard
problem because 1(x′

iβ > 0) is not differentiable in β. Manski (1975, 1985) estab-
lished consistency assuming F(0) = 0.5, or equivalently that Median[ui |xi ] = 0. It
has subsequently been shown that N 1/3(β̂ms − β) has a nonnormal limit distribu-
tion, though inference can be performed using the bootstrap (Manski and Thompson
(1986)).

Manski’s estimator can be viewed as a least absolute deviations estimator. From
Section 4.6.2, the LAD estimator minimizes the sum of absolute differences between
yi and Median[yi |xi ]. This less familiar estimator is qualitatively similar to the LS es-
timator, which minimizes the sum of absolute differences between yi and E[yi |xi ].
To implement LAD here requires obtaining Median[yi |xi ]. If Median[ui |xi ] = 0
then Median[y∗

i |xi ] = x′
iβ, so Median[yi |xi ] = 1(x′

iβ > 0). Thus the binary outcome
model LAD estimator minimizes

QN (β) =
N∑

i=1

|yi − 1(x′
iβ > 0)|. (14.30)

From Exercise 14.4 QN (β) = N − SN (β), so the maximum score estimator equals the
LAD estimator. See Manski (1985, p. 320) for other interpretations of the maximum
score estimator as a LAD estimator.

The objective function SN (β) for the maximum score estimator given in (14.29) is
not differentiable. It can be rewritten as

SN (β) =
N∑

i=1

(2yi − 1)1(x′
iβ > 0) + N −

N∑
i=1

yi ,

see Exercise 14.4. The second sum can be ignored as it does not involve β.
An estimator with differentiable objective function is the smooth maximum score

estimator of Horowitz (1992) that maximizes

QS
N (β) =

N∑
i=1

(2yi − 1)K (x′
iβ/hN ),

where K (x′β/hN ) is a smoothed version of 1(x′β > 0). Since 1(x′β > 0) equals zero
for negative values of x′β and equals one for positive values of x′β it is natural to
choose K (·) to be a cdf with K (0) = 0.5 and choose hN to be small. Smoothing
simplifies computation of the estimator, but analysis is complicated by the need to
have hN → 0 at appropriate rate as N → ∞. The estimator converges at rate close to√

N and is asymptotically normal. For details see Horowitz (2002), who presents a
bootstrap that permits tests with better size properties in finite samples.
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LAD estimation can be extended to the censored regression model (see Sec-
tion 16.9.2).

14.7.3. Maximum Rank Correlation Estimator

Begin with a single-index model with E[yi |xi ] = F(x′
iβ). If F(x′

iβ) is monotonically
increasing in x′

iβ, then E[yi |xi ] > E[y j |x j ] if x′
iβ > x′

jβ. Thus it is likely, though not
guaranteed, that the observed values yi > y j when x′

iβ > x′
jβ. This suggests choosing

β to ensure that with high frequency yi > y j when x′
iβ > x′

jβ.
The maximum rank correlation (MRC) estimator of Han (1987) chooses β to

maximize

QMRC
N (β) =

N∑
i=1

N∑
j=1
j<i

1(yi > y j )1(x′
iβ > x′

jβ) + 1(yi < y j )1(x′
iβ < x′

jβ).

The ijth term in this sum equals one if yi > y j when x′
iβ > x′

jβ or if yi < y j when
x′

iβ < x′
jβ, and equals zero if instead there is a sign reversal so that yi < y j when

x′
iβ > x′

jβ or yi > y j when x′
iβ < x′

jβ. The estimator is called the maximum rank
correlation estimator because QMRC

N (β) is a multiple of Kendall’s rank correlation co-
efficient between yi and x′

iβ.
This estimator is

√
N -consistent and asymptotically normal (see Sherman, 1993).

14.7.4. Semiparametric ML Estimation

For binary choice data the likelihood function given independent observations is
clearly that given in (14.4). The only complication is that F(·) is unknown. Klein and
Spady (1993) proposed the semiparametric MLE that maximizes

LN (β) =
N∑

i=1

{
yi ln F̂(x′

iβ) + (1 − yi ) ln(1 − F̂(x′
iβ))
}
,

where F̂(x′
iβ) is a nonparametric estimate of F(x′

iβ).
This estimator is similar in spirit to the WSLS estimator of Ichimura (1993) de-

tailed in Section 9.7.4, and similar issues in computation arise with iteration between
computation of β̂ given F̂ and computation of F̂ given β̂. Given the ML first-order
conditions (14.5), the semiparametric MLE can also be computed as the solution to
the equations

N∑
i=1

F̂ ′(x′
iβ)

F̂(x′
iβ)(1 − F̂(x′

iβ))
(yi − F̂(x′

iβ))xi = 0,

which are the same as those for the WSLS estimator with weights wi = F̂ ′
i /[F̂i (1 −

F̂i )].
The attraction of Klein and Spady’s estimator is that it is fully efficient in the sense

that it attains the semiparametric efficiency bound. Computation is difficult, however.
For details see Section 9.7.4, where similar computational issues are discussed for
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Ichimura’s WSLS estimator, and see Klein and Spady (1993) and Pagan and Ullah
(1999, pp. 283–285).

14.7.5. Comparison of Semiparametric Estimators

Econometricians focus on single-index models, and even then there are a multitude of
semiparametric estimators available for the binary outcome model. None of these esti-
mators are particularly simple to implement. The objective functions can have multiple
optima and may not be smooth. For example, Horowitz (1992) uses simulated anneal-
ing for the smooth maximum score estimator and Dorsey and Mayer (1995) use genetic
algorithms to obtain the maximum score estimator.

Interpretation of coefficients is also difficult. For example the maximum score esti-
mator applied to the fishing mode data yielded intercept estimate of 0.776 and slope of
−0.631 (with bootstrap-estimated standard error of 0.103), but these coefficients are
not directly comparable to those given in Table 14.2. Indeed, since parameter slope
estimates are only identified up to scale, the semiparametric estimates are most use-
ful if several coefficients are included in the regression and coefficient estimates are
compared to those of a reference variable.

The maximum score and maximum rank correlation estimators are unusual among
semiparametric estimators in not requiring use of smoothing parameters, such as
choice of a bandwidth, an attractive property. The latter of these estimators is

√
N -

consistent.
In recent work Blundell and Powell (2004) propose semiparametric estimation with

endogenous regressors.

14.8. Derivation of Logit from Type I Extreme Value

The derivation in Section 14.4.2 of the logit model from the ARUM used knowledge
of the statistical result that the difference (ε0 − ε1) of independent type 1 extreme
value random variables is logistic distributed. For completeness we provide a direct
derivation based on the distributions of ε0 and ε1.

Rewriting the second line of (14.20) yields

Pr[y = 1] = Pr[ε0 < ε1 + V1 − V0] (14.31)

= ∫∞
−∞
∫ ε1+V1−V0

−∞ f (ε0, ε1)dε0dε1

= ∫∞
−∞ f (ε1)

{∫ ε1+V1−V0

−∞ f (ε0)dε0

}
dε1,

where in the last line ε0 and ε1 are assumed to be independent. By specializing f (ε0)
to the type 1 extreme value density, (14.31) becomes

Pr[y = 1] = ∫∞
−∞ f (ε1)

{∫ ε1+V1−V0

−∞ e−ε0 exp(−e−ε0 )dε0

}
dε1 (14.32)

= ∫∞
−∞ f (ε1) [exp(−e−ε0 )]ε1+V1−V0−∞ dε1

= ∫∞
−∞ f (ε1) exp(−e−(ε1+V1−V0))dε1.
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Using the extreme value density for ε1 in (14.32) yields

Pr[y = 1] = ∫∞
−∞ e−ε1 exp(−e−ε1 ) exp(−e−(ε1+V1−V0))dε1 (14.33)

= ∫∞
−∞ e−ε1

{
exp(−e−ε1 − e−(ε1+V1−V0))

}
dε1

= ∫∞
−∞ e−ε1

{
exp(−e−ε1 − e−ε1 e−(V1−V0))

}
dε1

= ∫∞
−∞ e−ε1 exp

{−e−ε1 (1 + e−(V1−V0))
}

dε1

Since
∫∞
−∞ ae−ε exp(−ae−ε)dε = 1 it follows that

∫∞
−∞ e−ε exp(−ae−ε)dε = 1/a. Us-

ing this result with a = 1 + e−(V1−V0) in (14.33) yields

Pr[y = 1] = (1 + e−(V1−V0))−1 (14.34)

= eV1/(eV0 + eV1 )

= eV1−V0/(1 + eV1−V0 ).

Letting V1 − V0 = x′β yields the logit model.

14.9. Practical Considerations

Most packages provide probit and logit model estimators. The main choice for the
practitioner is which model to use. In practice there is little difference in the predicted
marginal effects obtained from the two models, unless most of the outcomes are zero
or most of the outcomes are one.

Semiparametric estimation generally requires special coding in languages such as
GAUSS, though Lindep implements the estimators of Manski and Klein and Spady.

14.10. Bibliographic Notes

Logit and probit models are commonly used and relatively simple nonlinear regression models
that appear in many standard texts such as Greene’s (2003). The surveys by Amemiya (1981)
and McFadden (1984) include all the basic results. Maddala (1983) and Amemiya (1985) pro-
vide further details. The books by Train (1986) and Ben-Akiva and Lerman (1985) are particu-
larly good for applications. These references cover both binary and multinomial outcomes.

14.3 Bliss (1934) proposed the probit transformation to plot dosage–mortality curves. Berkson
(1951) popularized use of the simpler logit model.

14.4 Latent variable models are especially popular in the psychometrics literature.
14.5 Amemiya (1985, Section 9.5) provides an excellent survey of choice-based sampling for

binary outcome models. See also Section 24.4.
14.6 Cameron (1990) considers aggregation in binary outcome models and summarizes general

results of Kelijian (1980) and Stoker (1984) on estimability of individual-level parameters
in nonlinear models using aggregate data.

14.7 The maximum score estimator of Manski (1975) is a leading early example of semipara-
metric regression. Semiparametric methods for binary outcome models are covered in the
books by M-J. Lee (1996), Horowitz (1997), and Pagan and Ullah (1999). The last refer-
ence covers many methods.
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Exercises

14–1 Consider a latent variable modeled by y ∗
i = x′

iβ + εi , with εi ∼ N [0,1]. Suppose
we observe only yi = 1 if y ∗

i < Ui and yi = 0 if y ∗
i ≥ Ui , where the upper limit Ui

is a known constant for each individual (i.e., data) and may differ over individuals.

(a) Find Pr[yi = 1|xi ]. [Hint: Note that this differs from the standard case both
due to presence of Ui and because the equalities are reversed with yi = 1
if y ∗

i < Ui .]
(b) Provide details on an estimation method to consistently estimate β.
(c) Suppose you estimate this model and find that the third regressor x3i has

estimated coefficient β̂3 = 0.2. Provide a meaningful interpretation of β̂3.

14–2 Consider the logit model with Pr[y = 1|x1, x2] = �(β0 + β1x1i + β2x2i ), where
�(z) = ez/(1 + ez)x.

(a) Write down the likelihood scores and information matrix in an expanded
form.

(a) Use these to derive Wald and LM score tests of H0 : β2 = 0.
(c) Explain how you would computationally implement the tests.
(d) In what sense is the logit model intrinsically heteroskedastic?

14–3 Suppose we use an index formulation for a discrete choice model but it is felt
that the latent variable is strictly positive. This is accommodated by supposing
that the latent variable y ∗ has exponential density with parameter γ , so the
density f (y ∗) is f (y ∗) = γ−1 exp(−y ∗/γ ), with γ = exp(x′β). We observe y = 1
if y ∗ > z′α and y = 0 if y ∗ ≤ z′α.

(a) Give the log-likelihood function for the observed data.
(b) What is the effect of a one-unit change in xj i on Pr[yi = 1]?
(c) Suppose that y = 1 if y∗ > exp(z′α) and x = z. Do you see any problems in

identifying α and/or β? Explain your answer.

14–4 Consider the maximum score estimator with objective functions SN(β) given in
(14.29) and QN(β) given in (14.30).

(a) Show that SN(β) = �i [1(yi = 1) × 1(x′
iβ > 0) + 1(yi = 0) × 1(x′

iβ ≤ 0)].
(b) Show that QN(β) = �i [1(yi = 1) × 1(x′

iβ ≤ 0) + 1(yi = 0) × 1(x′
iβ > 0)].

(c) Using 1(yi = 1) = 1 − 1(yi = 0), show that QN(β) = N − SN(β).
(d) Using 1(x′

iβ ≤ 0) = 1 − 1(x′
iβ > 0) show that (14.29) can be rewritten as

SN(β) = �i (2yi − 1)1(x′
iβ > 0) + N −�i yi .

14–5 Use the health expenditure data of Section 16.6. The model is a probit regres-
sion of DMED, an indicator variable for positive health expenditures, against just
one regressor for simplicity, NDISEASE, the number of chronic diseases.

(a) Obtain the OLS estimate of the slope parameter.
(b) Obtain the probit estimate of the slope parameter.
(c) Given part (b), obtain the marginal effect of chronic diseases in two ways:

averaged over the sample and evaluated at the sample average of NDIS-
EASE.

(d) Obtain the logit estimate of the slope parameter.
(e) Given part (d), obtain the marginal effect of chronic diseases in three ways:

averaged over the sample, evaluated at the sample average of NDISEASE,
and evaluated at �(x′β) = ȳ.
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(f) For the logit model calculate the proportionate change in the odds ratio
when NDISEASE changes.

14–6 Continue the analysis of Exercise 14.5.

(a) Compare the three binary models on the basis of statistical significance of
NDISEASE.

(b) Compare the three binary models on the basis of the estimated marginal
effect.

(c) Compare the three binary models on the basis of the predicted probabilities.
(d) Compare the logit and probit binary models on the basis of log-likelihood.
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C H A P T E R 15

Multinomial Models

15.1. Introduction

The preceding chapter considered models for discrete outcome variables that can take
one of two possible values. Here we consider several possible outcomes, usually mu-
tually exclusive. Examples include different ways to commute to work (by bus, car, or
walking), various types of health insurance (fee-for-service, managed care, or none),
different employment status (full-time, part-time, or none), choice of recreational site,
occupational choice, and product choice.

Statistical inference is relatively straight forward in principle, as the data must be
multinomial distributed, just as binary data must be Bernoulli or binomial distributed.
Estimation is most often by maximum likelihood because the data are clearly multino-
mial distributed. For some complications, however, moment-based estimation is used
instead.

Different multinomial models arise owing to different functional forms for the prob-
abilities of the multinomial distribution, similar to the differences between probit and
logit in the binary case. A distinction is also made between models where regressors
vary across alternatives for a given individual and models where regressors are con-
stant across alternatives. For example, in transportation mode choice some regressors,
such as travel time or cost, will vary with choices whereas others, such as age, are
choice invariant.

The simplest multinomial model, the conditional or multinomial logit model, is
quite straightforward to use but is viewed as too restrictive in practice, especially if
the multinomial outcome data arise from individual choice. For unordered outcomes
less restrictive models can be obtained using the random utility model. In this model
the alternative with the highest utility is chosen, where utility from each alternative is
the sum of deterministic and random components. Different specifications of the ran-
dom components lead to different functional forms for choice probabilities and hence
to different multinomial models. Additional models arise in applications where some
structure can be placed on the decision-making process, such as a natural ordering of
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alternatives or sequencing of decisions. In practice many different multinomial models
are used.

Section 15.2 presents an application to illustrate the issues discussed in this chap-
ter. General results for multinomial models are given in Section 15.3. The conditional
and multinomial logit models are presented in Section 15.4. The additive random util-
ity model is presented in Section 15.5. The nested logit, random parameters logit,
and multinomial probit models are the subject of Sections 15.6–15.8. Ordered and se-
quential models are detailed in Section 15.9. Multivariate models with more than one
discrete outcome variable are presented in Section 15.10. Semiparametric estimators
are briefly reviewed in Section 15.11.

15.2. Example: Choice of Fishing Mode

This section illustrates multinomial logit, the simplest unordered multinomial model,
and variations detailed in Section 15.4 that permit regressors to vary across alterna-
tives. The emphasis is on interpretation of estimated models. The marginal effect of
a change in a regressor is more complicated than the usual impact on a single condi-
tional mean. For multinomial data there is instead a separate marginal effect on the
probability of each outcome, and these marginal effects sum to zero since probabilities
sum to one.

The application is to choice of fishing mode. The dependent variable y takes value
1, 2, 3, or 4 depending on which of the four mutually exclusive alternative modes
of fishing – respectively, beach, pier, private boat, and charter boat – is chosen. An
unordered multinomial model such as multinomial logit is appropriate, since there is
no clear ordering of the outcome variable. Regressors are individual income, which
does not vary with fishing mode, and price and catch rate, which do vary by fishing
mode and across individuals.

The sample of 1,182 people comes from a survey conducted by Thomson and
Crooke (1991) and analyzed by Herriges and Kling (1999). The data are summarized
in Table 15.1, which gives averages for the subsamples of people who chose each of
the modes as well as the overall sample average of regressors.

15.2.1. Conditional Logit: Alternative-Varying Regressors

First consider the role of price and catch rate, regressors that vary across alternatives
except that for these data the price of beach and pier fishing are the same.

Looking down the columns of Table 15.1, we see that people tend to fish where it is
cheapest for them to do so. For example, for people choosing to fish from the beach the
average price was $36 compared to average prices of $36, $98, and $125 for the other
modes. More generally, for people choosing the beach and pier these modes were on
average much cheaper than the boat modes, and for people fishing from a boat this was
on average much cheaper than beach or pier fishing. The relationship between mode
choice and catch rate is less clear-cut, though it is clear that the charter boat has the
highest catch rate.
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Table 15.1. Fishing Mode Multinomial Choice: Data Summary

Sub sample Averages

y = 1 y = 2 y = 3 y = 4 All y
Explanatory Variable Beach Pier Private Charter Overall

Income ($1,000s per month) 4.052 3.387 4.654 3.881 4.099
Price beach ($) 36 31 138 121 103
Price pier ($) 36 31 138 121 103
Price private ($) 98 82 42 45 55
Price charter ($) 125 110 71 75 84
Catch rate beach 0.28 0.26 0.21 0.25 0.24
Catch rate pier 0.22 0.20 0.13 0.16 0.16
Catch rate private 0.16 0.15 0.18 0.18 0.17
Catch rate charter 0.52 0.50 0.65 0.69 0.63
Sample probability 0.113 0.151 0.354 0.382 1.000
Observations 134 178 418 452 1182

For alternative-specific regressors that vary across alternatives, such as price and
catch rate, the multinomial logit model is called a conditional logit model (see Section
15.4.1). The probability of the i th individual choosing fishing mode j is given by

pi j = Pr[yi = j] = exp(βP Pi j + βC Ci j )∑4
k=1 exp(βP Pik + βC Cik)

, j = 1, . . . , 4,

where P denotes price, C denotes catch rate, the subscript i denotes the i th individual,
and subscript j or k denotes the alternative. This model is an obvious extension of
binary logit and gives probabilities that lie between 0 and 1 and sum to one. Other
multinomial models use a different functional form for pi j .

The coefficient estimates are given in the CL column of Table 15.2. For the CL
model, though not for all multinomial models, the sign of the coefficient is directly
interpretable. Anticipating results from Section 15.4.3, since βP < 0 we have that an
increase in the price of one alternative decreases the probability of choosing that al-
ternative and increases the probability of choosing other alternatives. Similarly, since
βC > 0, an increase in the catch rate for one alternative increases choice probability
for that alternative and decreases the choice probability for other alternatives.

A standard measure of the impact of changes in regressors is N−1∑N
i=1 ∂pi j/∂xikr ,

the average marginal response of the probability of choosing alternative j when the
r th regressor increases by one unit for alternative k and is unchanged for the other
alternatives. For the CL model this is estimated by N−1∑n

i=1 p̂i j (δi jk − p̂ik )̂βr (see
(15.18)), where β̂ is the estimate of β and p̂i j , j = 1, . . . ,m, are the predicted
probabilities.

The average responses across the four modes for the two regressors price and catch
rate are given in Table 15.3. The table gives the effect on choice probability of a 100-
unit (or $100) change in price and the effect of a one-unit change in the catch rate. For
example, an increase of $100 in the price of beach fishing leads to a decrease of 0.272
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Table 15.2. Fishing Mode Multinomial Choice: Logit Estimatesa

Model type

Regressor Type Coefficient CL MNL Mixed

Price (P) Specific βP −0.021 – −0.025
Catch rate (C) Specific βC R 0.953 – 0.358
Intercept Invariant α1 : Beach – 0.0 0.0

α2 : Pier – 0.814 0.778
α3 : Private – 0.739 0.527
α4 : Charter – 1.341 1.694

Income (I) Invariant βI 1 : Beach – 0.0 0.0
βI 2 : Pier – −0.143 −0.128
βI 3 : Private – 0.092 0.089
βI 4 : Charter – −0.032 −0.033

− ln L −1311 −1477 −1215
Pseudo-R2 0.162 0.099 0.258

a Type of regresssor is alternative-specific (price and catch rate) or alternative-invariant (income). Outcomes are
(1) beach, (2) pier, (3) private, and (4) charter. MLE estimates are for conditional logit (CL), multinomial logit
(MNL), and mixed logit (Mixed) models. MNL and Mixed models are normalized to base category beach. All
estimates except that for βI 4 are statistically significant at 5%.

in the probability of fishing and an increase of 0.119, 0.080, and 0.068, respectively, in
the probability of fishing from a beach, a pier, a private boat, and a charter boat. Note
that the changes in probabilities sum to zero, as expected.

Calculation of these marginal effects and probabilities requires postestimation com-
putation. A back-of-the-envelope calculation uses p̄ j (δ jk − p̄k )̂βr for the CL model,
where p̄ j is the sample average probability. For the effect of a $100 change in the
price of beach fishing on the probability of beach fishing this yields 100 × 0.113(1 −
0.113) × (−0.021) = −0.21, compared to the sample average value of −0.272 in
the table. This approximation becomes less reasonable as probabilities get closer
to 0 or 1.

The results in Table 15.3 are consistent with the view that the greatest substitu-
tion is between pier and beach fishing and between private boat and charter boat

Table 15.3. Fishing Mode Choice: Marginal Effects for Conditional Logit Modela

One-Unit Change in
$100 Change in Price of Catch Rate for

Beach Pier Private Charter Beach Pier Private Charter

Change in Pr[beach] −.272 .119 .085 .068 .126 −.055 −.040 −.032
Change in Pr[pier] .119 −.263 .080 .064 −.055 .122 −.037 −.030
Change in Pr[private] .080 .080 −.391 .225 −.040 −.037 .182 −.105
Change in Pr[charter] .068 .064 .225 −.357 −.032 −.030 −.105 .166

a Average marginal response of the probability of choosing each alternative when a regressor changes for one of
the alternatives and is unchanged for the other alternatives.
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fishing. Specifically, price increases, or catch rate decreases, for pier lead to sub-
stitution to beach, and vice versa. A similar result holds for charter versus private
boat.

These choice probability changes are for large changes in the regressors, given that
average price is $86 and average catch rate is 0.30. One can instead calculate elastic-
ities. Elasticities for choice probabilities need to be used with care, however, because
probabilities are bounded between 0 and 1. A change in predicted probability from
0.01 to 0.02 will lead to an elasticity roughly 50 times larger than that for a change in
predicted probability from 0.50 to 0.51.

15.2.2. Multinomial Logit: Alternative-Invariant Regressors

Now consider the role of income, measured as monthly income in thousands of dollars.
From Table 15.1 it appears that as income rises the fishing mode moves progressively
from pier, where average monthly income of people fishing at a pier is $3,387, to
charter boat to beach and finally to private boat, where the average income is $4,654.

Because income is invariant across alternatives the appropriate model is the multi-
nomial logit model (presented in Section 15.4.1). This lets regressor coefficients vary
across alternatives, with

pi j = Pr[yi = j] = exp(α j + βI j Ii )∑4
k=1 exp(αk + βI k Ii )

, j = 1, . . . , 4,

where I denotes income. A normalization of parameters is needed as a consequence
of the restriction that probabilities sum to one. The empirical results set α1 = 0 and
βI 1 = 0.

The parameter estimates are given in the MNL column of Table 15.2. Coefficient
interpretation is more difficult than for the CL logit model. In particular, for MNL
models a positive regression parameter does not mean that an increase in the regressor
leads to an increase in the probability of that alternative. Instead, interpretation for
the MNL model is relative to the reference or base category group, here beach as
the beach coefficients were normalized to zero. Compared to beach fishing a higher
income leads to reduced likelihood of fishing from a pier (since βI 2 = −0.143 < 0)
or a charter boat (since βI 4 = −0.032) and greater likelihood of use of a private boat
(since βI 3 = 0.092).

The magnitude of the response to income changes can be measured using
N−1∑N

i=1 ∂pi j/∂ Ii , the marginal effect averaged over individuals. For the MNL mod-

els this is estimated by N−1∑N
i=1 p̂i j (̂β j − ̂̄β i ) (see (15.19)), where β̂ j is the esti-

mate of β j , β̄i =∑m
l=1 pilβl is a probability weighted average of the βl , and p̂i j ,

j = 1, . . . ,m, are the predicted probabilities. For the four choices a $1,000 increase
in monthly income is associated with changes of 0.000, −0.021, 0.033, and −0.012
in, respectively, the probabilities of fishing from beach, pier, private boat, and charter
boat. This indicates little change in beach fishing, movement out of pier and charter
boat fishing, and movement to private boat fishing. Since average monthly income is
$4,100 the changes in probability are of reasonable size.
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However, income alone is not a great discriminator for fishing mode choice. From
the bottom of Table 15.2, we see that the MNL model has much lower log-likelihood
and pseudo-R2 than does the CL model. From output not given, across all individuals
in the sample the predicted probabilities from the MNL model range from 0.095 to
0.115 for beach, 0.036 to 0.234 for pier, 0.240 to 0.626 for private boat, and 0.244 to
0.416 for charter boat. Since an intercept is included in the MNL model the averages
of these predicted probabilities for each choice equal the sample average probabilities.
This result for the MNL model is a consequence of (15.16) given later.

15.2.3. Mixed Logit

A richer model combines the two preceding models. This is done using a so-called
mixed logit model (see Section 15.4.1) with

Pr[yi = j] = exp(βP Pi j + βC Ci j + α j + βI j Ii )∑4
k=1 exp(βP Pik + βC Cik + αk + βI k Ii )

.

This model, not to be confused with the model of Section 15.7 which is also referred
to as a mixed model, can be implemented as a conditional logit model

Pr[yi = j] = exp(βP Pi j + βC Ci j +∑4
l=1(αldi jl + βI ld Ii jl))∑4

k=1 exp(βP Pik + βC Cik +∑4
l=1(αldi jl + βI ld Ii jl))

,

where di jl is a dummy variable equal to one if j = l and equal to zero otherwise,
and d Ii jl = di jl Ii is equal to income if j = l and equals zero otherwise. In this case
we regress yi on eight regressors: Pi j , Ci j , di j2, di j3, di j4, d Ii j2, d Ii j3, and d Ii j4.
Since α1 = 0 and βI 1 = 0 the regressors di j1 and dIi j1 are omitted. Note that if we
estimate this CL model with just the di jl and dIi jl as regressors then the CL estimates
equal the MNL estimates given earlier. An MNL model can always be estimated as a
CL model (see Section 15.3.4).

While the mixed logit model is richer than the CL model, the CL model has the ad-
vantage that if an additional alternative was added to the choice set then one can predict
its probability of selection, since the parameters of the CL model do not vary across
alternatives.

The results are reported in the last column of Table 15.2. Compared to the first
two models the coefficients are little changed, except for considerable change in the
catch rate coefficient. This change is due to inclusion of the alternative-specific dum-
mies, rather than inclusion of income. The mixed model is strongly preferred to the
other models on the basis of much higher log-likelihood value or formal statistical
tests.

15.3. General Results

The results in this section pertain to all multinomial models. The remainder of the
chapter specializes to the many different specifications of the multinomial model used
in practice.

495



MULTINOMIAL MODELS

15.3.1. Multinomial Models

There are m alternatives and the dependent variable y is defined to take value j if the
j th alternative is taken, j = 1, . . . ,m. (Some authors instead consider m + 1 alterna-
tives with j = 0, 1, . . . ,m.) Define the probability that alternative j is chosen as

p j = Pr[y = j], j = 1, . . . ,m. (15.1)

Introduce m binary variables for each observation y,

y j =
{

1 if y = j,
0 if y �= j.

(15.2)

Thus y j equals one if alternative j is the observed outcome and the remaining yk equal
zero, so for each observation on y exactly one of y1, y2, . . . , ym will be nonzero. The
multinomial density for one observation can then be conveniently written as

f (y) = py1
1 × · · · × pym

m =
m∏

j=1

p
y j

j . (15.3)

For regression models introduce a subscript i for the i th individual and regressors
xi . Specify a model for the probability that individual i chooses the j th alternative,

pi j = Pr[yi = j] = Fj (xi ,β), j = 1, . . . ,m, i = 1, . . . , N . (15.4)

The functional form for Fj should be such that probabilities lie between 0 and 1 and
sum over j to one. Different functional specifications for Fj correspond to specific
models, notably multinomial logit, nested logit, multinomial probit, ordered, sequen-
tial, and multivariate models. These models are presented in subsequent sections.

15.3.2. ML Estimation

The multinomial density for one observation is given in (15.3). The likelihood function
for a sample of N independent observations is then L N =∏N

i=1

∏m
j=1 p

yi j

i j , where the
subscript i denotes the i th of N individuals and the subscript j denotes the j th of m
alternatives. The log-likelihood function is

L = ln L N =
N∑

i=1

m∑
j=1

yi j ln pi j , (15.5)

where pi j = Fj (xi ,β) is a function of parameters β and regressors, defined in (15.4).
More generally, the number of alternatives may vary across different individuals, so
that m choices become mi choices.

The first-order conditions for the MLE β̂ are that it solves

∂L
∂β

=
N∑

i=1

m∑
j=1

yi j

pi j

∂pi j

∂β
= 0, (15.6)

which is usually nonlinear in β. The distribution of yi is necessarily multinomial, so
correct specification of the dgp means correct specification of the functional forms
Fj (xi ,β) for the probabilities pi j . This ensures consistency as then E[yi j ] = pi j ,
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so taking the expectation of (15.6) yields E[∂L/∂β] = ∑N
i=1

∑m
j=1 ∂pi j/∂β, which

equals zero since
∑m

j=0 pi j = 1.
The usual asymptotic theory applies and the variance matrix is minus the inverse of

the information matrix. Differentiating the double sum in (15.6) with respect to β′ and
using E[yi j ] = pi j yields upon simplification

β̂
a∼ N

β0,

(
N∑

i=1

m∑
j=1

1

pi j

∂pi j

∂β

∂pi j

∂β′ − ∂2 pi j

∂β∂β′

∣∣∣∣
β0

)−1
 . (15.7)

Provided observations are independent over i there is no need to use more general
sandwich forms of the variance matrix since the data are definitely multinomial dis-
tributed and the information matrix equality will hold.

As already mentioned, different models correspond to different choices of Fj (xi ,β)
for pi j and hence different expressions in (15.6) and (15.7).

Maximum likelihood estimation for choice-based samples, such as those that
oversample infrequently observed outcomes, is presented in Sections 14.5 and 24.4.

15.3.3. Moment-Based Estimation

For simple cross-section applications the standard estimation procedure is the MLE.
However, when complications such as endogeneity or correlation across observa-

tional unit i arise, it can be more convenient to instead use moment-based estimators.
Assuming the probabilities are correctly specified, we can consider any estimator with
estimating equations

N∑
i=1

m∑
j=1

(yi j − pi j )zi = 0, (15.8)

where zi , a vector of the same dimension as β, does not depend on yi j , for example,
zi = ∂pi j/∂β. This estimator will be consistent if the functional form for pi j is cor-
rectly specified, as then E[yi j ] = pi j and the double sum on the left-hand side of (15.8)
has expected value zero. The efficiency of the estimator will vary with the choice of zi

and in the most general case GMM estimation procedures can be used. The estimating
equations (15.8) are the basis for the method of simulated moments estimator for the
multinomial probit model (see Section 15.8.2).

15.3.4. Alternative-Varying Regressors

Multinomial regression models differ not only in the choice of function Fj (·) in (15.4)
but also in how regressors and parameters vary across the alternatives.

At one extreme all regressors may be alternative-varying, meaning that they take
different values for different alternatives. Let xi j denote the value of the regressors for
individual i and alternative j , and let xi = [x′

i1 x′
i2 . . . x

′
im]′. Then (15.4) is usually of

the form

Fj (xi ,β) = Fj (x′
i1β, . . . , x

′
imβ),
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where the parameters β are constant across alternatives. An example is the conditional
logit model defined later in (15.10).

At the other extreme all regressors may be alternative-invariant, meaning that
xi does not vary across alternatives. An example is individual socioeconomic char-
acteristics in a model of transportation mode choice. Then (15.4) is usually of the
form

Fj (xi ,β) = Fj (x′
iβ1, . . . , x

′
iβm),

where the parameters β j differ across alternatives and β = [β′
1 β

′
2 . . . β

′
m]′. Parameter

identification requires a normalization such as β1 = 0. An example is the multinomial
logit model defined later in (15.11).

The distinction between alternative-varying and alternative-invariant regressors is
of practical importance, as standard notation and computer programs for multinomial
models work exclusively with one or the other. In practice, of course, some regressors
may be alternative-varying and others alternative-invariant. In such cases it is best to
use a program written for alternative-varying regressors, as it is possible to go from
alternative-invariant regressors to the alternative-varying format. Let xi be a K × 1
vector. Then define xi j to be a K m × 1 vector with zeros everywhere except that the
j th block is xi , that is,

xi j = [0′· · · 0′ x′
i 0′· · · 0′]′,

and define β = [0′ β′
2 · · · β′

m]′, where β1 = 0 is a normalization. Then x′
iβ j = x′

i jβ.
The regressors are essentially included as interactions with alternative-specific dum-
mies. An example was given in Section 15.2.3. It is also possible to go from the
alternative-specific to the alternative-invariant format, but then (m − 1) parameter
equality constraints need to be imposed for each of the alternative-specific regressors.

15.3.5. Revealed Preference and Stated Preference Data

The multinomial data used in microeconometric studies often arise from individual
consumer choice. Consumer choice data may be either revealed preference data,
which are data on actual decisions and outcomes, or stated preference data, which
are survey responses to hypothetical questions. An example of revealed preference data
would be actual occupational choice. An example of stated preference data would be
a marketing study for fuel-efficient vehicles that asks a respondent to choose among
various hypothetical vehicles that differ in characteristics such as fuel consumption,
range, and price.

Revealed preference data often provide little or no data on alternatives other than
that chosen. For example, we may know the price to an individual consumer of the
chosen product but not the prices of alternative products. The attraction of stated pref-
erence data for multinomial modeling is that data are available on key variables such
as price for all possible alternatives. This is particularly advantageous if one wishes to
predict the probability of choice or market share of a new alternative on the basis of
characteristics of the new alternative, as all parameters can be alternative-invariant if
all regressors vary across alternatives.
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There is some controversy in using stated preference data, because responses can
vary with the wording of questions. Moreover, people may overstate or understate their
willingness to pay to support particular policies. For example, some might overstate
their willingness to support an environmentally friendly policy.

Shopping scanner data are especially attractive because they provide data on re-
vealed choice while at the same time data on prices across all alternatives are also
provided.

15.3.6. Model Evaluation and Selection

Regression parameters in multinomial models can be difficult to directly interpret.
Instead, it is useful to consider the marginal effect (or elasticities) of changes
in regressors on outcome probabilities. Formulas for conditional and multinomial
logit models are given in Section 15.4.3 and have been used in the Section 15.2
application.

Several model evaluation methods are presented in Amemiya (1981) and Mad-
dala (1983). Using R2 measures based on the analogue of squared residuals does not
work well. Comparisons of predicted probabilities with actual outcomes are of lim-
ited value as MNL models estimated with intercept impose in estimation the restric-
tion that the average of the predicted probabilities equals the sample average prob-
abilities for each alternative. It can be useful to look at the range of the in-sample
fitted probabilities for each alternative. The wider the range the more discriminat-
ing is the model. For more detail see the discussion in Section 14.3.7 for binary
outcomes.

Multinomial models are usually estimated by maximum likelihood. Thus to the
extent that models are nested one can use standard likelihood ratio tests. When models
are nonnested one can use variants of Akaike’s information criteria based on the fitted
log-likelihood with a degrees-of-freedom adjustment for the number of parameters in
the model (see Section 8.5.1).

A useful pseudo-R2 measure, due to McFadden (1973), is

R2 = 1 − ln Lfit/ ln L0, (15.9)

where ln Lfit denotes the fitted model and L0 denotes an intercept-only model that
estimates the probability of each alternative to be the sample average. For any multi-
nomial model the theoretical maximum value of the log-likelihood is zero. This arises
if pi j = 1 when yi j = 1 and pi j = 0 otherwise, for i and j . Thus the R2 measure can
be rewritten as

R2 = ln Lfit − ln L0

ln Lmax − ln L0
.

This can be interpreted as the fraction of the maximum potential gain in log-likelihood
that is achieved by the fitted model (see Section 8.7.1).

499



MULTINOMIAL MODELS

15.4. Multinomial Logit

The simplest multinomial model is the multinomial logit model, proposed by Luce
(1959). The commonly used variants of this model differ according to whether or not
regressors vary across alternatives. Many of the issues presented in this section pertain
to other models presented more briefly in subsequent sections.

15.4.1. Conditional, Multinomial, and Mixed Logit Models

For alternative-varying regressors (see Section 15.3.4) the conditional logit model is
used. The CL model specifies

pi j = ex′
i jβ∑m

l=1 ex′
ilβ
, j = 1, . . . ,m. (15.10)

Since exp(x′
ilβ) > 0 these probabilities lie between 0 and 1 and sum over j to one.

Indeed, once one has seen the formula (15.10) it appears to be the most simple speci-
fication that ensures well-behaved probabilities. Because

∑m
j=1 pi j = 1 an equivalent

model is obtained by defining xi j to be deviations of regressors from values of alterna-
tive 1, say, and settting xi1 = 0.

When instead the regressors do not vary over alternatives, the multinomial logit
model is used. The MNL model specifies

pi j = ex′
iβ j∑m

l=1 ex′
iβl
, j = 1, . . . ,m. (15.11)

Because
∑m

j=1 pi j = 1, a restriction is needed to ensure model identification and the
usual restriction is that β1 = 0.

The two models can be combined into what some authors call a mixed logit model,
with

pi j = ex′
i jβ+w′

iγ j∑m
l=1 ex′

ilβ+w′
iγl
, j = 1, . . . ,m, (15.12)

where xi j vary over alternatives and wi do not vary over alternatives. As discussed
in Sections 15.2.3 and 15.3.4, the mixed and MNL models can be reexpressed as a
CL model. Note that the term mixed logit model is also sometimes used for a quite
different model detailed in Section 15.7.

All these models can be given the general label of multinomial logit, but we follow
the standard convention in distinguishing between the MNL and CL models.

An obvious generalization of the multinomial logit model is

pi j = Vi j∑m
l=1 Vil

, j = 1, . . . ,m, (15.13)

where Vi j > 0 can be quite general functions of regressors xi and parameters β. This
is called the universal logit model. Although this can generate a potentially rich class
of models it is seldom used in econometrics as it does not arise naturally from choice
theory.
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15.4.2. ML Estimation of CL and MNL Models

We present key formulas for the conditional logit and multinomial logit models. Com-
plete derivations are given in Section 15.12.

For the CL model, where pi j is defined in (15.10), ∂pi j/∂β = pi j (xi j − x̄i ), where
x̄i =∑m

l=1 pilxil is a probability weighted average of the regressors (see Section
15.12.1). The CL first-order conditions, given in (15.6) for general pi j , simplify im-
mediately to

N∑
i=1

m∑
j=1

yi j (xi j − x̄i ) = 0. (15.14)

Differentiating with respect to β′, using E[yi j ] = pi j , and performing some further
algebra yields

β̂CL
a∼ N

β,( N∑
i=1

m∑
j=1

pi j (xi j − x̄i )(xi j − x̄i )
′
)−1
 . (15.15)

For the MNL model, pi j is defined in (15.11) and it is shown in Section 15.12.2 that
∂pi j/∂βk = pi j (δi jk − pik)xi , where δi jk is an indicator variable equal to 1 if j = k
and equal to 0 if j �= k, and that the resultant MNL first-order conditions simplify
after some algebra to

∂L
∂βk

=
N∑

i=1

(yik − pik)xi = 0, k = 1, . . . ,m. (15.16)

As usual β̂MNL
a∼ N [β, (E[∂2L/∂β∂β′])−1], where further algebra shows that the in-

formation matrix has jkth block

E

[
∂2L

∂β j∂β
′
k

]
=

N∑
i=1

pi j (δi jk−pik)xi xi
′, j = 1, . . . ,m, k = 1, . . . ,m. (15.17)

15.4.3. Regression Parameter Interpretation

Care is needed in the interpretation of parameters in any nonlinear model. This is
particularly so for multinomial models where, for example, there is not necessarily a
one-to-one correspondence between coefficient sign and coefficient probability. Here
we present results used in the Section 15.2 application.

Marginal Effects and Elasticities

We focus on marginal effects on the choice probabilities of a change in the regressor
for a given individual. Elasticities can then be computed by multiplying the marginal
effect by the current regressor value and dividing by the probability. Typically these are
then averaged over individuals to give an average marginal effect or average elasticity.

For the CL model consider the effect on the j th probability of changing by one
unit the value of the regressor for the kth alternative. For example, what is the effect
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on the probabilities of choosing various modes of transportation if travel time by bus
increases by a minute whereas the travel time by other modes is unchanged? From
Section 15.12.1

∂pi j

∂xik
= pi j (δi jk − pik)β, (15.18)

where δi jk was defined after (15.15). It follows that if the regression coefficient is
positive then an increase in the corresponding component of the regressor value for
the kth alternative increases the probability of the kth alternative and decreases the
probability of the other alternatives.

For the MNL model consider instead the effect on the j th probability of changing
by one unit a regressor that takes the same value across all alternatives. For example,
what is the effect on the probabilities of choosing to work if age increases by one year?
From Section 15.12.2

∂pi j

∂xi
= pi j (β j − β̄i ), (15.19)

where β̄i =∑l pilβl is a probability weighted average of the βl . It follows that the
sign of the response is not necessarily given by the sign of β j , unless β j > βk for
all k �= j , and it does not necessarily make any sense to test whether a particular co-
efficient is zero. As in other nonlinear models we may compute the average response
N−1∑

i ∂pi j/∂xi = N−1∑
i pi j (β j − β̄i ), or we can use noncalculus methods and

compare the change in the average predicted probability as regressors change.

Comparison to Base Category

The coefficients in the CL and MNL models can also be given a more direct logit-like
interpretation in terms of relative risk (detailed in Section 14.3.4). This is because the
models can be reexpressed as binary logit models.

For the MNL model, comparison is to a base category, which is the alternative
normalized to have coefficients equal to zero. To see this note that the multinomial logit
probabilities (15.11) imply that the conditional probability of observing alternative j
given that either alternative j or alternative k is observed is

Pr[y = j |y = j or k] = p j
p j + pk

= ex′β j

ex′β j + ex′βk

= ex′(β j −βk )

1 + ex′(β j −βk ) ,

(15.20)

which is a logit model with coefficient (β j − βk). The second equality comes af-
ter some simplification. Suppose normalization is on alternative 1, so that β1 = 0.
Then

Pr[yi = j |yi = j or 1] = ex′
iβ j

1 + ex′
iβ j
,
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and β j can be interpreted in the same way as the logit model coefficient for binary
choice between alternatives j and 1. Similarly to the binary logit model the relative
risk of choosing alternative j rather than alternative 1 is

Pr[yi = j]

Pr[yi = 1]
= ex′

iβ j ,

and hence eβ jr gives the proportionate change in this relative risk when xir changes by
one unit. Such interpretations will vary according to which alternative is normalized to
have zero coefficient, and for this interpretation to be really useful one needs to have
a natural base category. For example, if interest lies in various alternative commute
modes to traveling by car then normalize the coefficients for the car alternative to equal
zero.

A similar approach can also be applied to the CL model, with

Pr[yi = j |yi = j or k] = e(xi j −xik )′β

1 + e(xi j −xik )′β , (15.21)

and normalization now is with respect to regressor values for a base category.

15.4.4. Independence of Irrelevant Alternatives

A limitation of the CL and MNL models is that discrimination among the m alterna-
tives reduces to a series of pairwise comparisons that are unaffected by the character-
istics of alternatives other than the pair under consideration. This is clear from (15.20)
and (15.21), which show that the MNL model reduces to a binary choice logit model
between any pair of choices. The conditional probability does not depend on other
alternatives.

As an extreme example, the conditional probability of commute by car given com-
mute by car or red bus is assumed in an MNL or CL model to be independent of
whether commuting by blue bus is an option. However, in practice we would expect
introduction of a blue bus, which is the same as a red bus in every aspect except color,
to have little impact on car use and to halve use of the red bus, leading to an increase
in the conditional probability of car use given commute by car or red bus.

This weakness of MNL is known in the literature as the red bus–blue bus prob-
lem, or more formally as the assumption of independence of irrelevant alternatives.
It can be tested by a Hausman test (see Hausman and McFadden, 1984). For exam-
ple, we could compare the coefficient estimates of red bus in a three-choice model of
car, red bus, and blue bus, again with car the base category, with the coefficient esti-
mates of red bus in a binary choice model of car and red bus, again with car the base
category.

Much of the econometrics literature has focused on alternative unordered models
that do not have this weakness. These models are presented in Sections 15.6–15.8.
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15.5. Additive Random Utility Models

Unordered multinomial models more general than multinomial and conditional logit
can be obtained using the general framework of additive random utility models, pre-
sented in this section. Subsequent sections describe the leading examples.

15.5.1. ARUM

The additive random utility model was introduced in Section 14.4.2 for binary out-
comes. In the general m-choice multinomial model the utility of the j th choice is
specified to be given by

U j = Vj + ε j , j = 1, 2, . . . ,m, (15.22)

where Vj denotes the deterministic component of utility and ε j denotes the random
component of utility. For the i th individual usually Vi j = x′

i jβ or Vi j = x′
iβ j , though

more structural analysis may specify direct or indirect utility functions used in con-
sumer demand theory. For notational simplicity we suppress the individual subscript i
in the following.

The chosen alternative is that with the highest utility, so that

Pr[y = j] = Pr[U j ≥ Uk, all k �= j] (15.23)

= Pr[Uk − U j ≤ 0, all k �= j]

= Pr[εk − ε j ≤ Vj − Vk, all k �= j]

= Pr[̃εk j ≤ −Ṽk j , all k �= j],

where the tilda and second subscript j denotes differencing with respect to reference
alternative j .

Different multinomial models can be generated by different assumptions about the
joint distribution of the error terms. These models are valid statistically, with proba-
bilities summing to one. Additionally, they are consistent with the standard economic
theory of decision making.

For example, consider the expression for Pr[y = 1] in a three-choice model. Using
the last equality in (15.23) and defining ε̃31 = ε3 − ε1 and ε̃21 = ε2 − ε1 we have

Pr[y = 1] = Pr[̃ε21 ≤ −Ṽ21, ε̃31 ≤ −Ṽ31] (15.24)

= ∫ −Ṽ31

−∞
∫ −Ṽ21

−∞ f (̃ε21, ε̃31)d ε̃21d ε̃31,

which is a bivariate integral that generally does not have an analytical solution. More
generally, an m-choice model involves an (m − 1)-variate integral that may or may not
yield a closed-form solution for Pr[y = j].

In general all the errors ε1, ε2, . . . , εm may be correlated across choices. Some co-
variance restrictions are necessary, however, as the model is identified only up to the
(m − 1) error-difference pairs (see the last equality in (15.23)), and additionally one
variance needs to be specified since the U j are only determined up to scale.
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15.5.2. Different Unordered Multinomial Models

Different unordered multinomial models arise from different assumptions on the joint
distribution of ε1, ε2, . . . , εm . Analysis is simplest if the error assumptions lead to a
closed-form solution for the choice probabilities. However, in many applications these
assumptions are felt to be too restrictive.

The computationally-intesive methods summarized in Chapter 12 permit estimation
even if there is no closed-form solution for the choice probabilities. Sections 15.7.2 and
15.8.2 present multinomial examples of these methods.

Type 1 Extreme Value Errors

We first assume that the errors ε j are iid type 1 extreme value, with density

f (ε j ) = e−ε j exp(−e−ε j ), j = 1, 2, . . . ,m. (15.25)

The properties of this density were given in Section 14.4.2, where it was shown to lead
to a logit model in the binary outcome case.

For multinomial outcomes modelled using the ARUM with type I extreme value
errors it can be shown that (15.23) yields

Pr[y = j] = eVj

eV1 + eV2 + · · · + eVm
. (15.26)

This is the CL model when Vj = x′
jβ and the MNL model when Vj = x′β j . The result

can be obtained either by integration and simplification similar to the binary case (see
Section 14.8), or as a special case of the nested logit result derived in Section 15.6.
Thus conditional and multinomial logit models can be obtained from an ARUM.

The assumption that the errors ε j are independent across alternatives j is too restric-
tive as it is likely to be violated if two alternatives are similar. For example, suppose
alternatives 1 and 2 are similar. A low value of ε1 (i.e., large and negative) leads to
overprediction of the utility of alternative 1. We then also expect to overpredict the
utility of alternative 2, so that ε2 also takes a low value. Since low values of ε1 and ε2

tend to go together, and similarly for high values, the errors must be correlated. This
is another way of viewing the “red bus–blue bus” problem, and it is a manifestation of
a failure of the logit assumption of independence of irrelevant alternatives.

The generalized extreme value model and the nested logit model (see Section 15.6)
relax the assumption that the extreme value errors are independent across choices. The
errors are grouped with independence across groups but correlation permitted within
groups. Closed-form solutions are then available for the choice probabilities. Although
these models are richer than the MNL model, the special case of no correlation within
groups, in many applications the grouping of errors can be somewhat arbitrary.

The random parameters logit model (see Section 15.7) introduces additional ran-
domness into the MNL model that induces correlation of utilities across alternatives.
This is an example of a generalized random utility model (see Section 15.7.3).
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Normally Distributed Errors

The multinomial probit model (see Section 15.8) arises if the errors ε1, . . . , εm are
assumed to be joint normal distributed. This error assumption is a more natural starting
point than one of type 1 extreme value. It permits a very rich correlation structure, at
the expense of the need to use numerical or simulation methods that accommodate an
(m − 1)-variate normal integral.

15.5.3. Consistency with Random Utility Models

It is always possible to present an analytical expression for choice probabilities that lie
between zero and one and that sum over alternatives to one. A quite general example
is the universal logit model in (15.13). The econometrics literature has placed great
emphasis in restricting attention to multinomial models that are consistent with maxi-
mization of a random utility function. This is similar to restricting analysis to demand
functions that are consistent with consumer choice theory.

Let V = (V1, . . . , Vm). From Borsch-Supan (1987, p. 19), a set of choice probabil-
ities p j (V ), j = 1, . . . ,m, is compatible with maximization of an ARUM if

1. p j (V ) ≥ 0,
∑m

j=1 p j (V ) = 1, and p j (V ) = p j (V + α) for all α ∈ R;

2. ∂p j (V )/∂Vk = ∂pk(V )/∂Vj ; and

3. ∂ (m−1) p j (V )/∂V1 . . . [∂Vi ] . . . ∂Vm ≥ 0, where the square bracket denotes a term to be
dropped out.

These conditions, due to Williams (1977), Daly and Zachary (1979), and McFad-
den (1981), ensure in turn (1) well-behaved probabilities and translation invariance;
(2) integrability of p j similar to the Slutsky condition; and (3) that the distribution
function of the errors in the corresponding ARUM has a proper (nonnegative) density
function.

15.5.4. Welfare Analysis

A major advantage of using a multinomial model that is a random utility model is that
it permits welfare analysis. Then one can place a dollar value on the effect of changing
one or more of the determinants of choice, such as price or time cost of travel in
transportation mode choice.

Standard welfare analysis uses compensating variation or equivalent variation.
The deterministic component of utility in (15.22) is specified as the indirect utility
function

Vj = V (I − p j , x j ), (15.27)

where I denotes income, p j is the price of the j th alternative, and x j are characteristics
associated with the j th alternative. For notational simplicity the unknown regression
parameters β are suppressed. Then utility of alternative j is

U j = U (I − p j , x j , ε j ) = V (I − p j , x j ) + ε j . (15.28)
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Suppose we change the characteristics from x′
j to x′′

j . Then compensating variation
CV is the change in income needed to hold utility at its initial level, so that the highest
utility level attainable with income I and characteristics x′

j must equal the highest level
attainable with income (I − CV ) and characteristics x′′

j . Thus compensating variation
CV is implicitly defined as the solution to

max
j=1,... ,m

U (I − p j , x′
j , ε j ) = max

j=1,... ,m
U (I − CV − p j , x′′

j , ε j ). (15.29)

As an example, consider a two-choice model where U j = I + x j + ε j , j = 1, 2,
and the scalar x j changes from x ′

j to x ′′
j . Then there are four possibilities. If alterna-

tive 1 is chosen before and after then CV = (x ′′
1 − x ′

1), since then U ′′
1 = I − CV +

x ′′
1 + ε1 = I + x ′

1 + ε1 = U ′
1. Similarly, if alternative 2 is chosen before and after then

CV = (x ′′
2 − x ′

2). If switching occurs from alternative 1 to alternative 2 then U ′′
2 = U ′

1
implies I − CV + x ′′

2 + ε2 = I + x ′
1 + ε1, which implies CV = x ′′

2 − x ′
1 + ε2 − ε1.

Similarly, if switching occurs from alternative 2 to alternative 1 then CV = x ′′
1 − x ′

2 +
ε1 − ε2. More generally, for m choices the compensating variation in this simple exam-
ple is CVjk = V ′′

k − V ′
j + εk − ε j if the change in x leads to a change from alternative

j to alternative k.
The compensating variation depends on observables (I, p j , and x j ), parameters that

can be estimated, and on unobservable errors ε j . The unobservables are eliminated by
computing the expected compensating variation E[CV ], which involves integrating
over ε j . From the preceding example it should be clear that this integration can be
quite difficult. Dagsvik and Karlström (2004) provide quite general results, discussed
further in Section 15.6.5.

For some models there is no analytical solution for E[CV ]. Then one instead needs
to numerically integrate over ε j the function for CV defined in (15.29). From Sec-
tion 12.3.2 this integral can be simulated in the following way:

1. At iteration s draw εs from the distribution of ε = (ε1, . . . , εm).

2. Calculate CV s from max
j=1,...,m

U (I − p j , x′
j , ε

t
j ) = max

j=1,...,m
U (I − CV s − p j , x′′

j , ε
t
j ).

3. Repeat steps 1 and 2 S times.

4. Estimate E[CV ] by S−1∑S
s=1 CV t .

This method yields E[CV ] for each individual in the sample. Averaging, possibly
with weighting, provides a population estimate. Application to the GEV model is dis-
cussed in Section 15.6.5.

15.6. Nested Logit

The nested logit is the most analytically tractable generalization of the multinomial
models. It is the ideal model to use when there is a clear nesting structure, but not all
multinomial choice applications have an obvious nesting structure.
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15.6.1. Generalized Extreme Value Model

McFadden (1978) proposed a quite general class of model based on the assumption that
the joint distribution of the errors is the generalized extreme value (GEV) distribution
with joint distribution function

F(ε1, ε2, . . . , εm) = exp[−G(e−ε1 , e−ε2 , . . . , e−εm )], (15.30)

where the function G(Y1, Y2, . . . , Ym) is specified to satisfy a number of assumptions
including nonnegativity, homogeneity of degree one, mixed partial derivatives that are
continuous and nonpositive for even order and nonnegative for odd order, and limY j →∞
G(Y1, Y2, . . . , Ym) = ∞. These assumptions ensure that the joint distribution and re-
sulting marginal distributions are well defined and that probabilities sum to one.

If the errors are GEV distributed then an explicit solution for the probabilities in the
random utility model (15.22) can be obtained, with

p j = Pr[y = j] = eVj
G j (e−V1 , e−V2 , . . . , e−Vm )

G(e−V1 , e−V2 , . . . , e−Vm )
, (15.31)

where G j (Y1, Y2, . . . , Ym) = ∂G(Y1, Y2, . . . , Ym)/∂Y j (see McFadden, 1978, p. 81).
A wide range of models can be obtained by different choices of G(Y1, Y2, . . . , Ym).

The MNL model is obtained if G(Y1, Y2, . . . , Ym) =∑m
k=1 Yk ; hence the MNL model

is a GEV model. The other widely used GEV model is the nested logit model.

15.6.2. Nested Logit Model

The nested logit model breaks decision making into groups. A simple example is to
consider choice of college, where people first decide whether to go to a two-year or
four-year college, and then within each of these paths whether to go to a public or
private college. The situation is depicted as follows:

College
� �

2 year 4 year
� � � �

Private Public Private Public

The errors in a random utility model are permitted to be correlated for each option
within the two-year and four-year groups, but they are uncorrelated across these two
groups.

More generally, we suppose that at the top level there are J limbs to choose from.
The j th limb has K j branches numbered j1, . . . , jk, . . . , j K j . The utility for the al-
ternative in the j th of J limbs and kth of K j branches is then

U jk = Vjk + ε jk, k = 1, 2, . . . , K j , j = 1, 2, . . . , J, (15.32)
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where for an m-choice model K1 + · · · + K J = m. This is illustrated as follows:

Root

� | �
limb 1 · · · limb j · · · limb J

� | � | � | �
branch 1 · · · branch K1 · · · branch k · · · branch 1 · · · branch K J

V11+ε11 · · · V1K1+ε1K1 · · · Vjk+ε jk · · · VJ1+ε J1 · · · VJ K J +ε J K J

There can be additional levels, with the third level being a twig, etc. For notational
simplicity we present results for a two-level model.

For any model with this nesting p jk , the joint probability of being on limb j and
branch k, can be factored as p j , the probability of choosing limb j , times pk| j , the
probability of choosing branch k conditional on being on limb j . Thus

p jk = p j × pk| j .

The nested logit model of McFadden (1978) arises when the error terms ε jk have
the GEV joint cumulative distribution function

F(ε) = exp[−G(e−ε11 , . . . , e−ε1K1 ; . . . ; e−εJ1 , . . . , e−εJ K J )] (15.33)

for the following particular specification of the function G(·):

G(Y) = G(Y11, . . . , Y1K1 , . . . , YJ1, . . . , YJ K J ) =
J∑

j=1

(
K j∑

k=1

Y
1/ρ j

jk

)ρ j

. (15.34)

The parameter ρ j is a function of the correlation between ε jk and ε jl but does
not exactly equal the correlation parameter. In fact ρ j can be shown to equal√

1 − Cor [ε jk, ε jl], so ρ j is inversely related to the correlation and we expect 0 ≤
ρ j ≤ 1. The choice ρ j = 1 corresponds to independence of ε jk and ε jl and leads to
the MNL model. We call the parameters ρ j the scale parameters, as they scale re-
gression parameters in the models considered in the following.

Notation varies considerably across authors. McFadden (1978) and Maddala (1983)
instead define this cdf in terms of σ j = 1 − ρ j , called the dissimilarity parame-
ter. Others use µ j = 1/ρ j . Many authors model alternative i j for the nth individual
whereas we model alternative jk and reserve i for the i th individual.

The outcome indicator variables y jk equal one if alternative jk is chosen and
zero otherwise. Then from (15.32), p jk = Pr[y jk = 1] = Pr[U jk ≥ Ulm, for all l,m].
Closed-form solutions for the probabilities p jk , as a function of the Vjk and ρ j , are
derived in Section 15.12.3. These are then evaluated for the particular deterministic
utility function

Vjk = z′
jα + x′

jkβ j , k = 1, . . . , K j , j = 1, . . . , J, (15.35)

where z j varies over limbs only and x jk varies over both limbs and branches. The
parameters α and β j are called regression parameters.
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The GEV model (15.32)–(15.35) yields the nested logit model

p jk = p j × pk| j =
exp
(

z′
jα+ρ j I j

)
∑J

m=1 exp
(
z′

mα + ρm Im
) ×

exp
(

x′
jkβ j/ρ j

)
∑K j

l=1 exp
(

x′
jlβ j/ρ j

) , (15.36)

see Section 15.12.3, where

I j = ln

(
K j∑

l=1

exp
(
x′

jlβ j/ρ j
))

(15.37)

is called the inclusive value or the log-sum. One attraction of the nested logit model
is that the probabilities pi and p j |i are essentially of conditional logit form.

The preceding results are for regressors that vary across alternatives. The algebra
can be adapted to alternative-invariant regressors Vjk = z′α j + x′β jk , with a normal-
ization of one of the β jk . Algebraically all that is needed is a partition Vjk = A j + B jk ,
where A j pertains to the limb and B jk pertains to both limb and branch.

15.6.3. Estimation of Nested Logit

For the i th observation we observe K1 + · · · + K J outcomes yi jk , where yi jk = 1 if
alternative jk is chosen and is zero otherwise. Then pi jk = pik| j × pi j and the density
for one observation yi = (yi11, . . . , yi J K J ) can be compactly expressed as

f (yi ) =
J∏

j=1

K j∏
k=1

[
pik| j × pi j

]yi jk =
J∏

j=1

(
p

yi j

i j

K j∏
k=1

pik| j
yi jk

)
,

where yi j =∑K j

l=1 yi jl equals one if limb j is chosen and equals zero otherwise.
The density for the sample is

∏N
i=1 f (yi ). The FIML estimator maximizes

ln L =
N∑

i=1

J∑
j=1

yi j ln pi j +
N∑

i=1

J∑
j=1

K j∑
k=1

yi jk ln pik| j , (15.38)

with respect to parameters α, β j , and ρ j .
An alternative, less-efficient estimation is the sequential estimator or LIML esti-

mator that exploits the partitioning of p jk into the product of pk| j and p j . The first
stage bases estimation on the second term of the right-hand side of (15.38), which
from (15.36) is a conditional logit model with estimated parameter β j/ρ j . The second
stage bases estimation on the first term of the right-hand side, which from (15.36) is a
conditional logit model with added regressor Îi j , an estimate of the inclusive value in
(15.37) that can be computed using the first-stage parameter estimates. The α̂ and ρ̂ j

are obtained directly from the second stage, whereas β̂ j equals ρ̂ j times the first-stage

estimate β̂ j/ρ j .
This sequential estimator is less efficient than the FIML estimator, and at the second

stage the usual CL standard errors understate the true standard errors of the sequential
estimator since they do not allow for the estimation error in computing the inclusive
value. McFadden (1981) gives the formula for correct standard errors, or the bootstrap
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can be used. The sequential alternative estimator was originally proposed at a time
when even conditional logit model estimation was challenging. Now it is relatively
simple to code the likelihood function, so it is best to use FIML. Sequential estima-
tion is potentially useful to provide starting values as the FIML log-likelihood is not
globally concave.

As an example we applied the nested logit model to the data of Section 15.2. The
nesting structure was shore or boat fishing at the higher level, with lower levels beach
or pier (for shore fishing) and private or charter (for boat fishing). The regressors x jk

in (15.36) that vary at the lower level were price (P) and catch rate (C). The regressors
z j at the higher level that vary across shore or boat were an indicator variable d equal
to one if shore fishing and d × I , income interacted with the shore fishing indicator.
Estimation by conditional logit (corresponding to ρ1 = ρ2 = 1) yielded a fitted model
with ln L = −1252, as expected smaller than the log-likelihood for the similar but
less restricted model given in the last column of Table 15.2. FIML estimation of the
corresponding nested logit model, with ρ1 and ρ2 now free to vary, led to a much higher
log-likelihood model and rejection of the more restricted conditional logit model using
the χ2(2) likelihood ratio test statistic.

15.6.4. Discussion

The main limitation of the nested logit model is that not all choice problems lend them-
selves to an obvious nesting structure. One can still select the optimal nesting scheme
using likelihood ratio tests, where appropriate, or Akaike’s information criteria. How-
ever, the resulting scheme does not always accord with a priori expectations.

Another practical issue is that consistency of the nested logit model with choice
from an ARUM requires that the three conditions in Section 15.5.2 are satisfied. The
third of these conditions is satisfied globally if 0 ≤ ρ j ≤ 1, and with more than two
levels of nesting it is additionally required that ρ at higher levels of the nest structure
does not exceed ρ at lower levels of nesting. In practice it is possible to obtain estimates
of ρ j outside the unit interval. One can still use the model, as the choice probabilities
are proper, but the model may no longer come from an ARUM. Borsch-Supan and
others have considered local identification conditions under which the nested logit
model may be consistent with ARUM even if ρ j lie outside the unit interval. It can
also be useful to do a grid search over ρ j to constrain ρ j to the unit interval and to
enumerate the reduction in log-likelihood, if any, caused by doing so.

The nested logit model defined in (15.36) and (15.37) was proposed by McFadden
(1978), who derived it as a GEV model. An earlier variant of the nested logit
model was similar to (15.36) and (15.37), except that exp(x′

jlβ j/ρ j ) was replaced by
exp(x′

jlβ j ). This had an alternative derivation as a natural extension of the CL model,
since CL is the special case of (15.36) and (15.37) with ρ j = 1. See McFadden (1978,
p. 79), Maddala (1983, p. 70), and Greene (2003, p. 726).

It is very important to note that the two variants differ if ρ j differs across alter-
natives; see Koppelman and Wen (1998) and Train (2003, p. 88). Some early studies
obtained sequential estimates that differed substantially from FIML estimates, casting
doubt on the robustness of the nested logit model. However, in some of these studies
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the different estimators were being applied to different variants of the nested logit
model. Furthermore, even today different packages estimate different variants of the
model.

The nested logit model can be extended to higher levels of alternatives (or nesting).
For example, Goldberg (1995) has five levels: (1) buy any car; (2) buy a new car given
yes to 1; (3) which of nine classes of car was purchased given yes to 2; (4) foreign
or domestic; (5) model. An added attraction if some nests have numerous choices is
that it is sufficient to base estimation on a fixed or randomly selected subset of the
alternatives (see McFadden, 1978).

15.6.5. Welfare Analysis

Welfare analysis for the ARUM was presented in Section 15.5.4. In general there is no
solution for E[CV ], the expected compensating variation.

Remarkably, for GEV models that are linear in income, V (I − p j , x j ) = α(I −
p j ) + f (x j ), McFadden (1995) and earlier workers show that there is an explicit
solution

E[CV ] = 1

α

(
ln G

(
eV ′′

1 , . . . , eV ′′
m

)
− ln G

(
eV ′

1 , . . . , eV ′
m

))
,

where the function G(·) for the GEV distribution is defined in (15.34), and V ′
j and V ′′

j
are the before and after values of the deterministic component of utility.

For GEV models with income appearing nonlinearly, however, there is no explicit
solution. Then one approach is the simulation method given in Section 15.5.4. For a
multinomial logit model this is simple as it is easy to draw extreme value errors using
the transformation method of Section 12.8.2 – draw u from the uniform on (0, 1) and
then set ε = − ln(− ln(u)). For a more general nested logit model, however, it is diffi-
cult to randomly draw from a GEV distribution even as simple as the bivariate extreme
value. McFadden (1995) proposed using the MCMC with the Metropolis–Hastings al-
gorithm (see Section 13.5). Herriges and Kling (1999) give an excellent summary of
this simulation method with application to nested logit models for the fishing data of
Section 15.2, using various indirect utility functions including the translog.

More recently, Dagsvik and Karlström (2004) show that although there is no explicit
solution for E[CV] in the GEV model if income enters nonlinearity, it is analytically
possible to reduce E[CV] to a one-dimensional integral. Computing this integral us-
ing Gaussian quadrature will be much simpler than employing the afore-mentioned
simulation method.

15.7. Random Parameters Logit

The random parameters logit model provides a simple way to generalize the MNL
or CL model to permit the utilities of each alternative to be correlated. The model is
perhaps the leading microeconometrics example of a random parameters model for
cross-section data.
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15.7.1. Random Parameters Logit Model

The random parameters logit (RPL) model specifies the utility to the i th individual
for the j th alternative to be

Ui j = x′
i jβi + εi j , j = 1, 2, . . . ,m, (15.39)

where εi j are iid extreme value, as for the CL model, but additionally permits the
parameters βi to be random. The most common assumption is that

βi ∼ N [β,Σβ]. (15.40)

One variation is to use the log-normal rather than normal distribution for parameters
whose sign is known a priori. This model is also called a mixed logit model, using
terminology borrowed from the panel setting for models with random parameters. By
reexpressing the MNL model as a CL model, the results that follow also cover a ran-
dom parameters MNL model.

The model can be rewritten as

Ui j = x′
i jβ + vi j ,

vi j = x′
i j ui + εi j ,

where ui ∼ N [0,Σβ]. Then Cov[vi j , vik] = x′
i jΣβxik , j �= k, so the introduction

of random parameters has the attractive property of inducing correlation across
alternatives.

In most applications the covariance matrix Σβ is specified to be diagonal, and addi-
tionally some of the diagonal entries may be set to zero. Then the number of covariance
parameters to estimate equals the number of components of βi that are specified to be
random.

As an example, consider a mixed CL model with scalar regressor and parameters
β and σ 2

β . Suppose the parameter estimates are β̂ = 2.0 with standard error 0.5 and
σ̂ 2
β = 1.0 with standard error 0.2. Then the null hypothesis of constant parameter, that

is, σ 2
β = 0, is strongly rejected since t = 1.0/0.2 = 5.0. The effect on Pr[yi = j] of

an increase in xi j differs across individuals and is positive for about 97.5% of the
sample, since it is estimated that βi ∼ N [2.0, 1.0]. For an application that emphasizes
interpretation of estimated coefficients, see Revelt and Train (1998).

The industrial organization literature considers aggregation over consumers of
models similar to the RPL model to estimate demand parameters using market-
level data. See, for example, Berry (1994) and Nevo (2001), and also Allenby and
Rossi (1991).

15.7.2. Estimation of Random Parameters Logit

In the linear regression model with random parameters, OLS estimation yields esti-
mates of the means β that are consistent though inefficient. In a nonlinear model,
however, estimators that fail to control for the randomness of the parameters will be
inconsistent. Thus the usual conditional logit MLE will be inconsistent if the dgp is
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given by (15.39) and (15.40). Instead, ML estimation must explicitly account for the
stochastic process for βi .

If βi were known, so that the only source of randomness is εi j , a CL model is
obtained with probability pi j = ex′

i jβi /
∑m

l=1 ex′
ilβi . Since βi is in fact random we need

to integrate out this randomness. This yields

pi j = Pr[yi = j] =
∫

ex′
i jβi∑m

l=1 ex′
ilβi
φ(βi |β, �β)dβi , (15.41)

where the integral is multidimensional and φ(βi |β, �β) denotes the multivariate nor-
mal density for βi with mean β and variance �β.

The MLE maximizes ln L N =∑N
i=1

∑m
j=1 yi j ln pi j with respect to β and �β. The

challenge is that there is no closed-form solution for the integral, whose dimension is
given by the number of components of βi that are random, with non-zero variance.
Estimation is therefore by simulation methods.

One approach is to approximate pi j using the direct simulator (see Section 12.4.1).
This replaces the integral (15.41) by the average of S evaluations of the integrand
at random draws of βi from the N [β, �β] distribution. The MSL estimator then
maximizes

ln L̂N (β, �β) =
N∑

i=1

m∑
j=1

yi j ln

[
1

S

S∑
s=1

ex′
i jβ

(s)
i∑m

l=1 ex′
ilβ

(s)
i

]
, (15.42)

where β(s)
i , s = 1, . . . , S, are random draws from the density φ(βi ;β, �β). Since β

and �β are unknown, this summation is embedded in an iterative procedure with
evaluation at β(r ) and �(r )

β at the r th round. Consistency requires that S → ∞ as

well as N → ∞ and that
√

N/S → ∞ (see Section 12.4.3). Methods for speeding
up computation include use of Halton sequences (see Section 12.7.4) and alternative
simulators.

An alternative estimator uses Bayesian methods with relatively flat priors. Train
(2001, 2003) specifies hierarchical priors with β ∼ N [β∗, 
∗], where 
∗ is assumed
to be large, and with �β assumed to be inverse-Wishart distributed with degrees of
freedom K = dim[β] and scale parameter IK . Rather than working with the pos-
terior for just β and �β it is computationally quicker to additionally include βi ,
i = 1, . . . , N . Then (1) the conditional posterior for β|�β,βi is normal, (2) the con-
ditional posterior for �β|β,βi is inverse Wishart, and (3) the conditional posterior for
βi |�β, is β, which is proportional to the integrand in (15.41). Given these conditional
posteriors estimation can be done using a variation of the Gibbs sampler (see Sec-
tion 13.5.2), with the complication that draws for the third posterior need to use one
iteration of the Metropolis–Hastings algorithm (see Section 13.5.4) because the full set
of conditionals is not available. In an application this took similar computation time to
the MSL estimator and, given the relatively flat prior, yielded parameter estimates and
standard errors that were generally within 10% of those from MSL estimation.
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15.7.3. Generalized Random Utility Models

Models more flexible than multinomial logit are desirable. In this regard there is cur-
rently great enthusiasm regarding the random parameters logit model. McFadden and
Train (2000) show that any random utility model can be approximated arbitrarily well
by a mixed model, though this result requires appropriate choice of regressors and
mixing distribution.

There is no reason to restrict the random parameters approach to multinomial logit
models. For example, it may be extended to nested logit models. Moreover, additional
sources of randomness may be incorporated, notably latent classes and latent variables.

To present these extensions we begin with the ARUM (15.22). This specifies the
utility to individual i of the j th alternative to be Ui j = Vi j (xi ,β) + εi j , where xi de-
notes observed data, β denotes unknown parameters, and εi j denotes an error indepen-
dent over i but possibly correlated over j . Assume that the distribution of εi j is such
that (15.23) yields a closed-form solution for the choice probabilities denoted

pi j = Fj (Vi (xi ,β),θε),

where Vi (xi ,β) = [Vi1(xi ,β), . . . ,Vim(xi ,β)] and θε denotes any unknown parame-
ters of the distribution of εi= (εi1, . . . , εim). Such a closed-form solution is possible
if εi has a GEV distribution with special cases leading to multinomial logit and nested
logit models.

A more general model introduces additional randomness into this model. First, the
previously deterministic part of utility becomes Vi j = Vi j (xi , ξi ,β). Then assuming
that εi is such that a closed-form solution for the probabilities exist conditional on ξi ,
unconditionally

pi j =
∫

Fj (Vi (xi , ξi ,β),θε) f (ξi |θξ)dξi , (15.43)

where f (ξ|θξ) denotes the density of ξ. The RPL model is an example with Vi j =
x′

i jβ + x′
i jξi , where ξi is N [0,Σ] and is motivated via a random parameters argument.

However, ξi can also be introduced as an additional disturbance term or as a relevant
latent variable. Second, individuals may be assumed to come from one of C latent
classes; see Section 18.5 for a duration model example and Swait (2003) for a GEV
example of latent class or finite mixtures models. If β and θε vary by class then (15.43)
becomes unconditionally

pi j =
C∑

c=1

[∫
Fj (Vi (xi , ξi ,β

c),θc
ε) f (ξi |θξ)dξi

]
πc, (15.44)

where πc denotes probability of membership in the cth class and typically c = 2 or
c = 3. The MSL estimator then maximizes

ln L̂N (β, �β) =
N∑

i=1

m∑
j=1

yi j ln

[
1

S

S∑
s=1

C∑
c=1

Fj
(
Vi
(
xi , ξ

s
i ,β

c) ,θc
ε

)
πc

]
,

where ξs
i denotes the sth draw from f (ξs

i |θξ). Kamakura and Wedel (2004) estimate a
finite mixtures MNL model using Bayesian methods.
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Figure 15.1: Generalized random utility model.

Walker and Ben-Akiva (2002) call such a model a generalized random utility
model. They cite many articles with such extensions, consider the use of stated pref-
erence data to supplement revealed preference data, and provide a substantial empir-
ical illustration. Figure 15.1, derived from Walker and Ben-Akiva (2002), summarizes
the various extensions.

The multinomial modeling literature has been at the forefront of developing and
estimating highly structured parametric models that incorporate random parameters,
latent variables, and latent parameters and combine data from more than one source.
These methods are applicable to any type of cross-section data, not just discrete
outcomes.

15.8. Multinomial Probit

An alternative and obvious way to introduce correlation across choices in the unob-
served component is to work with normally distributed errors. However, ML esti-
mation is difficult as in the most general case an (m − 1)-fold integral needs to be
calculated.

15.8.1. Multinomial Probit Model

The multinomial probit (MNP) model is an m-choice multinomial model, with utility
of the j th choice given by

U j = Vj + ε j , j = 1, 2, . . . ,m, (15.45)
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where the errors are joint normally distributed, with

ε ∼ N [0,Σ], (15.46)

where the m × 1 vector ε = [ε1 . . . εm]′. Usually Vj = x′
jβ or Vj = x′β j .

Different MNP models arise from different specifications of the covariance matrix
�. Some of the off-diagonal entries are specified to be nonzero, to permit correlation
across the errors, though some restrictrictions need to be placed on �. Note that if the
errors are uncorrelated the MNP still yields no closed-form solution for the probabili-
ties and it is easier to assume instead that the errors are extreme value and use the CL
or MNL models.

Restrictions on � are needed to ensure identification. It is clear from (15.23) that,
for any ARUM, choice is determined by the differences in utility or errors. Thus we
consider the difference U j − U1 between utility of alternative j and that of alternative
1, chosen to be the benchmark alternative. Bunch (1991) demonstrated that all but
one of the parameters of the covariance matrix of the errors ε j − ε1 is identified; see
the discussion at the end of Section 15.5.1. One way to achieve this identification
is to normalize ε1 = 0, say, and then restrict one covariance element. For example,
if m = 2, set ε1 = 0 so σ11 = 0 and σ12 = 0 and additionally restrict σ22 = 1. Then
ε2 − ε1 = ε2 ∼ N [0, 1], which is the binary probit model.

Additional restrictions on � or β may be needed for successful application. Keane
(1992) demonstrated that even if assumptions on the error covariance are made to
ensure just-identification, in practice the parameters of the MNP model may be highly
imprecisely estimated in models with regressors that do not vary with the alternative.
Further restrictions on the MNP model are then needed. This estimation imprecision is
qualitatively similar to high multicollinearity among regressors in a linear regression.
Keane found that exclusion restrictions on the regressors (with one exclusion for each
utility index) work well. Alternatively, and more commonly, further restrictions may
be placed on the covariance parameters.

A popular parsimonious model for the errors is the factor model

ε j = v j +
L∑

l=1

c jlξl , j = 1, 2, . . . ,m,

where v j and ξ1, . . . , ξL are iid standard normal and c jl are weights called factor load-
ings to be estimated. This model can greatly reduce the number of covariance parame-
ters, from m(m + 1)/2 to L, and requires an (L + 1)-dimensional integral. Numerical
methods, usually Gaussian quadrature, can be used for low values of L , whereas sim-
ulation methods need to be used for larger L . For panel data the random effects model
(see Section 21.2.1) can be viewed as a factor model with error uit = αi + εi t , and the
factor model may be especially appropriate in a panel probit setting.

15.8.2. Estimation of Multinomial Probit

The regression and error variance parameters are preferably estimated by ML with
log-likelihood given in Section 15.3.2. The challenge is that there is no closed-form
expression for the choice probabilities.
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For a three-choice MNP model

p1 = Pr[y = 1] =
∫ −Ṽ31

−∞

∫ −Ṽ21

−∞
f (̃ε21, ε̃31)d ε̃21d ε̃31

(see (15.24)), where f (̃ε21, ε̃31) is a bivariate normal with as many as two free co-
variance parameters and Ṽ21 and Ṽ31 depend on regressors and parameters β. This
bivariate normal integral can be quickly evaluated numerically. More generally, how-
ever, an m-choice model requires numerical evaluation of an (m − 1)-variate integral.
A trivariate normal integral is the limit for numerical methods, limiting standard nu-
merical integration methods to a four-choice MNP model.

For larger models an alternative is to use simulation methods. For simplicity we
refer to the three-choice MNP model. One possibility is to use the frequency sim-
ulator that approximates p1 by the fraction of draws of (̃ε21, ε̃31) that are less than
(−Ṽ21,−Ṽ31). From Section 12.7.1 this simulator is not smooth and it can be very in-
efficient (see Section 12.7.2). Furthermore, in the current setting it is possible that it
yields boundary values of p̂1 = 0 or 1. In general it is better to use importance sam-
pling, detailed in Section 12.7.2. For Monte Carlo integration over a region of the
multivariate normal a very popular importance sampler is the GHK simulator, due to
Geweke (1992), Hajivassiliou and McFadden (1994), and Keane (1994). This recur-
sively truncates the multivariate normal pdf. Compared to the frequency simulator it
is smooth, requires many fewer draws for alternatives with low probability of being
chosen, and is unlikely to have boundary problems. Train (2003) provides a detailed
account of this method.

The preceding discussion considers evaluation of MNP probabilities assuming
knowledge of β and �. In fact we need to estimate β and �. The maximum sim-
ulated likelihood estimator estimator maximizes

ln L̂N (β, �) =
N∑

i=1

m∑
j=1

yi j ln p̂i j ,

where the p̂i j are obtained using the GHK or other simulator. Consistency requires the
number of draws in the simulator S → ∞ as well as N → ∞. The method is very
burdensome. At the r th round of an iterative procedure (see Chapter 10) the estimates

are β̂
(r )

and �̂(r ) and the update requires recalculating p̂i j , which requires S draws for
each of N individuals.

An alternative estimation procedure is the method of simulated moments
(see Section 12.5). From (15.8) a consistent method of moments estimator solves∑N

i=1

∑m
j=1(yi j − pi j )zi = 0, where, for example, zi = xi . The corresponding MSM

estimator of β and � solves the estimating equations

N∑
i=1

m∑
j=1

(yi j − p̂i j )zi = 0,

where the p̂i j are obtained using an unbiased simulator. Then (yi j − p̂i j )zi is unbiased
for (yi j − pi j )zi , so consistent estimation is possible even if S = 1. This can greatly
reduce computation. However, there is an efficiency loss for low S, and even for large
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S MSM is less efficient than MSL since in this example the method of moments is less
efficient than ML. A less-used related method that is as efficient as MSL is the method
of simulated scores (see Hajivassiliou and McFadden, 1998).

An alternative estimator uses Bayesian methods. Unlike RPL there is no closed-
form solution for the probabilities, which need to be derived from the utilities. The
latent utilities Ui = (U1i , . . . ,U ji ) are introduced as auxiliary variables and the data
augmentation approach (see Section 13.7) is used. Letting U = (U1, . . . ,UN ) and
y = (y1, . . . , yN ) we have that the Gibbs sampler cycles among (1) the conditional
posterior for β|y,U, �, (2) the conditional posterior for �|y,β,U, and (3) the poste-
rior for Ui |y,β, �. Albert and Chib (1993) provide a quite general treatment for both
unordered and ordered multinomial models. McCulloch and Rossi (1994) provide a
substantive MNP application. Chib (2001) discusses the complication of imposing the
restrictions on � needed for identification (see Section 15.8.1).

15.8.3. Discussion

Both MNP and RPL models lack a closed-form solution for pi j . However, for RPL
there is at least a closed-form solution conditional on βi and the only problem is to
integrate out βi . For the MNP model, which predates the RPL model, there is no such
conditional result and approximating pi j becomes more challenging, especially if pi j

is close to zero or one. It appears to be easier to get model flexibility through nested
logit, RPL or mixture models than by use of MNP.

15.9. Ordered, Sequential, and Ranked Outcomes

In this section we present models with more structure than unordered models, such as
those with a natural ordering of alternatives or sequencing of decisions. Analysis is
straightforward as appropriate models are well established and estimation is again by
MLE based on (15.4), with different models leading to different specifications of the
probabilities pi j .

15.9.1. Ordered Multinomial Models

Suppose that there is a natural ordering of alternatives. For example, self-rated health
status may be one of excellent, good, fair, or poor. Such data can be estimated by
an unordered multinomial model, but a much more parsimonious model and sensible
model is one that takes account of this ordering.

The starting point is an index model, with single latent variable

y∗
i = x′

iβ + ui , (15.47)

where x here does not include an intercept, a departure from Section 14.4.1. As y∗

crosses a series of increasing unknown thresholds we move up the ordering of alter-
natives. For example, for very low y∗ health status is poor, for y∗ > α1 health status
improves to fair, for y∗ > α2 it improves further to good, and so on.
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In general for an m-alternative ordered model we define

yi = j if α j−1 < y∗
i ≤ α j , (15.48)

where α0 = −∞ and αm = ∞. Then

Pr[yi = j] = Pr[α j−1 < y∗
i ≤ α j ]

= Pr[α j−1 < x′
iβ + ui ≤ α j ]

= Pr[α j−1 − x′
iβ < ui ≤ α j − x′

iβ]

= F(α j − x′
iβ) − F(α j−1 − x′

iβ),

(15.49)

where F is the cdf of ui . The regression parameters β and the (m − 1) threshold
parameters α1, . . . , αm−1 are obtained by maximizing the log-likelihood (15.5) with
pi j defined in (15.49). For the ordered logit model u is logistic distributed with
F(z) = ez/(1 + ez). For the ordered probit model u is standard normal distributed
and F(·) is the standard normal cdf. Letting K denote the number of regressors ex-
cluding the intercept, an m-choice ordered model has K + m − 1 parameters whereas
an MNL model has (m − 1)(K + 1) parameters.

The sign of the regression parameters β can be immediately interpreted as deter-
mining whether or not the latent variable y∗ increases with the regressor. For marginal
effects in the probabilities

∂ Pr[yi = j]

∂xi
= {F ′(α j−1 − x′

iβ) − F ′(α j − x′
iβ)}β,

where F ′ denotes the derivative of F . The term in braces can be positive or negative.
This model can also be applied to count data that take just a few values. Cameron

and Trivedi (1986) applied the ordered probit model to number of doctor consultations.
Hausman, Lo, and MacKinley (1992) applied the ordered probit to data on changes
in a count, which can be negative, and additionally modeled the error term ui to be
heteroskedastic.

15.9.2. Sequential Multinomial Models

In some situations decisions are made sequentially. For example, one might first de-
cide whether or not to go to college. If no college is chosen then y = 1. If y �= 1
then decide whether to go to a two-year college (y = 2) or four-year college (y = 3).
Given specification of this sequence the probabilities are easily obtained. For exam-
ple, model the first decision by a probit model and the second decision, if relevant,
by a probit model. Then Pr[y = 1] = �(x′

1β1) and Pr[y = 2|y �= 1] = �(x′
2β2). The

unconditional probability is

Pr[y = 2] = Pr[y = 2|y �= 1] × Pr[y �= 1] = �(x′
2β2)(1 −�(x′

1β1)).

The parameters β1 and β2 can be estimated by maximizing the log-likelihood function
(15.5), where p1i = �(x′

1iβ1), p2i is given in the preceding equation, and p3i = 1 −
p1i − p21.
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This approach relies on correct specification of the sequence of decision making. A
better model for this choice example may be a three-choice nested logit model where
the errors in the utilities for two-year college and four-year college are correlated with
each other and independent of the error in the utility for no college. These models can
be compared using the likelihood-based methods given in Section 8.5.

15.9.3. Ranked Data Models

The models discussed thus for have assumed that alternatives are mutually exclusive
and only one alternative is chosen. More generally, alternatives may be ranked, espe-
cially with stated preference data. For example, both first and second choices may be
known.

The rank-ordered logit model is simple to estimate (see Beggs, Cardell, and
Hausman, 1981). Consider a four-alternative conditional logit model with alternative
2 the first choice and alternative 3 the second choice. Alternative 2 is chosen from all
four alternatives and then alternative 3 is chosen from the remaining alternatives 1, 3,
and 4. The joint probability of these first and second choices is

ex′
i2β

ex′
i1β + ex′

i2β + ex′
i3β + ex′

i4β
× ex′

i3β

ex′
i1β + ex′

i3β + ex′
i4β
.

Estimation is by ML given similar expressions for the other 11 joint probabilities.
For the multinomial probit model there is no similar simplification. Hajivassiliou

and Ruud (1994) present a method to simulate the joint probabilities; they use the
rank-ordered probit model to illustrate a variety of simulation-based estimators.

15.10. Multivariate Discrete Outcomes

The preceding models, aside from rank-ordered models, are models for one discrete
dependent variable that takes one of m mutually exclusive values. Now we consider
models when there is more than one discrete outcome. The log-likelihood function
is similar to (15.5) for the multinomial model, with different models corresponding
to different functional forms for the probabilities. These probabilities may need to
account for correlation of the two outcomes and possibly simultaneity.

15.10.1. Bivariate Discrete Outcomes

For simplicity consider bivariate discrete data (y1i , y2i ). For example, in a joint
model of labor supply and fertility the dependent variables (y1i , y2i ) for individual
i may be y1i = 2 if work and y1i = 1 do not work, and y2i = 2 if have children and
y2i = 1 if have no children.

More generally, y1 may take values 1, . . . ,m1 and y2 may take values 1, . . . ,m2.
For individual i define

pi jk = Pr[y1i = j, y2i = k], j = 1, . . . ,m1, k = 1, . . . ,m2. (15.50)
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Note that pi jk define probabilities of mutually exclusive events and
∑

j

∑
k pi jk = 1.

Define m1 × m2 corresponding binary indicator variables y jk = 1 if (y1 = j, y2 = k)
and y jk = 0 otherwise. Then the joint density for the i th observation is

f (y1i , y2i ) =
m1∏

k=1

m2∏
j=1

p
yi jk

i jk .

The log-likelihood is then
∑N

i=1

∑m1
k=1

∑m2
j=1 yi jk ln pi jk and estimation is by ML as in

Section 15.4.2.
The essential difference between the multivariate and multinomial models is in the

specification of the functional form for the probabilities.
In the simplest case the two discrete dependent variables are independent and pi jk =

Pr[y1i = j] × Pr[y2i = k]. Then y1 and y2 can be modeled using separate multinomial
models.

If the two variables are instead viewed as interrelated, a simple approach is to use a
multinomial logit model for the probabilities pi jk . Then the bivariate outcomes (y1, y2)
are essentially treated as m1 × m2 univariate outcomes. For example, in the labor sup-
ply and fertility example one of the four outcomes is then work and have children.

In the next section we consider models between these two extremes.

15.10.2. Bivariate Probit

The bivariate probit model is a joint model for two binary outcomes that generalizes
the index function model (see Section 14.4.1) from one latent variable to two latent
variables that may be correlated.

Define the unobserved latent variables

y∗
1 = x′

1β1 + ε1, (15.51)

y∗
2 = x′

2β2 + ε2,

where the ε1 and ε2 are joint normal with means zero, variances one, and correlation
ρ. Then the bivariate probit model specifies the observed outcomes to be

y1 =
{

2 if y∗
1 > 0,

1 if y∗
1 ≤ 0,

y2 =
{

2 if y∗
2 > 0,

1 if y∗
2 ≤ 0,

where we use values (2, 1) rather than (1, 0) to be consistent with the notation of this
chapter. This model collapses to two separate probit models for y1 and y2 when the
error correlation ρ = 0.
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When ρ �= 0 there is no closed-form solution for the probabilities. For example,

p22 = Pr [y1 = 2, y2 = 2]

= Pr
[
y∗

1 > 0, y∗
2 > 0

]
= Pr

[−ε1 < x′
1β1, −ε2 < x′

2β2

]
= Pr

[
ε1 < x′

1β1, ε2 < x′
2β2

]
=
∫ x′

1β1

−∞

∫ x′
2β2

−∞
φ(z1, z2, ρ)dz1dz2

= �(x′
1β1, x

′
2β2, ρ),

where φ(z1, z2, ρ) and�(z1, z2, ρ) are, respectively, the standardized bivariate normal
density and cdf for (z1, z2) with zero means, unit variances, and correlation ρ, and the
fourth equality holds for the bivariate normal with mean zero.

Performing similar algebra for the other possible outcomes yields

p jk = Pr [y1 = j, y2 = k]

= �(q1x′
1β1, q2x′

2β2, ρ),

where ql = 1 if yl = 2 and ql = −1 if yl = 1 for l = 1, 2. This is the basis for ML
estimation, detailed in Greene (2003), who also considers computation of marginal
effects.

Implementation requires evaluation of a bivariate normal integral, which is numer-
ically feasible. Generalizations to multivariate probit are obvious though will experi-
ence numerical challenges because of higher order integrals. If each outcome is or-
dered then the model can be generalized to a bivariate ordered probit model.

One can also consider a simultaneous equations probit model that generalizes
(15.51) to allow the right-hand side variables to be endogenous. For example, the first
equation for y∗

1 may include y∗
2 and/or y2 as regressors and similarly for y∗

2 , with some
restrictions required to ensure the model is identified. This model is similar to the
simultaneous equations Tobit model discussed in Section 16.8.2.

15.11. Semiparametric Estimation

Some studies have extended semiparametric estimation methods to models for un-
ordered multinomial data. Abe (1999) estimated the conditional logit model with x′

i jβ
in (15.10) replaced by the additive model form

∑
p βp f p(xi j p), where p denotes the

pth component of xi j and the function f p(·) is estimated by the data. L-F. Lee (1995)
extended the Klein and Spady (1993) estimator (see Section 14.7) from binary out-
comes to multinomial outcomes. Semiparametric methods for multiple-index models
can also be applied to the multinomial unordered model. The challenge is to ensure
that predicted probabilities lie between zero and one and sum to one.

Ordered models lend themselves well to semiparametric analysis since they involve
an index x′β that crosses a number of thresholds. See, for example, Klein and Sherman
(2002), who present an estimator that is

√
N -consistent and asymptotically normal for
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both regression and threshold points up to location and scale, under the assumption
that errors are independent of regressors.

15.12. Derivations for MNL, CL, and NL Models

We consider the conditional and multinomial logit models, deriving first and second
derivatives of the log-likelihood function and expressions for the effect of changes in
regressors on the probabilities. Then the nested logit (NL) model is derived from the
GEV model.

15.12.1. Conditional Logit

The conditional logit probability is pi j = ex′
i jβ/
∑

l ex′
ilβ. Differentiation by parts

yields

∂pi j

∂β
= ex′

i jβ∑
l ex′

iβl
xi j− ex′

i jβ(∑
l ex′

ilβ
)2 ∑

l

ex′
ilβxil

= pi j xi j − pi j

∑
l

pilxil = pi j xi j − pi j x̄i = pi j (xi j − x̄i ),

where x̄i=
∑

l pilxil . Then

∂L
∂β

=
∑

i

∑
j

yi j

pi j

∂pi j

∂β
=
∑

i

∑
j

yi j

pi j
pi j (xi j − x̄i ) =

∑
i

∑
j

yi j (xi j − x̄i ).

It follows that

∂2L
∂β∂β′ = −

∑
i

∑
j

yi j
∂ x̄i

∂β′

= −
∑

i

∑
j

yi j
∂
∑

l pilxil

∂β′

= −
∑

i

∑
j

yi j

∑
l

pil(xil − x̄i )x′
il

=
∑

i

∑
j

pi j (xi j − x̄i )x′
i j

=
∑

i

∑
j

pi j (xi j − x̄i )(xi j − x̄i )
′,

which is (15.15). The second to last equality uses the fact that yi j equals one for ex-
actly one of the choices and zero otherwise, so that

∑
j yi j
∑

l ail =∑ j

∑
l yi j ail =∑

j ai j , and the last equality uses
∑

j pi j (xi j − x̄i )x̄′
i =∑ j (pi j xi j − pi j x̄i )x̄′

i =∑
j (x̄i − pi j x̄i )x̄′

i = 0 as
∑

j pi j = 1.
Now consider the effect of changing regressors. For the conditional logit model

∂pi j

∂xi j
= ex′

i jβ∑
l ex′

ilβ
β− ex′

i jβ(∑
l ex′

ilβ
)2 ex′

i jββ = pi j (1 − pi j )β,
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whereas for j �= k

∂pi j

∂xik
= − ex′

i jβ(∑
l ex′

ilβ
)2 ex′

ikββ = −pi j pikβ.

Combining these two results yields (15.18).

15.12.2. Multinomial Logit

The multinomial logit probability is pi j = ex′
iβ j /
∑

l ex′
iβl . Differentiation by parts

yields

∂pi j

∂β j
= ex′

iβ j∑
l ex′

iβl
xi− ex′

iβ j(∑
l ex′

iβl
)2 ex′

iβ j xi = pi j xi − pi j pi j xi ,

whereas for k �= j

∂pi j

∂βk
= − ex′

iβ j(∑
l ex′

iβl
)2 ex′

iβk xi = −pi j pikxi .

Combining we have

∂pi j

∂βk
= δi jk pi j xi − pi j pikxi = pi j (δi jk − pik)xi ,

where the indicator variable δi jk = 1 if j = k, and

∂L
∂βk

=
∑

i

∑
j

yi j

pi j

∂pi j

∂βk

=
∑

i

∑
j

yi j

pi j
(δi jk pi j − pi j pikxi )

=
∑

i

[∑
j

yi jδi jk − yi j pik

]
xi

=
∑

i

[yik − pik]xi ,

as stated in (15.16), where the last line uses the definition of δi jk and
∑

j yi j = 1. For
the second derivative we have

∂2L
∂β j∂β

′
k

= −
∑

i

∑
j

∂pi j

∂β′
k

xi = −
∑

i

∑
j

pi j (δi jk − pik)xi x′
i ,

which yields (15.17).
When regressors change

∂pi j

∂xi
= ex′

iβ j∑
l ex′

iβl
β j−

ex′
iβ j(∑

l ex′
ilβ
)2 ∑

l

ex′
iβlβl

= pi jβ j − pi j

∑
l

pilβl = pi j (β j − β̄i ),

where β̄i=
∑

l pilβl , as stated in (15.19).
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15.12.3. Nested Logit

We consider the two-level GEV model given by (15.32) and (15.33) with

G(Y) = G(Y11, . . . , Y1K1 , . . . . , YJ1, . . . , YJ K J ) =
J∑

j=1

a j

(
K j∑

k=1

Y
1/ρ j

jk

)ρ j

,

which is a generalization of (15.34) owing to the coefficients a j . The general GEV
result (15.31) becomes Pr[y jk = 1] = Y jk G jk/G(Y), where G jk is the derivative of
G(Y) with respect to Y jk and evaluation is at Y jk = eVjk .

Now

G jk = ∂G(Y)

∂Y jk
= a j

(
Kl∑

l=1

Y
1/ρ j

jl

)ρ j −1

× Y
(1/ρ j )−1
jk ,

which gives

Y jk G jk = a j

(
Kl∑

l=1

Y
1/ρ j

jl

)ρ j

Y
1/ρ j

jk .

Then

p jk ≡ Y jk G jk

G(Y)
=

a j

(∑Kl
l=1 Y

1/ρ j

jl

)ρ j −1
Y

1/ρ j

jk∑J
m=1 am

(∑Kl
l=1 Y 1/ρm

ml

)ρm
.

The probability of choosing limb j is

p j ≡
K j∑

k=1

p jk =
a j

(∑Kl
l=1 Y

1/ρ j

jl

)ρ j

∑J
m=1 am

(∑Kl
l=1 Y 1/ρm

ml

)ρm
,

after some simplification, and the conditional probability of choosing branch k given
limb j is

pk| j ≡ p jk

p j
= Y

1/ρ j

jk∑Kl
l=1 Y

1/ρ j

jl

.

This result is also given in Maddala (1983, p. 72).
We need to evaluate these expression at Y jk = exp(Vjk). Suppose

Vjk = z′
jα + x′

jkβ j .

Then performing some algebra yields(
eVjk
)1/ρ j = exp

(
z′

jα/ρ j
)

exp (x′
jkβ j/ρ j )),

Kl∑
l=1

(
eVjl
)1/ρ j = exp

(
z′

jα/ρ j
)

exp(I j ),(
Kl∑

l=1

(
eVjl
)1/ρ j

)ρ j

= exp
(
z′

jα + ρ j I j
)
,
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where

I j = ln

(
Kl∑

l=1

exp (x′
jkβ j/ρ j ))

)
.

It follows that the probability of choosing limb j becomes

p j =
a j

(∑Kl
l=1

(
eVjl
)1/ρ j
)ρ j

∑J
m=1 am

(∑Kl
l=1

(
eVml
)1/ρm

)ρm

=
a j exp

(
z′

jα + ρ j I j

)
∑J

m=1 am
(
exp
(
z′

mα + ρm Im
)) ,

as stated for the first term in (15.36). Note that the scalar a j can be absorbed into z j as
a limb-specific dummy, as a j exp(z′

jα + ρ j I j ) = exp(ln a j + z′
jα + ρ j I j ). Without

loss of generality we therefore set a j = 1.
The probability of branch k within limb j is

pk| j =
(
eVjk
)1/ρ j∑Kl

l=1

(
eVjl
)1/ρ j

=
exp
(

z′
jα/ρ j

)
exp
(

x′
jkβ/ρ j

)
∑Kl

l=1 exp
(

z′
jα/ρ j

)
exp
(

x′
jlβ/ρ j

)
=

exp
(

x′
jkβ j/ρ j

)
∑Kl

l=1 exp
(

x′
jlβ/ρ j

) ,
as stated for the second term in (15.36).

15.13. Practical Considerations

The multinomial logit model is adequate for describing data or estimating the marginal
probabilities but is viewed as a poor model if a more structural interpretation of the pa-
rameters is required, owing to the independence of irrelevant alternatives assumption.
Many packages estimate the multinomial logit model.

The nested logit model can be estimated in STATA and by using the NLOGIT add-
on to LIMDEP, and it is easy to code in a language such as GAUSS. It is the obvious
model to use if there is an obvious nesting structure, but usually there is no obvious
structure.

The random parameters logit model requires special code in a language such as
GAUSS and requires use of the simulation-based estimation methods given in Chap-
ter 12. Ken Train provides code at his Web site elsa.berkeley.edu/∼train.

The multinomial probit model is even more challenging to estimate, for more than
four choices, and has met with relatively little empirical success. For these reasons the
random parameters logit model is currently preferred.
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15.14. Bibliographic Notes

15.3 Good basic references for multinomial models include Amemiya (1981, 1985), Maddala
(1983), and Greene (2003). The books by Ben-Akiva and Lerman (1985), Train (1986),
and Borsch-Supan (1987) provide extensive applications as well as a review of theory.
Train (2003) presents an outstanding treatment of unordered multinomial models and on
estimation using simulation methods.

15.5 The seminal article by McFadden (1981) provides an advanced treatment of discrete
choice modeling, emphasizing the random utility model approach. For welfare analysis
see Small and Rosen (1981), Train (2003, pp. 59–61) and Dagsvik and Karström (2004).

15.6 Borsch-Supan (1987) gives an excellent exposition and application of the nested logit
model.

15.7 The random parameters logit model and other recent advances are well covered in Train
(2003). Revelt and Train (1998) provide an early application.

15.8 Bolduc (1999) presents MSL estimation of a nine-choice multinomial probit model.

Exercises

15–1 Consider a latent variable modeled by y∗ = x′β + ε, with ε ∼ N [0,1]. Suppose
we observe only y = 2 if y∗ < α, y = 1 if α ≤ y∗ < U , and y = 0 if y∗ ≥ U , where
the upper limit U is a known constant for each individual (i.e., data) and may
differ over individuals, but α is unknown.

(a) Obtain the conditional probabilities that y = 0, y = 1, and y = 2 .
(b) Provide details on a method to consistently estimate β and α.

15–2 Use a 50% subsample of the fishing mode choice data of Section 15.2.

(a) Estimate the conditional logit model of Section 15.2.1.
(b) Comment on the statistical significance of parameter estimates.
(c) What is the effect of an increase in price on the various modes of fishing?

15–3 Use a 50% subsample of the fishing mode choice data of Section 15.2.

(a) Estimate the multinomial logit model of Section 15.2.2.
(b) Comment on the statistical significance of parameter estimates.
(c) What is the effect of an increase in income on the various modes of fishing?

15–4 Use a 50% subsample of the fishing mode choice data of Section 15.2. Suppose
we collapse the model to three alternatives and order the alternatives, with y = 0
if fishing from a pier or beach, y = 1 if fishing from a private boat and y = 2 if
fishing from a charter boat.

(a) Estimate an ordered logit model with income as the only regressor.
(b) Provide an interpretation of the estimated coefficient.
(c) Compare the fit of this model with that from a three-choice multinomial

model with income as the regressor.
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C H A P T E R 16

Tobit and Selection Models

16.1. Introduction

In this chapter we consider two closely related topics: regression when the depen-
dent variable of interest is incompletely observed and regression when the dependent
variable is completely observed but is observed in a selected sample that is not rep-
resentative of the population. This includes limited dependent variable models, latent
variable models, generalized Tobit models, and selection models.

All these models share the common feature that even in the simplest case of pop-
ulation conditional mean linear in regressors, OLS regression leads to inconsistent
parameter estimates because the sample is not representative of the population. Alter-
native estimation procedures, most relying on strong distributional assumptions, are
necessary to ensure consistent parameter estimation.

Leading causes of incompletely observed data are truncation and censoring. For
truncated data some observations on both the dependent variable and regressors are
lost. For example, income may be the dependent variable and only low-income people
are included in the sample. For censored data information on the dependent variable is
lost, but not data on the regressors. For example, people of all income levels may be in-
cluded in the sample, but for confidentiality reasons the income of high-income people
may be top-coded and reported only as exceeding, say, $100,000 per year. Truncation
entails greater information loss than does censoring. A leading example of truncation
and censoring is the Tobit model, named after Tobin (1958), who considered linear
regression under normality. Similar issues arise for truncation and censoring in other
models introduced in later chapters, most notably for censored duration data presented
in Chapter 17. More generally, truncation and censoring are examples of missing data
problems that are studied in Chapter 27.

The first-generation estimation methods require strong distributional assumptions.
Even seemingly minor departures from assumptions, such as heteroskedastic errors
when homoskedastic errors are assumed, can lead to inconsistent parameter estimates.
For this reason the models presented in this chapter provide a leading econometrics
application of semiparametric regression methods. Semiparametric methods for simple
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forms of censoring and truncation such as top-coding have been successfully applied.
However, for more general models with selection on unobservables there is to date no
widely accepted procedure.

Section 16.2 presents general theory for censored and truncated nonlinear regres-
sion models, with specialization to the Tobit model given in Section 16.3. An alterna-
tive model for censored data, the two-part model, is introduced in Section 16.4. The
sample selection model is presented in Section 16.5. An application to health expen-
ditures in Section 16.6 contrasts the two-part and sample selection models. The Roy
model for unobserved counterfactuals is presented in Section 16.7. Section 16.8 con-
siders fully structural models obtained by utility maximization with corner solutions
or by extension of simultaneous equation models to selected samples. Semiparametric
estimation is presented in Section 16.9.

16.2. Censored and Truncated Models

We present general methods for estimation of fully parametric models when data are
censored or truncated. These methods can be applied to models presented in later
chapters such as count and duration models. The leading example, the Tobit model
for censoring or truncation in linear models, is introduced in Section 16.2.1 and given
separate treatment in Section 16.3.

16.2.1. Censoring and Truncation Example

Let y∗ denote a variable that is incompletely observed. For truncation from below, y∗

is only observed if y∗ exceeds a threshold. For simplicity, let that threshold be zero.
Then we observe y = y∗ if y∗ > 0. Since negative values do not appear in the sample,
the truncated mean exceeds the mean of y∗. For censoring from below at zero, y∗ is
not completely observed when y∗ ≤ 0, but it is known that y∗ < 0 and for simplicity
y is then set to 0. Since negative values are scaled up to zero, the censored mean
also exceeds the mean of y∗. Clearly, sample means in truncated or censored samples
cannot be used without adjustment to estimate the original population mean.

This chapter studies similar issues for regression models. With luck, truncation and
censoring might lead only to a shift up or down in the intercept, leaving slope coeffi-
cients unchanged; however, this is not the case. For example, if E[y∗|x] = x′β in the
original model then truncation or censoring leads to E[y|x] being nonlinear in x and
β so that OLS gives inconsistent estimates of β and hence inconsistent estimates of
marginal effects.

As an illustration we consider the following labor supply example with simulated
data. The relationship between desired annual hours worked, y∗, and hourly wage, w,
is specified to be of linear-log form with data-generation process

y∗ = −2500 + 1000 lnw + ε, (16.1)

ε ∼ N [0, 10002],

lnw ∼ N [2.75, 0.602].
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Figure 16.1: Tobit regression of hours on log wage: uncensored conditional mean
(bottom), censored conditional mean (middle), and truncated conditional mean (top) for
censoring/truncation from below at zero hours. Data are generated from a classical linear
regression model.

This is a Tobit model, studied in detail in Section 16.3. The model implies that the
wage elasticity is 1000/y∗, which equals, for example, 0.5 for full-time work (2,000
hours). For each 1% increase in wage, annual hours increase by 10 hours.

Figure 16.1 presents a scatter plot of y∗ and lnw for a generated sample of 200
observations. The unconditional mean for y∗, which is −2500 + 1000 lnw, is given
by the lowest curve, which is a straight line.

With censoring at zero, negative values of y∗ are set to zero because people with
negative desired hours of work choose not to work. For this particular sample this
is the case for about 35% of the observations. This pushes up the mean for low
wages, since the many negative values of the y∗ are shifted up to zero. It has little
impact for high wages, since then few observations on y∗ are zero. The middle curve
in Figure 16.1 gives the resulting censored mean, using the formula given later in
(16.23).

With truncation at zero the 35% of the population with negative values of y∗ are
dropped altogether. This increases the mean above the censored mean, since zero
values are no longer included in the data used to form the mean. The upper curve
in Figure 16.1 gives the resulting truncated mean, using the formula given later in
(16.23).

It is clear that censored and truncated conditional means are nonlinear in x even
if the underlying population mean is linear. OLS estimation using truncated or cen-
sored data will lead to inconsistent estimation of the slope parameter, since by vi-
sual inspection of Figure 16.1 a linear approximation to the nonlinear truncated and
censored means will have flatter slope than that for the original untruncated mean.
Analysis should instead be based on the formulas for the censored or truncated condi-
tional mean. Unfortunately these are based on strong distributional assumptions, as we
will see.
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16.2.2. Censoring and Truncation Mechanisms

As is customary for regression analysis, we let y denote the observed value of the
dependent variable. The departure from usual analysis is that y is the incompletely
observed value of a latent dependent variable y∗, where the observation rule is

y = g(y∗),

for some specified function g(·). Leading examples of g(·) immediately follow.

Censoring

With censoring we always observe the regressors x, completely observe y∗ for a subset
of the possible values of y∗, and incompletely observe y for the remaining possible
values of y∗. If censoring is from below (or from the left), we observe

y =
{

y∗ if y∗ > L
L if y∗ ≤ L .

(16.2)

For example, all consumers may be sampled with some having positive durable goods
expenditures (y∗ > 0) and others having zero expenditures (y∗ ≤ 0). If censoring is
from above (or from the right) we observe

y =
{

y∗ if y∗ < U
U if y∗ ≥ U.

(16.3)

For example, annual income data may be top-coded at U = $100,000. This form of
censoring is called type 1 censoring in the duration literature (see Section 17.4.1).

The incompletely observed observations on y∗ are set to L or U for simplicity.
More generally, we require that for incompletely observed observations y∗ is known
to be missing (i.e., we observe that y∗ lies outside the relevant bound) and regressors
x continue to be completely observed.

Truncation

Truncation entails additional information loss as all data on observations at the bound
are lost. With truncation from below we observe only

y = y∗ if y∗ > L . (16.4)

For example, only consumers who purchased durable goods may be sampled (L = 0).
With truncation from above we observe only

y = y∗ if y∗ < U. (16.5)

For example, only low-income individuals may be sampled.

Interval Data

Interval data are data recorded in intervals. Survey data are often collected in this
way to aid recall and to provide some greater anonymity in responses to more personal
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questions. For example, income may be reported in intervals of $10,000 and then top-
coded at $100,000. Such data are censored at multiple points, with the observed data
y being the particular interval in which the unobserved y∗ lies.

16.2.3. Censored and Truncated MLE

Censoring and truncation are easily dealt with if the researcher applies a fully para-
metric approach. This may be the case with interval data or top-coded data where, for
example, it may be reasonable to assume a log-normal distribution for earnings or a
negative binomial model for number of doctor visits.

If the conditional distribution of y∗ given regressors x is specified, then the parame-
ters of this distribution can be consistently and efficiently estimated by ML estimation
based on the conditional distribution of the censored or truncated y. Specifically, let
f ∗(y∗|x) and F∗(y∗|x) denote the conditional probability density function (or prob-
ability mass function) and cumulative distribution function of the latent variable y∗.
Then one can always obtain f (y|x) and F(y|x), the corresponding conditional pdf and
cdf of the observed dependent variable y, since y = g(y∗) is a transformation of y∗.

The limitation of the parametric approach is its reliance on strong distributional
assumptions. For example, for the linear regression model under normality the MLE
remains consistent even if the errors are nonnormal, but the censored MLE becomes
inconsistent if the errors are nonnormal (see Section 16.3.2). More flexible models and
semiparametric methods are presented in later sections.

Censored MLE

Censoring and truncation change both the conditional mean and the conditional den-
sity. We begin with the density.

Consider ML estimation given censoring from below. For y > L the density of y is
the same as that for y∗, so f (y|x) = f ∗(y|x). For y = L , the lower bound, the density
is discrete with mass equal to the probability of observing y∗ ≤ L , or F∗(L|x). Thus
for censoring from below

f (y|x) =
{

f ∗(y|x) if y > L ,
F∗(L|x) if y = L .

As mentioned after (16.3), setting y = L when y∗ ≤ L is not necessary. Even if no
value of y is observed when y∗ ≤ L the density is still F∗(L|x).

The density is a hybrid of the pdf and cdf of y∗. Similar to analysis for binary
outcome models, it is notationally convenient to introduce an indicator variable

d =
{

1 if y > L ,
0 if y = L .

(16.6)

Then the conditional density given censoring from below can be written as

f (y|x) = f ∗(y|x)d F∗(L|x)1−d . (16.7)
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For a sample of N independent observations, the censored MLE maximizes

ln LN (θ) =
N∑

i=1

{
di ln f ∗(yi |xi ,θ) + (1 − di ) ln F∗(Li |xi ,θ)

}
, (16.8)

where θ are the parameters of the distribution of y∗. For generality the censoring lower
bound Li is permitted to vary across individuals, though usually Li = L . The censored
MLE is consistent and asymptotically normal, provided the original density of the
uncensored variable f ∗(y∗|x,θ) is correctly specified.

When censoring is instead from above, the log-likelihood is similar to (16.8),
except now d = 1 if y < U and d = 0 otherwise, and F∗(L|x,θ) is replaced by
1 − F∗(U |x,θ). A leading example is right-censored duration data (see Section 17.4).

Truncated MLE

For truncation from below at L , and suppressing dependence on x, the conditional
density of the observed y is

f (y) = f ∗(y|y > L)
= f ∗(y)/Pr[y|y > L]
= f ∗(y)/[1 − F∗(L)].

The truncated MLE therefore maximizes

ln LN (θ) =
N∑

i=1

{
ln f ∗(yi |xi ,θ) − ln[1 − F∗(Li |xi ,θ)]

}
. (16.9)

If instead truncation is from above, the log-likelihood is (16.9), except that 1 −
F∗(L|x,θ) is replaced by F∗(U |x,θ).

Ignoring censoring or truncation leads to inconsistency. For example, if truncation
is ignored the MLE maximizes

∑
i ln f ∗(yi |xi ,θ), which is the wrong likelihood func-

tion as it drops the second term in (16.9). Consistency of the censored and truncated
MLE requires correct specification of f (·), which in turn requires correct specifica-
tion of the latent variable density f ∗(·). Even if f ∗(·) is an LEF density (see Section
5.7.3), the density, and not just the mean, must be correctly specified if censoring or
truncation are present.

Interval Data MLE

Suppose the latent variable y∗ is only observed to lie in the (J + 1) mutually exclusive
intervals (−∞, a1], (a1, a2], . . ., (aJ ,∞), where a1, a2, . . ., aJ are known. Then since

Pr[a j < y∗ ≤ a j+1] = Pr[y∗ ≤ a j+1] − Pr[y∗ ≤ a j ]

= F∗(a j+1) − F∗(a j ),

the interval data MLE maximizes

ln LN (θ) =
N∑

i=1

J∑
j=0

di j ln
[
F∗(a j+1|xi ,θ) − F∗(a j |xi ,θ)

]
, (16.10)
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where the di j , j = 0, . . ., J , are binary indicators equal to one if yi j ∈ (a j , a j+1] and
zero otherwise. This is similar to an ordered probit or logit model (see Section 15.9.1),
except here the interval boundaries a1, . . ., aJ are known.

16.2.4. Poisson Censored and Truncated MLE Example

Assume that y∗ is Poisson distributed, so that f ∗(y) = e−µµy/y! and ln f ∗(y) =
−µ+ y lnµ− ln y!, with mean µ = exp(x′β).

Suppose the number of visits to a health clinic is modeled, but data are only avail-
able for people who visited the health clinic. Then the data are truncated from below
at zero and we only observe y = y∗ if y∗ > 0. Then F∗(0) = Pr[y∗ ≤ 0] = Pr[y∗ =
0] = e−µ, and from (16.9) the truncated MLE for β maximizes

ln LN (β) =
N∑

i=1

{− exp(x′
iβ)+yi x′

iβ− ln yi ! − ln[1 − exp(− exp(x′
iβ))]

}
.

Suppose instead that data are censored from above at 10 because of top-coding, so
that we observe y = y∗ if y∗ < 10 and that y = 10 if y∗ ≥ 10. Then Pr[y∗ ≥ 10] =
1 − Pr[y∗ < 10] = 1 −∑9

k=0 f ∗(k). From (16.8) the censored MLE for β maximizes

ln LN (β) =
N∑

i=1

{
di
[− exp(x′

iβ) + yi x′
iβ − ln yi !

]
+ (1 − di ) ln

[
9∑

k=0

e− exp(x′
iβ)(exp(x′

iβ))k/k!

]}
.

In both cases the resulting first-order conditions are considerably more complicated
than those for the Poisson MLE without truncation or censoring. Also, in both cases
ignoring the truncation or censoring and maximizing the original density leads to in-
consistent parameter estimates.

16.2.5. Censored and Truncated Conditional Means

Censoring and truncation change the conditional mean.
For example, consider the Poisson truncated from below at zero. The truncated den-

sity is f ∗(y)/[1 − F∗(0)], y = 1, 2, . . . . , so the truncated mean is
∑∞

k=1 k f ∗(k)/[1 −
F∗(0)] =∑∞

k=0 k f ∗(k)/[1 − F∗(0)] = µ/(1 − e−µ). Thus

E[y|x] = exp(x′β)/[1 − exp(− exp(x′β))],

rather than exp(x′β) if there were no truncation.
This expression for E[y|x] can be used for NLS estimation. There is little advantage

to NLS rather than ML estimation, however, as given truncation the NLS estimator
relies on distributional assumptions that are essentially as strong as those needed for
consistency of the more efficient ML estimator.
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16.3. Tobit Model

Truncation and censoring arise most often in econometrics in the linear regression
model with normally distributed error, when only positive outcomes are completely
observed. This model is called the Tobit model after Tobin (1958), who applied it to
individual expenditures on consumer durable goods. The model in practice is usually
too restrictive. It is nonetheless presented in some detail, as it provides the basis for
more general models presented in subsequent sections of this chapter.

16.3.1. Tobit Model

The censored normal regression model, or Tobit model, is one with censoring from
below at zero where the latent variable is linear in regressors with additive error that is
normally distributed and homoskedastic. Thus

y∗ = x′β + ε, (16.11)

where the error term

ε ∼ N [0, σ 2] (16.12)

has variance σ 2 constant across observations. This implies that the latent variable y∗ ∼
N [x′β, σ 2]. The observed y is defined by (16.2) with L = 0, so

y =
{

y∗ if y∗ > 0,
− if y∗ ≤ 0,

(16.13)

where – means that y is observed to be missing. No particular value of y is necessarily
observed when y∗ ≤ 0, though in some settings such as durable goods expenditures
we observe y = 0.

Equations (16.11) – (16.13) define the prototypical Tobit model analyzed by To-
bin (1958). More generally, Tobit models begin with (16.11) and (16.12) for the latent
variable but can have other censoring mechanisms including censoring from above,
censoring from both below and above (the two-limit Tobit model), and interval-
censored data. The results in this section are restricted to the censoring mechanism
given in (16.13). The models of later sections are sometimes called generalized Tobit
models.

The normalization L = 0 is not only natural in many settings, but some such nor-
malization is necessary for a linear model with intercept and constant threshold pa-
rameter L . Then we observe y if y∗ > L , or equivalently if β1 + x′

2β2 + ε > L or
(β1 − L) + x′

2β2 + ε > 0. Thus only the difference (β1 − L) is identified. More gen-
erally, the latent model y∗ = x′β + ε with variable censoring threshold L = x′γ is
observationally equivalent to the latent model y∗ = x′(β − γ) + ε with fixed thresh-
old L = 0. These results are a consequence of censoring arising in a linear model with
additive error and do not carry over to nonlinear models, such as the preceding Poisson
example.
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Applying the general expression (16.7) for the censored density, here f ∗(y) is the
N [x′β, σ 2] density and

F∗(0) = Pr[y∗ ≤ 0]

= Pr[x′β + ε ≤ 0]

= �(−x′β/σ
)

= 1 −�(x′β/σ
)
,

where � (·) is the standard normal cdf and the last equality uses symmetry of the
standard normal distribution. Thus the censored density can be expressed as

f (y) =
[

1√
2πσ 2

exp

{
− 1

2σ 2
(y − x′β )2

}]d [
1 −�

(
x′β
σ

)]1−d

, (16.14)

where the binary indicator d is defined in (16.6) with L = 0.
The Tobit MLE θ̂ = (β̂

′
, σ̂ 2)′ maximizes the censored log-likelihood function

(16.8). Given (16.14) this becomes

ln LN (β, σ 2) =
N∑

i=1

{
di

(
−1

2
ln 2π − 1

2
ln σ 2 − 1

2σ 2

(
yi − x′

iβ
)2)

(16.15)

+ (1 − di ) ln

(
1 −�

(
x′

iβ

σ

))}
,

a mixture of discrete and continuous densities. The first-order conditions are

∂ ln LN

∂β
=

N∑
i=1

1

σ 2

(
di (yi − x′

iβ) − (1 − di )
σφi

(1 −�i )

)
xi = 0 (16.16)

∂ ln LN

∂σ 2
=

N∑
i=1

{
di

(
− 1

2σ 2
+
(
yi − x′

iβ
)2

2σ 4

)
+ (1 − di )

φi x′
iβ

(1 −�i )

1

2σ 3

}
= 0,

using ∂�(z)/∂z = φ(z) where φ(·) is the standard normal pdf, and with the definitions
φi = φ(x′

iβ/σ ) and�i = �(x′
iβ/σ ). As usual θ̂ is consistent if the density is correctly

specified, that is, if the dgp is (16.11) and (16.12) and the censoring mechanism is
(16.13). The MLE is asymptotic normal distributed with variance matrix given in, for
example, Maddala (1983, p. 155) and Amemiya (1985, p. 373).

Tobin (1958) proposed ML estimation of the Tobit model and asserted that the usual
ML theory applied. Amemiya (1973) provided a formal proof that the usual theory
did apply, despite the mixed discrete–continuous nature of the censored density. The
appendix of this classic paper of Amemiya details the asymptotic theory for extremum
estimators presented in Section 5.3.
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If data are truncated, rather than censored, from below at zero then the Tobit MLE
θ̂ = (β̂

′
, σ̂ 2)′ maximizes the truncated normal log-likelihood function

ln LN (β, σ 2) =
N∑

i=1

{
−1

2
ln σ 2 − 1

2
ln 2π − 1

2σ 2

(
yi − x′

iβ
)2 − ln�

(
x′

iβ/σ
)}
,

(16.17)

obtained using (16.9) for y∗ distributed as in (16.11) and (16.12).

16.3.2. Inconsistency of the Tobit MLE

A very major weakness of the Tobit MLE is its heavy reliance on distributional as-
sumptions. If the error ε is either heteroskedastic or nonnormal the MLE is inconsis-
tent.

This can be seen from the ML first-order conditions (16.16), which are a quite
complicated function of variables including di , yi , φi , and �i . The first equation in
(16.16) satisfies E[∂ ln LN/∂β] = 0, a necessary condition for consistency (see Sec-
tion 5.3.7), if

E[di ] = �i ,

E[di yi ] = �i x′
iβ + σφi .

These moment conditions can be shown to hold if the dgp is (16.11) and (16.12) and
the censoring mechanism is (16.13). However, they are unlikely to hold under any
other specification of the dgp, as they rely heavily on both normality and homoskedas-
ticity. For example, with heteroskedastic errors the estimator is inconsistent, since then
E[di ] = �(x′

iβ/σi ) �= �i unless σ 2
i = σ 2.

Consistent estimation with heteroskedastic normal errors is possible by specifying
a model for heteroskedasticity, say σ 2

i = exp(z′
iγ). For censoring from below at zero

the log-likelihood ln LN (β,γ) is that given in (16.15) with σ 2 replaced by exp(z′
iγ).

Consistency then requires normal errors and correct specification of the functional
form of the heteroskedasticity.

Clearly, with censoring or truncation, distributional assumptions become important
even for distributions somewhat robust to misspecification in the uncensored or un-
truncated case. Specification tests for the Tobit model are discussed in Section 16.3.7.
In many censored data applications the Tobit model is not appropriate. More general
models presented in subsequent sections of this chapter are instead used.

16.3.3. Censored and Truncated Means in Linear Regression

Censoring and truncation in the linear regression model (16.11) lead to observed de-
pendent variable y that has distribution with conditional mean other than x′β, condi-
tional variance other than σ 2 even if ε is homoskedastic, and distribution that is nonnor-
mal even if ε is normally distributed. We present general results for linear regression
in this section before specializing to normally distributed errors in Sections 16.3.4–
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16.3.7. The results provide additional insights regarding the consequences of trunca-
tion and censoring and form the basis for non-ML estimation methods presented in
later sections.

We begin with the truncated mean. The effects of truncation are intuitively pre-
dictable. Left-truncation excludes small values, so the mean should increase, whereas
with right-truncation the mean should decrease. Since truncation reduces the range of
variation, the variance should decrease.

For left-truncation at zero we only observe y if y∗ > 0. If we suppress dependence
of expectations on x for notational simplicity, the left-truncated mean becomes

E[y] = E[y∗|y∗ > 0] (16.18)

= E
[
x′β + ε|x′β + ε > 0

]
= E
[
x′β|x′β + ε > 0

]+ E
[
ε|x′β + ε > 0

]
= x′β + E

[
ε|ε > −x′β

]
,

where the second equality uses (16.11), and the last equality assumes ε is independent
of x. As expected the truncated mean exceeds x′β, since E[ε|ε > c] for any constant c
will exceed E[ε].

For data left-censored at zero suppose we observe y = 0, rather than merely that
y∗ ≤ 0. The censored mean is obtained by first conditioning the observable y on the
binary indicator d defined in (16.6) with L = 0 and then unconditioning. Suppressing
dependence on x for notational simplicity again, we have the left-censored mean

E[y] = Ed [Ey|d [y|d]]
= Pr[d = 0] × E[y|d = 0] + Pr[d = 1] × E[y|d = 1]
= 0 × Pr[y∗ ≤ 0] + Pr[y∗ > 0] × E[y∗|y∗ > 0]
= Pr[y∗ > 0] × E[y∗|y∗ > 0],

(16.19)

where Pr[y∗ > 0] = 1 − Pr[y∗ ≤ 0] = Pr[ε > −x′β] is one minus the censoring
probability and E[y∗|y∗ > 0] is the truncated mean already derived in (16.18).

In summary, for the linear regression model with censoring or truncation from be-
low at zero, the conditional means are given by

latent variable: E[y∗|x] = x′β
left-truncated (at 0): E[y|x, y > 0] = x′β + E

[
ε|ε > −x′β

]
,

left-censored (at 0): E[y|x] = Pr[ε > −x′β]
{
x′β + E

[
ε|ε > −x′β

]}
.

(16.20)

It is clear that even though the original conditional mean is linear, censoring or trun-
cation leads to conditional means that are nonlinear so that OLS estimates will be
inconsistent.

One possible approach to take is a parametric one of assuming a distribution for ε.
This leads to expressions for E

[
ε|ε > −x′β

]
and Pr[ε > −x′β] and hence the trun-

cated or censored conditional mean. We do this in the next section for normally dis-
tributed errors.
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Figure 16.2: Inverse Mills ratio for the standard normal distribution as the censoring or
cutoff point c increases. Standard normal cdf and density also plotted.

A second approach seeks to avoid or minimize such parametric assumptions. We
consider this in a later section, but note here that regardless of the distribution for ε the
truncated mean is a single-index model with correction term decreasing in x′β since
E
[
ε|ε > −x′β

]
is a monotonically decreasing function in x′β.

16.3.4. Censored and Truncated Means in the Tobit Model

For the Tobit model the regression error ε is normal and we use the following result,
derived in Section 16.10.1.

Proposition 16.1 (Truncated Moments of the Standard Normal): Suppose
z ∼ N [0, 1]. Then the left-truncated moments of z are

(i) E[z|z > c] = φ(c)/[1 −�(c)], and E[z|z > −c] = φ(c)/�(c),

(ii) E[z2|z > c] = 1 + cφ(c)/[1 −�(c)], and

(iii) V[z|z > c] = 1 + cφ(c)/[1 −�(c)] − φ(c)2/[1 −�(c)]2

Result (i) of Proposition 16.1 is shown in Figure 16.2. We consider truncation of
z ∼ N [0, 1] from below at c, where c ranges from −2 to 2. The lowest curve is the
standard normal density φ(c) evaluated at c. The middle curve is the standard normal
cdf �(c) evaluated at c and gives the probability of truncation when truncation is at c.
This probability is approximately 0.023 at c = −2 and 0.977 at c = 2. The upper curve
gives the truncated mean E[z|z > c] = φ(c)/[1 −�(c)]. As expected this is close to
E[z] = 0 for c = −2, since then there is little truncation, and E[z|z > c] > c. What
is not expected a priori is that φ(c)/[1 −�(c)] is approximately linear, especially for
c > 0. Moments when truncation is from above can be obtained using, for example,
E[z|z < c] = −E[−z| − z > −c] = −φ(c)/�(c).
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Appling this result to (16.18), the error term has truncated mean

E
[
ε|ε > −x′β

] = σE
[
ε
σ
| ε
σ
>

−x′β
σ

]
= σφ(− x′β

σ
)/[1 −�(− x′β

σ
)]

= σφ( x′β
σ

)/[�( x′β
σ

)]

= σλ( x′β
σ

),

(16.21)

where the second line uses Proposition 16.1, the third line uses symmetry about zero
of φ(z), and we define

λ(z) = φ(z)

�(z)
. (16.22)

We follow the definition and terminology of Amemiya (1985) and many others in
defining λ(·) as in (16.22) and calling it the inverse Mills ratio. From Johnson and
Kotz (1970, p. 278), Mills actually tabulated the ratio (1 −�(z))/φ(z) whose in-
verse φ(z)/[1 −�(z)] = φ(z)/�(−z) is the hazard function of the normal distribu-
tion. Some authors therefore instead write (16.21) as E

[
ε|ε > −x′β

] = σλ∗(−x′β/σ ),
where λ∗(z) = φ(z)/�(−z) is referred to as the inverse Mills ratio.

Also, Pr[ε > −x′β] = Pr[−ε < x′β] = Pr[−ε/σ < x′β/σ ] = �(x′β/σ ). Then
the conditional means in (16.20) specialize to

latent variable: E[y∗|x] = x′β,
left-truncated (at 0): E[y|x, y > 0] = x′β + σλ(x′β/σ ),
left-censored (at 0): E[y|x] = �(x′β/σ )x′β + σφ(x′β/σ ).

(16.23)

The variance is similarly obtained (see Exercise 16.1). Defining w = x′β/σ , we have

latent variable: V[y∗|x] = σ 2, (16.24)
left-truncated (at 0): V[y|x, y > 0] = σ 2

[
1 − wλ(w) − λ (w)2

]
,

left-censored (at 0): V[y|x] = σ 2�(w)
{
w2 + wλ(w) + 1 −�(w)[w + λ(w)]

}2
.

Clearly truncation and censoring induce heteroskedasticity, and for truncation
V[y|x] < σ 2 so that truncation reduces variability, as expected.

These results assume normal errors. Maddala (1983, p. 369) gives results similar
to Proposition 16.1 for the log-normal, logistic, uniform, Laplace, exponential, and
gamma distributions.

16.3.5. Marginal Effects in the Tobit Model

The marginal effect is the effect on the conditional mean of the dependent variable
of changes in the regressors. This effect varies according to whether interest lies in
the latent variable mean x′β or the truncated or censored means given in (16.23).
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Differentiating each with respect to x yields

latent variable: ∂E[y∗|x]/∂x = β,

left-truncated (at 0): ∂E[y, y > 0|x]/∂x = {1 − wλ(w) − λ(w)2}β,
left-censored (at 0): ∂E[y|x]/∂x = �(w)β,

(16.25)

where w = x′β/σ and we use ∂�(z)/∂z = φ(z) and ∂φ(z)/∂z = −zφ(z). The sim-
ple expression for the censored mean is obtained after some manipulation. It can be
decomposed into two effects, one for y = 0 and one for y > 0 (see McDonald and
Moffitt, 1980).

In some cases truncation or censoring is just an artifact of data collection, so the
truncated and censored means are of no intrinsic interest and we are interested in
∂E[y∗|x]/∂x = β. For example, with top-coded earnings data we are clearly inter-
ested in measuring the effect of schooling on mean earnings rather than earnings of
those not top-coded.

In other cases truncation or censoring has behavioral implications. In a model for
hours worked, for example, the three marginal effects in (16.25) correspond to the
effect of a change in a regressor on, respectively, (1) desired hours of work, (2) actual
hours of work for workers, and (3) actual hours of work for workers and nonworkers.
For (1) we clearly need an estimate of β, but for (2) and (3) OLS slope coefficients,
although inconsistent for β, may actually provide a reasonable crude estimate of the
marginal effect since the truncated and censored means are still fairly linear in x.

16.3.6. Alternative Estimators for the Tobit Model

In addition to the MLE, consistent estimation is possible by NLS based on the correct
expression for the truncated or censored mean. We consider the NLS estimator and
other least-squares estimators.

NLS Estimator

The results in (16.23) can be used to permit consistent estimation of the Tobit model
parameters by NLS. For example, with truncated data we minimize

SN (β, σ 2) =
N∑

i=1

(
yi − x′

iβ − σλ(x′
iβ/σ )

)2
with respect to both β and σ 2, but then perform inference controlling for the het-
eroskedasticity given in (16.24). A similar estimator can be obtained for censored data.

This estimator is not used in practice. Consistency requires correct specification of
the truncated mean, which from (16.21) requires both normality and homoskedasticity
of the errors. One might as well estimate by ML since this relies on assumptions just as
strong and is fully efficient. Moreover, in practice the NLS estimator can be imprecise.
From Figure 16.2 it is clear that λ(x′β/σ ) is approximately linear in x′β/σ , leading
to near collinearity because x is also a regressor. In Section 16.5 we consider models
that permit correction terms similar to σλ(x′β/σ ) in (16.23) that have the advantage
of depending in part on regressors other than those in x.
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Heckman Two-Step Estimator

From (16.23) the truncated (at zero) mean is

E[y|x] = x′β + σλ(x′β/σ ). (16.26)

Rather than use NLS, this can be estimated in the following two-step procedure if
censored data are available. First, for the full sample do probit regression of d on x,
where the binary variable d equals one if y > 0 is observed, to give consistent estimate
α̂, where α = β/σ . Second, for the truncated sample do OLS regression of y on x and
λ(x′α̂) to give consistent estimates of β and σ .

This estimation procedure, due to Heckman (1976, 1979), is presented in Sec-
tion 16.5.4 where it is applied to the more general sample selection model. Section
16.10.2 derives the standard error of β̂ that accounts for the regressor λ(x′α̂) depend-
ing on estimated parameters and for heteroskedasticity induced by truncation.

OLS Estimation of the Tobit Model

The OLS estimates using censored or truncated data are inconsistent for β. This is be-
cause the censored and truncated means given in (16.23) are not equal to x′β, violating
the essential condition for consistency of OLS.

For censored data, OLS provides a linear approximation to the nonlinear censored
regression curve. It is clear from Figure 16.1 and (16.25) that this line is flatter than the
regression line for uncensored data, which has slope equal to the true slope parameter.
Goldberger (1981) showed analytically that if y and x are joint normally distributed
and there is censoring from below at zero, then the OLS slope parameters converge
to p times the true slope parameter, where p is the fraction of the sample with posi-
tive values of y. These conditions are restrictive but were relaxed somewhat by Ruud
(1986). In practice this proportionality result provides a good empirical approximation
to the inconsistency of OLS if a Tobit model is instead appropriate.

Similarly, with truncation the regression line is flatter than the untruncated regres-
sion line. Goldberger (1981) obtained an analytical result similar to that for the cen-
sored case. If y and x are joint normally distributed and there is censoring from below
at zero, then the OLS slope parameters converge to a multiple of the true slope pa-
rameter. The multiple, the expression for which is quite lengthy, lies between zero and
one, and the shrinkage is the same for all slope coefficients. Truncated OLS therefore
understates the absolute magnitude of the true slope parameters.

16.3.7. Specification Tests for the Tobit Model

Given the fragility of the Tobit model it is good practice to test for distributional mis-
specification. There are four broad strategies.

The first approach is to nest the Tobit model within a richer parametric model and
apply a Wald, LR, or LM test. Since the null hypothesis model, the Tobit model, is
most easily estimated it is natural to use LM tests. This is particularly straightfor-
ward for testing against heteroskedasticity of the form σ 2

i = exp(x′
iα) in the censored
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regression model. Using the OPG form of the LM test (see Section 7.3.5) we com-
pute N times the uncentered R2 from auxiliary regression of 1 on s̃1i and s̃2i , where
fi = f (yi |xi ,β,α) is the density given in (16.14) with σ replaced by exp(x′α), the
expressions for s1i = ∂ ln fi/∂β and s2i = ∂ ln fi/∂α are obtained by minor adapta-
tion of the expressions in (16.16), and tilde denotes evaluation at the censored Tobit
MLE with all components of α except that for the intercept equal to zero. A similar
approach for testing the assumption of normally distributed errors is more difficult as
there is no standard generalization of the normal.

A second approach is to use conditional moment tests (see Section 8.2) that do not
require specification of an alternative hypothesis model. In particular, the first-order
conditions (16.16) for the censored Tobit MLE suggest conditional moment tests based
on the generalized residual

ei = di
yi − x′

iβ

σ 2
− (1 − di )

φi

σ (1 −�i )
.

If the Tobit model is correctly specified then E[ei |xi ] = 0 since the regularity con-
ditions imply that E[∂ ln f (yi )/∂β] = 0. Then we can implement an m-test of H0 :
E[ez] = 0 against Ha : E[ez] �= 0 using N−1∑N

i=1 êi zi , where êi = ei evaluated at
the Tobit MLE (β̂,σ̂ 2). From Section 8.2.2 this test can be implemented by comput-
ing N times the uncentered R2 from auxiliary regression of 1 on êi zi , ŝ1i , and ŝ2i ,
where fi = f (yi |xi ,β, σ

2) is the density given in (16.14) and s1i = ∂ ln fi/∂β and
s2i = ∂ ln fi/∂σ

2 given in (16.16) are evaluated at (β̂, σ̂2). The variables zi may be
variables other than xi , in which case the test can be interpreted as a test of omitted re-
gressors, or powers of the components of xi . Conditional moment tests based on higher
order moments have also been developed. For details see Chesher and Irish (1987) and
Pagan and Vella (1989).

A third approach is to adapt some of the diagnostic and testing methods developed
for right-censored duration data (see Chapter 19) to left-censored normally distributed
data.

A final approach contrasts the Tobit MLE β̂ with alternative estimates of β, no-
tably the semiparametric estimates presented in Section 16.9, that are consistent under
weaker distributional assumptions.

For further details see Pagan and Vella (1989), who present theory with some ap-
plication, and Melenberg and Van Soest (1996), who provide a more complete appli-
cation. Both papers consider specification tests for the richer sample selection model
(see Section 16.5) in addition to those for the Tobit model.

16.4. Two-Part Model

The preceding models for censored data restrict the censoring mechanism to be from
the same model as that generating the outcome variable. More generally, the censoring
mechanism and outcome may be modeled using separate processes. For example, in
explaining individual annual hospital expenses one process may determine hospital-
ization and a second process may explain consequent hospital expenses. The case for
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postulating two separate mechanisms is strong if there is compelling reason to believe
that certain realized values occur with too large or too small a frequency than is con-
sistent with a simpler model. For example, one might observe many more zeros than is
consistent with, for example, the Poisson distribution. A two-part model that permits
the zeros and non-zeros to be generated by different densities adds flexibility. Indeed
it is a specific type of mixture model.

There are two approaches to such generalization. The two-part model, given in this
section, specifies a model for the censoring mechanism and a model for the outcome
conditional on the outcome being observed. The sample selection model, presented in
the subsequent section, instead specifies a joint distribution for the censoring mecha-
nism and outcome, and then finds the implied distribution conditional on the outcome
observed. These approaches are contrasted in Section 16.5.7.

16.4.1. Two-Part Model

Let an individual with fully observed outcome be called a participant in the activity
being studied. Define a binary indicator variable d = 1 for participants and d = 0 for
nonparticipants. Suppose that y > 0 is observed for participants and y = 0 is observed
for nonparticipants. For nonparticipants we observe only Pr[d = 0]. For participants
the conditional density of y given y > 0 is specified to be f (y|d = 1), for some choice
of density f (·). The two-part model for y is then given by

f (y|x) =
{

Pr[d = 0|x] if y = 0,
Pr[d = 1|x] f (y|d = 1, x) if y > 0.

(16.27)

This model was presented in detail by Cragg (1971) as a generalization of the Tobit
model, which can be presented as a special case of (16.27). An obvious model for the
participation decision d is a probit or logit model. A latent variable formulation is that
d = 1 if I = x′β + ε exceeds zero, and the model is then viewed as a hurdle model
since crossing a hurdle or threshold leads to participation. To ensure positive values for
the participants, the density f (y|d = 1, x) should be that for a positive-valued random
variable, such as the log-normal, or an appropriate density such as the normal truncated
from below at zero.

For simplicity the same regressors usually appear in both parts of the model, but
this can be relaxed and should be if there are obvious exclusion restrictions. Maximum
likelihood estimation is straightforward as it separates into estimation of a discrete
choice model using all observations and estimation of the parameters of the density
f (y|d = 1, x) using only observations with y > 0.

16.4.2. Two-Part Model Examples

Duan et al. (1983) present a leading application of this model to forecasting medi-
cal expenses using data from the Rand Health Insurance Experiment. They specified
a probit model for whether or not any medical expenses were incurred during the
year, so Pr[d = 1|x] = � (x′

1β1

)
, and a log-normal model for medical expenses given

that some expenses were incurred, so ln y|d = 1, x ∼ N [x′
2β2, σ

2
2 ]. Then expected
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medical expenses over the entire population are given by

E[y|x] = � (x′
1β1

)
exp[σ 2

2 /2 + x′
2β2], (16.28)

where the second term uses the result that if ln y ∼ N [µ, σ 2] then E[y] = exp(µ+
σ 2/2). Mullahy (1998) considers such retransformation in further detail.

Two-part models are especially popular for modeling count data. For example, in
modeling the number of doctor visits there is one model to determine whether or not
a patient visits a physician at all and a second model to determine the consequent
number of visits for those with at least one visit. Then Pr[d = 1] is specified to be
the probability that a Poisson or negative binomial variable exceeds zero, whereas the
density f (y|d = 1) is specified to be a Poisson or negative binomial density truncated
from below at zero. This model, due to Mullahy (1986), is called a hurdle model in the
count literature and is detailed in Section 20.4.5.

For continuous data two-part models are used for expenditure models with excess
zeros (Cragg’s original motivation). An alternative, a sample selection model, is pre-
sented next.

16.5. Sample Selection Models

Sample selection can arise in many setttings and so there are many sample selection
models. This section begins with a general discussion of sample selection before focus-
ing on a leading example, the bivariate sample selection model studied by Heckman
(1979). Another leading example, the Roy model, is treated separately in Section 16.7.

16.5.1. Sample Selection Models

Observational studies are rarely based on pure random samples. Most often exogenous
sampling is used (see Section 3.2.4) and the usual estimators can be applied. If instead
a sample, intentionally or unintentionally, is based in part on values taken by a depen-
dent variable, parameter estimates may be inconsistent unless corrective measures are
taken. Such samples can be broadly defined as selected samples.

There are many selection models, since there are many ways that a selected sample
may be generated. Indeed it is very easy to be unaware that a selected sample is being
used. For example, consider interpretation of average scores over time on an achieve-
ment test such as the Scholastic Aptitude Test, when test taking is voluntary. A decline
over time may be due to real deterioration in student knowledge. However, it may just
reflect the selection effect that relatively more students have been taking the test over
time and the new test takers are the relatively weaker students.

Selection may be due to self-selection, with the outcome of interest determined in
part by individual choice of whether or not to participate in the activity of interest.
It can also result from sample selection, with those who participate in the activity of
interest deliberately oversampled – an extreme case being sampling only participants.
In either case, similar issues arise and selection models are usually called sample se-
lection models.
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This chapter presents only three of the many selection models in the literature. The
simplest model is the Tobit model already presented in Section 16.3. A prototypical
commonly used model that we call the bivariate sample selection model is presented in
the remainder of this section. This model generalizes the Tobit model by introducing
a censoring latent variable that differs from the latent variable generating the outcome
of interest. Another popular model called the Roy model is presented in Section 16.7.
This model considers an outcome that takes one of two values depending on the value
taken by a censoring random variable. These models correspond to, respectively, the
Tobit model types 1, 2, and 5 in the terminology of Amemiya (1985, p. 384).

Consistent estimation in the presence of sample selection on unobservables relies
on relatively strong distributional assumptions, even in the case of semiparametric es-
timation. Experimental data studies provide an attractive alternative as selection prob-
lems can then be avoided by random assignment. However, experiments can be diffi-
cult to implement in economics applications for cost and ethical reasons. The treatment
effects approach, detailed in Chapter 25, seeks to apply the experimental approach to
observational data.

16.5.2. A Bivariate Sample Selection Model (Type 2 Tobit)

Let y∗
2 denote the outcome of interest. In the standard truncated Tobit model this

outcome is observed if y∗
2 > 0. A more general model introduces a different latent

variable, y∗
1 , and the outcome y∗

2 is observed if y∗
1 > 0. For example, y∗

1 determines
whether or not to work and y∗

2 determines how much to work, and y∗
1 �= y∗

2 since there
are fixed costs to work such as commuting costs that are more important in determining
participation than hours of work once working.

The bivariate sample selection model comprises a participation equation that

y1 =
{

1 if y∗
1 > 0,

0 if y∗
1 ≤ 0

(16.29)

and a resultant outcome equation that

y2 =
{

y∗
2 if y∗

1 > 0
− if y∗

1 ≤ 0.
(16.30)

This model specifies that y2 is observed when y∗
1 > 0, whereas y2 need not take on

any meaningful value when y∗
1 ≤ 0. The standard model specifies a linear model with

additive errors for the latent variables, so

y∗
1 = x′

1β1 + ε1, (16.31)

y∗
2 = x′

2β2 + ε2,

with problems arising in estimating β2 if ε1 and ε2 are correlated. The Tobit model is
clearly the special case where y∗

1 = y∗
2 .

There is no generally accepted name for this model. Heckman (1979) used it to
illustrate estimation given sample selection. The model is equivalent to a Tobit model
with stochastic threshold (Nelson, 1977). Suppose we observe y∗

2 if y∗
2 > L∗, where

y∗
2 is defined as in (16.31) and the threshold is L∗ = z′γ + v rather than L∗ = 0 in
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Section 16.3. Then, equivalently, we observe y∗
2 if y∗

1 > 0, where y∗
1 = y∗

2 − L∗ =
(x′

2β2 − z′γ) + (ε2 − v) = x′
1β1 + ε1 and where x1 denotes the union of x2 and z, and

β1 and ε1 are defined in an obvious manner. Amemiya (1985, p. 384) calls the model
a type 2 Tobit model. Wooldridge (2002, p. 506) calls the model one with a probit
selection equation. Others call this model the generalized Tobit model or the sample
selection model, though there are many such models.

Estimation by ML is straightforward given the additional assumption that the cor-
related errors are joint normally distributed and homoskedastic, with[

ε1

ε2

]
∼ N

[[
0
0

]
,

[
1 σ12

σ12 σ
2
2

]]
. (16.32)

As for the probit model in Section 14.4.1, the normalization σ 2
1 = 1 is used since only

the sign of y∗
1 is observed.

Given (16.29) and (16.30), for y∗
1 > 0 we observe y∗

2 , with probability equal to
the probability that y∗

1 > 0 times the conditional probability of y∗
2 given that y∗

1 > 0.
Thus for positive y2 the density of the observables is f ∗(y∗

2 |y∗
1 > 0) × Pr[y∗

1 > 0].
For y∗

1 ≤ 0 all that is observed is that this event has occurred, and the density is the
probability of this event occurring. The bivariate sample selection model therefore has
likelihood function

L =
n∏

i=1

{
Pr[y∗

1i ≤ 0]
}1−y1i

{
f (y2i | y∗

1i > 0) × Pr[y1i
∗> 0]

}y1i
, (16.33)

where the first term is the discrete contribution when y∗
1i ≤ 0, since then y1i = 0, and

the second term is the continuous contribution when y∗
1i > 0. This likelihood function

is applicable to quite general models, not just linear models with joint normal errors.
Specializing to linear models with joint normal errors gives a bivariate density

f ∗(y∗
1 , y∗

2 ) that is normal, leading to a conditional density in the second term that is
univariate normal and easily handled. Amemiya (1985, pp. 385–387) provides details,
including the exact form of the likelihood function.

The classic early application of this model was to labor supply, where y∗
1 is the un-

observed desire or propensity to work, whereas y2 is actual hours worked. The model
is also conceptually more appealing for labor supply than the Tobit model in Section
14.2.1 which required the artifice of “desired” hours of work. This prototypical ap-
plication does have the complication that data on a key regressor, the offered wage,
is missing for those individuals who do not work. This complication is handled by
adding an equation for the offered wage and substituting this in, though the model is
then strictly speaking not just a bivariate sample selection model. See Mroz (1987) for
an excellent application to labor supply.

16.5.3. Conditional Means in the Bivariate Sample Selection Model

In this section we obtain the conditional truncated mean in the bivariate sample selec-
tion model. It differs from x′

2β2, so that OLS regression of y2 on x2 leads to inconsis-
tent parameter estimates. Nonetheless, the expression for the conditional mean can be
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used to motivate an alternative estimation procedure given in the subsequent section
that relies on weaker distributional assumptions than those of the MLE.

We consider the truncated mean in the sample selectivity model where only positive
values of y2 are used. In general this is

E[y2|x,y∗
1 > 0] = E[x′

2β2 + ε2|x′
1β1 + ε1 > 0]

= x′
2β2 + E[ε2|ε1 > −x′

1β1],
(16.34)

where x denotes the union of x1 and x2. If the errors ε1 and ε2 are independent then
the last term simplifies to E[ε2] = 0, and OLS regression of y2 on x2 will give a con-
sistent estimate of β2. However, any correlation between the two errors means that the
truncated mean is no longer x′

2β2 and we need to account for selection.
To obtain E[ε2|ε1 > −x′

1β1] when ε1 and ε2 are correlated, Heckman (1979) noted
that if the errors (ε1, ε2) in (16.31) are joint normal as in (16.32) then Equation (16.36)
in the following implies that

ε2 = σ12ε1 + ξ, (16.35)

where the random variable ξ is independent of ε1. To obtain this result, note that in
general the joint normal distribution[

z1

z2

]
∼ N

[[
µ1

µ2

]
,

[
�11 �12

�21 �22

]]
,

implies the conditional normal distribution

z2|z1 ∼ N
[
µ2 +�21�

−1
11 (z1 − µ1), �22 −�21�

−1
11 �12

]
,

a result that implies that

z2 = µ2 +�21�
−1
11 (z1 − µ1) + ξ, (16.36)

where ξ ∼ N [0, �22 −�21�
−1
11 �12] is independent of z1. For the joint density given

in (16.32) we have scalars and µ1 = µ2 = 0 and σ 2
1 = 1, so (16.36) specializes to

(16.35).
By using (16.35), the truncated mean (16.34) becomes

E[y2|x,y∗
1 > 0] = x′

2β2 + E
[
(σ12ε1 + ξ ) |ε1 > −x′

1β1

]
= x′

2β2 + σ12E[ε1|ε1 > −x′
1β1],

where we use independence of ξ and ε1. The selection term is similar to that in the
simpler Tobit model and again using the expression for E[z|z > −c] in Proposition
16.1 we obtain

E[y2|x,y∗
1 > 0] = x′

2β2 + σ12λ
(
x′

1β1

)
, (16.37)

where λ(z) = φ(z)/�(z) and we have used σ 2
1 = 1. Similarly, Proposition 16.1(iii)

yields the truncated variance

V[y2|x,y∗
1 > 0] = σ 2

2 − σ 2
12λ (x′

1β1)(x′
1β1 + λ (x′

1β1)). (16.38)

The preceding analysis specifies no value for y2 when y∗
1 ≤ 0. In some applications

y2 may equal zero when y∗
1 < 0. Then it is meaningful to consider the censored mean.
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Conditioning the observable y2 on the unobservables y∗
1 and y∗

2 and then uncondition-
ing yields

E[y2|x] = Ey∗
1
[E[y2|x,y∗

1 ]]
= Pr[y∗

1 ≤ 0|x] × 0 + Pr[y∗
1 > 0|x] × E[y∗

2 |x,y∗
2 > 0]

= 0 +�(x′
1β1)

{
x′

2β2 + σ12λ
(
x′

1β1

)}
= �(x′

1β1)x′
2β2+σ12φ (x′

1β1),

(16.39)

where the third line uses (16.37) and the last line uses λ (z) = φ(z)/�(z). The censored
variance can be shown to be heteroskedastic.

16.5.4. Heckman Two-Step Estimator

An important result is that OLS regression of y2 on x2 alone using just the observed
positive values of y2 leads to inconsistent estimation of β unless the errors are uncor-
related so that σ12 = 0. This is clear from the truncated mean formula (16.37), which
additionally includes the “regressor” λ(x′

1β1).
Heckman’s two-step procedure, sometimes called the Heckit estimator, aug-

ments the OLS regression by an estimate of the omitted regressor λ(x′
1β1). Thus using

positive values of y2 estimate by OLS the model

y2i = x′
2iβ2 + σ12λ(x′

1i β̂1) + vi , (16.40)

where v is an error term, β̂1 is obtained by first-step probit regression of y1 on x1 since
Pr[y∗

1 > 0] = �(x′
1β1), and λ(x′

1β̂1) = φ(x′
1β̂1)/�(x′

1β̂1) is the estimated inverse
Mills ratio. This regression does not directly provide an estimate of σ 2

2 , but the trun-
cated variance formula (16.38) leads to estimate σ̂ 2

2 = N−1∑
i [̂v

2
i + σ̂ 2

12λ̂i (x′
1β̂1 +

λ̂i )], where v̂i is the OLS residual from (16.40) and λ̂i = λ(x′
1i β̂1). The correlation

between the two errors in (16.32) can then be estimated by ρ̂ = σ̂ 12/σ̂ 2.
A test of whether or not σ12 = 0 or ρ = 0 is a test of whether or not the errors are

correlated and sample selection correction is needed. One such test is a Wald test based
on σ̂ 12, the estimated coefficient of the inverse Mills ratio.

It is important to note that both the usual OLS standard errors and
heteroskedasticity-robust standard errors reported from the regression (16.40) are in-
correct. Correct formulas for the standard errors take account of two complications
in the second-stage regression. First, even if β1 were known, the error in (16.40) is
heteroskedastic from (16.38). Second, in fact β1 is replaced by an estimate, a com-
plication studied in Section 6.6 and analyzed in Section 16.10.2 for the simpler Tobit
model. Formulas for the correct standard errors are given in Heckman (1979); see also
Greene (1981). Section 16.10.2 derives these formulas for the simpler Tobit model.
Implementation is not simple so it is best to use a package that automatically handles
this complication or to use the bootstrap.

The resulting estimator of β2 is consistent. Despite an efficiency loss compared to
the MLE under joint normality of the errors that can be quite large, the estimator is
very popular for the following reasons: (1) It is simple to implement; (2) the approach
is applicable to a range of selection models including those given in Section 16.7;
(3) the estimator requires distributional assumptions weaker than joint normality of ε1
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and ε2; and (4) these distributional assumptions can be weakened even further to permit
semiparametric estimation as in Section 16.9.

The key assumption needed is (16.35), essentially that

ε2 = δε1 + ξ, (16.41)

where ξ is independent of ε1. This seems to be a quite sensible model. In the case of
expenditures on a durable good, say, this says that the error in the expenditure equation
is a multiple of the error in the purchase decision equation, plus some noise that is
independent of the purchase decision; essentially a linear regression model for the
errors. Given assumption (16.41) the conditional mean (16.34) becomes

E[y2|y∗
1 > 0] = x′

2β2 + δE[ε1|ε1 > −x′
1β1]. (16.42)

If ε1 is standard normal distributed this leads to (16.37), the basis for the OLS regres-
sion (16.40).

More generally, Heckman’s two-step method can be applied to (16.42) with distri-
butions for ε1 other than normal; see, for example, Olsen (1980). One can also use
semiparametric methods that do not impose a functional form for E[ε1|ε1 > −x′

1β1]
(see Section 16.9).

16.5.5. Identification Considerations

The bivariate sample selection model with normal errors is theoretically identified
without any restriction on the regressors. In particular, exactly the same regressors
can appear in the equations for y∗

1 and y∗
2 .

The model with normally distributed errors is close to unidentified, however, if ex-
actly the same regressors are used. If x1 = x2 then E[y2|y∗

1 > 0] � x′
2β2 + a + bx′

2β1,
using (16.37) and the observation from Section 16.3.2 that the inverse Mills ratio term
λ (·) is approximately linear over a wide range of its argument. This leads to obvi-
ous multicollinearity problems, discussed in many articles including those by Nawata
(1993), Nawata and Nagase (1996), and Leung and Yu (1996). Multicollinearity can
be detected using the condition number given in Section 10.4.2, where from (16.40)
the regressors are x2 and λ(x′

1β̂1). The problem is less severe the greater the variation
in x′

1β̂1 across observations, that is, the better a probit model can discriminate between
participants and nonparticipants.

Semiparametric variants of the Heckman two-step method (see Section 16.9.3) do
require an exclusion restriction. So identification in the bivariate sample selection
model with normal errors is being achieved by functional form assumptions.

For practical purposes therefore, estimation of the bivariate sample selection model
may require that at least one regressor in the participation equation (y∗

1 ) be excluded
from the outcome equation (y∗

2 ). For example, fixed costs of working unrelated to
hours worked will affect the decision to work but not hours worked. This can be a
great limitation as in many applications, such as that in Section 16.6, it can be very
difficult to make defensible exclusion restrictions.
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16.5.6. Marginal Effects

The marginal effects in the bivariate sample selection model vary according to whether
we consider the latent variable mean or the truncated mean given in (16.37) or the
censored mean (if it is appropriate).

It is convenient to define x to be the vector formed by union of x1 and x2 and
rewrite x′

1β1 as x′γ1 and x′
2β2 as x′γ2. For example, the truncated mean becomes

E[y2|x] = x′γ2 + σ12λ(x′γ1). Note that γ1 and/or γ2 will have some zero entries if
x1 �= x2. Differentiating with respect to x yields the marginal effects

uncensored: ∂E[y∗
2 |x]/∂x = γ2,

truncated (at 0): ∂E[y2|x,y1 = 1]/∂x = γ2−σ12λ(x′γ1)(x′γ1+λ(x′γ1))
censored (at 0): ∂E[y2|x]/∂x = γ1φ(x′γ1)x′γ2 +�(x′γ1)γ2

− σ12x′γ1φ(x′γ1)γ1,

(16.43)

where λ(z) = φ(z)/�(z), and we use ∂φ(z)/∂z = −zφ(z) and ∂λ(z)/∂z =
−zφ(z)/�(z) − φ(z)2/�(z)2 = −λ(z)(z + λ(z)). Interpretation of these three deriva-
tives is similar to that discussed in some detail in Section 16.3.5. As already noted,
analysis of the censored mean is appropriate only if y2 takes the value of zero when
y1 = 0. In applications such as the log-normal health expenditures example discussed
later there is no censored mean.

16.5.7. Selection on Observables and on Unobservables

There are many modeling situations that can be considered a two-part decision prob-
lem of first engaging in an activity and then determining the level of the activity. These
decisions are intertwined and can be expected to depend on common factors. The nat-
ural model for such data is the bivariate selection model (16.29)–(16.31).

After inclusion of regressors any remaining error (ε1 and ε2) in the two processes
may in some cases be uncorrelated. For example, for models of hospitalization it is
possible that, after controlling for observed individual characteristics such as health
status, there is no correlation between the error in the equation determining hospital
admission and in the error in the equation determining length of hospital stay. In that
case analysis is straightforward as selection is only based on observables since, for
example, (16.37) simplifies when σ12 = 0. The two pieces can be modeled separately
and the simpler two-part model of Section 16.4 can be used.

In other cases the errors may be correlated even after inclusion of the regressors.
For example, in labor supply unobserved factors that make someone more likely to
work may also make them more likely to work longer hours than would be predicted
by the observable regressors. One can test whether there is such correlation between
the errors. If there is correlation, then selection is on unobservables and the methods of
this chapter come into play. Relatively strong distributional assumptions are needed,
even with the Heckman two-step method.

The study by Duan et al. (1983) summarized in Section 16.4.2 was criticized for
using the two-part model, which is more restrictive than the sample selection model.
This led to considerable debate, with many of the relevant articles referenced in Leung
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and Yu (1996), who emphasize the important role of potential correlation of the inverse
Mills ratio term with the remaining regressors.

More generally, selection models such as the bivariate selection model permit se-
lection on both observables and unobservables, as it permits selection on both ob-
served regressors and unobserved errors. It is often more simply referred to as a model
of selection on unobservables, with selection on observables implicit. This chapter
emphasizes selection on unobservables.

If instead we have only selection on observables, analysis becomes much simpler.
The two-part model of this chapter is an example. Chapter 25 on treatment evaluation
emphasizes selection on observables (see the discussion in Section 25.3.3) and details
methods such as propensity score matching.

16.6. Selection Example: Health Expenditures

For illustration we use data from the RAND Health Insurance Experiment (RHIE).
The data extract comes from Deb and Trivedi (2002), who modeled the number of
outpatient visits to a medical doctor and to all providers using count data models.
Section 20.3 summarizes the data and Section 20.7 presents estimates of some standard
count models.

Here instead we model annual health expenditures. The regressors are the same
regressors as defined in detail in Table 20.4. They can be broken down into health in-
surance variables (LC, IDP, LPI, and FMDE), socioeconomic characteristics (LINC,
LFAM, AGE, FEMALE, CHILD, FEMCHILD, BLACK, and EDUCDEC) and health
status variables (PHYSLIM, NDISEASE, HLTHG, HLTHF, and HLTHP). The analy-
sis in Chapter 20 uses four years of data whereas here we use only the second year of
data, yielding 5,574 observations with summary statistics similar to but not exactly the
same as those given in Table 20.4.

The dependent variable y is annual individual health expenditures. An econometric
model needs to take account of two complications: (1) Health expenditures are zero
for 23.2% of the sample and (2) the positive health expenditures are very right-skewed
with a mean of $221 that is much larger than the median of $53. The logarithmic
transformation eliminates this skewness, with a mean of 4.07 close to the median of
3.96 and the skewness statistic falls from 24.0 to 0.3. The kurtosis is 3.29, close to the
normal value of 3.

We focus on modeling ln y for those with positive medical expenditures. Possible
models include a two-part model, exposited for log medical expenditures in Section
16.4.2, and a bivariate sample selection model (see Section 16.5.2), where y1 in (16.29)
is an indicator for positive expenditures and y2 in (16.30) is ln y. Note that it is not
meaningful to consider the value of y2 when y1 = 0 because ln 0 is not defined. The
two-part model is a special case of the bivariate sample selection model with σ12 = 0
in (16.32).

Table 16.1 presents results for the health insurance variables and health status re-
gressors. Socioeconomic variables also included in the regression are omitted from the
table for brevity.
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Table 16.1. Health Expenditure Data: Estimates from Two-Part and Selection Modelsa

Two-Part Selection Two-Step Selection MLE
Model
Equation DMED LNMED DMED LNMED DMED LNMED

LC −0.119
(-4.41)

−0.016
(−0.52)

−0.119
(−4.41)

−0.028
(−0.70)

−0.107
(−4.03)

−0.076
(2.25)

IDP −0.128
(−2.45)

−0.079
(−1.28)

−0.128
(−2.45)

−0.028
(−0.70)

−0.109
(−2.13)

−0.150
(−2.26)

LPI 0.028
(3.19)

0.003
(0.28)

0.028
(3.19)

0.005
(0.47)

0.029
(3.42)

0.015
(1.42)

FMDE 0.008
(0.47)

−0.031
(−1.69)

0.008
(0.47)

−0.030
(−1.62)

0.001
(0.05)

−0.024
(1.21)

PHYSLIM 0.273
(3.67)

0.262
(3.81)

0.273
(3.67)

0.281
(3.50)

0.285
(3.94)

0.355
(4.70)

NDISEASE 0.022
(6.25)

0.020
(5.78)

0.022
(6.25)

0.022
(4.29)

0.021
(6.03)

0.029
(7.54)

HLTHG 0.039
(0.88)

0.144
(2.97)

0.039
(0.88)

0.147
(3.01)

0.058
(1.35)

0.156
(2.99)

HLTHF 0.192
(2.29)

0.364
(4.13)

0.192
(2.29)

0.382
(3.98)

0.224
(2.75)

0.445
(4.66)

HLTHP 0.640
(3.01)

0.787
(4.63)

0.640
(3.01)

0.833
(4.22)

0.798
(3.90)

0.999
(5.32)

ρ 0.000 0.168 0.736
σ2 1.401 1.570
σ12 = ρσ2 0.000 0.236

(0.47)
1.155
(16.43)

−ln L 10184.1 10170.1

a The t-statistics are in parentheses. Regressors also include eight socioeconomic characteristics. DMED is an
indicator for whether or not medical expenditures are positive and LNMED is the natural logarithm of expen-
ditures if positive. The t-statistics for the second step of the two-step selection model are based on errors that
correct for the first-step estimation used to obtain the fitted inverse Mills ratio term.

We first compare the two-part model estimates with the two-step estimates of the
bivariate sample selection model. The DMED equation estimates are identical as they
are obtained by probit regression of DMED on the same regressors. The LNMED
equation estimates differ because for two-step sample selection the second-step OLS
regression for LNMED additionally includes as a regressor the fitted value of the in-
verse Mills ratio term. This additional term is statistically insignificant (t = 0.47) and
low in magnitude with implied ρ̂ = 0.168 that is close to zero. As a result the two
models lead to similar coefficient estimates in the LNMED equation.

As noted in Section 16.4.4 the two-step estimator can perform poorly if the inverse
Mills ratio term is highly correlated with the other regressors. Here this does not appear
to be the case as there is considerable range in the probit model predicted probabili-
ties from 0.15 to 0.99 and the condition number (see Section 10.4.4) of the second-
stage regressors at the second stage, although somewhat high, only doubles from 37
to 82 upon inclusion of the inverse Mills ratio. Although it is still preferable to have
some exclusion restrictions, it is not clear in this application which regressors in the
DMED equation might be reasonably excluded on a priori grounds from the LNMED
equation.

The ML estimates of the bivariate sample selection model differ considerably from
the previous estimates, in both DMED and LNMED equations. The errors in the
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latent variable models for DMED and LNMED are highly correlated with estimate
ρ̂ = 0.736 that is highly statistically significant (t = 16.43). The big difference be-
tween the two-step estimates and the ML estimates of σ12 (or of ρ) is best viewed
as signifying a problem with the bivariate sample selection model. Rejection of the
null hypothesis that the estimates have the same probability limit, a Hausman test
given in Section 8.4, can be interpreted as rejection of the additional joint normality
assumption needed to go from two-step estimation to ML estimation of the bivariate
selection model. However, there may be a more fundamental problem that the bivariate
sample selection model with the weaker assumption (16.41) and ε1 iid normal is also
not reasonable. Such fragility of the bivariate sample selection model is not unusual,
especially if the same regressors are being used in both parts of the model so that iden-
tification is being secured through model specification assumptions. It is compounded
here by use of health expenditure data, which can have quite large outliers so that er-
rors may not be normal. Even though LNMED has skewness close to 0 and kurtosis
close to 3, as already noted, standard tests of heteroskedasticity, skewness, and kurtosis
resoundingly reject (with p-value 0.000) the null hypothesis that LNMED is normally
distributed.

The regressor of most interest is LC, the natural logarithm of the coinsurance rate
where the coinsurance rate equals the percentage of health cost borne by the insured
paid by the patient. The most statistically significant effect is in determining whether
or not expenditures are positive, rather than on the size of positive expenditures. If all
observations were positive then the coefficient of LC in regression on LNMED equals
the price elasticity of demand for health care. In fact in predicting the effect of changes
in price on the conditional truncated mean of log expenditure we need to control for
the effect of those with zero expenditure, as in the second line of (16.43).

In some applications interest lies in prediction rather than estimation of marginal
effects. This is complicated in this example by a desire to predict the level rather than
the log of expenditure. Assuming log-normality, the expression for the two-part model
is given in (16.28). Duan et al. (1983) present a method to make predictions without
the log-normality assumption that can be viewed as a variant of a bootstrap. See also
Mullahy (1998).

16.7. Roy Model

In the bivariate sample selection model the dependent variable for an individual might
not be observed. Thus we observe y2 for an individual if y1 = 1 but may not observe
y2 at all if y1 = 0. In this section we consider a model in which y2 is observed for all
individuals, but in only one of the two possible states. This important model empha-
sizes counterfactuals and connects with the program evaluation literature presented
in Chapter 25.

16.7.1. Roy Model

An often-cited article by Roy (1951) considered the consequences for the occupa-
tional distribution of earnings (both mean and variance) when there is individual
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heterogeneity in skills and individuals self-select into occupations. The treatment was
relatively general and nonmathematical, though it did assume that individual worker
output in an occupation is log-normally distributed in the absence of selection, and it
did not consider at all estimation of a formal model. During the 1970s a number of
authors independently proposed models for similar situations that were estimable with
cross-section data and considered selection on both observables and unobservables.
Such models have become known as Roy models.

We define the prototypical Roy model as follows. A latent variable y∗
1 determines

whether the outcome observed is y∗
2 or y∗

3 . Specifically, we observe whether y∗
1 is

positive or negative,

y1 =
{

1 if y∗
1 > 0,

0 if y∗
1 ≤ 0,

(16.44)

and observe exactly one of y∗
2 and y∗

3 according to

y =
{

y∗
2 if y∗

1 > 0,
y∗

3 if y∗
1 ≤ 0.

(16.45)

It is customary to specify a linear model with additive errors for the latent variables,
with

y∗
1 = x′

1β1 + ε1, (16.46)

y∗
2 = x′

2β2 + ε2,

y∗
3 = x′

3β3 + ε3.

A model with additive effect is the specialization x′
3β3 = x′

2β2 + α. The simplest para-
metric model for correlated errors is the joint normal, with ε1

ε2

ε3

 ∼ N

0
0
0

 ,
 1 σ12 σ13

σ12 σ
2
2 σ23

σ13 σ23 σ
2
3

 , (16.47)

where as usual the normalization σ 2
1 = 1 is used as only the sign of y∗

1 is observed.
The log-likelihood function is similar to that for the bivariate sample selection

model of Section 16.5, except that now y∗
3 is observed if y∗

1 ≤ 0, so the term Pr[y∗
1i ≤

0] in (16.33) is replaced by f (y3i | y∗
1i ≤ 0) × Pr[y1i

∗ ≤ 0].
It is more common to estimate the model using Heckman’s two-step method applied

to the truncated means,

E[y|x,y∗
1 > 0] = x′

2β2 + σ12λ(x′
1β1),

E[y|x,y∗
1 ≤ 0] = x′

3β3 − σ13λ(−x′
1β1),

(16.48)

where λ(z) = φ(z)/�(z) and we have used σ 2
1 = 1. First-stage probit estimation of

whether or not y∗
1 > 0 yields an estimate of β1 and hence λ(x′

1β̂1). Two separate OLS
regressions then lead to direct estimates of (β2, σ12) and (β3, σ13). Estimates of σ 2

2
and σ 2

3 can then be obtained using the squared residuals from the regressions, similar
to the technique used for the bivariate sample selection model after (16.40). Maddala
(1983, p. 225) provides complete details for this model, which he calls a switching
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regression model with endogenous switching. This is also the Tobit type 5 model
presented in Amemiya (1985, p. 399).

16.7.2. Variations of the Roy Model

Many models fall into the class of Roy models. Maddala (1983, Chapter 9) gives nu-
merous references to what he calls models with self-selectivity. See also Amemiya
(1985, Chapter 10). Here we present a few leading examples.

The bivariate sample selection model can be viewed as a special case where y∗
3

is ignored and we only model the truncated moment E[y∗
2 |y∗

1 > 0]. Bivariate sample
selection models where y = 0 when y∗

1 ≤ 0, such as in labor supply applications, can
more directly be viewed as Roy models where we observe either y = y∗

2 or y = 0, so
y∗

3 = 0.
In the study of L.-F. Lee (1978), y∗

2 and y∗
3 denote, respectively, union and nonunion

wage and y∗
1 denotes tendency to be a union member. This adds the additional structure

that

y∗
1 = y∗

2 − y∗
3 + z′γ + ζ,

where z′γ + ζ reflect costs of union membership and is very much in the spirit of Roy
(1951). Substituting for y∗

2 and y∗
3 yields a reduced form for y∗

1 :

y∗
1 = (x′

2β2 − x′
3β3 + z′γ) + (ε2 − ε3 + ζ ).

This model is now the same as the earlier model, with correction term λ(x′
1β̂1) obtained

by first-step probit regression of y1 on x1, where x1 denotes the unique regressors in
x2, x3, and z.

If only the intercept varies across the two possible outcomes, by an amount α say,
then the Roy model reduces to two latent variables

y∗
1 = x′

1β1 + ε1,

y∗ = x′β + αy1 + ε,

where y = y∗ is always observed and we also observe the binary variable y1 equal to
one if y∗

1 > 0 and equal to zero otherwise. This model for y can be viewed as one with
dummy endogenous variable (y1). It can be estimated using the Heckman two-step
estimator applied to the expression for E[y∗|x]. Alternatively, instrumental variables
estimation can be used, provided an instrument for y1 is available. This requires a re-
gressor that does not determine the level of the outcome of interest but does determine
which outcome is chosen.

These Roy models are similar to the models studied in the treatment effects litera-
ture. There are two potential outcomes, here y∗

2 and y∗
3 , but we can only observe one

of them. The approach in this chapter has been to create the counterfactual by mak-
ing strong distributional assumptions on the distribution of unobservables. Chapter 25
presents alternative methods. See especially Section 25.3 for connections between the
different approaches.
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16.8. Structural Models

Regression models for selected samples have the feature that the outcome of inter-
est depends in part on a participation decision that will in turn depend on expected
outcomes. The participation decision and outcomes are simultaneous decisions. The
preceding presentations simplified this interdependence by giving a reduced-form
version of the participation equation. In particular, see the exposition of Lee (1978)
in Section 16.7.2. This is a valid approach though is less efficient than working with a
fully structural version.

In this section we explicitly model the interdependence using structural economic
models based on utility maximization, and using structural statistical models that ex-
tend linear simultaneous equations to cover censoring and truncation, including binary
outcomes.

16.8.1. Structural Models Based on Utility Maximization

Initial structural model research considered female labor supply. The textbook
model has consumers maximizing utility, a function of goods consumption and leisure
time, subject to a budget constraint and a time constraint that available discretionary
time be allocated between leisure time and working time. At an interior solution the
marginal rate of substitution (MRS) between leisure and goods consumption equals the
wage rate. However, a corner solution where the woman chooses not to work can arise
if the MRS exceeds the offered wage. Gronau (1973) and Heckman (1974) presented
econometric models consistent with utility maximization that led to Tobit-like models,
accounting for the additional complication that the offered wage is not observed for
women who do not work. Subsequent advances include incorporation of fixed costs
of work, leading to sample selection models, and use of panel data, leading to panel
Tobit models. Killingsworth and Heckman (1986) and Blundell and MaCurdy (2001)
provide surveys and Mroz (1987) provides an application.

To illustrate the structural approach we summarize the following example. Dubin
and McFadden (1984) modelled household consumption of energy (electricity or nat-
ural gas) and choice of appliances (such as electric heater or natural gas heater) as
being interrelated decisions coming from the same utility function. Specifically, it
is assumed that for the j th of m appliance portfolios household indirect utility is
given by

Vj = {α0 j + α1/β + α1 p1 + α2 p2 + w′γ+β(y − r j ) + η}e−βp1 + ε j , (16.49)

where p1 and p2 denote the prices of electricity and gas, y denotes income, and r j

denotes the annualized total life-cycle cost of portfolio j with

r j = p1q1 j + p2q2 j + ρc j ,

where q1 j and q2 j denote the typical electricity and gas consumption by household
with appliance portfolio j , c j is the cost of appliance portfolio j , and ρ is the dis-
count rate. Tastes differ across households owing to observable characteristics w, un-
observable error η, and an appliance portfolio specific error ε j , which is assumed to be
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independent over j but correlated with η. In addition, there is a common appliance
specific taste factor α0 j .

Electricity demand x1 given appliance portfolio j equals −(∂Vj/∂p1)/(∂Vj/∂y), by
Roy’s identity, yielding

x1 − q1 j = α0 j + α1 p1 + α2 p2 + w′γ+β(y − r j ) + η.

To emphasize that choice of appliance portfolio j is endogenous, introduce m mutu-
ally exclusive indicator variables δ jk , k = 1, . . . ,m, where

δ jk =
{

1 if k = j
0 if k �= j.

Then electricity demand x1 given appliance portfolio j is given by

x1 − q1 j =
m∑

k=1

α0kδ jk + α1 p1 + α2 p2 + w′γ + β
(

y −
m∑

k=1

r jδ jk

)
+ η. (16.50)

Even though the model (16.50) is linear, OLS regression yields inconsistent estimates
as the result of endogeneity of δ jk . Dubin and McFadden (1984) present two alternative
estimation procedures.

An IV approach estimates (16.50) using p̂k and r j p̂k as instruments for δ jk and
r jδ jk , k = 1, . . .,m, where p̂k are the predicted probabilities of choosing the various
appliance portfolios. Here Vj is being used to denote the indirect utility function. It
includes both deterministic and stochastic components of utility and corresponds to
U j in the Section 15.5.1 presentation of the ARUM. A similar approach yields

pk = Pr[Vk > Vl , l �= k, l = 1, . . .,m]

= Pr[εl − εk < {(α0k − α0l) − β(rk − rl)}e−βp1 , all l �= k]

= exp[(α0k − βrk)e−βp1π/λ
√

3]∑m
l=1 exp[(α0l − βrl)e−βp1π/λ

√
3]
,

under the assumption that the ε j , j = 1, . . .,m, are iid type II extreme value with cdf
F(ε) = exp(− exp(−γ − επ/λ√3)), where γ � 0.5772 is Euler’s constant. Note that
here ε j has mean zero and variance λ2/2 that differ from those for the parameterization
of the type II extreme value distribution used in Chapters 14 and 15. Estimation of a
nonlinear multinomial logit model gives predicted probabilities p̂k .

An alternative sample selection approach notes that E[η|portfolio j chosen] �= 0
and uses assumptions on the distribution of η and ε1, . . ., εm to obtain this expecta-
tion. Specifically, assume that η|ε1, . . ., εm is iid with mean (

√
2σ/λ)

∑m
k=1 Rkεk and

variance σ 2(1 −∑m
k=1 R2

k ), where
∑m

k=1 Rk = 0 and
∑m

k=1 R2
k < 1 and the distribu-

tion of εk has already been given. Then performing some algebra given in Dubin and
McFadden yields

E[η|portfolio j chosen] =
m∑

k �= j

(σ
√

6Rk/π )

[
pk ln pk

1 − pk
+ ln pk

]
.
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A Heckman two-step procedure then estimates by OLS

x1 − q1 j =
m∑

k=1

α0kδ jk + α1 p1 + α2 p2 + w′γ + β
(

y −
m∑

k=1

r jδ jk

)

+
m∑

k �= j

γk

[
p̂k ln p̂k

1 − p̂k
+ ln p̂k

]
+ ξ,

where pk are predicted probabilities from the preceding model for pk , and ξ is an error
with asymptotic mean zero.

Dubin and McFadden estimated these models using data on 3,249 households with
two possible appliance portfolios: electric for water and space heating and gas for
water and space heating.

Related examples include those of Hanemann (1984), who modeled the consump-
tion level of a branded good where consumers consume only one of the possible
branded goods in the choice set, and of Cameron et al. (1988), who modeled health
service demand conditional on choice of one of a number of mutually exclusive health
insurance policies.

Much creativity, evident in the Dubin and McFadden example, can be required to
specify a model that yields analytical solutions for both choice probabilities and de-
mand conditional on choice. The advances in computational methods detailed in Chap-
ters 12 and 13 permit estimation of such models even when analytical solutions are not
obtained. Nonetheless, results will still be dependent on the assumed utility function
and distribution of unobservables.

16.8.2. Simultaneous Equations Tobit and Probit Models

To illustrate the issues involved in extending the linear SEM approach of Section 2.4
we consider a selection model that depends on two latent variables and introduce si-
multaneity into the models for the latent variables. A quite general model is

y∗
1 = α1 y∗

2 + γ1 y1 + δ1 y2 + x′
1β1 + ε1, (16.51)

y∗
2 = α2 y∗

1 + γ2 y1 + δ2 y2 + x′
2β2 + ε2,

where y∗
1 and y∗

2 are not completely observed but do determine the observed variables
y1 and y2, and the errors are assumed to be joint normally distributed. For example,
we may observe the binary indicator y1 = 1 if y∗

1 > 0 and observe y2 = y∗
2 if y∗

1 >

0. Note that in principal either latent variables or observed outcomes or both may
appear as regressors, though identification requires restrictions such as those given in
the following.

Endogenous Latent Variables

It is simplest to permit only the latent variables to be regressors in (16.51). Then

y∗
1 = α1 y∗

2 + x′
1β1 + ε1, (16.52)

y∗
2 = α2 y∗

1 + x′
2β2 + ε2.
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The bivariate sample selection model (16.31) is an example that additionally specifies
α2 = 0 and directly specifies a reduced form rather than a structural form for the y∗

1
equation. Model (16.52) is easily estimated because the reduced form for y∗

1 and y∗
2 can

be obtained in exactly the same way as for regular linear simultaneous equations. This
reduced form can then be estimated using methods such as probit or Tobit depending
on the way that y1 and y2 are determined given y∗

1 and y∗
2 . The parameters of the

structural model (16.52) can then be estimated by replacing the regressors y∗
2 and y∗

1
by the reduced-form predictions ŷ∗

2 and ŷ∗
1 .

Models such as (16.52) are called simultaneous equations Tobit models. A simul-
taneous equations probit model arises if the observed dependent variables y1 and y2

are binary. Estimators are presented by Nelson and Olson (1978), Amemiya (1979),
and Lee, Maddala, and Trost (1980) and a very general treatment for a range of mod-
els is given in L-F. Lee (1981). The standard errors of the estimators can be obtained
using the results on sequential two-step m-estimators in Section 6.6. However, it is
much simpler to obtain them using the bootstrap pairs procedure presented in Sec-
tion 11.2. Identification requires exclusion restrictions in (16.51) similar to those for
linear simultaneous equations.

Endogenous Regressors

A common specialization of the model (16.52) is to a Tobit model with endogenous
regressor that is completely observed. Then y∗

2 is fully observed, so y2 = y∗
2 , whereas

we observe y1 = y∗
1 if y∗

1 > 0 and y1 = 0 otherwise. The model becomes

y∗
1 = α1 y2 + x′

1β1 + ε1, (16.53)

y2 = x′π + v,

where the first equation is the structural equation of interest and the second equation
is the reduced form for the endogenous regressor y2. Again note that here y2 is con-
tinuous, not discrete. For joint normal errors ε1 = γ v + ξ , where ξ is an independent
normal error (see Section 5.1), so y∗

1 = α1 y2 + x′
1β1 + γ v + ξ .

A two-step estimation procedure calculates predicted residuals v̂ = y2 − x′π̂ from
OLS regression of y2 on x and then obtains Tobit estimates from the model

y∗
1 = α1 y2 + x′

1β1 + γ v̂ + e1,

where the error e1 is normally distributed. A test for endogeneity of y2 can be imple-
mented as a Wald test of γ = 0 using the usual standard errors from a Tobit package.
This test is an extension of the auxiliary regression to implement the Hausman endo-
geneity test in the linear model (see Section 8.4.3). If the null hypothesis is rejected
then the aforementioned second-step Tobit regression yields consistent estimates of α1

and β1, but standard errors then need to be adjusted because of first-step estimation
of the additional regressor v̂. See Smith and Blundell (1986) for details for the Tobit
model and Rivers and Vuong (1988) for a similar procedure that estimates a probit
model at the second step.
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Endogenous Censored or Binary Variables

Analysis is more complicated if the observed censored or binary endogenous vari-
ables y1 or y2 appear as regressors in (16.51). Heckman (1978) considered the follow-
ing model:

y∗
1 = γ1 y1 + δ1 y∗

2 + x′
1β1 + ε1, (16.54)

y∗
2 = α2 y∗

1 + γ2 y1 + x′
2β2 + ε2,

where we observe y1 = 1 if y∗
1 > 0 and y1 = 0 if y∗

1 ≤ 0, and we observe y2 = y∗
2 all

the time. The complication here is that y1 appears as a regressor. A meaningful reduced
form for y∗

1 can depend only on x1 and x2 and not y1. This imposes the restriction that
δ1γ2 + γ1 = 0, an example of what is called a coherency condition in this literature.
Then the reduced form of the model becomes

y∗
1 = x′π1 + v1,

y2 = γ2 y1 + x′π2 + v2.

This is a special case of the Roy model where participation (y1 = 1) leads to only an
intercept shift (via γ2) in the outcome. In general, models with regressors that include
censored or truncated endogenous variables are difficult to estimate. See, for example,
Blundell and Smith (1989).

Example

Brooks, Cameron, and Carter (1998) applied a simultaneous equations Tobit model
to explain the vote by congressional representatives on a pro-sugar amendment. The
three observed outcomes y1, y2, and y3 were, respectively, the vote (yes or no) and
contributions to their campaign funds from sugar interests and (opposing) sweetener-
user interests. The first outcome is a binary outcome and the other two outcomes are
censored at zero. A simultaneous equations model for the associated latent variables
y∗

1 , y∗
2 , and y∗

3 was specified, so the structural model is of the simpler form (16.52).
How reasonable is this specification? Here campaign contributions y∗

2 and y∗
3 should

depend on the latent variable y∗
1 since the actual vote y1 was made at a later date.

For y∗
1 however, an alternative and more difficult model is that y∗

1 , the latent variable
for the vote, depends on actual contributions received (y2 and y3) rather than on the
latent contributions. However, if this is viewed as a game likely to be repeated in
the future, a case can be made for using y∗

2 and y∗
3 . Clearly, the reasonableness of

such assumptions will vary with the application. Parameter identification was secured
by exclusion restrictions on the exogenous regressors. Consistent estimation relies on
errors being joint normally distributed.

16.9. Semiparametric Estimation

Censoring, truncation, and sample selection lead to a sample that differs from the pop-
ulation. This is essentially a missing data problem, one that is complicated because
data are missing on the dependent variable(s) rather than on exogenous regressors.
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The preceding methods solved this missing data problem by making distributional as-
sumptions to obtain either a likelihood function for the sample data or an appropriate
censored, truncated, or selected conditional mean.

These methods are fragile to even very minor misspecification of error distributions.
For example, both the MLE and the Heckman two-step estimator in the standard Tobit
model are inconsistent if errors are normal but heteroskedastic, or if they are homo-
skedastic but nonnormal. See, for example, Paarsch (1982) and the references therein.

Considerable efforts have been devoted to developing semiparametric estimators
that are consistent under weaker distributional assumptions. Before presenting leading
examples, however, we note that an alternative is to continue to take a fully parametric
approach that is based on richer, more flexible distributional assumptions.

16.9.1. Flexible Parametric Models

For simplicity begin with the classical Tobit model y∗
i = x′

iβ + εi . The assumption
that εi ∼ N [0, σ 2

i ] can be relaxed in two ways. First, heteroscedasticity can be incor-
porated through an explicit model σ 2

i = exp(z′
iγ), where now both β and γ need to be

estimated. Second, more flexible distributions than the normal distribution might be
used. For example, one might use a squared polynomial expansion of the normal (see
Section 9.7.7).

For the bivariate sample selection model a similar approach may be taken, where
now a more flexible joint distribution for (ε1, ε2) is used. Lee (1983) proposed working
with transformations (ε∗1, ε

∗
2) of (ε1, ε2) for which the bivariate normality assumption

may be more reasonable.
Bayesian methods can also be applied to such models. Chib (1992) considered the

censored Tobit model. The latent variables y∗ are introduced as auxiliary variables and
the data augmentation approach (see Section 13.7) is used. The Gibbs sampler cycles
among (1) the conditional posterior for β|y, y∗, σ 2, (2) the conditional posterior for
σ 2|y, y∗,β, and (3) the posterior for y∗|y,β, σ 2.

A flexible parametric approach is particularly advantageous for handling censor-
ing, truncation, and sample selection in nonlinear models such as those for counts and
for duration data or mixed types of data, as semiparametric methods are less likely to
be available then.

16.9.2. Semiparametric Estimation for Censored Models

We now move on to semiparametric estimation. We consider a linear model for the
latent variable y∗

i = x′
iβ + εi , which is left-censored at zero so that we observe yi = y∗

i
if y∗

i > 0 and yi = 0 if y∗
i ≤ 0. The semiparametric literature usually expresses the

model as

yi = max(x′
iβ + εi , 0). (16.55)

This is the Tobit model (16.11)–(16.13), except the distribution of ε is unspecified.
With some adaptation this model also covers left-censoring at known fixed point
other than zero and to right-censoring such as for top-coded data. For example, if
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y = min(x′β + ε,U ) then U − y = max(U − x′β−ε, 0). The goal is to consistently
estimate β without specifying a complete parametric distribution for εi . The estimators
are called semiparametric as the uncensored mean x′

iβ is parameterized but the error
distribution is not. The methods presented in the following differ in the assumptions
made on the distribution of ε.

From (16.8) ML estimation is possible given knowledge of the cdf of y∗ and hence
of ε. The cdf of ε can be nonparametrically estimated using the Kaplan–Meier prod-
uct limit estimator for the cdf presented in Chapter 17 for the case of right-censored
duration data. Alternatively, the distribution of ε can be nonparametrically determined
using the series expansion of Gallant and Nychka (1987); see Section 9.7.7. These
semiparametric ML estimation methods are rarely implemented.

Instead, the literature focuses on estimation based on conditional moments. From
(16.20) the conditional censored mean E[y|x] is clearly a single-index model with
E[y|x] = g(x′β), where the function g(·) is unknown if the distribution of ε is not
specified. The single-index methods of Section 9.7.4 can therefore be applied, though
as noted there β can be estimated only up to location and scale.

A more popular approach considers alternative conditional censored moments that
are less altered by censoring. Powell (1984) proposed using the conditional median.
The key distributional assumption is that ε|x has median zero, in which case the con-
ditional median of y|x equals the conditional mean x′β. The intuition for Powell’s
estimator is most easily obtained by supposing y is iid. If less than half the sample is
censored, so that less than half of the observations are zero and more than half are pos-
itive, then the censored sample median provides a consistent estimate of the population
median. Powell (1984) extended this idea to the regression case, where the same logic
follows for those observations for which less than half the observations on ε|x are cen-
sored, where ε = y − x′β depends on β, which needs to be estimated. The regression
analogue of median estimation is LAD estimation (see Section 4.6). This leads to the
censored least absolute deviations (CLAD) estimator β̂CLAD, which minimizes

QN (β)=N−1
N∑

i=1

|yi − max(x′
iβ, 0)|. (16.56)

The essential assumption for consistency of this estimator is that ε|x has median zero.
Given this assumption the estimator is consistent even if errors are conditionally het-
eroskedastic. The estimator for β is

√
N -consistent and asymptotically normal. More

efficient estimators can be obtained by weighting the terms in sums by f (0|xi ), the
conditional density of εi |xi evaluated at zero. The method can also be extended to
conditional quantiles.

An alternative procedure uses a symmetrically trimmed mean, rather than the me-
dian, that is also unaffected by censoring. Assume that the distribution of ε|x is sym-
metrically distributed. This implies that for observations with positive mean (i.e.,
x′β > 0) y|x is symmetrically distributed on the interval (0, 2x′β). Then either x′β+
ε < 0 and y = 0 is observed or, with equal probability, x′β + ε >2x′β and the data
are artificially set to 2x′β to preserve the symmetry about x′β. We have shown that

E[1(x′β > 0)[min(y, 2x′β) − x′β]x] = 0, (16.57)
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where 1(x′β > 0) restricts attention to observations with positive mean, and the new
dependent variable is y = 0, or 0 < y < 2x′β, or 2x′β if y > 2x′β. The moment esti-
mator based on (16.57) does not have unique solution for β. Powell (1986b) proposed
the symmetrically censored least squares (SCLS) estimator that minimizes

QN (β) =N−1
N∑

i=1

{[yi − max(yi/2, x′
iβ)]2 + 1(yi > 2x′

iβ)[y2
i /4 − max(0, x′

iβ)]2},

(16.58)

which with some algebra can be shown to yield first-order conditions that are the
sample analogue of moment condition (16.57). Chay and Honoré (1998) provide a
graphical exposition of the trimming for the SCLS estimator, as well as for the related
pairwise difference estimators of Honoré and Powell (1994).

Melenberg and Van Soest (1996), Chay and Honoré (1998), and Chay and Pow-
ell (2001) provide applications of some of these estimators. Pagan and Ullah (1999)
provide additional methods and theory.

As an empirical example we applied CLAD estimation to the Section 16.2.1 data
that were generated from a Tobit model with normal errors. The slope parameter (set
to 1000) was estimated to be 956 (standard error 117) using ML compared to 838
(standard error 165) using CLAD. As expected the CLAD robustness to nonormality
comes at the expense of some loss in efficiency.

16.9.3. Semiparametric Estimation for Selection Models

Semiparametric estimation of sample selection models is more challenging. We con-
sider the most commonly studied model, the bivariate sample selection model de-
fined in Section 16.5.2, where now we relax the assumption that the errors (ε1, ε2) are
joint normally distributed.

Semiparametric ML estimation is possible. In particular Gallant and Nychka (1987)
explicitly considered the bivariate sample selection model as a suitable candidate for
their series expansion estimator presented in Section 9.7.7.

The literature instead uses as starting point the expression for the truncated condi-
tional mean, which from (16.34) is given by

E[y2i |xi , y∗
1i > 0] = x′

2iβ2 + E[ε2|ε1 > −x′
1iβ1]

= x′
2iβ2 + g(x′

1iβ1),
(16.59)

where the second equality assumes that ε2i |xi , ε1i has distribution that depends on just
x1i similar to assumption (16.41). The distribution of (ε1, ε2) is left unspecified so the
function g(·) is unknown, leading to a semiparametric estimation problem. Since it
is possible that g(x′

1β1) = x′
1β1, identification in this model with g(·) unspecified re-

quires an exclusion restriction that at least one component of x1 does not appear in x2.
Moreover, the more uncorrelated x′

1β1 is with x2 the better β2 and g(·) can be distin-
guished. The model (16.59) is a partially linear model, which can be estimated using
methods presented in Section 9.7.3. Popular methods include the Robinson (1988a)
differencing estimator and using a series expansion for g(x′

1β1). Since β1 is unknown
the regression is of y2i on x′

2iβ2 + g(x′
1i β̂1), where β̂1 can be obtained by regression
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of the binary outcome y1i on x1i , using one of the semiparametric binary model esti-
mators given in Section 14.7. These methods provide consistent estimates of the slope
parameters β2. To additionally estimate the intercept, necessary for analysis of the
levels rather than changes in y2, see Andrews and Schafgens (1998).

Newey, Powell, and Walker (1990) applied this approach to female labor supply.
The participation indicator model was estimated using several different methods and
the equation for the outcome y2 was estimated using the method of Robinson (1988a).
Melenberg and Van Soest (1996) modeled vacation expenditures using a wide range of
semiparametric methods for both the bivariate sample selection and censored regres-
sion models. A richer model is provided by Das, Newey and Vella (2003).

Manski (1989) considered identification in the bivariate sample selection model
under relatively minimal assumptions and provided bounds for the mean and for
marginal effects, conditional on both regressors and selection.

16.10. Derivations for the Tobit Model

16.10.1. Truncated Moments of Standard Normal

Consider z ∼ N [0, 1], with density φ(z) = (1/
√

2π ) exp(−z2/2) and cdf �(z). Since
Pr[z > c] = 1 −� (c), the conditional density of z|z > c is φ(z)/(1 −� (c)). It fol-
lows that

E[z|z > c] =
∫ ∞

c
z (φ(z)/[1 − � (c)]) dz

=
∫ ∞

c
z(1/

√
2π ) exp(−z2/2) dz

/
[1 − � (c)]

=
∫ ∞

c

∂

∂z

(
−(1/

√
2π ) exp(−z2/2)

)
dz

/
[1 − � (c)]

=
[
−(1/

√
2π ) exp(−z2/2)

]∞
c

/
[1 − � (c)]

= φ (c)/[1 − � (c)].

Similarly,

E[z2|z > c] =
∫ ∞

c
z2 (φ (z)/[1 − � (c)]) dz

=
∫ ∞

c
z × z × (1/

√
2π ) exp(−z2/2) dz

/
[1 − � (c)]

=
∫ ∞

c
z × ∂

∂z

(
−(1/

√
2π ) exp(−z2/2)

)
dz

/
[1 − � (c)]

=
[
z × (−1/

√
2π ) exp(−z2/2)

]∞
c

/
[1 − � (c)]

−
∫ ∞

c

∂

∂z
(z) ×

(
−(1/

√
2π ) exp(−z2/2)

)
dz

/
[1 − � (c)]

= cφ(c)/[1 − � (c)] + (1 −�(c))/[1 − � (c)]

= cφ(c)/[1 − � (c)] + 1.
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It follows after a little algebra that

V[z|z > c] = E[z2|z > c] − (E[z|z > c])2

= 1 + cφ(c)/[1 −�(c)] − φ(c)2/[1 −�(c)]2.

16.10.2. Asymptotic Theory for Heckman’s Two-Step Estimator
in the Tobit Model

The asymptotic variance matrix of the two-step Heckman estimator is complicated by
its dependence on first-step parameter estimates. There are several ways to obtain the
asymptotic variance, such as that in Amemiya (1985, pp. 369–370). Here we instead
apply the general result for sequential two-step m-estimators given in Section 6.6.
We consider the simplest case of the Tobit model (see Section 16.3.6). The methods
can be adapted to two-step estimators for the bivariate sample selection model (Sec-
tion 16.5.4) and simultaneous equations Tobit model (Section 16.8.2). A much simpler
quite different approach is to use the bootstrap pairs procedure (see Section 11.2).

From (16.26) we wish to estimate the parameters γ = [β′ σ ]′ in the equation for
positive yi :

yi = x′
iβ + σλ(x′

iα) + ηi

= wi (α)′γ + ηi ,

where wi (α) = [x′
i λi (x′

iα)]′ and ηi = yi − x′
iβ − σλ(x′

iα) is heteroskedastic with
variance σ 2

ηi defined in (16.24). The first step of the two-step procedure is to obtain
an estimate α̂ of the unknown parameter α by probit MLE. It follows that the normal
equations for the two parts of the Heckman two-step estimator are

N∑
i=1

(yi −�(x′
iα))

φ2(x′
iα)

�(x′
iα)(1 −�(x′

iα))
xi = 0, (16.60)

−
N∑

i=1

di wi (α)( yi − wi (α)′γ) = 0,

where the first equation gives the probit first-order conditions for α, and the second
equation gives first-order conditions for γ for OLS on positive yi (di = 1).

These equations can be combined as
∑N

i=1 h(xi ,θ) = 0 where θ = (α′,γ ′)′. By

the usual first-order Taylor series expansion γ̂ − γ
d→ N [0,G−1

0 S0(G−1
0 )′]] where

G0 = lim N−1E[
∑N

i=1 ∂h(xi ,θ)/∂θ] and S0 = lim N−1E[
∑N

i=1 h(xi ,θ)h(xi ,θ)]′. We
are interested in the subcomponent corresponding to γ. Simplification occurs because
∂h(xi ,θ)/∂θ is block triangular because γ does not appear in the first set of equations.
Partitioning yields the general result

V[̂θ2] = G−1
22

{
S22 + G21[G−1

11 S11G−1
11 ]G′

21 − G21G−1
11 S12 − S21G−1

11 G′
21

}
G−1

22 ,

where the matrices are defined in Section 6.6.
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Specializing to the problem here, we first consider the terms in G0. Then

G11 = lim 1
N

∑N
i=1

φ2(x′
iα)

�(x′
iα)(1 −�(x′

iα))
xi x′

i ,

G21 = lim 1
N

∑N
i=1 di wi

∂λ(x′
iα)

∂α ,

G22 = lim 1
N

∑N
i=1 E[di wi w′

i ].

The expression for G11 uses knowledge that G−1
11 is just the variance of the probit MLE.

The expression for G21 uses

E

[
∂h2i

∂θ′
1

]
= E

[
−∂di wi (α)(yi − wi (α)′γ)

∂α

]

= E

[
wi
∂di wi (α)

∂α′

]
= E

[
di wi

∂λ(x′
iα)

∂α

]
.

The expression for G22 uses

∂h2i

∂θ′
2

= ∂di wi (α)(yi − wi (α)′γ)

∂γ
= di wi w′

i .

Turning to S0 we have

S11 = G−1
11 ,

S21 = 0,
S22 = lim 1

N

∑N
i=1 E[di ( yi − wi (α)′γ)2].

The expression for S11 follows by applying the information matrix equality. Taking
expectations and some manipulation leads to S21 = 0, and S22 is simply V[ηi ].

Combining these results gives the Heckman two-step estimator γ̂
a∼ N (γ,Vγ),

where

V̂γ = (Ŵ′Ŵ
)−1 (

Ŵ′Ση̂Ŵ + Ŵ′D̂V̂αD̂Ŵ
) (

Ŵ′Ŵ
)−1
, (16.61)

and where Ŵ′Ŵ =∑N
i=1 di ŵi ŵ′

i , D̂ = Diag
[
∂λ(x′

iα)/∂α |α̂
]
, V̂α is the variance ma-

trix for the first-stage probit MLE, and Ση̂ is a diagonal matrix with i th entry σ̂ 2
ηι

. This
estimate is straightforward to obtain if matrix commands are available. The hardest
part can be analytically obtaining σ 2

ηi
=V[ηi ] given in (16.24). If this is difficult we can

instead use σ̂ 2
i = (yi − x′

i β̂ + σ̂ λi (x′
i α̂))2 following the approach of White (1980).

16.11. Practical Considerations

Most major packages include ML estimation of the Tobit model under normality. The
two-part model is easy to estimate as one can separately estimate each part. In principle
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the bivariate sample selection model can be estimated by Heckman’s two-step proce-
dure using only a probit and OLS routine. However, the standard errors are difficult
to compute owing to the two-step nature of the estimator, and it is much easier to
obtain standard errors using a package with Heckman’s two-step procedure built-in.
Implementing semiparametric estimators generally requires specialized code in a pro-
gramming language such as GAUSS. Some packages also permit ML estimation of
censored and truncated variants of other models, such as the Poisson and negative
binomial for count data.

Censoring and truncation are easily handled if one views as reasonable the specified
distribution. For example, top-coded income data are easily handled if the log-normal
distribution fits the data well. Censored LAD, which relies on much weaker distribu-
tional assumptions, can also be used in this situation.

Much more problematic is handling models with sample selection. The more para-
metric versions of these models can rely on distributional assumptions that are felt to
be strong. Semiparametric versions still have to struggle with the identification require-
ment that a variable that determines participation does not also determine the outcome
of interest. A more promising route, one often taken in the treatment effects literature,
is to limit attention to cases where it may be reasonable to assume that selection is only
on observables.

16.12. Bibliographic Notes

The literature on models from selected samples is vast. Book-length treatments are provided
by Maddala (1983) and Gouriéroux (2000), and shorter summaries are provided by Amemiya
(1984, 1985) and Greene (2003).

16.3 Tobit (1958) proposed and applied the Tobit model to expenditure data. Amemiya
(1973) formally established its consistency and asymptotic normality. Heckman
(1974) provides an excellent female labor supply application with detailed analysis
of results.

16.4 The many studies of the Rand Health Insurance Experimant, such as that by Duan
et al. (1983), are leading applications of the two-part model.

16.5 Heckman (1976, 1979) presented the two-step estimator of the bivariate sample se-
lection model that is also the basis for many more recent semiparametric estimation
procedures. Mroz (1987) provides an excellent application to female labor supply
that places emphasis on the role of assumptions on wage exogeneity.

16.7 There are many variants on the ideas of Roy (1951), just as there are many variants
of the Tobit model. L-F. Lee (1978) provides a good early application to the union–
nonunion wage differential.

16.8 The work by Dubin and McFadden (1984) is a leading example of structural micre-
conometric analysis based on complete specification of utility function and distribu-
tion of unobservables.

16.9 Semiparametric estimation of binary choice models is presented in detail in the books
by M-J. Lee (1996), Horowitz (1997), and Pagan and Ullah (1999) and in surveys by
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Vella (1998) and L-F. Lee (2001). Chay and Honoré (1998) and Chay and Powell
(2001) provide applications for censored models, and Melenberg and Van Soest
(1996) additionally estimate bivariate sample selection models.

Exercises

16–1 This question considers the impact of different degrees of truncation in the Tobit
model.

(a) Generate 200 draws of a latent variable y∗ = k + 3x + u, where u ∼ N [0,3]
and the regressor x ∼ uniform[0,1]. Choose k such that you generate ap-
proximately 30% of y∗ to be negative.

(b) Generate a censored or truncated subsample by excluding observations
that correspond to y∗ < 0.

(c) Estimate the model using all 2,000 observations, as if the latent variable
were observable, by OLS. Evaluate your results in the light of the theoretical
properties of OLS, keeping in mind that you have only one replication.

(d) Using the truncated subsample of y > 0 only, estimate the model by OLS.
(e) Use the truncated maximum likelihood option to estimate the parameters

using all observations. Evaluate your results in light of the properties of the
truncated MLE. Compare with the least-squares results from the previous
two parts.

(f) Repeat all previous steps using a value of k so as to generate 20, 40, and
50% censored observations. Compare your results with those based on
30% censored observations. Hence suggest what is the consequence on
the parameter estimates of higher levels of censoring. Reinforce your argu-
ments using theory where possible.

16–2 Consider a latent variable modeled by y∗
i = x′

iβ + εi with εi ∼ N [0, σ 2]. Sup-
pose y∗

i is censored from above so that we observe yi = y∗
i if y∗

i < Ui and
yi = Ui if y∗

i ≥ Ui , where the upper limit Ui is a known constant for each in-
dividual (i.e., data) and may differ over individuals.

(a) Give the log-likelihood function for this model. [Hint: Note that this differs
from the standard case both owing to presence of Ui and because the equal-
ities are reversed with yi = y∗

i if y∗
i < Ui .]

(b) Obtain the expression for the truncated mean E[yi |xi , yi < Ui ]. [Hint: For z ∼
N [0,1], we have E[z|z> c] = φ(c)/[1 −�(c)]. Also, E[z|z< c] = −E[−z| −
z> −c] and −z ∼ N [0,1].]

(c) Hence give Heckman’s two-step estimator for this model.
(d) Obtain the expression for the censored mean E[yi |xi ]. [Hint: An essential

part is the answer in part (b).]

16–3 This question considers the consequences of misspecification in the Tobit
model. The starting point is the model of Exercise 16.1.

(a) Generate y∗ with heteroskedasticity by letting u ∼ N [0, σ 2z], where z> 0
is chosen to be a suitable positive-valued variable that is correlated with
x, though not perfectly so. Again set k to obtain about 30% of censored
observations. Use the MLE for censored normal to estimate this model and
compare your results with the corresponding homoskedastic case.
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(b) Now consider the impact of nonnormality in the sample. Use the simulation
macro available in some packages to carry out a Monte Carlo evaluation
based on a sample of 1,000 observations and 500 replications. In each repli-
cation generate a sample with censored observations such that the errors
are drawn from a mixture of two normals: N [1,9] or N [0.4,1] with prob-
abilities 0.4 and 0.6, respectively. Estimate the model using the censored
Tobit MLE and compare your results with the normal case. Carry out an
analysis of the Monte Carlo output for the two estimators. Draw appropriate
conclusions about the impact of nonnormality on the distribution of the Tobit
estimator.

16–4 Consider a Poisson regression model where y∗ has density f ∗(y∗) =
e−µµy/y∗!, y∗

i = 0,1,2, . . ., and we have independence over i . Because of cod-
ing error we only fully observe y∗ when y∗ ≥ 2. When y∗ = 0 or 1 we only ob-
serve that y∗ ≤ 1. Suppose this is coded as y∗ = 1. Define the observed data
y = y∗ for y∗

i ≥ 2 and y = 1 for y∗
i = 0 or 1.

(a) Obtain the density f (y) of the observed y.
(b) Obtain E[y]. [There is some algebra here.]

Now introduce regressors with E[y∗|x] = exp(x′β) and define the indicator
variable d = 1 for y∗ ≥ 2 and d = 0 for y∗ = 0 or 1.

(c) Give the exact formula for this example of the objective function of an es-
timator that provides a consistent estimator of β using data on yi , di , and
xi .

(d) Give the exact formula for this example of the objective function of an es-
timator that provides a consistent estimator of β using data on only di and
xi .

(e) Is it possible to consistently estimate β using data on only di and xi ? Explain
your answer.

16–5 Using a 50% random subsample of the RAND data on medical expenditure over
a 12-month period used in this chapter, and using a similar model specification,
we wish to consider the following broad question: Which model is appropriate
for modeling the expenditure data?

(a) Using the data summary of the expenditure variable, analyze the implica-
tions of the high proportion of zero expenditures observed. Is this a violation
of the normality assumption? Is there a transformation of expenditure that
would make the assumption of normality more appropriate?

(b) Three candidate models are considered, each with the same set of covari-
ates. These covariates are the same as in the count data Exercise 20.6. The
models are (i) the Tobit model, (ii) the two-part (“hurdle”) model (TPM), and
(iii) the selection model. Explain how each one of these will be set up, the re-
lationship and connections among them, and how one might compare and
choose among them. If you are likely to encounter any specific specifica-
tions or estimation problems, state them and suggest how you might handle
them. Pay attention to the choice of exclusion restrictions.

(c) Estimate in turn the Tobit model, the TPM, and the selection models. For the
TPM you have two equations, and the second is for those who have positive
expenditures only. In the case of the selection model, use both the MLE
and the two-step (Heckman) estimators. Discuss your reasons underlying
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the exclusion restriction required in the estimation of the selection model. Is
there evidence that the selection problem is a serious issue?

(d) How can we compare the statistical fit of the three models? Which model
appears to provide the best fit to the data? By what criterion?

(e) Suppose our main interest is in the impact of two variables on expenditure,
log income, and log of (1 + coinsurance rate). Use the results of your esti-
mated Tobit model and TPM to make a comparison between the marginal
impact of a change in these variables on expenditure. Given that there is
considerable heterogeneity in the sample, suggest how to present the re-
sults of your analysis in the most informative manner.

(f) Briefly explain how quantile regression (see Section 4.6) provides an alter-
native method of analyzing the same data. What are the main advantages
and disadvantages of this approach in the present data situation?
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C H A P T E R 17

Transition Data: Survival Analysis

17.1. Introduction

Econometric models of durations are models of the length of time spent in a given
state before transition to another state, such as duration unemployed or alive or without
health insurance. In biostatistics a duration in a state is also known as lifetime and the
time of transition is referred to as death; in operations research where one often studies
lifetimes of physical objects such as light bulbs and machines, the end of useful life,
that is, transition to useless life, is called failure time. In econometrics a state is a
classification of an individual entity at a point in time, transition is movement from
one state to another, and a spell length or duration is the time spent in a given state. A
typical regression example is determining the effect of higher unemployment benefit
levels on the average length of an unemployment spell or the probability of transition
out of unemployment.

The literature on this subject can be quite daunting, for a number of reasons. First,
several related distributional functions are of interest and either the duration or prob-
ability of transition may be modeled. Second, many different sampling schemes are
possible and statistical inference depends on both the duration model and the sampling
scheme. For example, sampling methods for data on unemployment duration include
flow sampling of those entering unemployment in a given month, stock sampling of
people unemployed in a given month, and population sampling of all people regardless
of employment status. Third, the data on spell duration are often censored. This is a
major reason for modeling transitions rather than the mean duration, the usual object
of regression analysis, as weaker distributional assumptions are needed to consistently
estimate models of the transitions. Fourth, transition data can be very rich with sev-
eral states, such as unemployment, part-time employment, full-time employment, and
out-of-the labor force, and data for a given individual may be available on multiple
transitions among these states. Fifth, the literature appears in several different applied
areas of statistics with different emphases. Duration analysis or transition analysis
is also called survival analysis (length of time survived) in biostatistics, failure time
analysis (length of time to failure of an item such as a light bulb or a machine part)
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in operations research, life table analysis in demography and actuarial studies (where
leaving a state corresponds to death), and hazard analysis in insurance and accident
theory. In the social sciences applications include recidivism, length of marriages, and
interelection duration.

In this chapter we present results for single-spell duration data obtained by flow
sampling. The classic example is modeling survival time, with transition being from
alive to dead, and many of the results come from survival analysis and life table analy-
sis. This is the most studied example of transition analysis in statistics, and the survival
analysis methods presented in this chapter are implemented in many statistical and mi-
croeconometric packages. The chapter begins with a regression example to outline the
issues raised with survival data.

Sections 17.3–17.5 present results without regressors, as many new concepts arise
even in this case. Section 17.3 introduces basic duration data concepts such as the
hazard, cumulative hazard, and survivor functions. Section 17.4 defines various types
of censoring, a common complication in duration analysis because the completed spell
is not always observed. For example, a clinical trial will usually end before the last
subject dies. Section 17.5 presents nonparametric estimators of the hazard, cumulative
hazard (Nelson–Aalen estimator), and survivor functions (Kaplan–Meier estimator)
that are consistent under independent censoring.

The remainder of the chapter extends analysis to regression models, again un-
der independent censoring. Estimation of fully parametric models, notably the
Weibull model, is presented in Section 17.6. The treatment of censoring is simi-
lar to that given for fully parametric Tobit models. Some important duration mod-
els are given in Section 17.7. An alternative semiparametric approach is to in-
stead model the hazard function, the probability of death conditional on survival
to date. In his seminal paper, Cox (1972) proposed a method to consistently esti-
mate a proportional hazards function with independent censoring under relatively
weak distributional assumptions. The Cox model, the standard model for survival
data, is presented in Section 17.8. Unlike most cross-section models, in survival
models regressors such as unemployment benefits in an unemployment duration
model may vary for a given person over the period that the subject is observed.
Models with time-varying regressors are detailed in Section 17.9. Discrete haz-
ards models are presented in Section 17.10. Section 17.11 presents an empirical
example.

Two subsequent chapters consider more complicated aspects of transition modelling
that are rarely given a textbook treatment. These include unobserved heterogeneity,
multiple spells, and multiple destinations.

17.2. Example: Duration of Strikes

Consider a data set on the duration of strikes that has been used by Kennan (1985),
Jaggia (1991c), and others. The variable of interest is the duration of strikes in U.S.
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Figure 17.1: Strike duration: Kaplan-Meier estimate of survival function. Data on completed
spells for 566 strikes in the U.S. during 1968–76.

manufacturing, measured in number of days from the start of the strike. The sample
has 566 complete (uncensored) observations on strike duration. The average duration
of strike (dur ) is 43.6 days, and the median is about 28 days. However, 90 days after
the start of the strike 88 strikes are still in progress.

We can show the strike duration information graphically as an empirical survival
function. Figure 17.1 shows on the vertical axis the proportion of strikes started that
are still in progress after a stated number of days. Calender time is ignored in this
figure, meaning that the different start date of different strikes plays no role in the
construction of the figure. As expected, the function starts at one and monotonically
declines to zero, indicating that all strikes must eventually end.

Now introduce a regressor variable (z) that measures the deviation of output from its
trend level, an indicator of the business cycle position of the economy. Positive values
of z indicate above-trend growth period and negative values indicate the converse.
Suppose that our main interest lies in testing whether average strike duration is pro
cyclical (i.e., ∂(dur )/∂z > 0) or anticyclical (i.e., ∂(dur )/∂z < 0). A simple way to
proceed might be to model the conditional expectation of ln(dur ) by a linear regression
of ln(dur ) on z. This may serve the purpose if one is testing for the presence of a
positive or negative association between dur and z.

Possibly we might instead be interested in modeling the conditional probability of
a strike. Such a goal could be achieved by a binomial regression with a 0/1 outcome
variable. However, suppose that our interest is in modeling the probability that a strike
that has been in progress for t days will end on day t + 1, or in modeling the condi-
tional probability of the strike in progress ending, as a function of the length of the
strike, controlling for z; then the previously mentioned regression approaches will be
less direct and less efficient than survival analysis, which also has the additional ad-
vantage that it can handle censored durations. In the next section we will consider
statistical concepts that are used in survival analysis.
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17.3. Basic Concepts

Duration in a state is a nonnegative random variable, denoted T , which in economic
data is often a discrete random variable. For explaining the basic concepts we focus on
the continuous case, followed by the discrete case later in the chapter.

17.3.1. Survivor, Hazard, and Cumulative Hazard Functions

The cumulative distribution function of T is denoted F(t) and the density function
is f (t) = d F(t)/dt . Then the probability that the duration or spell length is less than t
is

F(t) = Pr [T ≤ t] (17.1)

=
∫ t

0
f (s)ds.

A complementary concept to the cdf is the probability that duration equals or ex-
ceeds t , called the survivor function, which is defined by

S(t) = Pr [T > t] (17.2)

= 1 − F(t).

The definition of the cdf in (17.1) equals the usual definition, following Kalbfleisch
and Prentice (2002). In the duration analysis literature other authors, such as Lan-
caster (1990) instead define F(t) = Pr[T < t] and hence S(t) = Pr[T ≥ t] because
hazard functions, defined below, condition on T ≥ t rather than T > t . The particu-
lar definition used will make a difference in the discrete case, considered in Section
17.3.2, at the exact time that a transition occurs.

The survivor function is monotonically declining from one to zero since the cdf
is monotonically increasing from zero. If all individuals at risk of leaving the state
eventually do so then S(∞) = 0. Otherwise, S(∞) > 0 and the duration distribu-
tion is called defective. The sample mean of a completed spell length is the integral∫∞

0 S(u)du. To obtain this result, use∫ ∞

0
u f (u)du =

∫ ∞

0
ud F(u) = uF(u)|∞0 −

∫ ∞

0
F(u)du.

Since F (∞) = 1 and F (0) = 0, it follows that

E[T ] =
∫ ∞

0
(1 − F(u)) du =

∫ ∞

0
S(u)du. (17.3)

The mean duration equals the area under the survival curve.
Another key concept is the hazard function, which is the instantaneous probability

of leaving a state conditional on survival to time t . This is defined as

λ(t) = lim
�t→0

Pr[t ≤ T < t +�t | T ≥ t]

�t
(17.4)

= f (t)

S(t)
.
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Table 17.1. Survival Analysis: Definitions of Key Concepts

Function Symbol Definition Relationships

Density f (t) f (t) = d F(t)/dt
Distribution F(t) Pr[T ≤ t] F(t) = ∫ t

0 f (s)ds
Survivor S(t) Pr[T > t] S(t) = 1 − F(t)

Hazard λ(t) lim
h→0

Pr[t ≤ T < t + h|T ≥ t]

h
λ(t) = f (t)/S(t)

Cumulative hazard �(t)
∫ t

0 λ(s)ds �(t) = − ln S(t)

It is easily verified that the hazard equals the change in log-survivor function,

λ(t) = −d ln(S(t))

dt
.

The hazard λ(t) specifies the distribution of T . In particular, integrating λ(t) and using
S(0) = 1 we can show that

S(t) = exp

(
−
∫ t

0
λ(u)du

)
. (17.5)

In regression analysis of transitions the conditional hazard rate, λ(t |x), is of central
interest. This contrasts with more standard regression approaches in which the condi-
tional mean function, E[T |x], is of chief interest. The latter approach has the disad-
vantage that in practice the durations are often censored.

A final related function is the cumulative hazard function or integrated hazard
function

�(t) =
∫ t

0
λ(s)ds (17.6)

= − ln S(t),

where the last equality uses (17.5). If S(∞) = 0 then �(∞) = ∞. The cumula-
tive hazard is of interest as it can be more precisely estimated than the hazard
function.

For any choice of distribution of T , it can be shown that the transformation�(T ) is
unit exponentially distributed and ln�(T ) is extreme value distributed, providing the
basis for model specification tests, see Section 18.7.2.

Various related functions for the nonnegative continuous random variable T are
summarized in Table 17.1.

Other functions are also used at times, most notably the Laplace transform L(s) =
E[exp(−sT )], s > 0, which is a variant of the moment-generating function for random
variable T restricted to be positive.

17.3.2. Discrete Data

It is very common for a duration to be measured as an interval. For example, data may
indicate that a transition occurred in a particular week, but the exact time in the week
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is not given. In such cases the transition times are said to be grouped and it is assumed
that the hazard within the interval is constant. Discrete-time hazard models deal with
such data.

The starting point is to define the discrete-time hazard function as the probability
of transition at discrete time t j , j = 1, 2, . . . , given survival to time t j :

λ j = Pr
[
T = t j |T ≥ t j

]
(17.7)

= f d(t j )/Sd
(
t j−
)
,

where the superscript d denotes discrete, and where Sd(a−) = limt→a−Sd(t j ), an ad-
justment made because formally Sd(t) equals Pr[T > t] rather than Pr[T ≥ t], and the
superscript d denotes discrete.

The discrete-time survivor function is obtained recursively from the hazard func-
tion as

Sd(t) = Pr [T ≥ t] (17.8)

= ∏
j |t j ≤t

(
1 − λ j

)
.

For example, Pr [T > t2] equals the probability of no transition at time t1 times the
probability of no transition at time t2 conditional on surviving to just before t2, so that
Pr [T > t2] = (1 − λ1) × (1 − λ2). The function Sd(t) is a decreasing step function
with steps at t j , j = 1, 2, . . . .

The discrete-time cumulative hazard function is

�d(t) = ∑
j |t j ≤t

λ j . (17.9)

Using (17.7), we have that the discrete probability that the spell ends at t j is
λ j Sd(t j ).

The continuous and discrete cases can be combined. The survivor function is then
defined using the product integral, which reduces to the regular product (17.8)
in the discrete case and to the exponential of the regular integral (17.5) in the
continuous case. See Kalbfleisch and Prentice (2002, p. 10) or Lancaster (1990,
pp. 10–12).

Discrete duration data may arise because the process generating transitions is in-
trinsically discrete. More often, however, the underlying process is continuous but the
data are observed discretely. For example, one may know the week or month in which a
spell ends, but not the day or hour. Such data are sometimes known as grouped data.
The discrete data formulas can be used as follows. Let time be divided into k + 1
intervals [a0, a1), [a1, a2), . . . , [ak−1, ak), [ak, a∞). The discrete time duration T = t j

indicates a transition in the interval [a j−1, a j ), that is, transition at time a j−1 or later.
It is customary to treat discrete data as resulting from grouping, so that transitions are
modeled in continuous time and then necessary adjustments are made for grouping.
Further discussion is given in Section 17.10.

578



17.4 . CENSORING

17.4. Censoring

Survival data are usually censored, as some spells are incompletely observed. That
is, the lifetimes are only known to lie in certain intervals. As an example, instead
of observing the length of completed spell of unemployment, data may come from a
survey of the currently unemployed, so that only the length of an incomplete spell of
unemployment is observed.

17.4.1. Censoring Mechanisms

In practice data may be right-censored, left-censored, or interval-censored. For right-
censoring or censoring from above, we observe spells from time 0 until a censoring
time c. Some spells will have ended by this time anyway (completed spells), but others
will be incomplete and all we know is that they will end some time in the interval
(c,∞). Left-censoring or censoring from below occurs when spells are known to end
at some time in the interval (0, c) but the exact time is unknown. The classical Tobit
model is an example, where data on some spells are lost and the censoring time is
unknown. Interval-censoring occurs when the completed spell length is observed but
only in interval form such as in [t∗

1 , t
∗
2 ).

The survival analysis literature has focused on right-censoring. Even with this re-
striction there are a variety of possible reasons for censoring, including random cen-
soring, type I censoring, and type II censoring.

Random censoring or exogenous censoring means that each individual in the
sample has a completed duration T ∗

i and censoring time C∗
i that are independent of

each other. We observe the completed duration T ∗
i if the spell ends before the cen-

soring time and the censoring time C∗
i if the spell ends after the censoring time.

In addition it is known whether or not censoring has occurred. The observed data
(t1, δ1), (t2, δ2), . . . , (tN , δN ) are realizations of the random variables

Ti = min(T ∗
i ,C

∗
i ), (17.10)

δi = 1[T ∗
i < C∗

i ],

where the indicator function 1[A] equals one if event A occurs and equals zero oth-
erwise. Note that δi equals one if a completed spell is observed and equals zero
otherwise. Random censoring may result from causes such as random failure to fol-
low up a case, individuals randomly dropping out of the study, or termination of the
study.

Type I censoring occurs when durations are censored above a certain fixed known
censoring time, say tci . For example, a sample of light bulbs may be tested for no more
than 5,000 hours, with a common starting time for all items. Thus at the termination of
the study the failure times or durations of some items will be known but other objects
will still not have “failed.” Their lifetimes are said to be right-censored. This is a
special case of random sampling, with C∗

i = tci . The classic Tobit model is an example
of type I censoring from below for a random variable continuous on (−∞,∞).
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17.4.2. Independent (Noninformative) Censoring

For standard survival analysis methods to be valid in the presence of censoring the
censoring mechanism needs to be one with independent (noninformative) censor-
ing. This means that parameters of the distribution of C∗ are not informative about the
parameters of the distribution of the duration T ∗. Then one may treat the censoring in-
dicator δ as exogenous, and it is then not necessary to model the censoring mechanism
if interest lies in the duration model parameters.

For censored data (t, δ) the uncensored observations are observed with probability

Pr[T = t, δ = 1] = Pr[T = t | δ = 1] × Pr[δ = 1].

If the censoring mechanism is independent then Pr[T = t |δ = 1] = Pr[T = t]. If the
censoring is noninformative then the term Pr[δ = 1] can be dropped from the likeli-
hood function as it does not involve parameters of the distribution for T . Similarly, for
censored observations,

Pr[T = t, δ = 0] = Pr[T ≥ t | δ = 0] × Pr[δ = 0]

with Pr[T ≥ t | δ = 0] = Pr[T ≥ t] under independent censoring and Pr[δ = 0] being
ignored under noninformative censoring. Combining, the density of interest reduces to
Pr[T = t] when δ = 1 and Pr[T ≥ t] when δ = 0.

When regressors x are introduced it is possible for T ∗ and C∗ to vary with the same
regressors. Again what matters is that C∗ parameters are not informative about the T ∗

parameters. Even more simply, at any given point in time, censoring must not occur
because a subject has unusually high or low risk of failure given x.

Type II censoring occurs when observation on N subjects ceases after the pth
failure. Then only the durations for the p shortest spells are completely observed,
and the remaining N − p are censored at C∗

i = t(p), the duration of the pth shortest
complete spell. For example, a clinical trial may end after p patients have died.

Random, type I, and type II censoring are all examples of independent censoring.
A more formal treatment is given in Kalbfleisch and Prentice (2002, pp. 194–196).

17.5. Nonparametric Models

This section deals with nonparametric estimation of survival functions. These methods
are very useful for descriptive purposes. It is often insightful to know the shape of
the raw (unconditional) hazard or survival function before considering introducing
regressors. The strike duration example illustrates the point.

We present estimators of the survivor, hazard, and cumulative hazard functions in
the presence of independent censoring. Nonparametric estimation of the density itself
is not considered because of the difficulty introduced by censoring; more importantly
the survivor and hazard functions are more interpretable than the density.

No regressors are included. If interest lies in just a few key values of regressor(s),
such as different treatment regimes or levels of treatment, then one can obtain sep-
arate nonparametric estimates at each key value and compare them. In economics
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applications this is rarely the case and more structural models with regressors, pre-
sented in Sections 17.6–17.10, are needed.

We focus on discrete durations, such as life table data, so that the discrete-time
formulation of Section 17.3.3 is used. Consider, for example, a cohort of N0 individuals
of specific age and gender, which is subsequently tracked for a number of years. At
the end of year 1, there are N1 individuals in the cohort, and N1 − N0 individuals
from the original cohort have either died or been lost for other reasons (censored).
A year later the size of the cohort is N2 − N1, and so forth. Such life table data can
be used to construct a discrete-time survivor function without any prior parametric
assumptions.

17.5.1. Nonparametric Estimation

With no censoring the obvious estimator of the survivor function is one minus the
sample cumulative distribution function. Then Ŝ(t) equals the number of spells in the
sample of duration greater than t , divided by the sample size N . This is a step function
with jump at each discrete failure time; see Figure 17.1. An alternative equivalent
representation of this estimator, given momentarily in (17.13), maintains consistency
in the presence of independent censoring.

Let t1 < t2 < · · · < t j < · · · < tk denote the observed discrete failure times of the
spells in a sample of size N , N ≥ k. Define d j to be the number of spells that end
at time t j . Since the data are discrete d j may exceed one. Some spells may be in-
completely observed. Define m j to be the number of spells right-censored in the in-
terval [t j , t j+1). The censoring mechanism is assumed to be independent censoring,
so the only thing known about a spell censored in [t j , t j+1) is that the failure time is
greater than t j . Spells are at risk of failure if they have not yet failed or been censored.
Define r j to equal the number of spells at risk at time t j−, that is, just before time
t j . Then r j = (d j + m j ) + · · · + (dk + mk) =∑l|l≥ j (dl + ml). Note that r1 = N . In
summary,

d j = # spells ending at time t j , (17.11)

m j = # spells censored in [t j , t j+1),

r j = # spells at risk at time t j− =
∑
l|l≥ j

(dl + ml).

The discrete-time formulation of Section 17.3.2 is used. Since λ j =
Pr
[
T = t j |T ≥ t j

]
, an obvious estimator of the hazard function is the number

of spells ending at time t j divided by the number at risk of failure at time t j−, or

λ̂ j = d j

r j
. (17.12)

The discrete-time survivor function is defined in (17.8). The Kaplan–Meier esti-
mator or product limit estimator of the survivor function is the sample analogue

Ŝ(t) = ∏
j |t j ≤t

(1 − λ̂ j ) = ∏
j |t j ≤t

r j − d j

r j
. (17.13)

581



TRANSITION DATA: SURVIVAL ANALYSIS

Table 17.2. Hazard Rate and Survivor Function Computation: Examplea

j r j d j m j λ̂ j = d j/r j �̂(t j ) Ŝ(t j )

1 80 6 4 6/80 6/80 (1−6/80)
2 70 5 3 5/70 6/80 + 5/70 (1−6/80)×(1−5/70)
3 62 2 1 2/62 �̂(t2) + 2/62 Ŝ(t2)×(1−2/62)
4 – – – –

a At time t j , r j is the number of observations at risk, d j is the number of deaths (failures), m j is the number of
missing spells (censored), λ̂ j is the estimated hazard rate, �̂(t j ) is the estimated cumulative hazard, and Ŝ(t j )
is the estimated survivor function.

This is a decreasing step function with jump at each discrete failure time. The Kaplan–
Meier estimator can be shown to be the nonparametric MLE (see Kalbfleisch and
Prentice, 2002, pp. 14–16).

In the case of no censoring Ŝ(t) in (17.13) simplifies to Ŝ(t) = r/N , the number
still at risk at time t divided by the sample size, which is one minus the empirical cdf.
To see this note that r j − d j = r j+1, if m j = 0, since then the number at risk at time
j less the number of deaths at time j equals the number at risk at time j + 1. Then
(17.13) becomes Ŝ(t) =∏ j |t j ≤t r j+1/r j , which simplifies to r/r1 where r1 = N .

The discrete-time cumulative hazard function is defined in (17.9). The Nelson–
Aalen estimator of the cumulative hazard function is the obvious sample analogue

�̂(t) = ∑
j |t j ≤t

λ̂ j = ∑
j |t j ≤t

d j

r j
. (17.14)

This estimator can also be used to estimate the survival function by S̃(t j ) =
exp(−�̂(t)), using the continuous case equality S(t) = exp(−�(t)).

As an illustration, suppose that there are initially 80 observations, with 6 failures at
time t1, 4 spells censored in [t1, t2), 5 failures at time t2, 3 spells censored in [t2, t3),
2 failures at time t3, 1 spell censored in [t3, t4), and so on. Then the estimates for the
cumulative hazard and survivor function for t ≤ t3 are given in Table 17.2.

Tied data arise when multiple failures occur at a particular point in time. It is com-
mon to assume that ties occur because of grouping, rather than because the process
generates true discrete ties. The hazard estimate λ̂ j = d j/r j assumes that all deaths
occur simultaneously at time t j . In fact deaths may occur progressively over the in-
terval [t j , t j+1) and censoring may also occur progressively over this interval. Then
r j overstates the number of subjects at risk on average over the interval [t j , t j+1). A
standard correction in life table analysis is to replace λ̂ j = d j/r j by d j/(r j − m j/2),
with similar changes in the formulas for Ŝ(t), �̂(t), and so on. Other corrections have
also been proposed.

Most survival analysis programs do a good job of producing basic Kaplan–Meier
plots and tables. Table 17.3 provides an abstract of such output for the strike data and
complements Figure 17.1 given earlier.

582



17.5 . NONPARAMETRIC MODELS

Table 17.3. Strike Duration: Kaplan–Meier Survivor Function
Estimates

Beginning Survivor Standard
Day Total Failures Function Error

1 566 10 0.9823 0.0055
2 556 21 0.9452 0.0096
3 535 16 0.9170 0.0116
4 519 17 0.8869 0.0133
5 502 18 0.8551 0.0148
6 484 9 0.8392 0.0154
7 475 12 0.8180 0.0162
8 463 12 0.7968 0.0169
...

...
...

...
...

13 411 11 0.7067 0.0191
14 400 11 0.6873 0.0195

17.5.2. Confidence Bands for Nonparametric Estimates

The estimate λ̂ j = d j/r j of the hazard function is very discontinuous, especially for t
large as then r j becomes small relative to d j/r j . It can be visually useful to first smooth
the hazard estimates, using nonparametric regression methods, see Section 9.5, before
plotting them against time.

The survivor and cumulative hazard functions are much smoother, and it is standard
to plot these against time, along with confidence bands that do reflect sampling vari-
ability. There are several ways to estimate these confidence bands. The formulas we
give are those used in STATA.

For the Kaplan–Meier estimate of the survivor function it is common to use the
Greenwood estimate of the variance

V̂[̂S(t)] = Ŝ(t)2 ∑
j |t j ≤t

d j

r j (r j − d j )
.

Reported confidence intervals for S(t) are often based on ln(− ln Ŝ(t)) rather than
on Ŝ(t), as this transformation ensures the confidence interval lies in the range of
the survivor function, which is between zero and one. The transformation yields the
100(1 − α)% confidence interval

Sd(t) ∈ (̂S(t) exp(−zα/2σ̂ (t)), Ŝ(t) exp(zα/2σ̂ (t))), (17.15)

where σ (t) denotes the standard deviation of ln(− ln Ŝ(t)), which is estimated using

σ̂ 2
s (t) =

∑
j |t j ≤t d j/(r j (r j − d j ))[∑

j |t j ≤t ln((r j − d j )/d j )
]2 .
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Table 17.4. Exponential and Weibull Distributions: pdf, cdf, Survivor
Function, Hazard, Cumulative Hazard, Mean, and Variance

Function Exponential Weibull

f (t) γ exp(−γ t) γαtα−1 exp(−γ tα)
F(t) 1 − exp(−γ t) 1 − exp(−γ tα)
S(t) exp(−γ t) exp(−γ tα)
λ(t) γ γαtα−1

�(t) γ t γ tα

E[T ] γ−1 γ−1/α�(α−1 + 1)
V[T ] γ−2 γ−2/α[�(2α−1 + 1) − [�(α−1 + 1)]2]
γ , α γ > 0 γ > 0, α > 0

For the Nelson–Aalen estimator of the cumulative hazard function one variance
estimate is

V̂[�̂(t)] = ∑
j |t j ≤t

d j

r2
j

.

The transformation ln �̂(t), yields the 100(1 − α)% confidence interval for the cumu-
lative hazard

�(t) ∈ [�̂(t) exp(−zα/2σ̂ �(t)), �̂(t) exp(zα/2σ̂ �(t))
]
, (17.16)

where σ̂ �(t) denotes the standard deviation of ln �̂(t), which is estimated using

σ̂ 2
�(t) = V̂[�̂(t)]/[�̂(t)2].

17.6. Parametric Regression Models

We begin by outlining the properties of two distributions that perform a benchmark
role. Then some standard regression models for duration data are considered.

17.6.1. Exponential and Weibull Distributions

The natural parametric starting point is the exponential, because a pure Poisson point
process has durations that are exponentially distributed, see Lancaster (1990, p. 86).
The exponential duration distribution has a constant hazard rate γ that does not
vary with t , the memoryless property of the exponential. It follows from (17.5) that
S(t) = exp(− ∫ t

0 γ du) = exp(−γ t). The density is f (t) = −S′(t) = γ exp(−γ t), and
the cumulative hazard �(t) = − ln S(t) = γ t is linear in t .

The exponential is a one-parameter distribution that is too restrictive in practice. A
generalization commonly used in econometrics is the Weibull distribution. Table 17.4
presents the density and other distributional functions and moments for the Weibull and
the exponential, which is the special case α = 1. The function �(·) given in the Table
17.5 is the gamma function.
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Table 17.5. Standard Parametric Models and Their Hazard and Survivor Functionsa

Parametric Model Hazard Function Survivor Function Type

Exponential γ exp(−γ t) PH, AFT
Weibull γαtα−1 exp(−γ tα) PH, AFT
Generalized Weibull γαtα−1S(t)−µ [1 − µγ tα]1/µ PH
Gompertz γ exp(αt) exp(−(γ /α)(eαt − 1)) PH

Log-normal
exp(−(ln t−µ)2/2σ 2)

tσ
√

2π [1−�((ln t−µ)/σ )]
1 −� ((ln t − µ) /σ ) AFT

Log-logistic αγ αtα−1/ [(1 + (γ t)α)] 1/ [1 + (γ t)α] AFT

Gamma γ (γ t)α−1 exp[−(γ t)]
�(α)[1−I (α,γ t)] 1 − I (α, γ t) AFT

a All the parameters are restricted to be positive, except that −∞ < α <∞ for the Gompertz model.

The Weibull has hazard λ(t) = γαtα−1, which is monotonically increasing if α > 1
and monotonically decreasing if α < 1. This is a special case of the proportional
hazards (PH) family, see Section 17.7.1, in which λ(t) factors into a baseline com-
ponent that depends only on t , λ0(t), and a second term (e.g., γ ) that can be pa-
rameterized as a function of covariates only. Figure 17.2 presents properties of the
Weibull distribution with γ = 0.01 and α = 1.5. The density is right-skewed, as is
usually the case with duration data. The shape of the survivor curve is one com-
mon for many different distributions, making visual comparison of different estimated
survivor curves difficult. The hazard is increasing for this Weibull example, since
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Figure 17.2: Weibull distribution: density, survivor, hazard and cumulative hazard functions
plotted against time for γ = 0.01 and α = 1.5.
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α > 1. Other parametric models can have quite different shaped hazard functions, in-
cluding monotonically increasing, monotonically decreasing, U -shaped and inverse
U -shaped.

The hazard function is often imprecisely estimated in practice, especially in the
right tail. The cumulative hazard �(t) is more precisely estimated and permits some
discrimination across models. Even better is ln�(t) plotted against ln t , since for the
Weibull model ln�(t) = ln γ + α ln t is linear in ln t with slope α.

17.6.2. Some Parametric Models

Popular choices for parametric models include the exponential, Weibull, Gompertz,
log-normal, log-logistic, and the gamma. The hazard and survivor functions for these
models are in Table 17.5.

For the gamma, �(α) = ∫∞
0 e−t tα−1dt , is the gamma function and I (α, γ t) is the

incomplete gamma function, where I (a, x) = ∫ x
0 e−t tα−1dt/�(a), 0 < I (a, x) < 1.

The generalized Weibull model was suggested by Mudholkar, Srivastava, and Kollia
(1996). Through the introduction of additional shape parameter µ in the Weibull, it
overcomes an important restriction of that model and allows the hazard function to
have a more flexible shape. The Weibull model is obtained in the limit as µ→ 0.
From Table 17.5 note that

ln λ(t) = ln (γα) + (α − 1) ln t − µ ln S (t) .

Because ∂ ln S (t) /∂t < 0, the right-hand side of this equation is increasing in t if
µ > 0 and α > 1. If α ≤ 1 and µ < 0, then the hazard function is monotonically de-
creasing. If α > 1 and µ < 0, then the hazard function has two components, one of
which is a decreasing function and the other an increasing function in t . Hence the
two together can generate a unimodal or U-shaped hazard function. Therefore, the
generalized Weibull is a potentially flexible and useful functional form.

The Gompertz is similar to the Weibull as it has hazard function that can be mono-
tonically increasing (if α > 0) or monotonically decreasing if (α < 0), with the expo-
nential as a special case (α = 0). The Gompertz is a good model for mortality data and
is used more in biostatistics than econometrics.

The log-normal distribution has an inverted bathtub hazard that first increases with
t and then decreases with t . So too does the log-logistic, for α > 1. These models are
clearly more appropriate than exponential, Weibull, and Gompertz for duration data
with this property.

Other parametric models include models based on the Rayleigh and Makeham dis-
tributions, inverse-Gaussian piecewise continuous hazards model, and the generalized
gamma model (Lawless, 1982), which nests the gamma and Weibull models as spe-
cial cases. Many parametric models are presented in detail in Kalbfleisch and Prentice
(1980, chapter 3) and Lancaster (1990, chapter 3).

The distributions are generally two-parameter distributions. Regressors are intro-
duced by letting γ = exp(x′β) with α left as a constant, but for the log-normalµ = x′β
and σ 2 is left as a constant.
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The main issues in parametric modeling are the dependence on correct model spec-
ification for consistent parameter estimates and the wide range of parametric models
that are available. Most models can be classified as either a PH model (the first four
in Table 17.5) or an accelerated failure time model (the first two and the last three
models in Table 17.5). The Weibull model, a member of both classes, is widely used
in economics applications. Another widely used model, particularly for economics ap-
plications in which many observations are available, is the piecewise constant hazard
model, which is a special case of the PH model.

17.6.3. Maximum Likelihood Estimation

We now consider fully parametric analysis with independent or noninformative cen-
soring, with estimation by ML and by least squares. The continuous duration formu-
lation is used since parametric models are based on continuous distributions. The re-
gressors are assumed to be time-invariant, with time-varying regressors deferred to
Section 17.9.

Let T ∗ denote durations without censoring, with conditional density f (t |x,θ),
where θ is a q × 1 parameter vector and x are regressors that can vary across sub-
jects but do not vary over a spell for a given subject. Estimation is complicated by
the presence of censoring. Then the observed duration t is the length of a possibly
incomplete spell, and the data are augmented by a variable indicating the presence of
censoring, which is assumed to be noninformative.

From Section 17.4.2, the treatment is similar to that for the Tobit model. For uncen-
sored observations the contribution to the likelihood is f (t |x,θ). For right-censored
observations we know only that the duration exceeded t , so the contribution is

Pr[T > t] =
∞∫
t

f (u|x,θ)du

= 1 − F(t |x,θ) = S(t |x,θ),

where S(·) is the survivor function. The density for the i th observation can be written
as

f (ti |xi ,θ)δi S(ti |xi ,θ)1−δi ,

where δi is a right-censoring indicator with

δi =
{

1 (no censoring),
0 (right-censoring).

Taking logs and summing, we have that the MLE θ̂ maximizes the log-likelihood

ln L (θ) =
N∑

i=1
[δi ln f (ti |xi ,θ) + (1 − δi ) ln S(ti |xi ,θ)] , (17.17)

where independence over i has been assumed. The first term in the sum corresponds
to completed spells and the second term to right-censored spells. Since ln S(t) = �(t)
and ln f (t) = ln(λ(t)S(t)) = ln λ(t) + ln S(t), this log-likelihood can alternatively be

587



TRANSITION DATA: SURVIVAL ANALYSIS

written in terms of the hazard and integrated hazard functions:

ln L (θ) =
N∑

i=1

[δi ln λ(ti |xi ,θ) +�(ti |xi ,θ)] . (17.18)

This result is useful if the parametric model is defined by specifying the hazard rate
rather than the pdf.

The usual estimation theory applies. The MLE will be distributed as θ̂
a∼

N
[
θ, (−E[∂2 ln L/∂θ∂θ′])−1

]
if the density is correctly specified, see Section 5.7.3.

If the density is incorrectly specified, however, the MLE is inconsistent. The one no-
table exception is the exponential duration model in the absence of censoring, for
which consistency requires only that the conditional mean function be correctly spec-
ified; see Section 5.7.3. However, inconsistency under misspecification arises even for
the exponential model if censoring is introduced, and it arises for other parametric du-
ration models even without censoring. This lack of robustness is the major weakness
of the parametric approach, just as in the Tobit model case.

The ML approach can be adapted to permit other types of censoring. With left-
censoring, the spell is known to be of length at most t, and the likelihood contribution
is Pr[T ∗ < t] = ∫ t

0 f (s|x,θ)ds = F(t |x,θ).
With interval-censoring the data are known to lie in [ta, tb) and the likelihood

contribution is Pr[ta ≤ T ∗ < tb] = ∫ tb
ta f (s|x,θ)ds = S(ta|x,θ)−S(tb|x,θ).

Duration data in economics applications are often interval-censored. For example,
unemployment durations may be grouped into weeks and months, yet the parametric
model is a continuous distribution such as the Weibull. It is usually assumed that the
effect of interval-censoring is sufficiently minor so that the interval-censoring can be
ignored. For example, a person who is unemployed after two months but no longer
unemployed after three months may be treated as having an unemployment spell of
exactly three months, rather than a spell in the range of two to three months.

17.6.4. Components of Likelihood

Given a mix of data, with durations that may be complete, truncated, or censored in
one of the aforementioned ways, maximum likelihood of a parametrically specified
model requires one to set up the likelihood function. (Lancaster (1979) displays dif-
ferent likelihood expressions appropriate for three different data setups for unemploy-
ment durations.) Each type of observation contributes a term to the likelihood function,
and the full likelihood is formed by taking appropriate products of terms such as the
following (see Klein and Moeschberger, 1997, p. 66):

complete durations: f (t) ,
left-truncated at tL (t � tL) : f (t) /S (tL) ,
left-censored at tCL : 1 − S

(
tCL

)
,

right-censored at tCR : S
(
tCR

)
,

right-truncated at tCR (t ≤ tR) : f (tR) / [1 − S (tR)] ,
interval-censored at tCL , tCR : S

(
tCL

)− S
(
tCR

)
.
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17.6.5. Weibull MLE Example

The Weibull distribution is presented in detail in Section 17.6.1. The hazard function
is λ(t) = γαtα−1, where α > 0 and γ > 0.

Regressors can be introduced in many possible ways, but the usual specification
is to let γ = exp(x′β), which ensures γ > 0, while α does not vary with regressors.
(Some programs instead specify γ = exp(−x′β), which leads to a reversal in the signs
of the estimates of β.) Then

ln f (t |x,β, α) = ln
[
exp(x′β)αtα−1 exp(− exp(x′β)tα)

]
= x′β + lnα + (α − 1) ln t − exp(x′β)tα

and

ln S(t |x,β, α) = ln
[
exp(− exp(x′β)tα)

]
= − exp(x′β)tα.

The likelihood function (17.17) becomes

ln L =
∑

i

[
δi {x′

iβ + lnα + (α − 1) ln ti − exp(x′
iβ)tαi } − (1 − δi ) exp(x′

iβ)ti
α
]
.

(17.19)

The first-order conditions for β and α are

∂ ln L

∂β
=
∑

i

(
δi − exp(x′

iβ)tαi
)

xi = 0,

∂ ln L

∂α
=
∑

i

δi (1/α + ln ti ) − ln ti exp(x′
iβ)tαi = 0.

Consistency clearly requires strong assumptions. For example, even with no censoring
E[∂ ln L/∂β] = 0 requires E[T α|x] = exp(−x′β).

17.6.6. Use of Model Estimates

The usual way to interpret estimates of nonlinear regression models is to consider the
effect of regressors on the conditional mean. If γ = exp(x′β) then from Table 17.4
the completed Weibull durations have mean E[T ∗|x] = exp(−x′β/α)�(α−1 + 1) =
exp(−x′β/α)�(α−1)/α. One can calculate the expected length of completed spells at
various values of x. For example, the length of completed unemployment for a person
of given age, gender, and education level, say, can be predicted postestimation.

Parametric regression models also permit prediction of aspects of durations other
than just the sample mean. For example, interest may lie in what fraction of population
total time in completed unemployment spells is due to spells in excess of a given length
or is experienced by individuals in a given socioeconomic group. The econometrics of
duration models focuses on the role of covariates but it is especially concerned with the
shape of the hazard function, notably because some economic theories make explicit
predictions about the shape of the hazard function.
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Despite these possibilities, interpretation of estimates of parametric duration mod-
els often focuses on the Weibull hazard rate λ(t) = γαtα−1 and how it changes over
time and with changes in regressors. As noted in Section 17.3.2, this hazard rate is
increasing if α > 1 and is decreasing if α < 1 so that one-sided tests of α = 1 are
obviously of interest. For changes in regressors

dλ(t)/dx = exp(x′β)αtα−1β = λ(t)β,

so that changes in regressors have the effect of a multiplicative change in the hazard
function. A positive coefficient β j therefore implies an increase in the hazard rate as a
component of x increases. Thus if β j > 0 an increase in x j leads to an increase in the
hazard of failure and hence to a decrease in the expected duration.

17.6.7. Least-Squares Estimation

Estimation of fully parametric models can be by least squares rather than MLE, simi-
lar to the censored Tobit model. We present results, although least-squares regression
sees little use in practice because the methods still rely on correct specification of the
density and yet are less efficient than the MLE.

We begin with the exponential duration regression model. Then E[T |x] = 1/γ =
exp(−x′β), so that NLS regression of ti on exp(−x′

iβ) gives a consistent though in-
efficient estimator for β. Alternatively, the exponential duration model can be written
as ln t = x′β + u, where u is extreme value distributed (see Section 17.7.2). Then
E[ln T |x] = x′β − c, where c � 0.5722 is Euler’s constant. So β can be consistently
estimated by linear regression of ln ti on xi. With right-censoring we need to obtain
analytical censored moments, which is possible for the exponential.

Extensions can be made using the more general results of Kiefer (1988, p. 665). He
considers the PH model (17.21) with φ(x′β) = exp(x′β). Then

λ(t |x) = λ0(t, α) exp(x′β).

Then an expression for the baseline integrated hazard can be derived as follows:∫ t

0
λ(s|x)ds =

∫ t

0
λ0(s, α) exp

(
x′β
)

ds, (17.20)

�(t |x) = �0(t, α) exp
(
x′β
)
,

ln�(t |x) = ln�0(t, α) + x′β,

− ln�0(t, α) = x′β − ln�(t |x)

= x′β + u,

where the error term u = − ln�(t |x) is type I extreme value distributed.
This result holds regardless of the choice of baseline hazard. We interpret this result

in the following way. For a particular choice of baseline hazard λ0(t, α), a convenient
transformation of the dependent variable t is − ln�0(t, α), since it can be expressed
as a linear regression model with error term that is type 1 extreme value distributed.
For the exponential, already discussed, ln�0(t, α) = ln t whereas for the Weibull
ln�0(t, α) = α ln t . In censored samples we obtain E[ln�0(T, α)|T > t∗] using
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results for the censored type 1 extreme value, and then follow a Heckman two-step
procedure. These results can also be used as the basis for simple diagnostics; this topic
is discussed in the next chapter.

17.7. Some Important Duration Models

Perhaps the most widely used formulation used in regression analysis of durations is
the proportional hazard model. However, familiarity with some of its variants and with
the accelerated failure time (AFT) models, discussed in Section 17.7.2, is also helpful.

17.7.1. Proportional Hazards Model

In a proportional hazard model, as previously mentioned, the conditional hazard rate
λ(t |x) can be factored into separate functions of

λ(t |x) = λ0(t,α)φ(x,β), (17.21)

where λ0(t,α) is called the baseline hazard and is a function of t alone, and φ(x,β)
is a function of x alone. Usually φ(x,β) = exp(x′β). Polynomial baseline hazards
are popular in the literature.

All hazard functions λ(t |x) of form (17.21) are proportional to the baseline hazard,
with scale factor φ(x,β) that is not an explicit function of t . The PH model is widely
used as the parameters β can be consistently estimated without specification of the
functional form for λ0(·) (see Section 17.8).

The exponential, Weibull, and Gompertz regression models are all PH models, since
their hazards are, respectively, exp(x′β), exp(x′β)αtα−1, and exp(x′β) exp(αt).

Another example of the PH model, used especially in applications to unemploy-
ment durations, is the piecewise constant hazard model, which lets λ0(t,α) be a step
function with k segments so that

λ0(t,α) = eα j , c j−1 ≤ t < c j , j = 1, . . . , k, (17.22)

where c0 = 0, ck = ∞, the other breakpoints c1, . . . , ck−1 are specified, and the pa-
rameters α1, . . . , αk are to be estimated. These parameters are exponentiated to ensure
λ0(t,α) > 0. This model has more baseline parameters to estimate than models such
as the Weibull, which has only one baseline hazard parameter, but can still be practical
with a sufficiently large data set.

The identifiability of the PH model in the presence of unobserved heterogeneity is
discussed in Section 18.3.

17.7.2. Accelerated Failure Time Model

An AFT model arises by first modeling ln t rather than t . A regression model is speci-
fied for

ln t = x′β + u, (17.23)
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and different distributions for u lead to different AFT models. Since ln t can take values
on (−∞,∞) the distribution for u can be any continuous distribution on (−∞,∞).

The term accelerated failure time arises because t = exp(x′β)v, where v = eu , has
hazard rate λ(t |x) = λ0(v) exp(x′β), where the baseline hazard λ0(v) does not depend
on t . Substituting v = t exp(−x′β) yields the hazard

λ(t |x) = λ0(t exp(−x′β)) exp(x′β). (17.24)

This is an acceleration of the baseline hazard λ0(t) if exp(−x′β) > 1 and a deceleration
if exp(−x′β) < 1.

The log-normal model for t results if u ∼ N [0, σ 2]; the log-logistic model is ob-
tained by specifying u to be logistic distributed. The gamma model can also be ob-
tained as an AFT model, by letting u have density f (u) = exp(αu − eu)/�(α).

The Weibull and exponential models are unique in being of both PH form and AFT
form. The latter form is obtained by letting u be αw, where w is extreme value dis-
tributed with density f (w) = ew exp(−ew).

Additional duration models can be obtained by considering g(t) = x′β+ u, for
transformations other than g(t) = ln t . This is a member of the class of transformation
models, which includes, for example, the Box–Cox regression model.

17.7.3. Flexible Hazard Models

Some models begin with specification of the hazard rate, rather than the pdf. For exam-
ple, the hazard may be specified to be quadratic in t , such as λ(t) = x′β + a1t + a2t2.

This permits a U-shaped hazard function. The corresponding integrated hazard is
�(t) = (x′β)t + (a1/2)t2 + (a2/3)t3. Given λ(t) and �(t) we can directly form the
log-likelihood, using the earlier result.

The weaknesses of this approach are that negative values of λ and � may occur
and that the hazard rate may be defective as the corresponding pdf may not necessarily
integrate to unity.

17.8. Cox PH Model

Fully parametric models for single-spell duration data are relatively simple to estimate
in the presence of censoring but produce inconsistent parameter estimates if any part of
the parametric model is misspecified. One way of resolving this impasse is to choose
parametric functional forms that are flexible and hence provide some protection against
misspecification. Although this is a valid approach in principle, identification and es-
timation of such flexible functional forms is not always straightforward. An example
is the generalized gamma model, which many users find difficult to estimate.

Fortunately, there is a semiparametric method that requires less than complete
distributional specification. The method differs considerably from semiparametric
methods proposed for Tobit models, where similar issues of model robustness under
censoring arise, as it is based on a model for the hazard rate that has no meaningful
physical interpretation in the Tobit case. In addition, unlike the Tobit case, the method
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is viewed as empirically so successful that it has become the standard method for
survival data.

17.8.1. Proportional Hazards Model

The starting point is to propose a particular functional form for the hazard rate, the
proportional hazard model, introduced in Section 17.7.1, with conditional hazard rate
λ(t |x) factored into separate functions of

λ(t |x,β) = λ0(t)φ(x,β). (17.25)

As before, the function λ0(t) is called the baseline hazard and is a function of t alone.
The function φ(x,β) is a function of x alone, where initially we consider time-invariant
regressors x but later relax this assumption. A semiparametric model is considered,
with the functional form for λ0(t) unspecified and the functional form for φ(x,β) fully
specified.

The most common choice of φ(x,β) is the exponential form

φ(x,β) = exp(x′β). (17.26)

This permits coefficients to be easily interpretable, in addition to ensuring φ(x,β) > 0.
Suppose the j th regressor x j increases by one unit and other regressors are unchanged;
then

λ(t |xnew, β) = λ0(t) exp(x′β + β j ) (17.27)

= exp(β j )λ(t |x,β).

Thus the new hazard is exp(β j ) times the original hazard, and the change in the hazard
is 1 − exp(β j ) times the original hazard. If one instead uses calculus methods, the
change in the hazard is β j times the original hazard, since

∂λ(t |x,β)/∂x j = λ0(t) exp(x′β)β j = β jλ(t |x,β). (17.28)

This is consistent with the noncalculus result as exp(β j ) � 1 + β j . Statistical pack-
ages often report estimates and associated confidence intervals for both β j and
exp(β j ).

For more general forms of φ(x,β), changes in regressors can again be interpreted
as having a multiplicative effect on the original hazard, since

∂λ(t |x,β)/∂x = λ0(t)∂φ(x,β)/∂x j (17.29)

= λ(t |x,β)× [∂φ(x,β)/∂x j
]
/φ(x,β).

This requires knowledge of β but not of the baseline hazard λ0(t).
An important issue is the identification of the PH model. This is discussed in the

next chapter in a more general setting that allows for the presence of unobserved het-
erogeneity in the model.
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17.8.2. Partial Likelihood Estimation

Cox (1972, 1975) proposed a method to estimate β in the PH model that does not
require simultaneous estimation of the baseline hazard function λ0(t). If desired an
estimate of the baseline hazard can be recovered after estimation of β. The results
presented here accommodate independent censoring and tied data.

The setup resembles that in Section 17.5, with failure times ordered and catego-
rization of observations into those that die or are at risk at each failure time. Let
t1 < t2 < · · · < t j < · · · < tk denote the observed discrete failure times of the spells
in a sample of size N , N ≥ k. The risk set R(t j ) is defined to be the set of individuals
who are at risk of failing just before the j th ordered failure, D(t j ) is the set of subjects
that die at time t j , and d j denotes the number that die at time t j . To summarize, we
have

R(t j ) = {l : tl ≥ t j } = set of spells at risk at t j ,

D(t j ) = {l : tl = t j } = set of spells completed at t j ,

d j =∑l 1(tl = t j ) = number of spells completed at t j .

(17.30)

The risk set at time t j includes all spells that are not yet completed or not yet censored.
Tied data are possible, in which case d j > 1.

Now consider the probability of a particular at-risk spell ending at time t j . The
probability that spell j is the actual spell that ends equals the conditional probability
of failure for spell j divided by the conditional probability that a spell of any individual
in the risk set R(t j ) fails. This latter probability is the sum of the conditional probability
of failure for each individual in R(t j ). Then

Pr
[
Tj = t j |R(t j )

] = Pr
[
Tj = t j |Tj ≥ t j

]∑
l∈R(t j ) Pr

[
Tl = tl |Tl ≥ t j

]
= λ j (t j |x j ,β)∑

l∈R(t j ) λl(t j |xl ,β)

= φ(x j ,β)∑
l∈R(t j ) φ(xl ,β)

,

where in the last line the baseline hazard factor λ0(t j ) has dropped out, as a conse-
quence of the PH assumption. (As a result the intercept in this model is not identified.)
The preceding result that the baseline hazard can be eliminated provides a basis for es-
timating β. However, we must control for tied durations that are likely to occur when
durations are grouped.

Ties are more likely when durations are grouped. If the data include ties (i.e., there is
more than one failure at a given time), an adjustment is needed. For example, suppose
there are two tied values at time t j , for individuals j1 and j2 with regressors x j1 and
x j2. If j1 fails before j2 then the probability is

φ(x j1,β)/
∑

l∈R(t j )
φ(xl ,β) + φ(x j2,β)/

∑
l∈R1(t j )

φ(xl ,β),

where R1(t j ) equals R(t j ) with subject j1 excluded. A similar term arises if j2 fails
before j1, and the likelihood contribution is the sum of these two possibilities. The
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exact likelihood becomes quite complicated with many tied values. A standard ap-
proximation, due to Breslow and Peto, see Cox and Oakes (1984), is to let

Pr
[
Tj = t j | j ∈ R(t j )

] �
∏

m∈D(t j ) φ(xm,β)[∑
l∈R(t j ) φ(xl ,β)

]d j
, (17.31)

where D(t j ) denotes the set of subjects that die at time t j and d j denotes the number
that die at time t j . This approximation works well if the number of failures at time t j

is small relative to the number at risk.
Cox defined the partial likelihood function to be the joint product of Pr[Tj =

t j | j ∈ R(t j )] over the k ordered failure times. Then

Lp (β) =
k∏

j=1

∏
m∈D(t j ) φ(xm,β)[∑
l∈R(t j ) φ(xl ,β)

]d j
. (17.32)

Cox proposed estimation of β by minimizing the log partial likelihood function

ln Lp =
k∑

j=1

[ ∑
m∈D(t j )

lnφ(xm,β) − d j ln

( ∑
l∈R(t j )

φ(xl ,β)

)]
. (17.33)

Censored spells appear only in the second term of ln Lp because they do not con-
tribute to observed deaths but, until they are censored, affect the size of the risk set.
Equation (17.33) can be rewritten as

ln Lp (β) =
N∑

i=1
δi

[
lnφ(xi ,β) − ln

( ∑
l∈R(ti )

φ(xl ,β)

)]
, (17.34)

where the indicator variables δi = 1 for uncensored observation and equal zero other-
wise.

For the usual specification of φ(x,β) = exp (x′β), so that lnφ(x,β) = x′β, the re-
sulting first-order conditions become

∂ ln Lp (β)

∂β
=

N∑
i=1

δi
[
xi − x∗

i (β)
] = 0,

where x∗
i (β) =∑l∈R(ti ) xl exp(x′

lβ)/
∑

l∈R(ti ) exp(x′
lβ) is a weighted average of the re-

gressors xl for subjects at risk at failure time ti .
The partial likelihood is a limited information likelihood, as the baseline hazard

λ0(t) has dropped out, but is neither a conditional likelihood nor a marginal likelihood.
Whether Lp (β) is a valid likelihood function has given rise to much discussion in the
statistics literature. It can be shown (Andersen et al., 1993) that even though ln Lp is
not the full likelihood function, the estimator of β that maximizes ln Lp is consistent.
See also Kalbfleisch and Prentice (2002, pp. 99–101) and Lancaster (1990, chapter 9).

The Chapter 5 results on extremum estimation apply, with the simplification that
A(β) = −B(β) similar to the ML case, so that

β̂
a∼ N

[
β,

(
−E

[
∂2 ln Lp (β)

∂β∂β′

])−1
]
. (17.35)
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The estimator is inefficient, though comparisons of the partial likelihood estimator
with the MLE for fully parametric PH models such as the Weibull reveal relatively
small efficiency loss.

17.8.3. Survivor Function for the Cox PH Model

Many studies stop at estimation of β, being content to measure the impact of changes
in regressors on the baseline hazard using (17.28) or (17.29). Other studies are addi-
tionally interested in the shape of the baseline hazard function. For the PH model it is
possible to obtain a nonparametric estimate of the baseline hazard or survivor function,
once β is obtained by maximizing the partial likelihood. The estimates are analogous
to the Kaplan–Meier estimator of Section 17.5.1.

We obtain the PH hazard function’s associated survivor function

S(t |x,β) = S0(t)φ(x,β),

using S(t |x,β) = exp
[− ∫ t

0 λ0(s)φ(x,β)ds
]

and defining S0(t) = exp
[− ∫ t

0 λ0

(s)ds
]
.

Now assume a discrete time formulation with baseline hazard rate 1 − α j at discrete
failure time t j , j = 1, . . . , k. Some considerable algebra given in the next section
yields estimate α̂ j that is the solution to

k∑
l∈D(t j )

φ(xl , β̂)

1 − α̂φ(xl ,β̂)
j

= ∑
m∈R(t j )

φ(xm, β̂), j = 1, . . . , k, (17.36)

where β̂ is the partial likelihood estimator of β, D(t j ) denotes the subjects that die at
time t j , and R(t j ) denotes the subjects at risk at time t j . From the discussion of dis-
crete time hazard in Section 17.3.3, the baseline survivor function S0(t) =∏ j |t j ≤t α j ,
the cumulative product of the instantaneous conditional survival probabilities. The es-
timated baseline survival function is then

Ŝ0(t) = ∏
j |t j ≤t

α̂ j . (17.37)

If there are no regressors then Ŝ0(t) reduces to the Kaplan–Meier estimator – nor-
malize φ(xl,β) = 1 and the expression yields hazard rate 1 − α̂ j = d j/r j . If there
are regressors but no ties then the expression yields baseline hazard rate 1 − α̂ j =
φ(x j , β̂)/

∑
m∈R(t j ) φ(x j , β̂).

The survivor function for individuals with regressors x = x∗ can be estimated using

Ŝ(t |x∗,β) = Ŝ0(t)φ(x∗,β̂).

Linear transformations of regressors do not change the estimates of β, but they do
change the baseline hazard function. For example,

λ(t |x,β) = λ0(t) exp(x′β)

= λ0(t) exp(x̄′β) exp((x − x̄)′β)

= λ∗
0(t) exp((x − x̄)′β),
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where the new baseline hazard is λ∗
0(t exp((x − x̄)′β). Hence subtracting the sample

mean from each regressor will change the baseline hazard, and care is needed in inter-
pretation of the baseline hazard or survivor function.

Also, although the estimated baseline hazard is useful for computing and comparing
hazard rates for specific groups of individuals, it may have a very choppy appearance,
so some smoothing may be applied for ease of interpretation.

17.8.4. Derivation for the Survivor Function

We obtain the estimating equations for α j given in (17.36), following Kalbfleisch and
Prentice (2002, pp. 114–118).

A subject with duration time t j has likelihood contribution equal to the probability
of survival time t > t j−1 less the probability of survival time t > t j . This is

S(t j |x,β) − S(t j+1|x,β) = S0(t j )
φ(x,β) − S0(t j+1)φ(x,β)

= (α−1
j S0(t j+1))φ(x,β) − S0(t j+1)φ(x,β)

= (α−φ(x,β)
j − 1)S0(t j+1)φ(x,β)

using S0(t j+1) =∏ j
l=1 αl = α j S0(t j ).

For those subjects that are censored at time t j the likelihood contribution is the prob-
ability of survival t > t j , or S0(t j+1)φ(x,β). So subjects that either die or are censored in
[t j , t j−1) contribute probability S0(t j+1)φ(x,β) =∏ j

l=1 α
φ(x,β)
l with an additional mul-

tiplier
(
α

−φ(x,β)
j − 1

)
for subjects that die. Then over all failure times the likelihood

is

L(α,β) =
k∏

j=1

[ ∏
l∈D(t j )

(α−φ(xl ,β)
j − 1)

∏
m∈R(t j )

α
−φ(xm ,β)
j

]
.

The log-likelihood is

ln L(α,β) =
k∑

j=1

[ ∑
l∈D(t j )

ln(α−φ(xl ,β)
j − 1) + ∑

m∈R(t j )
−φ(xm,β) lnα j

]
.

Then ∂ ln L(α, β̂)/∂α j = 0 can be re-expressed as (17.36).

17.9. Time-Varying Regressors

The preceding results have been restricted to models where regressors are variables
such as gender that vary across individuals but for given individual do not vary over
time. This is standard in other standard cross-section models such as logit and To-
bit models. For survival data, however, individuals may be observed at several stages
during a spell and relevant regressors may take different values over the spell. For
example, in a medical survival study dosage levels of a medication may vary over
time for a given individual. During an unemployment spell the rate of unemployment
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benefits may change, perhaps in a discrete manner. During a job search the marital
status of a person may change.

Time-varying covariates pose two kinds of problems. First, it is clearly a misspec-
ification to treat a time-varying covariate as a fixed variable. The entire history of
the covariate over the spell may be relevant, a consideration that may require us to
incorporate lagged values of some regressors as determinants of the hazard rate. Sec-
ond, a time-varying covariate may exhibit feedback and hence may not be strictly
exogenous as is often assumed in a duration model. For example, the duration of an
unemployment spell may depend on the job search strategy of an individual, but the
latter may change as the duration of unemployment lengthens. A second example is
that the dosage level of the treatment may be varied in response to the deteriorating
or improving condition of the patient. Deterministic time variation is easier to han-
dle and hence standard analysis considers only the first of these issues, requiring the
assumption that the covariates are weakly exogenous; that is, whatever the process,
stochastic or deterministic, that underlies the time variation, we do not need to take
account of the parameters of that process in estimating the hazard model under con-
sideration. Some authors (e.g., Kalbfleish and Prentice, 2002, pp. 196–200) refer to
such time variation as external. Endogenous time-varying covariates are then called
internal.

One rather simple solution, especially if the software cannot handle time-varying
covariates, is to replace the time-varying covariate by its average value during the
spell. Good software, however, allows greater flexibility.

Consider an individual spell of (say) unemployment that lasts from the origin to
time T , at which time a transition to employment is observed. Let 0 < t1 < t2 < t3 <
T, where t1, t2, and t3 are intermediate points within the spell. Suppose that there are
two covariates x1 and x2(t) that are, respectively, time-invariant and time-varying. For
simplicity assume that x1 is binary and x2 takes the values x2(t1), x2(t2), and x3(t3)
in a step fashion in the intervals [0, t1), [t1, t2), and [t2, T ), respectively. Also assume
that the time-varying regressor is exogenous and/or that the pattern of time variation
is deterministic. Then for this particular spell the data can be written as a three-line
record, rather than a one line record, as follows:

Observation Duration x1 x2(t) Censoring Indicator
1 t1 1 x2(t1) 0
1 t2 1 x2(t2) 0
1 T 1 x2(T ) 1

The interpretation of this information is that we can split the total observed duration
into three segments. During the first and the second segment the covariate values are
(1, x2(t1)) and (1, x2(t2)), respectively, and no transition is observed (hence the censor-
ing indicator is 0, and then in the third segment the covariate values are (1, x2(T )) and
a transition is observed. This is akin to having three observations, in two of which the
duration is censored and in the third duration is complete.
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Suppose now that both the current and one lagged value of x2(t) are thought to
be appropriate covariates. That is, the hazard rate at a point in time may depend on
changes in a covariate earlier in the spell. Then the data array can be written as follows:

Observation Duration x1 x2(t) x2(t − 1) Censoring Indicator
1 t1 1 x2(t1) 0 0
1 t2 1 x2(t2) x2(t1) 0
1 T 1 x2(T ) x2(t2) 1

Here we have assumed that the value of the x2(t) prior to the commencement of the
spell was zero. Notice that in both of these examples, the covariate x2 (t) varies at
discrete points in time.

Although one could have multiline entries in a data set, in a large data set this
is potentially tedious and confusing if the software ends up treating the entries as
different observations. Fortunately, computer software can usually allow the user to
identify a time-varying covariate as a part of the definition of the regression model.
One can accommodate step functions or continuous functions in terms of the elapsed
duration of the spell.

17.9.1. Extended Cox Model

The fixed regressor analysis of the Cox model in Section 17.8 is readily extended to
time-varying regressors.

In general the hazard function depends on the complete time path of regressors x(t),
so that

λ(t |x(t)) = lim
�t→0

Pr[t ≤ T < t +�t | x(t),T ≥ t]

�t
.

We consider the PH form

λ(t |x(t)) = λ0(t,α)φ(x(t),β),

where the restriction is made that only the current value x(t) of the covariate matters,
rather than the entire history of x(t).

It is clear from Section 17.8.2 on the Cox partial likelihood approach that what
matters at each failure time t j is the value of regressors x(t j ) for those observations in
the risk set R(t j ). Thus for the i th subject xi is replaced by xi (t j ). The partial likelihood
has similar changes, and

ln Lp =
k∑

j=1

 ∑
m∈D(t j )

lnφ(xm(t j ),β) − d j ln

 ∑
l∈R(t j )

φ(xl(t j ),β)

 .
Note that the form of the data is more complicated now, as there may be multiple

observations for each subject. For example, suppose time is in discrete integer values,
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there is only one regressor, and observation one has completed duration 25 and regres-
sor x1, which takes value 50 in [0, 5], 100 in [6, 15], and then 200 in [16, 25]. Further,
suppose the first five ordered failure times are 3, 8, 13, 18, and 25. Then x1(t1) = 50,
x1(t2) = 100, x1(t3) = 100, x1(t4) = 200, and x1(t5) = 200.

17.10. Discrete-Time Proportional Hazards

Grouped duration models are more appropriate when failure times are observed or
recorded at aggregated time intervals like a week or a month.

A simple method is to form a panel and estimate a stacked logit or probit model of
the probability of individual failure in each period, with separate intercept for period.
This is presented in Section 17.10.3. However, first we present the discrete-time variant
of a continuous-time PH model, considered by several authors including Kalbfleisch
and Prentice (1980), Fahrmeir and Tutz (1994), Kiefer (1988), and Meyer (1990). Our
exposition follows Blake, Lunde, and Timmermann (1999).

17.10.1. Discrete-Time Proportional Hazards

For grouped data, with grouping points ta , a = 1, . . . , A, the discrete-time hazard func-
tion is defined by

λd(ta|x) = Pr [ta−1 ≤ T < ta|T ≥ ta−1, x(ta−1)] , a = 1, . . . , A.

Time-varying regressors are permitted. The associated discrete-time survivor function
is

Sd(ta|x) = Pr [T ≥ ta−1 |x] =
a−1∏
s=1

(
1 − λd(ts |x(ts))

)
.

We first obtain the general relationship between the discrete- and continuous-time
hazards. The discrete-time hazard is the probability of failure in [ta−1, ta) divided by
the probability of surviving to at least time ta−1, so can be rewritten as

λd(ta|x) = S (ta−1|x) − S (ta|x)

S (ta−1|x)
, (17.38)

where S (t |x) is the survivor function. In the continuous case S(t |x) =
exp(− ∫ t

0 λ(s)ds), and after some algebra (17.38) becomes

λd(ta|x) = 1 − exp(−
∫ ta

ta−1

λ(s)ds). (17.39)

Now specialize to the discrete-time hazard associated with the continuous PH
model

λ(t) = λ0(t) exp
(
x(ta−1)′β

)
,

for t in [ta−1, ta). Note that the regressors are constant within the interval but can vary
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across intervals, and λ0(t) can vary within the interval. Then (17.39) becomes

λd(ta|x) = 1 − exp(− exp
(
x(ta−1)′β

)× ∫ ta

ta−1

λ0(s)ds) (17.40)

= 1 − exp
(−λ0a exp

(
x(ta−1)′β

))
= 1 − exp

(− exp
(
ln λ0a + x(ta−1)′β

))
,

where λ0a = ∫ ta
ta−1
λ0(s)ds. The associated discrete-time survivor function is

Sd(ta|x) =
a−1∏
s=1

exp
(− exp(ln λ0s + x(ts−1)′β)

)
. (17.41)

The density for the i th subject is the product of the survivor function in each period
that the subject survives times the hazard at the time of failure. It follows from (17.40)
and (17.41) that the likelihood is

L(β, λ01, . . . , λ0A) =
N∏

i=1

[
ai −1∏
s=1

exp
(− exp

(
ln λ0s + xi (ts−1)′β

))]
(17.42)

× (1 − exp
(− exp

(
ln λ0ai + xi (ta−1)′β

)))
,

where censoring is ignored for simplicity and failure is assumed to occur at time tai for
the i th observation. At least one failure is assumed to occur in each interval [ta−1, ta).

The MLE maximizes (17.42) with respect to β and λ01, . . . , λ0A. In a special case
partial likelihood is asymptotically equivalent to the MLE, though in general they dif-
fer. More parsimonious models place some structure on the λ01, . . . , λ0A, such as a
polynomial in time. Even more structure is placed by a fully parametric model such as
the Weibull, which sets λ0s = ∫ ta

ta−1
αsα−1ds.

17.10.2. Han and Hausman Approach

Han and Hausman (1990) suggested a flexible approach to recovering the baseline
hazard that is relatively easy to implement and that predates the work of Blake et al.
(1999) but has similarities with the work of Meyer (1990) and Sueyoshi (1992). It
allows for considerable flexibility in the specification of the baseline hazard, λd

0 (t) ,
while maintaining a parametric form (e.g., exp(x′β)) for the function of covariates. It
also has the merit of explicitly dealing with discrete duration data and of providing
a framework that can more easily accommodate features of discrete data such as tied
observations and unobserved heterogeneity. Tied observations can be a major problem
with discrete data; for example, with unemployment durations the termination of many
unemployment spells is likely to coincide with the end of the period of unemployment
benefits (usually 26 weeks in the United States).

The starting point is the hazard rate for observation i, λi (τ ) , denoting the condi-
tional probability that a spell terminates in the interval (τ , τ +�) written in the PH
form:

λi (τ ) = λ0 (τ ) exp
(−x′

iβ
)
,
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where λ0 (τ ) denotes the baseline hazard. Then (as shown in (17.20)) taking logs after
integration and then rearranging yields

�0 (t) − x′
iβ = εi , (17.43)

where �0 (t) = ln
∫ t

0 λ0 (τ ) dτ denotes the log of the integrated baseline hazard, and
εi = ln

∫ t
0 λi (τ ) dτ . Then the probability is given by

Pr
[
failure in period t

] =
∫ �0(t)−x′

iβ

�0(t−1)−x′
iβ

f (ε) dε.

Let yit = 1 if the i th person experiences failure in period t , and yit = 0 otherwise.
Then the joint likelihood of N observations is given by

ln L (β,�0 (1) , . . . , �0(T )) =
N∑

i=1

T∑
t=1

yit ln

[∫ �0(t)−x′
iβ

�0(t−1)−x′
iβ

f (ε) dε

]
, (17.44)

and the baseline hazard parameters (�0 (1) , . . . , �0 (T )) are estimated along with β
in a flexible manner (i.e., without imposing a specific functional form).

The integral in the log-likelihood is of course the difference in the cdf [�0(t − 1) −
x′

iβ,�0(t) − x′
iβ]. The precise form of this expression depends on the functional form

of the cdf. If the random εi are assumed to be standard normal distributed, the log-
likelihood takes the ordered probit form; under the assumption of extreme value distri-
bution the log-likelihood takes the ordered logit form. To be specific, under normality
the integral in the i th term is of the form

Pr[�0(t) < x′
iβ + εi ≤ �0(t + 1)] = �(�0(t + 1) − x′

iβ) −�(�0(t) − x′
iβ).

In contrast to the partial likelihood approach, which treats the baseline hazard as
a nuisance function and eliminates it, the approach of Han and Hausman (1990) es-
timates all the unknown parameters simultaneously at a modest computational cost.
Their Monte Carlo results show that the method is flexible and can well approximate
arbitrary hazard function, eliminating the need for strong functional form assumptions.

17.10.3. Discrete-Time Binary Choice

An alternative approach for discrete duration data is to use a binary choice model for
transitions, since in each discrete time interval two outcomes are possible – the spell
either ends or it does not.

A general formulation of a discrete-time transition model is

Pr [ta−1 ≤ T < ta|T ≥ ta−1|x] = F
(
λa + x′(ta−1)β

)
, a = 1, . . . , A. (17.45)

This specification restricts the coefficients of regressors to be constant over time,
whereas the intercept λa , a = 1, . . . , A, can vary over time. The obvious choices of
the function F are the standard normal cdf or the logistic cdf. Then the parameters
λa and β can be estimated by a stacked logit or stacked probit model in which a sep-
arate intercept is permitted for each duration interval. This method is very appealing
because of its simplicity.
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The resulting likelihood function is

L(β, λ1, . . . , λA) =
N∏

i=1

[
ai −1∏
s=1

(1 − F
(
λs + x′

i (ts−1)β
)
)

]
× F

(
λai + x′(tai −1)β

)
.

This is similar to (17.42), the log-likelihood for discrete time PH model, aside
from the choice of function F . The hazard (17.40) is the extreme value cdf evalu-
ated at ln λ0a + x(ta−1)′β, so (17.40) yields the complementary log-log model binary
choice model (see Table 14.3) rather than the more commonly used logit or probit
model.

17.11. Duration Example: Unemployment Duration

The following empirical application uses the data of McCall (1996), generously pro-
vided to us by the author Brian McCall. The data set is derived from the January
Current Population Survey’s Displaced Workers Supplements (DWS) for the years
1986, 1988, 1990, and 1992. We refer to the duration measure (spell) in this exam-
ple as unemployment duration, though more accurately it represents joblessness du-
ration since DWS does not provide information as to whether a person is looking for
job or not.

For this application, information on the part-time or full-time status of the first
postdisplacement job is required. To determine whether the first postdisplacement job
was part-time or full-time, the following method is adopted. The first postdisplace-
ment job is designated as part-time if a subject was still in that job at the time of the
survey and if the subject was working less than 35 hours per week in that job in the
previous week.

Table 17.6 defines the key economic covariates used to explain joblessness duration.
The number of covariates in the models estimated is quite large, but in the interest of
brevity only a subset is listed. McCall (1996) provides a fuller description.

Table 17.6. Unemployment Duration: Description of Variables

Variable Name Variable Label Mean

spell periods jobless: two-week interval 6.248
CENSOR1 1 if reemployed at full-time job 0.321
CENSOR2 1 if reemployed at part-time job 0.102
CENSOR3 1 if reemployed but left job: pt–ft status unknown 0.172
CENSOR4 1 if still jobless 0.375
UI 1 if filed UI claim 0.553
RR eligible replacement rate 0.454
DR eligible disregard rate 0.109
TENURE tenure years in lost job 4.114
LOGWAGE log weekly earnings 5.693
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Figure 17.3: Unemployment duration: Kaplan-Meier estimate of survival function. U.S. data
from 1986–92 on 3343 spells, some incomplete.

Unemployment durations have been measured in two-week intervals. Four binary
variables (CENSOR1, CENSOR2, CENSOR3, and CENSOR4) have been introduced
to indicate the status of the first postdisplacement job. For the analysis in this chapter
we use CENSOR1. Thus a spell is complete if person is re-employed at a full-time job.
Another indicator variable UI is used to denote whether the subject filed an unemploy-
ment claim or not. Replacement rate, which is the weekly benefit amount divided by
the amount of weekly earnings in the lost job, is represented by the variable RR. “Dis-
regard” is defined to be the threshold amount up to which recipients of unemployment
insurance who accept part-time work can earn without any reduction in unemployment
benefits. Disregard rate is the disregard divided by weekly earnings in the lost job. It
is described by the variable DR in this example. As we can see, all the other variables
are self-explanatory.

We begin with a descriptive analysis of the duration data. The simplest first step is to
plot the Kaplan–Meier survival curve, which is shown in Figure 17.3 by the dark line.
The lighter lines around the estimated Kaplan–Meier survival curve represent 95%
confidence intervals developed in Section 17.5.2. As expected, the estimated survival
curve declines rapidly at first and then slowly.

As we see from Table 17.7, after the first period the survival probability is 0.91, in-
dicating that roughly 9% of the sampled individuals have terminated their spell within
the first two weeks of beginning joblessness spell.

In Figure 17.4, we plot the survival function by UI, that is, by whether the subject
claims unemployment insurance or not. Again, as one can expect, it shows that those
who claim unemployment insurance are more likely to remain unemployed than those
who do not claim unemployment insurance.

The Nelson–Aalen cumulative hazard in Figure 17.5 shows little variation in the
hazard rate, which translates into an approximately linear hazard. If the crude hazard
rate varies a lot, then the cumulative hazard would appear nonlinear.
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Table 17.7. Unemployment Duration: Kaplan–Meier
Survival and Nelsen–Aalen Cumulated Hazard
Functions

Time Survivor Function Cumulative Hazard

1 0.9121 0.0879
2 0.8541 0.1514
3 0.8103 0.2027
4 0.7864 0.2322
5 0.7376 0.2943
...

...
...

12 0.5974 0.5005
13 0.5680 0.5496
14 0.5270 0.6219
...

...
...

26 0.3651 0.9809
27 0.3098 1.1325
28 0.3098 1.1325

The cumulated hazard functions by UI recipiency, shown in Figure 17.6, exhibit
the expected pattern: The hazard increases at a higher rate for those who do not claim
unemployment insurance than it does for those who do.

Next we consider four parametric regression models using the covariates UI, RR,
DR, and LOGWAGE and the interaction terms RRUI and DRUI. The four models are
exponential, Weibull, Gompertz, and Cox PH. Writing the hazard function as

λ(t |x) = λ0(t, α)φ(x,β) = λ0(t, α) exp(x′β),
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Figure 17.4: Unemployment duration: estimated survival functions by whether or not sub-
jects receive unemployment insurance. Same data as Figure 17.3.
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Figure 17.5: Unemployment duration: Nelson-Aalen estimate of cumulative hazard function.
Same data as Figure 17.3.

recall that exponential hazard assumes λ0(t, α) = constant = exp(a) for some con-
stant a, the Weibull model assumes λ0(t, α) = exp(a)αtα−1 (i.e., monotonic hazards),
Gompertz assumes λ0(t, α) = exp(a) exp(γ t), and the Cox PH model has no inter-
cept and makes no assumption about the shape of the baseline hazard. Recall also that
the formulation here is of the proportional hazard type and can also be interpreted
either as a parametric regression model or as an AFT model. In this parameteriza-
tion of the likelihood function, the parameters (α,β) are estimated. These are given
in Table 17.8 with the associated t-statistics. We also list the negative of the log-
likelihood, but recall that for the Cox PH model it is the partial log-likelihood. Both
exponential and Gompertz models fit equally well. The Weibull model provides the
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Figure 17.6: Unemployment duration: estimated cumulative hazard functions by whether
or not receive unemployment insurance. Same data as Figure 17.3.
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Table 17.8. Unemployment Duration: Estimated Parameters from Four Parametric
Models

Exponential Weibull Gompertz Cox PH

Var coeff. t coeff. t coeff. t coeff. t

RR 0.472 0.79 0.448 0.70 0.472 0.78 0.522 0.91
DR −0.576 −0.75 −0.427 −0.53 −0.563 −0.74 −0.753 −1.04
UI −1.425 −5.71 −1.496 −5.67 −1.428 −5.69 −1.317 −5.55
RRUI 0.966 0.92 1.105 1.57 0.969 1.58 0.882 1.52
DRUI −0.199 −0.20 −0.299 −0.28 −0.211 −0.21 −0.095 −0.10
LOGWAGE 0.35 3.03 0.37 2.99 0.35 3.03 0.34 3.03
CONS −4.079 −4.65 −4.358 −4.74 −4.097 −4.65 – –
α 1.129
−ln L 2700.7 2687.6 2700.6 –

best fit. As we see from Table 17.8, the fit of the Weibull model exhibits positive state
dependence (α = 1.129 > 1); that is, the probability of the spell terminating increases
as the spell lengthens.

For all the models considered, only UI and LOGWAGE are significant whereas
other covariates are not. The estimated coefficient of UI is negative for all models,
implying that the joblessness spell of those who claim unemployment insurance ter-
minates slower. There is little variation of the estimates of UI across different models:
This estimate in Weibull and Gompertz models is approximately 5% and 0.2% higher
in absolute value than that in the exponential model, whereas it is 8% lower in the Cox
PH model. Similarly, the estimate of the coefficient of LOGWAGE is positive for all
the models and exhibits very little variation across models.

Whereas in the econometric literature it is common to report the estimate of (α,β)
coefficients of the hazard function in AFT metric, in the biostatistics literature a differ-
ent parameterization is often used based on the PH metric. Note that the hazard ratio
λ(t |x)/λ0(t, α) = φ(x,β) = exp(x′β). For a categorical 0/1 scalar variable x , the im-
pact of a change from 0 to 1 is given by exp(β) − 1, which measures impact relative to
the baseline hazard. Numerous packages give the users an option to estimate the model
in either or both metrics. The relative merits of the two parameterization are discussed
in Cleves, Gould, and Guitirrez (2002).

Consider the exponential specification in Table 17.9 where the coefficients are ex-
ponentials of the corresponding ones Table 17.8. Here UI has hazard ratio 0.241. This
means that belonging to the category of subjects that claims unemployment insurance
decreases the hazard by nearly 76% over the baseline hazard. Similarly, for Weibull,
Gompertz, and Cox PH models, the hazard decreases by about 78%, 76%, and 73%,
respectively.

For this example, we have taken into account right-censoring and have ignored the
role of unobserved heterogeneity. Hence the results obtained from the three models are
qualitatively similar. However, the relatively few included variables with significant
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Table 17.9. Unemployment Duration: Estimated Hazard Ratios from Four Parametric
Models

Exponential Weibull Gompertz Cox PH

Var β t β t β t β t

RR 1.603 0.63 1.565 0.57 1.604 0.62 1.686 0.71
DR 0.562 −1.02 0.653 −0.66 0.570 −0.99 0.471 −1.55
UI 0.241 −12.65 0.224 −13.12 0.240 −12.65 0.268 −11.53
RRUI 2.626 1.01 2.760 0.99 2.635 1.01 2.416 1.01
DRUI 0.819 −0.22 0.742 −0.33 0.810 −0.23 0.909 −0.10
LOGWAGE 1.420 2.56 1.441 0.08 1.42 2.55 1.40 2.57
α 1.129
−ln L 2700.7 2687.6 2700.6 –

coefficients probably indicates that large unexplained variation (perhaps caused by
unobserved heterogeneity) may be a serious problem. This issue is considered further
in the next chapter.

17.12. Practical Considerations

Most computer packages offer a good selection of computer programs for parametric
survival analysis. Standard nonparametric Kaplan–Meier survival function estimates,
with or without confidence intervals, with both numeric and graphic output are widely
available. In some cases survival analysis modules are sufficiently detailed to warrant
a special manual. For example, Allison (1995) offers a practical guide to survival anal-
ysis in the SAS system; Cleves et al. (2002) provide a tutorial style guide to survival
analysis in STATA. Not only do these guides explain the mechanics of implementing
particular program commands, but in many cases they provide insightful expositions of
the subtleties arising from specific features of data, alternative parameterizations, and
interpretation of results. A convenient way to learn about duration data analysis is by
using the examples in econometrics or statistical packages such as LIMDEP, STATA,
SAS, or S-Plus. The program manuals are themselves excellent sources of information
for standard models.

17.13. Bibliographic Notes

17.3–17.7 Kalbfleisch and Prentice (1980, 2002) is the classic statistical reference for survival
analysis, with emphasis on the Cox model. Other useful sources include Lawless
(1982) and Cox and Oakes (1984) and the considerable number of statistical texts
on survival analysis that now exist. For a Bayesian treatment see Ibrahim, Chen,
and Sinha (2001). Recent statistical work has increasingly emphasized the counting
process approach, detailed in Fleming and Harrington (1991) and Andersen et al.
(1993).
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These references are very challenging, especially the latter. Lancaster (1990)
provides a thorough treatment of survival analysis, though the presentation is quite
technical and the book is oriented more to the general topic of transitions and mate-
rial presented in the subsequent two chapters. For social scientists, Allison’s (1984)
excellent exposition, like that of Lancaster, covers much more than single-spell
survival analysis. For practitioners in microeconomics the survey article by Kiefer
(1988) is a good start.

17.8 Lancaster (1990) provides a thorough discussion of the partial likelihood approach.
17.10 Meyer (1990), Han and Hausman (1990), and Blake et al., (1999) are helpful ref-

erences on discrete hazard models. These articles generally allow for unobserved
heterogeneity, a topic discussed in the next chapter.

17.11 Economics applications are cited in Kiefer (1988) and in Greene (2003). Good ex-
amples of parametric reduced-form type duration analysis are given by Lancaster
(1979), Narendranathan, Nickell, and Stern (1985), Jaggia (1991c), and Gritz
(1993). More recently the emphasis has shifted to computationally more complex
structural duration models. Examples are found in Van den Berg (1990) and Ferall
(1997). Most applications of duration analysis are reduced-form models. Economists
have proposed structural duration models; references include Lancaster (1990) and
Van den Berg (2001). Van den Berg also provides an interesting discussion of the
economic theoretical foundations of the PH model. Duration data can often be ana-
lyzed using different concepts of waiting time. Tunali and Pritchett (1997) use three
alternatives: calendar-time, age, and duration.

Exercises

17–1 (Adapted from Sapra, 1998) Show that the duration data model with Pareto
density of the first kind f (t) = αkα/tα+1, α > 0, t � k � 0, is an accelerated fail-
ure time duration model but is not a proportional hazards model. [Hint: Show
that ln t can be expressed as a linear regression in k = exp(x′β) with an additive
homoskedastic error.]

17–2 (Based on Lancaster, 1979). For each of the following situations develop an
appropriate expression for the joint likelihood of N observations in terms of the
duration density f (t |x,θ) and survivor function S(t |x,θ).

(a) A sample of independent completed durations, ti , i = 1, . . . , N, is available.
(b) The sample is generated as follows. Initially, individuals are selected from a

pool of unemployed and interviewed. Subsequently, they are reinterviewed
after h periods. Selected individuals have been unemployed for t weeks
on selection. Between selection and interview some find jobs, and others
do not. For those who have jobs the time of termination of unemployment
spells is known.

(c) The situation is the same as in (b) except that it is not known when the
unemployment spell ended.

17–3 (a) Using a 50% random sample of the McCall data set estimate the Kaplan–
Meier nonparametric survival and integrated hazard function estimates by
type of censoring, that is, by whether transition is to full-time or part-time
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employment. Does the survival function look significantly different for the
two groups?

(b) Ignoring the censoring variable for type of spell termination, estimate the
hazard model for unemployment duration under the following parametric dis-
tributional assumptions: (i) exponential, (ii) Weibull, (iii) log-logistic, and (iv)
Cox PH. Use the same covariates as in this chapter.

(c) Compare models (i)–(iii) and discuss which one you think provides the best
fit to the data. What does each model imply regarding the duration depen-
dence (shape of the hazard function) of a spell of unemployment?
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C H A P T E R 18

Mixture Models and Unobserved
Heterogeneity

18.1. Introduction

There is a large statistical and econometric literature concerning the topic of unob-
served heterogeneity. Observed heterogeneity refers to interindividual differences that
are measured by regressors, and unobserved heterogeneity refers to all other differ-
ences. Both factors affect survival times. In the presence of unobserved heterogeneity
even individuals with the same values of all covariates may have different hazards out
of a given state. When unobserved heterogeneity is ignored, its impact is confounded
with that of the baseline hazard.

To motivate further study consider a well-known empirical example. The aggregate
hazard rate out of unemployment is known to be a declining function of the length
of unemployment spell. If all individuals were identical then this would imply nega-
tive duration dependence, that is, a falling probability of escaping unemployment the
longer an individual has remained unemployed. However, suppose that there are two
types of individuals in the unemployed population, type F (fast), who have a constant
hazard rate of 0.4, and type S (slow), whose constant hazard rate is 0.1. The population
is a 50/50 mixture of the two types. Then for 100 type F people we observe 40 transi-
tions in the first period, 24 transitions in the second period, and 14.4 in the third. For
the type S, we observe 10, 9, and 8.1 transitions in the first, second, and third periods,
respectively. Hence the aggregate proportion of transitions will be (40 + 10)/200 =
0.25, (24 + 9)/150 = 0.22, and (14.4 + 8.1)/117 = 0.192 . This shows that the de-
clining aggregate hazard is a consequence of aggregation across heterogeneous groups,
which themselves have constant but different hazard rates. Accurate statements about
duration dependence require that models incorporate unobserved heterogeneity.

In linear regression models there are no complications caused by unobserved het-
erogeneity if the heterogeneity is independent of regressors. In that case the conditional
mean is unchanged, the unobserved heterogeneity is absorbed into the error term,
and there is no omitted variables bias. In contrast, unobserved heterogeneity usually
causes problems in durations models. In the simplest models, such as the exponential
model, it is possible to specify multiplicative unobserved heterogeneity uncorrelated
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with regressors that leaves the conditional mean duration unchanged. However, even
in this simple case the conditional hazard function does change, and it is the hazard
that is modeled out of necessity, given the presence of censoring and given also, for ex-
ample, the interest of policy makers in determining how exit rates from unemployment
vary with length of unemployment spell.

The role of unobserved heterogeneity lies at the heart of numerous empirical puz-
zles and conundrums. Although our focus in this chapter is in the context of duration
models, most of the issues are of more general relevance. The material and techniques
used here are also relevant to all econometric models, since all econometric models
omit some individual-specific unobservable variables from the model. Leading exam-
ples in other chapters include random parameters logit (Section 15.7), sample selection
(Section 16.4), finite mixture for counts (Section 20.4) and fixed and random effects
models for panel data (Chapters 21–23). These factors go under the collective heading
of unobserved heterogeneity. In biostatistics the term frailty is also used. In actuar-
ial studies (multiplicative) unobserved heterogeneity measures proportional increase
or decrease in the hazard rate (“force of mortality”) operating on a given individual
relative to that on an average individual. Individual-specific heterogeneity need not be
time-invariant, but in cross section models it is convenient to assume it is.

It is important to consider the consequences of such an unavoidable misspecifica-
tion. From ordinary linear multiple regression analysis it is known that such an omis-
sion in general can lead to an omitted variable bias. In duration models, which are
nonlinear, the analysis of unobserved heterogeneity is more complex. Introduction of
unobserved heterogeneity leads to an important class of models called mixture mod-
els, this being one of the many names for this class. The subject matter of this chapter
concerns both the techniques for generating and analyzing mixture models and the
substantive consequences of omitted heterogeneity.

Distinguishing between heterogeneity and true state dependence has been a long-
standing issue that can be traced back in history to discussions concerning true and ap-
parent contagion. Neyman has been credited for his early insight that longitudinal data
may be essential to make this distinction empirically possible. When, however, only
cross-section data are available, there is a tendency to rely heavily on strong parametric
assumptions. The emphasis in the recent literature has been to free empirical analysis
from such assumptions and on testing the validity of maintained model assumptions.

The first part of this chapter, Sections 18.2–18.4, deals with mixture models based
on continuous distribution of heterogeneity. Section 18.5 presents models based on
discrete heterogeneity. Section 18.6 considers relationships among different duration
concepts from flow and stock data. Tests of misspecification and neglected heterogene-
ity are dealt with in Section 18.7. An empirical example in Section 18.8 illustrates
several of the ideas developed in the chapter.

18.2. Unobserved Heterogeneity and Dispersion

In this section we focus on unobserved heterogeneity in the exponential and Weibull
models. We consider a form of multiplicative unobserved heterogeneity that, after
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18.2 . UNOBSERVED HETEROGENEITY AND DISPERSION

being integrated out, leaves the conditional mean unchanged but does inflate the con-
ditional variance and, more importantly, changes the conditional hazard function. The
popular Weibull model with gamma distributed heterogeneity is also presented.

18.2.1. Mixtures

The simplest model to consider is the exponential duration model. In an exponential
regression without heterogeneity the distribution of complete spells, ti , is specified
conditional on observable weakly exogenous covariates xi . This is equivalent to spec-
ifying the conditional mean function as nonstochastic: E[T |x] = exp(x′β). In mixture
models we instead specify the distribution of (ti |xi , νi ), where the additional νi denotes
an unobserved heterogeneity term for observation i. Simply, individuals are assumed
to differ randomly in a manner not fully accounted for by the observed covariates. The
marginal distribution of ti is obtained by averaging with respect to νi .

The precise functional form linking ti and (xi , νi ) must be specified. A commonly
used functional form is the exponential mean with a multiplicative error. For example,
consider the PH model with unobserved heterogeneity. From Section 17.8 we have the
proportional hazards model, (17.25) and (17.26), which can be extended to include a
multiplicative term ν. That is,

λ (t |x, ν) = λ0(t) exp(x′β)ν, ν > 0,

and hence we can obtain an expression for integrated baseline hazard as follows:

λ0(t) = λ (t |x, ν) exp(−x′β)ν−1, (18.1)∫
λ0(u)du = exp(−x′β)ν−1

∫
λ (u|x, ν) du,

ln

[∫
λ0(u)du

]
= −x′β − ln ν + ε,

where ε = ln
∫
λ (u|x, ν) du, and ν is assumed to be independent of the regressors and

of censoring time. A common normalization restriction is E[ν] = 1.When ν > 1, the
hazard rate is greater than for the average subject; it is less than that for the average
subject if ν < 1. The independence assumption is strong and not necessarily realistic.
The multiplicative heterogeneity assumption is also rather special, but it is mathe-
matically convenient and more attractive than an additive error, which could violate
nonnegativity of ti . A standard approach involves postulating a distribution for νi , and
then deriving the marginal distribution of ti .

Multiplicative heterogeneity has two important and related consequences. Not sur-
prisingly, the variance of the mixture (conditional on the observable variables) exceeds
the variance of the parent distribution (conditional on both the observables and het-
erogeneity). That is, the variance gets inflated. Consider the exponential mean case.
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Replace µi = exp(x′
iβ) by

µ∗
i = E[ti |xi , νi ] (18.2)

= exp(x′
iβ)νi

= exp(x′
iβ) exp(εi )

= exp(β0 + εi + x′
1iβ1),

where the unobserved heterogeneity term νi is redefined as exp(εi ) in the third line,
and the term x′

iβ is broken into the intercept and slope terms in the last line. The
last line has an interpretation as a conditional mean with a randomly varying intercept
(β0 + εi ). It is usually assumed that νi s are iid, possibly with a known parametric
distribution, and that they are independent of the xi .

Assume that νi is iid with E[νi ] = 1 and V[νi ] = σ 2
ν . The assumption that E[νi ] = 1

permits identification of the intercept. For the exponential density, the moments of
ti can be derived as E[ti |xi , νi ] = µiνi , and using Section A.8 result on variance
decomposition,

V [ti |xi ] = Vν[Et |ν,x(ti |νi , xi )] + Eν[Vt |ν,x(ti |νi , xi )] (18.3)

= µ2
i V (νi ) + µ2

i (V (νi ) + 1)

= µ2
i

[
1 + 2σ 2

ν

]
> µ2

i .

The unconditional variance is inflated by unobserved heterogeneity.

18.2.2. Choice of Heterogeneity Distribution

Consider how the distribution of t is affected by heterogeneity. This requires us to
look at the marginal distribution of ti by integrating out the heterogeneity term, ν,
from S(t |x,ν). A parametric distribution of ν is usually specified. What considerations
apply to choosing this distribution?

To respect the property νi > 0, we may specify a distribution with support on the
positive line. Examples are gamma, inverse Gaussian, and log-normal.

The gamma density is

g(ν; δ, k) = δkνk−1 exp(−δν)

�(k)
, ν > 0, (18.4)

which has E[ν] = k/δ and V[ν] = k/δ2. Normalization sets k = δ, E[ν] = 1, and
V[ν] = 1/δ. The gamma assumption is mathematically convenient. It is also employed
in a number of popular software packages for duration modeling.

The inverse-Gaussian density is

g(ν; δ, θ) = δπ−1/2 exp
(
2δθ1/2

)
ν−3/2 exp

(−θν − δ2/ν
)
, ν > 0, (18.5)

which has E[ν] = δθ−1/2 and V[ν] = δθ−3/2/2. Normalization θ = δ2 yields E[ν] =
1, and V[ν] = 1/2θ . Relative to the gamma the inverse-Gaussian distribution has more
tail probability.
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18.2 . UNOBSERVED HETEROGENEITY AND DISPERSION

These will not necessarily produce an analytically tractable marginal distribution of
t . As we will show, some combinations such as exponential and gamma, or Weibull
and gamma, lead to closed-form marginals, whereas others do not. However, this con-
sideration is one of mathematical and computational convenience only and hence is
not necessarily compelling on its own. Unfortunately, one rarely has guidance from
economic theory on this aspect of duration modeling.

A second consideration is generality and flexibility. The gamma model is quite
flexible and has many attractive properties. However, the inverse-Gaussian may better
handle heavy-tailed distributions. Both of these are one-parameter families (after nor-
malization). Hougaard (1986) introduced a more flexible two-parameter family that
has gamma and inverse-Gaussian as special cases. Later in this chapter we consider a
discrete (nonparametric) representation that also affords considerable flexibility.

18.2.3. Weibull–Gamma Mixture

Next we consider the popular Weibull–gamma mixture, which can be specialized to
the exponential–gamma case. This model is a leading special case of a mixed propor-
tional hazards (MPH) model. The Weibull–gamma mixture is, of course, of indepen-
dent interest because of its greater generality, and especially because it will be shown
to encompass both increasing and decreasing hazards.

The survivor function conditional on multiplicative ν for the Weibull model is

S(t |ν) = exp(−µtαν), λ > 0, α > 0, (18.6)

where µ replaces α used in Chapter 17.
The unconditional survivor function is given by the average survivor function. Aver-

aging across the heterogeneous population using the density of ν, g(ν), as the weight-
ing function yields,

S (t) = Eν[S(t |ν)] =
∫

S(t |ν)g(ν)dν. (18.7)

Different choices of g(ν) lead to different mixtures. With appropriate changes in in-
terpretation both continuous and discrete distributions are valid. The integral in (18.7)
may not have an analytical solution. For example, if g(ν) is the log-normal density the
integral does not have an analytical solution but if it is a gamma distribution it does.
For mathematical convenience we work with the gamma case in what follows.

Given gamma heterogeneity the unconditional survivor function is

S (t) =
∫ ∞

0
exp(−µtαν)

δkνk−1 exp(−δν)

�(k)
dν (18.8)

= δk

�(k)

∫ ∞

0
νk−1 exp(−ν(µtα + δ)) dν.

To obtain the mixture density we solve the integral. Letting µtα + δ = β, we get

S (t) = δk

�(k)

∫ ∞

0

(νβ)k−1

βk−1
exp(−νβ) dν.
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MIXTURE MODELS AND UNOBSERVED HETEROGENEITY

Define y = νβ, so that dν = β−1dy and

S (t) = δk

�(k)βk

∫ ∞

0
yk−1 exp(−y) dy

= δk

�(k)

�(k)

(µtα + δ)k

= δk(µtα + δ)−k

= [1 + (µtα/δ)]−k, (18.9)

where the second line is obtained using the definition of �(k) and substituting for β.
The unconditional duration density function is obtained by differentiating with re-

spect to t and multiplying by −1, which yields

f (t) = k

δ
µαtα−1[1 + (µtα/δ)]−(k+1). (18.10)

The unconditional hazard function λ(t) = f (t)/S (t) is given by

λ(t) = k

δ
µαtα−1[1 + (µtα/δ)]−1. (18.11)

These general expressions can be specialized by setting the mean of ν at 1; that is,
set k = δ, which normalizes E[ν] = 1, and leads to the following expressions for the
Weibull–gamma mixture:

S (t) = [1 + (µtα/δ)]−δ, (18.12)

f (t) = −∂S (t)

∂t
= µαtα−1[1 + (µtα/δ)]−(δ+1), (18.13)

λ(t) = −∂ ln S (t)

∂t
= µαtα−1[1 + (µtα/δ)]−1, (18.14)

which tends to the Weibull hazard as the variance 1/δ goes to zero.
The Weibull model permits either increasing or decreasing hazards but somewhat

restrictively assumes conditionally monotonic hazards at the individual level. Yet this
mixture distribution has been popular in the econometrics literature, mainly because
of its convenient properties; see Lancaster (1979) and Narendranathan, Nickell, and
Stern (1985).

To specialize the results to the exponential–gamma mixture set α = 1.
This yields S (t) = [1 + (µt/δ)]−δ , f (t) = µ[1 + (µt/δ)]−(δ+1), and λ(t) = µ[1 +
(µt/δ)]−1. The exponential–gamma mixture, also known as the Pareto distribution
of the second kind, has more mass in the tails relative to the exponential. The dif-
ference between the two depends on the variance, 1/δ. The r th moment exists only
if δ > r.
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18.2.4. Interpreting the Mixture Hazard Function

An important issue in economic applications is whether positive or negative duration
dependence is present in duration data. For example, does the probability of exiting
from unemployment increase (e.g., owing to worker is reservation wage falling) or
decrease (e.g., owing to the worker being viewed as damaged goods) as the length
of the unemployment spell increases? In the iid case this can be easy to establish by
nonparametric estimation methods. With non-iid data, however, a decreasing hazard
in the raw data may be due to aggregating across different individuals, each of whom
has a different constant hazard rate, or to an decreasing hazard for each individual.
Distinguishing between the two can be difficult.

Consider the problem of interpreting the hazard function in the presence of unob-
served heterogeneity in the exponential–gamma mixture. Notice that even if individual
hazard (i.e., hazard conditional on ν) is constant at µ, the average or aggregate hazard
λ(t) is declining in t. This does not mean that there is negative duration dependence
in the individual hazard rate. Rather, it is the effect induced by aggregation across in-
dividuals who differ randomly in their hazard rates. A similar erroneous interpretation
can occur in the Weibull–gamma case. In that case the actual slope of the hazard func-
tion depends on α, but the slope of the average or aggregate hazard function is affected
by the presence of heterogeneity. Thus the neglect of unobserved heterogeneity may
lead to underestimation of the slope of the hazard function. This result seems fairly
general (see Lancaster, 1990). Salant (1977) provided an early extensive discussion of
this phenomenon.

This result is the basis of the claim (see, for example, Lancaster, 1979; Heckman
and Singer, 1984a) that the estimation of hazard function in the presence of neglected
unobserved heterogeneity may lead to serious biases. Our discussion motivates tests
of unobserved heterogeneity in hazard models. Let us examine the argument in the
context of the Weibull mixture model for which S (t) = ∫ exp (−µtαν) g(ν)dν. The
aggregate hazard function is

λ(t) = −
∫
∂ ln S(t |ν)

∂t
g(ν) dν

= αµtα−1
∫
ν exp(−µtαν)

S(t |ν)
g(ν) dν

= αµtα−1E [ν|T ≥ t] .

Because E[ν|T ≥ t] is the average of ν over those surviving at time t , it must decrease
with time as individuals with higher values of ν leave the state sooner than individ-
uals with low values of ν. This changes the slope of the aggregate hazard function.
This phenomenon can also be thought of as a form of selectivity bias (Chapter 16.5).
Formally, the average of ν over time can be written as

E [ν|T ≥ t] =
∫
ν exp(−µtαν)

S(t |ν)
g(ν) dν.
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Therefore, for the Weibull mixture model

∂E [ν|T ≥ t]

∂t
= −αµtα−1

[∫
ν2 exp(−µtαν)

S(t |ν)
g(ν) dν

]

+αµtα−1

[∫
ν exp(−µtαν)

S(t |ν)
g(ν) dν

]2

= −αµtα−1
{
E
[
ν2|T ≥ t

]− (E [ν|T ≥ t])2
}

= −αµtα−1V [ν|T ≥ t] (18.15)

< 0.

Hence, neglecting heterogeneity results in an estimated hazard rate that is falling faster
or rising more slowly than the actual hazard rate.

Another interesting comparison between models with and without heterogeneity is
the proportional impact of a change in a covariate on the hazard rate. In the absence of
heterogeneity

ln λ(t |µ) = ln
(
µtα−1

)+ lnα,

and the proportional impact of a change in x j on µ is

∂ ln λ(t |µ)

∂x j
= β j ,

which is a property of the proportional hazard model.
Allowing for unobserved heterogeneity

ln λ(t |µ) = ln
(
µtα−1

)+ lnα + ln E [ν|T ≥ t]

= lnα + lnµ+ (α − 1) ln t + ln E [ν|T ≥ t] ,

whence, noting that lnµ = x′β and ∂E[ν|T ≥ t] /∂x j = −µtαV[ν|T ≥ t]β j , it fol-
lows that for the Weibull mixture model

∂ ln λ(t |µ, ν)

∂x j
= β j

[
1 − µtαV [ν|T ≥ t]

E [ν|T ≥ t]

]
(18.16)

< β j .

The result shows that given heterogeneity the proportional impact of a change in x j is
smaller and depends on t and is no longer of the proportional hazard type. Thus, the
estimates derived from the model may be misleading even if the unobserved hetero-
geneity term is uncorrelated with the included covariates.

Similar consequences of unobserved heterogeneity for models more general than
the Weibull are discussed in Lancaster and Nickell (1980).

18.3. Identification in Mixture Models

Associated with mixture models is a general identification problem. This issue con-
cerns the logical possibility of decomposing the individual contributions to the average
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survival probability of the baseline hazard, the unobserved heterogeneity, and the co-
variates, given the observed data (t, x) pertaining to a single spell. More specifically, if
the PH model were not identified, then it would be logically impossible to separate the
individual contributions of duration dependence and unobserved heterogeneity. As in
most discussions of identification, some restrictions are placed on the formulation. In
econometric literature the case of (mixed) proportional hazards has been investigated
in detail. Heckman and Singer (1984b) and Elbers and Ridder (1982) have established
the identification of the MPH model under certain conditions. Van den Berg (2001)
provides an excellent discussion of these earlier proofs as well as later contributions.

Discussions of identifiability of the MPH model begin with the average or aggre-
gate survivor function

S(t |x) = Eν [S (t |x, ν)] (18.17)

=
∫

exp (−ν�0(t)φ(x)) g(ν)dν,

which assumes proportionality of hazards as in (18.1), uses the PH formulation of
Section 17.8, but does not make parametric assumptions on�0, φ, or g. Here�0(t) =∫ T

0 λ0 (s) ds. The model is said to be nonparametrically identified if, given the data, the
functions λ0, g, and φ are unique. We add the qualifier “nonparametrically” because
of the absence of functional form assumptions.

Variations in observed survival times are due to variations in the covariates x, in
ν, and in the duration dependence function (baseline hazard). Identifiability means
a unique decomposition of the variation. A proof of identifiability must show that
these separate contributions are in principle identifiable. Most of the available proofs
use advanced mathematical tools to show that the likelihood function can be uniquely
decomposed. Melino and Sueyoshi (1990) provide a simpler proof.

The conditions required for nonparametric identification include the following:
(i) The heterogeneity term ν is assumed to be time-invariant and independently dis-
tributed of x. (ii) g(ν) is nondegenerate and has finite mean (i.e., E[ν] <∞). (iii)
φ(x) > 0 for all x. (iv) λ0(t) is continuous and positive on [0,∞). (v) Observed ex-
planatory variables x are linearly independent and have sufficient variation. Different
proofs have some subtle variation on these conditions but we will not delve into these
here.

Whereas the issue of nonparametric identification involves considerable mathemat-
ical subtleties, the problem is also relevant in the context of parametric models. If one
specifies parametric forms such as λ0(t |α), φ(x|β), and g(ν|γ ), then are these func-
tions unique given the data? The answer, unfortunately, may be “no” in many cases.
This means that one investigator may estimate a particular mixture model with no
computational problems, and apparently “nice” results and meaningful coefficients.
However, this representation may not be unique. Another investigator may produce
equally nice results under different parametric assumptions and with different impli-
cations. That is, the observed survivor function may be consistent with other choices
of the baseline hazard and heterogeneity distributions (Lancaster, 1990, chapter 4). In
the terminology of Section 2.2, different structural models, with substantively different
policy implications, may have the same reduced form. This clearly poses a problem for
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parametric applied work. One appealing solution is to choose flexible parametric forms
for hazard and heterogeneity, or else to take the semiparametric approach of partial
likelihood analysis. The discussion of this issue continues in the next section.

18.4. Specification of the Heterogeneity Distribution

The sensitivity of coefficient estimates to alternative assumptions about the hetero-
geneity has been extensively discussed in the literature. Two apparently contradictory
positions may be discerned:

1. Parametric specifications of unobserved heterogeneity are often somewhat arbitrary.
They may seriously distort inferences about the hazard function. Hence a parametrically
flexible or nonparametric specification is desirable. See Heckman and Singer (1984a).

2. Parametric specifications of unobserved heterogeneity are relatively innocuous if the
baseline hazard function is correctly specified. When the specification of the hazard
function is in doubt and/or is incorrect, the estimates produced using different para-
metric assumptions for heterogeneity may lead to different estimates of the marginal
distribution of the data. See Manton, Stallard, and Vaupel (1986).

The apparent contradiction between the two positions may be resolved as follows.
The specification of the hazard function affects the first moment of the distribution
of f (t), whereas that of heterogeneity affects its second moment, assuming that it is
uncorrelated with the observed covariates. If the hazard function is correctly speci-
fied, then the main impact of the heterogeneity distribution would be on the relative
efficiency of the estimator.

18.4.1. Discrete-Time PH with Gamma Heterogeneity

The preceding considerations suggest that a proportional hazard formulation with an
arbitrary hazard function makes an attractive model with which to combine a specific
heterogeneity assumption. Han and Hausman (1990) and Meyer (1990) combine the
gamma heterogeneity assumption with the discrete-time proportional hazard model
developed in Section 17.10. They report that when the baseline hazard is not parame-
terized estimates show little sensitivity to alternative functional forms for g(ν).

For specificity reconsider (17.43) after including a heterogeneity term:

εi = ln

(∫
λ0 (τ ) dτ

)
− x′

iβ − νi ,

which can be substituted into the expression for log-likelihood (17.44). The het-
erogeneity term needs to be integrated out. Han and Hausman give a closed-form
expression under the gamma heterogeneity assumption and report results that indi-
cate relatively minor sensitivity to parametric assumptions given their flexible hazard
specification.
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18.4.2. Some Other Models for Heterogeneity

The preceding discussion emphasized the computational convenience of Weibull–
gamma model, which has a closed form.

If the tail of the observed marginal distributions is thicker than is consistent with the
gamma or log-normal, one may consider a member of the Mandelbrot stable family of
distributions. Hougaard (1986) proposed a very general family that nests, for example,
the gamma and inverse-Gaussian families (also see Jaggia, 1991b). A strictly stable
distribution obeys the condition that the sum of p independent realizations should
have the same distribution as a scale factor times the distribution. Hougaard (2000,
appendix 3.3) provides a summary of its properties.

Although a more highly parameterized heterogeneity distribution looks attractive
because of its greater generality, it may lead to two kinds of problems. The first prob-
lem is that the available data may not be sufficiently rich to allow us to identify or
precisely estimate the parameters. Often this situation cannot be recognized without
attempting estimation in the first place.

The second problem is computational. If the mixture density does not have a closed
form, it is then left in the form of an integral. The resulting likelihood function has
terms that are also integrals. Estimation requires the use of computer-intensive nu-
merical methods such as numerical or Monte Carlo integration that were discussed in
Chapter 12. An example of a mixture model that requires such estimation techniques is
the Weibull–log-normal mixture in which unobserved heterogeneity has a log-normal
distribution. Simulation-based estimation of heterogeneity models is discussed by
Gouriéroux and Monfort (1991, 1996) and considered as an example in Section 12.2.

18.5. Discrete Heterogeneity and Latent Class Analysis

The preceding analysis assumed a continuous distribution of unobserved heterogeneity
and concentrated on estimation of the parameters of that distribution.

An alternative approach assumes that the sample of individuals is drawn from a pop-
ulation that consists of a finite number of latent classes, say q, and that each element
in the sample can be regarded as a draw from one of these q latent sub-populations
or strata. This model is known variously as the finite mixture model, semiparametric
heterogeneity model (Heckman and Singer, 1984a), and latent class model (Aitken
and Rubin, 1985). Its attractive feature is that it leads to a flexible parametric distri-
bution. In duration modeling the model has been analyzed, advocated, and applied by
Heckman and Singer (1984a).

Although these popular models are presented in the context of duration models, a
general notation is used to emphasize the potential for application elsewhere; see, for
example, Section 20.4.

18.5.1. Finite Mixture Model

Consider the following two-component finite mixture model. If the sample is a proba-
bilistic mixture from two subpopulations with pdf f1(t |µ1(x)) and f2(t |µ2 (x)), then
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π f1(·) + (1 − π ) f2(·), where 0 ≤ π ≤ 1, defines a two-component finite mixture.
That is, observations are draws from f1 and f2, with probabilities π and 1 − π , respec-
tively. The parameters to be estimated are (π,µ1, µ2). The parameter π may be treated
as constant or may be further parameterized using, for example, the logit function.
Thus π = exp(λ)/[1 + exp(λ)] and λ in turn may be parameterized in terms of further
observable covariates. Thus we think of two types of individuals, those that come from
f1(·) and those that come from f2(·). Perhaps there may be an a priori case for thinking
along these lines, for example if there is some latent characteristic that partitions the
sampled population in this way. An alternative interpretation is simply that the linear
combination of densities makes a good approximation to the observed distribution of t.

Generalization to additive mixtures with three or more components is in principle
straightforward but subject to potential problems of the identifiability of the compo-
nents. This is discussed further later in the chapter. Therefore, it is very helpful in
empirical application if the components have a natural interpretation. At the simplest
level we think of each subpopulation as a “type,” but in many situations a more infor-
mative interpretation may be possible (Lindsey, 1995).

Another interpretation of the finite mixture model is in terms of a discrete represen-
tation of population heterogeneity. Suppose the population consists of m homogeneous
subpopulations, usually called components. A parametric model, such as the Weibull
or exponential, is supposed to apply to each component. Assume that the j th compo-
nent is a fraction π j of the total population,

∑
π j = 1.

Formally, the problem is formulated as follows: In all previous examples the dis-
tribution of the unobserved heterogeneity term has infinite points of support. If the
continuous mixing distribution g(νi ) can be approximated by a discrete distribution,
denoted by π j ( j = 1, . . . ,m) with a finite number, m, of support points then the
marginal (mixture) distribution is

h(ti |xi , π j ,β) =
m∑

j=1
f (ti |xi , ν j ,β)π j (ν j ), (18.18)

where ν j is an estimated support point and π j is the associated probability. This semi-
parametric representation of unobserved heterogeneity was examined by Heckman
and Singer (1984a) in duration modeling. Closely related work is that of Wedel et al.
(1993), where the latent class interpretation is favored. If the mixing distribution π j is
not subject to any parametric assumptions, then the mixture model is called a semi-
parametric mixture model for t.

The estimation of the finite mixture model may be carried out under the assumption
of either known or unknown number of components. If the fractions π j are known,
maximum likelihood estimates of the component distributions can be estimated. More
usually the proportions π j , j = 1, . . . ,m, are unknown and the estimation involves
both the π j and the component parameters. The maximum likelihood estimator for the
latter case is called nonparametric maximum likelihood estimator (NPMLE). Here the
nonparametric component is the number of classes, but it is strictly a semiparametric
method because it is combined with parametric models for the components. If the
number of components is unknown, as is usually the case, then some delicate issues of
inference arise. See Section 18.5.4 for details.

622



18.5 . DISCRETE HETEROGENEITY AND LATENT CLASS ANALYSIS

An obvious motivation for the finite mixture class is that it is a natural and sim-
ple way to treat population heterogeneity. In many situations it is simpler to think of
unobserved heterogeneity in terms of a small number of latent classes rather than a
continuum of “types” as in Section 18.2.

18.5.2. Latent Class Interpretation

The finite mixture model is related to latent class analysis (Aitkin and Rubin, 1985;
Wedel et al., 1993). Let di = (di1, . . . , dim) define an indicator (dummy) variable such
that di j = 1(

∑
j di j = 1) indicates that ti was drawn from the j th (latent) group or

class for i = 1, . . . , N . That is, each observation may be regarded as a sample from
one of the m latent subpopulations, classes, or “types.” In the discussion that follows
we assume that the model is identified.

The model specifies that (ti |di , µ,π) are independently distributed with densities

m∑
j=1

di j f (ti |µ j ) =
m∏

j=1
f (ti |µ j )

di j , (18.19)

where µ j = µ(x j ,β j ), µ = (µ1, . . . , µm) , and (di | µ,π) are iid with multinomial
distribution

m∏
j=1
π

di j

j , 0 < π j < 1,
m∑

j=1
π j = 1. (18.20)

The last two relations imply that

(ti |µ,π)
i id∼

m∑
j=1
π

di j

j f j (t |µ j )
di j ,

which leads to the likelihood function

L(β,π|t) =
N∏

i=1

m∑
j=1
π

di j

j f j (t ;µ j )
di j . (18.21)

18.5.3. EM Algorithm

This likelihood function may be maximized directly or by applying the EM algorithm
in which the variables d = (d1, . . . , dn) are treated as missing data; see Section 10.3.
If the d were observable the log-likelihood of the model would be

ln L(µ,π|t,d) =
N∑

i=1

m∑
j=1

di j ln f j (ti ;µ j ) +
N∑

i=1

m∑
j=1

di j lnπ j . (18.22)

If π j , j = 1, . . .m, are given, the posterior probability that observation ti belongs to
the population j, j = 1, 2, . . .m, denoted zi j , is given by

zi j ≡ Pr[yi ∈ population j] = π j f j (yi |xi ,β j )∑m
j=1 π j f j (yi |xi ,β j )

. (18.23)
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The average value of zi j over i is the probability that a randomly chosen individual
belongs to subpopulation j. This equals π j :

E[zi j ] = π j .

Suppose we have available an estimate ẑi j of E[di j ]. Then, conditional on this estimate
we have

EL(β1, . . . ,βm,π|t,̂z, x1, . . . , xm) =
N∑

i=1

m∑
j=1

ẑi j ln f j (ti , µ(x j ,β j ) +
N∑

i=1

m∑
j=1

ẑi j lnπ j ,

(18.24)

which constitutes the E-step of the EM algorithm. The M-step of the algorithm maxi-
mizes EL by solving the first-order conditions

π̂ j − N−1
m∑

i=1

ẑi j = 0, j = 1, . . . ,m, (18.25)

N∑
i=1

m∑
j=1

ẑi j
∂ ln f j (ti |β j )

∂β j
= 0. (18.26)

Next we can use (18.23) to get new values of ẑi j and iterate through the E- and M-
steps. Once the process converges the variances can be computed using either the in-
formation matrix or the robust formula.

18.5.4. Choosing the Number of Latent Classes

The first important issue concerns the choice of m, the number of components. Often
there is no guiding prior theory and the choice is usually made on pragmatic grounds.
Because the dimension of parameters to be estimated is m dim[β] + m − 1, the num-
ber of parameters can be quite large. This number can be decreased somewhat if some
elements of β are restricted to be equal. One popular method involves allowing the in-
tercept to vary but restricting the slope parameters to be the same across groups (as in
(18.18)). However, there is clearly an incentive to keep m small if all parameters are al-
lowed to vary across classes. Even when only the intercepts are allowed to vary, many
applications use m = 2. A sensible strategy is to start with m = 2, and then check the
fit of the model using diagnostic tests. An additional component is added if the fit is
poor. Adding components that cannot be reliably differentiated is problematic. When
intergroup differences are small, the finite mixture representation is not needed. The
most desirable situation is one in which the components have an interpretation. Choice
between models of different dimensions can be made using the penalized likelihood
criterion (AIC or BIC), see Section 8.5.1. The likelihood ratio test is not appropriate
because of the parameter boundary hypothesis problem. Baker and Melino (2000) de-
scribe a Monte Carlo experiment that dramatically reveals the potential pitfalls of over-
parameterization in a model in which both duration dependence and heterogeneity are
flexibly specified owing to a desire to avoid misspecification. For model selection they
recommend comparing a penalized likelihood criterion across candidate latent class
models, with a high penalty for more parameters.
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When the model is overparameterized the parameters cannot be identified. The
problem may manifest itself by the presence of multiple optima or a flat likelihood
surface. The computational algorithm may converge to different points depending on
the starting values.

A model selected from competing models using the penalized likelihood criterion
may not necessarily describe the sample data well. This can only be ascertained by
a suitable goodness-of-fit test and model diagnostics. Essentially one compares the
actual and fitted distribution of durations; a significantly large deviation between the
two indicates that the systematic component of the model does not adequately explain
the observed sample variation. Some possibilities are considered in the next section.

Computational Considerations

A second issue concerns the choice of computer algorithm. Whereas the EM algorithm
is very helpful in understanding the computational structure of the problem, in practice
it often tends to be slow. The authors have found many instances in which the Newton–
Raphson algorithm based on numerical derivatives has produced satisfactory results.
See Haughton (1997) for a survey of alternatives. No matter which algorithm is used, if
the intergroup differences are small, the likelihood surface will tend to exhibit several
local maxima. In any case, a single unique maximum is not guaranteed.

All finite mixture models are unidentified in the sense that the distribution of the
data is unchanged if the subpopulation labels are permuted. That is, relabeling “com-
ponent 1” as “component 2,” or vice versa, makes no difference. This problem can be
dealt with by specifying either the π j or µ j to be nondecreasing. It is desirable that the
component labels have some behavioral interpretation.

One potential limitation of the finite mixture model is that additional components
may simply reflect the presence of outliers. Though this is not necessarily a bad thing,
it is useful to be able to identify the outlying observations that are responsible for one
or more components. Equation (18.23) can be useful in this regard. Postestimation one
could calculate the posterior probability. For outliers these probabilities will be large
with respect to one component and small with respect to the rest.

18.6. Stock and Flow Sampling

In many practical situations the following question arises: What is the relationship
between two or more different average duration measures that are available? From de-
mography comes the well-known distinction between average age and expected life
span. In real estate there is the distinction between the average period that a property
offered for sale has remained unsold and the expected period before which a newly
added property for sale will be sold. Often the first concept is used in popular discus-
sions when the second may be more relevant. In economics there is a similar question
about the relationship between different measures of unemployment duration that are
published by government statistical agencies. The issue of unobserved heterogeneity,
as it pertains to the pool of the unemployed, and to the flow into that pool, is closely
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involved in these discussions. One of the earlier influential discussion of these issues
was given in Salant (1977).

For specificity, let us focus on the familiar example of unemployment duration.
One statistic that measures the unemployment experience of an already unemployed
individual, published by statistical agencies in many countries, is the average inter-
rupted duration (AID), which is the average period for which members of the current
stock of unemployed have been unemployed. It is an estimate of the expected elapsed
duration, a period for which a newly unemployed individual can expect to remain
unemployed, often referred to as average duration of a complete spell of unemploy-
ment (ACD), a measure that features prominently in the job search literature and is the
one that the current and previous chapters have concentrated on. This is an estimate of
the expected length of a completed duration. We may think of AID as a stock-based
measure and ACD as a flow-based measure; the former is analogous to average age
in a population and the latter to the expected life span. The question of interest is the
relationship between the two.

The appropriate statistical tool for handling issues such as these is renewal theory.
The stationary Poisson process with constant intensity parameter is an example of a
renewal process. The number of renewals in a time interval dt refers to the num-
ber of events. Duration is the time between successive occurrences of events (i.e., re-
newals). For an individual in a given state the backward recurrence time refers to the
elapsed duration since renewal, and forward recurrence time refers to the duration
from current state to a transition. The expected number of events, denoted E[N (t)] ,
in the time interval (0, t)] is called the renewal function and limdt→0 dE[N (t)] /dt is
the renewal intensity, which determines the relationship between ACD and the aver-
age backward recurrence time. In what follows, we concentrate on some well-known
results.

Salant (1977) showed that heterogeneity in hazard rates provides a key to under-
standing the differences between AID and ACD. His diagrammatic representation
provides intuition into the two key factors that affect the calculated averages. In Fig-
ure 18.1 the vertical axis measures calendar time and the horizontal axis represents the
date of the survey. Stock sampling refers to sampling in the survey period from the
stock of individuals who are then in a given state. In contrast, flow sampling means
that we sample those who enter the state during a particular interval. The lengths of
spells in progress are shown as vertical lines. For illustration nine realizations of spells
are shown and four of these (S6, S7, S8, and S9) are in progress on the survey date.
Five spells (S1, S2, S3, S4, and S5) are completed during the 12-month survey period.
If u j denotes the length of the j th in-progress spell sampled by the survey, then for
our example, AID = 1/4(

∑
j u j ). If ti denotes the length of the i th completed spell

sampled by the survey, then ACD = 1/5
(∑

ti
)
.

Now observe that the survey is more likely to capture longer spells than shorter
spells, and this leads to an upward bias that is the result of length-biased sampling.
This type of bias is likely to lead to AID > ACD. However, because the survey mea-
sures only incomplete durations, the average of such incomplete durations is likely
to be shorter than the average of the completed durations. This is the phenomenon
of interruption bias. The answer to the question of which source of bias dominates
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Figure 18.1: Length-biased sampling under stock sampling: examples.

depends on the distribution of spell lengths, and this in turn depends on the distribu-
tion of hazard rates. Heterogeneous hazard rates provide a key to understanding the
relationship between the two.

The key assumption is that of a stationary environment which refers to a situation
in which inflows into and the outflow from the state are equal. Let f (u) denote the
density of interrupted spells and g(t) denote the density of completed spells. Then, the
distribution of u is given by

f (u) = G (u)∫
G (u) du

= G (u)

E[t]
, (18.27)

where

G (u) =
∫

g (x) dx

is the survivor function corresponding to be density g(u). and E[t] is the mean of
the distribution of completed durations. For a full derivation of this result and the
underlying assumptions, see Salant (1977) or Lancaster (1990, Section 5.3).

An implication of this result is that if g(t) is exponential, so that the stochastic
process for the event is the Poisson process, then f (u) is also exponential, and the
mean of both duration measures is equal.
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Given (18.27), the general relationship between moments of the distributions of u
and t can be derived. One useful result links the mean of u to the mean and variance
of t :

E[u] = 1

2

(
E[t] + V[t]

E[t]

)
. (18.28)

Another interesting result concerns the relationship between E[t] and the mean
completed duration of the constant population with spells in progress (i.e., the aver-
age across the stock of spells in progress). In line with intuition based on length-based
sampling, the relation is

E
[
t (S)] = E[t] + V[t]

E[t]
> E[t], (18.29)

which says that the mean duration for the constant stock, denoted E[t (S)], exceeds the
average expected duration of a new spell. If f (t) is exponential, then E[t (S)] = 2E[t],
and E[u] = 1/2E[t (S)]; on average the sampled interrupted spell will be halfway to
completion.

What if the hazard rate is not constant? If the hazard rate is increasing in spell
length (i.e., positive state dependence) then E[u] <E[t], and if it is decreasing (i.e.,
negative state dependence) then E[u] >E[t].

Although these results have been obtained under the assumption of a constant pop-
ulation, they have proved very useful in interpreting and clarifying the connections
among various average measures of duration that are commonly employed. The results
given here are valid regardless of the reason for spell occurrence. They also motivate
a more careful investigation of the shape of the hazard function.

18.7. Specification Testing

Tests of specification in duration models take several different forms, including the
following:

� inclusion and exclusion tests for covariates,
� tests of functional forms of the survival function,
� tests of unobserved heterogeneity, and
� joint tests of state dependence and unobserved heterogeneity.

The first type of specification test does not raise new problems and can be handled
by Wald-type tests.

Tests of restrictions on functional form are the same as tests of unobserved hetero-
geneity if the restriction is the absence of unobserved heterogeneity. Because the latter
can bias the estimation of the hazard rate, as shown in the Section 18.2, diagnostic
testing for unobserved heterogeneity is desirable.

The standard formulation for this is to test whether the heterogeneity (variance) pa-
rameter is zero. If this hypothesis is tested using the restricted model that assumes zero
heterogeneity, a score test is appropriate. The use of the likelihood ratio or Wald test
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based on the unrestricted model will be problematic if the hypothesis is a boundary
hypothesis. For example, in the Weibull–gamma model (18.9), the restriction 1/δ = 0
will specialize the model to the Weibull, but this is a boundary hypothesis. The stan-
dard one-degree-of-freedom chi-square test has a weighted chi-squared distribution
under the null.

18.7.1. Hypothesis Tests

One type of specification test is a score test of unobserved heterogeneity based on the
exponential null model. Because of possible confounding between heterogeneity and
duration dependence it is desirable to carry out a joint rather than a separate test. This
can be done using the framework of a locally heterogenous Weibull model (Lancaster,
1985).

A locally heterogenous density is generated by considering a Taylor expansion of
an arbitrary density around ν = 1 of the Weibull density with multiplicative hetero-
geneity ν, yielding

S(t |ν) = e−µtαν = e−εν

= e−ε[1 + (−ε)(ν − 1) + (ε2/2)(ν − 1)2 + O(ε3)],

where ε = µtα . From the second line

E[e−εν] = e−ε[1 + (ε2σ 2/2)] ≡ Sm(t),

where the term σ 2 is the variance of the heterogeneity distribution.
Then

fm (t) = −∂Sm (t)

∂t
= αµtα−1e−ε[1 + (ε2σ 2/2)] − e−ε[2ε(αµtα−1)σ 2/2]

= αµtα−1e−ε [1 + σ 2(ε2 − 2ε)/2
]
.

Using the last result and allowing for censored observations, the log-likelihood is given
by

ln L(α,β, σ 2) =
N∑

i=1
ln
{
[ fm(t)]δi [Sm (t)]1−δi }

=
N∑

i=1
δi
[
lnα + (α − 1) ln ti + lnµi + ln

(
1 + σ 2

(
ε2

i − 2εi
)
/2
)− εi

+ (1 − δi ) ln
(
1 + σ 2ε2

i /2
)]
,

where δi is the censoring indicator, which takes the value one for uncensored dura-
tions and zero otherwise, lnµi = β0 + x′

iβ1, and εi = µi tαi is the generalized error
(Section 18.7.2).

The null hypothesis of interest is H0 : σ 2 = 0 and α = 1. This is a joint test of
zero unobserved heterogeneity and the exponential distribution specification. Let θ =(
θ′

1, θ
′
2

)
, θ′

1 = (σ 2, α
)

, and θ′
2 = (β0, β1

)
, and let θ′

0 = (0, 1, β0, β1

)
denote the

restricted vector.
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For simplicity consider only the case of uncensored data. Then the joint score test
statistic is

LMHD = 1

d
s′
[
� ′(1) 1

1 1

]
s, (18.30)

where s′ = [ 1
2

∑
i

(
ε2

i − 2εi
)
,
∑

i (1 + (1 − εi ) ln ti ], and � ′(r ) denotes the first
derivative of the digamma function d ln�(r )/dr and d = 1/(N (� ′(1) − 1)). To im-
plement the test, LMHD is evaluated at the null (i.e., replacing all quantities by their
estimates under the null of exponential distribution). This test statistic has an asymp-
totic χ2(2) distribution (Jaggia and Trivedi, 1994).

Notice that the matrix of the quadratic form in the LMHD statistic is not diagonal.
That is, the two components of the joint test are correlated. A separate test of hetero-
geneity (duration dependence) has power against duration dependence (heterogene-
ity). More explicitly, suppose we consider two separate score tests for heterogeneity
and duration dependence. They are

LMH = 1

4N

(∑
i

(
ε2

i − 2εi
))2
, (18.31)

LMD = 1

d

(∑
i (1 + (1 − εi ) ln ti )

)2
, (18.32)

each of which has a χ2(1) distribution under the null. The separate test of zero unob-
served heterogeneity has power against the other null hypothesis because the tests are
correlated, see (18.30). Consequently, inferring the direction of misspecification on the
basis of a separate test can be misleading.

Because the specification of unobserved heterogeneity and state dependence are
closely related, testing hypotheses about them separately can produce misleading re-
sults (Jaggia and Trivedi, 1994). Formally speaking, tests of state dependence in the
presence of incorrectly neglected heterogeneity are biased, and the reverse is also true.
Jaggia (1991c) reanalyzes strike duration data that have been analyzed in a misleading
manner in the econometrics literature. Jaggia and Trivedi (1994) develop some joint
tests for a class of parametric models. See also Bera and Yoon (1993) who consider
the more general issue of hypothesis testing when the model is misspecified.

Useful as these tests are in simple parametric models, the starting point of an inves-
tigation might be a Weibull, Weibull–gamma, or proportional hazard model. In such
cases testing for unobserved heterogeneity, or any other specification error, can be car-
ried out using the integrated hazard function because in the absence of heterogeneity
integrated hazard is a unit exponential random variable. We now discuss some graphi-
cal methods for evaluating the fit of the model based on integrated hazard.

18.7.2. Graphical Tools for Detecting Misspecification

In Section 8.7.2 we developed the concept of generalized residuals. In nonlinear mod-
els a clear-cut choice of such a measure is difficult. In the present context there is a
good choice.
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Generalized Residuals

A useful type of test is a nonparametric graphical test of fit of the duration model.
The test uses the generalized residual, which is defined as a certain function of data
and estimated parameters. For a correctly specified model the residuals should behave
approximately like an iid sample from a known distribution. The integrated hazard
turns out to have such a property and hence functions as an ingredient for a residual-
based specification test. In the context of duration models where from Section 17.3.1

S(t |µ) = exp [−�(t |µ)] ,

f (t |µ) = λ(t |µ) exp [−�(t |µ)] ,

consider the distribution of the generalized residual

ε = �(t |µ) (18.33)

= − ln (S(t |µ)).

The Jacobian of this transformation is

|J | = dt/dε

= 1

d�(t |µ)/dt

= 1/λ(t |µ).

Given f (t |µ), the transformation in (18.33), and the Jacobian of transformation, the
density of ε is given by

λ(t |µ) exp (−ε) 1

λ(t |µ)
= exp (−ε) , (18.34)

which does not depend onµ; the density is the unit exponential distribution. This result
was referred to in Sections 17.3.1 and 17.6.7.

Diagnostic Test Based on Integrated Hazard

A diagnostic test can be constructed by exploiting the unit exponential property of the
generalized residual ε under the null of correct specification. The survivor function
of the generalized residual is S(ε) = exp (−ε) . Hence − ln S(ε) = �(ε) = ε. For a
correctly specified model, a graphical comparison of the estimated integrated hazard
with ε̂ should yield an approximately linear positive relationship with 45◦ slope. If the
plot deviates significantly from the 45◦ line a misspecification could be indicated.

For example, the estimated integrated hazard for the Weibull model is ε̂ = µ̂t̂α .
Its survivor function is Ŝ (̂ε) = N−1 (number of sample observations ≥ ε̂) .

A small formalization of this is to regress − ln S(̂ε) on ε̂ and an intercept and test
whether the intercept is zero and the slope equals one.

The technique may be applied to any parametric model for which the integrated haz-
ard expression is available. For example, the generalized error for the Weibull–gamma
mixture (easily specialized to an exponential–gamma mixture by setting α = 1)
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is ε = k ln [(k + µtα)/k]. To apply the test, compute ε̂ given estimates of (µ, α, k),
and then plot ε̂ against − ln Ŝ (̂ε).

Censored Data

In the case of censored observations the observed duration t = min[T, L], where L
denotes the right-censoring limit. If the observation exceeds L it is censored at L . Then
the generalized error ε(t) is not unit exponential distributed. The following derivation
leads to a relationship that suggests an adjustment for censoring:

E [ε(T )|T � L] =
∫ ∞

ε(L)

ε f (ε)

S (ε (L))
dε

= 1

e−ε(L)

[∫ ∞

ε(L)
εe−εdε

]
= 1

e−ε(L)

[
1 + ε (L) e−ε(L) + e−ε(L) − 1

]
= 1 + ε(L), (18.35)

upon integration by parts and simplification.
This suggests that one might estimate the generalized error as ε̃(t) = ε̂(t) if data

are not censored, and as ε̃(t) = 1 + ε̂(L) if the observations are censored. Available
results suggest that this technique works reasonably well in the censored exponential
model when the proportion of censoring is not too heavy (Jaggia and Trivedi, 1994;
Jaggia, 1997).

18.7.3. Conditional Moment Tests

The conditional moment framework (see Section 8.2) applied to the generalized
residuals provides a fruitful approach to specification testing. The idea can be illus-
trated in the context of tests of unobserved heterogeneity.

The integrated hazard function was shown previously to be distributed as a unit
exponential random variable with mean 1 and variance 1. In this case the conditional
second-moment restriction of interest is E[(ε − 1)]2 = V[ε] = 1, or equivalently

E
[
ε2 − 2

] = 0.

Higher order moment restrictions can also be generated and tested jointly or separately.
For details see Jaggia (1991a).

18.8. Unobserved Heterogeneity Example:
Unemployment Duration

In this section, we rework the empirical example of Section 17.11 under the assump-
tion that unobserved heterogeneity is present and can be parameterized within an ana-
lytically tractable parametric model.
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Figure 18.2: Unemployment duration: generalized residuals from the exponential model.
U.S. data from 1986–92 on 3343 spells, some incomplete.

As discussed in Section 18.7.2, we can use a graphical tool to examine the possible
presence of unobserved heterogeneity by looking at the estimated fit of the model. For
a correctly specified model, the residuals should follow the unit exponential distribu-
tion. One can evaluate the model fit informally by computing and plotting the em-
pirical cumulated hazard function against the generalized residual. For a correctly
specified model the plot should exhibits an approximate straight line with slope
one.

Figures 18.2 and 18.3 show the generalized residual plots for the exponential model
without and with (gamma) heterogeneity, respectively. As we can see from the two
graphs, the fit of the model improves only marginally after we introduce unobserved
heterogeneity.
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Figure 18.3: Unemployment duration: generalized residuals from the exponential-gamma
model. Same data as Figure 18.2.

633



MIXTURE MODELS AND UNOBSERVED HETEROGENEITY

Table 18.1. Unemployment Duration: Exponential Model with
Gamma and IG Heterogeneity

Exponential–Gamma Exponential–IG

Variable Coeff. t Coeff. t

RR 0.501 0.817 0.504 0.821
DR −0.882 −1.118 −0.807 1.032
UI −1.585 −6.043 −1.545 −5.994
RRUI 1.091 1.725 1.057 1.686
DRUI 0.057 0.055 −0.013 −0.012
LNWAGE 0.379 3.184 0.373 3.156
CONS −4.095 −4.507 −4.097 −4.545
σ 2 0.232 3.178 0.207 2.925
−ln L 2695.35 2696.48

This result can be verified by the actual estimates shown in Table 18.1, which
also presents the estimates of the exponential model with inverse-Gaussian (IG) het-
erogeneity. Although there is evidence of significant unobserved heterogeneity, the
estimates of coefficients in these two settings do not differ much from what we
have obtained earlier without the presence of unobserved heterogeneity. It is ex-
pected that the presence of unobserved heterogeneity will have a large impact on
the duration dependence parameter, as this factor is absent from the exponential
model.

However, a more interesting case arises when we consider a model with duration
dependence and unobserved heterogeneity. Without presuming that it is the “correct”
model, we consider the Weibull distribution–inverse Gaussian mixture model. For ease
of comparison, we present these estimates in Table 18.2 along with the estimates when
unobserved heterogeneity is neglected.

The introduction of unobserved heterogeneity has a substantial impact on the du-
ration dependence parameter, which increases from 1.129 in Table 17.8 to 1.753 in
Table 18.2. The latter implies a more steeply rising hazard rate out of unemployment
than was the case when unobserved heterogeneity was ignored. Recall from Section
18.2.4 that one of the consequences of neglected heterogeneity in proportional haz-
ards model is to underestimate the hazard rate; so the aforementioned empirical find-
ing is consistent with theory. Second, note that the evidence for unobserved hetero-
geneity is very strong; the estimated variance parameter σ 2 has a t-ratio exceeding
11. Third, the fit of the model, as reflected in the log-likelihood, has also improved
(from −2687.6 to −2616.6). Although there is not much qualitative change in the es-
timates of the coefficients, the effects of the significant coefficients (UI, LNWAGE,
and CONS) have become more pronounced after unobserved heterogeneity is
introduced.

The improvement in the fit of the model notwithstanding, the new mixture model
could still be misspecified. Once again we use the graphical device as an informal
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Table 18.2. Unemployment Duration: Weibull Model with and
without IG Hetorogeneity

Weibull–IG Weibull

Variable Coeff. t Coeff. t

RR 0.736 0.812 0.448 0.70
DR −1.073 −0.933 −0.427 −0.53
UI −2.575 −6.698 −1.496 −5.67
RRUI 1.734 1.857 1.105 1.57
DRUI −0.061 −0.039 −0.299 −0.28
LNWAGE 0.576 3.259 0.37 2.99
CONS −5.303 −3.953 −4.358 −4.74
α 1.753 44.19 1.129 51.44
σ 2 6.377 11.149 – –
−ln L 2616.6 2687.6

specification test. Figures 18.4 and 18.5 plot the generalized residuals from the Weibull
model with and without unobserved heterogeneity. The plots suggest that the mix-
ture model, despite being more general than the exponential–IG model, appears to
be misspecified. To reiterate, although a simpler model that allows for neither du-
ration dependence nor unobserved heterogeneity shows little graphical evidence of
misspecification, an “improved” specification that generalizes the model in both direc-
tions appears to be misspecified, a result similar to that of Jaggia (1991c). The appar-
ent puzzle may be resolved by the argument that the interaction between heterogeneity
and duration dependence accounts for the result. The Weibull model assumes mono-
tonic hazards. However, McCall (1996) provides evidence based on the same data that
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Figure 18.4: Unemployment duration: generalized residuals from the Weibull model. Same
data as Figure 18.2.
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Figure 18.5: Unemployment duration: generalized residuals from the Weibull-Inverse
Gaussian model. Same data as Figure 18.2.

a bathtub-shaped hazard function is more appropriate. He specifies a polynomial base-
line hazard function that is less restrictive than the monotonic function used here. Thus
a reasonable interpretation of our results is that a model that simultaneously allows
for both unobserved heterogeneity and duration dependence makes it easier to detect
misspecification than a model that ignores both.

Finally, we implement a parametric test for the presence of unobserved heterogene-
ity. The purpose is to illustrate some of the theory discussed in Section 18.7. The
score test for neglected heterogeneity developed in Section 18.7.1 assumed uncensored
data. Because the data used here include right-censored observations we implement the
score test for the censored sample developed by Jaggia (1997).

We wish to test for zero unobserved heterogeneity, H0 : σ 2 = 0, in the exponen-
tial duration model. Let the parameter set be denoted by θ = (σ 2,β) and let s(θ0)
and I (θ0) be, respectively, the score and the information matrix calculated under the
null. Using the log-likelihood derived in Section 18.7.1, we can write s(θ0) = (s1(θ0),

s2(θ0)), where s1(θ0) = ∂L
∂σ 2

∣∣
H0

= 1
2

∑
(ε2

i − 2Ciεi ) and I (θ0) = −E
[
∂2L
∂θ∂θ′

]∣∣∣
H0

. The

score test for unobserved heterogeneity is then given by

LM = s′
1(̃θ0)I11(̃θ0)s1(̃θ0) � χ2(1), (18.36)

where I11 = [I11 − I12 (I22)−1 I21]−1 is the first diagonal component of the parti-
tioned inverse of I(θ), given in Jaggia (1997), and the tilde superscript is used to
denote restricted maximum likelihood estimates.

For our sample, we found that LM = 44.25, which far exceeds the critical value
of χ2(1) and hence we reject the null of σ 2 = 0. This result is consistent with that
from the Weibull–gamma and Weibull–IG models where a significant improvement
in the fit of the model resulted from introduction of unobserved heterogeneity. As
previously noted, this test has power against a test of misspecified duration dependence
also.
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18.9. Practical Considerations

The issue of interaction between hazard function and unobserved heterogeneity has
generated a huge literature. One point of view that is well documented states essen-
tially that if the hazard function is well specified then the precise parametric specifi-
cation of the heterogeneity distribution is relatively innocuous (Manton et al., 1986).
This view implies that rather than parametrically modeling unobserved heterogeneity
we can simply use robust variance estimates, given that the hazard function is well
specified. Other studies suggest that parametric specification of the heterogeneity dis-
tribution is not innocuous (Heckman and Singer, 1984a) and that it is desirable to
use a nonparametric specification. Some highly influential work has advocated use
of a discrete hazard model with a very flexible specification of the hazard function,
combined with a parametric assumption about heterogeneity (Meyer, 1990; Han and
Hausman, 1990). Finally, as a compromise between all the foregoing positions, some
researchers use the Han–Hausman discrete-time approach, or a high-order polynomial
hazard function, and combine it with the Heckman–Singer approach of nonparametric
heterogeneity. However, as Baker and Melino (2000) have pointed out, this may lead to
overparameterization that is far from innocuous. Hence it seems sensible to approach
this issue with caution, and use parsimonious models in preference to models saturated
with heterogeneity parameters.

The Cox PH model has a central place in the biometrics literature. When there is no
intrinsic interest in the baseline hazard function then this seems an attractive choice of
functional form. It is often a good place to start modeling. However, unobserved het-
erogeneity is important in most econometric specifications and should not be ignored.

Many statistical packages offer a choice of standard parametric duration models that
can be combined with any of the standard (gamma, inverse-Gaussian, or log–normal)
heterogeneity (“frailty”) specifications. Although this is a very convenient option to
use, discrete hazard models hold greater appeal as they provide greater flexibility and
a better match with economic data.

The implementation of the EM algorithm for the latent class model often suffers
from slow computational speed. Direct maximization of the likelihood is often both
feasible and efficient.

18.10. Bibliographic Notes

18.2 There are many papers that discuss the specification of the heterogeneity distribution
and consequences of misspecification. Vaupel et al. (1979) provide a good discus-
sion of the properties of the gamma model. Hougaard (1984) considers several al-
ternatives to the gamma. Hougaard (1995) gives a survey of heterogeneity models.
Heckman and Singer (1984a) advocate nonparametric specification and emphasize
the sensitivity to misspecification. Manton et al. (1986) attempt to disentangle the
relative importance of misspecifying the hazard and heterogeneity, suggesting that
the former is critical.

18.3 Van den Berg (2001) provides a thorough and accessible treatment of and further
references on the identification of the MPH model.
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18.4 Han and Hausman (1990) and Meyer (1990) offer good empirical examples that com-
bine flexible hazard specifications with parametric assumptions about heterogeneity.

18.5 The paper by Heckman and Singer (1984a) is an early discussion of the discrete
heterogeneity model. The finite mixture model of unobserved heterogeneity is also
commonly referred to as the “nonparametric heterogeneity” model. Baker and Melino
(2000) describe a Monte Carlo study of duration dependence and nonparametric het-
erogeneity. They consider models with very flexible specification of duration depen-
dence with nonparametric heterogeneity. Their results suggest that, when both are
present, the strategy of having many finite mixture components in likelihood gener-
ates large biases and unreliable results. Using the BIC or the Hannan–Quinn criterion,
which penalizes overparameterization, can be helpful.

18.6 Lancaster (1990) and Salant (1977) are excellent references on length-biased sam-
pling. Lancaster provides foundational material on renewal theory that forms the ba-
sis of several key results. Also see Taylor and Karlin (1994).

18.7 There are many papers on specification testing in duration models, most of them
handling the easier case of no censoring. Kiefer (1988) provides an overview. Jaggia
(1991a) offers a brief but clear introduction to the conditional moment approach to
specification testing (which is also summarized in Greene (2003)). As yet untried
in the context of duration models is a very general, but computationally demanding,
approach to specification testing due to Andrews (1997). Model selection issues for
finite mixture models are discussed in Cameron and Trivedi (1998, chapter 6), in the
context of count models. A good introduction to model diagnostics based on different
types of residuals for duration models is given in Hosmer and Lemeshow (1999,
pp. 196–240).

18.8 Lancaster’s (1979) classic empirical paper analyzes unemployment duration in the
context of a Weibull–gamma mixture model. Jaggia (1991c) studies misspecifica-
tion in a strike duration model using a generalized gamma model that nests several
popular specifications. His paper also highlights the difficulty of making inferences
from overly restrictive models. A number of other applications of duration models
are covered in Chapter 19.

Exercises

18–1 (Adapted from Sapra, 2002) The analysis of Section 18.2 shows the effects
of unobserved heterogeneity on the unconditional or averaged hazard function.
The result that neglected heterogeneity leads to under-estimation of the slope of
the average hazard function is emphasized. Let the conditional hazard function
be λC(t |ν) = νλ0(t), where λ0 denotes the baseline or unconditional hazard func-
tion. Show that (i) the unconditional hazard λU (t) < λ0(t) and (ii) ∂λU (t)/∂t < 0 in
each of the following examples.

(a) ν ∼ Uniform[0,1] and λ0(t) = 1 ∀ t .
(b) ν follows a unit exponential distribution with pdf g(ν) = e−ν and λ0(t) =

ρ exp(γ t), ρ > 0, γ < 0.
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18–2 Reconsider the Weibull–gamma model of Section 18.2.3 after replacing the
gamma distributed heterogeneity assumption by the assumption that hetero-
geneity is distributed according to the log-normal distribution with unit mean.

(a) Verify that in this case an analytical expression for the unconditional hazard
function is not obtainable.

(b) Substitute the integral expression for unconditional hazard into the log-
likelihood given in Section 17.6.3. Using the simulation-based maximum
likelihood approach of Section 12.4, describe an estimation algorithm that
details the various steps involved in likelihood maximization.

18–3 Consider the exponential–gamma mixture. This model is a special case of a
MPH model. The survivor function, conditional on a multiplicative heterogeneity
factor ν, for the exponential model is S(t |ν) = exp(−µtν), λ > 0. The uncon-
ditional survivor function is given by the average survivor function. Averaging
is across the heterogeneous population using g(ν), the density of ν, as the
weighting function, so S(t) = ∫∞

0 S(t |ν)g(ν)dν. Assume that ν is (two-parameter)
gamma distributed with g(ν) = δkνk−1 exp(−δν)/�(k).

(a) Show that, given gamma heterogeneity, S(t) = (1 + µt/δ)−k.
(b) Derive expressions for the unconditional duration density function f (t) and

the unconditional hazard function λ(t). These general expressions can be
specialized by setting the mean of ν at 1; that is, set k = δ, which leads to the
exponential–gamma mixture. Compare the mean and variance properties of
this mixture distribution with those of the original exponential distribution.

(c) Suppose that the random variable ν has a two-point distribution such that
with probability π it takes the value ν1 and with probability (1 − π ) it takes the
value ν2. What are the implications of this assumption for the specification
of the unconditional survivor function? Explain your answer.

18–4 Using the sample of the McCall data set from the empirical exercise in the pre-
vious chapter, reestimate the Weibull model for those transiting to full-time em-
ployment (CENSOR1 = 1) under the assumption that unobserved heterogeneity
(also called frailty in some computer packages, which may also have a subcom-
mand for specifying it) has gamma distribution.

(a) Using generalized residuals as in Section 18.7.2 test the hypothesis of
model misspecification.

(b) Does the new model display a duration dependence property? Does it pro-
vide a better fit to the data? Explain the results by reference to the interaction
between unobserved heterogeneity and duration dependence.

(c) Repeat the exercise of part (a) under the assumption of log-normal het-
erogeneity. Are the results about duration dependence significantly different
from those for the gamma heterogeneity?
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C H A P T E R 19

Models of Multiple Hazards

19.1. Introduction

This chapter deals with several different duration models that can be interpreted
broadly as multivariate models, a category that covers both parallel and repeated tran-
sitions. Any transition model that involves more than one destination state can be re-
garded as a multivariate model because the analysis will involve joint distribution of
two or more durations. The models we consider arise in a variety of ways and apply
to several different types of data. Despite their differences, they are grouped in this
chapter for reasons of organizational convenience.

To be concrete consider some examples. A familiar model from labor economics
involves a transition from unemployment to employment or out of the labor force. The
first transition can be further broken into return to the old job or to a new job. These
destinations are mutually exclusive. An unemployment spell may end by a transition
to any one of the destinations. A variant of this example considers an unemployed in-
dividual who could find either a new full-time or part-time job or remain unemployed.
Thus there are three possible states (destinations). The models of Chapters 17 and 18
dealt with transitions between two states. One can still use the two-state methods to
handle such data. For example, state 1 could be that of full-time employment and state
0 could be any other state. This would, as before, involve modeling one hazard rate.
However, one could also characterize this situation in terms of a model with three
states and two transitions and hence two hazard functions, one specific to each desti-
nation state. More generally, there will be a number of failure types and we may wish
to model the transition from a given state to any one of the failure types. In this chapter
we wish to extend the conceptual tools developed in the previous two chapters to deal
with multiple hazards (failures) or a multivariate duration model.

The important issues are as follows:

1. How does one model the relation between covariates and failures of different types?

2. How does one model interaction between failure types under a specific set of study
conditions?
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3. How does one estimate failure rates for certain types of failures given the “removal” of
some or all other failure types?

A multivariate duration model involves simultaneous modeling of all transitions,
that is, joint specification and estimation of two or more hazard functions. There are
several possible frameworks for analyzing multivariate duration data; the competing
risks framework is one of the most popular. McCall (1996) provides an empirical
application of the competing risks framework to unemployment data with focus on
the role of unemployment insurance. Using an approach similar to McCall’s, Deng,
Quigley, and Van Order (2000) study the transitions of mortgage holders to the states
of prepayment or termination of mortgages.

What is the motivation for and the gains from joint modeling of hazards? If the
different hazards are essentially independent then separate and joint modeling will
produce the same results. However, different hazards may be linked; for example, there
may be present a common unobserved heterogeneity term in each hazard function.
Alternatively, each hazard may include an unobserved heterogeneity term with one or
more common shared components, leading to correlated hazards.

A second class of examples involves a case of parallel events in which one ana-
lyzes the joint distribution of durations to destinations. For example, the pair (T1, T2)
could be the duration of unemployment and duration without health insurance. Here
the motivation for joint estimation of the hazards could be similar to that previously
outlined.

A third example involves joint distribution of lengths of repeat spells in the same
state (e.g., unemployment, or without health insurance). That is, for a given individual,
one wants to simultaneously model the hazards of terminating a spell. If the spells in
question are independent, then they can be analyzed by single-spell methods of earlier
chapters. If the researcher wants to study the dependence structure of the transitions,
then joint modeling of spells in a given state is appropriate. New models and methods
are called for when the spells are dependent. This last example is potentially more
complex than the preceding ones because of possible dependence between events sep-
arated by time intervals. For example, the length and type of a previous spell, or more
generally the past history of spells, may affect the probability and length of a succeed-
ing spell; or the unobserved characteristics of the individual may persist over succes-
sive spells. Such serially correlated unobserved heterogeneity creates a link between
repeat spells. Even the occurrence probability of an event may depend on previous
occurrence of the same event. Heckman and Borjas (1980) characterize several struc-
tural types of state dependence for an individual using concepts such as occurrence
dependence and (Markovian) lagged duration dependence.

Corresponding to these different data situations are a variety of models in the liter-
ature. However, though they might appear to be a disparate selection they are linked
by several common threads. After introducing the basic concepts, in Section 19.2 we
examine the popular competing risks model. In Section 19.3 we consider a multivari-
ate model based on marginal distributions of a set of survival times and introduce the
copula approach to joint modeling of survival times. Multiple-spell modeling is con-
sidered in Section 19.4.
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19.2. Competing Risks

First, we introduce some concepts that are used to in the competing risks model
(CRM) and in other multivariate formulations. Often these are extensions of concepts
already introduced in Chapter 17. The basic CRM formulation is applicable to mod-
eling time in one state when exit is to a number of competing states, such as different
causes of death. The CRM is attractive because it is relatively straightforward to im-
plement if the model is a PH model.

19.2.1. Basic Concepts

We now consider the CRM in which there are m latent duration or failure times, one
for each distinct competing cause of failure.

Latent Durations

The setup of the model is as follows. Each subject has an underlying failure time,
which is subject to censoring. Failure time may be one of m different types, given by
the set J = {1, . . . ,m}. We may think of this as a situation with m distinct causes of
transition from a given state (“death”). However, the occurrence of a failure of one
kind of event removes the individual from risks of other kinds of events. Therefore,
given censoring of the remaining (m − 1) durations for each individual, we observe at
most one complete duration.

In a CRM with m types of failures, there are m + 1 states {0, 1, . . . ,m}, where
0 represents the initial state and {1, . . . ,m} are possible destination states. For the
i th individual the data vector is of the form (xi , ti , d1i , . . . , dmi , dci ), where xi is a
vector of weakly exogenous covariates that measure the characteristics of i , ti =
min (t1i , . . . , tmi , tci ) , where tki denotes the time to transition to the kth destination,
tci denotes the time of censoring, and d ji ≡ 1

(
t ji = ti

)
, j = 1, . . . ,m, c are dummy

variables that take the value one if t ji = ti . Because we only observe one of the t ji , the
remaining are interpreted as latent variables.

Censoring may be regarded as a competing risk. It operates on individuals according
to a probability distribution. In this chapter the censoring variable is assumed to be
independent of the (t1, . . . , tm).

Unobserved characteristics of i are subsumed under unobserved heterogeneity, de-
noted as ν. If ν varies with cause of exit, then we write it as ν j , j = 1, . . . ,m.

Competing Causes

A standard example of competing risks is death from competing causes. Consider
an individual who has had a kidney transplant operation and is “at risk” of transit-
ing to the healthy state, or to rejection, or to some other unhealthy condition such
as a liver complication. Succumbing to any one condition means that transition to
other states is not possible. So in an m-event setup, each event provides one complete
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duration and m − 1 censored durations. Thus we have a situation of “competing
risks” in which there is competition to determine the transplant patient’s destination
state.

Although discrete-time models are often required in empirical applications, our ex-
position of the joint hazard formulation uses the continuous-time framework and gen-
erally follows the exposition given in Mealli and Pudney (1996). We also assume that
we have single-spell data.

The model provides the joint distribution of the spell duration, denoted τ, and
the exit route r, which is an integer variable that takes one of the values in the set
(1, 2, . . . ,m).

We ignore censoring for simplicity and assume that there exist latent variables
(t1, . . . , tm), one for each destination, that correspond to the spell duration for each
possible exit route by which the spell may terminate if there were no other risk factors
that might cause the spell to end sooner. Destination-specific covariates are denoted by
x j ( j = 1, . . . ,m). We observe one duration, τ, where

τ = min (t1, . . . , tm) (19.1)

= min
j

(
t j
)
, t j > 0,

at the termination of the spell; that is, only the shortest duration is observed and the
rest are censored. Censoring owing to factors other than exit are not considered. Then

Pr [τ > t] = Pr [t1 > t, . . . , tm > t] (19.2)

= Sτ (t),

which is the joint survivor function. If the risks are independent then

Pr [τ > t] = Pr [t1 > t] × Pr [t2 > t] × · · · × Pr [tm > t] . (19.3)

The corresponding exit route r is given by

r = arg min
j∈J

(
t j
)
. (19.4)

Let g j (t)dt denote the probability of succumbing to risk j in the interval (t, t + dt);
then the total hazard rate applicable to all causes is

λτ (t) ≡ −d/dt ln Sτ (t) =
m∑

j=1

g j (t).

In biostatistics this is referred to as the total force of mortality (David and
Moeschberger, 1978). If risks are independent, then the hazard rate for a specific cause
j is λ j (t) = g j (t). This means that probability of failure from cause j in (t, t + dt),
conditional on survival to t, is the same whether j is one of the risks or the only risk.
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The probability of surviving the risk j in the interval (T1, T2) conditional on surviv-
ing to T1 is ∫ T2

T1

λ j (t) dt =
∫ T2

0
λ j (t) dt −

∫ T1

0
λ j (t) dt (19.5)

= ln S(T2) − ln S(T1)

= − ln
Pr
[
t j > T2

]
Pr
[
t j > T1

] ,
or equivalently

exp

(
−
∫ T2

T1

λ j (t) dt

)
= Pr

[
t j > T2

]
Pr
[
t j > T1

] . (19.6)

One minus the left-hand side expression is referred to as the net probability of death
from cause j in the interval (T1, T2) . The expression in (19.6) is useful for building up
the likelihood function for estimation.

Independent Risks

We can now explicitly bring into the picture covariates that affect the hazard rate. We
assume independent risks (as opposed to correlated risks) and consider the distribu-
tion of t j . The hazard rate for failure of j th type is defined by

λ j (t j |x j ) = lim
�t j →0

Pr[t j ≤ T ≤ t j +�t, |T ≥ t j , x j ]

�t j
,

and the integrated hazard � j (t j |x j ) for the j th type risk is defined by

� j (t j |x j ) =
∫ t j

0
λ j (s|x j )ds.

Then the duration density is

f j (t j |x j ,β j ) = λ j (t j |x j ,β j )Sj (t j |x j ,β j ),

= λ j (t j |x j ,β j ) exp[−� j (t j |x j ,β j )],

using the relation between survivor and integrated hazard functions. Defining x =
[x1, . . . , xm]′ and β = [β1, . . . ,βm]′ gives the joint density of τ and r :

f j (τ, r |x,β) = fr (τ |xr ,βr )
∏
j �=r

exp[−� j (τ |x j ,β j )] (19.7)

= λr
(
τ |xr ,βr

)
exp[−�r (τ |xr ,βr )]

×
∏
j �=r

exp[−� j (τ |x j ,β j )]

= λr
(
τ |xr ,βr

) m∏
j=1

exp[−� j (τ |x j ,β j )].

The first line follows from the product of conditional and marginal probabilities. The
second term on the right-hand side is the product of survival probabilities for all exit
routes other than r, which uses the independence of risks assumption.
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Equation (19.7) implies that

λ j
(
τ |x j ,β j

)
exp

[
m∑

j=1
−� j (τ |x j ,β j )

]
(19.8)

= λ j
(
τ |x j ,β j

)
exp
[−�a(τ |x,β)

]
,

where �a(τ |x,β) =∑m
j=1� j (τ |x j ,β j ) is the aggregate or overall integrated hazard.

This last equation simply says that the total hazard of leaving the origin state is the
sum of hazards for all destinations. The overall survivor function is

S(t) = exp
(−�a(t)

)
. (19.9)

The likelihood function given independent risks is the product over all observations
of terms like (19.7). This likelihood can be written explicitly if all relevant functional
forms are specified. Many issues that were previously relevant, such as flexibility of
functional form, unobserved heterogeneity, and so forth, remain relevant in the context
of CRM. Instead of keeping the discussion at a general level, we now consider specific
functional forms. The proportional hazard specification is popular in the literature and
will be used here.

19.2.2. CRM with Proportional Hazards

The goal here is to derive the joint density of spell length and reason for exit, and this
can be done by aggregating the integrated hazard over reasons for exit.

Consider PH models of the form

λ j (t ; x) = λ0 j (t) exp[x′(t)β j ], j = 1, . . . ,m,

where both the baseline hazard λ0 j and β j are specific to type j hazard, and t j1 <

· · · < t jk j denote the k j ordered failures of type j . For example, if m = 2, then k1 refers
to the number of individuals who registered a failure of type 1, and k2 to the number
of individuals who registered a failure of type 2.

The likelihood function for the Cox CRM given is then

L(β1, . . . ,βm) =
m∏

j=1

k j∏
i=1

exp[x′
j i (t ji )β j ]∑

l∈R(t ji ) exp[x′
l(t ji )β j ]

, (19.10)

=
m∏

j=1

L j (β j ),

where

L j (β j ) =
k j∏

i=1

exp[x′
j i (t ji )β j ]∑

l∈R(t ji ) exp[x′
l(t ji )β j ]

. (19.11)

Notice the following four features of this likelihood: (1) L j (β j ) is the partial like-
lihood developed in Section 17.8.2. The baseline hazard function is absent, and the
asymptotic distribution results stated previously also apply. (2) L(β1, . . . ,βm) can be
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jointly maximized by maximizing each individual factor L j (β j ), given the indepen-
dence of risks; hence joint and separate maximizations are equivalent. Estimation and
comparison of the β j s can be made by applying standard asymptotic techniques to
each individual factor in the m-term likelihood. (3) The ideas of Sections 17.7 and 17.8
can be extended directly. If a discrete-time (dummy variable) formulation is used for
each type of hazard, then the identifiable components of the hazard function can be es-
timated for each type of hazard jointly with the β j . (4) Unobserved heterogeneity can
be introduced exactly as in the single-spell, two-state proportional hazards model in
Chapter 18.

19.2.3. Identification of CRM

Cox (1962a) and Tsiatsis (1975) showed that when the CRM has no covariates, the
model is not identified. More precisely, this means that any CRM with dependent risks
is observationally equivalent to a CRM with independent risks. However, Heckman
and Honoré (1989) showed that under certain assumptions a CRM that has the mixed
PH form with covariates is identified. Van den Berg (2001, pp. 3438–3441) provides an
exposition of the underlying assumptions. Assumptions additional to those discussed
in Chapter 17 are needed. For example, the covariates must show “sufficient variation”
and should not be perfectly collinear. We also require that the baseline hazards for
different risks should not be perfectly related.

19.2.4. Interpretation of Regression Coefficients

In the proportional hazards type formulation of CRM, the impact of a change in a
covariate on the hazard rate for transition from a given state is analogoue to the PH
model in Chapter 17, but the direct interpretation of regression coefficients faces an
interpretation problem similar to that discussed for the multinomial logit in Section
15.4.3.

However, one may also be interested in the impact of change in a covariate on the
probability of exit via route r . This is harder to calculate. To see this note that the
expression for the probability of exiting a given state via route r is given by

Pr [r |τ, x,β] = λr
(
τ |xr ,βr

)∑m
j=1 λ j (τ |x j ,β j )

. (19.12)

Because covariates appear in both the numerator and the denominator, and more-
over the denominator is the sum of all hazards, the sign of the partial derivative
∂ Pr [r |τ , x,β] /∂xrk depends on all the parameters in the model. It is then not true
that the sign of βrk is also the sign of the partial. (The situation is exactly analogous
to that discussed in Chapter 15 on multinomial models.) However, the following result
is available if the competing risk is of the proportional hazard type (Thomas, 1996,
p. 31). If βrk > β jk, ∀ j �= r, then the sign of ∂ Pr [r |τ , x,β] /∂xrk is positive. In
words, an increase in xk will increase the conditional probability of exit via route r
if its estimated coefficient in λr (·) is larger than the corresponding coefficients in all
other hazard functions.
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19.2.5. CRM with Unobserved Heterogeneity

If the competing risks are of the proportional hazards type, then the methods of the pre-
vious chapter can be extended to include unobserved heterogeneity. A general specifi-
cation of unobserved heterogeneity allows for a state-specific random component. Let
ν = (ν1 . . . νm) be the vector of unobserved multiplicative heterogeneity terms that are
assumed to have a joint distribution function G(ν); then,

f j (τ, r |x,β,ν) = λ j (τ |x j ,β j , ν j ) exp

[
m∑

j=1

−� j (τ |x j ,β j , ν j )

]

= λ j (τ |x j ,β j )ν j exp

[
m∑

j=1

−� j (τ |x j ,β j )ν j

]
,

where the second line follows from assumption of multiplicative heterogeneity.
This is an example of a competing risks model with state-specific random effects.

The distribution marginal with respect to ν is obtained by integrating out ν,

f j (τ, r |x,β) =
∫
. . .

∫
λ j (τ |x j ,β j )ν j exp

[
m∑

j=1

−� j (τ |x j ,β j )ν j

]
dG(ν),

which involves an m-fold integral.
A manageable case is one in which the m elements of ν are independent gamma

distributed random variables. In this case the m-fold integral decomposes into a prod-
uct of m integrals. An example is the case in which we have a Weibull–gamma
mixture for each cause-specific hazard function. In this case the competing risks are
independent.

If we allow the elements of ν to be correlated, then we get a more interesting case in
which the competing risks are dependent. Indeed, this is a very widely used “trick” for
generating dependence among competing risks. Specifically, suppose we have a mul-
tivariate log-normal distribution for ν, that is, [ln ν1 . . . ln νm]′ ∼ N [0,Σ]. This has
two consequences. First, it induces dependence in the competing risks through hetero-
geneity; second, it makes computation of maximum likelihood estimates considerably
more difficult. The reason for the latter is that the m-fold integral does not have an
analytic expression. Consequently, Monte Carlo integration will have to be used. If
m equals two or three as in many applied examples, this is still manageable but far
from trivial. To reduce the dimensionality of the integral it may be useful to restrict
the structure of the covariance matrix. For example, we may use a factor structure in
which each term ν j may be specified to be a linear function of (say) two iid random
variables, with unknown weights (factor loadings). For identifiability, normalization
restrictions on the weight coefficients may be necessary.

19.2.6. CRM with Dependent Competing Risks

The independent CRM has an important computational advantage over the model in
which dependence is induced through heterogeneity variables correlated across com-
peting hazards. However, the latter yields valuable additional information about the
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structure of heterogeneity, such as the association parameter(s). Nonetheless, there re-
mains the practical issue of how restrictive a specification of correlated heterogeneity
one should choose. For exposition let us view the problem in a bivariate regression-like
setting using the following setup similar to that in (17.20):

ln

[∫
λ1(u)du

]
= −x′β1− ν1 + ε,

ln

[∫
λ2(u)du

]
= −x′β2− ν2 + ε.

Now we could assume ν1 = ν2 = ν, that is, exactly the same unobserved heterogene-
ity term in both hazard models. The assumption is that the same unobserved factors
affect both spells but their impact may differ. This amounts to perfectly correlated
heterogeneity across the two hazards. Less restrictively, we could assume that, for ex-
ample, ν1 and ν2 are correlated and estimate an association parameter. We can think of
these as one- and two-factor models of heterogeneity, respectively. Whether the more
restrictive approach is empirically desirable depends on the context. For example, if
the two hazards pertain to the same individual, and we think of ν1 and ν2 as reflecting
individual-specific factors, then the one-factor model has justification. If, however, we
think of the two factors as hazard-specific, then the two-factor model is more appeal-
ing. There is some theoretical and Monte Carlo evidence that the use of the one-factor
model when the two-factor model is the correct specification causes significant distor-
tions (Lindeboom and Van den Berg, 1994).

19.3. Joint Duration Distributions

In this section we consider the case of nonmutually exclusive or parallel spells that are
dependent. Survival times are assumed to be continuous. The exposition is at a general
level and for simplicity it is restricted to the case where the spells are not censored and
have parametric distributions.

In applied work on jointly distributed survival times a natural starting point would
be a particular functional form for the joint survival or the joint density function that
may be used. Are there some “standard” functional forms available? Or is there a
general method for generating the multivariate counterparts of the models considered
in the previous chapters? We consider these issues in the following.

19.3.1. Extending Survival Concepts to a Multivariate Setting

It is helpful to begin by extending the definitions and concepts of the two previous
chapters to the multivariate case.

A multivariate survival function S(t) is defined by

S(t) = S
(
t1, . . . , tq

)
(19.13)

= Pr
[
T1 > t1, . . . , Tq > tq

]
,
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where T1, . . . , Tq are q survival times with univariate survival functions Sj
(
t j
)
. By

definition,

Sj (t j ) = Pr
[
Tj > t j

]
(19.14)

= S
(
T1 ≥ 0, . . . , Tj ≥ t j , . . . , Tq ≥ 0

)
= S
(
0, . . . , t j , . . . , 0

)
.

Unlike the case of the univariate survival function

S(t1, . . . , tq ) �= 1 − F(t1, . . . , tq ).

For example, S(t1, t2) = 1 − F(t1) − F(t2) + F(t1, t2).
The joint density of (t1, . . . , tq ) is denoted by f (t1, . . . , tq ); if F(t1, . . . , tq ) is con-

tinuous then

f (t1, . . . , tq ) = (−1)q ∂
q F(t1, . . . , tq )

∂t1 . . . ∂tq
. (19.15)

Analogous to the univariate case the joint hazard function is λ
(
t1, . . . , tq

)
and is

defined by

λ(t1, . . . , tq ) = f (t1, . . . , tq )

S(t1, . . . , tq )
. (19.16)

The joint integrated hazard �(t1, . . . , tq ) is the q-fold integral of λ(t1, . . . , tq ). How-
ever, there is no simple relationship between�(t1, . . . , tq ) and S(t1, . . . , tq ) analogous
to the univariate case.

Given these definitions, is it possible to derive joint survival functions? Clayton and
Cuzick (1985) consider a bivariate model that illustrates the definitions given here. The
starting point in their analysis is an assumption about the “cross-hazard ratio” func-
tion, defined as a function of two conditional hazard functions of t1, given T2 = t2 and
T2 ≥ t2. This leads to a nonlinear, second-order partial differential equation whose
solution generates a joint survival function in which the cross-hazard ratio function
plays an important role. We refer to the original sources for detail but note that this ap-
proach requires assumptions that may be difficult to extend beyond dimension higher
than two.

19.3.2. Bivariate Distributions Based on Marginals

This section briefly reviews some approaches for generating bivariate duration models.
The approach builds on assumptions about marginal survival functions. This may be
useful if the researcher has a good feel for such marginal distributions and wants to use
them as building blocks. Of course, choice of the building blocks places restrictions
on the form of the resulting joint distribution.

One approach, which is due to Marshall and Olkin (1990), considers a model with
multiplicative unobserved heterogeneity in the marginal distributions of both failure
times in the following way. Let fi (ti |xi , ν), i = 1, 2, denote the marginal distributions
of t1, t2, given covariates x1, x2; here ν is the common unobserved heterogeneity term
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in the two marginals and is the source of association between the two hazards. In
survival analysis such a model might be referred to as “shared frailty” model; it is the
(only) source of correlation between t1 and t2. Assume that ν, ν > 0, has probability
distribution with density g(ν). The bivariate distribution of t1, t2 is formally defined as

f (t1, t2|x1, x2) =
∫ ∞

0
f1(t1|x1, ν) f2(t2|x2, ν)g(ν)dν, (19.17)

where distribution parameters are suppressed for notational simplicity.
This bivariate distribution generated as a mixture may or may not have a closed-

form solution, so without a specific parametric specification one cannot say whether
the result will be computationally convenient to use. It is also the case that the resulting
bivariate distribution will restrict the correlation between t1 and t2 to be positive. In
some cases this may not be desirable.

This general approach, applicable to any type of data, can be specialized to the
present case by replacing the marginal distributions with marginal survivor functions
and deriving the joint survivor function by integrating out the variable ν; thus,

S(t1, t2|x1, x2) =
∫ ∞

0
S1(t1|x1, ν)S2(t2|x2, ν)g(ν)dν. (19.18)

An example of the application of this idea is provided by Clayton and Cuzick (1985),
who use such a formulation to obtain a bivariate survivor function under the assump-
tion of marginal proportional hazards with gamma heterogeneity.

As illustrated this approach for generating bivariate survivor model is somewhat re-
strictive. One source of restriction is the assumption of one-factor unobserved hetero-
geneity. In principle this restriction is easy to remove. For example, we could replace ν
by (ν1 ν2) , ν1 > 0, ν2 > 0, which represents a vector of two correlated elements, one
specific to each survivor function, with a joint probability distribution g(ν1, ν2). Then

S(t1, t2|x1, x2) =
∫ ∞

0

∫ ∞

0
S1(t1|x1, ν1)S2(t2|x2, ν2)g(ν1, ν2)dν1dν2. (19.19)

For concreteness suppose that

ν1 = ω11ε1 + ω12ε2,

ν2 = ω21ε1 + ω22ε2,

ε j ∼ G
[
1, σ 2

j

]
, j = 1, 2,

where
{
ωi j , i, j = 1, 2

}
are unknown parameters, frequently referred to as “factor

loadings.” This says that heterogeneity components (ν1, ν2) are correlated linear
combinations of iid random components ε1 and ε2 if factor loadings are not zero.
Other popular assumptions in empirical work are (i) that (ln ε1, ln ε2) have a stan-
dard bivariate normal distribution or (ii) that ν1, ν2 have a discrete (finite-mixture)
distribution. So the model (19.19) has a bivariate mixture form. Additional identi-
fying restrictions (e.g., the normalization ω11 = 1) are necessary also. The Pearson
correlation coefficient between ν1 and ν2, Cov[ν1, ν2]/ [V[ν1]V[ν2]]1/2, depends on
{ωi j , σ

2
j , i, j = 1, 2} and it is straightforward to verify that here this quantity would

not have the usual −1 and +1 as the lower and upper bounds. (Also note that the
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corresponding association parameter for failure times is Cov[t1, t2]/ [V[t1]V[t2]]1/2,
which is distinct from that given.) Van den Berg (1997) derives sharp bounds on
Cor[t1, t2|x], specifically −1/3 < Cor[t1, t2|x] < 1/2, for a mixed proportional haz-
ard model with constant baseline hazard, and shows that these bounds do not depend
on the covariates x nor on the distribution of heterogeneity. If baseline hazard is not
constant, the correlation bounds also depends on it.

The factor loading specification has computational advantages relative to that in
which the unobserved heterogeneity components enter in an unrestricted manner. Al-
though a one-factor model is likely to be too restrictive, an unrestricted model gives
rise to a potentially high dimensional integral. From a computational viewpoint, the re-
sulting distribution may or may not be easy to handle, depending in part on whether or
not the integration produces a closed-form expression for the joint survivor function.
If it does not, a simulation-based approach will be needed for estimation. At present
estimation of such a model would require going beyond standard packages.

The factor loading specification does place restrictions on the model (Van den Berg,
2001; Lindenboom and Van den Berg, 1994). For example, if one of the marginal mod-
els does not indicate the presence of unobserved heterogeneity, then Cov[ν1, ν2] must
be zero; if V[ν1] > 0 and V[ν2] > 0, then Cov[ν1, ν2] �= 0. Hence if Cov[ν1, ν2] = 0,
then one of the marginals has no unobserved heterogeneity.

From an applied perspective an attractive multivariate survivor function should be
flexible. The approach just outlined has some limitations. There are alternative ap-
proaches that have been proposed. One such approach that holds some promise is the
use of copula functions. Hougaard (2000, pp. 435–437) provides an introduction in the
context of survival analysis.

19.3.3. The Copula Approach

Copulas, originally introduced by Sklar in a 1959 article in French (see also Sklar,
1973), have been suggested as a useful method for deriving joint distributions given the
marginals, especially when one wants to work with nonnormal distributions. Although
we introduce this idea in the context of joint survival models, where it has found ready
applications, it can also be used to study the joint distributions of any set of discrete,
continuous, or mixed discrete/continuous variables.

The approaches already discussed (e.g., the Marshall–Olkin method) generate
dependence between variables through unobserved heterogeneity components. This
seems attractive in most applications because it is impossible for observed covariates
to cover all relevant aspects of an economic event.

Properties of Copulas

To define a copula we begin with possibly dependent uniform random variables
U1, . . . ,Uq on the [0, 1] interval. The dependence relationship is described through
their joint cdf

C
(
u1, . . . , uq

) = Pr
[
U1 ≤ u1, . . . ,Uq ≤ uq

]
, (19.20)

651



MODELS OF MULTIPLE HAZARDS

where the function C(·) is the copula, and u j is a particular realization of U j , j =
1, . . . , q.

The right-hand side is the joint cdf, F(·), and the q arguments of the copula can be
replaced by q marginal cdfs F1(·), . . . , Fq (·). That is,

C
(
F1 (u1) , . . . , Fq

(
uq
)) = F

(
u1, . . . , uq

)
defines a joint cdf. With a copula-based construction of a joint cdf we select a set of
marginals and combine them to generate a joint cdf. A given copula is a functional
form for combining selected marginals and different choices of C(·) lead to different
joint cdfs. Sklar’s Theorem established that any multivariate distribution function
can be written in the form (19.20) and that given continuous marginals the copula
representation is unique.

As specialized to a multivariate survival function, Sklar’s Theorem says that a q-
dimensional multivariate survival function S(t1, . . . , tq ) has a corresponding copula
representation C(S1(t1), . . . , Sq (tq )).

Consider the case q = 2. Then,

F (t1, t2) = Pr [T1 ≤ t1, T2 ≤ t2]

= 1 − Pr [T1 > t1] − Pr [T2 > t2] + Pr [T1 > t1, T2 > t2]

and

S(t1, t2) = Pr [T1 > t1, T2 > t2]

= 1 − F(t1) − F(t2) + F(t1, t2)

= S1(t1) + S2(t2) − 1 + C (1 − S1(t1), 1 − S2(t2)) ,

where C(·) is called the survival copula. Notice now that S(t1, t2) is now a function of
the marginal survival functions only.

Copulas have a certain symmetry property that allows one to work with copulas
or survival copulas (Nelsen, 1999). Joe (1997) defines a bivariate copula associated
with F(·), denoted by C(u, v), as a two-dimensional probability distribution function
defined on the unit square [0, 1]2 , with univariate marginals uniform on [0, 1] . For all
(u, v) ∈ [0, 1] , C(u, 0) = C(0, v) = 0,C(u, 1) = u, and C(1, v) = v. In the context
of survival copulas we replace u by the marginal survivor function S(t1) and v by the
second marginal survivor function S(t2). In this notation Sklar’s Theorem states that
there exists a copula function C such that

F(u, v) = C (Fu(u), Fv(v)) , (19.21)

where F(u, v) = Pr [U < u, V < v] is a bivariate distribution function of random
variables U and V , and Fu(u) and Fv(v) denote the marginal distribution functions.

If F is continuous, and if the univariate marginals have corresponding quantile func-
tions F−1

u and F−1
v , then the unique copula in Equation (19.21) can be expressed as

C(u1, u2) = F
(
F−1

u (u), F−1
v (v)

)
.

The copula approach involves specifying marginal distributions of each random
variable along with a function (copula) that binds them together. The copula function
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can be parameterized to include measures of dependence between the marginal distri-
butions. If no dependence is detected, the two marginals are independent, and estima-
tion can be performed on each variable separately. However, if dependence is present,
improved estimates may be obtained by recovering a joint distribution by way of a
copula function. Since a copula can capture dependence structures regardless of the
form of the margins, a copula approach to modeling related variables is potentially
very useful to econometricians. Frechet bounds make it possible to study the extent
of dependence permitted by any copula. Despite apparent differences we see that the
mixture approach of Section 19.3.2 for deriving the bivariate survival function leading
to (19.19) is fundamentally similar to that based on the copula approach as both begin
with marginals.

We now consider an example with q durations
(
T1, . . . , Tq

)
that are conditionally

independent given common neglected unobserved heterogeneity ν; covariates are ex-
cluded for simplicity. Then the conditional joint survivor function is

Pr
[
T1 > t1, . . . , Tq > tq | ν

] = Pr [T1 > t1| ν] × . . .× Pr
[
Tq > tq | ν

]
= S1 [(t1)| ν] . . . Sq

[
(tq )| ν]

and the multivariate survival function is defined as

Pr
[
T1 > t1, . . . , Tq > tq

] = Eν
[
S1(t1)| ν, . . . , Sq (tq )| ν] . (19.22)

Measuring Dependence

The functional form of the copulas itself does not depend on the form of the univariate
margins. Copulas are usually specified with parameters that generate a measure of the
dependence between the univariate margins. Usually dependence is parameterized as
a scalar measure. Here we concentrate on bivariate copulas for simplicity.

The copula representation for discrete random variables is not necessarily unique
(Joe, 1997, p. 14). This is not a major problem in practical application where the con-
cern is to approximate the unknown joint distribution. The key modeling issue is to
choose a sufficiently flexible parametric form for the copula function.

The dependence parameters from copulas can be difficult to interpret because they
are not necessarily in the [0, 1] interval. Therefore, it is customary to convert the de-
pendence parameter to a familiar measure of association such as Kendall’s tau or
Spearman’s rho; see Joe (1997). Schweizer and Wolff (1981) showed that Spear-
man’s correlation coefficient can be expressed solely in terms of the copula function;
thus,

ρ (t1, t2) = 12
∫ ∫

{C (u, v) − uv} dudv.

Consider any bivariate joint cdf F(t1, t2) with univariate marginal cdfs F1(t1) and
F2(t2). By definition, 0 ≤ F1(t1), F2(t2) ≤ 1, because each marginal distribution takes
a value in the range [0 , 1]. The joint cdf is bounded below and above by the Frechet
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Table 19.1. Some Standard Copula Functions

Copula Type Function C(u, v) θ-Domain

Product uv naa

FGMSb uv(1 + θ (1 − u)(1 − v)) −1 < θ < +1
Normalc �[�−1(u)�−1(v); θ ] −1 < θ < +1
Clayton (u−θ + v−θ − 1)−1/θ θ ∈ (0,∞)
Frank −θ−1 ln(η − (1 − e−θu)(1 − e−θv))/η, θ ∈ (−∞,∞)

η = 1 − e−θ

a na, not applicable.
b Farlie–Gumble–Morgenstern copula.
c � denotes bivariate normal cdf.

lower and upper bounds, F− and F+, defined as

F(t1, t2) ≥ F−(t1, t2) ≡ max [F1(t1) + F2(t2) − 1, 0] ,

F(t1, t2) ≤ F+(t1, t2) ≡ min[F1(t1), F(t2].

Since copulas are joint cdfs, they are also subject to the Frechet bounds. Knowledge
of Frechet bounds is important in selecting an appropriate copula. Every copula places
bounds on permissible values for its dependence parameter θ . A desirable feature of
a bivariate copula is that as θ approaches the lower (upper) bound of its permissible
range, the copula approaches the Frechet lower (upper) bound. However, the paramet-
ric form of a copula may impose restrictions such that one or both Frechet bounds are
not included in the permissible range. Therefore, a particular copula may be a better
choice for one data set than for another.

Examples

Table 19.1 gives examples of some bivariate copula functions that have been used in
the literature. Joe (1997) discusses the properties of these copulas.

The Normal and the Frank copulas include both Frechet bounds in their permissible
ranges. The Clayton copula belongs to the Archimedean family, with the representa-
tion C (u, v) = φ(φ−1(1 − u) + φ−1(1 − v)); see Smith (2003).

Suppose we want to choose the Clayton copula to model the bivariate survival times
(t1 t2). Then the bivariate distribution, expressed in terms of marginal survival models
S(t1) and S(t2), will be

(S (t1)−θ + S (t2)−θ − 1)−1/θ .

We assume that the marginal survival functions are specified up to unknown parame-
ters. As before these marginal survival functions can be written to capture dependence
on covariates and unobserved heterogeneity. For example, these could be based on the
proportional hazards model. For estimation we can apply maximum likelihood based
on the resulting bivariate copula.
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This approach is not without limitations. Two in particular are noteworthy. First,
extension to three or more dimensions is not trivial. Second, one needs not only to
choose a particular functional form for the copula but also to be aware of its potential
restrictiveness in capturing dependence for a given data set. For example, only positive
correlation may be supported.

Likelihoods Derived from Copulas

To fit a model derived from a copula (defined in terms of the cdfs) the first step is
to select a copula and the second is to derive the likelihood (defined in terms of the
pdfs) from it. Having chosen a copula consider the derivation of the likelihood for the
special case of a bivariate model with uncensored failure times (t1, t2). Define f j (t j ) =
∂Fj (t j )/∂t j and C j (F1, F2)/∂t j for j = 1, 2, define C12(F1, F2) = ∂C(F1, F2)/∂t1∂t2.
Then the probability density

f (t1, t2) = f1(t1) f2(t2)C12 (F1(t1), F2(t2)) , (19.23)

where f (t1, t2) = ∂2 F(t1, t2)/∂t1∂t2, is used to construct the likelihood function. If
censored observations are present in the data, the likelihood must be appropriately
modified (Frees and Valdez, 1998, pp. 15–16; Georges et al., 2001).

Using different copulas generates nonnested models. As in other similar instances,
penalized log-likelihood values can be used to choose among them.

19.4. Multiple Spells

A distinction between parallel states and recurrent states, introduced early in this chap-
ter, is helpful. Parallel states involve parallel events such as being employed and having
health insurance; recurrent states involve sequential events such as the first birth, the
second birth, and so forth. The term multiple spells refer to the durations between re-
current spells of the same event. Joint modeling of such data has similarities with joint
modeling of parallel states as both involve multivariate concepts, but there are also im-
portant differences because sequential events may generate dynamic dependence in
hazards.

Consider some examples of recurrent events. Individuals in the labor market
may experience a succession of transitions between employment and unemployment.
Young workers, for example, may record a succession of spells of unemployment.
Newman and McCulloch (1984) consider the timing of births within a hazard frame-
work. If one wants to model the hazard rate for each birth in a series of births, con-
sideration must be given to the correlation between interbirth durations. Trivedi and
Alexander (1989) analyze multiple spells of youth unemployment in Australia. In the
literature on fertility, the duration between successive births is of interest (Heckman,
Hotz, and Walker, 1985). Mealli and Pudney (1996) analyze the positive association
between the duration in employment and pensionable status using data from a retire-
ment survey in the United Kingdom. Engle and Russell (1998) study the time series
of durations between successive transactions of a particular stock traded on the stock
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market. Stevens (1999) analyzes the persistence of poverty over individuals’ lifetimes
taking account of multiple spells of poverty.

The aforementioned examples have several noteworthy features. Whether the haz-
ard rate of an event depends on a previous event, conditional on a previous event, is an
important modeling issue. Second, the form of dependence is of interest. The duration
of a previous spell may enter as a covariate in determining the hazard of a later event;
the occurrence of a previous event may affect the baseline hazard for a later spell; and,
finally, unobserved heterogeneity may show serial dependence. Each of these raises an
important modeling issue.

Multiple spells generate longitudinal or panel data that can potentially help to re-
solve the important identification issue concerning the influence of dynamic depen-
dence (“the hand of past”) relative to that of heterogeneity in the hazard function. Un-
der some assumptions multiple observations make it easier to control for heterogeneity
and to make inferences about dynamic dependence.

In general, survival models with unobserved heterogeneity and dependence between
spells can be expected to be difficult to estimate. However, multiple-spell data create
opportunities to study issues that can be studied only if panel data are available. Oc-
currence dependence, lagged duration dependence, and serially correlated unobserved
heterogeneity are examples. Both lagged duration and occurrence dependence refer to
dependence of the termination probability of the spell in progress on either the number
or the duration of previous spells. Given such dependence, it is not appropriate to study
spells individually, ignoring their interdependence.

In considering the choice of a suitable econometric framework for multiple spells,
one possibility is to model dependence using joint survival functions, as discussed
in the preceding section. This approach takes care of the multivariate nature of the
data. A second possibility is to use the panel data framework with the time subscript
replaced by the spell subscript, without ignoring the possibility that calender time still
may have relevance. Spell dependence introduces issues that will be discussed under
the topic of dynamic panel models in Sections 22.5 and 23.6. In both these cases an
important difference arises from the possibility of censoring because of panel attrition
or because the most recent spell is incomplete.

19.4.1. A Model with Two Spells

A proportional hazards model with two spells can illustrate a number of features of
multiple-spell models. In econometrics such models have been analyzed by Honoré
(1993) and Horowitz and Lee (2003).

Honoré (1993) considers a proportional hazards model of the form

λs(t |x,ν) =λ0,s(t)φ (x,β) ν, s = 1, 2. (19.24)

Note that in this specification the baseline hazard is spell-specific, but the heterogeneity
component, which enters multiplicatively (a key assumption), is not; that is, ν repre-
sents the fixed or permanent characteristics of an individual, and hence we have a fixed
effects model. Under conditions similar to those for the mixed PH discussed in Chap-
ter 18, he shows that the model is identified. He also shows that neither the assumptions
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about the distribution of ν nor the presence of the covariates is essential for
identification.

In a second model Honoré considers spell-specific multiplicative heterogeneity
components ν1 and ν2, with a joint bivariate pdf g(ν1, ν2). The correlation between ν1

and ν2 could reflect serially correlated heterogeneity. This is a random effects model.
The joint survival function S(t1, t2|x) is derived by the bivariate mixing approach as
shown in (19.19) using the mixing distribution g(ν1, ν2). If the marginal survival func-
tions are identified, then the joint survival function is also identified. The identification
conditions are essentially those for identifiability of the PH model.

Honoré also considers the lagged duration dependence specification of the
second-spell model under the assumption that the duration of the first spell, denoted
t1, enters the hazard for the second-spell multiplicatively. He provides sufficient condi-
tions for identifiability of the parameters in the second-spell conditional model, given
covariates and t1. These conditions are not discussed here. However, under these con-
ditions, a multiple-spells version of the proportional hazards model has the form

λ1(t1|x1, ν1) = λ0,1(t)φ(x1,β1)ν1, (19.25)

λ2(t2|x2, ν2) = λ0,2(t)φ(xa
2,β2)ν2,

where xa
2 = (x2, t1) is the augmented vector of covariates. Note that there is an endo-

geneity problem here if ν1 and ν2 are correlated since, in that case, t1 and ν2 cannot be
independent.

The previous occurrence of a spell may not simply shift the hazard function in the
succeeding spell. It may also alter the specification of the hazard by bringing in new
covariates. For example, an unemployment spell may induce enrollment into a training
program, which plausibly could impact the hazard of a later spell of unemployment.
If the training variable were treated as weakly exogenous, identification of the model
would be under threat. This point is relevant even for the analysis of a single-spell
model: The assumption that covariates and unobserved heterogeneity are uncorrelated
is not innocuous.

In some cases it may be desirable to model not only multiple spells in one state but
also those in other related states. For example, there may be two states, employed or
not employed, and we may be interested in not just how length of last unemployment
spell affects the length of current unemployment spell but also in the effect of the
intervening employment spell on the hazard out of unemployment. Further, we might
observe data on individuals when they are in one state but not another. For example,
administrative data may cover people when on welfare but not when off welfare.

19.4.2. A More General Model of Multiple Spells

To illustrate the potential computational complexity of multiple-spell models, we de-
scribe briefly the model of Mealli and Pudney (1996).

Let τ = (τ1, . . . , τk) denote the k-dimensional vector of complete spells, rk−1 the
index of origin state, and rk the index of destination state. Assume independence of
durations across spells after controlling for possible lagged duration dependence. Let
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λ j (x j ,β j ) denote the destination-specific hazard function, and let x = [x1, . . . , xk],
β = [β1, . . . ,βk].

The joint density of spells and exit routes is given by

f (τ1, r1, τ2, r2, . . . , τk |x1, . . . , xk, r0,β) (19.26)

= f (τ1, r1|x1, r0;β) . . . f (τk−1, rk−1|xk−1, r0, r1, . . . , rk−2,β)

×S(τk |xk, r0, r1, . . . , rk−1,β)

=
k−1∏
j=1

λr j (τ j |x j ,βr j
) exp

(
−

k∑
l=1

�0 (τl |xl ,β)

)
,

where it has been assumed that the kth spell is censored (in progress) and we use
relationships (17.4) and (17.6). The covariates include some that vary across spells
and possibly lagged durations. This formulation may be compared with the single-
spell CRM formulation (19.7).

Mealli and Pudney (1996) build an elaborate model using this formulation as
the basis. Because they allow for unobserved heterogeneity with even more com-
plex structure than that considered in this chapter, their computational procedure is
also more complicated. They use the method of simulated maximum likelihood (see
Section 12.4).

19.5. Competing Risks Example: Unemployment Duration

The duration examples used in Chapters 17 and 18 focused on the time in an unem-
ployment spell, ignoring the destination state after transition. Here we implement a
competing risk analysis of the same data used in McCall (1996). The data distinguish
three different destination states: full-time employment in the first postdisplacement
job, part-time employment in the first postdisplacement job, and either full-time or
part-time status in the first postdisplacement job the employee had left by the time of
the survey. One can therefore relax the assumption that the hazard function does not
depend on the destination state and consider instead the competing risks formulation
in which independent competing risks determine the duration of unemployment.

For the McCall data set there are 1073, 339, and 574 transitions, respectively, to
each of the three states mentioned. The third destination state lacks a clear interpre-
tation, so the results for that case are not discussed in detail. For each transition we
estimated four parametric duration models, exponential and Weibull, with and without
inverse-Gaussian heterogeneity. Gamma heterogeneity was also considered but this
model was computationally unstable. Because of the assumption of independent com-
peting risks, estimation can be carried out one equation at a time. Selected extracts
of the computer output, with focus only on a limited number of variables as in Chap-
ters 17 and 18, are given in Tables 19.2 and 19.3.
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Table 19.2. Unemployment Duration: Competing and Independent Risk Estimates of
Exponential Model with and without IG Frailty

Risk
No Heterogeneity IG Heterogeneity

Coefficient Risk 1 Risk 2 Risk 3 Risk 1 Risk 2 Risk 3
Transitions 1,073 339 574 1,073 339 574

RR .472 −.092 −.600 .504 −.185 −.562
(.601) (.976) (.725) (.614) (1.025) (.744)

DR −.575 −.959 1.122 −.806 −1.051 1.078
(.762) (1.247) (.901) (.781) (1.295) (.921)

UI −1.424 −1.047 −.966 −1.544 −1.092 −.963
(.249) (.524) (.449) (.258) (.544) (.456)

RRUI .966 −.669 −.432 1.057 −.742 −.482
(.612) (1.192) (1.014) (.627) (1.23) (1.033)

DRUI −.198 1.987 2.102 −.012 2.18 2.158
(1.019) (1.727) (1.303) (1.041) (1.788) (1.323)

LNWAGE .351 −.257 .003 .373 −.321 −.007
(.116) (.179) (.145) (.118) (.191) (.147)

TENURE 0 .005 −.047 .0006 .007 −.047
(.006) (.013) (.012) (.007) (.014) (.012)

−ln L 5,693.63 5,687.64

19.5.1. Estimates under Competing Risks Framework

Pairwise comparison of exponential models with and without heterogeneity shows an
improvement in the log-likelihood results from the introduction of unobserved het-
erogeneity. This result is similar to the pattern reported in Section 18.8. However, the
Weibull model without heterogeneity has a significantly higher log-likelihood than the
exponential model, −5,666 against −5,693. The Weibull model with inverse-Gaussian
heterogeneity has the highest log-likelihood, −5,543, and seems to be the best of the
four models. This should not be interpreted to mean that it is a satisfactory model
for inference – that issue remains open. Henceforth we shall discuss the results in
Table 19.3.

Introduction of unobserved heterogeneity in the Weibull model leads to a substantial
increase in estimate of the hazard function slope coefficient in all three hazard func-
tions. This coefficient increases from 1.29 to 1.75 for risk 1, and from 1.08 to 1.65 for
risk 2. That is, the introduction of unobserved heterogeneity leads to a stronger indica-
tion of decreasing duration dependence or steeply rising hazard out of unemployment.
These changes are along the lines predicted by the analysis of Section 18.5. In the
Weibull model the impact of adding unobserved heterogeneity on the coefficient of
unemployment insurance (UI) is also quite substantial, becoming substantially larger
in absolute magnitude. The coefficients of RR, DR, RRUI, and DRUI remain impre-
cisely determined. The coefficient of LNWAGE is significant and positive in the first
hazard function, but not in the second. That is, the increase in LNWAGE accelerates
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Figure 19.1: Unemployment duration: estimated baseline survival functions from the Cox
Competing Risks model. U.S. data from 1986–92 on 3343 spells, some incomplete.

transition out of unemployment of those seeking full-time employment but has a neg-
ligible impact on those who transit to part-time employment. This exemplifies how the
competing risks framework may allow us to distinguish between the different role of a
variable in different hazard functions.

Also consider the Cox model specification of the competing risks model given in
Section 19.2. In this specification unobserved heterogeneity is ignored and the base-
line hazard is not parametrically specified, but it can be estimated as explained in
Section 17.8.3. The point estimates, comparable to those for the exponential model
in Table 19.2, are given in the last three columns of Table 19.3, but the standard er-
rors are much larger, as the Cox specification is less restrictive than the exponential.
The estimated coefficient of unemployment insurance is closer to that in the exponen-
tial model than to that in the Weibull–IG model; the latter is almost twice as large.
The LNWAGE coefficient is also larger in the Weibull–IG model. However, given that
unobserved heterogeneity is ignored, identification of the baseline hazard is not possi-
ble. Figures 19.1 and 19.2 show, respectively, the computed baseline survival functions
and the cumulated hazard functions for the three destinations, but these are better inter-
preted as reflecting some unknown mixture of unobserved heterogeneity and duration
dependence. These estimates show that the baseline survival function for those tran-
siting to full-time employment is the lowest and lies below the other two, and that for
those transiting to part-time employment it is the flattest and the highest. Correspond-
ingly, the cumulated hazard function for those transiting to full-time employment is
the steepest of the three.

The discussion and analysis presented here is only illustrative, not final in any sense.
Indeed, there remain good reasons to suggest that the Weibull hazard function is a mis-
specification. McCall’s (1996) analysis of the same data set allows for a more flexible
polynomial hazard function and comes up with evidence supporting a bathtub-shaped
hazard, which implies decreasing hazard at low durations, then fairly constant and
eventually rising hazard at high durations. The monotonic Weibull hazard func-
tion does not capture this possibility. The experience of other researchers modeling
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Figure 19.2: Unemployment duration: estimated baseline cumulative hazards from the Cox
Competing Risks model. Same data as Figure 19.1.

unemployment duration using the U.S. data has revealed that when the hazard func-
tion is flexibly specified, the introduction of unobserved heterogeneity does not have a
large impact on the results (Meyer, 1990; Han and Hausman, 1990). The fact that we
do not see that result here should motivate the use of a more flexible specification such
as the one analyzed in Section 17.10.

19.6. Practical Considerations

In modeling multivariate survival models it is practical to begin with marginal models
before undertaking simultaneous estimation. Such a strategy can be helpful in assess-
ing the statistical adequacy of the initial specification.

At the time of this writing, the statistical implementation of multivariate survival
and hazard models will in most cases require one’s own programming, a task that can
be partially eased by the use of supporting software such as optimization programs for
maximization or minimization of user-defined functions using functions and program-
ming language offered by many programs and programming platforms.

The CRM with independent risks reduces to estimation of a series of survival mod-
els for which practical use information was given in Section 17.12. Programs for gen-
eral multivariate CRM are not easy to find in commercial software. Some multivariate
survival models with special dependence structure are supported. For example, STATA
supports computation of the shared frailty model. A shared frailty model is a random
effects model where the components of unobserved heterogeneity are common to, or
shared among, groups of individuals or spells and are randomly distributed across
groups.

If the main interest is in modeling the dependence structure among durations, the
copula approach, because it does not require numerical integration, is potentially at-
tractive relative to maximum simulated likelihood for the bivariate case. For dimen-
sions higher than two, as in the case of multiple-spell models, it is feasible but there
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are relatively few examples in the published literature. Marginal models can be fitted
and tested using standard univariate survival models, and the dependence parameter
can be estimated in a sequential second-stage procedure. Even if all parameters are
to be estimated simultaneously the estimated marginal models provide a useful set of
starting values for the iterative computation. We are unaware of statistical software
that supports the estimation of these models.

19.7. Bibliographic Notes

19.2 Han and Hausman (1990) give an empirical example of CRM in which the specification is
generalized to allow for unobserved heterogeneity. Within the framework of the CRM with
state-specific random effects, McCall (1996) analyzes the impact of some policy variables
on the behavior of the insured unemployed seeking part-time work using the CRM model
with correlated risks. In Butler, Anderson, and Burkhauser (1989) the hazards of accepting
a job and of dying are modeled using a CRM with correlated risks.

19.3 Sklar’s pioneering article on copulas appeared in 1959 in French, but Sklar (1973) is a
good substitute in English. Radulović and Wegkamp (undated) provide a proof of Sklar’s
Theorem. A very helpful guided tour of the copula literature with an annotated bibliogra-
phy is given by Frees and Valdez (1998).

19.4 Multiple spells are studied by Mealli and Pudney (1996) and by Flinn and Heckman
(1982). Mealli and Pudney (1996) analyze transitions among pensionable jobs, nonpen-
sionable jobs, and other labor market states using simulation-based estimation methods.

Exercises

19–1 (Adapted from Sapra, 2000; 2001). This problem involves an example that illus-
trates the Cox–Tsiatsis nonidentification of the competing risks result mentioned
in Section 19.2. Consider the following dependent competing risks model in
which we observe T = min(T1, T2) and δ, where δ = 1 if T = T1, and δ = 2 if
T = T2. Here T1 and T2 are latent durations of risks 1 and 2, respectively. Sup-
pose that the bivariate joint survivor function is S(t1, t2) = exp[−(λ1t1 + λ2t2)α],
0 < α ≤ 1, λ1, λ2 > 0. Construct an independent CRM that is equivalent to the
specified dependent competing risks model.

19–2 For the model specified in the preceding problem, write down the log-likelihood
function for each model in terms of hazard rates and integrated hazard rates, if
both T and δ are observed. Examine the information matrix of the parameters,
and show that all the parameters are locally identified because it is nonsingular.

19–3 Consider two parallel durations, say duration of unemployment, T1, and the du-
ration of a spell without private health insurance, T2. Assume that conditional
on unobserved heterogeneity the durations are independent and exponentially
distributed with means β0 + β1x and γ0 + γ1x, respectively. Suppose that multi-
plicative unobserved heterogeneity terms for the two duration models are ν1 and
ν2, with E[ν1] = E[ν2] = 1.

(a) For parameter values of your choice, write an algorithm to generate cor-
related realizations for (ν1, ν2) such that unconditionally on (ν1, ν2), but
conditionally on x, the two durations will be correlated. You are free to

663



MODELS OF MULTIPLE HAZARDS

make distributional assumptions for the joint distribution of (ν1, ν2) that are
appealing on grounds of mathematical convenience or other considera-
tions. Explain how you can control the extent of correlation between the
two durations.

(b) Using the technique for obtaining a bivariate joint distribution given in
Section 19.3.2, derive the joint distribution of durations.

(c) Describe how you might extend the analysis of part (b) to allow for the pres-
ence of right-censored durations.

19–4 Using the same subsample of the McCall data set as in Chapter 18, estimate
using a two-state model with unemployment and employment as the two states,
(i.e., ignoring the distinction between part-time and full-time employment as two
alternative destinations).

(a) Fit the single-equation Weibull model and compare the results with those for
independent CRM with the Weibull specification.

(b) Evaluate the improvement in goodness of fit resulting from the CRM speci-
fication.

(c) Evaluate and compare the fitted values of the hazard out of unemployment,
evaluated at sample averages of the explanatory variables, from the single
equation and the CRM models.
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C H A P T E R 20

Models of Count Data

20.1. Introduction

In many economic contexts the dependent or response variable of interest is a non-
negative integer or count that we wish to explain or analyze in terms of a set of re-
gressors. Unlike the classical regression model, the response variable is discrete, with
a distribution that places probability mass at nonnegative integer values only. Several
models discussed earlier in the book, such as the binary outcome model and the du-
ration model, can be shown to be closely related to the count data regression model.
Regression models for counts, like other limited or discrete dependent variable models
such as the logit and probit, are nonlinear with many properties and special features
intimately connected to discreteness and nonlinearity.

Let us consider some examples from microeconometrics, beginning with sample
data that are independent cross-section observations. Fertility studies often model the
number of live births over a specified age interval of the mother, with interest in an-
alyzing its variation in terms of, say, mother’s schooling, age, and household income
(Winkelmann, 1995). In some models of family decisions the number of children may
appear as an explanatory variable with the acknowledgment that the variable is en-
dogenous. Accident analysis studies model airline safety as measured by the number
of accidents experienced by an airline over some period and seek to determine its rela-
tionship to airline profitability and other measures of the financial health of the airline
(Rose, 1990). Recreational demand studies seek to place a value on natural resources
such as national forests by modeling the number of trips to a recreational site (Gurmu
and Trivedi, 1996). Health demand studies model data on the number of times that
individuals consume a health service, such as visits to a doctor or days in the hospital
in the past year (Cameron et al., 1988). If we wish to analyze the relation between this
variable and factors such as health status and health insurance, again a count regression
is relevant.

The main modeling approaches are presented in Sections 20.2–20.5. Section 20.2
details the Poisson regression model. Section 20.3 gives an application to data from the
famous RHIE. The Poisson regression model is often too restrictive and other, more
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Table 20.1. Proportion of Zero Counts in Selected Empirical Studies

Sample Proportion
Study Variable Size of Zeros

Cameron et al. (1988) Doctor visits 5,190 0.798
Pohlmeier and Ulrich (1995) Specialist visits 5,096 0.678
Grootendorst (1995) Prescription drugs 5,743 0.224
Deb and Trivedi (1997) Number of hospital stays 4,406 0.806
Gurmu and Trivedi (1996) Recreational trips 659 0.632
Geil et al. (1997) Hospitalizations 30,590 0.899
Greene (1997) Major derogatory reports 1,319 0.803

commonly used, fully parametric count models are presented in Section 20.4. Less-
used alternative parametric approaches for counts, such as discrete choice models, are
also presented in this section. The partially parametric approach of modeling the con-
ditional mean and conditional variance is detailed in Section 20.5. Multivariate count
models and models with endogenous regressors are given an introductory treatment in
Section 20.6. Section 20.7 illustrates various models by application to the RHIE data.
This is followed by a discussion of some practical issues. For pedagogical reasons
the Poisson regression model for cross-section data is presented in some detail. The
other models, many superior to Poisson, are presented in less detail for space reasons.
For more complete treatment see Cameron and Trivedi (1998) and the Bibliographic
Notes.

20.2. Basic Count Data Regression

In some cases, such as number of births, the count is the variable of ultimate inter-
est. In other cases, such as medical demand and results of research and development
expenditure, the variable of ultimate interest is continuous, often expenditures or re-
ceipts measured in dollars, but the best data available are instead a count. In many
cases, the sample is concentrated on a few small discrete values, say 0, 1, and 2.
Table 20.1 illustrates this point by reference to the proportion of zero counts observed
in several published econometric models; this proportion can be as high as 90% in
some cases. Also, the data can be skewed to the right. Finally, the data are intrinsi-
cally heteroskedastic with variance increasing with the mean.

20.2.1. Poisson Regression

The Poisson is the starting point for count data analysis, though it is often inadequate.
In Sections 20.2.1–20.2.3 we present the Poisson regression model, which was pre-
viously introduced in Section 5.2, and estimation by maximum likelihood, interpre-
tation of the estimated coefficients, and extensions to truncated and censored data. In
Section 20.2.3 we also present the quasi-MLE based on the Poisson distribution with
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20.2 . BASIC COUNT DATA REGRESSION

Table 20.2. Summary of Data Sets Used in Recent Patent–R&D Studies

Sample Std. Maximum Proportion
Study Size Mean Error Patents of Zeros

Cincera (1997) 181 60.8 721.6 925 <0.19
Crepon and Duguet (1997b) 698 11.6 naa na 0.441
Crepon and Duguet (1997a) 451 2.73 11.45 na 0.729
Hausman et al. (1984) 346 32.1 66.36 515 0.220
Wang et al. (1998) 70 23.46 39.10 173 0.186

a na, not available.

correctly specified conditional mean, but with possibly misspecified conditional vari-
ance function. Limitations of the Poisson model, notably its property of equidispersion,
are presented in Section 20.2.4.

There is a qualification: In some cases a high proportion of zeros in the sample
may coexist with very large values of counts, creating a difficult modeling challenge.
Table 20.2 illustrates this feature using information from five studies that have inves-
tigated the relationship between patent counts and research and development (R&D)
expenditure. Observe how large the maximum observed value of the count is relative
to the sample mean. The modeling challenge is to select a functional form that can
adequately capture the large mean and the high proportion of zeros. In many other
examples, such as number of births, virtually all the data are restricted to single digits,
and the mean number of events is quite low.

These features motivate the application of special methods and models for count
regression. There are two ways to proceed.

The first approach is a fully parametric one that completely specifies the distribu-
tion of the data, fully respecting the restriction of y to nonnegative integer values. This
approach was taken in early applications, mostly in biostatistics, where count regres-
sion was seen as an extension and generalization of a vast literature on the distribution
of independent and identically distributed counts. It was also taken in the influential
econometrics study by Hausman et al. (1984).

The second approach is a mean–variance approach, which specifies the condi-
tional mean to be nonnegative and specifies the conditional variance to be a function
of the conditional mean. This models well the nonnegativity and heteroskedasticity
but does not address the discreteness of the data. This approach, in a framework not
limited to only count data, was introduced by Nelder and Wedderburn (1972), lead-
ing to the generalized linear model approach widely used in statistics (McCullagh and
Nelder, 1989). In econometrics this approach was introduced by Gouriéroux, Monfort,
and Trognon (1984a,b) and is best viewed as a specialization of generalized methods
of moments.

20.2.2. Poisson MLE and QMLE

The Poisson MLE and quasi-MLE (QMLE) were introduced and studied in Chapter 5
as an example of m-estimation. Here we give a more complete treatment.
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The natural stochastic model for counts is a Poisson point process for the occur-
rence of the event of interest. This implies a Poisson distribution for the number of
occurrences of the event, with density, or more formally probability mass function,

Pr[Y = y] = e−µµy

y!
, y = 0, 1, 2, . . . , (20.1)

where µ is the intensity or rate parameter. We refer to the distribution as P[µ]. The
first two moments are

E[Y ] = µ, (20.2)

V[Y ] = µ.
This shows the well-known equidispersion (equality of mean and variance) property
of the Poisson distribution.

By introducing the observation subscript i , attached to both y and µ, the iid frame-
work is extended to the regression case. The Poisson regression model is derived from
the Poisson distribution by parameterizing the relation between the mean parameter µ
and covariates (regressors) x. The standard assumption is to use the exponential mean
parameterization,

µi = exp(x′
iβ), i = 1, . . . , N , (20.3)

where by assumption there are K linearly independent covariates, usually including a
constant. Because V[yi |xi ] = exp(x′

iβ), by (20.2) and (20.3), the Poisson regression is
intrinsically heteroskedastic.

Given (20.1) and (20.3) and the assumption that the observations (yi |xi ) are inde-
pendent, the most natural estimator is maximum likelihood. The log-likelihood func-
tion is

ln L(β) =
N∑

i=1

{yi x′
iβ − exp(x′

iβ) − ln yi !}. (20.4)

The Poisson MLE, denoted β̂P, is the solution to K nonlinear equations corresponding
to the first-order condition for maximum likelihood,

N∑
i=1

(yi − exp(x′
iβ))xi = 0. (20.5)

If xi includes a constant term then the residuals yi − exp(x′
iβ) sum to zero by (20.5).

The log-likelihood function is globally concave; hence solving these equations by
a Gauss–Newton or Newton–Raphson iterative algorithm yields unique parameters
estimates.

In the econometrics literature pseudo-ML (PML) or quasi-ML (QML) estimation
refers to estimating by ML, under misspecification of the specified density (Gourieroux
et al., 1984a). The terms PML and QML are often used interchangeably. The distribu-
tion of the estimator is obtained under weaker assumptions about the data-generating
process than those that led to the specified likelihood function; see Section 5.7. In the
statistics literature QML often refers to nonlinear generalized least-squares estimation.
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20.2 . BASIC COUNT DATA REGRESSION

For the Poisson regression, QML in the latter sense is equivalent to standard maximum
likelihood.

From (20.5), the Poisson PML estimator, β̂P, has first-order conditions
∑N

i=1(yi −
exp(x′

iβ))xi = 0. As already noted, the summation on the left-hand side has expec-
tation zero if E[yi |xi ] = exp(x′

iβ). Hence the Poisson PML is consistent under the
weaker assumption of correct specification of the conditional mean; that is, the data
need not be Poisson distributed. Using results given in Section 5.2.3, the variance ma-
trix is of the sandwich form, with

VPML[β̂P] =
(

N∑
i=1

µi xi x′
i

)−1 ( N∑
i=1

ωi xi x′
i

)(
N∑

i=1

µi xi x′
i

)−1

(20.6)

and ωi = V[yi |xi ] is the conditional variance of yi .
By standard ML theory if the stronger assumption is made that the Poisson regres-

sion is parametrically correctly specified, so that ωi = µi , the estimator β̂P is consis-
tent for β and asymptotically normal with the sample covariance matrix

V[β̂P] =
(

N∑
i=1

µi xi x′
i

)−1

, (20.7)

in the case where µi is of the exponential form (20.3).
The Poisson ML and PML estimators are identical but have different variances. The

empirical implementation of the more robust estimate (20.6) is presented in Section
20.5.1.

20.2.3. Interpretation of Regression Coefficients

For linear models, with E[y|x] = x′β, the coefficients β are readily interpreted as the
effect of a one-unit change in regressors on the conditional mean. For nonlinear mod-
els this interpretation needs to be modified; see the general discussion given in Sec-
tion 5.2.4. For any model with exponential conditional mean, differentiation yields

∂E[y|x]

∂x j
= β j exp(x′β), (20.8)

where the scalar x j denotes the j th regressor. For example, if β̂ j = 0.25 and
exp(x′

i β̂) = 3, then a one-unit change in the j th regressor increases the expectation
of y by 0.75 units. This partial response depends on exp(x′

i β̂), which is expected to
vary across individuals. It is easy to see that β j measures the relative change in E[y|x]
induced by a unit change in x j . If x j is measured on a logarithmic scale, β j is an
elasticity.

For purposes of reporting a single response value, a good candidate is an estimate of
the average response, N−1∑

i ∂E[yi |xi ]/∂xi j = β̂ j × N−1∑
i exp(x′

i β̂). For Poisson
regression models with intercept included, this can be shown to simplify to β̂ j y.

Another consequence of (20.8) is that if, say, β j is twice as large as βk , then the
effect of changing the j th regressor by one unit is twice that of changing the kth re-
gressor by one unit.
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20.2.4. Overdispersion

The Poisson regression model is usually too restrictive for count data, leading to alter-
native models presented in Sections 20.3 and 20.4. The fundamental problem is that
the distribution is parameterized in terms of a single scalar parameter (µ) so that all
moments of y are a function of µ. By contrast the normal distribution has separate
parameters for location (µ) and scale (σ 2). For the same reason the one-parameter
exponential is too restrictive for duration data and more general two-parameter dis-
tributions such as the Weibull are superior. Note that this complication does not arise
with binary data. Then the distribution is clearly the one-parameter Bernoulli, because
if the probability of success is p then the probability of failure must be 1 − p. For
binary data the issue is instead how to parameterize p in terms of regressors.

One way this restrictiveness manifests itself is that in many applications a Poisson
density predicts the probability of a zero count to be considerably less than is actually
observed in the sample. This is termed the excess zeros problem, as there are more
zeros in the data than the Poisson predicts.

A second and more obvious deficiency of the Poisson model is that for count data
the variance usually exceeds the mean, a feature called overdispersion. The Poisson
model instead implies equality of the variance and the mean (see (20.2)), a property
called equidispersion.

Overdispersion has qualitatively similar consequences to the failure of the assump-
tion of homoskedasticity in the linear regression model. Provided the conditional mean
is correctly specified, that is, (20.3) holds, the Poisson MLE is still consistent. This is
clear from inspection of the first-order conditions (20.5), since the left-hand side of
(20.5) will have expected value of zero if E[yi |xi ] = exp(x′

iβ). This consistency prop-
erty applies more generally to the quasi-MLE when the specified density is in the
LEF. Both Poisson and normal are members of the LEF discussed earlier in Sec-
tion 5.7.3. It is nonetheless important to control for overdispersion. First, in more
complicated settings such as with truncation and censoring, overdispersion leads to
the more fundamental problem of inconsistency. Second, even in the simplest settings
large overdispersion leads to grossly deflated standard errors and grossly inflated t-
statistics in the usual ML output, and hence it is important to use the previously given
robust variance estimator. Third, if one wants to estimate probabilities of number of
events, rather than merely the conditional mean, these depend on additional parameters
of the dgp.

Overdispersion may signal a presence of a more basic misspecification, especially
in data settings that involve truncation and censoring if they are ignored in estima-
tion. In such a case the conditional mean is incorrectly specified and the simultaneous
presence of overdispersion then leads to inconsistency, not only inefficiency, of the
MLE.

A statistical test of overdispersion is therefore highly desirable after running a
Poisson regression. Most count models with overdispersion specify overdispersion to
be of the form

V[yi |xi ] = µi + αg(µi ), (20.9)
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where α is an unknown parameter and g(·) is a known function, most commonly
g(µ) = µ2 or g(µ) = µ. It is assumed that under both null and alternative hypothe-
ses the mean is correctly specified as, for example, exp(x′

iβ), whereas under the
null hypothesis α = 0 so that V[yi |xi ] = µi . A simple overdispersion test statistic
for H0 : α = 0 versus H1 : α �= 0 or H1 : α > 0 can be computed by estimating the
Poisson model, constructing fitted values µ̂i = exp(x′

i β̂), and running the auxiliary
OLS regression (without constant)

(yi − µ̂i )
2 − yi

µ̂i
= α

g(µ̂i )

µ̂i
+ ui , (20.10)

where ui is an error term. The reported t-statistic for α is asymptotically normal under
the null hypothesis of no overdispersion (Cameron and Trivedi, 1990) even though
here generated regressors are used. This test can also be used for underdispersion,
α < 0, in which case the conditional variance is less than the conditional mean. See
also Gurmu and Trivedi (1992).

20.3. Count Example: Contacts with Medical Doctor

For illustration we use some of the data from the RAND Health Insurance Experi-
ment previously used by Deb and Trivedi (2002). They estimated a more complete set
of models and carried out a deeper analysis of the data than is possible or desirable
here. The experiment, conducted by the RAND Corporation from 1974 to 1982, has
been the longest running and largest controlled social experiment in medical care re-
search. The main goal of the experiment was to assess how the patient’s use of health
services is affected by types of randomly assigned health insurance, including both
fee-for-service and health maintenance organizations (HMOs). In the experiment the
data were collected from about 8,000 enrollees in 2,823 families, from six sites across
the country. Each family was enrolled in one of 14 different health insurance plans for
either three or five years. The plans ranged from free care to 95% coinsurance below a
maximum dollar expenditure (MDE), and also included assignment in a prepaid group
practice.

The key point is that because insurance plans are randomly assigned, not freely
chosen by the participants, we do not face the problem of endogenous treatment effect,
which is the central causal parameter of interest in the study.

Data were collected from the enrollee’s use of medical care services and health sta-
tus throughout the randomly assigned term of enrollment for either three or five years.
For additional details of the data see Manning et al. (1987), Newhouse et al. (1993),
and Deb and Trivedi (2002). The sample used in this study consists of individuals in
the fee-for-service plans only.

The data file consists of utilization, expenditures, demographic characteristics,
health status, and insurance status variables. The expenditure data were analyzed in
Section 16.6. The coinsurance rate in this sample assumes four different values. Yet,
following the RAND studies, we treat it as a continuous variable. The final sample
consists of 20,186 observations; each observation represents data for an experimental
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Table 20.3. Contacts with Medical Doctor: Frequency Distribution

Contacts 0 1 2 3 4 5 6 7 8 9 10
Relative Frequency 31.2 18.9 13.8 9.3 6.7 4.8 3.4 2.6 2.0 1.4 1.0

Contacts 11 12 13 14 15 16 . . . >21 Max
Relative Frequency 0.9 0.6 0.5 0.4 0.3 0.3 1.0 77

subject in a given year. For simplicity of exposition the resulting clustering in the data,
see Section 24.5, is ignored here.

In the present illustration the measure of utilization analyzed is the number of con-
tacts with a medical doctor (MDU). The relative frequency distribution of MDU, given
in percentages, is given in Table 20.3. MDE denotes maximum dollar expenditure, the
medical expenditure liability limit set in the experiment above which the participant
would not be responsible for cost-sharing. Observe that about 31% of the observations
are zeros. The long right tail and variance greatly exceeding the mean indicates that
the counts are (unconditionally) overdispersed.

For the purposes of discussion here we consider the regression to be estimated by
Poisson ML and by Poisson PML. Other specifications are considered later. The in-
cluded covariates in all cases are those in Table 20.4.

Table 20.4. Contacts with Medical Doctor: Variable Descriptions

Variable Definition Mean Std. Dev.

MDU Number of outpatient visits to an MD 2.861 4.505
LC ln(coinsurance + 1), 0 ≤ coinsurance ≤ 100 1.710 1.962
IDP 1 if individual deductible plan, 0 otherwise 0.220 0.414
LPI ln(max(1,annual participation incentive payment)) 4.709 2.697
FMDE 0 if IDP = 1 3.153 3.641

ln(max(1,MDE/(0.01 coinsurance))) otherwise
LINC ln(family income) 8.708 1.228
LFAM ln(family size) 1.248 0.539
AGE Age in years 25.718 16.768
FEMALE 1 if person is female 0.517 0.500
CHILD 1 if age is less than 18 0.402 0.490
FEMCHILD FEMALE * CHILD 0.194 0.395
BLACK 1 if race of household head is black 0.182 0.383
EDUCDEC Education of the household head in years 11.967 2.806
PHYSLIM 1 if the person has a physical limitation 0.124 0.322
NDISEASE Number of chronic diseases 11.244 6.742
HLTHG 1 if self-rated health is good 0.362 0.481
HLTHF 1 if self-rated health is fair 0.077 0.267
HLTHP 1 if self-rated health is poor 0.015 0.121

Omitted category is excellent self-rated health
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Table 20.5. Contacts with Medical Doctor: Count Model Estimates

Poisson PPML NB2-PML

Model Coeff. t-ratio t-ratio Coeff. t-ratio

LC −.0427 −7.030 −2.835 −0.0504 −3.228
IDP −.1613 −13.881 −5.773 −0.1475 −4.889
LPI 0.0128 6.999 2.912 0.0158 3.574
FMDE −.0206 −5.803 − 2.319 −0.0213 −2.351
PHYSLIM 0.2684 21.711 8.240 0.2751 8.068
NDISEASE 0.0231 38.124 13.487 0.0259 15.324
HLTHG 0.0394 4.109 1.699 0.0065 0.275
HLTHF 0.2531 15.613 5.894 0.2368 5.425
HLTHP 0.5216 19.150 6.966 0.4256 6.205
α – – – 1.1822 8.926
−ln L 60087 42777

A selection of interesting coefficients and their t-ratios are given in Table 20.5,
along with log-likelihood and information criteria. To save space we do not reproduce
all the output. The coefficients of variables associated with insurance variables (LC,
IDP, LPI, and FMDE) are clearly of interest since they reflect the price sensitivity
of utilization. Also of interest are the coefficients of the five health status variables
(PHYSLIM, NDISEASE, HLTHG, HLTHF, and HLTHP).

Consider the coefficient of the coinsurance rate, here measured on the log scale,
LC. This variable is of major interest as it provides information about the price effect.
The higher the coinsurance rate, the greater will be the extent of cost sharing by the
patient, and hence the lower will be the average number of visits. The estimated coef-
ficient from the Poisson regression (see column 1 in Table 20.5) is negative (−.042),
with a t-ratio of 2.835, indicating that the price effect is significantly negative as pre-
dicted by standard theory. The elasticity of the number of doctor visits with respect to
LC is −.042. However, care should be exercised in interpreting this value as the coin-
surance rate only takes a few values and does not vary continuously. Subject to this
qualification, the coefficient can be interpreted as elasticity. A similar value for log of
income (LINC) is 0.174, indicating that increase in income raises the average number
of visits.

How well does the Poisson regression fit the data? One simple way to judge this
is to compare the actual and fitted frequencies for different number of doctor visits.
Table 20.6 provides such a comparison for up to nine visits, ignoring the higher fre-
quencies that collectively account for less than 10% of the visits. To calculate the fitted
value Pr[yi |x′

i β̂] for yi = 0, 1, . . . , 9, we plug µ̂i into (20.1) and then average over all
the observations. Observe that the Poisson regression seriously underpredicts the pro-
portion of zero visits and overestimates the proportion of positive number of visits up
to seven. Thus we conclude that the Poisson regression is deficient. This pattern in the
lack of fit can be shown to be associated with the neglect of overdispersion in the data
(Cameron and Trivedi, 1998, chapter 4).
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Table 20.6. Contacts with Medical Doctor: Observed and Fitted Frequencies

Contact frequency 0 1 2 3 4 5 6 7 8 9

Relative frequency 31.2 18.9 13.8 9.3 6.7 4.8 3.4 2.6 2.0 1.4
Poisson fitted 10.6 19.2 20.9 17.6 12.6 7.99 4.69 2.64 1.46 0.8
NB2 fitted 30.9 19.6 13.6 9.67 6.97 5.07 3.70 2.72 2.0 1.47

In the presence of neglected overdispersion it is to be expected that the t-ratios of
the Poisson MLE will be inflated. A comparison with the robust t-ratios in column 3
(PPML) of Table 20.5 shows that this is indeed so. For example, robustification causes
the t-ratio of LC to drop from −7.03 to −2.83. Tables 20.5 and 20.6 include results
for the NB2 model that are discussed in Section 20.7. The NB2 model is a better
parametric model for these data.

20.4. Parametric Count Regression Models

Poisson regression is often too restrictive. In this section we present a number of more
flexible parametric alternatives to the Poisson.

First, overdispersion in count data may be due to unobserved heterogeneity. In such
a case counts are viewed as being generated by a Poisson process (in which case the
events are serially independent), but the researcher is unable to correctly specify the
rate parameter of this process. Instead, the rate parameter is itself a random variable.
This mixture approach, presented in Sections 20.4.1 and 20.4.2, leads to the widely
used negative binomial model.

Second, overdispersion, and in some cases underdispersion, may arise because the
process generating the first event may differ from that determining later events. For ex-
ample, an initial doctor consultation may be solely a patient’s choice, whereas subse-
quent visits are also determined by the doctor. This leads to the modified count models
presented in Section 20.4.5.

Third, overdispersion in count data may be due to failure of the assumption of in-
dependence of events, which is implicit in the Poisson process. One can postulate
dependence so that, for example, the occurrence of one doctor visit makes subse-
quent doctor visits more likely. (This approach has not been widely used in count
data analysis. In duration data analysis this is called true state dependence.) Particular
assumptions about unobserved heterogeneity or dependence again lead to the negative
binomial; see Winkelmann (1995). A discrete choice model that progressively models
Pr[y = j |y ≥ j − 1] is presented in Section 20.4.6.

Fourth, one can refer to the extensive and rich literature on univariate iid count
distributions, such as the logarithmic series and hypergeometric distribution (Johnson,
Kotz, and Kemp, 1992). New regression models can be developed by letting one or
more distribution parameters be a specified function of regressors. Such models are
not presented here. The approach has less motivation than the first three approaches
and the resulting models may not be any better.
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Although overdispersion has been emphasized, underdispersion may also arise. For
example, a sample in which the counted outcome is largely 0 or 1, with a very small
number of 2s, and hence close to a binomial model, will show underdispersion. Mem-
bers of the Katz family of distributions, or other distributions based on the series ex-
pansion methods such as those developed in Cameron and Johansson (1997), can be
used; see also Cameron and Trivedi (1998, chapter 12).

20.4.1. Negative Binomial Model

The negative binomial model, a specific example of a continuous mixture model, can
be obtained in many different ways. The following justification using a mixture distri-
bution is one of the oldest and has wide appeal.

Suppose the distribution of a random count y is Poisson, conditional on the pa-
rameter λ, so that f (y|λ) = exp(−λ)λy/y!. Suppose now that the parameter λ is
random, rather than being a completely deterministic function of regressors x. In
particular, let λ = µν, where µ is a deterministic function of x, for example exp(x′β),
and ν > 0 is iid with density g(ν|α). This is an example of unobserved heterogene-
ity, as different observations may have different λ (heterogeneity) but part of this
difference is due to a random (unobserved) component ν. Note that E[λ|µ] = µ
if E[ν] = 1, so the interpretation of the slope parameters stays as in the Poisson
model.

The marginal density of y, unconditional on the random parameter ν but conditional
on the deterministic parameters µ and α, is obtained by integrating out ν. This yields

h(y|µ, α) =
∫

f (y|µ, ν)g(ν|α)dν, (20.11)

where g(ν|α) is called the mixing distribution and α denotes the unknown parameter
of the mixing distribution. The integration defines an “average” distribution. For some
specific choices of f (·) and g(·), the integral will have an explicit or closed-form
solution.

If f (y|λ) is the Poisson density and g(ν) = νδ−1e−νδδδ/� (δ), ν, δ > 0, is the
gamma density with E[ν] = 1 and V[ν] = 1/δ, we obtain the negative binomial as a
mixture density as follows:

h[y|µ, δ] =
∫ ∞

0

e−µν (µν)y

y!

νδ−1e−νδδδ

� (δ)
dν (20.12)

=
∫ ∞

0

e−(µ+δ)νµy

y!

ν y+δ−1δδ

� (δ)
dν

= µyδδ

� (δ) y!

∫ ∞

0
e−(µ+δ)νν y+δ−1dν

= µyδδ� (y + δ)
� (δ) y! (µ+ δ)y+δ

= �(α−1 + y)

�(α−1)�(y + 1)

(
α−1

α−1 + µ
)α−1 (

µ

µ+ α−1

)y

,
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where α = 1/δ, �(·) denotes the gamma integral which specializes to a factorial for
an integer argument, and the fourth line follows after some algebra and use of the
definition of the gamma function. Special cases of the negative binomial include the
Poisson (α = 0), ‘the advantage of reparametrization from δ to α,’ and the geometric
(α = 1).

As in the case of many mixture distributions, the negative binomial also has inde-
pendent justification; see Cameron and Trivedi (1998, chapter 4). It can arise in many
different ways and one need not always think of it as a mixture distribution.

The algebraic derivation of the negative binomial as a Poisson–gamma mixture
can be given a Bayesian interpretation. The prior distribution of µ is gamma, given
α, and the results on conjugate priors for exponential families in Section 13.2.4. It is
expected that the posterior distribution has a closed form. Therefore, the MLE and the
Bayesian posterior mean, under the further assumption of a vague prior on α, would
coincide.

The first two moments of the negative binomial distribution are

E[y|µ, α] = µ, (20.13)

V[y|µ, α] = µ(1 + αµ).

The variance therefore exceeds the mean, since α > 0 and µ > 0. Indeed, it can be
shown easily that overdispersion always arises if y|λ is Poisson and unobserved het-
erogeneity is of the multiplicative form λ = µν, where E[ν] = 1. Note also that the
overdispersion is of the form (20.9) discussed in Section 20.2.4.

Two standard variants of the negative binomial are used in regression applications.
Both variants specify µi = exp(x′

iβ). The most common variant lets α be a param-
eter to be estimated, in which case the conditional variance function, µ+ αµ2 from
(20.13), is quadratic in the mean.

The other variant of the negative binomial model has a linear variance function,
V[y|µ, α] = (1 + γ )µ, obtained by replacing α by γ /µ throughout (20.12). Estima-
tion by ML is again straightforward. Sometimes this variant is called negative bino-
mial 1 (NB1) in contrast to the variant with a quadratic variance function which has
been called the negative binomial 2 (NB2) model (Cameron and Trivedi, 1998). The
log-likelihood is easily obtained from (20.12). Both variants of the model are easily
estimated by ML, with details given in, for example, Cameron and Trivedi (1998). In
both variants the coefficients have the same interpretation since E[y|x] = exp(x′β).
The NB2 variant is the most often used, as in the application in Section 20.7.

The NB2 model has been found to be very useful in applied work. It appears to
have the flexibility necessary for providing a good fit to many types of count data. It
does so in part because the quadratic variance specification is a good approximation
in many empirical situations. An unfortunate consequence of the fact that NB2 often
provides a good fit is that if the Poisson assumption fails there is a tendency to jump
to the negative binomial alternative, ignoring other possibilities. Such a mechanical
approach should be avoided because poor performance of the Poisson can also be due
to a poor specification of the conditional mean function, and observe that using the
negative binomial model maintains the same conditional mean.
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The negative binomial model is less robust to distributional misspecification than
the Poisson. Even if the conditional mean is correctly specified the MLE in negative
binomial models is inconsistent, except for the special case of the NB2 model, whereas
the MLE for β (but not α) is still consistent.

For mixture models for counts, the Poisson is the natural choice for the initial den-
sity f (y|µ, ν) in (20.12) since a Poisson process is a natural model for counts. The
choice of the gamma for the mixing distribution g(ν) in (20.12) is more arbitrary. Its
use raises issues discussed in Section 18.2–18.4. Other possible choices include the
lognormal distribution and the inverse-Gaussian distribution. See Willmot (1987) and
Guo and Trivedi (2002). In these cases the marginal distribution cannot be expressed
in a closed form, as it is the gamma that is conjugate to the Poisson. Of course, this
does not mean that the resulting model cannot be estimated by maximum likelihood. It
means simply that one may have to use numerical quadrature or simulated maximum
likelihood to estimate the model. These methods are entirely feasible with currently
available computing power. If one is prepared to use the simulation-based estimation
methods discussed in chapter 12, the scope for using mixed-Poisson models of various
types becomes very extensive.

20.4.2. Simulated Maximum Likelihood

Purely for purposes of illustration we now illustrate how we might estimate the NB2
model by maximum simulated likelihood. The reader should understand that in prac-
tice this is unnecessary because we already have an analytical expression for that
model. Suppose we pretend that we do not and tackle estimation by simulation.

Note that h(y|α,µ) in (20.12) can be approximated by

1

S

S∑
s=1

e−µνs (µνs)y

y!
,

where νs (s = 1, . . . , S) are pseudo-random draws from the distribution g(ν|α), and
S is the number of simulation replications used. Drawing from a gamma distribution
with mean 1 and variance α is straightforward. One draws from a uniform distribution
and then applies a transformation to it. Let us denote the uniform random variables
and let νs = − ln us/α, and then define the simulator

f̃ (y|νs, α, µ) = e−µ(− ln us/α) (µ (− ln us/α))y

y!
.

Then the MSL estimator θ̂MSL maximizes

QN (θ) =
N∑

i=1

ln

(
1

S

S∑
s=1

f̃ (yi |xi , u
s
i ,θ)

)
, (20.14)

where µi = exp(x′β) and θ = (α,β).
Of course, this method is computer intensive but otherwise straightforward. A fuller

discussion of the properties of MSL was given earlier in Chapter 12.4. Here we just
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remind the reader that when S, N → ∞, S/
√

N → 0 then θ̂MSL and θ̂ML are asymp-
totically equivalent.

20.4.3. Finite Mixture Models

The mixture model in the previous section was a continuous mixture model, because
the mixing random variable ν was assumed to have continuous distribution. An al-
ternative approach instead uses a discrete representation of unobserved heterogeneity,
which generates a class of models called finite mixture models; see Section 18.5.
This class of models is a particular subclass of latent class models. Some variants and
special cases of this model are also known as discrete factor models.

In empirical work the more commonly used alternative to the continuous mixture is
found in the class of modified count models discussed in the next section. However, it
is more natural to follow up the preceding section with a discussion of finite mixtures.
Further, the subclass of modified count models can be viewed as a special case of finite
mixtures.

We suppose that the density of y is a linear combination of m different densities,
where the j th density is f j (y|θ j ), j = 1, 2, . . . ,m. Thus an m-component finite mix-
ture is

f (y|θ,π) =
m∑

j=1

π j f j (y|θ j ), 0 ≤ π j ≤ 1,
m∑

j=1

π j = 1. (20.15)

In the given formulation the components of the mixture are assumed, for generality,
to differ in all their parameters. More restrictive formulations assume that only some
parameters differ across the components (e.g., the intercepts) and the remaining param-
eters are all common to the mixture components. Assumptions at some intermediate
level of generality may also be made.

For further insight consider this approach for the m = 2 case. Suppose that the
sampled population contains two “types” of cases, whose y-outcomes are character-
ized by distributions f1(y|θ1) and f2(y|θ2), which we assume have different moments.
Suppose type-1 subpopulation has mean µ(θ1), and type-2 subpopulation has mean
µ(θ2), where µ(θ2) < µ(θ1). For example, in a study of the use of medical services,
the first subpopulation corresponds to frequent users of the service and the second to
relatively infrequent users. Assume that the fractions of the two types in the popula-
tions are π1 and π2(= 1 − π1), respectively. Then a random sample drawn from the
population will contain proportions π1 and π2 of the two types, although one cannot
observe which case belongs to which subpopulation. That is, the “types” are latent
classes.

The goal of the researcher who uses this model is to estimate the unknown param-
eters θ j , j = 1, . . . ,m. It is easy to develop regression models based on (20.15). For
example, if NB2 models are used then f j (y|θ j ) is the NB2 density (20.12) with pa-
rameters µ j = exp(x′β j ) and α j , so θ j = (β j , α j ). If the number of components, m,
is given, then under some regularity conditions maximum likelihood estimation of the
parameters (π j ,θ j ), j = 1, . . . ,m, is possible.
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The pros and cons of the finite mixture representation have also been given earlier
and will only be briefly mentioned here. Further discussion in the context of dura-
tion models is in Section 18.5. First, a finite mixture is a flexible and parsimonious
method of modeling the data. Each mixture component provides a local approxima-
tion to some part of the true distribution. Second, the finite mixture approach is in a
sense semiparametric because it does not require any distributional assumptions for
the mixing variable. Finally, in many cases the results are easy to interpret. The finite
mixture representation is attractive if the investigator is especially interested in the
behavior of a subpopulation from the viewpoint of public policy. If latent classes are
ignored, so m = 1, then the estimated parameters will be weighted sums of the latent
class parameters.

There are several potential difficulties also. First, we may have very little theoretical
guidance on specifying the number of components, and we may not be able to reliably
distinguish among some of the components if they are not sufficiently different. The
usual practice is to start with a few components and then add additional components
if the fit of the model is significantly improved by doing so. In some cases only the
intercepts may be allowed to differ and the slopes may be constrained to equality across
components. Caution is necessary in this process because the sampling properties of
the maximum likelihood estimator are not fully understood for the case in which m is
unknown.

There are several studies that indicate that finite mixture models work quite well for
count data models of medical care (Deb and Trivedi, 1997; 2002). One possible reason
for this is that the population might be split by the latent health status of individuals.
Those who are healthy, perhaps the majority, might account for low average demand,
whereas those who are ill may account for high average demand. When the observed
health status is imperfectly observed, the finite mixture model may do a good job of
separating subpopulations.

20.4.4. Truncation and Censoring

In some studies, inclusion in the sample requires that sampled individuals have been
engaged in the activity of interest. Then the count data are truncated, as the data are
observed only over part of the range of the response variable. Examples of truncated
counts include the number of bus trips made per week in surveys taken on buses,
the number of shopping trips made by individuals sampled at a mall, and the number
of unemployment spells among a pool of unemployed. In all these cases we do not
observe zero counts, so the data are said to be zero-truncated, or more generally
left-truncated. Right-truncation results from loss of observations greater than some
specified value.

A general treatment of truncated and censored models, using ML estimation, is
given in Section 16.2. Here we specialize to count data.

Truncation leads to inconsistent parameter estimates unless the likelihood function
is suitably modified. Consider the case of zero truncation. Let f (y|θ) denote the den-
sity function and F(y|θ) = Pr[Y ≤ y] denote the cumulative distribution function of
the discrete random variable, where θ is a parameter vector. If realizations of y less
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than the positive integer 1 are omitted, the ensuing zero-truncated density is given by

f (y|θ, y ≥ 1) = f (y|θ)

1 − F(0|θ)
, y = 1, 2, . . . . (20.16)

This specializes in the zero-truncated Poisson case, for example, to f (y|µ, y ≥ 1) =
e−µµy/[y!(1 − exp(−µ))]. It is straightforward to construct a log-likelihood based on
this density and to obtain maximum likelihood estimates.

Censored counts most commonly arise from aggregation of counts greater than
some value. This is often done in survey design when the total probability mass over
the aggregated values is relatively small. An important difference between truncation
and censoring is that in the case of the latter, covariates corresponding to the cen-
sored counts are observed; in the truncation case neither the counted outcomes nor
the covariates are observed. Censoring, like truncation, leads to inconsistent parameter
estimates if the uncensored likelihood is mistakenly used. See also Section 16.2.

For example, the number of events greater than some known value c might be ag-
gregated into a single category. Then some values of y are incompletely observed; the
precise value is unknown but it is known to equal or exceed c. The observed data has
density

g(y|θ) =
{

f (y|θ) if y < c,
1 − F(c − 1|θ) if y ≥ c,

(20.17)

where c is known.
A related complication is that of sample selection (Terza, 1998). Then the count y

is observed only when another random variable, potentially correlated with y, crosses
a threshold. For example, to see a medical specialist one may first need to see a general
practitioner.

20.4.5. Modified Count Models

The leading motivation for the modified count models of this section is to solve the so-
called problem of excess zeros, the presence of more zeros in the data than predicted
by count models such as the Poisson, or even NB2.

Hurdle or Two-Part Models

The hurdle model or two-part model (see Section 16.4) relaxes the assumption that
the zeros and the positives come from the same data-generating process. The zeros are
determined by the density f1 (·), so that Pr[y = 0] = f1(0). The positive counts come
from the truncated density f2 (y|y > 0) = f2(y)/(1 − f2(0)), which is multiplied by
Pr[y > 0] = 1 − f1(0) to ensure that probabilities sum to unity. Thus

g(y) =
 f1(0) if y = 0,

1 − f1(0)

1 − f2(0)
f2(y) if y ≥ 1.

(20.18)

This reduces to the standard model only if f1(·) = f2(·). Thus in the modified model
the two processes generating the zeros and the positives are not constrained to be
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the same. Although the motivation for this model is to handle excess zeros, it is also
capable of modeling too few zeros.

Maximum likelihood estimation of the hurdle model involves separate maximiza-
tion of the two terms in the likelihood, one corresponding to the zeros and the other to
the positives. This is straightforward.

A hurdle model has the interpretation that it reflects a two-stage decision-making
process. For example, a patient may initiate the first visit to a doctor, but the second
and subsequent visits may be determined by a different mechanism (Pohlmeier and
Ulrich, 1995).

Regression applications use hurdle versions of the Poisson or negative binomial,
obtained by specifying f1(·) and f2(·) to be the Poisson or negative binomial densities
given earlier. In application the covariates in the hurdle part that models the zero/one
outcome need not be the same as those that appear in the truncated part, although in
practice they are often the same. The hurdle model is widely used, and the hurdle
negative binomial model is quite flexible. Drawbacks are that the model is not very
parsimonious, typically the number of parameters is doubled, and parameter interpre-
tation is not as easy as in the same model without hurdle.

The choice of the distribution in the hurdle specification is important. Using a more
flexible distribution gives the negative binomial obvious advantages over the Poisson.
The conditional mean in the hurdle model is the product of the probability of positives
and the conditional mean of the zero-truncated density. Therefore, using a Poisson re-
gression when the hurdle model is the correct specification implies a misspecification,
which will lead to inconsistent estimates. Because of the form of the conditional mean
specification, the calculation of marginal effects is more complicated, with similarities
to the two-part model used in Section 16.4.

With-Zeros or Zero-Inflated Model

A second modified count model is the with-zeros model or zero-inflated model. This
supplements a count density f2(·) with a binary process with density f1(·). If the binary
process takes value 0, with probability f1(0), then y = 0. If the binary process takes
value 1, with probability f1(1), then y takes count values 0, 1, 2, . . . from the count
density f2(·). This lets zero counts occur in two ways: as a realization of the binary
process and as a realization of the count process when the binary random variable takes
value 1. The density is

g(y) =
{

f1(0) + (1 − f1(0)) f2(0) if y = 0,
(1 − f1(0)) f2(y) if y ≥ 1.

(20.19)

Regression models let f1(·) be a logit model and f2(·) be a Poisson or negative bi-
nomial density. This model is used much less than the hurdle model. It is capable of
modeling too few zeros.

The zero-inflated count model is used less frequently in econometrics than in other
statistical disciplines.
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20.4.6. Discrete Choice Models

Count data can be modeled by discrete choice model methods, possibly after some
grouping of counts to limit the number of categories. For example, the categories may
be 0, 1, 2, 3, and 4 or more if few observations exceed four. Unordered models such
as multinomial logit, discussed in Section 15.4, are not parsimonious and more impor-
tantly are inappropriate. Instead, a sequential model that recognizes the ordering of the
data should be used.

One such model is an ordered model. This defines an unobserved latent variable,
y∗ = x′β + u, with values of y = 0, 1, 2, . . . being observed as y∗ crosses progres-
sively higher thresholds, which are also parameters to be estimated. An ordered logit
(or probit) model arises when u is logistic (or standard normal) distributed. Ordered
models (see Section 15.9) are particularly useful when the count can also take nega-
tive values as may occur when modeling a net change, such as the net change in the
number of firms in an industry.

Another possible sequential model, although less parsimonious, is obtained by spec-
ifying a sequence of binary models for Pr[y = 1|y ≥ 0], Pr[y = 2|y ≥ 1], and so on.

Finally, in some cases durations may be available in addition to counts. For example,
if the dates of doctor visits are known, one can model a count, the number of visits in
a month, say, or the duration of time between visits. In general, the latter approach
is more efficient, since it uses more detailed data, but the count regression can still
provide useful information about the role of covariates (Dean and Balshaw, 1997).

20.5. Partially Parametric Models

By partially parametric models we mean that we focus on modeling the data via the
conditional mean and variance, and even these may not be fully specified. In Sec-
tion 20.5.1 we consider models based on specification of the conditional mean and
variance. In Section 20.5.2 we consider and critique the use of least-squares methods
that do not explicitly model the heteroskedasticity inherent in count data. In Section
20.5.3 we consider models that are even more partially parametric, such as those giving
an incomplete specification of the conditional mean.

The approach is similar in flavor to NLS, except that here we allow for het-
eroskedasticity that is well modeled as a function of the conditional mean.

20.5.1. Quasi-ML Estimation

As discussed in Section 20.2.1, when using PML or QML, the distribution of the es-
timator is obtained under weaker assumptions about the dgp than those that lead to a
specific likelihood function.

Let us reconsider (20.6). Given an assumption for the functional form for ωi , and
a consistent estimate ω̂i of ωi , one can consistently estimate this covariance ma-
trix. We could use the Poisson assumption, ωi = µi , but as already noted the data
are often overdispersed, with ωi > µi . Common variance functions used are ωi =
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(1 + αµi )µi , that of the NB2 model discussed in Section 20.4.2, and ωi = (1 + α)µi ,
that of the NB1 model. Note that in the latter case (20.6) simplifies to VPML[β̂P] =
(1 + α)

(∑
i µi xi x′

i

)−1
, so with overdispersion (α > 0) the usual ML variance matrix

given in (20.7) understates the true variance.
If ωi = E[(yi − x′

iβ)2|xi ] is instead unspecified, a consistent estimate of VPML[β̂P]
can be obtained by adapting the Eicker–White robust sandwich variance estimate

formula to this case. The middle sum in (20.6) needs to be estimated. If µ̂i
p→

µi then N−1∑
i (yi − µ̂i )

2xi x′
i

p→ lim N−1∑
i ωi xi x′

i . Thus a consistent estimate of
VPML [β̂P ] is given by (20.6) with ωi and µi replaced by (yi − µ̂i )

2 and µ̂i .
When doubt exists about the form of the variance function, the use of the PML es-

timator is recommended. Computationally this is essentially the same as Poisson ML,
with the qualification that the variance matrix must be recomputed. The calculation of
robust variances is often an option in standard packages.

These results for Poisson PML estimation are qualitatively similar to those for PML
estimation in the linear model under normality. They extend more generally to PML
estimation based on densities in the linear exponential family. In all cases consistency
requires only correct specification of the conditional mean (Nelder and Wedderburn,
1972; Gouriéroux et al., 1984a). This has led to a vast statistical literature on gener-
alized linear models (see McCullagh and Nelder, 1989). These permit valid inference
providing the conditional mean is correctly specified and nest many types of data as
special cases – continuous (normal), count (Poisson), discrete (binomial), and positive
(gamma) as detailed in Section 5.7.4. Many methods for complications, such as time-
series and panel data models, are presented within the more general GLM framework
rather than specifically for count data.

Some econometricians find it more natural to use the GMM framework rather than
GLM. Then the starting point is the conditional moment E[yi − exp(x′

iβ)|xi ] = 0. If
data are independent over i and the conditional variance is a multiple of the mean it can
be shown that the optimal choice of instrument is xi , leading to the estimating equa-
tions (20.5); for more detail, see Cameron and Trivedi (1998, pp. 37–44). The GMM
framework has been fruitful for panel data on counts (see Section 20.5.3) and for en-
dogenous regressors. Fully specified parametric simultaneous equations models for
counts are in their infancy, so instrumental variables methods are appealing. Given
instruments zi , dim(z) ≥ dim(x), satisfying E[yi − exp(x′

iβ)|zi ] = 0, a consistent esti-
mator of β minimizes

Q(β) =
[

N∑
i=1

(yi − exp(x′
iβ))zi

]′
W

[
N∑

i=1

(yi − exp(x′
iβ))zi

]
, (20.20)

where W is a symmetric weighting matrix.
The pros and cons of this approach are as follows. A major advantage is that the

approach makes fewer distributional assumptions and hence avoids a possible model
misspecification. However, the discreteness in the outcome variable and its natural het-
eroskedasticity are ignored, leading to a possible loss of efficiency. A suitable of choice
of W matrix may mitigate the problem. Further, by emphasizing the first moment of
the distribution, when potentially there may be significant additional information in
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the higher moments, the IV estimator may be sensitive to the presence of large counts
in the data. Table 20.2 illustrates features of some types of data that are awkward to
model using a GMM-type estimator.

20.5.2. Least-Squares Estimation

When attention is focused on modeling just the conditional mean, least-squares meth-
ods are inferior to the approach of the previous section.

Linear least-squares regression of y on x leads to consistent parameter estimates if
the conditional mean is linear in x. However, for count data the specification E[y|x] =
x′β is inadequate as it permits negative values of E[y|x]. For similar reasons the linear
probability model is inadequate for binary data.

Transformations of y may be considered. In particular, the logarithmic transforma-
tion regresses ln y on x. This transformation is problematic if the data contain zeros,
as is often the case. One standard solution is to add a constant term, such as 0.5, and to
model ln(y + .5) by OLS. This ad hoc method introduces problems of retransforma-
tion if we are interested in E[y|x] rather than E[ln y|x]; see Mullahy (1998). However,
conversion to a linear model has the advantage of convenience if, for example, there is
an endogenous right-hand variable that needs to be “instrumented.”

It is instead better to use nonlinear least squares with the exponential mean specifi-
cation; that is, estimate the nonlinear regression model y = exp(x′β) + u. It is impor-
tant that statistical inference for the NLS estimator be based on Eicker–White robust
standard errors since the error term in this regression will be heteroskedastic.

For counts the NLS estimator is generally less efficient than the Poisson pseudo-
MLE. The NLS first-order condition is

∑
i (yi − exp(x′

iβ)) exp(x′
iβ)xi = 0. This

weights the residuals differently than does the Poisson pseudo-MLE (see (20.5)). The
NLS weights are optimal if V[yi |xi ] is constant (homoskedastic) whereas the Poisson
pseduo-MLE weights are optimal if V[yi |xi ] is a multiple of E[yi |xi ]. The latter is a
much better model for handling the inherent heteroskedasticity of count data.

20.5.3. Semiparametric Models

By semiparametric models we mean partially parametric models that have an infinite-
dimensional component, as developed in Section 9.7. The curse of dimensionality mo-
tivates us to put some structure on the conditional mean function.

One class of semiparametric models incompletely specifies the conditional mean.
Leading examples are single-index models and partially linear models. Single-index
models specify µi = g(x′

iβ), where the functional form g(·) is left unspecified. Par-
tially linear models specify µi = exp(x′

iβ + g(zi )), where the functional form g(·) is
left unspecified. In both cases

√
N -consistent asymptotically normal estimators of β

can be obtained, without knowledge of g(·).
A second example is optimal estimation of the regression parameters β, when µi =

exp(x′
iβ) is assumed but V[yi |xi ] = ωi is left unspecified. The infinite-dimensional

component arises because as N → ∞ there are infinitely many variance parameters
ωi . An optimal estimator of β, called an adaptive estimator, is one that is as efficient
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as that when ωi is known. Delgado and Kniesner (1997) extend results for the linear re-
gression model to count data with exponential conditional mean function, using kernel
regression methods to estimate weights to be used in a second-stage nonlinear least-
squares regression. In their application the estimator shows little gain over specifying
ωi = µi (1 + αµi ), overdispersion of the NB2 form.

20.6. Multivariate Counts and Endogenous Regressors

In this section we very briefly present extension from cross-section to other types of
count data (see Cameron and Trivedi, 1998, for further detail). For multivariate count
data many models have been proposed but preferred methods have not yet been estab-
lished. For related panel data there is more agreement in the econometrics literature on
which methods to use, though a wider range of models is considered in the statistics
literature; see Section 23.7.

20.6.1. Multivariate Data

In some data sets more than one count is observed. For example, data on the utiliza-
tion of several different types of health service, such as doctor visits and hospital days,
may be available. Joint modeling will improve efficiency and provide richer models
of the data if counts are correlated. This section briefly reviews bivariate count mod-
els related to the main models of this chapter. The reader familiar with multiequation
linear models with correlated errors, e.g. the SUR model in Section 6.9.3, may think
of a generalization to multiequation count models with correlated errors. Assume that
we observe several count variables for the same individual (e.g., number of visits to
a doctor and number of prescribed medications taken). The source of correlation may
lie in unobserved heterogeneity. Joint estimation that takes account of correlated er-
rors will yield more efficient estimates, but at the cost of additional computational
complexity.

Semiparametric Methods

A partially parametric approach views this as a seemingly unrelated regressions prob-
lem, adapting methods for the linear regression model to count data where the condi-
tional means are nonlinear and the data are heteroskedastic; see Section 6.10.3.

Gouriéroux, Monfort, and Trognon (1984b) propose a moment-based approach to
derive the bivariate Poisson-type model. They specify a model by defining first two
moments of y1 and y2 and estimate it by a quasi-generalized pseudo-maximum like-
lihood procedure. This model allows for overdispersion and is more general than the
bivariate Poisson model, but it does not maintain the integer-valued property of the
counts.

Delgado (1992) treats a multivariate count model as a multivariate nonlinear model
and suggests a semiparametric generalized least-squares estimator. The covariance ma-
trix of the residuals is estimated using the k–NN method. The approach differs from
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that of Gouriéroux, Monfort, and Trognon (1984) in the choice of the estimator for the
covariance matrix.

Most parametric studies have used the bivariate Poisson. One way this distribution
is derived is to suppose that the two counts y1 and y2 are generated as y1 = z1 + w
and y2 = z2 + w, where all of z1, z2, and w are independent and Poisson distributed,
with positive parameters λ1, λ2, and λ12, respectively, which may be parameterized as
a function of exogenous covariates. This is called the method of trivariate reduction.

The marginal distribution of y j is Poisson[λ j + λ12] and, therefore, this model re-
stricts the conditional mean to be equal to the conditional variance for each count
variable, so

E[y j |x j ] = V[y j |x j ] (20.21)

for j = 1, 2, where x j is a vector of explanatory variables. The correlation coefficient
is given by

Cor[y1,y2] = λ12√
(λ1 + λ12)(λ2 + λ12)

, (20.22)

which is positive, because λ12 > 0.

Fully Parametric Methods

Several recent studies develop better parametric models by introducing correlated
unobserved heterogeneity for each count. The related issues were discussed in Sec-
tions 6.10.1 and 19.3.

Marshall and Olkin (1990) consider a model with multiplicative unobserved het-
erogeneity in the marginal distributions of both counts in the following way. Let y j

be P
[
λ jν
]
, j = 1, 2, where P denotes Poisson distribution with mean λ jν and ν has

gamma distribution with density

g (ν) = να−1 exp(−ν)

�(α)
.

The random variable ν can be interpreted as common (shared) unobserved hetero-
geneity. The resulting model is a one-factor model. The bivariate negative binomial
(BVNB) distribution of two counts is defined as

f (y1, y2|x1, x2) =
∫ ∞

0
f1(y1|x1, ν) f2(y2|x2, ν)g(ν)dν (20.23)

=
∫ [ 2∏

j=1

exp(−λ jν)(λ jν)y j

y j !

]
να−1 exp(−ν)

�(α)
dν

= �(y1 + y2 + α)

y1!y2!�(α)

[
λ1

λ1 + λ2 + 1

]y1
[

λ2

λ1 + λ2 + 1

]y2

×
[

1

λ1 + λ2 + 1

]α
.

This mixture has a closed-form solution, but the model restricts the unobserved het-
erogeneity to be the identical component for both count variables. The joint likelihood
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is built up with terms like (20.23). The marginal distributions are univariate negative
binomial and the correlation between the two count variables,

Cor
[
y1,y2

] = λ1λ2√
(λ2

1 + αλ1)(λ2
2 + αλ2)

, (20.24)

must be positive.
Other models with more flexible correlation structures, but that also require

computationally advanced methods, have been proposed by Cameron and Johansson
(1998), Munkin and Trivedi (1999), and Chib and Winkelmann (2001).

Munkin and Trivedi (1999) consider a generalization of the BVNB model as
follows:

f (y1, y2|x1, x2) =
∫ ∞

0

∫ ∞

0
f1(y1|x1, ν1) f2(y2|x2, ν2)g(ν1, v2)dν1dν2, (20.25)

where the joint distribution is built up from the two marginal models, each condi-
tioned on a separate unobserved heterogeneity variable, ν1 and ν2, respectively, that are
specified to gave a bivariate normal distribution. Conditional on (x1, x2, ν1, ν2) each
marginal distribution is Poisson, with multiplicative unobserved normal heterogene-
ity. The model is therefore a bivariate Poisson–log-normal mixture. The likelihood
function is the product over the sample of terms like (20.25). The authors interpret
this as a “two-factor model.” This specification is more flexible as it does not restrict
the sign or size of correlation between the two unobserved components. However this
additional flexibility introduces computational complexity because the bivariate inte-
gral in (20.25) does not have an analytical solution and hence must be handled us-
ing a simulation-based approach (discussed in Chapter 12). 2.4 and in Munkin and
Trivedi (1999). If the dimension of the model, the number of y variables, increases,
then so does the order of numerical integration involved. This feature combined with
a possibly large sample size can make computational burden very significant. Chib
and Winkelmann (2001) suggest an alternative Bayesian MCMC approach, which,
while retaining the flexibility of the aforementioned specification, can handle a high-
dimensional outcome vector. They demonstrate the feasibility of their approach with a
six-dimensional mixed Poisson–log-normal model.

Another recently developed approach to modeling correlated counts is the cop-
ula approach described in Section 19.3. Here one begins with the specification of
marginal distributions; the joint distribution is obtained by combining the marginals
using a copula. Examples for dependent durations were given in Section 19.3. See also
Cameron, Li, Trivedi, and Zimmer (2004).

20.6.2. Count Models with Endogenous Regressors

Simultaneous models for count variables arise in a number of contexts. For example,
in Cameron et al. (1988) the focus is on a count variable (medical utilization), but one
of the covariates, the health insurance status of the subject, is an endogenous choice.
Mullahy (1997) in a cross-section context, and Crépon and Duguet (1997b) in a panel
data context, apply the GMM approach to count models with endogenous regressors. A
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very well known example from health economics involves models of counts of health
services, such as doctor visits, and one of the regressors would be the health insurance
status of the individual. The assumption that the choice of health insurance and the
error on the outcome equation are uncorrelated is unrealistic, and hence the insurance
regressor is likely to be endogenous. Chapter 22 provides more examples and details
of panel count models with endogenous regressors.

Currently the econometric literature provides two approaches to the estimation of
models with endogenous regressors: one based on the GMM/IV approach and the other
based on stronger assumptions of maximum likelihood. We consider each in turn.

The first approach (Mullahy, 1997) begins with a moment condition. Consider the
exponential mean model with additive zero-mean error term,

yi = E[yi |xi ] + νi = exp(x′
iβ) + νi , (20.26)

E[νi |xi ] �= 0. (20.27)

Suppose that we have available instrumental variables zi that satisfy the moment
conditions

E[νi |zi ] = 0, (20.28)

E[yi − exp(x′
iβ)|zi ] = 0.

Then the GMM or nonlinear IV estimation is feasible, assuming that there are enough
moment conditions available. This approach has already been discussed in Sec-
tion 6.5.3. The reader is referred to this section for details and related discussion.
However, note that in implementing this approach the count nature of the variable is
ignored and the model is treated like any other nonlinear model with an exponential
mean. Also, note that heteroskedasticity is highly likely with counted data and hence
the GMM/IV procedure should accommodate this complication.

Mullahy has pointed out that a multiplicative error term specification has certain
advantages. This, however, leads to a different moment condition. Let

E[yi |xi , νi ] = exp(x′
iβ)νi . (20.29)

This leads to the moment condition

E

[
yi

exp(x′
iβ)

− 1|zi

]
= 0, (20.30)

which is a special case of the nonlinear moment condition E[r (yi , xi ,β)|zi ] = 0 dis-
cussed in Section 6.5. Provided suitable and sufficient moment conditions are avail-
able, the GMM approach can be followed. Once again, however, for a counted variable,
heteroskedasticity is likely and efficiency loss will occur because the count feature of
the variable has been ignored.

Alternative approaches that simultaneously handle the count feature of the depen-
dent variable and the problem of endogenous regressors are more parametric (Terza,
1998). Deb and Trivedi (2004) develop a joint model of counts (Y) with insurance
plan variable (D) as regressors and a binary choice model for the insurance plan.
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Endogeneity in their model arises from the presence of correlated unobserved hetero-
geneity in the outcome (count) equation and the binary choice equation. Their model
has the following structure:

Pr[Yi = yi |xi , Di , li ] = f (x′
iβ + γ1 Di + λli ), (20.31)

Pr[Di = 1|zi , li ] = g(z′
iα + δli ), (20.32)

where li are latent factors reflecting unobserved heterogeneity and δ and λ are an
associated factor loadings. The joint distribution of selection and outcome variables,
conditional on the common latent factors, can be written as

Pr[Yi = yi , Di = 1|xi , zi , li ] = f (x′
iβ + γ1di + λli )g(z′

iα + δli ), (20.33)

because (Y, D) are assumed to be conditionally independent.
The problem in estimation arises because the li are unknown. Although the li are

unknown, assume that h, the distribution of li , is known and can therefore be integrated
out of the joint density, that is,

Pr[Yi = yi , Di = 1|xi , zi ] = ∫ [ f (x′
iβ + γ1 Di + λli )g(z′

iα + δli )
]

h(li )dli . (20.34)

Cast in this form, the unknown parameters of the model may be estimated by maximum
likelihood.

For simplicity we assume h(li ) has no unknown parameters. Then the maximum
likelihood estimator maximizes the joint likelihood function L(θ1,θ2|yi , Di , xi , zi ),
where θ1 = (β, γ1, λ) and θ2 = (α, δ) refer to parameters in the outcome and plan
choice equations, respectively, and L refers to the joint likelihood whose i th compo-
nent is defined in (20.34). For identification additional normalization restrictions may
be needed.

The main practical problem of estimation given suitable specifications for f , g,
and h is that the integral does not have, in general, a closed-form solution. The MSL
estimator involves replacing the expectation by a simulated sample analogue (average),
that is,

P̃r[Yi = yi , Di = 1|xi , zi ] = 1

S

S∑
s=1

[
f (x′

iβ + γ1 Di + λ̃lis)g(z′
iα + δ̃lis)

]
. (20.35)

where l̃i s is the sth draw (from a total of S draws) of a pseudo-random number from
the density h and P̃r denotes the simulated probability. A simulated likelihood function
for the data can then be defined. The MSL estimator maximizes the simulated log-
likelihood.

This approach, developed for an endogenous dummy regressor in a count regres-
sion model, can be extended to multiple dummies, and multiple outcomes, whether
discrete or continuous. The limitation comes from the burden of estimation, which is
very heavy compared with an IV-type estimator. Further, as in any simultaneous equa-
tion model, identifiability is an issue. Applied work typically includes some nontrivial
explanatory variables in the z vector that are excluded from the x vector.

689



MODELS OF COUNT DATA

20.7. Count Example: Further Analysis

We now reconsider the earlier analysis based on the Poisson regression by using more
flexible parametric models beginning with the NB2 model.

The results for the NB2 model are given in the last columns of Table 20.5, presented
in Section 20.3. Here too we report the robust standard errors and t-ratios. First note
that the overdispersion coefficient α is highly significant. The Wald test statistic is
8.926, leading to a decisive rejection of the null of equidispersion (α = 0). Consistent
with this is the large increase in the log-likelihood, from −60,087 to −42,777. Clearly,
the improvement in the fit of the model is considerable. Because the models are nested
it is unnecessary to report AIC and BIC.

Row 3 in Table 20.6 shows the predicted frequencies from the NB2 model. These
are very close to the observed frequencies and confirm the improvement in the fit of
the model as a result of overdispersion being accounted for.

The coefficients themselves, however, seem fairly stable among alternative estima-
tion methods, and all effects are measured with precision, reflecting the impact of
the large sample. These features of the results are encouraging, suggesting that the
NB2 model is reasonable. As predicted by basic economic theory, utilization and the
coinsurance rate (LC) are negatively correlated. The estimated impact does not seem
sensitive to the treatment of overdispersion.

Additional modeling refinements are possible. For example, Deb and Trivedi (2002)
compare the performance of the two-part (hurdle) model with a two-component finite
mixture model and find the latter to fit better. However, even the hurdle model fits better
than the NB2 model. Although such refinements provide additional information, none
of the results given here can be regarded as misleading on the essential question of
price sensitivity of utilization.

The NB2 model works well for doctor visits. For other count outcomes, however,
even more flexible models than NB2 may be necessary.

20.8. Practical Considerations

Those with experience of nonlinear least squares will find it easy to use packaged
software for Poisson regression, which is a widely available option in popular econo-
metrics and statistics packages. Care is needed to ensure that robust standard errors
are obtained. Many econometrics packages also include negative binomial regression
and the basic panel data models. Popular statistics packages include count regres-
sion in a generalized linear models module. Standard packages also produce some
goodness-of-fit statistics, such as the pseudo-R2 measures, for the Poisson model
see Section 8.7.1.

More recently developed models, such as finite mixture models, most time-series
models, and dynamic panel data models, require developing one’s own programs. A
promising route is to use matrix programming languages in conjunction with soft-
ware for implementing estimation based on user-defined objective functions. For
simple models many computer programs make it possible to implement maximum
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likelihood estimation and (highly desirable) robust variance estimation for user-
defined functions.

In addition to reporting parameter estimates it is useful to have an indication of
the magnitude of the estimated effects, as discussed in Section 20.2.3. As noted in
Section 20.2.4, care should be taken to ensure that reported standard errors and t-
statistics for the Poisson regression model are based on variance estimates robust to
overdispersion.

In addition to estimation it is strongly recommended that specification tests be used
to assess the adequacy of the estimated model. For Poisson cross-section regression
overdispersion tests are easy to implement. For any parametric model one can compare
the actual and fitted frequency distribution of counts, although it is not always easy to
understand the respect in which a model fails when the distribution of observed counts
is highly dispersed. Formal statistical specification and goodness-of-fit tests based on
actual and fitted frequencies are available.

In most practical situations one is likely to face the problem of model selection.
For likelihood-based models that are nonnested one can use selection criteria, such
as the Akaike information criteria, that are based on the fitted log-likelihood but with
degrees-of-freedom penalty for models with many parameters.

20.9. Bibliographic Notes
20.2 All the topics dealt with in this chapter are treated at greater length and depth

by Cameron and Trivedi (1998), who also provide a comprehensive bibliography.
Winkelmann (1997) also provides a treatment of the econometric literature on counts.
The statistics literature generally analyzes counts in the context of GLM. The stan-
dard reference is McCullagh and Nelder (1989). The econometrics literature gener-
ally underemphasizes the contributions of the GLM literature. Fahrmeier and Tutz
(1994) provide a recent and more econometric exposition of GLMs. The material in
Section 20.2 is standard and appears in many places.

20.3 Deb and Trivedi (2002) give a detailed analysis of these RHIE data.

20.4 Cameron and Trivedi (1986) provide an early presentation and application of the
negative binomial. Hausman et al. (1984) applied the model and its variants to panel
data. For the finite mixture approach of Section 20.4.3 see Deb and Trivedi (1997).
Applications of the hurdle model in Section 20.4.5 include those by Mullahy (1986),
who first proposed the model, Pohlmeier and Ulrich (1995), and Gurmu and Trivedi
(1996).

20.5 The quasi-MLE of Section 20.5.1 is presented in detail by Gouriéroux et al. (1984a,b)
and by Cameron and Trivedi (1986).

20.6 Regression models for the types of data discussed in Section 20.6 are in their infancy.
The notable exception is that (static) panel data count models are well established,
with the standard reference being Hausman et al. (1984). See also Brännäs and Jo-
hansson (1996). Developing adequate regression models for multivariate count data
and models with endogenous regressors is currently an active area; see Terza (1998),
and Deb and Trivedi (2004).

691



MODELS OF COUNT DATA

Exercises

20–1 Suppose that Y is Poisson distributed with mean µ.

(a) Verify that the first four moments are, respectively, µ, µ, µ, and 3µ2 + µ.
(b) Show that there is a linear relationship between Pr[Y = j ] and Pr[Y = j −

1], j = 1,2, . . . .
(c) Consider the Poisson MLE in the regression case with µi = exp(x′

iβ).
Possible estimates of the variance of the Poisson MLE include V̂[β̂] =
[
∑

i µ̂i xi x′
i ]

−1 and Ṽ[β̂] = [
∑

i (yi − µ̂i )
2xi x′

i ]
−1. Show that they are asymp-

totically equivalent (upon scaling by N) if the data density is correctly
specified.

20–2 Now consider overdispersion in the Poisson model.

(a) Suppose Y|µ ∼ P[µ], where µ = exp (β0 + β1x), β0 = γ0 + ε, and ε is
an unobserved random variable with E[ε] = 0, V[ε] = σ 2 > 0. Show that
V[Y] > E[Y].

(b) Consider the NB2 model with the variance function µ+ αµ2 and the proba-
bility mass function given in (20.12). Using graphs for four different values of
α ∈ [0,3] , describe the behavior of the probability mass for different realized
values of Y; in your answer concentrate on the behavior of the function near
the origin and in the right tail.

(c) For the NB2 density given in (20.12) in Section 20.4.1, show that as α → 0
the density goes to the Poisson. [This could be tricky.]

20–3 Consider the Poisson regression model with conditional mean µ = exp(x′β).
Treat the estimation problem as an unweighted nonlinear squares problem in
which y = E[y|x] + ε, where E[y|x] = exp(x′β) and ε ∼ iid[0, σ 2].

(a) Derive the nonlinear least-squares equations for (β, σ 2). Compare the least-
squares and the maximum likelihood equations for β and explain the differ-
ence between them.

(b) Derive the weighted nonlinear least-squares equations for β. Explain your
choice of weights. [Weights are used to handle heteroskedasticity].

(c) Compare the weighted nonlinear least-squares and the maximum likelihood
equations and explain the similarities, if any.

20–4 Consider a finite mixture density f (y|θ) =∑C
j =1 π j f j (y|θ j ), an additive mixture

of C distinct latent classes, or subpopulations, with unknown mixing proportions
π1, . . . , πC, where

∑C
j =1 π j = 1, π j > 0. Here y is a count variable, and the j th

component density f j (yi |θ j ) for the i th observation is expressed as

f j (yi ) = �
(
yi + ψ j i

)
�
(
ψ j i
)
� (yi + 1)

(
ψ j i

λ j i + ψ j i

)ψ j i
(

λ j i

λ j i + ψ j i

)yi

,

where λ j i = exp(x′
iβ j ), ψ j i = λk

j i /α j , α j > 0 and θ j = (β j , α j ). Here k is either 0
or 1. This model is the finite mixture negative binomial with C components and
specializes to the finite mixture Poisson if α j = 0.

(a) Show that E[yi |xi ] = λ̄i =∑C
j =1 π jλ j i and V(yi |xi ) =∑C

j =1 π jλ
2
j i [1 +

α jλ
−k
j i ] + λ̄i − λ̄2

i .
(b) Show that any mixture model based on the first moment alone is not

identified.
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(c) Show that the C-component Poisson mixture based on the first two mo-
ments is identified.

20–5 (Adapted from Baltagi and Li, 1999) A simple test of overdispersion in a Pois-
son model given in Section 20.2.4 tests the null hypothesis of zero coefficient
in the regression of [(yi − µ̂i )

2 − yi ]/µ̂i on µ̂i . An alternative test proposed in
the literature (Baltagi and Li, 1999) involves the same test but is based on the
regression of (yi − µ̂i )

2 on µ̂i . The latter can be motivated by the idea of tests
based on the Gauss–Newton regression, (see Section 10.3.9). Analyze the dif-
ferences between the tests and the implications of the differences for the manner
of implementing the second test.

20–6 For this problem use a 50% subsample of the data used in this chapter.

(a) Estimate Poisson and negative binomial regression with MDU as the de-
pendent variable and the following explanatory variable: LC, IDP, LINC,
FEMALE, EDUDEC, XAGE, BLACK, HLTHG, HLTHF, and HLTHP. Carry out
a likelihood ratio test of the null hypothesis that the variables LC and IDP
have no effect on MDU.

(b) Test for overdispersion in the Poisson regression using the variance formula-
tions (20.9) with g(µ) = µ and (20.10) with g(µ) = µ2 in this chapter. Which
version of the variance formulation gets more support from the data? What
do you conclude from this exercise?

(c) Estimate the negative binomial model (NB2). Compare the estimate of the
overdispersion parameter with that in part (b). Explain the similarities and
differences.

(d) Using the results from the negative binomial estimation, compare the
estimated marginal effect of a change in LC for an average individual
in excellent health (baseline) and an average individual in poor health
(HLTHP = 1).

(e) For this Poisson specification estimate the “hurdle version” consisting of a
zero part (logit or probit) and a positive part (truncated-at-zero Poisson).
Compare these results with those from a regular Poisson model. Analyze
the similarities and differences between the implications of the two models.
Based on your analysis, which model do you regard as a better explanation
of the data?
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Models for Panel Data

Cross-section models have certain inherent limitations. They are predominantly equi-
librium models that generally do not shed light on intertemporal dependence of events.
They also cannot satisfactorily resolve fundamental issues about the sources of per-
sistence in behavior. Such persistence may be behavioral, i.e. arising from true state
dependence, or it may be spurious, being an artifact of the inability to control for het-
erogeneous behavior in the population. Because panel data, also called longitudinal
data, contain periodically repeated observations of the same subjects, they have a large
potential for resolving issues that cross-section models cannot satisfactorily handle.
Chapters 21 through 23 present methods for panel data. We progress systematically
from linear models for continuous data in Chapter 21 to nonlinear panel data models
for limited dependent variables in Chapter 23. Both fixed effects and random effects
models are considered. A persistent theme through these three chapters is the impor-
tance of using panel-robust methods of inference.

Chapter 21, which reviews the key general results for linear panel data regression
models, can be read easily by those with a good grasp of linear regression; it does not
require the material covered in Parts 2 to 4. We recommend that even those who are
interested in more advanced material should quickly peruse through the contents of
this chapter first to gain familiarity with key concepts and definitions.

Chapter 22 covers important extensions of Chapter 21, especially to dynamic panels
which allow for Markovian dependence structure of current variables. The analysis is
in the GMM framework that is currently favored by many practitioners in this area.
The analysis here is at times intricate, involving many issues of detail. A strong grasp
of GMM will be helpful in absorbing the main results of this chapter.

The results of Chapters 21 and 22 do not extend to nonlinear panel models of Chap-
ter 23 in a general and unified fashion. There are relatively fewer general results for
limited dependent variable panel models. Despite this, in Chapter 23 we begin by
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presenting an analysis of some general issues and approaches. Later sections of this
chapter present panel data extensions of the counterpart cross-section models studied
in Part 4. These sections analyze four categories of models for binary, count, censored,
and duration data, respectively, and should be accessible to a suitably prepared reader
familiar with the parallel cross-section models.
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Linear Panel Models: Basics

21.1. Introduction

Panel data are repeated observations on the same cross section, typically of individu-
als or firms in microeconomics applications, observed for several time periods. Other
terms used for such data include longitudinal data and repeated measures. The focus
is on data from a short panel, meaning a large cross section of individuals observed for
a few time periods, rather than a long panel such as a small cross section of countries
observed for many time periods.

A major advantage of panel data is increased precision in estimation. This is the
result of an increase in the number of observations owing to combining or pooling
several time periods of data for each individual. However, for valid statistical infer-
ence one needs to control for likely correlation of regression model errors over time
for a given individual. In particular, the usual formula for OLS standard errors in a
pooled OLS regression typically overstates the precision gains, leading to underesti-
mated standard errors and t-statistics that can be greatly inflated.

A second attraction of panel data is the possibility of consistent estimation of the
fixed effects model, which allows for unobserved individual heterogeneity that may
be correlated with regressors. Such unobserved heterogeneity leads to omitted vari-
ables bias that could in principle be corrected by instrumental variables methods using
only a single cross section, but in practice it can be difficult to obtain a valid instru-
ment. Data from a short panel, with as few as two periods, offers an alternative way
to proceed if the unobserved individual-specific effects are assumed to be additive and
time-invariant.

Most disciplines in applied statistics other than microeconometrics treat any unob-
served individual heterogeneity as being distributed independently of the regressors.
Then the effects are called random effects, though a better term is purely random ef-
fects. Compared to fixed effects models this stronger assumption has the advantage
of permitting consistent estimation of all parameters, including coefficients of time-
invariant regressors. However, random effects and pooled estimators are inconsistent
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if the true model is one with fixed effects. Economists often view the assumptions for
the random effects model as being unsupported by the data.

A third attraction of panel data is the possibility of learning more about the dynam-
ics of individual behavior than is possible from a single cross section. Thus a cross
section may yield a poverty rate of 20% but we need panel data to determine whether
the same 20% are in poverty each year. As a related example, panel data may determine
whether high serial correlation of individual earnings or unemployment spell length is
due to an individual specific tendency to have high earnings or a long unemployment
spell, or whether it is a consequence of having past high earnings or unemployment.
This topic is deferred to Chapter 22.

The linear panel data models and associated estimators are conceptually simple,
aside from the fundamental issue of whether or not fixed effects are necessary. The
considerable algebra used to derive the properties of panel data estimators should not
distract one from an understanding of the basics: The statistical properties of panel
data estimators vary with the assumed model and its treatment of unobserved effects.
Furthermore, much of the algebra does not generalize to nonlinear panel models.

The current chapter presents the basic estimators for various linear panel data mod-
els. A lengthy introduction in Sections 21.2 and 21.3 provides, respectively, the com-
monly used models and estimators and an application to the relationship between an-
nual hours worked and wages. The important distinction between fixed and random
effects models is studied in Section 21.4. Sections 21.5–21.7 present additional detail
on estimation for, respectively, pooled models, individual-specific fixed effects mod-
els, and individual-specific random effects models. Section 21.8 considers other basic
aspects such as inference and prediction in linear panel data models.

21.2. Overview of Models and Estimators

Panel data provide information on individual behavior both across time and across
individuals.

Even for linear regression, standard panel data analysis uses a much wider range of
models and estimators than is the case with cross-section data. Several standard models
are presented in Section 21.2.1, followed by several estimators presented in Section
21.2.2. Table 21.1 gives a summary that also indicates that several of the estimators
are inconsistent if the dgp is the individual-specific fixed effects model.

Obtaining correct standard errors of estimators is also more complicated than in
the cross-section case. One needs to control for correlation over time in errors for a
given individual, in addition to possible heteroskedasticity. This topic is covered in
Section 21.2.3.

21.2.1. Panel Data Models

A very general linear model for panel data permits the intercept and slope coefficients
to vary over both individual and time, with

yit = αi t + x′
i tβi t + uit , i = 1, . . . , N , t = 1, . . . , T,

698



21.2 . OVERVIEW OF MODELS AND ESTIMATORS

Table 21.1. Linear Panel Model: Common Estimators and Modelsa

Assumed Model

Pooled Random Effects Fixed Effects
Estimator of β (21.1) (21.3) and (21.5) (21.3) Only

Pooled OLS (21.1) Consistent Consistent Inconsistent
Between (21.7) Consistent Consistent Inconsistent
Within (or Fixed Effects) (21.8) Consistent Consistent Consistent
First Differences (21.9) Consistent Consistent Consistent
Random Effects (21.10) Consistent Consistent Inconsistent

a This table considers only consistency of estimators of β. For correct computation of standard errors see Sec-
tion 21.2.3.

where yit is a scalar dependent variable, xi t is a K × 1 vector of independent variables,
uit is a scalar disturbance term, i indexes individual (or firm or country) in a cross
section, and t indexes time.

This model is too general and is not estimable as there are more parameters to
estimate than observations. Further restrictions need to be placed on the extent to which
αi t and βi t vary with i and t , and on the behavior of the error uit .

Pooled Model

The most restrictive model is a pooled model that specifies constant coefficients, the
usual assumption for cross-section analysis, so that

yit = α + x′
i tβ + uit . (21.1)

If this model is correctly specified and regressors are uncorrelated with the error then
it can be consistently estimated using pooled OLS. The error term is likely to be cor-
related over time for a given individual, however, in which case the usual reported
standard errors should not be used as they can be greatly downward biased. Further-
more, the pooled OLS estimator is inconsistent if the fixed effects model, defined in
the following, is appropriate.

Individual and Time Dummies

A simple variant of the model (21.1) permits intercepts to vary across individuals and
over time while slope parameters do not. Then yit = αi + γt + x′

i tβ + uit , or

yit =
N∑

j=1

α j d j,i t +
T∑

s=2

γsds,i t + x′
i tβ, (21.2)

where the N individual dummies d j,i t equal one if i = j and equal zero otherwise,
the (T − 1) time dummies ds,i t equal one if t = s and equal zero otherwise, and it is
assumed that xi t does not include an intercept. (If an intercept is included then one of
the N individual dummies must be dropped).
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This model has N + (T − 1) + dim[x] parameters that can be consistently esti-
mated if both N → ∞ and T → ∞. We focus on short panels where N → ∞ but T
does not. Then the γs can be consistently estimated, so the (T − 1) time dummies are
simply incorporated into the regressors xi t . The challenge then lies in estimating the
parameters β controlling for the N individual intercepts αi . One possibility is to in-
stead have dummies for groups of observations, such as grouping by region, in which
case the clustering methods of Chapter 24 are relevant. Here instead we specify a full
set of N individual intercepts, which causes problems as N → ∞.

Fixed Effects and Random Effects Models

The individual-specific effects model allows each cross-sectional unit to have a dif-
ferent intercept term though all slopes are the same, so that

yit = αi + x′
i tβ + εi t , (21.3)

where εi t is iid over i and t . This is a more parsimonious way to express model (21.2),
with any time dummies included in the regressors xi t . The αi are random variables that
capture unobserved heterogeneity, already studied in Sections 18.2–18.5 and 20.4.

Throughout this chapter we make the assumption of strong exogeneity or strict
exogeneity

E[εi t |αi , xi1, . . . , xiT ] = 0, t = 1, . . . , T, (21.4)

so that the error term is assumed to have mean zero conditional on past, current, and
future values of the regressors. Chamberlain (1980) gives a detailed discussion of ex-
ogeneity assumptions and tests for exogeneity for panel data. Strong exogeneity rules
out models with lagged dependent variables or with endogenous variables as regres-
sors; these models are deferred to Chapter 22.

One variant of the model (21.3) treats αi as an unobserved random variable that is
potentially correlated with the observed regressors xi t . This variant is called the fixed
effects (FE) model as early treatments modeled these effects as parameters α1, . . . , αN

to be estimated. If fixed effects are present and correlated with xi t then many estima-
tors such as pooled OLS are inconsistent. Instead, alternative estimation methods that
eliminate the αi are needed to ensure consistent estimation of β in a short panel.

The other variant of the model (21.3) assumes that the unobservable individual ef-
fects αi are random variables that are distributed independently of the regressors. This
model is called the random effects (RE) model, which usually makes the additional
assumptions that

αi ∼ [α, σ 2
α

]
, (21.5)

εi t ∼ [0, σ 2
ε

]
,

so that both the random effects and the error term in (21.3) are assumed to be iid. Note
that no specific distributions have been specified in (21.5). A more precise term for this
model is the one-way individual-specific random effects model, or more simply the
random intercept model, to distinguish the model with more general random effects
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models such as the mixed linear models presented in Section 22.8. Yet another name
is the random components model.

The term fixed effect is potentially misleading and the term random effect is more
precisely a purely random effect. To avoid such confusion, M-J. Lee (2002) calls a
fixed effect a “related effect” and a random effect an “unrelated effect.” We use the
traditional notation and terminology, but it should be clear that αi is a random variable
in both fixed and random effects models.

Equicorrelated Model

The RE model can be viewed as a specialization of the pooled model, as the αi can
be subsumed into the error term. Then (21.3) can be viewed as regression of yit on xi t

with composite error term uit = αi + εi t , and (21.5) implies that

Cov[(αi + εi t ), (αi + εis)] =
{
σ 2
α , t �= s,
σ 2
α + σ 2

ε , t = s.
(21.6)

The RE model therefore imposes the constraint that the composite error uit is equicor-
related, since Cor[uit , uis] = σ 2

α/[σ
2
α + σ 2

ε ] for t �= s does not vary with the time dif-
ference t − s. Clearly, pooled OLS will be consistent but inefficient under the RE
model. The random effects model is also called the equicorrelated model or ex-
changeable errors model.

Fixed versus Random Effects Models

The fundamental distinction is between models with and without fixed effects. The
modern econometrics literature emphasizes fixed effects, but we also provide details
for the random effects model.

Some authors, including Chamberlain (1980, 1984) and Wooldridge (2002), use the
notation

yit = ci + x′
i tβ + εi t

in (21.3) to make it very clear that the individual effect is a random variable in both
fixed and random effects models. Both models assume that

E[yit |ci , xi t ] = ci + x′
i tβ.

The individual-specific effect ci is unknown and in short panels cannot be consis-
tently estimated, so we cannot estimate E[yit |ci , xi t ]. Instead, we can eliminate ci by
taking the expectation with respect to ci , leading to

E[yit |xi t ] = E[ci |xi t ] + x′
i tβ.

For the RE model it is assumed that E[ci |xi t ] = α, so E[yit |xi t ] = α + x′
i tβ and hence

it is possible to identify E[yit |xi t ]. In the FE model, however, E[ci |xi t ] varies with
xi t and it is not known how it varies, so we cannot identify E[yit |xi t ]. It is nonethe-
less possible to consistently estimate β in the FE model with short panels (as will be
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discussed in the following). Thus it is possible in the FE model to identify the marginal
effect

β = ∂E[yit |ci , xi t ]/∂xi t ,

even though the conditional mean is not identified. For example, it is possible to iden-
tify the effect on earnings of an additional year of schooling, controlling for individual
effects, even though the individual effects and the conditional mean are not identified.

In short panels the FE model permits only identification of the marginal effect
∂E[yit |ci , xi t ]/∂xi t , and even then only for time-varying regressors, so the marginal
effect of race or gender, for example, is not identified. The RE model permits iden-
tification of all components of β and of E[yit |xi t ], but the key RE assumption that
E[ci |xi t ] is constant is viewed as untenable in many microeconometrics applications.

21.2.2. Panel Data Estimators

We now introduce several commonly used panel data estimators of β, with further
detail provided in Sections 21.5–21.7. The estimators differ in the extent to which
cross-section and time-series variation in the data are used, and their properties vary
according to whether or not the fixed effects model is the appropriate model.

A regressor xit may be either time-invariant, with xit = xi for t = 1, . . . , T , or
time-varying. For some estimators, notably the within and first differences estimators
defined in the following, only the coefficients of time-varying regressors are identified.

Pooled OLS

The pooled OLS estimator is obtained by stacking the data over i and t into one long
regression with N T observations, and estimating by OLS

yit = α + x′
i tβ + uit , i = 1, . . . , N , t = 1, . . . , T .

If Cov[uit , xi t ] = 0 then either N → ∞ or T → ∞ is sufficient for consistency.
The pooled OLS estimator is clearly consistent if the pooled model (21.1) is ap-

propriate and regressors are uncorrelated with the error term. The usual OLS variance
matrix based on iid errors, however, is not appropriate here as the errors for a given
individual i are almost certainly positively correlated over t . The NT correlated obser-
vations have less information than NT independent observations.

To understand this correlation, note that for a given individual we expect consid-
erable correlation in y over time, so that Cor[yit , yis] is high. Even after inclusion of
regressors Cor[uit , uis] may remain nonzero, and it often can still be quite high. For
example, if a model overpredicts individual earnings in one year it may also overpre-
dict earnings for the same individual in other years. The RE model accommodates this
correlation, with Cor[uit , uis] = σ 2

α/[σ
2
α + σ 2

ε ] for t �= s from (21.6).
The usual OLS output treats each of the T years as independent pieces of informa-

tion, but the information content is less than this given the positive error correlation.
This leads to overstatement of estimator precision that can be very large, as illustrated
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in Section 21.3.2 and formally demonstrated in Section 21.5.4. One therefore needs to
use panel-corrected standard errors (see Section 21.2.3) whenever OLS is applied in
a panel setting. Many corrections are possible, depending on the correlation and het-
eroskedasticity structure assumed for the errors and whether the panel is short or long
(see Section 21.5).

The pooled OLS estimator is inconsistent if the true model is the fixed effects
model. To see this, rewrite the model (21.3) as

yit = α + x′
i tβ + (αi − α + εi t ).

Then pooled OLS regression of yit on xi t and an intercept leads to an inconsistent
estimator of β if the individual effect αi is correlated with the regressors xi t , since
such correlation implies that the combined error term (αi − α + εi t ) is correlated with
the regressors.

In summary, pooled OLS is appropriate if the constant-coefficients or random ef-
fects models are appropriate, but panel-corrected standard errors and t-statistics must
be used for statistical inference. Pooled OLS is inconsistent if the fixed effects model
is appropriate.

Between Estimator

The pooled OLS estimator uses variation over both time and cross-sectional units to
estimate β.

The between estimator in short panels instead uses just the cross-sectional variation.
Begin with the individual-specific effects model (21.3). Averaging over all years yields
ȳi = αi + x̄′

iβ + ε̄i , which can be rewritten as the between model

ȳi = α + x̄′
iβ + (αi − α + ε̄i ), i = 1, . . . , N , (21.7)

where ȳi = T −1∑
t yi t , ε̄i = T −1∑

t εi t , and x̄i = T −1∑
t xi t .

The between estimator is the OLS estimator from regression of ȳi on an intercept
and x̄i . It uses variation between different individuals and is the analogue of cross-
section regression, which is the special case T = 1.

The between estimator is consistent if the regressors x̄i are independent of the com-
posite error (αi − α + ε̄i ) in (21.7). This will be the case for the constant-coefficients
model and the random effects model. In contrast, for the fixed effects model the be-
tween estimator is inconsistent as αi is then assumed to be correlated with xi t and
hence x̄i .

Within Estimator or Fixed Effects Estimator

The within estimator is an estimator that, unlike the pooled OLS or between estimators,
exploits the special features of panel data. In a short panel it measures the association
between individual-specific deviations of regressors from their time-averaged values
and individual-specific deviations of the dependent variable from its time-averaged
value. This is done using the variation in the data over time.
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Specifically, begin with the individual-specific effects model (21.3), which nests
(21.1) as the special case αi = α. Then taking the average over time yields ȳi = αi +
x̄′

iβ + ε̄i . Subtracting this from yit in (21.3) yields the within model

yit − ȳi = (xi t − x̄i )
′β + (εi t − ε̄i ), i = 1, . . . , N , t = 1, . . . , T, (21.8)

as the αi terms cancel.
The within estimator is the OLS estimator in (21.8). A special feature of this esti-

mator is that it yields consistent estimates of β in the fixed effects model, whereas the
pooled OLS and between estimators do not.

From Section 21.6 the within estimator has several interpretations. It is called the
fixed effects estimator as it is the efficient estimator of β in the model (21.3) if αi

are fixed effects and the error εi t is iid. This chapter focuses on a literature that treats
fixed effects as nuisance parameters that can be ignored since interest lies solely in
estimation of β. If instead the fixed effects are of interest they can also be estimated.
In short panels these estimates of the individual αi are inconsistent, though their distri-
bution or their variation with a key variable may be informative. If N is not too large
an alternative and simpler way to compute the within estimator is by least-squares
dummy variable estimation. This directly estimates (21.2) by OLS regression of yit

on xi t and the N individual dummy variables and yields the within estimator for β,
along with estimates of the N fixed effects (see Section 21.6.4). Yet another interpreta-
tion of the within estimator is the covariance estimator. Finally, taking deviations from
individual-specific averages is equivalent to taking residuals from auxiliary regression
of yit and xi t on individual dummies and then working with the residuals.

A major limitation of within estimation is that the coefficients of time-invariant
regressors are not identified in the within model, since if xit = xi then x̄i = xi so
(xit − x̄i ) = 0. Many studies seek to estimate the effect of time-invariant regressors.
For example, in panel wage regressions we may be interested in the effect of gender or
race. For this reason many practitioners prefer not to use the within estimator. Pooled
OLS or random effects estimators permit estimation of coefficients of time-invariant
regressors, but these estimators are inconsistent if the fixed effects model is the correct
model.

First-Differences Estimator

The first-differences estimator also exploits the special features of panel data. In a short
panel it measures the association between individual-specific one-period changes in
regressors and individual-specific one-period changes in the dependent variable.

Specifically, begin with the individual-specific effects model (21.3). Then lagging
one period yields yi,t−1 = αi + x′

i,t−1β + εi,t−1. Subtracting this from yit in (21.3)
yields the first-differences model

yit − yi,t−1 = (xi t − xi,t−1)′β + (εi t − εi,t−1), i = 1, . . . , N , t = 2, . . . , T, (21.9)

as the αi terms cancel.
The first-differences estimator is the OLS estimator in (21.9). Like the within esti-

mator, this estimator yields consistent estimates of β in the fixed effects model, though
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the coefficients of time-invariant regressors are not identified. The first-differences es-
timator is less efficient than the within estimator for T > 2 if εi t is iid.

Random Effects Estimator

The random effects estimator is an estimator that also exploits the special features of
panel data.

Begin with the individual-specific effects model (21.3), but assume a random effects
model where αi and εi t are iid as in (21.5). Pooled OLS is consistent but pooled GLS
will be more efficient. The feasible GLS estimator (see Section 4.5.1) of the RE
model, called the random effects estimator, can be calculated from OLS estimation
of the transformed model

yit − λ̂ȳi = (1 − λ̂)µ+ (xi t − λ̂x̄i )
′β + vi t , (21.10)

where vi t = (1 − λ̂)αi + (εi t − λ̂ε̄i ) is asymptotically iid, and λ̂ is consistent for

λ = 1 − σε√
σ 2
ε + Tσ 2

α

. (21.11)

Section 21.7 provides a derivation of (21.10) and ways to estimate σ 2
α and σ 2

ε and
hence to estimate λ. Note that λ̂ = 0 corresponds to pooled OLS, λ̂ = 1 corresponds
to within estimation, and λ̂→ 1 as T → ∞. This is a two-step estimator of β.

The RE estimator is fully efficient under the RE model, though the efficiency gain
compared to pooled OLS need not be great. It is inconsistent, however, if the fixed
effects model is the correct model.

21.2.3. Panel-Robust Statistical Inference

The various panel models include error terms denoted uit , εi t , and αi . In many microe-
conometrics applications it is reasonable to assume independence over i . However, the
errors are potentially (1) serially correlated (i.e., correlated over t for given i) and/or
(2) heteroskedastic. Valid statistical inference requires controlling for both of these
factors.

The White heteroskedastic consistent estimator of Section 4.4.5 is easily extended
to short panels since for the i th observation the error variance matrix is of finite dimen-
sion T × T while N → ∞. Thus panel-robust standard errors can be obtained without
assuming specific functional forms for either within-individual error correlation or het-
eroskedasticity. More efficient estimators using GMM are deferred to Section 22.2.3.

It is crucial to note that frequently the panel commands in many computer packages
calculate default standard errors assuming iid model errors, leading to erroneous in-
ference. In particular, for pooled OLS regression of yit on xi t without any control for
individual effects it is very likely that Cov[uit , uis] > 0 for t �= s. Ignoring this serial
correlation can lead to greatly underestimated standard errors and over-estimated t-
statistics, as demonstrated in the Section 21.3 data example and shown algebraically in
Section 21.5.4. Once fixed or random individual-specific effects are included the serial
correlation in errors can be greatly reduced, but it may not be completely eliminated.
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Additionally, one may need to control for potential heteroskedasticity as is routinely
done for cross-section data.

Panel-Robust Sandwich Standard Errors

The panel estimators of Section 21.2.2 can be obtained by OLS estimation of θ in the
pooled regression

ỹi t = w̃′
i tθ + ũi t , (21.12)

where different panel estimators correspond to different transformations ỹi t , w̃i t , and
ũi t of yit , w′

i t = [1 x′
i t ], and uit . The key is that ỹi t is a known function of only

yi1, . . . , yiT , and similarly for w̃i t and ũi t .
In the simplest case of pooled OLS, no transformation is necessary and θ = [α β′]′.

For the within estimator ỹi t = yit − ȳi , w̃i t = (xi t − x̄i ), where only time-varying re-
gressors appear, and θ equals the coefficients of the time-varying regressors. For first-
differences estimation ỹi t = yit − yi,t−1, w̃i t = (xi t − xi,t−1) and again only coefffi-
cients of time-varying regressors are identified. For random effects ỹi t = yit − λ̂ȳi and
w̃′

i t = (wi t − λ̂w̄i ) and θ = [α β′]′. Such transformations can induce serial correlation
even if underlying errors are uncorrelated.

It is convenient to stack observations over time periods for a given individual, lead-
ing to

ỹi = W̃iθ + ũi ,

where ỹi is a T × 1 vector in the preceding examples, except for the first-differences
model where it is (T − 1) × 1, and W̃i is a T × q matrix or, for the first-differences
model, a (T − 1) × q matrix. Further stacking over the N individuals yields

ỹ = W̃θ + ũ.

Three representations of the OLS estimator are therefore

θ̂OLS = [W̃′W̃]−1W̃′̃y

=
[

N∑
i=1

W̃i
′W̃i

]−1∑
i

W̃i
′̃yi

=
[

N∑
i=1

T∑
t=1

w̃i t w̃′
i t

]−1 N∑
i=1

T∑
t=1

w̃i t ỹi t ,

where in the third expression the sum is from t = 2 to T in the case of the first-
differences estimator. The most convenient representation to use varies with the
context.

To consider consistency, note that if the model is correctly specified then the usual
algebra yields θ̂OLS = θ + [W̃′W̃]−1W̃′̃u or

θ̂OLS = θ +
[

N∑
i=1

W̃i
′W̃i

]−1 N∑
i=1

W̃i
′̃ui .
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Given independence over i the essential condition for consistency is E[W̃i
′̃ui ] = 0.

This generally requires a stronger assumption than E[uit |wi t ] = 0. A sufficient as-
sumption is that of strong exogeneity given in (21.4). See Chapter 22 for estimation
under assumptions weaker than strong exogeneity that permit, for example, lagged
dependent variables as regressors.

The asymptotic variance of θ̂OLS is then

V[̂θOLS] =
[

N∑
i=1

W̃i
′W̃i

]−1 N∑
i=1

W̃i
′E[̃ui ũ′

i |W̃i ]W̃i

[
N∑

i=1

W̃i
′W̃i

]−1

,

given independence of errors over i . Consistent estimation of V[̂θOLS] in this panel
setting is analogous to the cross-section problem of obtaining a consistent estimate of
V[̂θOLS] that is robust to heteroskedasticity of unknown form. The only complication
is the appearance of a vector ui rather than a scalar ui , which poses no problem if the
panel is short as then the dimension of ui is finite.

This leads to a panel-robust estimate of the asymptotic variance matrix of the
pooled OLS estimator, one that controls for both serial correlation and heteroskedas-
ticity, given by

V̂[̂θOLS] =
[

N∑
i=1

W̃i
′W̃i

]−1 N∑
i=1

W̃i
′̂ui û′

i W̃i

[
N∑

i=1

W̃i
′W̃i

]−1

, (21.13)

where ûi = ̂̃ui = ỹi − W̃i θ̂. The estimator in (21.13) assumes independence over i
and N → ∞, the case for short panels, but otherwise permits V[uit ] and Cov[uit , uis]
to vary with i , t , and s. An equivalent expression is

V̂[̂θOLS] =
[

N∑
i=1

T∑
t=1

w̃i t w̃′
i t

]−1 N∑
i=1

T∑
t=1

T∑
s=1

w̃i t w̃′
is ûi t ûis

[
N∑

i=1

T∑
t=1

w̃i t w̃′
i t

]−1

,

where ûi t = ỹi t − w̃′
i t θ̂. This estimator was proposed by Arellano (1987) for the fixed

effects estimator.
Panel-robust standard errors based on (21.13) can be computed by use of a regular

OLS command, if the command has a cluster-robust standard error option (see Sec-
tion 24.5.2). Since the clustering here is on the individual one selects the identifier for
individual i as the cluster variable. This method was used to obtain the panel-robust
standard errors given in Table 24.1.

The term “robust” standard error can cause confusion. A common error made in
pooled regression is to estimate the OLS regression (21.12) using the standard robust
standard error option (see Section 4.4.5). However, this only adjusts for heteroskedas-
ticity, and in practice in a panel setting it is much more important to correct for the
correlation in individual errors. Another common error, though one that has smaller
impact, is to use cluster-robust standard errors that assume homoskedasticity so that
E[ui u′

i ] is constant over i .
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Panel Bootstrap Standard Errors

The bootstrap method provides an alternative way to obtain panel-robust standard
errors. The key assumption is that observations are independent over i , so one does
a bootstrap pairs procedure that resamples with replacement over i and uses all ob-
served time periods for a given individual. For data {(yi ,Xi ), i = 1, . . . , N } this yields
B pseudo-samples and for each pseudo-sample one performs OLS regression of ỹi t

on w̃i t , yielding B estimates θ̂b, b = 1, . . . , B.
The panel bootstrap estimate of the variance matrix is then

V̂Boot[̂θ] = 1

B − 1

B∑
b=1

(
θ̂b − θ̂

) (
θ̂b − θ̂

)′
, (21.14)

where θ̂ = B−1∑
b θ̂b. This bootstrap provides no asymptotic refinement (see Sec-

tion 11.2.2). Given independence over i the estimate is consistent as N → ∞. It is
asymptotically equivalent to the estimate (21.13), just as in the cross-section case
bootstrap pairs are asymptotically equivalent to White’s heteroskedastic consistent es-
timate. This bootstrap does not offer an asymptotic refinement though bootstrap with
asymptotic refinement is possible (see Section 11.6.2).

This bootstrap method can be applied to any panel estimator that relies on
independence over i and N → ∞, including the pooled feasible GLS estimators of
Section 21.5.2 for short panels. The key is to resample over i only, and not over both
i and t .

Discussion

The importance of correcting standard errors for serial correlation in errors at the indi-
vidual level cannot be overemphasized. Computer packages currently do not automat-
ically do this. Bertrand, Duflo, and Mullainathan (2004) illustrate the resulting down-
ward bias in standard error computation, in the context of difference-in-differences es-
timation (see Section 22.6). They find that the panel-robust and panel bootstrap meth-
ods work well, even though in their application with state-year data N (the number of
states) is relatively small whereas the asymptotic theory uses N → ∞.

The following example (see Table 21.2) also shows the importance of correcting
standard errors for any error serial correlation and autocorrelation.

21.3. Linear Panel Example: Hours and Wages

An important issue in labor economics is the responsiveness of labor supply to wages.
The standard textbook model of labor supply suggests that for people already working
the effect of a wage increase on labor supply is ambiguous, with an income effect
pushing in the direction of less work offsetting a substitution effect in the direction of
more work.

Cross-section analysis for adult males finds a relatively small positive response to
hours worked. However, it is possible that this association is spurious, merely reflect-
ing a greater unobserved desire to work being positively associated with higher wages.
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Panel data analysis can control for this, under the assumption that the unobserved de-
sire to work is time-invariant. For example, the within estimator does so by measuring
the extent to which an individual works above-average (or below-average) hours in
periods with above-average (or below-average) wages.

The data on 532 males for each of the 10 years from 1979 to 1988 come from Ziliak
(1997). The variable of interest is lnhrs, the natural logarithm of annual hours worked.
The single explanatory variable is lnwg, the natural logarithm of hourly wage. We
consider the regression model

lnhrsi t = αi + βlnwgi t + εi t ,

where the individual-specific effect αi is simplified to α in some models and β mea-
sures the wage elasticity of labor supply. The error term εi t is assumed to be indepen-
dent over i , but it may be correlated over t for given i . As noted we expect β, the labor
supply elasticity, to be small and positive.

Ziliak (1997) additionally included a quadratic in age, number of children, and an
indicator variable for bad health. These regressors and year dummies make relatively
small difference to the estimate of β and its standard error, and for simplicity they are
omitted here. In Chapter 22 we consider more general models that permit lnwg to be
endogenous and permit lags of lnhrs to appear as a regressor.

21.3.1. Data Summary

For the 5,320 observations, the sample means of lnhrs and lnwg are respectively 7.66
and 2.61, implying geometric means of 2,120 hours and $13.60 per hour. The sam-
ple standard deviations are respectively 0.29 and 0.43, indicating considerably greater
variability in percentage terms in wages rather than hours.

For panel data it is useful to know whether variability is mostly across individuals
or across time. The total variation of a series xit around its grand mean x̄ can be
decomposed as

N∑
i=1

T∑
t=1

(xit − x̄)2 =
N∑

i=1

T∑
t=1

[(xit − x̄i ) + (x̄i − x̄)]2

=
N∑

i=1

T∑
t=1

(xit − x̄i )
2 +

N∑
i=1

T∑
t=1

(x̄i − x̄)2,

as the cross-product term sums to zero. In words, the total sum of squares equals
the within sum of squares plus the between sum of squares. This leads to within
standard deviation sW and between standard deviation sB, where

s2
W = 1

N T − N

N∑
i=1

T∑
t=1

(xit − x̄i )
2

and

s2
B = 1

N − 1

N∑
i=1

(x̄i − x̄)2.
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Table 21.2. Hours and Wages: Standard Linear Panel Model Estimatorsa

POLS Between Within First Diff RE–GLS RE–MLE

α 7.442 7.483 7.220 .001 7.346 7.346
β .083 .067 .168 .109 .119 .120
Robust seb (.030) (.024) (.085) (.084) (.051) (.052)
Boot se [.030] [.019] [.084] [.083] [.056] [.058]
Default se {.009} {.020} {.019} {.021} {.014} {.014}

R2 .015 .021 .016 .008 .014 .014
RMSE .283 .177 .233 .296 .233 .233
RSS 427.225 0.363 259.398 417.944 288.860 288.612
TSS 433.831 17.015 263.677 420.223 293.023 292.773
σα .000 .181 .161 .162
σε .283 .232 .233 .233
λ 0.000 – 1.000 – .585 .586
N 5320 532 5320 4788 5320 5320

a Shown are pooled OLS (POLS), between, within, first-differences, random effects (RE) GLS and MLE linear
panel regression of lnhrs on lnwg. Standard errors for the slope coefficients are panel robust in parentheses,
panel bootstrap in square brackets, and default estimates that assume iid errors in curly braces. The R2, root
mean square error (RMSE), residual sum of squares (RSS), total sum of squares (TSS), and sample size come
from the appropriate regression given in Section 21.2. The parameter λ is defined after (21.11).

b se, standard error.

The within and between sample standard deviations are, respectively, 0.22 and 0.18
for lnhrs and 0.19 and 0.39 for lnwg. The larger total variation in wages compared to
hours is therefore due to between individual variation being much higher for wages.
Within individuals the variation is actually somewhat smaller for wages than it is for
hours.

21.3.2. Comparison of Panel Data Estimators

Table 21.2 summarizes results from application of the standard panel estimators de-
fined in Section 21.2.2 to these data, along with three different estimates of the stan-
dard errors. As detailed in the following, statistical inference should use either the
panel-robust standard error or the panel bootstrap standard error.

Slope Parameter Estimates

The estimate of the slope parameter β differs across the different estimation methods.
The between estimate that uses only cross-section variation is less than the pooled OLS
estimate. The within or fixed effects estimate of 0.168 is much higher than the pooled
OLS estimate of 0.083 and is borderline statistically significant using a two-tailed test
at 5% and standard error estimate of 0.084 or 0.085. The first-differences estimate of
0.109 is also higher than that of pooled OLS but is considerably less than the within
estimate, which also uses only time-series variation. The RE estimates of 0.119 or
0.120 lie between the between and within estimates. This is expected, as RE estimates
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can be shown to be a weighted average of between and within estimates. The two
RE estimates are very close to each other as here the estimates of the variances σ 2

α and
σ 2
ε are similar, leading to similar values λ̂ = 0.585 and λ̂ = 0.586 in the regression

(21.10). The RE estimates are surprisingly less efficient than the pooled OLS estimates,
a sign that the RE model fails to model the error correlation well.

Which estimates are preferred? The within and first-difference estimators are con-
sistent under all models (pooled, RE, and FE) whereas the other estimators are in-
consistent under the fixed effects model. The most robust estimates are therefore the
within or first-differences estimates of 0.168 or 0.109.

There is, however, an efficiency loss in using these more robust estimators, with
standard errors of 0.83 to 0.85 that are much larger than those from pooled OLS and
RE estimates. A formal Hausman test (see Section 21.4.3 for details and discussion)
can be used to test whether or not the individual effects are fixed. Given the relative
imprecision of estimation in this example, the Hausman test does not reject the null
hypothesis of random effects, despite the large difference between FE and RE esti-
mates. So the more efficient random effects estimates could be used here. Another
advantage of random effects estimation is that it permits estimation of the coefficients
of time-invariant estimators.

Standard Error Estimation

We now turn to comparison of the standard error estimates. From Section 21.2.3, in-
ference should be based on panel-robust standard errors that permit errors to be corre-
lated over time for a given individual and to have variances and covariances that differ
across individuals. Also, as detailed in later sections, the standard errors for estimators
based on deviations from means, such as (21.8) and (21.10), need to account for loss
of N + K rather than K degrees of freedom.

The first standard error estimate is computed by the panel-robust method given in
(21.13), and the second is computed by the panel bootstrap given in (21.14) with 500
replications. For brevity these estimates are called panel robust, though they are addi-
tionally robust to heteroskedasticity. The two estimates are very close, aside from the
random effects models where the panel-robust standard errors are underestimated be-
cause they are computed for the regression (21.10), which ignores estimation error in λ̂.

The third standard error estimate is the standard default computer output that is
based on the assumption of iid errors. In this example the correctly estimated standard
errors are a remarkable three to four times as large as the default standard errors. The
one exception is the between estimator, an estimator with standard errors that need
only correction for heteroskedasticity since it uses only cross-section variation.

For example, for the pooled OLS estimator of β the default standard error is 0.09,
leading to incorrect t-statistic of 9.07. The panel-robust standard error is a much
larger 0.30, leading to correct t-statistic of a much smaller 2.83. Default standard er-
rors assume independence of model errors over t for given i when in practice they
are likely to be positively correlated. This erroneous assumption overestimates the
benefit of additional time periods, leading to downward bias in standard errors (see
Section 21.5.4). Additionally, ignoring heteroskedasticity in errors also leads to bias,
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though this bias could be in either direction. For these data a failure to control for
heteroskedasticity also imparts a large downward bias: The standard error of β̂POLS

controlling for heteroskedasticity, but not for correlation over t for given i , is 0.020.
For other data, correction for heteroskedasticity is usually much less important than
the correction for panel correlation.

For the within and between estimators inclusion of the term αi should control for
some of the correlation in the error across time for a given individual. For these data,
however, the differences between panel-robust and nonrobust standard errors remain
large, in part because of failure to additionally control for heteroskedasticity.

Clearly panel-robust standard errors should be used.

21.3.3. Graphical Analysis

It is insightful to perform a graphical comparison of overall, between, and fixed effects
(within or first-differences) regressions. Such plots are rarely performed in panel data
regression, but they are easily applied here as there is only one regressor.

All plots include a nonparametric regression curve using the Lowess smoother (see
Section 9.6.2) and a linear regression curve that corresponds to the estimates given in
Table 21.2.

Figure 21.1 plots lnhrs against lnwg for all firms in all years (5,320 observations).
The plot suggests a positive relationship, roughly linear except at the extreme ends,
and from Table 21.2 the line has slope 0.083 with a low R2 = 0.015.

The between estimator (21.7) regresses ȳi on x̄i . The corresponding plot for the
lnhrs–lnwg data is given in Figure 21.2 and again shows a positive relationship.

The within or fixed effects estimator (21.8) regresses (yit − ȳi ) on (xit − x̄i ).
Figure 21.3 gives the related plot of (yit − ȳi + ȳ) on (xit − x̄i + x̄), where ȳ =
N−1∑

i ȳi and x̄ = N−1∑
i x̄i are the grand means of y and x . Comparison with Fig-

ure 21.1 shows that differencing the individual mean leads to a considerable decrease
in the range of variability in lnwg, with less of a decrease in the variability of lnhrs.
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Figure 21.1: Hours and wages: pooled (overall) regression. Natural logarithm of annual
hours worked plotted against natural logarithm of hourly wage. Data for 532 U.S. males for
each of the ten years 1979–88.
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Figure 21.2: Hours and wages: between regression. Ten-year average of log hours plotted
against ten-year average of log wage for 532 men. Same sample as Figure 21.1.

The slope does appear steeper than that for pooled OLS, and from Table 21.2 the slope
increased from 0.083 to 0.168.

The first-differences estimator (21.9) regresses (yit − yi,t−1) on (xit − xi,t−1). The
corresponding plot for the lnhrs – lnwg data is given in Figure 21.4. The figure is
qualitatively similar to Figure 21.3.

The conclusion of the preceding analysis is that there is greater response to wage
changes using time-series variation than using cross-section variation.

21.3.4. Residual Analysis

It is instructive to consider the autocorrelation patterns of the data and of residuals. For
example, for residuals ûi t = yit − ŷi t the autocorrelation between period s and period
t is calculated as ρ̂st = cst/

√
cssctt , s, t = 1, . . . , T , where the covariance estimate

cst = (N − 1)−1∑
i (̂uit − ût )(̂uis − ûs) and ût = N−1∑

i ûi t .

4
5

6
7

8
9

Lo
g 

an
nu

al
 h

ou
rs

0 1 2 3 4 5

Log hourly wage

Deviations from average

Nonparametric fit

Linear fit

Within (Fixed Effects) Regression

Figure 21.3: Hours and wages: within (fixed effects) regression. Deviation of log hours
from ten-year average plotted against deviation of log wage from ten-year average using
ten years of data for 532 men. Same sample as Figure 21.1.
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Figure 21.4: Hours and wages: first differences regression. First difference of log hours
plotted against first difference of log wage using ten years of data for 532 men. Same
sample as Figure 21.1.

Table 21.3 gives the residual autocorrelations after pooled OLS regression of lnhrs
on lnwg. The autocorrelations generally lie between 0.2 and 0.4 for data two to nine
periods apart. The decay rate is very slow, and the autocorrelations appear closer to a
random effects model that assumes that Cor[uit , uis] is constant for t �= s than to an
AR(1) model that has exponential decay.

The autocorrelations for lnhrs before regression are very similar to those given in
Table 21.3, since ûi t � yit as evident from the poor explanatory power of pooled OLS
with R2 = 0.015. The autocorrelations for the regressor lnwg, not tabulated here, are
much higher, ranging from approximately 0.9 at one lag, to 0.7 at nine lags.

The correlations of the residuals from the within regression are given in Table 21.4.
If the original errors εi t in (21.3) are iid then it can be shown that the transformed
errors εi t − ε̄i have autocorrelations at all lags equal to −1/(T − 1) = −0.11. There
is some departure from this here, particularly for the first lag, which is always positive.

Table 21.3. Hours and Wages: Autocorrelations of Pooled OLS Residualsa

u79 u80 u81 u82 u83 u84 u85 u86 u87 u88

upols79 1.00
upols80 .33 1.00
upols81 .44 .40 1.00
upols82 .30 .31 .57 1.00
upols83 .21 .23 .37 .47 1.00
upols84 .20 .23 .32 .34 .64 1.00
upols85 .24 .32 .41 .35 .39 .58 1.00
upols86 .20 .19 .28 .25 .31 .35 .40 1.00
upols87 .20 .32 .33 .29 .31 .34 .39 .35 1.00
upols88 .16 .25 .30 .26 .21 .25 .34 .55 .53 1.00

a Note: Autocorrelations of residuals are from pooled OLS regression of lnhrs on lnwg for 532 men in 10 years.
The autocorrelations die slowly.
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Table 21.4. Hours and Wages: Autocorrelations of Within Regression Residualsa

u79 u80 u81 u82 u83 u84 u85 u86 u87 u88

ufe79 1.00
ufe80 .10 1.00
ufe81 .21 .08 1.00
ufe82 .00 −.04 .26 1.00
ufe83 −.26 −.27 −.21 .01 1.00
ufe84 −.26 −.27 −.30 −.20 .32 1.00
ufe85 −.18 −.10 −.11 −.17 −.16 .17 1.00
ufe86 −.19 −.25 −.26 −.27 −.17 −.14 −.08 1.00
ufe87 −.15 −.05 −.16 −.20 −.24 −.21 −.09 −.09 1.00
ufe88 −.17 −.11 −.14 −.18 −.38 −.31 .13 .24 .24 1.00

a Autocorrelations of residuals are from within (fixed effects) regression of lnhrs on lnwg for 532 men in 10
years.

The correlations of the residuals from random effects regression are quite simi-
lar to those for fixed effects given in Table 21.4. The correlations of residuals from
first-differences regression are qualitatively similar to the theoretical result that if the
original errors εi t in (21.3) are iid then the transformed errors εi t − εi t−1 have autocor-
relations of 0.5 at lag one and 0 at other lags.

21.4. Fixed Effects versus Random Effects Models

The fixed effects model has the attraction of allowing one to use panel data to establish
causation under weaker assumptions (presented in Section 21.4.1) than those needed
to establish causation with cross-section data or with panel data models without fixed
effects, such as pooled models and random effects models.

In some studies causation is clear, so random effects may be appropriate. For exam-
ple, in a controlled experiment such as crop yield from different amounts of fertilizers
applied to different fields the causation is clear. In other cases it may be sufficient to
use a random effects analysis to measure the extent of correlation, with determination
of causation left to further research taking other approaches. The effect of smoking on
lung cancer is an example. Economists are unusual in instead preferring a fixed effects
approach, however, because of a desire to measure causation in spite of reliance on
observational data.

The fixed effects model has several practical weaknesses. Estimation of the coeffi-
cient of any time-invariant regressor, such as an indicator variable for gender, is not
possible as it is absorbed into the individual-specific effect. Coefficients of time-
varying regressors are estimable, but these estimates may be very imprecise if most
of the variation in a regressor is cross sectional rather than over time. Prediction of the
conditional mean is not possible. Instead, only changes in the conditional mean caused
by changes in time-varying regressors can be predicted. Even coefficients of time-
varying regressors may be difficult or theoretically impossible to identify in nonlinear
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models with fixed effects (see Chapter 23). For these reasons economists also use ran-
dom effects models, even if causal interpretation may then be unwarranted.

21.4.1. Fixed Effects Example

Consider the effect of computer use on wage. Several cross-sectional studies, most no-
tably those by Krueger (1993) and DiNardo and Pischke (1997), find that computer use
in a job is associated with substantially higher wages, even after controlling for many
determinants of the wage such as education, age, gender, industry, and occupation. As
emphasized by DiNardo and Pischke (1997) this does not necessarily imply causa-
tion, if regressors are correlated with the error term owing to endogeneity or omitted
variables.

Specifically, we suppose that in the cross section

yi = x′
iβ + αi + εi ,

where y is the natural logarithm of wage, x is a vector of individual characteristics
including an indicator variable for computer use at work, and ε is an error that is
assumed to be independent of x. The complication is the addition of the unobserved
variable α, which is assumed to be correlated with computer use at work, and hence
with the observed regressors x, even though the components of x other than computer
use, such as occupation and education, may partly control for computer use at work.
Regression of y on x leads to omitted variables bias leading to inconsistent estimates
of β as the combined error (α + ε) is correlated with x.

Panel data offer a way around this problem, if we assume that the unobserved vari-
able αi is time-invariant. Then

yit = x′
i tβ + αi + εi t ,

where again ε is uncorrelated with x and α is correlated with x. Differencing eliminates
αi (see Section 21.2.2), permitting consistent estimation of β. For the computer use
example, the causative effect of computer use on wages is then measured by the associ-
ation between individual changes in wages and individual movements to or from a job
with a computer. Haisken-DeNew and Schmidt (1999) found no effect using German
panel data.

This fixed effects panel approach permits determination of causation under weaker
assumptions than those of cross-section analysis, but it still requires assumptions. The
key assumption is that the unobservables αi are time-invariant, rather than being of
more general form αi t . In the computer use example it is being assumed that an in-
dividual’s propensity to have a job with a computer may be endogenous, but the un-
observed component of the effect of this propensity αi on wage is constant over time
once we control for observables xi t . Essentially the particular time periods in which an
individual’s job does or does not involve use of a computer are assumed to be purely
random, once we control for time-invariant unobservable αi and observable xi t .

A random effects or pooled panel approach does not have similar properties. It
instead assumes away the original concern that α is correlated with x, since it as-
sumes that α is iid [0, σ 2] and hence is uncorrelated with x. This leads to inconsistent
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parameter estimates if in fact α is correlated with x, whereas the fixed effects estimator
is consistent if α is correlated with x, provided α is time-invariant.

21.4.2. Conditional versus Marginal Analysis

Fixed effects estimation is a conditional analysis, measuring the effect of xi t on yit

controlling for the individual effect αi . Prediction is possible only for individuals in
the particular sample being used, and even then it is only possible if the panel is long
enough so that αi can be consistently estimated. Random effects estimation is instead
an example of marginal analysis or population-averaged analysis, as the individual
effects are integrated out as iid random variables. The random effects estimators can
be applied outside the sample.

If the true model is a random effects model, then whether to perform a conditional
or marginal analysis will vary with the application. If analysis is for a random sample
of countries then one uses random effects, but if one is intrinsically interested in the
particular countries in the sample then one does fixed effects estimation even though
this can entail a loss of efficiency.

If the true model instead has individual-specific effects correlated with regressors,
however, then a random effects analysis is no longer meaningful as the random effects
estimator is inconsistent. Instead, alternative estimators such as the fixed effects and
first-differences estimators are necessary. Because of the desire to determine causation
microeconomic applications emphasize these latter estimators.

21.4.3. Hausman Test

If individual effects are fixed the within estimator β̂W is consistent whereas the random
effects estimator β̃RE is inconsistent. Here β refers to the vector of coefficients of just
the time-varying regressors. One can therefore test whether fixed effects are present by
using a Hausman test of whether there is a statistically significant difference between
these estimators. Alternatively, any other pair of estimators with similar properties,
such as first differences versus pooled OLS, can be used.

A large value of the Hausman test statistic leads to rejection of the null hypothesis
that the individual-specific effects are uncorrelated with regressors and to the conclu-
sion that fixed effects are present. It may still be possible to avoid using a fixed effects
model. If regressors are correlated with individual-specific effects caused by omitted
variables, then one can add further regressors, either time varying or time-invariant,
and again perform a Hausman test in this larger model to see whether fixed effects are
still necessary. Even if such correlation persists it may be possible to estimate a random
effects model using instrumental variables methods (see Sections 22.4.3–22.4.4).

Computation When RE Is Fully Efficient

We begin by assuming that the true model is the random effects model (21.3) with αi

iid [0, σ 2
α ] uncorrelated with regressors and error εi t iid [0, σ 2

ε ].
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Then the estimator β̃RE is fully efficient, so from Section 8.3 the Hausman test
statistic simplifies to

H = (β̃1,RE − β̂1,W

)′ [
V̂[β̂1,W] − V̂[β̃1,RE]

]−1 (
β̃1,RE − β̂1,W

)
,

where β1 denotes the subcomponent of β corresponding to time-varying regressors
since only that component can be estimated by the within estimator. This test stastistic
is asymptotically χ2(dim[β1]) distributed under the null hypothesis.

Hausman (1978) showed that an asymptotically equivalent version of this test is to
perform a Wald test of γ = 0 in the auxiliary OLS regression,

yit − λ̂ȳi = (1 − λ̂)µ+ (x1i t − λ̂x̄1i )
′β1 + (x1i t − x̄1i )

′γ + vi t , (21.15)

where x1i t denotes the time-varying regressors and λ̂ is defined in (21.11) and only
the time-varying regressors are used. This algebraic result can be interpreted as fol-
lows. The individual-specific effects model (21.10) implies that vi t = (1 − λ̂)αi +
(εi t − λ̂ε̄i ). The random effects estimator is actually obtained by OLS estimation of
(21.15) with γ = 0 (see (21.10)). If instead the fixed effects specification is valid then
the error vi t will be correlated with the regressors, via correlation of αi with regres-
sors. This correlation leads to additional functions of the regressors, such as (xi t − x̄i ),
being statistically significant variables in (21.15).

Computation When RE Is Not Fully Efficient

The simple form of the Hausman test is invalid if αi or εi t are not iid, which is
more than likely given heteroskedasticity inherent in much microeconometrics data.
Then the RE estimator is not fully efficient under the null hypothesis so the expres-
sion V̂[β̂W] − V̂[β̃RE] in the formula for H needs to be replaced by the more general
V̂[β̃RE − β̂W] (see Section 8.3).

For short panels this variance matrix can be consistently estimated by bootstrap
resampling over i (see Section 21.2.3). Then a panel-robust Hausman test statistic is

HRobust = (β̃1,RE − β̂1,W

)′ [
V̂Boot[β̃1,RE − β̂1,W]

]−1 (
β̃1,RE − β̂1,W

)
, (21.16)

where

V̂Boot[β̃1,RE − β̂1,W] = 1

B − 1

B∑
b=1

(̂
δb − δ̂

) (̂
δb − δ̂

)′
,

b denotes the bth of B bootstrap replications (see Section 21.2.3), and δ̂ = β̃1,RE −
β̂1,W. This test statistic can be applied to subcomponents of β1 and can use alternative
estimators such as β̃1,POLS in place of β̃1,RE and β̂1,FD in place of β̂1,W.

Alternatively, Wooldridge (2002) suggests estimating the auxiliary OLS regression
(21.15) and testing γ = 0 using panel-robust standard errors. If the effects are random,
though not necessarily such that αi and εi t are iid, then vi t = (1 − λ̂)αi + (εi t − λ̂ε̄i ) is
still uncorrelated with regressors though vi t is no longer asymptotically iid, so cluster-
robust standard errors need to be used. If the effects are fixed then the error vi t is
correlated with the regressors, leading to significance of additional functions of the
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regressors such as (xi t − x̄i ). This robust version of the auxiliary regression for the
Hausman test is preferred to one that assumes vi t is asymptotically iid, on the usual
grounds of minimizing distributional assumptions. However, it is not clear whether
this test actually coincides with the Hausman test when RE is inefficient.

Hausman Test Example

For the lnhrs–lnwg example estimates given in Table 21.2, a comparison of FE
and RE estimates using the default standard errors yields H � (0.168 − 0.119)2/

(0.0192 − 0.0142). This leads to H = 14 > χ2
.05(1) = 3.84, so the random effects

model is rejected.
This test is not appropriate, however. The statistic H is inflated because the usual

standard errors in this example are greatly downward biased (see Section 21.3.2). Fur-
thermore, this bias is a signal that the RE estimator is not fully efficient under H0, so
that the more general form of the Hausman test needs to be used.

The auxiliary regression (21.15) yields a panel-robust t-statistic for γ̂ of 1.28 and
hence H∗ = 1.282 = 1.65, leading to nonrejection of the random effects model at 5%.
Even though the wage elasticity estimates differ by 0.049, the estimates are sufficiently
imprecise that the difference is not statistically significant. Note that if the nonrobust t-
statistic for γ̂ is used instead, then t2 = 13.69, close to the previous incorrect Hausman
test statistic.

21.4.4. Richer Models for Random Effects

The random effects model specifies that the random effect αi is distributed indepen-
dently of regressors. Richer models, closer in spirit to fixed effects models, relax this
assumption.

Mundlak (1978) allowed individual effects in the panel model (21.3) to be deter-
mined by time averages of the regressors, so that αi = x̄′

iπ + wi , where wi is iid.
Then efficient GLS estimation of β and π in this expanded model leads to an estima-
tor of β that equals the fixed effects estimator in model (21.3). By contrast the usual
random effects estimator of β in model (21.3) that erroneously specifies iid random
effects will be inconsistent.

Chamberlain (1982, 1984) considered an even richer model for the random effects,
with αi = x′

1iπ1 + · · · + x′
T iπT + wi , a weighted sum of the regressors. He proposed

estimation by minimum distance methods (see Section 22.2.7 for details), leading to
an estimator of β that equals the fixed effects estimator.

More generally, mixed linear models and hierarchical linear models of Section 24.6
permit quite general models for random intercepts and also random slope parameters.
Bayesian analysis of panel data also uses this framework. See Section 22.8 for details.

In linear models the fixed effects approach is used if the unobserved individual
effect is correlated with regressors. In more complicated models, such as nonlinear
models, fixed effects models are not always estimable and richer random effects mod-
els provide an alternative approach.
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21.5. Pooled Models

The pooled cross-section time-series model or constant-coefficients model is

yit = α + xi t
′β + uit . (21.17)

In the statistics literature the model is called a population-averaged model, as there
is no explicit model of yit conditional on individual effects. Instead, any individual
effects have implicitly been averaged out. The random effects model is a special case
where the error uit is equicorrelated over t for given i (see Section 21.2.1).

The main complication for statistical inference, assuming no fixed effects, is that
the distribution of least-squares estimators of this model varies with the assumed dis-
tribution of uit . In short panels, panel-robust standard errors can be obtained using
(21.13).

Here we instead focus on GLS estimation using many of the different specifications,
including equicorrelation, for the covariance structure of uit over time and individuals
that have been proposed in the literature.

Although we focus on pooled GLS estimation of (21.17), a model without
individual-specific fixed effects, the methods of this section can be applied more gen-
erally to pooled GLS estimation of the transformed model (21.12) of Section 21.2.3.

21.5.1. Pooled OLS, FGLS, and WLS Estimators

It is convenient to use matrix notation. Combining observations over time for a given
individual, define

yi = Wiδ + ui , (21.18)

where δ = [α β′]′ is a (K + 1) × 1 parameter vector, yi and ui are T × 1 vectors
with t th entries yit and uit , respectively, and Wi is a T × (K + 1) matrix with t th row
w′

i t = [1 xi t ]′. Stacking all individuals yields

y = Wδ + u, (21.19)

where y and u are N T × 1 vectors, for example y = [y′
1 . . . y

′
N ]′, and W is an

N T × (K + 1) regressor matrix whose first column is a vector of ones. We assume
that E[u|W] = 0, so errors are strictly exogenous, and define Ω = E[uu′|W].

There are several possible least-squares estimators of this model, summarized in
Table 21.5.

First, pooled OLS is consistent and asymptotically normal. However, in a panel
setting it is unlikely that Ω = σ 2IN T , so OLS is inefficient except in some special
cases such as when all regressors are time-invariant. More importantly, the usual OLS
variance estimate of σ 2(W′W)−1 should not be used and a panel-robust estimate such
as that in (21.13) needs to be used.

Second, pooled feasible GLS (PFGLS) is consistent and fully efficient if Ω is cor-
rectly specified and Ω̂ is consistent for Ω. Some of the very large range of structures
on uit and hence Ω that have been proposed in the panel literature and incorporated
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Table 21.5. Pooled Least-Squares Estimators and Their Asymptotic Variances

Estimator Formulaa Variance Matrixb

Pooled OLS: δ̂POLS (W′W)−1W′y (W′W)−1W′Ω̂W(W′W)−1

Pooled FGLS: δ̂PFGLS (W′Ω̂
−1

W)−1W′Ω̂
−1

y (W′Ω̂
−1

W)−1

Pooled WLS: δ̂PWLS (W′Σ̂
−1

W)−1W′Σ̂
−1

y (W′Σ̂
−1

W)−1W′Σ̂−1Ω̂Σ̂−1W

×(W′Σ̂
−1

W)−1

a The formulas are for the model y = Wδ + u defined in (21.19) and error matrix 
.
b For computation of 
̂ for the variance matrices of POLS and PWLS see the text; in those cases 
̂

need not be consistent for 
. For pooled FGLS it is assumed that 
̂ is consistent for 
.

into regression packages are given in Sections 21.5.2 and 21.5.3 for, respectively, short
and long panels.

Third, the pooled weighted LS (PWLS) estimator guards against misspecification
of Ω. It posits a working matrix Σ for the error variance matrix Ω but then per-
forms inference that is valid even if Σ �= Ω. Ordinary least squares is an example,
with Σ = σ 2IN T , but other choices of Σ may improve efficiency.

Estimation of the variance matrix of the pooled OLS estimator requires an Ω̂ such
that (N T )−1W′Ω̂W consistently estimates (N T )−1W′ΩW.

For short panels this is possible by direct application of the results of Section 21.2.3.
Estimation of the variance matrix of the pooled WLS estimator requires an Ω̂ such that

(N T )−1W′Σ̂
−1

Ω̂Σ̂
−1

W consistently estimates (N T )−1W′Σ−1ΩΣ−1W. The panel-
robust estimate for OLS given in (21.13) can be adapted to pooled WLS by replacing
W′Σ−1ΩΣ−1W, or equivalently

∑
i Wi

′Σ−1
i E[ui u′

i |Wi ]Σ−1
i Wi given independence

over i , by the quantity
∑

i Wi
′Σ̂

−1
i ûi û′

iΣ̂
−1
i Wi , where ûi = yi − Wi δ̂. Alternatively,

a panel bootstrap can be used.

21.5.2. Error Variance Matrix for Short Panels

In short panels there are few time periods but many individuals, usually peo-
ple or firms. It is assumed that errors are independent over individuals, so that
Cov[uit , u js] = 0, i �= j . In such cases it is convenient to revert to summation no-
tation. For example, the PFGLS estimator given in Table 21.5 becomes

β̂PFGLS =
[

N∑
i=1

Wi
′Ω̂

−1
i Wi

]−1 N∑
i=1

Wi
′Ω̂

−1
i yi , (21.20)

where Ω̂i is consistent for

Ωi = E[ui u′
i |Wi ], (21.21)

and Ωi is nondiagonal as errors for a given individual are likely to be correlated over
time. Note that Ω̂i needs to come from estimation of a specified model for Ωi , and we
cannot use Ω̂i = ûi û′

i (see the related discussion after equation (5.88)).
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Equicorrelated Errors

The most commonly used error structure is the random effects model presented in Sec-
tion 21.2.1. Then from (21.6) Ωi has common diagonal entries σ 2

α + σ 2
ε and common

off-diagonal entries σ 2
α . Equivalently, the errors are equicorrelated, with Ωi having

common diagonal entries σ 2 and common off-diagonal entries ρσ 2. Implementation
of FGLS requires only estimation of σ 2

α and σ 2
ε , or of σ 2 and ρ (see Sections 21.2.2

and 21.7).

ARMA Errors

An alternative error structure is to assume an ARMA error model. For example,
an AR(1) error model specifies that uit = ρui,t−1 + εi t , where εi t are iid. Then
Cov[uit , uis] = ρ|t−s|σ 2. In this case the covariance between errors falls as the number
of time periods between the errors increases. The RE model and an AR(1) error model
are compared in Section 21.5.4.

Baltagi and Li (1991) combine the two error models to consider a random effects
model with AR(1) errors. This can be easily generalized to the AR(p) case, and meth-
ods for moving average and ARMA errors (see Section 5.8.7) in random effects mod-
els have also been developed more recently. A summary is given in Baltagi (2001,
Chapter 5).

Homoskedastic Errors with Unstructured Autocorrelation

For FGLS estimation in short panels there is actually no need to impose as much
structure as that imposed by an RE model or an AR(1) error model, if the assumption
is made that the T × T matrix Ωi is constant over i . Then there are “only” T (T + 1)/2
covariance parameters to estimate. A consistent estimate of Ωi is then Ω̂i with (t, s)th
entry σ̂ ts = N−1 ∑N

i=1 ûi t ûis . The preceding models also assume homoskedasticity,
but place additional structure on Ωi .

Robust Inference

All of the preceding specifications assume that error covariances are the same across
individuals, which rules out heteroskedasticity. Provided the panel is short one can
nonetheless use the preceding restrictive error variance matrix models as the basis
for pooled WLS estimation, but then obtain robust standard errors as discussed af-
ter Table 21.5. Alternatively, richer mixed models, presented in Chapter 22, can be
estimated.

The assumption of independence over i is maintained throughout Chapters 21–23,
though it can be relaxed even for small T provided structure can be placed on the
correlation. An example is an explicit model for spatial correlation for panel data on
regions such as states or countries, with correlations declining as physical distance
between individual observations increases.
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21.5.3. Error Variance Matrix for Long Panels

In long panels there are many time periods but relatively few individuals. Such data
can arise in microeconometrics analysis if the individual observational unit is one of
only a few regions, such as a state or country, or firms, but these are observed over
enough time periods to base inference on the assumption that T → ∞ .

Correlation across time for a given individual can be introduced using an ARMA
model for the errors, with the parameters of the ARMA model permitted to differ
across individuals as now N is fixed and T → ∞. For example, consider an AR(1)
error with uit = ρi ui,t−1 + εi t , where εi t ∼ [0, σ 2

i ] is heteroskedastic and ρi also dif-
fers across individuals. Separate regressions of yit on wi t with AR(1) errors for each
individual using T time periods yields consistent estimates ρ̂i and σ̂ 2

i , since T → ∞.
These can then be used for feasible GLS estimation of δ using all N T observations.
For details see Kmenta (1986). This model permits both heteroskedasticity across in-
dividuals and correlation over time for a given individual. Pesaran (2004) proposes a
considerably richer model that is estimated by GLS.

For long panels it is possible to introduce correlation across individuals, so that
Cov[uit , u jt ] �= 0 for i �= j , since N is fixed and asymptotic results rely on T → ∞. In
particular, one can perform pooled GLS estimation as done earlier, with the assumption
of independence across individuals, but then calculate standard errors using the method
of Newy and West (1987b), mentioned briefly in Section 6.4.4, that permits arbitrary
cross-sectional dependence and serial dependence, provided the serial dependence dies
away sufficiently fast. For details see Arellano (2003, p. 19).

Time-series considerations for panel data are discussed in more detail in Section
22.5 for models with lagged dependent variables as regressors.

21.5.4. The Impact of Autocorrelated Errors

Panel data regression models have errors that are usually autocorrelated over time
for a given individual. If fixed effects are absent then pooled OLS regression gives
consistent parameter estimates. However, the error correlation can lead to large bias
in standard errors for pooled OLS if autocorrelation is ignored and to relatively small
efficiency gains as the length of a panel is increased.

The analysis is particularly simple for estimation of the mean of y based on T
observations for one individual (so N = 1) with equicorrelation. Then yt = β + ut ,
and the OLS estimator is the sample mean, so β̂ = ȳ = T −1∑

t yt . The OLS estimator
has true variance V[̂β] = V[ȳ] = T −2∑

t

∑
sCov[ut , us]. Assuming equicorrelation

the double sum has T variances equal to σ 2 and T (T − 1) covariances all equal to ρσ 2.
Hence V[ȳ] = T −1σ 2(1 + (T − 1)ρ). Thus the iid result that V[ȳ] = T −1σ 2 needs to
be modified by inflation by a multiple (1 + ρ(T − 1)). In particular V[ȳ] approaches
σ 2 as ρ → 1.

Table 21.6 presents the impact of correlation on the variance of ȳ for different values
of T and ρ, where for simplicity we normalize σ 2 = 1. The precision of estimation
falls considerably as ρ increases, and the estimate of V[ȳ] under the assumption of
independence given in the first column (assuming σ 2 is known for simplicity) can
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Table 21.6. Variances of Pooled OLS Estimator with Equicorrelated Errorsa

T ρ = 0.0 ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8 ρ = 1.0

1 1.00 1.00 1.00 1.00 1.00 1.00
2 0.50 0.60 0.70 0.80 0.90 1.00
5 0.20 0.36 0.52 0.68 0.84 1.00

10 0.10 0.28 0.46 0.64 0.82 1.00

a Given are the variances of the pooled OLS estimator as the correlation ρ of equicorrelated errors increases,
for an intercept-only model with error variance normalized to one assuming errors are correlated though
homoskedastic.

greatly understate the true variance. Furthermore, for ρ > 0 the gain in precision due
to increase in the number of time periods is much smaller than with independent data
where a doubling of the number of time periods will halve estimator variance. For
example, if ρ = 0.4 then with five time periods the estimator variance is only 0.52
times that with one period, instead of the much lower multiple of 0.2 with independent
data. Moreover, a doubling from 5 to 10 time periods leads to only a small reduction
in estimator variance from 0.52 to 0.46.

This result holds more generally for balanced panel regression with equicorrelated
errors and regressors that are time-invariant, where the true variance of the OLS es-
timator is (1 + ρ(T − 1)) times that assuming independent errors (see Kloek, 1981).
In practice time-varying regressors are also included and clear analytical results are
more difficult to obtain. For regression with intercept and single time-varying regres-
sor, Scott and Holt (1982) show that the variance of the slope coefficient is inflated
by the multiple (1 + ρ̂xρ(T − 1)), where ρ̂x can be viewed as an estimate of the
individual-specific autocorrelation in x . For panel data ρ̂x is often high so that there
is still considerable inflation. These results also apply to other forms of clustered data
and are presented in more detail in Section 24.5.2.

The preceding analysis assumes equicorrelated errors, a property of the RE model.
If instead errors are AR(1) there is greater benefit from increasing panel length.
Then Cov[ut , us] = ρ|t−s|σ 2, so V[ȳ] = T −2σ 2[T + 2

∑T −1
s=1 (T − s)ρs]. For exam-

ple, if ρ = 0.8 then V[ȳ] = 0.72σ 2 for T = 5 and 0.54σ 2 for T = 10, lower than the
corresponding values from Table 21.6 of 0.84σ 2 and 0.82σ 2 for equicorrelation with
ρ = 0.8, but still much higher than values of 0.2σ 2 and 0.1σ 2 for ρ = 0.0.

Microeconometricians gravitate to the RE model or equicorrelated error models for
short panels as an outgrowth of the literature on clustered data presented in Chapter 24.
For example, consider data on different siblings in a family for many families. Then
it is natural to assume that correlations of unobservables across siblings in the same
family are the same for different siblings pairs. For example, the correlation between
the first and second siblings equals that between the first and third siblings. Those using
long panel data instead often have a time-series background and naturally assume that
correlation declines over time, leading to models such as an AR(1) error.

Determining which model of time-series correlation is more reasonable really de-
pends on the data. Many short panels used in microeconomics applications yield
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pooled OLS residual autocorrelations that are qualitatively similar to those given in
Table 21.3. These are closer to an RE model than an AR(1) model, though an
ARMA(1,1) model may do well. Better still may be an RE model with AR(1) error.
In all cases error correlation leads to a loss of information and the usual OLS standard
errors understate the true standard errors. For short panels one can base inference on
panel robust standard errors (see Section 21.2.3) that do not require specifying a model
for the error correlation.

21.5.5. Hours and Wages Pooled GLS Example

A variety of pooled GLS estimates and associated default and robust standard errors
of the model yit = αi + βxit + uit for the lnhrs on lnwg regression are given in Ta-
ble 21.7. All assume the error uit is independent over i and identically distributed over
i , and then have different assumptions on correlation in uit over t .

The first column of Table 21.7, for the pooled OLS estimator, repeats the first col-
umn of Table 21.2.

Pooled GLS estimates assuming equicorrelated errors are given in the second col-
umn of Table 21.7. These coincide with the RE–GLS column in Table 21.2, since the
random effects model implies equicorrelated errors (see (21.6)).

Pooled GLS estimates assuming AR(1) errors, so that uit = ρuit−1 + εi t where εi t

is iid, are given in the third column of Table 21.7. The slope coefficient estimate is
close to the pooled OLS estimate.

Pooled GLS estimates with no structure placed on error correlation aside from
homoskedasticity, so that Cov[uit , uis] = σts , are given in the fourth column of Ta-
ble 21.7. Then σts is consistently estimated given small T by σ̂ ts = N−1∑N

i=1 ûi t ûis

for all t and s. These are again close to the pooled OLS estimate.
It is clear from Table 21.7 that panel-robust standard errors should be used rather

than the default standard errors, which here assume homoskedasticity and correctly-
specified model for serial correlation.

Table 21.7. Hours and Wages: Pooled OLS and GLS Estimatesa

POLS PFGLS
Estimator
Error correlation None Equi AR1 General

α 7.442 7.346 7.440 7.426
β .083 .120 .084 .091
Robust se (.029) (.052) (.037) (.050)
Boot se [.032] [.060] [.050] [-]
Default se {.009} {.014} {.012} {.014}
a Pooled OLS and GLS linear panel regression of lnhrs on lnwg for a short panel as-

suming independence and identical distribution over i and no fixed effects. Pooled
GLS estimators assume equicorrelated or random effects errors (equi), AR(1) errors
(AR1), or no structure on the correlations (general). Standard errors for the slope
coefficients are panel robust in parentheses, panel bootstrap in square brackets, and
usual default estimates that assume iid errors in curly braces.
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21.6. Fixed Effects Model

The fixed effects model specifies

yit = αi + x′
i tβ + εi t , (21.22)

where the individual-specific effects α1, . . . , αN measure unobserved heterogeneity
that is possibly correlated with the regressors, xi t and β are K × 1 vectors, and to
begin with the errors εi t are iid [0, σ 2].

The challenge for estimation is the presence of the N individual-specific effects
that increase in number as N → ∞. For practical purposes we are most interested
in the K slope parameters β, which give the marginal effect of change in regressors
since ∂E[yit ]/∂xi t = β. The N parameters α1, . . . , αN are nuisance parameters or
incidental parameters that are not of intrinsic interest. Nevertheless, their presence
potentially prevents estimation of the parameters β that are of interest.

Remarkably, for the linear model there are several ways to consistently estimate
β despite the presence of these nuisance parameters. These include (1) OLS in the
within model (21.8); (2) direct OLS estimation of the model (21.2) with indicator
variables for each of the N fixed effects; (3) GLS in the within model (21.8); (4) ML
estimation conditional on the individual means ȳi , i = 1, . . . , N ; and (5) OLS in the
first-differences model (21.9).

The first two methods always lead to the same estimator for β. So too does the
third if additionally the εi t in (21.22) are iid and the fourth if εi t ∼ N [0, σ 2]. The last
estimator differs from the others for T > 2. Such equivalences generally do not hold
in nonlinear models, which are considered in Chapter 23.

The essential results for the within estimator are given in the next Section. The first-
differences estimator, presented in Section 21.6.2, is extensively used in Chapter 22
when regressors are no longer strongly exogenous. The other estimators are presented
in the remainder of Section 21.6, which some readers may wish to skip.

21.6.1. Within or Fixed Effects Estimator

The within model is obtained by subtraction of the time-averaged model ȳi = αi +
x̄i

′β + ε̄i from the original model. Then

yit − ȳi = (xi t − x̄i )
′β + (εi t − ε̄i ), (21.23)

so the fixed effect αi is eliminated, along with time-invariant regressors since xi t −
x̄i = 0 if xi t = xi for all t .

Using OLS estimation yields the within estimator or fixed effects estimator β̂W,
where

β̂W =
[

N∑
i=1

T∑
t=1

(xi t − x̄i )(xi t − x̄i )
′
]−1 N∑

i=1

T∑
t=1

(xi t − x̄i )(yit − ȳi ). (21.24)

The individual fixed effects αi can then be estimated by

α̂i = ȳi − x̄′
i β̂W, i = 1, . . . , N . (21.25)
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The estimate α̂i is unbiased for αi , and it is consistent provided T → ∞ since α̂i

averages T observations. In short panels the estimates α̂i are inconsistent, but β̂W is
nonetheless consistent for β. The αi are viewed as nuisance parameters or ancillary
parameters that fortunately do not need to be consistently estimated to obtain consis-
tent estimates of the more important slope parameters β. This remarkable result need
not carry over to more complicated fixed effects models such as nonlinear models.

Consistency of the Within Estimator

The within estimator of β is consistent if plim(N T )−1∑
i

∑
t (xi t − x̄i )(εi t − ε̄i ) = 0.

This should happen if either N → ∞ or T → ∞ and

E[εi t − ε̄i |xi t − x̄i ] = 0. (21.26)

Owing to the presence of the averages x̄i = T −1∑
i xi t and ε̄i this condition is stronger

than E[εi t |xi t ] = 0. A sufficient condition for (21.26) is the strong exogeneity condi-
tion that E[εi t |xi1, . . . , xiT ] = 0. This precludes within estimation with lagged endoge-
nous variables as regressors (see Section 22.5).

Asymptotic Distribution of the Within Estimator

The distribution of β̂W appears potentially complicated because the error (εi t − ε̄i ) in
the within model (21.8) is correlated over t for given i . It is shown in the following
that the usual OLS results nonetheless apply. Under the strong assumption that εi t is
iid,

V
[
β̂W

] = σ 2
ε

[
N∑

i=1

T∑
t=1

ẍi t ẍ′
i t

]−1

, (21.27)

where ẍi t = xi t − x̄i . A consistent and unbiased estimate of σ 2
ε is σ̂ 2

ε = [N (T − 1) −
K ]−1∑

i

∑
t ε̂

2
i t , where the degrees of freedom equal the sample size N T less the

number of model parameters K and the N individual effects. Note that if the regression
(21.23) is estimated using a standard least-squares package then we need to inflate the
reported variances by [N (T − 1) − K ]−1[N T − K ].

For short panels (21.13) yields the robust estimate of the asymptotic variance

V
[
β̂W

] =
[

N∑
i=1

T∑
t=1

ẍi t ẍ′
i t

]−1 N∑
i=1

T∑
t=1

T∑
s=1

ẍi t ẍ′
is
̂̈εi t̂̈εis

[
N∑

i=1

T∑
t=1

ẍi t ẍ′
i t

]−1

, (21.28)

where ε̈i t = εi t − ε̄i . This preferred estimate permits arbitrary autocorrelations for the
εi t and arbitrary heteroskedasticity.
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Derivation of the Variance of the Within Estimator

We now derive the estimates of the variance of the within estimator given in (21.27)
and (21.28), using matrix algebra. We begin with the model for the i t th observation

yit = αi + x′
i tβ + εi t ,

where xi t and β are K × 1 vectors. For the i th individual, stack all T observations, so yi1
...

yiT

 =

1
...
1

αi +

 x′
i1
...

x′
iT

β +

 εi1
...
εiT

 , i = 1, . . . , N ,

or

yi = eαi + Xiβ + εi , i = 1, . . . , N , (21.29)

where e = (1, 1, . . . , 1)′ is a T × 1 vector of ones, Xi is a T × K matrix, and yi and
εi are T × 1 vectors.

To transform model (21.29) to the within model, which subtracts the individual-
specific mean, introduce the T × T matrix

Q = IT − T −1ee′. (21.30)

Premultiplication by the matrix Q creates deviations from the mean, since

QWi = Wi − ew̄′
i , (21.31)

where Wi is a T × m matrix with t th row w′
i t and w̄i = T −1∑T

t=1 wi t is a m × 1
vector of averages. The result (21.31) is obtained using e′Wi = T w̄′

i . Note also that
QQ′ = Q, using e′e = T and Qe = 0, so Q is idempotent.

Premultiplying the fixed effects model (21.29) for the i th individual by Q yields

Qyi = QXiβ + Qεi , i = 1, . . . , N , (21.32)

using Qe = 0. This is the within model (21.23), since equivalently yi − eȳ′
i = (Xi −

ex̄′
i )β + (εi − eε̄i ) using (21.31). Thus premultiplication by Q yields the within model.

An OLS estimation of (21.32) yields β̂W with variance matrix, assuming independence
over i , equal to

V
[
β̂W

] =
[

N∑
i=1

X′
i Q

′QXi

]−1 N∑
i=1

X′
i Q

′V[Qεi |Xi ]QXi

[
N∑

i=1

X′
i Q

′QXi

]−1

. (21.33)

Begin with the strong the assumption that εi t are iid [0, σ 2
ε ], so that εi are iid

[0, σ 2
ε I]. The T × 1 error Qεi is then independent over i with mean zero and vari-

ance V[Qεi ] = QV[εi ]Q′ = σ 2
ε QQ′ = σ 2

ε Q. Then

N∑
i=1

X′
i Q

′V[Qεi |Xi ]QXi =
N∑

i=1

X′
i Q

′σ 2
ε QQXi

= σ 2
ε

N∑
i=1

X′
i Q

′QXi ,

728



21.6 . FIXED EFFECTS MODEL

so that (21.33) simplifies to the estimate given in (21.27), using

(QXi )
′(QXi ) =

T∑
t=1

(xi t − x̄i )(xi t − x̄i )
′.

At the time of writing many packages use (21.27) but alternative estimators may be
better. In particular, the assumption of serially uncorrelated error εi t is easily relaxed.
If εi are iid [0,Σi ] we use the more general form of the variance matrix (21.33) with
Cov[Qεi ,Qε j ] = 0, for i �= j , and V[Qεi ] replaced by (Qε̂i )(Qε̂i )′, where ε̂i = yi −
Xi β̂W. This yields the estimate given in (21.28).

From the derivation it should be clear that β̂W is also consistent in the random
effects model, though as shown in Section 21.7 it is less efficient than the random
effects estimator if the random effects model is appropriate.

GLS Estimation of the Within Model

The within model (21.32) can also be estimated by feasible GLS.
If in fact εi t are iid [0, σ 2

ε ], however, then there are no gains to doing GLS. To see
this, note that then Qεi is independent of Qε j , i �= j , with V[Qεi ] = σ 2

ε Q, so the GLS
estimator is

β̂W,GLS =
[

N∑
i=1

X′
i Q

′Q−QXi

]−1 N∑
i=1

X′
i Q

′Q−Qyi ,

where the generalized inverse Q− is used as Q is not of full rank. However,
Q′Q−Q = Q′Q since Q′Q−Q = Q, for a generalized inverse, and Q = QQ′ as Q here
is idempotent. Replacing Q′Q−Q by Q′Q in the formula for β̂W,GLS yields the OLS
estimator in (21.32).

There can be gains to GLS if other models for εi t are assumed. The approach is
essentially the same as that in Section 21.5.2 for pooled GLS without fixed effects,
except that first the fixed effect must be eliminated. This leads to error Qεi that is less
than full rank, so we first drop one time period and apply pooled GLS to only (T − 1)
time periods. It is easier, and often not much less efficient, to instead just use the usual
within FE estimator and then obtain panel-robust standard errors using (21.28).

MaCurdy (1982b) gives a Box–Jenkins-type analysis for identification and estima-
tion of ARMA processes for εi t in a fixed effects model for a short panel. For short
panels it is not necessary to assume an ARMA process for εi t or even stationarity,
since for N → ∞ we can always consistently estimate Cov[uit , uis] by N−1∑

i ûi t ûis .
Nonetheless, there may be interest in determining the ARMA process for the errors.

21.6.2. First-Differences Estimator

The within model is obtained by subtraction of the time-averaged model ȳi = αi +
x̄i

′β + ε̄i from the original model. Alternatively, one can subtract the model lagged
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one period, yi,t−1 = αi + xi,t−1
′β+εi,t−1. Then

(yit − yi,t−1) = (xi t − xi,t−1)′β + (εi t − εi,t−1), t = 2, . . . , T, (21.34)

so the fixed effect αi is eliminated. An OLS estimation yields the first-differences
estimator

β̂FD =
[

N∑
i=1

T∑
t=2

(xi t − xi,t−1)(xi t − xi,t−1)′
]−1 N∑

i=1

T∑
t=2

(xi t − xi,t−1)(yit − yi,t−1).

(21.35)

Note that there only N (T − 1) observations in this regression. An easy error to make
in implementation is to stack all N T observations and then subtract the first lag. Then
only the (1, 1) observation is dropped, whereas all T first-period observations (i, 1),
i = 1, . . . , N , must be dropped after differencing.

Consistency of the First-Differences Estimator

Consistency of the first differences estimator requires that E[εi t − εi,t−1|xi t − xi,t−1].
This is a stronger condition than E[εi t |xi t ] = 0 but a weaker condition than the strong
exogeneity condition needed for consistency of the within estimator.

Asymptotic Distribution of the First-Differences Estimator

Statistical inference requires adjusting the usual OLS standard errors to account for the
correlation over time in the error term εi t − εi,t−1. To obtain the asymptotic variance
of β̂FD, stack the model for the i th individual as

�yi = �X′
iβ + �εi ,

where �yi is a (T − 1) × 1 vector with entries (yi2 − yi1), . . . , (yiT − yi,T −1), and
�Xi is a (T − 1) × K vector with rows (xi2 − xi1)′, . . . , (xiT − xi,T −1)′. Then

β̂FD =
[

N∑
i=1

(�Xi )
′(�Xi )

]−1 N∑
i=1

(�Xi )
′(�yi ) (21.36)

has variance matrix, assuming independence over i , of

V
[
β̂FD

] =
[

N∑
i=1

(�Xi )
′(�Xi )

]−1 [ N∑
i=1

(�Xi )
′V[�εi |�Xi ](�Xi )

][
N∑

i=1

(�Xi )
′(�Xi )

]−1

.

(21.37)

The simplest assumption is that εi t are iid [0, σ 2
ε ]. Then the error (εi t − εi,t−1) is now

an MA(1) error, with variance 2σ 2
ε and one-period apart autocovariance σ 2

ε for individ-
ual i . It follows that V[�εi ] equals σ 2

ε times a (T − 1) × (T − 1) matrix with entries
of 2 on the diagonal, entries of 1 on the immediate off-diagonals, and 0s elsewhere.

A more realistic assumption is that εi t is correlated over time for given i , so
that Cov[εi t , εis] �= 0 for t �= s, but is still independent over i . From (21.13), for
short panels an estimator that is robust to general forms of autocorrelation and
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heteroskedasticity is (21.37) with V[�εi ] replaced by (�̂εi )′(�̂εi ). One should never
use the usual OLS standard errors from OLS regression of the first-differences model
(21.37), as these are only correct in the unlikely event that εi t is a random walk, so that
(εi t − εi,t−1) are iid.

For T = 2 the first-differences and within estimators are equal since ȳ = (y1 +
y2)/2 so (y1 − ȳ) = (y1 − y2)/2 and (y2 − ȳ) = −(y1 − y2)/2, and similarly for x.
For T > 2 the two estimators differ. Under the simplest assumption that εi t are iid, it
can be shown that the GLS estimator of the first-difference model (21.34) equals the
within estimator. The estimator β̂FD instead estimates (21.34) by OLS and is less effi-
cient than β̂W. For this reason the first-difference estimator is not mentioned much in
introductory courses. However, it is used extensively once lagged dependent variables
are introduced (see Chapter 22). Then the within estimator is inconsistent. The first-
differences estimator is also inconsistent, but relies on weaker exogeneity assumptions
that permit consistent IV estimation.

21.6.3. Conditional ML Estimator

The conditional MLE maximizes the joint likelihood of y11, . . . , yN T conditional on
the individual averages ȳ1, . . . , ȳT . This method has the attraction that, for the linear
panel model under normality, the fixed effects αi are eliminated, so maximization is
with respect to β alone.

Assume that yit conditional on regressors xi t and parameters αi , β, and σ 2 are iid
with normal distribution N [αi + x′

i tβ, σ
2]. Then the conditional likelihood function

is

LCOND(β,σ 2,α) =
N∏

i=1

f (yi1, . . . , yiT |ȳi ) (21.38)

=
N∏

i=1

f (yi1, . . . , yiT , ȳi )

f (ȳi )

=
N∏

i=1

(2πσ 2)−T/2

(2πσ 2/T )−1/2
exp

{
T∑

t=1

−[(yit − x′
i tβ)2 + (ȳi − x̄′

iβ)2]/2σ 2

}
.

The first equality defines the conditional likelihood assuming independence over i .
The second equality always holds since, suppressing subscript i , f (y1, . . . , yT |ȳ) =
f (y1, . . . , yT , ȳ)/ f (ȳ) and f (y1, . . . , yT , ȳ) = f (y1, . . . , yT ) as knowledge of ȳ =
T −1∑

i yi adds nothing given knowledge of y1, . . . , yT . The third equality under nor-
mality comes after considerable algebra that is left as an exercise.

The key result is that the fixed effects α do not appear in the final equality in (21.38),
so LCOND(β,σ 2,α) is in fact LCOND(β,σ 2), and we need to maximize the conditional
log-likelihood function (21.38) with respect to β and σ 2 only. The resulting condi-
tional ML estimator β̂CML solves the first-order conditions

1

σ 2

T∑
t=1

N∑
i=1

[(yit − x′
i tβ)xi t − (ȳi − x̄′

iβ)x̄i ] = 0,
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or equivalently

T∑
t=1

N∑
i=1

[(yit − ȳi ) − (xi t − x̄i )
′β)](xi t − x̄i ) = 0.

However, these are just the first-order conditions from OLS regression of (yit − ȳi ) on
(xi t − x̄i ).

The conditional MLE β̂CML therefore equals the within estimator β̂W.
Intuitively, the method yields a consistent estimator because conditioning on ȳi

in (21.38) eliminated the fixed effects. More formally, ȳi is a sufficient statistic for
αi and conditioning on the sufficient statistic enables consistent estimation of β (see
Section 23.2.2).

21.6.4. Least-Squares Dummy Variable Estimator

Consider the original fixed effects model (21.22) before any differencing. An OLS
analysis can be applied directly to the model, simultaneously estimating α and β.

In principle no special software is needed. One simply estimates the OLS regression
of yit on xi t and a set of N indicator variables d1,i t , . . . , dN ,i t , where d j,i t equals one
if j = i and equals zero otherwise. However, as N gets large there are too many re-
gressors to permit inversion of the (N + K ) × (N + K ) regressor matrix. Some matrix
algebra, however, reduces the problem to inversion of a K × K matrix.

The resulting estimator of β turns out to equal the within estimator. This is a spe-
cial case of the so-called Frisch-Waugh Theorem for a subset regression. If dummy
variables are partialled out by regression of all the variables on the dummies, and if
the residuals from these regressions are used in a second stage regression, then we get
the same estimates as in the full regression. But these residuals here are simply devia-
tions from their respective means, i.e. the within regression. For completeness we now
present the relevant matrix algebra.

Stack the T × 1 vectors in (21.29) over all N individuals to yield the fixed effects
dummy variable model

 y1

:
yN

 =

 e 0 0

0
. . . 0

0 0 e


 α1

:
αN

+

 X1
...

XN

β +
 ε1

:
εN

 ,
or

y = [(IN ⊗ e) X]

[
α

β

]
+ ε, (21.39)

where y is an N T × 1 vector, the Kronecker product (IN ⊗ e) is an N T × N block-
diagonal matrix, and X is the N T × K matrix of nonconstant regressors.

732



21.6 . FIXED EFFECTS MODEL

An OLS estimation of this model yields the least-squares dummy variable
(LSDV) estimator

[
α̂LSDV

β̂LSDV

]
=
[

(IN ⊗ e)′(IN ⊗ e) (IN ⊗ e)′X
X′(IN ⊗ e) X′X

]−1

×
[

(IN ⊗ e)′y
X′y

]

=
[

T IN T X̄
T X̄′ X′X

]−1

×
[

ȳ
X′y

]
,

where the matrix of sample means X̄ = [x̄′
1 · · · x̄′

N ]′, x̄i = T −1∑T
t=1 xi t , ȳ =

[ȳ1 · · · ȳN ]′, and ȳi = T −1∑T
t=1 yit . Using the formula for partitioned inverse and per-

forming further algebra leads to[
α̂LSDV

β̂LSDV

]
=
[

ȳ − X̄β̂W

[X′X − X̄′X̄]−1(X′y − X̄′ȳ)

]
. (21.40)

Reexpressing this in summation notation, we have β̂LSDV = β̂W defined in (21.24) and
α̂LSDV = α̂FE defined in (21.25), so the LSDV estimators equal the within or fixed
effects estimator

For short panels an obvious potential problem is that consistent estimation of β
and α is not guaranteed as there are N + K parameters to estimate and N → ∞.
Remarkably, consistent estimation of β is possible, even though α is inconsistently
estimated, unless additionally T → ∞.

This estimator is second-moment efficient if εi t are iid [0, σ 2]. It follows that the
within estimator of β is more efficient than alternative differencing estimators that
also eliminate αi , such as subtracting the first observation or the previous period’s
observation. If additionally the errors are normally distributed, the LSDV estimator
equals the MLE by the usual equivalence of OLS and MLE in the linear model with
spherical normal errors.

21.6.5. Covariance Estimator

Suppose data belong to one of N classes, with yit denoting the t th observation in the
i th class. The analysis of variance decomposes the total variation of yit around the
grand mean ȳ,

∑
i

∑
t (yit − ȳ)2, into within-group variation

∑
i

∑
t (yit − ȳi + ȳ)2

and between-group variation
∑

i (ȳi − ȳ)2, where ȳi is the mean in the i th group.
Group membership becomes more important as between-group variation increases.
The analysis of covariance extends this approach to introduce regressors, in which
case the residual sum of squares is similarly decomposed. This framework is widely
used in applied statistics.

For short panels each individual is viewed as a class, observed for several time
periods. The model (21.3) is called the analysis-of-covariance model, as it permits
the mean residual in the i th class to differ over classes. The estimator of this model,
the within estimator, is accordingly also called the covariance estimator.
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21.7. Random Effects Model

The random effects model (21.3) can be rewritten as

yit = µ+ x′
i tβ + αi + εi t , i = 1, . . . , N , t = 1, . . . , T, (21.41)

or

yit = w′
i tδ + αi + εi t , (21.42)

where wi t = [1 xi t ] and δ = [µ β′]′. The individual-specific effects αi are assumed
to be realizations of iid random variables with distribution [0, σ 2

α ] and the error εi t is
iid [0, σ 2

ε ]. The nonrandom scalar intercept µ is added so that, unlike in (21.5), the
random effects can be normalized to have zero mean.

The model can alternatively be viewed as a special case of a random coefficient
or varying coefficient model, where only the intercept coefficient is random. The
model can be re-expressed as yit = µ+ x′

i tβ + uit , where the error term uit has two
components uit = αi + εi t . For this reason the random effects model is also called the
error components model. Even clearer terminology may be the random intercept
model. Richer mixed models also permit random slopes, see Chapter 22.

There are many consistent estimators of the random effects model, including (1)
GLS estimation in the model (21.42); (2) ML estimation in the model (21.42) assum-
ing αi and εi t are normally distributed; (3) OLS estimation in the model (21.42); and
(4) fixed effects model estimators such as the within and first-differences estimators,
though these only estimate the coefficients of time-varying regressors. The first two
estimators are asymptotically equivalent but can vary in finite samples depending on
the specific estimates used for σ 2

α and σ 2
ε . The remaining estimators are consistent,

though they are inefficient if in fact αi and εi t are iid.

21.7.1. GLS Estimator

The random effects estimator of µ and β is the feasible GLS estimator of the model
(21.42), and it is shown later in this section that it can be implemented by OLS regres-
sion of the transformed equation

yit − λ̂ȳi = (1 − λ̂)µ+ (xi t − λ̂x̄i )
′β + vi t , (21.43)

where vi t = (1 − λ̂)αi + (εi t − λ̂ε̄i ) and λ̂ is consistent for

λ = 1 − σε/(Tσ 2
α + σ 2

ε )1/2. (21.44)

Equivalently,

δ̂RE =
[
µ̂RE

β̂RE

]
=
[

N∑
i=1

T∑
t=1

(wi t − λ̂w̄i )(wi t − λ̂w̄i )
′
]−1 N∑

i=1

T∑
t=1

(wi t − λ̂w̄i )(yit − λ̂ȳi ),

(21.45)

where wi t = [1 xi t ] and w̄i = [1 x̄i ]. Consistency requires N T → ∞, through either
N → ∞ or T → ∞ or both.
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Assuming that εi t and αi are iid, the usual OLS output from OLS regression of
(21.43) can be used to obtain the variance matrix estimate, so that

V

[
µ̂RE

β̂RE

]
= σ 2

ε

[
N∑

i=1

T∑
t=1

(wi t − λ̂w̄i )(wi t − λ̂w̄i )
′
]−1

. (21.46)

Alternatively, for short panels a robust variance estimate that permits quite general
behavior for αi + εi t can be obtained using (21.13). This yields

V

[
µ̂RE

β̂RE

]
=
[

N∑
i=1

T∑
t=1

w̃i t w̃′
i t

]−1 N∑
i=1

T∑
t=1

T∑
s=1

w̃i t w̃′
is
̂̃εi t̂̃εis

[
N∑

i=1

T∑
t=1

w̃i t w̃′
i t

]−1

, (21.47)

where w̃i t = wi t − λ̂w̄i and ε̃i t = ε̂i t − λ̂ ¯̂εi where ε̂i t is the RE residual. This estimate
permits arbitrary autocorrelations for the εi t and arbitrary heteroskedasticity.

Equation (21.46) requires consistent estimates of the variance components σ 2
ε and

σ 2
α . From the within or fixed effects regression of (yit − ȳi ) on (xi t − x̄i ) we obtain

σ̂ 2
ε = 1

N (T − 1) − K

∑
i

∑
t

((yit − ȳi ) − (xi t − x̄i )
′β̂W)2. (21.48)

From the between regression of ȳi on an intercept and x̄i , an equation that has error
term with variance σ 2

α + σ 2
ε /T , we obtain

σ̂ 2
α = 1

N − (K + 1)

∑
i

(ȳi − µ̂B − x̄′
i β̂B)2 − 1

T
σ̂ 2
ε. (21.49)

More efficient estimators of the variance components σ 2
ε and σ 2

α are possible (see, for
example, Amemiya, 1985), but these will not necessarily increase the efficiency of
β̂RE. A wide range of estimators are possible. The variance estimator (21.49) can be
negative, in which case programs often set σ̂ 2

α = 0, so λ̂ = 0 and estimation is then by
pooled OLS.

To verify that the feasible GLS estimator simplifies to OLS estimation of (21.43),
stack (21.42) by observations from all T time periods for given i in the same way as
for the fixed effects model. Then

yi = Wiδ + (eαi + εi ), (21.50)

where yi , e, εi , and Xi are defined after (21.29), and W′
i = [e X′

i ]. To estimate by
GLS we need to obtain the variance matrix Ω of the T × 1 vector error (eαi + εi ).
Given independence of αi and εi t we have E[(eαi + εi )(eαi + εi )′] = E[εiε

′
i ] +

E[α2
i ]ee′. Since εi t are iid [0, σ 2

ε ] and αi are iid [0, σ 2
α ] we obtain

Ω = σ 2
ε IT + σ 2

αee′ = σ 2
ε

[
Q + 1

ψ2
(IT −Q)

]
,

where Q = IT − T −1ee′ was introduced in (21.30) and ψ2 = σ 2
ε /[σ

2
ε + Tσ 2

α ]. Using
QQ′ = Q we can easily verify that Ω−1 = σ−2

ε [Q + ψ2(IT −Q)] and

Ω−1/2 = 1

σε

[
Q + ψ(IT −Q)

]
. (21.51)
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The GLS estimator is obtained by premultiplication of (21.50) by any scalar multiple
of Ω−1/2. Now [

Q + ψ(IT −Q)
]

yi = yi − eȳ′
i + ψ(yi − (yi − eȳ′

i ))

= yi − λeȳ′
i ,

where λ = (1 − ψ). Performing similar algebra for Wi , eαi , and εi in (21.50) yields
the following model:

yi − λeȳ′
i = (Wi − λW̄)′δ + (1 − λ)αi + (εi − λeε̄′i ), (21.52)

where the transformed error in (21.52) has variance matrix σ 2
ε IT . The GLS estimator

is the OLS estimator of (21.52), but (21.52) is just a stacked version of (21.43) with
the scalar λ replaced by a consistent estimate.

The random effects estimator β̂RE of the slope parameters converges to the within
estimator as T → ∞ since then λ→ 1. Otherwise, β̂RE can be shown, after some
algebra, to equal a matrix-weighted combination of the within estimator and the
between estimator. If the random effects model is appropriate, this weighted average
works better than using the within estimator alone. However, if the fixed effects model
is appropriate then this weighted average is inconsistent, as the between estimator is
then inconsistent. The estimator of the intercept can be shown to simplify to µ̂RE =
ȳ − X̄β̂RE. For more details see, for example, Hsiao (2003, p. 36) or Greene (2003).

21.7.2. ML Estimator

In the derivation in the previous section, normality of the errors is not assumed. If they
are in fact normal, we can maximize the log-likelihood function with respect to β, µ,
σ 2
ε , and σ 2

α . For given σ 2
ε and σ 2

α the MLE for β andµ is the same as the GLS estimator,
but the MLE gives estimators σ̃ 2

ε and σ̃ 2
α that differ from those given in (21.48) and

(21.49).
Thus the MLE for β and µ is given by (21.45) with λ̂ replaced by the alternative

consistent estimate λ̃ = 1 − σ̃ ε/(T σ̃ 2
α + σ̃ 2

ε)
1/2. Asymptotically, the MLE and GLS

estimators of the random effects model are equivalent, but the two will differ in finite
samples.

For the MLE there may be two local maxima rather than one of the likelihood for
0 < ψ2 ≤ 1, so care is needed to ensure a global maximum.

21.7.3. Other Estimators

Many different estimators of β are consistent if the random effects model is the cor-
rect model. In particular, the pooled OLS, within, first-differences, and between es-
timators are all consistent. However they are inefficient if αi and εi t are iid, and
the within and first-differences estimators can only estimate the coefficients of time-
varying regressors.
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21.8. Modeling Issues

In this section we consider some practical issues that arise in linear panel data mod-
els, even in the absence of complications such as endogeneity and lagged dependent
variables, topics that are deferred to Chapter 22.

21.8.1. Tests for Pooling

The random effects model restricts all regression parameters to be the same in different
cross sections and time periods, whereas the fixed effects models imposes parameter
constancy except for the intercept, which may vary across individuals. Tests of poola-
bility test the appropriateness of these constraints.

These tests are usually done using a Chow test (see Greene, 2003, p. 130) based
on the tests for equality of regressors in two linear regressions assuming a common
variance. Depending on the assumptions about errors, the Chow test may be applied
to models estimated by OLS or by GLS. Baltagi (2001, Chapter 4) and Hsiao (2003,
Chapter 2) provide detailed coverage.

For short panels it is not possible to allow the slope parameters to differ across
individuals, as then the number of parameters goes to infinity. However, parameters can
be permitted to vary over time. The model yit = γ + x′

i tβ + uit is then tested against
yit = γt + x′

i tβt + uit . The most obvious method is to assume random effects with
uit = εi t+ αi , estimate the restricted model (γt = γ and βt = β) using the random
effects GLS estimator, and compare the restricted and unrestricted residual sums of
squares in the transformed models. If more robust inference is preferred then panel-
robust standard errors should be obtained and a Wald test performed. For short panels
it is common to specify models with slope parameters β constant, though the intercept
γt may be permitted to vary over time by inclusion of time dummies as additional
regressors.

21.8.2. Tests for Individual-Specific Effects

Breusch and Pagan (1980) derived Lagrange-multiplier tests for the presence of
individual-specific random effects against the null hypothesis assumption of iid er-
rors. These have the advantage of being easily implemented by an auxiliary regression
that requires only residuals from pooled OLS estimates. Alternatively, one can assume
normality and do a likelihood ratio test of the random effects MLE against the MLE of
the constant-coefficients model, or a Wald test of σα = 0 in the random effects model.

In practice one often rejects the null hypothesis that the errors in the constant-
coefficients model are iid. It is easiest to immediately estimate by pooled OLS with
panel-robust standard errors or by random effects GLS.

For a short panel formal tests for the presence of individual-specific fixed effects
are not possible because of the incidental parameters problem. It is not possible to
test whether N parameters are zero when there are only N T observations and T is
small. Instead, the Hausman test of Section 21.4.3 is used to test the null hypothesis of
random effects against the alternative of fixed effects.
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21.8.3. Prediction

Prediction in models without individual effects is straightforward: Use ŷ js = x′
jsβ̂.

This is a prediction of the population average E[y js |x js].
Prediction for a given individual conditional on the individual-specific effect is more

difficult. This is prediction of E[y js |x js, αi ]. We consider out-of-sample forecasts for
the i th individual using the random effects model (21.42). Then yi, t+s = w′

i tδ + ui,t+s ,
where ui,t+s = αi + εi,t+s . The obvious predictor replaces δ by δ̂RE and ui,t+s by ei-
ther 0 or ûi , where ûi = ȳi − w̄′

i δ̂RE is the average within-sample residual for the i th
individual. However, this is inefficient as it ignores the correlation between ui,t+s and
in-sample errors induced by the individual-specific random effect αi . The problem is
an example of the more general problem of prediction within a GLS rather than an OLS
framework. For this special case the best linear unbiased predictor (see Section 22.8.3)
is ŷi,t+s = x′

i t δ̂RE + (Tσ 2
α/(Tσ

2
α + σ 2

ε ))̂ui . For the fixed effects model the obvious pre-
dictor is ŷi,t+s = x′

i t β̂W + α̂i,FE, but again this is inconsistent in short panels.

21.8.4. Two-Way Effects Models

The analysis to date has focused on the one-way model, which is (21.1) with uit =
αi + εi t . A more general model is the two-way effects model, with uit = αi + γt +
εi t , which additionally allows for time-specific effects. Then

yit = αi + γt + x′
i tβ + εi t , i = 1, . . . , N , t = 1, . . . , T . (21.53)

This model was presented originally in (21.2).
As already noted, for short panels the usual approach is to treat the time-specific

effects as fixed and estimate them as the coefficients of time dummies that are included
in the regressors, with analysis then differing according to whether the individual-
specific effects are treated as fixed or random.

If both αi and γt are fixed then the OLS estimator of β in (21.53) is equivalent to
regression of yit − ȳi − ȳt + ȳ on xi t − x̄i − x̄t + x̄, where ȳi = T −1∑T

t=1 yit , ȳt =
N−1∑N

i=1 yit , and ȳ = (N T )−1∑N
i=1

∑T
i=1 yit , with similar definitions for x̄i , x̄t , and

x̄. This method of estimation is convenient if T is large.
If instead both αi and γt are random then the error term will have a component γt

that induces error correlation across individuals, whereas we have focused on inde-
pendence over i . It can be shown that the GLS estimator can be computed by OLS
estimation of y∗

i t on a constant and x∗
i t ,

y∗
i t = yit − λ1 ȳi − λ2 ȳt + λ3 ȳ,

where ȳi , ȳt , and ȳ have already been defined and x∗
i t is defined analogously to y∗

i t .
For this and other results for the two-way effects model see Hsiao (2003) or Baltagi
(2001).
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21.8.5. Unbalanced Panel Data

The discussion thus far has assumed the panel is balanced, meaning that data are
available for every individual in every year. For panel data on different regions this
is often the case. In contrast, for panel surveys of individuals there is usually a drop
off or attrition over time in the proportion of individuals still answering the survey.
Moreover, some individuals may miss one or more periods but return later, in some
cases by design as in the case of rotating panels such as the CPS, where households
are surveyed for four consecutive months, not surveyed for eight months, and then
surveyed for another four months. Such panels where different individuals appear in
different years are called unbalanced panels or incomplete panels.

Let dit be an indicator variable equal to one if the i t th observation is observed and
equal to zero otherwise. Then for the individual-specific effects model (21.3) the FE
estimator is consistent if the strong exogeneity assumption (21.4) becomes

E[uit |αi , xi1, . . . , xiT , di1, . . . , diT ] = 0, (21.54)

and the RE estimator is consistent if additionally αi is independent of the other con-
ditioning variables. The fixed and random effects estimators can then be applied to
unbalanced data with relatively little adjustment. This should be clear from the ini-
tial presentation of the estimators as OLS estimators in various models given in
Section 21.2.2. For example, for the random effects model replace λ̂ in (21.10) by
λ̂i = 1 − σε/(Tiσ

2
α + σ 2

ε )1/2, where Ti is the number of observations for individual i
(see Baltagi, 1985, and Wansbeek and Kapteyn, 1989). Davis (2002) considers multi-
way random effects models. For the fixed effects model an individual observation must
be observed at least twice in the sample and degrees of freedom must be appropriately
adjusted. Baltagi (2001) gives a lengthy treatment of unbalanced panels. Economet-
rics packages that estimate the more standard of the panel models presented in Chap-
ters 21–23 usually automatically handle missing observations.

At times it may be convenient to convert an unbalanced panel into a balanced panel,
by including in the sample only those individuals with data available in all years. This
obviously can greatly reduce efficiency because of the loss of many observations. Fur-
thermore, if data are not randomly missing this can exacerbate potential problems of a
nonrepresentative sample.

One reason for missing data can be that although most variables are observed, at
least one variable is not. For example, the nonresponse rate to income questions can
be quite high. Rather than drop an entire observation because data for one regressor,
income, is missing there may be efficiency gains to using the imputation methods
presented in Chapter 27.

Unbalanced panels require special methods if the reason for individuals dropping
out of the sample is correlated with the error term, so that (21.54) does not hold. For
example, those individuals with unusually low wages (after controlling for observed
characteristics) may be more likely to drop out of a panel sample. The result is an
unrepresentative panel that will lead to attrition bias if wage is the dependent variable.
Consistent estimation requires use of sample selection methods extended to panel data
(see Section 23.5.2).
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21.8.6. Measurement Error

Measurement error in regressors leads to inconsistent parameter estimates in cross-
section regression models. If panel data methods are used that involve differencing of
the data, the result may be a large increase in the inconsistency caused by measurement
error depending on the assumptions made about the dgp. This is pursued in Chapter 26.

21.9. Practical Considerations

The various estimators presented in this chapter are easily implemented. The most
foolproof method is to use the panel commands available in econometric packages
such as LIMDEP, STATA, and TSP, all of which have the added advantage of usually
handling unbalanced panels. Most estimators can alternatively be estimated using an
appropriate pooled OLS regression on transformed data that requires only a cross-
section package, though standard errors may then differ from panel package standard
errors because the latter may ignore autocorrelation induced by transformation and
may use different degrees of freedom.

A weakness of panel commands in packages is that they currently compute standard
errors based on restrictive distributional assumptions such as iid errors in the fixed
effects models, and iid individual effect and iid errors in the random effects model. To
compute the more robust standard error estimates presented in this chapter may require
panel estimation with a panel bootstrap or estimation of an appropriate pooled OLS
regression using an option to compute cluster-robust standard errors.

In microeconometric analysis there is a fundamental distinction between models
with and models without fixed effects. If a model without fixed effects is preferred
it should be justified by passing a Hausman test. If this test rejects the random ef-
fects model then it may still be possible to consistently estimate coefficients of time-
invariant regressors using the instrumental variables methods presented in the next
chapter.

21.10. Bibliographic Notes

Most textbooks, such as Greene’s (2003), include at least a chapter on panel data models.
Wooldridge (2002) has several chapters that cover both linear and nonlinear panel models.
Econometrics monographs on panel data include those by Hsiao (1986, 2003), Baltagi (1995,
2001), Matyas and Sevestre (1995), M-J. Lee (2002), and Arellano (2003). The last three books
place greater emphasis on the methods presented in Chapter 22 and 23. Diggle, Liang, and
Zeger (1994, 2002) is a standard statistics reference.

21.4 Mundlak (1978) wrote a classic article on fixed versus random effects models. Hausman
(1978) used tests between these two models to illustrate his testing approach.

21.6 Kuh (1959) and Hoch (1962) provide two early panel data applications to estimation of
investment functions and of Cobb–Douglas production functions. These studies contrast
use of within estimates using time-series variation and between estimates using cross-
section variation.
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Exercises

21–1 (Adapted from Baltagi, 1999) Consider the panel model yi t = α + βxi t + ui t ,
where α and β are scalars.

(a) Show by appropriate subtraction that this model implies

yi t − ȳ = β(xi t − x̄i ) + β(x̄i − x̄) + (ui t − u),

where ȳ = (NT)−1∑
i,t yi t , x̄ = (NT)−1∑

i,t xi t and x̄i = T−1∑
t xi t .

(b) For the corresponding unrestricted least-squares regression

yi t − ȳ = β1(xi t − x̄i ) + β2(x̄i − x̄) + (ui t − u),

show that the least-squares estimator of β1 is the within estimator and that
of β2 is the between estimator.

(c) Show that if ui t = µi + vi t , where µi ∼iid[0, σ 2
µ ] and vi t ∼iid[0, σ 2

v ], and the
two are mutually independent across both i and t , the OLS and the GLS
estimators are equivalent.

21–2 Consider estimation of the fixed effects linear regression model yi t = αi + x′
i tβ +

εi t , where αi are fixed effects possibly correlated with xi t . Stacking all T observa-
tions for individual i yields yi = αi e + Xiβ + εi (see (21.29) for definitions). Con-
sider the estimator β̂ = [

∑N
i =1 X′

i J
′JXi ]−1 ×∑N

i =1 X′
i J

′Jyi , where J is a T × T
matrix of known constants such that Je = 0. [Note that an example of J is
Q = IT − T−1ee′.]

(a) Provide a motivation for the estimator β̂.
(b) Find E[β̂]. For simplicity assume that Xi are fixed regressors and that εi t are

iid [0, σ 2]. Is β̂ unbiased for β?
(c) Find V[β̂]. For simplicity assume that Xi are fixed regressors and that εi t are

iid [0, σ 2].
(d) Now suppose εi t are independent over i but correlated over t with V[εi ] = 
i .

Give V[β̂].
(e) Suppose that the effects αi are random (0, σ 2

α ) rather than fixed. Would the
estimator in this exercise be consistent?

21–3 (Adapted from Baltagi, 1998) Consider the fixed effects, two-way error compo-
nent panel data model

yi t = α + x′
i tβ + µi + λt + εi t ,

where α is a scalar, xi t is a k × 1 vector of exogenous regressors, β is a K × 1
vector, µ and λ denote fixed individual and time effects, respectively, and εi t ∼
iid[0, σ 2].

(a) Show that the within estimator of β, which is best linear unbiased, can be
obtained by applying two within (one-way) transformations on this model.
The first is the within transformation ignoring the time effects followed by the
within transformation ignoring the individual effects.

(b) Show that the order of these two within (one-way) transformations is unim-
portant. Give an intuitive explanation for this result.

21–4 Use a 50% random subsample of the wage–hours data in Section 21.3

(a) Can β be directly interpreted as a labor supply elasticity? Explain.
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(b) For the following estimators: (1) pooled OLS, (2) between, (3) within, (4) first
differences, (5) random effects GLS, (6) random effects MLE give (i) β̂ (esti-
mated coefficient of lnwg), (ii) default standard error, and (iii) panel bootstrap
standard error with 200 replications.

(c) Are the estimates of β similar?
(d) Is there a systematic difference between default standard errors and panel-

robust standard errors?
(e) Will the pooled OLS estimator in part (b) be consistent for β in a fixed effects

model? Will the pooled OLS estimator be consistent for β in a random effects
model?

(f) Perform a Hausman test of the difference between the fixed and random
effects (GLS) estimates of β in this model. Do this manually using the earlier
regression output with the default standard errors. What do you conclude
and which model is favored?

(g) Given the preceding evidence, do you believe that the labor supply curve is
upward sloping? Explain.
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C H A P T E R 22

Linear Panel Models: Extensions

22.1. Introduction

The previous chapter presented variants of the linear panel data model with a fixed
or random intercept and regressors that are strongly exogenous. Now we move on to
various extensions for linear models, with focus on relaxation of the strong exogene-
ity assumption to permit consistent estimation of models with endogenous variables
and/or lagged dependent variables as regressors.

The use of instrumental variables is a standard method to handle endogenous re-
gressors. It is much easier to obtain instruments with panel data than with cross-section
data, since exogenous regressors in other time periods can be used as instruments for
endogenous regressors in the current time period. The only complication is to first
control for any fixed or random effects.

Panel data permit regressors to additionally include lagged dependent variables,
data unavailable with a single cross section. This permits estimation of dynamic mod-
els that distinguish between persistence of earnings, for example, as the result of vari-
ation around an unobserved individual-specific effect, as in Chapter 21, and persis-
tence caused by the outcomes of previous periods directly determining the outcome
of the current period. The estimators of Chapter 21 that control for individual-specific
effects become inconsistent, however, if lagged dependent variables are regressors. In-
strumental variables estimation using longer lags as instruments leads to consistent
estimation.

Panel data provide an excess of moment conditions available for estimation, owing
to an abundance of instruments, and panel model errors are usually not iid. The nat-
ural estimation framework is that of panel GMM, presented in detail in Section 22.2
and illustrated with an application to estimation of the labor supply elasticity in Sec-
tion 22.3. Further details on estimation with individual-specific effects and regressors
that are endogenous or lagged dependent variables are presented in Sections 22.4 and
22.5. The discussion is quite extensive due to the many possible variations that are
covered. These include the presence of individual specific effects that may be fixed or
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random, different exogeneity assumptions, and models that may be just-identified or
over-identified.

The remainder of this chapter considers other stand-alone topics that generally do
not require reading of Sections 22.2–22.5. Models closely related to panel data models
are presented in Sections 22.6–22.8, namely repeated cross-section data, differences
in differences, and hierarchical models.

22.2. GMM Estimation of Linear Panel Models

The panel regression models in Chapter 21 restricted the scalar dependent variable yit

to depend on just the contemporaneous value of regressors xi t , even though potentially
all of xi1, . . . , xiT could be regressors under the Chapter 21 assumption of strong ex-
ogeneity. This introduces the possibility of more efficient estimation using excluded
regressors from other periods as instruments in the current period.

Furthermore, regressors in other periods may be valid instruments for current-
period regressors that are either endogenous or lags of the dependent variable. So in-
struments are readily available to permit consistent IV estimation in situations where
failure of the strong exogeneity assumption leads to inconsistency of the Chapter 21
estimators.

This section provides a general presentation of panel GMM estimation, a very use-
ful framework for panel IV estimation that is used extensively throughout Sections
22.2–22.5. Then we introduce the use of exogenous variables (regressors or instru-
ments) in periods other than the current period as an instrument. Once this ground-
work is laid it is a relatively minor adaptation to incorporate fixed or random effects,
typically included in panel models. This is deferred to subsequent sections.

22.2.1. Panel GMM

Consider the linear panel model

yit = x′
i tβ + uit , (22.1)

where the regressors xi t may have both time-varying and time-invariant components
and may include an intercept. Here there is no individual-specific effect αi , an as-
sumption relaxed from Section 22.3 on, and xi t is assumed to include only current-
period variables, an assumption relaxed in Section 22.5. Observations are assumed to
be independent over i and a short panel with T fixed and N → ∞ is assumed.

Begin by stacking all T observations for the i th individual,

yi = Xiβ + ui , (22.2)

where yi and ui are T × 1 vectors and Xi is a T × K matrix with t th row x′
i t , so

yi =

 yi1
...

yiT

 ; Xi =

 x′
i1
...

x′
iT

 ; ui =

 ui1
...

uiT

 .
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The model (22.2) defines a linear system of equations, so the results of Section 6.9.5
for systems IV estimation with data independent over i are directly applicable.

Assume the existence of a T × r matrix of instruments Zi , where r ≥ K is the
number of instruments, that satisfy the r moment conditions

E[Z′
i ui ] = 0. (22.3)

The GMM estimator based on these moment conditions minimizes the associated
quadratic form

QN (β) =
[

N∑
i=1

Z′
i ui

]′
WN

[
N∑

i=1

Z′
i ui

]
,

where WN denotes an r × r weighting matrix. Given ui = yi − Xiβ, some algebra
yields the panel GMM estimator

β̂PGMM =
[(

N∑
i=1

X′
i Zi

)
WN

(
N∑

i=1

Z′
i Xi

)]−1 ( N∑
i=1

X′
i Zi

)
WN

(
N∑

i=1

Z′
i yi

)
.

The essential condition for consistency of this estimator is assumption (22.3).
In many applications Zi is composed of current and lagged values of exogenous

regressors. For example, suppose all regressors are contemporaneously exogenous.
Then E[xi t uit ] = 0 implies (22.3) with Zi = [x′

i1. . . x
′
iT ]. In this case the model is

just identified and, since Zi = Xi , β̂PGMM simplifies to the pooled OLS estimator of
Chapter 21. If it is additionally assumed that E[xi t−1uit ] = 0, then xi t−1 is available as
additional instruments for the i t th observation, the model is over-identified, and more
efficient estimation is possible using the PGMM estimator.

The use of various exogeneity assumptions to form the instrument matrix Zi is
detailed in Section 22.2.4. The analysis requires adaptation in panel data models with
individual-specific effects αi . This is illustrated in an empirical application in Sec-
tion 22.3 and is dealt with explicitly in Sections 22.4 and 22.5.

22.2.2. Panel-Robust Statistical Inference

To express the distribution of the panel GMM estimator it is convenient to use more
compact notation. Rewrite

β̂PGMM = [X′ZWN Z′X]−1X′ZWN Z′y, (22.4)

where X′ = [X′
1 · · · X′

N ], Z′ = [Z′
1 · · · Z′

N ], and y′ = [y′
1 · · · y′

N ]. Then β̂PGMM is
asymptotically normal with estimated asymptotic variance matrix

V̂[β̂PGMM] = [X′ZWN Z′X]−1X′ZWN (N Ŝ)W′
N Z′X[X′ZWN Z′X]−1, (22.5)

see Equation (6.97), where Ŝ is a consistent estimate of the r × r matrix

S = plim
1

N

N∑
i=1

Z′
i ui u′

i Zi , (22.6)
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and independence over i has been assumed. The essential assumption for this result is

that N−1/2Z′u = N−1/2∑
i Z′

i ui
d→ N [0,S]. A White-type robust estimate of S is

Ŝ = 1

N

N∑
i=1

Z′
i ûi û′

i Zi , (22.7)

where the T × 1 estimated residual ûi = yi − Xi β̂.
The estimate (22.5) yields panel-robust standard errors allowing for both het-

eroskedasticity and correlation over time. Alternatively, the panel bootstrap could be
used. For further discussion see Section 21.2.3 where the same issues apply.

22.2.3. One-Step and Two-Step Panel GMM

Different full-rank weighting matrices WN in (22.4) lead to different systems GMM
estimators, except in the just-identified case of r = K when the PGMM estimator
simplifies to the IV estimator [Z′X]−1Z′y for any WN . The discussion mirrors that in
Section 6.4.2. The two leading choices of WN are given here.

One-Step GMM

The one-step GMM or two-stage least-squares estimator uses weighting matrix
WN = [

∑
i Z′

i Zi ]−1 = [Z′Z]−1, leading to

β̂2SLS = [X′Z(Z′Z)−1Z′X]−1X′Z(Z′Z)−1Z′y. (22.8)

The motivation for this estimator is that it can be shown to be the optimal PGMM
estimator based on (22.3) if ui |Zi is iid [0, σ 2IT ].

This estimator is called one-step GMM because given the data it can be directly
calculated using Equation (22.8). It is called 2SLS as it can instead be obtained in
two stages by (1) OLS of Xi on Zi , yielding prediction X̂i , and (2) OLS of yi on X̂i .
An estimate of the variance matrix of β̂2SLS that is both panel and heteroskedasticity
robust is that given in (22.5) with WN = [Z′Z]−1.

Two-Step GMM

The most efficient GMM estimator based on the unconditional moment condition
(22.3) uses weighting matrix WN = Ŝ−1, where Ŝ is consistent for S defined in (22.6);
see Section 6.4.2 for the general result. Using Ŝ in (22.7) yields the two-step GMM
estimator

β̂2SGMM = [X′ZŜ−1Z′X]−1X′ZŜ−1Z′y. (22.9)

Then (22.5) simplifies and V̂[β̂2SGMM] = [X′Z(N Ŝ)−1Z′X]−1.
This is called two-step GMM since a first-step consistent estimator of β such as

β̂2SLS is needed to form the residuals ûi used to compute Ŝ.
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Efficiency Gains

In this chapter the focus is on situations where Z cannot contain all of X, because
of endogeneity of some components of X. Then panel GMM provides consistent esti-
mates when OLS does not. Two-step GMM provides the most efficient estimator based
on the moment condition E[Z′

i ui ] = 0.
Even if regressors are strongly exogenous, two-step GMM has the attraction of be-

ing more efficient than pooled OLS. To see this, suppose that X is strongly exogenous.
Setting Z = X, the two-step GMM estimator simplifies to [X′X]−1X′y and there is no
benefit to panel GMM. However, if instead Z equals X as well as some additional
variables, such as powers of the regressors or regressor values in periods other than
the current period, then the two-step GMM method is at least as efficient as OLS, with
equality applying if the errors uit are iid.

Even more efficient estimators than β̂2SGMM are possible, by widening the definition
of Zi , by using the optimal moment condition based on E[ui |Zi ] = 0, which need not
be E[Z′

i ui ] = 0 (see Section 22.4.3), and by using additional moment restrictions. We
shy away from calling two-step GGM the optimum GMM estimator, as in Section
6.3, because it is only optimal given (22.3).

Tests of Overidentifying Restrictions

If there are r instruments and only K parameters to estimate, then panel GMM esti-
mations leaves (r − K ) overidentifying restrictions. From Section 6.3.8 this permits a
test of overidentifying restrictions

OIR =
[

N∑
i=1

û′
i Zi

]
(N Ŝ)−1

[
N∑

i=1

Z′
i ûi

]
, (22.10)

where ûi = yi − Z′
i β̂2SGMM, Ŝ is given in (22.7), and independence over i is assumed

but heteroskedasticity and correlation over t for given i is permitted. Note that β̂2SGMM

must be used, not β̂2SLS.

This test statistic is distributed as χ2(r − K ) under the null hypothesis that the
overidentifying restrictions are valid. If OIR is large then the overidentifying moment
conditions are rejected and we conclude that some of the instruments in Zi are corre-
lated with the error and hence are endogenous.

22.2.4. Selection of Instruments

The discussion so far has assumed the existence of a T × r matrix of instruments Zi

that satisfies (22.3). Now we provide a lengthy discussion of how to obtain instruments
in a panel setting.

In cross-section models, endogenous variables are instrumented by variables that
do not appear as regressors in the equation of interest. Such variables can also be used
as instruments in the panel case. With panel models, however, the additional periods of
data provide additional moment conditions and additional instruments that can easily
lead to identification or overidentification of β.
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The number of moment conditions and instruments available expands as pro-
gressively stronger assumptions are made about the correlation between uit and zis ,
s, t = 1, . . . , T . We consider the effect of progressively stronger exogeneity assump-
tions, see Section 2.3, following M.-J. Lee (2002). The emphasis is on using exoge-
nous components of the regressors as instruments more than once, but the technique
also applies to more traditional instruments that are variables excluded from the
regression (22.1).

Summation Assumption

An obvious procedure is to define Zi similarly to Xi . Then

Zi =


z′

i1

z′
i2
...

z′
iT

 , ui =


ui1

ui2
...

uiT

 , (22.11)

where zi t is r × 1 and E
[
Z′

i ui
] = 0 if the summation assumption

E

[
T∑

t=1

zi t uit

]
= 0 (22.12)

is satisfied.
This assumption corresponds to that used in pooled OLS regression of yit on xi t ,

since if zi t = xi t in (22.12) then the PGMM estimator defined in (22.4) simplifies to
(
∑

i Z′
i Xi )−1∑

i Z′
i yi .

For this estimator to be feasible requires at least that the order condition be met, so
that r ≥ K . Under the summation assumption it is just as difficult to find instruments
with panel data as it is with cross-section data.

Contemporaneous Exogeneity Assumption

A stronger and more natural assumption is the contemporaneous exogeneity assump-
tion that

E [zi t uit ] = 0, t = 1, . . . , T, (22.13)

so that the instruments are assumed to be contemporaneously uncorrelated with the
error term.

This presents many more moment conditions, as in principle there as many as T r
moment conditions, where r = dim[zi t ]. To use these we define

Zi =


z′

i1 0 · · · 0

0 z′
i2

...
...

. . . 0
0 · · · 0 z′

iT

 , ui =


ui1

ui2
...

uiT

 , (22.14)
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where Zi is now T r × T . The moment condition (22.3) holds, since E[Z′
i ui ] = 0 by

(22.13), but now (22.3) defines Tr moment conditions that can be used to estimate the
K components of β.

This remarkable result of an apparent surfeit of moment restrictions comes about
because of the implicit assumption that β is time-invariant, so that each additional time
period offers additional moment restrictions.

The number of additional moment restrictions is reduced to the extent that β is time
varying. In particular, the intercept is often permitted to vary over time by inclusion in
xi t of (T − 1) time dummies ds,i t = 1 if t = s and 0 otherwise, for s = 2, . . . , T . Then
the condition E[ds,i t uit ] = 0 cannot be used as it duplicates the condition E[1 × uit ] =
0 implied by inclusion of an intercept in xi t . In the preceding example, if x1i t includes
time dummies then there are only T K − (T − 1) moment conditions available. Any
time-invariant regressors can be used only once as an instrument.

Weak Exogeneity Assumption

Moment condition (22.13) considers only contemporaneous correlation between in-
struments and regressors. A stronger assumption is the weak exogeneity assumption
or predetermined instruments assumption that additionally lagged values of the in-
struments are uncorrelated with the current-period error, so that

E [zisuit ] = 0, s ≤ t, t = 1, . . . , T . (22.15)

Condition (22.15) permits zi1, . . . , zi t to be instruments for uit , though future values
of zis cannot be so used. The instrument Zi is structured similarly to (22.14), except
that z′

i t is replaced by the expanded instrument vector [z′
i1, . . . , z

′
i t ] that increases in

size as t increases.
Conditions of this sort arise in rational expectations models and in models of in-

tertemporal decision making under uncertainty that lead to Euler conditions of the
form E[uit |Ii t ] = 0, where Ii t is the information set available at time t and an exam-
ple of uit is given in Section 6.2.7. If the information set includes current and past
values of zi t then E[uit |zis] = 0, s ≤ t , leading to (22.15).

More generally these conditions become relevant in dynamic models with lagged
dependent variables as regressors (see Section 22.5). In some instances contempora-
neous correlation is not ruled out, so that the inequality s ≤ t in (22.15) is replaced by
s < t .

Note that time-invariant instruments can only be used once. Thus if zi t = [z1i z2i t ],
then z1i and z2i1, . . . , z2i t are available as instruments.

Strong Exogeneity Assumption

A stronger assumption than weak exogeneity is the strong exogeneity assumption
that future values of instruments are also uncorrelated with the current period error, so
that

E [zisuit ] = 0, s, t = 1, . . . , T . (22.16)

Then current, past, and future values of zis are valid instruments for uit .
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This assumption was maintained for the regressors xi t throughout Chapter 21, since
E[uit |xi1, . . . , xiT ] = 0 implies E[uit |xis] = 0, 1 ≤ s ≤ T , and hence E[xisuit ] = 0. It
may be appropriate for static models, but for dynamic models at most weak exogeneity
of instruments can be assumed.

Condition (22.16) permits zi1, . . . , ziT to be instruments for uit . The instrument Zi

is structured similarly to (22.14), except that z′
i t in (22.14) is replaced by the expanded

instrument vector [z′
i1, . . . , z

′
iT ].

As for the weak exogeneity case, time-invariant instruments can be used only once.
If zi t = [z1i z2i t ] then T (rTI + T rTV) moment conditions are available, where rTI and
rTV denote the numbers of time-invariant and time-varying instruments.

The extraordinary number of moment conditions, as many as rT 2, is due to exclu-
sion restrictions implicitly made in the panel model (22.1). For simplicity suppose all
components of xi t are strongly exogenous and we wish to use these as instruments
whenever possible. In general yit could depend on the regressors in all time periods,
xi1, . . . , xiT . In contrast, the panel model yit = x′

i tβ + uit with E[xi t uit ] = 0 excludes
all but xi t from the model for yit . The strong exogeneity assumption that E[xisuit ] = 0
then permits the excluded regressors xis , s �= t , to be used as instruments in addition
to xi t .

Redundant Instruments

If zi t is varying over both i and t then its lags and leads can also be used as an in-
strument, depending on the exogeneity assumptions made. For the i t th observation
the available instruments are zi t under contemporaneous exogeneity, zi1, . . . , zi t under
weak exogeneity, and zi1, . . . , ziT under strong exogeneity. This makes identification
possible using only exogenous regressors as instruments. Only under the summation
assumption are the difficulties of finding valid instruments comparable to those in the
cross-section case.

In practice, however, there are not as many available instruments as the preced-
ing discussion suggests. Time-invariant instruments zi t = zi can be used only once,
since then zi t = zis for all s and t . For example, this is the case for an intercept or
for a race or gender indicator. If the instrument is a regressor and lagged values of
the regressor appear in the model then the number of available instruments is reduced.
Time-varying instruments that vary in a systematic way may also not be available in all
periods. Thus instruments that are the product of time dummies and a time-invariant
regressor should be included only once if a complete set of time dummies is used.
Examples include time dummies and time dummies interacted with race or gender in-
dicators. Instruments that are a linear function of time should be used only once. For
example, if year is an instrument then lagged years should not also be used. This com-
ment does not apply to age, which increases linearly for each individual but varies
across individuals.

It is clearly easy to inadvertently use redundant instruments. The panel GMM
estimators are still feasible and the usual results are valid if there are still sufficient
nonredundant instruments. For example, if r instruments are used and two of these
are redundant the model is still estimable provided r ≥ K + 2 as Z′X is still of full
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rank K . Singularity problems in GMM estimation may arise if too many redundant
instruments are used, leading to an underidentified model. Even if the model remains
overidentified, the degrees of freedom in a test of overidentifying restrictions will be
reduced if some instruments are redundant.

Weak Instruments

Weak instruments, not to be confused with weak exogeneity, were introduced in Sec-
tion 4.9. There is no well-established formal test of weak instruments. Standard R2

and F-statistic diagnostics are given in Section 4.9. It is the incremental explanatory
power of the instruments that matters. So a partial R2 that controls for exogenous re-
gressors that are also in the instrument set should be used. Moreover, whereas the en-
dogenous regressor is regressed on all instruments, the F-statistic should be one of the
overall significance of the subset of the instruments that are not exogenous regressors.

Since the errors here are not iid, the F-statistic should be based on panel robust stan-
dard errors. It can be calculated as W/r∗, where W is the Wald chi-square test statistic
for exclusion restrictions given in Section 7.2.7 and r∗ is the number of instruments
that are not regressors in the original model.

22.2.5. Computation of Panel GMM Estimators

The moment conditions discussed in the preceding section provide the instrument ma-
trix Zi . Then, given Zi , one can estimate β by β̂2SLS defined in (22.8) or by β̂2SGMM

defined in (22.9).
The 2SLS estimator is easier to implement than the two-step GMM. Consider esti-

mation under the summation assumption, in which case Zi is defined in (22.11). Then
β̂2SLS is given in (22.8), where Z′X =∑i Z′

i Xi =∑i

∑
t zi t x′

i t and similar algebra ap-
plies for the other cross-products. This yields the standard textbook formula for 2SLS,
except that summation is over both i and t . Thus β̂2SLS can be obtained by 2SLS
regression of yit on xi t using a cross-section 2SLS package. Panel-robust standard
errors can then be obtained using a cluster-robust option that permits clustering on i ,
or by a panel bootstrap that resamples over i rather than both i and t . The approaches
are similar to those for pooled LS given in Section 21.2.3, which provides additional
detail.

For assumptions other than the summation assumption one can still use a cross-
section 2SLS package by appropriately defining the instrument matrix Zi , which then
has a more complicated form. For the contemporaneous exogeneity assumption, Zi is
defined in (22.14). This is in the same form as (22.11) if the t th row in (22.11), z′

i t , is
replaced by

[0′
r1

· · · 0′
rt−1

z′
i t 0′

rt+1
· · · 0′

rT
], (22.17)

where rs = dim[zis] and 0rs denotes an rs × 1 vector of zeros. Similarly, for the weak
exogeneity assumption, Zi is as in (22.11) with the t th row in (22.11), z′

i t , replaced by

[0′
r1

· · · 0′
rt−1

(zt
i t )

′ 0′
rt+1

· · · 0′
rT

], (22.18)
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where (zt
i t )

′ = [z′
i1. . . z

′
i t ] and rs = dim[zs

is], and for the strong exogeneity assumption,
Zi is as in (22.11) with the t th row in (22.11), z′

i t , replaced by

[0′
r1

· · · 0′
rt−1

(zT
it )

′ 0′
rt+1

· · · 0′
rT

], (22.19)

where (zT
it )

′ = [z′
i1. . . z

′
iT ] and rs = dim[zT

is]. A practical example of generating the
instruments is given in Section 22.3.

In practice there can be too many moment conditions. For example, with 10 pe-
riods of data and 5 time-varying regressors the strong exogeneity assumption yields
as many as 5 × 102 = 500 moment conditions (and the preceding row vector has 500
entries) with only 5 parameters to estimate. The marginal value of an instrument may
be very slight, because of increasing multicollinearity among the instruments, leading
to a situation of weak instruments. Good practice is to treat time-varying instruments
that vary little over time as time-invariant. For example, use only the data for the first
period as an instrument. Even instruments that vary considerably over time might be
used for only a few periods rather than in all possible periods.

Computation of the more efficient β̂2SGMM is not possible using only a 2SLS pack-
age. Instead, either more specialized software is needed or the estimator needs to be
programmed using a matrix language algorithm.

Table 22.1 provides a summary of the four exogeneity assumptions and the resulting
valid instruments.

22.2.6. Variations on GMM Estimation

Although θ̂2SGMM is more efficient than θ̂2SLS, several studies find it to have greater
finite-sample bias than θ̂2SLS, especially when r is much greater than K . For explana-
tion see the discussion of finite-sample bias of optimal GMM in Section 6.3.5.

One approach is to be judicious in the use of instruments, though then potential
efficiency gains due to additional instruments are lost.

Several authors have proposed alternative GMM estimators that may be less likely
to be biased in finite samples. Many of these are presented in Section 6.4.4 and are
used in the panel study by Ziliak (1997).

Table 22.1. Panel Exogeneity Assumptions and Resulting Instruments

Exogeneity Assumption Moment Condition Instrument Vectora

Summation E
[∑

t zi t uit
] = 0 [zi t ]

Contemporaneous E [zi t uit ] = 0, all t [0′
r1

· · · 0′
rt−1

z′
i t 0′

rt+1
· · · 0′

rT
]

Weak E [zisuit ] = 0, s ≤ t, all t [0′
r1

· · · 0′
rt−1

(zt
i t )

′ 0′
rt+1

· · · 0′
rT

]
Strong E [zisuit ] = 0, all s and t [0′

r1
· · · 0′

rt−1
(zT

it )
′ 0′

rt+1
· · · 0′

rT
]

a The instrument vector is the t th row of Zi in (22.11); (zt
i t )

′ = [z′
i1. . . z

′
i t ], (zT

it )
′ = [z′

i1. . . z
′
iT ]; and rs = dim[z′

is ]
or dim[zs

is ] or dim[zT
is ].
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22.2.7. Chamberlain’s Optimal Distance Estimator

Consider estimation of the individual-specific effects model

yit = αi + x′
i tβ + uit , (22.20)

when regressors are strongly exogenous as in Chapter 21. In Sections 21.2.3 and 21.6.1
methods to obtain panel-robust standard errors for the within estimator were presented.

If panel-robust inference is warranted, because εi t are not iid, then the estimators
detailed in Chapter 21 are actually inefficient. More efficient estimation is possible us-
ing optimal GMM applied to an overidentified model. Here xis , s �= t , are available as
additional instruments and GMM can be applied to a transformed model if elimination
of αi is necessary (see Section 22.4.2). The efficiency improvement is analogous to
that for cross-section data with heteroskedasticity (see Section 6.3.5).

Chamberlain (1982, 1984) proposed the following more efficient estimator. The
model (22.20) can be stacked to yield

yi = eαi + (IT ⊗ β′)xi + ui , (22.21)

where e = (1, 1, . . . , 1)′ is a T × 1 vector of ones, xi = [x′
i1. . . x

′
iT ] is a T K × 1 vec-

tor, and yi and ui are T × 1 vectors. Equation (22.21) makes clear the restrictions
that are implicitly made in static models that specify that yit depends only on con-
temporaneous xi t . Chamberlain used linear projection arguments that rely on weaker
assumptions than those of conditional expectation. Let

E∗[αi |xi ] = µ+
∑

t
λ′

t xi t = µ + λ′xi ,

where E∗ denotes linear projection. Given E[ui |αi , xi ] = 0, (22.21) implies

E∗[yi |xi ] = eµ+(IT ⊗ β′+ eλ′)xi .

This imposes restrictions on the unrestricted linear projection E∗[yi |xi ] = π0 + π′xi ,
specifically that π − IT ⊗ β′ + eλ′ = 0.

Rather than use GMM, Chamberlain proposed the following two-step procedure.
First, obtain π̂ by multivariate OLS regression of yi on intercepts and xi . Second,
obtain the optimal MD estimator (see Section 6.7) that minimizes

QN (β,λ) = (Vec[π̂−IT ⊗ β′ − eλ′])′WN (Vec[π̂−IT ⊗ β′ − eλ′]),

where the optimal weighting matrix WN = (V̂[Vec[π̂]])−1. This yields estimator β̂
that is more efficient than OLS estimation of (22.20) if uit is heteroskedastic.

Minimun distance estimation has been supplanted by GMM; see Arellano (2003,
pp. 22–23) and Crépon and Mairesse (1995) for comparison of Chamberlain’s MD
estimator with GMM. However, Chamberlain’s approach of obtaining moment restric-
tions via exogeneity assumptions and assumptions on the individual effects has had
a big impact on the panel literature. His MD estimator is also used for estimation of
covariance structures (see Section 22.5.4).
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22.3. Panel GMM Example: Hours and Wages

We return to the hours–wages example of Section 21.3. Unlike as in Chapter 21 regres-
sors are now permitted to be endogenous, and unlike as in Section 22.2 an individual-
specific fixed effect is included. Estimation is by the IU methods of Section 22.2, after
first-differencing to eliminate the fixed effects.

The regression model is

lnhrsi t = αi + β1lnwgi t + β2kidsi t + β3agei t + β4agesqi t + β5disabi t + uit ,

where interest lies in the intertemporal substitution wage elasticity of labor supply, β1,
the coefficient of lnwg, and the additional regressors are number of children, age, age
squared, and an indicator for disability.

MaCurdy (1981) derived this relationship using a life-cycle labor supply model un-
der uncertainty. The model is then a “λ-constant” model where αi here equals λi , a
multiple of the marginal utility of initial wealth that is time-invariant but will differ
across individuals. Since λi depends on variables and constraints it needs to be treated
as a fixed rather than random effect. The labor supply literature presents several meth-
ods for controlling for this fixed effect.

One method, discussed further in Section 22.4.2, is to first difference the regression
model, yielding

�lnhrsi t = β1�lnwgi t + β2�kidsi t + β3�agei t + β4�agesqi t + β5�disabi t +�uit .

(22.22)

Estimation by OLS is then consistent for β if all regressors are exogenous. Note that
this differencing induces serial correlation in the error even if uit are iid, so panel-
robust standard errors should be used.

Ziliak (1997) instead permitted lnwgi t to be contemporaneously correlated with
uit , because of measurement error in wage or because of kink points in the budget
constraint. Then the OLS estimator of (22.22) is inconsistent.

Ziliak proposed IV estimation using suitably lagged regressors as instruments. As-
sume that past wages are uncorrelated with the error, so that lnwg is weakly exogenous
aside from being contemporaneously correlated with the error. Then E[lnwgisuit ] = 0
for s ≤ t − 1 implies that for the differenced model error E[lnwgis�uit ] = 0 for
s ≤ t − 2, so lnwg lagged two or more periods may be used as an instrument in the
first-differences model. Note that this means that at least three periods of the original
data are needed to identify β.

Ziliak’s study focused on the properties of panel GMM estimators with endogenous
regressors, so he treated all the regressors in (22.22) as endogenous and used as in-
struments lags of one or more periods in the levels of the other four regressors. For
simplicity an intercept and time dummies, individual-invariant instruments that can be
only used once, were not included. Results here change little with inclusion of an in-
tercept as the dependent variable is in differenced form. Since lnwgi,t−2 is always used
as an instrument the first two years are dropped and only the eight years 1981–1988
are used to estimate (22.22).
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Table 22.2. Hours and Wages: GMM-IV Linear Panel Model Estimatorsa

Base Case Stacked

OLS 2SLS 2SGMM 2SLS 2SGMM

β1 0.112 0.209 0.547 0.543 0.330
Panel se (.096) (.374) ( .327 ) (.209) (.110)
Het se [.079] [.423] [ – ] [.226] [ – ]
Default se {.023} {.389} { – } {.169} { – }
RMSE .283 .296 .307 .307 .298
Instruments 5 9 9 72 72
OIR Test – – 5.45 – 69.51
dof – – 4 – 67
p-value – – .244 – .393
N 4256 4256 4256 4256 4256

a Differenced regression uses annual data from 1981–1988 for 532 men. Reported are β1, the coefficient of �
lnwg, and three estimated standard errors: panel robust in parentheses, heteroskedastic robust in square brackets,
and usual default estimates that assume iid errors in curly braces. All regressions additionally include �kids,
�age, �agesq, and �disab as regressors but their coefficient estimates are not reported. The instruments are
lnwg lagged twice and kids, age, agesq, and disab lagged both once and twice. For the base case there are 9
instruments and for stacked instruments there are 8 × 9 = 72 instruments. RMSE is the root mean square error
of the residual. OIR is the over identifying restictions test statistic, dof is the degrees of freedom, and p-value
is the p-value for this test.

Table 22.2 presents a small subset of the many results given in tables 1 and 2 of
Ziliak (1997). For completeness various standard error estimates are given but the
panel-robust standard errors should be used.

OLS: The column OLS reports OLS estimation of (22.22). The labor supply elasticity
of 0.112 differs a little from the estimate of 0.109 in the First-Diff column of Table
21.2 as here the four demographic variables are also included as regressors and an
additional year of data has been dropped. Because first differences are modeled the
model fit is poor, and the R2 with additional inclusion of an intercept is 0.006.

2SLS with Base-Case Instruments: The base-case instruments use Zi defined
in (22.11), where zi t has nine entries: lnwgi,t−2, kidsi,t−1, agei,t−1, agesqi,t−1,
disabi,t−1, kidsi,t−2, agei,t−2, agesqi,t−2, and disabi,t−2. The model is then overi-
dentified with nine instruments and five parameters to estimate. The 2SLS estimate
of β1 is much less precise than the OLS estimate, with standard error increasing
fourfold from 0.096 to 0.374. For the other regressors, not reported, the efficiency
loss is much less.

2SLS with Stacked Instruments: The base case is GMM based on the nine moment
conditions E[

∑10
t=3 zi t uit ] = 0. The stacked instruments instead use 72 (= 8× 9)

moment conditions E[zi t uit ] = 0, t = 3, . . . , 10, where zi t is as in the base case.
Then use Zi defined in (22.14), where here Zi is 8 years by 72 instruments. The
t th row of Zi is given in (22.17), where zi t here is the 9 × 1 column vector of in-
struments for the base case. To construct the instruments first generate 72 variables
zt j equal to zero for all i and t , where t denotes the year and j denotes the j th
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instrument. Then replace zs jit by zit, j if t = s but leave zs jit = 0 if t �= s. For ex-
ample, if t = 3 (the third year) set z35 equal to disabi,2 if the fifth instrument is
disabi,t−1 and keep zt5 equal to zero for t �= 3. The 2SLS estimates can then be
obtained by standard 2SLS regression of �lnhrsi t on the five regressors in (22.22)
with these 72 constructed variables as instruments. Using the expanded instruments
we have that the standard error of the 2SLS estimate falls from 0.374 to 0.209 and
is only twice that of the original OLS estimate.

Two-step GMM: The two-step GMM estimates in Table 22.2 differ from those in
table 1 of Ziliak (1997) as a panel-robust estimate of Ŝ defined in (22.7) is used here
to form the weighting matrix, whereas Ziliak used the heteroskedastic-robust Ŝ =
N−1∑

i û2
i t zi t z′

i t . As expected, the two-step GMM estimator is more efficient than
2SLS, with standard error falling from 0.374 to 0.327 with base-case instruments
and from 0.209 to 0.110 with stacked instruments. This last standard error is not
much larger than that for OLS.

Test of Overidentifying Restrictions: The test statistic for overidentifying restrictions
is given in (22.10). From Table 22.2 for both base case and stacked instruments the
test statistic has p-value much higher than 0.05, so the restrictions are not rejected
and we conclude that the overidentifying instruments are valid instruments.

Test of Weak Instruments: Diagnostics for weak instruments were presented in Sec-
tion 22.2.4 and Section 5.9. Since none of the regressors appear in the instrument
set the overall F-statistic from the first-stage regression is used rather than a sub-
set of regressors F-statistic. For the base-case instruments, regression of �lnwg on
the nine instruments and a constant term yields panel-robust F = 2.80, and similar
regression for the 72 stacked instruments yields F = 1.90, indicating finite-sample
bias is very likely. Similar regressions for �kids, �age, �agesq, and �disab, re-
gressors in (22.22) that are also being treated here as endogenous, yield F > 8.5
in all cases. Shea’s partial R2 (see Section 4.9.1) is 0.0036 for �lnwg and exceeds
0.075 for the other four endogenous regressors. The weak instruments problem is
therefore due to the problems of finding a good instrument for �lnwg.

Efficiency Gains: In this example panel GMM estimators were used to control for
endogeneity. However, even if all the regressors are assumed to be strongly ex-
ogenous, panel GMM is still attractive as it is more efficient than OLS unless the
errors uit are iid; see the discussion after (22.20). As an example, the panel two-step
GMM estimator with instrument set the base-case instruments plus the five original
regressors in (22.22) yields β̂1 = 0.016 with a standard error of 0.076, lower than
the OLS standard error of 0.096.

22.4. Random and Fixed Effects Panel GMM

We now augment the panel data model (22.1) by including a time-invariant additive
individual-specific effect αi , so

yit = αi + x′
i tβ + εi t . (22.23)
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Then the error term in (22.1) is now modeled as uit = αi + εi t . For simplicity the same
notation is used for both fixed and random effects models, so in the case of random
effects model the common intercept µ in Section 21.7 is subsumed into x′

i tβ.
Some components of the regressors xi t are assumed to be endogenous, with

E[xi t (αi + εi t )] �= 0, so that the OLS estimator of β is inconsistent. In this section
we propose IV estimators that yield consistent estimates of β in a variety of settings,
including fixed effects, random effects, a hybrid of the two, and systems of equations.

22.4.1. Random Effects or Fixed Effects?

Recall from Chapter 21 that the individual-specific effect αi can be viewed as random
in both the FE and RE models. This random variable αi was independent of xi t in the
RE model but correlated with xi t in the FE model. For the RE model all coefficients
are estimable, whereas in the FE model coefficients of time-invariant regressors are
not estimable as consistent estimation requires elimination of αi and the time-invariant
regressors by differencing.

In this chapter with endogenous regressors we view a model to be a random effects
model if instruments Zi exist that satisfy E[Z′

i (αi + εi t )] = 0. Then the methods of
Section 22.2 will permit consistent estimation of all regression parameters. If instead
it is possible only to find instruments such that E[Z′

iεi t ] = 0, but E[Z′
iαi ] �= 0, we view

the model to be a fixed effects model. Then αi must be eliminated by differencing, in
which case only the coefficients of time-varying regressors will be identified.

22.4.2. IV for Fixed Effects Models

The various differencing operations given in Section 21.2 applied to (22.23) lead to a
transformed model of the form

ỹi t = x̃′
i tβ + ε̃i t ,

where the tilda denotes a differencing transformation that eliminates αi , and leading
examples are given in the following. Upon stacking we get

ỹi = X̃iβ + ε̃i . (22.24)

If E[xi tεi t ] �= 0 then E[̃xi t ε̃i t ] �= 0 and LS estimation of (22.24) leads to inconsistent
estimates.

We now consider IV estimation, assuming existence of instruments Zi that satisfy
E[Z′

i ε̃i ] = 0. Then panel GMM estimation (IV, 2SLS, or 2SGMM) of (22.24) with in-
struments Zi yields consistent estimates of the coefficients of time-varying regressors.
Panel-robust standard errors can be computed as discussed in Section 22.2.2.

One way that instruments may be obtained is through logic similar to that in the
cross-section case. A valid instrument is a variable correlated with the regressor but
not the error, yet is also one that can be excluded from the right-hand side of (22.23).
Another way to obtain instruments, emphasized here, is through use of exogenous
regressors in periods other than the current period, using the exogeneity assumptions
detailed in Section 22.2.4.
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The primitive assumptions for instrument availability are those on correlation be-
tween zis and εi t . However, here it is correlation between zis and the differenced er-
ror ε̃i t that matters. In general, differencing, necessary to eliminate the fixed effect,
reduces the number of available instruments. Some differencing operations lead to
greater loss than others and can even lead to inconsistent IV estimation. We consider
three differencing operations with focus on weakly exogenous instruments. This
can be a more realistic assumption in practice, especially for application to dynamic
models.

IV for the First-Differences Model

The first-differences IV estimator is the IV or 2SLS or panel GMM estimator of the
first-differences model

yit − yi,t−1 = (xi t − xi,t−1)′β + (εi t − εi,t−1), t = 2, . . . , T . (22.25)

The weak exogeneity assumption that E[zisεi t ] = 0 for s ≤ t implies E[zis(εi t −
εi,t−1)] = 0 for s ≤ t − 1. First differencing therefore shortens the time series on the
available instrument set by one period, so that only zi,t−1, zi,t−2, . . . are available as
instruments. Assuming weak exogeneity, these yield a consistent IV estimator of β.

The use of lagged regressors as instruments was first proposed by Anderson and
Hsiao (1981) in the context of dynamic panel models and was expanded upon by Holtz-
Eakin, Newey, and Rosen (1988) and Arellano and Bond (1991) (see Section 22.5.3).
Section 22.3 provided a detailed empirical example of this approach.

Note that one can instead use transformed instruments z̃is = �zis = zis − zi,s−1,
s ≤ t − 1. However, there is no gain, since using �zi,t−1, . . . , �zi2, zi1 is equivalent
to using zi,t−1, . . . , zi2, zi1 as instruments, and only zi1 and not �zi1 can be computed
if data begin in period 1.

IV for the Within or Mean-Differenced Model

The within IV estimator is the IV or 2SLS or panel GMM estimator of the within
model or mean-differenced model

yit − ȳi = (xi t − x̄i )
′β + (εi t − ε̄i ). (22.26)

Then E[zisεi t ] = 0 for s ≤ t no longer implies E[zis(εi t − ε̄i )] = 0 even for s much
less than t . To see this suppose that E[zisεi t ] �= 0 for s > t . Then E[zis ε̄i ] �= 0 for all s
since ε̄i = T −1∑ εi t includes past εi t , which are correlated with zis .

Thus IV estimation of the within model leads to inconsistent estimation of β if the
instruments are weakly exogenous or if they satisfy the even weaker assumptions of
contemporaneous exogeneity or the summation condition. The within transformation
can only be used if the instruments are actually strongly exogenous.
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IV for the Forward Orthogonal Deviations Model

An alternative method to first differences, one that also requires that instruments be
only weakly exogenous rather than strongly exogenous, was proposed by Arellano
and Bover (1995). We also present this method, even though first differences are used
much more.

For the stacked model (22.2) for the i th observation, the first-difference transfor-
mation yields model Dyi = DXiβ + Dεi , where D is a (T − 1) × T matrix with en-
try Dts , t = 1, . . . , T − 1, s = 1, . . . , T , equal to minus one if s = t , equal to one if
s = t + 1, and equal to zero otherwise. If εi t are iid the transformed error is MA(1)
and V[Dui ] = σ 2DD′. The GLS estimator then premultiplies Dεi by (DD′)−1/2, or
premultiplies εi by (DD′)−1/2D. This yields a transformed model of the form (22.24)
where the tilda denotes premultiplication by (DD′)−1/2D.

If the upper triangular Cholesky factorization is used to obtain (DD′)−1/2, then this
yields the forward orthogonal deviation model

ct (yit − ȳ F
it ) = ct (xi t − x̄F

it )
′β+ct (εi t − ε̄F

it ) (22.27)

(see Arellano, 2003, p. 17), where c2
t = (T − t)/(T − t + 1) and the superscript F

denotes that only future values are used to form the average. For example, ȳ F
it = (T −

t)−1∑T
s=t+1 yis .

The transformation is called orthogonal deviations because the transformed errors
ct (εi t − ε̄F

i ) have unit variance and are uncorrelated. The adjective forward is added
as the transformed error depends only on current and future values of the original
error. An OLS estimation of (22.27) yields the within estimator of Chapter 21, so the
orthogonal deviations transformation is optimal if indeed εi t are iid.

The forward orthogonal deviations IV estimator is the IV or 2SLS or panel
GMM estimator of the model (22.27). For weakly exogenous instruments, E[zisεi t ] =
0 for s ≤ t implies E[zis(εi t − ε̄F

i )] = 0 for s ≤ t . Forward orthogonal deviations
therefore lead to no loss in the number of available instruments. The transformation is
usually not applied to the instruments as (zi t − z̄F

i ) involves future values of zi t that in
many applications are correlated with εi t .

22.4.3. IV for Random Effects Models

The model stacked for the i th observation is

yi = Xiβ + eαi+εi ,

where e is a T × 1 vector of ones. Consistent but inefficient estimates can be obtained
by directly applying the panel GMM estimators of Section 22.2 given instruments Zi ,
obtained through exclusion restrictions or through appropriate exogeneity restrictions,
such that E[Z′

i (eαi + εi )] = 0. Here we go further and consider more efficient esti-
mation that, as in Chapter 21, controls for error correlation over time given the error
components model uit = αi + εi t .
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IV Estimation of Transformed Model

Assume that the instruments Zi satisfy E[ui |Zi ] = 0 and V[ui |Zi ] = Ωi , where Ωi

has the same form as the standard RE model with diagonal entries σ 2
α + σ 2

ε and off-
diagonal entries σ 2

α . Note that this is a stronger assumption than E[Z′
i ui ] = 0 and will

therefore place restrictions on available instruments.
Given the conditional moment condition E[ui |Zi ] = 0, from Section 6.3.7 the opti-

mal unconditional moment condition is

E[Z′
iΩ

−1
i ui ] = E[(Ω−1/2

i Zi )
′(Ω−1/2

i ui )] = 0.

This leads to GMM estimation in the transformed system y∗
i = X∗

i β + u∗
i with trans-

formed instruments Z∗
i , where the asterisk denotes premultiplication by the T × T

matrix Ω−1/2
i or a consistent estimate Ω̂

−1/2
i .

From Section 21.7.1 premultiplication by Ω̂
−1/2
i leads to the model

yit − λ̂ȳi = (xi t − λ̂x̄i )
′β + {(1 − λ̂)αi + (εi t − λ̂ε̄i )}, (22.28)

where λ̂ is a consistent estimate of λ = 1 − σ ε/
√
σ 2
ε + Tσ 2

α . The random effects IV
estimator is the IV or 2SLS estimator of this model with transformed instruments
z̃i t = (zi t − λ̂z̄i ), or equivalently with instruments zi t − z̄i and z̄i .

This method requires a consistent estimate λ̂ of λ. For σ 2
ε we use σ̂ 2

ε =∑
i ε̃

2
i t/N (T − 1), where ε̃i t is the residual from within IV regression of yit − ȳi on

(xi t − x̄i ) with instruments (zi t − z̄i ) (see (22.26)). Also, (σ 2
ε + Tσ 2

α) can be estimated
by
∑

i ū2
i /N , where ūi is the residual from the between IV regression of ȳi on x̄i with

instruments z̄i . The resulting IV estimator of β is called the error components 2SLS
(EC2SLS) estimator by Baltagi (1981).

These results are dependent on specificaton of a particular functional form for Ωi .
The results in Section 22.2.2 permit inference that is robust to misspecification of
Ωi , using (22.5) where y, X, Z, and WN = [Z′Z]−1 are replaced by the transformed
variables in (22.28).

A more important restriction is that this method can only be used if the original
instruments are strongly exogenous. Here consistency requires that E[Z′

iΩ
−1
i ui ] =

0, a much stronger assumption than E[Z′
i ui ] = 0, which essentially requires that

E[ui |Zi ] = 0. For example, suppose E[zi tαi ] = 0 for all t whereas E[zisεi t ] = 0 for
s ≤ t but E[zi tεi t ] �= 0 for s > t . Then E[zi t ε̄i ] �= 0, leading to correlation of instru-
ments with the error term in (22.28).

22.4.4. IV for the Hausman–Taylor Hybrid Model

A leading example of endogeneity involves regressors correlated with the individual-
specific effect αi . This leads to inconsistency of the RE estimator of Chapter 21. An
obvious solution is to instead use the within (or fixed effects) estimator, which is con-
sistent. However, then the coefficients of time-invariant individual regressors cannot be
identified. This defeats the purpose of many panel studies – estimation of the effect of
time-invariant regressors, such as the effect of the level of schooling in a postschooling
earnings regression.
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Hausman and Taylor (1981) considered the following variant of (22.23):

yit = x′
1i tβ1 + x′

2i tβ2 + w′
1iγ1 + w′

2iγ2 + αi + εi t , (22.29)

where some regressors are assumed to be correlated with αi whereas others are not,
and w is introduced to denote time-invariant regressors. Specifically, x1i t and w1i are
uncorrelated with αi but x2i t and w2i are correlated with αi . All regressors are assumed
to be uncorrelated with εi t . In this model the αi can be viewed as a hybrid of random
and fixed effects.

Hausman and Taylor (1981) proposed making use of the time-varying exogenous
regressor x1i t in two ways: to estimate β1 and as an instrument for w2i , permit-
ting estimation of γ. Then γ is identified if the number of time-varying exogenous
regressors equals or exceeds the number of time-invariant endogenous regressors.
Amemiya and MaCurdy (1986) proposed a more efficient estimator that uses x1i t in
(T + 1) ways: to estimate β1 and as T instruments for w2i , permitting identification
if dim[w2i ] ≥ T dim[x1i t ]. This approach to obtaining instruments from exogenous re-
gressors in periods other than the current period has already been discussed in detail
in Section 22.2.4.

Various projections, some equivalent, can be used to generate suitable instruments.
Breusch, Mizon, and Schmidt (1989) provided a simpler presentation and projection
that permits estimation using a 2SLS package.

First consider consistent but inefficient estimation that ignores the panel correlation
structure of (αi + εi t ). The within transformation eliminates correlation with αi , so
ẍ2i t = x2i t − x̄2i can be used as instrument for endogenous x2i t . The instrument for x1i t

is similarly ẍ1i t , rather than the more obvious x1i t . Then x̄1i is used as an instrument
for endogenous w2i , whereas the exogenous w1i is used as an instrument for itself.

Now consider efficient estimation under the random effects assumption that the
components αi and εi t are homoskedastic. Then from (22.27) the random effects
differencing transformation (see 22.28) leads to

ỹi t = x̃′
1i tβ1 + x̃′

2i tβ2 + w̃′
1iγ1 + w̃′

2iγ2 + vi t , (22.30)

where, for example, x̃1i t = x̃1i t − λ̂x̄1i , where an estimator for the scalar λ̂ has been
presented at the end of the preceding section. The Hausman–Taylor estimator is equiv-
alent to IV estimation of (22.30) using as instruments ẍ1i t , ẍ2i t , w1i , and x̄1i . The ex-
ogenous time-varying regressors x1i t = ẍ1i t + x̄1i are used as instrument twice, with
the within difference ẍ1i t used as an instrument for x1i t and the time average x̄1i used
as an instrument for w2i . The estimator of Amemiya and MaCurdy (1986) instead uses
as instruments ẍ1i t , ẍ2i t , w1i and x1i t , . . . , x1iT , so that the entire history of x1i rather
than just the time average is used as an instrument. This requires that E[x1i tαi ] = 0 for
t = 1, . . . , T , a stronger assumption than E[x̄1iαi ] = 0 (see Section 22.2.4). Breusch
et al. (1989) proposed an even more efficient estimator using ẍ2is , s �= t , as additional
instruments.

The major limitation of this approach is that it requires specification of which re-
gressors are either correlated or not correlated with αi . In a post schooling log-wage
regression, Hausman and Taylor begin by assuming that all three time-varying re-
gressors (experience, bad health, and unemployment last year) are exogenous, two
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time-invariant regressors (race and union status) are exogenous, and the time-invariant
regressor of interest (schooling) is endogenous. In this specification there are two
overidentifying restrictions. A model specification test is possible using a Hausman
test based on the difference between β̂HT and β̂W, since the within estimator for β
is consistent regardless of which components of xi t and wi are correlated with αi .
Cornwall and Rupert (1988) provide an empirical study that contrasts the various
estimators.

22.4.5. SUR and Simultaneous Equations Estimation

The preceding panel data analysis has focused exclusively on estimation of a single
equation in isolation. In some cases it may be desired to estimate a system of equations,
such as a system of demand equations, where dependent variables and regressors are
observed for many individuals at several points in time. If there are no cross-equation
restrictions on the parameters then single-equation estimation can yield consistent es-
timates, but more efficient estimation is possible using joint equation estimation that
exploits error correlation across equations.

In the Chapter 21 framework of strongly exogenous regressors, the more efficient
estimator is an extension of seemingly unrelated regressions from cross-section to
panel data. The error components SUR model specifies the gth of G equations to
be given by

ygit = x′
gitβ + αgi + εgit , g = 1, . . . ,G, (22.31)

where, as in the cross-section case, αgi is independent over i , εgit is independent over
i and t , and αgi and εgit are independent of each other. However, the error compo-
nents are allowed to be correlated across components, so that Cov[αgi , αhi ] �= 0 and
Cov[εgit , εhit ] �= 0 for g �= h. Then the Chapter 21 methods yield consistent estimates.
The obvious single-equation estimator is the random effects estimator that is feasible
GLS controlling for the correlation within each equation. More efficient GLS estima-
tors that additionally control for cross-equation correlation in the errors are detailed in
Avery (1977) and Baltagi (1980).

Similar efficiency gains can be found when the system is one of simultaneous
equations, where now in (22.31) the regressor xgit may include one or more endoge-
nous regressors yhit from other equations. Then IV or GMM estimation of each single
equation yields consistent estimates, with the obvious estimator given the error com-
ponents structure being the random effects IV or EC2SLS estimator of Section 22.4.3.
More efficient estimates are obtained by systems estimation, using the error compo-
nents three-stage least-squares (EC3SLS) estimator proposed by Baltagi (1981).

The systems estimators are more difficult to implement and separate estimation of
each equation may be adequate. Even if this simpler approach is taken, however, much
can be gained in specifying a system of simultaneous equations as it permits identi-
fication of the coefficients of endogenous regressors using as instruments exogenous
regressors excluded from the equation of interest. This provides a more traditional ap-
proach to obtaining instruments than using as instruments exogenous regressors from
time periods other than the current one.

762



22.5 . DYNAMIC MODELS

22.5. Dynamic Models

In this section we consider the usual individual-specific effects panel data model, with
the complication that the regressors include the dependent variable lagged once. Then
the model is a dynamic model with

yit = γ yi,t−1 + x′
i tβ+αi + εi t , i = 1, . . . , N , t = 1, . . . , T . (22.32)

As usual the panel is short with data independent over i . It is assumed that |γ | < 1, an
assumption relaxed in Section 22.5.4.

An important result is that even if αi is a random effect, OLS estimation of (22.32)
leads to inconsistent estimation of γ and β. This is because the regressor yi,t−1 is
correlated with αi and hence with the composite error term (αi + εi t ). Alternative
estimators are needed even with random effects.

We consider estimation when αi is a fixed effect, |γ | < 1, the error εi t is serially
uncorrelated, and the panel is short (see Section 22.5.3). Although this is the base
case for microeconometrics applications there exists a vast literature that changes one
or more of these assumptions. More generally the individual-specific effect may be
purely random, errors may be serially correlated, data may be nonstationary, and the
panel may be a long panel, but we barely touch on this literature.

22.5.1. True State Dependence and Unobserved Heterogeneity

Before considering estimation, we note that time-series correlation in yit is now in-
duced directly by yi,t−1 in addition to the indirect effect via αi already considered
in Chapter 21. These two causes lead to quite different interpretations of correlation
over time in, for example, individual earnings or welfare recipiency.

For simplicity let β = 0 so that yit = γ yi,t−1 +αi + εi t . Then E[yit |yi,t−1, αi ] =
γ yi,t−1 + αi and Cor[yit , yi,t−1|αi ] = γ . Conditional on αi , the standard time-series
results for an AR(1) model apply with dependence over time in yit determined solely
by the autoregressive parameter γ . However, αi is unknown and we actually ob-
serve E[yit |yi,t−1] = γ yi,t−1 + E[αi |yi,t−1] and Cor[yit , yi,t−1] �= γ . Specifically, from
(22.32) with β = 0

Cor[yit , yi,t−1] = Cor[γ yi,t−1 + αi + εi t , yi,t−1] (22.33)

= γ + Cor[αi , yi,t−1]

= γ + (1 − γ )

1 + (1 − γ )σ 2
ε/(1 + γ )σ 2

α

,

where the second equality assumes Cor[εi t , yi,t−1] = 0 and the third equality is ob-
tained after some algebra for the special case of random effects with εi t iid [0, σ 2

ε] and
αi iid [0, σ 2

α].
Result (22.33) makes it clear that there are two possible reasons for correlation

between yit and yit−1.
True state dependence occurs when correlation over time is due to the causal

mechanism that yi,t−1 last period determines yit this period. This dependence is
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relatively large if the individual effect αi � 0 as then Cor[yit , yi,t−1] � γ . More gen-
erally, this happens when σ 2

α is very small relative to σ 2
ε .

Correlation due to unobserved heterogeneity arises even if there is no causal mech-
anism, so γ = 0, but nonetheless there is correlation since Cor[yit , yi,t−1] simplifies to
σ 2
α/(σ

2
α + σ 2

ε) if γ = 0, as in Chapter 21.
Both extremes permit this correlation to be arbitrarily close to one because ei-

ther γ → 1 or σ 2
ε/σ

2
α → 0. However, these give two quite different explanations with

quite different policy implications. A true state dependence explanation for earnings
yit being continuously high over time even after controlling for regressors xit is that
future earnings are determined by past earnings and γ is large. An unobserved het-
erogeneity explanation is that actually γ is small, but important variables have been
omitted from xit , leading to a high αi in each time period. For duration data the dis-
tinction between true state dependence and unobserved heterogeneity was explored in
Chapter 18. The static linear panel models of Chapter 21 considered only unobserved
heterogeneity.

22.5.2. Inconsistency of Standard Panel Estimators

The estimators from the previous chapter are all inconsistent if the regressors include
lagged dependent variables, even in the case of the random effects model. We consider
estimation of the model given in (22.32), where the literature usually assumes that εi t

are serially uncorrelated.
First consider OLS estimation of yit on yi,t−1 and xi t . The error term is then

(αi + εi t ), which is correlated with the regressor yi,t−1 since lagging the equation gives
yi,t−1 = γ yi,t−2 + x′

i,t−1β+αi + εi,t−1, so that yi,t−1 is correlated with αi . Note that
this is a departure from earlier results for OLS estimation of the random effects model
without lagged dependent variable, as then OLS of yit on xi t yields a consistent, albeit
inefficient, estimator. This is also a departure from the usual OLS result that regression
of yit on yi,t−1 yields a consistent estimate (though one biased in small samples) if the
error is serially uncorrelated.

Second, consider the within estimator, which regresses (yit − ȳi ) on (yi,t−1− ȳi,−1)
and (xi t − x̄i ). This regression has error term (εi t − ε̄i ). Now by (22.32), yit is corre-
lated with εi t , so yi,t−1 is correlated with εi,t−1 and hence ε̄i . However, this implies that
the regressor (yi,t−1 − ȳi ) is correlated with the error (εi t − ε̄i ). Thus OLS estimation
of the within model leads to inconsistent parameter estimates, because the regressor is
correlated with the error term. Consistency requires that ε̄i becomes very small relative
to εi t , which requires T → ∞, which occurs in long panels but not in short panels. A
leading reference is Nickell (1981).

Inconsistency also arises for the random effects estimator given in Chapter 21,
since this is a linear combination of the within and between estimators. For random
effects models Anderson and Hsiao (1981) instead considered ML estimation when
εi t ∼ N [0, σ 2]; see also Bhargava and Sargan (1983). In short panels the distribution
of the MLE depends on the assumptions made on yi0, the initial value of the dependent
variable. Anderson and Hsiao (1981) distinguish among the following initial condi-
tion assumptions: (1) fixed initial observations, (2) random initial observations with a
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common mean, (3) random initial observations with different means, and (4) random
initial observations with a stationary distributions.

The first differences OLS estimator is also inconsistent, but an IV variant leads to
consistent estimates. We now present this estimator.

22.5.3. Arellano–Bond Estimator

Model (22.32) leads to the first-differences model

yit − yi,t−1 = γ (yi,t−1 − yi,t−2) + (xi t − xi,t−1)′β + (εi t − εi,t−1), t = 2, . . . , T .
(22.34)

The OLS estimator is inconsistent because yi,t−1 is correlated with εi,t−1 from (22.32),
so the regressor (yi,t−1 − yi,t−2) is correlated with the error (εi t − εi,t−1) in (22.34).

Anderson and Hsiao (1981) proposed estimating (22.34) using the instrumental
variables estimator with yi,t−2 as an instrument for (yi,t−1 − yi,t−2). This is a valid in-
strument, since yi,t−2 is not correlated with (εi t − εi,t−1) assuming the errors εi t are se-
rially uncorrelated. Furthermore, yi,t−2 is a good instrument since it is correlated with
(yi,t−1 − yi,t−2). The method requires availability of three periods of data for each indi-
vidual. An alternative is to use�yi,t−2 as an instrument for�yi,t−1, which will require
four periods of data. Anderson and Hsiao (1981) present results suggesting that the
IV estimator is more efficient using �yi,t−2 rather than yi,t−2 as the instrument in the
usual case that γ > 0. In either case (xi t − xi,t−1) is used as an instrument for itself.

More efficient estimation is possible by using additional lags of the dependent
variable as instruments. For example, both yi,t−2 and yi,t−3 might be used as instru-
ments. The model is then overidentified, so estimation should be by 2SLS or panel
GMM. Furthermore, the number of instruments available is highest for the dependent
variable observed at time t closest to the final time period T . In period 3 only yi1

is available as an instrument, in period 4 both yi1 and yi2 are available, in period 5
yi1, yi2, and yi3 are available, and so on. Holtz-Eakin et al. (1988) and Arellano and
Bond (1991) proposed panel GMM estimators using these wider unbalanced instru-
ment sets.

The microeconometrics literature refers to the resulting panel GMM estimator as
the Arellano–Bond estimator. The general procedure has already been presented in
Section 22.4.2, where dynamics were not explicitly introduced. The estimator is

β̂AB =
[(

N∑
i=1

X̃′
i Zi

)
WN

(
N∑

i=1

Z′
i X̃i

)]−1 ( N∑
i=1

X̃′
i Zi

)
WN

(
N∑

i=1

Z′
i ỹi

)
, (22.35)

where X̃i is a (T − 2) × (K + 1) matrix with t th row (�yi,t−1,�x′
i t ), t = 3, . . . , T , ỹi

is a (T − 2) × 1 vector with t th row�yit , and Zi is a (T − 2) × r matrix of instruments

Zi =


z′

i3 0 · · · 0

0 z′
i4

...
...

. . . 0
0 · · · 0 z′

iT

 , (22.36)

765



LINEAR PANEL MODELS: EXTENSIONS

where often z′
i t = [yi,t−2, yi,t−3, . . . , yi1,�x′

i t ]. Lags of xi t or�xi t can additionally be
used as instruments, and for moderate or large T there may be a maximum lag of yit

that is used as an instrument, such as not more than yi,t−4. Two-stage LS and two-step
GMM correspond to different weighting matrices WN (see Section 22.2.3).

The method is easily adapted to an AR(p) model, with γ yi,t−1 in (22.32) replaced
by γ i yi,t−1 + γ2 yi,t−2 + · · · + γp yi,t−p, though more than three periods of data will be
needed to permit consistent estimation.

The empirical example in Section 22.3 is essentially an Arellano–Bond estimation
example, since a first differences model is estimated by IV with lagged regressors used
as instruments.

Ahn and Schmidt (1995) noted that more efficient estimation is possible using ad-
ditional moment conditions. Consider the pure time-series version of (22.32) where
β = 0, and make the standard assumption that εi t is uncorrelated with αi , εis for
s �= t and the initial observation yi1. The Arellano–Bond estimator uses the mo-
ment conditions E[yis�uit ] = 0 for s ≤ t − 2, where uit = εi t + αi . Ahn and Schmidt
(1995) obtain a more efficient estimator by additionally using the moment conditions
E[uiT�uit ] = 0. They show that this estimator, which makes efficient use of the sec-
ond moment assumptions, is asymptotically equivalent to the optimal minimum dis-
tance estimator of Chamberlain (1982, 1984).

Additional assumptions lead to additional moment conditions and hence more effi-
cient estimation. If V[εi t ] = V[εis] then E[ūi�uit ] = 0 (see Ahn and Schmidt, 1995),
assuming homoskedasticity of εi t . Arellano and Bover (1995) propose using the condi-
tion E[uit�yis] = 0 for s ≤ t − 1. Blundell and Bond (1998) consider these and addi-
tional assumptions and show that the benefit can be considerable, especially when γ is
high and T is small. Arellano and Honore (2001) present many assumptions that might
be made and the corresponding moment conditions that can be used in estimation.

Hsiao, Pesaran, and Tahmiscioglu (2002) propose a transformed ML estimator.
Assume that εi t are iid N [0, σ 2], an assumption that can be relaxed. Rather than form
the likelihood based on εi1, . . . , εiT , they form the likelihood based on the error differ-
ences�εi1, . . . , �εiT . For the pure time series AR(1) model �εi t = �yit − γ�yi,t−1

for t > 1. The density of �εi1 depends on the assumptions made about initial con-
ditions: either �εi1 = �yi1 or �εi1 = �yi1 − b, where b = E[�yi1] is an additional
parameter to be estimated. The resulting estimator is a quasi-MLE that retains consis-
tency even if εi t are nonnormal. If εi t are iid [0, σ 2] then the transformed MLE is more
efficient than the preceding GMM estimators.

22.5.4. Estimation of Covariance Structures

Covariance structures are models that specify a structure for the covariance matrix of
the regression error. Applications include structures for error dynamics and for mea-
surement error. The goal is to estimate the parameters of the structure.

As an example, suppose that yit is generated by a random effects model with MA(1)
error, so that

yit = αi + εi t + φεi,t−1,
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where αi ∼ [0, σ 2
α] and εi t ∼ [0, σ 2

ε] and |φ| < 1. Then the autocovariances γ j =
Cov[yit , yit− j ] satisfy γ 0 = σ 2

α + (1 + φ2)σ 2
ε , γ 1 = σ 2

α + φσ 2
ε , and γ j = σ 2

α for j ≥
2. If T = 3 these equations yield estimates σ̂ 2

α , σ̂ 2
ε , and φ̂ given autocovariance es-

timates γ̂ 0, γ̂ 1, and γ̂ 2. If T > 3 the model is overidentified as there are only three
variance parameters to estimate but more than three autocovariance estimates. An ob-
vious estimator is the minimum distance estimator.

In general let θ denote the q structural parameters and suppose g(θ) = γ, where
γ = [γ 0, . . . , γ T −1]′ is the vector of T ≥ q autocovariances. Then the minimum dis-
tance estimator θ̂MD minimizes

QN (θ) = (γ̂−g(θ))′WN (γ̂ − g(θ)), (22.37)

where γ̂ = [γ̂ 1, . . . , γ̂ T −1]′,

γ̂ j = [N (T − j)]−1
T∑

t= j+1

N∑
i=1

(yit − ȳt )(yi,t− j − ȳt− j ), (22.38)

and ȳt− j = N−1∑
i yi,t− j . The weighting matrix WN and further details on MD es-

timation are provided in Section 6.7. The restrictions of the model can be tested by
use of the chi-squared test statistic given in Section 6.7. The discussion thus far has
already imposed the restriction of covariance stationarity. One can more generally per-
mit γ t j �= γ s j for t �= s, where γ t j = Cov[yit , yi,t− j ]. Then γ has T (T + 1)/2 entries
γ t j , t = j + 1, . . . , T and j = 0, . . . , T − 1. The stationarity assumption is itself a
testable assumption. Moreover, regressors can be incorporated by replacing yit by the
residual yit − x′

i tβ.
Abowd and Card (1989) provided an early application of this approach to joint

modeling of earnings and hours. Altonji and Segal (1996) demonstrated that the opti-
mal MD estimator can be quite biased in finite samples (see Section 6.3.5). Many of
the applications are to models of earnings; see Baker and Solon (2003) for a recent
example.

The MD approach is well suited to estimation of covariance structures. The panel
data sets can be large, but by first estimating the autocovariances the estimation is
reduced to minimizing (22.37). Other estimation approaches are possible. In particular,
see MaCurdy (1982b), who presents Box–Jenkins type models for panel data.

22.5.5. Nonstationary Panels

The panel literature on unit roots and nonstationarity emphasizes panels where both N
and T are large. For unit root tests a key early paper is that by Levin and Lin (1992),
ultimately published as Levin, Lin, and Chu (2002); Pesaran and Smith (1995) wrote
an early paper that considered cointegration. Phillips and Moon (1999) and Pedroni
(2004) provide general theory for inference with nonstationary panel data. Analysis is
simplest using a sequential limit theory where, say, first N is fixed and T → ∞ and
subsequently N → ∞. A more robust approach uses joint limits where T → ∞
and N → ∞ simultaneously. Recent reviews of the literature include those by Phillips
and Moon (2000) and Baltagi (2001, Chapter 12).
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Less consideration has been given to nonstationary data in short panels. Harris and
Tzavalis (1999) consider the unit root tests of Levin and Lin (1992) in short panels.
Let γ̂ denote the within estimate of γ in the AR(1) fixed effects model yit = αi +
γ yi,t−1 + εi t , where εi t ∼ N [0, σ 2]. We consider the null hypothesis of a unit root, so
γ = 1, and no intercept αi = 0, which corresponds to the pure time series case 2 in
Hamilton (1994, p. 490). Under this null hypothesis the unit root test statistic

√
N (γ̂ − 1 + 3/(T + 1))

[3(17T 2 − 20T + 17)]/[5(T − 1)(T + 1)3]
d→ N [0, 1]

as N → ∞ for fixed T . Large negative values of this statistic lead to rejection of the
unit root hypothesis. Levin and Lin (1992) provide additional tests, such as for models
with individual time trends.

Binder, Hsiao, and Pesaran (2003) consider short panel estimation of fixed effect
dynamic panel models with unit roots and cointegration. With unit roots the Arellano–
Bond estimator is inconsistent, though the extensions due to Ahn and Schmidt (1995)
and others discussed at the end of Section 22.5.3 yield consistent estimates. Binder
et al. (2003) propose quasi-ML estimators that perform better in finite samples when
unit roots are present.

22.6. Difference-in-Differences Estimator

The evaluation literature presented in Chapter 25 focuses on measuring the treatment
effect, in the simplest case the impact or marginal effect of a single binary regressor
that equals one if treatment occurs and equals zero if treatment does not occur. For
example, interest may lie in measuring the effect on earnings of a policy change (the
binary treatment) that alters tax rates or welfare eligibility or access to training for
some individuals but not for others.

In this section we relate one of the methods of Chapter 25 to panel methods. Specif-
ically the treatment effect can be measured using standard panel data methods if panel
data are available before and after the treatment and if not all individuals receive the
treatment. Then the first-differences estimator for the fixed effects model reduces to
a simple estimator called the differences-in-differences estimator, introduced in Sec-
tion 3.4.2 and also studied in Section 25.5. The latter estimator has the advantage that
it can also be used when repeated cross-section data rather than panel data are avail-
able. However, it does rely on model assumptions that are often not made explicit. The
treatment here follows Blundell and MaCurdy (2000).

22.6.1. Fixed Effects with Binary Treatment

Let the binary regressor of interest be

Dit =
{

1 if individual i receives treatment in period t,
0 otherwise.

(22.39)

Assume a fixed effects model for yit with

yit = φDit + δt + αi + εi t , (22.40)
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where δt is a time-specific fixed effect and αi is an individual-specific fixed effect. As
noted in Section 21.2.1 this is equivalent to regression of yit on Dit and a full set of
time dummies with the complication of individual-specific fixed effects. For simplicity
there are no other regressors.

The individual effects αi can be eliminated by first differencing. Then

�yit = φ�Dit + (δt − δt−1) +�εi t . (22.41)

The treatment effect φ can be consistently estimated by pooled OLS regression of�yit

on �Dit and a full set of time dummies.

22.6.2. Differences in Differences

Now consider specialization to only two time periods. Furthermore, suppose treatment
occurs only in period 2, so that in period 1 Di1 = 0 for all individuals and in period 2
Di2 = 1 for the treated and Di2 = 0 for the nontreated. Then the subscript t can be
dropped from (22.41) and

�yi = φDi + δ + vi , (22.42)

where Di is a binary treatment variable indicating whether or not the individual re-
ceived treatment.

The treatment effect can be estimated by OLS regression of�y on an intercept and
the binary regressor D. Define�ȳtr to denote the sample average of�yi for the treated
(Di = 1) and �ȳnt to denote the sample average of �yi for the nontreated (Di = 0).
Then the OLS estimator reduces to

φ̂ = �ȳtr −�ȳnt. (22.43)

This estimator is called the differences-in-differences (DID) estimator, since one
estimates the time difference for the treated and untreated groups and then takes the
difference in the time differences.

The estimator is appealing for its intuitive simplicity. Additionally, it can be ex-
tended from panel data to the case where separate cross sections are available in the
two periods. In the second period compute the averages ȳtr

2 and ȳnt
2 for the treated and

untreated groups. Compute similar averages ȳtr
1 and ȳnt

1 in the first pretreatment period.
This assumes that it is possible to identify in the first period whether or not an individ-
ual is eligible for treatment. This is easy if, for example, the treatment applies only to
women and data on gender are available. Then compute

φ̂ = (ȳtr
2 − ȳtr

1 ) − (ȳnt
2 − ȳnt

1 ). (22.44)

As an example, if average annual earnings for the group eligible for treatment equals
10,000 before treatment and 13,000 after treatment then ȳtr

2 − ȳtr
1 = 3,000. Similarly,

if average annual earnings for the group not eligible for treatment equals 15,000 before
treatment and 17,000 after treatment then ȳnt

2 − ȳnt
1 = 2,000. The DID estimate of the

treatment effect φ̂ is then 3,000 − 2,000 = 1,000.
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22.6.3. Assumptions Underlying Differences in Differences

The preceding formulation of the DID estimator makes explicit the underlying as-
sumptions for consistent estimation of φ.

First, it is assumed that the time effects δt are common across treated and untreated
individuals. For example, time trends may differ by gender, in which case identifying
φ is problematic if treatment depends on gender. The common trends assumption is
needed if either panel or cross-section data are used.

Second, if cross-section data are used then the composition of the treated and un-
treated groups is assumed to be stable before and after the change. With panel data
differencing eliminates the fixed effects αi . With repeated cross-section data the origi-
nal model (22.40) implies that ȳtr

t = φ + δt + ᾱtr
t + ε̄tr

t and ȳnt
t = δt + ᾱnt

t + ε̄nt
t . Given

that treatment only occurs in the second period it follows that

φ = (ȳtr
2 − ȳtr

1 ) − (ȳnt
2 − ȳnt

1 ) + (ᾱtr
2 − ᾱtr

1 ) − (ᾱnt
2 − ᾱnt

1 ) + v,
where v = (ε̄nt

2 − ε̄nt
1 ) − (ε̄nt

2 − ε̄nt
1 ). Consistency of φ̂ in (22.44) occurs if plim(ᾱtr

2 −
ᾱtr

1 ) = 0 and plim(ᾱnt
2 − ᾱnt

1 ) = 0. This will happen if assignment to treatment is ran-
dom. However, often this is not the case.

22.6.4. Richer Models

In practice richer models are used. An obvious extension is to include regressors
other than the treatment indicator and time dummies. By grouping data the individual-
specific effects can at least be permitted to differ on average across groups. The general
procedure is to estimate

yigt = φDigt + δt + αi + εi t ,

where g denotes the gth group.
In a classic example of DID estimation, Card (1990) studied the effect on unemploy-

ment of low-wage workers in Miami of a sudden influx of immigrants from Cuba. This
example is also reviewed in Angrist and Krueger (1999). Athey and Imbens (2002)
present extension to nonlinear models.

22.7. Repeated Cross Sections and Pseudo Panels

The key potential advantages of panel data arise from being able to observe subjects
over time. This makes it possible to control for unobserved individual heterogeneity,
differences in initial conditions, and dynamic dependence of outcomes. In many cases,
however, genuine panel data are unavailable.

22.7.1. Repeated Cross Sections

We consider analysis when data are for several repeated cross sections, derived from
responses to a series of independent sample surveys, where independence means that
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each subject appears in only one survey. An example is the U.K. Family Expenditure
Survey, which collects a large annual sample of household expenditure data but each
year surveys different families. Also, if only a very short panel is available (e.g., T =
2) then data from repeated cross sections are appealing if they can generate a larger
and richer sample.

For a random effects model repeated cross-section data pose no challenges. One
simply performs a pooled regression of yit on xi t (see Section 21.5) and statistical
inference is actually simplified as correction is needed only for heteroskedasticity since
here errors are independent over both i and t .

With fixed effects, however, pooled regression leads to inconsistent parameter es-
timates. Furthermore, alternative methods such as the within or first-differences es-
timation are infeasible if individuals are observed at only one point in time. In this
section repeated cross-section data are used to construct pseudo panels or synthetic
panel data that have some of the advantages of genuine panel data, most notably the
ability to control for fixed effects. A special case is the DID estimator presented in
Section 22.6.

22.7.2. Pseudo Panels

Browning, Deaton, and Irish (1985) and Deaton (1985), in their empirical studies
based on the U.K. Family Expenditure Survey, considered methods for analyzing re-
peated cross-section data. Their suggestion was to convert the individual-level data
into cohort-level data. Although individual household expenditures cannot be tracked
through time, it is possible to do so for cohorts of individuals.

A cohort is defined as “a group with fixed membership, individuals of which can
be identified as they show up in the surveys” (Deaton, 1985, p. 109). An example is an
age cohort such as males born between 1965 and 1970. For large samples, successive
surveys will generate random samples of members of each cohort.

Time series of sample averages of cohorts can form the basis of regression models.
Whether synthetic panels based on cohort data can substitute for genuine panel data
is a key issue. The topic of repeated cross section deals with inference procedures for
such models. Here we focus on static pseudo panel models. Collado (1997) and Girma
(2000) also consider the dynamic case.

The starting point is the static linear regression with individual fixed effects αi ,
based on T successive cross sections,

yit = αi + x′
i tβ+ uit , t = 1, . . . , T . (22.45)

The explanatory variables are assumed to be strongly exogenous with respect to pa-
rameters of interest, β, so E[x′

i t uis] = 0, ∀t, s. For simplicity, we assume that N ob-
servations are available for each cross section. Each individual is observed in only one
time period, so the individual-specific effects αi cannot be swept out by differencing
the individual-level data.

Let g be a random variable that determines cohort membership for each i , such that
i belongs to cluster c if and only if gi belongs to the set Ic. Assume that there are C
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cohorts, and c is the cohort subscript, c = 1, . . . ,C . Taking expectations conditional
on gi yields

E[yit |gi ∈ Ic] = E [αi |gi ∈ Ic] + E
[
x′

i t |gi ∈ Ic
]
β + E [uit |gi ∈ Ic] . (22.46)

This generates a cohort population version of the model (22.45) given by

y∗
ct = α∗

c + x∗′
ctβ + u∗

ct , (22.47)

where the asterisks denote unobservable population cohort averages. For example,
y∗

ct = E[yit |gi ∈ Ic].
The parameter α∗

c = E[αi |gi ∈ Ic] is the cohort fixed effect. An important assump-
tion made in the case of fixed effects is that the population is stationary so that α∗

c can
be assumed to be constant over time. This is qualitatively similar to the assumption
needed for consistency of the DID estimator made at the end of Section 22.6.3. Under
the usual weak exogeneity assumptions E[u∗

ct |x∗
ct ] = 0. However, the unobserved fixed

effect α∗
c will be correlated with x∗

ct if αi is correlated with xi t in the original model
(22.45). Estimation needs to control for the fixed effect.

In practice the population cohort means are unobservable and we instead work with
cohort-time averages ȳct and x̄c. The regression is then

ȳct = ᾱc + x̄′
ctβ+ūct , c = 1, . . .C, t = 1, . . . , T . (22.48)

This step introduces an additional source of error, since ȳct and x̄ct are error-
contaminated estimates of the population cohort averages, that is,

ȳct = y∗
ct + ξ ct , (22.49)

x̄ct = x∗
ct + υct .

If the measurement error is very small, owing to the number of observations per
cohort per time period (Nct ) being very large, then ȳct � y∗

ct and x̄ct = x∗
ct and the

measurement error can be ignored. A consistent estimate of β can be obtained by
within estimation of (22.48), that is, OLS regression of (ȳct − ȳc) on (x̄ct − x̄c), where
ȳc = T −1∑

t ȳct and x̄c = T −1∑
t x̄ct .

Unfortunately, the measurement error is often too large to ignore. Then within es-
timation of (22.48), or even OLS estimation of (22.48) when ᾱc is a random effect,
leads to inconsistent estimation of β. Instead, errors-in-variables estimators need to be
used. These can be implemented here since the individual-level data yield necessary
estimates of the moments of the measurement error, see Section 26.3.3.

22.7.3. Measurement Error Estimators for Pseudo Panels

A classic solution to measurement errors is to use replicated observations to estimate
the covariance matrix of the measurement error, and to then use these estimates to
“correct” the sample moments of the error-contaminated variables before applying
the least-squares procedure (see Section 26.3.4). Deaton (1985) proposed using this
method in the current setting.
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Assume that individual observations satisfy the equations

yit = y∗
ct + εi t

xi t = x∗
ct + ηi t ,

a setup similar to that in Section 26.2.1, except that there is also measurement error in
the dependent variable, and assume that for any individual in a given cohort c,[

εi t

ηi t

]
∼ iid

[[
0
0

]
,

[
σ 2

0 σ′
01

σ01 Σ

]]
.

Sample estimates of (Σ,σ01), denoted (Σ̂,σ01), can be obtained given (ȳct , x̄ct ) from
using all individual-level data. Define dc to be the C × 1 column vector of dummy
variables corresponding to the fixed effects α∗

c (see Section 21.2.1), which is a regres-
sor vector that is clearly not subject to estimation error. Then provided T is sufficiently
large and the relevant inverses exist, the regression[ ̂̄αct̂̄βct

]
=
(

C∑
c=1

T∑
t=1

[
d′

cdc d′
cx̄ct

x̄′
ct dc x̄′

ct x̄ct − Σ̂

])−1 [ C∑
c=1

T∑
t=1

(
d′

c ȳct

x̄′
ct dc − σ̂01

)]
(22.50)

will provide consistent estimates of the cohort regression as CT → ∞. This estimator
is the same as that given in Section 26.3.4, with adaptation here because ȳct is also mea-
sured with error and with simplification because only a subset of the regressors, x̄ct , is
measured with error. Verbeek and Nijman (1992) provide a more detailed discussion
of the sampling properties, and Deaton (1985) presents variance estimation. See also
Verbeek (1995).

The preceding estimator essentially controls for the cohort fixed effects by estimat-
ing the least-squares dummy variable model, adjusting for measurement error by use
of replicated data using the estimator given in Section 26.3.4.

Collado (1997) considered an alternative approach of eliminating the cohort effects
by first differencing, and then controlling for measurement error through instrumental
variables estimation, an alternative identification strategy for measurement error given
in Section 26.3.2.

Substituting (22.49) into (22.47) gives

ȳct − ξ ct = α∗
c + (x̄′

ct − υ′
ct

)
β + u∗

ct ,

ȳct = α∗
c + x̄′

ctβ + wct ,

where the error wct = u∗
ct − υ′

ctβ+ ξ ct . First differencing eliminates α∗
c , leading to

�ȳct = �x̄′
ctβ+�wct , t = 2, . . . , T . (22.51)

Now because of the measurement error terms the explanatory variables �x̄′
ct will be

correlated with �wct , and hence applying least squares will lead to inconsistent esti-
mation. Consistent estimates can be obtained by IV estimation based on lagged levels
of exogenous variables, that is, x̄′

c,t−1. This approach has the advantage of ready ex-
tension to models with lagged dependent variables. For details see Collado (1997).
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22.8. Mixed Linear Models

The model called the random effects model by econometricians specifies only the in-
tercept coefficient to be random. Richer random effects models, widely used in other
areas of applied statistics, additionally permit the slope parameters to be random. In
this section we present mixed linear models – also called mixed effects models, hierar-
chical, or multilevel linear models (see Chapter 24), random coefficients models, and
variance components models.

These models are applied in a setting where the pooled OLS estimator is still con-
sistent. In particular, there are no fixed effects. Because the mixed linear models frame-
work provides enough structure to permit estimation by feasible GLS, its estimates are
more efficient.

22.8.1. Mixed Linear Models

The mixed linear model specifies

yit = z′
i tβ + w′

i tαi + εi t , (22.52)

where the regressors zi t include an intercept, wi t is a vector of observable characteris-
tics, αi is a random zero-mean vector, and εi t is an error term. This model is called a
mixed model as it has both fixed parameters β and zero-mean random parameters
or random effects αi .

The random intercept model yit = z′
i tβ + αi + εi t is a special case of (22.52) with

w′
i tαi = αi .
Another special case of (22.52) is the random coefficients model or random pa-

rameters model. In the regression setting we suppose that

yit = z′
i tβi + εi t ,

a regular linear regression, except that the regression parameter vector now differs
across individuals according to

βi = β + αi ,

where αi is a zero-mean random vector. Substitution yields yit = z′
i tβ + z′

i tαi + εi t ,
which is (22.52) with wi t = zi t .

Many applications lie between random intercept and random coefficients models,
with wi t often a subset of zi t . In particular, standard mixed and random ANOVA mod-
els are also a special case, where the kth component of the vector wi t is either zero or
one, according to various possible models for clustering the data. For example, one of
the components in zi t may be a race or gender indicator variable. Then the conditional
mean of yit varies with gender or race. It may also be felt that the conditional variance
of yit also varies with gender or race, which can be captured by inclusion in wi t . The
mixed model is an outgrowth of ANOVA models. The hierarchical linear model or
multi-level linear model (see Section 24.6.2) can also be expressed as a special case
of (22.52).
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22.8.2. Estimation

The goal is to estimate the fixed regression parameters β and the variances and co-
variance parameters of the distributions for αi and εi t . One of the early treatments of
this model was in a Bayesian context by Lindley and Smith (1972). A simple example
of their general treatment was the random coefficients model with yit ∼ N [z′

i tβi , σ
2],

where βi ∼ N [γ,Γ]. See Koop (2003), for example, for Bayesian analysis of the
linear panel data model.

Here we follow the classical approach, based on the work of Harville (1977), who
gives references to the earlier literature. The mixed model (22.52) can be split into
a deterministic component x′

i tβ and a random component w′
i tαi + εi t . The stochastic

assumptions include the assumption that the regressors xi t are independent of the zero-
mean random components αi and εi t . So pooled OLS regression of yit on xi t provides
consistent estimates of β. We are essentially in the world of Section 21.5, with feasible
GLS estimation possible as structure has been placed on the variance matrix of the
error term w′

i tαi + εi t . In this section we present the feasible GLS estimator along
with two different methods to estimate the variances and covariances of αi and εi t and
consider prediction of the random components αi .

Combine observations over time for a given individual in the usual way, so that
(22.52) becomes

yi = Ziβ + (Wiαi + εi ). (22.53)

The usual assumptions are that αi and εi are independent over i and independent of
each other with αi ∼ [0,Σα] and εi ∼ [0,Σε], so that the error term

Wiαi + εi ∼ [0,Ωi = WiΣαW′
i + Σε].

Then the feasible GLS estimator is

β̂FGLS =
[

N∑
i=1

Zi
′Ω̂

−1
i Zi

]−1 N∑
i=1

Zi
′Ω̂

−1
i yi , (22.54)

where Ω̂i is consistent for Ωi .
Implementation requires consistent estimation of Ωi . This has already been dis-

cussed in Section 21.7 for the simpler case of a random intercept, in which case there
were several different ways to consistently estimate the variance components σ 2

α and
σ 2
ε , with complications such as bias and the possibility of negative estimates. Similar

issues arise here in estimation of Σα and Σε.
We present two estimators based on the additional assumption of normal distribu-

tion for the random components. The presentation is for the more general model

y = Zβ + (Wα + ε), (22.55)

which can be obtained, for example, by appropriate stacking of (22.53). It is assumed
that α ∼ N [0,G] and ε ∼ N [0,R], where in the current application G and R are
functions of Σα and Σε. The feasible GLS estimator for the mixed model is

β̂FGLS = [Z′V̂−1Z
]−1

Z′V̂−1y,

where V̂ is consistent for V = V[Wα + ε] = WGW′ + R. See Swamy (1970).
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The obvious method for obtaining V̂ is maximum likelihood. The log-likelihood
function based on the multivariate normal, after concentrating out β which is equal to
the GLS estimator

[
Z′V−1Z

]−1
Z′V−1y, is

ln L(G,R) = −1

2
ln |V|− N T

2
ln r′V−1r − N T

2

[
1 + ln

(
2π

N T

)]
,

where r = y − Z
[
Z′V−1Z

]−1
Z′V−1y and |V| denotes the determinant of V. Maxi-

mization with respect to the parameters in G and R yields V̂ = WĜW′ + R̂.
A weakness of ML estimates of variance components are that they are biased in

small samples. For example, for cross-section linear regression with homoskedastic
errors the MLE σ̂ 2 = N−1∑

i û2
i is biased and it is better to instead divide by (N − K ).

For the model (22.53), degree-of-freedom corrections are provided by the restricted
maximum likelihood estimator that instead maximizes

ln LR(G,R) = −1

2
ln |V|− N T − p

2
ln r′V−1r − N T − p

2

[
1 + ln

(
2π

N T − p

)]
− 1

2
ln |Z′V−1Z|,

where p is the rank of Z. For motivation of ln LR(G,R) see Harville (1977).
As an empirical example of a mixed linear model, consider the ln(hours)–ln(wage)

regression example of Section 21.3 with both the intercept and slope parameters per-
mitted to be random. Then the random coefficients model yields lnhrs = 7.734 −
0.021lnwg with slope coefficient standard error of 0.046 (default) or 0.020 (panel boot-
strap). The slope coefficient is quite different from the estimates given in Table 21.2.

22.8.3. Prediction

We may wish to predict the random parameters α in addition to the fixed parameters
β and the covariance parameters.

The joint normal equations for β̂ and α̂, given consistent estimates of β̂ and α̂, can
be written as [

Z′R̂−1Z Z′R̂−1W
W′R̂−1Z W′R̂−1W+Ĝ−1

] [
β̂

α̂

]
=
[

Z′R̂−1y
W′R̂−1y

]
.

Solving for β̂ gives β̂FGLS given earlier, whereas

α̂ = ĜW′V̂−1(y − Z′β̂).

In the case of independence over i , this yields α̂i = Σ̂αW′
i V

−1
i (yi − Z′

i β̂). This is the
best linear unbiased predictor if the variance matrices are known.

22.9. Practical Considerations

The panel 2SLS estimators can actually be estimated using just a 2SLS program for
cross-section data (see Section 22.2.5) though computed standard errors need to be

776



22.10 . BIBLIOGRAPHIC NOTES

panel robust. Optimal GMM estimators can be implemented using matrix commands
in a statistical package or in a programming language such as GAUSS. Statistical pack-
ages are increasingly offering panel commands that automatically implement the esti-
mators of this chapter, most notably the Arellano–Bond estimator.

22.10. Bibliographic Notes

This chapter covers an active area of research that appears in several recent texts devoted to
panel data, notably those by Baltagi (1995, 2001), Hsiao (1986, 2003), M–J. Lee (2002), and
Arellano (2003). More advanced methods are given in Matyas and Sevestre (1995) and in Arel-
lano and Honore (2001).

22.2 Chamberlain (1982, 1984) emphasized the use of exogeneity assumptions. He used min-
imum distance estimation. The subsequent literature has used GMM methods. M–J. Lee
(2002) and Arellano (2003) especially emphasize GMM estimation. See also the survey
by Ahn and Schmidt (1999).

22.4 The model of Hausman and Taylor (1981) is attractive. By assuming that some regressors
are uncorrelated with the individual-specific effect it permits identification of the coeffi-
cients of time-invariant regressors.

22.5 The coverage of linear dynamic models is very brief compared to the size of the literature
that began with Balestra and Nerlove (1966). More complete discussions are given in
Baltagi (2001, Chapter 8), Hsiao (2003, Chapter 4), and Arellano (2003, Chapter 5–8).
The Arellano–Bond (1991) estimator is especially popular as it accommodates dynamic
models with fixed effects.

22.6 The difference-in-differences approach is very popular because of its simplicity. Although
it can be used with repeated cross-section rather than panel data, a panel data interpreta-
tion helps make explicit the underlying assumptions. Bertrand et al. (2004) demonstrate
the importance of correcting for time series correlation at the individual level using the
methods of Section 22.2.3.

22.8 Mixed linear models are especially popular in the statistics literature. They are less used
in the econometrics literature, because of the reluctance to impose structure on the time-
invariant individual-specific fixed effect.

Exercises

22–1 Consider the panel GMM estimator of Section 22.2.1.

(a) Show that minimization with respect to β of the quadratic function QN(β)
given after (22.3) yields the panel GMM esimator given after QN(β) that is
expressed using summation notation.

(b) Show that this estimator is equivalent to the estimator defined in (22.4).
(c) For simplicity suppose that the matrices Z and X in (22.4) are nonstochastic

and that y = Xβ + u where u has mean 0 and variance 
. Obtain the finite
sample variance matrix of the estimator in (22.4) and compare this to the
asymptotic results in (22.5).

(d) Simplify the panel GMM estimator in the case that r = K .

22–2 Consider the panel data model yi t = α + βxi t + γwi t + ui t , i = 1, . . . , N, t =
1, . . . , T , where for simplicity there is no individual-specific effect. Suppose the
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scalar regressor xi t is correlated with ui s for all t and s. For each of the following
parts state whether consistent IV estimation of β and γ is possible, and if so give
all the suitable instruments, based on the discussion in Section 22.2. Assume
that three periods of data are available, so T = 3, and note that a variable may
not be available as an instrument in all years, and that in different years different
instruments may be available.

(a) The regressor wi t satisfies the summation assumption E[
∑

t wi tui t ] = 0.
(b) The regressor wi t satisfies the contemporaneous exogeneity assumption

E[wi tui t ] = 0, t = 1, . . . ,3.
(c) The regressor wi t satisfies the weak exogeneity assumption E[wi sui t ] =

0, s ≤ t, t = 1, . . . ,3.
(d) The regressor wi t satisfies the strong exogeneity assumption E[wi tui t ] =

0, s, t = 1, . . . ,3.

22–3 Repeat question 3, again with three periods of data, but now consider the panel
data model yi t = αi + βxi t + γwi t + ui t , where αi is a fixed effect, and consider
IV estimation based on the first differences model, yi t − yi,t−1 = β(xi t − xi,t−1) +
γ (wi t − wi,t−1) + (ui t − ui,t−1).

22–4 Consider the differences in differences (DID) estimator presented in Sec-
tion 22.6. Suppose the time trend term (δt − δt−1) differs across the treated and
untreated groups.

(a) Will the DID estimator of φ based on repeated cross-section data be con-
sistent? Explain your answer.

(b) Is consistent estimation of φ possible if panel data are available? Explain
your answer.

22–5 Using the hours and wages data of Ziliak (1997) reproduce as much of Ta-
ble 22.2 as you can, with appropriate discussion, when the instrument set is
expanded to include the third lags of lnwg, kids, age, agesq, and disab and the
seven years 1982–88 are used to estimate (22.22).
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C H A P T E R 23

Nonlinear Panel Models

23.1. Introduction

This chapter extends the linear model panel data methods of Chapters 21 and 22 to the
nonlinear regression models presented in Chapters 14–20. We focus on short panels
and models with a time-invariant individual-specific effect that may be fixed or may
be random. Both static and dynamic models are considered.

There is no one-size-fits-all prescription for nonlinear models with individual spe-
cific effects. If individual-specific effects are fixed and the panel is short then consistent
estimation of the slope parameters is possible for only a subset of nonlinear models.
If individual-specific effects are instead purely random then consistent estimation is
possible for a wide range of models.

Section 23.2 presents general approaches that may or may not be implementable for
particular models. Section 23.3 provides an application to a nonlinear model with mul-
tiplicative individual-specific effects. Specializations to the leading classes of nonlin-
ear models – discrete data, selection models, transition data, and count data – are pre-
sented in Sections 23.4–23.7. Semiparametric estimation is surveyed in Section 23.8.

23.2. General Results

General approaches to extending the methods for linear models are presented in this
section. We first present the various models – fixed effects, random effects, and pooled
models, distinguishing parametric from conditional mean models. Methods to estimate
these models and obtain panel-robust standard errors are then presented. Further details
for specific nonlinear panel models are provided in subsequent sections.

23.2.1. Individual-Specific Effects Models

The linear individual-specific effects model (see Section 21.2.1) specifies that the
dependent variable yit depends on a time-invariant individual-specific effect αi , as
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well as the usual regressors xi t and regression parameters β. The model is written as
yit = αi + x′

i tβ + uit , where uit is an error term.
For nonlinear models such as logit and Poisson models there is less motivation

for introducing an additive error uit . Instead, it is more natural to directly model the
conditional density, or the conditional mean, which in the linear case can be expressed
as E[yit |αi , xi t ] = αi + x′

i tβ.

Parametric Models

A fully parametric approach is common for many nonlinear models, most notably
models for binary, multinomial, and censored outcomes given in Chapters 14–16.

The standard cross-section models are single-index models, or single-index models
with additional scale parameter(s). The parametric individual-specific effects mod-
els presented in subsequent sections specify conditional density

f (yit |αi , xi t ) = f (yit , αi + x′
i tβ,γ), (23.1)

where γ denotes additional parameters such as variance parameters. The model is a
single-index model in the regressors xi t and the individual effects αi .

The usual assumption is that yit |xi t , αi is independent over both i and t . This can
be relaxed to permit dependence over t for given i (see Section 23.2.6).

Conditional Mean Models

A quite general nonlinear model for the conditional mean, with unobserved time-
invariant individual-specific effect, is

E[yit |αi , xi t ] = g(αi , xi t ,β), i = 1, . . . , N , t = 1, . . . , T, (23.2)

for given function g(·). Three common specifications are an additive individual-
specific effects model

g(αi , xi t ,β) = αi + g(xi t ,β), (23.3)

a multiplicative individual-specific effects model,

g(αi , xi t ,β) = αi g(xi t ,β), (23.4)

and a single-index individual-specific effects model

g(αi , xi t ,β) = g(αi + x′
i tβ). (23.5)

In each case the function g(·) is specified. The regressors xi t may be time varying or
time-invariant and may include a time dummy.

The additive effects model is suited to applications where the range of yit is
unbounded, as implicitly assumed with linear regression. The multiplicative effects
model is suited to applications where yit is nonnegative unbounded, such as count data,
in which case αi > 0 and g(·) > 0. The single-index model is a natural starting point
for the probit model, for example, with g(αi + x′

i tβ) = �(αi + x′
i tβ), where�(·) is the

standard normal cdf. The single-index model reduces to the additive model if g(·) is
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the identity function. It reduces to the multiplicative model if g(·) is the exponential
function, since then exp(αi + x′

i tβ) = exp (αi ) exp(x′
i tβ).

The moment condition (23.2) conditions only on current period xi t and assumes that
regressors are contemporaneously exogenous (see Section 22.2.4). Elimination of the
individual-specific effects αi can require stronger exogeneity assumptions. Regressors
are weakly exogenous if

E[yit |αi , xi1, . . . , xi t ] = g(αi , xi t ,β) (23.6)

and strongly exogenous or strictly exogenous if

E[yit |αi , xi1, . . . , xiT ] = g(αi , xi t ,β). (23.7)

A nonlinear model with additive effects adds relatively few complications. In
particular, if the panel model is yit = αi + g(xi t ,β) + uit , then the approaches of
Chapters 21 and 22 will carry through with some modification, including estimation
by nonlinear LS and IV rather than linear LS and IV.

This chapter focuses on models with nonadditive individual-specific effects, such as
in (23.4) and (23.5). These effects can be treated as fixed effects or as random effects.

23.2.2. Fixed Effects Models

A fixed effects model treats the individual-specific effect αi as an unobserved random
variable that may be correlated with the regressors xi t . In short panels joint estimation
of the fixed effects α1, . . . , αN and the other model parameters, β and possibly γ, gen-
erally leads to inconsistent estimation of all parameters. Instead, a variety of methods
have been proposed that eliminate the fixed effects in some special settings, permitting
consistent estimation of the other model parameters.

The Incidental Parameters Problem

Neyman and Scott (1948) considered inference when some parameters are common
to all observations but there are additionally an infinity of parameters, each of which
depends on only a finite number of observations. The common parameters are of
intrinsic interest, whereas the latter parameters are called incidental parameters.

Here β and γ are common parameters, but α1, . . . , αN are incidental parameters if
the panel is short as then each αi depends on fixed T observations and there are in-
finitely many αi since N → ∞. The incidental parameters are inconsistently estimated
as N → ∞, since only T observations are used to estimate each parameter. The inci-
dental parameters problem is that this contaminates the estimation of the common
parameters. In general the common parameters are also inconsistently estimated, even
though they are finite in number and are estimated using N T → ∞ observations.

A simple illustration of contamination by incidental parameters is to suppose that
yit ∼ N [αi , σ

2]. Maximum likelihood estimation yields α̂i = ȳi , i = 1, . . . , N , and
σ̂ 2 = (N T )−1∑

i

∑
t (yit − ȳi )2. Then E[σ̂ 2] = σ 2(T − 1)/T , so σ̂ 2 is inconsistent

for σ 2 as N → ∞ in the short panel setting of fixed T . This inconsistency can be

very large, with σ̂ 2 p→ 0.5σ 2 when T = 2.
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In general if there is an incidental parameters problem, alternative estimation meth-
ods are needed that first eliminate the incidental parameters. For some popular models,
most notably the panel probit model, there is no solution to the incidental parameters
problem. Even where methods exist to consistently estimate β these methods tend
to be model specific, as emphasized by Lancaster (2000). No unified solution to the
incidental parameters problem exists.

Conditional Likelihood

A statistic t is called sufficient for a parameter θ if the distribution of the sample given
t does not depend on θ . For individual-specific effects panel models, if a sufficient
statistic exists for the nuisance parameter αi then by conditioning on this sufficient
statistic the nuisance parameter is eliminated. The resulting conditional density de-
pends only on the common parameters, permitting consistent estimation.

Let yi = [yi1, . . . , yiT ]′ be a T × 1 vector dependent variable for individual i over
all T time periods, and let Xi = [xi1, . . . , xiT ]′ denote the corresponding T × K ma-
trix of regressors. For a static model yi has density

f (yi |Xi , αi ,β,γ) =
T∏

t=1

f (yit |xi t , αi ,β,γ). (23.8)

Maximum likelihood estimation based on this density generally leads to inconsistent
estimation of β in short panels owing to the incidental parameters problem.

Suppose there exists a sufficient statistic si for αi . Then conditioning on the suffi-
cient statistic si , in addition to the usual conditioning on regressors, leads to condi-
tional density

f (yi |Xi , αi ,β,γ, si ) = f (yi |Xi ,β,γ, si ), (23.9)

so that αi has dropped out. For example, for the linear regression model under nor-
mality si = ȳi (see Section 21.6.3). Then the conditional MLE maximizes the condi-
tional log-likelihood

ln LCOND(β,γ) =
N∑

i=1

ln f (yi |Xi ,β,γ, si ). (23.10)

The adjective conditional is added here to indicate conditioning on si and not just Xi .
Andersen (1970) provided a detailed analysis of the conditional MLE. He showed

that the conditional MLE is consistent if the density f (yi |Xi , αi ,β) is correctly spec-
ified, that the information matrix equality holds for the conditional log-likelihood, but
in general there is a loss of efficiency as the conditional MLE need not attain the
Cramer–Rao lower bound. For normal and Poisson distributions, however, there is no
efficiency less.

The approach requires that a suitable sufficient statistic exists. This is the case for
only a few models, essentially those of the linear exponential family. Andersen focused
on models without regressors and gave as examples the normal, Poisson, binomial,
and gamma. Once regressors are introduced it becomes even more difficult to find
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a suitable sufficient statistic. McCullagh and Nelder (1989) provide a quite general
discussion and Diggle et al. (2002) restrict their attention to specialized GLMs with
canonical link functions.

The leading examples when a sufficient statistic is available are linear models un-
der normality (see Section 21.6.2), logit models (though not probit models) for binary
data (see Section 23.4.3), one-parameter gamma (including exponential), and particu-
lar parameterizations of the Poisson and negative binomial models for count data (see
Section 23.7.3).

Mean-Differenced Transformation

For some models of the conditional mean with additive or multiplicative effects, the
individual effects αi can instead be eliminated by use of an appropriate differencing
transformation. This leads to moment conditions that can be used for method of mo-
ments or GMM estimation as detailed in Section 23.2.6.

The mean-differenced transformation generalizes the within transformation for
the linear model given in Section 21.2.2 that eliminates αi by subtracting individual-
specific means. It requires strongly exogenous regressors, see (23.7).

For the additive effects model defined in (23.3) with strongly exogenous regressors

E[(yit − ȳi ) − (g(x′
i tβ)−ḡi (β))|xi1, . . . , xiT ] = 0, (23.11)

where ḡi (β) = T −1∑T
t=1 g(x′

i tβ) and the result uses E[ȳi |xi1, . . . , xiT ] = αi + ḡi (β).
For linear models (23.11) simplifies considerably as then g(x′

i tβ) − ḡi (β) = (xi t −
x̄i )′β.

For the multiplicative effects model defined in (23.4), some algebra leads to

E

[
yit − g(x′

i tβ)

ḡi (β)
× ȳi |xi1, . . . , xiT

]
= 0, (23.12)

using E[ȳi |xi1, . . . , xiT ] = αi ḡi (β). For simplicity we call this a mean-differenced
transformation, though strictly speaking it is a quasi-difference. It is also called a
(conditional) mean-scaling transformation, as equivalently

E

[
yit − ȳi

ḡi (β)
g(x′

i tβ)|xi1, . . . , xiT

]
= 0.

First-Differences Transformation

The first-differences transformation generalizes the first-difference transformation
for the linear model given in Section 21.2.2 that eliminates αi by subtracting the model
lagged one period. We assume regressors are weakly exogenous (see (23.6)).

For the additive effects model,

E[(yit − yi,t−1) − (g(x′
i tβ)−g(x′

i,t−1β))|xi1, . . . , xi,t−1] = 0, (23.13)

where we have used E[yi,t−1|xi1, . . . , xi,t−1] = αi + g(x′
i,t−1β).
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For the multiplicative effects model defined in (23.4),

E

[
yit − g(x′

i tβ)

g(x′
i,t−1β)

× yi,t−1|xi1, . . . , xi,t−1

]
= 0, (23.14)

where we have used E[yi,t−1|xi1, . . . , xi,t−1] = αi g(x′
i,t−1β). For simplicity we call it

a first-differences transformation, though strictly speaking it is a quasi-difference.
The first-differences transformation relies on weaker assumptions, conditioning

only up to period t . It permits estimation of dynamic models, extending Section 22.5
to nonlinear models. For dynamic multiplicative effects Wooldridge (1997) and Cham-
berlain (1992) actually proposed use of a variant of (23.14),

E

[
g(x′

i,t−1β)

g(x′
i tβ)

yit − yi,t−1|xi1, . . . , xi,t−1

]
= 0. (23.15)

Dummy Variable Model Estimation

If the incidental parameters problem is ignored, one can attempt to estimate all pa-
rameters, including the individual-specific effects. Introduce a set of N dummy vari-
ables d j,i t equal to 1 if i = j and equal to 0 otherwise, and then jointly estimate the
individual-specific parameters α1, . . . , αN along with the other model parameters.

This estimator is computationally feasible, despite the very large number of param-
eters owing to large N , but the resulting estimates of β and possibly γ are in general
inconsistent. Here we consider just parametric models, though similar points hold for
conditional mean models.

Thus consider the parametric individual-specific effects model defined in (23.1).
Then the method is to obtain ML estimates of β, γ, and α = [α1 . . . αN ]′ that maxi-
mize the full log-likelihood

ln LFE(β,γ,α) =
N∑

i=1

T∑
t=1

ln f
(
yit ,d′

i tα + x′
i tβ,γ

)
, (23.16)

where di t = [d1,i t . . . dN ,i t ]′. The first-order conditions with respect to δ = [β′ γ ′]′ and
α are

N∑
i=1

T∑
t=1

∂ ln f
(
yit ,d′

i tα + x′
i tβ,γ

)
/∂δ = 0,

T∑
t=1

∂ ln f
(
yit , αi + x′

i tβ,γ
)
/∂αi = 0, i = 1, . . . , N .

This estimator can be simple to compute despite the large number of parameters, N
plus the dimension of δ. As detailed in Greene (2004b), the inverse of the Hessian
is easily obtained by partitioning into δ and α and applying the standard partitioned
inverse formula, using the simplification that ∂ ln L(δ,α)/∂αi∂α j = 0 for j �= i so
that the inverse of the large N × N block corresponding to (α,α) is trivially obtained.

In two special cases there is no incidental parameters problem. First, if yit ∼
N [αi + x′

i tβ, σ
2] then, from Section 21.6.4, the MLE for β is the within estimator,
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which is consistent for β even for finite T . Here the incidental parameters problem
arises for estimation of σ 2 but not for β. Second, for yit ∼ P[exp(αi + x′

i tβ)] there is
similarly no incidental parameters problem in estimating β (see Section 23.7.3).

In general, however, there is an incidental parameters problem. The derivative with
respect to αi involves only T observations, rather than all N T observations. This usu-
ally spills over to inconsistency of β̂ML and γ̂ML in short panels. It is possible that this
inconsistency is moderate in panels that are not too short, such as T = 10 or T = 20.
The simulation study of Greene (2004a) indicates that the nature and extent of bias
vary considerably with the particular nonlinear model being studied. The development
of methods that are reasonably robust in the presence of fixed effects, though still in-
consistent in short panels, is an active area of research.

23.2.3. Random Effects Models

A random effects model treats the individual-specific effect αi as a random variable
with specified distribution and eliminates αi by integrating over this distribution. Ran-
dom effects are usually applied to parametric models.

Parametric Models

Suppose the i th observation yi has unconditional joint density f (yi |Xi , αi ,β ,γ) given
in (23.8), and the random effect has density

αi ∼ g(αi |η), (23.17)

where g(αi |η) does not depend on observables. Then the unconditional joint density
for the i th observation is

f (yi |Xi ,β,γ,η) =
∫ [ T∏

t=1

f (yit |xi t , αi ,β,γ)

]
g(αi |η)dαi , (23.18)

where by unconditional we mean we no longer condition on αi . The random effects
MLE of β,γ, and η maximizes the log-likelihood

ln LRE(β,γ,η) =
N∑

i=1

ln

(∫ [ T∏
t=1

f (yit |xi t , αi ,β)

]
g(αi |γ)dαi

)
. (23.19)

In some cases an analytical expression for this integral is possible, basically if∏
t f (yit |αi ) and g(αi ) are conjugate pairs (see Table 13.2). Examples include normal–

normal for linear regression, which yields normal, and Poisson–gamma for count data
regression, which yields negative binomial.

In most cases analytical results are not available, but numerical methods or
simulation-based methods are likely to work well because the integral is only one
dimensional. The usual approach is to choose f (yit ) to be the density that is thought
to best fit the data in the absence of individual effects, and to let g(αi ) be the normal
density. The integral is then a univariate integral with respect to a normal random vari-
able. For small T the integral can be well approximated by Gauss–Hermite quadrature
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(see Section 12.3.1), which approximates the integral with respect to a normal den-
sity by a weighted sum. Butler and Moffitt (1982) provide a detailed exposition for
the random effects probit model. Skrondal and Rabe-Hasketh (2004) use quadrature.
Alternatively, repeated draws from g(αi ) can be the basis for maximum simulated like-
lihood estimation (see Section 12.4.2).

The preceding discussion assumed independence over t for given i . If instead yit

and yis are correlated over i then it is more efficient to replace
∏

t f (yit |xi t , αi ,β,γ)
by f (yi |Xi , αi ,β ,γ) in (23.18) and (23.19).

Random Coefficients Model

The random effects approach can clearly be generalized to a random coefficients
model, with random slopes as well as random intercepts, similar to the linear case in
Section 22.8.

The natural model is a single-index model with conditional density
f (yit , x′

i t (β + αi ),γ) or conditional mean g(yit , x′
i t (β + αi )) and the univariate

integral with respect to scalar αi will become a multivariate integral with respect to
vector αi , usually assumed to be normally distributed.

Correlated Random Effects Model

The key weakness of the random effects model is that it makes the strong assump-
tion that the random effects are independent of regressors. To overcome this limitation
Chamberlain (1980, 1982) proposed a correlated random effects model, for back-
ground discussion see Section 21.4.4, that specifies

αi = x′
1iπ1 + · · · + x′

T iπT + ξi . (23.20)

The likelihood above is then maximized with respect to β,γ, π, and the parameters of
the density of ξ . Unlike linear models this model leads to different estimator than that
obtained using the simpler specification of Mundlak (1978) that

αi = x̄′
iπ + ξi . (23.21)

The equation (23.20) can be viewed as an example of a hierarchical model. More
general hierarchical models also permit random slopes, with estimation by classical or
Bayesian methods. Section 22.8 presented details for the linear model.

Finite Mixture Model

The finite mixture model (see Section 18.5.1) provides an alternative model for the un-
observed individual-specific effect. If there are m latent classes or types of individuals
and for the j th type αi = α j then (23.18) becomes

f (yi |Xi ,β,γ,π) =
m∑

j=1

[
T∏

t=1

f (yit |xi t , α j ,β,γ)

]
π j .

This model is most often used for panel duration models (see Section 18.5.2).
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23.2.4. Pooled Models

The pooled model does not explicitly model individual-specific effects. It extends lin-
ear pooled regression (see Section 21.5) to nonlinear models.

Conditional Mean Models

For conditional mean models the pooled model is

E[yit |xi t ] = g(xi t ,β), (23.22)

for specified function g(·).
The model (23.22) can be directly estimated by NLS, with inference based on panel-

robust standard errors that control for conditional heteroskedasticity and for condi-
tional correlation between yit and yis . More efficient estimation is possible by model-
ing the heteroskedasticity and correlation. Details are provided in Section 23.2.6.

Pooled versus Random Effects Models

What is the cost of ignoring individual-specific random effects?
The additive effect model E[yit |αi , xi t ] = αi + g(xi t ,β) leads to (23.22) if

E[αi |xi t ] = 0. The multiplicative effect model E[yit |αi , xi t ] = αi g(xi t ,β) implies
(23.22) if E[αi |xi t ] = 1. So the pooled model will lead to consistent estimation of β
in a random effects model if the effects are additive or multiplicative and the standard
normalizations of the mean of αi for these models are used.

Otherwise, the pooled model is unlikely to lead to the same parameter estimates as
an individual-specific random effects model. For example, consider a probit random
effects model with E[yit |αi , xi t ] = �(αi + xi t

′β), where αi ∼ N [0, σ 2
α ]. Then it can

be shown that E[yit |xi t ] = �(xi t
′β/
√

1 + σ 2
α ), which differs from the natural pooled

probit model E[yit |xi t ] = �(xi t
′β). Unlike the linear model of Chapter 21, if the true

model has individual-specific random effects than ignoring these effects can lead to
inconsistent parameter estimates of β.

The statistics literature uses the pooled model approach extensively for panel
versions of generalized linear models, such as binary data and count data. The re-
sulting parameter estimates are called population averaged, as the random effects are
averaged out. The approach is called marginal analysis, as E[yit |xi t ] is a model that
is marginal with respect to the random effects.

Parametric Models

For pooled parametric models the starting point is usually

f (yit |xi t ) = f (yit , x′
i tβ,γ) (23.23)

for specified density f (·). This model can be directly estimated by ML, with inference
based on panel-robust standard errors that control for conditional heteroskedasticity
and correlation (see Section 23.2.6).
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In general the pooled parametric model estimates of β and γ are unlikely to be
consistent with those from a random effects parametric model. The arguments are
similar to those for the conditional mean.

23.2.5. Fixed versus Random Effects

The essential result that random effects and pooled model estimators are inconsistent
if individual-specific effects are present and are correlated with regressors still holds
in nonlinear models. This favors use of fixed effects models on grounds of robustness,
though there is a trade-off with loss of efficiency in estimation. A Hausman test can
be used (see Section 21.4.4) to test whether a fixed effects model is needed, provided
consistent estimation of the fixed effects model is possible.

Other comparisons of fixed versus random effects models for linear models (see
Section 21.4) require some adaptation for nonlinear models.

Because of the incidental parameters problem, not all nonlinear models with fixed
effects admit consistent parameter estimates. So fixed effects modeling is not always
feasible.

If consistent estimation of a nonlinear fixed effects model is possible then, unlike
the linear case, the coefficients of time-invariant regressors can be identified. To see
this consider the mean-differenced transformation for an additive effects model. For
a linear model E[(yit − ȳi ) − (xi t − x̄i )′β|xi1, . . . , xiT ] = 0, with obvious problems
for time-invariant regressors as then, considering the j th regressor, xit j − x̄i j = xi j −
xi j = 0. More generally, from (23.11)

E[(yit − ȳi ) − (g(x′
i tβ)−ḡi (β))|xi1, . . . , xiT ] = 0,

with no such simplification for nonlinear g(·) unless all K components of xi t are time-
invariant.

In fixed effect models with nonadditive effects it is not possible to predict changes
in the dependent variable as regressors change. For the general model (23.2), the
marginal effect ∂ E[yit |xi t , αi ,β]/∂xi t = ∂g(xi t , αi ,β)/∂xi t depends on αi .

The marginal effect can be measured in two special cases. For additive ef-
fects (see (23.3)) the marginal effect is ∂g(xi t ,β)/∂xi t , which does not de-
pend on αi . For multiplicative effects models (see (23.4)) the marginal effect is
αi∂g(xi t ,β)/∂xi t . Then it is possible to measure the relative size of marginal effects for
changes in different regressors. In particular, if E[yit |xi t , αi ,β] = αi exp(x′

i tβ), then
(∂E[yit ]/∂xit j )/(∂E[yit ]/∂xitk) = β j/βk .

23.2.6. Estimation and Panel-Robust Statistical Inference

The preceding analysis has concentrated on elimination of the incidental parameter
αi . Now we detail estimation of model parameters, once αi has been eliminated for
models with individual-specific effects.

We assume a short panel and independence of observations over i . The dependent
variable yit may be conditionally heteroskedastic and conditionally correlated over t
for given i . The situation is similar to that in Section 21.2.3, except that nonlinear
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estimators are used instead of simpler linear LS estimators. Standard statistical output
that ignores this complication will lead to invalid inference. In the following we present
expressions for panel-robust estimates of the variance matrix of parameter estimates.
Alternatively, a panel bootstrap can be used (see Section 11.6.2).

GMM Estimation

Panel GMM estimation is appropriate for models based on the conditional mean. The
key is specification of the moment condition that is the basis of GMM estimation.
Following Section 22.2.1, a natural starting point is

E[Z′
i ui (θ)] = 0, i = 1, . . . , N , (23.24)

where Zi is a T × r matrix that depends on the regressors, ui (θ) is a T × 1 residual
vector, and θ is a q × 1 parameter vector θ. Different panel models lead to different
specifications of ui and Zi . An example is given in the following. A key departure
from Chapter 22 is that the residual ui (θ) will be nonlinear in θ.

If r = q then there are as many moment conditions as parameters to estimate and
we can use the panel method of moments estimator θ̂MM that solves

1

N

N∑
i=1

Z′
i ui (̂θ) = 0. (23.25)

Using results in Section 6.10.3 on nonlinear systems estimation, we have that this
estimator is asymptotically normal with variance matrix consistently estimated by

V̂[̂θ] =
[

N∑
i=1

D̂′
i Zi

]−1 N∑
i=1

Z′
i ûi û′

i Zi

[
N∑

i=1

Z′
i D̂i

]−1

, (23.26)

where D̂i = ∂ui/∂θ
′∣∣̂
θ

and ûi = ui (̂θ). This yields panel-robust-standard errors in
short panels.

If r > q then GMM estimation is necessary, and we use the panel GMM estimator
θ̂GMM that minimizes

QN (θ) =
[

1

N

N∑
i=1

Z′
i ui (θ)

]′
WN

[
1

N

N∑
i=1

Z′
i ui (θ)

]
, (23.27)

where WN is an r × r weighting matrix. The asymptotic variance matrix for this es-
timator can be obtained directly from results for the nonlinear systems IV estimator
given in Section 6.10.4. Given the moment condition (23.24), the most efficient esti-
mator uses WN = [N−1∑

i Z′
i ûi û′

i Zi ]−1.
More efficient estimators are possible using alternative moment conditions. In par-

ticular, if the starting point is a particular conditional moment condition then the op-
timal unconditional moment condition for GMM estimation is given in Section 6.3.7.
The GEE estimator given later follows this approach. A more general treatment is
given in Avery, Hansen, and Hotz (1983) and Breitung and Lechner (1999).
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GMM Example

As a specific example, consider the first-differences transformation applied to the mul-
tiplicative fixed effects model. The starting point is the conditional moment restriction
(23.14). This leads to many unconditional moment conditions, one of which is

E

[
xi t

(
yit − g(x′

i tβ)

g(x′
i,t−1β)

× yi,t−1

)]
= 0, t = 1, . . . , T, i = 1, . . . , N .

Assume data on (yit , xi t ) are available for (T + 1) periods, with the initial
period then lost because of first differencing. Stacking over T time periods
yields (23.24) with Z′

i = [xi1, . . . , xiT ] and u′
i = [ui1, . . . , uiT ], where uit = yit −

[g(x′
i tβ)/g(x′

i,t−1β)]yi,t−1. Here Z′
i ui =∑t xi t uit , so the method of moments estima-

tor β̂ solves

N∑
i=1

T∑
t=1

xi t

[
yit − g(x′

i tβ)

g(x′
i,t−1β)

yi,t−1

]
= 0.

Clearly, additional moment conditions can be used, such as E[xi t−1uit ] = 0, leading to
an overidentified model and estimation by GMM. This was discussed extensively for
the linear model in Section 22.2.

Generalized Estimating Equations Estimation

The pooled model for the conditional mean specifies E[yit |xi t ] = g(xi t ,β) (see Sec-
tion 23.2.4). This model can be estimated by GMM methods already given. Here we
go further and consider efficient GMM estimation.

Stacking over all T observations gives conditional moment condition

E[yi − gi (β)|Xi ] = 0, (23.28)

where gi (β) = [g(xi1,β), . . . , g(xiT ,β)]′ and Xi = [xi1, . . . , xiT ]′. The optimal un-
conditional moment condition to use in estimation is then

E

[
∂g′

i (β)

∂β
{V [yi |Xi ]}−1 (yi − gi (β))

]
= 0, (23.29)

a result obtained by applying the general result given in Section 6.3.7. This leads to
the generalized estimating equations estimator β̂GEE that solves

N∑
i=1

∂g′
i (β)

∂β
Σ−1

i (yi − gi (β)) = 0, (23.30)

where Σi is a working variance matrix for V[yi |Xi ]. The asymptotic variance matrix
of β̂GEE is given by (23.26) with ûi = yi − gi (β̂) and Zi = ∂g′

i (β)/∂β
∣∣
β̂

× Σ̂i . This
variance estimate is panel-robust and is also robust to misspecification of Σi .

The GEE estimator, due to Liang and Zeger (1986), is widely used in the statistics
literature for panel versions of generalized linear models. Different GLMs correspond
to different conditional mean functions gi (β) and working variance matrices Σi .
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ML Estimation

For likelihood-based models the starting point is the joint density for all T individuals,
f (yi |Xi ,θ). For pooled parametric models θ′= [β′,γ ′] (see (23.23)), and for random
effects parametric models θ′= [β′,γ ′,η′] (see (23.18)).

The standard approach is to let f (yi |Xi ,θ) =∏T
t=1 f (yit |xi t ,θ), where

f (yit |xi t ,θ) is the density for the (i, t)th observation. The implicit assumption of inde-
pendence over t for given i is usually unwarranted, especially for pooled models that
do not include a random effect that permits some correlation over time. Nonetheless,
consistent estimates of θ are obtained even if f (yi |Xi ,θ) is misspecified, provided
f (yit |xi t ,θ) is correctly specified. A sandwich form should then be used for the es-
timator variance matrix to ensure panel-robust standard errors. The MLE is strictly a
quasi-MLE, with detailed discussion given in Section 5.7.5. More generally, this ap-
proach is an example of inference with clustered data (see Section 24.5).

More efficient estimation is possible using a richer model for f (yi |Xi ,θ) that ac-
commodates correlation over time. However, nonnormal multivariate distributions for
yi can be restrictive or difficult to work with. For pooled GLMs the GEE estimator can
be used instead.

23.2.7. Dynamic Models

Dynamic models with individual-specific effects are of considerable interest as they al-
low one to distinguish between true state dependence and spurious dependence caused
by unobserved heterogeneity (see Section 22.5.1).

For nonlinear models it is not always obvious how to include lagged dependent
variables as regressors, since for some types of data there is not always a standard pure
time series model. This is illustrated in Section 23.7.4 for the Poisson model. Once an
appropriate specification is determined, the standard fixed effects estimators become
inconsistent and random effects estiamtors need to incorporate initial conditions, as
was the case for the linear panel model.

Pooled Models

The pooled model ignores random effects and estimates the usual cross-section model
where the regressors now include lagged dependent variables. The discussion in Sec-
tion 23.2.4 is again relevant.

Fixed Effects Models

For fixed effects models the issues are similar to those presented in Section 22.5. The
regressors are now weakly exogenous rather than strongly exogenous. The usual fixed
effects estimators are inconsistent.

For models with additive effects or multiplicative effects consistent estimation is
possible using the first-difference transformation (see Section 23.2.2) and higher lags
of the lagged dependent variable as an instrument. For additive effects models this
leads to a nonlinear version of the Arellano–Bond estimator given in Section 22.5.3.
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For multiplicative effects the first-difference transformation is detailed in Section
23.7.4. For dynamic logit with fixed effects see Section 23.4.3.

Parametric Random Effects Models

For parametric random effects models initial conditions on the lagged dependent vari-
able matter. Usually there is no satisfactory treatment, so the estimates are inconsistent
in short panels with inconsistency that declines as T gets larger.

Consider the simplest case where only the first-period lag appears in the model,
so the regressors xi t become regressors xi t and yit−1. The random effects density
(23.1) becomes f (yit |yit−1, xi t , αi , δ) for t = 2, . . . , T . However, a similar model for
yi1 cannot be included because yi0 is not observed. One approach treats yi1 as ex-
ogenous, so that we model the conditional distribution for only T − 1 observations
yit , . . . , yi2. An alternative approach presumes a static model for yi1 that depends on
regressors xi1 and possibly on the marginal effect αi . Then the joint conditional density
of yi is

f (yi |xi1, . . . , xiT , αi , δ, δ1,γ)

=
∫ [ T∏

t=2

f (yit |yit−1, xi t , αi , δ)

]
f1(yi1|xi1, αi , δ1)g(αi |γ)dαi ,

rather than (23.18), where f1(yi1|xi1, αi , δ1) is the assumed density for the first
observation.

In pure time series analysis initial conditions become irrelevant asymptotically,
since T → ∞. In short panels, however, they become very important as T is small
and asymptotics instead use N → ∞.

23.2.8. Endogenous Regressors

The treatment for endogenous variables in nonlinear models is similar to that in the
linear case presented in Chapter 22.

Panel GMM is the natural framework. The starting point is a conditional moment
restriction E[ui (θ)|Zi ] = 0 for appropriately defined residual ui (θ) and instruments
Zi . This leads to unconditional moment condition (23.24) that is the basis for GMM
estimation. Possible candidates for instruments can include exogenous regressors from
periods other than the current one, as detailed in Sections 22.2 and 22.4 for the linear
model.

23.3. Nonlinear Panel Example: Patents and R&D

We model the relationship between patents and R&D expenditures, using U.S. data
on 346 firms for each of the five years 1975–1979 from Hall, Griliches, and Hausman
(1986). The dependent variable yit is Patents, defined as the number of patents applied
for during the year that were eventually granted. For simplicity we consider just one
explanatory variable xit , real R&D spending during the year (in 1972 dollars).
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Figure 23.1: Patents and R&D spending: pooled (overall) regression. Natural logarithm of
patent applications leading to award plotted against the natural logarithm of R&D spending
for 346 firms in each of the five years 1975–79. Zero patents recoded to 0.5 patents.

An obvious starting model is a log–log model, with E[ln yit |xit ] = αi + β ln xit ,
since then β equals the Patents–R&D elasticity. This model cannot be applied here, as
yit = 0 for a considerable number of observations and ln 0 is not defined. An ad hoc
adjustment is to recode yit = 0 as yit = 0.5 before taking logs.

Figure 23.1 provides a plot of the adjusted ln (Patents) against ln (R&D), along with
fitted OLS (with an estimated slope coefficient of 0.834) and nonparametric regression
curves, using data for all firms in all years. Patents clearly increase with R&D expen-
diture. Panel data analysis, particularly fixed effects models, can separate this rela-
tionship into cross-section and time-series components. Note that Patents vary greatly
across observations, particularly across firms, with a mean of 36.3, a standard deviation
of 74.5, and a range of 0 to 608 over all years and firms.

We estimate a multiplicative individual-effects model for the conditional mean with

E[yit |xit , αi ] = αi exp(β ln xit ) = exp(γi + β ln xit ), (23.31)

where γi = lnαi . Then β directly estimates the Patents–R&D elasticity, since (23.31)
implies ∂ ln E[yit |xit ]/∂ ln xit = β. Unlike the log–log model, zero values for yit cause
no problems.

A richer parametric model recognizes that the dependent variable is a count. A
starting point is a Poisson model

yit |xit , γi ∼ P[exp(γi + β ln xit )]. (23.32)

This model, detailed in Section 23.7, has the same conditional mean for yit as that
given in (23.31).

Table 23.1 presents a number of estimators for these data. All estimators are con-
sistent under the assumption that the conditional mean is given by (23.31) with αi a
random effect that is independent of xi t and has constant mean. All estimators ex-
cept the last are inconsistent under the assumption that αi is instead a fixed effect that
is correlated with xi t . Three standard error estimates are provided: program defaults,
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Table 23.1. Patents and R&D Spending: Nonlinear Panel Model Estimatorsa

NLS Poisson GEE Poisson–RE Poisson–FE

γ = lnα 2.529 1.712 2.068 2.313 –
β .509 .693 .560 .349 −0.038
Panel seb (.055) (.043) (.033) (.033) (.033)
Boot se [.054] [.047] [.107] [.119] {.107}
Usual se {.011} {.002} {.004} {.033} {.033}
Sum β – .486 .460 .546 .313
N 1730 1730 1730 1730 1620

a Shown are pooled NLS, pooled Poisson, pooled GEE, Poisson Random Effects (RE), and Poisson Fixed
Effects estimates for the nonlinear panel regression (23.31) of ln(Patents) on ln(R&D). Standard errors for
the slope coefficients are panel robust in parentheses, bootstrap in square brackets, and usual estimates that
assume iid errors in curly braces. The second to last row gives the sum of β coefficients in an expanded model
with up to five lags of ln(R&D) as regressors.

b se, standard error

panel-robust estimates (where available), and bootstrap estimates (without refinement).
The details for each column are as follows:

Pooled NLS: The NLS estimates in the first column estimate (23.31) with αi = α by
NLS (see Section 5.8). The default standard error of 0.011 assuming iid errors is
much smaller than the correct panel-robust standard error estimate of 0.054.

Pooled Poisson: The Poisson estimates in the second column are for the Poisson
model (23.32) with αi = α estimated by the Poisson MLE assuming indepen-
dence over i and t . The estimated elasticity is 0.693 compared to the NLS esti-
mate of 0.509. The default standard error of 0.002 imposes the Poisson restric-
tion of variance–mean equality (see Section 20.2.2). Correcting for overdispersion
using the sandwich variance matrix estimate (see also Section 20.2.2) increases
the standard error estimate to 0.020 and emphasizes the importance of control-
ling for any overdispersion in count data. Additionally controlling for correlation
over t for given i leads to an even higher panel-robust standard error estimate
of 0.043.

Pooled GEE: The pooled GEE estimator solves (23.30), where g(xi t ,β) is given by
(23.32) with αi = α. The particular specification of the working matrix �i used
here is given after (23.55). The estimated elasticity is 0.560 with standard error of
0.033 using the panel-robust estimate discussed after (23.30).

Poisson–RE: The Poisson random effects estimator assumes that αi = ln γi is gamma
distributed (see Section 23.7.2). The estimated elasticity is 0.349 with default stan-
dard error of 0.033.

Poisson–FE: The Poisson fixed effects estimator assumes that αi = ln γi is a fixed
effect, and it is estimated as in Section 23.7.3. The estimated elasticity of −0.038
is now negative, with default standard error of 0.033. For the Poisson fixed effect
model, firms with

∑
t yi t = 0 are dropped, leading here to a loss of 22 × 5 = 110

observations.
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There is a big difference between fixed and random effects results, favoring fixed
effects estimation. The surprising negative estimated elasticity with FE arises because
the model is too simple. In particular, R&D expenditure affects patent activity with
a lag. Replacing β ln xi t in (23.31) and (23.32) by

∑5
l=0 βl ln xi,t−l leads to estimated

elasticity
∑5

l=0 β̂l given in the second last row of Table 23.1. The FE estimate of 0.313
is still less than the other estimates, but the difference is now reduced.

23.4. Binary Outcome Data

We consider a binary outcome in which yit takes only the values 0 and 1. For example,
data may be available on whether or not an individual is employed in each of several
time periods. A key result is that fixed effects estimation is possible for the logit model
but not the probit model.

23.4.1. Individual-Specific Effects Binary Models

The natural extension of the binary outcome model from cross-section data (see Sec-
tion 14.3) to panel data with individual-specific effects is to specify that yit takes only
the values 0 and 1, with

Pr[yit = 1|xi t ,β,αi ] =


F(αi + x′
i tβ) in general,

�(αi + x′
i tβ) for logit model,

�(αi + x′
i tβ) for probit model,

(23.33)

where F(·) is a cumulative distribution function, �(·) is the logistic cdf with �(z) =
ez/(1 + ez), and �(·) is the standard normal cdf. Given (23.33) and assuming condi-
tional independence, the joint density for the i th observation yi= (yi1, . . . , yiT ) is

f (yi |Xi , αi ,β) =
T∏

t=1

F(αi + x′
i tβ)yit (1 − F(αi + x′

i tβ))1−yit . (23.34)

For binary data the conditional probability is also the conditional mean, so

E[yit |αi , xi t ] = F(αi + x′
i tβ). (23.35)

This is a single-index individual-specific effects model (see (23.5)) that does not sim-
plify to either an additive or multiplicative effects model. Additive and multiplicative
effects models are not appropriate as they do not restrict the conditional mean and
conditional probability to lie between zero and one.

Binary panel models emphasize the parametric model (23.34), since binary data
must be Bernoulli distributed. The conditional mean model (23.35) is rarely used,
though it is natural to use this if regressors are endogenous.

23.4.2. Random Effects Binary Models

The random effects MLE assumes that the individual effects are normally dis-
tributed, with αi ∼ N [0, σ 2

α ]. The random effects MLE of β and σ 2
α maximizes the
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log-likelihood
∑N

i=1 ln f (yi |Xi ,β, σ
2
α ), where

f
(
yi |Xi ,β,σ

2
α

) =
∫

f (yi |Xi , αi ,β)
1√

2πσ 2
α

exp

(−αi

2σ 2
α

)2

dαi , (23.36)

where f (yi |Xi , αi ,β) is given in (23.34) with F = � for the logit model and F = �
for the probit model. There is no closed-form solution for the integral (23.36) and it is
standard to compute it numerically using quadrature methods.

If fixed effects are not present, then an alternative to the random effects model is
a pooled binary model that simply specifies that Pr [yi t = 1|xi t ] = F(x′

i tβ). Statistical
inference should then be based on panel-robust standard errors (see Section 23.2.6).
More efficient estimation is possible using a GMM approach (see Avery et al., 1983)
or a GEE approach (see Liang and Zeger, 1986).

23.4.3. Fixed Effects Logit

Fixed effects estimation is possible for the panel logit model, using the conditional
MLE, but not for other binary panel models such as panel probit.

For the logit model performing some algebra given in Section 23.4.5 yields that the
joint density of yi= (yi1, . . . , yiT ) is

f (yi |αi , xi ,β) = exp
(
αi
∑

t yi t
)

exp
((∑

t yi t x′
i t

)
β
)∏

t

[
1 + exp(αi + x′

i tβ)
] . (23.37)

This depends on αi , which we need to eliminate. For observation i there are
∑

t yi t

outcomes of 1 in the T periods. Define the set Bc = {di |
∑

t dit =∑t yi t = c} to be
the set of all possible sequences of 0s and 1s for which the sum of T binary outcomes∑

t yi t = c. Then if we condition on
∑

t yi t = c it is shown in Section 23.4.6 that αi is
eliminated and

f (yi |
∑

t

yi t = c, xi ,β) = exp
((∑

t yi t x′
i t

)
β
)∑

d∈Bc
exp
((∑

t dit x′
i t

)
β
) , (23.38)

a result due to Chamberlain (1980). The density (23.38) is the basis for conditional
ML estimation. The only complication is that there are many sets Bc and sequences
within these sets, as we now detail.

First, it is not possible to condition on
∑

t yi t = 0, since this can only occur if all
yit = 0, and similarly for

∑
t yi t = T . This can mean considerable loss of observations

if, for example, most people are employed in all periods.
As an example where conditioning works, suppose T = 2 and

∑
t yi t = 1. Then ei-

ther the sequence {0, 1} or {1, 0} is possible, and the conditional probability in (23.38)
implies that, for example,

Pr[yi1 = 0, yi2 = 1|yi1 + yi2 = 1] = exp
(
x′

i1β
)

exp
(
x′

i1β
)+ exp

(
x′

i2β
)

= exp
(
(xi1 − xi0)′β

)
1 + exp

(
(xi1 − xi0)′β

) .
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If T = 3 then we can condition on
∑

t yi t = 1, with possible sequences {0, 0, 1},
{0, 1, 0} and {1, 0, 0}, or on

∑
t yi t = 2, with possible sequences {0, 1, 1}, {1, 0, 1}

and {1, 1, 0}. Clearly for large T there are many sequences and the conditional density
can get complicated.

The conditional density is that of a conditional logit model, where parameters are
invariant but regressors vary over alternatives. The number of alternatives varies across
individuals, where for individual i each alternative is a specific sequence of 0s and 1s
that sum to

∑
t yi t . It is easiest to use computer code specifically set up for this prob-

lem. Even then there can be a large number of alternatives. For example, if T = 10 and∑
t yi t = 5 then there are 252 alternatives. Consistent but less efficient estimation is

possible by dropping some observations, such as for individuals with many alternatives
because of a high

∑
t yi t , or by reducing the number of time periods.

The elimination of the individual-effects αi makes it impossible to interpret re-
gression coefficients using the original model (23.37). Instead, we use the conditional
model (23.38). For example, suppose we have single regressor and β = 0.2. Then if
we consider two time periods and condition on

∑
t yi t = 1, then

Pr[yi1 = 0, yi2 = 1|yi1 + yi2 = 1] = exp(β(xi1 − x10))

1 + exp(β(xi1 − x10))
.

It follows that a one-unit difference in xi1 versus xi2 leads to a conditional probability
of this sequence being exp(β)/[1 + exp(β)] compared to a probability of one-half if
xi1 = xi2.

23.4.4. Dynamic Binary Models

Suppose we have a pure time series first-order Markov logit model with no regressors
other than the lagged dependent variable:

Pr[yit = 1|αi , yit−1] = exp(αi + γ yit−1)

1 + exp(αi + γ yit−1)
. (23.39)

Then performing some algebra given in Section 23.4.5 gives

f (yi t |yi1, yiT ,

T −1∑
t=2

yit , γ ) =
exp
(
γ
∑T −1

t=2 yit yit−1

)
∑

d∈Ci
exp
(
γ
∑T −1

t=2 dit dit−1

) , (23.40)

where the set Ci = {di |yi1, yiT ,
∑

t dit =∑t yi t} is the set of all possible sequences
of 0s and 1s for which the sum of T binary outcomes is

∑
t yi t , the first outcome is

yi1, and the last outcome is yiT .
Conditional ML estimation based on (23.40) leads to a consistent estimate of γ .

The minimum number of time periods needed is four. For example, if yi is the se-
quence {0, 1, 0, 1} then the set Ci is composed of the sequences {0, 1, 0, 1} and
{0, 0, 1, 1}. The approach is due to Chamberlain (1985), who actually considered
a second-order Markov model. Chay, Hoynes, and Hyslop (2001) apply this method
to California administrative data on welfare spells and find that, after controlling for
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unobserved individual heterogeneity, there remains true state dependence in welfare
participation.

The preceding results and discussion apply to pure time series models. Honoré and
Kyriazidou (2000) provided a method that allows regressors other than the lagged
dependent variable. Thus let (23.39) become

Pr[yit = 1|αi , yit−1, xi t ] = exp(αi + x′
i tβ + γ yit−1)

1 + exp(αi + x′
i tβ+γ yit−1)

. (23.41)

Consider four time periods and consider sequences with common binary outcomes in
the first and fourth periods, say d1 and d4. Then the probability that the sequence is
{d1, 0, 1, d4}, given that it is either {d1, 0, 1, d4} or {d2, 1, 0, d4}, now depends on αi .
However, the dependence on αi disappears if x3i = x4i . Since few observations have
x3i = x4i , especially with continuous data, Honoré and Kyriazidou (2000) propose
use of kernel smoothing methods with kernel weights that depend on (x3i − x4i ). Chay
and Hyslop (2000) provide an application that implements this method and many other
methods for dynamic binary data models.

23.4.5. Multinomial Models

The fixed effects estimator can be generalized to the multinomial logit model, since
this model implies a binary logit model for pairwise comparison of alternatives (see
Section 15.4.3). For static models Chamberlain (1980) provides a brief exposition and
M.-J. Lee (2002) provides more details. Magnac (2000) provides a quite detailed em-
pirical application to individual transitions among six different states in the French
labor market using dynamic fixed effects logit models with no regressors other than
lagged dependent variables. Honoré and Kyriazidou (2000) consider the multinomial
logit model.

For other multinomial models a random effects approach is necessary. These mod-
els, such as mixed logit and multinomial probit, are complicated to estimate even in
the cross-section case. For details see Train (2003).

23.4.6. Derivations for Fixed Effects Logit

For simplicity suppress the subscript i . For the logit model the joint probability of
y = (y1, . . . , yT ) given in (23.34) becomes

f (y|α) =
T∏

t=1

(
exp(α + x′

tβ)

1 + exp(α + x′
tβ)

)yt
(

1

1 + exp(α + x′
tβ)

)1−yt

(23.42)

= exp
(∑

t yt (α + x′
tβ)
)∏

t

[
1 + exp(α + x′

tβ)
]

= exp
(
α
∑

t yt
)

exp
((∑

t yt x′
t

)
β
)∏

t

[
1 + exp(α + x′

tβ)
] ,

which yields (23.37).

798



23.4 . BINARY OUTCOME DATA

The quantity
∑

t yt can be shown to be a sufficient statistic for α as follows. Suppose
we have an observation for y such that

∑
t yt = c. Define the set Bc = {d|∑t dt = c}

to be the set of all possible sequences of 0s and 1s for which the sum of T binary
outcomes is c, and condition on

∑
t yt = c. Then

f (y|∑
t

yt = c) = Pr[y,
∑

t yt = c]

Pr[
∑

t yt = c]
(23.43)

= Pr[y]

Pr[
∑

t yt = c]

= Pr[y]∑
d∈Bc

Pr[d]

= exp
((∑

t yt x′
t

)
β
)∑

d∈Bc
exp
((∑

t dt x′
t

)
β
) ,

where the first equality uses Bayes’ rule, the second equality uses the fact that knowl-
edge of

∑
t yt does not add anything given knowledge of y, the third equality uses

the fact that Pr[
∑

t yt = c] equals the sum of the probabilities of combinations of 0s
and 1s that equal c, and the fourth uses the previous definition of f (y) and consider-
able simplification that in part relies on

∑
t yt =∑t dt when we restrict attention to

d ∈ Bc.
Now consider the dynamic model. Replacing x′

tβ in (23.42) by γ yt−1 yields

f (y) =
exp
(
α
∑T

t=2 yt

)
exp
(∑T

t=2 γ yt−1 yt

)
∏

t

[
1 + exp(α + γ yt−1)

]
=

exp
(
α
∑T

t=2 yt

)
exp
(∑T

t=2 γ yt−1 yt

)
[
1 + exp(α)

]∑T
t=2(1−yt−1) [

1 + exp(α + γ )
]∑T

t=2 yt−1

=
exp
(
α
∑T

t=2 yt

)
exp
(∑T

t=2 γ yt−1 yt

)
[
1 + exp(α)

](T −1+y1−yT +∑T
t=2 yt

)
+ [

1 + exp(α + γ )
]y1−yT +∑T

t=2 yt

,

where the second equality uses the fact that yt−1 is either 0 or 1 and follows after
some algebra, and the last equality uses

∑T
t=2 yt−1 = y1 − yT +∑T

t=2 yt . The algebra
is then similar to (23.43) except that in addition to conditioning on

∑T
t=2 yt we also

need to condition on y1 and yT that appear in the denominator. Equivalently, we can
condition on

∑T
t=1 yt and y1 and yT . This yields

f (y) =
exp
(∑T

t=2 γ yt−1 yt

)
∑

d∈Cc
exp
(∑T

t=2 γ dt−1dt

) ,
where C = {d|d1 = y1, dT = yT ,

∑T
t=1 dt =∑T

t=1 yt} is the set of all possible se-
quences of 0s and 1s for which the sum of the T binary outcomes is

∑
t y, the first

outcome is y1, and the last outcome is yT .
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23.5. Tobit and Selection Models

We consider censoring, truncation, or selection when panel data are available, rather
than data on a single cross-section.

A pooled analysis simply mirrors analysis in the cross-section case, with the adjust-
ment that panel-robust standard errors should be computed (see Section 23.2.8). For
example, see Grasdal (2001) who considers selection resulting from panel attrition.

Here we focus instead on panel models with individual-specific effects. Then ran-
dom effects models can be estimated, if the strong assumption of a purely random ef-
fect is warranted, the only complication being that of numerical computation. There are
no simple consistent estimators for fixed effects models, however, in the usual microe-
conometric setting of a short panel. More complicated semiparametric estimators that
permit fixed effects in Tobit and generalized Tobit models are given in Section 23.8.

23.5.1. Censored and Truncated Models

For cross-section data the censored Tobit model is given in Section 16.3.1. A panel
version with additive individual-specific effect specifies

y∗
i t = αi + x′

i tβ + εi t , (23.44)

where εi t ∼ N [0, σ 2
ε ], and we observe yit = y∗

i t if y∗
i t > 0 and yit = 0 or is observed

to be missing if y∗
i t ≤ 0. The joint density for the i th observation yi= (yi1, . . . , yiT )

can be written as

f
(
yi |Xi , αi ,β,σ

2
ε

) =
T∏

t=1

[
1

σε
φi t

]dit

[1 −�i t ]
1−dit , (23.45)

where φi t = φ((yit − αi − x′
i tβ)/σε), �i t = �((αi + x′

i tβ)/σε), and φ(·) and �(·) de-
note, respectively, the standard normal pdf and cdf.

The fixed effects MLE maximizes the log-likelihood based on (23.45) with respect
to β, σ 2

ε , and α1, . . . , αN . In short panels the resulting estimator of β is inconsistent
because of the incidental parameters problem, and there is no simple differencing or
conditioning method that can provide a consistent estimator. Heckman and MaCurdy
(1980) applied the fixed effects MLE to female labor supply. Although recognizing the
inconsistency of the estimator, they argued that with T = 8 the inconsistency may not
be too great. Greene (2004a) provides a recent Monte Carlo study for the fixed effects
Tobit MLE.

Random effects estimation is more commonly used because of inconsistency of the
fixed effects estimator. Under the assumption that αi ∼ N [0, σ 2

α ] the random effects
MLE of β, σ 2

ε , and σ 2
α maximizes the log-likelihood

∑N
i=1 ln f (yi |Xi ,β, σ

2
ε , σ

2
α ),

where

f
(
yi |Xi ,β, σ

2
ε , σ

2
α

) =
∫

f
(
yi |Xi , αi ,β, σ

2
ε

) 1√
2πσ 2

α

exp

(−αi

2σ 2
α

)2

dαi , (23.46)

for f (yi |Xi , αi ,β, σ
2
ε ) given in (23.45). This one-dimensional integral can be com-

puted using Gaussian quadrature.
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This approach can be extended to other models with censoring or truncation. For
example, a right-censored version of the Poisson random effects model in Section
23.7.2 may be used if, say, counts above 10 are recorded only as 10 or more.

There are two weaknesses to the fully parametric approach. First, as in the cross-
section case reliance on distributional assumptions becomes much greater when there
is censoring or truncation. Second, the assumption of purely random effects indepen-
dent of regressors may be too strong.

23.5.2. Selection Models

Selection models can arise in panel data for the same reasons as in the cross-section
case (see Section 16.5). A generalization of the Tobit type 2 model in Section 16.5.1
to a linear panel model with individual specific effects λi and δi is

y∗
i t = αi + x′

i tβ+εi t , (23.47)

d∗
i t = δi + z′

i tγ+vi t ,

where yit = y∗
i t is observed if d∗

i t > 0 and yit is not observed otherwise.
For the random effects formulation the four unobservables are assumed to be nor-

mally distributed. Hausman and Wise (1979) proposed ML estimation, which involves
a bivariate integral as αi may be correlated with δi and εi t may be correlated with vi t .

The fixed effects estimator is inconsistent in short panels. Note, however, that if
d∗

i t = δi , so that selection is due only to time-invariant characteristics of the individual,
which may be observed or unobserved, then the fixed effects estimator in the model
yit = αi + x′

i tβ + εi t is consistent. A fixed effect panel model controls for sample se-
lection, to the extent that it depends on time-invariant characteristics.

Verbeek and Nijman (1992) provide a more detailed discussion of the essential as-
sumptions needed for consistent estimation in these model and propose tests for selec-
tivity bias. Wooldridge (1995) provides a similar analysis under weaker assumptions
and presents assumptions that may not be too restrictive in some applications that per-
mit consistent estimation of the fixed effects model. Vella (1998) provides a review
and additional references.

The methods for sample selection can be extended to panel attrition (see Sec-
tion 21.8.5) that leads to attrition bias if observations on the dependent variable are
lost in a nonrandom manner. Then all data for the i t th observation are not observed
if d∗

i t ≤ 0, so zi t in (23.47) needs to be replaced by variables observed in periods
other than period t . An early example is Hausman and Wise (1979), and a more re-
cent application is Grasdal (2001). Baltagi (2001) and Hsiao (2003) provide further
references.

23.6. Transition Data

For concreteness consider panel data on welfare spells. Great interest lies in measuring
individual persistence in welfare spells, and determining the extent to which this is due
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to true state dependence rather than differences in individual propensities to be on wel-
fare. Since individual propensities may depend in part on unobservables, models with
individual-specific effects should be used. For duration data there exists an unusually
wide range of modeling approaches, as several types of panel data on transitions are
possible. Here we focus on fixed effects models.

Data may be available on whether or not an individual is in a state at several points
in time, such as on welfare. Then one can use a binary panel model (see Section 23.4),
such as the dynamic fixed effects logit model.

Richer data provide information on the durations of several individual spells. A
natural starting point is then a panel proportional hazards model

λ(ti j |xi j ) = λ j (ti j , γ j ) exp(x′
i jβ)αi , (23.48)

where ti j is the completed spell duration for the j th spell of the i th individual and αi is
an individual-specific effect. This is the mixed proportional hazards model, discussed
for single-spell data in Chapter 18. The conditions for nonparametric identification of
the MPH model with only single-spell data (see Section 18.3) include the assumption
that αi are distributed independently of the regressors. This rules out fixed effects.
Once multiple spells become available, however, Honoré (1992) showed that αi can
be a fixed effect if xi j is constant over j (see Section 19.4.1). For further discussion of
the model (23.48), including a dynamic duration model with hazard function for the
second spell dependent on the duration of the first spell, see Section 19.4.1.

Chamberlain (1985) presented several approaches for elimination of αi in various
panel duration models. For the MPH model, with baseline hazard λ j (·) the same across
spells j , the probability that the second spell is longer than the first spell does not
depend on αi . Conditional ML can be applied to the gamma duration model, since the
gamma is an LEF density. For Weibull, gamma and log-normal models the density of
ti1/ti2 does not depend on αi .

For more recent references and a detailed discussion, including sensitivity of
multiple-spell data to censoring, see Van den Berg (2001).

23.7. Count Data

Hausman et al. (1984) presented estimable fixed effects and random effects models for
both panel Poisson and panel negative binomial models. More recent work has empha-
sized fixed effects in multiplicative effects models, permitting estimation of static and
dynamic models under relatively weak distributional assumptions.

23.7.1. Individual-Specific Effects Count Models

We focus on the Poisson model, detailed for cross-section data in Section 20.2, though
panel versions of negative binomial are also briefly considered.

The Poisson individual-specific effects model specifies that yit ∼ P[αi exp(x′
i tβ)].

Then, assuming conditional independence, the joint density for the i th observation
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yi= (yi1, . . . , yiT ) is

f (yi |Xi , αi ,β) =
T∏

t=1

exp[−αi exp(x′
i tβ)][−αi exp(x′

i tβ)]yit /yit!. (23.49)

A less parametric approach simply models the conditional mean as

E[yit |αi , xi t ] = αi exp(x′
i tβ) (23.50)

= exp(γi + x′
i tβ).

This is both a single-index individual-specific effects model and a multiplicative ef-
fects model. Since it is a multiplicative effects model the individual effects αi can
be eliminated by mean differencing or first differencing. Note that the Poisson panel
model (23.49) has conditional mean (23.50).

23.7.2. Random Effects Count Models

Assuming gamma-distributed random effects leads to a tractable solution for the
marginal density of the random effects model. Assume αi is G[η, η] distributed with
mean 1, variance 1/η, and density g(αi |η) = ηηαη−1

i e−αiη/�(η). Then (23.18) for the
Poisson model (23.49) becomes

f (yi |Xi ,β, η) =
[∏

t

λ
yit

i t

yi t !

]
×
(

η∑
t λi t + η

)η
(23.51)

×
(∑

t

λi t

)−∑t yi t
�
(∑

t yi t + η)
�(η)

,

where λi t = exp(x′
i tβ) and derivations are given in Section 23.7.5. The resulting first-

order conditions for the Poisson random effects estimator β̂ can be expressed as

N∑
i=1

T∑
t=1

xi t

(
yit − λi t

ȳi + η/T

λ̄i + η/T

)
= 0, (23.52)

where λ̄i = T −1∑
t exp(x′

i tβ).
The term on the left-hand side of (23.52) has expected value zero if the mean con-

ditional on regressors in all periods E[yit |αi , xi1, . . . , xiT ] = αi exp(x′
i tβ). So despite

all the parametric assumptions made, the Poisson random effects estimator is con-
sistent for β under the relatively weak assumption that the conditional mean is that
given in (23.50) and that regressors are strongly exogenous. For the density (23.51),
E[yit |xi ] = λi t and V[yit |xi ] = λi t + λ2

i t/δ, so that overdispersion is of the NB2 form.
A sandwich estimate of the variance matrix will permit more flexible models of
overdispersion and conditional correlation. The first-order conditions for η (not given)
are quite complicated though the information matrix is block diagonal in β and η.

Several alternative estimators are available given random effects. First, the pooled
Poisson estimator ignores the random effects and assumes yit |xi t ∼ P[exp(x′

i tβ)]. This

803



NONLINEAR PANEL MODELS

has first-order conditions
N∑

i=1

T∑
t=1

xi t (yit − λi t ) = 0, (23.53)

where λi t = exp(x′
i tβ). This estimator is consistent if the conditional mean is (23.50)

with E[αi |xi t ] = 1. Thus the usual cross-section Poisson MLE is consistent if the true
model is one with multiplicative random effects. However, as illustrated in the Section
23.3 example, panel-robust standard errors should be used. Here (23.26) yields

V̂[β̂pool] =
[∑

i,t

λ̂i t xi t x′
i t

]−1∑
i,t,s

ûi t ûisxi t x′
i t

[∑
i,t

λ̂i t xi t x′
i t

]−1

, (23.54)

where λ̂i t = exp(x′
i t β̂), ûi t = yit − λ̂i t ,

∑
i,t denotes

∑N
i=1

∑T
t=1 and

∑
i,t,s denotes∑N

i=1

∑T
t=1

∑T
s=1. An alternative pooled estimator based on (23.50) is NLS, in which

case (23.53) becomes
∑

i

∑
t xi tλi t (yit − λi t ) = 0.

Second, more efficient pooled estimation may be possible using the GEE approach
of Section 23.2.8, which introduces conditional correlation. The general result (23.30)
for git = λi t = exp(x′

i tβ) becomes

N∑
i=1

Z′
iΣ

−1
i (yi − λi ) = 0, (23.55)

where Zi is a T × K matrix with t th row observation λi t x′
i t , and λi is a T × 1 vector

with t th entry λi t . Several different working variance matrices Σi for V[yi |Xi ] are
possible. The choice Σi = Diag[λi t ] yields the pooled Poisson estimating equations in
(23.53). Letting �i,t t = λi t and �i,ts = λis = φ√

λi tλis for s �= t permits correlation
over t that is equicorrelated or exchangeable since the correlation is a constant φ
for s �= t .

Third, more efficient pooled estimation may be possible using ML with the neg-
ative binomial rather than the Poisson as the starting point. Suppose yit is iid neg-
ative binomial with NB2 variance function with parameters αiλi t and φi (see Sec-
tion 20.4.1), implying yit has mean αiλi t/φi and variance (αiλi t/φi ) × (1 + αi/φi ).
If (1+ αi/φi )−1 is a beta-distributed random variable with parameters (η1, η2),
then after some considerable algebra (23.18) reduces to

f (yi |Xi ,β,η) =
(∏

t

�(λi t + yit )!

�(λi t )!�(yit + 1)!

)
(23.56)

× � (η1 + η2)�
(
η1 +∑t λi t

)
�
(
η2 +∑t yi t

)
� (η1)� (η2)�

(
η1 + η2 +∑t λi t +∑t yi t

) .
where λi t = exp(x′

i tβ). This is the basis for ML estimation of β, η1, and η2. This
model relies on stronger assumptions than does the Poisson random effects model.

Fourth, analysis need not be restricted to parametric models with closed-form so-
lutions for f (yi |Xi ,β,η). Crépon and Dugeut (1997a) use maximum simulated like-
lihood methods to estimate hurdle and zero-inflated panel count models with joint
normal random effects.
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23.7.3. Fixed Effects Count Models

The fixed effects estimator for the Poisson panel model (23.50) can be derived in sev-
eral ways.

First, the Poisson MLE simultaneously estimates β and α1, . . . , αN . The log-
likelihood based on (23.49) is

ln L(β,α) = ln

[∏
i

∏
t

{exp(−αiλi t ) (αiλi t )
yit /yit !}

]
(23.57)

=
∑

i

[
−αi

∑
t

λi t + lnαi

∑
t

yi t +
∑

t

yi t ln λi t −
∑

t

ln yit !

]
,

where λi t = exp(x′
i tβ). Differentiating with respect to αi and setting to zero yields

α̂i =∑t yi t/
∑

t λi t . Substituting this back into (23.57) yields the concentrated like-
lihood function. Dropping terms not involving β, we get

ln Lconc(β) ∝
∑

i

∑
t

[
yit ln λi t − yit ln

(∑
s

λis

)]
. (23.58)

It follows that for the Poisson fixed effects model there is no incidental parameters
problem. Consistent estimates of β for fixed T and N → ∞ can be obtained by max-
imization of ln Lconc(β) in (23.58). Differentiation of (23.58) with respect to β yields
first-order conditions∑

i

∑
t

[
yit xi t − yit

[∑
s

λisxis

]
/

[∑
s

λis

]]
= 0,

which can be reexpressed as

N∑
i=1

T∑
t=1

xi t

(
yit − λi t

λ̄i
ȳi

)
= 0, (23.59)

where λi t = exp(x′
i tβ) and λ̄i = T −1∑

t exp(x′
i tβ); see Blundell, Griffith, and

Windmeijer (1995). The Poisson panel model (23.49) and the linear panel model of
Section 21.6 are unusual in that simultaneous estimation of β and α provides consis-
tent estimates of β in short panels, so there is no incidental parameters problem.

Second, the conditional MLE eliminates the fixed effects by conditioning on a suffi-
cient statistic for αi . For the Poisson panel model this is

∑
t yi t . Some algebra given in

Section 23.7.5 shows that this leads to a conditional log-likelihood function that is pro-
portional to the concentrated log-likelihood function given in (23.58). It follows that
the conditional ML estimator for β in the fixed effects Poisson model solves (23.59).
This was the original derivation of the Poisson fixed effects estimator of β by Palmgren
(1981) and Hausman et al. (1984).

Third, the mean-differenced transformation (23.14) for the multiplicative effects
model (23.50) implies that E

[
yit − (λi t/λ̄i )ȳi |xi1, . . . , xiT

] = 0, and hence

E[xi t (yit − (λi t/λ̄i )ȳi )] = 0. (23.60)
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Using the corresponding sample moment conditions leads to an estimator β that solves
(23.59).

The same estimator has been obtained in three different ways. The third deriva-
tion makes it clear that the essential assumption for the consistency of the Poisson
fixed effects estimator is that regressors are strongly exogenous and (23.50) is cor-
rectly specified. Inference should be based on panel-robust standard errors. In partic-
ular, if the usual default ML or conditional ML output is used, following the first
two derivations, standard errors may be considerably understated owing to failure
to control for overdispersion in the count data. The fixed effects estimator leads to
some loss of data, as observations i with

∑
t yi t = 0 do not contribute to the sum

in (23.59).
Consistent estimation of β in the presence of fixed effects is also possible for a

particular parameterization of the negative binomial model. Hausman et al. (1984) as-
sumed that yit is iid NB1 with parameters αiλi t and φi , where λi t = exp(x′

i tβ), so
yit has mean αiλi t/φi and variance (αiλi t/φi ) ×(1 + αi/φi ). The parameters αi and
φi can only be identified up to the ratio αi/φi , and this ratio drops out of the condi-
tional joint density for the i th observation, which after considerable algebra can be
shown to be

f (yi1, . . . , yiT |∑
t

yi t ) =
(∏

t

�(λi t + yit )

�(λi t )�(yit + 1)

)
(23.61)

× �
(∑

t λi t
)
�
(∑

t yi t + 1
)

�
(∑

t λi t +∑t yi t
) .

This distribution for integer λi t is the negative hypergeometric distribution. The
conditional ML negative binomial fixed effects estimator of β maximizes the log-
likelihood function based on (23.61). The Poisson fixed effects model is more com-
monly used since it is consistent under much weaker distributional assumptions.

23.7.4. Dynamic Count Models

There are several ways to bring dynamics into a count data model. Pure time se-
ries models are surveyed in Cameron and Trivedi (1998). For simplicity consider
inclusion of one lagged dependent variable. The obvious model is E[yt |yt−1, xt ] =
exp(γ yt−1 + x′

tβ), but this can lead to explosive behavior as a result of exponentiation
of yt−1. A more stable model may be obtained by instead using exp(γ ln yt−1 + x′

tβ),
but this then runs into problems when yt−1 = 0. For this reason an appealing model
is the linear feedback model E[yt |yt−1, xt ] = γ yt−1 + exp(x′

tβ). The Poisson integer-
valued AR(1) model has this property and in the pure time series case has correla-
tion function Cor[yt , yt−k] = γ k , similar to that for the AR(1) model (see Al-Osh and
Alzaid, 1987).

Thus Blundell, Grifffiths, and Windmeijer (1995, 2002) considered the dynamic
fixed effects panel data model with

E[yit |αi , yi,t−1, xi t ] = γ yi,t−1 + αi exp(x′
tβ).
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Applying the first-difference transformation (23.15) leads to conditional moment
restrictions

E

[
exp(x′

i,t−1β)

exp(x′
i tβ)

(yit − γ yi,t−1) − (yi,t−1 − γ yi,t−2)|yi1, . . . , yi,t−2, xi1, . . . , xi,t−1

]
= 0.

These lead to many unconditional moment conditions (see Section 22.5.3 for a similar
discussion for the linear model) that can supply the basis for GMM estimation as in
Section 23.2.6. Crépon and Dugeut (1997b), Montalvo (1997), and Blundell, Griffith,
and Van Reenen (1995, 1999) use similar quasi-differencing methods, with application
to the Patents–R&D relationship.

Böckenholt (1999) uses a more parametric model, estimating a Poisson integer-
valued AR(1) model with unobserved heterogeneity modeled using a finite mixture
distribution (see Section 18.5).

23.7.5. Derivations for Random and Fixed Effects Poisson

First, consider a random effects Poisson model with gamma-distributed random ef-
fects. For simplicity suppress the subscript i and let λt = exp(x′

tβ). The general for-
mula (23.18) for the Poisson model (23.49) and random effects density g(α|γ ) yields

f (y1, . . . , yT |xt ) =
∫ ∞

0

[∏
t

(
e−αλt (αλt )

yt /yt !
)]

g(α|γ )dα

=
∫ ∞

0

[∏
t

λt
yt /yt !

](
e−α∑t λt · α

∑
t yt

)
g(α|γ )dα

=
[∏

t

λt
yt /yt !

]
×
∫ ∞

0

(
e−α∑t λt · α

∑
t yt

)
g(α|γ )dα.

For g(αi |η) = ηηαη−1e−αη/�(η), similar algebra to that in Section 20.4.1 yields the
density given in (23.51).

Second, derive the conditional density for the Poisson fixed effects model for obser-
vations in all time periods for a given individual, where for simplicity the individual
subscript i is dropped. In general the density of y1, . . . , yT given

∑
t yt is

f (y1, . . . , yT |∑
t

yt ) = f (y1, . . . , yT |∑
t

yt )/ f (
∑

t
yt )

= f (y1, . . . , yT ) / f (
∑

t
yt )

=
∏

t (exp(−µt )µt
yt /yt !)

exp(−∑t µt )
(∑

t µt
)∑

t yt
/
(∑

t yt
)
!

= exp(−∑t µt )
∏

t µt
yt /
∏

t yt !

exp(−∑t µt )
∏

t

(∑
s µs
)yt
/
(∑

t yt
)
!

=
(∑

t yt
)
!∏

t yt !
×
∏

t

(
µt∑
s µs

)yt

,
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where the second equality arises because knowledge of
∑

t yt adds nothing given
knowledge of y1, . . . , yT , the third equality specializes to yt iid P[µt ] and hence

∑
t yt

is P[
∑

t µt ], and the fourth and fifth equalities simplify. The conditional density is
that of the multinomial for

∑
t yt trials where the t th of T distinct outcomes occurs in

any trial with probability µt/
∑

s µs . Setting µi t = αi exp(x′
i tβ) and taking logarithms

yields conditional likelihood that is proportional to the concentrated log-likelihood
given in (23.58).

23.8. Semiparametric Estimation

The semiparametric literature for panel data has emphasized models for limited de-
pendent variables since, as for cross-section data, parametric assumptions become
much more important when truncation, censoring, or selection are present. Attention
focuses on models with fixed effects. We provide a brief summary.

For binary data Manski (1987) extended his maximum score estimator from cross-
section models to the panel model with fixed effects given in (23.33) where now the
function F(·) is no longer specified. Although this estimator is consistent it converges
at rate less than

√
N and is not asymptotically normal.

For the Tobit model Honoré (1992) extended the censored LAD approach of Powell
(1986a) to the panel fixed effects model (23.45) where the distribution of the error
term εi t is unspecified. The data are artificially trimmed so that the fixed effect is
subsequently eliminated by appropriate differencing. The estimator is

√
N consistent

and asymptotically normal.
For panel data with sample selection Kyriazidou (1997) considered the fixed effects

version of the type 2 Tobit model (23.47) where the distribution of the errors εi t and
vi t is unspecified. She presented a Heckman-type two-step estimator. A smoothed ver-
sion of the maximum score estimator of Manski (1987) eliminates the fixed effect in
the selection equation, although a quite complicated differencing procedure is used in
the second stage to eliminate the fixed effect in the outcome equation. This approach
can be generalized to other generalized Tobit models. Charlier, Melenberg, and van
Soest (2001) provide an application to a panel version of the Roy model or type 5
Tobit model.

Censoring is common in duration models. Section 23.6 focused on panel models
with completed spells. When both complete and incomplete spells are observed for
an individual, partial likelihood methods are inappropriate, since censoring is not in-
dependent given presence of the time-invariant fixed effect. Horowitz and Lee (2004)
propose a consistent estimator for the MPH model (23.43) with incomplete spells that
does not require specification of the baseline hazard.

23.9. Practical Considerations

As was the case for linear models, if panel data are used then at a minimum infer-
ence needs to be based on panel-robust standard errors. These are not provided by a
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computer pregram for cross-section data unless it has an option for clustered standard
errors, in which case clustering is specified to be by the individual.

More efficient estimation is available using models that incorporate serial corre-
lation. Econometricians emphasize random effects. Several packages fit models with
normally distributed random effects, using Gaussian quadrature to integrate out the
effect, as well as the more specialized analytically tractable random effects count data
models. Statisticians instead emphasize the GEE approach for GLMs, available in
many statistical packages and some econometrics packages.

These preceding methods lead to inconsistent estimation if the random effect is
correlated with regressors. Econometricians therefore emphasize the fixed effects ap-
proach. Because of the incidental parameters problem, this yields consistent estimates
in short panels for only a subset of nonlinear models. Econometrics packages are avail-
able for conditional ML estimation of these models, the fixed effects logit and fixed
effects count models. If a fixed effects model is infeasible then random effects models
richer than the simplest iid random effects model might be used.

Dynamic panel models can also be estimated. These permit distinction between
persistence caused by unobserved heterogeneity and persistence caused by true state
dependence. Implementation may require writing one’s own programs.

23.10. Bibliographic Notes

This chapter provides an overview of a vast and divergent literature and of necessity skips many
details. The monographs on panel data by Arellano (2004), Baltagi (2001), Hsiao (2003), and
M.-J. Lee (2002) provide considerable treatment of panel models for binary data and censored
and selected models. Panel models for counts are presented in Cameron and Trivedi (1998) and
M.-J. Lee (2002). Wooldridge (2002) presents panel methods for binary, censored, and count
data. The statistical literature for various generalized linear models is summarized in Fahrmeier
and Tutz (1994) and Diggle et al. (1994, 2002). Various papers in Mátyás and Sevestre (1995)
consider nonlinear panel models. M.-J. Lee (2002) emphasizes GMM estimation. Arellano and
Honore (2001) emphasize semiparametric methods for nonlinear panel models. Bayesian esti-
mation with panel data is presented in Koop (2003).

23.2 For general discussion of the incidental parameters problem see Lancaster (2002). Key ref-
erences are Andersen (1970) for conditional ML and Chamberlain (1992) and Wooldridge
(1997a) for differencing methods. For random effects models Butler and Moffitt (1982)
detail use of Gaussian quadrature to eliminate normally distributed random effects,
whereas the statistics literature emphasizes the LEE approach of Liang and Zeger (1986).

23.4 For fixed effects logit models key references are Chamberlain (1980) for static models,
Chamberlain (1985) for pure time series dynamic models, and Honore and Kyriazidou
(2000) for dynamic models with additional regressors. See also Hsiao (1995).

23.5 For selection in panel data see the survey by Vella (1998) and the texts by Baltagi (2001)
and Wooldridge (2002).

23.6 Chamberlain (1985) presents several ways to eliminate fixed effects in various duration
models. Van den Berg (2001, section 6) provides a good discussion and many references.
Event history analysis using multiple-spells data on individuals is more complicated than
most panel analysis as the models are intrinsically dynamic.
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23.7 The classic reference for panel count data models is Hausman et al. (1984). For dynamic
models see Blundell et al. (2002).

23.8 For a survey of panel semiparameteric methods see Arellano and Honore (2001) and also
L.-F. Lee (2001).

Exercises

23–1 Consider the nonlinear panel data model yi t = αi + exp(x′
i tβ) + ui t , where β are

parameters to be estimated, αi , i = 1, . . . , N, are individual specific effects, ui t

are iid [0, σ 2
ε ] errors, and the panel is short.

(a) Suppose that all αi = 0. Can β be consistently estimated? If yes, provide
the formula or objective function for a consistent estimator. If no, give a brief
explanation of why β cannot be consistently estimated.

(b) Suppose the individual-specific effects αi are random and are iid [0, σ 2
α ] dis-

tributed independently of the regressors. Can β be consistently estimated?
If yes, provide the formula or objective function for a consistent estimator. If
no, give a brief explanation of why β cannot be consistently estimated.

(c) Suppose the individual specific effects αi are random but are correlated with
the regressors. Can β be consistently estimated? If yes, provide the formula
or objective function for a consistent estimator. If no, give a brief explanation
of why β cannot be consistently estimated.

23–2 (Adapted from Chamberlain, 1980) Show that MLE in a binary logit panel
model is inconsistent, with plim of 2β in a simple T = 2 model.

23–3 Use the same model for the Patents–R&D data as in Section 23.3, except vary
the dependent variable and model as suggested in the following. In each case
estimate random effects models and, if theoretically feasible, a fixed effects
model.

(a) Use a logit model of whether or not the firm has a patent.
(b) Use a truncated tobit model of number of log(Patents) with observations of

firms with zero patents dropped.
(c) Use a Poisson model for number of patents.
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Further Topics

In empirical work data frequently present not one but multiple complications that need
to be dealt with simultaneously. Examples of such complications include departures
from simple random sampling, clustering of observations, measurement errors, and
missing data. When they occur, individually or jointly, and in the context of any of
the models developed in Parts 4 and 5, identification of parameters of interest will
be compromised. Three chapters in Part 6 – Chapters 24, 26, and 27 – analyze the
consequences of such complications and then present methods that control for these
complications. The methods are illustrated using examples taken from the earlier parts
of the book. This feature gives points of connection between Part 6 and the rest of the
book.

Chapter 24, which deals with several features of data from complex surveys, notably
stratified sampling and clustering, complements various topics covered in Chapters 3,
5, and 16. Chapter 26 which deals with measurement errors in models studied in Chap-
ters 4, 14, and 20. Chapter 27 is a stand-alone chapter on missing data and multiple
imputation, but its use of the EM algorithm and Gibbs sampler also gives it points of
contact with Chapters 10 and 13, respectively.

Chapter 25 presents treatment evaluation. Treatment is a broad term that refers to
the impact of one variable, e.g. schooling, on some outcome variable, e.g. earnings.
Treatment variables may be exogenously assigned, or may be endogenously chosen.
The topic of treatment evaluation concerns the identifiability of the impact of treat-
ment on outcome, as measured by either the marginal effects or certain functions of
the marginal effect. A variety of methods are used including instrumental variables
regression and propensity score matching. The problem of treatment evaluation can
arise in the context of any model considered in parts 4 and 5. This chapter emphasizes
the linear regression model, so may be read early on. However, it does presume fa-
miliarity with many other topics covered in the book, including instrumental variables
and selection models. For this reason this topic of growing importance is placed in the
last part of the book.
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C H A P T E R 24

Stratified and Clustered Samples

24.1. Introduction

Microeconometrics research is usually performed on data collected by survey of a
sample of the population of interest. The simplest statistical assumption for survey
data is simple random sampling (SRS), under which each member of the population
has equal probability of being included in the sample. Then it is reasonable to base
statistical inference on the assumption that the data (yi , xi ) are independent over i and
identically distributed. This assumption underlies the small-sample and asymptotic
properties of estimators presented in this book, with the notable exception of sample
selection models in Chapter 16.

In practice, however, SRS is almost never the right assumption for survey data.
Alternative sampling schemes are instead used to reduce survey costs and to increase
precision of estimation for subgroups of the population that are of particular interest.

For example, a household survey may first partition the population geographically
into subgroups, such as villages or suburbs, with differing sampling rates for different
subgroups. Interviews may be conducted on households that are clustered in small
geographic areas, such as city blocks. The data (yi , xi ) are clearly no longer iid. First,
the distribution of (yi , xi ) may vary across subgroups, so the identical distribution
assumption may be inappropriate. Second, since data may be correlated for households
in the same cluster, the assumption that (yi , xi ) are independent within the cluster
breaks down.

The usual methods employed to obtain the distribution of estimators therefore need
to be adapted, and the properties of estimators may depart from results obtained under
SRS. This is the subject of this chapter.

The consequences for regression modeling are the following. First, weighted esti-
mators that adjust for differences in sampling rates may be necessary if the goal of
analysis is prediction of population behavior. Second, such weighting is unnecessary if
interest lies in regression of y on x, provided the conditional model for y given x is cor-
rectly specified and stratification is not on the dependent variable. Third, if samples
are determined in part by the value of the dependent variable, such as an oversample
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of low-income people when income is the dependent variable, weighted estimation
is necessary. A range of estimation procedures are possible, with some presented
in Chapter 16 in the context of sample selection bias. Fourth, clustering at a mini-
mum leads to standard error estimates that appreciably understate the true standard
errors and can even lead to inconsistent parameter estimates unless adjustment is made
for clustering using methods similar to those presented in Chapter 21 for panel data
analysis.

The most important implication for most microeconometrics applications using sur-
vey data is the need to control for clustering. Clustering of observations is often found
in both cross-section and panel data, as a consequence of (1) sampling design, (2) de-
sign of a social experiment, or (3) the nature of the observation method. An example
of (1) is a complex large-scale household survey in which spatial clusters of house-
holds are sampled to reduce the cost of surveys. An example of (2) is a randomized
social experiment in which a common treatment is assigned to individuals in a partic-
ular location such as an industrial plant or a school. Examples of (3) are regressions
with individual cross-section data when regressors also include group averages such
as unemployment or tax rates at the state level, use of panel data, and use of siblings
data even if there is no clustering of households.

Section 24.2 introduces some of the concepts and terminology of survey sampling.
Sections 24.3–24.5 consider the three key features of survey data, respectively, sam-
ple weights, stratification, and clustering. Section 24.6 considers hierarchical linear
models where both stratification and clustering are present. An application to data is
presented in Section 24.7. Complex surveys are considered further in Section 24.8.

24.2. Survey Sampling

Survey sampling has been well researched in the statistics literature, since data collec-
tion must be done before any analysis, and surveying can be very expensive. The goal
of the survey literature is usually to obtain with minimal cost a sample that can pro-
vide unbiased and reasonably precise estimates of population parameters, especially
the population mean.

The structure of a multistage survey was described in Section 3.2. The U.S. CPS is
a leading example of such a sample design.

24.2.1. Current Population Survey

The CPS is a monthly survey of approximately 56,000 households that is intended
to be representative of the civilian noninstitutional population 16 years and older.
Households in smaller states are oversampled to provide more reliable state-level
data. Within states the surveyed households are clustered to reduce interview costs.
Specifically, households are interviewed in four consecutive months, rested for eight
months, and then interviewed for another four months. Reinterviewing reduces sur-
vey costs and the 4–8–4 schedule permits some longitudinal analysis, including one-
year differences. There are eight rotation groups of similar size, with a new rotation
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group being introduced each month. We consider the sampling design for one rotation
group.

Specifically, there are 792 strata, where each stratum is a subregion of a state or
in some cases an entire state. The 792 strata are split into 2,007 PSUs, where a PSU
may be a metropolitan statistical area (MSA), a state–MSA intersection if the MSA
covers more than one state, a single county, or two or more contiguous counties, with
departures from this scheme when a PSU has low population or large area. On average
there are 2.5 PSUs per strata. Of the 792 strata, 432 contain only one PSU, in which
case the PSU is called self-representing and is always included in the CPS survey. The
other 360 strata have more than one PSU, and exactly one PSU is randomly chosen
from the strata with probability proportional to the 1990 population.

Within the PSUs there are no intermediate SSUs. The survey directly samples
USUs, a geographically compact group of approximately four addresses. The sam-
pling probability increases if there was low probability of drawing the PSU from its
strata and usually increases if the PSU is in a small state, to permit oversampling
in low-population states. (In this calculation New York and Los Angeles are treated
as states.) All households in the USU are surveyed, unless the USU has an unusu-
ally high number of households, in which case a subset of households is randomly
chosen.

The CPS is designed to be self-weighting by state so that, despite the use of nonran-
dom sampling, the CPS should provide a representative sample for each state. How-
ever, the unweighted sample is not nationally representative because of the oversam-
pling of low population states and because not all PSUs are sampled.

24.2.2. Sampling

Before moving to a more detailed analysis of survey sampling, we provide a brief
overview of sampling basics in the absence of complications such as stratification.

Let z denote a vector of variables, where there is no need to distinguish between
dependent and regressor variables. We assume that in the population the variable z is
iid with density f (z). The population is of size N ∗ and the sample is of size N . The
sample is {zi , i = 1, . . . , N }, where i denotes the i th sampling unit. The usual notation
in the sampling literature is n for sample size and N for population size. We instead
continue to use N for sample size as there is only occasional need to introduce the
population size N ∗.

Exhaustive Sampling

Under exhaustive sampling every element of the population is sampled, so the sample
is the population. Such sampling is rare with individual-level data. It does happen
in a population census such as the U.S. decennial census. Yet even for the census,
subsampling is used for the lengthier questionnaires, researchers may prefer to work
with a more manageable census subsample, and in practice the coverage of the census
is incomplete. Exhaustive sampling is more common with firm-level data, where, for
example, all firms in an industry may be studied.
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Exhaustive sampling can lead to debate about whether the usual inferential methods
are warranted, as the sample moments then equal the population moments. The usual
procedure is to still use the usual inferential methods. This is done by viewing the finite
population to be a sample from an infinite superpopulation.

For example, suppose interest lies in gender differences in salary at a work site that
has a population total of 20 men and 12 women performing similar tasks. Salaries
are obtained for all men and women at the work site, so the sample is the population,
and mean salary is found to be higher for men than women. It is customary to perform
conventional hypothesis tests on the differences in mean salary, rather than to conclude
that since the sample mean equals the population mean there is 100% certainty that
male salaries are higher. The rationale is that the population at this particular work site
is viewed as a sample from a superpopulation of work sites, or from a superpopulation
of the particular work site at many points in time.

Exhaustive sampling is expensive and is generally unnecessary for large popula-
tions unless the actual population size needs to be determined. Instead, a subset of the
population is usually sampled.

Simple Random Sampling

A simple random sample is one where observations are drawn from the population
at random and with equal probability. Each observation appears in the sample, with
probability equal to the sample size divided by the population size, and has the same
marginal density f (z). The prefix “simple” is added because more systematic sampling
methods still usually have a random element.

Finite-Sample Correction

Most econometric analysis presumes that SRS leads to draws of z that are independent,
so the joint density of the sample under SRS is the product of the individual densities
f (zi ). This is reasonable if the SRS is obtained from an infinite population, as is the
case if sampling is viewed to be from a superpopulation, or if it is obtained from a
finite population and sampling is with replacement.

In practice for finite populations an SRS is obtained without replacement, to en-
sure that the same observation does not appear in the sample twice. Then observations
are no longer independent, even under SRS. To see this, note that under SRS the prob-
ability of any particular member of the population appearing in the sample is N/N ∗.
Given knowledge that this member appears in the sample, however, the probability
of any other member appearing in the sample falls to (N − 1)/(N ∗ − 1). Clearly, the
conditional probability differs from the unconditional probability. More formally, one
introduces indicator variables for whether each case in the population appears in the
sample. These indicator variables are joint multinomial distributed with means π , vari-
ances π (1 − π ), and covariances −π (1 − π )/(N ∗ − 1), where π = N/N ∗.

The correlation between sample observations is ρ = −1/(N ∗ − 1), where ρ is
called the intraclass correlation. Letting z be a scalar, we have that the sample
mean z̄ = N−1∑

i zi has variance V[z̄] = N−2V
[∑

i zi
]
, which does not simplify to
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N−2∑
i V[zi ] owing to the correlation of the zi . Some algebra given, for example, in

Cochran (1977, pp. 23–24) yields

V[z̄] = (1 − f )
S2

N
,

where f = N/N ∗ is the sampling fraction, and results in this literature are usually
simpler to express in terms of S2 = (N ∗ − 1)−1∑(zi − z̄)2 rather than the usual finite
population variance σ 2 = N ∗−1∑(zi − z̄)2.

Thus for sampling without replacement from a finite population, the variance of the
sample mean equals the usual S2/N multiplied by the finite-sample correction term
1 − f . This correction term appears in statistical packages for survey data. Failure to
allow for the finite-sample correction term leads to conservative statistical inference
as V[z̄] will be overestimated. For regression using data from SRS with replacement,
a finite-sample correction is similarly relevant, though the extent and direction of bias
in the variance of the OLS estimator now additionally depends on the design matrix.

The finite-sample correction term is usually ignored in microeconometrics. This
is often reasonable. For example, for household survey data the sample size is small
relative to population size so that f = N/N ∗ → 0.

24.3. Weighting

Household surveys such as the CPS are usually constructed in a way that leads to
different households having different probabilities of inclusion in the sample. Sample
weights are assigned to each observation to correct for this.

As explained in the following, provided stratification is exogenous, weights should
be used if regression is viewed as a tool to describe population responses but need not
be used if the regression model is assumed to be the correct structural model.

24.3.1. Sample Weights

Suppose each household in the population has a probability πi of appearing in the
sample and assume that, unlike SRS, this probability varies across households.

Statistics such as overall sample means that give equal weight to all observations
will then tend to give too much weight to households that appear with high probability
in the sample. This can be corrected by weighting, using sample weights that are
inversely proportional to the probability of inclusion in the sample:

wi ∝ 1/πi . (24.1)

For example, instead of z̄ = N−1∑
i zi we may use the weighted mean

z̄W = N−1
∑

i

wi zi/
∑

i

wi .

Note that all that matters in (24.1) is proportionality. The weights need not sum to one,
provided we divide by the sum of the weights. A common scaling is

∑
i wi = N ∗,
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in which case a weight of wi means that the observation represents wi households
in the population. Note that care is needed in using weights. Some references in-
stead define wi ∝ πi , and some computer packages compute the weighted mean as∑

i (zi/wi )/
∑

i (1/wi ). It is easy to incorrectly weight by the reciprocal of the sample
weights.

For an SRS of size N from a finite population of size N ∗, πi = 1/N ∗, so wi is
constant and z̄W = z̄.

For simple stratified sampling with SRS within strata, suppose it is known that a
fraction Hs of the population size N ∗ is in strata s and that Ns observations are from
the sth strata. Then πi = Ns/Hs N ∗. It follows that the sample weights wi ∝ Hs/Ns .

For two-stage sampling without stratification let πc be the probability that the
cth PSU is selected and π jc be the probability that household j is selected in PSU
c. Then the sample weights w jc ∝ 1/(πc Ncπ jc N ), where Nc is the number of survey
households in the cth PSU and N =∑c Nc. A two-stage sample is self-weighting if
the sampling probabilities at each stage are proportional to population numbers, so
πc = N ∗

c /N ∗ and π jc = 1/N ∗
c , where N ∗

c is the population size for the cth PSU. Then
the weights wjc are equal as in SRS, though estimator standard errors may still have to
be adjusted for the two-stage sampling as shown in Section 24.8.

For the CPS, which oversamples households in small states, it would appear suffi-
cient to usewi ∝ Hs/Ns , where s denotes state. The CPS uses this as a baseweight, but
then adjusts for subsampling within the USU if the USU has too many households. A
further complication is that not all PSUs in a strata are surveyed; consequently, the sur-
veyed households in a strata may not be representative of the strata if the sampled PSUs
differ considerably from strata norms. This leads to two additional adjustments. First,
adjust for unrepresentative racial (black/nonblack) composition at the strata level. Sec-
ond, adjust weights to ensure that sample estimates for key subgroups (formed by state,
race, sex, and age) match independent population data. For details see U.S. Bureau of
Census (2002). The CPS sample weights are constructed to permit the CPS to provide
nationally representative statistics, controlling for the composition of the CPS differ-
ing from that of the U.S. civilian population on the dimensions of state, race, sex,
and age.

The actual computation of sample weights for multistage surveys involves estima-
tion procedures that can be quite complicated. The weights can be misestimated; even
if they are correctly estimated they may take into account only some of the dimensions
of sample nonrepresentativeness.

24.3.2. Weighted Regression

Should one perform weighted regression when sample weights are provided? We con-
sider this issue in detail when the stratification is not on the dependent variable. Strat-
ification on the dependent variable is examined in Section 24.4.

Consider estimation of the linear regression

yi = x′
iβ + ui , (24.2)
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given survey data with sampling weights wi . Two possible estimators are OLS,

β̂OLS = (X′X)−1X′y, (24.3)

and WLS using the sampling weights,

β̂WLS = (X′WX)−1X′Wy, (24.4)

where W = Diag[wi ].

Correctly Specified Conditional Mean

The OLS estimator is appropriate if it is assumed that E[u|x] = 0 so that the condi-
tional mean is linear in x,

E[yi |xi ] = x′
iβ. (24.5)

Then OLS is consistent for β. Furthermore, it is second-moment efficient by the
Gauss–Markov Theorem if the errors ui are homoskedastic. The WLS estimator is
also consistent for β under these assumptions but will be inefficient if errors are homo-
skedastic (since the weighting in (24.5) controls for unrepresentativeness of the sample
rather than heteroskedasticity).

Incorrectly Specified Conditional Mean

In many applications (24.5) does not hold. Examples include cases with omitted re-
gressors or situations when E[y|x] is nonlinear in x or E[yi |xi ] = x′

iβi where some
components of βi are correlated with xi . Linear regression can still be interpreted as
the best linear prediction of y given x under squared error loss, though this needs to be
adapted to allow for unrepresentative sampling.

In the population, (yi , xi ) are iid, and from Section 4.2 we can always write

yi = x′
iβ

∗+ ui ,

where E[u] = 0 and Cov[x,u] = 0 and

β∗ = (E[xx′]
)−1

E[xy].

Note that it is no longer assumed that E[u|x] = 0, so it is possible that E[y|x] �= x′β.
The parameter β∗ is called the census coefficient by DuMouchel and Duncan

(1983). It is the probability limit of the regression coefficient that would be obtained
by regression of y on x using the entire population rather than an unrepresentative
sample.

If the conditional mean is nonlinear in x and the sample is unrepresentative of the
population, then the OLS estimator generally does not converge to β∗, since with un-
representative samples N−1X′X does not converge to the population moment E[xx′]
and similarly for N−1X′y . Intuitively, if the conditional mean is nonlinear in x then
there is no reason to believe that linear regressions using quite different surveys of the
same population will yield the same OLS estimates.
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However, WLS using sample weights may consistently estimate β∗. Specifically, if
the weighting matrix W is such that

N−1X′WX
p→ E[xx′], (24.6)

N−1X′Wy
p→ E[xy],

then β̂WLS defined in (24.4) converges to β∗.

Simple Stratified Samples

Much of the analysis of weighted LS estimation is presented for simple stratified sam-
pling with SRS within strata. Then it is clear that (24.6) is satisfied with wi ∝ Hs/Ns

if the i th interviewed household is in the sth strata.
This literature also considers the possibility of different regression parameters

within strata. It is assumed that E[yi |xi ] = x′
iβs for household i in strata s. The goal

may be to estimate the population-weighted parameter βW = N−1∑
s N ∗

s βs . Then in
general neither OLS nor WLS converge to βW, unless the βs are equal across strata or
are iid with constant mean across strata. A notable exception to this result is estimation
of the mean of y (regression with x = 1), in which case the weighted average of the
strata sample means is unbiased for the population mean. For details see Section 24.4.1
and DuMouchel and Duncan (1983), Deaton (1997), or Ullah and Breunig (1998).

Should One Use Sample Weights?

The preceding analysis can be used to answer the question of whether to use sample
weights in estimation, assuming there is no endogenous stratification. The discussion
considers estimation of (possibly nonlinear) models of E[y|x], but it also applies to
models of any other feature of the conditional distribution of y given x such as the
median or the density.

If one takes a structural or analytical approach and assumes that the model of
E[y|x] is correctly specified, there is no need to use sample weights. Results can be
used to analyze effects of changes in x on E[y|x].

If one instead takes a descriptive or data summary approach then weights should
be used. Regression is then interpreted as estimating census coefficients. A major
caveat, however, is that in complicated surveys it is not possible to compute weights
that so clearly satisfy (24.6) as was the case for stratified sampling with SRS within
strata. In practice sampling weights are constructed to match population proportions
for some subgroups based on age, sex, and race. There is no guarantee that such
weights will satisfy (24.6).

Some data sets, such as relatively small longitudinal surveys of a few thousand
households, are developed with a structural modeling approach in mind. Nonetheless,
they usually attempt to provide a reasonably representative sample of the population
while using clustered sampling to keep down survey costs. Other data sets, such as
the CPS, are designed to provide accurate descriptive measures such as national and
regional estimates of unemployment rates. Here designers of the survey are taking a
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census approach and indeed would prefer a monthly census if it were not so expensive
to conduct.

For either sort of data set microeconometricians usually strive to take the structural
modeling approach. As an example, consider regression of earnings on schooling
level and socioeconomic characteristics such as age, sex, and race, but not measures
of innate ability.

Most econometricians would only give a descriptive interpretation to the coefficient
of schooling in an OLS regression because of the endogeneity of schooling. The in-
terpretation then is that if we hold certain key regressors constant, one more year of
schooling is associated with, but does not necessarily cause, a 6% increase, say, in
earnings. Here using sample weights in OLS regression is appropriate to permit esti-
mates to be interpreted as measuring associations in the population, rather than merely
those in a possibly unrepresentative sample. Even though no causal interpretation is
possible, this estimate can be useful as it does measure how income varies across ed-
ucational groups after controlling for some other key socioeconomic variables. After
all, a major goal of statistics is data summary.

A consistent estimate of the schooling coefficient may be obtained using more ad-
vanced estimation methods, such as instrumental variables or panel data methods.
Then the coefficient can be given a causal interpretation. Weighting by sample weights
is no longer necessary, though the usual weighting to improve efficiency if, for exam-
ple, errors are heteroskedastic, may be appropriate.

Whether a model can be interpreted as correctly specified is a judgement call. If it
is correctly specified then sample weighted and unweighted estimates should have the
same probability limit, since both are consistent. This suggests testing correct model
specification by a Hausman test of the difference between sample-weighted and un-
weighted regressors, a test proposed by DuMouchel and Duncan (1983) in the case of
linear regression.

24.3.3. Prediction

Consider nonlinear regression with correctly specified conditional mean, g(x,β), and
no endogeneity. The unweighted NLS estimator consistently estimates β and can be
given a causal interpretation. In particular, we can use ∂g(x, β̂)/∂x to calculate the
causal effect of a one-unit change in x of the conditional mean.

This predicted effect varies with the evaluation point x, since g(·) is nonlinear. An
estimate of the average response in the population is

Ê

[
∂y

∂x

]
=

N∑
i=1

wi
∂g(xi ,β̂)

∂xi
,

where wi are the sample weights. Similarly, if one instead evaluates the response at
the mean of the regressors it may be better to use the weighted sample mean of x, an
estimate of the population mean of x, rather than the unweighted sample mean of x.

Even if the parameters are consistently estimated using unweighted estimation,
weighting must be used in subsequent impact calculations if one wishes to predict
population impacts, rather than sample impacts.
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24.4. Endogenous Stratification

Stratification is widely used as it can increase precision of estimation, or equivalently
reduce survey costs for a given level of precision. For example, more precise esti-
mation of the mean unemployment rate in low-population states may be obtained by
oversampling poor states. For similar reasons minority groups may be oversampled.

One complication, already considered in Section 24.3, is that parameters may vary
across strata. For example, the mean unemployment rate may vary across strata. Then
a descriptive approach is taken and weighted estimators are used.

Microeconometricians often prefer a structural approach and assume parameters are
unchanging across strata. Then from Section 24.3 stratification apparently causes no
complications and unweighted regression is used. A major proviso is that problems
still arise if stratification is based on the value of the dependent variable. For example,
if low-income people are purposely oversampled and income is the dependent variable
then the usual regression estimators are inconsistent. Note that there is no problem if
stratification is on regressors such as race and this leads indirectly to oversampling of
low-income people. Problems only arise if stratification is directly on income.

In this section we define endogenous stratification and analyze the resulting com-
plications. We then present several estimators that are consistent. The simplest is a
weighted estimator that can be used if both the sample and population strata probabil-
ities are known. The method is given in Section 24.4.5, which is self-contained.

24.4.1. Stratification Schemes

For general data z ∈ Z the strata are subsets of Z . Econometric analysis usually par-
titions the data into dependent variable y ∈ Y , where for generality we allow y to be
a vector, and regressor or independent variable x ∈ X . The strata Cs , for s = 1, . . . , S,
are then defined to be subsets of the sample space Y × X . The notation is that used by
Imbens and Lancaster (1996), who present some leading examples that are reproduced
in Table 24.1.

Sampling within strata is assumed to be random but some strata may be oversam-
pled. From Table 24.1 it is clear that the strata may sum to less than the sample space
or more than the sample space. For the fourth and fifth schemes the stratification may
be solely on endogenous variables, solely on exogenous variables, or on a mixture of
the two.

The econometrics literature has focused on sampling schemes with an endogenous
component, since in that case the usual conditional MLE is inconsistent.

Endogenous stratification has already been considered in Chapter 16. As an exam-
ple, consider truncated regression, where we observe y only if y > 0, so stratification
is purely on y. Then for sampled data the conditional density of y given x is a zero-
truncated density that divides the untruncated density by Pr[y > 0|x] and so

f s(y|x,θ) = f (y|x,θ)

1 − F(0|x,θ)
,
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Table 24.1. Stratification Schemes with Random Sampling within Strata

Stratification
Scheme Definition Stratum Description

Simple random S = 1, C1 = Y × X One stratum covers entire sample
space.

Pure exogenous Cs = Y × X s , with Xs ⊂ X Stratify on regressors only,
not on dependent variable

Pure endogenous Cs = Ys×X , with Ys ⊂ Y Stratify on dependent variable only,
not on regressors

Augmented sample S = 2, C1 = Y × X , Random sample augmented by extra
and C2 ⊂ Y × X . observations from part of the

sample space
Partitioned Cs ⊂ Y × X , Cs∩ Ct = ∅, Sample space split into mutually

and
S⋃

s=1
Cs = Ys×X .

exclusive strata that fill the entire
sample space

where the superscript s is used to distinguish the sample density from the population
density f (y|x,θ). As discussed in Chapter 16, this sampling scheme tends to drop
observations with low realizations of y, given x. Suppose E[y|x] = β1 + β2x and β2 >

0. Then for low values of x there will be too many relatively high values of y. The
regression will accordingly overpredict E[y|x] for low values of x , leading to upward
bias in the intercept β1 and downward bias in the slope β2.

A second example is choice-based sampling for binary or multinomial data where
samples are chosen based on the discrete outcome y. For example, if choice is between
travel to work by bus or travel by car we may oversample bus riders if relatively few
people commute by bus. This example is pursued in the following. It is similar to
case-control studies in the medical literature where, for example, a complete sample
of people who died from a disease (y = 1) is contrasted with a similar-sized subsample
of the universe of people who did not die of the disease (y = 0). The goal is to find
whether one or more regressors are able to predict y = 1.

A related example is count data on number of visits collected by on-site sampling
of users, such as sampling at recreational sites or shopping centers or doctor’s offices.
Then data are truncated, since those with y = 0 are not sampled, and additionally
high-frequency visitors are oversampled. Shaw (1988) shows that the sampling dis-
tribution of the data, f s(y|x,θ), is related to the population distribution through the
equation

f s(y|x,θ) = f (y|x,θ)
y

E[y|x,θ]
.

In this case the sampling scheme is clearly endogenous though it is not a stratified
sampling scheme.
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24.4.2. Endogeneity Induced by Stratification

Sampling schemes such as stratification schemes lead to the density in the sample
differing from that in the population. If stratification is purely exogenous, then despite
this difference the usual MLE is still consistent because the conditional density of y
given x in the sample is the same as that in the population. However, if any aspect of
stratification is endogenous, then these conditional densities differ, as illustrated by the
preceding examples. We now provide a detailed discussion of this point.

The goal of ML estimation lies in consistently estimating the parameters θ of
f (y|x,θ). In general the MLE should be based on the likelihood formed from the
joint distribution of the data (y, x). In practice it is often sufficient to simply form
a conditional likelihood from the conditional distribution of y given x. This simpler
approach can lead to consistent estimation under the assumption that x is exogenous
with respect to y, in which case the joint density factorizes as

g(y, x|θ) = f (y|x,θ) × h(x), (24.7)

where the parameters of the density of x are suppressed as there is no desire to estimate
these parameters.

It is always the case that we can write g(y, x) = f (y|x)×h(x). The assumption made
in (24.7) is that, upon introduction of parameters, θ appears in f (y|x,θ) but does not
appear in h(x). In general, rather than (24.7) we may have

g(y, x|θ) = f (y|x,θ) × h(x|θ). (24.8)

Then one or more components of x are endogenous with respect to y since there is
now feedback – y depends on x but x in turn depends on y via the presence of θ in
h(x|θ). A classic example of this is linear simultaneous equations. In such cases ML
estimation should be based on the joint likelihood

ln LJOINT(θ) =
n∑

i=1

ln f (yi |xi ,θ)+
n∑

i=1

ln h(xi |θ). (24.9)

This yields a consistent estimate of θ if, from Chapter 5,

0 = E

[
∂ ln g(y, x|θ)

∂θ

]
= E

[
∂ ln f (y|x,θ)

∂θ

]
+ E

[
∂ ln h(x|θ)

∂θ

]
. (24.10)

Condition (24.10) is satisfied if the density g(y, x|θ) is correctly specified and the
range of the data does not depend on θ. The conditional MLE instead maximizes the
conditional likelihood

ln LCOND(θ) =
∑

i

ln f (yi |xi ,θ).

The conditional MLE is consistent if E[∂ ln f (y|x,θ)/∂θ] = 0. This necessary con-
dition is implied by (24.10) if x is exogenous, since (24.10) simplifies because then
∂ ln h(x)/∂θ = 0. If instead x is endogenous this simplification does not occur, as the
second term on the right-hand side of (24.10) does not disappear. So the conditional
MLE is inconsistent if x is endogenous.
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The problem that arises with stratification and similar sampling schemes is that
even if the population joint density satisfies (24.7) and is the same across strata, the
sampling schemes can lead to joint density for (y, x) in the sample that takes the more
general form

gs(y, x|θ) = f s(y|x,θ) × hs(x|θ), (24.11)

where the superscript s is used to denote dependence on the particular sampling
scheme employed. Then the conditional MLE may be inconsistent, even though it
would be consistent if the sample was instead an SRS.

Under pure exogenous sampling the only difference between sample and popula-
tion distribution occurs for the marginal distribution of x. Assuming (24.7) holds in
the population, then in the sample

gs(y, x|θ) = f (y|x,θ) × hs(x).

Clearly, the conditional MLE will be consistent as the conditional density is still
f (y|x,θ) and θ does not appear in hs(x).

Under endogenous sampling the more general result (24.11) holds in the sample
even if (24.7) holds in the population. The sample and population conditional distribu-
tions of y given x may differ, with f s(y|x,θ) �= f (y|x,θ), and hs(x|θ) may possibly
depend on θ.

24.4.3. Endogenous Sampling

Under pure endogenous sampling the marginal distribution of y in the sample differs
from that in the population. Let h(y) denote the population density of y and hs(y)
denote the sampling density of y. (We are using the convention that g, f , and h denote,
respectively, joint, conditional, and marginal distributions. It should be clear to the
reader that h(y) differs from h(x).)

The joint distribution of y and x under pure endogenous sampling is best obtained
by first conditioning on x, rather than y. Then

gs(y, x) = f (x|y)hs(y), (24.12)

where simplification has occurred because the conditional distribution of x given y is
unaffected under pure endogenous sampling and so f s(x|y) = f (x|y). We now need
to reexpress f (x|y) in terms of f (y|x). Now

f (x|y) = g(y, x)

h(y)
(24.13)

= f (y|x)h(x)

h(y)
.

Substituting (24.13) into (24.12) and rearranging yields

gs(y, x|θ) = f (y|x,θ) × hs(y)

h(y|θ)
× h(x),
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where

h(y|θ) =
∫

g(y, x|θ)dx

=
∫

f (y|x,θ)h(x)dx.

The conditional MLE using just f (y|x,θ) will be inconsistent because the term h(y|θ)
has been neglected. One instead needs to maximize a joint likelihood that additionally
includes h(y|θ).

24.4.4. Endogenously Stratified Samples

We now consider the stratification schemes introduced in Section 24.4.1. The popula-
tion density is

g(y, x|θ) = f (y|x,θ)h(x).

There are S strata where the sth strata is the subset Cs of Y × X .
An important distinction is made between the population probability of an observa-

tion being in Cs and the probability of sampling from Cs , as the two differ in a stratified
sampling scheme. We define

Hs = Pr[Draw an observation from Cs],
Qs(θ) = Pr[A randomly drawn observation from the population is in Cs].

(24.14)

Here Hs is set by the sample design, whereas

Qs(θ) =
∫
Cs

f (y|x,θ)h(x)dydx. (24.15)

The strata probabilities may or may not be known. A strata is oversampled if Hs > Qs .
We begin by obtaining the joint density of s, y, and x, where s is an indicator for

the stratum from which the observation was obtained. In the population

g(s, y, x|θ) = Qs(θ)g(y, x|s,θ).

In the sample, the marginal distribution of the strata indicator differs from Qs , and

gs(s, y, x|θ) = Hs g(y, x|s,θ)

= Hs
f (y|x,θ)h(x)

Qs(θ)
,

where the second equality holds as g(y, x|s) equals the density g(y, x) = f (y|x)h(x)
divided by the population probability of being in strata s so that the density integrates
over Cs to one.

It follows that the joint density is

gs(s, y, x|θ) = Hs

Qs(θ)
f (y|x,θ)h(x), (24.16)

where Qs(θ) is defined in (24.15). The conditional MLE based on the population con-
ditional density f (y|x,θ) will be inconsistent for θ since it ignores the term Qs(θ),
which depends on θ.
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A variety of consistent estimators have been proposed. Here we consider maximum
likelihood estimation, GMM estimation, and a much simpler weighted estimator that
can be implemented provided both strata sampling probabilities Hs and population
probabilities Qs(θ) are known.

Maximum Likelihood Estimation

Performing an ML estimation based on the joint density gs(s, y, x|θ) in (24.16) is
complicated because from (24.15) the distribution of Qs(θ) depends on h(x). One
possible solution is to specify the density h(x). This approach is not taken because
econometricians shy away from specifying the distribution of regressors, even if there
is a willingness to specify the conditional distribution of the dependent variable.

Instead, a semiparametric approach is taken, with the goal of estimating the pa-
rameters of the specified density f (y|x,θ), for an unspecified density h(x). For sim-
plicity assume the population strata probabilities Hs are known. Cosslett (1981a) ob-
tained the MLE with endogenous stratification by first letting x be discrete with
xi occurring with probability wi , and maximizing the joint likelihood with respect to
θ and wi , i = 1, . . . , N . The first-order conditions can be collapsed to yield a con-
centrated likelihood that involves only (q + S − 1) parameters θ and functions λs(θ),
s = 1, . . . , S − 1. Second, maximizing this concentrated likelihood with respect to θ
and λs yields the same estimates as maximization with respect to θ and λs(θ). Third,
since it is valid to treat λs as a parameter the same procedure can be used for the case of
continuous regressors. A problem of dimension q plus infinite-dimensional unknown
density h(x) has been reduced to q + S − 1 dimensions.

GMM Estimation

The remarkable results of Cosslett (1981a) are difficult to implement.
Imbens (1992) devised a simpler GMM estimator with endogenous stratifica-

tion that has the same efficiency as Cosslett’s MLE. A quite general framework and
presentation of this estimator is given by Imbens and Lancaster (1996), for stratified
samples obtained by multinomial sampling, standard stratified sampling, or variable
probability sampling. The joint density is again gs(s, y, x|θ) in (24.16) and the sample
strata probabilities Hs are permitted to be possibly unknown. The GMM analysis is
based on S − 1 equations for the score of Hs , q equations for θ based on the condi-
tional likelihood function of y given s and x, S − 1 equations for the restrictions on
the population strata probabilities Qs(θ), and a final restriction that is not necessary if
there is a linear restriction on the Qs(θ), which happens, for example, if the strata are
mutually exclusive and cover the sample space.

24.4.5. Weighted Estimation

Endogenous stratification is easily dealt with when the sample and population strata
probabilities, Hs and Qs(θ) defined in (24.14), are known, though the estimator is
not fully efficient. We begin with ML estimation before considering more general
estimators.
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Weighted ML Estimation

Manski and Lerman (1977) proposed the weighted maximum likelihood (WML) es-
timator. This maximizes

QWML(θ) =
∑

i

Qi

Hi
ln f (yi |xi ,θ), (24.17)

where Hi = Hs and Qi = Qs if the i th observation is in strata s.
Manski and Lerman (1977) called this estimator the weighted exogenous sam-

pling estimator (WESML), since (24.17) multiplies the usual term ln f (yi |xi ,θ) in
the conditional likelihood under exogenous sampling by the weight Hi/Qi . How-
ever, the designation WESML can lead to confusion as the problem here is one of
endogeneity – it just turns out that appropriately weighting the usual exogenous esti-
mator leads to consistent estimation.

Along similar lines, the objective function QWML(θ) is not formally a likelihood,
since (24.16) does not imply that the sample conditional density of y given x and s is
given by f s(y|x,θ) = f (y|x,θ)Qs/Hs . Nonetheless, the WML estimator is consistent.
The WML estimator solves the first-order conditions∑

i

Qi

Hi

∂ ln f (yi |xi ,θ)

∂θ
= 0. (24.18)

This estimator is consistent if the terms in the sum have zero expected value, where
expectation is with respect to the sampling density gs(s, y, x|θ) in (24.16). Now

Es

[
Qs

Hs

∂ ln f (y|x,θ)

∂θ

]
(24.19)

=
∫ ∫

Qs

Hs

∂ ln f (y|x,θ)

∂θ

Hs

Qs(θ)
f (y|x,θ)h(x)dydx

=
∫ ∫

∂ ln f (y|x,θ)

∂θ
f (y|x,θ)h(x)dydx

=
∫

E

[
∂ ln f (y|x,θ)

∂θ

]
h(x)dx

= 0,

under the usual regularity condition that in the population the specified density satis-
fies E[∂ ln f (y|x,θ)/∂θ] = 0. So the WML estimator is consistent in the presence of
endogenous stratification.

The information matrix equality does not hold for objective function QWML(θ) in
(24.17), so we need to use the sandwich form N−1A−1BA−1 for the asymptotic vari-
ance of θ̂WML, where

A(θ0) = plim
1

N

N∑
i=1

Qi

Hi

∂2 ln f (yi |xi ,θ)

∂θ∂θ′

∣∣∣∣
θ0

(24.20)

and

B(θ0) = plim
1

N

N∑
i=1

(
Qi

Hi

)2
∂ ln f (yi |xi ,θ)

∂θ

∂ ln f (yi |xi ,θ)

∂θ′

∣∣∣∣∣
θ0

. (24.21)
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This estimator is less efficient than the ML estimator of Cosslett or Imbens, but it is
relatively straightforward to implement. It does, of course, presume knowledge of the
strata probabilities.

Weighted m-Estimation

The weighted ML estimator can be applied to estimators other than conditional ML
estimation. For example, Hausman and Wise (1979) consider similar weighted estima-
tion for least-squares regression.

Thus suppose with SRS we would minimize
∑

i q(yi |xi ,θ), with first-order condi-
tions

∑
i ∂q(yi |xi ,θ)/∂θ = 0, and suppose in the population that

E[∂q(y|x,θ)/∂θ)] = 0,

a necessary condition for consistency. Then if sampling is instead endogenously strat-
ified as in Section 24.2 and the sample and population strata probabilities Hs and Qs

are known, then θ is consistently estimated by the weighted m-estimator θ̂W that
minimizes

QW(θ) =
∑ Qi

Hi
q(yi |xi ,θ). (24.22)

The proof of consistency follows (24.18) and (24.19) for the WML estimator and
the variance matrix is of the form N−1A−1BA−1, where A and B are given in
(24.20) and (24.21) with the sole change being replacement of ∂ ln f (yi |xi ,θ)/∂θ by
∂q(yi |xi ,θ)/∂θ. Wooldridge (2001) provides a formal proof.

Similarly, for estimation based on the q population moment conditions

E[h(y, x,θ)] = 0,

under endogenous stratification, use the weighted estimating equations estimator
that solves ∑

i

Qi

Hi
h(yi , xi ,θ) = 0.

The weighted MLE results apply with ∂ ln f (yi |xi ,θ)/∂θ replaced by h(yi |xi ,θ).
Note that the weights Qi/Hi are the same as those proposed in Section 24.3.2 for

estimation of the census parameter under simple exogenous stratified sampling. The
motivation, however, is quite different. In the current section it is assumed that con-
ditional moments are correctly specified so that with exogenous stratified sampling it
would be consistent and efficient to do unweighted estimation. The weights become
necessary if stratification is endogenous.

24.5. Clustering

Sections 24.3 and 24.4 on weighting and stratification covered methods to control for
a survey design that leads to a sample distribution that differs from the population dis-
tribution. The assumption of independence of sampled observations was maintained.
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In fact survey data are usually dependent. This may be due to use of clustered sam-
ples to reduce survey costs, such as interviewing several households on the same block.
In such cases the data may be correlated within a cluster owing to the presence of a
common unobserved cluster-specific term. Such dependence may also arise, however,
even with SRS. For example, it may be felt that there is an unobservable effect com-
mon to all households in the same state.

There are several different methods for controlling for dependence on unobserv-
ables within a cluster. If the within-cluster unobservables are uncorrelated with regres-
sors then only the variances of the regression parameters need to be adjusted. If instead
the within-cluster unobservables are correlated with regressors then the regression pa-
rameters are inconsistent and suitable alternative estimators are needed. The analysis
is further complicated because methods may also vary according to whether there are
many small clusters or few large clusters. Additional complex survey complications
such as weighting and stratification are deferred to Section 24.6.

The notation and models are presented next, with the key distinction being between
random cluster effects and fixed cluster effects, similar to panel data analysis. The
various estimators are presented in subsequent sections.

24.5.1. Cluster-Specific Effects Models

Interest lies in estimation of a linear regression model given data (yi , xi ), i = 1, . . . , N ,
where i denotes the i th sample observation, such as a household.

The concern is that some aspects of the population regression model vary by cluster
c, c = 1, . . . ,C . Suppose the i th household in the overall sample is the j th household
in the cth sampled cluster. A quite general model for clustered data is

y jc = x′
jcβc + u jc, j = 1, . . . , Nc, c = 1, . . . ,C, (24.23)

where Cov[u jc, ukc] �= 0 though Cov[u jc, ukd ] = 0 for c �= d . This model incorpo-
rates cluster dependence through both regression parameters that vary across clusters
and errors that are correlated within a cluster.

Here we focus on a special case, the cluster-specific effects model

y jc = x′
jcβ + αc + ε jc. (24.24)

Here just the regression intercept αc varies across clusters, whereas the slope coeffi-
cients are assumed to be constant across clusters. In the simplest model ε jc is assumed
to be homoskedastic,

ε jc ∼ [0, σ 2
ε ], (24.25)

an assumption that can be relaxed to permit heteroskedasticity and correlation within
a cluster. More substantively, different assumptions on αc lead to two quite different
models, which we now present.
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Cluster-Specific Random Effects

In the cluster-specific random effects (CSRE) model the intercepts αc in (24.24)
are purely random with distribution that does not depend on any observables. In the
simplest case it is assumed that

αc ∼ [0, σ 2
α ]. (24.26)

This model is directly analogous to the random effects model for panel data. The
model is just a linear regression of y jc on x jc, with the complication that the error
term αc + ε jc is correlated for observations in the same cluster. An OLS estimation
is consistent but inefficient. Importantly, the correlation of errors makes it necessary
to adjust the usual standard errors of the OLS estimator. A GLS estimation is more
efficient.

Given assumptions (24.25) and (24.26) on ε jc and αc, V[αc + ε jc] = σ 2
α + σ 2

ε

and Cov[αc + ε jc, αc + εkc] = σ 2
α , for k �= j . We define the intraclass correlation

coefficient

ρ = Cor[αc + ε jc, αc + εkc] = σ 2
α

σ 2
α + σ 2

ε

. (24.27)

There is a one-to-one correspondence between (σ 2
α , σ

2
ε ) and (σ 2, ρ), where ρ is

defined in (24.27) and σ 2 = σ 2
α + σ 2

ε . The CSRE model is equivalent to a model with
constant intraclass correlation coefficient. The model can also be given a Bayesian
interpretation, viewing each observation as having its own intercept α jc that is a draw
from a univariate distribution and appealing to the exchangeability criterion that the
subscript in α jc is a purely labeling device and has no substantive consequences. In all
cases clustering has the expected effect of inducing positive correlation between error
terms within a cluster.

Cluster-Specific Fixed Effects

In the cluster-specific fixed effects (CSFE) model the intercepts αc in (24.23) are
random unobservables, as for the CSRE model, but may possibly be correlated with
the regressors. For identification x jc no longer includes an intercept term.

This model is directly analogous to the fixed effects model for panel data. The model
has conditional mean E[y jc|x jc, αc] = x′

jcβ + αc. The OLS estimator from regression
of y jc on x jc alone is inconsistent for β if the omitted variable αc is correlated with x jc.
Consistent estimation of β requires consistent estimation of αc, which is possible if the
clusters are large. If clusters are instead small the individual αc need to be eliminated
by a differencing transformation.

Comparison to Panel Data Analysis

The setup and terminology clearly closely parallels that for static panel data analysis
presented in Chapters 21 to 23. At the same time there are some departures from panel
data analysis.
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In the panel case the individual unit of analysis, such as the household, is observed
more than once whereas in the cluster case the individual unit of analysis is observed
only once. In the panel notation i t , the first subscript is the clustering unit if the panel
is a short panel, whereas in the clustering notation jc, the second subscript is the
clustering unit. In the panel case we focused on balanced panels, but clustered data are
usually unbalanced as Nc varies across clusters.

Microeconometrics methods for panel data focus on short panels. This is analogous
to having few observations per cluster and many clusters. Then Nc is small and C →
∞, which we call small clusters. In addition, it is not unusual to have large clusters,
with Nc → ∞ and C small. For the CSFE model with large clusters there will only be
a few parameters αc to estimate and the incidental parameters problems will not arise.

Unlike as in panel data, the appropriate clustering unit may not always be clear. For
example, for the CPS data clustering could be viewed as arising within state, within
strata, within PSU, or within USU. This issue is deferred to Section 24.6. The intra-
cluster correlation is expected to decrease for clustering at more aggregate levels. If
clustering is at the state level then the clusters are large, whereas if clustering is viewed
as being at the level of USU then the clusters are small. Moreover, it is possible that a
data set does not include necessary clustering information, such as the strata or USU
for an observation.

The analogue of dynamic, rather than static, panel data models is a model where
y jc depends not only x jc but also on xkc, for k �= j . For clustered data it is usually
sufficient to specify a peer-effects model that more simply includes just the cluster
average x̄c, since the ordering of observations within a cluster usually does not matter.

Overview

The three common estimators for clustering are the OLS, the GLS, and the within
estimators presented in Sections 24.5.2–24.5.4. The properties of these estimators,
summarized in Table 24.2, vary with the true model. Most importantly, if the true
model has cluster-specific fixed effects then OLS and RE estimators are inconsistent,
whereas the within estimator yields consistent estimates but only for coefficients of
regressors that vary within a cluster. Secondly, even if an estimator is consistent the
usual standard errors will often need to be adjusted to control for clustering and possi-
bly heteroskedasticity as detailed in the following.

Table 24.2. Properties of Estimators for Different Clustering Models

Section Estimator Cluster Model Consistent

24.5.2 OLS Random effects Yes
Fixed effects No

24.5.3 GLS for random effects Random effects Yes
Fixed effects No

24.5.4 Within for fixed effects Random effects Yes
Fixed effects Yes
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24.5.2. OLS Estimator

We consider the OLS regression

y jc = x′
jcβ + u jc. (24.28)

Ordinary LS is inconsistent because of omitted variables bias if the true model is the
CSFE model (i.e., u jc = αc + ε jc) with fixed effect αc correlated with x jc. Then the
OLS estimator should not be used and instead the CSFE estimators of Section 24.5.4
should be used.

In contrast, OLS is consistent in the CSRE model, where αc is a random effect
uncorrelated with x jc. More generally, OLS is consistent under richer models for u jc

than the CSRE model, provided u jc is uncorrelated with x jc. We consider the OLS
estimator in this case, with focus on obtaining correct standard errors given correlation
of the error term u jc within a cluster.

Notation

Stacking observations in (24.28) within a cluster yields

yc = Xcβ + uc, (24.29)

where yc and uc are Nc × 1 vectors and Xc is an Nc × K matrix. Further stacking over
clusters yields

y = Xβ + u, (24.30)

where y and u are N × 1 vectors and X is an N × K matrix, N =∑c Nc.
The three representations of the CSRE model lead to three equivalent ways of ex-

pressing the OLS estimator of model (24.28),

β̂OLS = (X′X
)−1

X′y (24.31)

=
(

C∑
c=1

X′
cXc

)−1 C∑
c=1

X′
cyc

=
(

C∑
c=1

Nc∑
j=1

x jcx′
jc

)−1 C∑
c=1

Nc∑
j=1

x jc y jc.

The second of these representations is especially useful given the assumption of
independence of errors across clusters. Then, as before in the panel case, the OLS
estimator has limit distribution

√
N
(
β̂OLS − β

) d→ N
[
0,A−1BA−1

]
, (24.32)

where

A = plimN−1
C∑

c=1

X′
cXc, (24.33)

B = plimN−1
C∑

c=1

X′
cucu′

cXc,
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using independence of uc over c. Different assumptions on the properties of uc lead to
different estimates of B.

OLS Cluster-Robust Standard Errors

If clusters are small then there are many clusters and B in (24.33) can be consistently
estimated by replacing uc by ûc = yc − Xcβ̂. It follows that β̂OLS is asymptotically
normally distributed with cluster-robust variance matrix

V̂
[
β̂OLS

] =
(

C∑
c=1

X′
cXc

)−1 C∑
c=1

X′
cûcû′

cXc

(
C∑

c=1

X′
cXc

)−1

. (24.34)

This formula places no restriction on heteroskedasticity and correlation within a
cluster, as V[uc] and hence V

[
u jc
]

and Cov
[
u jc, ukc

]
are unrestricted. However, it

does assume that Nc is small and C → ∞ . Statistical packages often give a degrees-
of-freedom correction. Typically one multiplies the estimate in (24.34) by

dfc = N − 1

N − K
× C

C − 1
,

which corrects for both estimation of β and the number of clusters in practice being
finite.

To see how (24.34) works, treat the regressors as fixed and note that

B = limN−1
C∑

c=1

X′
cE
[
ucu′

c

]
Xc

= limN−1
C∑

c=1

Nc∑
j=1

Nc∑
k=1

E
[
u jcu′

kc

]
x jcx′

kc.

Then (24.34) is obtained using the estimate

B̂ = N−1
C∑

c=1

X′
cûcû′

cXc

= N−1
C∑

c=1

Nc∑
j=1

Nc∑
k=1

û jcûkcx jcx′
kc.

For example, consider estimation of E[y] by ȳ. This is the regression (24.28)
with x jc = 1, β̂OLS = ȳ, and û jc = y jc − ȳ. Then (24.34) leads to V̂ [ȳ] =
N−2∑

c(
∑

j (y jc − ȳ))2, compared to the estimate of N−1∑
c

∑
j (y jc − ȳ)2 which

additionally assumes independence within clusters.

OLS Standard Errors Assuming the CSRE Model

The cluster-robust estimates (24.34) require many clusters. Alternative estimates that
also apply to the case of few clusters can be used if assumptions are made about the
variances and covariances of the model error u jc. These alternative estimates also per-
mit analytical results regarding the impact of clustering on estimator variances.
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In particular, assume that the CSRE model given by (24.24) to (24.26) is appropri-
ate. Then the error u jc = αc + ε jc is independent over c and within a cluster

Cov[u jc, ukc] =
{
σ 2, j = k,
ρσ 2, j �= k,

where the intraclass correlation coefficient ρ is defined in (24.27). It follows that

Σc = V[uc] = σ 2[(1 − ρ)Ic + ρece′
c], (24.35)

where Ic is an Nc × Nc identity matrix and ec is an Nc × 1 vector of ones.
Given Σc in (24.35), the general result (24.32) to (24.33) yields

V
[
β̂OLS

] =
(

C∑
c=1

X′
cXc

)−1 C∑
c=1

σ 2X′
c[(1 − ρ)Ic + ρece′

c]Xc

(
C∑

c=1

X′
cXc

)−1

. (24.36)

Provided the intraclass correlation coefficient is constant, this variance matrix estima-
tor is consistent in both the small- and large-cluster cases. Obvious estimators for σ 2

and ρ are

σ̂ 2 = 1

N − K − 1

C∑
c=1

Nc∑
j=1

û2
jc

and

ρ̂ = 1∑
c Nc(Nc − 1)

1

σ̂ 2

C∑
c=1

Nc∑
j=1

Nc∑
k �= j

û jcûkc.

The estimate of ρ involves many intracluster pairs and a consistent estimate can be
obtained using just a subset of these. As written

∑
c Nc(Nc − 1) pairs are used, though

in fact each unique within-cluster pair is double counted as both û jcûkc and ûkcû jc

appear in the summations.
If the clusters are large the intracluster correlation can be permitted to vary across

clusters. Then (24.35) and (24.36) can be amended to replace σ 2 and ρ by σ 2
c and ρc,

respectively. These can be consistently estimated by

σ̂ 2
c = 1

Nc − K − 1

Nc∑
j=1

û2
jc

and

ρ̂c = 1

Nc(Nc − 1)

1

σ̂ 2
c

Nc∑
j=1

Nc∑
k �= j

û jcûkc.
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Bias of Usual OLS Standard Errors

If data are clustered, then intuitively the usual formula variance estimator for the OLS
estimator,

VFormula
[
β̂OLS

] = σ 2

(
C∑

c=1

X′
cXc

)−1

,

underestimates the true variance matrix of the OLS estimator, assuming positive
within-cluster correlation, since each additional observation within a cluster will pro-
vide less than one additional piece of independent information. We demonstrate this
bias when the error process is that of the CSRE model.

Consider the CSRE model with the same regressors within each cluster, so x jc = xc

and Xc = ecx′
c. Then by using e′

cec = Nc, (24.36) becomes

V
[
β̂OLS

] =
(

C∑
c=1

Ncxcx′
c

)−1 C∑
c=1

Ncσ
2[1 + ρ(Nc − 1)]xcx′

c

(
C∑

c=1

Ncxcx′
c

)−1

,

a result presented by Kloek (1981) and Moulton (1986).
Now specialize to balanced clusters, and define M to be the average cluster size,

so M = Nc = N/C is constant. Then the variance estimate simplifies to

V
[
β̂OLS

] = [1 + ρ(M − 1)] × σ 2

(
M

C∑
c=1

xcx′
c

)−1

,

whereas the formula variance simplifies to σ 2(M
∑

c xcx′
c)−1. It follows that the true

variances are a multiple

τ = [1 + ρ(M − 1)]

times the usual OLS variance matrix estimate. Even if ρ is small the correction fac-
tor can be quite large. For example, if the average cluster size is M = 101 obser-
vations, then the usual OLS standard errors should be multiplied by

√
1 + 100ρ.

The assumed independence within a cluster will also lead to a biased estimate
of σ 2, but this is of second-order importance. In the balanced-cluster case Kloek
shows that E[

∑
c

∑
j û2

cj ] = σ 2[N − K (1 + ρ(m − 1))] so we should normalize by
[N − K (1 + ρ(m − 1))]−1 rather than [N − K ]−1.

In practice some regressors may be constant within a cluster and others may
vary. Then in the case of regression with intercept and scalar regressor (i.e., x′

jcβ =
β1 + β2x jc) Scott and Holt (1982) show that the usual OLS formula variance for the
intercept should be multiplied by 1 + ρ(M − 1) as done in the preceding, but for the
slope coefficient it should be multiplied by the smaller factor 1 + ρ̂xρ(M − 1), where
ρ̂x can be viewed as an estimate of the intraclass correlation coefficient of the x jc. In
cross-section applications ρ̂x is relatively small, so the main problem lies with standard
errors for cluster-invariant regressors.
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Moulton (1986) demonstrated in an application that the bias in standard errors us-
ing the incorrect OLS formula variance can be quite appreciable. He estimated a log-
wage equation using cross-section CPS data where clustering was on states. For his
application N = 18,946 and C = 49. For his data the estimated intraclass correlation
coefficient was ρ̂ = 0.032, a seemingly small value. However, the clusters are large,
and if we ignore the data being unbalanced and as a guide use the preceding for-
mulas with M = 387, the average cluster size, then τ̂ = [1 + ρ̂(M − 1)] = 13.3. For
state-invariant regressors the true OLS standard errors are predicted to be

√
13.3 = 3.7

times the usual reported standard errors, a very large bias. (One way to view this is
that for OLS estimation of the coefficients of state-invariant regressors, the 18,946
clustered observations have the same precision as 18,946/13.3 = 1,425 independent
observations.) For individual-varying regressors the bias will be much smaller, for ex-
ample, [1 + ρ̂x ρ̂(M − 1)] = 2.23 if ρ̂x = 0.10. Moulton does not report results for the
individual-varying regressors included as regressors. For the state-invariant regressors,
variables such as growth rate of employment in the state, the cluster-corrected standard
errors for OLS are generally between three and four times the incorrect formula stan-
dard errors.

The lesson is that there can be great downward bias in the default OLS standard
errors for the OLS coefficients of cluster-invariant regressors. For individual-varying
regressors there is also bias, but it is much less. Cluster-invariant regressors are of-
ten included in applications with clustered data, as it is common to model individual
behavior as depending in part on attributes of the cluster. Valid statistical inference
requires obtaining standard errors that control for clustering.

24.5.3. Cluster-Specific Random Effects Estimator

If a random effects model is appropriate then the GLS estimator is in general more
efficient than the OLS estimator of the previous section. Given independence across
clusters the GLS estimator of model (24.29) is

β̂GLS,RE =
(

C∑
c=1

X′
cΣ

−1
c Xc

)−1 C∑
c=1

X′
cΣ

−1
c yc, (24.37)

where Σc =V[uc]. The feasible GLS estimator replaces Σc by a consistent estimate
Σ̂c, and assuming correct specification of the model (24.29) and error variance matrix
Σc, we have

V
[
β̂GLS,RE

] =
(

C∑
c=1

X′
cΣ

−1
c Xc

)−1

.

For the CSRE model, Σc given in (24.35) can be consistently estimated by Σ̂c,
which replaces σ 2 and ρ by the consistent estimates given after (24.36). As in the sim-
ilar random effects model for panel data, the feasible GLS estimator is asymptotically
equivalent to the MLE under the additional assumptions that αc and ε jc are normally
distributed.
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An attraction of the CSRE model is that the GLS estimator (24.37) can be simply
implemented by OLS estimation of the transformed regression

y jc − θc ȳc = (x jc − θcx̄c)′β + (ε jc − θcε̄c), (24.38)

where

θc = 1 −
√

1 − ρ√
1 + ρ (Nc − 1)

= 1 − σε√
σ 2
ε + Ncσ 2

α

. (24.39)

This result is proven later in this section. To implement it we replace θc by consis-
tent estimate θ̂ c. As for the panel data model, it can be shown that usual OLS stan-
dard errors from this regression can be used if the errors ε jc in model (24.24) are
homoskedastic.

The GLS estimator is at least as efficient as OLS assuming (24.24) to (24.26) hold.
In the special case that all regressors are cluster-invariant there is no efficiency gain as
GLS then coincides with OLS (Kloek, 1981). More generally, Scott and Holt (1982)
give a quite conservative upper bound to the efficiency loss of OLS compared to
GLS as

V[c′β̂GLS]

V[c′β̂OLS]
≥ 1 −

(
1 + 4(1 − ρ)[1 + ρ(N0 − 1)]

N 2
0ρ

2

)−1

for arbitrary vector c and where N0 = max{Nc} is the sample size of the largest cluster.
This bound is increasing in N0 and ρ, and even for N0 = 1,000 and ρ = 0.10, OLS is
at most 22% less efficient than GLS.

Given these small efficiency gains to GLS it is more common to focus on OLS
estimation with correct standard errors, unless OLS is inconsistent because the CSFE
model is appropriate. The main impact of clustering is that OLS is much less efficient
compared to the case of no clustering, as is clear from the discussion of calculation of
standard errors for the OLS estimator in Section 24.5.2.

If clusters are large, then the CSRE model can be relaxed to permit the error vari-
ance and intraclass correlation to vary across clusters. Then in (24.35) for Σc we re-
place σ 2 and ρ by σ 2

c and ρc, respectively, using consistent estimates for σ 2
c and ρc

given after (24.36).
If clusters are small then robust standard errors that do not constrain error corre-

lation to be constant within a cluster can be obtained, analogous to (24.34) for OLS.
Then

V̂
[
β̂GLS,RE

] =
[

C∑
c=1

X′
cΣ̂

−1
c Xc

]−1 C∑
c=1

X′
cΣ̂

−1/2
c ûcû′

cΣ̂
−1/2
c Xc

[
C∑

c=1

X′
cΣ̂

−1
c Xc

]−1

,

where ûc = yc − Xcβ̂GLS,RE. This estimate requires Nc small and C → ∞, and it as-
sumes independence of errors in different clusters.
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GLS Implemented as OLS in a Transformed Model

To derive (24.38), note that for Σc defined in (24.35)

Σ−1
c = [σ 2[(1 − ρ)Ic + ρece′

c]
]−1

= 1

σ 2(1 − ρ)
[Ic − (ρ/τc)ece′

c]−1,

where τc = 1 + ρ(Nc − 1) and hence

Σ−1/2
c = 1

σ
√

1 − ρ [Ic − (θc/Nc)ece′
c],

using the general results that if e is an M × 1 vector of ones then

[I + aee′]−1 = I−[a/(1 + aM)]ee′,

[I + aee′]1/2 = I−M−1
(

1 − √
1 + aM

)
Mee′.

Now in (24.37) X′
cΣ

−1
c Xc = (Σ−1/2

c Xc
)′

Σ−1/2
c Xc, where

Σ−1/2
c Xc = [Ic − (θc/Nc)ece′

c]Xc

= Xc − θcecx̄′
c

and where x̄c = N−1
c

∑
j x jc and we ignore the scalar multiple 1/σ

√
1 − ρ as it will

cancel out when we similarly consider X′
cΣ

−1
c yc. The transformed regression model

(24.38) follows.

24.5.4. Cluster-Specific Fixed Effects Estimator

The basic idea of the CSFE model is straight forward: Let the cluster effect enter the
conditional mean function through the intercept term. The model is

y jc = αc + x′
jcβ + ε jc, j = 1, . . . , Nc, c = 1, . . . ,C, (24.40)

where now both β and αc, c = 1, . . . ,C , are parameters to be estimated.
In the CSFE model all cluster-invariant regressors must be dropped, as they cannot

be separately identified from αc. For example, if clustering is on the state and a fixed
effects model is appropriate then the effect of state-invariant regressors such as state
average unemployment cannot be identified. If estimation of the coefficients of state-
invariant regressors is desired then OLS or the CSRE estimator need to be used instead.
However, one should first use a Hausman test analogous to that presented in Chapter 21
for panel data to confirm the validity of the strong assumption of the CSRE model that
αc is uncorrelated with the regressors.

We consider statistical inference under the assumption

ε jc ∼ [0, σ 2
jc].

This permits heteroskedasticity of unknown form but assumes that inclusion of the
cluster-specific fixed effect αc is sufficient to control for any error correlation within
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a cluster. This is a departure from panel data analysis where concern about time-
series correlation in the errors even after inclusion of individual-specific effects leads
to richer models. If desired, however, one can additionally adjust estimator standard
errors for correlation within a cluster by methods similar to those in Section 24.5.2.

The main complication in estimation of the CSFE model is that in small clusters
there are too many intercepts αc to estimate.

Cluster Dummy Variables Model

We first consider large clusters, where the number of clusters is small relative to the to-
tal sample size. Then the intercepts αc can be estimated directly by introducing dummy
variables for each cluster and estimating by OLS.

Let observation i denote the j th household in the cth cluster. Then (24.40) can be
written as the cluster dummy variables model

yi =
C∑

c=1

αcdci + x′
iβ+ εi , i = 1, . . . , N , (24.41)

where the dci are indicator variables that equal one if the i th observation belongs to
cluster c and equal zero otherwise. Thus C cluster indicator variables, such as state
dummy variables, are included, and to avoid the dummy variable trap, x should not
contain an intercept term.

An OLS estimation of this model yields consistent estimates of both α1, . . . , αC

and β, assuming a fixed number of clusters C as N → ∞. One can use the usual
Eicker–White estimate to obtain standard errors that are robust given heteroskedastic
errors.

Within-Clusters Estimator

When there are many small clusters we can no longer estimate the model (24.40) by
OLS. First, OLS estimation may not be computationally feasible because the number
of parameters (C + K ) → ∞ as the number of clusters C → ∞. Second, and more
importantly, because the number of parameters is going to infinity with the sample
size, the OLS estimator is inconsistent unless Nc → ∞.

Interest usually lies in the parameters β in (24.40), with α1, . . . , αC viewed as inci-
dental parameters or as nuisance parameters. Then it is convenient to sweep out the
fixed effects by an initial data transformation. Each observation (y jc, x jc) is replaced
by deviation from the cluster mean, that is, by (y jc − ȳc, x jc − x̄c), i = 1, . . . , Nc,
c = 1, . . . ,C , where ȳc = N−1

c

∑
j y jc and x̄c = N−1

c

∑
j x jc are cluster-specific av-

erages. Then the model (24.40) for y jc implies that

y jc − ȳc = (x jc − x̄c
)′
β + ε jc − ε̄c. (24.42)

Applying OLS to the transformed regression (24.42) yields a consistent estimate
of β. If the CSFE coefficients are also of interest, they can be estimated by α̂c =
ȳc − x̄′

cβ, though this estimate is not consistent for small Nc.
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Comparison with Chapter 21 shows that this is analogous to the within estimator
for panel data. As for panel data, the estimate of β from OLS estimation of (24.42)
coincides with the estimate of β from OLS estimation of the cluster dummy variables
model (24.41).

A between estimator can also be proposed analogous to that for linear panel mod-
els. In this case ȳc is regressed on x̄c, c = 1, . . . , Nc. From (24.37), the GLS estimator
in the CSRE model involves regression in quasi-differences, where cluster means are
multiplied by θc (defined in (24.39)) before differencing. The GLS estimator can be
shown to be a linear combination of the within and between estimators. It approaches
the within estimator for large Nc as then θc → 1. Note that the within estimator is
consistent in the CSRE model.

Caution is necessary in interpreting the standard errors if the regression is applied to
the mean-corrected observations. The number of degrees of freedom for this regression
is (N − K − C), not (N − K ). If software neglects this adjustment then the residual
variance from the software should be adjusted by multiplying by the inflation factor
(N − K ) / (N − K − C) and the standard errors should be inflated by the square root
of the same.

24.5.5. Diagnostic Tests for Cluster Effects

In linear regression a test of cluster-specific fixed effects under normality of errors is
just the standard F-test of linear restrictions hypothesis H0 : α1 = α2 = · · · = αC = 0
in (24.40). This simply involves a comparison of the R2 statistic for the two regressions
with and without the cluster-specific dummy variables.

In the CSRE model a test of cluster effects is a one-sided test of the null hypothesis
H0 : σ 2

α = 0 versus H1 : σ 2
α > 0. An equivalent test can also be formulated as a test of

H0 : ρ = 0 versus H1 : ρ > 0 using the definition in (24.27). The one-sided LM test
statistic of this hypothesis, given by Moulton (1987), is

LM =
∑

c (Ncuc)2 −∑c

∑
i û2

ic

σ̂ 2[2
(∑

ĉ N 2
c − N

)
]1/2

, (24.43)

where σ̂ 2 =∑c

∑
i û2

ic/N , ûic denotes the least-squares residual from the pooled re-
gression of y on x, and uc is the average residual for cluster c.

24.5.6. Clustering in Nonlinear Models

Nonlinear models with clustered data have not attracted much attention in the econo-
metrics literature. There are numerous published articles in biostatistics, however, with
a special focus on binary outcome models (Pendergast et al., 1996). Other models such
as the Poisson regression and some models for survival data have also been considered.
The hierarchical (multilevel) modeling framwork has also been used extensively espe-
cially for binary outcome models.

Here we continue to exploit the parallel between clustered and panel data. As in the
linear case the data (yi , xi ), i = 1, . . . , N , are subscripted as (y jc, x jc), j = 1, . . . , Nc,

841



STRATIFIED AND CLUSTERED SAMPLES

c = 1, . . . ,C . We assume independence over c but permit dependence of observations
within cluster c.

m-Estimation with Clustering

Consider a nonlinear estimating equations estimator that solves

C∑
c=1

Nc∑
j=1

h(y jc, x jc,θ) = 0. (24.44)

Often these equations are obtained from maximization or minimization of the objective
function

∑
c

∑
j q(y jc, x jc,θ), in which case h(y jc, x jc,θ) = ∂q(y jc, x jc,θ)/∂θ. For

example, for quasi-MLE based on the product of marginal densities h(y jc, x jc,θ) =
∂ ln f (y jc|x jc,θ)/∂θ.

We assume that data are clustered, so that Cov[h jc,hkc] �= 0. However, we maintain
the assumption that E[h(y jc, x jc,θ)] = 0, a necessary condition for consistency, which
rules out the cluster-specific fixed effects model also presented in the following.

The cluster-robust variance of the OLS estimator (24.34) is easily adapted to the
current situation by replacing x jcx′

jc by ∂h jc/∂θ
′ and x jcû jc by h jc (̂θ). Then θ̂ is

asymptotically normal with cluster-robust variance matrix

V̂[̂θ] =
(

C∑
c=1

Nc∑
j=1

∂h′
jc

∂θ

∣∣∣∣∣̂
θ

)−1 C∑
c=1

Nc∑
j=1

Nc∑
k=1

h jc (̂θ)hkc (̂θ)′
(

C∑
c=1

Nc∑
j=1

∂h jc

∂θ′

∣∣∣∣̂
θ

)−1

. (24.45)

Some computer software provides this as a standard option for many parametric non-
linear models.

A leading example is quasi-ML estimation based on the product of marginal densi-
ties within a cluster rather than the joint density. Specifically, given dependence over
j within cluster c we should maximize the log-likelihood

ln L(θ) =
C∑

c=1

ln f (y1c, . . . , yNcc, x1c, . . . , xNcc,θ).

However, the joint density may be difficult to work with or difficult to obtain because
for many univariate densities there can be a limited range of multivariate densities.
Instead, we may maximize

Q(θ) =
C∑

c=1

ln[ f (y1c, x1c,θ)× · · · × f (yNc , xNc ,θ)]

=
C∑

c=1

Nc∑
j=1

ln f (y jc, x jc,θ),

which is no longer a true likelihood function, unless y jc are independent over
j , so the information matrix equality no longer applies. The preceding formu-
las apply with h jc(θ) = ∂ ln f (y jc, x jc,θ)/∂θ and ∂h jc(θ)/∂θ′ = ∂2 ln f (y jc, x jc,

θ)/∂θ∂θ′.
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This means that within each cluster we do not use the likelihood score for each
observation as in the case of independent observations; instead, we replace it by the
sum of likelihood scores over all cluster elements.

Nonlinear Cluster-Specific Random Effects

A quite general setup for cluster-specific effects in nonlinear models is to consider the
estimator that minimizes or maximizes

Q(β,α1, . . . , αC ) =
C∑

c=1

Nc∑
j=1

q(y jc, x jc,β,αc), (24.46)

where cluster effects enter only via the scalar parameter αc, c = 1, . . . ,C .
A simple random effects model assumes that the αc are iid with parameters δ. Tak-

ing expectation with respect to αc yields the objective function

Q(β,δ) =
C∑

c=1

∫ Nc∑
j=1

q(y jc, x jc,β,αc) f (αc|δ)dαc.

Estimation can be complicated, especially if there is no closed-form expression for the
integral of the sum.

Often it is easy to obtain the expectation with respect to one observation,
Eαc [q(y jc, x jc,β,αc)] = q∗(y jc, x jc,β,δ). Then the simpler estimator that ignores
clustering and minimizes Q∗(β,δ) =∑c

∑
j q∗(y jc, x jc,β,δ) will be consistent,

though the standard errors need to be adjusted for clustering using (24.45).
For example, with count data we can develop a clustered analogue of the panel

data Poisson–gamma mixture model. However, the Poisson quasi-MLE that ignores
clustering can still be used as it is consistent, though standard errors need to be adjusted
for clustering.

Therefore, although random effects versions of nonlinear models can be developed,
it is often adequate to estimate parameters by ignoring clustering and then correct the
standard errors of estimators for the clustering. There can be little reason for estimation
of clustered random effects models, aside from the potential for efficiency gains.

Nonlinear Cluster-Specific Fixed Effects

Nonlinear variants of the cluster-specific fixed effects model again maximize or mini-
mize

Q(β,α1, . . . , αC ) =
C∑

c=1

Nc∑
j=1

q(y jc, x jc,β,αc),

as in (24.34), except now the parameters α1, . . . , αC are estimated rather than inte-
grated out.

For large clusters, that is, C small and Nc → ∞, we simply optimize
Q(β,α1, . . . , αC ) with respect to β and α1, . . . , αC . Assuming that α1, . . . , αC com-
pletely control for any clustering, inference can be based on standard errors obtained
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under the usual iid assumptions. This is the nonlinear analogue of the cluster-specific
dummy variable model (24.41).

For small clusters, that is, Nc small and C → ∞, we have the problem of too many
incidental parameters α1, . . . , αC . Unlike the linear model it is generally not possible to
eliminate the parameters α1, . . . , αC (Hall and Severini, 1998). However, from Chapter
23 on panel data we see that it is possible in some cases.

For example, the binary logit model with cluster fixed effects specifies

Pr[y jc = 1] = 1

1 + exp(−αc − x′
jcβ)

, (24.47)

where for identification x jc cannot include an intercept or cluster-invariant regressors.
The fixed effects αc can be eliminated using the conditional MLE that conditions on
the sum of responses within a cluster,

∑Nc
j=1 y jc = Nc ȳc. The joint conditional proba-

bility for the cth cluster is

Pr
[
y1c, . . . , yNcc |Nc ȳc

] =
exp
(
β
∑Nc

j=1 x jc y jc

)
∑

d∈B̃c
exp
(
β
∑Nc

j=1 x jcd jc

)
×
�
[∑Nc

j=1 y jc + 1
]
�
[

Nc −∑Nc
j=1 +1

]
�(Nc + 1)

, (24.48)

where B̃c = {(d1c, . . . , dNcc) | dnc = 0 or 1, and
∑

j d jc =∑ j y jc}. The conditional
likelihood is the product over all clusters of terms such as these, with clusters of size
one excluded from the likelihood. The second term on the right-hand side does not
depend on the unknown parameters and hence does not affect the maximization of
the likelihood, so it can be ignored when considering maximization. The likelihood is
awkward to maximize because the set B̃c ranges over the many ways of choosing Nc

outcomes y jc = 1 from (N1c + N0c) total outcomes in cluster c. Fortunately, however,
a number of popular computer packages provide the conditional logit option for esti-
mating this model. The covariance matrix of all unknown parameters is estimated by
the inverse of the log-likelihood Hessian.

As another example, consider the Poisson fixed effects cluster model, which spec-
ifies

y jc ∼ P[µ jc = αc exp(x′
jcβ)], c = 1, . . . ,C,

where P[·] denotes the Poisson distribution, and x jc excludes an intercept and any
cluster-invariant regressors. This is the usual Poisson model, except that the usual con-
ditional mean exp(x′

jcβ) is scaled multiplicatively by the cluster-specific fixed effect
αc. For this particular model a variety of approaches, including conditional ML and
concentrated ML, lead to elimination of the parameters αc. Consistent estimates of the
parameters β can be obtained by solving the estimating equations

C∑
c=1

Nc∑
j=1

x jc

(
y jc − ȳc

λ̄c
λ jc

)
= 0,
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where λ jc = exp(x′
jcβ) and ȳc = N−1

c

∑
j y jc and λ̄c = N−1

c

∑
j λ jc are cluster

means. For further details see the discussion of this model in the panel data case in
Section 23.7.

24.5.7. Further Methods for Clustered Data

The essential feature of clustering is that there is dependence across observations.
A related topic is spatial correlation (see for example Anselin (2001), Lee (2004)),
where the observational unit is a region, such as a state, and observations in regions
close to each other are likely to be correlated.

The random effects approach can be generalized to consider slope coefficients as
well as the intercept. This is presented in the next section for hierarchical linear
models. For nonlinear models the issues are similar to those for panel data presented
in Chapter 23.

The bootstrap can be used to obtain cluster-robust standard errors, in settings where
clustering leads to correlation within a cluster but does affect estimator consistency.
Intuitively, one should resample with replacement over clusters c, in which case we
require small clusters with C → ∞. At the bth bootstrap replication we draw C clus-
ters with replacement and use all of the households j in these C resampled clusters to
estimate the θ̂b that solves (24.44). Then one can estimate V[̂θ] by applying the usual
sample variance formula to θ̂1, . . . , θ̂B , where B is the number of bootstrap replica-
tion. Note that the resampling is done over clusters rather than households, since it is
clusters that are assumed to be iid whereas there is within-cluster dependence.

24.6. Hierarchical Linear Models

Section 24.5 restricted the role of cluster effects in the random effects model to be
confined to the regression intercept. A more general random effects model allows
clusterwise variation in the slope parameters also. Intercluster variation in a subset
of regression parameters could be linked to observable cluster characteristics. Be-
cause such models involve several layers of specification, they are called hierarchical
models.

A standard framework for clustered data in many applied statistics disciplines is
that of hierarchical linear models, also called multilevel linear models, random co-
efficients models, variance components models, and mixed linear or mixed effects
models. This class of models brings into the specification additional information. We
begin with a presentation of the model for individuals clustered in groups. Then the
model is adapted to short panels where repeated measures data are clustered for each
individual.

24.6.1. Model Structure

A hierarchical or multilevel model is a model that can be applied to data with a nested
structure. Examples are data on individuals within a region, such as a state or country,
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or within an organizational unit, such as a school or community, or within a family if
siblings data are used. Panel data are also an example, with repeated measures on the
same individual interpreted as observations that are nested within an individual.

We begin with a linear model

yi j = x′
i jβ j + ui j , (24.49)

where the innovation is to let the K regression parameters β vary by group (or cluster)
j . A concrete example is to consider data on students within schools. Then yi j is
an outcome measure such as test score for the i th student in the j th school, and the
marginal effect of a change in a regressor such as race of the student varies across
schools. Note that the standard hierarchical linear model (HLM) notation, which we
use, reverses the subscripts compared to those in Section 24.5 where ycj would be the
test score for the j th student in the cth school.

The two-level hierarchical linear model specifies the coefficients in the level-one
model (24.49) to be determined by a linear function of a random term and level-two
variables, here school characteristics. Begin with the scalar parameter βk j , the kth com-
ponent of the K × 1 vector parameter β j . Then βk j is modeled as depending on a
vector of school characteristics wk that take value wk j for the j th school, with

βk j = w′
k jγk + vk j , k = 1, . . . , K , (24.50)

where the first component of wk j is usually a constant. Stacking over all K components
of β we have  β1 j

...
βK j

 =

w′
1 j 0 0

0
. . . 0

0 0 w′
K j


 γ1

...
γK

+

 v1 j
...
vK j


or in obvious matrix notation

β j = W jγ + v j . (24.51)

The model (24.50) is flexible and nests many models as special cases. These special
cases include models with random intercepts and random slopes, but the framework
additionally permits regression coefficients to vary with level-two observables w j . The
range of models is very broad as the following indicates.

The kth level-one coefficient is called a fixed coefficient if βk j = γk , in which case
the coefficient does not vary with level-two regressors or with unobservables. If all
level-one coefficients are fixed the model (24.49) reduces to yi j = x′

i jγ + ui j , in which
case estimation by OLS regression is appropriate. Note that the term fixed coefficient
has a very different meaning to the term fixed effect used by econometricians in the
panel context.

The kth level-one coefficient is said to be a nonrandomly varying coefficient if
βk j = w′

k jγk . Then the coefficient is a linear function of school characteristics. If all
level-one coefficients are fixed, except that the intercept is nonrandomly varying, the
model (24.49) reduces to yi j = x′

i jβ + w′
1 jγ1 + ui j , which is a standard OLS regres-

sion of the outcome on individual characteristics and school characteristics.
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The kth level-one coefficient is said to be a randomly varying coefficient if
βk j = γk + vk j . Then the coefficient is purely random and does not vary with school
characteristics. If all level-one coefficients are randomly varying, so that β j = γ + v j ,
the model is a variance components model or random coefficients model. If all level-
one coefficients are fixed, except that the intercept is randomly varying, then the model
(24.49) reduces further to yi j = x′

i jβ + v1 j + ui j , which is a random intercept model.
In practice some of the level-one coefficients may be both nonrandomly and ran-

domly varying, as in the general case (24.49). If just the level-one intercept follows
the general model (24.49) whereas all other level-one coefficients are fixed, the model
(24.49) reduces to yi j = x′

i jβ + w′
1 jγ1 + v1 j + ui j . This is the usual pooled regression

model, with error that has two components and is therefore correlated across individ-
uals at the same school.

The HLM framework can be extended to additional levels. For example, individual
students (subscript i) may be nested in schools (subscript j), which are nested in a
region (subscript k). Then the three-level HLM specifies at the first level the student
outcome yi jk = z′

i jkπ jk + ei jk , where the parameters π jk = X jkβk + u jk , and in turn
βk = W jγ + wk .

The HLM can be reexpressed as a mixed linear model, since substituting (24.50)
into (24.49) yields

yi j = (x′
i j W j )γ + x′

i j v j + ui j . (24.52)

The goal is to estimate the regression parameter γ and the variances and covariances
of the errors ui j and v j . Since the errors are assumed to be independent of regres-
sors pooled OLS estimation of (24.52) yields consistent parameter estimates of γ. The
HLM approach uses more efficient estimators that exploit assumptions on the vari-
ances and covariances of the errors ui j and v j .

In the simplest case vk j are assumed to be iid N [0, σ 2] and v j is assumed to be iid
N [0, Γ]. Then the model can be represented as

yi j ∼ N [x′
i jβ j , σ

2],

β j ∼ N [W jγ,Γ].

An early treatment of this was provided in a Bayesian setting by Lindley and Smith
(1972), in which γ are called hyperparameters, which in more general models can
themselves depend in turn on higher level hyper parameters. The parameters γ, σ 2,
and Γ can be estimated by maximum likelihood methods or by Bayes methods. Alter-
natively, ML methods can be used that are essentially the same as those for the mixed
linear panel data model presented in Section 21.7. A complete treatment is given in
Bryk and Raudenbush (1992, 2002).

24.6.2. HLM for Panel Data

The HLM literature interprets a short panel as repeated measures for an individual.
Then the individual becomes level two in the two-level HLM, whereas the individual
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was level one in the preceding section. The model (24.28) becomes

yti = x′
tiβi + uti , (24.53)

where, for example, yti denotes an outcome measure at time t for student i , and the
marginal effect of changes in regressors such as specific subjects studied varies across
students. The scalar parameter βki , the kth element of the K × 1 vector parameter βi ,
is modeled as depending on a vector of individual characteristics wk that takes value
wki for the i th individual, with

βki = w′
kiγk + vki , i = 1, . . . , N . (24.54)

The individual-specific effects model is the special case that all level-one coeffi-
cients are fixed, so βki = γk , except that the intercept term β1i can vary across individ-
uals (the level-two grouping).

The individual-specific fixed effects model arises if there is no model for the inter-
cept β1i , but instead β1i is directly estimated. This is an extreme case of a nonrandomly
varying coefficient, with β1i = w′

1iγ1, where w1i is an N × 1 vector of indicator vari-
ables with lth component equal to one if i = l and equal to zero otherwise so that
β1i = γ1i . The HLM framework is not designed to accommodate what econometri-
cians call the fixed effects model.

The individual-specific random effects model arises if the intercept β1i is a ran-
domly varying coefficient, so that β1i = γ1 + v1i . Clearly, much more general random
effects models can be specified with βki also depending on regressors wki .

As already noted, the HLM is a mixed linear model. For the panel data case the
analogue of (24.52) is

yti = (x′
ti Wi )γ + x′

ti v j + uti .

The random effects model of Chapter 21 is the specialization to yti = x′
tiγ + v j + uti .

A standard panel application of the HLM framework is to growth models, where
the outcome yti is individual intelligence or height, which is a function of age, and the
marginal effect of age is permitted to vary across individuals. Here the slope coefficient
in addition to the intercept is permitted to vary across individuals.

24.7. Clustering Example: Vietnam Health Care Use

In this section we focus on estimation in the presence of clustering, since this is the
most common complication of survey data that appears in microeconometrics research.
The methods in Section 24.5 are implemented.

Both linear and nonlinear regression models are estimated based on individual- and
household-level data from the World Bank’s Vietnam Living Standards Survey (VLSS)
of 1997–1998. The survey collected detailed information on a variety of topics from
over 27,700 individuals in approximately 6,000 households distributed over approxi-
mately 194 communes. In what follows “commune” is treated as a cluster or a group
and it is hypothesized that the observed outcomes are correlated within a commune.
Average cluster size in the household sample is about 26, maximum cluster size is 39,
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and minimum cluster size is 1. To illustrate linear and nonlinear cluster models three
outcomes will be modeled.

First, we consider a (log)linear regression model of total annual household health
care expenditure (LNEXP12M), for households with positive expenditure, as a func-
tion of the (log of) total household expenditure (HHEXP), controlling for several stan-
dard sociodemographic variables, a type of “Engel curve” for health care expenditure.
Of interest is the coefficient of total household expenditure, which is an estimate of the
household income elasticity of demand for health care.

Second, we use information on individual responses to estimate clustered count
models for a type of health care that accounts for a high proportion of aggregate private
health care expenditure. In modeling these outcomes we control for recent health status
of an individual, household income, health insurance status, and various demographic
variables such as age, sex, marital status, and educational attainment of the head of
the household. Information about health status was restricted to ILLNESS or INJURY
sustained in the survey period, the duration of illness, and number of days of restricted
activity. The key coefficients of interest are again the coefficients on the income and
insurance status variables.

Table 24.3 provides the definitions and summary statistics for variables used in
these examples.

In both cases the key issues are the following: What is the impact of clustering on
the estimate of this elasticity? How does the elasticity and its impact vary as different
statistical assumptions, models, and estimators are used?

24.7.1. Results and Discussion

Table 24.4 gives the results for the OLS regression, HC t-ratios, fixed effects, and ran-
dom effects formulations. There is a relatively minor change in standard errors result-
ing from the use of a heteroskedastic-consistent variance estimator that does not take
account of the clusters. However, when the cluster-robust variance estimator (24.34) is
used there is a substantial change in the standard errors. The t-ratio for the expenditure
elasticity drops from 16.01 to 12.68. All t-ratios become smaller and those for the two
variables SEX and HHSIZE fall below 1.96. These results suggest, as expected, that
ignoring intracluster correlation causes inflation in the OLS t-ratios.

The F-tests of the null hypothesis that all fixed effects are equal rejects the null.
The fixed effects results have essentially the same pattern but note that the t-ratios are
even smaller. The point estimate of the income elasticity is now 0.60 compared with
0.67 in the OLS results. However, overall there is no significant shift in the inference
about the role of different variables.

A χ2(1) score test of the null hypothesis that the random variation in the intercept
is zero, based on (24.43), easily rejects the null, indicating that the RE model is an
improvement over the restricted regression. However, the estimated RE model also
does not result in a significant change in the assessment of the role of different vari-
ables. As expected the results presented under the FGLS columns and the RE (GLS)
columns are very similar. The minor differences are essentially due to the different
values used in the GLS transformation. The FGLS estimates are based on ρ̂ = 0.12,
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Table 24.3. Vietnam Health Care Use: Data Description

Standard
Household data Definition Mean Deviation

LNEXP12M Total household health care expenditure 6.31 1.59
for 12 months

AGE Age of head of household 48.01 13.77
SEX Equals 1 if the head of the household is 0.27 0.44

female, 0 otherwise
HHSIZE Total household size 4.73 1.96
URBAN Equals 1 if urban household, zero otherwise 0.29 0.45
EDUC Schooling year of household head 7.09 4.41
HHEXP Total nominal household expenditure (1998 15273 13020

VN dong)
Individual data

PHARVIS Number of direct pharmacy visits 0.51 1.31
LNMEDEXP (> 0) log (total medical expenditure) for those with 2.14 1.08

positive expenditure (1998 VN dong)
AGE Age in years 29.7 9.67
SEX Equals 1 if respondent is male 0.51 0.49
MARRIED Equals 1 for married person 0.40 0.49
EDUC Completed diploma level 3.38 1.94
ILLNESS Number of illnesses experienced in 0.62 0.90

past 12 months 0.62 0.90
INJURY Equals 1 if injured during survey period 0.62 0.90
ILLDAYS Number of illness days 2.80 5.45
ACTDAYS Number of days of limited activity 0.06 1.11
INSURANCE Equals 1 if respondent has health insurance 0.16 0.37

coverage 0.16 0.37
MEDEXP (> 0) Medical expenditure conditional on positive 21.04 208

expenditure
MEDEXP Medical expenditure (1998 VN dong) 6.13 112.75

an estimate obtained by averaging 100 estimates of ρ obtained using 100 resampled
pairs of least-squares residuals.

The absolute differences between FE and RE results are relatively small. Informal
comparison does not suggest that the FE and RE formulations yield substantially dif-
ferent results; however, the Hausman test suggests that there is a statistically significant
difference between the two sets of estimates.

In summary, these results suggest that it is highly desirable to make some adjust-
ment for intracluster correlation, and how exactly we do so appears to have a relatively
small impact on the results.

Next we consider the results for the counted variable, number of pharmacy vis-
its (PHARVIS) by individuals, using the Poisson model. This is an interesting vari-
able because a high proportion of medical expenditure in Vietnam takes the form of
self-prescribed medication through the purchase and use of over-the-counter drugs
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STRATIFIED AND CLUSTERED SAMPLES

Table 24.5. Vietnam Health Care Use: Frequencies for Pharmacy Visits

Visits 0 1 2 3 4 5 6 7 8 9 10+
PHARVIS 20639 3827 1716 776 359 174 64 43 16 4 115
PHARVIS .744 .137 .062 .028 .013 .006 .002 .001 .000 .000 .004

(fraction)

purchased directly at pharmacies. This form of health care is assumed to be of lower
quality than that obtained under professional supervision. In Vietnam eligible indi-
viduals, usually high-income government and private sector employees, are able to
purchase health insurance that entitles them to obtain care at government hospitals and
to obtain prescribed medications there also. From Table 24.3 observe that 16% of the
sampled individuals have such health insurance.

Table 24.5 shows the observed frequency distribution of PHARVIS. About 26% of
the individuals have one or more visits in the survey period and around 95% have a
total of three or fewer visits.

Table 24.6 presents the results for several variants of the Poisson regression, analo-
gous to those in Table 24.4 for linear regressions. The first column gives the Poisson
MLE estimates, and the ordinary unadjusted t-ratios are in the second column. The
next column shows robust t-ratios based on heteroskedasticity-consistent variance es-
timates. These are considerably smaller, in some cases by a factor exceeding 2, than
the unadjusted ones. The fourth column gives cluster-adjusted t-ratios based on vari-
ances calculated using (24.45). The fact that these are substantially smaller than those
in the two preceding columns confirms that there is indeed significant intracluster

Table 24.6. Vietnam Health Care Use: RE and FE Models for Pharmacy Visits

Het Cluster Fixed Effects Random Effects
Poisson Robust Robust Poisson Poisson

Variables Coef. |t| |t| |t| Coef. |t| Coef. |t|
CONS −1.637 35.78 18.81 12.25 − − 1.318 19.41
LNHHEXP .078 5.68 3.08 1.90 −.114 6.01 −.095 4.95
INSURANCE −.245 9.57 5.68 4.29 −.163 6.17 −.178 6.44
SEX .084 4.96 2.76 2.73 .098 5.75 .099 5.71
AGE .024 2.38 1.27 1.06 .003 0.32 .005 0.55
MARRIED .124 5.92 2.96 2.78 .164 7.59 .158 7.38
ILLDAYS .042 40.00 14.91 12.91 .046 40.14 .046 40.18
ACTDAYS .008 1.71 0.43 0.45 .025 4.53 .024 4.35
INJURY .171 2.30 0.84 0.85 .144 1.80 .143 1.80
ILLNESS .562 87.15 24.60 21.81 .584 73.45 .585 74.16
EDUC −.052 11.10 6.47 3.92 −.024 4.18 −.026 4.61
−ln L 25281 22446 23419
N 27765 27671 27765
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correlation. The average cluster size exceeds 140 observations; hence even a low de-
gree of intracluster correlation is likely to inflate t-ratios substantially and the results
confirm that.

We next consider modeling the intracluster correlation using FE and RE models.
The FE model is estimated using the conditional MLE. Some clusters that do not have
sufficient intracluster variation are dropped. The estimated coefficients lead to dramat-
ically different conclusions from those of the Poisson MLE estimates. First, note that
the coefficient of ln(HHEXP) switches from being significantly positive to being sig-
nificantly negative. This means that the original regression suggested that a pharmacy
visit is a normal good, but the FE estimates suggest that it is an inferior good; that is,
individuals avoid this form of self-medication as income rises. This can be rationalized
as the fixed effects picking up the influence of omitted variables that are correlated with
the observed outcomes. These omitted variables could be the quantity and quality of
alternative medical services available to commune residents. These could vary a great
deal depending upon the geographical location and economic status of the communes.

The last two columns in Table 24.6 give results based on random effects formula-
tion. Here it is assumed that the intercept in the Poisson distribution varies randomly
over clusters, and each cluster “draws” its intercept from a common univariate distri-
bution, specifically a gamma distribution with unit mean. This formulation is attractive
because it does not require conditioning. The RE Poisson panel model with gamma-
distributed intercept, developed by Hausman et al. (1984), has an analytical likelihood
function that can be adapted for clustered data. The estimates obtained for the RE
model are qualitatively similar to those from the FE model. However, the estimated
coefficient for the key income variable has shifted a long way from that obtained un-
der the simple Poisson assumption.

This example shows that intracluster correlation may have an impact not just on
efficiency alone but also on the estimates themselves.

24.8. Complex Surveys

The discussion in preceding sections focused on stratification, weighting, and clus-
tering in isolation. Here we focus on complex surveys that use a stratified multistage
cluster sampling design. The intent of such surveys is to present a population summary
when population parameters may vary across strata. Then a weighted estimator is used
and is viewed as an estimate of the census parameter. The goal is to consistently esti-
mate the variance of the weighted estimator, controlling for clustering that can be more
complicated than that in Section 24.5.

24.8.1. Variance Estimation in Complex Surveys

We consider the following setup. The i th observation in the sample is household j in
cluster c in strata s. For example, the dependent variable is denoted yscj , though more
formally the observation (s, c, j) may be represented as observation (s, cs, jcs ). The
data are (yscj , xscj , wscj ), where wscj are sample weights inversely proportional to the
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probability of selection of the observation in the sample. The subscripts are ordered in
terms of level of disaggregation, a reversal from the notation of Section 24.5.

Two-stage or multistage sampling is used within strata, with households selected as
the result of at least two sequential draws. First, a subset of all PSUs within the strata
is randomly drawn. Second, a subset of all households in the selected PSUs is drawn,
where clustered sampling may be permitted. Further draws within an SSU and so on
are also possible.

Variance of a Linear Statistic

The starting point is to consider estimation of the variance of a linear statistic that sums
over strata, PSU, and households:

û =
S∑

s=1

Cs∑
c=1

Ncs∑
j=1

uscj =
S∑

s=1

Cs∑
c=1

usc,

where usc are the totals within a PSU, so

usc =
Ncs∑
j=1

uscj .

Examples of uscj such as the weighted mean and weighted regression are given in the
following. The variance of u is

V[u] =
S∑

s=1

Cs∑
c=1

V[usc] =
S∑

s=1

Csσ
2
s ,

if we assume that usc are independent over strata and are iid over PSUs with common
variance σ 2

s . The usual unbiased variance estimate of σ 2
s can be used, given usc iid over

c, so σ̂ 2
s = (Cs − 1)−1∑

c(usc − ūs)2. It follows that

V[̂u] =
S∑

s=1

Cs

Cs − 1

Cs∑
c=1

(usc − ūs)2, (24.55)

where ūs = C−1
s

∑
c usc is the stratum average of the PSU totals.

This estimator allows for clustering within a PSU, since

Cs∑
c=1

(usc − ūs)2 =
Cs∑

c=1

(
Ncs∑
j=1

uscj − ūs

)2

=
Cs∑

c=1

Ncs∑
j=1

(uscj − ūs)2 +
Cs∑

c=1

Ncs∑
j=1

Ncs∑
k �= j

(uscj − ūs)(usck − ūs).

The first sum is the contribution to the variance under SRS. The second sum will
be positive under clustered sampling and leads to a larger variance. No assumption
has been made about the nature of the sampling within strata nor about the type of
clustering that arises. For example, (24.55) gives correct standard errors even if there
is three-stage sampling with further subsampling with SSUs.

854



24.8 . COMPLEX SURVEYS

The estimator (24.55) does require that at least two PSUs be drawn from each strata.
If only one PSU is drawn then one possibility is to collapse the strata that includes the
single PSU into another strata that is viewed a priori as being reasonably similar. It is
feasible provided Cs ≥ 2, that is, if there are at least two PSUs per stratum. This will
lead to overestimation of V[u] as an upward bias is introduced because of the different
means in different strata.1

In practice PSUs are sampled without replacement so there is some dependence in
usc. Then (24.55) overestimates V[u], similar to the situation in Section 24.2.3. More
complicated formulas have been proposed.

Variance of the Weighted Mean

The population mean is estimated by the ratio of the sample-weighted total of yscj , say
ŷ, to the sum of the sample weights, say ŵ. Then

ȳW = ŷ/ŵ =
S∑

s=1

Cs∑
c=1

Ncs∑
j=1

wscj yscj

/
S∑

s=1

Cs∑
c=1

Ncs∑
j=1

wscj .

If the sample weights are treated as known, then more simply

ȳW =
S∑

s=1

Cs∑
c=1

Ncs∑
j=1

w∗
scj yscj ,

where w∗
scj = wscj/ŵ and V[ȳW] can be applied using (24.55) with uscj = w∗

scj yscj .
If the sample weights are treated as unknown then the delta method or lineariza-

tion method can be used to obtain V[̂y/ŵ] as a function of V[̂y], V[ŵ], and Cov[̂y, ŵ].
The first two quantities can be estimated using (24.55) with uscj = wscj yscj and
uscj = wscj . The third quantity can be estimated with (usc − ūs)2 in (24.55) replaced
by (usc − ūs)(vsc − v̄s), where uscj = wscj yscj and vscj = wscj . This is an example of
a ratio estimator.

For nonlinear statistics such as these ratio estimates, the literature proposes other
estimates based on the jackknife and balanced repeated replication. Because of the
nonlinearity the variance estimates are no longer unbiased but can be shown to be
consistent if the number of strata S → ∞ (see Krewski and Rao, 1981). Some results
with S fixed and

∑Cs
c=1 Ncs → ∞ are summarized in Wolter (1985). One can also

bootstrap, though care is needed. See Rao and Wu (1988) and Shao and Tu (1995).

Variance of Weighted Least-Squares Estimator

From Section 24.3, the weighted regression estimate β̂W of the census regression pa-
rameters solve

S∑
s=1

Cs∑
c=1

Ncs∑
j=1

wscj xscj (yscj − x′
scj β̂W) = 0.

1 For the CPS the method here cannot be directly applied as many strata have only one PSU and for other strata
only one PSU is collected. Instead, various pseudo-strata are formed and replication methods are used that
resample PSUs from the pseudo-strata. See U.S. Census Bureau (2002).
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By the usual algebra, we have

β̂W − β =
(

S∑
s=1

Cs∑
c=1

Ncs∑
j=1

wscj xscj x′
scj

)−1

×
S∑

s=1

Cs∑
c=1

Ncs∑
j=1

wscj (yscj − x′
scj β̂W).

This leads to the sandwich form V[β̂] = A−1BA−1, where B is the variance of the
second triple sum, which can be estimated using (24.55) with uscj = wscj xscj (yscj −
x′

scj β̂W).

Variance of Weighted m-Estimator

A quite general framework considers the weighted m-estimator θ̂W that solves

S∑
s=1

Cs∑
c=1

Ncs∑
j=1

wscj h(yscj , xscj , θ̂W) = 0.

Examples include linear regression, hscj = xscj (yscj − x′
scjβ), and quasi-maximum

likelihood, hscj = ∂ ln f (yscj |xscj ,θ)/∂θ.
Assuming consistent estimation of θ, which requires that E[h(yscj , xscj ,θ)] = 0,

we can use the usual first-order Taylor series expansion on the estimating equation
to get

√
N
(̂
θW − θ

) d→ N
[
0,A−1BA

′−1
]
,

where

A = plimN−1
S∑

s=1

Cs∑
c=1

Ncs∑
j=1

wscj
∂h(yscj , xscj ,θ)

∂θ′

and

B = plimN−1
S∑

s=1

Cs∑
c=1

Ncs∑
j=1

Ncs∑
k=1

wscjwsckh(yscj , xscj ,θ)
∂h(ysck, xsck,θ)

∂θ′ ,

where the expression for B assumed independence of hscj over strata and clusters but
permits dependence within a cluster. Estimation of A is straightforward. For B use
(24.55) with uscj = wscj hscj , so

B =
S∑

s=1

Cs

Cs − 1

Cs∑
c=1

[z̄sc − z̄s]2,

where z̄sc =∑Ncs
j=1wscj h(yscj , xscj ,θ) and z̄s = C−1

s

∑Cs
c=1 z̄s .

Endogenous Stratification

Sakata (1998) extends these results to endogenous sampling. He takes a census param-
eter approach and provides asymptotic theory assuming the number of strata S → ∞.
The results are the same as those given in the previous section.
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24.9. Practical Considerations

It is most common in microeconometrics research to take a structural approach. Un-
weighted estimators are used, provided there is no endogenous stratification. The main
concern is to obtain correct standard errors if clustering is present. If cluster effects are
random there is usually little efficiency loss in ignoring clustering in estimation. Some
packages may have a cluster robust standard errors option, not to be confused with a
heteroskedasticity robust option, which is appropriate if cluster effects are random and
there are many clusters. The CSRE and CSFE models can be implemented using OLS,
provided in the case of CSFE there are not too many clusters. Alternatively, a panel
data module can be used if it supports unbalanced panels. As with panel data most
researchers outside econometrics are content to take a random effects approach, but a
fixed effects approach may be necessary for consistent estimation.

If a descriptive approach is taken and parameters vary over strata then weighting
is necessary. A weighting option within least squares can be used, but it needs to be
combined with a cluster-robust standard errors option. Some packages have a survey
estimation module that obtains cluster-robust standard errors using the methods of
Section 24.6. The package SUDAAN implements many of the methods in this chapter
for linear and leading nonlinear regression models.

24.10. Bibliographic Notes

24.2–24.3 The literature on survey sampling is vast. Classic references on sample surveys in-
clude Kish (1965) and Cochran (1977, first edition 1953). Skinner (1989) provides
a useful overview and Groves (1989) provides a relatively nontechnical treatment
that presents the approaches of many of the social sciences to surveying, while rais-
ing many useful practical issues. For completeness we have incorporated some of
this survey sampling literature, though econometrics studies rarely implement the
methods in Section 24.8. There are few econometrics references, with the notable
exception of chapters in Pudney (1989) and Deaton (1997) and a book chapter by
Ullah and Breunig (1998).

24.4 The main focus of the theoretical econometrics literature has been controlling for en-
dogenous stratification. This literature is challenging and we have merely provided
an overview. For detail see Amemiya (1985), who provides many references includ-
ing Manski and Lerman (1977) for discrete-choice models and Hausman and Wise
(1979) for sample selection models. The simple weighted estimator is generally ap-
propriate albeit inefficient. Imbens and Lancaster (1996) present a practical way to
implement a fully efficient estimator given specification of the conditional density.

24.5 For microeconometrics applications controlling for clustering is of greatest impor-
tance. The works by Kloek (1981) and Moulton (1986, 1990) were key in alerting
econometricians to this problem. Davis (2002) gives a general treatment of multi-
way error component models. Graubard and Korn (1994) provide a useful discussion
of linear regression analysis of clustered data. They pay attention to both fixed and
random effects models, with emphasis on the assumptions that must be satisfied for
the random effects model to be valid. Pendergast et al. (1996) provide an extensive
survey of the methods for analyzing clustered binary data. Because the middle term
on the right-hand side of (24.34) involves averaging over the number of clusters, the
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precision of this estimate depends on the number of clusters. The consequences of
using the cluster-robust variance matrix when the number of clusters is small con-
tinues to be a topic of research (Donald and Lang, 2001; Angrist and Lavy, 2002).
Wooldridge (2003) provides an overview.

24.6 Hierarchical linear models have been extensively used in social sciences. Bryk and
Raudenbush (2002) provide a comprehensive coverage of binary, ordered, counted,
and multinomial outcomes from both likelihood and Bayesian perspectives.

24.7 Deaton (1997) examines a number of issues of modeling using data from clustered
samples from various Living Standards Surveys conducted in developing economies
by the World Bank.

24.8 Many standard statistical software packages (e.g., STATA and SUDAAN) accommo-
date both fixed and random effects formulations of clustering in linear and nonlinear
models for cross-section and panel data.

Exercises

24–1 (a) Verify the expression for Σc given at (24.25).
(b) Prove the consistency property of the estimators σ̂ 2 and ρ̂ in the CSRE

model.
(c) Consider the bias of the standard errors in the balanced cluster CSRE

model. Show that in this case E[
∑

c

∑
j û2

cj ] = σ 2[N − K (1 + ρ(m − 1))].

24–2 (Adapted from Greenwald, 1983) Consider the linear regression model
y = Xβ + u, where E[u] = 0 and E[uu′] = σ 2Ω∗ = Ω. By standard results for
the OLS estimator β̂ = (X′X)−1X′y (see Section 4.4) we can obtain the correct
expression for V[β̂] as V2 = (X′X)−1 (X′ΩX)−1(X′X)−1, whereas V1 = σ̂ 2(X′X)−1

with σ̂ 2 = û′û/(N − K ) is invalid if Ω �= I.

(a) Show that the bias of V1 is given by B = B1 + B2, where
B2 = (X′X)−1X′(Ω − σ2I)X(X′X)−1 and B1 = (N − K )−1 tr{B2(X′X)}(X′X)−1.
(Greenwald refers to B2 as “direct bias.”)

(b) Evaluate the two terms for the special case of X′X = IK . Show that B → B2

as N → ∞.

24–3 Consider the OLS cluster-robust variance estimator formula (24.33). Suppose
there are two levels of clustering. Specifically, in the context of the empirical
example of this chapter, clustering could be at the level of family and commune
if multiple members of the family from the same commune are included in the
survey. How will the formula be modified if the data have two levels of clustering?

24–4 For this exercise use a 50% sample of the VLSMS data. Define y = 1 if the
subject has at least one pharmacy visit (PHARVIS) and y = 0 otherwise. This
example presumes access to a program that handles clustering.

(a) Using the same explanatory variables as those for the Poisson model in
Section 24.7, estimate a binary logit model by maximum likelihood, us-
ing both the standard estimator and the robust sandwich estimator for the
variance.

(b) Reestimate the specification of part (a) using the cluster-robust standard
error option. Explain the differences between the robust standard errors of
parts (a) and (b).
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(c) Use the “commune” variable as a cluster identifier. Reestimate the logit
model using the cluster fixed effects and cluster random effects specifi-
cation. Compare the estimates and standard errors of the coefficients of
LNHHEXP and INSURANCE. Are the conclusions about the significance of
these variables affected by clustering in the data?
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C H A P T E R 25

Treatment Evaluation

25.1. Introduction

The topic of treatment evaluation concerns measuring the impact of interventions on
outcomes of interest, with the type of intervention and outcome being defined broadly
so as to apply to many different contexts. The treatment evaluation approach and some
of its terminology comes from medical sciences where intervention frequently means
adopting a treatment regime. Subsequently, one may be interested in measuring the
response to the treatment relative to some benchmark, such as no treatment or a differ-
ent treatment. In economic applications treatment and interventions usually mean the
same thing.

Examples of treatments in the economic context are enrollment into a labor train-
ing program, being a member of a trade union, receipt of a transfer payment from
a social program, changes in regulations for receiving a transfer from a social pro-
gram, changes in rules and regulations pertaining to financial transactions, changes
in economic incentives, and so forth; see Moffitt (1992), Friedlander, Greenberg, and
Robbins (1997), and Heckman, Lalonde, and Smith (1999). If the treatment that is
applied can vary in intensity or type, we use the term multiple treatments when re-
ferring to them collectively. Relative to a single type of treatment this does not create
complications, but now the choice of a benchmark for comparisons is more flexible.

The term outcome refers to changes in economic status or environment on eco-
nomic outcomes of individuals. A leading case is one in which the outcome of interest
is a continuous variable, say y, whereas the treatment variable is discrete and of on/off
variety, say D, where D takes the value 1 if the treatment is applied and is 0 otherwise.
An example of an intervention is labor market training, which could affect posttraining
wages of the worker. In general, however, either the outcome or treatment can be con-
tinuous or discrete or exhibit limited variation. Whereas the details of the analysis will
vary, certain key ideas will be relevant in all situations. For simplicity, we will take the
case of a continuous outcome and a binary-valued treatment as our leading case. Later
we will extend the analysis to other practically relevant situations.
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Policy relevance of treatment evaluation is direct because “successful” treatments
can be linked to desirable social programs, or improvements in existing programs to
attain objectives of social policy. Heckman and Smith (1998) have discussed the rela-
tionship between several commonly used measures of treatment impact and traditional
cost–benefit analysis.

The standard problem in treatment evaluation involves the inference of a causal
connection between the treatment and the outcome. In a canonical single-treatment ex-
ample we observe (yi , xi ,Di ), i = 1, . . . , N , and the impact of a hypothetical change
in D on y, holding x constant, is of interest. Such inference is the main feature of
the potential outcome model, already introduced in Chapter 2, in which the outcome
variable of interest is compared in the treated and nontreated states. However, no in-
dividual is simultaneously observed in both states. Hence, the situation is akin to one
of missing data, and it can be tackled by methods of causal inference carried out in
terms of counterfactuals. We ask how the outcome of an average untreated individual
would change if such a person were to receive the treatment. That is, a magnitude like
�y/�D is of interest. Fundamentally one’s interest lies in the outcomes that result
from, or are caused by, such interventions. Here causation is in the sense of ceteris
paribus, meaning that we hold all other variables constant.

What is the difference between this chapter and earlier ones in which we also con-
sidered the identification and estimation of a variety of models? There are many sim-
ilarities and the differences arise from a shift of emphasis. The main difference stems
from the focus on a family of measures of treatment effectiveness. These measures are
functions of parameters and data, and they enable comparisons with policy-relevant
counterfactuals. An important and interesting result is that not all measures can be
constructed, given the data and the estimator. The choice of an estimator and the type
of data used in model estimation place restrictions on the counterfactuals that can be
identified, and hence on the impact measures that can be consistently estimated.

Another emphasis in the literature on treatment evaluation is on the advantages of
identification secured using minimal functional form and exclusion restrictions, (e.g.,
semiparametric identification). This emphasis is motivated by the desire to produce
results that have policy significance but whose validity does not depend on strong
assumptions. The feasibility of semiparametric identification is relatively easier to
establish for treatment effect estimation in linear models, with continuous support
for the dependent variable, than it is in nonlinear models with limited dependent
variables.

Section 25.2 discusses identification assumptions. Section 25.3 presents mea-
sures of treatment effect that are usually targeted in identification and estimation.
Section 25.4 analyzes matching and propensity score estimators. Differences-in-
differences estimators of treatment effects that are common in event studies with a
quasi-experimental data setup are covered in Section 25.5. Continuing with a quasi-
experimental setup, we discuss the regression discontinuity design in Section 25.6, fol-
lowed by the instrumental variable estimator in Section 25.7. Much of the discussion
up to this point is related to linear models. Section 25.8 provides a detailed empirical
illustration of the methods developed in the chapter.
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25.2. Setup and Assumptions

The methods for estimation of treatment effects rely on assumptions to permit iden-
tification of causal effects just as, for example, the linear SEM relies on assumptions
to permit causal effects (see Chapter 2). In this section we detail the assumptions that
permit use of the key matching and propensity score estimators that are presented later
in Section 25.4.

First we consider a framework for estimating causal parameters in treatment
evaluation.

25.2.1. Treatment Effects Framework

Let us begin with the setup of randomized treatment assignment in a social experiment
as described in Section 3.3. Let there be a target population for the treatment of interest
and let N denote the number of randomly selected individuals who are eligible for
treatment. Let NT denote the number of randomly selected individuals who are treated
and let NC = N − NT denote the number of nontreated individuals who serve as a
potential control group.

Random assignment implies that the treatment assignment ignores the possible
impact of the treatment on the outcomes. For example, no one is included in the
treatment group on the grounds that the benefit of the treatment to that individual
would be large, and no one is excluded because the expected benefit is small. Let
(yi , xi ,Di ; i = 1, . . . , N ) be the vector of observations on the scalar-valued outcome
variable y, a vector of observable variables x, and a binary indicator of a treatment
variable D. For simplicity, we assume that anyone who is assigned treatment gets it,
and anyone who is not does not get it. The outcome variable of the treated individual is
denoted y1 and that for the nontreated individual is denoted y0. After the experiment is
run and data are collected, we would like to obtain a measure of the treatment impact.
The most natural way of measuring the effect of the treatment would be to construct a
measure that compares the average outcomes of the treated and nontreated groups.

With one important difference the same data setup could be applied to observational
data. The difference is that there is no random assignment mechanism for treatment,
perhaps because individuals choose to be treated, or because of some other reason.

It needs to be stated at the outset that most treatment evaluation studies have a par-
tial equilibrium character. Specifically, they assume an absence of general equilibrium
effects. By that we mean that the treatment effects are small and do not affect the sta-
tus of some of the variables that are treated as exogenous. This assumption will not
do if one were considering a treatment program that affected an entire sector that was
a significant part of the national economy. For example, instituting universal health
insurance may have impact on the entire health services sector, which would make it
difficult to apply the methods discussed in this chapter.

There are potential pitfalls in constructing estimates of treatment effects. There are
also subtle differences of interpretations that arise from variations in the assumptions
used to construct such measures. Therefore, we begin by examining these assumptions.
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25.2.2. Conditional Independence Assumption

Meaningful comparisons between the outcomes of the two groups require some as-
sumptions. We shall initially list and explain these assumptions and later use them in
the discussion of identifiability of certain treatment effects.

An important assumption is the conditional independence assumption that states
that conditional on x, the outcomes are independent of treatment, written as

y0, y1 ⊥ D| x. (25.1)

Behavioral implication of this assumption is that participation in the treatment program
does not depend on outcomes, after controlling for the variation in outcomes induced
by differences in x. Random assignment, properly applied, will validate this assump-
tion. Indeed, under completely random assignment one may even make a stronger
assumption

y0, y1 ⊥ D, (25.2)

because randomization would be over (y, x) space. The more commonly used assump-
tion (25.1), if valid, can be useful for identification of some impact parameters because
it states that once we control for the effects of regressors x, some of which may be re-
lated to D, treatment and outcomes are independent.

The conditional independence assumption is broad and implies the following:

F(y j |x,D = 1) = F(y j |x,D = 0) = F(y j |x), j = 0, 1, (25.3)

F(u j |x,D = 1) = F(u j |x,D = 0) = F(u j |x), j = 0, 1,

where u is the regression model error, which means that the participation decision does
not affect the distribution of potential outcomes.

To see the impact of this assumption let E[y|x,D] be linear; that is, the outcome-
participation equation is

y = x′β + αD + u, (25.4)

where E[u|D] = E[y − x′β−αD|D] = 0. Therefore, D may be treated as an exoge-
nous variable, and there will be no simultaneity bias or selection bias. Under the stan-
dard conditions on x, consistent estimation of regression parameters is possible.

An assumption that is weaker than (25.1) is

y0 ⊥ D| x, (25.5)

which implies conditional independence of participation and y0. This assumption is
used in establishing identifiability of a population-average treatment effect on the
treated (ATET), as will be seen later.

Assumption (25.5) has other names in the literature. Imbens (2005) refers to it as the
unconfoundedness assumption and Rubin refers to it as the ignorability assumption
(Rubin, 1978; Wooldridge, 2001). If valid, the assumption implies that there is no
omitted variable bias once x is included in the regression, and hence there will be
no confounding. The assumption is tantamount to treatment assignment that ignores
outcomes; hence it is appropriate to refer to it as the ignorability assumption.

863



TREATMENT EVALUATION

This assumption is necessary if the treatment variable is to be treated as exogenous,
which is essential for simplicity in estimation. If valid, sample selection models or IV
methods to handle endogenous treatment variables are not needed, and the methods of
Section 25.4 can be applied.

25.2.3. Matching Assumption

A second assumption, referred to as the overlap or matching assumption, is neces-
sary for identifying some population measures of impact. It states that

0 < Pr[D = 1|x] < 1. (25.6)

This assumption ensures that for each value of x there are both treated and nontreated
cases. In that sense there is overlap between the treated and untreated subsamples. For
each treated individual there is another matched untreated individual with a similar
x. If the assumption were to fail, then we could potentially have individuals with x
vectors who are all treated and those with a different x who are all untreated. This
condition is not required for identifying the treatment parameter for the treated group.
For identifying the treatment effect on a randomly selected individual one needs for
each participant an analogous nonparticipant. Then the condition Pr[D = 1|x] < 1 is
sufficient.

25.2.4. Conditional Mean Assumption

A third assumption is the conditional mean independence assumption

E[y0| D = 1, x] = E[y0| D = 0, x] = E[y0| x], (25.7)

which implies that y0 does not determine participation.

25.2.5. Propensity Scores

When treatment participation is not by random assignment but depends stochastically
on a vector of observable variables x, as in observational data or when the treatment is
targeted to some population defined by some observable characteristics (such as age,
sex, or socioeconomic status), then the concept of propensity scores is useful. This
is a conditional probability measure of treatment participation given x and is denoted
p(x), where

p(x) = Pr[D = 1|X = x]. (25.8)

The propensity score measure can be computed given the data (Di , xi ) using any of
the parametric or semiparametric methods covered in Chapter 14 (e.g., by doing a logit
regression).

An assumption that plays an important role in treatment evaluation is the balancing
condition, which states that

D ⊥ x| p (x) . (25.9)
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Table 25.1. Treatment Effects Framework

Symbol Definition

y1 Outcome for the treated group
y0 Outcome for the nontreated group
p(x) Propensity score
NT Number of treated cases in the sample

This can be expressed alternatively by saying that for individuals with the same
propensity score the assignment to treatment is random and should look identical in
terms of their x vector. The balancing condition is a testable hypothesis.

A useful result about conditional independence given p(x) due to Rosenbaum and
Rubin (1983) states that

y0, y1 ⊥ D| x ⇒ y0, y1 ⊥ D| p (x) . (25.10)

This implies that the conditional independence assumption given x implies conditional
independence given p(x), that is, independence of y0, y1, and D given p(x).

To obtain this result, note that

Pr[D = 1|y0, y1, p(x)] = E[D |y0, y1, p(x)]
= E[E[D |y0, y1, p(x), x]|y0, y1, p(x)]
= E[E[D |y0, y1, x]|y0, y1, p(x)]
= E[E[D |x]|y0, y1, p(x)]
= E[p(x)|y0, y1, p(x)]
= p(x).

Here the second and third lines follow from the law of iterated expectations. The fourth
line uses conditional independence. The intuition behind this result is that p(x) is a
particular function of x and, in a sense, contains less information than x. Hence con-
ditional independence given p(x) is implied for the same given x. Because by condi-
tioning on x we get rid of the correlation between x and D, likewise by conditioning
on the propensity score p(x) we also expunge the correlation between x and D. Thus
a regression similar to (25.4) is

y = x′β + α p(x) + u (25.11)

= x′β + α p̂(x) + (u + α(p(x) − p̂(x)), (25.12)

where in the second line the unknown p(x) is replaced by a sample estimate, resulting
in the addition of the sampling error to the regression error. The pros and cons of this
strategy will be considered later. Table 25.1 summarizes the notation.

25.3. Treatment Effects and Selection Bias

We begin by presenting two-widely used measures of treatment effect – one that aver-
ages over all individuals and one that averages over only the treated. We then discuss
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in some detail the role of selection into treatment. The methods presented in Sections
25.4–25.6 presume that selection effects directly depend on only measurable observed
characteristics of the individual, such as age. If additionally selection effects depend
on unobservables then the methods of Chapter 16 must instead be used. The current
section includes considerable discussion of selection issues.

25.3.1. Two Key Parameters: ATE and ATET

Define � as the difference between the outcome in the treated and untreated states

� = y1 − y0, (25.13)

where we may condition on x if desired. It is emphasized that � is not directly ob-
servable because no individual can be observed in both states. Population values of the
average treatment effect and average treatment effect on the treated are defined as

ATE = E[�], (25.14)

ATET = E[�|D = 1], (25.15)

with sample analogues

ÂTE = 1

N

N∑
i=1

[�i ], (25.16)

ÂTET = 1

NT

NT∑
i=1

[�i |Di = 1], (25.17)

where NT =∑N
i=1 Di . In each of these two cases, computation is straight-forward if

�i can be obtained. The procedure is not direct because the formulas have an unob-
served component that must be estimated and that step calls for some assumptions.

The ATE measure is relevant when the treatment has universal applicability so that
it is reasonable to consider the hypothetical gain from treatment to a randomly selected
member of the population. The ATET measure is relevant when we want to consider
the average gain from treatment for the treated. See Heckman and Vytlacil (2002).

To understand the treatment evaluation problem consider the average gain from
participation given characteristics x. This is

ATE = E [�| X = x] (25.18)

= E[y1 − y0|X = x]

= E[y1|X = x] − E[y0|X = x]

= E[y1|x, D = 1] − E[y0|x, D = 0],

where the last equality uses the conditional independence assumption (25.1).
Given a sample of participants, E[y1|D = 1, x] can be estimated. However,

E[y0|x, D = 0] is not observable because it is a measure of the average outcomes
for the participants had they in fact not participated, and one cannot simultaneously
observe the same individuals as both participants and nonparticipants. To make ATE
operational we must find an estimator for the second term.
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By definition (25.18)

ATE = E[y1|x, D = 1] − E[y0|x, D = 0] (25.19)

= µ1(x) − µ0(x) + E[u1|x, D = 1] − E[u0|x, D = 0]

= µ1(x) − µ0(x) + E[u1|x] − E[u0|x]

= µ1(x) − µ0(x), (25.20)

where the first term in the first line on the right-hand side can be estimated using
the data from treatment participants, but the second term is not directly observable.
The next three lines follow by applying the conditional independence and conditional
mean assumption and adopting the specifications y1 = µ1(x) + u1 for the treated and
y0 = µ0(x) + u0 for the untreated. The second from the last line only requires mean
independence rather than full conditional independence.

25.3.2. Sampling and Selection Bias

The crux of the evaluation problem is that E[y0|x, D = 1] is unobservable. The solu-
tion to the problem depends in part on the type of data available. Social experiments
use the eligible participants that are excluded from the treatment group as a proxy
for the counterfactual. Observational studies generate a comparison group from the
same source as the treated group, or from other databases, and essentially end up us-
ing some function of E[y0|x, D = 0] that can be estimated using data from nonpartic-
ipants. The simplicity of the computation when the data come from a well-designed
and executed social experiment should be viewed against the background of actual
social experiments, which are subject to other problems such as randomization bias
and substitution bias (discussed in Chapter 3).

Suppose that for the treated participants the outcome equation is

y1 = E [y1|x] + u1 (25.21)

= µ1 (x) + u1 (25.22)

and for the nonparticipants the equation is

y0 = E [y0|x] + u0 (25.23)

= µ0 (x) + u0. (25.24)

Note that this specification is of the switching regression type (analogous to the Roy
model discussed in Section 16.7) in the sense that the treated and nontreated have
different conditional mean functions, µ1 (x) and µ0 (x), that are written in a more
general notation than necessary for the purely linear model. We assume that E[u1|x] =
E[u0|x] = 0, though E[u1|x, D] and E[u0|x, D] do not necessarily equal zero.

A more common, but restrictive, specification has

µ1 (x) = µ0 (x) + αD, (25.25)

in which the treated group has an additional intercept component α, but the slope
coefficients of the regressors are unaffected by the treatment.
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Table 25.2. Treatment Effects Measures: ATE and ATET

Measure Treatment Effect Special Case (25.25)

ATE given x E [�|x] = µ1(x) − µ0(x) E [�|x] = α

ATET with x E [�|x, D = 1] E [�|x, D = 1]
and selection effect = µ1(x) − µ0(x) = α + E [u1 − u0|x, D = 1]

+ E [u1 − u0|x, D = 1]

Additional benefit E [u1 − u0|x, D = 1] E [u1 − u0|x, D = 1]
to individual with x

Average selection bias E [u0|x, D = 1] E [u0|x, D = 1]
− E [u0|x, D = 0] − E [u0|x, D = 0]

The observed outcome y is written as

y = Dy1 + (1 − D)y0. (25.26)

Combining these equations we get

y = D
(
µ1 (x) + u1

)+ (1 − D)
(
µ0 (x) + u0

)
= µ0 (x) + D

(
µ1 (x) − µ0 (x) + u1 − u0

)+ u0. (25.27)

Because D = 1 or 0, the second term in the regression “switches” on and off. The
second term in (25.27) measures the benefit of participation; the first component
µ1(x) − µ0(x) measures the average gain to a participant with characteristics x and
the second component (u1 − u0) is individual-specific benefit. The second component
may be observable by the participant, but not by the investigator.

The expressions for ATE and ATET are given in Table 25.2, for the general case
and the specialization (25.25).

Average selection bias is the difference between program participants and nonpar-
ticipants in the base state. This effect cannot be attributed to the program. A special
case is E[u1 − u0|x, D = 1] = 0, which can arise if there are no unobservable compo-
nents of the benefit or if the best individual estimate of u1 − u0 is zero.

Selection bias arises when the treatment variable is correlated with the error in the
outcome equation. This correlation could be induced by incorrectly omitted observable
variables that partly determine D and y. Then the omitted variable component of the
regression error will be correlated with D – the case of selection on observables.
Another source comprises unobserved factors that partly determine both D and y. This
is the case of selection on unobservables. The conditional independence assumption
essentially rules out confounding caused by omitted variables.
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25.3.3. Selection on Observables

In observational data the problem of selection on observables is solved using regres-
sion and matching methods. Subsequent sections of this chapter present these methods
in detail. Before doing so, we note that the two-part model of Section 16.4 is an exam-
ple, and in this section we discuss a second straightforward method.

The control function estimator is motivated by the possibility that a set of observ-
able variables z that determine D may be correlated with the outcomes. For concrete-
ness let us consider the special case where the outcome equation is

yi = x′
iβ + αDi + ui (25.28)

and the error is such that

E[ui |xi , Di ] = E[ui |xi , Di , zi ].

In the case of selection on observables we may have E[ui |zi ] �= 0. Let us write

E[yi |xi , Di , zi ] = x′
iβ + αDi + E[ui |xi , zi ], (25.29)

which motivates the use of a control function estimator based on the OLS/GLS es-
timation of the equation. The essential idea is to introduce into the outcome equation
all observable variables that could possibly be correlated with ui and then estimate the
resulting equation by least squares. Specifically,

yi = C′
iδ + αDi + {ui − E[ui |Di ,Ci ]} , (25.30)

where Ci includes all variables that are included in either x or z. The presence of z in
the regression expunges the possible correlation between u and z. Note that if there is
selection on unobservables, caused by common unobservable factors that affect both
D and u, then we still have a potential identification problem.

This estimator was used by Heckman and Hotz (1989), who also suggested a num-
ber of variations on the basic control function estimators.

25.3.4. Selection on Unobservables

We now consider a special linear case in which the treatment participation decision
is endogenous. This is an example of a well-known class of models with an “en-
dogenous dummy variable.” The model is empirically very important when working
with observational data because in such cases there are several reasons for aban-
doning the restrictive assumption y0, y1 ⊥ D| x or E[u|x,D] = 0. The breakdown
of the conditional independence assumption implies that the simple least-squares re-
gression cannot identify the ATE, and an alternative identification strategy should be
pursued.

The essential elements of the identification strategy we are about to discuss are
common to other selection models. The approach involves fairly strong identifying as-
sumptions and is fully parametric. In the special case considered, the specification is
analogous to the Roy model. The conditional means in the outcome equations are taken
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to be linear. The model is completed by adding a participation (binary) decision equa-
tion for Di . Then

y1i = x′
iβ1 + u1i , (25.31)

y0i = x′
iβ0 + u0i ,

D∗
i = z′

iγ + εi ,

where D∗
i is a latent variable such that

Di =
{

1 iff D∗
i > 0,

0 iff D∗
i ≤ 0,

(25.32)

and it is assumed that E[u1|x, z] = E[u0|x, z] = 0.
The variables z may overlap with x, but it is assumed that at least one component of

z, denoted z1, is unique and is a nontrivial determinant of D. That is, there is at least
one independent source of variation in D. Hence we may refer to z1 as an instrumental
variable that is correlated with the endogenous variable D, but uncorrelated with the
outcomes y1 and y0, except through D.

Next it is assumed that the triple (u1i , u0i , εi ) is jointly multivariate normal dis-
tributed with zero mean and covariance matrix Σ given by

Σ =
σ 11 σ 10 σ 1ε

σ 10 σ 00 σ 0ε

σ 1ε σ 0ε 1

 . (25.33)

The nonzero covariance parameters σ 1ε and σ 0ε reflect the endogeneity of the treat-
ment variable. The covariance parameter σ 10 reflects the covariance between the out-
comes. Because we never observe any individual in both states, this parameter cannot
be identified and is usually set to zero. The variance of ε is restricted to 1 for identifi-
cation.

Given such a fully parametric specification, the model can be estimated by maxi-
mum likelihood or by a two-step semiparametric procedure. Most of these issues have
been discussed in Chapter 16. Leaving aside the estimation issue, we consider mea-
sures of treatment impact.

The benefit of participation, or the ATET, is given by

y1i − E[y0i | Di = 1] = y1i − x′
iβ0 + σ 0ε

φ(z′
iγ)

(1 −�(z′
iγ))

, (25.34)

which may also be written as

E[y1i | Di = 1] − E[y0i | Di = 1] = x′
i (β1 − β0) + (σ 0ε − σ 1ε)

φ(z′
iγ)

�(z′
iγ)
, (25.35)

where the term (σ 0ε − σ 1ε) φ(z′
iγ)/�(z′

iγ) denotes the selection effect; see Section
16.7.1.

In the special case in which x′
iβ0 = x′

iβ1, and the treatment dummy enters the y1

equation linearly with coefficient α, the mean impact of the program is given by

E[yi | Di = 1] − E[yi | Di = 0] = α + selection term. (25.36)
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In some sample situations this identification strategy may be somewhat fragile.
For example, the treated and untreated groups may be too different, the multivariate
normality assumption may be inappropriate, or the identifying instrumental variable
z1 may be weak or possibly correlated with the error in the outcome equations.

These considerations motivate the use of alternative estimation methods presented
in this chapter. These estimators generally presume selection on observables only,
though Section 25.7 presents IV methods applicable when selection is additionally on
unobservables.

25.4. Matching and Propensity Score Estimators

In observational studies, by definition there are no experimental controls. Therefore,
there is no direct counterpart of the ATE calculated as a mean difference between the
outcomes of the treated and nontreated groups. In other words, the counterfactual is
not identified. As a substitute we may obtain data from a set of potential comparison
units that are not necessarily drawn from the same population as the treated units, but
for whom the observable characteristics, x, match those of the treated units up to some
selected degree of closeness.

The average outcome for the untreated matched group identifies the mean counter-
factual outcome for the treated group in the absence of the treatment. This approach
solves the evaluation problem by assuming that selection is unrelated to the untreated
outcome, conditional on x. To make the approach operational it is necessary to define
the matching criteria.

25.4.1. Treatment Effect Assumptions

Matching estimators of treatment effects are useful when selection into treatment is on
observables only. In addition it is assumed the overlap (or support) condition (25.6)
applies, which means that for every x there is a positive probability of nonparticipation.
This ensures that we have untreated matches for the treated observations for every
x. Roughly speaking, the control and treated populations have comparable observed
characteristics. Generating good matches means ensuring that the support condition
does not fail. Further, the key assumption is that unobservable variables play no role
in the treatment assignment and outcome determination.

The regression estimator imputes the missing potential outcome using the estimated
regression function. If Di = 1, y0,i is imputed using the estimated conditional regres-
sion function µ̂0(xi ). Matching estimators impute the missing value using the out-
comes of the “nearest neighbors”; the latter are defined by a suitable metric based on
some observable characteristics. This is the basis of the analogy between a matching
estimator and nonparametric methods based on the number of nearest neighbors, typi-
cally just one. The matching estimator typically approximates the difference between
the means, and the variance of the estimator is estimated using many of the available
results on variance of differences between the means.
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Matching is a persuasive and attractive methodology if (1) we can control for a
rich set of x variables, (2) there are many potential controls, and (3) ATET is the
parameter of interest. It also requires the “no general equilibrium effects” assumption,
or stable unit treatment value assumption (SUTVA), which implies that treatment
does not indirectly affect untreated observations. The matching estimator avoids the
assumption that the treatment effect enters the conditional mean function linearly. The
initial step of establishing the nearest matches for each observation will also clarify
whether comparable control observations are available. Unlike the regression approach
there is less danger of extrapolation into regions outside the range of the data.

Suppose the treated cases are matched in terms of all observable covariates. In a
restricted sense all differences between the treated and untreated groups are controlled.
Given the outcomes y1i and y0i , for the treatment and control, respectively, the average
treatment effect is

E [y1i |Di = 1] − E [y0i |Di = 0] (25.37)

= E[y1i − y0i |Di = 1] + {E [y0i |Di = 1] − E [y0i |Di = 0]}.
The first term in the second line is the ATET, and the second term in braces is a “bias”
term, which will be zero if the assignment to the treatment and control is random. In
this case all that is necessary to estimate the ATET is a simple average of the differen-
tial due to treatment.

More realistically the data will involve some observed covariates xi . It is assumed
that the covariates include variables that include the determinants of selection into the
treatment group. If treated and nontreated groups are matched on each combination
of covariates, then the treatment differential can be easily calculated for each treated
case and each xi . The average of the differential over all treated individuals and all xi

measures the average treatment effect. Formally, in this case (see Angrist and Krueger,
2000, p. 1316) the effect of the treatment on the treated is given by

E[y1i − y0i |Di = 1] = E[{E [y1i |xi , Di = 1] − E [y0i |xi , Di = 0]}|Di = 1] (25.38)

= E [�x|Di = 1] ,

where �x = E [y1i |xi , Di = 1] − E[y0i |xi , Di = 0].
If the x variables are discrete, then the matching estimator is defined as a weighted

sum

E[y1i − y0i |Di = 1] =
∑

x

�x Pr[xi = x|Di = 1], (25.39)

where Pr[xi = x|Di = 1] is the probability mass for xi , given Di = 1. Angrist and
Krueger (2000) discuss several aspects of this estimator.

25.4.2. Exact Matching

The procedure is to match treated and untreated individuals on their observable char-
acteristics x.

Exact matching is practicable when the vector of covariates is discrete and the
sample contains many observations at each distinct value of xi .
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If the covariate vector has a high dimension, or if continuous variations among some
covariates are present, then exact matching between treated and nontreated groups
becomes impractical. This problem motivates inexact matching methods. Inexact
matching works by mapping x into a lower dimensional measure, continuous or dis-
crete, usually a scalar f (x) that forms the basis of matching.

25.4.3. Propensity Scores

The method of propensity scores (Rosenbaum and Rubin, 1983) is a popular inexact
matching method. Rather than match on the regressors it matches on the propensity
score. Even here an exact match is not possible, so the comparison units are those
whose propensity scores are sufficiently close to the treated unit.

The propensity score, the conditional probability of receiving treatment given x,
denoted p(x), was suggested by Rosenbaum and Rubin (1983) as a matching measure.
As noted in Section 25.2.5, if the data justify matching on x, then matching based on
propensity score is also justified.

The propensity score is usually estimated using a parametric model such as a logit
or probit but can in principle be estimated using nonparametric methods.

Matching Using Propensity Scores

In the method of propensity scores one controls for the covariates by controlling for
a particular function of the covariates, specifically the conditional probability of treat-
ment, Pr [Di = 1|xi ] . That is, matching is on the propensity score. This can be eas-
ily calculated by (for example) a logit regression. Moreover, one can also control for
lagged variables by including them in the vector of covariates. If selection bias is elimi-
nated by controlling for xi , it is also eliminated by controlling for the propensity score.
Conditioning on the propensity score is often simpler than conditioning on a large di-
mensional vector x. Dehejia and Wahba (1998) provide an empirical illustration based
on the data previously used by Lalonde (1986).

Implementation Issues

Propensity score methods call for a good model to generate the scores. Our interest
is in estimating consistently the participation probability rather than the estimates of
parameters in the propensity score function. A better statistical fit for the propensity
score is more likely to result from a flexible parametric or nonparametric model.

In implementing matching based on p(xi ) three issues are relevant: (1) whether to
match with or without replacement, (2) the number of units to use in the comparison
set, and (3) the choice of the matching method.

Matching without replacement means that any observation in the comparison group
is matched to no more than one treated observation, that which is the closest match,
whereas with replacement means that there can be multiple matches. If matching with-
out replacement, the smallness of the comparison set would mean that the matches may
not be very close in terms of p(x), which will increase the bias of the estimator.
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The issue of choosing the number of cases in the comparison set involves trade-
off between bias and variance. By using a single closest match to a treated case,
one reduces the bias, but by including more matched controls, the variance is re-
duced whereas bias increases if the additional observations are inferior matches for the
treated observations. A partial solution is to use a predefined neighborhood in terms
of a radius around the p(x) of the treated observation and to exclude matches that lie
outside this neighborhood. In other words, one only uses the better matches. This is
called “caliper matching.”

Heckman et al. (1997, 1998) study the performance of matching estimators using
experimental data from the Job Training Partnership Act (JTPA) combined with sam-
ples of comparison groups from three sources. Data quality plays a key role in robust
estimation of treatment effects by matching methods. The results are best when the
data sources and definitions are comparable for treated and nontreated groups, when
the treated and nontreated come from the same labor market, and when the propensity
score can be modeled using a rich set of regressors.

The issue of the sensitivity of the results to the chosen method is not amenable to
a simple direct answer. The outcome may vary across different samples, depending
on the extent of overlap between the treated and untreated observations. If the two
groups are similar in the sense that there is a substantial overlap in their propensity
scores, and if the comparison group is large, then the matches will be easier to find
and matching with replacement will be feasible. If the comparison group is small and
disparate from the treated group, then one may run out of satisfactory matches and be
unable to use the full treated sample, this being especially likely if matching is without
replacement.

The application of Dehejia and Wahba (2002) to the National Supported
Work Program data provides an instructive illustration. We examine and illus-
trate the issues of implementation in Section 25.8 using the Dehejia and Wahba
data set.

25.4.4. Measuring Treatment Effects

Denote the comparison group for the treated case i with characteristics xi as the set
A j (x) = { j | x j ∈ c(xi )

}
, where c (xi ) is the characteristics neighborhood of xi . Let NC

denote the number of cases in the comparison group and let w(i, j) denote the weight
given to the j th case in making a comparison with the i th treated case,

∑
j w(i, j) = 1.

Then a general formula for the matching ATET estimator is

�M = 1

NT

∑
i∈{D = 1}

[y1,i −∑
j
w(i, j)y0, j ], (25.40)

where 0 < w(i, j) ≤ 1, and {D = 1} is the set of treated individuals, and j is an ele-
ment of the set of matched comparison units. Different matching estimators are gener-
ated by varying the choice of w(i, j).

874



25.4 . MATCHING AND PROPENSITY SCORE ESTIMATORS

Matching Methods

Simple matching compares cells with exactly the same discrete x,

�M =
∑

k

wk[y1,k − y0,k], (25.41)

where y1 is the mean outcome of the treated and y0 is the mean outcome of the un-
treated and wk is the weight of the kth cell (i.e., the fraction of observations in cell k).

A specific example (Dehejia and Wahba, 2002) is

1

NT

∑
i

(
yi − 1

NC,i

∑
j∈{D = 0}

y j

)
, (25.42)

where NT is the number in the treated group (D = 1) and NC,i is the number in the
comparison group corresponding to the i th observation.

The nearest-neighbor matching method chooses, for every treated individual i , the
set Ai (x) = { j | min j

∥∥xi − x j

∥∥}, where ‖‖ denotes the Euclidean distance between
vectors. If w(i, j) = 1 in (25.40) when j ∈ Ai (x), and zero otherwise, then this speci-
fication uses only one case to construct the comparison group for the treated cases.

Another estimator is generated by kernel matching in which

w(i, j) = K (x j − xi )∑NC,i

j=1 K (x j − xi )
,

where K is a kernel discussed in Section 9.3.
These methods share the advantage that they avoid functional form assumptions for

the outcome equations in estimating ATET and can estimate it at specific values of x.
They have the disadvantage that if x is high dimensional then the number of matches
can become very small. In such cases matching based on a scalar-valued metric has
attractions. Propensity score matching, discussed previously, is such a method.

Nearest-neighbor and kernel matching can be defined in terms of propensity scores
also. For example, for nearest-neighbor matching we can define the matching set as
Ai (p(x)) = {p j | min j ‖pi − p j‖}.

Stratification or interval matching is based on the idea of dividing the range of
variation of the propensity score in intervals such that within each interval the treated
and control units have, on the average, the same propensity score. One can use the
same blocks identified by the algorithm used for computing the propensity scores.
Then we compute the difference between the average outcomes of the treated and
the control groups. ATET is the weighted average of these differences, with weights
being determined by the distribution of the treated units across the blocks. One of the
disadvantages of this method is that it discards observations in blocks in which either
treated or control units are absent.

Denote by b the blocks defined over intervals of propensity score. Then the treat-
ment effect within the bth block is defined as

ATETS
b = (N T

b

)−1 ∑
i∈I (b)

Y1i − (N C
b

)−1 ∑
j∈I (b)

Y0 j ,

where I (b) is the set of units in block b, N T
b is the number of treated units in the bth
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block, and N C
b is the number of control units in the bth block. Then the treatment effect

based on stratification is defined as

ATETS =
B∑

b=1

ATETS
b ×
[∑

i∈I (b)

Di

/∑
Di

]
, (25.43)

where the term in brackets is the weight for each block given by the corresponding
fraction of treated units and where B is the total number of blocks.

In radius matching the set Ai (p(x)) = {p j |
∥∥pi − p j

∥∥ < r
}

is based on propen-
sity scores. This means that all control cases with estimated propensity scores falling
within radius r are matched to the i th treated case.

We can express ATE and ATET in terms of p(x), assuming the overlap condition
0 < p(x) < 1. The two key results are

ATE = E

[
(D − p(x)) y

p(x) (1 − p(x))

]
, (25.44)

ATET = E

[
(D − p(x)) y

Pr[D = 1] (1 − p(x))

]
; (25.45)

the last result is due to Dehejia (1997).
The derivations of these results are as follows:

y = (1 − D)y0 + Dy1

= y0 + D(y1 − y0),

(D − p(x))y = (D − p(x))(y0 + D(y1 − y0))

= Dy1 − p(x)y0 − Dp(x)y1 + Dp(x)y0

= Dy1 − p(x)(1 − D)y0 − Dp(x)y1. (25.46)

Next, taking expectations and noting that E[D|x] = p(x) we get

E[(D − p(x))y|x] = p(x)E[y1] − p(x)(1 − p(x))E[y0] − p2(x)E[y1] (25.47)

= p(x)E[y1 − p(x)y1] − p(x)(1 − p(x))E[y0]

= p(x)(1 − p(x))E[y1 − y0],

whence it follows that

ATE = E[y1 − y0] = E

[
(D − p(x)) y

p(x) (1 − p(x))

]
.

To derive the Dehejia result, we have

E

[
(D − p(x)) y

1 − p(x)

]
= E[p(x)E[µ1(x) − µ0(x)]] (25.48)

= E[D(y1 − y0)]

= E[D(y1 − y0)|D = 1]Pr[D = 1],

where the first line follows from (25.47), the second line is implied by the conditional
independence assumption, and the last line expresses joint expectation as a product of
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marginal and conditional expectations, which implies

ATET = E[D(y1 − y0)]

Pr[D = 1]
.

Using (25.44) and (25.45), consistent estimators, based on a sample of size N , are

ÂTE = 1

N

N∑
i=1

[
(Di − p̂(xi )) yi

p̂(xi ) (1 − p̂(xi ))

]
, (25.49)

ÂTET =
(

1

N

N∑
i=1

Di

)−1 N∑
i−1

[
1

N

(Di − p̂(xi )) yi

(1 − p̂(xi ))

]
, (25.50)

where (N−1∑N
i=1 Di ) is a consistent estimator of Pr[D = 1].

25.4.5. Variance of ATET Based on x and p(x)

Under identifiability assumptions given in Section 25.2, �̂x and �̂p(x) are defined as

�̂x = 1

NT

∑
[y1i − Ê[y0|D = 0, x = xi ]]

= 1

NT

∑
i∈{D=1}

[y1i −
∑

j∈Ai (x)

wi j y0, j ]

and

�̂p(x) = 1

NT

∑
[y1i − Ê[y0|D = 0, p(x) = p(xi )]],

= 1

NT

∑
i∈{D=1}

[y1i −
∑

j∈Ai (p(x))

wi j y0, j ],

where i is the subscript for the treated group, wi j = 1/NC,i , and NC,i is the number of
cases in the comparison group for the i th treated case. Both are consistent estimators of
ATET, E[y1 − y0|D = 1, x], the first based on x, and the second on p(x). A practical
issue is whether adjusting for differences by propensity score is better in terms of
efficiency than adjusting for differences using x. Hahn (1998), Heckman et al. (1998),
and others have shown that there is no unambiguous ranking of the two estimators in
terms of their asymptotic variance, even if we assume that p(xi ) is known, which in
practice will not be the case in observational studies.

Write the asymptotic variances for the two cases as follows:

V[�̂x] = E[V[y1|D = 1, x]|D = 1] + V[E[y1 − y0|D = 1, x]|D = 1],

V[�̂p(x)] = E[V[y1|D = 1, p(x)]|D = 1] + V[E[y1 − y0|D = 1, p(x)]|D = 1],

where we use the variance decomposition result given in Section A.8. In general x is a
better predictor than p(x), which implies that

E[V[y1|D = 1, x]|D = 1] ≤ E[V[y1|D = 1, p(x)]|D = 1],

V[E[y1 − y0|D = 1, x]|D = 1] ≥ V[E[y1 − y0|D = 1, p(x)]|D = 1],
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because conditioning on x loses less information than conditioning on p(x), which is
a particular function of x. Thus the second comparison favors the propensity score
method whereas the first term comparison favors the use of x over p(x).

A helpful practical guide and computer programs for implementing the calculations
of ATET are provided by Becker and Ichino (2002).

25.5. Differences-in-Differences Estimators

Chapters 2 and 3 discussed the setting of a natural experiment or a quasi-experiment
in which a treatment variable undergoes a change that can be viewed as an exogenous
variation in a treatment variable. The treated group can be compared to an untreated
comparison group.

In some cases one has data on the treated and the comparison (control) groups
both before and after the experiment. Then for the i th treated case the change in
the outcome is measured by [yia − yib|Dia = 1] and that for the untreated group
is measured by [yia − yib|Dia = 0]. Then the differences-in-differences measure
[yia − yib|Dia = 1] − [yia − yib|Dia = 0], where subscripts a and b denote “after”
and “before” the experiment occurs, forms the basis of an estimate of the treatment
effect. This method has been introduced in Sections 3.4.2 and 22.6.

Consider a model with a fixed effect φi and a drift term δt , where the pre-treatment
and post-treatment outcomes are given by, respectively,

yit,0 = φi + δt + εi t , (25.51)

yit,1 = yit,0 + α, (25.52)

so that

yit = (1 − Dit ) yit,0 + Dit yit,1, (25.53)

= φi + δt + αDit + εi t .

The preceding equations are for t = a, b; (25.51) is for the group that did not get
treated and (25.52) is for the group that did get treated. Using the “before” and “after”
formulation, we obtain the treatment effect

α = E[yia − yib|Dia = 1] − E[yia − yib|Dia = 0] (25.54)

= {E[yia|Dia = 1] − E[yia|Dia = 0]}
− {E[yib|Dia = 1] − E[yib|Dia = 0]} ,

where the differencing step eliminates the fixed effect α and the drift δt .
There are alternatives to taking differences. One alternative is to control directly for

pretreatment outcome difference between treatment and control groups by regression.
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For example, replace φi in (25.51) by x′
iβ + γyib to obtain

yia,0 = x′
iβ + γyib + δa + εia, (25.55)

yia,1 = x′
iβ + γyib + δa + αDia + εia .

Estimates of α are constructed by regressing posttreatment outcomes on a constant,
pretreatment outcomes, xi , and Dia. The interpretation of α as a causal parameter relies
on the assumption that after controlling for x, and yb, the treatment effect completely
accounts for the posttreatment difference between the treated and control groups. The
fixed effect is given a linear functional form, whereas a matching strategy can be based
on weaker assumptions.

Our previous results could actually be based on quasi-experimental data. For ex-
ample, compare people in one state with one law with those in a different state with
a different law, and use control functions for the state effects. The new element is the
addition of data before the experiment. By the assumption that the two states have the
same drift term, we can use the differences-in-differences method to eliminate the state
effects for which otherwise we would need control functions.

25.6. Regression Discontinuity Design

Identification of the treatment effect can sometimes be facilitated by either a natu-
ral experiment or using data generated in a quasi-experimental setting. Regression-
discontinuity (RD) design is an example of a quasi-experimental design in which the
probability of receiving a treatment is a discontinuous function of one or more underly-
ing variables. Such a design can arise in circumstances where a treatment is triggered
by an administrative or organizational rule. For example, Angrist and Lavy (1999)
study the effect of class size on student test scores, taking advantage of the data gener-
ated under the operation of “Maimonides Rule,” which stipulates that the class be split
when it reaches a specific threshold size. Van der Klaauw (2003) estimates the effect of
financial aid offers on the student’s decision to attend a college, exploiting the identi-
fying information provided by a discontinuity in the administrative rule that relates the
aid to the student’s SAT score and the grade point average. These econometric appli-
cations are predated by Thistlethwaite and Campbell (1960), who analyzed the impact
of student scholarships on career aspirations, exploiting the fact that the awards are
made only when the student’s test score exceeds a threshold; see also Trochim (1984).
The treatment here follows Van der Klaauw (2003).

25.6.1. Discontinuous Treatment Assignment Mechanism

In the case of an RD design, there is additional information about the selection rule:
It is known that the treatment assignment mechanism depends (at least in part) on the
value of an observed continuous variable relative to a given threshold, or cutoff score,
in such a way that the corresponding probability of getting treated (propensity score)
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Figure 25.1: Regression-discontinuity design: example.

is a discontinuous function of this variable at the cutoff score. Figure 25.1 illustrates a
sample generated by the RD design.

In the simplest RD design, called the sharp RD design, individuals are assigned to
treatment and control groups solely on the basis of an observed continuous measure S,
called the selection or assignment variable. Those falling below the distinct cutoff S
do not receive treatment and constitute the control group whereas those that are above
the cutoff receive treatment (D = 1). That is, the treatment assignment occurs through
a known and measured deterministic decision rule: Di = 1[Si ≥ S]. In Figure 25.2 the
sharp RD design is shown as a solid line (see Van der Klaauw, 2003).

In the sharp RD design

E[u|D, S] = E[u|S], (25.56)

where u denotes the error in the outcome equation. Because S is the only systematic
determinant of D, S will capture any correlation between D and u.

With Di = D (Si ) = 1
[
Si ≥ S

]
, a dependence between Di and ui would make OLS

an inconsistent estimator of α. As previously mentioned, one approach to estimating
the treatment effect in such a case is to specify and to include the conditional mean
function E[u|D, S] as a “control function” in the outcome equation. Thus

yi = β + αDi + k (Si ) + εi , (25.57)

where εi = yi − E[yi |Di , Si ]. If k(S) is correctly specified, the regression will consis-
tently estimate α.

If k (S) is linear then α will be estimated by the distance between the two linear
parallel regression lines at the cutoff point, which in this case equals the difference
between the two intercepts. It is an unbiased estimate of the common treatment effect
if the control function is linear.

In the more general case of varying treatment effects in which the coefficient
of D represents E[αi |S], or local LATE discussed in Section 25.7.1, where k (S)
is a specification of E[u|S] + (E[αi |S] − E[αi |S])1[S ≥ S], where 1[S ≥ S] = 1 if
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the condition in parenthesis is satisfied. Incorrect specification of k (S) leads to in-
consistency, and hence a semiparametric specification may be tried, for example,
k (S) =∑J

j=1 η j S j , where J may be determined by a suitable method.
The variable S may be related to the outcome y, which would automatically cause

(y, D) to be related even when there is no causal link between the two variables. This
contrasts with random assignment that avoids such dependence.

Whereas random assignment makes treatment and control groups similar in re-
spects other than the receipt of treatment, the sharp RD design makes them differ-
ent, at least in terms of their S value. This violates the “strong ignorability” as-
sumption of Rosenbaum and Rubin (1983), which also requires the overlap condition,
0 < Pr[D = 1|S] < 1, whereas in the sharp RD design model Pr[D = 1|S] ∈ [0, 1].

25.6.2. Identification and Estimation under RD Design

The main intuition is that the sample of individuals in the small neighborhood of the
cutoff will be similar to a randomized experiment at the cutoff point because they
have essentially the same S value. Those just below the cutoff are expected to be very
similar to those just above it. A comparison of the average y value of those just above
and those just below the cutoff will produce an estimate of the average treatment effect.

Increasing the interval around the cutoff will bias the estimate of the treatment ef-
fect, especially if the assignment variable was itself related to the outcome variable
conditional on treatment status. If an assumption about the functional form of this
relationship can be made then one can “use more observations and extrapolate from
above and below the cutoff point to what a tie-breaking randomized experiment would
have shown. This double extrapolation, combined with exploitation of the ‘random-
ized experiment’ around the cutoff point, has been the main idea behind regression-
discontinuity analysis” (Van der Klaauw, 2003, p. 1258).

Observe that in this RD design,

lim
S↓S

E[y|S] − lim
S↑S

E[y|S] = α + lim
S↓S

E[u|S] − lim
S↑S

E[u|S]. (25.58)

A more formal way of assuming that, in the absence of treatment, individuals
in a small interval around S would have similar average outcomes is to specify the
following:

Assumption A1. The conditional mean function E[u|S] is continuous at S.

Assumption A2. The mean treatment effect function E[αi |S] is right continuous at S:

yi = β + αDi + k (Si ) + εi , (25.59)

where εi = yi − E[yi |Di , Si ].

Then the result in (25.58) follows.
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25.6.3. Fuzzy RD Design

Here the treatment assignment depends on the selection variable in a stochastic man-
ner. The relation between the propensity score Pr[D = 1|S] is known to have a discon-
tinuity at S. A possible consequence of misassignment relative to the cutoff value is
a fuzzy design, with values of S near the cutoff point appearing both in the treatment
and control groups. Alternatively, the assignment may be based on additional variables
observed by the treatment administrator but unobserved by the program evaluator. So
relative to the sharp RD design, the fuzzy RD design selection depends on both ob-
servables and nonobservables. In Figure 25.2 the fuzzy RD design is shown as a dashed
line.

We can still exploit the discontinuity in the selection rule to identify the treat-
ment effect under assumption A1. If E [u|S] is continuous at S, then limS↓S E[y|S] −
limS↑S E[y|S] = α[limS↓S E[D|S] − limS↑S E[D|S]]. Therefore, the treatment effect
α is identified by

limS↓S E[y|S] − limS↑S E[y|S]

limS↓S E[D|S] − limS↑S E[D|S]
, (25.60)

where the denominator limS↓S E[D|S] − limS↑S E[D|S] �= 0 because of the known
discontinuity of E[D|S] at S.

In the case of heterogeneous treatment responses we need additional assumptions.

Assumption A2*. The average treatment effect function E[αi |S] is continuous at S.

Assumption A3. Di is independent of αi conditional on S near S:

yi = β + αE[Di |Si ] + k (Si ) + εi , (25.61)

where εi = yi − E[yi |Di , Si ] and k(Si ) is a specification of E[ui |Si ].

25.6.4. A Two-Stage Estimator

If Cov[D, u] �= 0, OLS regression will produce a biased estimate of α. However, the
following can lead to a consistent estimator. Consider

yi = β + αE[Di |Si ] + k (Si ) + εi , (25.62)

where εi = yi − E[yi |Si ] and k(Si ) is a specification of E[ui |Si ].

Stage 1: Specify propensity score function for a fuzzy RD design as

E[Di |Si ] = f (Si ) + γ 1[Si ≥ S], (25.63)

where f (Si ) is some continuous function of S that is continuous at S. By specifying
the functional form of f (or by estimating f semi- or nonparametrically) we can
estimate γ , the discontinuity in the propensity score function at S.

Stage 2: The control function-augmented outcome equation is then estimated with Di

replaced by the first-stage estimate of E[Di |Si ] = Pr[Di = 1|Si ]; this estimate will
be discontinuous in S whereas the included control function for k (S) would be
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Figure 25.2: Regression Discontinuity Design; treatment assignment in sharp (solid) and
fuzzy (dashed) designs.

continuous in S at S. Under correct specification of f (Si ) and k(Si ) the two-stage
procedure is consistent.

25.7. Instrumental Variable Methods

In recent years instrumental variable methods have been strongly advocated as an al-
ternative to MLE and other strongly parametric methods (Angrist, Imbens, and Rubin,
1996). Such an identification strategy is attractive in models with selection on un-
observables (see Section 25.3.4). In many applications such a model consists of a
linear equation for a continuous outcome variable whose conditional mean and vari-
ance structure is specified, without any additional distributional assumptions. A lead-
ing case has a continuous outcome dependent upon a vector of regressors x and a single
endogenous treatment (dummy) variable (D) that represents the decision to participate
in the treatment. This equation is called the participation or selection equation. In a
more general setting, one may have a limited dependent or discrete outcome and there
may be multiple treatment variables.

The discussion that follows overlaps with the coverage of IV estimation in several
places in this book and with that of selection models. The IV approach allows us to
develop another “local” variant of the ATE parameter.

25.7.1. Local ATE (LATE)

We reconsider the simple linear formulation. The outcome equation is a linear function
of observable variables x and a participation indicator D:

yi = x′
iβ + αDi + ui , (25.64)
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and the participation decision depends on a single variable z, referred to as an instru-
ment,

D∗
i = γ 0 + γ 1zi + vi , (25.65)

where D∗
i is a latent variable with its observable counterpart Di generated by

Di =
{

0 if D∗
i ≤ 0,

1 if D∗
i > 0.

(25.66)

There are two assumptions:

1. There is a variable z that appears in the equation for D that does not appear in the
equation for y. It may be continuous or discrete, and in a special case it is binary. The
exclusion of regressors x from the participation equation is a simplification. The simul-
taneous presence of z in the participation equation and its exclusion from the outcome
equation is referred to as the exclusion restriction. This model structure is familiar from
Chapter 16 on selection models.

2. Cov[z, v] = Cov[u, z] = Cov[x,u] = 0, and

Cov[D, z] �= 0.

Together with the first assumption, this assumption implies, as previously emphasized,
that y depends on z only through D, and D depends on z in a nontrivial fashion. Hence
we use the notation D (z) to emphasize the dependence of D on z.

Under these assumptions IV estimation of (25.64) yields consistent estimates of
(β, α). Let z′ = z + δ, δ �= 0. Then noting that E[D|x, D (z)] = Pr[D (z) = 1] and
taking expectations we obtain

E[y|x, D (z)] = x′β + αPr[D (z) = 1],

E[y|x, D
(
z′)] = x′β + αPr[D

(
z′) = 1],

where, after subtraction, we have

E[y|x, z′] − E[y|x, z] = α [Pr[D
(
z′) = 1] − Pr[D (z) = 1]

]
.

Solving the equation for α yields the expression for the local average treatment
effect (LATE), analyzed by Imbens and Angrist (1994):

αLATE = E[y|x, z′] − E[y|x, z]

Pr[D (z′) = 1] − Pr[D (z) = 1]
, (25.67)

=
∫

R(x)

[
E[y|x, z′] − E[y|x, z]

]
d F (x|x ∈ R (x))∫

R(x) [Pr[D (z′) = 1] − Pr[D (z) = 1]] d F (x|x ∈ R (x))
,

= E[y|z′] − E[y|z]

Pr[D (z′) = 1] − Pr[D (z) = 1]
,

where the second line involves averaging over x, whose support is denoted by R (x) .
This expression is well defined if Pr[D

(
z′) = 1] − Pr[D (z) = 1] �= 0. The sample

analogue of this expression is the ratio of the mean difference between the treated and
the nontreated divided by the change in the proportion treated owing to the change in z.
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This estimator is an IV estimator. Using the results on the asymptotic normality of the
IV estimator, we can obtain confidence intervals for the LATE parameter.

The qualifier “local” in LATE is justified because it measures the treatment effect on
the “compliers” that are induced to participate in the treatment as a result of the change
in z. LATE depends on the particular values of z used to evaluate the treatment and on
the particular instrument chosen. The group of “movers” may not be representative of
the whole treated population, let alone the whole population. Consequently, the LATE
parameter may not be informative about the consequences of large policy changes
brought about by changes in instruments different from those historically observed.

For binary instrument the LATE and the IV estimates are equivalent, as shown in
Angrist et al. (1996, p. 447). If more than one instrument appears in the participation
equation, as when there exist overidentifying restrictions, the LATE parameter esti-
mated for each instrument will in general differ. However, a weighted average may be
constructed.

The foregoing analysis applies when the treatment effect does not vary with indi-
viduals. If, however, the treatment effect is heterogeneous, then there is a potential for
confounding the variation induced by z: Is the observed variation due to z-differences
or α-differences? Under heterogeneity the idiosyncratic component of the treatment
effect,

ui,1 = ui,0 + Di (αi (xi ) − α (xi )),

is a function of αi (xi ) − α(xi ), see (25.27). Then the previous assumptions are not
enough to determine ATE or ATET. A solution to this difficulty is the addition of the
monotonicity assumption as an additional identifying condition. Essentially this says
that the instrument affects participation in a monotonic fashion, so that if on average
participation is more likely given Z = w than given Z = z, then anyone who would
participate given Z = z must also participate given Z = w.

25.7.2. Relation to Other Measures

The IV estimator of α is the same as what we would estimate by using a two-stage
least-squares procedure in which we first estimate the probability of receiving treat-
ment, E[D = 1|x, z], and then run a regression of the outcome y on x and the fitted
probability, assuming of course that the treatment effect is additive. Consider a special
case of the IV estimator in which x is a scalar and equals one, and z is a scalar dummy
variable that denotes eligibility to participate in the treatment; z = 1 implies eligibility
and z = 0 implies noneligibility.

We can partition the population into four categories: compliers (C), always-takers
(A), never-takers (N), and defiers (D). Compliers are induced to receive treatment by
being eligible, always-takers will receive treatment whether or not they are eligible,
never-takers refuse treatment regardless of eligibility, and defiers are contrarians who
refuse treatment if eligible and take treatment if not. Assume that there are no defiers,
so there are just three categories.

885



TREATMENT EVALUATION

The Wald estimator of the treatment effect is defined by

TEWALD = E[yi |zi = 1] − E[yi |zi = 0]

E[Di |zi = 1] − E[Di |zi = 0]
, (25.68)

whose numerator, expressed as a weighted average of treatment effects on the three
categories, with weights equal to the probability of being in each category, is

Pr[C]{E[yi |zi = 1,C] − E[yi |zi = 0,C]}
+ Pr[A]{E[yi |zi = 1, A] − E[yi |zi = 0, A]}
+ Pr[N ]{E[yi |zi = 1, N ] − E[yi |zi = 0, N ]}
= Pr[C]{E[yi |zi = 1,C] − E[yi |zi = 0,C]}.

The result in the final line follows because the terms corresponding to always-takers
and never-takers are identically zero. The denominator in (25.68) is the probability of
compliance, Pr[C]. Therefore,

TEWALD = E[y1,i |zi = 1,C] − E[y0,i |zi = 0,C]. (25.69)

If we compare TEWALD with the LATE measure, we find that LATE is a measure of
the effect of treatment on the subgroup of those at the margin of participating, denoted
as compliers.

In empirical economic applications the concept of a marginal impact caused by
variation in a continuous variable, measured by a partial derivative, is well entrenched
and is replaced by a discrete analogue when the variation in the causal variables is dis-
crete. Thus a marginal treatment effect (MTE) measure conditional on x is defined
as

MTE = ∂E[y|x, z]

∂Pr[D = 1|x, Z ]

∣∣∣∣
Z=z

. (25.70)

Heckman and Vytlacil (2002) show that ATE, ATET, and LATE are all averages
of MTE taken over different subsets of the Z support, or subpopulations. ATE is the
expected value of MTE over the full support of z, including where participation rate is
zero or one. ATET excludes the support of z where participation does not occur. LATE
is the average of MTE over an interval of z where participation rates differ.

25.7.3. IV Estimation in a Model with Heterogeneous Treatment Effect

We now consider a model that allows for selection on ubobservables and heteroge-
neous treatment effect. The context is of a linear model with an endogenous treat-
ment variable whose coefficient is random, see Bjorklund and Moffitt (1987). Such a
model, which can be motivated by the consideration that the treatment effect is not con-
stant across the treated, has been considered by Wooldridge (1997) and Heckman and
Vytlacil (1998).

We write the model as a simultaneous equations model with the outcome variable
y1 that depends upon treatment variable y2. For simplicity the treatment variable y2 is
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taken to be continuous. Given instrument z and exogenous variable xi , the model is as
follows:

y1,i = (α + vi )y2i + x′
iβ1 + εi (25.71)

= αy2i + x′
iβ1 + εi + vi y2i

= vi y2 + αy2i + x′
iβ1 +wi ,

y2i = γ zi + x′
iβ2 +ηi , (25.72)

where wi = εi + vi (y2i − y2). The marginal response of y1 with respect to a change
in y2 is (a + vi ), which varies across individuals, thus permitting a heterogeneous
treatment effect.

Suppose E[εi |xi , y2i ] = E[vi |xi , y2i ] = 0. Then E[εi + vi y2i |xi , y2i ] = 0, and
V[εi + vi y2i |xi , y2i ] depends on xi and hence is heteroskedastic. Then the least-
squares estimator of (α,β1) is consistent but not efficient. This follows from the as-
sumed exogeneity of y2.

We next consider the case where the treatment variable is endogenous. The follow-
ing assumptions are made:

E[εi |xi , zi ] = E[ηi |xi , zi ] = E[vi |xi , zi ] = 0, (25.73)

E[ε2
i |xi , zi ] = σ 2

ε ; E[v2
i |xi , zi ] = σ 2

v; E[η2
i |xi , zi ] = σ 2

η. (25.74)

Endogeneity is introduced by permitting correlation between v and η. Specifically,
assume that E[vi |ηi ] = ρηi , which would hold if (v, η) were bivariate normal dis-
tributed. Under these assumptions, z is a valid instrument, and x is exogenous. The
exclusion of z from the y1 equation is an identifying restriction. Therefore instrumen-
tal variable estimation of (25.71) with instruments (z, x) is a natural estimator. Note,
however, that the condition for consistent estimation is E[wi |xi , zi ] = 0. The first com-
ponent ofwi , εi , is uncorrelated with zi by assumption; the second component ofwi is
vi (y2i − y2), which may at first sight seem to to be correlated with zi on which y2i de-
pends. If so, the IV estimator would be inconsistent. However, it can be shown that
the IV estimator is consistent under the preceding assumptions. The key step in
the argument involves showing that E[vi y2i |zi ] = E[vi y2i ], a result established in
Wooldridge (1997) by applying the law of iterated expectations; thus,

E[vy2|z] = E [E[vy2|z, η]|z] (25.75)

= E [y2E [v|z, η] |z] = E [ρηy2|z]

= ρE[η2|z] = ρσ 2
η = E[vy2].

Although the IV estimator is consistent under the assumptions given here, it is not
efficient because of the heteroskedastic error. Hence heteroskedastic-consistent stan-
dard errors should be used. Finally, we have not tackled the issue of sensitivity of esti-
mated treatment effects to the choice of instruments when the response to treatment is
heterogeneous.
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25.7.4. Endogenous Treatment in Nonlinear Models

Consider how the analyses of Sections 25.3 and 25.7 change if the outcome of a job
training program were employment rather than earnings, or was duration to job place-
ment. Alternatively, suppose that posttraining a significant proportion remains unem-
ployed and has zero earnings, so that the sample is a mixture of those with zero and
positive earnings and hence will be nonnormal. How should one extend the previous
methods to handle the complications of nonlinearity and nonnormality?

The specification and estimation of nonlinear, nonnormal models of treatment and
outcome with selection is an issue that occurs frequently in microeconometrics. As in
linear models, a major focus in such models is on the effect of an endogenous treat-
ment variable on an economic outcome. The model specification comprises an out-
come equation with a structural–causal interpretation and other equations that model
the generating process of treatment variables. There are two broad approaches to this
problem, a parametric one that relies on likelihood-based (including Bayesian) meth-
ods and a semiparametric one that relies on GMM or linearized IV methods.

The typical setup is illustrated by the following selected examples. In labor eco-
nomics, Bingley and Walker (2001) examine the effect of duration of husbands’ un-
employment on wives’ discrete labor supply choices. Here the treatment variable is
nonnegative and possibly censored or truncated. Pitt and Rosenzweig (1990) study the
effect of endogenous health status of infant children on their mothers’ main daily ac-
tivity; here the treatment variable is discrete and the outcome is continuous. Carrasco
(2001) examines the effect of childbirth on labor force participation of women. In
treatment–outcome models related to fertility, Jensen (1999) examines the effect of
contraceptive use, a discrete variable, on duration between births, a limited dependent
variable. Olsen and Farkas (1989) examine the effect of childbirth on the hazard of
dropping out of school. In health economics, Kenkel and Terza (2001) examine the
effect of physician advice (discrete) on the consumption of alcohol (continuous and
nonnegative). Gowrisankaran and Town (1999) study the effect of hospital choice on
the hazard of death in a hospital. In health economics the impact of health insurance
choice on health care utilization, sometimes measured as an expenditure variable and
sometimes as a count of number of units of some specific type of service such as doctor
visits or hospital admissions, is frequently studied using the framework of a two-part
model (Deb and Trivedi 1997). Terza (1998) and van Ophem (2000) model the effect
of household vehicle ownership on counts of trips. Many other examples can be cited.

These models share many statistical features. First, both treatment and outcome pro-
cesses are nonnormal and nonlinear: multinomial, count, discrete, or censored. Second,
in each model the treatment is endogenous. Finally, investigators often have good a pri-
ori reasons for choosing particular parametric marginal models for both treatments and
outcomes. However, the transition from given marginal distributions to a joint model
for treatment and outcome is an essential step that is potentially problematic when
nonnormal multivariate distributions are involved. Often the marginal models have no
(or very restrictive) tractable multivariate counterparts (e.g., in models of counts and
durations). In others, treatment and outcome are from different statistical families (e.g.,
treatment being a multinomial and the outcome being a hazard rate) and so analytically
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tractable multivariate distributions often do not exist. Because of the specialized nature
of applications in this area, this topic is not pursued any further here.

25.8. Example: The Effect of Training on Earnings

The National Supported Work (NSW) demonstration project, conducted in the 1970s,
measured the impact of training on earnings by a randomized experiment that assigned
some individuals to receive training (a treatment group) and others to receive no train-
ing (a control group). The effect of training could then be measured by direct compar-
ison of sample means of posttreatment earnings for the treatment and control groups.

As was discussed in Chapter 3, randomized experiments are relatively rare in the
social sciences. More often an observational sample is used with some individuals
observed to receive a treatment while others do not. Comparison of the treated with the
nontreated must then control for differences in observed characteristics, and possibly
in unobserved characteristics.

To determine the adequacy of standard microeconometric methods for observational
data, Lalonde (1986) contrasted outcomes for the NSW treated group with those for
control groups drawn from two national surveys. He obtained results that differed sub-
stantially from the experimental results that contrasted the NSW treated and control
groups, and he concluded that the observational methods were unreliable.

Dehejia and Wahba (1999, 2002) reanalyzed a subset of the Lalonde data using al-
ternative matching methods, which they argued led to conclusions from observational
data that were considerably closer to those from experimental data. In this section we
use their data from Dehejia and Wahba (1999) to illustrate the application of methods
introduced in Sections 25.2 to 25.5 that control only for selection on observables.

25.8.1. Dehejia and Wahba Data

The treated sample is one of 185 males who received training during 1976–1977. The
control group consists of 2,490 male household heads under the age of 55 who are
not retired, drawn from the PSID. Dehejia and Wahba (1999) call these two samples
the RE74 subsample (of the NSW treated) and the PSID-1 sample (of nontreated).
The treatment indicator variable D is defined as D = 1 if training is received (so the
observation is in the treated sample) and D = 0 if no training was received (and the
observation is in the control sample).

Summary statistics for key variables are given in Table 25.3. The treated group
differs considerably from the control group, being disproportionately black (84%) with
less than a high school degree (71%) and unemployed in the pre-treatment year 1975
(71%). Estimates of the effect of training should control for these differences.

25.8.2. Control Function Approach

Various estimates of the effect of training on earnings are given in Table 25.4.
The outcome of interest is posttreatment earnings, RE78. One possible measure of

the effect of training is the mean difference in RE78 between NSW treated and PSID
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Table 25.3. Training Impact: Sample Means in Treated and Control Samplesa

Variable Definition Treated Control

AGE Age in years 25.82 34.85
EDUC Education in years 10.35 12.12
NODEGREE 1 if EDUC < 12 0.71 0.31
BLACK 1 if race is black 0.84 0.25
HISP 1 if Hispanic 0.06 0.03
MARR 1 if married 0.19 0.87
U74 1 if unemployed in 1974 0.60 0.10
U75 1 if unemployed in 1975 0.71 0.09
RE74 Real earnings in 1974 (in 1982 $) 2,096 19,429
RE75 Real earnings in 1975 (in 1982 $) 1,532 19,063
RE78 Real earnings in 1978 (in 1982 $) 6,349 21,554
D 1 if received training (treatment) 1.00 0.00
Sample size 185 2,490

a Data are the same as in table 1 of Dehejia and Wahba (1999). The treated group is the RE74 subsam-
ple of the NSW. The control group is the PSID-1 sample of male household heads under 55 years
and not yet retired. Treatment occurred in 1976–1977.

control individuals, leading to the estimate $6,349 − $21,554 = −$15,205. This is
called a treatment–control comparison estimator as it mimics the analysis in an
experimental setting. It can equivalently be computed as the coefficient of the treat-
ment indicator D in OLS regression of RE78 on an intercept and D, using a combined
treatment–control sample.

The large treatment estimate is misleading as it mostly reflects the difference in the
types of individuals in the two samples – the control sample individuals are not good
controls. This difference can be controlled for by including pretreatment characteristics
as regressors, and estimating by OLS

RE78i = x′
iβ+αDi + ui , i = 1, . . . , 2675. (25.76)

This leads to a much smaller estimated treatment effect α̂ = $218 when, following
Dehejia and Wahba, the regressors x are specified to be an intercept, AGE, AGESQ,
EDUC, NODEGREE, BLACK, HISP, RE74, and RE75. This approach is called the
control function estimator in Section 25.3.3.

25.8.3. Differences in Differences

A second approach is a before–after comparison, which looks at the difference be-
tween posttreatment earnings RE78 and pretreatment earnings RE75. Using mean
earnings for the treated group leads to the difference estimate $6,349 − $1,532 =
$4,817.

This estimate may be misleading as it reflects all changes over this time period,
such as an improved economy, and not just training. The difference-in-differences
estimator, considered in Section 25.5, additionally calculates a similar quantity
for the control group, $21,554 − $19,063 = $2,491, and uses this as a measure of
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Table 25.4. Training Impact: Various Estimates of Treatment Effect

Method Definition Estimate St. Errora

Treatment–control comparison RE78D=1 − RE78D=0 −15,205 656
Control function estimator α̂ from OLS regression (25.76) 218 768
Before–after comparison RE78D=1 − RE75D=1 4,817 625
Differences-in-differences α̂ from OLS regression (25.77) 2,326 749
Propensity score See Section 25.8.4 995 –

a Standard errors for the first four estimates are computed using heteroskedastic-consistent standard errors from
the appropriate OLS regression.

nontreatment related changes over time in earnings, so that the change over time solely
due to treatment is $4,817− $2,491 = $2,326.

The DID estimator can be shown to be equivalent to the estimate of α in the OLS
regression

REi t = φ + δD78i t + γαDi + αD78i t × Di + ui , i = 1, . . . , 2675, t = 75, 78.
(25.77)

Here REi,75 denotes earnings in the pretreatment period and REi,78 denotes earnings
in the posttreatment period, so the regression is one with 5,350 earnings observations.
The indicator variable D78i t equals one in the posttreatment period, the indicator vari-
able Di equals one if the individual is in the treated sample, and the interaction term
D78i t × Di equals one for treated individuals in the posttreatment period.

More generally, the intercept φ in (25.77) can be replaced by x′
i tβ. This makes no

difference in this example where regressors are time-invariant so that xi t = xi . The
method can be applied to repeated cross-section data (see Section 22.6.2) as it does
not require that individuals in the treated and control groups be observed in both 1975
and 1978.

25.8.4. Simple Propensity Score Estimate

A third approach compares the outcome RE78 for a treated individual with a counter-
factual prediction of RE78 if the same treated individual had not in fact received the
treatment. The initial treatment–control estimate of $15,205 is an oversimplified ex-
ample that uses as counterfactual the average of RE78 in the control group ($21,554).
Better counterfactuals can be generated by specifying a regression model. For exam-
ple, the regression (25.76) specifies E[RE78|x] to equal x′β + α, if treated, with coun-
terfactual x′β, if not treated. This places restrictions on both the effect of regressors
x and on the effect of treatment, which, conditional on x, is assumed to be constant
across individuals.

The treatment effects literature emphasizes counterfactuals that do not rely on
such strong assumptions. An obvious approach is to compare treated and untreated
individuals with the same value of x, but in practice such matching on regressors
is not possible if several regressors are felt to be relevant and these regressors take a
number of different values.
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Figure 25.3: Training impact: post-treatment earnings plotted against propensity score by
treatment status. Only observations with common support for the propensity score are
included. Observations with earnings over $20,000 are excluded from the scatter plot, for
readability, though they are included in the nonparametric regression.

Instead, it can be sufficient, given assumptions detailed in Sections 25.3 and 25.4,
to match on the propensity score, defined as the conditional probability of treatment
Pr[D = 1|x]. For this example we estimate using only data for the initial year 1975
the logit model

Pr[Di = 1|xi ] = �(x′
iβ), i = 1, . . . , 2675, (25.78)

where, from Section 14.2, �(z) = ez/(1 + ez), and following Dehejia and Wahba
(1999) the regressors chosen are AGE, AGESQ, EDUC, EDUCSQ, NODEGREE,
BLACK, HISP, MARR, RE74, RE75, RE74SQ, RE75SQ, and U74*BLACK.

Figure 25.3 plots posttreatment earnings RE78 against the propensity score, sep-
arately for the treated and control samples. Considering just the propensity score (x
axis) it is clear that most observations in the control sample have very low propen-
sity score, an expected result given the Table 25.3 data that treated individuals were
disproportionately black, unemployed, low-education individuals.

Turning to the posttreatment outcome RE78 (y axis), we see that the treatment effect
is estimated as the difference between a given treated individual (D = 1) and a control
sample individual (D = 0) with the same (predicted) propensity score. Each panel
in Figure 25.3 includes a fitted nonparametric regression of RE78 on the propensity
score. The treatment effect is less than one thousand dollars over much of the range
of propensity score, though it is considerably larger and positive for propensity score
around 0.80.

There are many ways to implement this approach of comparing individuals with
similar propensity score and then averaging over all treated individuals. One strategy
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is to match a treated individual with the control-sample individual who has the closest
propensity score. This approach was labeled as the nearest-neighbor matching in Sec-
tion 25.4.4. A simpler strategy is to stratify data by propensity score, denoted p(x), and
let the counterfactual be the within-strata average of RE78 for the control group. For
example, if a treated observation has propensity score p(x) = 0.35 then the counter-
factual may be the average of p(x) for control group observations with 0.30 < p(x) ≤
0.40. The total effect is then

∑
s ws(RE78s,D=1 − RE78s,D=0), where RE78s,D=1 and

RE78s,D=0 denote the strata s averages of RE78 for, respectively, the treated and con-
trol observations, and the weights ws equal the fraction of treated observations in each
stratum. A simple stratification scheme uses, say, 10 equally spaced strata with 0.0 <
p(x) ≤ 0.1, 0.1 < p(x) ≤ 0.2, and so on. This was referred to as stratification match-
ing in Section 25.4.4. This procedure should be restricted to cases where the propensity
scores for the treated and control samples overlap, see Section 25.4.3. Here the propen-
sity score ranges from 0.0005 to 0.9420 for the treated sample and from 0.0000 to
0.9371 for the control sample, leading to dropping of 1,423 control group individ-
uals and 8 treated individuals. The resulting estimated total effect is $995 given in
Table 25.4.

25.8.5. Matching Using Propensity Scores

As mentioned in Section 25.4, other matching strategies include radius and kernel
matching, which are also relatively easy to implement. The remainder of this chapter
details these and other approaches, with emphasis on propensity score methods.

Fitted Propensity Score

The fitted propensity score is obtained using two different logit specifications, from
Dehejia and Wahba (1999) and Dehejia and Wahba (2002), respectively. The specifi-
cations for propensity scores are detailed at the bottom of Table 25.6. In the only de-
parture from Dehejia and Wahba (1999, 2002), a constant term is included in our logit
models. The estimated coefficients, not presented to save space, show an expected sign
pattern.

Matching Algorithms and Balancing

An important practical issue is the choice of an appropriate matching algorithm based
on propensity scores that ensures that balancing condition (25.9) is met. Dehejia and
Wahba (2002, p. 161) provide an algorithm that starts with a parsimonious logit model
to estimate p(x). The algorithm works as follows. The data are sorted according to
p̂(x). The sample observations are stratified such that within a stratum the p̂(x) for
treated and control units are close. For example, initially a rough grid with equal ranges
may be used. Within each stratum the equality of means between treated and control
units should be tested for each covariate. If there is no statistically significant differ-
ence, then the regressors are balanced between the treated and control groups and one
can stop. If, for some stratum, there is no balance, then for the unbalanced stratum a
finer grid is used to achieve balance. If there are many unbalanced strata, then the orig-
inal logit model is reestimated with an improved specification that includes interaction
and higher order terms among the regressors.
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Table 25.5. Training Impact: Distribution of
Propensity Scorea for Treated and Control Units Using
Dehejia and Wahba’s (1999) Specification

Minimum p̂(x) Treated Untreated Total

0.000364 9 960 969
0.10 10 56 66
0.20 14 33 47
0.40 24 22 46
0.60 33 7 40
0.80 95 8 103
Total 185 1086 1271

a From the second row, for example, the propensity score lies between
0.10 and 0.20 for 10 treated and 56 untreated individuals.

Using the software of Becker and Ichino (2002), Dehejia and Wahba’s (2002) algo-
rithm is used to compute the propensity scores. In all of the cases noted, the propen-
sity score computation has been restricted to the common support region by testing
the balancing property using those observations whose propensity scores lie in the
intersection of the supports of the propensity score of the treated and the control units.
This restriction reduces the original sample significantly. The size of the control group
drops from 2,490 units to 1,086 for the Dehejia and Wahba (2002) specification.

Table 25.5 displays the number of treated and control units in different blocks after
the balancing is carried out by the procedure just outlined. The reported results differ
from those of Dehejia and Wahba (2002) because the latter exclude control units from
NSW–PSID composite samples not on the basis of common support region but on
the basis of whether the estimated propensity score of a sample unit is less than the
minimum of the estimated propensity score for the treated units. The tables show that
the proportion of treated units to control units is very low for the first blocks, compared
with the remaining blocks.

A similar exercise for the Dehejia and Wahba (1999) specification, not tabulated
for brevity, leads to similar results. The control group has 1,146 observations. The
boundary values for blocking p̂(x) are then 0.0006526, 0.05, 0.10, 0.20, 0.40, 0.60,
and 0.80.

ATET Estimates by Matching Methods

A selection of results for various matching methods are summarized in Table 25.6. The
nearest neighbor estimate of ATET for the Dehejia and Wahba (2002) specification is
$2,385, and for the Dehejia and Wahba (1999) specification, it is approximately $560.
The performance of stratification and kernel matching is also mixed, the estimates of
ATET ranging from $1,452 to $2,156.

For comparison, Dehejia and Wahba’s (2002) ATET estimates are reproduced in
Table 25.7. We also note that the benchmark estimate of the treatment effect is $1,794.
It is obtained by regressing RE78 on D for the Dehejia and Wahba’s (2002) version of
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Table 25.6. Training Impact: Estimates of ATET

Matching Number Number in Standard % of
Procedure Treated Control ATET Error $1794

Dehejia and Wahba (2002) specificationa

Nearest neighbor 185 53 2385 1209c 133
Radius, r = 0.001 54 517 −7815 1118d −436
Radius, r = 0.0001 24 92 −9333 2282d −520
Radius, r = 0.00001 15 19 −2200 2986d −123
Stratification 185 1086 1452 1041c 81
Kernel 185 1058 1309 975c 73

Dehejia and Wahba (1999) specificationb

Nearest neighbor 185 57 560 1098c 31
Radius, r = 0.001 57 583 −9358 997d −522
Radius, r = 0.0001 27 76 −7847 2066d −437
Radius, r = 0.00001 16 13 223 4551d 12
Stratification 185 1146 2156 814c 120
Kernel 185 1146 1518 890c 85

a Logit Model: Pr[treat = 1] = h(CONSTANT, AGE, AGE2, EDU, EDU2, MARRIED, NODEGREE, BLACK,
HISPANIC, RE74, RE742, RE75, U74, U75, U74*HISPANIC).

b Logit Model: Pr[treat = 1] = h(CONSTANT, AGE, AGE2, EDU, EDU2 MARRIED, NODEGREE, BLACK,
HISPANIC, RE74, RE742, RE75, RE752, RE74*RE75, U74*BLACK).

c Bootstrapped standard errors with 200 replications.
d Analytical standard errors.
e ATET/1794 × 100.

the NSW sample of both participants and nonparticipants. It is clear that the reported
ATET estimates in this table differ significantly from those of Dehejia and Wahba
(2002), as well as from the benchmark actual experimental estimate. For the Dehejia
and Wahba (2002) specification, the nearest-neighbor estimator is very close to the
benchmark estimate and is even better than the results of Dehejia and Wahba (2002)
in terms of reduced bias.

For stratification and kernel estimates, the bias is larger. For the radius matching
estimator, this bias is worse, and gives negative estimates of the treatment effect as
opposed to the positive estimates that Dehejia and Wahba (2002) found using caliper
matching. The difference between our radius matching and the caliper matching of
Dehejia and Wahba (2002) is that in the latter scheme, when a given treated unit does
not have a match within the given caliper, matching is then done with the nearest
comparison unit outside of the given caliper. In our case, if such a situation arises, we
ignore treated units that have no match in the prespecified radius. This illustrates the
sensitivity of the matching estimators to assumptions.

The robustness of ATET estimates across specifications can be evaluated in terms
of the ratio of ATET and the benchmark estimate, given in the last column of Table
25.6. With the exception of the stratification matching estimator, the ratio varies widely
over the two specifications. For example, the nearest-neighbor estimator is 133% of the
benchmark estimator in the Dehejia and Wahba (2002) specification, but only 31% in
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Table 25.7. Training Evaluation: Dehejia and Wahba’s
(2002) Estimates of ATET

Matching Procedure ATET Standard Error

Nearest neighbor 1890 1202
Radius, r = 0.001 1824 1187
Radius, r = 0.0001 1973 1191
Radius, r = 0.00005 1928 1196
Radius, r = 0.00001 1893 1198

the Dehejia and Wahba (1999) specification. Similarly, except for the kernel estimator,
the ATET estimates are sensitive to the propensity score used.

Whether matching methods work well depends on the suitability of the propen-
sity score model for the treatment and control groups (Dehejia and Wahba, 2002).
However, there is clearly an interaction between the methods and the propensity score
model.

25.9. Bibliographic Notes

Early economic applications of matching and differences-in-differences methods to program
evaluation include Ashenfelter (1978) and Ashenfelter and Card (1985). Treatment evaluation
is currently a very active and fast-moving area of econometrics research.

25.2 Angrist et al. (1996) make useful connections between the concepts and terminology in
the medical and the econometrics literature.

25.3 Heckman and Robb (1985) consider the estimation of program impacts in a variety of data
settings, in the presence of selection. See also Björklund and Moffitt (1987). Heckman and
Hotz (1989) also argue strongly that one needs to subject the results to several specification
tests to assess their robustness and to evaluate the impact of selection bias. For example,
they suggest the use of multiple comparison groups to evaluate the sensitivity of the results
based on a single control group. Most of this earlier work is parametric in approach. More
recently nonparametric methods have been used also.

25.4 Heckman, Ichimura, and Todd (1997) and Heckman et al. (1998) study and apply match-
ing estimators. The important result concerning conditioning on the propensity score is
given in Rosenbaum and Rubin’s (1983, theorem 2). Efficient estimation of ATE using
estimated propensity scores is analyzed in Hirano, Imbens, and Ridder (2003). Dehejia
and Wahba (2002) apply propensity score matching methods to a variant of the Lalonde
(1986) data set. The experimental data are matched with observations from the CPS and
the PSID. Smith and Todd (2004) reanalyze the data used by Dehejia and Wahba using
a number of different variants of propensity score estimators. They highlight the biases
associated with alternative propensity score estimators and emphasize the importance of
high-quality data in bias minimization. Becker and Ichino (2002) provide an overview of
some propensity score matching estimators. They also provide a set of STATA programs,
with illustration, that can be used for estimating ATET. The February 2004 issue of the
Quarterly Journal of Economics includes a symposium on the econometrics of matching.

25.6 Hahn, Todd, and Van der Klaauw (2001) analyze identification of treatment effects in the
RD model under weak assumptions.
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25.7 Imbens and Angrist (1994) analyze the properties of the LATE estimator. Angrist et al.
(1996) discuss the use of IV methods and make a connection with the LATE measure of
treatment impact. The article is followed by a lively discussion that gives a spectrum of
views on the IV estimator as well as literature connections, see also Heckman (1997).
Angrist (2001) discusses some simple strategies for dealing with endogenous dummies in
nonlinear outcome models with nonnormal outcomes. The paper is followed by discus-
sion and comments that analyze the pros and cons of the linearized IV approach. There is
lack of consensus on the most promising among the competing approaches. Heckman, To-
bias, and Vytlacil (2003) develop estimators for treatment effects within a latent variable
framework. Vella and Verbeek (1999) compare the IV approach with a control function
approach that includes a selection bias correction term.

Exercises

25–1 (Adapted from Heckman, 1996) Consider the treatment–outcome model y =
x′β + αd + ε, where d is a binary indicator variable taking the value 1 if treat-
ment is assigned randomly and 0 if treatment is not assigned (also randomly).

(a) Is randomized treatment a sufficient condition for identification of α?
(b) Is randomized treatment a sufficient condition for identification of α and β?

25–2 In the previous problem randomization refers to treatment. Here we consider
randomized eligibility for receiving the treatment. Now e = 1 means that an in-
dividual is randomly made eligible and e = 0 means randomly made ineligible.
Show that in this case, given Pr[d = 1|x] �= 0, the treatment effect is given by
E[y|e = 1,x] − E[y|e = 0,x]/Pr[d = 1|x].

25–3 Consider the nonlinear treatment outcome model E[y|x,d] = exp(x′β + αd ),
where d is a binary treatment indicator. Suppose that we have available con-
sistent estimates of (β, α) and an estimated covariance matrix V̂[β̂, α̂]. Assume
that the estimator is asymptotically normal. Outline a bootstrap or a Monte Carlo
algorithm for estimating the ATE parameter and its asymptotic variance given
(xi ,di ), i = 1, . . . , N.

25–4 Consider the nonlinear treatment outcome model E[ln y|x,d] = x′β + αd,
where d is a binary treatment indicator. Suppose that we have available con-
sistent estimates of (β, α) and an estimated covariance matrix V̂[β̂, α̂]. Suppose
we are interested in estimating the ATE in terms of y rather than ln y. Suggest
an estimation method and discuss its consistency property.

25–5 In this chapter the empirical illustration used the PSID control group and the
NSW treatment group. Dehejia and Wahba (2002) used two control groups.
There is another control group available based on the CPS. In this exercise
you will be asked to replicate some of the calculations reported here using the
CPS control group in place of the PSID sample.

(a) Generate a table similar to Table 25.3. Compare the NSW group with the
CPS controls in terms of age, ethnic composition, educational attainment,
and pretreatment earnings.

(b) The differences between the treatment and control groups can be viewed
using the estimated propensity score, as was done in Section 25.8. Using
the approach of Section 25.8.4 estimate the propensity score for the
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NSW–CPS composite sample, incorporating the covariates linearly and
with higher order terms, as in Dehejia and Wahba (2002). Ignoring those
comparison units whose propensity scores are less than the minimum of
the treated units, compare the two sets of propensity scores using a his-
togram. Comment on the goodness of match with comparison units in dif-
ferent propensity score intervals (“bins”).

(c) Using the matching methods described and implemented in Sections 25.8.4
and 25.8.5 (especially nearest-neighbor, stratification, or interval match-
ing, kernel matching, and radius matching), construct a table similar to
Table 25.6. Comment on the estimates of ATET and compare them with
those based on the PSID comparison group.
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C H A P T E R 26

Measurement Error Models

26.1. Introduction

Problems of measurement error pervade all econometrics. In microeconometrics, a
common source of the measurement error problem comes from incorrect response to a
survey question, incorrect coding of a correct response, and the use of a correctly mea-
sured variable as a proxy for another theoretically valid but unobserved variable (e.g.,
using observed income as a proxy for “normal income”). Questions that seek sensitive
information may elicit partial or incorrect responses. That is, a measurement error is
triggered by unobservables (or latent variables) when such variables are replaced by
proxy variables.

Here are some examples. Consider the problem of testing for the presence of gender
bias in a study of earnings. The obvious approach is to regress a measure of earnings
on a categorical gender variable while controlling for qualifications, age, experience,
and so forth. However, the most relevant variable may be an individual’s on-the-job
productivity, which may not be directly observed and a proxy may be used instead.
Therefore, the impact of measurement error on inferences about the gender discrim-
ination is an important issue. Studies of individual demand for goods and services
feature concepts such as “economic cost” or “full price of a service.” However, these
are rarely directly measured in published data and must be constructed by the econo-
metrician prior to model estimation. Inevitably their measurement is subject to error.

There are virtually no models discussed in this book that are protected from the
problem of measurement errors. Binary outcome endogenous or exogenous variables
are potentially subject to classification errors; transition and count data collected from
retrospective surveys are affected by recall errors; data on relatively unambiguous vari-
ables such as hourly earnings and household expenditure are distorted by deliberate
exaggerations and/or reporting errors. Unlike aggregate data where aggregation may
result in some cancellation of measurement errors, for individual-level data measure-
ment errors persist.

In the first part of this chapter we study the consequences of measurement errors
and estimation strategies for remedying the consequences. Both linear and nonlinear
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models are considered. Although it is more realistic to acknowledge that the problem
usually occurs in combination with others, it is convenient for exposition to suppose
that the only problem confronting the econometrician is measurement error.

Broadly speaking the consequence of errors of measurement is a failure to iden-
tify the parameter of interest. The issue of fixing the problem is complex. One may
consider simply omitting the relevant variable in the model or substituting a proxy for
the true measure. There are at least two important reasons for not doing so except in
extreme cases. First, if the variable is of central interest, then omission lends to se-
rious omitted variable bias, so one is substituting one type of problem for another,
and identification is still not possible. Second, in a linear regression, using a proxy for
the latent variable will have smaller asymptotic bias than simply omitting the variable
from the model, provided the measurement errors are random and independent of the
true regressor (McCallum, 1972). Ignoring the variable provides inferior estimates.
However, using the proxy still gives inconsistent estimates even though the biases
are smaller.

The essential insight underlying the solution of the measurement error problem
is that to recover the parameter of the latent variable and to identify the model, it
is necessary to have extraneous information in the form of additional assumptions
about the measurement error or obtain additional data and to use this information after
invoking plausible assumptions. This is a popular approach. However, when additional
data are unavailable, an econometric model makes a good alternative.

Measurement errors have potentially very serious consequences since in many cases
they lead to regression parameters becoming unidentified. For example, Card (2001)
reviews empirical evidence on the coefficient of schooling on earnings and finds that
the typical downward bias is of the order of 25–35%. The precise consequences of
measurement errors may depend on the functional form of the model, how the errors
enter the model (e.g., additively or multiplicatively), and the data structure under con-
sideration. The solution of the problem resulting from measurement errors typically
requires introduction of additional information into the model, either in the form of
additional data or additional assumptions.

It is convenient to organize the discussion of measurement error models into sep-
arate sections on linear and nonlinear models, and then to consider special cases.
Sections 26.2 and 26.3 are devoted to linear regression. Section 26.4 covers nonlin-
ear regression. Section 26.5 discusses some Monte Carlo examples. Essential insights
provided by linear models provide a useful basis for understanding the results for non-
linear models. In all cases clearer results are usually available for specific models.

26.2. Measurement Error in Linear Regression

Measurement error in the regressors, also called error-in-variables, is an important
topic as it leads to inconsistency of the OLS estimator even if the measurement error
has zero mean. Measurement error in the regressors is often said to lead to bias, but we
use the stronger term inconsistency as the bias does not disappear as the sample size
goes to infinity.
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Measurement error models have a broad scope and they cover situations in which
the measurement error affects the right-hand-side variables (“regressors”), or the left-
hand-side variable (“outcome”), or both. Hausman (2001) refers to them as “problems
from the right” and “problems from the left.” In the latter case, usually referred to as
the classic errors-in-variable model, the relationship of interest is between the outcome
y and covariates

(
W,X∗), where W is measured without error and X∗ is not observed

but a proxy for it, denoted X, is available. The question of interest is whether an
estimated relation between y and (W,X) provides a satisfactory basis for inference
regarding X∗.

In the statistical literature it is conventional to distinguish between the functional
and structural approaches to measurement error models. If X∗ denotes the true un-
observed covariates, then the functional approach regards these as unknown fixed con-
stants (parameters). In the structural approach they are treated as random variables.
Carroll, Ruppert, and Stefanski (1995) further distinguish between functional model-
ing in which only minimal assumptions are made about the Xs, regardless of whether
they are fixed or random, and structural modeling in which parametric assumptions are
made regarding the distribution of the Xs. Functional measurement error models are
examples of models with infinitely many nuisance parameters for which the maximum
likelihood method has well-known deficiencies (discussed in the panel data chapters).
This distinction is less common in the econometrics literature.

The magnitude of the inconsistency can be substantial in applications. There is a
particularly extensive discussion of measurement error, and ways to control for it, in
econometric studies of the determinants of individual earnings.

26.2.1. Classical Measurement Error Model

The standard measurement error model has a continuous dependent variable y that is a
linear function of K true regressors x∗. An additive measurement error in y may cause
no problems if it is uncorrelated with the regressors because it can be absorbed into
the error on the equation. If x∗ were observed then parameters could be consistently
estimated by OLS regression of y on x∗,

yi = x∗′
i β + ui ,

where ui are iid [0, σ 2]. Instead, the observed data are x �= x∗, and y is regressed
on x rather than on x∗. The relationship between the true and observed regressors is
postulated to be

xi = x∗
i + vi , i = 1, . . . , N , (26.1)

where the additive measurement errors are assumed to be distributed as

vi∼[0,Σvv]. (26.2)

The unobserved true regressors are assumed to have mean zero, so variables are mea-
sured as deviations from mean and to have variance matrix

V[x∗
i ] = Σx∗x∗ . (26.3)
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Note that x is an unbiased estimate of x∗, since the measurement error v is assumed to
have mean zero. The measurement error is assumed to be independent of both x∗ and
the regression error u,

E
[
vi |x∗

i

] = E [vi |ui ] = 0. (26.4)

26.2.2. Inconsistency of OLS

To consider the consequences of measurement error it is helpful to write the assumed
dgp for the classical measurement error model in matrix notation as

y = X∗β + u, (26.5)

X = X∗ + V,

where u, the equation error, obeys the conditions E[u|X∗] = 0 and E
[
uu′|X∗] = σ 2IN .

Substituting the second equation into the first yields

y = Xβ + (u − Vβ). (26.6)

An OLS regression of y on X will lead to an inconsistent estimate of β, since the error
term (u −Vβ) is correlated with the regressor X through the measurement error V.

Formally, we have

plim N−1X′(u − Vβ) = plim N−1(X∗ + V)′(u − Vβ)

= −Σvvβ

�= 0,

using N−1V′V =N−1∑
i vi v′

i and vi iid [0,Σvv]. This is the essential source of incon-
sistency. Now

plim N−1X′X = plim N−1(X∗ + V)′(X∗ + V)

= Σx∗x∗ + Σvv,

where we have used the iid property of x∗
i with mean zero and V

[
x∗

i

] = Σx∗x∗ . Also,

plim N−1X′y = plim N−1(X∗ + V)′(X∗β + u)

= Σx∗x∗β

�= 0,

so that, applying Slutsky’s theorem (Appendix A, Theorem A.3), we get

plim β̂ = (plim N−1X′X
)−1

plim N−1X′y (26.7)

= (Σxx)−1 (Σxx − Σvv)β

= β − (Σx∗x∗ + Σvv)−1 Σvvβ.

Clearly, OLS is inconsistent as long as there are measurement errors and �vv �= 0.
For later reference note that if we have available a consistent estimate of �vv,

denoted Svv, and if (X′X − Svv) is positive definite, then the adjusted least-squares
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estimator β̂a = (X′X − Svv)−1X′y can be computed. This formula can also be used to
study the impact of hypothetical values of measurement error variances on the least-
squares estimator.

26.2.3. Measurement Error with a Scalar Regressor

A special case of this model that routinely features in textbooks involves the case of
a single true or unobserved regressor x∗ with variance σ 2

x∗, observed value x, zero-
mean measurement error v, and associated variance σ 2

v . That is, the regression is y =
βx∗ + u, where E[u|x∗] = 0, V[u|x∗] = σ 2

u , and Cov[v, u] = 0, but in estimating the
regression x∗ is replaced by the observed variable x .

In this case, (26.7) specializes to

plim β̂ = σ 2
x∗

σ 2
x∗ + σ 2

v

β (26.8)

= 1

1 + σ 2
v /σ

2
x∗
β

= β [1 − s/ (1 + s)] ,

where s = σ 2
v /σ

2
x∗ is often referred to as the the noise-to-signal ratio and the entire

term (1 + s)−1 is referred to as the reliability ratio. Asymptotically β̂ is downward
biased toward zero to an extent that depends directly on the noise-to-signal ratio. This
bias is also called attenuation bias. The terminology is intuitive since it suggests that
a researcher’s estimate of the marginal impact of change in x∗ on y is attenuated by
the presence of measurement error in x∗.

Note also that

V[y|x] = σ 2
u + β2σ 2

v σ
2
x∗

σ 2
x∗ + σ 2

v

≥ σ 2
u .

This implies that measurement errors not only cause attenuation bias but they also
inflate the equation error variance. Unambiguously, a reduction in the variance of the
measurement error will reduce the residual variance of the equation.

Had an intercept term been included in the bivariate regression just presented, this
would bias upward the least-squares estimator of the intercept, ȳ − β̂ x̄ , where (ȳ, x̄)
are sample averages that are still consistent estimates of the respective population
means. Cragg (1994) suggests the term “contamination bias” for this effect of mea-
surement error on another regression parameter in the equation.

As an example, consider regression of log hourly wage on years of schooling. Sup-
pose years of schooling x∗ are measured with error, and assume that the standard de-
viation of true years of schooling is 2 and the standard deviation of the measurement
error is 1, so that σ 2

x∗ = 4, σ 2
v = 1, and σ 2

x = 5. Then plim β̂ = 0.8 × β. For exam-
ple, an OLS estimated slope coefficient of 0.04 means that one more year of school is
actually associated with a 5% higher wage rather than a 4% higher wage.
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26.2.4. Extensions

In extensions and generalizations of this simple but elegant result, researchers often
ask if attenuation bias is a general feature of measurement error models, and what if
anything is attenuated. Although the result does not necessarily carry over to more
general models, it does provide a useful benchmark. Hausman (2001) has called the
attenuation bias caused by measurement error the “Iron Law of Econometrics.”

If the measurement error is assumed to be uncorrelated with the true unobserved
value, the measurement error is said to be “classical.” Although convenient, this as-
sumption may not hold. Indeed in some cases it cannot hold. For example, if x is a
binary 0/1 variable, the measurement error will be a classification error. If, owing to
misclassification, a 0 is measured as a 1, and vice versa, then the measurement error
must be correlated with the true value.

When there is more than one regressor, let X∗ = [x∗ Z], where as in the preceding
case we assume that only one regressor is observed with measurement error, that is,
x = x∗ + v. Then the expression for the least-squares estimator of the coefficient of x
becomes

plim β̂x |Z = β
[

1 − σ 2
v

σ 2
x∗
(
1 − R2

x∗,Z

)+ σ 2
v

]
, (26.9)

where R2
x∗,Z denotes the R2 in the auxiliary regression of x∗ on Z. The formula (26.9)

is essentially the same as (26.9), provided we reinterpret the variance of x∗ to mean the
variance after controlling for or removing the linear influence of Z on x∗. Once again
the inconsistency of the least-squares estimator is toward zero, though by a smaller
multiple of β than in the single regressor case. The coefficients of the regressors mea-
sured without error are also inconsistent, in a direction that depends on Σx∗x∗ (Levi,
1973). This effect can once again be thought of as contamination bias. The attenuation
bias that is demonstrated in these special cases depends critically on the assumption of
additive measurement errors.

When more than one regressor is measured with error general results on the direc-
tion of the inconsistency are no longer available, though in any given problem they
can be determined given knowledge of �x∗x∗ and �vv. Most studies consider measure-
ment error in only one regressor, in which case the inconsistency is toward zero. The
intuition from the foregoing examples is that if the measurement errors on different
regressors are independent, then each source will contribute to the attenuation bias of
its “own” coefficient, and all will contribute to the inflation bias of the conditional
variance. Cragg (1994) analyzes a multiple regression model with measurement errors
and shows the interactions among biases from different sources.

26.2.5. Measurement Error in Linear Panel Models

The effects of measurement error in regressors are compounded when panel data are
used.
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Assume a pooled panel model yit = βx∗
i t + uit , where we observe xit = x∗

i t + vi t ,
and a scalar regressor is assumed for simplicity. The preceding results still hold if we
estimate a single cross section. However, if we estimate using more than one year of
data for each individual we need to adapt the previous results, since the regressor x∗

i t
will most likely be positively correlated, rather than independent over t for given i . For
example, if we do the first-differences regression

�yit = β�x∗
i t +�uit

= β�xit +�uit − β�vi t

(see Section 21.6) and define ρ = Cor[x∗
i t , x∗

i,t−1], then

plim β̂ = β +
(

plim
1

N

N∑
i=1

(�xit )
2

)−1 (
plim

1

N

N∑
i=1

(�xit�uit − β�xit�vi t )

)

= β − 2βσ 2
v

2(1 − ρ)σ 2
x∗ + 2σ 2

v

= β − βσ 2
v

(1 − ρ)σ 2
x∗ + σ 2

v

,

using V[�vi t ] = 2V[vi t ] and V[�x∗
i t ] = 2(1 − ρ)V[x∗

i t ].
The inconsistency is larger than in the cross-section case if ρ > 0. Moreover, as

ρ → 1, as can happen with panel data, the inconsistency becomes very large. This
inconsistency can be decreased by using differences that are m > 1 lags apart because
Cor[x∗

i t , x∗
i,t−m] will be decreasing in m.

26.3. Identification Strategies

It is conventional to say that without additional assumptions the errors-in-variables
model is not identified. This statement can be interpreted as follows in the context of
the special case of the bivariate model. An estimated value of β̂, or more precisely its
probability limit, is consistent with infinitely many different combinations of β and
s, the noise-to-signal ratio. If, however, additional assumptions or information can be
brought to bear on the problem, it may be possible to rule out some combinations of
the underlying parameters that are consistent with the observed data distribution. If
the additional restrictions are just sufficient to obtain a unique solution, the model is
said to be exactly identified. If the additional restrictions are more than sufficient to
uniquely identify the model parameters, the model is said to be overidentified.

A general identification strategy for the measurement error model is to obtain
bounds rather than point estimates of the parameters of interest if there is no further a
priori information or data. If additional data and/or information about measurement er-
ror are available then additional identification strategies, such as instrumental variables
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estimation or identification through moment restrictions, become feasible. Additional
information about the measurement error is a broad concept that includes one of the
oldest identification strategies, one using instrumental variables that link the true un-
observed variables to their observable counterparts. For example, additional infor-
mation may yield a consistent estimator for the attenuation factor, σ 2

x∗/(σ 2
x∗ + σ 2

v ),
making it possible to adjust the inconsistent estimate for the bias. Finally, repli-
cated data or validation data may be available, and these can yield useful informa-
tion about the moments of measurement error. These possibilities are analyzed in the
following.

26.3.1. Setting Bounds on Regression Parameters

Reconsider the multiple regression problem of Section 26.2. The model given there
is subject to the requirement that the variances �x∗x∗, �vv, and σ 2 must be positive
semidefinite. This together with the orthogonality conditions of estimation can be used
to place some bounds on the region in which the coefficients must lie. Klepper and
Leamer (1984) and Wansbeek and Meijer (2000) consider the problem in some gener-
ality. A more accessible special case of the bounds approach is the reverse regression
approach considered next.

Reverse Regression

In a simple bivariate regression model with variables (y, x), direct regression refers
to the regression of y on x, whereas reverse regression refers to the regression of
x on y. In the general multivariate regression case with K covariates, there is only
one direct regression but there are K reverse regressions. Each reverse regression
has a mismeasured exogenous variable on the left-hand side and the remaining ex-
ogenous variables and y on the right-hand side. In the bivariate regression case with
measurement errors, it is easy to show that the estimated slope coefficients from the
direct and reverse regressions place lower and upper bounds on the value of the true
slope coefficient. This is a potentially useful result in analyzing the effects of measure-
ment errors. Leamer (1978) provides an excellent discussion of the logic of reverse
regression.

First, we consider the logic of reverse regression by reference to a simple bivariate
regression model with measurement errors:

y = βx∗ + u, (26.10)

x = x∗ + v,

where u is the regression error and v is the measurement error that accounts for the
difference in the observed variable x and the error-free measure x∗ that enters the
regression. We will assume that u ∼ N [0, σ 2

u ] and v ∼ N [0, σ 2
v ].

906



26.3 . IDENTIFICATION STRATEGIES

Following the structural approach of Solari (1969) (and Leamer, 1978), treat x∗

as unknown parameters in the likelihood function. The joint likelihood given data
(y, x) is

L
(
x∗, β, σ 2

u , σ
2
v

)
∝
(
σ 2

u

)−N/2
exp

[
− 1

2σ 2
u

(y−βx)′ (y−βx)

]
× (σ 2

v

)−N/2
exp

[
− 1

2σ 2
v

(
x∗−x

)′ (
x∗−x

)]
. (26.11)

This function is not defined at points that satisfy the conditions σ 2
u = 0 and x∗ = x,

or the conditions σ 2
v = 0 and y = βx∗. If we simply minimize the well-defined parts

of this likelihood subject to the constraints we get two scalar regression parameters,
β̂D = y′x/x′x for the direct regression and β̂R = y′x/y′y for the reverse regression.
To aid intuition, notice that if x is measured without error then y is stochastic and x
is not, so direct regression has a meaningful conditional expectation interpretation,
and if only x is stochastic (measured with error), then the conditional expectation
E[x|y] is meaningful, because the two-equation system then reduces to x = (1/β) y −
u/β + v. That is, the reverse regression produces the least-squares estimate (̂1/β). It is
straightforward to verify that

r2
xy β̂R = β̂D, (26.12)

β̂D < β < β̂R,

where r2
xy is the simple squared correlation between x and y; the bounds indicate that

β̂D is a downward biased estimate of β and β̂R is an upward biased estimate. Note
that these bounds can be very broad in microeconomic data where r2

xy < 0.5 is almost
always the case and even r2

xy < 0.1 is quite common.
Leamer (1978) considers the model in which (y, x∗) has a bivariate normal distri-

bution with mean (β x̄∗, x̄∗) and covariance matrix

Σ =
[
σ 2

u + β2σ 2
x∗ βσ 2

x∗

βσ 2
x∗ σ 2

x∗ + σ 2
v

]
. (26.13)

He shows (Leamer, 1978, pp. 239–240) that the likelihood function for this model
attains its maximum at any value of β between the direct regression estimator β̂D and
the reverse regression estimator β̂R.

The foregoing analysis suggests that even though β is not identified, consistent
bounds can be placed on its value. This is a potentially useful application of bounds
identification. The result can be extended in a straightforward manner to the case of
multiple regression in which only one regressor is measured with error (Bollinger,
2003). Klepper and Leamer (1984) consider an extension to the multiple regression
case of K regressors, all of which are measured with error. There is one direct re-
gression and K reverse regressions. After estimation each reverse fitted regression is
renormalized with a unit coefficient for y on the left-hand side. Then β̂D is the esti-
mated vector from the direct regression, and β̂R, j ( j = 1, . . . , K ) is the vector from
the j th reverse regression. By the results of Klepper and Leamer (1984), if the direct
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and reverse regression coefficient vectors are all in the same orthant then the set of
feasible values of β is the convex hull of the direct and reverse regressions; that is,
β ∈ {β̂| β̂ = λDβ̂D + λ1β̂R,1 + · · · + λkβ̂R,K }, where the λ-weights are nonnegative
and sum to one. The smallest coefficient in the direct and reverse regression vectors is
the lower bound, and the largest coefficient is the upper bound. These bounds do not
exist if the coefficient changes its sign.

In addition to the work of Klepper and Leamer (1984), there are several studies
that use these ideas in applied contexts. Greene (1983) and Goldberger (1984) apply
reverse regression to measurement of salary discrimination. Bollinger (2003) analyzes
measurement of the black–white wage gap in a model of wages and human capital.
Bollinger (1996) applies the bounds approach to the case of regression on a categorical
dummy variable in which observation categories are misclassified.

26.3.2. Identification Using Instrumental Variables

One solution to the identification problem is to introduce one or more moment restric-
tions that constitute further identifying information. A moment restriction typically
states that there is available an instrumental variable that is correlated with, or causally
related to, the variable that is measured with error. Moreover, this variable is uncorre-
lated with, or causally unconnected with, the outcome that is being modeled. Adding
this restriction to the original model helps in principle to solve the identification
problem.

Historically, the IV estimator was suggested as a potential solution for the measure-
ment error problem in linear models (Reiersøl, 1941; Durbin, 1954). The IV approach
is similarly motivated when one or more variables on the right-hand side are endoge-
nous and hence correlated with the regression error. The linear simultaneous equation
model and the linear measurement error model are isomorphic and hence the use of
IV-type estimators in the context of measurement errors is natural.

Reconsidering the linear IV model of Sections 4.8 and 6.4, where y = Xβ + u
and E[u|X] �= 0, we can use the 2SLS estimator if a valid set of instruments Z,
dim[Z] ≥ dim [X] is available.

One can test for the presence of measurement error using a Hausman test of endo-
geneity of regressors, see Section 8.3. Several variants of the test are available, and
one variant was given in Section 8.4.

A major problem in implementing the IV estimator lies in the practical difficulty
of finding valid instruments. Good instruments have two properties: zero correlation
with equation errors (for consistency) and high correlation with variables being in-
strumented (for efficiency). Such instruments are not typically easy to find. Although
ideally one should explicitly derive valid instruments from detailed specification of
relationships between regressors and covariates, in practice ad hoc methods are com-
mon. Unlike the full system specification approach, the ad hoc method is simpler and
less demanding. Notice that the conditions for the validity of instruments do not create
an automatic procedure for selecting one. These technical conditions could be satisfied
by a variable that is causally unconnected with the phenomenon under study. One has
to think of a variable that correlates strongly with the regressor(s) and is uncorrelated
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with the equation error. A number of interesting applications of this idea are avail-
able in the literature; see, for example, Angrist (1990). If selected, the use of such an
instrumental variable may be controversial and puzzling.

We consider several possible instruments for the cross-section regression of earn-
ings on schooling example. First, if data are available on siblings then the schooling
level of a sibling may be used as an instrument, since the education levels of siblings
are likely to be correlated. Consistency of the IV estimate then requires no correla-
tion between the measurement error v and any measurement error in schooling of the
sibling. Second, more generally other variables related to schooling such as parents’
educational level or income may be used. Casting a broader net, however, runs the risk
of leading to instruments that are only weakly correlated with x , leading to imprecision
and possible poor finite-sample properties of the IV estimator. Third, more than one
question on schooling level may have been asked in the survey, or schooling level may
be available from surveys in other years if data are from a panel study. Such instru-
ments are likely to be highly correlated with x , but the assumption of no correlation be-
tween measurement errors in x and z may be more difficult to believe in this example.

Lagged variables are frequently used as instruments, but these too will have mea-
surement errors, so the approach is minimally satisfactory only if serial correlation in
measurement error is not a problem.

The effect of measurement error can be large in the panel context. Since panel data
provide measures of x∗

i t in multiple periods, instrumental variables estimation can be
used to provide consistent parameter estimates assuming uncorrelated measurement
errors across the time periods. See Hsiao (1986, pp. 63–65).

26.3.3. Identification via Additional Moment Restrictions

Distributional assumptions about the equation and measurement errors (u, v) can se-
cure identification. There is one important case in which the identification is aided
instead by information or assumption about the distribution of the unobserved true
value of the mismeasured variable. The assumption of joint multivariate normality of
(y, x,x∗), together with the assumption that the measurement error v and equation
error u are, respectively, iid N [0, σ 2

v ] and iid N [0, σ 2
u ], are not sufficient to identify

the measurement error model. However, the assumption that the first four moments of
(x∗, u, v) exist and that the third moments of each and the third cross-moments are not
zero, indicating a departure from normality, is sufficient to secure identification, as we
now demonstrate.

Let us reconsider the model (26.10)

y = βx∗ + u,

x = x∗ + v,
whose reduced form y = βx + ε, where ε = u − βv, is to be estimated by an instru-
mental variables procedure. However, we now add a new piece of information: that the
distribution of x∗ is nonnormal in the sense that it is both skewed and has nonnormal
(excess) kurtosis Cragg (1997) Dagenais and Dagenais, 1997; Wansbeek and Meijer,

909



MEASUREMENT ERROR MODELS

2000). These assumptions imply the following six conditions:

E [(xy) x] = βE
[
x∗3
]
, E [(xy) u] = 0,

E
[(

x2
)

x
] = E

[
x∗3
]+ E

[
v3
]
, E

[(
x2
)

u
] = −βE

[
v3
]
,

E
[(

y2
)

x
] = β2E

[
x∗3
]
, E

[(
y2
)

u
] = −βE

[
ε3
]
.

The first row implies that the product variable xi yi is a valid instrument if E
[
x∗3

i

] �=
0. The second row implies that x2

i is a valid instrument if E
[
x∗3

i

] �= 0, but E
[
v3

i

] =
0; that is, if x∗ is nonnormal but v has a symmetric distribution. Indeed, the greater
the skewness the better is the instrument. However, because x∗ is unobservable, any
inferences about it will need to be based on x itself. The last row implies that y2

i is a
valid instrument if the third moment of x∗ is nonzero but the third moment of ε is zero.

Given these moment conditions, the IV approach can be applied to consistently
estimate the model parameters. This example illustrates how additional moment as-
sumptions can help generate useful instruments even when no data other than (yi , xi )
are available.

26.3.4. Replicated Data

An alternative solution is possible if the measurement error variances can be estimated.
The basic idea here is that we can adjust the sample second-moment matrix X′X of the
regressors by an amount that depends on the variance and covariances of measure-
ment errors. Notice that we do not try to adjust the observations themselves. Instead,
the sample moments are adjusted because the estimator is a function of those sample
moments. This key idea generalizes to more complex models also.

When the measurement error variance Σvv is known, a consistent estimate of β can
be obtained using

β̃ = (X′X−NΣvv)−1X′y, (26.14)

where N is the sample size. This is consistent since

β̃ = plim(N−1X′X − Σvv)−1 plim N−1X′y

= (Σx∗x∗ + Σvv −Σvv)−1 Σx∗x∗β

= β,

where plim N−1X′y = Σx∗x∗β is obtained using X = X∗ + V and y = Xβ +
(u − Vβ). For a detailed account of ways to estimate Σvv in a substantive applica-
tion, see Krashinsky (2004).

Data replication is a situation in which an unbiased estimate of the unobserved X∗

is available. Suppose that the measurement error is additive and we have an observable
X:

X = X∗ + V.

If X is an unbiased estimate of X∗, then E
[
V|X∗] = 0. If data are replicated, this

simply means that we have at least two measurements available on X. It also means that
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with multiple measurements we can obtain estimates of the moments of V, assuming
the measurement errors for multiple measures are uncorrelated.

Suppose there are two scalar measurements (replicates) X (1) and X (2), such that
X ( j) = X∗ + V( j), j = 1, 2. Then V[V( j)] = E[X2

( j)] − E[X (1) X (2)], which can be esti-
mated by the sample average N−1�i [X2

( j),i − X (1),i X (2),i ]. Then the regression param-
eters can be estimated using Equation (26.14).

For example, suppose we wish to predict grade point average (GPA) in the first
year of college using performance on the SAT exam taken in high school. It is known
that observed SAT scores for a given person vary across different takes of the exam.
Let x∗ denote the true SAT score, and let x1 and x2 denote the observed SAT score
on two separate SAT exams. Then x1 = x∗ + v1, x2 = x∗ + v2, and it is assumed that
v1 and v2 are independent with equal variance σ 2

v . It follows that Cov[x1, x2] = σ 2
x∗ ,

V[x1] = V[x2] = σ 2
x∗ + σ 2

v , and Cor2[x1, x2] = σ 2
x∗/(σ 2

x∗ + σ 2
v ). Studies find the tests

to have a reliability of 0.9, which means that the correlation from one test to the next
is 0.9 and the squared correlation is 0.81. Thus σ 2

x∗/(σ 2
x∗ + σ 2

v ) = 0.81. It follows from
(26.8) that plim β̂ = 0.81 × β, so that because of measurement error SAT scores are
as stronger a predictor of first-year college GPA than OLS regression suggests.

26.3.5. Validation Data

Sometimes a validation sample is also collected as an additional check on the origi-
nal responses. Although the validation sample pertains to the population of interest,
it may come from a different independent source. For example, patients may respond
to a questionnaire about medical services received, and providers of services may re-
spond to a validation survey. Another example is that of employees who may provide
some information about an event, and the information may be validated by the same
information obtained from the employers. A leading example in economics is the PSID
validation study of Bound et al. (1994).

Let X be an N × K matrix of observations on regressors measured with error, and
let Xv be an M × K matrix of validation data. We can use validation data by regress-
ing the columns of Xv on X, and generating “predicted” values X

[
X′X
]−1

X′Xv that
replace the error-contaminated matrix X. For nonlinear models more complex proce-
dures are used, see Lee and Sepanski (1995).

The use of generated regressors that are substituted into the regression of interest
can be a practical useful strategy if the predictions come from a well-fitting regression.
Generated regressors are estimates of the true values and hence subject to estimation
uncertainty. As such this uncertainty should be taken into account in estimating the
sampling variance of the regression coefficients. The relevant theory was covered in
Section 6.8.

26.4. Measurement Errors in Nonlinear Models

Nonlinear models, as should by now be abundantly clear, comprise a bewildering ar-
ray of models. Obtaining general results, such as attenuation bias, that apply to a broad
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class of models poses a major challenge. Not unusually, general results are obtained
under simplifying assumptions, whereas more specific results can pay more attention
to complexity and specificity of particular data situations. Therefore, it is not surprising
that the development of this topic in the literature has produced many procedures and
approaches that are specific to particular models. For example, in dealing with binary
outcome models with left-hand-side measurement error it is natural to focus on the
problem of misclassification; in dealing with count models also with left-hand-side
measurement error it is equally natural to focus on the issues of under- and overre-
porting. Motivated by this difficulty, Hsiao (1992) recommends shifting attention from
providing solutions for a general model to a specific type of question. In covering
model-specific results, there is a danger of being compendious and of losing sight of
general results. We therefore begin with some selected general results.

26.4.1. Identification through Instrumental Variables

A general technique in the linear errors-in-variables model is the instrumental vari-
ables method. For the nonlinear (in regressors) regression model, Y. Amemiya (1985)
showed that the IV estimator is generally inconsistent, being consistent only under the
assumption of a shrinking error variance–covariance matrix.

A simple exposition of the aforementioned point is based on the regression equation

y = β0 + β1 f (x∗) + ε, (26.15)

where f (x∗) is a smooth, differentiable, and bounded function of an error-free scalar
regressor x∗. The observed variable x = x∗ + v, where v is a measurement error. Sub-
stituting for x∗ and taking a Taylor expansion of f (x − v) around x yields

y = β0 + β1 f (x) + ε − β1 f (1)(x)v + β1

∞∑
j=2

f ( j)(x)(−v) j/j!, (26.16)

where f ( j)(·) denotes the j th derivative of f (·). Consider the quadratic case f (x) =
x2 + γ x, so f (1)(x) = 2x + γ, f (2)(x) = 2, and f ( j)(x) = 0, j > 2. Then

y = β0 + β1
(
x2 + γ x

) + ε − β1 (2x + γ ) v + β12v2/2

= β0 + β1x2 + β1γ x + (ε − β1xv − β1γ v + β1v
2), (26.17)

so valid instrumental variables should be correlated with x2 and x, but uncorrelated
with u = (ε − β1xv + β1γ v + β1v

2). Clearly it is not enough that v and ε are individ-
ually uncorrelated with the instruments. This means that the instrumental variable for
f (x) has to satisfy more stringent properties than in the linear case.

More generally, Y. Amemiya has shown, using Taylor approximation, that the in-
strumental variable does not yield consistent estimates for nonlinear errors-in-variables
models because the residual term involves both measurement error and an observed
error-contaminated variable. Therefore it is not possible to find an instrumental vari-
able that is highly correlated with the observed variable but uncorrelated with residual
term. Furthermore, from a practical viewpoint, it is not easy to verify the validity of
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an instrumental variable in estimation because of limited information about the latent
variable (x∗) and measurement error.

26.4.2. Identification Using Replicated Data

Faced with the difficulty of implementing an IV-type estimation method, there are two
alternatives.

The first is to make very strong distributional assumptions about the conditional
distribution of the unobserved x∗ given the observed x . Such assumptions, augmented
by other technical conditions, make it possible to identify the parameters of the model.
This approach has been followed by Y. Amemiya (1985) and Hsiao (1989), among
others.

A second approach is to consider the possibility of having a large number of mea-
surements of each unobserved x∗, denoted x ( j). Then the average of the replicated
measures for each x∗ is substituted for the unobserved regressor. Consistent estima-
tion of the nonlinear regression then follows because the covariance matrix of mea-
surement errors shrinks to zero as the number of replicates grows; see Y. Amemiya
(1985). Unfortunately, such a scenario is rarely encountered in econometrics.

Since there does not exist common structural information in nonlinear measurement
error models that can be used to identify and estimate regression models, we consider
some specific nonlinear regression models.

Hausman, Newey, and Powell (1995) analyze polynomial Engel curves using Con-
sumer Expenditure Survey data. Their polynomial function is linear in parameters.
They prove that, under regularity conditions, both an instrumental variable and an ad-
ditional measurement can be used to obtain consistent and asymptotically normally
distributed estimates. In this application, an adjacent quarter is treated as a replica-
tion and an instrumental variable. They further propose that a general nonlinear func-
tion can be approximated by a polynomial function. However, they admit that the IV
method cannot be implemented in this case and an additional measure of true regres-
sors is needed.

Li (2002) proposes a general two-stage approach to the nonlinear errors-in-variables
problem, which relies on repeated measurements. In the first stage, based on empirical
characteristic functions and the inverse Fourier transform, a nonparametric estima-
tor is obtained for the conditional density of the latent variables. With this estimator
available, a semiparametric nonlinear least-squares estimator is constructed using a
minimum distance criterion. He establishes the estimator’s consistency. This estima-
tor is also robust in the sense that it does not require any knowledge of the functional
form of the latent variables. Li’s approach can be applied to any nonlinear errors-in-
variables situation if replicated measurements are available. However, the asymptotic
distribution of the estimator has not been established.

26.4.3. Measurement Errors in Dependent Variables

In a linear regression model the measurement errors in the dependent variable inflate
the standard errors of regression parameters but do not lead to inconsistency of the
estimator. In a nonlinear model there are additional consequences.
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One class of applications has considered misclassification of responses in qualita-
tive choice models. This has generated a literature on reporting errors.

Discrete Choice Models

Poterba and Summers (1995), in a study of the effects of unemployment insurance on
the duration of unemployment using the CPS data, generalize a probabilistic model to
allow for misclassification in labor market status transition. Specifically, they focus on
potential classification errors in three classes: employed, unemployed, and not in the
labor force. They develop a multinomial logit model with a special feature of the data
set: that all of the individuals are assumed to correctly report as unemployed in the first
survey month. Their results show that unemployment insurance increases unemploy-
ment spells and that correction for labor market status misclassification strengthens the
apparent effect of unemployment insurance on spell durations. However, their model
is based on an assumption that the probability of reporting errors is fixed and uncorre-
lated with individual characteristics, which, as the authors agree, is “unlikely to hold
in practice.” Although the authors claim that the parameter estimates are consistent,
Hausman, Abrevaya, and Scott-Morton (1998) argue that the standard errors are in-
consistently estimated because of ignorance of sampling variability of the estimated
error probability and a non-block-diagonal form of information matrix.

Hausman et al. (1998) propose a parametric method for estimating a binary choice
model with misclassification. However, their parametric method requires knowledge
of the error distribution. They emphasize that parameter estimates may be inconsistent
if the distribution does not have the assumed parametric distribution. They further
introduce a two-stage semiparametric method. The key condition in the model for
identification is that the expected value of the observed dependent variable is an in-
creasing function of the underlying index, which they show is weaker than the condi-
tion for identification of a parametric model. Compared to the approach of Poterba and
Summers (1995), theirs is robust in the sense that the misclassification probability is a
function of individual characteristics. Using the CPS and PSID, they show that serious
misclassification exists in a job-change variable.

Klein and Sherman (1997) develop an “Orbit model” (with features of ordered
choice model and Tobit model) for the estimation of projected demand for a poten-
tial new video product. They find evidence that potential consumers exaggerate de-
mand. The Orbit model is a two-stage procedure with the first stage estimating the
parameters of a standard Tobit model for actual future demand and the second stage
estimating the mapping function between current projected demand and actual future
demand. They further establish consistency and asymptotic normality of Orbit esti-
mators. However, the identification of the model requires the assumption that the pro-
jected zero demand will be exact zero demand in future as well. This may be a strong
assumption.

Hsiao and Sun (1999) use market survey data on the demand for an advanced elec-
tronic device. They argue that respondents may report biased demands. They propose
a randomized response model and a one-sided response bias model for overreporting,
in which different parametric probabilities are assigned to the truth and alternative
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choices (including the truth) with logit or probit density function for the truly re-
vealed preference. They find that “there is a substantial response bias in the data and
the revised market take rates and price elasticities appear more reasonable than the
estimates obtained based on the assumption that the respondents truly indicate their
preference.”

Count Regression

In the nonlinear count regression context, Cameron and Trivedi (1998) suggest an
approach for modeling count data subject to probabilistic underrecording. The ap-
proach generates compound Poisson and negative binomial count models by allowing
for a binary recording outcome. Specifically, for each single occurrence of an event,
a Bernoulli trial is used to determine whether the event is recorded. Given a positive
probability that an event may not be recorded, the distribution of the recorded events
has a smaller mean and variance than the distribution of the actual events. They fur-
ther investigate estimation of the models by ML, quasi-generalized pseudo maximum
likelihood, and moment-based methods. Based on a Monte Carlo study, they find that
the performance of the ML estimator is good for samples of size 500 or more.

Jordan et al. (1997) give an application of the errors-in-variables method in the
Poisson regression model. In a study of death from stomach cancer in five Japanese
counties, they notice that a covariate (e.g., plasma lycopene level) is unknown and
is estimated from a randomly chosen collective and, therefore, is subject to sampling
error. With the assumption that the measurement error is distributed normally, they
implement a Bayesian technique by obtaining the posterior distributions of the param-
eters using Gibbs sampling. The results indicate that the corrected model gives more
accurate estimates of the parameters even when the original sample is small.

26.4.4. Poisson Regression with Measurement Errors in Covariates

We now consider in greater detail one specific example of a nonlinear regression model
with additive measurement errors in covariates. This example illustrates both the con-
sequences of such measurement errors and also feasible estimation strategies.

Guo and Li (2002) have shown that measurement errors in covariates in general
lead to the overdispersion in the observed data. They also show using Monte Carlo
simulations that biases will occur if the overdispersion caused by measurement er-
rors is incorrectly modeled as arising from unobserved heterogeneity. Therefore, one
should not conclude from the presence of overdispersion that a model with unobserved
heterogeneity is warranted.

Stefanski (1989) and Nakamura (1990) propose a corrected score estimator that
is consistent if measurement errors are present. In particular, Nakamura (1990) gives
a closed form of corrected score function when the measurement errors are normally
distributed and replicated data are also available. By contrast, Guo and Li (2002) have
generalized Nakamura (1990).
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Measurement Errors and Overdispersion

In this section, we consider the Poisson regression model in which the discrete random
variable y follows the Poisson distribution with parameter µ = exp(x∗′β), where β
is a K × 1 parameter. As is well known, the Poisson regression model has an equi-
dispersion property that

E[y|x∗] = V[y|x∗]. (26.18)

If the measurement errors are additive, then

x = x∗ + ε,

where ε are assumed to be independent of unobserved latent variable x∗, with mean
zero and variance–covariance matrix �ε. This notation covers the case where all or
some of the explanatory variables are measured with errors.

Measurement errors increase dispersion (see Chesher, 1991). This applies to the
Poisson regression, in the sense that although (26.18) holds for the conditional mean
and variance of y given x∗, conditioning on x changes the result. Instead, we get
E[y|x] < V[y|x], in part because E[y|x∗] �= E[y|x], and V[y|x∗] �= V[y|x].

If g(x∗|x) denotes the conditional density of x∗ given x, then Guo and Li show that

E[y| x] =
∫

E[y|x∗]g(x∗|x)dx∗

=
∫

E[y2|x∗]g(x∗|x)dx∗ −
∫

(E[y|x∗])2g(x∗|x)dx∗, (26.19)

and using (26.18) the conditional variance of y given x is given by

V[y|x] =
∫

E[y2|x∗]g(x∗|x)dx∗ −
[∫

E[y|x∗]g(x∗|x)dx∗
]2

. (26.20)

A comparison of (26.19) and (26.20) shows that the first term inside the brackets of
(26.19) is the same as the first term in (26.20). Using this Guo and Li show that[∫

E[y|x∗]g(x∗|x)dx∗
]2

≤
∫

(E[y|x∗])2g(x∗|x)dx∗, (26.21)

which is interpreted to mean that measurement errors lead to overdispersion.

Estimation of Errors-in-Variables Model

When x are contaminated by measurement errors ML estimation or NLS based on the
observables (y, x) does not provide consistent estimates. Replacement of covariate x∗

by x in estimation is referred to as a “naive” model.
There are two issues to consider. First, why does ML give inconsistent estimates

when measurement errors are present? Second, is consistent estimation possible? The
answer to the second question is “yes” if we adopt, following Stefanski (1989) and
Nakamura (1990), the method of corrected score estimation for the generalized linear
models.
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The idea underlying the corrected score estimator is that the conditional distribution
of the corrected estimate with respect to x, given the true independent variables x∗

and the dependent variables y, is centered around the ML estimate, which provides a
consistent estimate of the true value of the parameter of interest.

Inconsistent and Consistent Estimators

Suppose that N observations (yi , x∗
i ), i = 1, . . . , N , are generated from a Poisson dis-

tribution with probability mass function

Pr[Yi = yi |x∗
i ] = e−µi (β0)µi (β0)yi

yi !
,

where µi (β0) = exp(x∗′
i β0). Given observations (yi , x∗

i ), i = 1, . . . , N , the MLE β̂ is
consistent since the probability limit of the average log-likelihood function

plim N−1 ln L(β) = N−1
∑

i

{−ex∗′
i β + yi x∗′

i β − ln yi !} (26.22)

= Ey,x∗ [−ex∗′β + yx∗′β − ln y!]

is maximized at β = β0.
Suppose we observe xi rather than x∗

i , where xi = x∗
i + εi and εi ∼ N [0,Σε] in-

dependent of x∗
i . Then yi |xi is not Poisson distributed. If one nevertheless uses the

“naive” Poisson model, the resulting estimator β̃ maximizes

Q(β) = N−1
∑

i

{−ex′
iβ + yi x′

iβ − ln yi !}. (26.23)

This misspecified log-likelihood function converges to

plim Q(β) = Ey,x∗ [−ex∗′β + yx∗′β − ln y!] + Ex∗ [−ex∗′β](Eε[eε
′β] − 1), (26.24)

which in general is not maximized at β = β0. So β̃ is inconsistent for β0.
A suitably modified objective function yields consistent estimates. Equations

(26.22) and (26.24) imply that

{plim Q(β) − Ex∗ [−ex∗′β](Eε[eε
′β] − 1)} = plim N−1 ln L(β).

This suggests maximizing the objective function

Q+(β) = N−1
∑

i

{−ex′
iβ + yi x′

iβ − ln yi !} − Ex∗ [−ex∗′β](Eε[eε
′β] − 1),

since Q+(β) converges to plim N−1 ln L(β). Now, given independence of x∗ and ε,

Ex∗ [−ex∗′β]Eε[eε
′β] = Ex∗,ε[−e(x∗+ε)′β] = −Ex[ex′β],

which is consistently estimated by −N−1∑
i ex′

iβ. It follows after some cancellation
that maximizing Q+(β) is equivalent to maximizing

Q++(β) = N−1
∑

i

{yi x′
iβ − ln yi !} − Ex∗ [ex∗′β]. (26.25)
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This yields a consistent estimate of β0. Implementation requires a suitable estimate
of Ex∗[ex∗′β], which is possible if replicated data are available. If the distribution of
explanatory variables is specified up to unknown parameters, then these unknown pa-
rameters can be estimated by the replicated measurements. Therefore, Ex∗[ex∗′β] can
be estimated.

The estimator β̂C that maximizes (26.25) is termed the corrected score estima-
tor by Guo and Li (2002) because it is the root of the corrected score function∑

i (yi xi−Ex∗[x∗ex∗′β]) = 0. Guo and Li also establish the asymptotic normality of
this estimator. The estimated asymptotic covariance matrix V̂[β̂C ] = N−1Â−1B̂Â−1,
where

Â = Ex∗ [ex∗′β̂C x∗x∗′],
B̂ = N−1∑

i (yi xi − Ex∗ [ex∗′β̂C x∗])(yi xi − Ex∗ [ex∗′β̂C x∗])′.

Nakamura (1990) made the stronger assumption that the measurement errors ε are
normally distributed as N [0,Ω]. Then

exp(x∗′β) = Ex|x∗
[
exp
(
x′β − (β′Ωβ/2)

)]
.

By the law of iterated expectations

Ex∗ [exp(x∗′β)] = Ex
[
exp
(
x′β − (β′Ωβ/2)

)]
,

which can be consistently estimated by N−1∑
i [exp(x′

iβ − (β′Ωβ/2))]. Conse-
quently, for Q(β) in (26.23) the probability limit given in (26.24) reduces to

plim Q(β) = N−1
∑

i

[
yi x′

iβ − ln yi ! − exp
(
x′

iβ − (β′Ωβ/2)
)]
.

This is the corrected log-likelihood function given in Nakamura (1990). Maximiza-
tion with respect to β yields a consistent estimate of β0.

Nakamura’s approach reminds one of the estimation of the linear regression with
measurement errors (see (26.14)) given an estimate of the covariance matrix of mea-
surement errors. As in that case, to maximize Nakamura’s corrected log-likelihood
function one requires knowledge of Ω, the covariance matrix of measurement errors.
This can come from replicated data. However, if the covariates are predominantly dis-
crete, then the normality of measurement error is not a sensible assumption. In such
cases the estimator of Guo and Li is more attractive.

For the case of multivariate x∗, the computation of E[exp(x∗′β)] is not straight-
forward, even if the distribution of x∗ is known, because multiple integrals are in-
volved. Simulation-based methods (Li, 2002) provide one possible approach to this
problem.

Implementation of several other nonlinear errors in variable models also require
replicated observations; for example, see Hsiao (1992) and Hausman, Newey, and
Powell (1995). Panel data could provide replicated observations at the level of an indi-
vidual. For example, consider the case of a scalar regressor x∗ for which two replica-
tions of x are available, because xi j = xi + εi j for i = 1, . . . , N and j = 1, 2. Then a
moment-based consistent estimator of σ 2

ε is σ̂ 2
ε =∑i (x

2
i1 + x2

i2 − 2xi1xi2)/2N . Thus
both the mean and variance of x∗ can be estimated.
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26.5. Attenuation Bias Simulation Examples

Analytical results for the linear model are given in Section 26.2, but results are much
more difficult to obtain in nonlinear models. Here we present two simulation examples,
one for the logit model and one for a linear-in-logs model, that illustrate attenuation
bias in nonlinear regression with measurement error in the regressor.

In the first example, the dgp is the logit model with

y∗ = α∗ + β∗x∗ + ε,
x∗ ∼ U [0, 1] , ε ∼ logistic,

y =
{

0 if y∗ ≤ 0,
1 if y∗ > 0.

The complication is that x∗ is measured with error, so that

x = x∗ + v,
v ∼ N [0, σ 2

v ].

Since x∗ ∼ U [0, 1] it has variance σ 2
x∗ = 1/12, and the noise-to-signal ratio is s =

12σ 2
v . A logit regression of y on x rather than of y on x∗ is estimated.

To conduct a simulation exercise we carry out a logit regression of y on x, for six
different values of the noise-to-signal ratio including the value of zero, which bench-
marks the model. The sample size is fixed at 1,000, and 100 simulation replications
are used.

Table 26.1 shows the average values of (̂α, β̂) in 100 replications, where α̂ and β̂
are the estimated intercept and slope from logit regression of y on x , rather than the
correct logit regression of y on x∗, for sample size N =1,000 and for six different
values of σ 2

v leading to six different noise-to-signal ratios s. The first column with
s = 0 benchmarks the model. Recall that for OLS linear regression in the same setup
the multiplicative bias in the slope coefficient is 1/(1 + s), or 0.96, 0.8, 0.5, 0.2, and
0.1, respectively. Here the biases have a similar direction, except for logit regression
they are considerably larger.

The second example is a bivariate linear-in-logs multiplicative model with α =
4, β = 0.4, and additive measurement errors in both variables. In this case the setup is

Table 26.1. Attenuation Bias in a Logit Regression with Measurement Error

Noise/Signal 0 0.04 0.25 1 4 9

Average α̂ 0.785 1.062 1.406 1.548 1.570 1.596
Average β̂ 1.799 1.224 0.446 0.125 0.037 0.012
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Table 26.2. Attenuation Bias in a Nonlinear Regression with Additive
Measurement Error

σ2
x/σ

2
x∗ 0.00025 0.0025 0.025 0.25 2.5 25

Average β̂ 0.393 0.383 0.341 0.217 0.063 0.020

as follows:

y∗ = 4x∗0.4
u, u ∼ N [10, 0.0001],

x∗ = 100 + U[0, 1],

y = y∗ + εy, εy ∼ N [0, σ 2
y ],

x = x∗ + εx , εx ∼ N [0, σ 2
x ].

In the simulation the sample size is 1,000, and the number of replications is 100.
We vary the value of the variance of x∗ from experiment, to experiment, resulting in
the following values of σ 2

x /σ
2
x∗ : 0.001, 0.01, 0.1, 1, 5, 10, 50, 100, 1,000, and 5,000.

The upper row of Table 26.2 gives the average values of slope coefficients across
different experiments in which the noise-to-signal ratio varies. Once again the attenu-
ation bias is obvious.

Both examples produce results that are consistent with the hypothesis underlying
the “Iron Law of Econometrics.”

26.6. Bibliographic Notes

Wansbeek and Meijer (2000) is the most up to date and comprehensive work on measure-
ment errors written from an econometric perspective. It covers in depth most of the topics in
this chapter, with emphasis on linear models. The authors also include several chapters link-
ing measurement error models with factor models, latent variable models, and structural equa-
tion models. In discussing results the authors eschew the phrase “it can be shown” in favor of
deriving them in detail. Again from the econometric perspective Hausman (2000) provides a
survey of the recent results obtained in his and his collaborator’s research. Bound, Brown, and
Mathiowetz (2001) for a survey of measurement error issues in labor markets.

The topic of measurement errors is well established in the statistics literature. Fuller (1987)
is a useful reference; see, in particular, his treatment of the orthogonal regression approach
that is applicable when the noise-to-signal ratio is known. Although our analysis of the linear
model is very standard in the econometrics literature, the reader should also be aware of the
alternative Berkson error model, in which the unobserved true variable is assumed constant
but the imperfectly measured variable is subject to error, and the nonclassical measurement
error model discussed in Angrist and Krueger (1999). Madansky (1959) provides a survey of
numerous early results and approaches. See also Stefanski (2000).

26.2 Panel data models with measurement errors are analyzed in Bjorn (1992).
26.3 The intriguing topic of reverse regression is analyzed by Goldberger (1984) and Greene

(1983) in their commentary on Conway and Roberts (1983). Leamer (1978) provides
an insightful discussion of reverse regression from a Bayesian perspective. Hahn and
Hausman (2002) use the reverse regression idea to construct a specification test for the
validity of the IV approach to the measurement error problem. The concern is that the
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available instruments may be weak, leading to poor estimates. The Hahn–Hausman idea
is to carry out IV estimation of the direct regression in which the mismeasured variable
appears on the right-hand side of the equation. The reverse regression has the same mis-
measured variable on the left-hand side. This regression is estimated also by instrumental
variables using the same instrumental variables as the direct regression.

26.4 The literature on measurement errors in nonlinear models is more diffuse. Y. Amemiya
(1985) is especially useful to econometricians. From a statistical viewpoint, Carroll et al.
(1995) consider nonlinear models, especially in the generalized linear class, with additive
measurement errors in regressors, using a variety of methods, including a number that
can be used if replicated data are available. Li, Trivedi, and Guo (2003) develop and
apply a measurement error variable model in which the counted response variable has
measurement error.

Exercises

26–1 Consider the attenuation bias result for the slope parameter of the bivariate
errors-in-variables model (Equation (26.9) in Section 26.2.3). Extend the model
to include an intercept term.

(a) Derive a parallel result for the measurement error bias of the intercept term.
(b) Derive a parallel identification-by-bounds result for the least-squares inter-

cept estimate, similar to Equation (26.12) in Section 26.3.1.

26–2 (Adapted from Bollinger, 2003) Consider a linear multiple regression model
with scalar regressor x that is measured with error and a vector of other regres-
sors z that are free of measurement error.

(a) Maintaining the assumptions regarding measurement errors in the bivari-
ate errors-in-variables model, extend the attenuation bias result and the
identification-by-bounds result to this case.

(b) Check that the new results specialize to those for the bivariate case.

26–3 (Adapted from Wansbeek and Meijer, 2000) Consider the quadratic regression
model y = α + βx∗ + γ x∗2 + ε, where the regressor x∗ = x + v, with x observed
and v a measurement error. Assume that (x∗, ε, v) are mutually uncorrelated and
normally distributed and that all variables have zero mean.

(a) Compare the bias of the least-squares estimator of β and γ .
(b) Is the model identified? Compare the latter result with that from the bivariate

linear errors-in-variable model.

26–4 The literature on intergenerational mobility uses the following model (Solon,
1992; Zimmerman, 1992):

Y son
i = α + βY father

i + εson
i , (26.26)

with εi ∼ iid N [0, σ 2]. Here Y is a measure of permanent status (such as per-
manent income) and β measures the degree of regression toward the mean in
economic status. Suppose that permanent status is not observed. Instead, cur-
rent status Yi t is observed with Yi t = Yi + γ Xi t + wi t , so that Yi t is composed
of an individual fixed effect Yi , referred to as the permanent status, a system-
atic factors Xi t , and a transitory error component wi t . Let γ̂ denote the fitted
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least-squares coefficient, and let

Yi t − γ̂ Xi t = Yi + (γ − γ̂ ) Xi t + wi t = Yi + vi t .

(a) Let Ȳ father
i = T−1∑T

t=1 Y father
i t denote an average of father’s status used as

the independent variable, a proxy, for the unobserved permanent status in
(26.26). Let β̂avg denote the corresponding regression coefficient. Show that
plim β̂avg = βPY, where PY = σ 2

Y/(σ
2
Y + T−1σ 2

ε ).
(b) Assume that the transitory component of father’s earnings follows an autore-

gressive scheme, v father
i t = ρv father

i t + ξi t , where ξi ∼ N [0, σ 2
ξ ], i = 1, . . . , T.

Show that now plim β̂avg = βP∗
Y , where P∗

Y = σ 2
Y/(σ

2
Y + T−1V) and V =

σ 2
ξ [T(1 − ρ2)]−1[(1 + 2ρ{T − (1 − ρT )/(1 − ρ)}/T (1 − ρ)].
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C H A P T E R 27

Missing Data and Imputation

27.1. Introduction

The problem of missing data in survey data is one of long standing, arising from
nonresponse or partial response to survey questions. Reasons for nonresponse include
unwillingness to provide the information asked for, difficulty of recall of events that
occurred in the past, and not knowing the correct response. Imputation is the process
of estimating or predicting the missing observations.

In this chapter we deal with the regression setup with data vector (yi , xi ), i =
1, . . . , N . For some of the observations some elements of xi or of both (yi , xi ) are
missing. A number of questions are considered. When can we proceed with an anal-
ysis of only the complete observations, and when should we attempt to fill the gaps
left by the missing observations? What methods of imputation are available? When
imputed values for missing observations are obtained, how should estimation and in-
ference then proceed?

If a data set has missing observations, and if these gaps can be filled by a statistically
sound procedure, then benefit comes from a larger and possibly more representative
sample and, under ideal circumstances, more precise inference. The cost of estimating
missing data comes from having to make (possibly wrong) assumptions to support a
procedure for generating proxies for the missing observations, and from the approxi-
mation error inherent in any such procedure. Further, statistical inference that follows
data augmentation after imputed values replace missing data is more complicated be-
cause such inference must take into account the approximation errors introduced by
imputation.

Gaps in data as the result of survey nonresponse and attrition from panels occur
frequently. Imputation of missing values may be done by agencies for creating and
maintaining the public-use survey databases or by those who use the data for model-
ing. In the former case the agency may have more extensive information, including
confidential information, that can be harnessed in the imputation process. In the latter
case the modeler may have a specific modeling framework that can be exploited in the
imputation process. In both cases model-based imputation procedures are feasible.
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A: Univariate missing data pattern

B: Special Pattern of missing data on x1 and x2

C: General pattern of missing data

Figure 27.1: Missing data: examples of missing regressors.

An interesting example of missing data arises in the context of the Survey of Con-
sumer Finances (Kennickell, 1998). Because of the sensitivity of the issue of consumer
finances the survey exhibits many gaps in information on income and wealth. Analysts
at the U.S. Federal Reserve have developed and implemented complex imputation al-
gorithms for continuous and discrete variables using both publicly available survey in-
formation on income and wealth as well as confidential information from census data.

Figure 27.1 shows some potential patterns of missing data on the regressors. The
data set has a scalar dependent variable y and three regressors: x1, x2, and x3 for each
observation, then stacked as (y, x1, x2, x3). In panel A, there are complete data on
(y, x2, x3) but a block of observations on x1 are missing. In panel B there are complete
data on (y, x3) but there are missing blocks of data on (x1, x2) such that x1 and x2

are never simultaneously observed. In panel C there is a general pattern of missing
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observations with missing observations on all three regressors, but there is no particular
pattern of missingness.

The simplest way of handling missing data is to delete them and analyze only the
reduced sample of “complete” observations. For example, in the case of panel A, the
complete sample would be the subset of (y, x1, x2, x3) formed by all available data on
x1 and the corresponding observations on (y, x2, x3). In the case of panel B, however,
following this approach one would leave no usable observations, unless one excluded
(x1, x2) from the analysis. In panel C the complete data set is formed after deleting any
observation that contains a missing data point on any of the three regressors.

The procedure just described is called listwise deletion. It is widely followed and is
often a default option in statistical software. It is not necessarily innocuous; the conse-
quences depend on the missing data mechanism, and the conclusions drawn from such
studies might be seriously flawed. Of course, in general throwing away data means
throwing away information, and that reduces efficiency in estimation. Hence, provided
the gaps attributed to missing data can be filled without creating distortion, listwise
deletion seems worth trying. This chapter will study alternative approaches and their
limitations.

Broadly, there are two approaches to imputation, one that is model-based and one
that is not. The modern approach prefers model-based approaches. These use a model
to impute the missing observations and then use the subsequent full data set to obtain
better estimates of the model parameters. The process is iterative. Single and multiple
imputation are feasible. A key feature of the modern approach is to regard missing
data as random variables and then to replace them with multiple draws from the as-
sumed underlying distribution; the process is called multiple imputation. Simulation
methods may be used to approximate such a distribution.

This topic warrants a separate short introductory chapter as imputation is an impor-
tant aspect of microeconometric work. Survey data inevitably include missing data,
and the common practice of listwise deletion is an imputation method. Better im-
putation methods are available. An important caveat, however, is that all imputation
methods are based on assumptions that in some applications may be too strong.

Most of the chapter deals with model-based approaches. Section 27.2 provides an
introduction to the terminology and assumptions that are firmly entrenched in the im-
putation literature. Section 27.3 gives a brief treatment of missing data methods that
do not use models. Section 27.4 begins with the first of the model-based methods,
maximum likelihood. Section 27.5 considers the regression framework and EM-type
methods of imputation. Sections 27.6 and 27.7 present approaches to imputation us-
ing the Bayesian concepts of data augmentation and MCMC. Section 27.8 provides
an illustrative example. Sections 27.6–27.8 provide a nice application of the Bayesian
methods of Chapter 13.

27.2. Missing Data Assumptions

Some of the basic terminology and formal definitions widely used in the impu-
tation literature are due to Rubin (1976), who introduced two key missing data
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mechanisms, missing at random and missing completely at random, that serve as useful
benchmarks.

Rubin’s setup involves Y, an N × p matrix consisting of a complete data set,
which may not be fully observed. Denote by Yobs the observed part and by Ymis the
nonobserved (missing) part. In the context of a regression model Y refers to both
the regressors and the response (dependent) variables. Therefore, the analysis covers
the general case of missing data. Let R denote an N × p matrix of indicator variables
whose elements are zero or one depending on whether corresponding values in the Y
matrix are missing or observed.

For regression with single dependent variable, Y contains data on the response vari-
able y and the (p − 1) regressors X . The probability that xki , the i th observation on
variable xk , is missing may be (i) independent of its realized value, (ii) dependent on
its realized value, (iii) dependent on xk j , j �= i, or (iv) dependent on xl j , j �= i, l �= k.

Assumptions about the structure of missingness follow.

27.2.1. Missing at Random

Suppose xi (i = 1, . . . , N ) is an observation on a variable in the data set under study.
The missing at random (MAR) assumption is that the “missingness” in xi does not
depend on its value but may depend on the values of x j ( j �= i). Formally,

xi is MAR ⇒ Pr[xi is missing | xi , x j ∀ j �= i ] (27.1)

= Pr[xi is missing | x j ∀ j �= i ].

After controlling for other observations on x , the probability of missingness of xi is
unrelated to the value of xi .

Rubin’s (1976) even more formal definition states the following: The MAR assump-
tion implies that the probability model for the indicator variable R does not depend on
Ymis, that is,

Pr [R | Yobs,Ymis, ψ ] = Pr [R | Yobs,ψ ] ,

where ψ is the underlying (vector) parameter of the missingness mechanism.
Under MAR no nonresponse bias is induced in a likelihood-based inference that

ignores the missing data mechanism, although the resulting estimates may be in-
efficient. If the MAR assumption fails, however, the probability of missingness
depends on the unobserved missing values. The MAR restriction is not testable
because the values of the missing data are unknown. Because MAR is a strong as-
sumption, sensitivity analyses based on different assumptions about missingness are
desirable.

A separate issue is whether the pattern of missing data is purely random. In prac-
tice, we might expect that observations missing inside clusters of data, in the sense of
Chapter 24, may be correlated. However, this issue is not related to that of nonresponse
bias resulting from the missingness being connected to data values.
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27.2.2. Missing Completely at Random

Missing completely at random (MCAR) is a special case of MAR. It means that Yobs

is a simple random sample of all potentially observable data values (Schafer, 1997).
Again suppose xi is an observation on a variable in the data set under study. Then

the data on xi is said to be MCAR if the probability of missing data on xi depends
neither on its own values nor on the values of other variables in the data set.
Formally,

xi is MCAR ⇒ Pr[xi is missing | xi , x j ∀ j �= i ] (27.2)

= Pr[xi is missing].

For example, MCAR is violated if (a) those who do not report income are younger, on
average, than those who do or if (b) typically small (large) values are missing.

For cases (i)–(iv) mentioned at the outset in this section, case (i) satisfies both
MCAR and MAR, cases (iii) and (iv) satisfy MAR, and (ii) does not satisfy MAR.

MCAR implies that the observed data are a random subsample of the potential full
sample. If the assumptions were valid no biases would result from ignoring incomplete
observations, that is, observations with missing values.

The corollary is that the failure of MCAR implies a sample selection type of bias.
MAR is a weaker assumption that still aids imputation as it assumes that the missing
data mechanism depends only on observed quantities.

27.2.3. Ignorable and Nonignorable Missingness

A missing data mechanism is said to be ignorable if (a) the data set is MAR and (b) the
parameters for the missing data-generating process, ψ, are unrelated to the parameters
θ that we want to estimate.

This condition, which is similar to that of weak exogeneity discussed in Chapter 2,
implies that the parameters θ of the model are distinct from parameters ψ of the miss-
ingness mechanism. Thus, if the missing data are ignorable, then there is no need to
model the dgp for missing data as an essential part of the modeling exercise. MAR and
“ignorability” are often treated as equivalent under the assumption that condition (b)
for ignorability is almost always satisfied (Allison, 2002).

A nonignorable missing data mechanism arises if the MAR assumption is violated
for (y, x), but it would not be violated if MAR is violated only for x . In that case
the dgp for missing data must be modeled along with the overall model to obtain
consistent estimates of the parameters θ. To avoid the possibility of selection bias,
estimators such as Heckman’s two-stage procedure (see Chapter 16) must be used.

The imputation literature focuses on ignorable missingness. If additionally the data
set is MCAR then missing data cause no problem, aside from efficiency loss that might
be reduced by imputation. If instead the data set is only MAR then imputation methods
may be needed to ensure consistency, as well as to increase efficiency.

927



MISSING DATA AND IMPUTATION

27.3. Handling Missing Data without Models

If no models are to be used, then one can simply analyze the available data or one can
analyze data after non-model-based imputation.

27.3.1. Using Available Data Only

Listwise deletion or complete case analysis means the deletion of the observations
(cases) that have missing values on one or more of the variables in the data set. Under
the MCAR assumption, the remaining sample after listwise deletion remains a random
sample from the original population; therefore the estimates based on it are consistent.
However, the standard errors will be inflated because less information is used. If the
number of regressors is large, then the total effect of listwise deletion can lead to very
substantial reduction in the total number of observations. This might encourage one to
leave out of the analysis variables with a high proportion of missing observations, but
the results generated by such practice are potentially misleading.

If MCAR is not satisfied and the missing data are only MAR, then the estimates will
be biased. Thus listwise deletion is not robust to the violations of MCAR. However,
listwise deletion is robust to the violations of MAR among the independent variables
(regressors) in regression analysis, that is, when the probability of missing data on any
regressor does not depend on the values of the dependent variable. Briefly, listwise
deletion is acceptable if incomplete cases attributable to missing data comprise a small
percentage, say 5% or less, of the number of total cases (Schafer, 1996). It is important
that the sample after listwise deletion is representative of the population under study.

Pairwise deletion or available-case analysis is often considered a better method
than listwise deletion. The idea here is to use all possible pairs of observations (x1i , x2i )
in estimating joint sample moments of (x1, x2) and to use all observations on an indi-
vidual variable in estimating marginal moments. Thus, in a linear regression, under
pairwise deletion we would estimate

(
X′X
)

and
(
X′y
)

using all possible pairs of re-
gressors, whereas under listwise deletion we would estimate the same after deleting
all cases with any missing observations. It is clear that we lose less information un-
der pairwise deletion. The proposal here is to use maximum information to estimate
individual summary statistics such as means and covariances and then to use these
summary statistics to compute the regression estimates.

There are two important limitations of pairwise deletion: (1) Conventionally es-
timated standard errors and test statistics are biased and (2) the resulting regressor
covariance matrix

(
X′X
)

may not be positive definite.

27.3.2. Imputation without Models

There are a number of ad hoc or weakly justified procedures often implemented in
statistical software.

Mean imputation or mean substitution involves replacing missing observations
by the average of the available values. It is mean-preserving but will have impact on the
marginal distribution of the data. It is obvious that the probability mass in the center
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of the marginal distribution will increase. It will also affect the covariances and corre-
lations with other variables.

Simple hot deck imputation involves replacement of the missing value by a ran-
domly drawn value from the available observed values of that variable, somewhat like
a bootstrap procedure. It preserves the marginal distribution of the variable, but it dis-
torts the covariances and correlations between variables.

In a regression setting neither of these two well-known approaches are attractive
despite their simplicity.

27.4. Observed-Data Likelihood

The modern approach to missing data is to impute values for missing observations by
making single or multiple draws from the estimated distribution based on the pos-
tulated observed data model and the model for the missing data mechanism. The
Bayesian variants of this procedure make the draws from the posterior distribution,
which uses both the likelihood and the prior distribution of the parameters.

The first important issue involves the role played by the missing data mechanism
in the imputation procedure and especially whether the missing data mechanism is
ignorable.

Let θ denote the parameters of the dgp for Y = (Yobs,Ymis) and let ψ denote the
parameters of the missing data mechanism. For convenience of notation it is assumed
that (Yobs,Ymis) are continuous variables. Then the joint distribution of (R,Yobs) is
given by

Pr [R,Yobs|θ, ψ ] =
∫

Pr [R, Yobs,Ymis| θ,ψ] dYmis (27.3)

=
∫

Pr [R| Yobs,Ymis,ψ] Pr [Yobs,Ymis|θ] dYmis

= Pr [R| Yobs,ψ]
∫

Pr [Yobs,Ymis|θ] dYmis

= Pr [R| Yobs,ψ] Pr [Yobs|θ] .

The first equality derives the joint probability of (R,Yobs) by integrating out (or aver-
aging over) Ymis from the joint probability of all data and R. The second line factors
the joint probability into conditional and marginal components, the conditioning being
with respect to Yobs and Ymis. The third line separates the missing data mechanism
from the observed data mechanism; this step is justified by the MAR assumption. The
last line means that θ and ψ are distinct parameters and hence inference about θ can
ignore the missing data mechanism and depends on Yobs alone.

The observed-data likelihood is proportional to the last factor in the fourth line:

L[θ|Yobs] ∝ Pr [Yobs|θ] . (27.4)

It involves only the observed data Yobs even though the parameters θ appear in the
dgp for all observations (observed and missing). As in Chapter 13, the constant of
proportionality does not appear in (27.4).
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Under the MAR assumption the joint posterior probability of (θ,ψ) is written as
the product of Pr [R,Yobs|θ, ψ ] and the joint prior distribution π (θ, ψ) as follows:

Pr[θ,ψ|Yobs,R] = kPr [R,Yobs|θ, ψ ]π (θ, ψ) (27.5)

∝ Pr [R|Yobs, ψ ] Pr [Yobs|θ]π (θ, ψ)

∝ Pr [R|Yobs, ψ ] Pr [Yobs|θ]πθ (θ) πψ(ψ),

where k in the first line is a constant of proportionality free of (θ, ψ). The second
line uses the factorization given in (27.3), and the third line uses the assumption of
independent priors for θ and ψ.

As our main interest is in θ, we derive the marginal posterior for θ by integrating
out ψ from the joint posterior. This yields the observed-data posterior

Pr[θ|Yobs,R] =
∫

Pr[θ,ψ|Yobs,R]dψ (27.6)

∝ Pr [Yobs| θ ]πθ (θ)
∫

Pr [R|Yobs, ψ ]πψ(ψ)dψ

∝ L[θ|Yobs]πθ (θ),

where the second line separates θ and ψ, and the last line absorbs the integral expres-
sion into the constant of proportionality. Therefore, the last line does not involve ψ
and is independent of the missing data mechanism R.

27.5. Regression-Based Imputation

In this section we consider a least-squares based imputation. The key component is
use of the EM algorithm, previously introduced and discussed in Section 10.3.7.

The EM algorithm consists of the expectation step and the maximization step. The
structure of the EM algorithm is closely related to Bayesian MCMC and data aug-
mentation methods. Therefore, rather than providing a fully operational method for
handling missing data, we will introduce an example that brings out the motivation be-
hind modern multiple imputation techniques and suggests the major features of such
an approach.

27.5.1. Linear Regression Example with Missing Data
on a Dependent Variable

In practice one can have missing observations on dependent (endogenous) variables
and/or explanatory variables. We consider a regression example that has missing data
on the dependent variable, with[

y1

ymis

]
=
[

X1

X2

]
β +

[
u1

u2

]
, (27.7)
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where E[u|X] = 0 and E
[
uu′|X] = σ 2IN . The complication is that a block of obser-

vations on the dependent variable y, denoted ymis, is missing. We assume that the
available complete observations are a random sample from the population, so that the
missing data are assumed to be MAR though not MCAR.

Given the MAR assumption and N1 > K , the first block of N1 observations can be
used to consistently estimate the K -dimensional parameter β and σ 2. The maximum
likelihood estimates of (β, σ 2) under Gaussian errors are β̂= [X′

1X1]−1X′
1y1 and s2 =

(y1 − X1β̂)′(y1 − X1β̂)/N1. By standard theory, and under the normality assumption,
β̂|data ∼ N [β,σ 2[X′

1X1]−1] and s2/σ 2|β̂ ∼ (N1 − K )χ2
N1−K .

First, consider a naive single-imputation procedure for generating the missing ob-
servations. Conditional on X2, the predicted values of ymis, denoted ŷmis, are given by
X2β̂, where β̂ is the preceding estimate obtained using only the first N1 observations.
Then

Ê [ymis|X2] = ŷmis = X2β̂, (27.8)

V̂ [̂ymis] ≡ V̂[̂y|X2] = s2(IN2 + X2
[
X′

1X1
]−1

X′
2),

where s2IN2 is an estimate of V[u2].
In the naive method one would generate the N2 predicted values of ymis, and then

apply standard regression methods to the full sample of N = N1 + N2 observations.
The two steps in the naive method correspond to the two steps of the EM algorithm.

The prediction step is the E-step, and the second-step application of least squares to
the augmented sample is the M-step.

However, this solution has flaws. First, consider the data augmentation step. Be-
cause the generated values ŷmis lie exactly on the least-squares fitted plane, the addi-
tion of (̂ymis,X2) to the sample to produce a new estimate, β̂A, does not change the
previous estimate β̂:

β̂A = [X′
1X1 + X′

2X2
]−1 [

X′
1y1 + X′

2̂ymis
]

= [X′
1X1 + X′

2X2
]−1 [

X′
1X1β̂+X′

2X2β̂
]

= β̂.

Second, the estimate of σ 2 obtained by the standard formula to the residuals from
the augmented sample yields an estimate that is too small because the additional N2

residuals are zero by construction,

s2
A = (y − Xβ̂A)′(y − Xβ̂A)/N (27.9)

= (y1 − X1β̂)′(y1 − X1β̂)/N < s2

where s2 correctly divides by N1 rather than N .
Finally, as can be seen from the expression for the sampling variance of ŷmis, the

generated predictions are heteroskedastic, unlike the y1, and hence the variance of β̂A

cannot be estimated using the least-squares formula in the usual way. The observations
ŷmis are draws from a distribution with a different variance. The naive method does not
make allowance for the uncertainty attached to the estimates of ŷmis.
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To fix these problems modifications are needed. First, the estimation of ŷmis should
take account of uncertainty regarding β̂. This may be done by adjusting ŷmis and
adding some “noise” to the generated predictions such that the estimates of missing
data more closely mimic a draw from the (estimated or conditional) distribution of
y1. A standardization step can use the fact that an estimate of V[̂ymis] , V̂, is avail-
able from (27.8). Hence the components of the transformed variable V̂−1/2̂ymis have
unit variance. To mimic the distribution of y1,we can make a Monte Carlo draw from
N [0, s2] distribution and multiply it by V̂−1/2̂ymis.

The revised algorithm is as follows.

1. Estimate β̂ using the N1 complete observations as before.

2. Generate ŷmis = X2β̂2.

3. Generate adjusted values of ŷa
mis = (V̂−1/2 ŷmis) � um of ŷmis, where um is a Monte Carlo

draw from the N
[
0, s2
]

distribution and � denotes element-by-element multiplication.

4. Using the augmented sample obtain a revised estimate of β̂.

5. Repeat steps 1–4 where in step 1 the revised estimate of β̂ is used.

The revised algorithm, also an EM-type algorithm, continues until it converges in
the sense that the changes in the coefficients or the changes in regression residual sum
of squares become arbitrarily small.

To make connection with later discussion we give the algorithm a different interpre-
tation. Step 3 is a draw from the conditional distribution of y given β, and step 4 is a
draw from the conditional distribution of β given s2,X. The approach may be refined
further by adding a step that involves a draw from the distribution of s2. We do not
go through all the steps of this approach because they will become clearer in our later
discussion of imputation.

Alternative models for missing data on the dependent variable were presented in
Chapter 16. These relaxed the MAR assumption and specified nonignorable missing-
ness. Then the preceding EM algorithm leads to inconsistent estimation of β. The cen-
sored Tobit model specifies that data are missing for observations with x′β + u ≤ 0
and a consistent estimator is the Tobit MLE (see Section 16.3). Amemiya (1985,
pp. 376–378) details the EM algorithm for the Tobit model.

27.6. Data Augmentation and MCMC

The general structure of the Bayesian approach to missing data is to use the following
type of iterative algorithm that uses imputation and prediction steps.

The imputation step (I-step) makes a draw from the conditional predictive distri-
bution of Ymis. Given an r th round estimate,

Y(r+1)
mis ∼ Pr[Ymis|Yobs,θ

(r )]. (27.10)

This expression denotes a random draw of Y(r+1)
mis from the predictive conditional dis-

tribution of Ymis given the current estimate θ(r ) and the observed data Yobs. Notice that
Ymis is in general a matrix so that this notation refers to (in principle) a series of draws.
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The prediction step (P-step) is executed by making a draw from the complete data
posterior

θ(r+1) ∼ Pr[θ|Yobs,Y(r+1)
mis ]. (27.11)

That is, Yobs is augmented by an imputed value Y(r+1)
mis drawn from the predictive dis-

tribution of Ymis, and a draw is made from the posterior distribution of θ. The steps
(27.10) and (27.11) can then be repeated.

Sequential sampling from the two distributions generates a Markov chain. This pro-
cess, which strongly resembles the EM algorithm, is essentially the Gibbs sampler of
Section 13.5.2, but in the missing data literature it is referred to as data augmentation.
Under appropriate conditions, and by a theorem cited in Section 13.5.1, the sequen-
tial draws will converge to a stationary distribution for a sufficiently large value of r,
which is the length of the chain. When the chain is terminated we have one imputation
of Ymis. Then we can regard θ(r ) as an approximate draw from Pr[θ|Yobs] and Y(r+1)

mis
as an approximate draw from Pr[Ymis|Yobs]. As with any MCMC application the chain
has to run sufficiently long to ensure that successive imputations are free of statistical
dependence. These issues have been discussed in Chapter 13.

After convergence we would have accomplished the joint objectives of imputing
the missing values based on the model specified for the data and estimating the model
using both observed and imputed values. Postconvergence we would have the data
necessary to compute the posterior moments of θ and any interesting functions of θ
and Y using the ideas discussed in Chapter 13.

As a specific illustration of this procedure we reconsider the missing data re-
gression example of the previous section. The steps in the MCMC algorithm are
as follows:

1. Using observed data calculate β̂= [X′
1X1
]−1

X′
1y1, and û = (y1 − X1β̂).

2. Generate σ 2 as û′̂u divided by a draw from χ2
N1−K distribution.

3. Draw β|σ 2 ∼ N [β̂,σ 2
[
X′

1X1
]−1

].

4. Draw ymis ∼ N [X2β̂,σ
2].

5. Using y instead of y1, and X instead of X1, repeat steps 1–4 after appropriate adjust-
ments.

The justification for step 2 is that, under an uninformative prior for (β,σ 2), the con-
ditional posterior distribution of û′̂u/σ 2 is χ2

N1−K if only the observed data are used.
After data augmentation this changes to χ2

N−K . The justification for step 3 is that, un-
der an uninformative prior, the conditional posterior distribution is N [β̂,σ 2[X′

1X1]−1].
After data augmentation this changes to N [β̂,σ 2[X′X]−1]. Step 4 is the impu-
tation step using the conditional predictive density N [X2β̂,σ

2]. These steps can
be appropriately modified if we use, for example, an informative normal–gamma
prior for (β,σ 2). The conditional posterior distributions for this case are given in
Section 13.3.
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27.7. Multiple Imputation

The analysis of the preceding section explains how a full MCMC run will generate
a single imputation. However, a single imputation does not adequately handle the
missing-data uncertainty. This is the essential rationale for using a multiple imputa-
tion procedure. The conditional predictive distribution of Ymis|Yobs,θ is obtained by
averaging over the observed-data posterior of θ:

Pr[Ymis|Yobs] =
∫

Pr[Ymis|Yobs,θ]Pr
[
θ|Yobs

]
dθ.

Proper multiple imputations from a Bayesian viewpoint reflect uncertainty about Ymis,

given the uncertainty about parameters of the model.
After multiple imputation the missing data Ymis are replaced by simulated/imputed

values Y(1)
mis,Y

(2)
mis,Y

(3)
mis, . . . ,Y

(m)
mis. Each of the complete data sets is then analyzed as

if it were complete. The results from the m analyses will show variation that reflects
the uncertainty resulting from the missing data. With m different data sets questions
arise about how one should determine an appropriate value for m and how the m
sets of parameter estimates and covariance matrices should be combined. We address
both of these questions using results from the literature but without providing detailed
justification.

In considering how to combine the results based on multiply imputed data the key
result, stated for an arbitrary statistic Q, is

Pr[Q |Yobs] =
∫

Pr[Q | Ymis,Yobs]Pr
[
Ymis|Yobs

]
dYmis, (27.12)

which states that the actual posterior distribution of Q, is obtained by averaging over
the complete-data posterior distribution of Q. This means averaging over the results
of multiple imputations of missing observations (Rubin, 1996).

Equation (27.12) implies that the final estimate of Q is given by the law of iterated
expectations,

E[Q|Yobs] = E[E[Q|Yobs,Ymis]|Yobs]. (27.13)

The posterior mean of Q is the average of Qr using complete data after repeated
imputation of missing data.

The final variance of Q is given by the formula

V[Q|Yobs] = E[V[Q|Yobs,Ymis]|Yobs] + V[E[Q|Yobs,Ymis]|Yobs], (27.14)

using the variance decomposition formula given in Section A.8.
Rubin (1996) also gives the following rules for combining moment information,

stated in terms of a scalar parameter. For an arbitrary scalar parameter, suppose Q̂r is
a point estimate at the r th imputation and Ûr is a variance estimate. Then define the
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Table 27.1. Relative Efficiency of Multiple Imputation

Observations Missing (λ )Number of
Imputations (m) 10% 30% 50%

3 0.967 0.909 0.857
10 0.990 0.970 0.952
20 0.995 0.985 0.975

averages of the point and variance estimate, respectively, as

Q = m−1
m∑

r=1

Q̂r , (27.15)

U = m−1
m∑

r=1

Ûr (27.16)

and the between-imputation variance as

B = (m − 1)−1
m∑

r=1

(Q̂r − Q)2 (27.17)

and the total variance as

T = U + (1 + m−1
)

B. (27.18)

The results (27.15, 27.16) follow from (27.13); Equation (27.18) follows from
(27.14). Schafer (1997) gives results for combining p-values and likelihood ratio
statistics and provides additional references.

Postimputation inference regarding individual coefficients or subsets of coefficients
can be carried out using the final estimates, since the standard central limit theorem
and the associated large-sample results can be extended to cover this case.

The following is a measure of the relative efficiency of m multiple imputations:

reff = (1 + (λ/m))−1 , (27.19)

where λ is the fraction of missing observations. Efficiency is measured relative to no
missing data. The arithmetical calculations in Table 27.1 show that with as few as three
imputations the efficiency can be as high as 97% with 10% missing data, and 86%
with 50% missing data. With 10 or more imputations the relative efficiency exceeds
95% with 50% missing data. Thus, as emphasized by Schafer (1997), the number of
imputations need not be very high.

27.8. Missing Data MCMC Imputation Example

This section gives two illustrative applications of missing data imputation: the model-
free methods of listwise deletion and mean imputation (see Section 27.2), and the
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model-based method of data augmentation using the MCMC algorithm (see Sec-
tion 27.6). Only data on regressors are missing and the missing mechanism is MAR.

The first application involves simple multiple regression, and the second involves
a logit regression. For clarity and simplicity we use artificially generated data with a
known dgp.

27.8.1. Linear Regression with Missing Data on Regressors

For the linear regression example the dgp is

yi = β0 + β1x1i + β2x2i + ui , i = 1, 2, . . . , N , (27.20)

with ui |x1i , x2i � N [0, σ 2] and (x1i , x2i ) bivariate normally distributed with[
x1i

x2i

]
� N

[[
0
0

]
,

[
1 ρ

ρ 1

]]
, (27.21)

so that x2i |x1i � N [ρx1i , 1 − ρ2]. Also, we set β′ = [ 1 1 1 ], N =1,000, and the
proportion of randomly missing data on x1 and x2 to either 10% or 25%. For any i ,
either x1 or x2, or both, may be missing. We also use two different values of ρ, 0.36
and 0.64.

For the Markov chain we use 500 iterations for the burn-in phase. The Markov chain
calculations are implemented using the SAS MI Proc algorithm, which uses an unin-
formative prior. For demonstration purposes only, the number of imputations is fixed
at 10 but the length of the chain after the burn-in phase varies from 10 to 10,000. Proc
MI combines the results from multiple imputations using Equations (27.15)–(27.18).

Tables 27.2 and 27.3 present results for high ρ and low and high rates of missing
data. There are no dramatic differences among methods. Because the MAR assump-
tion applies, point estimates from listwise deletion and the full sample remain close,
but as expected the standard errors are larger under listwise deletion. Under mean im-
putation the point estimate of β2 diverges relatively more, but the observed variation
is well within the bounds of sampling error. It appears that in both cases the Markov
chain attains stationarity rather rapidly, there being very little difference between the

Table 27.2. Missing Data Imputation: Linear Regression Estimates with 10%
Missing Data and High Correlation Using MCMC Algorithm

Length of the Markov ChainNo Data Listwise Mean
Missing Deletion Impute 10 1,000 5,000 10,000

β̂0 0.919 0.913 0.899 0.910 0.911 0.909 0.903
(0.104) (0.113) (0.105) (0.102) (0.101) (0.103) (0.101)

β̂1 1.097 1.067 1.053 1.196 1.205 1.199 1.199
(0.138) (0.151) (0.141) (0.148) (0.155) (0.144) (0.147)

β̂2 1.000 1.072 1.112 1.042 1.051 1.041 1.055
(0.132) (0.145) (0.135) (0.140) (0.146) (0.143) (0.146)

R2 0.240 0.254 0.226
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Table 27.3. Missing Data Imputation: Linear Regression Estimates with 25%
Missing Data and High Correlation Using MCMC Algorithm

Length of the Markov ChainNo Data Listwise Mean
Missing Deletion Impute 10 1,000 5,000 10,000

β̂0 0.919 0.863 0.984 0.899 0.898 0.925 0.900
(0.104) (0.167 (0.108) (0.108) (0.105) (0.111) (0.110)

β̂1 1.097 1.048 1.062 1.028 1.047 1.082 0.987
(0.138) (0.167 (0.150) (0.152) (0.166) (0.161) (0.155)

β̂2 1.000 1.129 1.156 1.071 1.085 1.024 1.124
(0.132) (0.161) (0.148) (0.152) (0.144) (0.172) (0.152)

R2 0.240 0.268 0.203

results with 10 and 10,000 iterations. This is probably due to having set the number of
burn-in iterations at 500, which may be higher than needed for this relatively simple
case.

In Table 27.4 the simulation exercise is repeated for the “worst-case” scenario of
low ρ and 25% missing data. The divergence between the point estimates from the
full sample and those from listwise deletion and mean imputation cases is overall rel-
atively greater than that for the MCMC cases. However, even in this case there are
no really dramatic differences between estimates from the full sample. Once again
we see that the benefit of running a long Markov chain are not apparent in this
example.

27.8.2. Logit Regression with Missing Data on Regressors

We next consider an example of a nonlinear model with missing data on regressors
using simulated data. In this simulation example we retain the dgp given before but
change the dependent variable into a discrete dichotomous variable. First, reinterpret

Table 27.4. Missing Data Imputation: Linear Regression Estimates with 10%
Missing Data and Low Correlation Using MCMC Algorithm

Length of the Markov ChainNo Data Listwise Mean
Missing Deletion Impute 10 1,000 5,000 10,000

β̂0 1.121 1.162 1.142 1.149 1.155 1.154 1.141
(0.099) (0.130) (0.103) (0.104) (0.103) (0.104) (0.101)

β̂1 1.099 0.930 1.052 1.026 1.020 1.004 1.044
(0.107) (0.134) (0.121) (0.127) (0.128) (0.124) (0.124)

β̂2 1.102 1.122 1.215 1.130 1.157 1.137 1.151
(0.107) (0.134) (0.124) (0.128) (0.129) (0.129) (0.119)

R2 0.243 0.235 0.186
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Table 27.5. Missing Data Imputation: Logistic Regression Estimates with 10%
Missing Data and High Correlation Using MCMC Algorithm

Length of the Markov ChainNo Data Listwise Mean
Missing Deletion Impute 10 1,000 5,000 10,000

β̂0 − 0.447 − 0.498 − 0.439 − 0.527 − 0.534 − 0.531 − 0.539
(0.070) (0.078) (0.070) (0.073) (0.073) (0.072) (0.073)

β̂1 − 0.597 − 0.658 − 0.602 − 0.620 − 0.673 − 0.681 − 0.675
(0.096) (0.108) (0.098) (0.106) (0.102) (0.101) (0.103)

β̂2 − 0.444 − 0.474 − 0.523 − 0.597 − 0.540 − 0.536 − 0.553
(0.092) (0.103) (0.094) (0.107) (0.103) (0.099) (0.101)

the simulation design given for the linear regression example, so y = y∗, a latent vari-
able. Let the dgp be

y∗
i = β0 + β1x1i + β2x2i + ui , i = 1, 2, . . . , N . (27.22)

Then a dichotomous yi is generated according to the following rule:

yi =
{

1 if y∗
i > 0,

0 if y∗
i ≤ 0.

(27.23)

We will model the probability that yi = 0 using the logit model, even though the dgp
is that for the probit model. As discussed in Section 14.4.1, the logit model identifies
the parameter vector β/σ , where the variance σ 2 = π2/3. With all elements of β set
equal to one, the logit model will provide estimates of the true parameter value of ap-
proximately −0.551. The MCMC estimation is set up as before with a noninformative
prior.

Tables 27.5 covers the favorable case with 10% missing data and high correlation
between x1 and x2, and Table 27.6 covers the less favorable case with 25% missing
data and low correlation between x1 and x2.

In the first case, even with no missing data the estimate β̂2 is substantially off its
expected value. The MCMC point estimates change somewhat when the length of
the Markov chain is increased from 10 to 1,000. However, more when simulations
are implemented, there is only slight change in point estimates, a result that we can
interpret as an indication of convergence of the chain to its stationary distribution.

For the second example involving a less favorable simulation design, the results
are as shown in Table 27.6. The main difference is that the divergence between the
expected point estimates and the estimated values is somewhat larger for the previous
case. However, broadly speaking the performance of the multiple imputation method
in the logistic regression is similar to that in the linear regression.

938



27.9 . PRACTICAL CONSIDERATIONS

Table 27.6. Missing Data Imputation: Logistic Regression Estimates with 25% Missing
Data and Low Correlation Using MCMC Algorithm

Length of the Markov ChainNo Data Listwise Mean
Missing Deletion Impute 10 1,000 5,000 10,000

β̂0 − 0.447 − 0.658 − 0.582 − 0.605 − 0.609 − 0.609 − 0.599
(0.070) (0.097) (0.070) (0.074) (0.074) (0.073) (0.076)

β̂1 − 0.597 − 0.434 − 0.470 − 0.447 − 0.470 − 0.471 − 0.481
(0.096) (0.100) (0.085) (0.090) (0.094) (0.094) (0.082)

β̂2 − 0.444 − 0.593 − 0.648 − 0.634 − 0.615 − 0.576 − 0.596
(0.092) (0.108) (0.089) (0.084) (0.086) (0.086) (0.094)

27.9. Practical Considerations

A major implication of the analysis of this chapter for practice is that analysis of mul-
tiply, rather than singly, imputed data has theoretical advantages. Moreover, model-
based approaches are less ad hoc than mechanical approaches such as mean imputation
or hot deck. In many realistic applications devising an MCMC-type imputation proce-
dure may pose a significant challenge, however, compared to the relative simplicity of
the examples given in the last section.

A distinction may be drawn between multiple imputations where the end product
is the data and one in which the end product consists of estimated coefficients for
inference. Although both procedures may be model based the second may involve
more complex econometric models. Examples are provided by Brownstone and Valetta
(1996), Stinebrinkner (1999), Kennickell (1998), and Davey, Shanahan, and Schafer
(2001).

Even when the primary object is imputation, without extensive modeling the prob-
lem may be far from simple. For example, in his study of the 1995 Survey of Consumer
Finances, Kennickell (1998, p. 5) remarks:

[When] the survey contains a very large number of variables, there is substantial
missing or partially missing (range) information, the patterns of missing informa-
tion are highly heterogeneous, the distributions of many of the variables are highly
skewed, and the data have a complex structure, [then], analysis of the survey in the
absence of imputation would be a formidable task. Moreover, anyone using the pub-
lic version of the data set would lack key frame data that turn out to be important
for understanding the distributions of the missing data. Thus, even on pure efficiency
grounds, there is a good case for imputing the missing data.

Despite the complexity of the problem Kennickell was able to use imputation proce-
dures similar to those discussed in this chapter.

Stinebrinkner (1999), also facing a missing data situation in which listwise deletion
“would leave the econometrician with too little data to estimate the model of interest,”
develops a two-stage simulated likelihood-based procedure for estimating the joint
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distribution of the missing data and estimating duration model for the first teaching
spell.

For relatively simple cases software such as the SAS package Proc MI may be
used. S-Plus and SOLAS also provide software support. A helpful guide and survey
of computer software packages is given in Horton and Lipsitz (2001). For additional
information see the relevant Web sites.

Most of the analysis of the chapter is based on assuming an ignorable missing data
mechanism. From an econometric viewpoint this might be a major simplification. For
example, see Lillard, Smith, and Welch (1986), who critique the Census hot deck
method for imputing missing wages. How should one proceed if the mechanism is
nonignorable? In the notation of Section 27.4, a nonignorable missing data mecha-
nism would imply that parameters θ and ψ are not distinct. Then one must specify
the missing data mechanism explicitly, as in the case of selection models and models
of attrition bias (see Chapter 16 and Section 23.5.2). Schafer (1997, p. 28) provides
some relevant references to the literature.

27.10. Bibliographic Notes

Important early references include Little and Rubin (1987) and Rubin (1987). Allison (2002)
provides a relatively nontechnical but lucid introduction to the missing data problem and lit-
erature. Rubin (1996) provides a survey with historical perspective. Schafer (1997) provides a
more complete analysis that covers categorical data, mixed discrete–continuous data, and data
from complex surveys.

27.2 Meng (2000) provides a historical perspective on the missing data mechanism.
27.5 Little (1988, 1992) provides a good review of the literature on linear regression with miss-

ing regressors, covering both non-model-based and model-based approaches.

Exercises

27–1 Consider any regression model, linear or nonlinear, with dependent variable y
and exogenous variables x, and iid errors ε. Show that if the probability of miss-
ing data on x is independent of y, then the regression based on listwise deletion
will provide a consistent estimate of the conditional mean function. [Hint: Show
that the conditional distribution of y given x is not affected by missing observa-
tions.]

27–2 (Adapted from Gouriéroux and Monfort, 1981). Consider the regression model
y = β1x + Zβ2 + u, where y is an N × 1 vector, Z is an N × K matrix, and x
is an N × 1 vector of a scalar regressor, some of whose elements are miss-
ing. Assume that observations are missing at random and E[u|x,Z] = 0 and
E[uu′|x,Z] = σ 2IN . Both y and Z are fully observed. The following approach
is proposed to deal with the missing data. Assume a linear regression model
relating x to Z, x = Zγ + ε, where E[ε| Z] = 0 and E[εε′|Z] = σ 2

ε IN . Then let
γ̂ = [Z′

cZc]−1Z′
cxc, where the subscript c refers to “complete data.” Impute val-

ues of x̂m = Zm[Z′
cZc]−1Z′

cxc, where xm refers to the missing observations and
Zm to the corresponding values of Z. The original regression is then reestimated
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using the full set of N observations after replacing the missing values of x by
imputed values.

(a) Explain why the OLS regression estimator based on complete and imputed
observations might be biased in finite samples.

(b) What additional assumptions are required to prove that the OLS estimator
based on complete plus imputed values is consistent?

(c) Is the OLS estimator efficient?

27–3 Consider the point that when estimation of a model is undertaken after data im-
putation the precision of the estimates is likely to be overstated if no adjustment
is made for the imputation step. In other words, imputed data may be regarded
as generated variables and hence subject to the problem of the sequential two-
step estimator discussed in Section 6.6. Explain whether an adjustment related
to imputation of missing data is necessary asymptotically.
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Asymptotic Theory

A.1. Introduction

In this appendix we consider the behavior of a sequence of random variables bN as
N → ∞.

In applications the index N is the sample size and the sequence bN is an estimator,
such as β̂ or θ̂ , or a component of an estimator, such as N−1∑

i x2
i or N−1∑

i xi ui in
the case of OLS with one regressor and no intercept, or a test statistic.

For estimation theory it is sufficient to focus on two aspects of the behavior of the
sequence bN as N → ∞. First, we consider convergence in probability of bN to a
limit b, a constant or random variable that is very close to bN in a probabilistic sense
defined in the following. Second, if the limit b is a random variable, which may require
a rescaling of the original sequence, we consider the limit distribution.

Estimators are usually functions of averages or sums. Then it is easiest to derive
limiting results by invoking results on the behavior of averages, notably laws of large
numbers and central limit theorems. The notation used is to consider an average
X̄ N = N−1∑

i Xi , where Xi here is generic notation for a random variable being av-
eraged and should not be confused with the use of xi to denote the regressor vector. For
example, for OLS with one regressor and no intercept we will apply a law of large num-
bers to the average of Xi = x2

i and a central limit theorem to the average of Xi = xi ui .
Table A.1 summarizes the definitions and theorems presented in the remainder of

this appendix. These are stated without proof but with some discussion. The focus is
on results used to obtain asymptotically normal estimators, the usual case when cross-
section data are used. Additional results are needed for application to nonparametric
estimation, to parametric estimation when the support of the data depends on parame-
ters, and to time series estimation when data have unit roots.

The first key concept, convergence in probability, is presented in Section A.2. This is
established using laws of large numbers given in Section A.3. The other key concept,
convergence in distribution, is presented in Section A.4. Convergence to the normal
distribution is established using central limit theorems given in Section A.5. Further
results and common terminology for limit multivariate normal distributions are given
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Table A.1. Asymptotic Theory: Definitions and Theorems

Definition Theorem Name Equation

A.1 Convergence in Probability (A.1)
A.2 Consistency (A.2)

A.3 Slutsky (A.3)
A.4 Mean-Square Convergence (A.4)

A.5 Chebychev’s Inequality (A.5)
A.6 Almost Sure Convergence (A.6)
A.7 Law of Large Numbers (A.7)

A.8 Kolmogorov LLN
A.9 Markov LLN

A.10 Convergence in Distribution (A.9)
A.11 Continuous Mapping (A.10)
A.12 Transformation (A.11)

A.13 Central Limit Theorem (A.13)
A.14 Lindeberg–Levy CLT
A.15 Liapounov CLT
A.16 Cramer–Wold Device
A.17 Limit Normal Product Rule (A.15)

A.18 Asymptotic Distribution (A.17)
A.19 Asymptotic Variance (A.18)
A.20 Estimated Asymptotic Variance (A.19)
A.21 Asymptotic Efficiency
A.22 Stochastic Order of Magnitude

in Section A.6. Stochastic order of magnitude, a convenient notation commonly used
in asymptotic analysis, is presented in Section A.7. Section A.8 presents some useful
properties of expectations.

A.2. Convergence in Probability

Because of the intrinsic randomness of a sample we can never be certain that a se-
quence bN , such as an estimator θ̂ (often denoted θ̂ N to make clear that it is a se-
quence), will be within a given small distance of its limit, even if the sample is in-
finitely large. However, we can be almost certain. Different ways of expressing this
near certainty correspond to different types of convergence of a sequence of random
variables to a limit. The one most used in econometrics is convergence in probability.

A.2.1. Convergence in Probability

Recall that a sequence of nonstochastic real numbers {aN } converges to a if, for any
ε > 0, there exists N ∗ = N ∗(ε) such that, for all N > N ∗,

|aN − a| < ε.
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For example, if aN = 2 + 3/N , then the limit is a = 2 since |aN − a| = |2 + 3/N −
2| = |3/N | < ε for all N > N ∗ = 3/ε.

When more generally we have a sequence of random variables we cannot be certain
of being within ε of the limit, even for large N , because of intrinsic randomness.
Instead, we require that the probability of being within ε is arbitrarily close to one.
Thus we require

lim
N→∞

Pr[|bN − b| < ε] = 1,

for any ε > 0. A formal definition is the following:

Definition A.1 (Convergence in Probability): A sequence of random variables
{bN } converges in probability to b if, for any ε > 0 and δ > 0, there exists
N ∗ = N ∗(ε, δ) such that, for all N > N ∗,

Pr[|bN − b| < ε] > 1 − δ. (A.1)

We write plim bN = b, where plim is shorthand for probability limit, or bN
p→ b.

Note that b may be a constant or a random variable. Convergence in probability
includes as a special case the usual definition of convergence for a sequence of real
variables.

Definition A.1 is for a sequence of scalar random variables. The extension to vector
random variables, such as a parameter vector estimator, is straightforward. We can
either apply the theory for each element of bN , or replace |bN − b| by the scalar (bN −
b)′(bN − b) = (b1N − b1)2 + · · · + (bK N − bK )2 or its square root ||bN − b||.

When the sequence {bN } is a sequence of parameter estimates θ̂, we have the fol-
lowing large sample analogue of unbiasedness.

Definition A.2 (Consistency): An estimator θ̂ is consistent for θ0 if

plim θ̂ = θ0. (A.2)

The subscript 0 on θ is explained in Section 5.2.3. Note that unbiasedness need
not imply consistency. Unbiasedness states only that the expected value of θ̂ is θ0,
and it permits variability around θ0 that need not disappear as the sample size goes to
infinity. Also, a consistent estimator need not be unbiased. For example, adding 1/N
to an unbiased and consistent estimator produces a new estimator that is biased but
still consistent.

Although the sequence of vector random variables {bN } may converge to a random
variable b, in many econometric applications {bN } converges to a constant. For ex-
ample, we hope that an estimator of a parameter will converge in probability to the
parameter itself. One should be aware that some of the results that follow apply only
if the limit value b is a constant.

Theorem A.3 (Slutsky’s Theorem): Let bN be a finite-dimensional vector of
random variables, and g(·) be a real-valued function continuous at a constant
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vector point b. Then

bN
p→ b ⇒ g(bN )

p→ g(b). (A.3)

Proof is given in Amemiya (1985, p. 79). Ruud (2000) presents a related result (see
also Rao, 1973, p. 124) that lets the limit b be a random variable, at the expense of
restricting g(·) to be continuous everywhere. Note that some authors instead refer to
Theorem A.12 below as Slutsky’s Theorem.

Theorem A.3 is one of the major reasons for the prevalence of asymptotic re-
sults versus finite-sample results in econometrics. It states a very convenient property
that does not hold for expectations. For example, plim(b1N , b2N ) = (b1, b2) implies
plim(b1N b2N ) = b1b2, whereas E[b1N b2N ] generally differs from E[b1]E[b2].

A.2.2. Alternative Modes of Convergence

It is often easier to establish alternative modes of convergence, which in turn imply
convergence in probability.

These alternative modes are given for completeness. Laws of large numbers, given
in the next section, are used much more often.

Definition A.4 (Mean-Square Convergence): A sequence of random variables
{bN } is said to converge in mean square to a random variable b if

lim
N→∞

E[(bN − b)2] = 0. (A.4)

We write bN
m→ b. Convergence in mean square is useful because bN

m→ b implies

bN
p→ b (see Rao, 1973, p. 110) and is often easy to prove. This does require existence

of the variance of bN , however. If E[bN ] = b, then we need to show that the variance
of bN goes to zero as N → ∞. If bN is instead biased for b then we require that the
sum of the variance and bias squared goes to zero.

Another result that can be used to show convergence in probability is Chebychev’s
inequality.

Theorem A.5 (Chebyshev’s Inequality): For any random variable Z with mean
µ and variance σ 2,

Pr[(Z − µ)2 > k] ≤ σ 2/k, for any k > 0. (A.5)

For a proof see Rao (1973, p. 95). The generalized Chebychev’s inequality replaces
(Z − µ)2 in Theorem A.5 by any nonnegative function g(Z ) and shows that Pr[g(Z ) >
k] ≤ E[g(Z )]/k, for any k > 0. See Amemiya (1985, p. 87).

Theorem A.5 can be used to verify convergence in probability by replacing Z with
bN . The theorem requires the mean and variance of bN , which are easily obtained for
estimators that involve an average of independent random variables. However, in such
cases we can often take an even easier route and directly apply a law of large numbers
to the average to obtain the probability limit.
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A conceptually more difficult type of convergence is almost sure convergence.

Definition A.6 (Almost Sure Convergence): A sequence of random variables
{bN } is said to converge almost surely to b if

Pr[ lim
N→∞

bN = b]. (A.6)

This is denoted bN
as→ b. Almost sure convergence implies convergence in proba-

bility (see Rao, 1973, p. 111). Convergence in probability allows more erratic behavior
in bN than does almost sure convergence.

Almost sure convergence is also called strong consistency for b, to distinguish
it from convergence in probability, which is called weak consistency for b. Conver-
gence in probability is easier to understand and is sufficient for most econometric
applications.

A.3. Laws of Large Numbers

Laws of large numbers are theorems for convergence in probability (or almost surely)
in the special case where the sequence {bN } is a sample average, that is, bN = X̄ N ,
where

X̄ N = 1

N

N∑
i=1

Xi . (A.7)

Note that Xi here is general notation for a random variable, and in the regression
context it does not necessarily denote the regressor variables.

A law of large numbers provides a much easier way to establish the probability
limit of a sequence {bN } than the alternatives of brute-force use of the (δ, ε) definition
given in (A.1) or use of alternative modes of convergence that imply convergence in
probability.

Definition A.7 (Law of Large Numbers): A weak law of large numbers
(LLN) specifies conditions on the individual terms Xi in X̄ N under which

(X̄ N − E[X̄ N ])
p→ 0. (A.8)

For a strong law of large numbers the convergence is instead almost surely.
It can be helpful to think of a LLN as establishing that X̄ N goes to its expected

value, even though strictly speaking it implies the weaker condition that X̄ N goes to
the limit of its expected value, since (A.8) implies that

plim X̄ N = lim E[X̄ N ].

If the Xi have common mean µ, then this simplifies to plim X̄ N = µ.
Two leading examples of laws of large numbers are the following:

Theorem A.8 (Kolmogorov LLN): Let {Xi } be iid (independent and iden-
tically distributed). If and only if E[Xi ] = µ exists and E[|Xi |] <∞, then
(X̄ N − E[X̄ N ])

as→ 0.
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Theorem A.9 (Markov LLN): Let {Xi } be inid (independent but not identi-
cally distributed) with E[Xi ] = µi and V[Xi ] = σ 2

i . If
∑∞

i=1 (E[|Xi − µi |1+δ]/
i1+δ) <∞, for some δ > 0, then (X̄ N − E[X̄ N ])

as→ 0.

See White (2001a, p. 32 and p. 35) for statements of these theorems and Rao (1973,
pp. 114–116) for proofs. Both laws give the stronger result of almost sure convergence,
which implies the desired convergence in probability. Rao (1973) calls Theorem A.8
Kolmogorov LLN2 and presents Theorem A.9 for the special case δ = 1, which he
calls Kolmogorov LLN1.

The Kolmogorov LLN allows the variance of Xi to not even exist, at the expense
of requiring an identical distribution. It simplifies to X̄ N

as→ µ, where µ = E[X ]. A
weak version of this law, sufficient for most econometrics applications, is Khinchine’s
Theorem, which states that for {Xi } iid the existence of E[X ] implies convergence in
probability.

The Markov LLN no longer requires an identical distribution, but it does require
existence of an absolute moment beyond the first. An obvious choice of δ is δ = 1.
Then the variance is needed and the side condition is that

∑∞
i=1 (σ 2

i / i2) <∞. The
variance can vary and even grow with i , provided it does not grow so fast that (σ 2

i / i2)
has infinite sum. The side condition is satisfied if σ 2

i = σ 2, since
∑∞

i=1 1/ i2 converges,
but is not satisfied if σ 2

i = iσ 2, since
∑∞

i=1 1/ i diverges.
In most microeconometrics applications, including regression with stratified sam-

pling or with fixed regressors, the more complicated Markov LLN is needed.
Laws of large numbers are appealing because they require assumptions on the in-

dividual components Xi , rather than the sequence of averages X̄ N . They are the most
common way econometricians prove convergence in probability, since most estima-
tors and test statistics are functions of averages of the data and unobserved random
variables.

A.4. Convergence in Distribution

Given consistency, the estimator θ̂ has a degenerate distribution that collapses on θ0 as
N → ∞. We need to magnify or rescale θ̂ to obtain a random variable that has nonde-
generate distribution as N → ∞. Often the appropriate scale factor is

√
N , in which

case we consider the behavior of the sequence of random variables bN = √
N (̂θ − θ0).

In general, the N th random variable in the sequence bN has an extremely compli-
cated cumulative distribution function (cdf) FN . Like any other function FN , this may
have a limit function where convergence is in the usual mathematical sense.

Definition A.10 (Convergence in Distribution): A sequence of random vari-
ables {bN } is said to converge in distribution to a random variable b if

lim
N→∞

FN = F, (A.9)

at every continuity point of F , where FN is the distribution of bN , F is the dis-
tribution of b, and convergence is in the usual mathematical sense.

We write bN
d→ b, and we call F the limit distribution of {bN }.
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Convergence in probability implies convergence in distribution; that is, bN
p→ b

implies bN
d→ b (see Rao, 1973, p. 122).

In general, the converse is not true. For example, let bN = X N , the N th realization

of X ∼ N [µ, σ 2]. Then bN
d→ b ∼ N [µ, σ 2], but clearly (bN − b) has variance that

does not disappear as N → ∞, so bN does not converge in probability to b.

In the special case where b is a constant, however, bN
d→ b implies bN

p→ b (see
Rao, 1973, p. 120). In this case the limit distribution is degenerate, with all its mass
at b.

To extend limit distribution to vector random variables simply define FN and F
to be the respective cdfs of vectors bN and b.

Theorem A.11 (Continuous Mapping Theorem): Let bN be a finite-
dimensional vector of random variables, and let g(·) be a continuous real-valued
function. Then

bN
d→ b ⇒ g(bN )

d→ g(b). (A.10)

For proof see Rao (1973, p. 124). Theorem A.11 is the convergence in distribution
analogue of Theorem A.3 for convergence in probability.

The following theorem considers the effect of transforming a sequence with limit
distribution by addition of, or multiplication by, or division by a sequence that con-
verges in probability to a constant.

Theorem A.12 (Transformation Theorem): If aN
d→ a and bN

p→ b, where a
is a random variable and b is a constant, then

(i) aN + bN
d→ a + b,

(i i) aN bN
d→ ab, and

(i i i) aN/bN
d→ a/b, provided Pr[b = 0] = 0.

(A.11)

For proof see Rao (1973, p. 122). Theorem A.12 is also referred to as Cramer’s The-
orem. It is also called Slutsky’s Theorem, the name we have applied to Theorem A.3.

Theorem A.12 is exceptionally useful because it permits one to separately find the
limit distribution of aN and the probability limit of bN , rather than having to consider
the joint behavior of aN and bN . Result (ii) is especially useful and is sometimes called
the Product Rule.

A.5. Central Limit Theorems

Central limit theorems are theorems on convergence in distribution when the sequence
{bN } is a sample average. A central limit theorem provides a simpler way to obtain
the limit distribution of a sequence {bN } than the alternatives such as brute-force use
of (A.9).

From a law of large numbers, the sample average has a degenerate distribution as it
converges to a constant, limE[X̄ N ]. So we scale (X̄ N −E[X̄ N ]) by its standard deviation
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to construct a random variable with unit variance that may converge to a nondegenerate
distribution.

Definition A.13 (Central Limit Theorem): Let

Z N = X̄ N − E[X̄ N ]√
V[X̄ N ]

, (A.12)

where X̄ N is a sample average. A central limit theorem (CLT) specifies the
conditions on the individual terms Xi in X̄ N under which

Z N
d→ N [0, 1], (A.13)

that is, under which Z N converges in distribution to a standard normal random
variable.

By construction Z N has mean 0 and variance 1, so what needs to be proved is the
normality. Formal proofs of a CLT do this by obtaining the characteristic function, a
generalization of the moment-generating function, of Z N and showing that it converges
as N → ∞ to the characteristic function of the standard normal distribution.

Note that if X̄ N satisfies a central limit theorem, then so too does h(N )X̄ N for
functions h(·) such as h(N ) = √

N , since

Z N = h(N )X̄ N − E[h(N )X̄ N ]√
V[h(N )X̄ N ]

.

In many applications it is convenient to apply the central limit theorem to the normal-
ization

√
N X̄ N = N−1/2∑N

i=1 Xi , since V[
√

N X̄ N ] is finite.
Examples of central limit theorems include the following:

Theorem A.14 (Lindeberg–Levy CLT): Let {Xi } be iid with E[Xi ] = µ and

V[Xi ] = σ 2. Then Z N
d→ N [0, 1].

For a proof, see Rao (1973, p. 127).
This is the CLT that usually appears in introductory statistics texts and is useful in

the iid case. Since Xi is iid [0, σ 2], Z N simplifies to the more familiar

Z N = X̄ N − µ
σ/

√
N
.

Note that in the iid case only the existence of µ is required to ensure that X̄ N
p→ µ,

whereas to obtain a limiting normal distribution requires the additional assumption
that σ 2 exists.

In applications such as OLS with fixed regressors the iid assumption is inappro-
priate. One can apply a CLT for {Xi } inid, though additional assumptions need to be
made.

Theorem A.15 (Liapounov CLT): Let {Xi } be independent with E[Xi ] = µi

and V[Xi ] = σ 2
i . If lim(

∑N
i=1 E[|Xi − µi |2+δ])/(

∑N
i=1 σ

2
i )(2+δ)/2 = 0, for some

choice of δ > 0, then Z N
d→ N [0, 1].
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This variant of the Liapounov CLT is proved in White (2001a, p. 119). Rao (1973,
p. 128) presents the special case δ = 1.

The main additional assumption in the Liapounov CLT is the existence of an abso-
lute moment of order higher than two. Note also the additional assumptions compared
to the corresponding LLN for iid data. For Xi inid

Z N =
∑N

i=1 Xi −∑N
i=1 µi√∑N

i=1 σ
2
i

.

Theorems A.14 and A.15 are special cases of the more general Lindeberg–Feller
CLT (see Rao, 1973, p. 128). The Lindeberg–Feller CLT has a side condition that can
be difficult to verify.

In most microeconometrics applications, including regression with stratified sam-
pling or with fixed regressors the more complicated Liapounov CLT is used.

A.6. Multivariate Normal Limit Distributions

In this section we focus on the typical microeconometrics case of estimators with
multivariate normal limit distributions.

A.6.1. Multivariate Normal Limit Distributions

The central limit theorems presented were for sequences of scalar random variables.
They can be extended to sequences of vector random variables using the following
result.

Theorem A.16 (Cramer–Wold Device): Let {bN } be a sequence of random
k × 1 vectors. If λ′bN converges to a normal random variable for every k × 1
constant nonzero vector λ, then bN converges to a multivariate normal random
variable.

Rao (1973, p. 128) gives a more general result that is not restricted to normal dis-
tributions.

The advantage of this result is that, if bN is a vector of averages, then λ′bN =
λ1b1N + · · · + λkbk N will be a scalar average and we can apply a scalar central limit
theorem given in the previous section. This will yield

λ′bN − λ′µN√
λ′VNλ

d→ N [0, 1],

where µN =E[bN ] and VN = V[bN ], in which case we conclude that

V−1/2
N (bN − µN )

d→ N [0, I]. (A.14)

This result is explained further in Subsection A.6.3.
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A.6.2. Linear Transformation

Microeconometric estimators can often be expressed as
√

N (̂θ − θ0) = HN aN , where
plim HN exists and aN has a limit normal distribution. The distribution of this product,
or linear transformation of aN , can be obtained directly from part (ii) of Theorem A.12
(Transformation Theorem). We restate it in a form that arises for many estimators.

Theorem A.17 (Product Limit Normal Rule): If a vector aN
d→ N [µ,A] and

a matrix HN
p→ H, where H is positive definite, then

HN aN
d→ N [Hµ,HAH′]. (A.15)

Theorem A.17 can be directly applied to an estimator. For example, the OLS esti-
mator

√
N
(
β̂ − β0

) =
(

1

N
X′X
)−1 1√

N
X′u

is treated as the product of HN = (N−1X′X)−1 and aN = N−1/2X′u and we find the
plim of HN and the limit distribution of aN .

Theorem A.17 can also be used to justify replacement of a limit distribution vari-
ance matrix by a consistent estimate without changing the limit distribution. If we have
shown that

√
N
(̂
θ − θ0

) d→ N [0,B],

then it follows by Theorem A.17 that

B−1/2
N ×

√
N
(̂
θ − θ0

) d→ N [0, I]

for any BN that is a consistent estimate for B and is positive definite.

A.6.3. Limit Variance Matrix

A formal multivariate CLT yields a notationally cumbersome result such as (A.14).
Premultiplying by V1/2

N and applying Theorem A.17, we can reexpress this in the sim-
pler form

bN − µN
d→ N [0,V],

where V = plim VN and we assume bN and VN are appropriately scaled so that V
exists and is positive definite.

Different authors express the limit variance matrix V in different ways.
A general definition is simply

V = plim VN .

This is the most common way that results are presented and is the form used in this
text. In the fixed regressors case it simplifies to V = lim VN .
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In microeconometrics estimation examples the matrix VN is often a matrix average,
say

VN = 1

N

N∑
i=1

Si ,

where Si is a square matrix that is a function of parameters and data for the i th obser-
vation. Given independence over i a law of large numbers can usually be applied so

that VN −E[VN ]
p→ 0. Then

V = lim E[VN ] = lim
1

N

N∑
i=1

E[Si ].

This is the type of expression used by Amemiya (1985).
If the Si are iid then E[Si ] =E[S] is the same for all observations. So simple random

sampling leads to the simpler expression

V =E[S],

a form used for example by Newey and McFadden (1994) and Wooldridge (2002).
As an example, consider the OLS estimator with homoskedastic error, so that√
N
(
β̂ − β0

) d→ N [0, σ 2M−1
xx ]. Then Mxx = plim N−1∑

i xi x′
i can be re-expressed

as Mxx = lim N−1∑
i E[xi x′

i ] if a law of large numbers applies, and as Mxx = E[xx′]
under simple random sampling.

More complicated forms of V arise, such as the sandwich form ABA′. The preced-
ing discussion is then applied to each component. For example, B = plim BN may be
expressed as B = limE[BN ] or as B = E[S] under random sampling if B = N−1∑

i Si .

A.6.4. Asymptotic Distribution and Variance

To obtain the limit distribution of an estimator we work with the sequence bN =√
N (̂θ − θ0) for theoretical reasons to ensure a nonzero variance of bN as N → ∞.

Then the limit distribution of bN is a normal distribution, and many authors say that bN

is asymptotically normal and call the limit variance matrix the asymptotic variance
of bN .

It can be convenient to reexpress results in terms of the distribution and variance
matrix of θ̂ itself.

Definition A.18 (Asymptotic Distribution of θ̂): If
√

N
(̂
θ − θ0

) d→ N [0,B], (A.16)

then we say that in large samples θ̂ is asymptotically normally distributed
with

θ̂ ∼ N
[
θ0, N−1B

]
, (A.17)

where the term “in large samples” means that N is large enough for (A.16) to be
a good approximation but not so large that the variance in (A.17) goes to zero.
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The result (A.17) follows from (A.16) since dividing a random variable by
√

N
leads to division of its variance by N .

A shorthand notation is to implicitly presume asymptotic normality and use the
following terminology.

Definition A.19 (Asymptotic Variance of θ̂): If (A.16) holds then we say that
the asymptotic variance matrix of θ̂ is

V[̂θ] = N−1B. (A.18)

Definition A.20 (Estimated Asymptotic Variance of θ̂): If (A.16) holds then
we say that the estimated asymptotic variance matrix of θ̂ is

V̂[̂θ] = N−1B̂, (A.19)

where B̂ is a consistent estimate of B.

Some authors use Avar[̂θ] and Âvar[̂θ] in Definitions A.19 and A.20 to avoid poten-
tial confusion with the variance operator V[·]. It should be clear that here V[̂θ] means
asymptotic variance of an estimator since few estimators in this book have closed-form
expressions for the finite-sample variance.

As an example of Definitions A.18–A.20, if {Xi } are iid [µ, σ 2] then the Lindeberg–

Levy central limit theorem leads to
√

N (X̄ N − µ)/σ
d→ N [0, 1], or equivalently that√

N X̄ N
d→ N [µ, σ 2]. We say that asymptotically X̄ N ∼ N [µ,σ 2/N ]; the asymptotic

variance of X̄ N is σ 2/N ; and the estimated asymptotic variance of X̄ N is s2/N , where
s2 is a consistent estimator of σ 2 such as s2 =∑i (Xi − X̄ N )2/(N − 1).

A.6.5. Asymptotic Efficiency

In finite samples the Cramer–Rao lower bound for the variance–covariance matrix of
unbiased estimators is −(E[∂2 ln L N/∂θ∂θ

′∣∣
θ0

])−1. This result extends to consistent
estimators that are asymptotically normal.

Definition A.21 (Asymptotic Efficiency): A consistent asymptotically normal
estimator θ̂ of θ is said to be asymptotically efficient if it has an asymptotic
variance–covariance matrix equal to the Cramer–Rao lower bound.

A.7. Stochastic Order of Magnitude

A useful notation for rates of convergence of sequences of variables is the order of
magnitude of a sequence using (O, o) notation, or big-O, little-o notation.

A sequence of nonstochastic real numbers aN is O(g(N )), if lim(aN/g(N )) is finite
nonzero, and is o(g(N )), if lim(aN/g(N )) is zero. Thus aN is O(g(N )) if it is of the
same order of magnitude as the function g(N ) and is o(g(N )) if it is of smaller order
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of magnitude than g(N ). For example, (3/N ) + (5/N )2 is O(1/N ) or O(N−1), as it
behaves for large N like a constant times N−1 and is o(N−1/2) but larger than o(N−1).

This notation has been extended to stochastic orders of magnitude of sequences
of random variables. The notation becomes (Op, op) notation.

Definition A.22 (Stochastic Order of Magnitude): A sequence of random vari-
ables bN is Op(g(N )) if

0 < plim
bN

g(N )
<∞

and is op(g(N )) if

plim
bN

g(N )
= 0.

Most often g(N ) = N−c for some constant c ≥ 0. An estimator θ̂ consistent for θ0

can be written as θ̂ = θ0 + op(1), since it equals θ0 plus a term that goes to zero in
probability. An estimator θ̂ that is additionally root-N consistent for θ0 can be written
as θ̂ = θ0 + Op(N−1/2), since then N 1/2(̂θ − θ0) = Op(1).

A.8. Other Results

This section contains some key finite sample results on conditional expectation and on
the interchange of expectations and transformation.

Theorem (Law of Iterated Expectations): For random variables Y and X

E[Y ] = EX [EY |X [Y |X ]],

where E[·] denotes the unconditional or marginal mean of Y , EX [·] denotes un-
conditional expectation with respect to the marginal cdf of X, and EY |X [·|X ]
denotes conditional expectation with respect to the conditional distribution of Y
given X.

This result means that if we first obtain the conditional mean of Y given X , and
then take the expected value over X , we will obtain the unconditional mean of Y . See
Rao (1973, p. 97) for a proof. For example, if E[u|x] = 0 then E[u] = Ex[E[u|x]] =
Ex[0] = 0.

Theorem (Decomposition of Variance): For random variables Y and X

V[Y ] = EX [VY |X [Y |X ]] + VX [EY |X [Y |X ]],

where V[Y ] denotes the unconditional variance of Y , EX [·] denotes uncondi-
tional expectation with respect to the marginal cdf of X, VY |X [Y |X ] denotes the
conditional variance of Y given X, VX [·] denotes variance with respect to the
unconditional distribution of X, and EY |X [·|X ] denotes conditional expectation
with respect to the conditional distribution of Y given X.
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In words, the unconditional variance of Y equals the sum of (1) the expected value
(over X ) of the conditional variance and (2) the variance (over X ) of the conditional
mean. A simple way to remember this is to recognize that the unconditional variance
equals EV plus VE. See Rao (1973, p. 97) for a proof.

Theorem (Jensen’s Inequality): If Z is a random variable such that E[Z ] exists,
and g(·) is a convex function, then

g(E[Z ]) ≤ E[g(Z )].

If instead g(·) is a concave function then

g(E[Z ]) ≥ E[g(Z )].

This result, proved in Rao (1973, p. 58), is very important for nonlinear mod-
els. It emphasizes the difference between behavior of the average individual and
average behavior. For example, suppose an exponential model is appropriate, with
E[y|x] = exp(x′β). Then since the exponential function is concave, Jensen’s Inequal-
ity implies that exp(E[x′β]) ≥ E[exp(x′β)]. The conditional mean evaluated at the in-
dividual with average characteristics x = E[x] exceeds the unconditional mean E[y] =
E[E[y|x]] = E[exp(x′β)].

A.9. Bibliographic Notes

A classic source with proofs is Rao (1973, pp. 108–130), who we cite wherever possible. The
results summarized also draw heavily on the books by Amemiya (1985, Chapter 3) and White
(2001a).

Graduate-level textbooks such as Greene (2003) provide summaries of key results. More
advanced texts by Davidson and MacKinnon (1993), Hendry (1995), Ruud (2000), and
Wooldridge (2002) provide treatments at least as detailed as that here. Davidson (1994) pro-
vides a book-length treatment of stochastic theory for the econometrician. As already noted ter-
minology can differ across references, especially in the use of Slutsky’s Theorem and Cramer’s
Theorem.
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Making Pseudo-Random Draws

In this appendix we state the density or probability mass functions and first two mo-
ments of leading univariate distibutions and present methods to generate random draws
from these distributions.

Table B.1. Continuous Random Variable Densities and Momentsa

Random Variable pdf f (x) Mean; Variance

Uniform U[a, b] 1/(b − a), (a+b)
2 ; (a−b)2

12

Normal N [µ, σ 2] 1
σ
√

2π
e− (x−µ)2

2σ 2 , µ; σ 2

Exponential E[λ] λe−λx , λ > 0 1/λ; 1/λ2

Gamma G[a,b] 1
�(a)ba xa−1e− x

b ab; ab2

Beta B[a,b] �(a+b)
�(a)�(b) xa−1(1 − x)b−1, a

a+b ; ab
(a+b)2(a+b+1)

Logistic L[a,b] e− x−a
b /[b(1 + e− x−a

b )2], −∞ < a <∞ a; (bπ )2/3

Chi-Square χ2(n) xn/2−1e−x/2

�(n/2)2n/2 n; 2n

t t(v) f (x) = �( v+1
2 )

�( v2 )
√
vπ

(1 + x2

v
)−
v+1

2 0; v
v−2 , for v > 2

F F(w, v) f (x) = �( w+v
2 )(v/w)v/2

�( w2 )�( v2 ) xw/2−1 v
v−2 , for v > 2;

× (x + v
w

)−
w+v

2 2v2(v+w−2)
w(v−4)(v−2)2 , for v > 4

a All parameters are restricted as follows: b > a for the Uniform; µ unrestricted, σ 2 > 0 for the Normal; λ > 0
for the Exponential; a, b > 0 for the gamma; a, b > 0 for the Beta; a unrestricted and b > 0 for the Logistict;
v is an integer for the t-distribution; for the F-distribution v and w must be integers.

957



MAKING PSEUDO-RANDOM DRAWS

Table B.2. Continuous Random Variable Generators

Random Variable Range of Values Random Variable Generator

Uniform U[a, b] a ≤ x ≤ b x = a + (b − a)r, r ∼ U[0, 1]

Normal N [µ, σ 2] − ∞ < x1, x2 <∞
{

x1 = µ+ σ√−2 ln(r1) cos(2πr2)
x2 = µ+ σ√−2 ln(r1) sin(2πr2)

[r1, r2 ∼ U[0, 1]; the resulting pair x1 and x2 are independent random variables.]

Exponential E[λ] 0 ≤ x <∞ x = − 1
λ

ln(r )

Gamma G[a,b] 0 ≤ x <∞


(i) x = − 1
λ

ln( a
i=1ri ) or

x =∑a
i=1 Ei

(i i) x = − 1
λ

[
ln( m

i=1ri ) − y1 y2
]

(i) ri ∼ U[0, 1]; a is integer. Ei s are iid exponential random variates.
When a = 1, we have an exponential random variable
(i i) a is non-integer. a = m + q, 0 < q < 1,m = integer,
y1, y2 are independent B(q, 1 − q) and E(1).

Beta B[a,b] 0 ≤ x ≤ 1

{
(i) x = y1/(y1 + y2)

(i i) x = r
1
a

1 /(r
1
a

1 + r
1
b

2 ), (r
1
a

1 + r
1
b

2 ) ≤ 1
(i) a, b are integers. y1 is G(k, a), y2 is G(k, b).
k can be chosen arbitrarily.
(i i) a, b are non-integer ri ∼ U[0, 1]; successive pairs of r1 and r2 are

generated until (r
1
a

1 + r
1
b

2 ) ≤ 1.

Logistic L[a,b] − ∞ < x <∞ x = a + b ln( r
1−r )

[r ∼ U[0, 1]
Chi-Square χ2(n) 0 ≤ x

∑n
i=1 y2

i
[n is an integer ; yi s are independent N (0, 1).]

t t(v) − ∞ < x <∞ x = y1/
√

y2/v

[y1 is N (0, 1); y2, independent of y1, is χ2(v).]

F F(w, v) 0 ≤ x x = (y1/w)/(y2/v)
[ y2, and y1, are independent χ2(v), χ2(w) respectively.]
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Table B.3. Discrete Random Variable Probability Mass Functions and Moments

Random Variable a pmf f (x) Mean; Variance

Binomial Bi[n, p]

(
n
x

)
px (1 − p)n−x np; np(1 − p)

Poisson P[λ] e−λλx/x! λ; λ

Negative binomial NB[n, p]

(
n + x − 1

x

)
pn(1 − p)x n(1 − p)

p
;

n(1 − p)

p2

a For the binomial 0 ≤ p ≤ 1 and n is a positive integer; for the Poisson λ > 0; and for the negative bino-
mial 0 < p < 1, n > 1.

Table B.4. Discrete Random Variable Generators

Random Variable Range of Values Random Variable Generator

Binomial Bi(n, p) x = 0, 1, . . . , n

set x = 0;
do the loop n times

generate r uniform on [0,1]
if r ≤ p, then x = x + 1

output x

Poisson P(λ) x = 0, 1, . . .

set x = 0; t = 0
do the loop until t < λ

generate exponential random variable y
set t = t + y
x = x + 1

output x

Negative binomial
generate λ from G(n, 1−p

p )

NB(n, p)
x = 0, 1, . . . generate x from P(λ)

output x
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L. Mátyas and P. Sevestre (Eds.), 152–195, Dordrecht, Kluwer.

Blake, D., A. Lunde, and A. Timmermann (1999), “The Hazards of Mutual Fund Underperfor-
mance: A Cox Regression Analysis,” Journal of Empirical Finance, 6, 121–152.

Bliss, C. I. (1934), “The Method of Probits,” Science, New Series, 79(2037), 38–39.
Blomquist, S., and M. Dahlberg (1999), “Small Sample Properties of LIML and Jackknife

IV Estimators: Experiments with Weak Instruments,” Journal of Applied Econometrics, 14,
69–88.

Blundell, R., and S. Bond (1998), “Initial Conditions and Moment Restrictions in Dynamic
Panel Data Models,” Journal of Econometrics, 87, 115–143.

Blundell, R., R. Griffith, and J. Van Reenen (1995), “Dynamic Count Data Models of Techno-
logical Innovation,” Economic Journal, 105, 333–344.

Blundell, R., R. Griffith, and J. Van Reenen (1999), “Market Share, Market Value and Innova-
tion in a Panel of British Manufacturing Firms,” Review of Economic Studies, 66, 529–554.

Blundell, R., R. Griffith, and F. Windmeijer (1995), “Individual Effects and Dynamics in Count
Data,” Discussion Paper 95-03, Department of Economics, University College London.

Blundell, R., R. Griffith, and F. Windmeijer (2002), “Individual Effects and Dynamics in Count
Data Models,” Journal of Econometrics, 102, 113–131.

Blundell, R. W., and T. E. MaCurdy (2000), “Labor Supply: A Review of Alternative Ap-
proaches,” in Handbook of Labor Economics, O. C. Ashenfelter and D. E. Card (Eds.),
Volume 3A, 1559–1695, Amsterdam, North-Holland.

965



REFERENCES

Blundell, R. W., and J. L. Powell (2004), “Endogeneity in Semiparametric Binary Response
Models,” Review of Economic Studies, 71, 655–679.

Blundell, R. W., and R. J. Smith (1989), “Estimation in a Class of Limited Dependent Variable
Models,” Review of Economic Studies, 56, 37–58.
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Heckman, J. J., and B. E. Honoré (1989), “The Identifiability of the Competing Risks Model,”
Biometrika, 76, 325–330.

Heckman, J. J., and V. Hotz (1989), “Choosing among Alternative Nonexperimental Methods
for Evaluating the Impact of Social Programs,” Journal of the American Statistical Associa-
tion, 84, 862–880.

Heckman, J. J., V. Hotz, and J. Walker (1985), “New Evidence on Timing and Spacing of
Births,” American Economic Review Papers and Proceedings, 75, 179–184.

Heckman, J. J., H. Ichimura, J. A. Smith, and P. Todd (1998), “Characterizing Selection Bias
Using Experimental Data,” Econometrica, 66, 1017–1098.

Heckman, J. J., H. Ichimura, and P. Todd (1997), “Matching as an Econometric Evaluation
Estimator: Evidence from Evaluating a Job Training Program,” Review of Economic Studies,
64, 605–654.

Heckman, J. J., R. J. Lalonde, and J. A. Smith (1999), “The Economics and Econometrics of
Active Labor Market Programs,” in Handbook of Labor Economics, O. Ashenfelter, and D.
Card (Eds.), Volume 3A, 1865–2097, Amsterdam, North-Holland.

Heckman, J. J., and T. E. MaCurdy (1980), “A Life-Cycle Model of Female Labor Supply,”
Review of Economic Studies, 47, 47–74.

Heckman, J. J., and R. Robb (1985), “Alternative Methods for Evaluating the Impact of In-
terventions,” in Longitudinal Analysis of Labor Market Data, J. J. Heckman and B. Singer
(Eds.), Cambridge, UK, Cambridge University Press.

Heckman, J. J., and B. Singer (1984a), “A Method for Minimizing the Impact of Distributional
Assumptions in Econometric Models of Duration Data,” Econometrica, 52, 271–320.

Heckman, J. J., and B. Singer (1984b), “The Identifiability of the Proportional Hazard Model,”
Review of Economic Studies, 51, 231–241.

Heckman, J. J., and J. A. Smith (1995), “Assessing the Case for Social Experiments,” Journal
of Economic Perspectives, 9, 85–110.

Heckman, J. J., and J. A. Smith (1998), “Evaluating the Welfare State,” in Econometrics and
Economic Theory in the 20th Century: The Ragnar Frisch Centennial Symposium, S. Strøm,
(Ed.), 241–318, Cambridge, UK, Cambridge University Press.

Heckman, J. J., J. I. Tobias, and E. Vytlacil (2003), “Simple Estimators for Treatment Parame-
ters in a Latent-Variable Framework,” Review of Economics and Statistics, 85, 748–755.

Heckman, J. J., and E. Vytlacil (1998), “Instrumental Variable Methods for the Correlated Ran-
dom Coefficient Model: Estimating the Average Rate of Return to Schooling When the Re-
turn Is Correlated with Schooling,” Journal of Human Resources, 33, 974–987.

Heckman, J. J., and E. J. Vytlacil (2001), “Local Instrumental Variables,” C. Hsiao,
K. Morimune and J. L. Powell (Eds.), Nonlinear Statistical Modeling: Proceedings of
the Thirteenth International Symposium in Economic Theory and Econometrics: Essays in
Honor of Takeshi Amemiya, 1–46, Cambridge, UK, Cambridge University Press.

Hendry, D. F. (1984), “Monte Carlo Experimentation in Econometrics,” in Handbook of Econo-
metrics, Z. Griliches and M. Intrilligator (Eds.), Volume 2, 937–976, Amsterdam, North-
Holland.

Hendry, D. F. (1995), Dynamic Econometrics, Oxford, Oxford University Press.
Hendry, D. F., and M. S. Morgan (1996), Foundations of Econometrics, Cambridge and New

York, Cambridge University Press.
Herriges, J. A., and C. L. Kling (1999), “Nonlinear Income Effects in Random Utility Models,”

Review of Economics and Statistics, 81, 62–72.

978



REFERENCES

Heyde, C. C., and I. M. Johnstone (1979), “On Asymptotic Posterior Normality of Stochastic
Processes,” Journal of the Royal Statistical Society, B, 41, 184–189.

Hirano, K., G. Imbens, and G. Ridder (2003), “Efficient Estimation of Average Treatment Ef-
fects Using Estimated Propensity Score,” Econometrica, 71, 1161–1190.

Hirano, K., and J. Porter (2003), “Asymptotic Efficiency in Parametric Structural Models with
Parameter-Dependent Support,” Econometrica, 71, 1307–1338.

Hoch, I. (1962), “Estimation of Production Function Parameters Combining Time-Series and
Cross-Section Data,” Econometrica, 30, 34–53.

Hoerl, A. E., and R. W. Kennard (1970), “Ridge Regression: Applications to Non-orthogonal
Problems,” Technometrics, 12, 69–82.

Holland, P. W. (1986), “Statistics of Causal Inference,” Journal of the American Statistical
Association, 81, 945–960.

Holly, A. (1982), “A Remark on Hausman’s Specification Test,” Econometrica, 49, 749–759.
Holly, A. (1987), “Specification Tests: an Overview,” in Advances in Economics and Econo-

metrics: Theory and Applications, T. F. Bewley (Ed.), Volume 1, 59–97, Cambridge, UK,
Cambridge University Press.

Holtz-Eakin, D., W. Newey, and H. S. Rosen (1988), “Estimating Vector Autoregressions with
Panel Data,” Econometrica, 56, 1371–1395.
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Shannon
BHHH estimate. See Berndt, Hall, Hall, and Hausman
BHHH method. See Berndt, Hall, Hall, and Hausman
bias-corrected and accelerated (BCA) bootstrap

method, 360
biased sampling, 42–5, 626–7

see also sample selection; endogenous stratification
BIC. See Bayesian information criterion
binary endogenous variable, 562
binary outcome models, 463–89

additive random utility model, 476–8
aggregated data, 480–2
alternative-invariant regressors, 478

alternative-varying regressors, 478
choice-based samples, 478–9
corrected score estimator, 916–8
definition, 466
example, 464–5
identification, 476, 483
index function model, 475–6
marginal effects, 467, 470–1
measurement error in dependent variable, 914
measurement error in regressors, 919
ML estimator, 468–9
model misspecification, 472
multiple imputation example, 937–8
OLS estimator, 471
panel data, 795–9
semiparametric estimation, 482–6
see also logit models; probit models

binding function, 404–5
bivariate counts, 215, 685–7
bivariate negative binomial distribution, 686–7
bivariate ordered probit model, 523
bivariate Poisson distribution, 686
bivariate Poisson-lognormal mixture, 686
bivariate probit model, 522–3
bivariate sample selection model, 547–53

application, 553–5
bounds, 566
conditional mean, 548–50
conditional variance, 549–50
definition, 547
Heckman two-step estimator, 550–1
identification, 551, 565–6
marginal effects, 552
ML estimator, 548
outcome equation, 547
participation equation, 547
semiparametric estimator, 565–6
versus two-part model, 546, 552–3

Bonferroni test, 230
bootstrap hypothesis tests

asymptotic refinement, 363–4, 366–7, 371–2,
378–9

bootstrap critical value, 256, 363
bootstrap p-value, 256, 363
example, 366–8
nonsymmetrical test, 363, 380
power, 372–3
symmetrical test, 363
without asymptotic refinement, 363, 367–8,

378
bootstrap methods, 357–83

asymptotic refinement, 359, 366–7
bias estimate, 365
bias-corrected estimator, 365, 368
clustered data, 363, 377–8, 845
confidence intervals, 364–5, 368
consistency, 369–70
critical value, 363
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examples, 254–6, 366–8
for functions of parameters, 363
general algorithm, 360
for GMM, 379–80
heteroskedastic data, 363, 376–7
introduction, 254–6
for nonsmooth estimators, 373, 380–1
number of bootstrap samples, 361–2
panel data, 363, 377–8, 708, 746, 751
p-value, 363
recentering, 374, 379
rescaling, 374
sampling methods for, 360
smoothness requirements, 370
standard error estimate, 362, 366
time series data, 381
variance estimate, 362
without asymptotic refinement, 358, 367–8
see also bootstrap hypothesis tests

bounds identification, 29
in measurement error models, 906–8

bounds in selection model, 566
Boyden, Fletcher, Goldfarb, and Shannon (BFGS)

algorithm, 344

CAIC. See consistent Akaike information criterion
calibrated bootstrap, 374
caliper matching, 874, 895
canonical link function, 149, 469, 783
case-control analysis, 479, 823
causality, 18–38

examples, 69–70, 98
Granger causality, 22
identification frameworks and strategies,

35–3
in linear regression model, 68–9
in potential outcome models, 32–4, 862–5
in simultaneous equations model, 26–7
in single-equation model, 31
and weighting, 820–1
see also endogeneity

cdf. See cumulative distribution function
censored least absolute deviations (CLAD) estimator,

564–5, 808
censored models, 530–44, 579–80

conditional mean, 535
count models, 680
definitions, 532, 579–80
examples, 530–1, 535
ML estimator, 533–4
semiparametric estimation, 563–5
see also duration model; selection models; Tobit

models; truncated models
censored normal regression model. See Tobit model
censoring mechanisms, 532, 579–80

censoring from above, 532, 579
censoring from below, 532, 579
left censoring, 532, 579, 588

independent censoring, 580
interval censoring, 579, 588
noninformative censoring, 580
random censoring, 579
right censoring, 532, 579, 581, 589
sample selection, 44–5, 547
type 1 censoring, 579
type 2 censoring, 580

census coefficient, 819
central limit theorem (CLT), 949–2

Cramer linear transformation, 952
Cramer-Wold device, 951
definition, 950
examples of use, 80, 130
Liapounov CLT, 950
Lindeberg-Levy CLT, 950
multivariate, 951–2
sample average, 949
sampling scheme, 131, 950

CGF tests. See chi-square goodness-of-fit
characteristic function, 370, 913, 950
chatter, 394, 410
Chebychev’s inequality, 946
chi-square goodness-of-fit (CGF) tests, 266–7, 270–1,

474
choice-based samples, 823

binary outcome models, 478–9
see also endogenous stratification

Choleski decomposition, 416, 448
CL model. See conditional logit
CLAD estimator. See censored least absolute

deviations
Clayton copula, 654
CLT. See central limit theorem
clustered data, 829–53

application, 848–53
cluster bootstrap, 363, 377–8, 845
cluster-robust inference, 707, 834, 842,

845
cluster sampling, 41–2
cluster-specific effects, 830–2, 837–45
comparison to panel data, 831–2
diagnostic tests, 841
dummy variables model, 840
fixed effects estimator, 840–1, 843–5
hierarchical models, 845–8
large clusters, 832
nonlinear models, 841–5
OLS estimator, 75, 833–7
quasi-ML estimator, 150
random effects estimator, 837–9, 843
small clusters, 832
see also panel data

cluster-robust standard errors
bootstrap, 363, 377–8, 845
clustered data, 834, 842
panel data, 706–7, 745–6, 789
see also robust standard errors
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cluster-specific fixed effects (CSFE) estimator,
839–41, 843–4

application, 848–53
between estimator, 840–1
nonlinear models, 843–4
within estimator, 140–1

cluster-specific fixed effects (CSFE) model, 831, 843
cluster-specific random effects (CSRE) estimator,

837–9, 843–4
application, 848–53

cluster-specific random effects (CSRE) model, 831,
843–4

cluster variable, 707
CM tests. See conditional moment
coefficient interpretation

in binary outcome models, 467, 473
in competing risks model, 646
in count model, 669
in duration models, 606–7
in misspecified linear model, 91–2
in multinomial outcome models, 493–4, 501–3
in nonlinear models, 122–4, 162–3
in Tobit model, 541–2
see also marginal effects

coherency condition, 562
cohort-level data. See pseudo panels
cointegration, 382, 767
common parameters, 801
compensating variation, 500–7, 512
competing risks model (CRM), 642–8, 658–62

application, 658–62
censoring, 642
coefficient interpretation, 646
definitions, 642–4
dependent risks, 647–8
exit route, 643
identification, 646
independent risks, 644–6
ML estimator, 644–5
proportional hazards, 645–6
spell duration, 643
with unobserved heterogeneity, 647, 659

complementary log-log model, 466–7, 603
complete case analysis. See listwise deletion
complex surveys, 41–2, 814–6, 853–6
composition methods, 415
computational difficulties, 350–2
concentration parameter, 109
conditional analysis, 717
conditional expectations, 955–6
conditional independence assumption, 23, 863, 865

definition, 863
for participation, 863
given propensity score, 865
selection on observables only, 868
unconfoundedness, 863

conditional likelihood, 139–40, 824
panel models, 731–2, 782–3, 796–9, 805

conditional logit (CL) model, 500–3, 524–5
application, 491–4
definition, 500
fixed effects binary logit, 797, 844
marginal effects, 493, 501–3, 525
ML estimator, 501
from ARUM, 505
see also multinomial outcome models

conditional ML estimator, 731–2, 782–3, 796–9, 805,
824

conditional moment (CM) tests, 264–5, 267–9, 319
consistent CM test, 268
in duration models, 632
example, 269–71
in Tobit model, 544
see also m-tests

conditional mean
squared error loss, 67–9

conditional mode
step loss, 68

condition number, 350
conditional quantile

asymmetric absolute loss, 68
confidence intervals, 231–2, 316, 364–5, 368
consistent Akaike information criterion (CAIC), 278
consistent test statistic, 248
consistency

definition, 945
of extremum estimators, 125–7, 132–3
of GMM estimator, 173–4, 182
of m-estimator, 132–3
of ML estimator, 142, 146–50
of NLS estimator, 155
of OLS estimator, 73, 80
strong consistency, 947
weak consistency, 947
see also asymptotic distribution; identification;

pseudo-true value
constant coefficients model. See pooled model
contagion, 612
contamination bias, 903–4
contemporaneous exogeneity assumption, 748–9, 752,

781
continuous mapping theorem, 949
control function approach, 37
control function estimator, 869–70, 890
control group, 49
conventions, 16–17
convergence criteria, 339–40, 458
convergence in distribution, 948–9

continuous mapping theorem, 949
definition, 948
limit distribution, 948
transformation theorem, 949
vector random variables, 949
see also central limit theorem

convergence in probability, 944–7
alternative modes of convergence, 945
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consistency, 945
definition, 945
probability limit, 945
Slutsky’s theorem, 945
uniform convergence, 126, 301
vector random variables, 945
see also law of large numbers

copulas, 216, 651–5
count example, 687
definition, 651–2
dependence parameter, 653–4
leading examples, 654
ML estimator, 655
survival copulas, 652

correlated random effects model, 719, 786
counterfactual, 32, 555, 861, 871

see also potential outcome model
count data, 665

examples, 665
heteroskedasticity, 665
right-skewness, 665
see also count models

count models, 665–93
censored, 680
application, 671–4, 690
endogenous regressors, 683, 687–9
endogenous sampling, 823
finite mixture models, 678–9
hurdle models, 680–1
measurement error in dependent variable, 915
measurement error in regressors, 915–8
mixture models, 675–7
multivariate, 685–7
OLS estimator, 684
negative binomial model, 675–7
NLS estimator, 684
panel data, 792–5, 802–8
Poisson model, 666–74
sample selection, 680
semiparametric regression, 684–5
truncated, 679–80
zero-inflated, 681

covariance matrix. See variance matrix
covariance structures, 177, 379, 753, 766–7
covariates. See regressors
Cox CRM model. See competing risks
Cox PH model. See proportional hazards
Cox-Snell residual, 289, 631, 633–6
CPS. See Current Population Survey
Cramer linear transformation, 952
Cramer-Rao lower bound, 143, 954

see also semiparametric efficiency bound
Cramer’s theorem, 949
Cramer-Wold device, 130, 951
CRM. See competing risks model
cross-equation parameter restrictions, 210
cross-section data, 47
cross-validation, 304, 314–6, 318, 321

CSFE estimator. See cluster-specific fixed effects
CSRE. See cluster-specific random effects
cumulant, 370
cumulative distribution function (cdf ), 576
cumulative hazard function

definition, 577–8
in competing risks model, 644–5
as diagnostic tool, 631–2
in likelihood function, 588
Nelson-Aalen estimator, 582–4, 605–6, 662
in proportional hazards model, 590

Current Population Survey (CPS), 58, 814–5
curse of dimensionality

in Bayesian methods, 419–20
multivariate kernel density estimator, 306
multivariate kernel regression estimator, 319
high-dimensional integrals, 393

data augmentation, 454–5, 932
imputation step, 455, 932
for missing data, 932–8
prediction step, 455, 933
regression example, 933

data-generating process (dgp), 72–3, 124
misspecified, 90, 132

data mining, 285–6
data sets. See microdata
data sets used in applications

Current Population Survey Displaced Workers
Supplement (McCall), 603–8, 632–6, 658–62

fishing-mode choice data (Kling and Herriges),
463–6, 486, 491–5

National Longitudinal Survey (Kling), 110–2
National Supported Work demonstration project

(Dehejia and Wahba), 889–95
Panel Survey of Income Dynamics cross-section

sample, 295–7, 300
Panel Survey of Income Dynamics panel sample

(Ziliak), 708–15, 754–6
patents-R&D panel data (Hausman, Hall, and

Griliches), 792–5
Rand Health Insurance Experiment expenditures,

553–6, 565
Rand Health Insurance Experiment medical doctor

contacts, 671–4, 692
strike duration data (Kennan), 574–5, 582
Vietnam World Bank Livings Standards Survey,

88–90, 848–53
see also applications with data

data structures, 39–62
data sources, 58–9
handling microdata, 59–61
natural experiments, 54–8
observational data, 40–8
social experiments, 48–54

data summary approach to regression, 820
Davidon, Fletcher, and Powell (DFP) algorithm, 344,

350–1
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decomposition of variance, 955–6
degenerate distribution, 948
degrees-of-freedom adjustment, 75, 102, 138, 185–6,

278, 841
delta method, 231–2

bootstrap alternative, 363
density kernel, 421
density-weighted average derivative (DWAD)

estimator, 326
dependent variable, 71
descriptive approach to regression, 820
deviance, 149, 244
deviance residual, 289, 291
DFP algorithm. See Davidon, Fletcher, and Powell

algorithm
dgp. See data-generating process
diagnostic tests. See specification tests
DID estimator. See differences-in-differences
differences-in-differences (DID) estimator, 55–7,

768–70, 878–9
application, 890–1
consistency, 770
definition, 768
introduction, 55–7
natural experiments, 878
with controls, 878–9
without controls, 878

direct regression, 906
disaggregated data

contrasted with aggregated data, 5–10
discrete factor models, 678

see also finite mixture models
discrete outcomes. See binary outcomes; counts;

multinomial outcomes
discrete-time duration data, 577–8, 600–3

cumulative hazard function, 578
discrete-time proportional hazards, 600–3
gamma heterogeneity, 620
hazard function, 578
logit model, 602
ML estimator, 601
nonparametric estimation, 581–4
probit model, 602
survivor function, 578

dissimilarity parameter, 509
disturbance term. See error term
double bootstrap, 374
dummy endogenous variable model, 557
dummy variable estimator, 784–5, 800, 805, 840

see also LSDV estimator
duration data, 573–664

different types, 626, 641
duration models, 573–664

accelerated failure time, 591–2
applications, 574–5, 583, 589, 603–8, 632–6,

658–62
censoring, 579–82, 587–9, 595, 642
competing risks, 642–8, 658–62

cumulative hazard function, 577–8
discrete time, 577–8, 600–3
generalized residual, 631
hazard function, 576, 578
key concepts, 576–8
mixture models, 613–25
ML estimator, 587–9
multiple spells, 655–8
multivariate, 648–55
nonparametric estimators, 580–4
OLS estimator, 590–1
panel data, 801–2
parametric models, 584–91
proportional hazards, 592–7
risk set, 581, 594
semiparametric estimation, 594–600, 610–2
specification tests, 628–32
survivor function, 576, 578
time-varying regressors, 597–600
see also proportional hazards model

DWAD estimator. See density-weighted average
derivative

dynamic panel models, 763–8, 791–2, 797–9,
806–7

Arellano-Bond estimator, 765–6
binary outcome models, 806–7
count models, 806–7
covariance structures, 766–7
inconsistency of standard estimators, 764–5
initial conditions, 764–5
IV estimators, 764–5
linear models, 763–8
MD estimator, 767
nonlinear models, 791–2, 797–9, 806–7
nonstationary data, 767–8
transformed ML estimator, 766
true state dependence, 763–4
unobserved heterogeneity, 764
weak exogeneity, 749

EDF bootstrap. See empirical distribution function
bootstrap

Edgeworth expansions, 370–1
efficient score, 141
Eicker-White robust standard errors, 74–5, 80–1, 112,

137, 164, 175
see also heteroskedasticity robust-standard errors

EM algorithm see expectation maximization
empirical Bayes method, 442
empirical distribution function (EDF) bootstrap, 360

see also paired bootstrap
empirical likelihood, 203–6
empirical likelihood bootstrap, 379–80
encompassing principle, 283
endogeneity

definition, 92
due to endogenous stratification, 78, 824–5
Hausman test for, 271–2, 275–6
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identification frameworks and strategies, 35–7
see also endogenous regressors; exogeneity

endogenous regressors, 78
binary, 557, 562
in count models, 683–4, 687–9
in discrete outcome models, 473
in duration models, 598
dummy, 557, 562
inconsistency of OLS, 95–6
in linear panel models, 744–63
in linear simultaneous equations model, 23–30
in nonlinear panel models, 792
in potential outcome model, 30–3
returns-to-schooling example, 69–70
in selection models, 559–62
in single-equation models, 30
see also GMM estimator; IV estimator

endogenous sampling, 42–5, 78, 822–9, 856
consistent estimation, 827–9
leading examples, 823
see also censored models; endogenous

stratification; sample selection models
endogenous stratification, 820, 826–7, 856
equation-by-equation OLS, 210
equicorrelated errors, 701, 722–4, 804
equidispersion, 668, 670
error components model. See RE model
error components SEM, 762
error components SUR model, 762
error components 2SLS estimator, 760
error components 3SLS estimator, 762
error term, 71, 168

additive, 168
nonadditive, 168

errors-in-variables. See measurement error
estimated asymptotic variance, 954

see also asymptotic distribution
estimated prediction error. See cross-validation
estimating equations estimator, 13–5

asymptotic distribution, 134–5, 174
clustered data, 842
computation, 339
definition, 134
generalized, 134, 790, 794, 804
variance matrix estimation, 137–9
weighted, 829
see also MM estimator

Euler conditions, 171, 749
exact identification. See just identification
exchangeable errors, 701, 804
exhaustive sampling, 815–6
exogeneity, 22–3

conditional independence, 23
Granger causality, 22
of instrument, 106
overidentifying restrictions test for, 277
panel data assumptions, 700, 748–52, 754,

781

strong exogeneity, 22
weak exogeneity, 22

exogenous sampling, 42–3
exogenous stratified sampling, 42, 78, 814–5, 820,

825, 856
exogenous regressor. See exogeneity
expectation maximization (EM) algorithm, 345–7

for data imputation, 930–2
E (Expectation) step, 346
for finite mixture model, 623–5
M (Maximization) step, 346
compared to NR algorithm, 625

expected elapsed duration, 626
experimental data, 48–58

control group, 49
natural experiments, 54–8
social experiments, 48–54
treatment group, 49

explanatory variables. See regressors
exponential conditional mean, 124, 155, 669

coefficient interpretation, 124, 162–3, 669
exponential distribution, 140, 584–6

for generalized (Cox-Snell) residual, 631
exponential family density, 427

conjugate prior for, 427–8
see also linear exponential family

exponential-gamma regression model, 616,
633–4

exponential-IG regression model, 634
exponential regression model

application with censored data, 606–8, 633
example with uncensored data, 159–63

extreme value distribution. See type 1 extreme value
extremum estimator, 124–39

asymptotic distribution, 127–31
consistency, 125–7
definition, 125
formal proofs, 130–2
informal approach, 132–3
statistical inference, 135–9
variance matrix estimation, 137–9

factor analysis, 650
factor loadings, 517, 650–1, 689
factor model, 517, 648, 686
Fairlee-Gumble-Morgenstern copula, 654
fast simulated annealing (FSA) method, 347–8
FD estimator. See first-differences
FE estimator. See fixed effects
feasible generalized least squares (FGLS) estimator,

81–3
asymptotic distribution, 82
definition, 82
example, 84–5
in fixed effects model, 729
in mixed linear model, 775
nonlinear, 155–8
in pooled model, 720–1
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feasible generalized least squares (cont.)
in random effects model, 705, 734–6, 738, 837–9,

849–51
as sequential two-step m-estimator, 201
systems FGLS, 208–9

feasible generalized nonlinear least squares (FGNLS)
estimator, 155–8

asymptotic distribution, 156
definition, 156
example, 159–63
as optimal GMM estimator, 180–1
systems FGNLS, 217

FGLS estimator. See feasible generalized least squares
FGNLS estimator. See feasible generalized nonlinear

least squares
FIML estimator. See full information maximum

likelihood
finite mixture models, 621–5

counts, 678–9
definition, 622
EM algorithm, 623–5
latent class interpretation, 623
number of components, 624–5
panel data, 786
see also mixture models

finite-sample bias
of GMM estimator, 177
of IV estimator, 108–12
of tests, 250–4, 262

finite-sample correction term
for sampling without replacement, 817

first-differences (FD) estimator, 704–5, 729–31
application, 710–11, 714
asymptotic distribution, 730–1
compared to FE estimator, 731
consistency, 730, 764
definition, 704–5, 730
IV estimator, 758

first-differences (FD) model, 704, 729–31, 758
first-differences (FD) transformation, 783–4
fixed effects (FE) estimator, 704, 726–9, 756–9,

781–5, 791–2
application, 710–3, 792–5
asymptotic distribution, 727–9
binary outcome models, 796–9
clustered data, 839–41
compared to DID estimator, 768
compared to FD estimator, 729
as conditional ML estimator, 732
consistency, 727, 764, 781–2, 784–5
count models, 802–8
definition, 704, 726, 781–4
duration models, 802
dynamic models, 764–6, 791–2, 797–9, 806–7
as FGLS estimator, 729
Hausman test for, 717–9
identification, 702
incidental parameters, 704, 726

inconsistency, 764, 781–2, 784–5
IV estimators, 758
as LSDV estimator, 733
multinomial outcome models, 798
selection models, 801
Tobit model, 800
versus random effects, 701–2, 715–9, 788

fixed effects (FE) model, 704, 726–33, 756–9, 781–5,
791–2

cohort-level, 772
clustered data, 831, 843
definition, 700, 726
dynamic models, 764–6, 791–2, 797–9, 806–7
endogenous regressors, 756–9
identification, 702
incidental parameters, 704, 726
marginal effects, 702
nonlinear models, 781–5, 796–808, 791
time-varying regressors, 702
versus random effects, 701–2, 715–9, 788
see also fixed effects estimators

fixed coefficient, 846
fixed design. See fixed in repeated samples
fixed in repeated samples, 76–7

bootstrap sampling method, 360
in kernel regression, 312
Liapounov CLT, 951
Markov LLN, 948
Monte Carlo sampling method, 251

fixed regressors. See fixed in repeated samples
flexible parametric models

count models, 674–5
hazard models, 592
selection models, 563

flow sampling, 44, 626
forward orthogonal deviations IV estimator, 759
forward orthogonal deviations model, 759
forward recurrence time, 626
Fourier flexible functional form, 321
frailty, 612, 662

see also unobserved heterogeneity
Frank copula, 654
Frechet bounds, 653–4
frequentist approach, 421–2, 424, 439–40
FSA method. See fast simulated annealing
full conditional distributions, 431

see also Gibbs sampler
full information maximum likelihood (FIML)

estimator, 214
nested logit model, 510–2
nonlinear models, 219

functional approach
to measurement error, 901

functional form misspecification, 91–2
diagnostics for, 272–3, 277–8

gamma distribution, 585–6, 614
gamma function, 586
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Gaussian quadrature, 389–90, 393, 809
Gauss-Hermite quadrature, 389–90
Gauss-Laguerre quadrature, 389–90
Gauss-Legendre quadrature, 389–90

Gauss-Newton (GN) algorithm, 345
example, 348

GEE estimator. See generalized estimating equations
general to specific tests, 285
generalized additive model, 323, 327
generalized cross-validation, 315
generalized estimating equations (GEE) estimator,

790, 794, 804, 809
generalized extreme value (GEV) distribution, 508

see also nested logit model
generalized information matrix equality, 142, 145, 264
generalized inverse, 261
generalized IV estimator, 187
generalized least squares (GLS) estimator, 81–5

asymptotic distribution, 82
definition, 82
as efficient GMM, 179
example, 84–5
nonlinear, 155–8

generalized linear models (GLMs), 149–50, 155
count data, 683
conditional ML estimator, 783
GEE estimator, 791
quasi-ML estimator, 149–50
see also LEF models

generalized method of moments (GMM) estimator,
166–222

asymptotic distribution, 173–4, 182–3
based on additional moment restrictions, 169,

178–9
based on moment conditions from economic theory,

171
based on optimal conditional moment, 179–80
bootstrap for, 379–80
computation, 339
definition, 173
endogenous counts, 683–4, 687–9
with endogenous stratification, 827
with exogenous stratification, 823–4
examples, 167–71, 178–9
finite-sample bias, 177
identification, 173, 182
linear IV, 183–92
linear systems, 211–2
nonlinear IV, 192–9
one-step GMM estimator, 187, 196, 746, 755
optimal GMM, 176
optimal moment condition, 179–81, 188
optimal weighting matrix, 175–6
panel data, 744–66, 789–90, 792
practical considerations, 219–20
test based on, 245
two-step, 176, 187, 746, 755
variance matrix estimation, 174–5

weak instruments, 177–8
see also panel GMM estimator

generalized nonlinear least squares (GNLS) estimator.
See feasible generalized nonlinear least squares

generalized partially linear model, 323
generalized random utility models, 515–6
generalized residual, 289–90

in duration models, 631
in LM test, 239–40
plots of, 633–6

generalized Tobit model, 548
generalized Weibull distribution, 584–6
genetic algorithms, 341
GEV distribution. See generalized extreme value
Geweke, Hajivassiliou, Keane (GHK) simulator,

407–8
for MNP model, 518

GHK simulator. See Geweke, Hajivassiliou, Keane
simulator

Gibbs sampler, 448–50
data augmentation, 454–5, 933
example, 452–4
in latent variable models, 514, 519, 563
see also Markov chain Monte Carlo

GLMs. See generalized linear models
GLS estimator. See generalized least squares
GMM estimator. See generalized method of moments
GN algorithm. See Gauss-Newton
GNLS estimator. See feasible generalized nonlinear

least squares
Gompertz distribution, 585–6
Gompertz regression model, 606–8
gradient methods, 337–48

see also iterative methods
Granger causality, 22
grid search methods, 337, 351
grouped data. See aggregated data

Halton sequences, 409–10
Hausman test, 271–4

applications, 719, 850–1
asymptotic distribution, 272
auxiliary regressions, 273
bootstrap, 378
computation, 272–3, 378, 717–9
definition, 271–2
for endogeneity, 271–2, 275–6
for fixed effects, 717–9, 737, 788, 839
for multinomial logit model, 503
power, 273–4
robust versions, 273, 378, 718–9

Hausman-Taylor IV estimator, 761
Hausman-Taylor model, 760–2
Hawthorne effect, 53
hazard function

baseline in PH model, 591
cumulative hazard, 577–8, 582–4
definition, 576, 578
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hazard function (cont.)
in mixture models, 616–8
multivariate, 649
nonparametric estimator, 581, 583
parametric examples, 585
piecewise constant, 591
see also duration models

Health and Retirement Study (HRS), 58
Heckit estimator. See Heckman two-step estimator
Heckman two-step estimator

application, 554
in Roy model, 556
in selection model, 550–1
semiparametric estimator, 565–6
in Tobit model, 543, 567–8

Hessian matrix
estimate, 137
Newton-Raphson algorithm, 341–2
singular, 350–1

heterogeneous treatment effects, 882, 885–7
IV estimator, 886–7
LATE estimator, 885
RD design, 882

heterogeneity
within-cell, 480
see also unobserved heterogeneity

heteroskedastic errors
adaptive estimation, 323, 328
conditional heteroskedasticity, 78
definition, 78
in GLMs, 149–50
in linear model, 84–5, 94–5
multiplicative, 84–5, 86–7
in nonlinear model, 157–63
residuals, 289–90
tests for, 241, 267, 275
Tobit MLE inconsistency, 538
working matrix for, 82–3, 156–8

heteroskedasticity-robust standard errors
bootstrap, 379–80
clustered data, 834
example, 84–5
for extremum estimator, 137, 164
intuition, 81
for NLS estimator, 155, 164
for OLS estimator, 74–5, 80–1, 112
panel data, 705
for WLS estimator, 83
see also robust standard errors

hierarchical linear models (HLMs), 845–8
Bayesian analysis, 847
clustered data, 845
coefficient types, 846–7
individual-specific effects, 848
mixed linear models, 774–6, 847
panel data, 847–8
random coefficients model, 847
two-level model, 846

hierarchical models, 429
Bayesian analysis, 441–2, 447, 450, 514
see also hierarchical linear models

histogram, 298
see also kernel density estimator

HLM. See hierarchical linear model
hot deck imputation, 929, 940
HRS. See Health and Retirement Study
Huber-White robust standard errors, 137, 144, 146

see also robust standard errors
hurdle model, 680–1, 690

see also two-part model
hyperparameters, 428, 847
hypothesis tests, 223–58

based on extremum estimator, 224–33
based on ML estimator, 233–43
based on GMM estimator, 245
based on m-estimator, 244
bootstrap, 254–6, 363–8, 372–3, 378–9
for common misspecifications, 274–7, 670–1
examples, 236, 241–3, 252–4, 254–6, 372–3
induced test, 230
joint versus separate, 230–1, 285, 629–30
power, 247–50, 253–4
size, 246–7, 251–3
see also LM tests; LR test; Wald tests, m-tests

identification
in additive random utility models, 504
in binary outcome models, 476, 483
bounds identification, 29
definitions, 29–31
in fixed effects model, 702
of GMM estimator, 173, 182
just identification, 31, 214
in linear regression model, 71–2
in measurement error models, 905–14
in mixture models, 618–20
in multinomial probit model, 517
in natural experiments, 57–8
observational equivalence, 29
order condition, 31, 213
over identification, 31, 214
rank condition, 31
in sample selection model, 551, 565, 566
set identification, 29
in simultaneous equations model, 29–31, 213–4
in single-index models, 325
and singular Hessian, 351
weak identification, 100
see also identification strategies

identification strategies, 36–7
control function approach, 37
exogenization, 36
incidental parameter elimination, 36–7
instrumental variables, 37
matching, 37
reweighting, 37
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identified reduced form, 36
IG distribution. See inverse-Gaussian
ignorable missingness, 927

estimator consistency if MCAR, 927
estimator inconsistency if MAR only, 927
problems if nonignorable, 940
weak exogeneity, 927

ignorability assumption, 863
see also conditional independence assumption

importance sampling, 407–8, 443–5, 518
accelerated, 409
GHK simulator, 407–8
importance sampling density, 444
importance sampling estimator, 444
importance weight, 445
target density, 444

imputation methods, 928–39
data augmentation, 454–5, 932–4
example, 936–8
hot deck imputation, 929
listwise deletion, 928
mean imputation, 928–9
multiple imputation, 934–5
pairwise deletion, 928
regression-based imputation, 930–2

imputation (I) step, 455, 932
IM test. See information matrix test
IMSE. See integrated mean squared error
incidental parameters, 36

clustered data FE model, 832, 840, 844
panel data FE model, 704, 726, 781–2, 805

inclusive value, 510–1
incomplete gamma function, 586
incomplete panels. See unbalanced panels
independence of irrelevant alternatives, 503, 505, 527
independent variables. See regressors
independently-weighted IV estimator, 192
independently-weighted optimal GMM estimator, 177
index function model

binary outcome model, 475–6, 482–3
bivariate probit model, 522–3
ordered multinomial model, 519–20
Tobit model, 536
see also single-index model

indicator function, 298
indirect inference, 404–5
individual-specific effects model

additive, 780
binary outcome models, 795–6
cluster-specific effects, 830
count models, 802–3
definitions, 700, 780
duration models, 802
multiplicative, 780, 793
one-way, 700
parametric, 780
selection models, 801
single-index, 780

Tobit models, 800–1
two-way, 738
see also FE models; RE models

induced test, 230
information criteria, 278–9, 283–4

Akaike, 278–9, 284, 624
Bayesian, 278, 284
consistent Akaike, 278
Kullback-Liebler, 147, 169, 278, 280
Schwarz, 278, 284

information matrix, 142
block-diagonal, 144, 240, 329

information matrix equality, 141–2, 145
generalized, 142, 145
see also BHHH estimate; OPG version

information matrix (IM) test, 265–6
bootstrap, 378
computation, 261–2, 378
definition, 265
example, 270
power, 267

instrumental variables (IV) estimator
alternative estimators, 190–2
application, 110–2
definition, 100–1
example, 102–3
finite-sample bias, 108–12, 191–2, 196
identification, 100, 105–7
independently-weighted IV estimator, 192
jackknife IV estimator, 192
LIML estimator, 191, 214
in linear model, 98–112, 183–92, 211–2
linear IV as GMM estimator, 170, 186
local average treatment effects estimator, 883–9
in measurement error models, 908–10, 912–3
in natural experiments, 54–5
in nonlinear models, 192–9
in panel models, 764–5, 757–61
quantile regression, 190
in selection models, 559
split-sample estimator, 191–2
systems IV estimator, 211–2, 218–9
in treatment effects models, 883–9
two-stage IV estimator, 102, 187
two-stage least squares estimator, 101–2, 187–91
Wald estimator, 98–9
see also GMM estimator; panel GMM estimator

instruments
definition, 96–7, 100
examples, 97–8
by exclusion restriction, 106
by functional form restriction, 106
invalid, 100, 105–7
optimal, 180
for panel data, 750–1, 754–6
relevance, 108
weak, 100, 104–12, 177–8, 191–2, 196, 751–2, 756
see also instrumental variables estimator
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integrated hazard function. See cumulative hazard
function

integrated mean squared error (IMSE), 303
integrated squared error (ISE), 302, 314
interval data models

definition, 532–3, 579
ML estimator, 534–5

interruption bias, 626
intraclass correlation, 816, 831, 835–8
inverse-Gaussian (IG) distribution, 614–5, 677
inverse law of probability, 421
inverse-Mills ratio, 540–1, 553–4
inverse transformation method, 409, 412–3
inverse-Wishart distribution, 443, 453, 514
irrelevant regressors, 93
ISE. See integrated squared error
iterated bootstrap, 374
iterative methods, 337–48

BFGS, 344
BHHH, 343–4
convergence criteria, 339–40
DFP, 344, 350–1
expectation maximization, 345–7, 623–5, 930–2
fast simulated annealing, 347–8
Gauss-Newton, 345, 348
line search, 338
Newton-Raphson, 338–9, 341–3, 348
numerical derivatives, 340
simulated annealing, 347
starting values, 340, 351
step size adjustment, 338

IV estimator. See instrumental variables

jackknife, 374–6
bias estimate, 375
bias-corrected estimator, 375
example, 376
IV estimator, 192
standard error estimate, 375, 855

Jensen’s inequality, 956
jittered data, 290
joint duration distributions, 648–55

copulas, 651–5
mixtures, 650–1
multivariate hazard function, 649
multivariate survivor function, 649–50

joint limits, 767
joint versus separate tests, 230–1, 285, 629–30
just identification, 31, 100, 173

Kaplan-Meier (KM) estimator, 581–3
application, 575, 583, 604–5
for baseline hazard, 596–7
confidence bands for, 583
definition, 581
tied data, 582

kernel density estimator, 298–306
alternatives to, 306

application, 296–7, 300
asymptotic distribution, 301–2, 330–1
bandwidth choice, 302–4
bias, 301, 330–1
confidence interval for, 305
consistency, 300
convergence rate, 302
definition, 299
derivative estimator, 305
examples, 252–3, 367–8
multivariate, 305–6
Nadaraya-Watson kernel regression estimator, 312
optimal bandwidth, 303
optimal kernel, 303
variance, 301, 331

kernel functions, 299–300
comparison, 300
definition, 299
higher-order, 299, 306, 313
leading examples, 300
optimal for density estimation, 303
properties, 299

kernel matching, 875, 895–6
kernel regression estimator, 311–9

alternatives to, 319–22
asymptotic distribution, 313, 331–3
bandwidth choice, 314–6
bias, 313, 331–2
bootstrap confidence interval for, 380–1
boundary problems, 309, 320–1
conditional moment estimator, 317–8
confidence interval for, 316
consistency, 313
convergence rate, 314
definition, 312
derivative estimator, 317
introduction to nonparametric regression, 307–11
multivariate, 318–9
optimal bandwidth, 314
optimal kernel, 314
undersmoothing, 380
variance, 301, 331
see also nonparametric regression

Khinchine’s theorem, 948
KLIC. See Kullback-Liebler information criterion
KM estimator. See Kaplan-Meier
k-NN estimator. See nearest neighbors estimator
Kolmogorov LLN, 80, 111, 947
Kolmogorov test, 267
Kullback-Liebler information criterion (KLIC), 147,

169, 278, 280

LAD estimator. See least absolute deviations
Lagrange multiplier (LM) test

asymptotic distribution, 235, 237–8
based on GMM-estimator, 245
based on m-estimator, 244
bootstrap, 379
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comparison with LR and Wald tests, 238–9
computation, 239–41, 256, 274
definition, 234–5
examples, 236, 241–3
for heteroskedasticity, 241, 267, 275
in duration models, 632
interpretation, 239–40
for omitted variables, 274
OPG version, 240–1
for random effects, 737, 841
score test, 234–5
in Tobit model, 544
for unobserved heterogeneity, 630, 636
see also hypothesis tests

Laplace approximation, 390
Laplace distribution, 178, 541
Laplace transform, 577
LATE estimator. See local average treatment effects
latent class model, 622

see finite mixture models
latent variable, 475, 532
latent variable models

additive random utility model, 476–8, 504–7
binary outcomes, 475–8
endogenous, 560–1
ordered multinomial model, 519–20
see also censored models; truncated models

law of iterated expectations, 955
law of large numbers (LLN), 947–8

definition, 947
examples of use, 80, 129
Khinchine’s theorem, 948
Kolmogorov LLN, 947
Markov LLN, 948
sampling schemes, 131, 948
strong law, 947
weak law, 947

least absolute deviations (LAD) estimator
application, 88–90
asymptotic distribution, 88
binary outcome models, 484
bootstrap, 381
censored LAD, 564–5, 808
definition, 87
two-stage LAD, 190
see also quantile regression

least-squares dummy variable (LSDV) estimator, 704,
732–3, 840

least-squares dummy variable (LSDV) model, 704,
732, 840

least squares (LS) estimators
clustered data, 833–7
feasible generalized LS, 81–3, 155–8
generalized LS, 81–5, 155–8
linear, 70–85
nonlinear LS, 150–9
ordinary LS, 70–81
panel data, 211, 702–3, 720–5

systems of equations, 207–8, 211, 217
see also FGLS; FGNLS; OLS; NLS

leave-one-out estimate, 192, 304, 315, 375
LEF. See linear exponential family
length-biased sampling, 43–4, 626
Liapounov CLT, 80, 131, 950
likelihood-based hypothesis tests, 233–43

comparisons of, 235–6, 238–9
definitions, 234–5
examples, 236–7, 241–3
see also LM tests; LR tests; Wald tests

likelihood function, 139–41
conditional likelihood function, 139, 731–2, 824
definition, 139
joint, 19, 824–7
leading examples, 140–1
marginal, 432, 595
partial, 594–6

likelihood principle, 139, 420, 433
likelihood ratio (LR) test

asymptotic distribution, 235, 237
based on GMM-estimator, 245
based on m-estimator, 244
comparison with LM and Wald tests, 238–9
definition, 234
examples, 236, 241–3
nonnested models, 279–83
quasi-LR test statistic, 244
uniformly most powerful test, 237
see also hypothesis tests

LIML estimator. See limited information maximum
likelihood

limit distribution, 948
see also asymptotic distribution

limit variance matrix, 952–3
definition, 952
replacement by consistent estimate, 952
sandwich form, 953

limited information maximum likelihood (LIML)
estimator, 191, 214

Lindeberg-Levy CLT, 80, 131, 950
line search, 338
linear exponential family (LEF) models, 147–9

conjugate priors, 427–8
conditional ML estimator, 782
consistency, 148
leading examples, 148
pseudo-R2, 288
residuals, 289–90
tests based on, 240, 268, 274–5
see also generalized linear models

linear panel estimators, 695–778
application, 708–15, 725
Arellano-Bond estimator, 764–5
between estimator, 703
covariance estimator, 733
conditional ML estimator, 731–2
differences-in-differences estimator, 768–70
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linear panel estimators (cont.)
error components 2SLS estimator, 760
error components 3SLS estimator, 762
first differences estimator, 704–5, 729–31
first differences IV estimator, 758
fixed effects estimator, 704, 726–9
fixed effects IV estimators, 757–9
forward orthogonal deviations IV estimator, 759
Hausman-Taylor IV estimator, 761
LSDV estimator, 704, 732–3
MD estimator, 753, 76–7
panel bootstrap, 708, 377–8, 708, 746, 751
panel GMM estimators, 744–68
panel-robust inference, 705–8, 722, 745–6, 751
pooled OLS estimator, 702–3, 720–5
random effects estimator, 705, 734–6
random effects IV estimator, 759–60
within estimator, 704, 726–9
within IV estimator, 758

linear panel models, 695–778
analysis-of-covariance model, 733
application, 708–15, 725
between model, 702
dynamic models, 763–8
endogenous regressors, 744–63
first differences model, 704, 730, 758
fixed effects model, 700–2, 726–34, 757–9
fixed versus random effects, 701–2, 715–9
forward orthogonal deviations model, 759
Hausman-Taylor model, 760–2
incidental parameters problem, 704, 726
individual dummies, 699
individual-specific effects model, 700
LSDV model, 704, 732
minimum distance estimator, 753, 766–7
mean-differenced model, 758
measurement error, 739, 905
mixed linear models, 774–6
pooled model, 699, 720–5
random effects differenced model, 760–1
random effects model, 700–2, 734–6, 759–60
residual analysis, 714–5
strong exogeneity, 700, 749–50, 752
time dummies, 699
time-invariant regressors, 702, 749–51
time-varying regressors, 702, 749–51
two-way effects model, 738
unbalanced data, 739
weak exogeneity, 749, 752, 758
within model, 704, 758
see also linear panel estimators

linear probability model, 466–7
linear programming methods, 341
linear regression model

definition, 16–17, 70–1
linear systems of equations, 207–14

panel data models as, 211
seemingly unrelated regressions, 209–10

simultaneous equations, 22–31, 213–4
systems FGLS estimator, 208
systems GLS estimator, 208
systems GMM estimator, 208
systems ML estimator, 214
systems OLS estimator, 211
systems 2SLS estimator, 212

linearization method, 855
link function, 149, 469, 783
listwise deletion, 60, 928

consistency under MCAR, 928
example, 936–8
inconsistency under MAR only, 928

Living Standards Measurement Study (LSMS), 59,
88–90, 848–53

LLN. See law of large numbers
LM test. See Lagrange multiplier test
local alternative hypotheses, 238, 247–8, 254
local average treatment effects (LATE) estimator,

883–9
assumptions, 884–5
comparison with IV estimator, 885
definition, 884
heterogeneous treatment effect, 885
monotonicity assumption, 885
selection on unobservables, 883
Wald estimator, 886
see also ATE; ATET; MTE

local linear regression estimator, 320–1, 333
local polynomial regression estimator, 320–1
local running average estimator, 308, 320
local weighted average estimator, 307–8
logistic distribution, 476–7
logistic regression. See logit model
logit model, 469–70

application, 464–5
as ARUM, 477, 486–7
clustered data, 844
definition, 469
for discrete-time duration data, 602
GLM, 149
imputation example, 937–9
index function model, 476
marginal effects, 470
measurement error example, 919
ML estimator, 468–9
multinomial logit, 494–5, 500–3, 525
nested logit, 509–12, 526–7
ordered logit, 520
panel data, 795–9
probit model comparison, 471–3
random parameters logit, 512–6
see also binary outcome models

log-likelihood function. See likelihood function
length-biased sampling, 43–4

log-logistic distribution, 585–6, 592
log-normal distribution, 585–6, 592
log-normal model, 533, 545–6
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log-odds ratio, 470, 472
log-sum, 510
log-Weibull distribution. See type 1 extreme value
long panel, 723–5, 767
longitudinal data. See panel data
loss function, 66–69

absolute error, 67
asymmetric expected error, 67
Bayesian decision analysis, 434–5
expected, 66
KLIC, 68, 147, 168, 278–9
squared error, 67–9, 156
step, 67–8

Lowess regression estimator, 320–1
application, 297, 309–10, 712–5

LR test. See likelihood ratio test
LS estimators. See least squares
LSDV. See least-squares dummy variable
LSMS. See Living Standards Measurement Study

MAR. See missing at random
marginal analysis of panel data, 717, 787
marginal effects, 122–4

in binary outcome models, 466–5, 467, 470–1
calculus method, 123
computing, 122–4
definition, 122
example, 162–3
finite-difference method, 123
in fixed effects model, 702, 788
in multinomial models, 493–4, 501–3, 519–23, 525
population-weighted, 821
in sample selection models, 552
in single-index models, 123
in Tobit model, 541–2
see also coefficient interpretation

marginal likelihood, 432, 595
marginal treatment effects (MTE) estimator, 886
market-level data, 482, 513
Markov chain Monte Carlo (MCMC) methods,

445–54
convergence, 449, 458
in data augmentation, 933
examples, 452–4, 512, 687, 936–9
Gibbs sampler, 448–50, 514, 519, 563
Metropolis algorithm, 450–1
Metropolis-Hastings algorithm, 451–2, 512

Markov LLN, 77, 131, 948
Marshall-Olkin method, 649–51, 686
matching assumption, 864

see also overlap assumption
matching estimators, 871–8, 889–96

application, 889–96
assumptions, 863–5
ATE matching estimator, 877
ATET matching estimator, 874, 877, 894–6
balancing condition, 893
caliper matching, 874

counterfactuals, 871
exact matching, 872, 891
inexact matching, 873
interval matching, 875–6
kernel matching, 875, 895–6
nearest-neighbor matching, 875, 894–6
propensity score matching, 873–8, 892
radius matching, 876, 895–6
selection on observables only, 871
stratification matching, 875–6, 893–6
variance computation, 877–8, 895

maximum empirical likelihood (MEL) estimator, 206
maximum likelihood (ML) estimator, 139–46

asymptotic distribution, 142–3
conditional ML estimator, 731–2, 782–3, 796–9
consistency, 142, 824
definition, 141
endogenous stratification, 824–7
example, 143–4
exogenous stratification, 824
MSL estimator, 393–8
quasi-ML estimator, 146–50
regularity conditions, 141, 145–6
restricted, 233
unrestricted, 233
variance matrix estimation, 144
weighted ML estimator, 828
see also quasi-ML estimator

maximum rank correlation estimator, 485
maximum score estimator, 341, 381, 483–4, 800
maximum simulated likelihood (MSL) estimator,

393–8
asymptotic distribution, 394–5
bias-adjusted MSL, 396–7
compared to MSM, 402–3
count model examples, 677–8, 687, 689
definition, 394
example, 397–8
multinomial probit model, 518
number of simulations, 396
random parameters logit model, 522

MCAR. See missing completely at random
MD estimator. See minimum distance estimator
mean-differenced estimator, 783, 805–6
mean-differenced model, 758, 783
mean imputation, 928, 936–8
mean integrated squared error (MISE), 303, 314
mean-scaling estimator, 783, 805–6
mean-square convergence, 946
mean substitution. See mean imputation
measurement error

in cohort-level data, 772–3
in dependent variable, 913–4
in microdata, 46, 60
in panel data, 739, 905
in regressors, 899–922
see also measurement error model estimators;

measurement error models
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measurement error model estimators, 899–922
attenuation bias, 903–5, 911, 915, 919–20
bounds identification, 906–8
corrected score estimator, 916–8
IV estimator, 908–10, 912–3
linear models, 900–11
nonlinear models, 911–20
OLS estimator inconsistency, 902–4
using additional moment restrictions, 909–10
using instruments, 908–9
using known measurement error variance, 902–3,

910
using replicated data, 910–1, 913
using validation sample, 911

measurement error models, 899–922
attenuation bias, 903–5, 911, 915, 919–20
classical measurement error model, 901–2
dependent variable measured with error, 913–4
examples, 919–20
identification, 905–14
linear models, 900–11
multiple regressors, 904
nonclassical measurement error, 904, 920
nonlinear models, 911–20
panel models, 905
scalar regressor, 903
serial correlation, 909
variance inflation, 904, 916
see also measurement error model estimators

median regression. See LAD estimator
MEL. See maximum empirical likelihood
m-estimator, 118–22

asymptotic distribution, 120
clustered data, 842–3
definition, 118–9
sequential two-step, 200–2
simulated m-estimator, 398–9
tests based on, 244, 263–4
weighted m-estimator, 829, 856
see also extremum estimators

method of moments (MM) estimator
asymptotic distribution, 134, 174
definition, 172
examples, 167
see also estimating equations estimator; GMM

estimator
method of scoring, 343, 348
method of simulated moments (MSM) estimator,

399–404
asymptotic distribution, 400–2
compared to MSL, 402–3
definition, 400
example, 403
MNP model, 497, 518
number of simulations, 399

method of simulated scores (MSS) estimator
for MNP model, 519

method of steepest ascent, 344

Metropolis algorithm, 450–1
Metropolis-Hastings algorithm, 451–2, 512
microdata sets, 58–61

handling, 59–61
leading examples, 58–9

microeconometrics overview, 1–17
midpoint rule, 388, 391–2
minimum chi-square estimator, 203

see also Berkson’s minimum chi-square estimator
minimum distance (MD) estimator, 202–3, 753, 766–7

asymptotic distribution, 202
bootstrap for, 379–80
covariance structures, 766–7
definition, 202
equally-weighted, 202
generalized, 222
indirect inference, 404–5
OIR test, 203
optimal, 202, 753
panel data, 753, 766–7
relation to GMM, 203, 753

misclassification, 914
MISE. See mean integrated squared error
missing at random (MAR), 926–7

definition, 926
and ignorable missingness, 927, 932
relation to MCAR, 927

missing completely at random (MCAR),
926–7

definition, 927
and ignorable missingness, 927
relation to MCAR, 927

missing data, 923–41
deletion methods, 928
examples, 924
ignorable assumption, 927
imputation with models, 929–41
imputation without models, 928–9
MAR assumption, 926–7
MCAR assumption, 927
nonignorable missingness, 927, 940
see also imputation methods

misspecification tests. See specification tests
mixed estimator, 439–41
mixed linear model, 774–6

Bayesian methods, 775
FGLS estimator, 775
fixed parameters, 774
ML estimator, 776
random parameters, 774
restricted ML estimator, 776
nonstationary panel data, 767–8
prediction, 776
see also hierarchical linear model

mixed logit model, 500–3
example, 495
definition, 500
see also RPL model
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mixed proportional hazards (MPH) model,
611–25

Weibull-gamma mixture, 615
see also mixture models

mixture hazard function, 616–8
mixture models, 611–25

application, 623–6
counts, 675–9
durations, 611–25
identification, 618–20
MSL estimator, 393–8, 687
multinomial outcomes, 515–6
multiplicative heterogeneity, 613
specification tests, 628–32
see also finite mixture models; unobserved

heterogeneity
ML estimator. See maximum likelihood
MM estimator. See method of moments
MNL estimator. See multinomial logit
MNP estimator. See multinomial probit
model diagnostics, 287–91

binary outcome models, 473–4
duration models, 628–32
example, 290–1
multinomial outcome models, 499
pseudo-R2 measures, 287–9, 291
residual analysis, 289–91
see also model selection methods

model misspecification, 90–4
see also endogeneity; functional form

misspecification; heterogeneity; omitted values;
pseudo-true value

model selection methods
Bayesian, 456–8
nested models, 278–81
nonnested models, 278–84
order of testing, 285
see also model diagnostics; specification tests

moment-based simulation estimators,
398–404

see MSL estimator; MSM estimator
moment-based tests. See m-tests
moment matching. See indirect inference
Monte Carlo integration, 391–2

direct, 391
example, 392
importance sampling, 407, 443–5
simulators, 393–4, 406–10
see also quadrature

Monte Carlo studies, 250–4
example, 251–4

moving average estimator, 308
moving blocks bootstrap, 373, 381
MPH model. See mixed proportional hazards
MSL estimator. See maximum simulated likelihood
MSM estimator. See method of simulated moments
MSS estimator. See method of simulated scores
MTE. See marginal treatment effects

m-tests, 260–71
asymptotic distribution, 260, 263
auxiliary regressions, 261–3
bootstrap, 261, 379
chi-square goodness of fit, 266–7, 270–1,

474
conditional moment test, 264–5, 267–9, 319
CM test interpretation, 268
computation, 261–3
definition, 260
Hausman test, 271–4, 717–9
information matrix tests, 265–6, 270
outer-product-of-the-gradient form, 262
overidentifying restrictions test, 181, 183, 267,

747
power, 268
rank, 261

multicollinearity, 350–1
in multinomial probit model, 517
in panel model, 752
in sample selection model, 542, 551

multilevel models. See hierarchical models
multinomial logit (MNL) model, 500–3, 525

application, 494–5
as additive random utility model, 505
definition, 500
marginal effects, 494, 501–3, 525
ML estimator, 501
panel data, 798
see also multinomial outcome models

multinomial outcome models, 490–528
application, 491–5
alternative-invariant regressors, 498
alternative-varying regressors, 497
conditional logit, 500–3, 524–5
definition, 496–7
identification, 504
index function model, 519–20
marginal effects, 501–3, 524–5
mixed logit, 500–3
ML estimator, 496, 501
multinomial logit, 500–3, 525
multinomial probit, 516–9
ordered models, 519–20
OLS estimator, 471
panel data, 798
random parameters logit, 512–6
random utility model, 504–7
semiparametric estimation, 523–4

multinomial probit (MNP) model, 516–9
Bayesian Methods, 519
definition, 516–7
identification, 517
ML estimator, 518
MSL estimator, 518
MSM estimator, 518
MSS estimator, 518
see also multinomial outcome models
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multiple duration spells, 655–8
fixed effects, 656
lagged duration dependence, 657
ML estimator, 658
random effects, 657
recurrent spells, 655

multiple imputation, 934–9
estimator, 934
examples, 935–9
relative efficiency, 935
variance of estimator, 934–5

multiple treatments, 860
multiplicative errors
multistage surveys, 41–2, 814–6, 853–6

variance estimation, 853
multivariate data

binary outcomes, 521–3
counts, 685–7
durations, 640–64
see also systems of equations

multivariate-t distribution, 442

NA estimator. See Nelson-Aalen
National Longitudinal Survey (NLS), 58, 110–2
National Longitudinal Survey of Youth (NLSY),

58–9
National Supported Work (NSW) demonstration

project, 889–95
natural conjugate pair, 427–8
natural experiments, 32, 54–8

definition, 54
differences-in-differences estimator, 55–7, 768–70,

878–9
examples, 54
exogenous variation, 54–5
identification, 57–8
instrumental variables, 54–5
regression discontinuity design, 879–83

ncp. See noncentrality parameter
nearest neighbors (k-NN) estimator, 319–20

definition, 319
example, 308–9
symmetrized, 308, 320
see also nonparametric regression

nearest-neighbor matching, 875, 894–6
negative binomial distribution, 675
negative binomial model, 675–7

application, 690
bivariate, 215, 686–7
hurdle model, 681
ML estimator, 677
MSL estimator, 677–8
NB1 variant, 676
NB2 variant, 676
panel data, 804, 806

negative hypergeometric distribution, 806
neglected heterogeneity. See unobserved

heterogeneity

Nelson-Aalen (NA) estimator, 582–4
application, 605–6, 662
confidence bands for, 584
definition, 582
tied data, 582

nested bootstrap, 374, 379
nested logit model, 507–12, 526–7

from ARUM, 526–7
definition 510–1
different versions of, 511–2
example, 511
GEV model, 508, 526
ML estimator, 510
sequential estimator, 510
welfare analysis, 510
see also multinomial models

nested models 278, 281
see also nonnested models

neural network models, 322
Newey-West robust standard errors, 137, 175,

723
definition, 175
see also robust standard errors

Newton-Raphson (NR) method, 341–3
examples, 338–9, 348

NLFIML estimator. See nonlinear full-information
maximum likelihood

NLS estimator. See nonlinear least squares
NLSY. See National Longitudinal Survey of Youth
NL2SLS estimator. See nonlinear two-stage least

squares
NL3SLS estimator. See nonlinear three-stage least

squares
noise-to-signal ratio, 903
noncentral chi-square distribution, 248
noncentrality parameter (ncp), 248
nonclassical measurement error, 904, 920
nongradient methods, 337, 341, 347–8
nonignorable missingness, 927, 940

attrition bias due to, 940
selection bias due to, 927, 932, 940

nonlinear estimators
coefficient interpretation, 122–4
extremum estimator
m-estimator, 118–22
GMM estimator, 166–222
ML estimator, 139–46
NLS estimator, 150–9
overview, 117–22
panel models, 779–810

nonlinear full-information maximum likelihood
(NLFIML) estimator, 219

nonlinear GMM estimator, 192–9
asymptotic distribution, 194–5
definition, 194–5
example, 197–8, 199, 688
instrument choice, 196
NL2SLS estimator, 196
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optimal, 195
panel data, 789–90

nonlinear in parameters, 27
nonlinear in variables, 27
nonlinear IV estimator. See nonlinear GMM
nonlinear least squares (NLS) estimator, 150–9

asymptotic distribution, 152–4
consistency, 152–3
definition, 151
example, 155, 159–64
time series, 158–9
variance matrix estimation, 154–5

nonlinear panel estimators, 779–810
application, 792–5
conditional ML estimator, 781–2, 805
dummy variable estimator, 784–5, 800, 805
first-differences estimator, 783–4
fixed effects estimator, 783–5, 794, 796–802, 805–8
GEE estimator, 790, 794, 804
mean-differenced estimator, 783, 805–6
mean-scaling estimator, 783, 805–6
ML estimator, 785–6
NLS estimator, 787, 794
panel GMM estimator, 789–90
panel-robust inference, 788–91
quadrature, 785–6, 796, 800
quasi-differenced estimator, 783–4
quasi-ML estimator, 791
random effects estimator, 785–6, 794–6, 800–1,

803–4
selection models, 801
semiparametric, 808

nonlinear panel models, 779–810
application, 792–5
binary outcome models, 795–6
conditional mean models, 780–1
count models, 792–5, 802–6
dynamic models, 791–2, 797–9, 806–7
endogenous regressors, 792
exogeneity assumptions, 781
finite mixture models, 786
fixed effects models, 781–5, 791–2
fixed versus random effects, 788
incidental parameters problem, 781–2, 805
individual-specific effects models, 780–1
parametric models, 780, 782–3, 785–7, 792
pooled models, 787, 794
random effects models, 785–6, 792
selection models, 801
semiparametric, 808
Tobit models, 800–1
transition models, 801–2

nonlinear regression model, 151
additive error, 168, 193, 217
nonadditive error, 168, 193, 218

nonlinear systems of equations, 214–9
additive errors, 217
copulas, 651–5

mixtures, 650–1
ML estimator, 215–6
NLFIML estimator, 219
NL3SLS estimator, 219
nonadditive errors, 217–8
nonlinear panel model, 216
nonlinear SUR model, 216
quasi-ML estimator, 150
seemingly unrelated regressions, 216
simultaneous equations, 219
systems FGNLS estimator, 217
systems GMM estimator, 219
systems IV estimator, 218–9
systems MM estimator, 218
systems NLS estimator, 217

nonlinear three-stage least squares (NL3SLS)
estimator, 219

nonlinear two-stage least squares (NL2SLS) estimator
asymptotic distribution, 195–6
definition, 195–6
example, 199
see also nonlinear GMM estimator

nonnested models
Cox LR test, 279–80
definition, 278
example, 283–4
information criteria comparison, 278–9
overlapping, 281
strictly nonnested, 281
Vuong LR test, 280–3

nonparametric bootstrap. See paired bootstrap
nonparametric density estimation. See kernel density

estimator
nonparametric maximum likelihood (NPML)

estimator, 622
nonparametric regression, 307–22

convergence rate, 311, 314
kernel, 311–9
local linear, 320
local weighted average, 307–8
Lowess, 320
nearest-neighbors, 308–9, 319–20
series, 321
statistical inference intuition, 309–11
test against parametric model, 319
see also semiparametric regression

nonrandomly varying coefficient, 846
normal copula, 654
normal distribution, 140

truncated moments, 540, 566–7
normal limit product rule. See Cramer linear

transformation
NPML estimator. See nonparametric maximum

likelihood
NR method. See Newton-Raphson method
NSW demonstration project. See National Supported

Work
nuisance parameters. See incidental parameters
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numerical derivatives, 340, 350
numerical integration. See quadrature

observational data, 40–8, 814–7
biased samples, 42–5
clustering, 42
identification strategies, 36–7
measurement error, 46
missing data, 46
population, 40
sample attrition, 47
sampling methods, 40–4, 815–7
sampling units, 41, 815
sampling without replacement, 816–7
survey methods, 41–2, 814–7
survey nonresponse, 45–6
types of data, 47–8

observational equivalence, 29
odds ratio, 470

see also posterior odds ratio
OIR test. See overidentifying restrictions test
OLS estimator. See ordinary least squares
omitted variables bias, 92–3, 700, 716

LM tests for, 274
one-step GMM estimator, 187, 196

panel, 746, 755
see also two-stage least squares

one-way individual-specific effects model. See
individual-specific effects model

on-site sampling, 43, 823
optimal Bayesian estimator, 434
optimal GMM estimator, 176, 179–81, 187, 195

compared to 2SLS, 187–8
optimal MD estimator, 202, 753
OPG. See outer-product of the gradient
Orbit model, 914
order of magnitude, 954
ordered logit model, 520, 682
ordered multinomial models, 519–20
ordered probit model, 520, 535
ordinary least squares (OLS) estimator, 70–81

asymptotic distribution, 73–4, 80–1
bias in standard errors with clustering, 836–7
binary data, 471
clustered data, 833–7
coefficient interpretation in misspecified model,

91–2
consistency 72, 80
definition, 71
example, 84–5
finite-sample distribution, 79
heteroskedasticity-robust standard errors, 74–5, 81
identification, 71–2
inconsistency, 91, 95–6
inefficiency, 80
nonlinear, 150–9
panel data, 702–3, 720–5
see also least squares estimators

orthogonal polynomials, 321, 329, 390
definition 390

orthogonal regression approach, 920
orthonormal polynomials, 321, 329, 390
outcome equation, 547, 867
outer product (OP) estimate, 138, 241, 395
outer-product of the gradient (OPG) version

LM test, 240–1
m-test, 262–4
small-sample performance, 262

overdispersion, 670–1, 674–6, 690
measurement error, 915–6
panel data, 794, 806
tests for, 671

overidentification, 31, 100, 173, 176, 379–80, 747
see also GMM estimator

overidentifying restrictions (OIR) test
asymptotic distribution, 181, 183
bootstrap, 379–80
definition, 181, 267, 277
panel data, 747, 756

overlap assumption, 864, 871
in RD design, 881

oversampling, 41, 478–9, 814, 872

paired bootstrap, 360, 366–8, 376, 378
pairwise deletion, 928

biased standard errors, 928
panel attrition, 739, 801
panel bootstrap, 377, 707, 746, 751, 789
panel data, 47
panel data models and estimators, 695–810

comparison to clustered data, 831–2
see also linear panel; nonlinear panel
panel GMM estimators, 744–68, 789–90

application, 754–6
Arellano-Bond estimator, 765–6
asymptotic distribution, 745–6
bootstrap, 389–90
compared to MD estimator, 753
computation, 751–2
definition, 745
efficiency, 747, 756
exogeneity assumptions, 748–52
instruments, 744, 747–51
IV estimators for FE model, 757–9
IV estimators for RE model, 759–60
just-identified, 745
nonlinear, 789–90
OIR test, 747, 756
one-step GMM estimator, 746, 755
overidentified, 745
2SLS estimator, 746, 755
two-step GMM estimator, 746, 755
variance matrix estimation, 751

panel GMM model, 744–66
application, 754–6
dynamic, 763–6
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with individual-specific effects, 750–62
without individual-specific effects, 744–53
see also panel GMM estimators

panel IV estimators. See panel GMM estimators
panel-robust statistical inference, 377, 705–7, 722,

746, 751, 788–90
for Hausman test, 718

Panel Study in Income Dynamics (PSID), 58, 889
parametric bootstrap, 360
Pareto distribution

of the first kind, 609
of the second kind, 616

partial additive model, 323
partial equilibrium analysis, 53, 862, 972

see also SUTVA
partial F-statistic, 105, 109, 111
partial likelihood estimator, 594–6
partial ML estimator, 140
partial R-squared, 104–5, 111
partially linear model, 323–5, 327, 565, 684
participation equation, 547, 551
Pearson chi-square goodness-of-fit test, 266
Pearson residual, 289, 291
peer-effects model, 832
percentile, 86
percentile method, 364–5, 367–8
percentile-t method, 364, 366–7
PH model. See proportional hazards
piecewise constant hazard model, 591
Pitman drift, 248
PML estimator. See pseudo-ML estimator
Poisson distribution, 668
Poisson-gamma mixture, 675
Poisson-IG mixture, 677
Poisson regression model, 666–74

application, 671–4, 690, 792–5, 850–3
asymptotic distribution of estimators, 668–9
bivariate, 686
censored MLE, 535
with clustered data, 844, 850–3
coefficient interpretation, 669
definition, 668
equidispersion, 668
example, 117–8, 121–2
LEF density, 148
measurement error, 915–8
mixtures, 675–9
ML estimator, 668
overdispersion, 670–1
panel data, 792–5, 802–6
quasi-ML estimator, 668–9, 682–3
truncated MLE, 535
underdispersion, 671
zero-truncated, 680
see also count models

polynomial baseline hazard, 591, 636
pooled cross-section time series model. See pooled

model

pooled estimators, 702–3, 720–5
application, 710–2, 725
FGLS estimator, 720–1
GEE estimator, 790, 794
NLS estimator, 794
OLS estimator, 211, 702–3, 720–5
WLS estimator, 702–3, 721

pooled model, 699, 720–5, 787–8
pooling tests, 737
population-averaged model. See pooled model
population moment conditions

for estimation, 172
for testing, 260
see also GMM estimator; MM estimator; m-tests

posterior distribution, 421, 430–4
asymptotic behavior, 432–4
conditional posterior, 431
definition, 421
expected posterior loss, 434
expected posterior risk, 434
full conditional distribution, 431
highest posterior density interval, 431
highest posterior density region, 431
marginal posterior, 430
observed-data posterior, 930
posterior density interval, 431
posterior mean, 423, 434
posterior mode, 433
posterior moments, 430
posterior precision, 423
see also Bayesian methods

posterior odds ratio, 456
posterior (P) step, 455, 933
potential outcome model, 30–4, 861–5

see also treatment effects; treatment evaluation
power of tests, 247–50, 253–4

bootstrapped tests, 372–3
conditional moment test, 267–9
example, 253–4
Hausman test, 273–4
local alternative hypotheses, 247–8
uniformly most powerful test, 237
Wald tests, 248–50

precision parameter, 423
predetermined instruments. See weak exogeneity
prediction, 66–70

best linear, 70
conditional, 66
error, 66–70
in linear panel models, 738
in mixed linear model, 774–6
optimal, 66–70
rotation groups, 814
in structural model, 28
weighted, 821

pretest estimator, 285
primary sampling units (PSUs), 41, 815,

845–55
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prior distribution, 425–30
conjugate prior, 427
definition, 420
Dickey’s prior, 439
diffuse prior, 426
flat prior, 426
hierarchical priors, 428–9, 441–2
improper prior, 426
informative prior, 437–9
Jeffreys’ prior, 426
noninformative prior, 425, 435–7
normal-gamma prior, 437
sensitivity analysis for, 429–30
see also Bayesian methods

probit model, 470–71
application, 465–6
as additive random utility model, 477
bivariate probit, 522–3
bootstrap example, 254–6
definition, 470
discrete-time duration data, 602
as GLM, 149
index function model, 476
logit model comparison, 471–3
marginal effects, 467, 471
ML estimator, 470
Monte Carlo study example, 251–4
multinomial probit, 516–9
ordered probit, 520, 535
panel data, 795–6
simultaneous equations probit, 523, 560–1
see also binary outcome models

probit selection equation, 548
product copula, 654
product integral, 578
product rule, 949

see also Cramer linear transformation
program evaluation. See treatment evaluation
projection pursuit model, 323
propensity score, 864–5

application, 893–4
balancing condition, 864, 893–4
conditional independence assumption, 865
definition, 864
matching, 873–8, 892
see also treatment evaluation

proportional hazards (PH) model, 592–7
application, 605–7
baseline survivor function estimator, 596–7
coefficient interpretation, 606–7
competing risks model, 645–6
definition, 591
discrete-time model, 600–3
leading examples, 585
mixed PH, 611–25
panel data, 802
partial likelihood estimator, 594–6

pseudo-ML estimator (PML). See quasi-ML estimator

pseudo panels, 771–3
cohort, 771
cohort fixed effects, 772–3
measurement error, 772–3

pseudo-random number generators, 410–6, 957–9
accept-reject methods, 413–4
composition methods, 415
inverse transformation method, 413
leading distributions, 957–9
multivariate normal, 416
transformation method, 413
uniform variates, 412
see also MCMC methods

pseudo R-squared measures
for binary outcome models, 473–4
definitions, 287–9
example, 290–1
for multinomial outcome models, 499

pseudo-true value, 94, 132, 146, 281
PSID. See Panel Study in Income Dynamics
PSUs. See primary sampling units
pure exogenous sampling, 825
p-value, 226, 229, 234, 286, 363

quadrature, 388–90
Gaussian, 389–90
multidimensional, 393
in nonlinear panel models, 785–6, 796, 800
see also Monte Carlo integration

qualititative response models. See binary outcomes,
multinomial outcomes

quantile, 86–7
quantile regression, 85–90

application, 88–90
asymmetric absolute loss, 68, 85
asymptotic distribution, 88
bootstrap, 381
computation, 341
definition, 87
IV estimator, 190
multiplicative heteroskedasticity, 86–7

quasi-difference, 783–4
quasi-experiment. See natural experiment
quasi-maximum likelihood (QML) estimator, 146–50

asymptotic distribution, 146
in binary outcome models, 469
in clustered models, 842–3
definition, 146
in LEF, 147–9
with multivariate dependent variable, 150
in nonlinear systems, 216
in panel models, 768, 786
in Poisson model, 668–9, 682–3

quasi-random numbers. See pseudo-random numbers
QML estimator. See quasi-ML estimator

random assignment, 49–50, 862
see also sampling schemes
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random coefficients model, 94, 385, 774–6, 786
see also hierarchical models

random effects (RE) estimator, 705, 734–6, 759–62,
785–6

application, 710–1, 725
asymptotic distribution, 735
clustered data, 837–9, 843–4
consistency, 699, 764
definition, 705, 734
error components 2SLS estimator, 760
error components 3SLS estimator, 762
FGLS estimator, 734–6
GEE estimator, 790, 794, 804
Hausman test, 717–9
incidental parameters, 704, 726
IV estimators, 759–60
ML estimator, 736, 785–6, 794–7, 800–1, 803–4
NLS estimator, 787, 794
quasi-ML estimator, 791
two-way effects model, 738
versus fixed effects, 701–2, 715–9

random effects (RE) model, 700–2, 734–6, 759–62,
785–6

binary outcome models, 795–6
Chamberlain model, 719, 786
clustered data, 831, 843–4
count models, 794, 803–4
definition, 700, 734
dynamic models, 792
duration models, 801–2
endogenous regressors, 756–7, 759–62
Mundlak model, 719
nonlinear models, 785–6
selection models, 801
Tobit model, 800–1
two-way effects model, 738
versus random effects, 701–2, 715–9
see also hierarchical models; random effects

estimator
random number generators. See pseudo-random

numbers
random parameters logit (RPL) model, 512–6

Bayesian methods, 514
definition, 513
ML estimator, 513–4

random parameters model. See random coefficients
model

random utility models. See ARUM
randomization bias, 53, 867
randomized experiment, 50–3

National Supported Work demonstration project,
889

randomized trials, 49–53
randomly varying coefficient, 847–8
rank condition for identification, 31, 182, 214
rank-ordered logit model, 521
rank-ordered probit model, 521
raw residual, 289, 291

RD design. See regression discontinuity design
receiver operators characteristics (ROC) curve, 474
reduced form, 21, 25, 213

see also structural model
RE estimator. See random effects
regression-based imputation, 930–2

EM algorithm, 932
nonignorable missingness, 932

regression discontinuity (RD) design, 879–83
fuzzy RD design, 882
heterogeneous treatment effects, 882
RD estimator, 882–3
sharp RD design, 880–1
treatment assignment mechanism, 879–81

regressors, 71
alternative-varying, 478, 497–8
endogenous, 23–33
fixed, 76–7
irrelevant, 93
omitted, 92–3
stochastic, 77
time-varying, 597–600, 702, 749–51
see also endogenous regressors

regularity conditions for ML, 141–2, 151–6
relative risk, 470, 503
reliability ratio, 903
renewal function, 626
renewal process, 626, 638
repeated cross section data, 47, 770–3

see also differences-in-differences
repeated measures. See panel data
replicated data, 910–1, 913
RESET test, 277–8
residual analysis

definitions, 289–90
duration data, 633–6
example, 290–1
panel data, 714–5
small-sample correction, 289

residual bootstrap, 361
response-based sampling, 43
restricted ML estimator, 233, 776
revealed preference data, 498, 516
ridge regression estimator, 440
Robinson difference estimator, 324–5, 565
robust sandwich variance matrix estimate. See

sandwich variance matrix
robust standard errors

bootstrap, 362–3, 376–8
Eicker-White, 74–5, 80–1, 112, 137
for extremum estimator, 137–9
Huber-White, 137, 144, 146
Newey-West, 137, 175, 723
see also cluster-robust; heteroskedasticity-robust;

panel-robust; systems-robust
ROC curve. See receiver operators characteristics

curve
rotating panels, 739
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Roy model, 555–7, 562
definition, 556
dummy endogenous variable, 557
Heckman two-step estimator, 556
ML estimator, 556
panel semiparametric estimation, 808
as treatment effects model, 867

RPL model. See random parameters logit
R-squared, 287

pseudo, 287–9
uncentered, 241, 263

running mean estimator, 308

SA method. See simulated annealing
sample attrition, 47
sample moment conditions

see population moment conditions
sample selection bias, 44–5
sample weights, 817–21, 853–6

see also weighting
sampling schemes

assumptions for OLS, 76–78
case-control, 479, 823
choice-based sampling, 43, 478–9, 823
endogenous sampling, 42–5, 78, 822–9, 856
endogenous stratified sampling, 78, 820, 825–6,

856
exogenous stratified sampling, 42, 78, 814–5, 820,

825, 856
fixed in repeated samples, 76–7
flow sampling, 44, 626
multi-stage surveys, 41–2, 814–6, 853–6
on-site sampling, 43, 823
simple random sampling, 41, 76–7, 816
stock sampling, 44, 626–7
with replacement, 816
without replacement, 816–7

sandwich variance matrix
clustered data, 834, 842
extremum estimator, 132, 137–9
GMM estimator, 175
ML estimator, 144, 148
NLS estimator, 150
OLS estimator, 74
panel data, 705–7, 722, 746, 751
for Wald test, 277
see also robust standard errors

Sargan test, 277
see also overidentifying restrictions test

scale parameter, 509
scanner data, 499
Schwarz criterion. See BIC
SCLS estimator. See symmetrically censored least

squares
score test, see Lagrange multiplier test
score vector, 141
secondary sampling units (SSUs), 41, 815, 854
seed, 411

seemingly unrelated regressions (SUR) model,
209–10, 216

Bayesian MCMC example, 452–4
count data, 685
error components, 762
nonlinear, 216

selection bias, 445
nonignorable missingness, 927, 932, 940
treatment effects models, 867–71
see also selection models

selection models, 546–62
bivariate sample selection model, 547–53
count models, 680
example, 553–5
panel data, 801
Roy model, 555–7, 867
sample selection, 546
self selection, 546
semiparametric estimation, 565–6
structural models, 558–62
treatment effects model, 862–4
versus selection on observables only, 552–3, 864,

868–71
versus two-part models, 546, 552–3
see also Tobit models

selection on observables only, 552–3, 862–4, 868–9,
878–3, 889–96

compared to selection models, 552–3, 864, 871
conditional independence assumption, 868
control function estimator, 869
definition, 868–9
DID estimator, 878–9
RD design estimator, 879–83
treatment effects model, 862–4, 889–96

selection on unobservables, 552–3, 865–71, 883–9
definition, 868
in treatment effects model, 862–4
IV estimators, 883–9
Roy model, 867
selection bias, 867–71
selection model, 552–3

self-weighting sample, 818
SEM. See simultaneous equations model
seminonparametric ML estimator, 328–9, 485
semiparametric efficiency bounds, 323, 329–30, 485
semiparametric estimators, 322–30

adaptive, 323
application, 565
average derivative estimator, 326
efficiency bounds, 323, 329–30
nonparametric FGLS, 328
Robinson difference estimator, 324–5, 565
semiparametric least squares, 327, 483
seminonparametric ML estimator, 328–9, 485
see also semiparametric models

semiparametric heterogeneity model, 622
see also finite mixture models

semiparametric least squares, 327, 483
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semiparametric ML estimator, 328–9, 485
semiparametric models, 322–30

additive models, 327
binary outcome models, 482–6
censored models, 563–5
count models, 684–5
definition, 322
duration models, 594–600, 601–2
flexible parametric models, 563
heteroskedastic linear model, 323, 328
identification, 325–6
leading examples, 322
multinomial outcome models, 523–4
panel data models, 808
partially linear model, 324–5
selection models, 565–6
single-index models, 325–7
see also semiparametric estimators

sequential limits, 767
sequential multinomial models, 520–1
sequential two-step m-estimator, 200–2

bootstrap for, 362
sequence of random variables, 943, 945
serial correlation. See autocorrelation
set identification, 29
series estimator, 321

for binary outcomes, 483
shared frailty model, 662
short panel

definition, 700
statistical inference in, 705–8, 721–2, 746, 751, 768

shrinkage estimator, 440
Silverman’s plug-in estimate, 304
simple random sampling (SRS), 41, 76–7, 816
simple stratified sampling, 818
Simpson’s rule, 388–9
simulated annealing (SA) method, 347
simulated m-estimator, 398–9
simulation-based estimation methods, 364–418

motivating examples, 385–6
see MSL, MSM, indirect inference, simulators

simulators, 393–4, 406–10
antithetic sampling, 408–9
direct, 393
frequency, 406
GHK, 407–8
Halton sequences, 409–10
importance sampling, 407
smooth, 407
subsimulator, 394
unbiased, 394, 400
see also quadrature

simultaneous equations model (SEM), 22–31, 213–4,
219

causal interpretation, 26
error components, 762
extension to nonlinear models, 27
FIML estimator, 214

identification, 29–31, 213–4
LIML estimator, 214
nonlinear, 219
order condition, 213
rank condition, 214
reduced form, 25, 213
single-equation models, 31
structural form, 25, 213
structural model, 24
2SLS estimator, 214
3SLS estimator, 214

simultaneous equations probit, 523, 560–1
simultaneous equations Tobit, 560–1
single-index models, 123, 323, 325–7

definition, 123
identification, 325
marginal effects, 123
nonlinear panel model, 780
semiparametric estimators, 325–7

SIPP. See Survey of Income and Program Participation
size of test, 246–7, 251–3

nominal size, 251
size-corrected test, 251
true size, 251–3

Sklar’s theorem, 652
Slutsky’s Theorem, 945–6

alternative version, 949
small-sample bias. See finite-sample bias
smooth maximum score estimator, 484
smoothing parameters, 307
smoothing spline estimator, 321
social experiments, 32, 48–54

advantages, 50–2
examples, 51, 889
limitations, 52–4
randomization, 49–50

span, 320
specific to general test, 285
specification tests, 259–78

for clustered data, 840
for duration models, 628–32
for endogeneity, 275–6
for exogeneity, 277
for heteroskedasticity, 275
for individual-specific effects, 737
for omitted variables, 274
for overdispersion, 670–1
for pooling, 737
for unobserved heterogeneity, 628–32
for Tobit model, 543–4
see also m-tests; model diagnostics

spherical errors, 78
split-sample IV estimator, 191–2
SRS. See simple random sampling
SSUs. See secondary sampling units
stable family of distributions, 621
stable unit treatment value assumption (SUTVA), 872
standard errors. See robust standard errors
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starting values, 340, 351
state dependence. See true state dependence
stated preference data, 498, 516
stationary population, 40
statistical packages, 349
step size adjustment, 338
stochastic order of magnitude, 954–5
stock sampling, 44, 626–7
strata, 41, 815

see also sampling schemes; weighting
stratification matching, 875–6, 893–6
stratified random sampling, 76–7, 814–5

use of Liapounov CLT, 951
use of Markov LLN, 948
see also sampling schemes; weighting

strict exogeneity. See strong exogeneity
strong consistency, 947
strong exogeneity, 22

in panel models, 700, 749–50, 752, 781
structural approach

to measurement error, 901
to weighting, 820–1

structural economic models, 28, 171
with selection, 558–60

structural form, 20, 25, 223
structural model, 20–31, 35–6

based on economic model, 28
exogeneity, 22–3
full information, 35
limited information, 35
reduced form, 21, 25, 223
structural form, 20, 25, 223
structure, 20
see also simultaneous equations model

structural selection models, 558–62
based on utility maximization, 558–60
endogenous regressors, 561–2
simultaneous equations Tobit, 560–1

studentized statistic, 359
subsampling method, 373
substitution bias, 53, 867
sufficient statistic, 732, 782, 799, 805

definition, 782
summation assumption, 748, 752
superpopulation, 40, 816
supersmoother, 321
SUR model. See seemingly unrelated regressions
survey methods, 41–2, 84–7, 814–8, 853–6
survey nonresponse, 45–6, 60, 739

see also attrition bias; imputation methods
Survey of Income and Program Participation (SIPP),

59
survival analysis. See duration models
survival function. See survivor function
survivor function

aggregate survivor function, 619
definition, 576–8
estimator in PH model, 596–7

Kaplan-Meier estimator, 581–2, 604–5
in mixture models, 615–6
multivariate, 649–50
parametric examples, 585

SUTVA. See stable unit treatment value assumption
switching regressions model. See Roy model
symmetrically censored least squares (SCLS)

estimator, 565
synthetic panels. See pseudo panels
systems of equations, 206–19

linear systems, 206–14
nonlinear systems, 214–9
seemingly unrelated regression, 209–10, 216
simultaneous equations model, 22–31, 213–4, 219

systems-robust standard errors, 208–9, 212, 219

target density, 444
tests. See hypothesis tests, m-tests, specification tests
three-stage least squares (3SLS) estimator, 214
3SLS estimator. See three-stage least squares
time series data

bootstrap, 381
NLS estimator, 158–9
Newey-West standard errors, 137, 175, 727

time-varying regressors
in duration models, 597–9
in panel data models, 702, 749–51

Tobit model, 536–44
Bayesian methods, 563
censored mean, 538–41
censoring mechanism, 532, 579
consistency of MLE, 538
definition, 536
example, 530–1
generalized, 548
Heckman two-step estimator, 543, 567–8
identification, 536
as imputation method, 932
inverse-Mills ratio, 540–1
marginal effects, 541–2
measurement error in dependent variable, 914
ML estimator, 537–8
NLS estimator, 542
OLS estimator, 543
panel data, 800–1
simultaneous equations, 560–1
specification tests, 543–4
with stochastic thresholds, 547
with truncated data, 538
truncated mean, 538–41, 566–7
two-limit, 536
type 2, 547
type 5, 557
see also selection models

top-coded data, 532–3, 541, 563
transformation methods, 413
transformation theorem, 949
transformed ML estimator, 766
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transition data. See duration models
trapezoidal rule, 388
treatment-control comparison

application, 890–1
treatment effects framework, 862–5, 871–8, 889–96

balancing condition, 864, 893–4
binary treatment variable, 862
conditional independence assumption, 863, 865
conditional mean independence assumption, 864
heterogeneous treatment effects, 882, 885
multiple treatments, 860
overlap assumption, 864, 871
propensity score, 864–5
Roy model, 867
stable unit treatment value assumption, 872
see also treatment evaluation

treatment evaluation, 860–98
application, 889–96
IV estimators, 883–9
matching estimators, 871–8
DID estimators, 878–9
selection bias, 865–71
selection on observables, 862–4, 878–3, 889–96
selection on unobservables, 865–71, 883–9
regression discontinuity design, 879–83
see also treatment effects framework

treatment group, 49, 862
trimming, 316, 333
trivariate reduction, 686
true state dependence

duration models, 612, 630, 636
dynamic panel models, 763–4, 798, 802
see also unobserved heterogeneity

truncated models, 530–44
conditional mean, 535
count models, 679–80
definition, 532
examples, 530–1, 535
ML estimator, 534
see also Tobit model; selection models

truncated moments of standard normal, 540, 566–7
truncation mechanisms, 532

truncation from above, 532
truncation from below, 532

2SLS estimator. See two-stage least squares
two-limit Tobit model, 536
two-part model, 544–6

application, 553–5
compared to selection models, 546, 552–3
definition, 545
example, 545–6
see also hurdle model

two-stage IV estimator, 187
two-stage least squares (2SLS) estimator, 101–2,

187–91
alternatives to, 190–2
Basmann’s approach, 190–1
compared to optimal GMM, 187–8

as GLS in transformed model, 188–9
as GMM estimator, 187
nonlinear, 195–6, 199
panel data, 746, 755
in SEM, 214
Theil’s interpretation, 189–90

two-stage sampling, 41, 818
two-step estimators

GMM, 176, 187
Heckman, 543, 550–1, 556, 567–8
sequential m-estimator, 200–2

two-step GMM estimator, 176, 187
panel, 746, 755

two-way effects model, 738
type I error, 246–7
type II error, 246–7
type 1 extreme value distribution, 477, 486–7

duration model error, 590
multinomial logit model, 505

type 2 Tobit. See bivariate sample selection model
type 5 Tobit. See Roy model

ultimate sampling units (USUs), 41, 815
unbalanced panels, 739
uncentered explained sum of squares (ESS), 241
uncentered R-squared, 241, 263
unconfoundedness assumption. See conditional

independence assumption
underrecording, 915
undersmoothing, 305, 333, 380
uniform convergence in probability, 126, 301
uniform number generators, 412
uniformly most powerful (UMP) test, 247
unit roots, 382, 767–8
universal logit model, 500
unobserved heterogeneity

application, 632–6
in competing risks model, 647
in count models, 675–7, 686
distributions for, 614–5, 620–1
in duration models, 611–25
finite mixture models for, 621–5
identification, 618–20
IM test for, 267
individual-specific effects, 700, 764
mixture models for, 613–21
MSL example, 397–8
MSM example, 403
multiplicative, 613, 686
in nonlinear systems, 215
specification tests for, 629–32
variance inflation, 614
versus true state dependence, 612, 630, 636, 763–4,

798, 802
USUs. See ultimate sampling units

validation sample, 911
variance components, 735, 845
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variance matrix estimation
BHHH estimate, 138
degrees-of-freedom adjustment, 75, 102, 138,

185–6, 278, 841
expected Hessian estimate, 138
for extremum estimator, 137–9
for GMM estimator, 174–5
Hessian estimate, 138
for NLS estimator, 154–5
OPG estimate, 138
robust estimate, 137
sandwich estimate, 137, 144
for weighted estimators, 854–6
see also robust standard errors

variance reduction for simulation, 478

Wald estimator
in treatment effects models, 886

Wald test, 136–7, 224–33
asymptotic distribution, 226–8
comparison with LM and, LR tests, 238–9
definition, 136
examples, 236, 241–3
exclusion restrictions, 227
F-test version, 226
introduction, 136–7
lack of invariance, 232–3
likelihood based, 234, 241–3
linear models, 224–5
linear restrictions, 136–7
in misspecified models, 229–30
nonlinear restrictions, 224, 229
power, 248–50
of statistical significance, 228
t-test version, 226–8
see also hypothesis tests

weak consistency, 947
weak exogeneity, 22

in panel data, 749, 752, 758
weak instruments, 100, 104–12

application, 110–2
definition, 104
finite sample bias, 108–12, 177–8, 191–2, 196
GMM estimator, 177–8
inconsistency, 105–7
indicators 104–5, 756
panel data, 751–2, 756

Weibull distribution, 584–6
Weibull-gamma regression model, 615
Weibull regression model, 143–4, 589, 606–8, 635
weighted estimation

endogenous stratification, 828–9
exogenous stratification, 818–20

weighted exogenous sampling ML (WESML)
estimator, 828

weighted least squares (WLS) estimator, 81–5
asymptotic distribution, 83
contrasted with GLS, 83
definition, 83
example, 84–5
in pooled model, 702–3, 721
see also FGLS estimator

weighted maximum likelihood (WML) estimator,
828

weighted semiparametric least squares (WSWL)
estimator, 327

for binary outcome models, 485
weighting, 817–21, 827–9, 853–6

descriptive versus structural approach, 820
with endogenous stratification, 827–9
sample weights, 817–8
variance estimation, 853–6
weighted prediction, 821
weighted regression, 818–20
whether to weight, 820–1

welfare analysis
with ARUM, 506–7
with nested logit model, 512

WESML estimator. See weighted exogenous sampling
ML

White standard errors. See robust standard errors
wild bootstrap, 377–8
window width, 299, 307, 312
Wishart distribution, 443

see also inverse-Wishart distribution
within estimator. See fixed effects estimator
within model. See fixed effects model
within-group variation, 709, 733
with-zeros model, 681
WLS estimator. See weighted least squares
WML estimator. See weighted maximum likelihood
WNLS estimator, 156–7

asymptotic distribution, 156
definition, 156
example, 159–63
as GLM, 158

working matrix
definition, 82
for GLM estimator, 158
for pooled GEE estimator, 794
for pooled WLS estimator, 721
for WLS estimator, 82–3

WSLS estimator. See weighted semiparametric least
squares

zero-inflated count model, 680–1
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