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Chapter 1

The Return of Monetary Rules

If it were in our power to regulate completely the price system of the future, the
ideal position ... would undoubtedly be one in which, without interfering with
the inevitable variations in the relative prices of commodities, the general average
level of money prices ... would be perfectly invariable and stable.

And why should not such regulation lie within the scope of practical politics?
... Attempts by means of tariffs, state subsidies, export bounties, and the like,
to effect a partial modification of the natural order of [relative prices] almost
inevitably involve some loss of utility to the community. Such attempts must so
far be regarded as opposed to all reason. Absolute prices on the other hand —
money prices — are a matter in the last analysis of pure convention, depending
on the choice of a standard of price which it lies within our own power to make.

— Knut Wicksell, Interest and Prices, 1898, p. 4.

The past century has been one of remarkable innovation in the world’s monetary systems.

At the turn of the twentieth century, it was taken for granted by practical men that the mean-

ing of a monetary unit should be guaranteed by its convertibility into a specific quantity of

some precious metal; debates about monetary policy usually concerned the relative advan-

tages of gold and silver standards, or the possibility of a bimetallic standard. But through

fits and starts, the world’s currencies have come progressively to be more completely subject

to “management” by individual central banks. Since the collapse of the Bretton Woods

system of fixed exchange rates in the early 1970s, the last pretense of a connection of the

1



2 CHAPTER 1. THE RETURN OF MONETARY RULES

world’s currencies to any real commodity has been abandoned. We now live instead in a

world of pure “fiat” units of account, the value of each of which depends solely upon the

policies of the particular central bank with responsibility for it.

This has brought both opportunities and challenges. On the one hand, variations in

the purchasing power of money, with their disruptions of the pattern of economic activity,

need no longer result from the vagaries of the market for gold or some other precious metal.

The recognition that the purchasing power of money need not be dictated by any “natural”

market forces, and is instead a proper subject of government regulation, as proposed by the

monetary reformer Knut Wicksell a century ago, should in principle make possible greater

stability of the standard of value, facilitating contracting and market exchange. At the

same time, the responsibilities of the world’s central banks are more complex under a fiat

system than they were when the banks’ tasks were simply to maintain convertibility of their

respective national currencies into gold, and it was not immediately apparent how the banks’

new freedom should best be used. Indeed, during the first decade of the new regime, the

policies of many industrial nations suffered from a tendency toward chronic inflation, lead

to calls from some quarters in the 1980s for a return to a commodity standard.

This has not proven to be necessary. Instead, since the 1980s the central banks of the

major industrial nations have been largely successful at bringing inflation down to low and

fairly stable levels. Nor does this seem to have involved any permanent sacrifice of other ob-

jectives; for example, real GDP growth has been if anything higher on average, and certainly

more stable, in the period since inflation has been stabilized in the U.S. Somewhat para-

doxically, this period of improved macroeconomic stability has coincided with a reduction,

in certain senses, in the ambition of central banks’ efforts at macroeconomic stabilization.

Banks around the world have committed themselves more explicitly to relatively straight-

forward objectives with regard to the control of inflation, and have found when they do so

not only that it is easier to control inflation than previous experience might have suggested,

but also that price stability creates a sound basis for real economic performance as well.

What appears to be developing, then, at the turn of another century, is a new consensus
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in favor of a monetary policy that is disciplined by clear rules intended to ensure a stable

standard of value, rather than one that is determined on a purely discretionary basis to serve

whatever ends may seem most pressing at any given time. Yet the new monetary rules are not

so blindly mechanical as the rules of the gold standard, that defined monetary orthodoxy a

century ago. They are instead principles of systematic conduct for institutions that are aware

of the consequences of their actions and take responsibility for them, and choose their policies

with careful attention to what they accomplish. Indeed, under the current approaches to

rule-based policymaking, more emphasis is given to explicit commitments regarding desired

economic outcomes, such as a target rate of inflation, than to particular technical indicators

that the central bank may find it useful to monitor in achieving that outcome.

The present study seeks to provide theoretical foundations for a rule-based approach

to monetary policy of this kind. The development of such a theory is an urgent task, for

rule-based monetary policy in the spirit that I have described is possible only in the case

that the central banks can develop a conscious and articulate account of what they are

doing. It is necessary in order for them to know how to systematically act in a way that

can serve their objectives, that are now defined in terms of variables that are much farther

from being under the banks’ direct control. But it is also necessary in order for them to be

able to communicate the nature of their systematic commitments to the public, despite the

absence of such mechanical constraints as a commitment to exchange currency for some real

commodity. As we explain below, the advantages of a sound monetary policy are largely

dependent upon the policy’s being understood and relied upon by the private sector in

arranging its affairs.

And there can be little doubt that the past decade has seen a marked increase in the

self-consciousness of central banks about the way in which they conduct monetary policy,

and in the explicitness of their communication with the public about their actions and

the considerations upon which they are based. A particularly important development in

this regard has been the adoption of “inflation targeting” as an approach to the conduct
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of monetary policy by many of the world’s central banks in the 1990s.1 As we discuss

in more detail below, this approach (best exemplified by the practices of such innovators

as the Bank of England, the Bank of Canada, the Reserve Bank of New Zealand, and the

Swedish Riksbank) is characterized not only by public commitment to an explicit target, but

also by a commitment to explain the central bank’s policy actions in terms of a systematic

decision-making framework that is aimed at achieving this target. This has led to not only to

greatly increased communication with the public about the central bank’s interpretation of

current conditions and the outlook for the future, notably through the publication of detailed

Inflation Reports; it has also involved fairly explicit discussion of the approach that they

follow in deliberating about policy actions, and in some cases even publication of the model

or models used in producing the forecasts that play a central role in these deliberations. As

a consequence, these banks in particular have found themselves in need of a clear theory of

how they can best achieve their objectives, and have played an important role in stimulating

reflection on this problem.

It is true that the conceptual frameworks proposed by central banks to deal with their

perceived need for a more systematic approach to policy were, until quite recently, largely

developed without much guidance from the academic literature on monetary economics.

Indeed, the central questions of practical interest for the conduct of policy — how should

central banks decide about the appropriate level of overnight interest rates? how should

monetary policy respond to the various types of unexpected disturbances that occur? —

had in recent decades ceased to be considered suitable topics for academic study. Reasons for

this included the trenchant critique of traditional methods of econometric policy evaluation

by Lucas (1976); the critique of the use of conventional methods of optimal control in the

conduct of economic policy by Kydland and Prescott (1977); and the develop of a new

generation of quantitative models of business fluctuations (“real business cycle theory”)

with more rigorous microeconomic foundations, but which implied no relevance of monetary

policy for economic welfare.

1See, e.g., Bernanke et al. (19xx) for a thorough discussion of this development.
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Nonetheless, recent developments, to be discussed in detail in this volume, have consid-

erably changed this picture. The present study will seek to show that it is possible to use the

tools of modern macroeconomic theory — intertemporal equilibrium modeling, taking full

account of the endogeneity of private-sector expectations — to analyze optimal interest-rate

setting in a way that takes seriously the concerns of central bankers, while simultaneously

taking account of the “New Classical” critique of traditional policy evaluation exercises. In

this way, the basic elements are presented of a theory that can provide a basis for the kind

of systematic approach to the conduct of monetary policy which many central banks are

currently seeking to develop. In the present chapter, we review some of the key features of

this theory, as preparation for the more systematic development that begins in chapter 2.

1 The Importance of Price Stability

A notable feature of the new rule-based approaches to monetary policy has been the increased

emphasis given to a particular policy objective: maintaining a low and stable rate of inflation.

This is most obvious in the case of the countries with explicit inflation targets. But it also

seems to characterize recent policy in the U.S. as well, where the past decade has seen unusual

stability of the inflation rate, and where many econometric studies have found evidence of a

stronger Fed reaction to inflation variations in recent years. (See further discussion of recent

U.S. policy in section 4.1 below.)

Yet the justification of such an emphasis from the standpoint of economic theory may

not be obvious. Standard general equilibrium models — and the earliest generation of

quantitative equilibrium models of business fluctuations, the “real business cycle” models of

the 1980s — imply that the absolute level of prices should be irrelevant for the allocation of

resources, which depends only on relative prices. Traditional Keynesian macroeconometric

models, of course, imply otherwise: variations in the growth rate of wages and prices are

found to be associated with substantial variations in economic activity and employment.

Yet the existence of such “Phillips curve” relations has typically been held to imply that

monetary policy should be used to achieve output or employment goals, rather than giving
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priority to price stability.

The present study argues instead for a different view of the proper goals of monetary

policy. The use of monetary policy to stabilize an appropriately defined price index is in fact

an important end to which policy should be directed — at least to a first approximation, it

should be the primary aim of monetary policy. But this is not — as proponents of inflation

targeting sometimes argue — because variations in the rate of inflation have no real effects.

Instead, it is exactly because instability of the general level of prices causes substantial real

distortions — causing inefficient variation both in aggregate employment and output and in

the sectoral composition of economic activity — that price stability is important.

Moreover, the existence of predictable real effects of shifts in monetary policy need not

imply that policy should primarily be based on a calculation of its effects on output or

employment. For the efficient aggregate level and sectoral composition of real activity is likely

to vary over time, as a result of real disturbances of variety of types. The market mechanism

performs a difficult computational task — much of the time, fairly accurately — in bringing

about a time-varying allocation of resources that responds to these changes in production

and consumption opportunities. Because of this, variation over time in employment and

output relative to some smooth trend cannot in itself be taken to indicate a failure of proper

market functioning. Instead, instability of the general level of prices is a good indicator of

inefficiency in the real allocation of resources — at least when an appropriate price index

is used — because a tendency of prices in general to move in the same direction (either all

rising relative to their past values, or all falling) is both a cause and a symptom of systematic

imbalances in resource allocation.

This general vision is in many respects an attempt to resurrect a view that was influ-

ential among monetary economists prior to the Keynesian revolution. It was perhaps best

articulated by the noted Swedish economic theorist Knut Wicksell at the turn of the previ-

ous century, along with his followers in the “Stockholm school” of the interwar period (such

as Erik Lindahl and Gunnar Myrdahl) and others influenced by Wicksell’s work, such as

Friedrich Hayek. However, these authors developed their insights without the benefit of ei-
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ther modern general equilibrium theory2 or macroeconometric modelling techniques, so that

it may be doubted whether Wicksellian theory can provide a basis for the kind of quantitative

policy analysis in which a modern central bank must engage — and which has become only

more essential given current demands for public justification of policy decisions. This book

will seek to provide theoretical foundations for the view just sketched that meet modern

standards of conceptual rigor, and that are capable of elaboration in a form that can be fit

to economic time series.

1.1 Toward a New “Neoclassical Synthesis”

The approach to monetary policy proposed here builds upon advances in the analysis of

economic fluctuations, and of the monetary transmission mechanism in particular, over the

past few years.3 The models analyzed in this volume differ in crucial respects from the first

two generations of equilibrium business cycle models, namely the “New Classical” models

that took Lucas (1972) as their starting point, and the “real business cycle” models pioneered

by Kydland and Prescott (1982) and Plosser (1983). Neither of these early illustrations of

the possibility of rigorous intertemporal general-equilibrium analysis of short-run fluctuations

contained elements that would make them suitable for the analysis of monetary policy. While

the Lucas model allows for real effects of unexpected variations in monetary policy (modeled

as stochastic variation in the growth rate of the money supply), it implies that any real

effects of monetary policy must be purely transitory, and also that monetary disturbances

should have no real effects to the extent that their effects on aggregate nominal expenditure

can be forecast in advance. Yet, as shown chapter 3, VAR evidence on the effects of identified

monetary policy shocks is quite inconsistent with these predictions; instead, the effects of

monetary policy shocks on aggregate nominal expenditure are forecastable at least 6 months

2Of course, Wicksell and his followers were quite familiar with Walrasian general equilibrium theory, and
used it as a starting point for their own thought. But at the time, general equilibrium theory meant a static
model of resource allocation, not obviously applicable to the problems of intertemporal resource allocation
with which they were primarily concerned. See, for example, Myrdahl (1931, chap. 2, sec. 4, and chap. 3,
sec. 5).

3Useful surveys of recent developments include Goodfriend and King (1997) and Gali (2001).
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in advance on the basis of federal-funds rate movements, while the (similarly delayed) effects

on real activity are substantial and persist for many quarters. Nor is this empirical failure

of the model one of minor import for the analysis of monetary policy; the conclusion that

only unanticipated monetary policy can have real effects leads fairly directly to the skeptical

conclusions of Sargent and Wallace (1975) about the necessary ineffectiveness of any attempt

to use monetary policy to stabilize real activity.

The real business cycle (RBC) models of the 1980s offered a very different view of the

typical nature of short-run fluctuations in economic activity. But the classic models in this

vein similarly imply no scope at all for monetary stabilization policy, because real variables

are modeled as evolving in complete independence of any nominal variables; monetary policy

is thus (at least implicitly) assumed to be of no relevance as far as fluctuations in real activity

are concerned. Since neither the empirical evidence from VAR studies nor the practical

experience of central bankers supports this view, we should be reluctant to discuss the

nature of desirable monetary policy rules using models of this kind.

Chapters 3 and 4 review a more recent literature that has shown, instead, how models

with equally rigorous foundations in intertemporal optimizing behavior can be developed that

allow a more realistic account of the real effects of monetary disturbances. These models

also imply that systematic monetary policy can make a substantial difference for the way

that an economy responds to real disturbances of all sorts, and this is actually the prediction

of the models that is of greatest importance for our concerns. VAR models typically do not

imply that a large part of the variance of fluctuations in real activity should be attributed to

monetary policy shocks — that is, to the purely random component of central-bank interest-

rate policy — and in any event, one does not really need to understand exactly what the

effects of such shocks are, since under almost any view it will be desirable to eliminate such

shocks (i.e., to render monetary policy predictable) to the extent possible. (Here, we discuss

the ability of our models to account for evidence with regard to the effects of such shocks only

because this is the aspect of the effects of monetary policy which can be empirically identified

under relatively weak, and hence more convincing, identifying assumptions.) On the other
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hand, we are very interested in what a model implies about the way in which alternative

systematic monetary policies determine the effects of real disturbances. The question of

practical importance in central banking is never “should we create some random noise this

month?”, but rather “does this month’s news justify a change in the level of interest rates?”

To think about this, we need to understand the consequences of different types of possible

monetary responses to exogenous disturbances.

The key to obtaining less trivial consequences of systematic monetary policy in the models

proposed here is the assumption that prices and/or wages are not continually adjusted, but

instead remain fixed for at least short periods (a few months, or even a year) at a level that

was judged desirable at an earlier time. However, this postulate does not mean accepting

the need for mechanical models of wage and price adjustment of the kind that were at the

heart of the Keynesian macroeconometric models of the 1960s. Rather than postulating that

prices or wages respond mechanically to some measure of market disequilibrium, they are set

optimally, i.e., so as to best serve the interests of the parties assumed to set them, according

to the information available at the time that they are set. The delays involved before the

next time that prices are reconsidered (or perhaps, before a newly chosen price takes effect)

are here taken to be an institutional fact, just like the available production technology. But

the resulting constraints are taken account of by the decisionmakers who set them; thus

the assumed “stickiness” of prices implies that when they are reconsidered, they are set in

a forward-looking manner, on the basis of expectations regarding future demand and cost

conditions, and not simply in response to current conditions. As a result, expectations turn

out to be a crucial factor in the equilibrium relation between inflation and real activity (as

argued by Phelps and Friedman in the 1960s). Under certain special assumptions, described

in chapter 3, the relation is of exactly the form assumed in the “New Classical” literature:

deviations of output from its “natural rate” are proportional to the unexpected component

of inflation. However, this is not true more generally; other models, that I would judge to

be more realistic, also lead to “expectations-augmented Phillips curve” relations of a sort,

but not of the precise sort that implies that anticipated monetary policy cannot have real
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effects.

It is also important to note that our emphasis upon nominal rigidities does not in any

way mean ignoring the real factors in business fluctuations stressed by RBC theory. One

important achievement of the RBC literature has been to show that the equilibrium level of

output can easily be disturbed by real disturbances of many sorts — variations in the rate

of technical progress, variations in government purchases, changes in tax rates, or shifts in

tastes of various sorts. We shall not want to abstract from the existence of such disturbances

in our models; after all, it is only the existence of real disturbances (i.e., disturbances other

than those originating from randomness in monetary policy itself) that gives rise to non-

trivial questions about monetary policy, and we shall strive to obtain results that remain

valid for as broad a class of possible disturbances as possible. Of course, the predicted effects

of real disturbances will not necessarily be the same in the models presented here as in RBC

theory, which, in its classic form, assumes complete flexibility of both wages and prices.

Instead, in our models, the predicted effects of real disturbances will depend on the nature

of monetary policy.

Nonetheless, the predicted evolution of real variables under complete wage and price

flexibility — the topic studied in RBC theory — represents an important benchmark in the

theory developed here. The level of output that would occur in an equilibrium with flexible

wages and prices, given current real factors (tastes, technology, government purchases) —

what we call the “natural rate” of output, following Friedman (1968) — turns out to be a

highly useful concept, even if our theory does not imply that this is what the actual level of

output will be, regardless of monetary policy. It is the gap between actual output and this

natural rate, rather than the level of output as such (or output relative to trend), that is

related to inflation dynamics in a properly specified Phillips-curve relation, as we show in

chapter 3. It is also this concept of the output gap to which interest rates should respond

if a “Taylor rule” is to be a successful approach to inflation stabilization, as we discuss in

chapter 4; it is this concept of the output gap that monetary policy should aim to stabilize

in order to maximize household welfare, as shown in chapter 6; and it is this concept of
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the output gap to which optimal interest-rate rules and/or optimal inflation targets should

respond, as shown in chapter 8. From the point of view of any of these applications, the

fact that the natural rate of output may vary at business-cycle frequencies, as argued in

the RBC literature, is of tremendous practical importance. As will be seen, we are also

quite interested in the consequences of time variation in what Wicksell (1898) called the

“natural rate of interest” — the equilibrium real rate of interest in the case of flexible wages

and prices, given current real factors.4 Once again, RBC theory has a great deal to tell us

about the kind of factors that should cause the natural rate of interest to vary. Hence RBC

theory, when correctly interpreted, constitutes an important building block of the theory to

be developed here.

It is for this reason that Goodfriend and King (1997) speak of models of this kind as

representing a “new neoclassical synthesis”, in the spirit of the synthesis between Keynesian

short-run analysis and neoclassical long-run analysis proposed by Hicks and Samuelson. In

the modern, more explicitly dynamic version of such a synthesis, the neoclassical theory

(i.e., RBC theory) defines not a static “long-run equilibrium” but rather a dynamic path

which represents a sort of virtual equilibrium for the economy at each point in time — the

equilibrium that one would have if wages and prices were not in fact sticky. The evolution of

the virtual equilibrium matters because the gaps between actual quantities and their virtual

equilibrium values are important measures of the incentives for wage and price adjustment,

and hence determinants of wage and price dynamics.

At the same time, the stickiness of prices and/or wages implies that short-run output

determination can be understood in a manner reminiscent of Keynesian theory. Indeed, our

basic analytical framework in this study will have the structure of a simple model consisting

of an “IS equation”, a monetary policy rule, and an “AS equation”. (The monetary policy

rule — which we shall often suppose is something similar to a “Taylor rule” — replaces

4This is of course the origin of the “natural rate” terminology — Friedman’s concept of a “natural rate of
unemployment” appealed to an analogy with Wicksell’s “natural rate of interest,” a concept with which his
readers were presumed already to be familiar. Nowadays, many readers will be more familiar with Friedman’s
concept, and will find the natural rate of interest most easy to understand as an analogy with Friedman’s
natural rate.
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the “LM equation” of Hicksian pedagogy, since for the most part we are not here interested

in the consequences of monetary targeting.) Nonetheless, even for purposes of “short-run”

analysis, our model will be less static than an old-fashioned Keynesian model; in particular,

expectations will be crucial elements in our structural relations (e.g., our “intertemporal IS

relation”), so that anything that causes a change in expectations should shift them.

The inclusion of significant forward-looking terms in our key structural relations will have

substantial consequences for our analysis of the character of optimal policy, just as Lucas

(1976) argued, even if the consequences are not necessarily the ones suggested in the “New

Classical” literature. For example, estimated “IS equations” in traditional macroeconometric

models often indicate an effect of lagged rather than current interest rates on aggregate

demand, since the coefficients on lagged rates are found to be more significant than those

on a current interest rate, in the case of a regression seeking to explain aggregate real

expenditure in terms of observable variables. In the optimization-based model estimated by

Rotemberg and Woodford (1997), instead, the observed delay in the effects of an interest-rate

innovation on real GDP is explained by an assumption that the interest-sensitive component

of private spending is predetermined, though chosen in a forward-looking way. Thus current

aggregate demand is assumed to depend on past expectations of current and future interest

rates, rather than past interest rates.

Econometrically, the two hypotheses are not easily distinguished, given the substantial

serial correlation of observed interest rates; yet the second hypothesis, I would argue, has

a much simpler logic in terms of the optimal timing of expenditure, once one grants the

hypothesis of predetermination of spending decisions (just as with pricing decisions). And

the specification assumed matters greatly for one’s conclusions about the conduct of policy.

If expenditure is really affected by lagged interest rates only, it becomes important for the

central bank to adjust interest rates in response to its forecast of how it would like to affect

aggregate demand at a later date; “pre-emptive” actions will be essential. If instead only

past expectations of current and future interest rates matter, then unforecastable interest

rate movements will not affect demand, so that immediate responses to news will serve no
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purpose; it will instead be important for interest rates to continue to respond to the outlook

that had been perceived in the past, even if more recent news has substantially modified the

bank’s forecasts. This inertial character of optimal interest-rate policy is discussed further

in chapters 7 and 8.

1.2 Microeconomic Foundations and Policy Analysis

The development of a model of the monetary transmission mechanism with clear foundations

in individual optimization is important, in our view, for two reasons. One is that it allows us

to evaluate alternative monetary policies in a way that avoids the flaw in policy evaluation

exercises using traditional Keynesian macroeconometric models stressed by Lucas (1976).

Another is that the outcomes resulting from alternative policies can be evaluated in terms

of the preferences of private individuals that are reflected in the structural relations of one’s

model.

Lucas (1976) argued that traditional policy evaluation exercises using macroeconometric

models were flawed by a failure to recognize that the relations typically estimated — a

“consumption equation,” a ”price equation,” and so on — were actually (at least under the

hypothesis of optimizing behavior by households and firms) reduced-form rather than truly

structural relations. In particular, in the estimated equations, expectations regarding future

conditions (future income in the case of consumers, future costs and future demand in the

case of price-setters) were proxied for by current and lagged observable state variables; but

the correlation of expectations with those observables ought to be expected to change in the

case of a change in the government’s policy rule, as contemplated in the policy evaluation

exercise.

This problem can be addressed by making use of structural relations that explicitly rep-

resent the dependence of economic decisions upon expectations regarding future endogenous

variables. The present study illustrates how this can be done, deriving the structural re-

lations that are to be used in the calculation of optimal policy rules from the first-order

conditions (Euler equations) that characterize optimal private-sector behavior. These condi-
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tions explicitly involve private-sector expectations about the future evolution of endogenous

variables, and often they only implicitly define private-sector behavior, rather than giving a

“consumption equation” or “price equation” in closed form. Our preference for this form of

structural relations is precisely that they are ones that should remain invariant (insofar as

our theory is correct) under changes in policy that change the stochastic laws of motion of

the endogenous variables.

Of course, the mere fact that the structural relations derived here follow from explicit

optimization problems for households and firms is no guarantee that they are correctly

specified; the (fairly simple) optimization problems that we consider here may or may not

be empirically realistic. (Indeed, insofar as we illustrate the principles of our approach

in the context of very simple examples, one can be certain that they are not very precise

representations of reality.) But this is not an objection to the method that we advocate here;

it simply means that there is no substitute for careful empirical research to flesh out the

details of a quantitatively realistic account of the monetary transmission mechanism. While

the present study does include some discussion of the extent to which the simple models

presented here are consistent with empirical evidence, in order to motivate the introduction

of certain model elements, no attempt is made here to set out a model that is sufficiently

realistic to be used for actual policy analysis in a central bank. Nonetheless, the basic

elements of an optimizing model of the monetary transmission mechanism, developed in

chapters 3 and 4 of this book, are ones that we believe are representative of crucial elements

of a realistic model; and indeed, the illustrative models discussed here have many elements

in common with rational-expectations models of the monetary transmission mechanism that

are already being used for quantitative policy evaluation at a number of central banks.

A second advantage of proceeding from explicit microeconomic foundations is that in

this case, the welfare of private agents — as indicated by the utility functions that underly

the structural relations of one’s model of the transmission mechanism — provides a natural

objective in terms of which alternative policies should be evaluated. In taking this approach,

the present study seeks to treat questions of monetary policy in a way that is already standard
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in other branches of public economics, such as the analysis of optimal tax policy. Nonetheless,

the approach has not been common in the literature on monetary policy evaluation, which

instead typically evaluates alternative policies in terms of ad hoc stabilization objectives for

various macroeconomic indicators.

Until recently, welfare-theoretic analyses of monetary policy have been associated exclu-

sively with the problem of reducing the transactions frictions (sometimes called “shoe-leather

costs”) that account for the use of money in purchases.5 This is because this was for a long

time the only sort of inefficiency present in general-equilibrium monetary models, which typ-

ically assumed perfectly flexible wages and prices and perfect competition. Here we show

how welfare analysis of monetary policy is also possible in settings that incorporate nominal

rigidities. Allowing for these additional frictions — crucial to understanding the real effects

of alternative monetary policies — provides a welfare-theoretic justification for additional

policy goals.

As shown in chapter 6, taking account of delays in the adjustment of wages and prices

provides a clear justification for an approach to monetary policy that aims at price stabil-

ity. It might seem more obvious that allowing for real effects of monetary policy provides

a justification for concern with output stabilization. The stickiness of prices explains why

actual output may differ from the “natural rate”, and so justifies a concern for the stabi-

lization of the “output gap”, i.e., the discrepancy between the actual and natural levels of

output. But price stickiness also justifies a concern with price stability. For when prices

are not constantly adjusted, instability of the general level of prices creates discrepancies

between relative prices owing to the absence of perfect synchronization in the adjustment of

the prices of different goods. These relative-price distortions lead in turn to an inefficient

sectoral allocation of resources, even when the aggregate level of output is correct.

Moreover, our theory implies not only that price stability should matter in addition to

stability of the output gap, but also that, at least under certain circumstances, inflation

stabilization eliminates any need for further concern with the level of real activity. This is

5For reviews of that traditional literature, see Woodford (1990) and Chari and Kehoe (1999).
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because, at least under the conditions described more precisely in chapter 6, the time-varying

efficient level of output is the same (up to a constant, which does not affect the basic point)

as the level of output that eliminates any incentive for firms on average to either raise or

lower their prices. It then follows that there is no conflict between the goal of inflation

stabilization and output-gap stabilization, once the welfare-relevant concept of the output

gap is properly understood. Furthermore, because of the difficulty involved in measuring the

efficient level of economic activity in real time — depending as this does on variations in

production costs, consumption needs, and investment opportunities — it may well be more

convenient for a central bank to simply concern itself with monitoring the stability of prices.

The development of an explicit welfare analysis of the distortions resulting from inflation

variations has advantages beyond the mere provision of a justification for central bankers’

current concern with inflation stabilization. For the theory presented here also provides

guidance as to which price index it is most desirable to stabilize. This is a question of

no small practical interest. For example, the stock-market booms and crashes in many

industrial nations in the late 1990s led to discussion of whether central banks ought not

target an inflation measure that took account of “asset price inflation” as well as goods

prices.6

The answer provided by the theory developed here is no. The prices that monetary policy

should aim to stabilize are the ones that are infrequently adjusted, and that consequently

can be expected to become misaligned in an environment that requires these prices to move

in either direction. Large movements in frequently adjusted prices — and stock prices are

among the most flexible of prices — can instead be allowed without raising such concerns,

and if allowing them to move makes possible greater stability of the sticky prices, such

instability of the flexible prices is desirable.7 In chapter 6, we show how such a conclusion

6For examples of scholarly attention to the question, see Goodhart (20xx) and Cecchetti (2002).
7The basic point was already evident to authors of the Stockholm school: “If one desires the greatest

possible diminution of the business cycle, ... then one must try to stabilize an index of those prices which
are sticky in themselves... Stability of the level of the sticky prices permits a certain freedom for all other
price levels, including capital values.... It is evident that [the price of capital goods] is the last price that
one should try to stabilize in a capitalist society.... The same is naturally true for all indices of flexible
commodity prices” (Myrdal, 1931, pp. 192-193).
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can be justified from the point of view of welfare economics. We further show how to develop

a quantitative measure of the deadweight loss resulting from stabilization of alternative price

indices, so that more subtle distinctions between the relative stickiness of different prices can

be dealt with.

In addition to implying that an appropriate inflation target ought not involve asset prices,

our theory suggests that not all goods prices are equally relevant. Instead, central banks

should target a measure of “core” inflation that places greater weight on those prices that

are stickier. Furthermore, insofar as wages are also sticky, a desirable inflation target should

take account of wage inflation as well as goods prices. The empirical results discussed in

chapter 3 suggest that wages and prices are sticky to a similar extent, suggesting (as we

show in chapter 8) that a desirable inflation target should put roughly equal weight on wage

and price inflation.

2 The Importance of Policy Commitment

Thus far, we have summarized a theoretical justification for the concern of the inflation-

targeting central banks with price stability. But why should it follow that there is a need

for public commitment to a target inflation rate, let alone for commitment to a systematic

procedure for determining appropriate instrument settings? Why is it not enough to appoint

central bankers with a sound understanding of the way the economy works, and then grant

them complete discretion to pursue the public interest in the way that they judge best?

Should it not follow from our analysis that this would result in price stability, to the extent

that this is possible given the instruments available to the central bank and the information

available at the time that policy decisions must be made?

We shall argue instead that there is good reason for a central bank to commit itself to

a systematic approach to policy, that not only provides an explicit framework for decision-

making within the bank, but that is also used to explain the bank’s decisions to the public.

There are two important advantages of commitment to an appropriately chosen policy rule

of this kind. One is that the effectiveness of monetary policy depends as much on the public’s
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expectations about future policy as upon the bank’s actual actions. Hence a bank must not

only manage to make the right decision as often as possible; it is also important that its

actions be predictable.

The second, and subtler, reason is that even if the public has no difficulty in correctly

perceiving the pattern in the central bank’s actions — as assumed under the hypothesis of

rational expectations — if a bank acts at each date under the assumption that it cannot

commit itself to any future behavior (and is not bound by any past commitments), it will

choose a systematic pattern of behavior that is suboptimal. We take up each of these

arguments in turn.

2.1 Central Banking as Management of Expectations

The first advantage of commitment to a policy rule is that it facilitates public understanding

of policy. It is important for the public to understand the central bank’s actions, to the

greatest extent possible, not only for reasons of democratic legitimacy — though this is an

excellent reason itself, given that central bankers are granted substantial autonomy in the

execution of their task — but also in order for monetary policy to be most effective.

For successful monetary policy is not so much a matter of effective control of overnight

interest rates as it is one of shaping market expectations of the way in which interest rates,

inflation and income are likely to evolve over the coming year and later. On the one hand,

optimizing models imply that private sector behavior should be forward-looking; hence ex-

pectations about future market conditions should be important determinants of current

behavior. It follows that, insofar as it is possible for the central bank to affect expectations,

this should be an important tool of stabilization policy. And given the increasing sophistica-

tion of market participants about central banking over the past two decades, it is plausible

to suppose that a central bank’s commitment to a systematic policy will be factored into

private sector forecasts — at least insofar as the bank’s actions are observed to match its

professed commitments.

Not only do expectations about policy matter, but, at least under current conditions,
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very little else matters. Few central banks of major industrial nations still make much use

of credit controls or other attempts to directly regulate the flow of funds through financial

markets and institutions. Increases in the sophistication of the financial system have made

it more difficult for such controls to be effective, and in any event the goal of improvement

of the efficiency of the sectoral allocation of resources stressed above would hardly be served

by such controls, which (if successful) inevitably create inefficient distortions in the relative

cost of funds to different parts of the economy.

Instead, banks restrict themselves to interventions that seek to control the overnight

interest rate in an interbank market for central-bank balances (for example, the federal funds

rate in the U.S.). But the current level of overnight interest rates as such is of negligible

importance for economic decisionmaking; if a change in the overnight rate were thought

to imply only a change in the cost of overnight borrowing for that one night, then even a

large change (say, a full percentage point increase) would make little difference to anyone’s

spending decisions. The effectiveness of changes in central-bank targets for overnight rates

in affecting spending decisions (and hence ultimately pricing and employment decisions) is

wholly dependent upon the impact of such actions upon other financial-market prices, such

as longer-term interest rates, equity prices and exchange rates. These are plausibly linked,

through arbitrage relations, to the short-term interest rates most directly affected by central-

bank actions; but it is the expected future path of short-term rates over coming months and

even years that should matter for the determination of these other asset prices, rather than

the current level of short-term rates by itself.8

Thus the ability of central banks to influence expenditure, and hence pricing, decisions is

critically dependent upon their ability to influence market expectations regarding the future

path of overnight interest rates, and not merely their current level. Better information on

8An effect of the same kind is obtained in the basic “neo-Wicksellian” model developed in chapter 4,
insofar as the short-run real rate of interest determines not the absolute level of desired private-sector
expenditure, but rather the current level relative to the expected future level of expenditure, as a result of
an Euler equation for the optimal timing of expenditure. Expected future expenditure, relative to expected
expenditure even farther in the future, similarly depends upon expected future short rates, and so on for
expectations regarding the still farther future.
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the part of market participants about central-bank actions and intentions should increase

the degree to which central-bank policy decisions can actually affect these expectations, and

so increase the effectiveness of monetary stabilization policy. Insofar as the significance of

current developments for future policy are clear to the private sector, markets can to a

large extent “do the central bank’s work for it,” in that the actual changes in overnight

rates required to achieve the desired changes in incentives can be much more modest when

expected future rates move as well.9

An obvious consequence of the importance of managing expectations is that a transpar-

ent central-bank decisionmaking process is highly desirable. This has come to be widely

accepted by central bankers over the past decade. (See Blinder et al., 2001, for a detailed

and authoritative discussion.) But it is sometimes supposed that the most crucial issues are

ones such as the frequency of press releases or the promptness and detail with which the

minutes of policy deliberations are published. Instead, from the perspective suggested here,

what is important is not so much that the central bank’s deliberations themselves be public,

as that the bank give clear signals about what the public should expect it to do in the future.

The public needs to have as clear as possible an understanding of the rule that the central

bank follows in deciding what it does. Inevitably, the best way to communicate about this

will be by offering the public an explanation of the decisions that have already been made;

the bank itself would probably not be able to describe how it might act in all conceivable

circumstances, most of which will never arise.

Some good practical examples of communication with the public about the central bank’s

policy commitments are provided by the Inflation Reports of the leading inflation-targeting

banks. These reports do not pretend to give a blow-by-blow account of the deliberations by

9There is evidence that this is already happening, as a result both of greater sophistication on the part
of financial markets and greater transparency on the part of central banks, the two developing in a sort of
symbiosis with one another. Blinder et al. (2001, p. 8) argue that in the period from early 1996 through the
middle of 1999, one could observe the U.S. bond market moving in response to macroeconomic developments
that helped to stabilize the economy, despite relatively little change in the level of the federal funds rate, and
suggest that this reflected an improvement in the bond market’s ability to forecast Fed actions before they
occur. Statistical evidence of increased forecastability of Fed policy by the markets is provided by Lange et
al. (2001), who show that the ability of Treasury bill yields to predict changes in the federal funds rate some
months in advance has increased since the late 1980s.
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which the central bank reached the position that it has determined to announce; but they do

explain the analysis that justifies the position that has been reached. This analysis provides

information about the bank’s systematic approach to policy by illustrating its application

to the concrete circumstances that have arisen since the last report; and it provides infor-

mation about how conditions are likely to develop in the future through explicit discussion

of the bank’s own projections. Because the analysis is made public, it can be expected to

shape future deliberations; the bank knows that it should be expected to explain why views

expressed in the past are not later being followed. Thus a commitment to transparency

of this sort helps to make policy more fully rule-based, as well as increasing the public’s

understanding of the rule.

It is perhaps worth clarifying further what we intend by “rule-based” policy. We do

not mean that a bank should commit itself to an explicit state-contingent plan for the entire

foreseeable future, specifying what it would do under every circumstance that might possibly

arise. That would obviously be impractical, even under complete unanimity about the correct

model of the economy and the objectives of policy, simply because of the vast number of

possible futures. But it is not necessary, in order to obtain the benefits of commitment to

a systematic policy. It suffices that a central bank commit itself to a systematic way of

determining an appropriate response to future developments, without having to list all of

the implications of the rule for possible future developments.10

Nor is it necessary to imagine that commitment to a systematic rule means that once

a rule is adopted it must be followed forever, regardless of subsequent improvements in

understanding of the effects of monetary policy on the economy, including experience with

the consequences of implementing the rule. If the private sector is forward-looking, and it

is possible for the central bank to make the private sector aware of its policy commitments,

then there are important advantages of commitment to a policy other than discretionary

10We show in chapter 8 how policy rules can be designed that can be specified without any reference to
particular economic disturbances, but that nonetheless imply an optimal equilibrium response to additive
disturbances of an arbitrary type. The targeting rules advocated by Svensson (2001) are examples of rules
of this kind.
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optimization — i.e., simply doing what seems best at each point in time, with no commitment

regarding what may be done later. This is because there are advantages to having the private

sector be able to anticipate delayed responses to a disturbance, that may not be optimal ex

post if one re-optimizes taking the private sector’s past reaction as given. But one can create

the desired anticipations of subsequent behavior — and justify them — without committing

to follow a fixed rule in the future no matter what may happen in the meantime.

It suffices that the private sector have no ground to forecast that the bank’s behavior will

be systematically different from the rule that it pretends to follow. This will be the case if

the bank is committed to choosing a rule of conduct that is justifiable on certain principles,

given its model of the economy. (An example of the sort of principles that I have in mind is

given in chapter 8.) The bank can then properly be expected to continue to follow its current

rule, as long as its understanding of the economy does not change; and as long as there is

no predictable direction in which its future model of the economy should be different from

its current one, private-sector expectations should not be different from those in the case

of an indefinite commitment to the current rule. Yet changing to a better rule will remain

possible in the case of improved knowledge (which is inevitable); and insofar as the change

is justified both in terms of established principles and in terms of a change in the bank’s

model of the economy that can itself be defended, this need not impair the credibility of the

bank’s professed commitments.

It follows that rule-based policymaking will necessarily mean a decision process in which

an explicit model of the economy (albeit one augmented by judgmental elements) plays a

central role, both in the deliberations of the policy committee and in explanation of those

deliberations to the public. This too has been a prominent feature of recent innovations in

the conduct of monetary by the inflation-targeting central banks. While there is undoubtedly

much room for improvement both in current models and current approaches to the use of

models in policy deliberations, one can only expect the importance of models to policy

deliberations to increase in a world of increasingly sophisticated financial markets.
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2.2 Pitfalls of Conventional Optimal Control

But it is not enough that a central bank have sound objectives (reflecting a correct analysis

of social welfare), that it make policy in a systematic way, using a correct model of the econ-

omy and a staff that is well-trained in numerical optimization, and that all this be explained

thoroughly to the public. A bank that approaches its problem as one of optimization under

discretion — deciding afresh on the best action in each decision cycle, with no commitment

regarding future actions except that they will be the ones that seem best in whatever cir-

cumstances may arise — may obtain a substantially worse outcome, from the point of view

of its own objectives, than one that commits itself to follow a properly chosen policy rule.

As Kydland and Prescott (1977) first showed, this can occur even when the central bank as

a correct quantitative model of the policy tradeoffs that it faces at each point in time, and

the private sector has correct expectations about the way that policy will be conducted.

At first thought, discretionary optimization might seem exactly what one would want

an enlightened central bank to do. All sorts of unexpected events constantly occur that

affect the determination of inflation and real activity, and it is not hard to see that, in

general, the optimal level of interest rates at any point in time should depend on precisely

what has occurred. It is plainly easiest, as a practical matter, to arrange for such complex

state-dependence of policy by having the instrument setting at a given point in time be

determined only after the unexpected shocks have already been observed. Furthermore,

it might seem that the dynamic programming approach to the solution of intertemporal

optimization problems provides justification for an approach in which a planning problem is

reduced to a series of independent choices at each of a succession of decision dates.

But standard dynamic programming methods are valid only for the optimal control of

a system that evolves mechanically in response to the current action of the controller, as

in the kind of industrial problems of typical interest in engineering control theory. The

problem of monetary stabilization policy is of a different sort, in that the consequences of

the central bank’s actions depend not only upon the sequence of instrument settings up until

the present time, but also upon private-sector expectations regarding future policy. In such
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a case, sequential (discretionary) optimization leads to a sub-optimal outcome because at

each decision point, prior expectations are taken as given, rather than as something that can

be affected by policy. Nonetheless, the predictable character of the central bank’s decisions,

taken from this point of view, do determine the (endogenous) expectations of the private

sector at earlier dates, under the hypothesis of rational expectations; a commitment to behave

differently, that is made credible to the private sector, could shape those expectations in a

different way, and because expectations matter for the determination of the variables that

the central bank cares about, in general outcomes can be improved through shrewd use of

this opportunity.

The best-known example of a distortion created by discretionary optimization is the

“inflation bias” analyzed by Kydland and Prescott (1977) and Barro and Gordon (1983). In

the presence of a short-run “Phillips curve” tradeoff between inflation and real activity (given

inflation expectations), and a target level of real activity higher than the one associated

with an optimal inflation rate (in the case of inflation expectations also consistent with

that optimal rate), these authors showed that discretionary optimization leads to a rate of

inflation that is inefficiently high on average, owing to neglect of the way that pursuit of

such a policy raises inflation expectations (causing an adverse shift of the short-run Phillips

curve). A variety of solutions to the problem of inflation bias have been proposed. One

influential idea is that this bias can be eliminated by assigning the central bank targets for

inflation and output that differ from those reflected in the true social welfare function (i.e.,

the central-bank objective assumed by Kydland and Prescott or Barro and Gordon), without

otherwise constraining the central bank’s discretion in the selection of policies to achieve its

objective. This is one of the primary reasons for the popularity of “inflation targeting”,

which involves commitment of a central bank to the pursuit of an assigned target rather

than being left to simply act as seems best for society at any point in time, while leaving

the bank a great deal of flexibility as to the way in which the assigned goal is to be pursued.

However, the distortions resulting from discretionary optimization go beyond simple bias

in the average levels of inflation or other endogenous variables; this approach to the conduct
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of policy generally results in suboptimal responses to shocks as well, as shown in chapter 7.

For example, various types of real disturbances can create temporary fluctuations in what

Wicksell called the “natural rate of interest”, meaning (as shown in chapter 4) that the level

of nominal interest rates required to stabilize both inflation and the output gap varies over

time. However, the amplitude of the adjustment of short-term interest rates can be more

moderate — and still have the desired size of effect on spending and hence on both output

and inflation — if it is made more persistent, so that when interest rates are increased, they

will not be expected to quickly return to their normal level, even if the real disturbance

that originally justified the adjustment has dissipated. Because aggregate demand depends

upon expected future short rates as well as current short rates, a more persistent increase

of smaller amplitude can have an equal affect on spending. If one also cares about reducing

the volatility of short-term interest rates, a more inertial interest-rate policy of this kind will

be preferable; that is, the anticipation that the central bank will follow such a policy leads

to a preferable rational-expectations equilibrium. But a central bank that optimizes under

discretion has no incentive to continue to maintain interest rates high once the initial shock

has dissipated; at this point, prior demand has already responded to whatever interest-rate

expectations were held then, and the bank has no reason to take into account any effect

upon demand at an earlier date in setting its current interest-rate target.

This distortion in the dynamic response of interest-rate policy to disturbances cannot be

cured by any adjustment of the targets that the bank is directed to aim for regardless of what

disturbances may occur; instead, policy must be made history-dependent, i.e., dependent

upon past conditions even when they are no longer relevant to the determination of the

current and future evolution of the variables that the bank cares about. Indeed, in general

no purely forward-looking decision procedure — one that makes the bank’s action at each

decision point a function solely of the set of possible paths for its target variables from that

time onward — can bring about optimal equilibrium responses to disturbances. Discretionary

optimization is an example of such a procedure, and it continues to be when the bank’s

objective is modified, if the modification does not introduce any history-dependence. But
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other popular proposals are often purely forward-looking as well. Thus the classic “Taylor

rule” (Taylor, 1993) prescribes setting an interest-rate operating target at each decision point

as a function of current estimates of inflation and the output gap only (see below), and Taylor

(1999) expresses skepticism about the desirability of partial-adjustment dynamics of the kind

that characterize most estimated central-bank reaction functions. Popular descriptions of

inflation-forecast targeting are typically purely forward-looking as well; the interest-rate

setting at each decision point is to be determined purely as a function of the forecast from

that date forward for inflation (and possibly other target variables). Thus the intuition that

optimal policy should be purely forward-looking seems to be fairly commonplace; but when

the private sector is forward-looking, any purely forward-looking criterion for policy is almost

invariably sub-optimal.

Obtaining a more desirable pattern of responses to random disturbances therefore requires

commitment to a systematic policy rule, and not just a (one-time) adjustment of the bank’s

targets. The primary task of this study is to provide principles that can be used in the design

of such rules. By saying that a policy rule is necessary, we mean to draw a distinction with

two other conceptions of optimal policy. One is discretionary optimization, as just discussed;

specifying a rule means a more detailed description of the way in which a decision is to be

reached than is involved in a simple commitment to a particular objective. But we also

mean to distinguish the approach advocated here from the usual understanding of what an

optimal commitment involves.

In the literature that contrasts policy commitment with discretionary policymaking, fol-

lowing Kydland and Prescott, “commitment” is generally taken to mean a specification,

once and for all, of the state-contingent action to be taken at each subsequent date. An

optimal commitment is then a choice of such a state-contingent plan so as to maximize the

ex-ante expected value of the policymaker’s objective, as evaluated at the initial date t0 at

which the commitment is chosen. This leads to a description of optimal policy in terms of a

specification of the instrument setting as a function of the history of exogenous shocks since

date t0.
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But the solution to such an optimization problem is not an appealing policy recommen-

dation in practice. For it is generally not time consistent — solving the same optimization

problem at a later date t1, to determine the optimal commitment from that date onward,

will not result in a state-contingent plan from date t1 onward that continues the plan judged

to be optimal at date t0. This is because the commitment chosen at date t0 will take ac-

count of the consequences of the commitments made for dates t1 and later for expectations

between dates t0 and t1, while at date t1 these expectations will be taken as historical facts

that cannot be changed by the policy chosen from then on. (This is just the reason why

discretionary optimization does not lead to the same policy as an optimal commitment.)

Hence this policy proposal cannot be regarded as proposing a decision procedure that can be

used at each date to determine the best action at that date; instead, a state-contingent plan

must be determined once and for all, for the rest of time, and thereafter simply implemented,

whether it continues to appear desirable or not.

Such a proposal is not a practical one, for two reasons. First, enumeration in advance of

all of the possible subsequent histories of shocks will not be feasible — the kinds of situations

that the central bank may face at a given date cannot are too various to possibly be listed

in advance. And second, the arbitrariness of continuing to stick to a particular specified

policy simply because it looked good at a particular past date — the date t0 at which one

happened to make the commitment — is sufficiently unappealing that one cannot imagine a

central bank binding itself to behave in this way, or the private sector believing that it had.

Here my argument is not that central bankers are incapable of commitment to a systematic

rule of conduct, so that they are inevitably discretionary optimizers; it is rather that their

commitment must be based upon an understanding of the rational justification of the rule,

rather than the mere fact that it happens to been chosen (even by themselves) on a past

occasion.

Both problems can be avoided by commitment to a systematic rule for determining their

policy action at each decision point, that does not reduce to a once-and-for-all specification

of the instrument setting as a function of the history of shocks. In chapter 8, it is shown
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that one can design rules for setting the central bank’s interest-rate operating target that

lead to optimal dynamic responses to shocks, without the rule specification having to refer

to the various disturbances that may have occurred. The disturbances affect the instrument

setting, of course; but they affect it either as a result of having affected endogenous variables,

such as inflation and output, to which the instrument setting responds, or as a result of

being factored into the central bank’s projections of the future evolution of the economy

under alternative possible instrument settings. Such a rule can result in optimal equilibrium

responses to disturbances of any of a vast number of possible types, so that the potential

disturbances need not even be listed in advance in order to describe the rule and evaluate

its desirability.

The optimal rules derived in accordance with the principles set out in chapter 8 are also

time-invariant in form. This means that the optimal rule that would be derived at date t0,

on the basis of a particular structural model of the monetary transmission mechanism and

a particular understanding of the central bank’s stabilization objectives, will also be derived

at date t1, assuming that the bank’s model and objectives remain the same. A commitment

to conduct policy in accordance with a rule that is judged optimal on this criterion is thus

time consistent, in the sense that reconsideration of the matter at a later date on the basis

of the same principle will lead to a decision to continue the same course of action as had

been intended earlier.11

Because of this, adherence to a policy rule need not be taken to mean adoption of a rule

at some initial date, after which the rule is followed blindly, without ever again considering

its desirability. Instead, rule-based policymaking as the term is intended here means that

at each decision point an action is taken which conforms to a policy rule, which rule is

itself one that is judged to be optimal (from a “timeless perspective” that is made precise in

chapter 8) given the central bank’s understanding of the monetary transmission mechanism

11Note that “time consistency” in the sense that we use the term here does not mean that the policymaker
does not believe at any time that it is possible to achieve a higher expected value for its objective by deviating
from its intended rule. Time consistency does not require this, because this is not the criterion according to
which the central bank’s action is judged to be optimal at any time, including the initial date t0.
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at the time that the decision is made. The desire to follow a rule (and so to avoid the trap

of discretionary optimization) does not mean that the bank must refrain from asking itself

whether adherence to the rule is consistent with its stabilization objectives. It simply means

that whenever this question is taken up, the bank should consider what an optimal rule of

conduct would be, rather than asking what an optimal action is on the individual occasion,

and that it should consider the desirability of alternative rules from an impartial perspective

that does not amount to simply finding a rationalization for the action that it would like to

take on this particular occasion.12 A central bank might reconsider this question as often

as it likes, without this leading it into the kind of sub-optimal behavior that results from

discretionary optimization. And when considering the desirability of a policy rule, it is correct

for the bank to consider the effects of its being expected to follow the rule indefinitely, even

though it does not contemplate binding itself to do so; for as long as its view of the policy

problem does not change (which it has no reason to expect), a commitment to rule-based

policymaking should guarantee that it will continue to act according to the rule judged to

be optimal.

Rule-based policymaking in this sense avoids the sorts of rigidity that are often associated

with commitment to a “rule”, and that probably account for much of the resistance that

central bankers often display toward the concept of a policy rule. A commitment to rule-

based policymaking does not preclude taking account of all of the information, from whatever

sources, that the central bank may have about current economic conditions, including the

recognition that disturbances may have occurred that would not have been thought possible

a few months earlier. For a policy rule need not specify the instrument setting as a function

of a specified list of exogenous states, and indeed it is argued in chapter 8 that an optimal

rule should in general not take this form. Nor does it preclude changing the form of the

12The distinction between these two perspectives is similar to the distinction that is made in ethical theory
between “rule utilitarianism” and “act utilitarianism” (Brandt, 1959; Harsanyi, 1982). Act utilitarianism is
the view that the right act on any occasion is the one that will maximize social utility in the situation that
the actor is in at that time. Rule utilitarianism instead maintains that a right act is one that conforms to
the correct rule for this sort of situation, where a correct rule is one that would maximize social utility if
always followed in all situations of this type.
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policy rule when the bank’s view of the monetary transmission changes, as it surely will,

owing both to institutional change in economies themselves and to the progress of knowledge

in economics. Hence it allows the sort of flexibility that is often associated with the term

“discretion”, while at the same time eliminating the systematic biases that follow from policy

analysis that naively applies dynamic-programming principles.

3 Monetary Policy without Control of a Monetary Ag-

gregate

Thus far we have discussed the desirability of a monetary policy rule without saying much

about the precise form of rule that is intended. To be more concrete, the present study

considers the design of a rule to be used in determining a central bank’s operating target

for a short-term nominal interest rate. This target will ordinarily be revised at intervals of

perhaps once a month (as at the ECB) or eight times a year (as in the U.S.).13

Our focus on the choice of an interest-rate rule should not surprise readers familiar with

the current practice of central banks. Monetary policy decisionmaking almost everywhere

means a decision about the operating target for an overnight interest rate, and the increased

transparency about policy in recent years has almost meant greater explicitness about the

central bank’s interest-rate target and about the way in which its interest-rate decisions are

made. In such a context, it is natural that adoption of a policy rule should mean commitment

to a specific procedure for deciding what interest-rate target is appropriate.

Nonetheless, theoretical analyses of monetary policy have until recently almost invariably

characterized policy in terms of a path for the money supply, and discussions of policy rules in

the theoretical literature have mainly considered money-growth rules of one type or another.

This curious disjunction between theory and practice predates the enthusiasm of the 1970s

for monetary targets. Goodhart (1989) complains of “an unhelpful dichotomy, between the

13The question of the optimal frequency of reconsideration of the interest-rate target is one of obvious
practical interest. But we shall not take it up in this study, as we consider optimal policy in the context
of a discrete-time model of the transmission mechanism with “periods” corresponding to the length of the
central bank’s decision cycle.
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theory and the reality of Central Bank operations” that equally characterized the work of

John Maynard Keynes and Milton Friedman.

When either of these two great economists would discuss practical policy matters
concerning the level of short-term interest rates, they had no doubts that these
were normally determined by the authorities, and could be changed by them, and
were not freely determined in the market.... But when they came to their more
theoretical papers, they often reverted to the assumption that the Central Bank
sets the nominal money stock, or alternatively fixes the level of the monetary base,
[with] the demand and supply of money ... equilibrated in the short run ... by
market-led developments in nominal interest rates (pp. 330-331).

The present study instead seeks to revive the earlier approach of Knut Wicksell, and

considers the advantages of systematic monetary policies that are described in terms of rules

for setting a nominal interest rate. While the implied evolution of the money supply is

sometimes discussed, the question is often ignored; some of the time, we shall not bother

to specify policy (or our economic model) in sufficient detail to determine the associated

path of the money supply, or even to tell if one can be uniquely determined in principle.

Some readers may fear as a result that we consider an ill-posed question — that the “policy

rules” that we study may not represent sufficiently complete descriptions of policy to allow

its consequences to be determined, or may not represent states of affairs that the central

bank is able to bring about. Hence some general remarks may be appropriate about why

it is possible to conceive of the problem of monetary policy as a problem of interest-rate

policy, before turning to examples of the specific types of interest-rate rules that we wish to

consider.

3.1 Implementing Interest-Rate Policy

An argument that is sometimes made for specifying monetary policy in terms of a rule for

base-money growth rather than an interest-rate rule is that central banks do not actually fix

overnight interest rates. Even when banks have an operating target for the overnight rate,

they typically seek to implement it through open-market operations in Treasury securities or

their equivalent — that is, by adjusting the supply of central-bank liabilities to a level that
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is expected to cause the market for overnight cash to clear near the target rate. Thus it may

be argued that the action that the central bank actually takes each day is an adjustment

of the nominal magnitude of the monetary base, so that a complete specification of policy

should describe the size of this adjustment each day.

But even when banks implement their interest-rate targets entirely through quantity ad-

justments, as is largely correct as a description of current U.S. arrangements, this conclusion

hardly follows. Central banks like the U.S. Federal Reserve determine their quantity ad-

justments through a two-step procedure: first the interest-rate target is determined by a

monetary policy committee (the Federal Open Market Committee in the U.S.) without con-

sideration of the size of the implied open-market operations, and then the appropriate daily

open-market operations required to maintain the funds rate near the target are determined

by people closer to the financial markets (mainly the Trading Desk at the New York Fed).

The higher-level policy decision about the interest-rate target is the more complicated one,

made much less frequently because of the complexity of the deliberations involved,14 and it

is accordingly this decision with which the present study is concerned.

Nor is it the case that a central bank’s interest-rate target must be implemented through

choice of an appropriate supply of central-bank liabilities. A central bank can also influence

the interest rate at which banks will lend overnight cash to one another through adjustment

of the interest rate paid on overnight balances held at the central bank and/or the interest

rate at which the central bank is willing to lend overnight cash to banks that run overdrafts

on their clearing accounts at the central bank. These are important policy tools outside

the U.S., and in some countries are the primary means through which the central bank

implements its interest-rate targets.

As is discussed in more detail in Woodford (2001xx), countries like Canada, Australia

14The comparative simplicity of the decision about each day’s open-market operation is not so much
because each day’s demand for Fed balances is highly predictable as because the Fed learns immediately how
much it has misjudged market demand each day, and can act the following day in response to the previous
day’s gap between the actual funds rate and the target rate. Owing to intertemporal substitution in the
demand for reserves under U.S. regulations, a credible commitment by the Fed to respond the following day
is enough to keep the funds rate from deviating too much from the target most of the time. See Taylor
(2000) for further discussion of the Trading Desk’s reaction function.
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and New Zealand now implement monetary policy through a “channel system”. In a system

of this kind, the overnight interest rate is kept near the central bank’s target rate through

the provision of standing facilities by the central bank, with interest rates determined by the

central bank’s current target interest rate ı̄t. In addition to supplying a certain aggregate

quantity of clearing balances (adjusted through open-market operations), the central bank

offers a lending facility, through which it stands ready to supply an arbitrary amount of

additional overnight balances at an interest rate determined by a fixed spread over the

target rate (i.e., ilt = ı̄t + δ). In the countries just mentioned, the spread δ is generally equal

to 25 basis points, regardless of the level of the target rate. Finally, depository institutions

that settle payments through the central bank also have the right to maintain excess clearing

balances overnight with the central bank at a deposit rate idt = ı̄t − δ, where δ is the same

fixed spread.

The lending rate on the one hand and the deposit rate on the other then define a channel

within which overnight interest rates should be contained.15 Because these are both standing

facilities (unlike the Fed’s discount window in the U.S.), no bank has any reason to pay

another bank a higher rate for overnight cash than the rate at which it could borrow from

the central bank; similarly, no bank has any reason to lend overnight cash at a rate lower

than the rate at which it can deposit with the central bank. The result is that the central

bank can control overnight interest rates within a fairly tight range regardless of what the

aggregate supply of clearing balances may be; frequent quantity adjustments accordingly

become less important.

Woodford (2001xx) describes a simple model of overnight interest-rate determination

under such a system. In this model, the daily demand for clearing balances by depository

institutions depends only on the location of the interbank market rate relative to the channel

15It is arguable that the actual lower bound is somewhat above the deposit rate, because of the convenience
and lack of credit risk associated with the deposit facility, and similarly that the actual upper bound is slightly
above the lending rate, because of the collateral requirements and possible stigma associated with the lending
facility. Nonetheless, market rates are observed to stay within the channel established by these rates (except
for occasional slight breaches of the upper bound during the early months of operation of Canada’s system
— see Figure 1.1), and typically near its center.
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established by the two standing facilities, rather than on the absolute level of this interest

rate. The interbank market then clears at an interest rate

it = idt + F
(
− St

σt

)
(ilt − idt ), (3.1)

where St is the aggregate supply of clearing balances (determined by the central bank’s open-

market operations), σt is a factor measuring the degree of uncertainty about payment flows

on a given day, and F is a cumulative distribution function that increases monotonically

from 0 (when its argument is −∞) to 1 (as the argument approaches +∞).

As noted, the market overnight rate is necessarily within the channel: idt ≤ it ≤ ilt. Its

exact position within the channel should be a decreasing function of the supply of central-

bank balances. The model predicts an equilibrium overnight rate at exactly the target rate

(the midpoint of the channel) when the supply of clearing balances is equal to

St = −F−1(1/2) σt. (3.2)

If the probability distribution of unexpected payment flows faced by each institution is

roughly symmetric, so that F (0) is near one-half, then the aggregate supply of clearing

balances required to maintain the overnight rate near the target rate should not vary much

with changes in σt. Even if this is not quite true, the adjustments of the supply of clearing

balances required by (3.2) are unrelated to changes in the target level of interest rates.

Thus achievement of the central bank’s operating target does not require any quantity

adjustments through open-market operations in response to deviations of the market rate

from the target rate; nor are any changes in the supply of central-bank balances required when

the bank wishes to change the level of overnight interest rates. The target level of clearing

balances in the system (3.2) need be adjusted only in response to “technical” factors (e.g.,

changes in the volume of payments on certain days that can be expected to affect the σi),

but not on occasions when it is desired to “tighten” or “loosen” monetary policy. Instead,

changes in the level of overnight rates, when desired, are brought about through the shifts in

the deposit rate and lending rate that automatically follow from a change in the target rate
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Figure 1.1: The “channel” or operating band and the market overnight rate, since
introduction of the LVTS system in Canada. Source: Bank of Canada.

(and constitute the operational meaning of such a change), without any need for quantity

adjustments.

This type of system has proven highly effective in Canada, Australia and New Zealand in

controlling the level of overnight interest rates. For example, Figure 1.1 plots the overnight

rate in Canada since the adoption of the Large-Value Transfer System for payments in

February 1999, at which time the standing facilities described above were adopted.16 One

observes that the channel system has been quite effective, at least since early in 2000, at

keeping the overnight interest rate not only within the Bank’s 50-basis-point “operating

band” or channel, but usually within about one basis point of the target rate. Australia and

New Zealand similarly now achieve achieve considerably tighter control of overnight interest

16A system of the kind described here has been used in Australia since June 1998, and in New Zealand
since March 1999.
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Figure 1.2: The U.S. fed funds rate and the Fed’s operating target. Source: Federal Reserve
Board.

rates than is achieved under the current operating procedures employed in the U.S.17 (For

purposes of comparison, Figure 1.2 plots the federal funds rate together with the Fed’s

operating target over the same time period.)

Thus the quantity adjustments of the supply of central-bank balances18 that are involved

in implementation of interest-rate policy are quite different under a channel system as op-

17Since March 2000, the standard deviation of it− ı̄t has been only 1.5 basis points for Australia, 1.1 basis
points for Canada, and less than 0.4 basis points for New Zealand, but 13.4 basis points for the U.S. See
Woodford (2001xx) for corresponding plots for the other two countries, and for discussion of the differences
in the four countries’ ability to respond to the “Y2K” panic without loss of control of short-term interest
rates.

18We refer here to adjustments of the supply of central-bank balances rather than adjustments of the
monetary base because in all of the countries under discussion, changes in the public’s demand for currency
are automatically accommodated by open-market operations that change the monetary base while seeking to
insulate the supply of central-bank balances from the effects of such developments. Thus despite the emphasis
of the academic literature on monetary-base rules, in practice a quantity-targeting rule that is intended to
directly specify the central bank’s daily open-market open-market operation would have to specify a target
supply of central-bank balances rather than a target value for the monetary base.
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posed to the system used in the U.S. In the U.S., policy can be “tightened” only by restricting

the supply of Fed balances, so that the equilibrium spread between the return available on

interbank lending and that available on Fed balances increases; in Canada, instead, there

need be no change in supply, as there is no desire to change the spreads ilt − it or it − idt .

Yet there is no reason to believe that these institutional details have any important conse-

quences for the effects of interest-rate policy on these economies, and hence for the way in

which it makes sense for these different central banks to determine their interest-rate oper-

ating targets. It follows that our conclusions would be of less universal validity if we were

to formulate them in terms of a rule for determining the appropriate size of open-market

operations, assuming American institutional arrangements.

Furthermore, for a country with a channel system, it would not be possible to formulate

our advice in terms of a quantity-targeting rule. On the occasions upon which it is appro-

priate for the central bank to tighten or loosen policy, this does not imply any change in the

appropriate target for the supply of central-bank balances; yet this does not at all mean that

the central bank should not act! Because the crucial policy instruments in these countries

are in fact the interest rates associated with the two standing facilities, that are in turn

directly based on the time-varying interest-rate target, a policy rule for such countries must

necessarily be formulated as an interest-rate rule. In fact, this way of specifying monetary

policy is equally convenient for a country like the U.S., and is the one that we shall use in

this study.

3.2 Monetary Policy in a Cashless Economy

Another case in which a monetary policy prescription would have to be specified in terms of

an interest-rate rule would be if our advice were to be applicable to a “cashless” economy,

by which we mean an economy in which there are no monetary frictions whatsoever. In a

hypothetical economy of this kind, no central-bank liabilities have any special role to play

in the payments system that results in a willingness to hold them despite yielding a lower

return than other, equally riskless short-term claims. Consideration of this extreme case is
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of interest for two reasons.

First, it is possible to imagine that in the coming century the development of electronic

payments systems could not only substitute for the use of currency in transactions, but

also eliminate any advantage of clearing payments through accounts held at the central

bank, as discussed by King (1999). This prospect is highly speculative at present; most

current proposals for variants of “electronic money” still depend upon the final settlement

of transactions through the central bank, even if payments are made using electronic signals

rather than old-fashioned instruments such as paper checks.19 Yet it is possible that in the

future central banks will face the problem of what their role should be in such a world.

And the question of how the development of electronic money should be regulated will face

them much sooner. If one takes the view that monetary policy can be implemented only by

rationing the supply of something that fulfills an essential function in the payments system,

it is likely to be judged important to prevent the development of alternatives to payments

using central-bank money, in order to head off a future in which the central bank is unable

to do anything at all on behalf of macroeconomic stabilization — in which it becomes “an

army with only a signal corps,” in the evocative phrase of Benjamin Friedman (1999).

A second reason why it is useful to consider policy implementation in this hypothetical

case is that if we can show that effective interest-rate control is possible even in the complete

absence of monetary frictions, it may well simplify our analysis of basic issues in the theory

of monetary policy to start from an analysis of the frictionless case, just as a physicist does

when analyzing the motion of a pendulum or the trajectory of a cannonball. The appeal

of this analytical approach was clear already to Wicksell (1898), who famously began his

analysis (though writing at the end of the nineteenth century!) by considering the case of a

“pure credit economy”, defined as

19Charles Freedman (2000), for one, argues that the special role of central banks in providing for final
settlement is unlikely ever to be replaced, owing to the unimpeachable solvency of these institutions, as
government entities that can create money at will. Some, such as Goodhart (2000), equally doubt that
electronic media can ever fully substitute for the use of currency.
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a state of affairs in which money does not actually circulate at all, neither in the
form of coin (except perhaps as small change) nor in the form of notes, but where
all domestic payments are effected by means of ... bookkeeping transfers (p. 70).

This is the approach that will be taken in the chapters to follow. Our basic model (developed

beginning in chapter 2) will be one that abstracts from monetary frictions, in order to direct

more attention to more essential aspects of the monetary transmission mechanism, such as

the way that spending decisions depend on expected future interest rates as well as current

ones, or the way in which fluctuations in nominal expenditure affect real activity. We then

pause to consider at various points the modifications of our analysis that are required in

order to take account of the monetary frictions that evidently exist, given the observation

that non-interest-earning currency continues to be held; it is shown that, as a quantitative

matter, these modifications are of relatively minor importance.

In our discussion of interest-rate determination under a present-day channel system, we

have supposed that there is a demand for at least a small quantity of central-bank balances

for clearing purposes, and these are held despite the existence of a small opportunity cost

(25 basis points on average). But once the idea has been accepted that the central bank can

vary the overnight interest rate without ever having to vary the size of this return spread,

the functioning of the system no longer depends on the existence of a clearing demand. Let

us suppose instead that balances held with the central bank cease to be any more useful

to commercial banks than any other equally riskless overnight investment. In this case, the

demand for central-bank balances will be zero for all interest rates higher than the deposit

rate idt . But banks should still be willing to hold arbitrary balances at the central bank as

long as the market overnight rate is no higher than the rate paid by the central bank. In

this case, it would no longer be possible to induce the overnight cash market to clear at a

target rate higher than the rate paid on overnight balances at the central bank; for equation

(3.1) reduces to it = idt in the case of any positive supply of central-bank balances.

But the central bank could still control the equilibrium overnight rate, by using the

deposit rate as its policy instrument.20 Such a system would differ from current channel
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systems in that an overnight lending facility would no longer be necessary, so that there

would no longer be a “channel”.21 And the rate paid on central-bank balances would no

longer be set at a fixed spread δ below the target overnight rate; instead, it would be set at

exactly the target rate.

Yet perfect control of overnight rates should still be possible through adjustments of

the rate paid on overnight central-bank balances, and changes in the target overnight rate

would not have to involve any change in the target supply of central-bank balances, just as

is true under current channel systems. Indeed, in this extreme case, any variations that did

occur in the supply of central-bank balances would cease to have any effect at all upon the

equilibrium overnight rate.

But how can interest-rate variation be achieved without any adjustment at all of the

supply of central-bank balances? Informal discussions often treat interest-rate control by

the central bank like a species of price control. Certainly, if a government decides to peg

the price of some commodity, it may be able to do so, but only by holding stocks of the

commodity that are sufficiently large relative to the world market for that commodity, and

by standing ready to vary its holdings of the commodity by large amounts as necessary. In

the market in question is a large one (more to the point, if either supply or demand in the

market is relatively price-elastic) relative to the size of the balance sheet of the government

entity seeking to control the price, one doubts that such efforts will be effective. What is

different about controlling short-term nominal interest rates?

20Grimes (1992) makes a related point, showing that variation of the interest rate paid on central-bank
balances would be effective in an environment in which central-bank reserves are no more useful for carrying
out transactions than other liquid government securities, so that open-market purchases or sales of such
securities are completely ineffective. Hall (1983, 1999) has also proposed this as a method of price-level
control in the complete absence of monetary frictions. Hall speaks of control of the interest yield on a
government “security”, without any need for a central bank at all. But because of the special features that
this instrument would need to possess, that are not possessed by privately issued securities — it is a claim
only to future delivery of more units of the same instrument, and society’s unit of account is defined in terms
of this instrument — it seems best to think of it as still taking the same institutional form that it does today,
namely, balances in an account with the central bank.

21This presumes a world in which no payments are cleared using central-bank balances. Of course, there
would be no harm in continuing to offer such a facility as long as the central-bank clearing system were still
used for at least some payments.



3. MONETARY POLICY WITHOUT CONTROL OF A MONETARY AGGREGATE 41

The difference is that there is no inherent “equilibrium” level of interest rates to which

the market would tend in the absence of central-bank intervention, and against which the

central bank must therefore exert a significant countervailing force in order to achieve a

given operating target.22 This is because there is no inherent value (in terms of real goods

and services) for a fiat unit of account such as the “dollar”, except insofar as a particular

exchange value results from the monetary policy commitments of the central bank. The

basic point was clear to Wicksell (1898, pp. 100-101), who compares relative prices to a

pendulum that returns always to the same equilibrium position when perturbed, while the

money prices of goods in general are compared to a cylinder resting on a horizontal plane,

that can remain equally well in any location on the plane to which it may happen to be

moved.23 Alternative price-level paths are thus equally consistent with market equilibrium

in the absence of any intervention that would vary the supply of any real goods or services

to the private sector. And associated with these alternative paths for the general level of

prices are alternative paths for short-term nominal interest rates.

Of course, this analysis might suggest that while central banks can bring about an ar-

bitrary level of nominal interest rates (by creating expectations of the appropriate rate of

inflation), they should not be able to significantly affect real interest rates, except through

trades that are large relative to the economy that they seek to affect. It may also suggest

that banks should be able to move nominal rates only by altering inflation expectations; yet

banks generally do not feel that they can easily alter expectations of inflation over the near

term, so that one might doubt that banks should be able to affect short-term nominal rates

through such a mechanism.

However, once one recognizes that many prices (and wages) are fairly sticky over short

22This does not mean that Wicksell’s notion of a “natural” rate of interest determined by real factors is
of no relevance to the consideration of the policy options facing a central bank. It is indeed, as argued in
chapter 4. But the natural rate of interest is the rate of interest required for an equilibrium with stable
prices; the central bank nonetheless can arbitrarily choose the level of interest rates (within limits), because
it can choose the degree to which prices shall increase or decrease.

23This is the ground for his argument — in the quotation from the introduction to his book that begins
this chapter — that control of the general level of prices involves no interference with the market mechanism
of the kind that is required if some relative price is to be controlled.
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time intervals, the arbitrariness of the path of nominal prices (in the sense of their underde-

termination by real factors alone) implies that the path of real activity, and the associated

path of equilibrium real interest rates, are equally arbitrary. It is equally possible, from a

logical standpoint, to imagine allowing the central bank to determine, by arbitrary fiat, the

path of aggregate real activity, or the path of real interest rates, or the path of nominal in-

terest rates, as it is to imagine allowing it to determine the path of nominal interest rates.24

In practice, it is easiest for central banks to exert relatively direct control over overnight

nominal interest rates, and so banks generally formulate their short-run objectives (their

operating target) in terms of the effect that they seek to bring about in this variable rather

than one of the others.

Even recognizing the existence of a very large set of rational expectations equilibria —

equally consistent with optimizing private-sector behavior and with market clearing, in the

absence of any specification of monetary policy — one might nonetheless suppose, as Fischer

Black (1970) once did, that in a fully deregulated system the central bank should have

no way of using monetary policy to select among these alternative equilibria. The path

of money prices (and similarly nominal interest rates, nominal exchange rates, and so on)

would then be determined solely by the self-fulfilling expectations of market participants.

Why should the central bank play any special role in determining which of these outcomes

should actually occur, if it does not possess any monopoly power as the unique supplier of

some crucial service?

The answer is that the unit of account in a purely fiat system is defined in terms of the

liabilities of the central bank.25 A financial contract that promises to deliver a certain number

24This does not mean, of course, that absolutely any paths for these variables can be achieved through
monetary policy; the chosen paths must be consistent with certain constraints implied by the conditions for
a rational-expectations equilibrium, for example those presented in chapter 4. But this is true even in the
case of the central bank’s choice of a path for the price level. Even in a world with fully flexible wages and
prices, for example, it would not be possible to bring about a rate of deflation so fast as to imply a negative
nominal interest rate.

25See Hall (1999) and White (2001) for expressions of similar views. White emphasizes the role of legal
tender statutes in defining the meaning of a national currency unit. But such statutes do not represent a
restriction upon the means of payment that can be used within a given geographical region — or at any
rate, there need be no such restrictions upon private agreements for the point to be valid. What matters is
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of U.S. dollars at a specified future date is promising payment in terms of Federal Reserve

notes or clearing balances at the Fed (which are treated as freely convertible into one another

by Fed). Even in the technological utopia imagined by the enthusiasts of electronic money —

where financial market participants are willing to accept as final settlement transfers made

over electronic networks in which the central bank is not involved — if debts are contracted

in units of a national currency, then clearing balances at the central bank will still define the

thing to which these other claims are accepted as equivalent.

This explains why the nominal interest yield on clearing balances at the central bank

can determine overnight rates in the market as a whole. The central bank can obviously

define the nominal yield on overnight deposits in its clearing accounts as it chooses; it is

simply promising to increase the nominal amount credited to a given account, after all. It

can also determine this independently of its determination of the quantity of such balances

that it supplies. Commercial banks may exchange claims to such deposits among themselves

on whatever terms they like. But the market value of a dollar deposit in such an account

cannot be anything other than a dollar — because this defines the meaning of a “dollar”!

This places the Fed in a different situation than any other issuer of dollar-denominated

liabilities.26 Citibank can determine the number of dollars that one of its jumbo CDs will be

worth at maturity, but must then allow the market to determine the current dollar value of

such a claim; it cannot determine both the quantity that it wishes to issue of such claims and

simply what contracts written in terms of a particular unit of account are taken to mean, and the role of
law in stabilizing such meanings is essentially no different than, say, in the case of trademarks.

26Costa and De Grauwe (2001) instead argue that “in a cashless society ... the central bank cannot ‘force
the banks to swallow’ the reserves it creates” (p. 11), and speak of the central bank being forced to “liquidate
... assets” in order the redeem the central-bank liabilities that commercial banks are “unwilling to hold”
in their portfolios. This neglects the fact that the definition of the U.S. dollar allows the Fed to honor a
commitment to pay a certain number of dollars to account-holders the next day by simply crediting them
with an account of that size at the Fed — there is no possibility of demanding payment in terms of some
other asset valued more highly by the market. Similarly, Costa and De Grauwe argue that “the problem of
the central bank in a cashless society is comparable to [that of a] central bank pegging a fixed exchange rate”
(footnote 15). But the problem of a bank seeking to maintain an exchange-rate peg is that it promises to
deliver a foreign currency in exchange for its liabilities, not liabilities of its own that it freely creates. Costa
and De Grauwe say that they imagine a world in which “the unit of account remains a national affair ...
and is provided by the state” (p. 1), but seem not to realize that this means defining that unit of account
in terms of central-bank liabilities.
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the interest yield on them. Yet the Fed can, and does so daily — though at present it chooses

to fix the interest yield on Fed balances at zero and only to vary the supply. The Fed’s current

position as monopoly supplier of an instrument that serves a special function is necessary

in order for variations in the quantity supplied to affect the equilibrium spread between this

interest rate and other market rates, but not in order to allow separate determination of the

interest rate on central-bank balances and the quantity of them in existence.

Yes, some may respond, a central bank would still be able to determine the interest rate

on overnight deposits at the central bank, and thus the interest rate in the interbank market

for such claims, even in a world of completely frictionless financial markets. But would

control of this interest rate necessarily have consequences for other market rates, the ones

that matter for critical intertemporal decisions such as investment spending? The answer

is that it must — and all the more so in a world in which financial markets have become

highly efficient, so that arbitrage opportunities created by discrepancies among the yields

on different market instruments are immediately eliminated. Equally riskless short-term

claims issued by the private sector (say, shares in a money-market mutual fund holding very

short-term Treasury bills) would not be able to promise a different interest rate than the one

available on deposits at the central bank; otherwise, there would excess supply or demand

for the private-sector instruments. And determination of the overnight interest rate would

also have to imply determination of the equilibrium overnight holding return on longer-lived

securities, up to a correction for risk; and so determination of the expected future path of

overnight interest rates would essentially determine longer-term interest rates.

The special feature of central banks, then, is simply that they are entities the liabilities of

which happen to be used to define the unit of account in a wide range of contracts that other

people exchange with one another. There is perhaps no deep, universal reason why this need

be so; it is certainly not essential that there be one such entity per national political unit.

Nonetheless, the provision of a well-managed unit of account — one in terms of which the

equilibrium prices of many goods and services will be relatively stable — clearly facilitates

economic life. And given the evident convenience of having a single unit of account be used by
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most of the parties with whom one wishes to trade, one may well suppose that this function

should properly continue to be taken on by the government, even in a world of highly efficient

information processing. We here assume a world in which central banks (whether national

or supra-national, as in the case of the ECB) continue to fulfill this function, and in which

they are interested in managing their fiat currency in the public interest. The present study

aims to supply a theory that can help them to do so.

4 Interest-Rate Rules

We have argued that the central problem of the theory of monetary policy is to provide

principles that can be used in selecting a desirable rule for setting a central bank’s interest-

rate operating target. It is perhaps worth saying a bit more at this point about exactly what

form of rules we have in mind, and what sort of questions we would like to answer about

them. This will provide a more concrete background for the analysis to be developed in the

chapters to come.

Probably the earliest example of a prescription for monetary policy in terms of an interest-

rate rule is due to Wicksell (1898, 1907). Although writing at a time when the leading indus-

trial nations remained committed to the gold standard, and even most scholars assumed the

necessity of a commodity standard of one sort or another, Wicksell foresaw the possibility of

a pure fiat standard, and indeed argued that it was essential for the development of “a ratio-

nal monetary system.” He furthermore advocated an interest-rate rule for the management

of such a system. His original (1898) statement of the proposed rule was as follows:

So long as prices remain unaltered the [central] banks’ rate of interest27 is to
remain unaltered. If prices rise, the rate of interest is to be raised; and if prices
fall, the rate of interest is to be lowered; and the rate of interest is henceforth
to be maintained at its new level until a further movement of prices calls for a
further change in one direction or the other (p. 189, italicized in original).

Wicksell’s proposal can be represented mathematically as a commitment to set the central
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bank’s interest-rate operating target it according to a relation of the form28

it = ı̄ + φ pt, (4.1)

where pt is the log of some general price index (the one that the policy aims to stabilize)

and φ is a positive response coefficient, or alternatively by a rule of the form

∆it = φ πt (4.2)

where πt ≡ ∆pt is the inflation rate.29 We study price-level determination under policy rules

of this kind in chapter 2, and argue that such a rule should indeed succeed in stabilizing the

price index around a constant level; the principles that determine the equilibrium price level

under such a regime are briefly sketched in section xx.

A simple “Wicksellian” rule of this kind has other advantages as well, at least in compari-

son to other equally simple rules, as discussed in chapter 7. Nonetheless, we shall not confine

our attention to rules of this kind. Our primary interest in this study is in the analysis of

proposals that are closer in form to the policies currently followed by many central banks.

These rules involve an (explicit or implicit) target for the inflation rate, rather than for the

price level; nor are they expressible solely in terms of interest-rate changes, so that they

are equivalent to a rule that responds to the price level, as in the case of (4.2). The rules

typically allow for “base drift” in the price level as a result — even if the inflation rate is

kept within a narrow interval at all times, there is no long-run mean reversion in the price

level, or even in the price level deflated by some deterministic target path. And as we shall

eventually conclude in chapter 8, optimal interest-rate rules are likely to have this property.

28Wicksell proposes nothing so specific as a log-linear relation of this kind, of course; he only describes a
monotonic relationship. The log-linear specification is useful for the simple calculations of the next section.
In chapter 2, we discuss the usefulness of this sort of log-linear approximation of what is necessarily not a
globally log-linear rule. The specification (4.1) cannot be maintained for all possible price levels, owing to
the requirement that the nominal interest rate be non-negative.

29Note that a commitment to set the interest rate according to (4.2) from some date t0 forward is equivalent
to a commitment to set it according to a rule of the form (4.1), where the intercept ı̄ corresponds to
it0−1−φ pt0−1. Fuhrer and Moore (1995xx) propose a more complicated interpretation of Wicksell’s proposal,
in which the interest change is instead a function of the price level. While their rule is slightly more difficult
to analyze, it does not lead to substantially different conclusions about the consequences of commitment to
a Wicksellian rule.
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4.1 Contemporary Proposals

The best-known example of a proposed rule for setting interest rates is probably the one

proposed by John Taylor (1993), both as a rough description of the way that policy had

actually been made by the U.S. Federal Reserve under Alan Greenspan’s chairmanship,

and as a normative prescription (on the basis of stochastic simulations using a number of

econometric models). According to the “Taylor rule,” as it has come to be known, the Fed’s

funds-rate operating target it is set as a linear function of measures of the current inflation

rate and the current gap between real output and potential:

it = .04 + 1.5 (π̄t − .02) + 0.5 (yt − yp
t ), (4.3)

where π̄t is the rate of inflation (the change in the log GDP deflator over the previous four

quarters, in Taylor’s illustration of the rule’s empirical fit), yt is log output (log real GDP

in Taylor’s plot), and yp
t is log “potential” output (log real GDP minus a linear trend, in

Taylor’s plot). The constants in Taylor’s numerical specification indicate an implicit inflation

target of two percent per annum, and an estimate of the long-run real federal funds rate of

two percent per annum as well, so that a long-run average inflation rate at the target requires

a long-run average funds rate of four percent. A slightly simpler rule in the same vein was

proposed for the U.K. by Charles Goodhart (1992), according to which “there should be a

presumption” that the nominal interest rate would satisfy an equation of the form

it = .03 + 1.5 π̄t,

and “the Governor should be asked, say twice a year, to account for any divergence from

that ‘rule’ ”(p. 324).

The coefficients 1.5 and 0.5 in the Taylor rule are round figures argued to approximately

characterize U.S. policy between 1987 and 1992, and that were found to result in desirable

outcomes (in terms of inflation and output stability) in simulations.30 In Taylor’s discussions

30A similar form of policy rule was advocated, also on the basis of simulation studies, at around the same
time by Henderson and McKibbin (1993).
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of the rule, he places particular stress upon the importance of responding to inflation above

the target rate by raising the nominal interest-rate operating target by more than the amount

by which inflation exceeds the target; the importance of this “Taylor Principle” is considered

in detail in chapters 2 and 4. Taylor (1999xx) argues that the Fed did not adhere to this

principle before 1979 (at which time Fed chairman Paul Volcker instituted a radical shift in

policy), and this failure may well have been responsible for the greater U.S. macroeconomic

instability during the 1960s and 1970s. Taylor illustrates the change in policy by estimating

simple Fed reaction functions of the form

it = ı̄ + φπ (π̄t − π̄) + φx xt (4.4)

for two different sample periods, using ordinary least squares; his coefficient estimates are

shown in Table 1.1. (Here we introduce the notation xt for the output gap, again equated

with deviations of log real GDP from trend in Taylor’s empirical work.) Nelson (2001) finds

that estimates of Taylor-type rules for the U.K. tell a similar story; prior to the adoption of

inflation targeting in 1992, U.K. interest rates rose less than one-for-one with increases in

inflation (and in the mid-1970s, responded little at all), but since 1992, the long-run inflation

response coefficient is estimated to have been nearly 1.3.

Estimates of empirical central-bank reaction functions typically find that a dynamic

specification fits the data better, whatever the validity may be of Taylor’s (1999xx) preference

for a purely contemporaneous specification on normative grounds.31 For example, Judd

and Rudebusch (1998) estimate Fed reaction functions according to which the funds-rate

operating target adjusts in response to changes in an implicit desired level of the funds rate

ı̄t according to partial-adjustment dynamics of the form32

it = (1− ρ1) ı̄t + ρ1 it−1 + ρ2 (it−1 − it−2). (4.5)

31This is also true of the estimates for the U.K. reported in Nelson (2001). This is why we refer to Nel-
son’s “long-run inflation response coefficient” in the previous paragraph, rather than to a contemporaneous
response coefficient of the kind estimated by Taylor (1999xx).

32Here as in all other regressions reported in this section, periods are assumed to be quarters, and quarterly
data are used in the estimation.
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φπ (s.e.) φx (s.e.) γ ρ1 (s.e.) ρ2 (s.e)

Taylor (1999)
1960-79 0.81 (.06) 0.25 (.05)
1987-97 1.53 (.16) 0.77 (.09)

Judd-Rudebusch (1998)
1979-87 1.46 (.26) 1.53 (.80) 1 0.56 (.12)
1987-97 1.54 (.18) 0.99 (.13) 0 0.72 (.05) 0.43 (.10)

Clarida et al. (2000)
1960-79 0.83 (.07) 0.27 (.08) 0.68 (.05)
1979-96 2.15 (.40) 0.93 (.42) 0.79 (.04)

Orphanides (2001)
1966-79 1.64 (.38) 0.57 (.12) 0.70 (.07)
1979-95 1.80 (.48) 0.27 (.30) 0.79 (.11)

Table 1.1. Alternative estimates of Fed reaction functions.

The desired level of the funds rate in turn depends upon inflation and the output gap in a

manner similar to that postulated by Taylor,

ı̄t = ı̄ + φπ (π̄t − π̄) + φx (xt − γxt−1), (4.6)

except that the allowance for nonzero γ means that the desired funds rate may respond

to the rate of change of the output gap as well as (or instead of) its level. The Judd-

Rudebusch estimated coefficients for two different sample periods, corresponding to the Fed

chairmanships of Paul Volcker and Alan Greenspan respectively, are also reported in Table

1.1.33 Taylor’s view of the nature of policy in the Greenspan period is largely confirmed,

with the exception that Judd and Rudebusch estimate partial-adjustment dynamics implying

substantial persistence. They give a similar characterization of policy in the Volcker period,

33In their preferred estimates, the value of γ is imposed rather than estimated. The extreme values
assumed for the separate periods, however, are suggested by preliminary regressions in which the value of γ
is unconstrained.
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except that in this period the desired funds rate is found to depend on the rate of change of

the output gap, rather than its level.34

Many recent discussions of central bank behavior, both positive and normative, argue

instead for specifications in which a bank’s operating target depends on forecasts. For

example, Clarida et al. (2000xx) estimate Fed reaction functions of the form35

ı̄t = ı̄ + φπ E[πt+1 − π̄|Ωt] + φx E[xt|Ωt], (4.7)

where Ωt is the information set assumed to be available to the Fed when setting it, and

the actual operating target is again related to the desired funds rate ı̄t through partial-

adjustment dynamics. Like Taylor, these authors find an important increase in the degree

to which the Fed’s desired level for the funds rate responds to inflation variations since 1979,

though in their specification the Fed responds to an inflation forecast rather than inflation

that has already occurred.36

Finally, it should be noted that the view that the Fed has responded more vigorously to

inflation variations since 1979 has not gone unchallenged. Attanasio (2001) argues instead

that the findings of Taylor and the other authors just cited are distorted by the use of inflation

and output-gap data (especially the output-gap estimates) that were not available to the

Fed at the time that its interest-rate decisions were made. When he instead estimates Fed

reaction functions of the kind assumed by Clarida et al. using the forecasts actually produced

by Fed staff at the time rather than econometric projections using the data available now, he

obtains much more similar estimates for the pre-Volcker and post-Volcker periods, as shown

in the table. The inflation-response coefficient φπ is well above one in both periods, according

34Judd and Rudebusch also estimate a reaction function for the period (1970-78) corresponding to the
chairmanship of Arthur Burns. Like Taylor, in this period they estimate an inflation-response coefficient φπ

less than one, though not significantly so in their case.
35Clarida et al. also estimate variants of the rule in which the forecast horizon is assumed to be more than

one quarter in the future. The policies of inflation-targeting central banks have often been represented by
rules in which the interest-rate operating target responds to a forecast of inflation as many as 8 quarters in
the future. See, e.g., Black et al., (19xx), Batini and Haldane (1999).

36Like Taylor, they also suggest that this change has led to greater macroeconomic stability in the later
period. They provide a theoretical analysis of why this could have been so, in terms of the vulnerability of
an economy to instability due to self-fulfilling expectations in the case of a policy rule of the kind that they
estimate for the period 1960-79. Reasons for this are discussed in chapter 4.
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to Orphanides’ estimates; he instead emphasizes the reduction in the size of φx as the crucial

policy change after 1979, and the key to U.S. macroeconomic stability since the mid-1980s.

We shall not seek here to resolve this debate about historical Fed policy, but simply note

that much current debate both about the explanation of recent U.S. policy successes and

about the reason for past policy failures turns upon claims about the desirability of particular

coefficients in Taylor-type rules.

These alternative characterizations suggest a number of questions about the form of a

desirable interest-rate rule. One obvious question is whether the variables to which the

Fed is described as responding in the Taylor rule and the estimated reaction functions just

discussed — some measures of inflation and the output gap — are ones that make sense. Is

it desirable for interest rates to be adjusted in response to variations in these variables, and

with the signs proposed by Taylor? Is there any ground for thinking it more important to

respond to variations in these variables than in others? Is responding to variations in these

variables an adequate substitute for attempting to respond to the underlying disturbances

that are perceived to be currently affecting the economy?

If it does make sense to respond to these variables, how exactly should they be defined?

Which sort of price index is most appropriately used in the inflation measure? Relative to

what concept of “potential output” should the “output gap” measure be defined? And how

strongly is it desirable to respond to variations in these variables? Is a value of φπ greater

than one essential, as argued by Taylor? Is a large value of φx dangerous, as argued by

Orphanides?

We shall also be interested in the most desirable dynamic specification of such an interest-

rate rule. Are purely contemporaneous responses, as prescribed by Taylor, preferable? Is

there any justification for the more inertial interest-rate dynamics indicated by the estimated

reaction functions? If so, how inertial is it desirable for interest-rate policy to be? Is it

preferable to respond to forecasts rather than to current or past values of inflation and the

output gap? If so, how far in the future should the forecasts look?

Another type of policy rule that has figured prominently both in recent descriptions of
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actual central-bank behavior and in normative prescriptions is an inflation-forecast targeting

rule. A classic example is the sort of rule that is often used to explain the current procedures

of the Bank of England (e.g., Vickers, 1998). According to the formula, the Bank should be

willing to adopt a given operating target it for the overnight interest rate at date t if and

only if the Bank’s forecast of the evolution of inflation over the next two years, conditional

upon the interest rate remaining at the level it, implies an inflation rate of 2.5 percent per

annum (the Bank’s current inflation target) two years after date t. This is an example of

what Svensson (1999, 2001) calls a “targeting rule” as opposed to an instrument rule. No

formula is specified for the central bank’s interest-rate operating target; instead, it is to be

set at whatever level may turn out to be required in order for the bank’s projections to

satisfy a certain target criterion. The target criterion need not involve only future inflation;

for example, Svensson (1999) advocates a “flexible inflation targeting” rule in which the

interest rate is adjusted at date t so as to ensure that

Etπt+j + λ Etxt+k = π̄, (4.8)

where π̄ is the average inflation target, the coefficient λ > 0 depends on the relative im-

portance of output-gap stabilization, and the horizons j and k are not necessarily the same

distance in the future.

We shall also wish to consider the desirable specification of a target criterion in the case

of a policy rule of this sort. Again, a basic question is whether it makes sense to define

the target criterion in terms of projections for these particular variables, inflation and the

output gap, rather than others, such as monetary aggregates. If so, what should determine

the relative weight, if any, to be placed on the output-gap forecast? How far in the future

should the forecasts in the target criterion look? And is a desirable criterion purely forward-

looking, as in the case of the two examples just mentioned, or should the inflation target be

history-dependent, in addition to (possibly) depending on projected future output gaps?

This study will seek to elaborate a methodology that can be used to give quantitative

answers to questions of this sort about optimal policy rules. Of the course, the answers
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obtained will depend on the details of what one assumes about the nature of the monetary

transmission mechanism, and I do not propose to argue for a specific quantitative rule.

The aim of the present study is more to suggest a way of approaching the problem than

to announce the details of its solution. However, certain model elements recur in many of

the models currently used in studies of the effects of monetary policy, both in the academic

literature and in central banks; and given the likelihood that a reasonable model will be

judged to include these features, we may obtain some tentative conclusions as to the likely

form of reasonable policy rules.

4.2 General Criticisms of Interest-Rate Rules

Before taking up specific questions of these kinds about the form of desirable interest-rate

rules, it is first necessary to address some more basic issues. Would any form of interest-rate

rule represent a sensible approach to monetary policy? Proponents of monetary targeting

have often argued against interest-rate control as such — asserting not that skill is required

in the choice of an interest-rate operating target, but that it is a serious mistake to have one

at all.

One famous argument, mentioned above, is that of Sargent and Wallace (1975). Sar-

gent and Wallace consider a general class of money-supply rules on the one hand, and a

general class of interest-rate rules on the other, and argue that while any of the money-

supply rules leads to a determinate rational expectations equilibrium (in the context of a

particular rational-expectations IS-LM model), none of the interest-rate rules do. By de-

terminacy of the equilibrium I mean that there is a unique equilibrium satisfying certain

bounds, made precise in chapter 2. Sargent and Wallace argue that interest-rate rules lead

to indeterminacy, meaning that even if one restricts one’s attention to bounded solutions to

the equilibrium relations (as we shall largely do in this study), there is an extremely large set

of equally possible equilibria. These include equilibria in which endogenous variables such

as inflation and output respond to random events that are completely unrelated to economic

“fundamentals” (i.e., to the exogenous disturbances that affect the structural relations that
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determine inflation and output), and also equilibria in which “fundamental” disturbances

cause fluctuations in equilibrium inflation and output that are arbitrarily large relative to the

degree to which the structural relations are perturbed. Thus in such a case, macroeconomic

instability can occur due purely to self-fulfilling expectations. This is plainly undesirable, if

one’s objective is to stabilize inflation and/or output.37 Hence Sargent and Wallace argue

that interest-rate rules can be excluded from consideration as a class; the problem of optimal

monetary policy is then properly framed as a question of what the best money-supply rule

would be.

However, as McCallum (1981) notes, the Sargent-Wallace indeterminacy result applies,

even in the context of their own model, only in the case of interest-rate rules that specify an

exogenous evolution for the nominal interest rate; this includes the possibility of rules that

specify the nominal interest rate as a function of the history of exogenous disturbances, but

not rules that make the nominal interest rate a function of endogenous variables, such as

inflation or output. Yet the Taylor rule, and the other interest-rate rules discussed above,

are all rules of the latter sort, so that the Sargent-Wallace result need not apply. The same

is shown to be true, in chapters 2 and 4, in the case of the optimizing models of inflation and

output determination considered here. Indeed, we find that, at least in the case of the simple

model of the monetary transmission mechanism that is most extensively analyzed here, either

the type of feedback from the general price level to the interest rate (or from changes in the

price level to changes in the interest rate) advocated by Wicksell, or the type of feedback

from inflation and output to the central bank’s interest-rate operating target prescribed by

Taylor, would suffice to imply a determinate rational expectations equilibrium. In the case

of a level-to-level (or change-to-change) Wicksellian specification, it is only necessary that

the sign of the response be the one advocated by Wicksell. In the case of a change-to-level

specification like that proposed by Taylor, the “Taylor principle” mentioned above — the

requirement that a sustained increase in inflation eventually result in an increase in nominal

37The point remains valid if one’s objective is, as we shall argue that it should be, to stabilize output
relative to its natural rate, rather than output stabilization as such. For the fluctuations in output due
purely to self-fulfilling expectations just mentioned will imply fluctuations in the output gap as well.
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interest rates that is even larger in percentage points — turns out to be the critical condition

that determines whether equilibrium should be determinate or not.38

A related criticism of interest-rate targeting also maintains that such a policy is dangerous

because it allows instability to be generated by self-fulfilling expectations, but is not based

on the possibility of multiple rational-expectations equilibria. Friedman (1968) argues that

attempting to control nominal interest rates is dangerous on the basis of Wicksell’s (1898,

1907) famous analysis of the “cumulative process”. With a nominal interest rate that is fixed

at a level below the “natural rate”, inflation is generated that increases inflation expectations,

which then stimulates demand even further due to the reduction in the real rate, generating

even faster inflation, further increasing inflation expectations, and so on without bound.39

The same process should occur with the opposite sign if the interest rate happens to be set

above the natural rate; thus any attempt to fix the nominal interest rate would seem almost

inevitably to generate severe instability of the inflation rate. (In Friedman’s analysis, there

is no indeterminacy of the path of inflation, as inflation expectations are assumed to be a

specific function of previously observed inflation.)

As is discussed in chapter 4, this analysis can be formalized in the context of an optimizing

model in which inflation and income forecasts are based on extrapolation from past data (e.g.,

using empirical time-series models). But once again, the classic analysis applies only in the

case of a policy that exogenously specifies the path of nominal interest rates. If instead a

surge in inflation and output leads to increases in nominal interest rates large enough to

raise real rates, then demand should be damped, tending to lower inflation as well — so that

there should be no explosive instability of either inflation or output dynamics under adaptive

learning. Indeed, the analyses of Bullard and Mitra (2000, 2002) and Preston (2002) find

that conformity to the Taylor principle is both a necessary and sufficient condition (at least

38Clarida et al. (2000xx) argue on this basis that the macroeconomic instability of the 1970s in the U.S.
may have been increased by self-fulfilling expectations, given that their estimates (see Table 1.1) imply that
the Taylor principle has been satisfied by post-1979 policy but not by previous policy.

39This summarizes Friedman’s account, rather than Wicksell’s original discussion; Wicksell does not discuss
endogenous inflation expectations, and so concludes that the price level should rise without bound, rather
than the inflation rate. Lindahl (1939) was the first to introduce endogenous inflation expectations into the
analysis, and so to conclude that the inflation rate could rise without bound.
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within certain simple classes of policy rules) for adaptive learning dynamics to converge to

a stationary rational-expectations equilibrium, in which inflation and output fluctuate only

in response to “fundamentals”.

Thus it is important to realize that these well-known criticisms of interest-rate targeting

assume that under such a policy the interest-rate target would remain fixed, regardless of

the path of inflation. The analyses are quite inapplicable in the case of policy rules such

as Wicksell’s rule, the Taylor rule or typical inflation-forecast targeting rules, which require

that interest rates be raised sharply if inflation is either observed or forecasted to exceed

the target rate consistently for a substantial period of time. In fact, in these conventional

arguments for monetary targeting, the reason for control of money growth is precisely that

this is a policy commitment that ensures that an excessive rate of inflation will lead to

interest-rate increases sufficient to curb the growth of nominal expenditure. A fixed target

path for the money supply (or more generally, a path that is contingent only upon exogenous

state variables, not upon the path of the price level) implies that if the price level grows more

rapidly, the private sector will be forced to operate with a lower level of real money balances;

this will require interest-rate increases and/or a reduction in real activity sufficient to reduce

desired real money balances to the level of the real money supply.

But the same kind of automatic increase in interest rates, curbing expenditure, can

be arranged through a simple commitment of the central bank to raise interest rates in

response to deviations of the general level of prices from its desired path, as first proposed

by Wicksell. And once one recognizes that quantity control is not necessary for such a

system to work, it is hard to see why one should wish to encumbered by it. Over the course

of the twentieth century, it came to be accepted that no convertibility of national currencies

into a real commodity such as gold was necessary in order for central banks to act in a

way that controlled the value of their currencies; and once this was accepted, it quickly

became evident that nations were better off not relying upon such a crude mechanism as a

gold standard, which left the value of the national unit of account vulnerable to fluctuations

in the market for gold. Similarly, once one accepts that the adjustment of interest rates
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to head off undesired price-level variation can be managed by central banks without any

need for so mechanical a discipline as is provided by a money-growth target, it should be

clear that a properly chosen interest-rate rule can be more efficient than monetary targeting,

which has the unwanted side effect of making interest rates (and hence the pace of aggregate

expenditure) vulnerable to variations in the relation between desired money balances and

the volume of transactions.

A more subtle criticism of interest-rate rules as an approach to systematic monetary

policy would argue that even if such rules lead to well-defined, well-behaved equilibria, the

description of policy in this way may still not be useful to a central bank that wishes to

understand, and thus to accurately calibrate, the consequences of its actions. It is often

supposed that the key to understanding the effects of monetary policy on inflation must

always be the quantity theory of money, according to which the price level is determined

by the relation between the nominal money supply on the one hand and the demand for

real money balances on the other. It may then be concluded that what matters about

any monetary policy is the implied path of the money supply, whether this is determined

through straightforward monetary targeting or in some more indirect manner.40 From such

a perspective, it might seem that a clearer understanding of the consequences of a central

bank’s actions would be facilitated by an explicit focus on what evolution of the money

supply the bank intends to bring about — that is, by monetary targeting — rather than

by talk about interest rate policy that, even if it does imply a specific path for the money

supply, does not make the intended path entirely transparent.

The present study aims to show that the basic premise of such a criticism is incorrect.

One of the primary goals of Part I of this book is the development of a theoretical framework

in which the consequences of alternative interest-rate rules can be analyzed, which does not

require that they first be translated into equivalent rules for the evolution of the money

supply. Indeed, much of the time we shall analyze the consequences of interest-rate rules

without having to solve for the implied path of the money supply, or even having to specify

40This is for example the perspective taken in the Monetary History of Friedman and Schwartz (1963).
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the coefficients of a “money demand” relation. In the case of an economy without monetary

frictions — a case that I shall argue is an analytically convenient approximation for many

purposes, and that may well represent the future, as discussed above — there will not even

be any meaningful money supply or demand to be defined. If instead we take account

of the sort of frictions that evidently still exist in an economy like the U.S. at present,

then our models will imply an equilibrium path for the money supply along with other

endogenous variables. But the factors determining the equilibrium paths of both inflation

and output will continue to be nearly the same as in the frictionless economy, so that it

does not seem at all natural or useful to try to explain the predicted paths of inflation and

output as consequences of the implied path of the money supply. Instead, it proves to be

possible to discuss the determinants of inflation and output in a fairly straightforward way in

terms of the coefficients of an interest-rate rule. Thus the characterizations of central-bank

policy offered above are found to be quite convenient for analysis of the consequences of one

quantitative specification or another. We further show, in chapter 8, that optimal policy can

be conveniently represented in terms of specifications of exactly this sort, leading to answers

to the very specific questions about interest-rate policy posed in the previous section.

4.3 Neo-Wicksellian Monetary Theory

The non-quantity-theoretic analytical framework developed here develops several important

themes from the monetary writings of Knut Wicksell (1898, 1906, 1907). Wicksell argued

that even the variations in the price level observed in his own time, under the international

gold standard, were not primarily due to variations in the world gold supply, but rather to

two other factors — the policies followed by central banks, adjusting the “bank rate” at

which they were willing to discount short-term bills, on the one hand, and real disturbances,

affecting the “natural rate of interest” on the other. In Wicksell’s view, price stability

depended on keeping the interest rate controlled by the central bank in line with the “natural

rate” determined by real factors (such as the marginal product of capital). Inflation occurred

whenever the central banks lowered interest rates, without any decline in the natural rate
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having occurred to justify this, or whenever the natural rate of interest increased (due,

for example, to an increase in the productivity of investment opportunities), without any

adjustment of the interest rates controlled by central banks in response. Deflation occurred

whenever a disparity was created of the opposite sign.

Whatever the validity of such a non-quantity-theoretic approach for the analysis of price-

level determination under the gold standard, Wicksell’s approach is a particularly congenial

one for thinking about our present circumstances — a world of purely fiat currencies in which

central banks adjust their operating targets for nominal interest rates in response to perceived

risks of inflation, but pay little if any attention to the evolution of monetary aggregates —

to say nothing of the one to which we may be headed, in which monetary frictions become

negligible.41 In such a world, where the concepts of money supply and demand become

inapplicable, what is there to determine an equilibrium value for the general level of money

prices? One possible answer is the role of past prices in determining current equilibrium

prices, due either to wage or price stickiness, or to the effect of past prices on expectations

regarding future prices (the critical factor in Wicksell’s own analysis). Thus once prices have

been at a certain level (for whatever arbitrary reason), this historical initial condition ties

down their subsequent evolution, though they may subsequently drift arbitrarily far from

that level. But probably the most important factor, in general, is the interest-rate policy of

the central bank, insofar as this responds to the evolution of some price index. A state of

affairs in which all wages and prices were 10 percent higher than they presently are would

not be equally possible as an equilibrium, if the observation of such a jump in the price level

would trigger an increase in interest rates, as called for under either a Wicksellian rule or

the Taylor rule.

The way in which the equilibrium price level can be determined by the central bank’s

interest-rate response to price-level variations, without any reference to the associated fluc-

tuations in any monetary aggregate, can be illustrated very simply. Let us suppose that

the equilibrium real rate of interest is determined by real factors (such as time preference

41As noted earlier, Wicksell’s basic exposition of his theory is for the case of a “pure credit economy.”
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and the productivity of capital), in complete independence of how nominal quantities may

evolve,42 and let {rt} be an exogenous stochastic process for this real rate. It then follows

that the short-term nominal interest rate it and the log price level pt must at all times satisfy

the Fisherian relation

pt = Etpt+1 + rt − it, (4.9)

assuming rational expectations on the part of the private sector. Because rt is a certain

function of exogenous real factors, rather than the measured real rate of return, this is an

equilibrium relation — the condition required for equality between aggregate saving and

investment — rather than an identity. This “flexible-price IS equation” indicates how the

price level that clears the goods market — or equivalently, that equates saving and investment

— depends on the expected future price level, real factors affecting saving and investment,

and the nominal interest rate controlled by the central bank.

Now suppose that the central bank sets the short-term nominal interest rate according

to the Wicksellian rule

it = ı̄t + φ pt, (4.10)

which generalizes (4.1) in allowing for a time-varying intercept, indicating possible shifts

over time in monetary policy. Suppose furthermore that {ı̄t} is another exogenous stochastic

process (that is, determined independently of the evolution of prices), that may or may not

be correlated with the exogenous fluctuations in the equilibrium real rate of interest. Then

substituting (??) into (4.9) to eliminate it, we obtain a relation of the form

pt = αEtpt+1 + α(rt − ı̄t) (4.11)

to determine the equilibrium evolution of the price level, given the exogenous processes

{rt, ı̄t}, where α ≡ 1/(1 + φ) is a coefficient satisfying 0 < α < 1.

In the case that {rt, ı̄t} are bounded processes, equation (4.11) has a unique bounded

42In chapter 2, we present assumptions under which this is true in an explicit intertemporal equilibrium
model with flexible prices.
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solution, obtained by “solving forward,” namely

pt =
∞∑

j=0

αj+1 Et(rt+j − ı̄t+j). (4.12)

Thus the equilibrium price level fluctuates in a bounded interval around the long-run average

value

p̄ ≡ φ−1 (r̄ − ı̄),

where r̄, ı̄ are the long-run average values of rt and ı̄t respectively. This analysis shows how

a policy rule that involves no targets for any monetary aggregate can nonetheless control

the long-run price level. It also shows how the determinants of equilibrium inflation can

be understood without any reference to the determinants of either the money supply or of

money demand — indeed, it does not matter for the analysis just presented whether there

is any well-defined demand function for the monetary base.

The account of price-level determination implied by this theory has a strongly Wicksellian

flavor. We observe from (4.12) that the equilibrium price level at any date t is increased

by either a “loosening” of monetary policy — represented by a reduction of the intercept

term ı̄t — not justified by any decline in the equilibrium real rate, or by an increase in

the equilibrium real rate rt that is not matched by a tightening of policy. Our forward-

looking model also implies that any news that allows the private sector to forecast the future

occurrence of either of these things should stimulate inflation immediately.

In the simple model sketched here, there is no distinction of the sort that Wicksell

makes between the actual real rate of return and the “natural rate” that would occur in an

intertemporal equilibrium with flexible prices. In chapter 4, however, we show how one can

usefully introduce such a distinction, in the context of a model with sticky prices. When

prices are temporarily sticky, the real rate of return at which borrowing and lending occurs

can differ from the natural rate of interest, just as the level of output can differ from its

natural rate; and the degree to which both occur depends on the degree of instability of the

overall price level, as it is only when the general level of prices is changing that price rigidity

creates distortions. Equilibrium condition (4.9) must then be replaced by a more general
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one, of the form

it − Etπt+1 = rn
t + δ(πt, . . .), (4.13)

where rn
t is the natural rate of interest (here still assumed to depend only on exogenous

real factors), and the discrepancy δ(·) is a function of both current and expected future

inflation.43 The system consisting of conditions (4.10) and (4.13) can again be solved for a

unique bounded process for the price level, and the solution is of the form

pt =
∞∑

j=0

ψj Et(r
n
t+j − ı̄t+j)

for certain coefficients {ψj}. Thus in the more general case, it is variation in the natural rate

of interest due to real disturbances of various sorts, to the extent that such variation is not

matched by corresponding adjustment of the central bank’s reaction function, that causes

inflation variation. Just as in Wicksell’s theory, real disturbances affecting desired saving

and investment are predicted to be important sources of price-level variations; and as in that

theory, the implied variation in the natural rate of interest is a useful summary statistic for

the way in which a variety of real disturbances should affect the rate of inflation.

In chapters 2 and 4, we show how a similar analysis of equilibrium inflation determination

is possible in the case of a rule like the Taylor rule. In this case a positive response of the

interest rate to fluctuations in the inflation rate is not sufficient to guarantee a determinate

equilibrium (a unique non-explosive equilibrium path for the inflation rate, rather than the

price level); it is instead necessary that the response coefficient be greater than one, in

accordance with the “Taylor principle” mentioned earlier. But in that case similar results

are obtained; equilibrium inflation is a function of current and expected future gaps between

the natural rate of interest and the intercept term in the Taylor rule.

We find, then, that it is possible to determine the consequences for inflation dynamics of

a given monetary policy rule when it is expressed in terms of an interest-rate rule, without

any need to first translate the rule into an implied state-contingent path for the money

43In the case of the basic neo-Wicksellian model developed in chapter 4, δ is a function of πt, Etπt+1, and
Etπt+2..
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supply. Hence the terms used to describe both actual central-bank policies and simple

policy prescriptions in the literature summarized above are not inappropriate ones; we can

conveniently analyze the consequences of systematic policies of these types as functions of

exactly the coefficients appearing in Table 1.1.

While the usefulness of the neo-Wicksellian framework sketched here is perhaps most

evident in the case of an economy without monetary frictions, so that the familiar quantity-

theoretic apparatus is plainly inapplicable, it is also equally useful in the case of an economy

in which monetary frictions still exist, at least of the modest sort that are indicated by the

observed willingness to hold non-interest-earning currency in an advanced economies like

that of the U.S. today. In what we have written above, we have not actually relied upon any

assumed absence of monetary frictions, except in assuming that the equilibrium real rate of

interest (or more generally, the natural rate of interest) is independent of the evolution of

nominal variables. But even in the presence of transactions frictions resulting in a demand

for base money despite its below-market rate of return, it is unlikely that the natural rate of

interest is much affected, as a quantitative matter, by variations in the rate of inflation. (The

accuracy of the approximation involved in neglecting such effects is considered numerically

in chapters 2 and 4.) Hence the approach proposed here is also appropriate for analysis

of the effects of a Taylor rule in an economy like that of the U.S., where changes in the

Fed’s interest-rate operating target are implemented through adjustments in the supply of

(non-interest-earning) Fed balances. The monetary frictions that create a demand for such

balances are important for the size of quantity adjustment required to achieve a given change

in the funds rate, but of little importance for the effects upon output and inflation of any

given change in the path of the funds rate.

Nor are the predictions of the neo-Wicksellian theory really any different from those of

a standard quantity-theoretic analysis, despite the apparent dissimilarity of approach. In

a quantity-theoretic analysis of inflation determination, central importance is given to the

money-demand relation that describes desired real money balances as a function of interest

rates and other variables. However, in the case of an interest-rate rule like any of those
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described above, the money supply varies passively so as to satisfy this relation; hence the

relation places no restrictions upon the equilibrium evolution of interest rates and goods

prices. Thus in such a system, the equilibrium paths of interest and prices are determined

by solving equations (4.9) and (4.10), or equations (4.10) and (4.13) in the case of sticky

prices, just as above. Once one knows the equilibrium paths of interest and prices, the money-

demand relation can then be used to determined the implied evolution of the money supply

as well. But this last relation plays no important role in determining equilibrium inflation

under such an analysis. And an insistence upon first solving for the state-contingent path

of the money supply implied by the policy rule, and then deriving the equilibrium path

of inflation from this along quantity-theoretic lines, would be an unnecessarily roundabout

procedure, given that one must first solve for the path of prices and interest rates in order

to determine the path of the money supply.

The neo-Wicksellian approach is thus clearly preferable, even granting the existence of

a well-defined, econometrically stable money-demand relation, if one wishes to analyze the

consequences of interest-rate rules such as the Taylor rule. But, it might be asked, is it clear

that desirable policy rules should belong to this class, regardless of the current popularity

of such prescriptions? Might not a money-growth rule be preferable, in which case a more

traditional quantity-theoretic approach would also be necessary in order to explain its effects?

The results of this study suggest that the answer is no. As is shown in chapter 8, it

is possible to derive optimal policy rules that indicate how a short-term nominal interest-

rate operating target should be set, as a function of the projected evolution of inflation and

the output gap, without any reference to the paths of monetary aggregates. It is argued

furthermore that this form of prescription has the advantage, relative to other possible char-

acterizations of optimal policy, of being invariant under a larger class of possible exogenous

disturbances. For example, in the case of an economy with a well-defined demand for base

money, it is possible to compute both the state-contingent evolution of overnight interest

rates and the state-contingent evolution of the monetary base in an optimal equilibrium.

However, the desired evolution of the monetary base, even when well-defined, will depend
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upon factors that are of little or no relevance to the desired evolution of interest rates, and

this makes it simpler to characterize optimal policy in terms of an interest-rate operating

target.

One such factor is the dependence of the optimal path of the monetary base on changes in

the transactions technology — for example, available opportunities for substitution among

alternative means of payment — that have significant effects on money demand in the pres-

ence of a given interest differential between base money and other riskless assets, but have

little effect on the relations between interest rates and the incentives for intertemporal substi-

tution of expenditure that determine the desired evolution of interest rates. (In an economy

where the financial system is already highly efficient, one expects further innovations to rep-

resent movements from one highly efficient system to another, so that the relations between

interest rates and the real allocation of resources will remain near that predicted by a model

with no financial frictions; but money demand may be greatly affected in percentage terms,

as it ceases to be defined in the frictionless limit.) Another is the dependence of the opti-

mal evolution of the monetary base on the details of monetary policy implementation. The

desired path of money-market interest rates is largely independent of the rate of interest

paid on the monetary base; this instead depends on the intertemporal marginal rates of

substitution and marginal products of real investment implied by the desired allocation of

resources, and on the desired path for inflation. But the desired path of the monetary base

depends greatly on whether it is assumed for institutional reasons that zero interest is paid

on base money, or whether instead the interest paid on money varies when other short-term

interest rates vary; for the demand for base money depends not on the absolute level of

nominal interest rates, but on the spread between the interest rate paid on base money and

that available on other assets.

Thus even when the desired evolution of the monetary base is well-defined, it is more

dependent on special “technical” factors than is the desired evolution of short-term nominal

interest rates; this makes a description of optimal monetary policy in terms of a state-

contingent money growth rate less convenient. And if, as some forecast, monetary frictions
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are largely eliminated in the coming century owing to the development of electronic pay-

ments media, a description of optimal policy in terms of the desired evolution of a monetary

aggregate is likely to become awkward if not altogether impossible. Yet a description of op-

timal policy in terms of the principles that should regulate the adjustment of an interest-rate

operating target should still be possible. Indeed, increasing efficiency of the financial system

should only simplify the description of optimal policy in these terms, insofar as the arbitrage

relations that connect the overnight interest rate directly targeted by the central bank to

other interest rates and asset prices should become simpler and more reliable. Hence the

neo-Wicksellian framework proposed here directs attention to precisely those elements of the

monetary transmission mechanism that are likely to remain of fundamental importance for

the design of effective monetary policies in a world of increasingly efficient financial markets

and institutions.

5 Plan of the Book

Part I of this book develops a theoretical framework that can be used to analyze the conse-

quences of alternative monetary policy rules, in a way that takes full account of the conse-

quences of forward-looking private sector behavior. Chapter 2 begins by considering price-

level determination when monetary policy is specified by an interest-rate rule, in the case

of a model where, for simplicity, prices are completely flexible and the supply of goods is

given by an exogenous endowment. This chapter demonstrates the possibility of a coherent

theory of price-level determination even in the complete absence of monetary frictions — a

special case that is considered repeatedly in what follows, in order to direct attention more

closely to the economic relations that are considered to be of more fundamental importance

for the characterization of optimal policy. But it also considers price-level determination

under an interest-rate rule in a standard optimization-based monetarist framework, allowing

a comparison between the consequences of monetary targeting and those of commitment

to an interest-rate rule, and an analysis of the extent to which the presence of monetary

frictions changes one’s conclusions about the effects of an interest-rate rule.
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Chapter 3 then introduces endogenous goods supply and nominal price and wage rigidi-

ties, so that monetary policy can affect the level of real activity as well as the inflation rate.

Considerable attention is given to the microeconomic foundations of the aggregate-supply

relations that result from delays in the adjustment of prices or wages, in order to select

specifications (from among those that might appear similarly consistent with econometric

evidence) with clear behavioral interpretations, that thereby allow one to take account of

the “Lucas critique”. At the same time, attention is also paid to the need to find a speci-

fication of the dynamic relations between real activity and inflation that is consistent with

econometric evidence regarding the effects of identified monetary disturbances. A series of

modifications of a basic sticky-price model are introduced that can improve the model’s fit

with estimated responses on various dimensions.

Chapter 4 then integrates the analysis in chapters 2 and 3, considering the effects of

interest-rate rules in a framework where monetary policy can affect real activity, and where

feedback from measures of real activity to the central bank’s interest-rate operating target

matter for the predicted effects of such rules. In the neo-Wicksellian framework developed

here, inflation dynamics result from the interaction between real disturbances on the one

hand and the central bank’s interest-rate rule on the other. Wicksell’s “natural rate of inter-

est” is shown to play a central role, summarizing the effects of a variety of real disturbances

that are relevant for inflation and output-gap determination, in the case of a class of policy

rules that may be thought of as generalized Taylor rules. The chapter also includes a first

analysis of the consequences of such a framework for the design of desirable policy rules, by

considering the conditions under which a Taylor-like rule should be able to stabilize inflation

and the output gap.

Chapter 5 completes the theoretical framework by considering the consequences for in-

flation determination of alternative fiscal policy rules. The analyses of interest-rate rules in

chapters 2 and 4 are conducted under a particular assumption about fiscal policy — that it

is at least “locally Ricardian” — that is arguably realistic given current fiscal policy com-

mitments in countries like the U.S., but that need not hold, and that may not have held even
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in the U.S. at all times. Chapter 5 shows that the inflation dynamics implied by a given

interest-rate rule may be different in the case of alternative fiscal rules, and uses this analysis

to explain the consequences of the bond-price support regime in the U.S. during the 1940s.

In fact, the analysis offered later in the book implies that an optimal regime should involve

a locally Ricardian fiscal policy, so that the case emphasized in chapters 2 and 4 is argued to

be the relevant one for the choice of an optimal monetary policy rule. But it is important to

recognize that an optimal policy regime must include the proper sort of fiscal commitment

as well, and that a commitment to an “optimal” interest-rate rule need not imply desirable

inflation dynamics in the absence of a suitable fiscal commitment.

Part II of the book then considers the optimal conduct of monetary policy in the light of

the theoretical framework introduced in the earlier chapters. Chapter 6 begins by considering

appropriate stabilization goals for monetary policy. An advantage of the derivation of our

model’s structural relations from explicit microeconomic foundations in Part I is that it is

possible to ask what sort of monetary policy should best serve economic welfare, given the

objectives and constraints of the agents whose decisions account for the observed effects

of monetary policy. Chapter 6 considers the connection between the obvious measure of

economic welfare in such a model — the expected utility of the representative household —

and the stabilization of macroeconomic aggregates such as inflation and the output gap.

It is shown that a quadratic approximation to expected utility, which suffices (under

certain conditions) for the derivation of a linear approximation to an optimal policy rule,

can be expressed in terms of the expected value of squared deviations of certain aggregate

variables from target values for those variables; the variables that are relevant, and the

details of the quadratic loss function that can be justified on welfare-theoretic grounds,

depend on the microeconomic foundations of one’s model of the monetary transmission

mechanism. In particular, it is shown that different assumptions regarding price and/or wage

stickiness imply that price and/or wage inflation should enter the central bank’s loss function

in different ways. Nonetheless, it is argued that price stability, suitably interpreted — e.g.,

quite possibly in terms of an index that includes wages as well as the prices of final goods
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and services — should be an important consideration, though not necessarily the only one,

in the selection of a monetary policy rule. Grounds for inclusion of output-gap stabilization

and interest-rate stabilization objectives in the loss function as well are considered; but it is

argued that in practice, these additional concerns are not likely to justify either an average

rate of inflation much greater than zero or substantial variability in the rate of inflation in

response to shocks.

Chapter 7 then considers the optimal state-contingent evolution of inflation, output and

interest rates in response to real disturbances of various sorts, from the point of view of the

sort of loss function argued for in chapter 6 and in the context of a forward-looking model

of the monetary transmission mechanism of the kind developed in Part I. An important

general issue treated in this chapter is the way in which optimal control techniques must be

adapted in the case of control of a forward-looking system. The responses to shocks under an

optimal commitment are distinguished from the equilibrium responses under discretionary

optimization by the central bank. Particular attention is given to the fact that in general,

optimal responses will be history-dependent in a way that is inconsistent with any purely

forward-looking decision procedure for monetary policy. Alternative approaches to introduc-

ing the desired sort of history-dependence into the conduct of policy are surveyed; the one

that is emphasized in this study is the possibility of commitment to a policy rule that is

history-dependent in the desired way.

Finally, chapter 8 considers the problem of choice of a policy rule to implement the desired

state-contingent evolution of inflation, output and interest rates, as derived in chapter 7.

From the standpoint taken here, this problem of implementation of the desired equilibrium

is a non-trivial part of the characterization of optimal policy; for the mapping from the

history of exogenous disturbances to the desired overnight interest rate at any point in time

is not a suitable description of an optimal policy rule, for reasons taken up in this chapter.

Instead, it is argued that a more suitable policy prescription should relate the instrument

setting to the evolution (observed or projected) of endogenous variables such as inflation and

the output gap, as in the proposals mentioned above. A general method is presented for
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constructing optimal policy rules of this form in the case of a fairly general class of log-linear

structural models and quadratic loss functions; the method is then applied to several of the

simple optimizing models of the monetary transmission mechanism developed in previous

chapters.

It is shown that optimal rules can easily take the form of generalized Taylor rules, or

the form of target criteria for a forecast-targeting procedure like that used at the Bank of

England. However, even in the case of fairly simple models of the transmission mechanism,

the optimal rules are somewhat different from the proposals described above. While there is a

fairly clear logic for rules that respond to (and perhaps only to) variations in inflation and in

the output gap, the theoretically appropriate measures of inflation and of the output gap may

not be the ones used in the characterizations above of current central-bank behavior. And

the optimal rules that we obtain are typically different in their dynamic specifications as well.

Optimal rules are history-dependent in ways that neither the classic Taylor rule nor familiar

descriptions of inflation-forecast targeting are; and while they may well be more forward-

looking than the classic Taylor rule, in all of our calibrated examples they are considerably

less forward-looking than the procedures currently used at the inflation-targeting central

banks.

Conclusions about the precise content of an optimal policy rule, of course, depend on the

details of one’s model of the transmission mechanism, and we do not attempt here to reach

final conclusions in that regard. The answer is likely to be somewhat different for different

countries in any event. Our more important goal is to provide a method that individual

central banks can use in order to choose sensible systematic policies on the basis of their

own research on the nature of the transmission mechanism in their respective economies. It

is hoped that the present essay can provide useful guidelines for such an inquiry.
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Chapter 2

Price-Level Determination Under
Interest-Rate Rules

While virtually all central banks use a short-term nominal interest rate (typically an overnight

rate, such as the federal funds rate in the U.S.) as their instrument, and an extensive empirical

literature characterizes actual monetary policy in terms of estimated central bank “reaction

functions” for setting such interest rates, the theoretical literature in monetary economics

has almost entirely concerned itself with the analysis of policies that are described by alter-

native (possibly state-contingent) paths for the money supply. The aim of this chapter is to

remedy this oversight by presenting a theory of price-level determination under interest-rate

rules of the sort that are often taken to describe actual central bank policies.

We shall argue that it is not necessary, in order to understand the consequences of such

rules, to first determine their consequences for the evolution of the money supply, and then

analyze the equivalent money-supply rule. Instead, it is possible to analyze price-level deter-

mination under such rules in terms of an explanatory framework that gives no importance

to either the evolution of the money supply or the determinants of money demand. In

this neo-Wicksellian framework, the fundamental determinants of the equilibrium price level

are instead the real factors that determine the equilibrium real rate of interest, on the one

hand, and the systematic relation between interest rates and prices established by the central

bank’s policy rule, on the other.

We first expound this approach in the context of a purely cashless economy — one in

1
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which there are assumed to be no transactions frictions that can be reduced through the

use of money balances, and that accordingly provide a reason for holding such balances

even when they earn a rate of return that is dominated by that available on other assets.

Such a setting — one that is commonly assumed in financial economics and in purely real

models of economic fluctuations alike — allows us to display the relations that are of central

importance in the neo-Wicksellian theory in their simplest form.

At the same time, neither the usefulness nor the validity of the approach proposed here

depends on a claim that monetary frictions do not exist in actual present-day economies.

After expounding the theory for the cashless case, we show how the framework can easily be

generalized to allow for monetary frictions, modeled in one or another of the ways that are

common in monetarist models of inflation determination (by including real balances in the

utility function, or assuming a cash-in-advance constraint). We show in this case that equi-

librium relations continue to be obtained that are direct generalizations of the ones obtained

for the cashless economy, and that need not even imply results that are too different as a

quantitative matter, if the monetary frictions are parameterized in an empirically plausible

way. Hence the cashless analysis can be viewed as a useful approximation even in the case

of an economy where money balances do facilitate transactions to some extent.

In the case of an economy with transactions frictions, one can also analyze price-level

determination along traditional monetarist lines: one may view the equilibrium price level as

being determined by the expected path of the money supply, although the latter quantity is

endogenous, in the case of an interest-rate rule such as the Taylor rule, so that money, prices,

and interest rates must be simultaneously determined. In the models considered here, this

approach would not yield different ultimate conclusions than the neo-Wicksellian analysis,

for the system of equilibrium conditions to be solved is actually the same despite the differing

direction of approach. Nonetheless, we shall argue that the neo-Wicksellian interpretation

of these equilibrium conditions is a particularly fruitful one, not least because it continues

to be possible in the limiting case of a cashless economy.

In this chapter, we expound the basic outlines of the neo-Wicksellian theory in the context
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of a model with flexible prices and an exogenous supply of goods. This allows us to address

a number of basic issues in a particularly simple context, and also allows direct comparison

of this theory with the standard quantity-theoretic approach, which, when derived from

optimizing models, is also most often expounded in a model with flexible prices. A more

complete development of the theory is possible only after the introduction of nominal price

rigidities in the following chapter.

1 Price-Level Determination in a Cashless Economy

We begin by considering price-level determination in an economy in which both goods mar-

kets and financial markets are completely frictionless: markets are perfectly competitive,

prices adjust continuously to clear markets, and there exist markets in which state-contingent

securities of any kind may be traded. Under the assumption of frictionless financial mar-

kets, it is natural to suppose that no “monetary” assets are needed in order to facilitate

transactions.

We shall suppose, however, that there exists a monetary unit of account in terms of

which prices (of both goods and financial assets) are quoted. This unit of account will be

defined in terms of a claim to a certain quantity of a liability of the central bank, which may

or may not have any physical existence.1 This liability is not a claim to future payment of

anything except future units of the central-bank liability. As argued in section xx of chapter

1, the special situation of the central bank, as issuer of liabilities that promise to pay only

additional units of its own liabilities, allows the central bank to fix both the nominal interest

yield on its liabilities and the quantity of them in existence.

1Under current U.S. arrangements, which are fairly typical, Federal Reserve notes (U.S. currency) and
Federal Reserve balances (credits in an account at the Fed, that can be used for clearing purposes and to
satisfy reserve requirements) are freely convertible into one another, and a promise to pay “a dollar” may
be discharged by transfer to the creditor (or its bank) of either of these types of financial claim, in the
amount of one dollar. In a cashless economy of the kind that some envision for the future, currency need no
longer exist; in such a world, the “dollar” would be defined by a claim to a one-dollar balance at the Fed.
The fact that in such a world there would be no physical dollars (i.e., dollar bills) would not prevent the
use of dollar accounts in making payments; after all, even now, the dollar is not a claim to anything else,
and is accepted in payment only because of the expectation that it can be transferred to someone else in a
subsequent transaction.
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While we assume that there is no reason why private parties need to hold this particular

asset, or receive any benefit from doing so that would not be obtained by holding any

other similarly riskless financial claim denominated in terms of the same unit of account, we

assume that they choose to hold financial claims on the government along with privately-

issued financial claims. The conditions under which the private sector is willing to hold

the liabilities of the central bank, along with other government liabilities, are described by

arbitrage relations of the kind that are familiar from financial economics. In an equilibrium,

where these relations are satisfied, there then exists a well-defined exchange ratio between

money and real goods and services.

In a frictionless world of this kind, base money — the monetary liabilities of the central

bank — is a perfect substitute for other riskless nominal assets of similarly short maturity,

whether these are private obligations or other (non-monetary) government obligations. As

a result, variations in the nominal size of the monetary base, due to for example to open-

market purchases of other sorts of government obligations by the central bank need have no

effect on the prices or interest rates that represent a market equilibrium. Yet this does not

mean that in such a world, the central bank has no control over the equilibrium prices of

goods in terms of money. As we shall see, the central bank’s policy rule is one of the key

determinants of the equilibrium price level even in a cashless economy; and it is possible,

at least in principle, for the central bank to stabilize the price level around a desired level

(or deterministic trend path) through skillful use of the tools at its disposal. But in such a

world, the crucial tool available to the central bank will not be open-market operations, but

the possibility of adjusting the interest rate paid on central-bank balances.

1.1 An Asset-Pricing Model with Nominal Assets

Consider an economy made up of a large number of identical households. The representative

household seeks to maximize the expected value of a discounted sum of period contributions

to utility of the form

E0

{ ∞∑

t=0

βtu(Ct; ξt)

}
. (1.1)
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Here 0 < β < 1 is a discount factor, and the period contribution to utility u depends upon the

level of consumption Ct of the economy’s single good. We also allow for exogenous stochastic

disturbances ξt to the period utility function, which we may think of as representing variation

in households’ impatience to consume. The presence of this term represents a first simple

example of something of considerable importance for our general conception of the problem

facing central banks, namely, the existence of real disturbances that should be expected to

change the equilibrium real rate of return, and hence the level of nominal interest rates

required for price stability. For any given realization of ξt, we assume that the period utility

function u(C; ξt) is concave and strictly increasing in C.

As noted in the introduction, we shall assume complete financial markets, i.e., that avail-

able financial assets completely span the relevant uncertainty faced by households about

future income, prices, taste shocks, and so on, so that each household faces a single in-

tertemporal budget constraint. Under the assumption of complete markets, a household’s

flow budget constraint each period can be written in the form

Mt + Bt ≤ Wt + PtYt − Tt − PtCt. (1.2)

Here Mt denotes the household’s nominal end-of-period balances in the distinguished finan-

cial asset (the monetary base) which represents the economy’s unit of account, Bt represents

the nominal value (in terms of this unit of account) of the household’s end-of-period portfo-

lio of all other financial assets (whether privately issued or claims on the government), Wt

represents beginning-of-period financial wealth (now counting the monetary base along with

other assets), Yt is an exogenous (possibly stochastic) endowment of the single good, Pt is

the price of the good in terms of the monetary unit, and Tt represents net (nominal) tax

collections by the government. The constraint says that total end-of-period financial assets

(money plus bonds) can be worth no more than the value of financial wealth brought into

the period, plus non-financial income during the period net of taxes and the value of con-

sumption spending. Interest income is not written explicitly in (1.2), because it is assumed

to accrue between the discrete dates at which decisions are made; thus Wt already includes



6 CHAPTER 2. PRICE-LEVEL DETERMINATION

the interest earned on bonds held at the end of period t− 1.2

It is important to note that in (1.2), Bt does not refer to the quantity held of some

single type of bond; as we assume complete markets, households must be able, at least

in principle, to hold any of a wide selection of instruments with different state-contingent

returns. We need not, however, introduce any notation for the particular types of financial

instruments that are traded. (This is one of the conveniences of the assumption of complete

markets.) Since any pattern of state-contingent payoffs in the future that a household may

desire can be arranged (for the appropriate price), we can write the household’s consumption

planning and wealth-accumulation problems without any explicit reference to the quantities

that it holds of particular assets; and if there are redundant assets, there will not actually

be determinate demands for individual assets (our assumption in the case of the monetary

base). We distinguish the household’s holdings of the monetary base from the rest of its

end-of-period portfolio, however, in order to allow us to explicitly discuss the central bank’s

supply of this asset and the interest paid on it.

In the proposed notation, we may simply represent the household’s portfolio choice as a

choice of the state-contingent value At+1 of its non-monetary portfolio at the beginning of

the next period. Total beginning-of-period wealth in the following period is then given by

Wt+1 = (1 + imt )Mt + At+1, (1.3)

where imt is the nominal interest rate paid on money balances held at the end of period t.

Note that this implies that Wt+1, as a function of the state of the world realized in period

t+ 1, is determined by decisions made in period t; thus Wt is a predetermined state variable

in (1.2).

At the time of the portfolio decision, At+1 is a random variable, whose value will de-

pend upon the state of the world in period t + 1. But the household chooses the complete

2See equation (1.6) below. Though we often refer to a succession of “periods”, as is common in the
macroeconomic literature, our models are formally ones in which trading occurs at a sequence of discrete
points in time. References to “beginning-of-period” and “end-of-period” portfolios are simply notation to
keep track of the effects of trades, not references to different points in time, between which interest may
accrue.
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specification of this random variable, its value in every possible state. The absence of arbi-

trage opportunities (a necessary requirement for equilibrium) then requires that there exist

a (unique) stochastic discount factor (or asset pricing kernel) Qt,t+1 with the property that

the price in period t of any bond portfolio with random value At+1 in the following period

is given by

Bt = Et[Qt,t+1At+1]. (1.4)

(As of date t, Qt,t+1 remains a random variable; and Et refers to the expectation conditional

upon the state of the world at date t.) In terms of this discount factor, the riskless short-term

(one-period) nominal interest rate it corresponds to the solution to the equation

1

1 + it
= Et[Qt,t+1]. (1.5)

Note that if it happens that the representative household chooses to hold a purely riskless

portfolio (in nominal terms), so that At+1 is perfectly forecastable at date t, (1.4) states

simply that At+1 = (1 + it)Bt. Substituting this into (1.3), and the resulting expression for

Wt into (1.2), which holds with equality in equilibrium, we obtain the familiar difference

equation

Mt + Bt = (1 + imt )Mt−1 + (1 + it−1)Bt−1 + PtYt − Tt − PtCt (1.6)

for the evolution of Bt. This will actually be an equilibrium condition in the case that the

government issues only riskless one-period debt; but it is still important, even in that case, to

recognize that an individual household’s budget constraint allows it the possibility of shifting

wealth across states of the world in other ways.3

More generally, then, equations (1.2), (1.3) and (1.4) together give a complete description

of the household’s flow budget constraint. Using (1.3) and (1.4) to eliminate Bt from (1.2),

3Condition (1.6) actually represents the correct flow budget constraint if we assume such radically incom-
plete markets that households can neither borrow nor lend except in terms of the single instrument assumed
to be issued by the government. This case of a single traded asset is often considered in the literature on
consumption theory (see, e.g., Obstfeld and Rogoff, 1996, sec. 2.3). And in the present context, with identi-
cal households, it makes no real difference what we assume about the number of financial markets that are
open. However, the characterization of optimal household plans is simplest in the case of complete markets,
and the introduction of market valuations for arbitrary random income streams will prove useful, in the next
chapter, when we need to consider the optimal pricing decisions of firms.
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the constraint can alternatively be written

(1− EtQt,t+1(1 + imt ))Mt + Et[Qt,t+1Wt+1] ≤ Wt + [PtYt − Tt − PtCt].

Using (1.5), this becomes

PtCt + ∆tMt + Et[Qt,t+1Wt+1] ≤ Wt + [PtYt − Tt]. (1.7)

where

∆t ≡ it − imt
1 + it

. (1.8)

It is clear from this version that the interest-rate differential ∆t between non-monetary

and monetary assets represents the opportunity cost of holding wealth in monetary form.

Given its planned state-contingent wealth Wt+1 at the beginning of the following period, the

household can choose any values Ct,Mt ≥ 0 that satisfy (1.7).4

A complete description of the household’s budget constraints requires that we also specify

a limit on borrowing, to prevent “Ponzi schemes” of the kind that would otherwise be

consistent with the infinite sequence of flow budget constraints in an infinite-horizon model.

In the spirit of our assumption of perfectly frictionless financial markets, it is natural to

suppose that there is no obstacle to borrowing against after-tax endowment income that

may be anticipated (even if in only some states of the world) at any future date. The

implied constraint is then that the household must hold a net portfolio at the end of period

t (possibly including issuance of some securities, in order to borrow against future income)

such that the wealth Wt+1 transferred into the next period satisfies the bound

Wt+1 ≥ −
∞∑

T=t+1

Et+1[Qt+1,T (PT YT − TT )] (1.9)

with certainty, i.e., in each state of the world that may be reached in period t + 1. Here the

general stochastic discount factor Qt,T for discounting (nominal) income in period T back to

4We assume that money balances must be non-negative because this asset is defined as a liability of the
central bank, that accordingly cannot be issued by any other parties, even though (under our assumption
of complete markets) private securities are issued that are equivalent in terms of their state-contingent
payouts. This non-negativity constraint is another reason to single out this asset from the others in writing
the household’s budget constraints; for we assume no short-sale constraints in the case of any other securities
in our model with frictionless financial markets.
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an earlier period t is defined by

Qt,T ≡
T∏

s=t+1

Qs−1,s.

(We also use the notation Qt,t ≡ 1.) Condition (1.9) then says that a household cannot plan

to be indebted in any state in an amount greater than the present value of all subsequent

after-tax non-financial income.

The entire infinite sequence of flow budget constraints (1.7) and borrowing limits (1.9)

are equivalent to a single intertemporal (or lifetime) budget constraint for the household. We

note first of all that unless the present value on the right-hand side of (1.9) is well-defined

(i.e., the infinite sum converges), the household has no budget constraint: Ponzi schemes

are possible, hence unlimited consumption is affordable. Furthermore, if the present value is

infinite looking forward from any state of the world, at any date, unbounded consumption

is possible not only at that date and in all other states (including along histories under

which the state in question never occurs); for with complete markets, it is possible to borrow

against that state to finance unbounded consumption in any other state.

We may thus restrict attention to the case in which Ponzi schemes are not possible,

because
∞∑

T=t

Et[Qt,T (PT yT − TT )] < ∞ (1.10)

at all times.5 The budget constraint is also undefined unless interest rates satisfy the lower

bound

it ≥ imt (1.11)

at all times. For otherwise, an arbitrage opportunity exists; a household can finance unlim-

ited consumption by shorting riskless one-period bonds (i.e., borrowing at the short riskless

rate, assumed to be negative) and using the proceeds partly to hold cash sufficient to repur-

chase the bonds (repay its debt) a period later and partly to finance additional consumption.

Because utility is assumed to be strictly increasing in consumption, such an operation con-

5Throughout, it should be understood that when we say that such a relation holds “at all times,” this
also means in all possible states of the world at each date.
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tinues to increase utility no much matter how much it may be engaged in. Hence we may

also restrict attention to the case in which (1.11) holds at all times.

We are then able to establish that the infinite sequence of flow budget constraints (1.7)

are equivalent to a single intertemporal budget constraint.

Proposition 2.1. Consider positive-valued stochastic processes {Pt, Qt,T} satisfying

(1.10) and (1.11) at all dates, and let {Ct,Mt} be non-negative-valued processes representing

a possible consumption and money-accumulation plan for the household. Then there exists

a specification of the household’s portfolio plan at each date satisfying both the flow budget

constraint (1.7) and the borrowing limit (1.9) at each date, if and only if the plans {Ct, Mt}
satisfy the constraint

∞∑

t=0

E0Q0,t [PtCt + ∆tMt] ≤ W0 +
∞∑

t=0

E0Q0,t[PtYt − Tt]. (1.12)

The proof is given in the appendix. Note that the intertemporal budget constraint states

simply that the present value of the household’s planned consumption over the entire indef-

inite future, plus the cost to it of its planned money holdings, must not exceed its initial

financial wealth plus the present value of its expected after-tax income from sources other

than financial assets. One can also show (see the proof in the appendix) that the household’s

continuation plan, looking forward from any date t (i.e., its plan for dates T ≥ t, in all of

the states that remain possible given the state of the world at date t), must satisfy the

corresponding intertemporal budget constraint

∞∑

s=t

EtQt,s [Pscs + ∆sMs] ≤ Wt +
∞∑

s=t

EtQt,s[Psys − Ts]. (1.13)

The household’s optimization problem is then to choose processes Ct, Mt ≥ 0 for all

dates t ≥ 0, satisfying (1.12) given its initial wealth W0 and the goods prices and asset

prices (indicated by the stochastic discount factors Qt,t+1) that it expects to face, so as to

maximize (1.1). Given an optimal choice of these processes, an optimal path for Wt may
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be constructed as in the proof of Proposition 2.1. Given a stochastic process for Wt+1, the

implied processes for At+1 and for Bt are given by (1.3) and (1.4).

Because this is essentially a standard concave optimization problem subject to a single

budget constraint, necessary and sufficient conditions for household optimization are easily

given. First of all, (1.10) and (1.11) must hold at all times, since otherwise no optimal plan

exists (as more consumption is always possible). Second, since in the cashless economy there

is no non-pecuniary benefit to holding money balances, household optimization requires that

either

Mt = 0 (1.14)

or

it = imt (1.15)

at each date and in each possible state (though which condition obtains may differ across

dates and across states).

Third, by equating marginal rates of substitution to relative prices, we obtain the first-

order conditions
uc(Ct; ξt)

uc(Ct+1; ξt+1)
=

β

Qt,t+1

Pt

Pt+1

. (1.16)

Here Uc is the partial derivative of U with respect to the level of consumption. This condition

must hold for each possible state at each date t ≥ 0, and for each possible state that may

occur at date t+1, given the state that has occurred at date t. (Qt,t+1 indicates the value of

the discount factor in a particular state at date t + 1.) Using (1.5), condition (1.16) implies

that the short-term nominal interest rate must satisfy

1 + it = β−1

{
Et

[
uc(Ct+1; ξt+1)

uc(Ct, ; ξt)

Pt

Pt+1

]}−1

(1.17)

at each date.

Finally, optimization requires that the household exhaust its intertemporal budget con-

straint; that is, (1.13) must hold as an equality at each date. Equivalently, the flow budget

constraint (1.2) must hold as an equality at each date, and in addition, the household’s
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wealth accumulation must satisfy the transversality condition

lim
T→∞

Et[Qt,T WT ] = 0. (1.18)

(Condition (1.13), stated as a strict equality, implies both that (1.2) must hold as a strict

equality at each date T ≥ t, and that (1.18) must hold. Conversely, the latter set of conditions

imply that (1.13) holds with strict equality, looking forward from date t.) Finally, given that

(1.13) must hold with strict equality, condition (1.10) may equivalently be written

Et

{ ∞∑

T=t

Qt,T [PT CT + ∆T MT ]

}
< ∞. (1.19)

We thus obtain a set of conditions — (1.2) as a strict equality; the requirement that either

(1.14) or (1.15) hold with equality, in addition to the inequality conditions (1.11) and Mt ≥ 0;

(1.16); (1.18); and (1.19) — that must hold at all times in order for the representative

household’s actions to be optimal. At the same time, one can show that this set of conditions

suffices for optimality as well.

We may now state the complete set of conditions for a rational expectations (or intertem-

poral) equilibrium in this model. In addition to the conditions just stated for household

optimization, markets must clear at all dates. This means that household demands must

satisfy

Ct = Yt, Mt = M s
t , At+1 = As

t+1

at all dates. Here M s
t refers to the supply of base money by the central bank, which we

assume to be positive at all dates. As
t+1 refers to the aggregate value at the beginning of

period t + 1 of government bonds in the hands of the public at the end of period t . (In

general, it would not suffice for bond-market clearing to require that Bt = Bs
t , where Bs

t

denotes the market value of government bonds outstanding at the end of period t, as this

could allow households to demand a portfolio with different state-contingent payoffs than

the aggregate supply of government bonds.) If we specify the supply of government bonds

in more primitive terms by specifying the variables {Bs
t,t+j}, where for each date t and each

j ≥ 1, Bs
t,t+j denotes the total (nominal) coupons that the government promises to pay at
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date t + j on bonds that are outstanding at the end of period t, then

As
t+1 ≡

∞∑

j=1

Et+1[Qt+1,t+jB
s
t,t+j]

in each possible state that may be reached at date t + 1. Finally, note that we abstract here

from government purchases of real goods and services (though the model is extended below

to allow for them).

Given that M s
t > 0, market-clearing implies that (1.14) cannot hold, and hence that

(1.15) must hold at all times. Substituting the market-clearing conditions into conditions

(1.16) – (1.17) for household optimization, we obtain equilibrium conditions

uc(Yt; ξt)

uc(Yt+1; ξt+1)
=

β

Qt,t+1

Pt

Pt+1

, (1.20)

1 + it = β−1

{
Et

[
uc(Yt+1; ξt+1)

uc(Yt; ξt)

Pt

Pt+1

]}−1

(1.21)

for each date. Note that the latter relation takes the form of a “Fisher equation” for the nom-

inal interest rate, where the intertemporal marginal rate of substitution of the representative

household plays the role of the real-interest factor.

Finally, substituting our solution (1.20) for the stochastic discount factor into (1.18) and

(1.19), the latter conditions take the form

lim
T→∞

βT Et[uc(Yt; ξT )W s
T /PT ] = 0, (1.22)

∞∑

T=t

βT Et [uc(Yt; ξT )YT ] < ∞. (1.23)

(Here we have also used the market-clearing conditions to equate WT with W s
T ≡ (1 +

imT−1)M
s
T−1 + As

T , the total supply of nominal claims on the government at the beginning

of period T , and (1.15) to substitute for the factor ∆T in (1.19).) A rational-expectations

equilibrium is then a collection of processes that satisfy (1.15), (1.21), (1.22) and (1.23) at

all dates t ≥ 0.

The transversality condition (1.22) can equivalently be written in a possibly more familiar

form, in terms of the end-of-period value of total government liabilities, Dt ≡ M s
t + Bs

t .
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Proposition 2.2. Let assets be priced by a system of stochastic discount factors that

satisfy (1.20), and consider processes {Pt, it, i
m
t ,M s

t ,W s
t } that satisfy (1.15), (1.21), and

(1.23) at all dates, given the exogenous processes {Yt, ξt}. Then these processes satisfy

(1.22) as well if and only if they satisfy

lim
T→∞

βT Et[uc(YT ; ξT )DT /PT ] = 0. (1.24)

The proof is given in the appendix. It follows that we can equivalently define equilibrium as

follows.

Definition. A rational-expectations equilibrium of the cashless economy is a pair of

processes {Pt, it} that satisfy (1.15), (1.21), (1.23), and (1.24) at all dates t ≥ 0, given the

exogenous processes {Yt, ξt}, and evolution of the variables {imt ,M s
t , Dt} consistent with the

monetary-fiscal policy regime.

This latter formulation is especially useful in that it allows us to specify fiscal policy in

terms of restrictions on the evolution of the total government liabilities, or alternatively,

restrictions on the path of the conventional government budget deficit.

Note that we need not include the additional equilibrium condition (1.20) in our defi-

nition of rational-expectations equilibrium, if we are interested only in the determination

of equilibrium prices and interest rates. (The additional condition must be appended to

our system, of course, if we are interested in other equilibrium asset prices.) Nor is there

any additional equilibrium condition corresponding to the requirement that (1.2) hold with

equality; this condition is necessarily satisfied (when we substitute the market-clearing con-

ditions) as long as the supplies of government liabilities evolve in accordance with the flow

government budget constraint

Et[Qt,t+1W
s
t+1] = W s

t − Tt −∆tM
s
t . (1.25)

We shall assume that the monetary-fiscal policy regime satisfies this constraint at all times.

We then have a system of two equalities at each date, (1.15) and (1.21), to determine the two
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endogenous variables Pt and it, together with the bounds (1.23) and (1.24) that the solution

must satisfy.

Our notation thus far allows only for fiscal policies consisting of taxes or transfers. But the

framework above is easily extended to allow for government purchases of goods and services

as well, without any material change being required in the above equilibrium conditions. Let

government purchases of the single good in period t be denoted Gt, and suppose that {Gt}
is an exogenous process, such that Gt < Yt at all dates.6 Market clearing then requires that

Ct + Gt = Yt at all dates. Substitution of this relation into the conditions for optimization

by the representative household then leads to equilibrium conditions such as

1 + it = β−1

{
Et

[
uc(Yt+1 −Gt+1; ξt+1)

uc(Yt −Gt; ξt)

Pt

Pt+1

]}−1

, (1.26)

generalizing (1.21).

We note that (1.26) is obtained from the previous equation (1.21) by replacing uc(Yt; ξt)

by uc(Yt −Gt; ξt) each time it occurs. The same is true for the other equilibrium conditions

(1.20), (1.23) and (1.24) as well. Alternatively, we obtain the equilibrium conditions for the

general case by replacing the “direct” utility function u(Ct; ξt) throughout our calculations

by the “indirect” utility

ũ(Yt; ξ̃t) ≡ u(Yt −Gt; ξt), ) (1.27)

indicating the utility flow to the representative household as a function of its “total demand”

for resources Yt, where total demand adds the resources consumed by the government on the

household’s behalf (its per-capita share of government purchases) to the household’s private

consumption.7 In this indirect utility function, ξ̃t indicates a vector of disturbances that

includes both Gt and the taste shock ξt.

6One might, of course, also consider fiscal policies under which Gt is endogenously determined, for example
as the solution to some welfare-maximization problem of the government’s. In the present study, however,
we shall assume that government purchases are given exogenously. We allow for endogeneity of the level
of net tax collections, as for example in the next section, and this is some importance for our theory of
price-level determination. See section xx of chapter 4 for further discussion.

7Here we use the same notation Yt for a choice variable of the household as has previously been used
for the exogenous supply of goods. In fact, in the model with endogenous output presented in chapter 4,
equilibrium conditions such as (1.27) continue to apply, but with Yt referring to aggregate demand, and not
to any exogenously given supply of goods.
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The household’s problem can then be written as one of choosing the state-contingent

evolution of total demand to maximize its expected discounted flow of indirect utility subject

to an intertemporal budget constraint of the form (1.12), if Ct in this constraint is taken to

refer to total demand, and Tt to the primary government budget surplus (tax collections in

excess of government spending).8 In this case, we can derive exactly the same equilibrium

conditions as were obtained earlier, except that the function u is everywhere replaced by ũ.

Hence variations in the level of government purchases Gt have exactly the same effect as the

taste shock ξt; they are simply another source of exogenous variations in the relation ũc(Yt; ξ̃t)

between the marginal utility of income to the representative household and aggregate output,

and hence of variations in the equilibrium real rate of interest.

1.2 A Wicksellian Policy Regime

We now offer a simple example of a complete specification of monetary and fiscal policy rules

for a cashless economy, and consider the determinants of the equilibrium path of the money

price of goods under such a regime. Note that, as a consequence of the forward-looking

character of households’ asset accumulation problems, the determination of equilibrium at

any point in time requires that we specify how policy is expected to be conducted into the

indefinite future, and in all possible future states. This is one reason for our specification

of government policy in terms of systematic rules for the determination of both the central

bank’s actions and the government’s budget.

Our specification of monetary policy will be in the spirit of Wicksell’s (1898, 1907) pro-

posed rule. As discussed in the previous chapter, this rule can be expressed in terms of a

formula for the central bank’s interest-rate operating target. We shall also explicitly specify

the way in which the central bank adjusts the two instruments at its disposal — the nominal

value of the monetary base M s
t , on the one hand, and the interest rate imt paid on base money

8The definition of equilibrium that results from this formulation of the household’s problem is equivalent
to the standard one, subject to the proviso that the processes {Gt, Yt, ξt} are such that the present value of
government purchases is finite. Technically, one can imagine an equilibrium in which the present value of per
capita output is not finite, though the present value of the resources left for the private sector to consume is
finite. But this special case is of little interest and is ignored here.
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on the other — in order to achieve its operating target. In a world with monetary frictions

(discussed below in section xx), it is possible to use either of these instruments to affect

the level of short-term nominal interest rates, and as discussed in chapter 1, actual central

banks differ in the extent to which they use these two means to implement policy (though

almost all central banks formulate policy in terms of an interest-rate operating target). In

the cashless economy described above, however, changes in the quantity of base money (for

example, through open-market purchases of government securities) have no consequences for

the equilibrium determination of interest rates or other variables. (Note that M s
t does not

appear in any of the equilibrium conditions obtained at the end of the previous section.)

Hence policy targets must be implemented exclusively through adjustment of the interest

paid on base money.

Specifically, we assume a regime under which the interest paid on base money is equal

at all times to the central bank’s current interest-rate target, determined in response to

the bank’s assessment of current aggregate conditions. Such a system would resemble the

“channel systems” described in chapter 1, under which the interest paid on central-bank

balances is equal to the target rate minus a fixed spread; here the spread is assumed to be

zero, since in equilibrium, the market interest rate it will actually equal imt , and not imt plus

any positive spread. It is true that current channel systems pay interest only on central-bank

clearing balances, and not on currency. But we can interpret the regime analyzed here to

have this property as well; in a cashless world, this would simply mean that currency would

not be held in equilibrium (any initially existing currency would be promptly deposited with

the central bank in an interest-earning account), so that “base money” M s
t would correspond

to the supply of clearing balances.

Under a Wicksellian rule for the interest-rate target, the interest rate paid on central-bank

balances equals

imt = φ(Pt/P
∗
t ; νt) (1.28)

where P ∗
t > 0 defines a target path for the price level, νt is an additional possible exogenous

random disturbance to the policy rule (or to its implementation), and φ(·; ν) is a non-
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negative-valued, non-decreasing function for each possible value of the disturbance ν.9

Here the function φ indicates the rule used by the central bank to sets its operating target,

while equation (1.28) indicates the way in which the rule is implemented. The inclusion of a

time-varying price-level target P ∗
t allows us to treat the case of a rule that seeks to stabilize

the price level around a modestly growing trend path — say, a rule that provides for one

or two percent inflation per year, perhaps to compensate for bias in the price index that

is targeted — rather than necessarily assuming a constant price level target, as Wicksell

did. The inclusion of the random disturbance νt allows us to consider the effects of random

variations in policy, or in its implementation, that we may not wish to model as changes in

the target price level itself. This includes the possibility that the central bank may respond

to output variations as well as the path of prices, as called for by the Taylor (1993) rule;

or that the central bank may respond to perceived variation in the equilibrium real rate of

return. (In the present model, both output and the equilibrium real interest rate are purely

exogenous; hence systematic responses to these variables can be modeled by the inclusion of

an exogenous disturbance term in the policy rule.)

We also need to specify the rule by which the evolution of the monetary base is deter-

mined. Here we assume simply that {M s
t } is an exogenous, positive-valued sequence. The

logic of the Wicksellian regime requires no variation over time in the supply of base money

at all; however, we allow for possible variation over time in the monetary base, in order to

analyze the equilibrium consequences of this kind of policy action.

Finally, fiscal policy is specified by a rule for the evolution of the total supply of gov-

ernment liabilities {Dt}, and by a specification of the composition of government liabilities

(debt-management policy) at each point in time. For simplicity, we let {Dt} be an exogenous

9The function is assumed to be non-negative on the ground that it is not possible for the central bank
to drive nominal interest rates to negative levels. We assume that, as under typical current arrangements,
the holders of central-bank balances have the right to ask for currency in exchange for such balances at any
time, and that it is infeasible to pay negative interest on currency. Hence an attempt to pay negative interest
on central-bank balances would lead to zero demand for such balances, and a market overnight interest rate
of zero (the rate available on currency), rather than a negative overnight interest rate. The assumed non-
negativity of the function requires that φ(P/P ∗; ν) not be an exactly linear function of log(P/P ∗), though
we make use a local log-linear approximation to the function below.
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process. One simple example of such a fiscal rule would be a balanced-budget rule of the

kind analyzed by Schmitt-Grohé and Uribe (2000), where ∆Dt = 0 each period; another

would be a policy under which no government bonds are ever issued, so that Dt = M s
t each

period. We also simplify by assuming that all government debt consists entirely of riskless

one-period nominal bonds. The variable Bs
t then indicates the supply of such bonds at the

end of period t, in terms of their nominal value at the time of issuance (rather than maturity).

The implied rule for net tax collections Tt is then given by

Tt = (1 + it−1)(Dt−1 −∆t−1M
s
t−1)−Dt, (1.29)

using the fact that As
t = (1 + it−1)B

s
t−1) = (1 + it−1)(Dt−1 −M s

t−1).

A rational-expectations equilibrium is then a set of processes {Pt, it, i
m
t } that satisfy

(1.15), (1.21), (1.23), (1.24), and (1.28) at all dates t ≥ 0, given the exogenous processes

{Yt, ξt,M
s
t , Dt}.10 Using (1.15) to eliminate imt in (1.28), we obtain

it = φ(Pt/P
∗
t ; νt), (1.30)

as an equilibrium condition linking the paths of interest rates and prices. (Note that this

equation directly expresses the interest-rate rule that the central bank implements through

its adjustment of the interest rate paid on base money.) We note furthermore that condition

(1.23) does not involve any endogenous variables, and thus plays no role in equilibrium

determination. We assume processes {Yt, ξt} that satisfy this condition; having done so, we

can drop (1.23) from our list of requirements for equilibrium. We can thus identify rational-

expectations equilibrium with a set of processes {Pt, it} that satisfy (1.21), (1.24) and (1.30)

each period.

We are interested not only in whether a solution to this system of equilibrium conditions

exists, but in whether these relations suffice to uniquely determine the equilibrium paths of

interest rates and prices. The question of the determinacy of equilibrium is a preliminary,

more basic issue, before we can hope to address the question of what factors affect the

10In the case that we allow for government purchases, one should replace u by ũ in each equation, and ξt

by ξ̃t.
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equilibrium price level and how they affect it. And there are obvious reasons to worry about

determinacy under the kind of regime just described. In the celebrated analysis of Sargent

and Wallace (1975), interest-rate rules as such are to be avoided, on the ground that they

result in indeterminacy of the equilibrium price level (and hence, in their model, of the

equilibrium paths of real variables as well). And it is also often worried that in a cashless

economy, there should be nothing to pin down the equilibrium price level, given that there

is in such an environment no determinate demand for the monetary base; this is sometimes

argued to be an important reason to head off financial innovations that could lead to this

kind of world (e.g., Friedman, 2000).

A general analysis of the existence and uniqueness of solutions to our system of equa-

tions, for arbitrary monetary and fiscal policy rules, is beyond the scope of this study. We

shall instead address here, and in most of this study, a more limited question, namely the

local determinacy of equilibrium, in the case of policies that involve only small fluctuations

over time in the monetary policy rule, and assuming that other exogenous disturbances are

similarly small. By local determinacy we mean the question of whether there is a unique

equilibrium within a sufficiently small neighborhood of certain paths for the endogenous

variables. If so, this equilibrium is at least locally unique, and such local uniqueness makes

possible a well-defined “comparative statics” analysis of the effects of small disturbances or

parameter changes.11 In fact, we shall analyze the effects of small fluctuations in the price-

level target, and other small disturbances, through exactly such a consideration of how the

steady-state equilibrium associated with steady trend growth of the price-level target and

zero disturbances is perturbed by small stochastic variations in the exogenous variables.

An advantage of restricting our attention to this question is that it can be addressed using

purely linear methods; we analyze a log-linear approximation to the structural equations

derived above, and characterize the (bounded) log-linear solutions to these equations. This

way of characterizing both the important structural relations implied by our model, and the

11See section xx of the appendix for further general discussion of the issue of local determinacy and of the
methods used in this section to analyze it.
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predicted equilibrium evolution of economic time series under alternative policies, is useful

not only because of its tractability, but because of the ubiquity of linear time series models

in empirical studies. Our approach will thus allow a direct mapping between the predictions

of optimizing models of economic behavior and the kinds of structural models and data

characterizations already used in quantitative monetary policy analysis. This will facilitate

both evaluation of the empirical adequacy of the optimizing models, and productive dialogue

between optimization-based and more traditional approaches to policy evaluation.

Furthermore, such an analysis corresponds reasonably closely to the way that the deter-

minacy of rational expectations equilibrium is considered by Sargent and Wallace (1975).

That paper assumes a log-linear model, and considers the uniqueness of non-explosive solu-

tions to the log-linear structural equations. Our method will be essentially the same, except

that the log-linear structural equations can be justified as a log-linear approximation to exact

relations derived from an explicit intertemporal general equilibrium model, and that we shall

be more explicit about the class of solutions to be considered. Thus the analysis here suffices

to address the particular issue relating to determinacy of equilibrium under interest-rate

rules raised by Sargent and Wallace.12

We begin by characterizing the steady state near which we shall look for other solutions.

Consider an environment in which Yt = Ȳ > 0 and ξt = 0 at all times. Let us assume a

policy regime under which the price-level target grows at the constant rate

P ∗
t+1

P ∗
t

= Π̄ > β

at all dates (with some initial P ∗
0 > 0), νt = 0 at all dates, and suppose that the function φ

satisfies

1 + φ(1; 0) =
Π̄

β
,

so that the policy rule is consistent with the assumed target path for prices. Let us also

12In chapter 4, we consider an extension of the model in this chapter which is essentially a rational-
expectations IS-LM model, though not identical in structure to the one analyzed by Sargent and Wallace
(1975). The determinacy of equilibrium under alternative policy rules is taken up again in that chapter.
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assume a fiscal rule under which
Dt+1

Dt

= γD <
Π̄

β

at all dates (given initial government liabilities D0 > 0), and an open-market policy under

which {M s
t } is an arbitrary sequence, satisfying

0 < M s
t < Dt (1.31)

at all times. Under such a policy regime, we easily observe that the paths

Pt = P ∗
t , it = ı̄ ≡ Π̄− β

β
> 0

for all t represent a rational-expectations equilibrium.

Next, let us consider an environment in which there are only small fluctuations in the

exogenous variables Yt, P
∗
t+1/P

∗
t , νt, and Dt+1/Dt around the constant values specified in the

previous paragraph. (Specifically, we suppose that each of these variables remains forever

within a bounded interval containing a neighborhood of the steady-state value.) We also

continue to assume that the process {M s
t } satisfies the bounds (1.31). We wish to look for

rational-expectations equilibria in which the endogenous variables it and Pt/P
∗
t similarly

remain forever within certain neighborhoods of their steady-state values. In this case, condi-

tion (1.24) is necessarily satisfied (for any tight enough bounds on the allowable variation in

the variables listed above); thus we need only consider the (local) existence and uniqueness

of solutions to the system of equations consisting of (1.21) and (1.30).

In the case of tight enough bounds on the variations that we consider in these variables,

it suffices that we consider the bounded solutions to a system consisting of log-linear approx-

imations to conditions (1.21) and (1.30).13 For the sake of simplicity (and continuity with

the assumptions made in more complex examples in the next two chapters), we shall specify

that the steady state around which we log-linearize is one in which Π̄ = 1, so that there is

zero inflation. (This does not require that we only analyze policies under which there is no

13As is further explained in the appendix, this amounts to using the inverse function theorem to demon-
strate local uniqueness of the solution to our system of equilibrium conditions, and using the implicit function
theorem to give a log-linear local approximation to the solution.
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trend growth in the price-level target: it only requires that the target inflation rate is never

very large.)

A log-linear approximation to (1.21) is then given by14

ı̂t = r̂t + Etπt+1, (1.32)

where

ı̂t ≡ log
(

1 + it
1 + ı̄

)
, πt ≡ log

(
Pt

Pt−1

)
.

Here the (percentage deviation in the) ex-ante short-term equilibrium real rate of return r̂t

is an exogenous process given by

r̂t = σ−1[Et(Ŷt+1 − gt+1)− (Ŷt − gt)], (1.33)

where the constant coefficient

σ ≡ − uc

uccȲ
> 0

measures the intertemporal elasticity of substitution in private spending, and the disturbance

term

gt ≡ − ucξ

Ȳ ucc

ξt

indicates the percentage increase in output required to keep the marginal utility of income

constant, given the change that has occurred in the impatience to consume.

In the case of the model extended to allow for government purchases, equations (1.32)

– (1.33) still apply, under the alternative definitions σ ≡ sCσC , where sC ≡ C̄/Ȳ is the

steady-state share of private expenditure in total demand and

σC ≡ − ũc

ũccC̄
> 0

is the intertemporal elasticity of substitution; and gt = Ĝt + sCC̄t, where Ĝt ≡ (Gt − Ḡ)/Ȳ

indicates fluctuations in government purchases, measured in units of steady-state GDP, and

C̄t ≡ − ũcξ

C̄ũcc

ξt

14Note that the appearance in (1.32) of the inflation rate rather than of the inflation rate relative to
steady-state inflation depends on our assumption that the steady-state inflation rate is zero.
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indicates the percentage change in private expenditure required to keep marginal utility

constant. (In fact, the notation “gt” is used for the disturbance in (1.33) because variations

in government purchases are one of the most obvious reasons for the existence of shifts in

this factor.)

A corresponding log-linear approximation to the Wicksellian policy rule (1.30) is given

by

ı̂t = φpP̂t + νt, (1.34)

where P̂t ≡ log(Pt/P
∗
t ), and φp ≥ 0 represents the elasticity of φ with respect to P/P ∗,

evaluated at the steady-state values of its arguments.15 To the system of log-linear equations

(1.32) and (1.34) we must also adjoin the identity

πt = P̂t − P̂t−1 + π∗t , (1.35)

where π∗t ≡ log(P ∗
t /P ∗

t−1) indicates the exogenous fluctuations, if any, in the target inflation

rate. We then wish to examine the bounded solutions to the system of log-linear equations

(1.32), (1.34), and (1.35).

Using (1.34) and (1.35) to substitute for ı̂t and πt+1 in the Fisher equation (1.32), we

obtain an expectational difference equation in the variable P̂t alone, given by

(1 + φp)P̂t = EtP̂t+1 + (r̂t + Etπ
∗
t+1 − νt). (1.36)

Given a policy rule for which φp > 0, as called for by Wicksell, so that 0 < (1 + φp)
−1 < 1,

this equation can be solved forward (as discussed further in the appendix), to obtain a unique

bounded solution

P̂t =
∞∑

j=0

(1 + φp)
−(j+1)Et[r̂t+j + π∗t+j+1 − νt+j], (1.37)

in the case of any bounded exogenous processes {r̂t, π
∗
t , νt}. Substitution of this solution

into (1.34) then yields an associated unique bounded solution for the nominal interest-rate

15In writing the disturbance term simply as νt, we adopt the normalization under which ∂φ/∂ν = 1 + ı̄ =
β−1, when also evaluated at the steady-state values of the arguments.
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dynamics as well, namely

ı̂t =
∞∑

j=0

φp(1 + φp)
−(j+1)Et[r̂t+j + π∗t+j+1 − νt+j] + νt, (1.38)

while substitution into (1.35) yields a corresponding solution for the equilibrium rate of

inflation.

We thus obtain the main result of this section.16

Proposition 2.3. Under a Wicksellian policy rule (1.30) with φp > 0, the rational-

expectations equilibrium paths of prices and interest rates are (locally) determinate; that is,

there exist open sets P and I such that in the case of any tight enough bounds on the fluc-

tuations in the exogenous processes {r̂t, π
∗
t , νt}, there exists a unique rational-expectations

equilibrium in which Pt/P
∗
t ∈ P and it ∈ I at all times. Furthermore, equations (1.37) and

(1.38) give a log-linear (first-order Taylor series) approximation to that solution, accurate up

to a residual of order O(||ξ||2), where ||ξ|| indexes the bounds on the disturbance processes.

See further discussion in the appendix.

Thus there may be a well-defined rational-expectations equilibrium path for the price

level, even in a purely cashless economy, and even under a policy rule that is formulated

in terms of an interest-rate rule — i.e., a rule for setting a short-term nominal interest

rate that is independent of the evolution of any monetary aggregate. It is true that the

regime described above assumes an exogenously given path for the monetary base M s
t . But

it should not therefore be assumed that it is the existence of a “money growth target” that

is responsible for the existence of a determinate price level; for the equilibrium price level

(1.37) is independent of the assumed path of the monetary base.

Indeed, in a cashless economy, a money growth target will not succeed in determining

16Kerr and King (1996) provide an early discussion of the determinacy of equilibrium under a rule of this
kind, in a log-linear framework similar to the one derived here as an approximation to our exact equilibrium
conditions. Woodford (1998a) demonstrates determinacy of equilibrium under a Wicksellian regime in the
context of a complete intertemporal equilibrium model, along lines similar to those followed here, although
the means by which the central bank is assumed to implement its interest-rate operating target is different
there.
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an equilibrium price level — at least if such a policy is understood to involve a constant

(typically zero) rate of interest on the monetary base. In the case that no interest is paid on

money, the following result implies that no equilibrium price level is possible at all.

Proposition 2.4. Consider a monetary policy under which the monetary base is

bounded below by a positive quantity: M s
t ≥ M > 0 at all times. (For example, per-

haps the monetary base is non-decreasing over time, starting from an initial level M s
0 > 0.)

Suppose furthermore that government debt is non-negative at all times, so that Dt ≥ M s
t .

Finally, suppose that imt = 0 at all times. Then in the cashless economy described above,

there exists no rational-expectations equilibrium path for the price level {Pt}.

The proof is in the appendix. Results of this kind are often taken (see, e.g., Sargent, 1987,

sec. 4.1) to imply that it is not possible to model the determinants of the exchange value of

money without introducing some kind of frictions that create a demand for money despite

its low rate of return. Hence monetary frictions are thought to be an essential element of

any theory of the effects of monetary policy. But we have seen instead that an equilibrium in

which money exchanges for goods is possible even in a cashless economy, as long as the rate

of interest paid on money is high enough relative to the growth rate of the money supply.

Of course, in actual economies like that of the U.S., interest is not paid on the monetary

base, so that the policy regime in place would seem to be one to which Proposition 2.4

would apply, were the economy cashless. One might then conclude that monetary frictions

are essential to understanding inflation determination in an economy like that of the U.S.

But in fact, monetary frictions are essential only to understand one aspect of current U.S.

policy — the fact that it is possible for the Fed to implement its operating targets for the

federal funds rate without paying interest on Fed balances. As we shall see, the details of

how the Fed is able to implement its interest-rate targets are of relatively little importance

for the effects of its interest-rate policy on price-level determination; and a cashless model

may give a good account of the latter question.
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Even when interest is paid on the monetary base at a sufficient rate to allow a monetary

equilibrium to exist, if the interest rate on money is constant, the equilibrium price level

will be indeterminate, as a consequence of Proposition 2.5 in the next section, whether

or not the monetary base is kept on a precise deterministic growth path. Determinacy of

equilibrium requires a regime under which interest rates respond systematically — in the

right way, of course — to variations in the price level. In standard models with monetary

frictions, money-growth targeting (with a constant rate of interest on money) is an example

of a policy with this property: price-level increases automatically result in increases in short-

term nominal interest rates. But in a cashless economy, money-growth targeting has no such

consequence for interest rates, and so fails to determine an equilibrium price level. It is

actually the presence of a systematic relation between prices and interest rates, of the kind

called for Wicksell, that is essential for determinacy of equilibrium, and not control of the

money supply as such.

Proposition 2.3 does not simply establish conditions under which a monetary equilibrium

is possible: it gives a precise account of the factors that determine the equilibrium price level

under such a regime. Equation (1.37) may equivalently be written

log Pt =
∞∑

j=0

ϕjEt[log P ∗
t+j + φ−1

p (r̂t+j − νt+j)], (1.39)

where the weights ϕj ≡ φp(1+φp)
−(j+1) are all positive and sum to one. Thus the equilibrium

log price level is equal (up to terms of order O(||ξ||2)) to a weighted average of the current

and expected future log price level targets, plus a deviation term that is itself a weighted

average of current and expected future disturbances to the equilibrium real rate of interest

and disturbances to the monetary policy rule other than those represented by variations in

the “target” price level.17 The determinants of variations in the equilibrium real interest rate

17Note that insofar as we regard the target price level as being implicit in the central bank’s reaction
function, rather than an explicit target, the distinction between variations in the target price level and
variations in νt is an arbitrary one; and as we should expect, (1.39) indicates that only the sum log P ∗t −
(φ−1

p + 1)νt actually matters, in our log-linear approximation, for determination of the equilibrium price
level. But for some purposes, it remains useful to distinguish the two components; for example, we allow
log P ∗t to possess a trend, but assume that νt is stationary.
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are in turn given by (1.33); these depend solely upon exogenous real factors, independent

of monetary policy. Note that the associated evolution of the monetary base {M s
t } is not

among the relevant factors.

The theory of price-level determination under such a regime that we obtain has, in fact, a

distinctly Wicksellian flavor. Equation (1.39) indicates that increases in the equilibrium price

level result either from exogenous increases in the equilibrium real rate of return (Wicksell’s

“natural” rate of interest),18 that are not sufficiently offset by an adjustment of the central

bank’s operating target, or from a loosening of monetary policy (corresponding either to

an increase in P ∗
t or a decrease in νt), that is not justified by any real disturbance. This

emphasis upon the interplay between variations in the equilibrium real rate and the stance of

monetary policy (and specifically upon the gap between the current level of the “natural rate”

of interest and the interest rate controlled by the central bank) as the source of inflationary

or deflationary pressures recalls Wicksell’s theory (Wicksell, 1898, 1915).

Of course, our rational-expectations equilibrium version of Wicksellian theory differs in

important ways from the original. For example, our solution (1.39) for the equilibrium

price level is forward-looking, in much the same way as the rational-expectations monetarist

analysis presented in section xx below. It is not simply the current equilibrium real rate of

return that matters, but a weighted average of current and expected future rates, and it is

not simply the current stance of monetary policy that matters, but a weighted average of

the current and expected future shifts in the central bank’s feedback rule. Perhaps more

crucially, our theory does not determine an equilibrium price level as a function of the

path (even including expectations about the future path) of the central bank’s interest-rate

instrument. Rather, the price level depends upon the current and expected future feedback

rules for determination of the interest rate as a function of the evolution of the price level.

(For an exogenously specified interest-rate process leaves the price level indeterminate, as

shown above.)

18In the simple analysis here, there is no distinction between the actual and “natural” real rates of interest.
This is introduced in chapter 4, where we find that it continues to be possible to understand price-level
determination along similar lines.
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Nonetheless, the implications of this theory for the conduct of monetary policy with a

view to price stability are reminiscent of Wicksell’s prescriptions. First of all, supposing that

the target price level P ∗
t is constant,19 and letting φp > 0 be fixed, then monetary policy

achieves the constant price level Pt = P ∗ if and only if νt = r̂t at all times. Failure of policy

to track such variations in the “natural rate” with sufficient accuracy was, in Wicksell’s

account, the primary explanation for price-level instability.20

Second, our results imply that for any given degree that the shift factor νt fails to track

the exogenous variation in r̂t, the price-level instability that results can be reduced by a

sharper automatic positive response of the central bank’s operating target to price-level

increases. The effects upon log Pt of variations in the gap r̂t− νt are smaller the larger is φp,

and in fact they can be made arbitrarily small, in principle, by choosing φp large enough.21

Thus, a positive automatic response to price-level deviations from target is desirable, not

only because it is necessary for determinacy (this would be achieved by even a very small

φp > 0), but because it reduces the degree to which accurate direct observation of the current

equilibrium real rate is necessary in order for price-level variability to be kept at a given level.

This too is a theme in Wicksell’s discussions of desirable policy.

2 Alternative Interest-Rate Rules

While most central banks organize their monetary-policy deliberations around the choice of

an operating target for a short-term nominal interest rate, and pay a great deal of attention

19Similar conclusions are reached in the case of a target price level that grows at a constant rate; one must
simply add a constant to the value of νt required each period to achieve the target.

20See, e.g., Wicksell (1915, sec. IV.9). He found evidence for this in the often-remarked tendency of the
price level to covary positively with the level of nominal interest rates during the period of the classical gold
standard (the so-called “Gibson paradox”). Note that if νt = 0, (1.39) implies that log Pt should vary with
exogenous variations in the real rate, while (1.34) then implies that the endogenous variations in the short
nominal rate should perfectly coincide with these fluctuations in the price level. A similar conclusion is
obtained if νt covaries positively, but less than one-for-one, with the variations in rt, so that the inflationary
and deflationary impulses are not completely eliminated.

21It is unlikely to be desirable, however, to seek to completely eliminate price-level variation without any
need to directly respond to variations in the equilibrium real rate, by choosing a rule with an extremely large
elasticity φp. For in this case, errors in the measurement of the price level by the central bank would have
very large effects upon policy, and hence upon the economy, as discussed in Bernanke and Woodford (1997).
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to inflation measures in those deliberations, it would be hard to argue that the Wicksellian

rule (1.30) represents even a rough description of the current behavior of any central banks.

(In particular, central banks clearly accept “base drift” in the price level, rather than seeking

to stabilize a price index around an exogenously given target path.) Nor shall we argue that

this is actually an optimal rule, though such a rule can be shown to have desirable properties,

relative to other rules of equal simplicity (Giannoni, 2000). It is therefore useful to extend

our analysis to other types of interest-rate rules. While a complete treatment of the topic

would be beyond the scope of this study, we here take up a few additional cases suggested

by the discussion of empirical central-bank reaction functions in chapter 1.

2.1 Exogenous Interest-Rate Targets

The simplest sort of interest-rate rule, of course, would be one that involves no feedback from

any endogenous variables. We might instead suppose that the central bank’s interest-rate

operating target is given by some exogenous stochastic process {ı̄t}. This need not imply that

the sole objective of policy is interest-rate stabilization (or maintenance of “easy money”). A

central bank concerned with price stability, and believing in the theoretical model of section

1, might reason that a rational-expectations equilibrium with constant prices is possible only

if

1 + it = 1 + rt ≡ β−1

{
Et

[
uc(Yt+1; ξt+1)

uc(Yt; ξt)

]}−1

, (2.40)

as a consequence of (1.21). Supposing that it is possible for the central bank to measure the

exogenous variation in the right-hand side of this equation in time to use this information in

the conduct of policy, would the bank achieve its objective by committing itself to a policy

of always adopting the current value of rt as its operating target? (Such a proposal might

appear to be suggested by a Wicksellian analysis of the determinants of inflation, although,

as noted in chapter 1 and in the previous section, this is the not the kind of rule actually

proposed by Wicksell.)

While such a policy would be consistent with the desired rational-expectations equi-

librium, it would also be equally consistent with an extremely large class of alternative
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rational-expectations equilibria, in most of which prices vary randomly. This is true even if,

as above, we restrict attention to alternative equilibria that remain forever near the reference

equilibrium, i.e., the steady state with zero inflation. In fact, this is a consequence of any

policy commitment that makes the interest-rate operating target purely a function of the

economy’s exogenous state (i.e., the history of disturbances alone), regardless of how sensibly

the exogenous sequence of interest-rate targets may have been chosen.

Proposition 2.5. Let monetary policy be specified by an exogenous sequence of

interest-rate targets, assumed to remain forever within a neighborhood of the interest rate

ı̄ > 0 associated with the zero-inflation steady state; and let these be implemented by setting

imt equal to the interest-rate target each period. Let {M s
t , Dt} be exogenous sequences of

the kind assumed in Proposition 2.3. Finally, let P be any neighborhoods of the real num-

ber zero. Then for any tight enough bounds on the exogenous processes {Yt, ξt Dt/Dt−1}
and on the interest-rate target process, there exists an uncountably infinite set of rational-

expectations equilibrium paths for the price level, in each of which the inflation rate satisfies

πt ∈ P for all t. These include equilibria in which the inflation rate is affected to an arbitrary

extent by “fundamental” disturbances (unexpected changes in Yt or ξt), by pure “sunspot”

states (exogenous randomness unrelated to the “fundamental” variables), or both.

In this case, any process {Pt} that satisfies both (1.21) and (1.24), given the exogenous

processes {Yt, ξt, i
m
t ,M s

t , Dt}, and with the exogenous target imt substituted for it in (1.21),

represents a rational-expectations equilibrium. For any tight enough bounds on the exoge-

nous processes and on the neighborhood P , (1.24) is necessarily satisfied, so our question

reduces to an analysis of the local uniqueness of solutions to (1.21) for a given interest-rate

process. As in the previous section, this can be addressed through a consideration of the

uniqueness of bounded solutions to the log-linearized equilibrium condition (1.32). This now

takes the form

ı̄t = r̂t + Etπt+1, (2.41)
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where ı̄t indicates the exogenous fluctuations in the interest-rate target and r̂t the exogenous

fluctuations in rt owing to random “fundamentals”, again given by 1.33). This equation

obviously has a unique solution for Etπt+1, and if the exogenous terms are bounded, the

implied fluctuations in the expected inflation rate will be bounded as well. But this equation

does not have a unique bounded solution for the stochastic process {πt}, for absolutely any

pattern of bounded fluctuations in the unexpected component of the inflation rate will be

consistent with it.

Writing this explicitly, we observe that

πt = ı̄t−1 − r̂t−1 + νt (2.42)

is a bounded solution to (2.41), where {νt} represents any mean-zero bounded process that

is completely unforecastable a period in advance, i.e., that satisfies

Etνt+1 = 0

at all dates. It then follows from the discussion in section xx of the appendix that we similarly

have an uncountably infinite set of bounded solutions to the exact equilibrium condition.

(1.21).2223

Here the random variable νt may be correlated in an arbitrary way with unforecastable

variations in “fundamental” variables such as ı̄t, Ŷt, and ξt; but it may also be completely un-

related to economic fundamentals. Thus even when we restrict attention to nearby solutions,

the rational expectations equilibrium price level is quite indeterminate under such a regime.

Note furthermore that even though we consider only alternative solutions in which infla-

tion is always within a certain neighborhood of zero, this set of solutions includes alternative

22There is actually no need for linearization to establish this, as shown in the appendix. Here we use the
method of linear approximation in the analysis of determinacy to illustrate the method, that is used again
later in more complicated cases.

23It is important to note that this conclusion depends on a particular assumption about the character of
fiscal policy. If fiscal policy were not assumed, as it has been here, to be “locally Ricardian,” then there
might be a locally, or even globally unique equilibrium in the case of an exogenous path for the interest-rate
operating target. This occurs, for example, in the analysis of price-level determination under a bond-price
support regime in Woodford (2001xx). See further discussion in section xx of chapter 4.
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paths for the price level that wander arbitrarily far from one another, once sufficient time has

passed. This is the basis for the conclusion of Sargent and Wallace (1975) that interest-rate

rules are flawed as a general approach to monetary policy, and that policy should instead be

formulated in terms of monetary targets.24

One might ask, is this sort of price-level indeterminacy really a problem? It will be

observed in our discussion here that real quantities are unaffected by the indeterminacy of

the price level, and the same conclusion is true even in the case of the model with monetary

frictions considered below in section xx, and even in a more elaborate model, in which

output is endogenous and may depend upon the level of real money balances. Thus no

variables that actually affect household utility are affected. However, the indeterminacy is

plainly undesirable if price stability is a concern, as Sargent and Wallace assume in their

analysis of optimal monetary policy. Indeed, since the class of bounded solutions includes

solutions in which the unexpected fluctuations in inflation are arbitrarily large, at least

some of the equilibria consistent with the interest-rate targeting policy are worse (assuming

a loss function that penalizes squared deviations of inflation from target, say) than the

equilibrium associated with any policy that makes equilibrium determinate. Furthermore,

similar conclusions are shown below (in chapter 4) to hold in the case of a model with

nominal price rigidity, in which case the self-fulfilling expectations also affect real variables,

that matter for household utility. Thus, if one evaluates policy rules according to how bad

is the worst outcome that they might allow, it would be appropriate to assign an absolute

priority to the selection of a rule that would guarantee determinacy of equilibrium.

This argument might seem inconsistent with our use above of a purely local analysis of

determinacy. One response to such a concern would be to refer to the exact analysis in

section xx of the appendix, and show that there are indeed solutions involving arbitrarily

large unexpected changes in the log price level. But in fact the local analysis is also valid,

when correctly interpreted. Let us fix neighborhoods of the steady-state values of πt, it,

24See Walsh (1998, sec. 10.2.1) for an exposition of their analysis in the context of an IS-LM model with
rational expectations that is closer to the structure of the model actually used in the original paper.
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and so on, that are small enough that the approximation error in the log-linearized relation

(1.32) is of an acceptable size, for all paths remaining within these neighborhoods; we shall

restrict attention to solutions of this kind. The analysis of the log-linearized equations

shows that in the case of the exogenous interest-rate target, there exist solutions in which

the inflation rate fluctuates over the entire admissible neighborhood, no matter how small the

fluctuations in the exogenous disturbances may be. Now let us compare such a policy to one

that results in a determinate equilibrium (and hence a solution in which πt and the other

endogenous variables are linear functions of the exogenous disturbances, with coefficients

that are independent of the assumed shock variances). We observe that by making the

exogenous disturbances small enough, we obtain a case in which the inflation variability

in at least certain equilibria associated with interest-rate targeting is much greater than in

the locally unique equilibrium associated with the other policy. Thus, at least in the case

of small enough exogenous disturbances, the conclusion reached from the analysis of the

log-linearized equations is correct.

Whether one should only care about the worst possible equilibrium might be doubted, if

a particular policy also allows very desirable equilibria, that are better than those associated

with any other policies. But in fact, this is unlikely to be a serious problem, once the class

of policies that are considered is sufficiently broad; for it is often possible to achieve any

desired equilibrium through a policy rule that makes equilibrium determinate, in addition

to its being consistent with rules that would make equilibrium indeterminate. There are

typically many policy rules consistent with the desired equilibrium; these coincide in what

they prescribe should occur in the desired equilibrium, but differ in how policy is specified

“off the equilibrium path”, and thus may differ as to whether they exclude other nearby

equilibria. In such a case, it seems reasonable to accept as a principle of policy design

that one should choose one of the rules that makes the desired equilibrium at least locally

determinate, if not globally unique. We shall take this perspective in the current study; see

chapter 8.

Fortunately, interest-rate rules as such need not imply indeterminacy of equilibrium, as
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McCallum (1981) first noted, in the context of the model of Sargent and Wallace. A rule

that involves a commitment to feedback from endogenous state variables such as the price

level to the level of nominal interest rates can result in a determinate equilibrium, as our

analysis of Wicksellian rules in section 1 has shown. We now turn to additional examples

that are better descriptions of current policies.

2.2 The “Taylor Principle” and Determinacy

As discussed in chapter 1, the well-known “Taylor rule” (Taylor, 1993) differs from Wicksell’s

classic proposal in that it directs the central bank to respond to deviations of the inflation

rate from a target level, without any reference to the absolute level that prices may have

reached. Such concern with the inflation rate rather than the level of prices would seem

to characterize policy in all advanced nations, at least since the breakdown of the Bretton

Woods system in the early 1970’s. Thus there is greater relevance for contemporary policy

discussions in considering a Taylor rule of the form

it = φ(Πt/Π
∗
t ; νt) (2.43)

for central bank policy, where Πt ≡ Pt/Pt−1 is the gross inflation rate, Π∗
t is a (possibly

time-varying) target rate, νt again represents exogenous shifts in this relation, and φ(·; ν) is

an increasing function for each value of ν. Once again, we shall suppose that in a cashless

economy, the central bank’s interest-rate operating target is implemented by setting imt

each period equal to the right-hand side of (2.43), so that (2.43) holds in equilibrium as a

consequence of (1.15). Once again, {M s
t } is allowed to be an arbitrary process, and fiscal

policy is specified by an exogenous process {Dt}.
Again we shall consider equilibria near a zero-inflation steady state. Assuming again

that φ(1; 0) = β−1 − 1, such a steady state is an equilibrium in the case that Π∗
t = 1,

Yt = Ȳ > 0, and νt = ξt = 0 at all times. We look for equilibria in which Πt and it fluctuate

within neighborhoods of their steady-state values, assuming that the exogenous variables

{Yt, ξt, Π
∗
t , νt} all remain forever within neighborhoods of their steady-state values.
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A log-linear approximation to (2.43) is given by

ı̂t = φπ(πt − π∗t ) + νt,

or equivalently by

ît = ı̄t + φππt, (2.44)

where now π∗t ≡ log Π∗
t , φπ > 0 is the elasticity of φ with respect to its first argument,

evaluated at the steady state, and ı̄t ≡ νt − φππ∗t measures the total exogenous shift in

the central bank’s reaction function. Substitution of this into (1.32) yields an expectational

difference equation for the inflation rate,

φππt = Etπt+1 + (r̂t − ı̄t). (2.45)

In the case of a rule that conforms to what we may call the “Taylor principle” — that the

central bank should raise its interest-rate instrument more than one-for-one with increases in

inflation,25 so that φπ > 1 — we can again solve (2.45) forward, yielding a unique bounded

solution of the form

πt =
∞∑

j=0

φ−(j+1)
π Et[r̂t+j − ı̄t+j]. (2.46)

We thus obtain the following result.

Proposition 2.6. If monetary policy is characterized by an interest-rate feedback rule

of the form (2.43), with φπ > 1, then the rational-expectations equilibrium paths of inflation

and the nominal interest rate are (locally) determinate; that is, there exist open sets P
and I such that in the case of any tight enough bounds on the fluctuations in the exogenous

processes {r̂t, π
∗
t , νt}, there exists a unique rational-expectations equilibrium in which πt ∈ P

and it ∈ I at all times. Furthermore, equation (2.46) gives a log-linear (first-order Taylor

series) approximation to the evolution of inflation in that equilibrium. If instead 0 ≤ φπ < 1,

rational-expectations equilibrium is indeterminate, as in Proposition 2.5.

25The rule described in Taylor (1993) obviously conforms to this principle, as it specifies that φπ = 1.5.
Discussions of the general desirability of such a principle include Taylor (1995, 1999).
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Here the proof follows exactly the same lines as our proofs of Propositions 2.3 and 2.5 above.

When the Taylor Principle is satisfied, we find once again that an interest-rate feedback

rule can be compatible with a determinate equilibrium price level.26 We also observe again

that equilibrium inflation is determined by interaction between the real determinants of the

equilibrium real rate of return, on the one hand, and the nature of the central bank feedback

rule for setting the nominal interest rate, on the other, quite independently of the associated

evolution of any monetary aggregate. Moreover, our theory of inflation determination once

again has a Wicksellian flavor: increases in the equilibrium real rate that are not offset

by sufficient tightening of monetary policy result in inflation, as do loosenings of policy

(decreases in ı̄t) that are not warranted by an exogenous decline in the equilibrium real

rate. And once again, it is only current and expected future values of the “gap” variable

r̂t − ı̄t that matter for the generation of inflationary or deflationary impulses. Finally, given

any stochastic process for the gap variable, the resulting equilibrium inflation variability is

smaller the larger is the response elasticity φπ.

The main qualitative difference between this family of rules and the Wicksellian regimes

considered earlier is that transitory fluctuations in the gap variable r̂t − ı̄t now give rise to

transitory fluctuations in inflation, which however permanently shift the absolute level of

prices. Thus such a regime almost inevitably results in price-level drift (a unit root in the

log price level), of the kind that has in fact been observed in all advanced countries in recent

decades. This contrasts with the stationarity of the fluctuations in P̂t under the Wicksellian

regime; there, a deterministic trend for P ∗
t would suffice to imply trend-stationarity of the

equilibrium price level.

Note that this last result holds even in the case of very small positive values of φp, which

correspond to policies that stabilize nominal interest rates to an arbitrarily great extent.

Thus price-level drift is not a necessary consequence of policies that achieve a great deal

26It should be observed that the price level, and not just the inflation rate, is determined in the solution
represented by (2.46). This is because the previous period’s price level Pt−1 is given at any date t as a
predetermined state variable; unique determination of Πt then implies a unique equilibrium price level Pt.
The “nominal anchor” that allows determination of the absolute price level is thus the dependence of (2.43)
on Pt−1 through its dependence upon Πt.
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of nominal interest-rate smoothing. The result of Goodfriend (1987), according to which a

policy that aims to reduce interest-rate variability, among other objectives, results in price-

level drift, actually depends upon his specification of the central bank’s objectives other

than interest-rate smoothing. Because the central bank is assumed to care only about the

variability of inflation over a short horizon, and not about the size of cumulative changes

in the price level, almost any obstacle to complete inflation stabilization (whether due to

infeasibility of perfect control, or to the presence of a conflicting objective such as Good-

friend’s assumed concern with interest-rate variability) will result in its choosing a path that

sacrifices price-level stability for a less variable inflation.27

Another important difference between this family of rules and the Wicksellian rules is that

here a positive response of the interest-rate operating target to deviations of inflation from

its target level does not suffice for determinacy. If we assume instead that φπ < 1, (2.45) has

an infinity of bounded solutions, so that equilibrium inflation in this case is indeterminate,

just as in the case of pure interest-rate control.28

Interestingly, Taylor (1999) finds that U.S. monetary policy during the 1960’s and 1970’s

did not conform to the “Taylor principle”, as discussed in chapter 1. At least in the case of

a flexible-price model of the kind considered in this chapter, a systematic policy of the kind

that Taylor estimates for the period 1960-79 would imply indeterminacy of the equilibrium

price level. Clarida, Gali and Gertler (19xx) reach a similar conclusion, on the basis of an

estimated forward-looking rule, and propose that the indeterminacy of equilibrium explains

the instability of U.S. inflation and real activity during the 1970’s.29

27See, e.g., Van Hoose (1989).
28This result was first obtained by Leeper (1991) using similar linearization methods to those employed

here. Leeper distinguishes between “active” monetary policies (rules of the form (2.44) with φπ > 1)
and “passive” policies (rules with φπ < 1). Our results correspond to Leeper’s case in which fiscal policy is
“passive”, though our specification of fiscal policy in terms of an exogenous path for {Dt} does not correspond
exactly to any member of his parametric family of fiscal rules. See further discussion in chapter 4, section
xx. Kerr and King (1996) also contains an early discussion of the connection between the Taylor principle
and determinacy of equilibrium.

29Indeterminacy of the equilibrium inflation rate implies indeterminacy of equilibrium real activity as well,
in the context of a model with sticky prices of the kind discussed in chapter 4 below. Chari, Christiano and
Eichenbaum (1997) also argue that the instability of the 1970’s can be attributed to self-fulfilling expectations;
but in their analysis, the multiplicity of equilibria results from an absence of commitment on the part of the



2. ALTERNATIVE INTEREST-RATE RULES 39

Of course, such an interpretation depends both upon an assumption that the interest-

rate regressions of these authors correctly identify the character of systematic monetary

policy during the period. In fact, an estimated reaction function of this kind could easily

be misspecified. For example, consider the equilibrium described by (1.39) in the case of a

Wicksellian regime, and suppose that P ∗
t grows deterministically at a constant rate. Since

in equilibrium ît is equal to φp times P̂t, P̂t is a stationary series, and πt is equal to its first-

difference (up to a constant), one can show that the (asymptotic) coefficient of a regression

of ı̂t on πt (rather than upon the correct variable, P̂t) will equal φp/2. This coefficient

could easily be much less than one – suggesting violation of the “Taylor principle”, and

that the price level should be indeterminate – even though in fact, as φp > 0, the price

level is determinate. Thus Taylor’s interpretation of his finding of positive coefficients much

less than one on inflation in estimated “Taylor rules” for the classical gold standard period

(for example, a coefficient of only 0.02 for the period 1879-91), as indicating an even more

extreme version of the kind of unduly passive interest-rate responses seen in the 1960’s and

1970’s, may well be incorrect.

A less dramatic case of the same problem may bias downwards Taylor’s estimate of the

inflation response coefficient in the period 1960-79 as well, as Orphanides (20xx) argues.30

Yet the suggestion that the policy mistakes of the period may have related to a failure to

understand the restrictions upon monetary policy required for price-level determinacy is an

intriguing one, that suggests that an improved theoretical understanding of this issue could

be of considerable practical importance.

Fed, rather than from a commitment to systematic policy of an unfortunate sort.
30In Orphanides’ analysis, systematic over-estimation of potential output during the 1970s gave policy

an inflationary bias, even though the Fed followed a rule similar to the Taylor rule that describes its later
behavior. Regressions using corrected estimates of the output gap, rather than the real-time estimates on
which policy was actually based then lead to a downward-biased estimate of the inflation-response coefficient,
since the period in which policy was looser due to the omitted variable was a period of higher-than-average
inflation.



40 CHAPTER 2. PRICE-LEVEL DETERMINATION

2.3 Inertial Responses to Inflation Variation

The simple class of “Taylor rules” (2.43) allows only the crudest sort of approximation

to actual central bank policies, for a number of reasons. One of the more obvious is the

allowance for feedback only from the current period’s rate of inflation. In practice, monetary

policy will never involve feedback from an instantaneous rate of inflation (as is sometimes

assumed in continuous-time treatments of our problem), because available inflation measures

will always be time-averaged over at least a period such as a month. In fact, Taylor’s (1993)

account of recent U.S. policy assumes that the operating target for the funds rate is a

function of inflation over the previous year. It is thus desirable to consider rules involving

feedback from the rate of inflation averaged over a time longer than one “period”. A case in

which the analysis remains quite simple (even if it is not realistic as a literal representation

of central bank procedures) is that in which the central bank responds to an exponential

moving average of past inflation rates of the form

π̄t ≡ (1− δ)
∞∑

j=0

δjπt−j, (2.47)

for some decay factor 0 < δ < 1. This case is simple to analyze because the relevant inflation

measure evolves according to a simple partial-adjustment formula

π̄t = (1− δ)πt + δπ̄t−1.

Let the central bank’s log-linear feedback rule be given by

ı̂t = ı̄t + Φππ̄t, (2.48)

instead of (2.44), where π̄t is defined by (2.47). We then obtain the following result.

Proposition 2.7. Let monetary policy be described by a feedback rule of the form

(2.48), at least near the zero-inflation steady state, with Φπ ≥ 0. Then equilibrium is deter-

minate if and only if Φπ > 1. When this condition is satisfied, a log-linear approximation to

the equilibrium evolution of the smoothed inflation process is given by

π̄t = (1− δ)
∞∑

j=0

(δ + (1− δ)Φπ)−(j+1)Et[r̂t+j − ı̄t+j]. (2.49)
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A corresponding approximation to the equilibrium evolution of the single-period inflation

rate πt is then obtained by substituting (2.49) into

πt =
π̄t − δπ̄t−1

1− δ
. (2.50)

The proof is given in the appendix. Note that determinacy is once again obtained if and

only if Φπ > 1, as required by the “Taylor principle”. Furthermore, in the determinate case,

the smoothed inflation rate π̄t bears the same qualitative relation as above to expectations

regarding the equilibrium real rate and future monetary policy shifts: it is rises when the

natural rate rises without an offsetting tightening of policy, either currently or anticipated

to occur in the future.

Estimated central bank reaction functions also typically differ from the simple rule (1.30)

in that they incorporate some degree of partial-adjustment dynamics for the interest rate

itself: that is, the current setting of the operating target for the interest rate inevitably

depends positively upon one or more lags of itself, in addition to measures of current economic

conditions such as some measure of inflation. As a simple example, we may consider a rule

of the form

ı̂t = ı̄t + ρ(̂ıt−1 − ı̄t−1) + φππt, (2.51)

where again φπ ≥ 0, and the coefficient ρ ≥ 0 measures the degree of intrinsic inertia in

the central bank’s adjustment of its operating target. Note that when ρ < 1, this rule can

be represented as a partial-adjustment rule, like those discussed in chapter 1. However, it

is also of interest to consider rules with ρ = 1 (i.e., rules in which it is the change in the

operating target that is a function of current inflation, as assumed in some estimated central

bank reaction functions, e.g., that of Fuhrer and Moore, 1995b), or even “super-inertial”

rules with ρ > 1, like those considered by Rotemberg and Woodford (1999).

In the case that ρ < 1, the feedback rule (2.51) can actually be equivalently expressed

in the form (2.48), simply by solving backwards to eliminate the dependence upon the

lagged interest rate. In this alternative representation, the response coefficient Φπ in (2.48)

corresponds to φπ/(1− ρ) in the new notation, and the decay factor δ in (2.47) corresponds
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to ρ in the new notation. Thus Proposition 2.7 applies, and equilibrium is determinate if and

only if Φπ > 1, again in accordance with the “Taylor principle”. (In a case of this kind, the

principle must be understood to require that the eventual increase in the nominal interest

rate as a result of a sustained increase in the inflation rate is more than one-for-one.) And

once again, an appropriate moving average of inflation is positively related to an average of

current and expected future values of the gap between the natural rate of interest and the

policy stance measure ı̄t.

But well-behaved rational expectations equilibria can also exist in the case of rules with

ρ ≥ 1. In fact, we can show the following.

Proposition 2.8. Let monetary policy be described by a feedback rule of the form

(2.51), at least near the zero-inflation steady state, with φπ, rho ≥ 0. Then equilibrium is

determinate if and only if φπ > 0 and

φπ + ρ > 1 (2.52)

When these conditions are satisfied, a log-linear approximation to the equilibrium evolution

of inflation is given by

πt = − ρ

φπ

(̂ıt−1 − ı̄t−1) +
∞∑

j=0

(φπ + ρ)−(j+1)Et[r̂t+j − ı̄t+j], (2.53)

where the interest rate evolves according to

ı̂t = ı̄t +
∞∑

j=0

φπ(φπ + ρ)−(j+1)Et[r̂t+j − ı̄t+j].) (2.54)

The proof is again in the appendix. When ρ < 1, this condition is equivalent to the re-

quirement that Φπ > 1, just discussed. But (2.52) applies more generally. In fact, it shows

that if ρ ≥ 1, any positive value for φπ suffices for determinacy. And indeed, if ρ > 1, the

equilibrium inflation rate is determinate even in the case of moderate negative values of φπ,

as is discussed further in the appendix. Determinacy, requires however, that φπ 6= 0, since

in the absence of any feedback from inflation, Proposition 2.5 applies.
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Equation (2.53) also provides a direct generalization of our earlier solution (2.46) for the

equilibrium path of the inflation rate. Again we see that a weighted average of current and

expected future “gap” terms determines the current inflation rate, given the lagged interest

rate (which affects current inflation in the same way as an exogenous shift in the current

stance of monetary policy). The pair of equations (2.53) – (2.54) can be solved iteratively

for the entire paths of inflation and the nominal interest rate, given an initial lagged interest

rate and the paths of the exogenous disturbances.

For example, suppose that the equilibrium real rate follows an AR(1) process with au-

toregressive coefficient 0 < ρr < 1, and consider policies of the form (2.51) with ı̄t = 0 at

all times (the central bank reacts only to inflation, with no target changes and no control

errors). Then in the solution described by (2.53), the nominal interest rate will be perfectly

correlated (positively) with fluctuations in the real rate. But inflation fluctuations are less

persistent than the real rate fluctuations, because the effect of an innovation in the real rate

at date t upon Etπt+1 is (ρr − ρ) times its effect upon πt, whereas the effect upon Etr̂t+1 is

ρr times its effect upon r̂t. If ρ = ρr, the inflation fluctuations become purely transitory, and

for larger values of ρ, they actually become anti-persistent, i.e., the effect a period after the

shock is actually of the opposite sign to the initial effect. Figure 2.1 plots impulse responses

to a one percent increase in the equilibrium real rate, assuming φπ = 0.7, ρr = 0.8, and a

variety of values for ρ consistent with (2.52). Panel (a) shows the impulse response of the

nominal interest rate for each value of ρ, and panel (b) shows the impulse response of the

inflation rate.

This simple example illustrates two desirable features of a more inertial response to

inflation variations, relative to the purely contemporaneous specification (2.43). First of all,

inertia allows a given degree of reduction of the variance of inflation to be achieved with less

interest-rate variability. This is an implication of the following result.

Proposition 2.9. Suppose that the equilibrium real rate {r̂t} follows an exogenously

given stationary AR(1) process, and let the monetary policy rule be of the form (2.51), with
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Figure 2.1: Responses to an increase in the natural rate of interest.

ρ ≥ 0, φπ > 0 and a constant intercept consistent with the zero-inflation steady state (i.e.,

ı̄t = 0). Consider the choice of a policy rule (ρ, φπ) within this class so as to bring about

a certain desired unconditional variance of inflation var(π) > 0 around the mean inflation

rate of zero. For any large enough value of ρ, there exists a φπ satisfying (2.52) such that

the unconditional variance of inflation in the stationary rational-expectations equilibrium

associated with this rule is of the desired magnitude. Furthermore, the larger is ρ, the

smaller is the unconditional variance of interest-rate fluctuations var(̂ı) in this equilibrium.

The proof is in the appendix. We shall argue in chapter 6 that the reduction of interest-rate

variability, as well as the reduction of inflation variability, is an appropriate goal of monetary

policy. It follows that inertial rules, even super-inertial rules (with ρ > 1), have an advantage

over other members of the class (2.51).
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Second, an inertial rule allows a greater degree of stabilization of the long-run price level,

by making inflation fluctuations less persistent (or even anti-persistent, so that increases in

the price level are subsequently offset). We shall argue in chapter 6 that the variability of the

rate of inflation over a short horizon is more directly related to welfare losses that monetary

policy should seek to minimize than is instability of the long-run price level. Nonetheless,

some have argued that stabilization of the long-run price level is also an appropriate goal of

policy, for example, in order to facilitate long-term contracting (see, e.g., Hall and Mankiw,

1994).

One possible measure of long-run price-level instability (proposed in Rotemberg and

Woodford, 1999) is the variance of innovations in the Beveridge-Nelson (198xx) price-level

trend. Let us define the long-run price level as

log P∞
t ≡ lim

j→∞
Et[log Pt+j − jE(π)], (2.55)

where E(π) is the unconditional expectation of the rate of inflation.31 The innovation in this

variable at date t is then defined as

log P∞
t − Et−1[log P∞

t ] =
∞∑

j=0

[Etπt+j − Et−1πt+j].

In the equilibrium just described, this innovation is equal to (1− ρ)(1− ρr)
−1(φπ + ρ− ρr)

−1

times the innovation in the equilibrium real rate of return. Thus the variability of such

innovations is minimized, and in fact reduced to zero, when ρ = 1. In this case, the log

price level is actually trend-stationary, so that the long-run price level defined in (2.55) is

deterministic. For values of ρ near one, the price level still possesses a unit root, but the

long-run price level still evolves relatively smoothly.

The fact that a rule with ρ = 1 exactly stabilizes the price level is less mysterious once

one recalls the equivalence between rules of the form (2.51) and rules of the form (2.48). For

0 < ρ < 1, the rule (2.51) is equivalent to making the interest rate a function of a weighted

average of past rates of inflation. As ρ approaches one, the effective weights on past rates

31This definition assumes that inflation is a stationary variable, i.e., that log Pt is difference-stationary.
Note that all of the equilibria that we discuss here have this property.
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of inflation cease to be discounted relative to more recent rates, so that the rule effectively

responds to cumulative inflation over the entire past, which is to say, the price level. In the

limit, a rule of this kind thus becomes equivalent to a Wicksellian rule of the form (1.30),32

which as shown earlier stabilizes the price level.

It may be wondered why rules with ρ ≥ 1 do not lead to instrument instability, i.e.,

a non-stationary process for the central bank’s operating target. In fact, if an arbitrary

stationary stochastic process for inflation is fed into (2.51), a non-stationary interest-rate

process is almost inevitably implied. However, in a rational expectations equilibrium, the

only kind of inflation processes that occur are exactly the kind that do not cause the interest

rate to be non-stationary. Think again about the Wicksellian regime. For most stationary

inflation processes, the price level has a unit root, and so a policy that responds to deviations

of the price level from a deterministic path should result in a unit root in the interest rate

as well, under the reasoning just suggested. The reason this does not happen is that, in

equilibrium, a policy of responding to price level deviations makes the price level stationary,

and not just the rate of inflation. This explains why ρ = 1 does not create a problem, but

the logic is exactly the same in the case that ρ > 1.

Rules with ρ > 1 might seem implausible, because commitment to such a rule implies a

commitment to continue raising interest rates to higher and higher levels, at an explosive rate,

if inflation is ever even temporarily above its target level, as long as it never subsequently

falls below the target rate. Of course, in equilibrium, these extreme actions need never be

taken, as any temporary increase in inflation is followed by subsequent undershooting of

the target rate, as shown in Figure 2.1(b). But it might be suspected that they fail to be

triggered only because of the anticipation that they would be, a “threat” that might properly

be considered incredible.33 In fact, this is not so. Note that in the equilibrium calculated

above, equilibrium inflation fluctuates over a bounded interval, as does the nominal interest

rate. Hence only the definition of the policy rule (2.51) for inflation rates and lagged interest

32Note that when ρ = 1, (2.51) is just a first-differenced version of (1.34).
33At a conference, Bob Hall compared policies with ρ > 1 to the “Doomsday Machine” in Doctor

Strangelove.
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rates within those intervals matters for our conclusion that (2.53) describes a locally unique

equilibrium. We could change the specification of the rule in the case of more extreme values

of the endogenous variables — in particular, change it to specify that interest rates would

never be raised above some finite level, as seems more credible — and still obtain exactly

the same conclusions as above. Such a change would at most affect our conclusions about

the existence of other rational expectations equilibria, that do not remain forever near the

steady state, a topic not yet addressed.

A commitment to indefinitely follow a super-inertial instrument rule implies a certain

restriction upon the expected evolution of inflation, that must hold in any bounded rational-

expectations equilibrium. In the case of a rule of the form (2.51), the restriction takes the

following form.

Proposition 2.10. Consider a policy rule of the form (2.51), where ρ > 1 and {ı̄t} is

a bounded process, to be adopted beginning at some date t0. Then any bounded processes

{πt, ı̂t} that satisfy (2.51) for all t ≥ t0 must be such that the predicted path of inflation,

looking forward from any date t ≥ t0, satisfies

∞∑

j=0

ρ−(j+1)φπ Etπt+j = −(̂ıt−1 − ı̄t−1). (2.56)

Conversely, any bounded processes satisfying (2.56) for all t ≥ t0 also satisfy (2.51) for all

t ≥ t0.

The proof is in the appendix. Condition (2.56) is a restriction upon the expected future

path of inflation that must be satisfied (in any non-explosive REE) given the commitment

to the rule (2.51), that is quite independent of any other assumptions about the conditions

required for an equilibrium.

In fact, the policy can alternatively be stated as a commitment to adjust interest rates

as necessary in order to ensure that the projected future path of inflation always satisfies

the target criterion (2.56). This way of stating the rule is an example of an inflation-forecast

targeting rule, of the kind discussed by Svensson (1997, 1999, 2001), though it differs from
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the simpler examples discussed by Svensson in that the target for the weighted average of

future inflation forecasts is time-varying, both in response to variation in the lagged level of

the nominal interest rate and owing to the exogenous policy shifts represented by the Etı̄t+j

terms. We have just shown that a commitment to the instrument rule (2.51) implies that the

target criterion (2.56) must be expected to be satisfied at each date. And conversely, a policy

that ensures that the target criterion is satisfied at each date must involve an interest-rate

path that satisfies (2.51) at each date.

Thus these two superficially different forms of policy commitment are actually equivalent,

at least as far as the set of bounded rational-expectations equilibria associated with either of

them are concerned; and this equivalence is independent of the details of the structural model

of the monetary transmission mechanism that is used to predict the consequences of following

either rule. Which way of describing the policy commitment should be preferred will depend

on which is judged more effective as a way of communicating the policy commitment to

the public. In chapter 8, we show that in the context of at least some plausible models of

the monetary transmission mechanism, an optimal policy rule can be represented as a more

complicated version of a rule of this kind. There we discuss the representation of optimal

policy both in terms of a super-inertial instrument rule and in terms of a forecast-targeting

rule.

3 Price-Level Determination with Monetary Frictions

We now take up the question of how the equilibrium prices of goods in terms of money are

determined in an economy where the monetary liabilities of the central bank do facilitate

transactions, contrary to our simplifying assumption in the previous two sections. In all

actually existing economies, we observe that positive quantities of base money are held by

private parties despite the fact that this asset yields a lower return than other very short-term

riskless assets; this indicates that there must be advantages to holding money not allowed

for in our model above. Our analysis above is only useful in understanding actual economies,

then, if we can show that even when such transactions services of money are allowed for,
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our conclusions about price-level determination are fairly similar to those obtained when

abstracting from this complication. Introducing transactions frictions will also allow us to

compare our neo-Wicksellian theory of inflation determination with the implications of a

traditional quantity-theoretic analysis.

3.1 A Model with Transactions Frictions

We now extend the above analysis to allow for transactions frictions that can be ameliorated

through the use of central-bank monetary liabilities. For simplicity, we use a model that

has been extensively used in rational-expectations monetarist analyses, the representative-

household model of Sidrauski (1967) and Brock (1974, 1975).34 In this approach, the trans-

actions frictions are not explicitly modeled; instead, the transactions services supplied by

real money balances are directly represented as an argument of household utility functions.35

We again assume a representative-household economy, but now with a household objec-

tive of the form

E0

{ ∞∑

t=0

βtu(Ct,Mt/Pt; ξt)

}
, (3.1)

where Mt again measures the household’s end-of-period money balances, and Pt is the price

of the single good in terms of money in period t. The function u is now an indirect utility

function, incorporating the costs of transacting with a given level of money balances; hence

the vector of exogenous disturbances ξt may now include random variation in the transactions

technology, as well as actual preference shocks.36 For any given realization of ξt, we assume

that the period utility function u(c,m; ξt) satisfies standard neoclassical assumptions: it is

34For other recent expositions of the model, see, e.g., Obstfeld and Rogoff (1996, sec. 8.3) and Walsh
(1998, sec. 2.3).

35In the alternative analysis presented in section xx of the appendix, the transactions frictions are more
represented by a cash-in-advance constraint. On the similarity between models with transactions frictions of
that sort and the Sidrauski-Brock model, see also Feenstra (1986), Lucas and Stokey (1987), and Woodford
(1998a).

36It is important to note that we do not assume that ξt is a scalar process; for example, ξt might contain
two components, one of which represents variation in impatience, and the other of which represents variation
in the liquidity services provided by money balances. The use of the single symbol ξt to represent both
shocks does not imply anything about their assumed correlation; the two components of the vector might,
for example, be distributed independently of one another.
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concave and strictly increasing in each of the arguments (c,m).37 We shall also suppose that

u implies that both consumption and real balances are (strict) normal goods; i.e., we shall

assume that income-expansion paths are upward-sloping in the case of any finite positive

relative price for the two “goods”.

The household’s budget constraints remain of the form assumed in section 1; note that

we have already allowed there for a possible return differential between money and other

riskless nominal claims, even though in equilibrium no such differential turned out to exist

(in the cashless economy). Hence the household’s problem is to choose processes {Ct, Mt}
satisfying (1.12) given its initial wealth W0, so as to maximize (3.1). Necessary and sufficient

conditions for this problem are derived along the same lines as before.

Once again, (1.10) and (1.11) must hold at all times, since otherwise no optimal plan

exists. The first-order conditions for optimal choice of the household’s money balances now

require that Mt ≥ 0 and

um(Ct,Mt/Pt; ξt)

uc(Ct,Mt/Pt; ξt)
≤ ∆t

at each date, with at least one condition holding with equality at each date; thus at any date

at which Mt > 0, one must have

um(Ct,Mt/Pt; ξt)

uc(Ct,Mt/Pt; ξt)
= ∆t. (3.2)

(Note that this condition generalizes (1.15) to the case in which utility is increasing in

real balances.) Conditions (1.16), (1.17) and the exhaustion of the intertemporal budget

constraint are again necessary as before, with only the change that now the marginal utility

of consumption must be written uc(Ct,mt; ξt). And once again this set of conditions can be

shown to be both necessary and sufficient for optimality of the household’s plan.

37The existence of a finite level of money balances at which there is satiation in money, which level will
typically be increasing in the level of consumption, creates only minor technical complications. And indeed,
many explicit models of transactions frictions, such as cash-in-advance models, imply that such a satiation
level should exist. But whether there is satiation does not matter, for present purposes, except for the
question of whether it is possible to reduce nominal interest rates all the way to zero. We shall suppose in
general that we do not wish to do so, though the reason for this (distortions associated with deflation) will
only be introduced after we extend our model to include nominal rigidities.
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Substituting the relations implied by market-clearing into the conditions for household

optimization, and assuming a policy regime under which M s
t > 0 at all times, we again obtain

equilibrium conditions (1.20), (1.21), and (1.22) for each date, together with the conditions

um(Yt, M
s
t /Pt; ξt)

uc(Yt,M s
t /Pt; ξt)

= ∆t (3.3)

and
∞∑

T=t

βT Et [uc(YT ,M s
T /PT ; ξT )YT + um(YT ,M s

T /PT ; ξT )M s
T /PT ] < ∞, (3.4)

generalizing (1.15) and (1.23) respectively. These relations, together with a specification of

the policy regime, provide a complete description of a rational-expectations equilibrium.

Note that under the assumption that both consumption and real balances are normal

goods, um/uc is increasing in consumption and decreasing in real balances. It follows that

we can solve (3.3) for equilibrium real balances,38 obtaining a relation of the form

M s
t

Pt

= L(Yt, ∆t; ξt). (3.5)

Here the liquidity preference function L is increasing in Yt and decreasing in ∆t, for any value

of the disturbance vector ξt. Note that equation (3.5) corresponds to the “LM equation”

of the Keynesian system, or to the “money market equilibrium” condition of a monetarist

model. (In the case that imt = 0, as in standard treatments, we can alternatively write the

liquidity preference function in terms of yt and it.) From a quantity-theoretic point of view,

it is this equilibrium condition that is regarded as determining the price level at each point

in time, given the money supply M s
t at that date.

Finally, we can show once again that condition (1.22) may equivalently be written in the

form (1.24).39 We thus obtain the following generalization of our previous definition.

38Technically, monotonicity of um/uc is not quite enough: it implies that there is a well-defined level of
equilibrium real money balances for ∆t in some interval (that may depend on Yt and ξt), but it does not
exclude the possibility that no solution exists for interest rates that are either too high or too low. We shall
simplify our analysis, when necessary, by assuming boundary conditions on preferences that imply a solution
for any ∆t > 0; specifically, we suppose that um becomes unboundedly large as real balances are made small,
and arbitrarily small as real balances are made large enough, which may or may not involve satiation at a
finite level of real balances. Note that our primary concern here will be with stationary fluctuations around
an equilibrium steady state, and for these purposes such boundary conditions are irrelevant.

39In the presence of monetary frictions, Proposition 2.2 must be restated as Proposition 2.2′, which is
stated and proved in section xx of the appendix.
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Definition. A rational-expectations equilibrium of the Sidrauski-Brock model is a pair

of processes {Pt, it} that satisfy (1.21), (1.24),40 (3.4), and (3.5) at all dates t ≥ 0, given the

exogenous processes {Yt, ξt}, and evolution of the variables {imt ,M s
t , Dt} consistent with the

monetary-fiscal policy regime.

3.2 Interest-Rate Rules Reconsidered

We now turn to the specification of the monetary-fiscal policy regime. In an economy with

monetary frictions, it is no longer necessary for equilibrium that either it = imt or M s
t = 0; this

increases the range of possible ways in which monetary policy may be specified. The central

bank may freely choose (within certain bounds) any two of the variables it, i
m
t , and M s

t ,

leaving the third to be endogenously determined by the “LM relation” (3.5). In particular,

it might choose a target for the monetary base M s
t while maintaining a fixed rate (zero) for

imt , and let market nominal interest rates be endogenously determined, as in many textbook

analyses; but it might also choose a short-run operating target for it while maintaining a

fixed rate (zero) for imt , and let the monetary base be endogenously determined, as under

current Fed procedures. The central bank’s choice of a rate of an interest rate to pay

on central-bank balances now longer implies a particular operating target for short-term

market interest rates, and it is now important to distinguish between these two aspects of

the monetary policy regime.

In one case, however, the details of the way in which the central bank chooses to im-

plement its interest-rate operating targets will be irrelevant for price-level determination.

This is the case, often assumed for pedagogical purposes, in which u(C,m; ξ) is additively

separable between the arguments C and m for each possible vector of disturbances ξ.41 In

this familiar case, the marginal utility of consumption is independent of real money balances,

just as in the cashless economy, even though now um > 0 in the case of a low enough level

40In writing (1.21) and (1.24) for this model, we must express the marginal utility of consumption as
uc(Yt,M

s
t /Pt; ξt).

41See, for example, the presentation of the model by Obstfeld and Rogoff (1996, sec. 8.3) or Walsh (1998,
sec. 2.3).
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of real balances.

Let monetary policy be specified by an interest-rate rule, such as the Wicksellian rule

(1.30), together with an additional equation that specifies either the supply of base money M s
t

or the interest paid on base money imt . If the additional equation specifies the supply of base

money, then the interest-rate target is implemented by adjusting imt as necessary in order for

the target interest rate it to satisfy (3.5), given the supply of base money. (This generalizes

the method of policy implementation assumed above for the cashless economy, where (1.15)

played the role of equilibrium condition (3.5).) If instead the additional equation specifies the

interest paid on money (perhaps specifying imt = 0 at all times), then the interest-rate target

is implemented by adjusting M s
t so as to satisfy (3.5). (This is a stylized representation of

the current method of policy implementation in countries like the U.S.) We suppose once

again that fiscal policy is specified by an exogenous process {Dt}.
We have shown earlier that in the cashless case, conditions (1.21) and (1.30) alone suffice

to determine locally unique rational-expectations equilibrium paths for the variables {Pt, it},
as long as φp > 0. The same argument continues to apply here, given that the marginal

utility of consumption in (1.21) is once again a function only of the exogenous states (Yt, ξt).

Corresponding to these paths will be locally unique paths for {M s
t , imt }, obtained by solving

(3.5) together with the additional equation that specifies one or the other of these variables

each period. Thus the conditions under which the interest-rate rule implies a determinate

rational-expectations equilibrium are exactly the same as in a cashless economy, and (1.37)

and (1.38) continue to provide a log-linear approximation to the equilibrium evolution of

prices and interest rates in response to small enough exogenous disturbances.

The same is true if the interest-rate rule is of a form such as (2.43), (2.48), or (2.51)

rather than (1.30). The neo-Wicksellian account of price-level determination developed above

continues to apply even in the presence of transactions frictions that allow for a non-negligible

interest differential ∆t in equilibrium. In our model with transactions frictions, the money-

demand or “LM” relation (3.5) is a requirement for equilibrium, yet it plays no role in

determining the equilibrium evolution of prices under a given interest-rate rule; this relation
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is relevant only to the question of how the central bank must adjust the instruments under

its direct control (M s
t and imt ) so as to implement its interest-rate operating targets.

3.3 A Comparison with Money-Growth Targeting

The money-demand relation is, of course, a crucial element in the theory of price-level

determination in the case of a money growth rule, i.e., a monetary policy specified in terms

of exogenous paths for the monetary base {M s
t } and the interest rate paid on money {imt },

with the interest rate {it} left to be determined by the market. Let us consider the case in

which M s
t /M s

t−1 and imt remain forever within bounded intervals containing the steady-state

values 1 and 0 ≤ ı̄m < β−1 − 1 respectively, and look for rational-expectations equilibria in

which mt ≡ M s
t /Pt and it remain forever near the constant values

m̄ ≡ L(Ȳ , ∆̄; 0),

ı̄ = β−1 − 1 > 0

associated with a zero-inflation steady state. (Here ∆̄ ≡ 1−β(1+ ı̄m) > 0 is the steady-state

interest differential.)

Log-linearizing (3.5) around this steady-state, we obtain a relation of the form

m̂t = ηyŶt − ηi(̂ıt − ı̂mt ) + εm
t , (3.6)

where

m̂t ≡ log(mt/m̄), ı̂mt ≡ log(1 + imt /1 + ı̄m).

Here the constant coefficients are

ηy ≡ Ȳ

m̄

∂L

∂y
> 0, ηi ≡ −1− ∆̄

m̄

∂L

∂∆
> 0,

with the partial derivatives evaluated at the steady-state values of the arguments of L, and

the exogenous disturbance term is

εm
t ≡ 1

m̄

∂L

∂ξ
ξt.
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(The signs asserted above for these coefficients follow from the assumptions regarding pref-

erences stated earlier.) Note that ηy measures the income elasticity of money demand, and

ηi the interest semi-elasticity of money demand; numerical values for these coefficients, and

for the statistical properties of the disturbance term, can thus be obtained from standard

econometric studies of money demand.

We can then study the local determinacy of equilibrium under such a policy by considering

the bounded processes {m̂t, ı̂t} that satisfy the log-linear equilibrium relations (1.32) and

(3.6) at all times. We obtain the following result.

Proposition 2.11. In the context of a Sidrauski-Brock model with additively separable

preferences, consider the consequences of a monetary policy specified in terms of exogenous

paths {M s
t , imt }, together with a fiscal policy specified by an exogenous path {Dt}. Under such

a regime, the rational-expectations equilibrium paths of prices and interest rates are (locally)

determinate; that is, there exist open sets P and I such that in the case of any tight enough

bounds on the fluctuations in the exogenous processes {Yt, ξt,M
s
t /M s

t−1, i
m
t , Dt/Dt−1}, there

exists a unique rational-expectations equilibrium in which Pt/M
s
t ∈ P and it ∈ I at all

times. Furthermore, a log-linear approximation to the equilibrium path of the price level,

accurate up to a residual of order O(||ξ||2), takes the form

log Pt =
∞∑

j=0

ϕjEt[log M s
t+j − ηi log(1 + imt )− ut+j]− log m̄, (3.7)

where the weights

ϕj ≡ ηj
i

(1 + ηi)j+1
> 0

sum to one, and ut is a composite exogenous disturbance

ut ≡ ηyŶt − ηir̂t + εm
t − ηi log(1 + ı̄m).

The proof is given in the appendix.

We thus obtain a well-defined rational expectations equilibrium price level under such a

policy, for arbitrary bounded fluctuations in the rate of money growth. This is the determi-
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nacy result that Sargent and Wallace (1975) stress in their argument for the money supply

as the “optimal instrument of monetary policy.” However, we have seen that policy rules

need not take this form in order to imply a determinate equilibrium path for the price level;

interest-rate rules such as those advocated by Wicksell and Taylor also have this property.

Equation (3.7) also provides a simple theory of price-level determination; in the case that

one abstracts from disturbances other than the fluctuations in the rate of money growth,

it states that the log price level at any point in time is (up to a constant) just a weighted

average of current and expected future logs of the money supply.42 This appealingly simple

result may suggest that even in the analysis of other types of possible policy regimes, what

matters about any regime is the path of the money supply that it implies.44 It might then

seem natural that alternative strategies for policy should be considered in terms of how one

wishes to have the money supply evolve. But as we have seen, a straightforward analysis

of the consequences for inflation of alternative policy rules is equally possible without any

reference to either the evolution of the money supply or the determinants of money demand.

In fact, our conclusions above about the consequences of alternative interest-rate rules

can be viewed as more basic, for Proposition 2.11 is actually a consequence of our previ-

ous analysis of Wicksellian rules.45 For solving the money-demand relation (3.5) for the

42This result is most often presented as the implications of a rational-expectations version of the Cagan
model of inflation determination.43 In Cagan’s (1956) model, desired log real money balances are a decreasing
linear function of the expected rate of growth of the log price level. A (discrete-time) relation of exactly
this kind is obtained by substituting (1.32) into (3.6) to eliminate it, except that in our case there is also a
time-varying intercept for this relation, equal to log m̄ + ut + ηi log(1 + imt ).

44The determinacy result in Proposition 2.11 applies only to policies that make the money supply an
exogenously specified process, and not to general feedback rules for determination of the money supply. Our
derivation of equation (3.7) as an implication of the requirements for rational-expectations equilibrium also
goes through more generally, assuming that the infinite sum on the right-hand side is well-defined. But in
the case of feedback from endogenous variables (such as the price level) to the money supply, the expressions
on the right-hand sides of equations such as (3.7) need not be uniquely defined. That is, there may be a large
number of equilibria, in each of which (3.7) is valid, but in each of which the expression on the right-hand
side takes a different value, as a result of different evolution of the endogenous determinants of the money
supply.

45See Taylor (1999) for motivation in terms similar to these of the “Taylor rule”. Taylor’s discussion,
however, elides the distinction between rules such as (1.30), that respond to deviations of the price level)
from a target path, and rules such as (2.43) that respond to deviations of the inflation rate from its target.
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equilibrium nominal interest rate, we obtain an equation of the form

it = ι(Pt/M
s
t ; imt , Yt, ξt), (3.8)

where ι is an increasing function of its first argument, for any values of imt , Yt, ξt. This is

just Keynes’ (1936) “liquidity preference theory” of the interest rate; if it is graphed as a

function of Yt, suppressing the other arguments, this is the Hicksian “LM curve”. When Yt is

exogenous and prices are flexible, as here, it is more useful to think of this as an equilibrium

relation between it and Pt, as in some presentations of a “flexible-price IS-LM” model.

This equilibrium relation between interest rates and prices, established through the cen-

tral bank’s control of its instruments M s
t and imt , is just an example of a interest-rate feedback

rule of the form (1.30), in which P ∗
t = M s

t /m̄, νt = (imt , Yt, ξt),
46 and

φ(p; ν) = ι(p/m̄; ν).

It then follows that in the log-linear approximation (1.34), φp = η−1
i > 0 and

νt = ı̂mt + η−1
i (ηyŶt + εm

t ).

Because this is a policy rule under which φp > 0, Proposition 2.3 applies, and making the

above substitutions for φp, P ∗
t , and νt, we find that (3.7) is just the price-level path predicted

by our previous result (1.39) for a general rule of the Wicksellian type.

The prior formulation is the more general one, since it applies to Wicksellian rules in

which the elasticity of interest-rate response to price-level deviations need not equal exactly

η−1
i . Furthermore, it is clear even from (3.7) — which follows from a traditional quantity-

theoretic analysis, as shown in the appendix — that the path of the money supply as such

is not important for price-level determination. What matters is the way in the central bank

chooses to adjust the composite variable log M s
t − ηi log(1 + imt ); it does not matter to what

extent this is achieved by varying the money supply as opposed to the interest rate paid on

base money (except, of course, that if there is to be trend growth in this variable it must

46Here we extend our previous notation in (1.30) by allowing a vector νt of exogenous variables to affect
the function φ.
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occur through trend growth in the money supply, owing to the impossibility of reducing imt

below zero). The reason for this is simple: it is the shift in this composite variable that

indicates the extent to which the central bank’s actions shift the equilibrium relation (3.8)

between interest rates and prices.

Of course, we could also develop a theory of price-level determination under money-

supply feedback rules, in which the path of the monetary base is not specified exogenously,

but is instead a specified function of the price level. Wicksellian rules (1.30) could then be

equivalently described as rules of this form,

M s
t = M s(Pt;¶∗t , imt , Yt, ξt, νt), (3.9)

where the function M s is obtained by substituting (1.30) for it in (3.5), and solving for M s
t

as a function of the other variables. But subsuming our theory of price-level determination

under interest-rate rules under such a theory of endogenous-money rules is not obviously

desirable. First of all, the theory of price-level determination under interest-rate rules ex-

pounded above continues to apply in a cashless economy (the form in which we have first

expounded it), whereas a theory of endogenous-money rules of the form (3.9) would not be

possible in that case.

Even when a well-defined money-demand relation (3.5) exists, it is not obvious that

(1.30) and (3.9) are equally useful ways of specifying monetary policy in order to achieve

the equilibrium described by (1.39). For (1.30) suffices to specify the aspects of policy that

matter for the central bank’s stabilization objective (here assumed to be control of the price

level), while (3.9) does not — the latter rule must be supplemented by a policy rule for

the control of imt in order for the price level to be determined. (Of course, in traditional

accounts, it is taken for granted that imt = 0.) And even granting a specific, known policy

with regard to interest payments on money, (1.30) may be a more useful policy prescription.

This is because implementation of (3.9) requires that the central bank take account of the

current value of the disturbance εm
t to the money demand equation in setting its money-

supply instrument, while knowledge of this state is irrelevant for purposes of implementation
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of the interest-rate rule (1.30).

Since the central bank will not be able to estimate this random disturbance with perfect

precision in practice, adoption of a monetary-base target necessarily results in interest-rate

variations in response to money-demand disturbances that could be avoided through the

use of an interest-rate instrument. Interest-rate variations in response to these shocks are

not desirable, from the point of view of price-level stabilization, unless they are positively

correlated with exogenous variations in the equilibrium real rate of interest. As the primary

source of money-demand variation is probably developments in the payments system that

have important effects upon money demand without being of particular consequence for

equilibrium real rates of return, this seems an implausible line of argument.

The point that money-demand disturbances make an interest-rate operating target more

desirable than a money-supply target is of course a central argument in the celebrated

analysis of Poole (1970). Poole also argues that if, instead, “IS shocks” are a more important

source of instability than “LM shocks,” monetary control is superior to interest-rate control.

This might make it seem uncertain which concern, in practice, ought to dominate. But let

us recall the nature of the argument for a monetary instrument in the case of “IS shocks”. It

is desirable on stabilization grounds that interest rates rise in response to demand stimulus

(in Wicksellian terms, because these disturbances raise the natural rate of interest), but it

is assumed that with interest-rate control, interest rates will not rise. Instead, with control

of the money supply, such disturbances raise output (or in our flexible-price model, the

price level), and as a result increase money demand, leading to an automatic interest-rate

increase which aids stabilization. But this argument requires not only that the central bank

is not able to respond directly to the disturbance, but that it cannot condition its interest-

rate instrument upon output or the price level except indirectly, by letting interest rates be

affected by an increase in money demand. If we assume instead that the central bank can

make its instrument a function of current prices and output directly, even though it cannot

make it a direct function of exogenous disturbances, then the interest-rate instrument is

unambiguously superior.
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3.4 Consequences of Non-Separable Utility

The strong irrelevance result obtained in section xx — accordance to which an interest-rate

rule such as (1.30) or (2.43) suffices to determine the equilibrium path of prices quite inde-

pendently of how the central bank implements its interest-rate operating targets through ad-

justment of the monetary base and/or the interest rate paid on money — depends, of course,

on the special assumption of an additively-separable (indirect) utility function u(C,m; ξ).

And this assumption is not very realistic, despite its familiarity in textbook treatments; if

real balances supply a non-pecuniary yield owing to their usefulness in conducting trans-

actions, it makes sense that the marginal benefit of additional real balances should depend

on the volume of purchases that the household makes. (The most plausible assumption, on

intuitive grounds, would probably be that ucm > 0, so that consumption expenditure and

real balances are complements.)

Yet one can justify the neglect of real-balance effects on the marginal utility of income in

equations such as (1.21) without assuming either additive separability or a genuinely cashless

economy (with the counter-factual implication that money must earn the same rate of return

as other riskless assets). In what Woodford (1998a) calls a “cashless limiting economy,” the

marginal utility of additional real balances becomes quite large as household real balances fall

to zero (assuming real purchases of a magnitude near Ȳ ), so that it is possible in equilibrium

to have a non-trivial interest-rate differential ∆t; yet at the same time, the transactions that

use money are sufficiently unimportant that variations in the level of real balances sufficient

to require a substantial change in the interest-rate differential have only a negligible effect

on the marginal utility of real income (or of consumption).

The idea is that in such an economy money is used for transactions of only a very few

kinds, though it is essential for those. As a result, positive real balances are demanded even

in the case of a substantial interest-rate differential (and hence, a substantial opportunity

cost of holding money); but equilibrium real balances are very small relative to national

income. Equation (3.3) requires that in such an equilibrium, an increase in real balances

equal in value to a substantial share of aggregate expenditure would have to increase utility
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by as much as a substantial percentage increase in consumption; but if equilibrium real

balances are tiny in value relative to national income, a substantial percentage increase in

real balances may still have a negligible effect on utility. As this effect may continue to be

negligible for different levels of consumption, the effect on the marginal utility of consumption

of a substantial percentage change in real balances may also be negligible. This then justifies

neglecting real-balance effects in equations such as (1.21).

Formally, the elasticity of um, the marginal utility of additional real money balances,

with respect to changes in the level of real expenditure is equal to

υ ≡ Ȳ umc

um

,

a quantity that we have argued should plausibly have a non-trivial positive value. But what

matters for the extent to which variations in the level of real balances affect the Fisher

relation (1.21) is the elasticity of uc, the marginal utility of additional expenditure, with

respect to changes in the level of real balances, or

χ ≡ m̄ucm

uc

. (3.10)

We note that χ = smυ, where

sm ≡ m̄um

Ȳ uc

= ∆̄
m̄

Ȳ

is the flow rate of effective expenditure by households on liquidity services (measured by

the interest foregone on the money balances that they hold) expressed as a proportion of

national income. It follows that χ and υ must have the same sign. But in a “cashless lim-

iting economy,” sm is infinitesimally small (even though ∆̄ is not), as a result of which χ is

infinitesimally small (even though υ) is not.47 Because χ is negligible, a log-linear approxi-

mation to (1.21) again takes the simple form (1.32); yet this is not equivalent to assuming

47Woodford (1998xx) displays a parametric family of transactions technologies in which this limiting case
is approached as a certain parameter α, measuring the fraction of goods that are purchased using cash, is
made arbitrarily small. The paper shows that the equilibrium solution for the state-contingent evolution of
prices is continuous in the parameter α, so that the conclusions reached under the assumption that χ = 0,
as in a cashless model, provide an accurate approximation to the equilibrium dynamics in the case of any
economy with a small enough value of α. At the same time, the interest-rate differential remains bounded
away from zero as α is made small; hence the equilibrium of the “cashless limiting economy” is in this respect
different from that of a genuinely cashless economy of the kind presented in section xx above.
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additive separability, for one need not assume that υ is negligible. (The latter quantity mat-

ters for the predictions of one’s analysis regarding the percentage fluctuations in the money

supply that should occur in equilibrium under a particular approach to implementation of

the interest-rate rule.)48

Thus the case of a “cashless limiting economy” is another in which one may legitimately

abstract from any effects of variations in real balances on the equilibrium conditions that

determine the evolution of prices under an interest-rate rule. How accurately this limiting

case approximates the situation of an actual economy in which central-bank money still

provides some valuable services remains, of course, a question for quantitative analysis. We

turn, then, to the question of the extent to which our previous results must be modified if

we allow for a non-negligible value of the elasticity χ defined in (3.10).

In the general case of the Sidrauski-Brock model, a log-linear approximation to (1.21)

takes the form

ı̂t = r̂t + Etπt+1 − χEt(m̂t+1 − m̂t), (3.11)

where r̂t continues to be defined by (1.33). (Note, however, that r̂t no longer has the

interpretation of being the equilibrium real rate of return; the latter quantity is no longer

completely exogenous.) Substituting (3.6) for the equilibrium level of real balances in this

equation, we obtain a relation of the form

(1 + ηiχ)̂ıt = r̃t + Etπt+1 + ηiχEtı̂t+1 + ηiχEt(̂ı
m
t+1 − ı̂mt ), (3.12)

where the composite exogenous disturbance in this relation is given by

r̃t ≡ r̂t − ηyχEt(Ŷt+1 − Ŷt)− χEt(ε
m
t+1 − εm

t ).

Then if one specifies the policy rule in a way that allows both it and imt to be determined as

functions of the path of prices, equation (3.12) alone, together with the policy rule, suffices

48The assumption of a “cashless limiting economy” leaves one free to assume elasticities ηy, ηi in the
money-demand relation (3.6) in accordance with empirical estimates, whereas the assumption of additive
separability would imply a restriction upon these elasticities that is not in accordance with typical estimates,
as discussed below.
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to determine the equilibrium paths of interest rates and prices, just as in our analyses in

sections 1 and 2.

For example, consider a policy regime under which the central bank seeks to maintain

a constant interest-rate differential ∆̄ between overnight market rates and the interest paid

on the monetary base (as is true of the channel systems described in chapter 1, at least in

the case of the interest paid on central-bank balances). In such a case, monetary policy may

be specified by an interest-rate rule, such as the Wicksellian rule (1.30), together with the

equation

∆t = ∆̄ > 0 (3.13)

indicating the way in which the interest paid on money varies with the changes in the

interest-rate target required by the Wicksellian rule. (We assume that ∆̄ > 0 because of the

observed preference of central banks with channel systems for maintaining a small positive

spread.) Fiscal policy can again be specified by an exogenous sequence {Dt}.
In order to analyze local equilibrium determination under such a regime, it suffices that

we consider the log-linear relations (1.34) and (3.12), together with the equation

ı̂t = ı̂mt , (3.14)

representing the log-linearization of (3.13). Using (3.14) to eliminate ı̂mt from (3.12), we

obtain a relation of the form

ı̂t = r̃t + Etπt+1. (3.15)

This is of exactly the same form as (1.32), except that the term r̂t is replaced by r̃t, a different

function of the exogenous disturbances. We observe from (3.15) that r̃t can be interpreted

as the equilibrium real rate of return in the case that a constant interest-rate differential is

maintained. (It is only under the latter stipulation that we can define an equilibrium real

rate that is purely exogenous, in the case of non-separable utility.)

We now look for bounded solutions {P̂t, ı̂t} to the system of equations (1.34) and (3.15).

Because (3.15) is identical to (1.32), except for the replacement of r̂t by r̃t, our previous

results are directly applicable. Proposition 2.3 then implies that equilibrium is determinate
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in the case of any rule with φp > 0, and a log-linear approximation to the equilibrium price

process is given by (1.39), with r̃t+j replacing r̂t+j in each term.49 Hence the same theory of

price-level determination as derived above continues to apply, with a small modification of

our interpretation of the exogenous disturbance term. The same is true for other families of

interest-rate rules, such as (2.43) or (2.51).

Suppose instead that policy is implemented in a way that involves a fixed rate of interest

on the monetary base (for example, a zero interest rate, as in the U.S. at present). In this

case, (3.13) is replaced by the condition imt = ı̄. We can again eliminate ı̂mt from (3.12),

and obtain a system of two equations to solve for the equilibrium evolution of prices and

interest rates. Similar methods as have been used before can then be employed to derive

generalizations of our previous results.

Proposition 2.12. In a Sidrauski-Brock model where utility is not necessarily sepa-

rable, let monetary policy be specified by a Wicksellian rule (1.30) for the central bank’s

interest-rate operating target. Suppose that imt = ı̄ at all times, for some 0 ≤ ı̄ < β−1 − 1;

and let fiscal policy again be specified by an exogenous process {Dt}. Finally, suppose that

χ > − 1

2ηi

. (3.16)

Then equilibrium is determinate in the case of any policy rule with φp > 0. A log-linear

approximation to the locally unique equilibrium price process is given by

log Pt = φ−1
p

∞∑

j=0

ϕjEtr̃t+j +
∞∑

j=0

ϕ̃jEt[log P ∗
t+j − φ−1

p νt+j], (3.17)

where the weights are given by

ϕj ≡ (1 + ηiχφp)
jφp

[1 + (1 + ηiχ)φp]j+1
, (3.18)

ϕ̃0 ≡ (1 + ηiχ)φp

1 + (1 + ηiχ)φp

, ϕ̃j ≡ (1 + ηiχφp)
j−1φp

[1 + (1 + ηiχ)φp]j+1
for j ≥ 1. (3.19)

49In fact, our previous results for the Wicksellian regime in a cashless economy can be recognized as a
special case of the more general result obtained here. For that regime was also one in which (3.13) held at
all times, with the value ∆̄ = 0; and the composite disturbance r̂t is just the value of r̃t in the case of a
cashless economy, since χ = 0 in that case.
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The proof is given in the appendix. Here the solution (3.17) generalizes our previous result

(1.39), to which it reduces in the case that χ = 0. As long as χ also satisfies χ > −(φpηi)
−1,

the weights {ϕj, ϕ̃j} are all positive, and again both series of weights sum to one, though for

χ 6= 0, the weight ϕ̃j no longer exactly equals ϕj.

Thus as long as χ ≥ 0 (the case of greatest empirical plausibility), and even for sufficiently

small negative values of χ, the same condition as before suffices for determinacy. We also

obtain a qualitatively similar theory of price-level determination: again, the log price level

is equal to a weighted average of current and future price-level targets, plus a discrepancy

that involves current and expected future fluctuations in the (suitably qualified) equilibrium

real rate of return r̃t and in the reaction-function shift factor νt in a manner similar to the

previous equation (1.39). The solution (3.17) is also observed to be continuous in χ, so that

for any economy in which χ is small enough, the equations derived for the cashless economy

provide a close approximation to the equilibrium evolution of prices.

We can similarly extend the results derived earlier for the case of a generalized Taylor

rule (2.51).

Proposition 2.13. Let monetary policy instead be specified by an interest-rate rule of

the form (2.51), with coefficients φπ, ρ ≥ 0, and again suppose that imt = ı̄mt at all times.

Finally, suppose again that χ satisfies (3.16).Then equilibrium is determinate if and only if

φπ > 0 and (2.52) holds. When these conditions are satisfied, a log-linear approximation to

the equilibrium evolution of inflation is given by

πt = − ρ

φπ

(̂ıt−1 − ı̄t−1) +
∞∑

j=0

ϕjEtr̃t+j −
∞∑

j=0

ϕ̃jEtı̄t+j, (3.20)

where the weights are given by

ϕj ≡ (1 + ηiχφπ)j

[(1 + ηiχ)φπ + ρ]j+1
, (3.21)

ϕ̃0 ≡ (1 + ηiχ)

(1 + ηiχ)φπ + ρ
, ϕ̃j ≡ [1 + (1− ρ)ηiχ](1 + ηiχφπ)j−1

[(1 + ηiχ)φπ + ρ]j+1
for j ≥ 1. (3.22)
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The proof is in the appendix. Thus the Taylor principle is again necessary and sufficient for

determinacy, as long as χ does not take a large negative value. The solution (3.20) generalizes

(2.53), to which it reduces when χ = 0. Again the weights ϕ̃j are no longer exactly equal to

the ϕj weights when χ 6= 0. However, the weights continue all to be positive, if ρ ≤ 1 and χ

is not too negative.

We have found that our qualitative results are largely unaffected by taking account of real-

balance effects on the equilibrium real rate of interest. How much are such effects likely to

matter quantitatively? The size of the required correction can be numerically calibrated from

estimates of money demand. Our simple model implies that the money demand elasticities

should be the same at both high and low frequencies, and if we expect the disturbances εm
t

to be unimportant at low frequencies, low-frequency relations among the variables mt, Yt,

and it will be most revealing about these elasticities. As a typical example, Lucas (1999)

finds that over the period xxxx, low-frequency variations in real M1 for the U.S. are fairly

well fit (up to a constant) by the variations in log Yt− .5 log it.
50 Linearization of (3.3) in the

logs of Yt, mt, and it indicates that according to our model, m̂t should be proportional to

[σ−1 + υ]Ŷt − β log(it/ı̄).

(Here it should be recalled that we log-linearize around a steady state with zero inflation, and

that we assume zero interest on the monetary base, as is true for the U.S.) Thus β−1[σ−1 +υ]

should be the ratio of the income elasticity to the interest elasticity of money demand;

according to Lucas’ estimates, this ratio is approximately 2.51

50Our model should really be interpreted as one of demand for the monetary base, but empirical studies
more often model the demand for a broader aggregate such as M1. At the low frequencies with which we
are here concerned, M1 and the base move roughly in proportion to one another, so we shall use Lucas’
estimated elasticities as estimates of the corresponding elasticities of demand for the monetary base.

51Here we may observe the way in which the assumption of an additively separable utility function,
implying υ = 0, would restrict the model’s implications regarding money demand in an undesirable way. We
would obtain a necessary relation between the degree of interest-sensitivity of private expenditure, on the
one hand, and the income-elasticity and interest-elasticity of money demand on the other. A negligible value
of χ is instead consistent with arbitrary values of these other elasticities, as long as one assumes a small
enough value for sm.
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From this we can infer that

χ = smυ = sm(2β − σ−1). (3.23)

If σ is greater than 0.5, as we shall assume,52 it follows that χ > 0, as argued above on

intuitive grounds. At the same time, no matter how large we assume σ to be, the factor

in parentheses in (3.23) cannot exceed 2, so that χ cannot realistically be assigned a value

larger than twice the size of sm. For the U.S., the value of the monetary base is about 25

percent of a quarter’s GDP, so that (using the value β = 0.99 for a quarterly model) sm

is approximately 0.0025. This suggests a value of χ no larger than 0.005. Alternatively, if

we use Lucas’ estimated coefficients for a semi-logarithmic specification of money demand,

namely ηy = 1 and ηi = 7 years (or 28 quarters), then the implied ratio of elasticities would

be ηy/(1 − β)ηi = 1/0.28 = 3.6. This would allow χ to be a larger multiple of sm, but only

by a factor of less than two, so that χ should be no larger than 0.01. Since the monetary

base is equally small for most industrial economies, a similar conclusion as to the plausible

size of real-balance effects would be reached for many economies.

As an illustration of how much allowing for χ > 0 would affect our calculations, consider

the solution (3.20) for the case of an inertial Taylor rule. Let us consider a policy rule with

ρ = 0.8, a fairly typical degree of interest-rate inertia in estimated Fed reaction functions for

the U.S. using quarterly data (see Table 1.1), and φπ = 0.3, implying a long-run inflation

response coefficient of Φπ = 1.5, Taylor’s (1993) value for the Greenspan period. Then the

weights ϕj and ϕ̃j appearing in the solution (3.20) for various future horizons j are plotted

in Figure 2.2. The figure shows the weights both under the assumption that χ = 0 (as in our

first approach), and for the positive value χ = .02. The latter is likely to be an over-estimate

of the actual size of real-balance effects on the marginal utility of income, but is considered to

show that even under the most generous assumptions real-balance effects should not matter

greatly. (The value ηi = 28 quarters is assumed in both cases.)

While the real-balance effect matters for such a calculation, neglecting it would not lead to

52See chapter 4 for further discussion of the calibration of this parameter.
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Figure 2.2: The weights ϕj with and without real-balance effects.

extremely misleading conclusions, either. Perhaps the most important qualitative difference

is that setting χ = 0.02 results in a slightly larger relative weight on the current period’s

intercept ı̄t as opposed to expected future intercepts. Especially in the (realistic) case that

both the equilibrium real rate r̃t and the monetary policy disturbance ı̄t exhibit substantial

positive serial correlation, so that it is only smoothed versions of the coefficients ϕj and ϕ̃j

that matter in practice, the predictions for inflation under the two assumptions will be quite

similar. For example, let us suppose that r̃t follows a stationary AR(1) process with serial

correlation coefficient 0 < ρr < 1. Then the predicted initial-period jump in the price level

in response to a unit positive innovation in the natural rate of interest53 is given by

∆
∞∑

j=0

ϕjρ
j
r.

53We understand this to mean a jump of one percentage point per annum in the natural rate, meaning
that r̃t jumps by ∆, where ∆ is the length of a period in years.
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Figure 2.3: Inflation response as a function of shock persistence.

This quantity is plotted, as a function of the degree of persistence of the shocks, in Figure

2.3(a). Here the measure of persistence on the horizontal axis is the rate of decay of the

disturbances per unit of calendar time, λ ≡ −(log ρr)/∆, where ∆ is the length of a period

in years.54 The results are plotted both under the assumption that χ = 0 and for the upper-

bound case χ = .02. We observe that the error involved in neglecting the real-balance effects

is quite small.

One case in which real balance effects would matter a great deal, however, is that of a

rule (2.43) in which the interest rate depends only upon contemporaneous inflation, in the

case that the “periods” are very short. Let us consider the behavior of the solution to our

equations as the length of a “period” (∆ > 0 units of calendar time) is made progressively

shorter. We shall fix numerical values for the rate of time preference δ ≡ (− log β)/∆ > 0,

54This measure is used, instead of ρr itself, in order to allow comparability across models with different
period lengths. In panel (a), ∆ = .25 years.
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the intertemporal elasticity of substitution σ > 0, steady-state share of expenditure on

liquidity services sm, the interest-rate semi-elasticity of money demand in units of calendar

time η̃i ≡ ∆ηi > 0, and the income-elasticity of money demand ηy that are independent of

the assumed size of ∆. Then the same reasoning used to derive (3.23) implies that as ∆ is

made small, the value of χ approaches a well-defined limiting value

χ̄ = sm

(
ηy

δη̃i

− σ−1

)
. (3.24)

We then obtain the following result.

Proposition 2.14. Consider a sequence of economies with progressively smaller period

lengths ∆, calibrated so that χ̄ 6= 0. Assume in each case that monetary policy is specified by

a contemporaneous Taylor rule (2.43), with a positive inflation-response coefficient φπ 6= 1

that is independent of ∆. Assume also that zero interest is paid on money. Then equilibrium

is determinate for all small enough values of ∆ if φπ > 1 and χ̄ > 0, or if 0 < φπ < 1 and

χ̄ < 0, but not otherwise.

The proof is in the appendix.55 This result clearly implies that the solution for equilibrium

inflation in the short-period limit cannot be a continuous function of χ for values of χ near

zero. Thus the value of χ matters in this case, even if it is very small.

However, this failure of continuity in χ in the short-period limit occurs only in the case

of a policy rule that makes the interest-rate operating target a purely contemporaneous

function of the current period’s inflation. As periods are made shorter, the central bank

is assumed to respond to a higher-frequency measure of inflation, and in the limit policy

is assumed to respond solely to an instantaneous rate of inflation. This is plainly a case

55Our result agrees with the continuous-time analysis of Benhabib et al. (1998a), who find that the range
of values of φπ that result in determinacy depends on the sign of ucm. Note that the result does not contradict
Proposition 2.13. That proposition asserts that even in the case of a rule with ρ = 0, one has determinacy
in the case of φπ > 1 for all values of χ greater than the negative lower bound (3.16). However, in the
sequence of economies with progressively shorter period lengths considered in Proposition 2.14, the value of
ηi increases as ∆−1. Hence for any sequence of economies in Proposition 2.14 for which χ̄ < 0, (3.16) is
violated for all small enough values of ∆, and Proposition 2.13 ceases to apply.
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of no practical interest. If we assume instead that policy responds to a smoothed inflation

measure (2.47), and let the rate of decay (in calendar time) of the exponential weights on

past inflation be fixed as we make “periods” shorter, no such problem arises. The same is

true in the equivalent case of a policy rule (2.51) with partial adjustment of the interest

rate toward a desired level that depends on the current instantaneous rate of inflation, if we

hold fixed the rate of adjustment ψ ≡ − log ρ/∆ > 0 as we make ∆ smaller. (We must also

assume that φπ is reduced along with ∆, so as to hold fixed the long-run response coefficient

Φπ ≡ (1− ρ)−1φπ.) In this case we obtain the following.

Proposition 2.15. Again consider a sequence of economies with progressively smaller

period lengths ∆, and suppose that

χ̄ > − 1

ψΦπη̃i

. (3.25)

Let monetary policy instead be specified by an inertial Taylor rule (2.51), with a long-run

inflation-response coefficient Φπ ≡ φπ/(1 − ρ) and a rate of adjustment ψ ≡ − log ρ/∆ > 0

that are independent of ∆. Assume again that zero interest is paid on money. Then rational-

expectations equilibrium is determinate if and only if Φpi > 1, i.e., if and only if the Taylor

Principle is satisfied.

The unique bounded solution for the path of nominal interest rates in the determinate

case is of the form

ı̂t = Λı̄t + Γ(1− γ)
∞∑

j=0

γjEtr̃t+j + Γ̃(1− γ)
∞∑

j=0

γjEtı̄t+j, (3.26)

with the solution for {πt} then obtained by inverting (2.51). In this solution, the coefficients

Λ, Γ, Γ̃ approach well-defined limiting values as ∆ is made arbitrarily small, while the rate

of decay of the weights on expected disturbances farther in the future,

ξ ≡ − log γ/∆ > 0,

also approaches a well-defined limiting value. Furthermore, these limiting values are all

continuous functions of χ̄ for values of χ̄ in the range satisfying (3.25), including values near

zero.
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Again the proof is in the appendix. Proposition 2.15 implies that in the case of this

kind of rule, small non-zero values of χ (of either sign) make no important difference for our

conclusions regarding price-level determination, even in the limiting case of arbitrarily short

periods.56 For example, our conclusions above about the small consequences of allowing for

a realistic positive value for χ continue to hold in the case of periods shorter than a quarter.

As an illustration, Figure 2.3(b) shows the same calculations as in Figure 2.3(a), but for a

model in which the “period” is only a day. Thus as long as we assume either a modest degree

of time-averaging in the inflation measure to which the central bank responds, or a modest

degree of inertia in the central bank’s adjustment of its interest-rate operating target in

response to inflation variations — both of which are always characteristic of actual central-

bank policies — we continue to find that the cashless analysis gives a good approximation to

the results obtained under a realistic non-zero value of χ, regardless of the assumed period

length.

4 Self-Fulfilling Inflations and Deflations

Thus far we have considered only the problem of local determinacy of equilibrium. But it is

appropriate also to consider, at least briefly, the question whether rational expectations equi-

librium is globally unique under one policy rule or another. Certainly we may have greater

confidence that a particular policy regime is desirable if a desirable outcome represents not

merely a locally unique equilibrium, but the unique rational expectations equilibrium, pe-

riod. And insofar as regimes may differ in the matter of global uniqueness, even when they

are equally consistent with the same desired equilibrium, and equally serve to make it locally

determinate, considerations of global uniqueness provide a reasonable further criterion for

refining one’s policy prescription.

The question of global uniqueness requires that we return to a consideration of the exact,

nonlinear equilibrium conditions, as our log-linear approximations can be relied upon to be

56Wicksellian policy rules of the form (1.30) can similarly be shown to be well-behaved in the continuous-
time limit.
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accurate only in the case of equilibria in which the variables remain within a sufficiently small

neighborhood of the values at which the log-linearization is done. This makes a complete

treatment of the issue rather complex, and beyond the scope of the present study. However,

a simple example will serve to illustrate how global multiplicity of equilibrium is possible,

despite local determinacy. We shall also give examples of policy regimes that would resolve

this problem.

4.1 Global Multiplicity Despite Local Determinacy

Our example illustrates the potential problem of multiplicity of equilibria under a “Taylor

rule” as discussed by Schmitt-Grohé and Uribe (1998) and by Benhabib et al. (1998b).

Consider a deterministic interest-rate feedback rule of the form

it = φ(Πt), (4.1)

where φ is again an increasing continuous function, satisfying φ(Π) ≥ 0 for all Π > 0.

We suppose once again that this rule incorporates an implicit target inflation rate Π∗ > β

satisfying φ(Π∗) = β−1Π∗ − 1. The stipulated lower bound – which is of some importance

for the present discussion – is necessary because it will be impossible for the central bank

to force nominal interest rates to be negative, no matter how much it may increase the

monetary base.

Following Benhabib et al. (1998b), let fiscal policy now be specified by a rule of the form

Tt = αWt − it
1 + it

Mt (4.2)

for determination of net tax collections at each date, for some constant 0 < α ≤ 1. Using

the flow government budget constraint (1.7), we see that this rule implies that

Et[Qt,t+1Wt+1] = (1− α)Wt.

Thus this fiscal policy has the “Ricardian” property that the transversality condition (1.18)

necessarily holds, regardless of the evolution of the endogenous variables.57 This means that

57Here our terminology follows Benhabib et al. (1998a). See chapter 5 for further discussion.
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we may omit the transversality condition from our list of requirements for an equilibrium.

Note also that under such a fiscal policy, debt management policy is irrelevant for equilibrium

determination.

Under such a regime, a rational expectations equilibrium is a pair of processes {Pt, it}
satisfying (4.1) and

1 + it = β−1Et

[
λ(yt+1, it+1; ξt+1)

λ(yt, it; ξt)

Pt

Pt+1

]−1

(4.3)

at all dates, together with the bound

∞∑

T=t

βT Etλ(yT , iT ; ξT )
[
yT +

iT
1 + iT

L(yT , iT ; ξT )
]

< ∞. (4.4)

Here (4.3) rewrites (1.21) using the function λ(y, i; ξ) that gives the value of Uc as a function

of those arguments (by substituting equilibrium real balances for the second argument of

Uc), and (4.4) similarly rewrites (1.23), also using (3.2) to substitute for Um.

The general existence of multiple solutions can be shown by considering the set of perfect

foresight equilibria (i.e., deterministic solutions) in the absence of shocks (yt = ȳ, ξt = 0 for

all t). Then, substituting (4.1) into (4.3), we obtain a nonlinear difference equation for the

inflation rate,

Πt+1λ(φ(Πt+1))
−1 = β(1 + φ(Πt))λ(φ(Πt))

−1, (4.5)

now writing simply λ(i) for λ(ȳ, i; 0). In the cashless limit (or the case of additive separa-

bility), this reduces to

Πt+1 = β(1 + φ(Πt)). (4.6)

It is clear in this last case that there exists a solution for Πt+1 > 0 in the case of any given

Πt > 0. Hence starting from any arbitrarily chosen initial inflation rate Π0 > 0, we can

construct a sequence {Πt} that satisfies (4.6) at all dates. Associated with this is a sequence

of non-negative interest rates, given by (4.1). As long as these sequences satisfy the bound

(4.4), they represent a perfect foresight equilibrium. In the case that desired real money

balances L(ȳ, i; 0) are bounded above as i approaches zero,58 because there is satiation at

58In fact, it suffices that iL(ȳ, i; 0) be bounded. Thus even in the case of the log-log money demand function
preferred by Lucas (1999), in which desired real balances decline as i−1/2, condition (4.4) is satisfied by all
interest-rate sequences.
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Figure 2.4: A self-fulfilling deflation under a Taylor rule.

a finite level of real money balances, this holds for any sequence {it}. In such a case, it is

clear that there exists a continuum of perfect foresight equilibria, one corresponding to each

possible initial inflation rate Π0.

This result obtains even if the rule (4.1) satisfies φπ > 1 near the “target” inflation rate

Π∗, so that the “Taylor principle” is satisfied, at least locally. In such a case, one has a large

multiplicity of equilibria globally, despite local determinacy. This is illustrated in Figure

2.4, where the solid curve plots the locus of pairs (Πt, Πt+1) that satisfy (4.6). Note that

this locus crosses the diagonal at the “target” inflation rate Π∗, indicating that Πt = Π∗

forever is one solution. The “Taylor principle” implies that the curve cuts the diagonal from

below at this point. In such a case, the fact that φ(Π) ≥ 0 for all Π implies that there also
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must be another steady state (constant inflation rate satisfying (4.6)), at some lower rate of

inflation. At this lower steady state, the curve must cut the diagonal from above; thus, as

Benhabib et al. stress, the “Taylor principle” cannot be globally valid. In the case shown

in the figure, the “Taylor principle” is adhered to to the extent possible, which means that

the lower steady state corresponds to a zero nominal interest rate. In this case, the lower

steady-state inflation rate is Π∗∗ = β, corresponding to deflation at the Friedman rate, the

rate of time preference of the representative household.

The sequence of inflation rates corresponding to any given initial inflation rate Π0 may

be constructed geometrically as indicated in the figure; for each value of Πt, one finds the

associated value of Πt+1 using the curve, then reflects this value down to the horizontal axis

using the diagonal, and repeats the construction. In the figure, a value Π0 < Π∗ is considered.

This is consistent with perfect foresight equilibrium only if Π1 < Π0, which in turn requires

Π2 < Π1, and so on. One is able to continue the construction forever, and in the case shown

in the figure (where φ(Π) < β−1Π− 1 for all Π > β, while φ(Π) = 0 for all Π ≤ β), one finds

that the inflation rate must decline monotonically over time, approaching the value Π∗∗ = β

asymptotically. This indicates the possibility of a self-fulfilling deflation under such a regime

– inflation that is perpetually lower than the target rate, and eventually, actual deflation,

that represents an equilibrium only because even lower inflation is expected in the future.

Along such a path, interest rates are constantly being lowered in response to the decline in

inflation, but because expected future inflation falls at the same time, real interest rates are

not reduced, and continue to be high enough to restrain demand despite the falling prices.

Such an equilibrium exists for each possible choice of Π0 in the interval β < Π0 < Π∗. At

the same time, for any inflation rate higher than the target rate, there exists an equilibrium

in which the equilibrium inflation rate rises over time, eventually growing unboundedly large.

Thus self-fulfilling inflation is equally possible under such a regime. Furthermore, because

(4.3) need only hold in expectation for an inflation process {Πt} to constitute a rational

expectations equilibrium, there is also an even larger set of equilibria in which the rate of
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inflation or deflation depends upon “sunspot” variables.59

Note that this global multiplicity of solutions does not contradict our previous results with

regard to local determinacy. One observes from Figure 2.4 that any deterministic equilibrium

other than the one with Πt = Π∗ forever involves an inflation rate that diverges farther and

farther from the target inflation rate as time passes. Thus every other equilibrium eventually

leaves a neighborhood of Π∗, even if the initial inflation rate is very close to it. The same

can be shown to be true of all of the stochastic equilibria as well,60 so that the desired

equilibrium is indeed locally unique in the sense discussed above. Note also that equilibrium

is indeterminate even locally, near the deflationary steady state; for any neighborhood of

Π∗∗, there exist a continuum of distinct equilibria in which inflation remains forever within

this range. But this too is consistent with our previous results, since the “Taylor principle”

is violated near this steady state.

These conclusions are largely unchanged when we take account of real balance effects.

As long as Π/λ(φ(Π)) is still a monotonically increasing function of Π, we can solve (4.5)

in the same manner as (4.6). In the case that real balances are complementary with private

expenditure (Ucm > 0), as was suggested above to be reasonable, λ(i) is a decreasing function,

and this condition is necessarily satisfied. And even if Ucm < 0, the monotonicity condition

may still hold – it suffices that λ not be too strongly increasing in i. In particular, as long as

λ(i) has a finite limiting value for i = 0 – which makes sense, as there should be a limit to

the value of expenditure, even when it is completely unimpeded by transactions frictions –

then the assumptions above about the form of φ(Π) suffice to imply that the curve in Figure

2.4 cuts the diagonal from above at the Friedman rate of deflation. This suffices to imply

the existence of a continuum of solutions to (4.5) involving self-fulfilling deflation. These

solutions will also satisfy (4.4), and hence represent perfect foresight equilibria, as long as

desired real balances are bounded, or indeed, as long iL(ȳ, i; 0) has a finite bound for i near

zero.

59The analysis of this possibility may be conducted along lines like those followed in Woodford (1994a),
in the analysis of multiple equilibria under a money growth rule.

60Again, see the related analysis in Woodford (1994a).
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These results may make it seem that a Taylor rule is not a very reliable way of ensuring

a determinate equilibrium price level after all, even if the “Taylor principle” is adhered to

except when interest rates become very low (in which case it cannot be). Several responses

may be made to this criticism. One is to note that the equilibrium in which inflation is

stabilized at the “target” level is nonetheless locally unique, which may be enough to allow

expectations to coordinate upon that equilibrium rather than one of the others. Here it

might seem that the existence of other equilibria with initial inflation rates arbitrarily close

to the target rate should make it easy for the economy to “slip” into one of those other

equilibria. Indeed, it is often said that in the case of perfect foresight dynamics like those

shown in Figure 2.4, the steady state with inflation rate Π∗ is “unstable”, implying that an

economy should be expected almost inevitably to experience either a self-fulfilling inflation

or a self-fulfilling deflation under such a regime.

Such reasoning involves a serious misunderstanding of the causal logic of difference equa-

tion (4.5). The equation does not indicate how the equilibrium inflation rate in period t + 1

is determined by the inflation that happens to have occurred in the previous period. If it did,

it would be correct to call Π∗ an unstable fixed point of the dynamics – even if that point

were fortuitously reached, any small perturbation would result in divergence from it. But

instead, the equation indicates how the equilibrium inflation rate in period t is determined

by expectations regarding inflation in the following period. These expectations determine

the real interest rate, and hence the incentive for spending, associated with the nominal rate

that the central bank sets in response to any given current inflation rate. The equilibria

that involve initial inflation rates near (but not equal to) Π∗ can only occur as a result of

expectations of future inflation rates (at least in some states) that are even farther from the

target inflation rate. Thus the economy can only move to one of these alternative paths if

expectations about the future change significantly, something that one may suppose should

not easily occur.

Indeed, many analyses of convergence to rational expectations equilibrium as a result

of adaptive learning dynamics find that equilibria are stable under the learning dynamics
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exactly in the case that they are “stable under the backward perfect foresight dynamics,”

which is exactly the case of the steady state Π∗ in Figure 2.4.61 The key to such results

is that any deviation in expected future inflation from the target rate results in an actual

inflation rate that is closer to the target rate than is the expected rate. If expectations

evolve relatively slowly (as an average of experience over a period of time), then one will

persistently observe inflation closer to the target rate than one is expecting, as a result of

which expectations eventually adjust toward a value closer to the target rate themselves.

But this makes actual inflation even closer to the target rate, and so on, until the process

eventually converges to an equilibrium in which both expected and actual inflation equal the

target rate forever.

Nonetheless, other types of learning processes, that allow extrapolation of paths diverging

from the target steady state, can result in convergence to one of the other equilibria.62 And

even if one regards the target steady state as locally stable, one must worry that a large

shock could nonetheless perturb the economy enough that expectations settle upon another

equilibrium; thus the problem of self-fulfilling inflations and deflations should probably not

be dismissed out of hand. But it is also important to note that this problem is in no way

special to the formulation of monetary policy in terms of an interest-rate feedback rule. In

particular, exactly the same sort of problems may arise in the case of monetary targeting.

Let us recall the equations that defined equilibrium real balances in the case of a mon-

etary targeting regime, and once again restrict our attention to the case in which there are

no exogenous shocks (µt = µ̄ > β, yt = ȳ, ξt = 0 for all t). Solving (3.3) for it, and substitut-

ing this into the Fisher equation (1.21), we obtain a stochastic difference equation for real

balances of the form

F (mt) = β/µ̄EtG(mt+1), (4.7)

61For examples of results of this kind, see Grandmont (1985), Grandmont and Laroque (1986), Marcet
and Sargent (1989), and Lettau and Van Zandt (1998). Lucas (1986) uses a result of this kind to argue that
self-fulfilling inflations should not be expected to occur, in the case of a monetary targeting regime.

62See Grandmont and Laroque (19xx) and Lettau and Van Zandt (1998).
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Figure 2.5: A self-fulfilling inflation under monetary targeting.

where

F (m) ≡ [Uc(ȳ, m; 0)− Um(ȳ, m; 0)]m, G(m) ≡ Uc(ȳ, m; 0)m.

This is the exact equation to which (A.19) represents a log-linear approximation, except that

we have here suppressed the dependence upon exogenous disturbances.

If we again consider perfect foresight solutions, we look for sequences {mt} that satisfy

G(mt+1) = µ̄/βF (mt). (4.8)

In the additively separable case, G(m) is linearly increasing in m, and so can be inverted,

while the function F (m) equals m times an increasing function of m. If this latter function
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(Uc − Um) is positive for all m > 0 – which is to say, if desired real balances can be made

arbitrarily small by making the interest rate high enough – then F (m) is positive, increasing,

and convex, and takes the limiting value F (0) = 0. In such a case, (4.8) can be uniquely solved

for mt+1 > 0 given any value mt > 0, and the graph of the solution is of the form shown in

Figure 2.5. Once again, the steady-state level of real money balances m∗ = L(ȳ, (µ̄−β)/β; 0)

is the point at which this graph intersects the diagonal; we note that at this point the curve

necessarily cuts the diagonal from below. And once again there is a second steady state, this

time at zero real balances.

Just as in the case of the Taylor rule, it will be observed that there is a distinct perfect

foresight equilibrium corresponding to each possible value of m0. If m0 < m∗, real balances

must be expected to decrease over time (as in the equilibrium illustrated in the figure),

converging to zero asymptotically. This corresponds to a self-fulfilling inflation. For the

progressively lower levels of real balances are associated with progressively higher nominal

interest rates, which in turn require progressively higher rates of inflation; asymptotically,

inflation approaches the rate (that may or may not be finite) that causes complete demoneti-

zation of the economy. If instead m0 > m∗, real balances must increase over time, eventually

increasing without bound. If desired real balances are finite at all positive interest rates,

then such equilibria involve interest rates falling to zero, at least asymptotically, and so

eventually involve deflation at a rate approaching the Friedman rate. They thus correspond

to the self-fulfilling deflations discovered to be possible in the case of a Taylor rule. Thus, as

a general rule, monetary targeting as such avoids neither of these types of potential problem.

In fact, as we shall see, it is possible to choose a policy regime under which equilibrium

is globally unique. But here again, there is little difference between the degree to which this

is possible when monetary policy takes the form of an interest-rate feedback rule, such as a

Taylor rule, and when it instead takes the form of monetary targeting.
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4.2 Policies to Prevent a Deflationary Trap

The result that self-fulfilling deflations are possible in the case of monetary targeting may

seem surprising, as many papers that consider equilibrium in the case of a constant money

supply find that such equilibria are impossible.63 But the reason for this is that standard

analyses do not specify a Ricardian fiscal policy, as we have above. As noted in section 1.2,

analyses of monetary targeting typically assume a fiscal policy under which there is zero

government debt at all times. Under this specification, the transversality condition (1.24) is

no longer redundant; it holds only if the path of real balances satisfies

lim
T→∞

βT Et[uc(YT ,mT ; ξT )mT ] = 0. (4.9)

As a result, self-fulfilling deflations generally cannot occur in a rational expectations

equilibrium, if the money growth rate satisfies µ̄ ≥ 1, i.e., the money supply is non-decreasing.

This is most easily shown in the case that there is satiation in real balances at some finite

level. Then for all values of m above this level, F (m) = G(m), and (4.8) requires that

mt+1 = µ̄/βmt

each period, after real balances exceed the satiation level. At the same time, Uc(ȳ, mt; 0)

remains constant, even if preferences are not additively separable. It follows that in the case

of any deflationary solution to (4.8),

βT Uc(ȳ, mT ; 0)mT = βtµ̄T−tUc(ȳ, mt; 0)mt ≥ βtUc(ȳ, mt; 0)mt > 0

at all dates T ≥ t, where t is some date at which real balances have already reached the

satiation level. Thus the transversality condition is violated in the case of any such path,

and it does not represent a perfect foresight equilibrium. A generalization of this argument

can be used to exclude stochastic equilibria in which real balances eventually exceed the

satiation level as well; as a result one can show that one must have mt ≤ m∗ at all times in

any rational expectations equilibrium.64

63See, for example, Brock (1975), Obstfeld and Rogoff (1986), and Woodford (1994a).
64See Woodford (1994a) for details.
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But this result has nothing to do with the fact that monetary policy is specified in terms

of a target path for the money supply. Instead it depends upon the fact that fiscal policy

is assumed, under such a regime, not to be Ricardian. Government policy implies that not

just the money supply, but also the nominal value of government liabilities Dt, grows at the

rate µ̄, and it is the latter fact that rules out self-fulfilling deflations. But we could equally

well combine this kind of fiscal policy with an interest rate rule, by specifying fiscal policy

in terms of a target path for Dt, as in section 2.1 above. We would then obtain exactly the

same result.

Let total nominal government liabilities Dt be specified to grow at a constant rate µ̄ ≥ 1,

starting from an initial size D0 > 0, while monetary policy is described by the Taylor rule

(4.1). (Note that a balanced-budget policy, in the sense of Schmitt-Grohé and Uribe (1998),

is one example of such a fiscal policy.) Let us also suppose, to simplify the analysis, that

there exists an inflation rate Π > β such that φ(Π) = 0 for all Π ≤ Π.65

Then any deflationary solution to (4.5) involves a zero nominal interest rate in each

period after some finite date t, which in turn implies that ΠT = β for all T ≥ t+1. It follows

that

βT λ(iT )DT /PT = βtµ̄T−tλ(0)Dt/Pt ≥ βtλ(0)Dt/Pt > 0

at all dates T > t, so that the transversality condition (1.24) is violated in the case of

any such path.66 In essence, the specified fiscal policy is too stimulative, in the case of a

deflationary path, to be consistent with market clearing; if the private sector consumes only

as much as the economy produces, it finds that its real wealth grows explosively, as a result

of which it wishes to consume more.67

The result just mentioned depends upon interest rates being driven to zero sufficiently

quickly in the event that inflation falls. However, even if φ(Π) > 0 for all Π > β, as long

65One interpretation of this assumption is that the policy rule conforms to the “Taylor principle” except
when the zero bound prevents any further decreases in the nominal interest rate.

66This is how self-fulfilling deflations are excluded under a Taylor rule in Schmitt-Grohé and Uribe (1998),
in the context of a related model.

67The effects of fiscal policy upon aggregate demand under a non-Ricardian regime are discussed further
in chapter 5.
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as φ(Π) < (Π− β)/β for all β < Π < Π∗, we can still exclude self-fulfilling deflations in the

case of any fiscal policy that ensures a growth rate µ̄ > 1 for government liabilities. For this

ensures that every deflationary solution involves an inflation rate converging to Π∗∗ = β, as

shown in Figure 2.4. Hence there must exist a date t such that 1 + φ(ΠT ) ≥ µ̄ for all T ≥ t.

It follows that

βT λ(iT )DT /PT = βtλ(it)
T−1∏

s=t

(1 + is)
−1µ̄T−tDt/Pt ≥ βtλ(it)Dt/Pt > 0,

so that again the transversality condition is violated. Finally, even if interest rates level off

sooner, so that there exists a lower steady-state inflation rate Π∗∗ > β, the same argument

works as long as µ̄ > β−1Π∗∗.

Thus, in the case of an appropriate fiscal policy rule, a deflationary trap is not a possible

rational expectations equilibrium, even under an interest-rate rule. Furthermore, the type

of fiscal commitment that is required to exclude such a possibility is essentially the same

in the case of an interest-rate rule as in the case of monetary targeting: fiscal policy must

ensure that the nominal value of total government liabilities Dt will not decline, even in the

case of sustained deflation.

Indeed, an interest-rate rule has an advantage over the classic formulation of a monetary-

targeting regime, in at least one regard. Self-fulfilling deflations may be excluded in the case

of an interest-rate rule, even when the target inflation rate Π∗ associated with the Taylor

rule (or with a Wicksellian regime with a non-constant target path for the price level) implies

deflation at a rate less than the rate of time preference (β < Π∗ < 1). Under the monetary

targeting regime (with fiscal policy maintaining zero government debt at all times), instead,

the argument given above to exclude self-fulfilling deflations fails when µ̄ < 1. In this case,

the transversality condition is satisfied by all of the solutions to (4.8) that involve inflation

rates eventually falling to the level Πt = β, and so a continuum of perfect foresight equilibria

(and similarly a large set of “sunspot” equilibria) exist.68 Of course, this result could be

avoided if we assume a different fiscal policy; it is simply necessary that the nominal value of

68See Woodford (1994a) for demonstration of this for a closely related model.
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total liabilities be non-decreasing, even as the money supply contracts. Thus Dupor (1999)

shows that self-fulfilling deflations can be avoided if the money supply is contracted through

open-market operations (that replace the money with corresponding increases in government

debt), rather than through the lump-sum tax collections envisioned by Friedman (1969). But

this emphasizes that monetary targeting as such is not the key to excluding the possibility

of a deflationary trap.

It is sometimes supposed that the conduct of monetary policy through interest-rate con-

trol leaves monetary policy impotent in the case of a deflationary trap, because the nominal

interest rate instrument cannot be lowered below zero, whereas it is actually still possible to

stimulate aggregate demand by increasing the money supply. But monetary control has no

such advantage. It is important to remember that there is no real-balance effect once the

short nominal interest rate falls to zero, even if it is still possible to increase the size of the

excess real money balances (i.e., balances in excess of the satiation level) held by the public.

This is because higher real balances increase desired spending, for any given expected path of

real interest rates, only insofar as they are able to increase the marginal utility of additional

expenditure associated with a given level of real expenditure. Once the satiation level of real

balances is reached, additional money balances no longer lead to any further relaxation of

constraints upon transactional flexibility, and so they cannot stimulate aggregate demand.

Recall that in section 3.3 above, we were able to replace the function Uc(yt,mt; ξt) de-

scribing the marginal utility of additional expenditure by λ(yt, it; ξt). Thus additional real

balances affect the marginal utility of expenditure only insofar as they can reduce the short-

term nominal interest rate it, which indicates the value of further relaxation of transaction

constraints. Once the nominal interest rate cannot be further lowered, an increase in real

money balances as such can have no effect upon aggregate demand, through either a real-

interest-rate effect or a direct real-balance effect. Thus monetary policy is impotent under

such circumstances; but this is not a limitation of the use of an interest-rate instrument.

Alternatively, it is sometimes argued that even when increases in the current money

supply are ineffective, due to the economy’s being in a “liquidity trap” (i.e., money balances
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already in excess of the satiation level), a commitment to future money supply increases can

nonetheless stimulate aggregate demand. The idea is that increasing the expected future

price level can lower real interest rates even when nominal rates cannot be further reduced

(Krugman, 1999). This is right, but there is no special efficacy of a commitment to monetary

targets in this regard. Commitment to a high rate of money growth does nothing to exclude

a deflationary trap, when coupled with a Ricardian fiscal policy; the deflationary equilibrium

simply involves a higher level of excess money balances in that case. Only an anti-deflationary

fiscal commitment can solve this problem, and it can do so whether or not there are monetary

targets.

On the other hand, the problem of a country like Japan at present may not be so much

that it has fallen into a self-fulfilling deflationary trap, despite the existence of an equilibrium

with stable prices if only expectations were to coordinate upon it, as that a temporary

reduction in the equilibrium real rate of return has made stable prices incompatible with

the zero bound on nominal interest rates, as suggested by Krugman. In such a case, the

only way to avoid a period of sharp deflation when the disturbance occurs may be a regime

that creates expectations of subsequent inflation. Let us suppose that the problem of self-

fulfilling deflations may be put aside (perhaps because of an appropriate fiscal commitment),

and that the economy is expected to converge to a near-steady-state equilibrium after the

real disturbance subsides (and the equilibrium real rate returns to its normal positive level).

Then whether the path of this sort that is followed involves a sharp initial deflation or

not depends upon expected monetary policy after the shock subsides, although, for some

expectations regarding future policy, there may be nothing current monetary policy can

do to prevent deflation. In such a case, as Krugman argues, the future monetary policy

commitment and its credibility are crucial. But the kind of policy commitment that can

imply expectations of a suitably high future price level may well be a Wicksellian regime or

a Taylor rule, which would determine the expected future price level in the way explained

in section 2 above.
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4.3 Policies to Prevent an Inflationary Panic

We next consider the opposite sort of instability due to self-fulfilling expectations, the pos-

sibility of spontaneous flight from a country’s currency, with its loss in value over each time

period resulting from expectations of even further declines in value, at an even faster rate,

in the near future. Such self-fulfilling inflations have generally been considered a more trou-

bling possibility than self-fulfilling deflations in the literature on monetary targeting regimes.

However, conditions have been identified under which such equilibria would not exist in the

case of a constant money growth rate.

In particular, Obstfeld and Rogoff (1986) show that in the model considered here, if pref-

erences are of the additively separable form considered in section xx above, and in addition

lim
m→0

mum(m; 0) > 0, (4.10)

then no such perfect foresight equilibria exist under monetary targeting. For in this case,

the function F (m) is negative for all levels of real balances below a critical level m > 0, as a

result of which the graph of (4.8) cuts the horizontal axis at the point mt = m > 0, rather

than passing through the origin as shown in Figure 2.5. Thus no equilibrium can ever have

mt ≤ m. But then it follows from (4.8) that no perfect foresight equilibrium can ever have

mt ≤ m1 ≡ F−1(β/µ̄G(m)),

as a result of which no perfect foresight equilibrium can ever have

mt ≤ m2 ≡ F−1(β/µ̄G(m1)),

and so on. One shows in this way that no equilibrium is possible with mt < m∗ at any time.

Condition (4.10) was excluded in our analysis above by the assumption that desired real

balances can be made arbitrarily small by sufficiently increasing the interest rate; for it

implies that L(ȳ, i; 0) is bounded below by m for all i. (The existence of such a bound is

the key to the above construction, for which additive separability is actually not important.)

Obstfeld and Rogoff point out that the conditions required for this to be true are somewhat
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implausible, though theoretically possible. Observed hyperinflations in several countries have

also shown that real balances do indeed fall to a small fraction of their normal level when

inflation becomes sufficiently severe, and the money demand functions estimated from such

data (as in the classic study by Cagan, 1956) imply that real balances should approach zero

in the case of high enough expected inflation. Hence it is not clear that one can rely upon

this mechanism to prevent self-fulfilling inflations in an actual economy.

What if monetary policy is instead specified by a Taylor rule of the form (4.1)? A

similar argument excluding self-fulfilling inflations would be possible only if the graph of

(4.5) becomes vertical at some finite inflation rate Π̄, so that (4.5) has no solution for Πt+1

in the case of Πt > Π̄. In the additively separable case, this might seem to be impossible, as

there could fail to be a solution for Πt+1 in (4.6) only if φ(Πt) is itself not defined. However,

it is not clear that a function φ that becomes unboundedly large at a finite inflation rate

Π̄ must be excluded as a possible policy. After all, in the case of monetary targeting when

(4.10) holds, the policy that excludes self-fulfilling inflations is one of commitment never to

supply more than a certain quantity of money, no matter how high this may require interest

rates to be driven. This is equivalent to a Wicksellian rule (1.30) in which the function

φ becomes unboundedly large at a finite level of Pt/P
∗
t . If such a policy is considered to

be feasible, despite the fact that it commits the central bank to something that is simply

impossible in the case of too high a price level, then it is not clear why a Taylor rule that

makes φ undefined for Πt ≥ Π̄ is not an equally feasible policy. But if we consider a Taylor

rule of this kind to represent a credible commitment, then such a strategy to exclude self-

fulfilling inflations should actually be superior to monetary targeting. For its applicability

would not depend upon the implausible assumption that desired real balances are bounded

away from zero.

Furthermore, under some circumstances it is possible to exclude self-fulfilling inflations

through commitment to increase interest rates sufficiently sharply at high rates of inflation,

even when φ(Π) is well-defined for any finite inflation rate.If Ucm < 0 at low levels of real

balances, the function λ(i) is increasing in i, at high levels of i. Suppose that in fact the
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elasticity of λ(i) with respect to 1 + i is positive, but bounded below one for all high enough

i. Then the right-hand side of (4.5) increases with Πt, for high inflation rates, eventually

growing without bound. However, if φ(Π) increases sufficiently rapidly for high values of Π,

the function Π/λ(φ(Π)) may be bounded above. In this case, (4.5) has no solution for Πt+1

in the case of values of Πt above some finite bound Π̄.69

But this then allows us to exclude self-fulfilling inflations altogether among the set of

perfect foresight equilibria, using an iterative argument like that made above in the case

of the lower bound on real balances. Then, assuming a fiscal policy of the kind discussed

above, that excludes self-fulfilling deflations, one can show that the equilibrium with infla-

tion forever at the target inflation rate Π∗ is the unique perfect foresight equilibrium. In

fact, using similar arguments, one can show that it is the unique rational expectations equi-

librium, even allowing for stochastic equilibria of arbitrary form. And, at least in the case

of sufficiently small random variations in the exogenous variables {yt, ξt, νt, Π
∗
t}, the locally

unique equilibrium that was approximately characterized in section 2.3 above can similarly

be shown to be globally unique.

Even if solutions of these kinds are unavailable, self-fulfilling inflations may be excluded

through the addition of policy provisos that apply only in the case of hyperinflation. For

example, Obstfeld and Rogoff (1986) propose that the central bank commit itself to peg the

value of the monetary unit in terms of some real commodity, by standing ready to exchange

the commodity for money, in the event that the real value of the total money supply ever

shrinks to a certain very low level. Assuming that this level of real balances is one that would

never be reached except in the case of a self-fulfilling inflation, the commitment has no effect

except to exclude such paths as possible equilibria. Obstfeld and Rogoff propose this as a

solution to the problem of self-fulfilling inflations under a regime that otherwise targets the

money supply; but it has no intrinsic connection to monetary targeting, and could equally

well be added as a hyperinflation proviso in a regime that otherwise follows a Taylor rule.

69This is essentially the way in which self-fulfilling inflations are excluded under a Taylor rule in the
analysis of Schmitt-Grohé and Uribe (1998), though their model is not precisely consistent with ours.
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1 APPENDIX TO CHAPTER 2

1.1 Proof of Proposition 2.1

Proposition 2.1. Consider positive-valued stochastic processes {Pt, Qt,T} satisfying (1.10)

and (1.11) at all dates, and let {Ct,Mt} be non-negative-valued processes representing a

possible consumption and money-accumulation plan for the household. Then there exists a

specification of the household’s portfolio plan at each date satisfying both the flow budget

constraint (1.7) and the borrowing limit (1.9) at each date, if and only if the plans {Ct, Mt}
satisfy the constraint

∞∑

t=0

E0Q0,t [PtCt + ∆tMt] ≤ W0 +
∞∑

t=0

E0Q0,t[PtYt − Tt]. (A.1)

Proof: Substituting s for the time index t in (1.7), taking the present value of both

sides of the inequality at an earlier (or no later) date t, and summing over dates s from t

through T − 1, we obtain

T−1∑

s=t

EtQt,s [PsCs + ∆sMs] + Et[Qt,T WT ] ≤ Wt +
T−1∑

s=t

EtQt,s[PsYs − Ts]

for any date T ≥ t + 1. Combining this with the bounds (1.9) on the portfolios that may be

chosen in the various possible states at date T − 1 (which are lower bounds upon the values

of those portfolios in possible states at date T ), one sees that a feasible plan must satisfy

T−1∑

s=t

EtQt,s [PsCs + ∆sMs] ≤ Wt +
∞∑

s=t

EtQt,s[PsYs − Ts].

Note that the right-hand side is now independent of the terminal date T . The left-hand

side is instead a non-decreasing series in T, given positive goods prices at all dates (necessary

for any finite level of consumption to be optimal), interest rates satisfying (1.11), and non-

negative levels of consumption and money balances at all times. The right-hand side, which

is finite by (1.10), provides an upper bound for this series, which accordingly must converge

as T grows. Furthermore, the limiting value of the series must itself satisfy the upper bound.

Thus any feasible plan involves a sequence of state-dependent consumption levels and money
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balances satisfying the intertemporal budget constraint (1.13). In particular, under any

feasible plan, the entire infinite streams {Ct,Mt} from the initial date t = 0 onward must

satisfy this constraint for date zero, given the household’s initial financial wealth W0. This

establishes the necessity of (A.1).

It remains to show that this constraint is also sufficient for processes {Ct,Mt} to be

attainable. One easily shows that processes that satisfy (A.1) can be achieved, by letting

the household’s choice of Wt at each date t ≥ 1 (in each possible state) be given by the value

that makes (1.13) hold at that date with equality. Given the hypothesized process for Mt,

this then implies a value for At+1 in each possible state, and thus completely specifies the

household’s portfolio plan at each date t ≥ 0. The resulting plan obviously satisfies (1.9) at

each date, and it is easily verified that it satisfies (1.7), and hence (1.2), at each date as well.

Thus the entire sequence of flow budget constraints is equivalent to the single intertemporal

constraint (A.1).

1.2 Proof of Proposition 2.2

Proposition 2.2. Let assets be priced by a system of stochastic discount factors that satisfy

(1.20), and consider processes {Pt, it, i
m
t ,M s

t ,W s
t } that satisfy (1.15), (1.21), and (1.23) at

all dates, given the exogenous processes {Yt, ξt}. Then these processes satisfy (1.22) as well

if and only if they satisfy

lim
T→∞

βT Et[uc(YT ; ξT )DT /PT ] = 0. (A.2)

In this proposition, note that the path of {Dt} can be inferred from the processes that are

specified using the identity

Dt = M s
t + Et[Qt,t+1(W

s
t+1 − (1 + imt )M s

t )].

Proof: Note that (1.15) and (1.21) imply that

βEt[uc(YT+1; ξT+1)(1 + imT )M s
T /PT+1] = βEt[uc(YT+1; ξT+1)(1 + iT )M s

T /PT+1]
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= Et[uc(YT ; ξT )M s
T /PT ].

Adding this to the relation

βEt[uc(YT+1; ξT+1)A
s
T+1/PT+1] = Et[uc(YT ; ξT )Bs

T /PT ]

that follows from (1.4) and (1.20), we find that

βEt[uc(YT+1; ξT+1)W
s
T+1/PT+1] = Et[uc(YT ; ξT )DT /PT ].

It then follows that (1.22) holds if and only if (A.2) does.

In the case of the model with transactions frictions introduced in section xx, a similar

proposition continues to hold. A precise statement can be given as follows.

Proposition 2.2′. Let assets be priced by a system of stochastic discount factors that

satisfy (1.20), and consider processes {Pt, it, i
m
t ,M s

t ,W s
t } that satisfy (1.21), (3.3), and (3.4)

at all dates, given the exogenous processes {Yt, ξt}. Then these processes satisfy (1.22) as

well if and only if they satisfy

lim
T→∞

βT Et[uc(YT ,M s
T /PT ; ξT )DT /PT ] = 0. (A.3)

In this more general case, (1.21) and (3.3) can be used to show that

βEt[uc(YT+1, M
s
T+1/PT+1; ξT+1)(1 + imT )M s

T /PT+1] = Et[uc(YT ,M s
T /PT ; ξT )(1−∆T )M s

T /PT ]

= Et[(uc(YT ,M s
T /PT ; ξT )− um(YT ,M s

T /PT ; ξT ))M s
T /PT ],

from which it follows as above that

βEt[uc(YT+1, M
s
T+1/PT+1; ξT+1)W

s
T+1/PT+1] = Et[uc(YT , M s

T /PT ; ξT )DT /PT ]−Et[um(YT ,M s
T /PT ; ξT )M s

T /PT ].

Furthermore, (3.4) implies that

lim
T→∞

βT Et[um(YT ,M s
T /PT ; ξT )M s

T /PT ] = 0.

Hence (1.22) holds if and only if (A.3) holds.
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1.3 Determinacy of Rational-Expectations Equilibrium

[TO BE ADDED][See Woodford (1986)]

1.4 Proof of Proposition 2.3

Proposition 2.3. Under a Wicksellian policy rule (1.30) with φp > 0, the rational-

expectations equilibrium paths of prices and interest rates are (locally) determinate; that is,

there exist open sets P and I such that in the case of any tight enough bounds on the fluc-

tuations in the exogenous processes {r̂t, π
∗
t , νt}, there exists a unique rational-expectations

equilibrium in which Pt/P
∗
t ∈ P and it ∈ I at all times. Furthermore, equations (1.37) and

(1.38) give a log-linear (first-order Taylor series) approximation to that solution, accurate up

to a residual of order O(||ξ||2), where ||ξ|| indexes the bounds on the disturbance processes.

Proof: This is a direct application of the implicit function theorem, as discussed in the

previous section. As discussed in the text, (1.32) and (1.34) represent log-linear (first-order

Taylor-series) approximations to the equilibrium relations (1.21) and (1.30). The existence

of a unique bounded solution to the log-linearized relations implies the existence of a locally

unique solution to the exact relations as well, in the case of any tight enough bound on

the exogenous disturbances, using the inverse function theorem; and that solution to the

log-linearized relations provides a first-order Taylor-series approximation to the solution to

the exact relations, using the implicit function theorem. If the neighborhoods P and I are

small enough, any solution to the exact relations restricted to these sets must satisfy the

transversality condition (1.24) as well, and so represents a rational-expectations equilibrium.

It thus remains only to demonstrate that the system consisting of (1.32) and (1.34),

together with the identity (1.35), has a unique bounded solution when φp > 0. As shown in

the text, these equations imply (1.36). This is a form of expectational difference equation

that occurs repeatedly in this chapter, that may be written in the form

zt = aEtzt+1 + ut, (A.4)
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where zt is an endogenous variable and ut is an exogenous disturbance process. In the present

application, zt = P̂t, a = (1 + φp)
−1, and

ut = (1 + φp)
−1(r̂t + Etπ

∗
t+1 − νt).

Any expectational difference equation of the form (A.4) has a unique bounded solution

{zt} in the case of an arbitrary bounded disturbance process {ut} in the case that |a| < 1.

Note that (A.4) implies that

Etzt+j = aEtzt+j+1 + Etut+j

for arbitrary j ≥ 0. Multiplying this equation by aj and summing from j = 0 through k− 1,

we obtain

zt = akEtzt+k +
k−1∑

j=0

ajEtut+j. (A.5)

Note that this equation must hold for arbitrary k. If {zt} is a bounded process and |a| < 1,

it follows that

lim
k→∞

akEtzt+k = 0.

Then since the left-hand side of (A.5) is independent of k, it follows that the final term on

the right must converge in value as k is made unboundedly large, and specifically to the

value of the left-hand side. Thus we must have

zt =
∞∑

j=0

ajEtut+j. (A.6)

(This solution is sometimes said to be obtained by “solving (A.4) forward.”)

Equation (A.5) represents not just one possible solution to (A.4), but the unique bounded

solution. In the present application, (A.6) yields equation (1.37) in the text. Substitution

of this into (1.34) then yields (1.38) as well.

For future reference, it is also useful to consider the case in which |a| ≥ 1. In this case,

the process {zt} recursively defined by

zt = a−1(zt−1 − ut−1) + νt (A.7)
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for all t ≥ 1, starting from an arbitrary initial condition z0, represents a solution to (A.4)

in the case of any process {νt} such that Etνt+1 = 0 for all t. If |a| > 1, (A.7) represents

a bounded solution for {zt} in the case of any bounded process {νt}, assuming that {ut} is

bounded as well. Hence there is an extremely large set of bounded solutions {zt} to equation

(A.4).

In the case that |a| = 1 exactly, not all solutions of the form (A.7) are bounded, even if

both {ut} and {νt} are bounded processes. Nonetheless, if (A.4) has any bounded solution,

it must have an uncountably infinite number of them. Let {z̄t} be one bounded solution.

(For example, in the case that

vt ≡
∞∑

j=0

Etut+j

is well-defined and bounded, as is true for any stationary ARMA process {ut} with bounded

innovations, then one bounded solution to (A.4) is given by z̄t = vt, the solution obtained

by solving forward.) Then another bounded solution is recursively defined by

zt = z̄t + (zt−1 − z̄t−1 + νt

for all t ≥ 1, starting from an arbitrary initial condition z0, where {νt} is any stochastic

process such that Etνt+1 = 0 for all t, and such that
∑T

t=1 νt remains bounded for arbitrarily

large T . This last stipulation can obviously be satisfied by a large number of mean-zero,

unforecastable processes; for example, it suffices that νt be bounded for each t, and equal

to zero with probability one for all t greater than some date T . Hence in this case as well,

there are clearly an uncountably infinite number of bounded solutions. Thus the condition

that |a| < 1 is both necessary and sufficient for the existence of a unique bounded solution

to (A.4).

1.5 Proof of Proposition 2.4

Proposition 2.4. Consider a monetary policy under which the monetary base is bounded

below by a positive quantity: M s
t ≥ M > 0 at all times. (For example, perhaps the

monetary base is non-decreasing over time, starting from an initial level M s
0 > 0.) Suppose
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furthermore that government debt is non-negative at all times, so that Dt ≥ M s
t . Finally,

suppose that imt = 0 at all times. Then in the cashless economy described above, there exists

no rational-expectations equilibrium path for the price level {Pt}.

Proof: If imt = 0 at all times, (1.15) requires that in any equilibrium, it = 0 at all times.

Then (1.21) requires that

βEt[uc(Yt+1; ξt+1/Pt+1] = uc(Yt; ξt)/Pt

at all times, and hence, by iteration, that

βT Et[uc(YT ; ξT /PT ] = βtuc(Yt; ξt)/Pt

for all T ≥ t. But this, together with the lower bound Dt ≥ M > 0, implies that

βT Et[uc(YT ; ξT )DT /PT ] ≥ MβT Et[uc(YT ; ξT /PT ]

= MβtEt[uc(Yt; ξt/Pt] > 0,

which contradicts (A.2). Hence no equilibrium is possible.

In fact, equilibrium values could be defined under such a regime for real rates of return and

asset prices; if we write prices in terms of some real numeraire rather than monetary units,

a well-defined equilibrium would exist, but would involve zero exchange value for money.

In essence, under the regime described, money is a pure “bubble” — an asset the exchange

value of which would have to be sustained purely by the expectation of a future exchange

value, and not any dividends ever yielded by the asset — and cannot have an exchange value

in a rational-expectations equilibrium, at least not in a representative-household model of

the kind assumed here. (In fact, a similar result can be obtained in much more general

environments, as shown by Santos and Woodford, 1997.) Instead, under the regime to which

Proposition 2.3 applies, interest is paid on money, and — the crucial point — this interest

is not simply additional money that remains forever in circulation. Because private-sector

nominal claims on the government Dt are assumed to grow at a rate less than the rate at
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which interest is paid on money — recall that γD < Π̄/β = 1 + φ(1; 0) = 1 + ı̄m — at least

some of the money received as interest payments is eventually redeemed by the government

(accepted as payment for taxes), so that money ceases to be a pure “bubble”.

1.6 Proof of Proposition 2.5.

Proposition 2.5. Let monetary policy be specified by an exogenous sequence of interest-

rate targets, assumed to remain forever within a neighborhood of the interest rate ı̄ > 0

associated with the zero-inflation steady state; and let these be implemented by setting imt

equal to the interest-rate target each period. Let {M s
t , Dt} be exogenous sequences of the

kind assumed in Proposition 2.3. Finally, let P be any neighborhoods of the real number zero.

Then for any tight enough bounds on the exogenous processes {Yt, ξt Dt/Dt−1} and on the

interest-rate target process, there exists an uncountably infinite set of rational-expectations

equilibrium paths for the price level, in each of which the inflation rate satisfies πt ∈ P for

all t. These include equilibria in which the inflation rate is affected to an arbitrary extent

by “fundamental” disturbances (unexpected changes in Yt or ξt), by pure “sunspot” states

(exogenous randomness unrelated to the “fundamental” variables), or both.

As discussed in the text, this can be established using the local method discussed in section

xx above. However, in the present case, the equilibrium relations are simply enough to

analyze without any resort to linear approximation.

Proof: Let {νt} be any unforecastable mean-zero random variable (or martingale dif-

ference) such that νt < 1 at all times. Then the inflation process given by

Pt

Pt−1

= β
1 + imt−1

uc(Yt−1; ξt−1)
Et−1[uc(Yt; ξt)(1− νt)] frac11− νt

satisfies (1.21) at all times. (Note that the solutions (2.42) presented in the text are log-

linear approximations to these processes.) In the case of tight enough bounds on both the

exogenous variables and the fluctuations in {νt}, this yields an inflation process such that

πt ∈ P at all times, and that satisfies (A.2) as well. Hence any such solution represents a



98 CHAPTER 2. PRICE-LEVEL DETERMINATION

rational-expectations equilibrium. The solutions corresponding to different choices of {νt}
represent distinct equilibria, since in each case the surprise component of inflation is given

by

πt − Et−1πt = − log(1− νt).

Finally, the variable {νt} may be correlated in an arbitrary way with any of the “fundamen-

tal” variables, or it may be completely independent of them.

1.7 Proof of Proposition 2.7

Proposition 2.7. Let monetary policy be described by a feedback rule of the form (2.48),

at least near the zero-inflation steady state, with Φπ ≥ 0. Then equilibrium is determinate

if and only if Φπ > 1. When this condition is satisfied, a log-linear approximation to the

equilibrium evolution of the smoothed inflation process is given by

π̄t = (1− δ)
∞∑

j=0

(δ + (1− δ)Φπ)−(j+1)Et[r̂t+j − ı̄t+j]. (A.8)

A corresponding approximation to the equilibrium evolution of the single-period inflation

rate πt is then obtained by substituting (A.8) into

πt =
π̄t − δπ̄t−1

1− δ
. (A.9)

Proof: The solution (A.9) for πt given the evolution of π̄t is obtained by inverting (2.47).

Then substituting (2.48) into (1.32) to eliminate it, we obtain

Φππ̄t = Etπt+1 + (r̂t − ı̄t).

Substituting (A.9) for πt in this equation, we obtain an expectational difference equation for

the smoothed inflation measure,

[δ + (1− δ)Φπ]π̄t = Etπ̄t+1 + (1− δ)(r̂t − ı̄t). (A.10)

This is again an equation of the form (A.4), allowing us to apply the same method as in the

proof of Proposition 2.3. The equation can be solved forward to obtain a unique bounded
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solution if and only if

δ + (1− δ)Φπ > 1,

which is to say, if and only if Φπ > 1, as required by the “Taylor principle”. When this

condition holds, the solution (A.5) is given by (A.8).

1.8 Proof of Proposition 2.8

Proposition 2.8. Let monetary policy be described by a feedback rule of the form (2.51), at

least near the zero-inflation steady state, with φπ, rho ≥ 0. Then equilibrium is determinate

if and only if φπ > 0 and

φπ + ρ > 1 (A.11)

When these conditions are satisfied, a log-linear approximation to the equilibrium evolution

of inflation is given by (2.53).

Proof: The proof follows the same lines as in the case of Proposition 2.7. Using (2.51)

to eliminate πt+1 in (1.32), one obtains an expectational difference equation

(φπ + ρ)̂ıt = Etı̂t+1 + φπr̂t + ρı̄t − Etı̄t+1,

corresponding to (A.10) above, and once again this is of the form (A.4). Applying the same

method as in the proof of Proposition 2.3, one finds that there is a unique bounded solution

for {ı̂t} if and only if

|φπ + ρ| > 1 (A.12)

is satisfied. Under the sign assumptions made in the statement of the Proposition, condition

(A.12) reduces to (A.11). By solving forward, i.e., applying (A.5), one obtains (2.54) as the

solution for the interest-rate process.

Corresponding to this solution for the path of the interest rate is a unique solution for

{πt}, obtained by inverting (2.51), if and only if φπ 6= 0. Hence there is a unique bounded

solution for {πt} if φπ > 0 and (A.11) applies. Using the solution obtained for {ı̂t}, one

obtains the solution (2.53) for the inflation process.
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If instead φπ = 0, there is a multiplicity of possible solutions for {πt}, even when the

equilibrium path {ı̂t} is uniquely determined. In fact, Proposition 2.5 again applies in this

case. If φπ > 0 but 0 < φπ + ρ < 1, there is an uncountably infinite number of solutions

for {ı̂t}, as one can show using the method discussed following the proof of Proposition

2.3. To each of these there corresponds a unique associated inflation process, but the set of

equilibrium inflation processes is uncountably infinite.

As remarked in the text, determinacy of equilibrium does not require that φπ > 0,

though that is the case of primary practical interest. Our analysis above shows that in

fact all that is required is that φπ 6= 0 and that (A.12) be satisfied. When ρ > 1, the latter

condition is satisfied by all non-zero inflation-response coefficients φπ > −(ρ−1), which would

include moderately negative values. In such a case, (2.53) continues to provide a log-linear

approximation to the equilibrium inflation process. The conditions for determinacy would

also be satisfied by all φπ < −(1 + ρ). (Note that this means that determinacy results from

sufficiently large negative values of φπ even in the case that ρ < 1.) However, the equilibrium

obtained in this case depends too crucially upon the assumption of a discrete sequence of

dates on which markets are open to be of practical interest. (In the continuous-time limit of

the model, no such equilibria are possible. See the discussion below at xxxx.)

1.9 Proof of Proposition 2.9.

Proposition 2.9. Suppose that the equilibrium real rate {r̂t} follows an exogenously given

stationary AR(1) process, and let the monetary policy rule be of the form (2.51), with

ρ ≥ 0, φπ > 0 and a constant intercept consistent with the zero-inflation steady state (i.e.,

ı̄t = 0). Consider the choice of a policy rule (ρ, φπ) within this class so as to bring about

a certain desired unconditional variance of inflation var(π) > 0 around the mean inflation

rate of zero. For any large enough value of ρ, there exists a φπ satisfying (A.11) such that

the unconditional variance of inflation in the stationary rational-expectations equilibrium

associated with this rule is of the desired magnitude. Furthermore, the larger is ρ, the

smaller is the unconditional variance of interest-rate fluctuations var(̂ı) in this equilibrium.
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Proof: In the case of an AR(1) process

r̂t = ρrr̂t−1 + εt

for the equilibrium real rate, Etr̂t+j = ρj
rr̂t for all j ≥ 0. Then for any policy rule (ρ, φπ)

that satisfies (A.11) (2.54) implies that

ı̂t =
φπ

φπ + ρ− ρr

r̂t.

Hence {ı̂t} is also an AR(1) process, with variance and first-order autocovariance

var(̂ı) =

(
φπ

φπ + ρ− ρr

)2

var(r̂), (A.13)

cov(̂ıt, ı̂t−1) = ρrvar(̂ı).

Inverting (2.51) implies that πt = φ−1
π (̂ıt − ı̂t−1), from which it follows that

var(π) = φ−2
π var(̂ıt − ρı̂t−1)

= φ−2
π [(1 + ρ2)var(̂ı)− 2ρcov(̂ıt, ı̂t−1)]

=
1− 2ρrρ + ρ2

(φπ + ρ− ρr)2
var(r̂). (A.14)

Condition (A.14) can be solved for the required inflation-response coefficient in order to

obtain a given degree of variability of inflation, yielding

φπ =
[
(1− 2ρrρ + ρ2)fracvar(r̂)var(π)

]1/2
+ ρr − ρ.

(Here we select the positive square root because we know that if a solution exists that satisfies

(A.11), it must be such that φπ > ρr−ρ.) We note that for all large enough ρ > 0, the right-

hand side expression must exceed 1 − ρ, in which case there is indeed a solution satisfying

(A.11), as asserted in the Proposition.

This solution can then be substituted for φπ in (A.13), yielding

σ(̂ı) = σ(r̂)− ρ− ρr

(1− 2ρrρ + ρ2)1/2
σ(π), (A.15)
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where σ(x) ≡ (var(x))1/2 in the case of any stationary random variable x. The expression

ρ− ρr

(1− 2ρrρ + ρ2)1/2
=

ρ− ρr

[(1− ρ2
r) + (ρ− ρr)2]1/2

is easily seen to be monotonically increasing in ρ, so that the right-hand side of (A.13) is

monotonically decreasing in ρ, for any given value of φπ.

1.10 Proof of Proposition 2.10.

Proposition 2.10. Consider a policy rule of the form (2.51), where ρ > 1 and {ı̄t} is a

bounded process, to be adopted beginning at some date t0. Then any bounded processes

{πt, ı̂t} that satisfy (2.51) for all t ≥ t0 must be such that the predicted path of inflation,

looking forward from any date t ≥ t0, satisfies (2.56). Conversely, any bounded processes

satisfying (2.56) for all t ≥ t0 also satisfy (2.51) for all t ≥ t0.

Proof: Note that (2.51) can equivalently be written

ı̂t−1 − ı̄t−1 = −ρ−1φππt + ρ−1 Et [̂ıt − ı̄t].

This is yet another stochastic difference equation of the form (A.4), where now zt ≡ ı̂t−1− ı̄t−1

happens to be a variable that is predetermined at date t. It follows from the discussion in

the proof of Proposition 2.3 that if |a| < 1, any bounded solution to (A.4) must satisfy (A.6).

In the present case, this result applies if ρ > 1, since in this case 0 < ρ−1 < 1, and (2.56) is

just the condition corresponding to (A.6).

The converse is established by noting that (A.6) implies that zt satisfies (A.4). This was

implicit in our previous characterization of (A.6) as a “solution” of equation (A.4). In the

present application, it does not make sense to call condition (2.56) a “solution” for the the

variable ı̂t−1 − ı̄t−1, for this variable is determined at date t − 1, while the right-hand side

of (2.56) depends on information at date t. Instead, (2.56) indicates the way in which the

central bank’s inflation target at date t varies depending on past conditions.
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1.11 Proof of Proposition 2.11.

Proposition 2.11. In the context of a Sidrauski-Brock model with additively separable

preferences, consider the consequences of a monetary policy specified in terms of exogenous

paths {M s
t , imt }, together with a fiscal policy specified by an exogenous path {Dt}. Under such

a regime, the rational-expectations equilibrium paths of prices and interest rates are (locally)

determinate; that is, there exist open sets P and I such that in the case of any tight enough

bounds on the fluctuations in the exogenous processes {Yt, ξt,M
s
t /M s

t−1, i
m
t , Dt/Dt−1}, there

exists a unique rational-expectations equilibrium in which Pt/M
s
t ∈ P and it ∈ I at all

times. Furthermore, a log-linear approximation to the equilibrium path of the price level,

accurate up to a residual of order O(||ξ||2), takes the form

log Pt =
∞∑

j=0

ϕjEt[log M s
t+j − ηi log(1 + imt )− ut+j]− log m̄, (A.16)

where the weights

ϕj ≡ ηj
i

(1 + ηi)j+1
> 0

sum to one, and ut is a composite exogenous disturbance

ut ≡ ηyŶt − ηir̂t + εm
t − ηi log(1 + ı̄m).

Proof: Once again, we may ignore conditions (1.24) and (3.4), as these will be satisfied

by any processes {Pt/M
s
t , it, i

m
t ,M s

t /M s
t−1, Dt/Dt−1, Yt, ξt} that satisfy tight enough bounds.

It then suffices that we consider the existence of bounded solutions to the system of log-linear

relations consisting of (1.32) and (3.6), augmented by the identity

m̂t = m̂t−1 + µt − πt, (A.17)

where µt ≡ log(M s
t /M s

t−1 is the exogenous rate of growth in the monetary base. This

comprises a system of three expectational difference equations per period to determine the

three endogenous variables m̂t, πt, and ı̂t.
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Using (1.32) to eliminate ı̂t in (3.6), we obtain a discrete-time rational-expectations ver-

sion of the Cagan model of inflation determination,

m̂t = −ηiEtπt+1 + [ut + ηi log(1 + imt )], (A.18)

where ut is the composite exogenous disturbance defined in the statement of the proposition.

Then using (A.17) to substitute for πt+1, (A.18) implies that

m̂t = αEtm̂t+1 + (1− α)[ut + ηi log(1 + imt )− ηiEtµt+1], (A.19)

where α ≡ ηi/(1 + ηi).

This is once again an expectational difference equation of the form (A.4). Because ηi > 0

implies that 0 < α < 1, (A.19) can be solved forward to obtain a unique bounded solution

for {m̂t}, given by

m̂t = (1− α)
∞∑

j=0

αjEt[ut+j + ηi log(1 + imt )− ηiµt+j+1]. (A.20)

Such a unique solution for {m̂t} then implies a unique solution for {ı̂t}, using (3.6), and

for {πt}, using (A.17). It then follows from the discussion in section xx above that there

will also be a locally unique solution to the exact equilibrium relations (1.21) and (3.5) in

the case of tight enough bounds on the exogenous processes. Furthermore, this solution will

satisfy any desired bounds on m̂t and ı̂t. (Since Pt/M
s
t = 1/mt, this allows us to ensure that

Pt/M
s
t ∈ P at all times.) Finally, we observe that (A.19) can be rewritten as (A.16).

1.12 Proof of Proposition 2.12.

Proposition 2.12. In a Sidrauski-Brock model where utility is not necessarily separable,

let monetary policy be specified by a Wicksellian rule (1.30) for the central bank’s interest-

rate operating target. Suppose that imt = ı̄ at all times, for some 0 ≤ ı̄ < β−1 − 1; and let

fiscal policy again be specified by an exogenous process {Dt}. Finally, suppose that

χ > − 1

2ηi

. (A.21)
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Then equilibrium is determinate in the case of any policy rule with φp > 0. A log-linear

approximation to the locally unique equilibrium price process is given by (3.17), where the

weights are given by (3.18) – (3.19).

Proof: Substituting (1.34) for ı̂t in (3.12), and setting ı̂mt = 0, we obtain the equilibrium

relation

(1 + (1 + ηiχ)φp)P̂t = (1 + ηiχφp)EtP̂t+1 + [Etπ
∗
t+1 + (r̃t − νt) + ηiχ(Etνt+1 − νt)] (A.22)

as a generalization of (1.36). This is once again a stochastic difference equation of the form

(A.4). It then follows from our discussion in section xx above that (A.22) can be solved

forward to yield a unique bounded solution for {P̂t}, if and only if

|1 + ηiχφp| < |1 + φp(1 + ηiχ)|.

We observe that as long as (A.21) holds, this determinacy condition is satisfied for all φp > 0,

just as was concluded in section xx for the case χ = 0. Furthermore, in this case, the unique

bounded solution is given by (A.6). Applying this result and rearranging terms, one obtains

(3.17).

1.13 Proof of Proposition 2.13.

Proposition 2.13. Let monetary policy instead be specified by an interest-rate rule of

the form (2.51), with coefficients φπ, ρ ≥ 0, and again suppose that imt = ı̄mt at all times.

Finally, suppose that χ satisfies (A.21).Then equilibrium is determinate if and only if φπ > 0

and (A.11) holds. When these conditions are satisfied, a log-linear approximation to the

equilibrium evolution of inflation is given by (3.20), where the weights are given by (3.21) –

(3.22).

Proof: Using (2.51) to eliminate πt+1 in (3.12), and again setting ı̂mt = 0, one obtains

a stochastic difference equation for the interest rate of the form

[(1 + ηiχ)φπ + ρ]̂ıt = [1 + ηiχφπ]Etı̂t+1 + φπr̃t + ρı̄t − Etı̄t+1. (A.23)
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This is again an equation of the form (A.4). It follows that equilibrium is locally determinate

if and only if the term in square brackets on the left-hand side (call it γ0) is larger in absolute

value than the term in square brackets on the right-hand side (call it γ1). Condition (A.21)

suffices to guarantee that γ0 + γ1 > 0. It then follows that |γ0| > |γ1|, so that determinacy

obtains, if and only if γ0 > γ1. This last inequality is in turn seen to be equivalent to (A.11).

In the case that equilibrium is determinate, (A.6) can again be applied, yielding (3.20).

1.14 Proof of Proposition 2.14.

Proposition 2.14. Consider a sequence of economies with progressively smaller period

lengths ∆, calibrated so that χ̄ 6= 0. Assume in each case that monetary policy is specified

by a contemporaneous Taylor rule (2.43), with a positive inflation-response coefficient φπ 6= 1

that is independent of ∆. Assume also that zero interest is paid on money. Then equilibrium

is determinate for all small enough values of ∆ if φπ > 1 and χ̄ > 0, or if 0 < φπ < 1 and

χ̄ < 0, but not otherwise.

Proof: As discussed in the proof of Proposition 2.13, determinacy obtains if and only

if |γ0| > |γ1|. In the limit as ∆ → 0, both γ0 and γ1 become unboundedly large, while

∆γ0, ∆γ1 → η̃iχ̄φπ. (A.24)

Thus both γ0 and γ1 have the same sign as χ̄, for all small enough values of ∆. We note

furthermore that

γ0 − γ1 = φπ − 1,

so that γ0 > γ1 if and only if φπ > 1. It then follows that |γ0| > |γ1|, and determinacy

obtains, for all small enough values of ∆, if and only if either φπ > 1 and χ̄ > 0 (so that

γ0 > γ1 > 0) or 0 < φπ < 1 and χ̄ < 0 (so that γ0 < γ1 < 0).

1.15 Proof of Proposition 2.15.

Proposition 2.15. Again consider a sequence of economies with progressively smaller
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period lengths ∆, and suppose that

χ̄ > − 1

ψΦπη̃i

. (A.25)

Let monetary policy instead be specified by an inertial Taylor rule (2.51), with a long-run

inflation-response coefficient Φπ ≡ φπ/(1 − ρ) and a rate of adjustment ψ ≡ − log ρ/∆ > 0

that are independent of ∆. Assume again that zero interest is paid on money. Then rational-

expectations equilibrium is determinate if and only if Φpi > 1, i.e., if and only if the Taylor

Principle is satisfied.

The unique bounded solution for the path of nominal interest rates in the determinate

case is of the form

ı̂t = Λı̄t + Γ(1− γ)
∞∑

j=0

γjEtr̃t+j + Γ̃(1− γ)
∞∑

j=0

γjEtı̄t+j, (A.26)

with the solution for {πt} then obtained by inverting (2.51). In this solution, the coefficients

Λ, Γ, Γ̃ approach well-defined limiting values as ∆ is made arbitrarily small, while the rate

of decay of the weights on expected disturbances farther in the future,

ξ ≡ − log γ/∆ > 0,

also approaches a well-defined limiting value. Furthermore, these limiting values are all

continuous functions of χ̄ for values of χ̄ in the range satisfying (A.25), including values near

zero.

Proof: In this case, because φπ approaches zero at the same rate as ∆ (though we

again maintain a long-run inflation-response coefficient independent of ∆), γ0 and γ1 do not

become unboundedly large for small ∆. Instead of (A.24), we obtain

γ0, γ1 → 1 + η̃iχ̄Φπψ,

and this limiting value is positive given (A.25). Hence γ0, γ1 > 0 in the case of any small

enough value of ∆, even if χ̄ is (modestly) negative. We furthermore observe that in this

case,

γ0 − γ1 = (Φpi− 1)(1− ρ).
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Hence we find once again that γ0 > γ1 if and only if Φ > 1. Thus |γ0| > |γ1|, and equilibrium

is determinate, if and only if Φ > 1.

In the case of determinacy, the equilibrium solution for the nominal interest rate, derived

in the course of the proof of Proposition 2.13, is given by

ı̂t = ı̄t +
∞∑

j=0

φπϕjEtr̃t+j −
∞∑

j=0

φπϕ̃jEtı̄t+j,

where the coefficients {ϕj, ϕ̃j} are defined in (3.21) – (3.22). This is observed to be of the

form (A.26), and allows us to identify the coefficients Λ, Γ, Γ̃, and γ in that representation

of the solution.

We then observe that as ∆ is made arbitrarily small,

Λ + Γ(1− γ)− 1 =
(1 + ηiχ)φπ

(1 + ηiχ)φπ + ρ
→ η̃iχ̄Φπψ

1 + η̃iχ̄Φπψ
,

Γ =
φπ

φπ + ρ− 1
=

Φπ

Φπ − 1
> 0,

Γ̃ =
1 + (1− ρ)ηiχ

1 + ηiχφπ

Γ → 1 + η̃iχ̄ψ

1 + η̃iχ̄Φπψ

Φπ

Φπ − 1
> 0,

and that ξ has the same limiting value as

1− γ

∆
=

1

∆

φπ + ρ− 1

(1 + ηiχ)φπ + ρ
→ (Φπ − 1)ψ

1 + η̃iχ̄Φπψ
> 0.

Since γ → 1, we also observe that

Λ → 1 +
η̃iχ̄Φπψ

1 + η̃iχ̄Φπψ
> 0.

Hence Λ, Γ, Γ̃, and ξ all have well-defined limiting values, and each is a continuous function

of χ̄.
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Chapter 3

Optimizing Models with Nominal
Rigidities

We turn now to the analysis of models in which monetary policy affects the level of real

economic activity, and not just the level of money prices of goods and services. This requires

us to go beyond the analysis of endowment economies, as in the previous chapter, and allow

instead for endogenous supply decisions. But as is well-known, even when we allow for en-

dogenous supply, monetary policy can have only small effects on the equilibrium allocation

of resources in an environment with perfect wage and price flexibility (and identical informa-

tion on the part of all decision-makers). Hence we also extend our analytical framework to

allow for delays in the adjustment of prices and/or wages to changing aggregate conditions.

In this way, we allow for non-trivial real effects of monetary policy.

This extension of our framework is also important for a more realistic discussion of

central-bank interest-rate policy. In the basic model of chapter 2, the equilibrium real rate

of return is completely independent of monetary policy. This means that a central bank can

have no effect on nominal interest rates except insofar as it can shift inflation expectations.

In our analysis above, we have assumed that it is able to do so, as long as the change in

expectations that is called for involves no violation of the postulate of rational expectations

on the part of the private sector; but our analysis may give the appearance of assuming precise

central-bank control of something upon which banks have little direct influence in reality.

The introduction of price stickiness will make our assumption that the central bank can set

1
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a short-term nominal interest rate less paradoxical. If private-sector inflation expectations

do not change when the central bank seeks to adjust the nominal interest rate, this does

not prevent the central bank from achieving its operating target; it simply means that the

private sector will perceive the real interest rate to have changed, which will affect desired

expenditure and hence the degree of utilization of existing productive capacity. (We re-

examine the topic of inflation determination under an interest-rate rule in the context of

models with nominal rigidities in chapter 4.)

We shall give primary emphasis to models with sticky prices, though we also discuss the

consequences of wage stickiness as well. In this we follow most of the literature of the past

twenty years, but the choice perhaps deserves brief comment. One reason for emphasizing

price stickiness, at least for pedagogical purposes, is simply that models with only sticky

prices provide a simpler framework for the consideration of basic issues regarding the nature

of inflation determination. If we are to talk about the determinants of inflation (which in

the context of current policy debate, almost invariably means the rate of increase in goods

prices rather than wages), we must model the goods market; and if we are to consider such

central issues as the relation between interest rates and expenditure decisions, we need to

adjust our nominal interest rate for the expected rate of price inflation as well. On the other

hand, it is not equally essential to explicitly consider wage determination. It is possible to

model endogenous supply decisions without any reference to a labor market at all, as in

the familiar “yeoman farmer” models; and so the simplest models developed here will be of

this form, or will be equivalent in their implications to such a model, even if a (completely

frictionless) labor market is represented.

It is also often argued that there is more reason to believe that the stickiness of prices

matters for the allocation of resources. A well-known criticism of the models of nominal

wage rigidity popular in the 1970s was that the mere observation of infrequent changes in

individual nominal wages did not in itself prove the existence of a nominal rigidity with

any allocative consequences (Barro, 1977; Hall, 1980). Because employment is an ongoing

relationship rather than a spot-market transaction, the effective cost to a firm of increased
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employment of labor inputs at a point in time need not equal the wage paid per hour of work

at that time; and under an efficient implicit contract, wages might well be smoother than the

effective cost of labor, owing to a preference of workers for a smoother income stream. On

the other hand, it is less plausible that the observed rigidity of consumer goods prices should

not have allocative consequences, given the absence of a similar kind of ongoing relationship

between the suppliers of consumer goods and their customers (Rotemberg, 1987). However,

no convincing evidence has ever been offered that the stickiness of nominal wages does not

result in stickiness of the effective nominal cost of labor inputs; and evidence described below

— indicating that the evolution of U.S. inflation can be well explained by the evolution of

unit labor costs — suggests that a model of supply costs that treats the reported wage as the

true marginal cost of additional hours of labor is not too inaccurate. Thus a more empirically

realistic model is likely to involve both wage and price stickiness. We treat models of that

kind in section xx below.

We shall give particular attention to the derivation of models with sticky prices and/or

wages in which prices and wages are nonetheless set optimally on the occasions when they

are adjusted. Allowing for optimal price- and wage-setting is important for several reasons.

One is that it allows us to highlight the importance of expectations for wage and price

dynamics. As we shall see in later chapters, forward-looking private sector behavior, in this

and other respects, has profound consequences for the optimal conduct of monetary policy.

It would thus be a serious mistake to simply assume mechanical wage- and price-adjustment

equations (perhaps drawn from the econometric literature), and treat these as structural for

purposes of an analysis of optimal monetary policy, as Lucas (1976) so forcefully argued.

Another reason for modeling optimal price- and wage-setting is that we are interested

in the welfare evaluation of alternative monetary policies. An especially appealing basis for

such evaluation is to ask how alternative possible equilibria compare from the point of view

of the private-sector objectives that underlie the behavior assumed in one’s model of the

effects of alternative policies; but this is only possible insofar as the structural equations of

our model of the monetary transmission mechanism are derived from optimizing foundations.
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As we shall see in chapter 6, alternative assumptions about the nature of price and wage

stickiness imply that alternative stabilization objectives for monetary policy are appropriate.

While we shall give detailed attention to the consequences of assumed delays in the ad-

justment of prices and/or wages, we shall not attempt here to say anything new about the

underlying reasons for these delays. Our assumptions about the frequency with which firms

adjust their prices, or the time lag that may be involved between the decision about a price

and the time that the new price takes effect, are treated as structural features of the environ-

ment in which firms sell their products, with the same status as their production functions.

How reasonable this is depends on the question that one intends to ask of one’s model.

The “endogenous growth” has emphasized that, when thinking about the determinants of

economies’ long-run growth prospects, it is probably a mistake to ignore the endogeneity of

production functions — for changes in economic conditions can change the incentives that

private parties have to devote resources to research and development, to introduce new prod-

ucts, and so on. On the other hand, for purposes of a comparison of alternative monetary

policy rules, it may not be a bad approximation to assume given production functions; the

real effects of alternative monetary policies are relatively short-lived, and over this short

horizon production possibilities are unlikely to be much affected by the temporary alteration

of incentives to innovate that may have occurred.

Similarly, if we wished to analyze the consequences of highly inflationary policies, we

would surely not want to treat as given the frequency of price adjustment, the degree of

indexation of wage contracts, or even the currency in terms of which prices are quoted;

we know that practices adjust in all of these respects (and for reasons that are easy to

understand) in economies that suffer from sustained high inflation. But our interest in

the present study is in the identification of better monetary policies within the class of

policies under which inflation is never very great; in fact, we shall make extensive use of

approximations that are expected to be accurate only for the analysis of policies of that

kind. (It will perhaps not be giving away too much to divulge at this point that, according

to our analysis, optimal policy will indeed involve low and stable inflation!) For this purpose,
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treating the delays involved in price and wage adjustment as structural may not be a bad

approximation. The sizes of wage and price increases do clearly vary from year to year, in

response to changes in perceived market conditions; practices with regard to the times at

which prices or wages are reconsidered, or the units in which they are announced, occur

much less often and only in response to more drastic changes in the economic environment.

Finally, we freely grant that the simple models presented here should be viewed only as

crude approximations to the actual monetary transmission mechanism. A realistic quan-

titative model would need to incorporate a large number of complications from which we

abstract here, in order to clarify basic concepts. One may wish to add endogenization of the

timing of price and wage adjustments to the list of refinements that one would like to incor-

porate into an eventual, truly accurate model. It is not clear, however, that this particular

refinement should be placed too high on the list of refinements when ranked in terms of their

likely quantitative importance for the analysis of monetary policy.

Nor is it even clear that any of the models with endogenous timing of price changes

that currently exist should be regarded as more realistic than the models presented below,

quite apart from the question of complexity. Some feel that models of “state-dependent

pricing”, such as those of Caplin and Leahy (1991) or Dotsey et al. (1999), have “better

microfoundations” than do the sorts of models presented here, that assume a given timing

for price and wage changes. But this is not obvious. These models assume that firms are

constantly re-evaluating the price that they would adopt if they were to change their price,

and the expected benefits from the change, and then weighing these benefits against the

current “menu cost” of a price change to decide whether to actually change their price or

not. Yet in reality, the main benefit of infrequent price changes is not lower “menu costs”, but

reduction of the costs associated with information collection and decision-making (Zbaracki

et al., 1999). Obtaining this benefit necessarily means that the timing of the occasions upon

which prices are reconsidered will be largely independent of current market conditions; for

example, firms often reconsider pricing policy at a particular time of year.

We begin in section 1 with a basic model of monopolistic competition, in which the prices
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of some goods must be determined a period in advance. This very simple example of price

stickiness is useful for introducing a number of basic concepts. It also provides optimizing

foundations for a familiar aggregate-supply specification, the “New Classical Phillips curve”

used in many well-known analyses of optimal monetary policy, such as those of Kydland and

Prescott (1977) and Barro and Gordon (1983). While the literature using this specification

has produced a number of insights of more general importance, this relation is quite inade-

quate as a realistic account of the co-movement of real and nominal variables; it allows, for

example, no persistent effects of monetary policy on real activity, and no effects of antici-

pated policy. These strong conclusions are not general consequences of optimal price-setting,

as we show in section 2 through the analysis of a slightly more complex specification, the

Calvo (1983) model of staggered price-setting. While still very simple, this model implies

an aggregate-supply relation, sometimes called the “New Keynesian Phillips curve”, that

has proven capable of explaining at least some of the more gross features of inflation dy-

namics in the U.S. and elsewhere. Section 3 discusses still more complex specifications with

increased empirical realism, that introduce delays in the effects of monetary policy changes

on inflation. Finally, section 4 discusses models in which nominal wages are sticky as well

as prices.

1 A Basic Sticky-Price Model

We begin by displaying the structure of a very basic model, in which monetary policy has

real effects as a result of some goods prices being fixed in advance. A number of issues

that are easy to analyze in this simple context will turn out also to be relevant to the more

realistic models to be developed in later sections.

1.1 Price-Setting and Endogenous Output

In order to be able to model price-setting, we must first extend the representative-household

model introduced in the previous chapter in certain respects that are quite distinct from the

issue of whether prices are assumed to be sticky. In particular, we must allow for endogenous
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goods supply, rather than simply assuming a given endowment of goods. This requires that

we introduce a production technology and at least one variable factor of production (which

is labor, in this basic model). We shall be concerned to understand the determinants of

the costs of supplying goods, as supply costs are a prime determinant of optimal pricing.

We shall furthermore introduce differentiated goods, and monopolistic competition among

the suppliers of these goods, as in the “New Keynesian” literature originated by Rotemberg

(1982), Mankiw (1985), Svensson (1986) and Blanchard and Kiyotaki (1987), rather than

assuming a single good in competitive supply. This last device, which is now quite com-

monplace, allows individual suppliers a degree of market power, and hence a decision about

how to set their prices. It also implies that a supplier that fails to immediately adjust its

price in response to a change in demand conditions does not suffer an unboundedly large

(percentage) change in its sales, so that it becomes more plausible that prices should not be

constantly adjusted.1

We thus now assume that the representative household seeks to maximize a discounted

sum of utilities of the form

E0

{ ∞∑

t=0

βt
[
u(Ct,Mt/Pt; ξt)−

∫ 1

0
v(ht(i); ξt)di

]}
. (1.1)

Here Ct is now an index of the household’s consumption of each of the individual goods

that are supplied, and Pt is a corresponding index of the prices of these goods, while ht(i)

is the quantity of labor of type i supplied. We assume that each of the differentiated goods

(indexed by i over the unit interval) uses a specialized labor input in its production (and

in this chapter, this will be the only variable input); labor of type i is used to produce

differentiated good i.

The introduction of differentiated labor inputs is not necessary in order to allow us to

1The size of the “menu costs” required to rationalize the failure of suppliers to adjust their prices imme-
diately has been the subject of an extensive literature. We shall not pursue this issue here, though we note
that the same sorts of “strategic complementarities” in price-setting that increase the degree of stickiness of
the general price level (as discussed below) when price adjustment is asynchronous also tend to reduce the
size of the costs of price changes to individual suppliers that are required to rationalize a failure to adjust
prices in response to an aggregate demand disturbance. On this latter point, see in particular Ball and
Romer (19xx).
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analyze monopolistically competitive goods supply. But as we shall see, it is convenient to

do so. One reason is that we are able, in this case, to derive a model with factor markets

that is equivalent to the frequently-used “yeoman farmer” model, in which households are

assumed to directly supply goods. A more important reason is that it turns out that the

“strategic complementarity” between different suppliers’ pricing decisions is greater when we

assume that they do not hire labor from a single homogeneous (competitive) labor market.

Because we regard the conclusion obtained in the case of differentiated labor inputs as the

more realistic one, we choose this specification as our baseline model. (The case of a single

homogeneous labor market is discussed in section 1.4 below.)

The term v(ht(i); ξt) represents the disutility of supplying labor of type i; we assume that

for each possible value of ξ, v(·; ξ) is an increasing, convex function.2 We have written (1.1)

as if the representative household simultaneously supplies all of the types of labor. However,

we might equally well assume that each household specializes in the supply of only one type

of labor, but that there are an equal number of households supplying each type. In this case,

a household that supplies labor of type i seeks to maximize

E0

{ ∞∑

t=0

βt [u(Ct,Mt/Pt; ξt)− v(ht(i); ξt)]

}
.

When not all goods prices are set at the same time, households’ wage incomes will be

different, depending upon the type of labor they supply. But we may assume that there

exist competitive financial markets in which these risks are efficiently shared.

In this case, and if all households start with initial financial assets that give them the same

initial intertemporal budget constraints,3 then since households value consumption streams

(and money balances) identically and face the same prices, all households will choose identical

consumption and real balances in all states. (Note that while we have allowed for preference

2Once again, ξt is a vector, so that the use of the same notation for exogenous disturbances to the functions
u and v involves no assumption about statistical dependence between the shifts in these two functions.

3This means that if any households face different present values of their expected wage incomes as of date
zero, they hold initial financial claims W0 that differ in exactly the way necessary to offset the difference in
their expected wages. Note that if this condition has ever held, then optimization in the presence of complete
financial markets implies that it will hold forever after, regardless of which values may be realized for the
exogenous disturbances.
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shocks ξt in (1.1), we assume that these are the same for all households – we here contemplate

only aggregate shocks.) They will also choose portfolios of financial assets that insure that

they continue to have identical intertemporal budget constraints at all subsequent dates.4

The common intertemporal budget constraint in each state will in turn be exactly that of a

household that supplies all of the types of labor, and pools the wage income received.

Because each household chooses exactly the same state-contingent consumption plan,

the first-order conditions for optimal supply of each type of labor are exactly the same as

when a single household type supplies all types of labor so as to maximize (1.1). Thus the

conditions that determine equilibrium prices and quantities are the same in the two models.

Furthermore, if our welfare criterion in the specialized-labor model is the average level of

utility of all households, the level of social welfare associated with a given equilibrium will be

measured by the value of (1.1). Thus it makes no difference to our conclusions which version

of the model we assume. The fiction that each household directly supplies all types of labor,

and so receives its pro rata share of the aggregate wage bill of the entire economy, simplifies

the exposition in that it allows us to dispense with explicit discussion of the risk-sharing

arrangements just referred to.

Following Dixit and Stiglitz (1977), we shall assume that the index Ct is a constant-

elasticity-of-substitution aggregator

Ct ≡
[∫ 1

0
ct(i)

θ−1
θ di

] θ
θ−1

(1.2)

with θ > 1, and that Pt is the corresponding price index

Pt ≡
[∫ 1

0
pt(i)

1−θdi
] 1

1−θ

. (1.3)

Note that (1.3) defines the minimum cost of a unit of the aggregate defined by (1.2), given

the individual goods prices {pt(i)}; since a household cares only about the number of units

4Here our argument relies upon the assumption in (1.1) that the disutility of labor supply is additively
separable from the other terms. This implies that even if households expect to work different amounts in
particular states, they equalize their marginal utility of income in each state by holding assets that allow
them to afford to consume exactly the same amount and hold exactly the same money balances as one
another. The more complicated case of non-separable preferences is treated in section xx below.
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of this aggregate that it can purchase, deflation by Pt is an appropriate measure of the

purchasing power of nominal money balances Mt.

The household’s budget constraints are then as in chapter 2, except that the term ptct

for nominal consumption expenditure must now be replaced by
∫ 1
0 pt(i)ct(i)di, and the term

ptyt for income from the sale of goods must now be replaced by

∫ 1

0
wt(i)ht(i)di +

∫ 1

0
Πt(i)di, (1.4)

where wt(i) is the nominal wage of labor of type i in period t, and Πt(i) represents the

nominal profits from sales of good i. In writing this last expression, we assume that each

household owns an equal share of all of the firms that produce the various goods. Again,

given our assumption of complete financial markets, this assumption of distributed ownership

is irrelevant. We could also introduce trading in the shares of the firms, without any change

in the conditions for a rational expectations equilibrium, except that then equilibrium share

prices would also be determined. As these extensions of the framework have no consequences

for the equilibrium evolution of goods prices or the quantities of goods supplied, we omit

further discussion of them.

As in chapter 2, each household then faces a single intertemporal budget constraint. Op-

timal (price-taking) household behavior is then described by the conjunction of three sets

of requirements. First, the household’s consumption spending must be optimally allocated

across differentiated goods at each point in time, taking as given the overall level of expen-

diture. Thus the relative expenditures on different goods must be such as to maximize the

index (1.2) given the level of total expenditure. As in other applications of the Dixit-Stiglitz

model, this requires that purchases of each good i satisfy

ct(i) = Ct

(
pt(i)

Pt

)−θ

. (1.5)

This rule for distributing expenditure is easily seen to imply that total expenditure will

equal PtCt. Using this substitution, we can write both the household’s utility and its budget

constraints solely in terms of Pt and Ct, without any reference to quantities or prices of the

individual goods that are purchased.
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Second, taking as given the optimal allocation of consumption expenditure at each date

(just described) and the amount of labor supplied (considered below), the household must

choose optimal levels of total consumption expenditure at each date, an optimal level of

money balances to hold at each date, an optimal amount of financial wealth to accumulate,

and an optimal portfolio allocation across the various types of state-contingent bonds that

are available. Necessary and sufficient conditions for optimization in this respect are given by

exactly the same conditions as in chapter 2 – namely, conditions (1.2), (1.12), (1.13), (1.15)

and (1.16) of that chapter must again hold at all times, where however Pt now refers to the

price index (1.3), ct is replaced by the index Ct defined in (1.2), and yt is replaced by Yt,

a similarly defined aggregate of the quantities supplied of the various differentiated goods.5

This is because both preferences over alternative streams of the consumption aggregate and

budget constraints written in terms of affordable paths for the consumption aggregate are

exactly the same as in chapter 2.6

And finally, the household must choose an optimal quantity of each kind of labor to

supply, given the wages that it faces and the value to it of additional income (determined by

the consumption-allocation problem just described). The first-order condition for optimal

supply of labor of type i at date t is given by

vh(ht(i); ξt)

uc(Ct,mt; ξt)
=

wt(i)

Pt

. (1.6)

These conditions, together with those listed earlier, comprise a complete set of necessary and

sufficient conditions for household optimization.

We turn next to the specification of production possibilities. We assume that each good

i has a production function

yt(i) = Atf(ht(i)), (1.7)

5The relative quantities supplied of the various goods must be distributed in the same way as the relative
demands implied by (1.5). (When we allow below for government purchases, we assume that the government
seeks to maximize a similar aggregate of its purchases, and so distributes its purchases in the same manner.)
It then follows that total non-financial income (1.4), which must equal total sales revenues of all of the firms,
can be written as PtYt.

6Here the additive separability of the disutility-of-labor terms in (1.1) is again crucial, allowing us to
obtain preferences over paths for the consumption aggregate and real balances that are the same as in our
earlier model with no labor supply decision.



12 CHAPTER 3. OPTIMIZING MODELS WITH NOMINAL RIGIDITIES

where At > 0 is a time-varying exogenous technology factor, and f is an increasing, concave

function. Here labor is represented as the only factor of production (with one specific type of

labor being used in the production of each good). We may think of capital as being allocated

to each firm in a fixed amount, with capital goods never depreciating, never being produced,

and (because they are specific to the firm that uses them) never being reallocated among

firms; in this case, the additional argument of the production function may be suppressed.

(An extension of the model to allow for endogenous capital accumulation is presented in the

next chapter.)

It follows that the variable cost of supplying a quantity yt(i) of good i is given by

wt(i)f
−1(yt(i)/At).

Differentiating this, we find that the (nominal) marginal cost of supplying good i is equal

to7

St(i) =
wt(i)

At

Ψ(yt(i)/At),

where

Ψ(y) ≡ 1

f ′(f−1(y))
(1.8)

is an increasing positive function. Substituting the labor supply function (1.6) for the wage,

we obtain a relation between the real marginal supply cost and the quantity supplied:

st(i) ≡ St(i)/Pt = s(yt(i), Yt; ξ̃t),

where the real marginal cost function is defined by

s(y, Y ; ξ̃) =
vh(f

−1(y/A); ξ)

uc(Y ; ξ)A
Ψ(y/A). (1.9)

7Here we assume that the producer is a wage-taker, even though we have supposed each good uses a
different type of labor with its own market. But our assumption of differentiated labor inputs need not
imply that each producer is a monopsonist in its labor market. The only assumption that is important for
our results below is that producers that change their prices at different times also hire labor inputs from
distinct markets. We might, for example, assume a double continuum of differentiated goods, indexed by
(i, j), with an elasticity of substitution of θ between any two goods, as above. We might then assume that
all goods with the same index i change their prices at the same time (and so always charge the same price),
and are also all produced using the same type of labor (type i labor). The degree of market power of each
producer in its product market would then be as assumed here, but the fact that a continuum of producers
all bid for type i labor would eliminate any market power in their labor market.
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In this last expression, ξ̃t represents the complete vector of exogenous disturbances, in which

the preference shocks ξt have been augmented by the technology factor At, we have substi-

tuted into the labor supply function the sectoral labor requirement as a function of sectoral

output, and we have used the fact that in equilibrium, the index of aggregate consumption

Ct must at all times equal the index of output Yt.
8

Note also that we have suppressed real balances as an argument of uc (and hence as an

argument of the real marginal cost function) in the denominator. Abstracting from such

“real balance effects” can be justified along any of several grounds discussed in chapter 2.

It is simplest to suppose that the economy considered in this chapter is a “cashless” one, in

which monetary policy is implemented in the way considered in section 1 of chapter 2.9 As in

chapter 2, we shall here assume a cashless economy as our baseline model; the consequences

of real balance effects are considered in section 3.2 of chapter 4.

This model of production costs might alternatively be derived from a “yeoman farmer”

model, in which households directly supply goods, seeking to maximize

E0

{ ∞∑

t=0

βt
[
u(Ct,Mt/Pt; ξt)−

∫ 1

0
ṽ(yt(i); ξ̃t)di

]}
. (1.10)

If we convert the marginal disutility of supply of good i into units of an equivalent quantity

of the consumption aggregate, we obtain a “real marginal cost” of good i equal to

ṽy(yt(i); ξ̃t)

uc(Yt; ξt)
.

8When we allow for exogenous variation in government purchases, we can still apply this equation, if
we understand u(Y ; ξ) to mean the function ũ(Yt; ξ̃t) introduced in section xx of chapter 2, measuring
household utility flow as a function of aggregate demand rather than consumption expenditure. Under this
interpretation, the level of government purchases is just one element of the vector of exogenous disturbances
ξ̃ that shifts this relation. When we allow for endogenous variations in investment spending, matters are
more complex; in such a case, it is important to remember that it is really uc(C; ξ) rather than uc(Y ; ξ) that
belongs in the denominator of (1.9).

9Alternatively, our results apply to a Sidrauski-Brock model in which utility is separable, as discussed
in section xx of chapter 2; to a cash-in-advance model of the special type discussed in section xx of the
appendix to chapter 2; or to a “cashless limiting economy” of the sort discussed in section xx of chapter 2.
They also apply to a much broader class of models with transactions frictions, in the case that monetary
policy is implemented through a procedure under which the interest-rate differential ∆t is held constant,
under a suitable reinterpretation of the parameter σ and the disturbance gt, so that −σ−1(Ŷt − gt) is the
deviation of the log marginal utility of real income from its steady-state level, in the case of a constant
interest-rate differential (rather than a constant level of real balances). For discussion of this last case, see
section 3.2 of chapter 4, especially footnote xx.
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This is in fact identical to (1.9) if the disutility of output supply is given by

ṽ(y; ξ̃) ≡ v(f−1(y/A); ξ).

This concept of “real marginal cost” plays exactly the same role in optimal pricing in the

yeoman farmer model as does the more conventional concept in the case of supply by firms

that purchase inputs, and the results that we obtain below are identical to those that one

would obtain from a yeoman farmer model. As noted above, this is one reason for interest

in the model with differentiated labor inputs assumed here. However, explicitly modeling

the labor market has the advantage of allowing us to derive additional implications of the

model. It will also make the extension, below, to a model with sticky wages as well as prices

more straightforward.

With our theory of marginal supply costs in place, we now turn to the question of optimal

pricing. We shall first examine the case of perfectly flexible prices; that is, we shall assume

that the supplier of each good chooses a price for it each period, not constrained in any way

by the price that has been charged for the good in the past, and with full information about

current demand and cost conditions. As usual in a model of monopolistic competition, we

assume that each supplier understands that his sales depend upon the price charged for his

good, according to the demand function

yt(i) = Yt

(
pt(i)

Pt

)−θ

. (1.11)

(The form of the demand curve assumed here follows from (1.5); when all purchases are for

private consumption, the index of aggregate demand Yt corresponds simply to the represen-

tative household’s choice of the index Ct.) Because good i accounts for only an infinitesimal

contribution to households’ budgets and their utility from consumption, the supplier of an

individual good does not believe that his pricing decision can affect the evolution of either

the index of aggregate demand Yt or the price index Pt; thus pt(i) is chosen taking the latter

two quantities as given. Optimization by the supplier of good i then involves setting a price

pt(i) = µSt(i), where µ ≡ θ/(θ − 1) > 1 is the seller’s desired markup, determined by the

usual Lerner formula.
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It follows that each supplier will wish to charge a relative price satisfying

pt(i)

Pt

= µs(yt(i), Yt; ξ̃t). (1.12)

It then follows from (1.11) that the relative supply of good i must satisfy
(

yt(i)

Yt

)−1/θ

= µs(yt(i), Yt; ξ̃t).

Because s is increasing in its first argument, this equation must have a unique solution for

yt(i) given Yt. It follows that in equilibrium, the same quantity must be supplied of each

good, and that common quantity must equal Yt. Equilibrium output must then be given by

Yt = Y n(ξ̃t), where the latter function indicates the solution to the equation

s(Y n
t , Y n

t ; ξ̃t) = µ−1. (1.13)

Because s is also increasing in its second argument, this equation as well must have a unique

solution for each specification of the exogenous shocks ξ̃t.

We thus find that in the case of fully flexible prices, equilibrium output is completely

independent of monetary policy. Given this solution for aggregate output as a function of

the exogenous shocks, our model of price-level determination then reduces to exactly the

model analyzed in chapter 2 (where an exogenous supply of goods was simply assumed).

Thus neither our introduction of endogenous supply nor our assumption of monopolistic

competition has any necessary consequences for the effects of monetary policy. But they

now make it possible for us to consider other assumptions about pricing behavior, and we

shall see that in the case of sticky prices our conclusions are different.

The solution to equation (1.13) – which we call the natural rate of output following

Friedman (1968) – continues to be a useful construct even in the case of sticky prices (though

it no longer need equal the equilibrium10 level of output at all times). This is because a log-

linear approximation to the real marginal cost function (1.9) is given by

ŝt(i) = ωŷt(i) + σ−1Ŷt − (ω + σ−1)Ŷ n
t , (1.14)

10Some authors would say that it is the “equilibrium” level of output, but that the level of output actually
observed as a result of sticky prices is instead a “disequilibrium” level of output. We shall avoid this
terminology in this study; for us, “equilibrium” always refers to the prediction of our model, whether it
involves fully flexible prices or not.
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where ω > 0 represents the elasticity of s with respect to its first argument, and σ > 0 is

the intertemporal elasticity of substitution of private expenditure, as in chapter 2. (Here

we log-linearize around the steady-state equilibrium in the case of flexible prices and ξ̃t = 0

at all times.11 Letting Ȳ be the constant level of output in this steady state, we define

Ŷt as in chapter 2, and correspondingly define ŷt(i) ≡ log(yt(i)/Ȳ ), Ŷ n
t ≡ log(Y n

t /Ȳ ), and

ŝt(i) ≡ log(µst(i)).) Thus the natural rate of output provides a useful summary of the way

in which disturbances shift the real marginal cost function, whether prices are constantly

adjusted or not.

For later purposes it is useful to note that in (1.14), the elasticity ω can be decomposed

as

ω = ωw + ωp, (1.15)

where ωw > 0 is the elasticity of the marginal disutility of work with respect to output

increases, and ωp > 0 is the elasticity of the function Ψ defined in (1.8). Thus ωw indicates

the elasticity of real wage demands with respect to the level of output, holding fixed the

marginal utility of income, while ωp indicates the negative of the elasticity of the marginal

product of labor with respect to the level of output.12

Of course, our result here that monetary policy is completely irrelevant to the determi-

nation of real activity is rather special. If, for example, we allow for real balance effects,

we shall find that monetary policy can affect equilibrium output even under flexible prices,

owing to the effects of expected inflation upon equilibrium real balances. If we furthermore

allow for endogenous capital accumulation, we shall find that the natural rate of output de-

pends upon the capital stock, and insofar as real balance effects are able to affect equilibrium

capital accumulation, they may have a further effect upon equilibrium output under flexible

prices through this channel as well. However, these effects are not plausibly very large in

quantitative terms, as studies such as that of Cooley and Hansen (1989) have shown. Thus

11The element of ξ̃t that measures aggregate technology is here taken to be at ≡ log At rather than At

itself. Thus the steady-state value of the technology factor At is normalized as one.
12In a model with wage and price-setting, ωw indicates the degree to which higher economic activity

increases workers’ desired wages given prices, while ωp indicates the degree to which higher economic activity
increases producers’ desired prices given wages.



1. A BASIC STICKY-PRICE MODEL 17

the conclusion from our simple model remains essentially correct.

1.2 Consequences of Prices Fixed in Advance

We now contrast these results to those that we obtain under a simple form of price stickiness.

Let us suppose that all prices pt(i) must be fixed a period in advance; that is, when pt(i) is

chosen, the exogenous disturbances (including possible random variation in monetary policy)

realized in periods t − 1 or earlier are known, but not any of the disturbances that are to

be realized only in period t. (Whether the stickiness of prices results because the price that

applies in period t has to be announced at an earlier time, or simply because price-setters

make their decision on the basis of old information, does not matter for our conclusions.) We

shall suppose that the supplier of good i is committed to supply whatever quantity buyers

may wish to purchase at the predetermined price pt(i), and hence to purchase whatever

quantity of inputs may turn out to be necessary to fill orders.

When the price pt(i) is chosen, in period t− 1, the consequences for sales and profits in

period t are not yet known with certainty. Hence we assume that the firm seeks to maximize

the present value of period t profits, given by

Et−1[Qt−1,tΠt(i)], (1.16)

where Qt−1,t is the stochastic discount factor introduced in chapter 2, and profits from the

sale of good i are given by

Πt(i) = pt(i)yt(i)− wt(i)ht(i).

Using (1.7) and (1.11), we can write this objective as a function of the choice variable pt(i),

obtaining

Et−1

{
Qt−1,t[YtP

θ
t pt(i)

1−θ − wt(i)f
−1(YtP

θ
t pt(i)

−θ/At)]
}

. (1.17)

The supplier of good i then chooses pt(i) on the basis of information available at date

t − 1 so as to maximize this expression, given the expected state-contingent values of the

random variables Qt−1,t, Yt, Pt, wt(i) and At.
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The expression inside the square brackets in (1.17) is easily seen to be a concave function

of pt(i)
−θ (which we might alternatively choose as the choice variable), so that the entire

expression is similarly concave. It follows that expected profits have a unique maximum

at the price that satisfies the first-order condition obtained by differentiating (1.17) with

respect to pt(i). This may be written

Et−1

{
Qt−1,tYtP

θ
t [pt(i)− µSt(i)]

}
= 0. (1.18)

This way of writing the first-order condition indicates that the price is set to equal µ times

a weighted average of the values of the nominal marginal cost of supplying good i that are

expected to occur in different possible states at date t.

Substituting the demand function (1.11) into the real marginal cost function (1.9), one

sees that the marginal cost of supplying good i is a decreasing function of the price pt(i)

(given the values of the variables that the producer cannot affect) in each state. Hence

(1.18) has a unique solution for the optimal price pt(i), that is the same for each good i. In

equilibrium, each producer sets an identical price, and this common price will be Pt. Using

the result that pt(i) = Pt, and substituting the solution for the stochastic discount factor

from equation (xx) of chapter 2, we find that (1.18) requires that

Et−1

{
uc(Yt; ξt)Yt [µ−1 − s(Yt, Yt; ξ̃t)]

}
= 0. (1.19)

This is a restriction that must be satisfied by the joint distribution of Yt and the exogenous

disturbances ξ̃t, conditional upon information at date t− 1; note that it involves no nominal

variables. It is a weaker version of our result in the case of flexible prices, that Yt = Y n
t at all

times. Output equal to the natural rate is equivalent to requiring that s(Yt, Yt; ξ̃t) = µ−1 at

all times; instead, (1.19) requires only that this hold “on average” (where the “average” in

question does not involve weights exactly equal to the probability of each state’s occurrence).

Together with the stipulation that Pt is predetermined, (1.19) represents an aggregate

supply relation for this model. We can examine its implications, without needing to specify

the rest of the model, if we assume that monetary policy is used to achieve an exogenous
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target path for nominal GDP, Yt = PtYt. This sort of aggregate demand specification is

very commonly assumed in the literature on sticky-price models, usually by stipulating

that nominal GDP is proportional to the money supply, and then that monetary policy is

specified by an exogenous target path for the money supply. It is not attractive, for our

purposes, to assume either a constant velocity of money or monetary targeting. But we may

nonetheless examine an equivalent aggregate demand specification, by assuming that policy

is specified in terms of a target path for nominal GDP, that is then achieved by adjusting

the interest-rate instrument as necessary. In addition to allowing comparisons with familiar

literature, this assumption allows us to examine the consequences of alternative aggregate

supply specifications without needing to specify the way in which monetary policy affects

aggregate spending. Accordingly, we specify aggregate demand in terms of an exogenous

process {Yt} throughout the present chapter. (The interest-rate adjustments required in

order to control aggregate spending are then taken up in chapter 4.)

Substituting Yt = Yt/Pt into (1.19), we observe that the equilibrium price level is given

by the solution to the equation

Et−1

{
uc(Yt/Pt; ξt)Yt[µ

−1 − s(Yt/Pt,Yt/Pt; ξ̃t)]
}

= 0. (1.20)

This implies that Pt is a function solely of the joint distribution of {Yt, ξ̃t}, conditional

upon information at date t− 1, and that this function is homogeneous of degree one in the

distribution of values anticipated for Yt. Given the value of Pt determined by this ex ante

distribution, the level of output Yt is then determined by the ex post realization of Yt. The

homogeneity property just referred to implies that Yt depends only upon the level of Yt

relative to the distribution of levels of nominal spending that were regarded as possible at

date t− 1.

This result can be stated more simply if we make use of a log-linear approximation to the

solution (1.20). We log-linearize around the steady-state equilibrium in which ξ̃t = 0 and

Yt/Yt−1 = 1 at all times, and obtain an expression that approximates the exact solution as

long as ξ̃t and Yt/Yt−1 are always sufficiently close to these values. Making use of the log-
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linear approximation to the real marginal cost function (1.14), we find that the equilibrium

price level is approximately given by

log Pt = Et−1 logYt − Et−1 log Y n
t ,

from which it follows that

log Yt = Et−1 log Y n
t + [logYt − Et−1 logYt].

We then observe that the component of output that can be forecasted a period in advance

is always equal to the forecast of the natural rate,

Et−1 log Yt = Et−1 log Y n
t ,

and hence is independent of monetary policy. The unexpected component of output fluctu-

ations, by contrast, is equal to the unexpected component of nominal GDP (or of nominal

GDP growth):

log Yt − Et−1 log Yt = logYt − Et−1 logYt.

Thus monetary policy affects real activity in this model only insofar as it causes unexpected

variation in nominal spending, and the resulting variations in output must themselves be

purely unexpected.

1.3 A “New Classical” Phillips Curve

The above model can be generalized by allowing some prices to be flexible, though others

are fixed in advance. This allows us to consider the robustness of our previous conclusions

to allowing some prices to be flexible, even in the very short run (as we do in fact observe).

It also allows us to derive a “Phillips curve” relation between price movements and output

movements, of a kind familiar from the “New Classical” literature of the 1970s.

Suppose now that a fraction 0 < ι < 1 of the goods prices are fully flexible – which is to

say, set each period on the basis of full information about current demand and cost conditions

– while the remaining 1− ι are set a period in advance, as in the previous subsection. The
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supplier of each flexible-price good will then set its price each period according to (1.12),

while the supplier of each sticky-price good will set its price in advance according to (1.18).

The marginal costs of supplying different goods i will differ only insofar as the quantities

supplied differ, and these in turn will differ only insofar as the prices of the goods differ. It

follows that all flexible-price goods will have a common price p1t, and all sticky-price goods

will similarly have a common price p2t. We similarly let y1t denote the common equilibrium

output of all flexible-price goods, and y2t the output of sticky-price goods.

Taking a log-linear approximation to the two pricing equations, we obtain

log p1t = log Pt + ωŷ1t + σ−1Ŷt − (ω + σ−1)Ŷ n
t ,

log p2t = Et−1[log Pt + ωŷ2t + σ−1Ŷt − (ω + σ−1)Ŷ n
t ],

defining ŷit ≡ log(yit/Ȳ ) for i = 1, 2, and again using (1.14) to approximate the real marginal

cost function. These approximations apply as long as the fluctuations in pit/Pt, Yt, and Y n
t

around the values (1, Ȳ , and Ȳ respectively) near which we log-linearize are small enough.

Note that up to this log-linear approximation, (log) predetermined prices are set at a value

equal to a constant markup over the conditional expectation, at the time that the price is

set, of (log) marginal cost. Substituting the demand function (1.11) to eliminate the yit

variables, we obtain more simply

log p1t = log Pt + ζ(Ŷt − Ŷ n
t ), (1.21)

log p2t = Et−1

[
log Pt + ζ(Ŷt − Ŷ n

t )
]
,

where

ζ ≡ ω + σ−1

1 + ωθ
> 0. (1.22)

These relations imply that up to our log-linear approximation,

log p2t = Et−1 log p1t.

But a corresponding log-linear approximation to the aggregate price index (1.3) yields

log Pt = ι log p1t + (1− ι) log p2t.



22 CHAPTER 3. OPTIMIZING MODELS WITH NOMINAL RIGIDITIES

It follows that

πt − Et−1πt = log Pt − Et−1 log Pt =
ι

1− ι
(log p1t − log Pt).

Then using (1.21), we obtain the “New Classical” aggregate supply relation

πt = κ(Ŷt − Ŷ n
t ) + Et−1πt, (1.23)

where

κ ≡ ι

1− ι
ζ.

Note that this relation has the form of an “expectations-augmented Phillips curve” of the

kind hypothesized by Phelps (1967) and Friedman (1968), in which the specific inflation

expectation that is relevant is the expectation at the time at which current predetermined

prices were fixed regarding inflation over the interval until the present. This particular form

of dependence of aggregate supply upon inflation expectations was stressed in the “New

Classical” literature of the 1970s (e.g., Sargent and Wallace, 1975).

This aggregate supply relation implies once again that

Et−1 log Yt = Et−1 log Y n
t ,

so that the component of output that can be forecasted a period in advance is still indepen-

dent of monetary policy. However, unexpected variations in aggregate demand now give rise

to inflation variation as well, rather than affecting only output. Again taking the stochastic

process for aggregate nominal spending Yt as given, (1.23) implies that aggregate output

will equal

log Yt = log Y n
t + (1 + κ)−1(logYt − Et−1logY t), (1.24)

so that the aggregate price level will equal

log Pt = (Et−1logY t − log Y n
t ) +

κ

1 + κ
(logYt − Et−1 logYt).

How does the degree of price flexibility affect the impact of fluctuations in nominal

spending upon real activity? Not surprisingly, a larger number of flexible prices (larger ι)
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implies a higher value of κ (steeper short-run Phillips curve), and hence a smaller value of

the elasticity of output with respect to unexpected variations in nominal spending in (1.24).

In the limit as ι approaches one (all prices flexible), κ becomes unboundedly large, and

the output effects of variations in nominal spending approach zero, as found earlier. More

interesting is the question whether intermediate values of ι result in effects more like those

of the fully-flexible limit or the fully-sticky limit. This turns out to depend upon the size of

ζ.

Figure 3.1 plots the elasticity 1/(1 + κ) occurring in (1.24) as a function of ι, for each

of several values of ζ. In each case, the function is monotonically decreasing, as one would

expect, and takes the same values in the two limiting cases of ι = 0 and ι = 1. However, when

ζ > 1, the function is convex (and more so the larger is ζ), while when ζ < 1, the function

is concave (and more so the smaller is ζ). Thus if ζ is large, that even some goods have

flexible prices is enough to prevent variations in nominal spending from having much effect

on aggregate output. In such a case, the flexible-price model would provide a reasonable

approximation to the evolution of aggregate prices and quantities. But if ζ is small, that

even some prices are sticky is enough to result in a substantial effect of variations in nominal

spending upon output. Indeed, in such a case, the overall price index responds very little to

unexpected variations in nominal spending, and the simple model in which all prices were

assumed to be predetermined is a reasonably good guide to aggregate outcomes.

There is a simple intuition for the significance of the parameter ζ: it describes the degree

of strategic complementarity between the price-setting decisions of the suppliers of different

goods. Let us consider the following simple game among price-setters: aggregate nominal

spending Yt is given, and the suppliers of individual goods i are to simultaneously choose the

prices pt(i) for their goods. In what way does a given supplier’s optimal price depend upon

the level of the prices chosen by the other suppliers? We shall say that the pricing decisions

are strategic complements if an increase in the prices charged for other goods increases the

price that it is optimal to charge for one’s own good. Correspondingly, one may speak of

strategic substitutes if an increase in the other prices makes it optimal for one to reduce the
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Figure 3.1: Real effects of variation in nominal spending, for alternative degrees of strategic
complementarity in price-setting.

price of one’s own good.13

To determine the answer to this question, we must first consider what one may call the

notional short-run aggregate supply (SRAS) curve,

p∗t (i)
Pt

= Ω(Yt; ξ̃t),

which indicates how each supplier’s desired relative price varies with the level of aggregate

activity. Here the “desired” price p∗t (i) is the price that the supplier of good i would prefer if

the price of good i could be freely set on the basis of demand and cost conditions at date t,

independent of any prices charged or announced in the past, and with no consequences for

the prices that may be charged at any later dates as well. This is a purely notional supply

13See Bulow, Geanakoplos and Klemperer (1985) for the general notion of strategic complementarity, and
Haltiwanger and Waldman (1989) for discussion of it in the context of adjustment to aggregate shocks more
generally.
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curve in that it need not indicate how the prices of any goods are actually set, in an economy

where prices are sticky; nonetheless, we shall see that the concept is a useful one, even when

no prices are perfectly flexible. In the context of our present framework, the notional SRAS

curve is given by (1.12). When log-linearized, it takes the form (1.21); thus the coefficient ζ

is just the elasticity of the function Ω with respect to Y . Ball and Romer (1990) refer to an

economy in which this elasticity is small as being characterized by real rigidities.14

Best-response curves for individual price-setters can then be derived by substituting the

identity Yt = Yt/Pt into the notional SRAS curve, to obtain

p∗t (i) = PtΩ(Yt/Pt; ξ̃t).

The degree of strategic complementarity is then indicated by the partial derivative of the

right-hand side with respect to Pt. We thus find that strategic complementarity exists15 (a

positive partial derivative) if and only if ζ < 1, while the pricing decisions of the separate

firms are strategic substitutes if ζ > 1.

Thus it is the existence or not of strategic complementarity that determines whether

the fraction of the suppliers with sticky prices exert a disproportionate effect upon the

degree of adjustment of the aggregate price index. The intuition for this is simple: if prices

are strategic complements, then the fraction of prices that do not adjust in response to a

disturbance to nominal spending lead even the flexible-price suppliers to adjust their prices

by less than they otherwise would. If the strategic complementarity is strong enough, there

will be little aggregate price adjustment (and so a large output effect) even if the fraction

14The analogy is with “nominal rigidity”, a situation in which the nominal price charged by a given supplier
(rather than its relative price) is insensitive to the quantity that it must supply. Because the nominal SRAS
as defined here is independent of any specification of the speed at which prices may be adjusted, the degree
to which an economy is characterized by “real rigidities” depends solely upon real factors, the structure of
production costs and of demand. The term, though widely used, is somewhat unfortunate, as it suggests
that there are costs of adjusting real quantities, whereas in fact it means a situation in which (notional)
supply is very elastic. We shall thus mainly speak here of “elastic supply” or “strategic complementarity in
price-setting” instead.

15Note that the question of whether different firms’ pricing decisions are strategic complements is only
defined relative to a particular pricing game, in which aggregate nominal spending is taken as given, in-
dependent of the prices chosen by any of the firms. This is a useful question to consider, however, when
analyzing the dynamics of prices and output under an arbitrarily specified stochastic process for nominal
spending, as we shall repeatedly do in this chapter.
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of flexible-price suppliers is large (though less than one). On the other hand, if prices are

strategic substitutes, then the aggregate price level may adjust nearly in proportion to the

unexpected change in nominal spending, even when many prices are sticky. For in this case,

the fact that some prices do not adjust causes the flexible-price suppliers to compensate for

this by adjusting their prices even more than they would in a flexible-price equilibrium. In

the case of a high degree of strategic substitutability (large ζ), this can result in the aggregate

price index adjusting nearly in proportion to the change in nominal spending; but it will not

adjust by quite that amount, else there would be no change in real aggregate demand, and

so no desire on the part of flexible-price suppliers to change their relative prices.

The possibility of strategic substitutability explains why some authors, such Ohanian et

al. (1996) and Christiano and Eichenbaum (1996), find in models with sticky prices for only

some goods that the partial price stickiness has little effect upon the aggregate effects of

monetary shocks. These papers assume parameter values that imply an elasticity ζ greater

than one, the case of strategic substitutes. At the same time, the “New Keynesian” literature

of the 1980’s routinely assumed an elasticity ζ < 1, and hence found that pricing decisions

should be strategic complements. This result favored the conclusion that it was plausible to

suppose that nominal rigidities mattered a great deal for the character of short-run responses

to shocks. It is thus worth considering in further detail possible determinants of the degree

of strategic complementarity in pricing, and the plausible size of the elasticity ζ.

1.4 Sources of Strategic Complementarity

In the simple model introduced above, the elasticity of the notional SRAS curve is given by

(1.22). Most early “New Keynesian” literature16 assumes linear utility of consumption. This

corresponds in our notation to the limiting case σ−1 = 0, in which case (1.22) reduces to

ζ =
ω

1 + ωθ
.

Given that we must have θ > 1, this expression implies that ζ < 1, so that the pricing

decisions of different suppliers are necessarily strategic complements – the conclusion relied

16See, for example, the presentation in Blanchard and Fischer (1989, sec. 8.1),
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upon in that literature. However, this conclusion is less obviously true if, more realistically,

we assume a finite value for the intertemporal elasticity of substitution σ.

Indeed, many of the early authors in the 1990’s seeking to incorporate sticky prices

into otherwise standard real business cycle models adopted numerical calibrations (derived

from the RBC literature) that implied strategic substitutability. One reason for this was

the widespread assumption, unlike what we have assumed above, of common economy-wide

factor markets, so that the marginal cost of supply would be equal for all goods i at any

point in time.17 In this case the marginal cost of supplying any good is given by

St =
wt

Atf ′(ht)
,

where wt is the wage paid by all producers for the homogeneous labor input, and ht is the

common labor-capital ratio chosen by all producers. Capital is reallocated among firms

so as to allow all firms to use the same efficient labor-capital ratio, even if they produce

different quantities of their respective goods; this common labor-capital ratio will be given

by ht = f−1(Xt/At), where the common output-capital ratio Xt satisfies

Xt =
∫ 1

0
yt(i)di.

Finally, the economy-wide wage wt satisfies (1.6), where the representative household’s labor

supply must equal ht. Marginal supply cost is therefore given by

St(i) = Pts(Xt, Yt; ξ̃t),

independent of the quantity produced of the individual good i, where s is again the function

defined in (1.9).

Using this alternative expression for marginal cost in the derivation of our pricing equa-

tions, we again obtain equations such as (1.21), but in which we now define

ζ ≡ ω + σ−1 > 0.

17The consequences of this issue for the degree of strategic complementarity in pricing are stressed by
Kimball (1995).
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(Note that up to a log-linear approximation, percentage fluctuations in Xt equal percentage

fluctuations in Yt.) In the real business cycle literature, it is standard to assume that σ = 1.

(See, e.g., Cooley and Prescott, 1995.) Under this assumption, ζ > 1, and pricing decisions

are strategic substitutes, regardless of the (necessarily positive) value assigned to ω.

On the other hand, even if one were to assume linear utility from consumption (the most

extreme possible value for σ), one might easily conclude that pricing decisions should be

strategic substitutes, under the assumption of common factor markets. For example, the

baseline calibration of Chari et al. (2000) implies that ω = 1.25, while σ = 1. As they

assume common factor markets, their parameterization implies a value of ζ = 2.25, and thus

a considerable degree of strategic substitutability. But even if they were to assume linear

utility of consumption (σ−1 = 0), despite the implausibility of such an extreme value, the

assumed degree of diminishing returns to labor in the production function and the assumed

degree of increasing marginal disutility of work (which together imply their value of ω) would

still imply ζ = 1.25, so that there would still be strategic substitutability. On the other hand,

even with their assumed values for ω and σ, if these authors were to assume specific factor

markets (as in our analysis above), then (given that they also assign the value θ = 10) they

would have found that ζ = .17, using (1.22). This would imply a great degree of strategic

complementarity. Thus it is the assumption of common factor markets that makes the most

crucial difference for the finding of these and other authors that pricing decisions are strategic

substitutes.

The assumption of common factor markets is thus far from innocuous. It is also far from

realistic. Of course, it makes sense that high wages in one part of the economy eventually raise

wages in the rest, as workers migrate from low-wage to high-wage labor markets. Similarly,

it makes sense that high returns to capital in one part of the economy eventually raise the

rental rate for capital services throughout the economy, as capital is shifted to higher-return

uses (if only through the allocation of new investment). A failure to allow for these factor-

price equalization mechanisms makes our model of specific factor markets unrealistic as a

model of the long-run effects upon sectoral marginal costs of a permanent failure of prices
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in one sector to adjust.

Nonetheless, the opposite extreme assumption — that all factor prices are instantaneously

equalized across the suppliers of different goods — is also unrealistic. In the short run, it

is not easy for workers to migrate to regions, specialties, or even firms that happen to have

temporarily higher labor demand; and it is even less easy for capital goods, once installed,

to be reassigned to firms with a temporarily high rate of utilization of their capital stock.

This “quasi-fixed” character of factor inputs allows equilibrium factor prices to vary across

suppliers for some period following a shock that affects them asymmetrically; and it is

mainly these short-run dynamics of factor prices that matter for determining the short-run

dynamics of price adjustment in response to shocks, which are what matter for comparing

the real allocation of resources under alternative monetary policies.18

Factor specificity need not be an all-or-nothing assumption. For example, one might

assume (as in Sbordone, 1998) that all suppliers hire the same kind of labor inputs in a

single economy-wide labor market, but that each firm has a production function of the form

yt(i) = Atf(ht(i)), where f is strictly concave. This amounts to assuming that each firm’s

allocation of capital goods remains fixed, rather than letting capital be reallocated to equalize

its rental rate. In this case, real marginal costs are given by

ŝt(i) = ωpŷt(i) + (ωw + σ−1)Ŷt − (ω + σ−1)Ŷ n
t ,

where ωp, ωw > 0 are the two components of ω introduced in (1.15). It then follows that

ζ =
ω + σ−1

1 + ωpθ
> 0. (1.25)

This value of ζ is higher than that implied by (1.22), so that there is less strategic comple-

mentarity than in the case of specific labor markets as well (given a finite Frisch elasticity

of labor supply, so that ωw > 0). But it remains a lower value than is obtained under the

assumption of common factor markets, i.e., instantaneous equalization of the rental price of

18In chapter 4, we show how endogenous reallocation of capital across sectors can be added to the model,
so that the rental price of capital must be equalized across sectors in the long run. We nonetheless find that
in the presence of adjustment costs for investment, the short-run dynamics of marginal supply costs are not
too different from those predicted by our simple model with a fixed allocation of capital to firms.
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capital services. For example, Chari et al. (2000) assume a Cobb-Douglas production func-

tion with a labor share of .67, which implies ωp = .5. Thus under their baseline calibration,

if they were to assume a common labor market but specific capital inputs, they would have

obtained ζ = .38, and so a substantial degree of strategic complementarity in price-setting.

There are other reasons as well to believe that the simple model with common fac-

tor markets set out above underestimates the likely degree of strategic complementarity in

price-setting. One that has received some attention in the literature is the possibility that

preferences over differentiated goods need not be of the constant-elasticity (Dixit-Stiglitz)

form (1.2). The result is that the elasticity of demand, and hence the desired markup of

price over marginal cost, need not be independent of the relative quantities produced of

different goods. In particular, Kimball (1995) shows that if the elasticity of demand is lower

for the products of suppliers who sell more (because they have relatively low prices), this

will increase strategic complementarity, and hence the real effects of variations in nominal

spending. For in the event of a decline in nominal spending, price cuts by flexible-price

suppliers will lead to an increase in their relative sales (though a reduction in the absolute

quantity sold), because the sticky-price suppliers fail to cut their prices. If this increase in

relative sales leads to less elastic demand for their products, their desired markups will rise,

mitigating the effect upon their desired relative price of the decline in their sales (and hence

reduction in their marginal supply cost); this will cause them to cut their prices less, so that

the decline in their output is greater.

Following Kimball, let us generalize (1.2) by assuming that the consumption aggregate

Ct is implicitly defined by a relation of the form

∫ 1

0
ψ(ct(i)/Ct)di = 1, (1.26)

where ψ(x) is an increasing, strictly concave function satisfying ψ(1) = 1. (Note that this

reduces to (1.2) if ψ(x) = xθ−1/θ.) The demand curve for good i is then implicitly defined by

ψ′
(

yt(i)

Yt

)
= ψ′(1)

pt(i)

Pt

, (1.27)
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where the price index Pt for aggregate (1.26) is implicitly defined by

∫ 1

0

pt(i)

Pt

ψ′−1

(
ψ′(1)

pt(i)

Pt

)
di = 1. (1.28)

The elasticity of the demand curve (1.27) faced by supplier i is then equal to θ(yt(i)/Yt),

where

θ(x) ≡ − ψ′(x)

xψ′′(x)
. (1.29)

It follows that the desired markup of price over marginal cost for a flexible-price supplier is

equal to µ(yt(i)/Yt), where

µ(x) ≡ θ(x)

θ(x)− 1
. (1.30)

Note that in general, neither θ nor µ is a constant as assumed before; but we continue to

assume a function ψ(x) such that θ(x) > 1 for all x in a neighborhood of 1, so that µ(x) > 1

is well-defined, at least in that neighborhood.

The desired relative price of a flexible-price supplier is then given by

pt(i)

Pt

= µ(yt(i)/Yt)s(yt(i), Yt; ξ̃t), (1.31)

generalizing (1.12). Log-linearization of this relation in turn yields

log pt(i) = log Pt + εµ(ŷt(i)− Ŷt) + sy(ŷt(i)− Ŷ n
t ) + sY (Ŷt − Ŷ n

t ),

where εµ is the elasticity of µ(x) at the value x = 1, and sy and sY are the elasticities of

the real marginal cost function with respect to its first two arguments respectively. Using a

log-linear approximation to (1.27),

ŷt(i) = Ŷt − θ(log pt(i)− log Pt),

to eliminate ŷt(i), and then solving for log pt(i), we obtain a log-linear notional SRAS curve,

and observe that now

ζ =
sy + sY

1 + θ(εµ + sy)
. (1.32)

(Here the coefficient θ refers to θ(1).) For given values of the other parameters, we observe

that a positive εµ — which means θ(x) decreasing in x, as discussed above — lowers the

value of ζ, thus increasing the degree of strategic complementarity.
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In principle, as Kimball shows, εµ could be an arbitrarily large quantity, and so this factor

could result in ζ being arbitrarily small, regardless of the size of the coefficients sy, sY and θ.

(Note that ζ → 0 as εµ →∞.) Bergin and Feenstra (2000), however, argue that a plausible

calibration would assign a value of approximately θεµ = 1, so that εµ is positive but not

extremely high. If the desired markup depends upon relative demand for different goods as

above, one can show that the desired price of supplier i satisfies

log pt(i) =
1

1 + θεµ

log St(i) +
θεµ

1 + θεµ

log Pt,

regardless of the determinants of nominal marginal cost St(i). Bergin and Feenstra note

that the literature on exchange-rate pass-through typically finds that a devaluation raises

the domestic-currency price of imported goods by only about 0.5 of the percentage of the

devaluation. If one interprets this is as measuring the elasticity of pt(i) with respect to

changes in St(i) (on the assumption that the devaluation does not affect the foreign-currency

marginal cost of supplying the imported goods, or the domestic-currency prices of most goods

in the domestic price index), then one may conclude that θεµ equals approximately 1.19

In the case of homogeneous factor markets (sy = 0, sY = ω + σ−1), assumed by Bergin

and Feenstra, (1.32) reduces to

ζ =
ω + σ−1

1 + θεµ

.

In this case, their suggested value of εµ reduces ζ by a factor of 2 relative to what one would

obtain under the assumption of Dixit-Stiglitz preferences. This is not enough to radically

change one’s views about the real effects of monetary policy (as they conclude), but it is

nonetheless a non-trivial correction. However, in the case of specific factor markets (sy = ω,

sY = σ−1), the correction matters much less. In this case, (1.32) reduces to

ζ =
ω + σ−1

1 + θ(εµ + ω)
.

Here setting θεµ equal to 1 instead of zero does not make such a great difference, since the

term θω in the denominator is now likely to be much greater than one. For example, in the

19Bergin and Feenstra also note that this size of markup elasticity would be implied by the translog
specification of preferences that has been popular in econometric studies of demand.
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case of the Chari et al. values for ω, σ and θ discussed above, allowing for the variation in

desired markups only reduces the predicted ζ from 0.17 to 0.16.

Another reason for greater strategic complementarity than is indicated by the baseline

analysis above is the economy’s input-output structure, stressed by Basu (1995). Our above

analysis of marginal supply costs assumes that labor is the only variable factor of production,

ignoring the role of intermediate inputs. While this is a familiar assumption in equilibrium

business-cycle models (it is, for example, routine in the real business cycle literature), it

is far from being literally correct. The production function for “output” as a function of

capital and labor inputs that one typically encounters in such models must be interpreted

as a functional relation between the value added in production (GDP) and primary factor

inputs, rather than a relation between gross output and all factors of production (including

those that are themselves produced). Under certain conditions, and for some purposes, it

suffices to model the economy as if this “value-added production function” were the actual

production function of individual producers — for example, for purposes of predicting the

evolution of real GDP in the context of a flexible-price, perfectly competitive model, as in

RBC theory. But as Rotemberg and Woodford (1995) note, it is important not to conflate

gross-output and value-added production functions in the case of a model with imperfect

competition and prices that do not co-move perfectly with marginal cost.

Rotemberg and Woodford (1995) propose a simple gross-output production function of

the form20

yt(i) = min

[
Atf(ht(i))

1− sm

,
mt(i)

sm

]
, (1.33)

where Atf(ht(i)) is the value-added production function (as above), mt(i) is the quantity of

materials inputs used by firm i, and 0 ≤ sm < 1 is a parameter of the production technology

(that can be identified, for purposes of calibration, with the share of materials costs in the

20Basu (1995) and Bergin and Feenstra (2000) instead assume that gross output is a Cobb-Douglas function
of labor and materials inputs. The simple analysis here, however, which has the advantage of nesting our
previous specification as a limiting case, allows us to reach quite similar conclusions about the consequences
of the input-output structure for the degree of strategic complementarity in pricing in a highly transparent
way. There seems in any event to be no argument other than tractability offered for the Cobb-Douglas
specification used in these other papers.



34 CHAPTER 3. OPTIMIZING MODELS WITH NOMINAL RIGIDITIES

value of gross output). The argument mt(i) refers to the number of units of the aggregate

defined in (1.2) — or more generally in (1.26) — that are purchased for use in producing good

i; it is thus a composite of all of the goods produced in the economy, which are all assumed

equally to be both final goods and intermediate inputs. If firms allocate their intermediate

input purchases across goods j in a cost-minimizing way, the quantity purchased of good j

for use in producing good i will equal mt(i)(pt(j)/Pt)
−θ (or the corresponding generalization

in the case of a non-Dixit-Stiglitz aggregator), and the cost per unit of materials inputs will

be the same price index Pt as for consumption purposes. Total demand for firm i’s output,

given by the sum of final demand and intermediate-input demand from other producers, will

still be given by (1.5) — or more generally by (1.27) — where now aggregate demand Yt is

equal to

Yt = Ct +
∫ 1

0
mt(i)di. (1.34)

It follows from the production function (1.33) that real marginal cost for firm i will equal

st(i) = (1− sm)sV A
t (i) + sm, (1.35)

where sV A
t (i) is the real marginal cost of an additional unit of theoretical value-added (the

function of primary input use given by Atf(ht(i))), and we have used the fact that the price

of the materials aggregate is Pt. The marginal cost of supplying value-added is given by the

same real marginal cost function derived earlier; for example, in the case of specific factor

markets, it is given by

sV A
t (i) = s((1− sm)yt(i), Yt − sm

∫ 1

0
yt(i)di; ξ̃t),

where s(y, Y ; ξ̃) is again defined as in (1.9). The existence of a symmetric steady state then

requires that sm < µ−1, where the latter quantity represents the steady-state level of real

marginal cost, given firms’ desired markup of µ > 1.21 Such a steady state involves a constant

level of final-goods demand (or real value added) Ȳ implicitly defined by22

s(Ȳ , Ȳ ; 0) =
1− µsm

µ(1− sm)
. (1.36)

21In the case that the desired markup is variable, we continue to use the coefficient µ to refer to the
steady-state value, µ(1).
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Regardless of the factor market structure, we find that a log-linear approximation to the

real marginal cost function for value added is given by

ŝV A
t (i) = syŷt(i) + sY Ŷt,

where the elasticities sy and sY are the same as earlier. Log-linearization of (1.35) then

implies that

ŝt(i) = (1− µsm)(syŷt(i) + sY Ŷt).

It is the appearance of the multiplicative factor 1 − µsm < 1 here that explains how the

economy’s input-output structure gives rise to “real rigidity” of the sort that increases the

strategic complementarity among pricing decisions. Substitution of the demand curve for

ŷt(i) as before then allows us to solve once again for firm i’s desired relative price; we now

find that

ζ =
(1− µsm)(sy + sY )

1 + θ[εµ + (1− µsm)sy]
, (1.37)

generalizing (1.32).

We observe that allowing for a positive materials share lowers ζ, for given values of

the other parameters; and once again, this effect could in principle result in an arbitrarily

small value for ζ, regardless of the values of the other parameters. (Note that ζ → 0 as

sm → µ−1 < 1.) However, the share of materials costs in total costs for U.S. manufacturing

sectors is typically on the order of 50 or 60 percent; this suggests that a reasonable calibration

would be on the order of µsm = 0.6.23 In the case of homogeneous factor markets (sy = 0),

22Note that the right-hand side of (1.36) is the the reciprocal of the steady-state “value-added markup”
or inefficiency wedge resulting from market power that Rotemberg and Woodford (1995) contrast with
the steady-state “gross-output markup” or firm-level markup of price over marginal cost µ. Distinguishing
between the two is essential in calibrating an imperfectly competitive model that abstracts from the existence
of intermediate inputs.

23This would correspond to a materials share of 54 percent, if we assume θ = 10 as do Chari et al. Note
that Basu (1995) suggests that a share parameter as high as sm = 0.9 could be reasonable, on the ground
that the share of intermediate inputs in marginal cost could be substantially higher than their share in
average cost. Under such an assumption this correction would be much more important than under the
calibration suggested here; for example, the assumption sm = 0.9 combined with an assumption θ = 10
would imply that ζ = 0. But such a calibration is not easy to interpret. If, for example, one proposes that a
large fraction of primary input purchases represent fixed or “overhead” costs, this would imply substantial
increasing returns (average cost much higher than marginal cost), which would in turn not be consistent
with equilibrium in the absence of an implausibly high degree of market power.
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Table 3.1: The value of ζ under alternative assumptions.

σ−1 = 1, ω = 1.25 σ−1 = .16, ω = .47
θεµ µsm homo. factor spec. factor homo. factor spec. factor
0 0 2.25 0.17 0.63 0.11
1 0 1.13 0.16 0.32 0.09
0 .6 0.90 0.15 0.25 0.09
1 .6 0.45 0.13 0.13 0.06

this implies that ζ is reduced by a factor of 2.5 (i.e., it is multiplied by 0.4). This is again

a significant reduction, and if this effect is combined with the degree of variation in the

desired markup argued for above, the value of ζ is only one-fifth the size indicated by the

baseline calculation of Chari et al. — 0.45 instead of 2.25, which is to say well below 1

(implying strategic complementarity) rather than being well above 1 (implying strategic

substitutability). On the other hand, in the case of specific factor markets, this correction

matters much less, unless sm is assumed to be much closer than µ−1 than seems realistic.

Using the calibration discussed above, assuming µsm = 0.6 rather than zero reduces ζ from

0.17 to 0.15 (in the constant-markup case), or from 0.16 to 0.13 (in the variable-markup

case). These reductions make no dramatic difference in one’s conclusions about the degree

of strategic complementarity.

Our conclusions about the effects of these several corrections, in the case of the calibra-

tions just discussed, are summarized in Table 3.1. The left side of the table gives the value

of ζ under the assumption that ω = 1.25, σ = 1, and θ = 10, as assumed by Chari et al.,

under eight different cases, representing three binary choices. These are the assumption of

homogeneous factor markets (sy = 0, sY = ω + σ−1) versus specific factor markets (sy = ω,

sY = σ−1); the assumption of a constant desired markup (εµ = 0) versus a realistic degree

of markup variation (θεmu = 1); and the assumption of no intermediate inputs (sm = 0)

versus a realistic intermediate input share in costs (µsm = 0.6). In each case, the simple

assumption made in the baseline case of Chari et al. is the one least favorable to strategic

complementarity. Changing any of these assumptions individually reduces ζ substantially
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relative to their baseline case. However, it is the allowance for factor specificity that matters

most, if one accepts that this is the more realistic assumption. For while each of the other

two corrections makes a significant difference in the case of homogeneous factor markets, and

together they make an even larger difference (as stressed by Bergin and Feenstra), in the

case of specific factor markets even their combined effect is not at all dramatic. Furthermore,

factor specificity alone reduces the value of ζ much more than the other two factors combined

do, if the importance of these latter factors is calibrated in what seems a reasonable way.

The right side of the table offers a similar comparison, when instead lower values are

assumed for both σ−1 and ω. The values suggested here are those obtained by Rotemberg

and Woodford (1997) when a slightly more complicated version of this pricing model is

fit to U.S. time series, as discussed further in chapter 4. The higher value of σ (implying

much greater interest-sensitivity of private expenditure) is needed in order to account for the

observed size of the effects of an identified monetary policy shock on real aggregate demand;

the lower value of ω (implying much more elastic labor supply) is needed in order to account

for the observed modest declines in real wages that accompany such a large decline in output.

Under these alternative assumptions regarding preferences, ζ < 1, implying a modest degree

of strategic complementarity, even in the case of homogeneous factor markets, Dixit-Stiglitz

preferences, and no intermediate inputs. But once again the degree of real rigidity is increased

by modifying any of these last three assumptions. It is interesting to observe in this case

that even under the assumption of homogenous factor markets, we obtain a value of ζ = .13,

if we make realistic assumptions about the other two sources of real rigidity. Thus a value

of ζ in the range between 0.10 and 0.15 does not require implausible assumptions. This is

a value that implies substantial strategic complementarity, and as we shall see, enough to

explain roughly the observed degree of sluggishness of aggregate price adjustment in response

to variations in nominal expenditure, given the observed frequency of price adjustment in

economies like that of the U.S.
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2 Inflation Dynamics with Staggered Price-Setting

An unsatisfactory feature of the “New Classical” aggregate supply relation derived above

is its implication that only unanticipated fluctuations in nominal spending have any effect

upon real activity, and that equilibrium fluctuations in the output gap must be completely

unforecastable. These strong predictions were the occasion of a great deal of discussion and

criticism during the 1970s and early 1980s (see, e.g., Sheffrin, 1996, chap. 2). They imply

that only the immediate effects of a monetary policy shock upon nominal expenditure should

have any consequences for real activity; delayed effects (effects on nominal spending after

the “period” in which the shock occurs) should not affect output at all, only the price level.

And such real effects of a monetary policy shock as occur must be purely transitory, i.e.,

must last no longer than the “period” for which the sticky prices are fixed in advance.

These predictions are quite inconsistent with the effects identified in the “structural VAR”

literature. As an example, Figure 3.2 plots the impulse response of nominal GDP to an

identified monetary policy shock, according to the structural VAR model of Christiano et al.

(2001).24 There is practically no measurable effect of an unexpected interest-rate reduction

in quarter zero upon nominal GDP until the second quarter following the monetary policy

shock, though there is a strong increase in nominal GDP at that time.25 But this means

that according to the “New Classical” aggregate-supply relation, monetary shocks should

have no effect upon real activity at all, unless the “period” for which sticky prices are fixed

in advance is longer than six months.

Figure 3.3 next shows the estimated impulse response of real GDP to the same shock in

24This particular impulse response is not reported in their paper, though the point estimates here are
implied by the inflation and real GDP responses that are reported there. I thank Charlie Evans for supplying
the data plotted in this and subsequent figures. The impulse responses implied by this particular VAR study
are representative of those found in many others; see Christiano et al. (1999) for a review.

25The fact that there is zero effect upon nominal GDP in quarter 0 is an artifact of the authors’ iden-
tification scheme, which assumes that any contemporaneous correlation between interest-rate innovations
and innovations in either real GDP or inflation is due to feedback from the latter variables to the current
interest-rate operating target, as under a Taylor rule. However, the estimated effect in quarter 1 is in no
way constrained by the identification scheme; the fact that neither output nor inflation is estimated to be
significantly affected in quarter 1 provides some support for the assumption relied upon in the identification
scheme.
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Figure 3.2: Impulse response of nominal GDP to an unanticipated interest-rate reduction
in quarter 0. Periods on horizontal axis represent quarters, while the vertical axis measures
the effect on log nominal GDP in percentage points. Source: Christiano, Eichenbaum and
Evans (2001).

quarter zero. Contrary to the suggestion just mentioned, there is a substantial real effect

of the shock. (Note that in both figures, the monetary policy shock is normalized so that

the long-run effect on nominal GDP is an increase of one percentage point.) Furthermore,

the effect occurs with a substantial delay; there is essentially no effect on output until the

second quarter following the policy shock,26 and the peak output effect occurs only in the

sixth quarter following the shock. The estimated effect is still more than two standard errors

greater than zero two full years after the shock, and (at least according to the point estimate)

the effect is still at more than a third of its maximum level ten quarters after the shock.

26It may be wondered why we assert that the shock actually occurs in quarter zero, given that there is
no effect on nominal expenditure until quarter two. The occurrence of the policy shock is indicated by the
substantial decline in the federal funds rate in quarter zero; see Christiano et al. (2001) for a plot of this
response.
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Figure 3.3: Impulse response of real GDP to the same monetary policy shock as in Figure
3.2. The vertical axis measures the effect on log real GDP in percentage points. Source:
Christiano, Eichenbaum and Evans (2001).

Such long-lasting effects are inconsistent with the “New Classical” aggregate-supply relation,

unless the “period” for which prices are fixed in advance is longer than two years. But survey

evidence on price changes (e.g., Blinder et al., 1998) finds that the majority of firms change

their prices more frequently than once per year, so that more than half of all prices should

have been adjusted at least once within the first two quarters following a shock.

This undesirable feature of the model can be avoided, however — without abandoning

the assumption that prices are set optimally (under rational expectations) when they are

adjusted, and without assuming counterfactually long intervals between price changes — by

assuming that the intervals over which the prices of different goods remain fixed overlap,

rather than being perfectly synchronized. As Phelps (1978) and Taylor (1979a, 1980) first

pointed out,27 such staggering of price changes can lead to a sluggish process of adjustment
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of the overall price level, even when individual prices are adjusted relatively frequently.

This is because, if individual suppliers’ pricing decisions are strategic complements, then

the fact that some prices are not yet being adjusted will restrain the degree to which prices

are changed by those suppliers that do adjust their prices. At a later date, the adjustment of

the prices that earlier were sticky will in turn be restrained by the fact that the prices that

earlier were adjusted were not changed very much. As a result of this process, the level of

prices prior to a shock can continue to have a significant effect on the general level of prices

even after most prices have been adjusted at least once since the shock. If the strategic

complementarity between pricing decisions is great enough, the adjustment of the general

level of prices can be quite slow, even though individual price adjustments are frequent. The

consequence will be prolonged effects on real activity of a sustained change in the level of

nominal spending.

As we shall see, this theory of pricing can again justify an aggregate supply relation that

takes the form of an “expectations-augmented Phillips-curve” relation. However, in this

variant case, the kind of inflation expectations that determine the location of the short-run

Phillips curve are current expectations regarding future inflation, rather than past expecta-

tions regarding current inflation. This might seem a small difference (given the degree of

serial correlation in inflation expectations, at least in recent decades), but it is a crucial one;

for the aggregate supply relation, together with rational expectations, no longer exclude the

possibility of forecastable variations in the output gap. With this modification, the model

becomes consistent with the occurrence of prolonged fluctuations in real activity following a

monetary policy shock, of at least roughly the kind estimated in the VAR literature.

27These first applications of the idea assumed that wages, rather than prices, were fixed for a period
of time (owing to wage contracts), and thus concerned the effects of staggered wage negotiations rather
than staggered price-setting. But as Blanchard (1983) pointed out, the same principle can be applied to
price-setting.
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2.1 The Calvo Model of Price-Setting

Here we present a particular example of a model with staggered price-setting, a discrete-

time variant of a model proposed by Guillermo Calvo (1983).28 In this model, a fraction

0 < α < 1 of goods prices remain unchanged each period, while new prices are chosen for

the other 1 − α of the goods. For simplicity, the probability that any given price will be

adjusted in any given period is assumed to be 1−α, independent of the length of time since

the price was set, and independent of what the particular good’s current price may be.

These last assumptions are plainly unrealistic, but they are very convenient in simplifying

the analysis of equilibrium inflation dynamics, as they greatly reduce the size of the state

space required to characterize those dynamics. Because each supplier that chooses a new

price for its good in period t faces exactly the same decision problem, the optimal price p∗t

is the same for each of them, and so in equilibrium, all prices that are chosen in period t

have the common value p∗t . The remaining fraction α of prices charged in period t are simply

a subset of the prices charged in period t − 1, with each price appearing in the period t

distribution of unchanged prices with the same relative frequency as in the period t−1 price

distribution. (For this last argument it is crucial that each price has an equal probability

of being adjusted in a given period.) Then the Dixit-Stiglitz price index (1.3) in period t

satisfies

P 1−θ
t ≡

∫ 1

0
pt(i)

1−θdi = (1− α)p∗1−θ
t + α

∫ 1

0
pt−1(i)

1−θdi,

so that

Pt =
[
(1− α)p∗1−θ

t + αP 1−θ
t−1

] 1
1−θ . (2.1)

It follows that in order to determine the evolution of this price index, we need only know

its initial value, and the single new price p∗t that is chosen each period. The determination of

28See also Rotemberg (1987) for discussion of this model, and the similarity of its implications for aggregate
dynamics to those of a model with convex costs of price adjustment. The first use of a discrete-time version
of Calvo’s model of price-setting, in the context of a complete intertemporal equilibrium model of aggregate
fluctuations, was in the work of Yun (1996). Other early applications of the same device include Woodford
(1996), King and Watson (1996), King and Wolman (1996), and Goodfriend and King (1997). Kimball (1995)
also assumes Calvo pricing, albeit in continuous time, in another important early study of an intertemporal
equilibrium model with sticky prices.
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p∗t , in turn, depends upon current and expected future demand conditions for the individual

good, but (1.11) implies that other prices affect the demand curve for good i only through

the value of the price index Pt. Thus we can determine the equilibrium value of the index Pt

as a function of its previous period’s value, the expected future path of this same index, and

current and expected future values of aggregate real variables. There is no need for reference

to additional information about past prices.29

A supplier that changes its price in period t chooses its new price pt(i) to maximize

Et

{ ∞∑

T=t

αT−tQt,T [Πi
T (pt(i))]

}
, (2.2)

by analogy with (1.16), where once again nominal profits each period are given by

Πi
t(p) = [YtP

θ
t p1−θ − wt(i)f

−1(YtP
θ
t p−θ/At). (2.3)

Here the factor αT−t multiplying the stochastic discount factor indicates the probability

that price pt(i) will still be charged in period T .30 The price pt(i) is chosen on the basis

of information available at date t so as to maximize this expression, given the expected

state-contingent values of the random variables Qt,T , YT , PT , wT (i) and AT for all dates

T ≥ t.

Corresponding to (1.18) we obtain in this case the first-order condition

Et

{ ∞∑

T=t

αT−tQt,T YT P θ
T [pt(i)− µST (i)]

}
= 0. (2.4)

Thus there is again a sense in which the price pt(i) is set equal to µ times a weighted average

of the levels of marginal costs expected to prevail in the various future states, and at the

29This is only precisely true in the case of our baseline model, with specific factor markets, since in this case
the real marginal cost of supplying a given good depends only upon the quantity supplied of that good yt(i),
aggregate output Yt, and the vector of aggregate shocks ξ̃t. If we instead assume common factor markets,
as in Yun (1996), real marginal cost depends upon an alternative output aggregate (the one that determines
aggregate demand for factors), and not solely upon the Dixit-Stiglitz aggregate Yt (that determines the
utility value of output). This means that the equilibrium conditions for the evolution of Pt also involve a
second price index, as shown by Yun. However, even in that case, up to a log-linear approximation the
equilibrium conditions can be written solely in terms of the index Pt.

30Note that (2.2) reduces to (1.16) if the factor αT−t is replaced by one that takes the value 1 if T = t + 1
and the value zero for all other T .
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various future dates, at which the price pt(i) applies. But once again, (2.4) does not give a

closed-form expression for the optimal price, since ST (i) will depend upon the price of good

i.31 Substituting the demand function (1.11) into the real marginal cost function defined in

(1.9), and using this to replace ST (i) in (2.4), and again substituting the solution for the

stochastic discount factor from equation (xx) of chapter 2, we obtain

Et

{ ∞∑

T=t

(αβ)T−tuc(YT ; ξT )YT P θ−1
T [p∗t − µPT s(YT P θ

T p∗−θ
t , YT ; ξ̃T )]

}
= 0 (2.5)

as an equation that implicitly defines the optimal price p∗t . Note that the monotonicity of s

in its first argument implies that the left-hand side of this expression is increasing in p∗t , so

that the optimal price is uniquely defined by this condition. The value of p∗t then determines

the evolution of the price index Pt through (2.1).

Once again, we may usefully approximate the equilibrium dynamics of inflation in the case

of small enough disturbances ξ̃t by considering a log-linear approximation to these equations.

If ξ̃t = 0 and Yt = Ȳ at all times, equations (2.1) and (2.5) have a solution with zero inflation,

in which Pt = p∗t = Pt−1 each period. In the case of small enough fluctuations in ξ̃t and Yt

around these values, we accordingly look for a solution in which Pt/Pt−1 and p∗t /Pt remain

always close to 1, though the (log) price level may contain a unit root.32 The fluctuations

in these two stationary variables must approximately satisfy a log-linear approximation to

31Authors such as Yun (1996) or Goodfriend and King (1997), who assume common factor markets, are
instead able to solve for the optimal price p∗t in closed form. However, the assumption of common factor
markets results in an unrealistic estimate of the likely degree of strategic complementarity in price-setting,
as discussed above.

32Our algebra at this point is simplified by log-linearizing around a steady state with a zero inflation
rate, rather than some other constant inflation rate. The resulting log-linear structural equations thus apply
only to the determination of equilibrium in the case of a policy rule that does in fact generate inflation
near zero at all times. This does not mean, however, that we can consider only policy rules that make the
average inflation rate exactly zero, or that involve a “target” inflation rate of zero. It is only necessary
that the average inflation rate be sufficiently small (technically, of order O(||ξ||), if we want the error in
our characterization of the evolution of inflation and other variables to be of order O(||ξ||2), where ||ξ|| is a
bound on the size of the disturbances). As we shall argue (see chapter 6) that desirable policies do imply
a low average inflation rate, this does not seem an inconvenient restriction, from the standpoint of our goal
of characterizing optimal policy. Characterization of the effects of policy in a high-inflation economy might
require a more accurate approximation. But the Calvo pricing model itself is implausible as a model of
pricing under such circumstances, as many individual prices are likely to be indexed to some broader price
index (or to an exchange rate). The model with backward-looking price indexation, discussed in section xx
below, would likely be more realistic for such purposes.
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(2.1),

πt =
1− α

α
p̂∗t , (2.6)

where p̂∗t ≡ log(p∗t /Pt). They must also approximately satisfy a log-linear approximation to

(2.5), given by

Et

∞∑

T=t

(αβ)T−t



p̂∗t − [ŝt,T +

T∑

τ=t+1

πτ ]



 = 0, (2.7)

where ŝt,T denotes the deviation (from its steady-state value) of the log of real marginal cost

in period T for a supplier whose price is p∗t . (The term in square brackets in (2.7) is thus

the deviation of the log of

(PT /Pt)s(YT P θ
T p∗−θ

t , YT ; ξ̃T )

from its steady-state value of µ−1. There are no terms in (2.7) corresponding to stochastic

variation in the discount factors in (2.5), because the steady-state value of the term in square

brackets in that equation is zero.)

Under our characterization (1.14) of the dependence of marginal supply cost upon a

producer’s own level of output, the variable ŝt,T can furthermore be approximated by

ŝt,T = ŝT − ωθ[p̂∗t −
T∑

τ=t+1

πτ ],

where ŝT denotes the deviation of the log of the average level of real marginal cost (real

marginal cost for a good with output yT (i) = YT ) from its steady-state value. Substituting

this into (2.7), we can solve for

p̂∗t = (1− αβ)Et

∞∑

T=t

(αβ)T−t[(1 + ωθ)−1ŝT +
T∑

τ=t+1

πτ ]

=
1− αβ

1 + ωθ

∞∑

T=t

(αβ)T−tEtŝT +
∞∑

T=t+1

(αβ)T−tEtπT .

Thus the relative price chosen by those suppliers who adjust their prices in period t is a

purely forward-looking function of aggregate conditions at that date.

This last expression in turn can be quasi-differenced to yield

p̂∗t =
1− αβ

1 + ωθ
ŝt + αβEtπt+1 + αβEtp̂

∗
t+1.
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Then using (2.6) to substitute for p̂∗t on both sides of the above, we obtain a stochastic

difference equation for the inflation rate,

πt = ξŝt + βEtπt+1, (2.8)

where

ξ ≡ 1− α

α

1− αβ

1 + ωθ
> 0.

Writing this alternatively as

∆ log Pt = ξ[log St − log Pt + log µ] + βEt∆ log Pt+1, (2.9)

we see that we have an equation that can be solved for the predicted path of the price

index Pt, given the evolution of the average level of nominal marginal cost St. Specifically,

if {log St} is a difference-stationary process, there is a unique solution for the price index

process such that {log Pt} is also difference-stationary (i.e., inflation is a stationary process),

given by

log Pt = λ1 log Pt−1 + (1− λ1)(1− λ−1
2 )

∞∑

j=0

λ−j
2 [log µ + Et log St+j], (2.10)

where 0 < λ1 < 1 < β−1 < λ2 are the two roots33 of the characteristic polynomial

βλ2 − (1 + β + ξ)λ + 1 = 0. (2.11)

This prediction of the Calvo pricing model is in fact independent of any specification of

the determinants of average marginal costs; the only feature of the marginal cost function

used in deriving (2.8) was the fact that the elasticity of an individual supplier’s marginal

cost with respect to its own output is equal to ω > 0. Tests of the empirical adequacy of

this theory of pricing are therefore appropriately focused upon this prediction, rather than

upon the accuracy of the “New Keynesian” aggregate supply relation derived below (which

depends as well upon the details of one’s theory of supply costs). This is the approach

33The roots can be shown to be real and to satisfy the inequalities just stated, as long as 0 < β < 1 and
ξ > 0.
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Figure 3.4: U.S. inflation (quarterly change in GDP deflator, in percentage points of equiv-
alent annual rate) compared to growth rate of unit labor cost. Source: Sbordone (2002).

taken by Sbordone (1998, 2002), who uses data on the average level of unit labor cost in the

U.S. economy as a measure of nominal marginal cost.34 She estimates a small atheoretical

VAR model with which to forecast the future path of unit labor costs, using quarterly U.S.

data over the period 1960-1997. This then allows one to construct an implied series for the

forward-looking terms on the right-hand side of (2.10), for any assumed values of β and ξ

(which then imply values for λ1 and λ2). Starting from an initial condition for the price level

(given by its historical value in the initial quarter), one can then simulate (2.10) to obtain

a predicted time path for the price level, given the observed path of unit labor costs (and of

forecasted future labor costs). One can then compare this prediction to the actual path of

34Note that according to the model developed here, average marginal supply cost should be proportional
to average unit labor cost under the assumption of a production technology with a constant elasticity of
output with respect to the labor input (e.g., the familiar Cobb-Douglas specification). See Rotemberg and
Woodford (1999b) for further discussion of this common measure of marginal cost and alternatives.
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Figure 3.5: Actual path of price/ULC ratio (quarterly U.S. data, reported as log deviation
from mean) compared to prediction of the Calvo pricing model. Source: Sbordone (2002).

the aggregate price level over the same period.

Note that in the case of flexible prices (the ξ →∞ limit of the above model), the predicted

price series would simply be given by log Pt = log µ+log St, so that predicted inflation would

be given by the percentage growth in nominal unit labor costs from one quarter to the next.

As shown in Figure 3.4, this would be quite a poor explanation of actual U.S. inflation; in

particular, one observes that inflation has been much less volatile than the growth rate of

unit labor costs. Alternatively, as shown in Figure 3.5, there has been substantial variation

in the ratio of price to unit labor cost from year to year, whereas the model implies that

this should be constant. In the case of sticky prices (ξ finite), the model implies less volatile

inflation, and in fact, for a certain value of ξ, it predicts a path for the price level quite

similar to its actual path. Figure 3.5 compares the actual path of the (demeaned, log)

price/ULC ratio to the model’s prediction in the case that ξ = .055.35 The fit is quite good;
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the mean squared error of the predicted price/ULC series is only 12 percent as large as the

variance of the actual price/ULC series. And even this statistic fails to emphasize the extent

to which the model succeeds in explaining the timing of quarterly changes in the ratio; the

discrepancy between the predicted and actual series is mainly at quite low frequencies. Figure

3.6 similarly compares the actual path of U.S. inflation (measured by growth in the GDP

deflator) with the path predicted by the model. The fit is again quite good (which is another

way of seeing that the discrepancy in Figure 3.5 is almost entirely at low frequencies).36

These results provide persuasive evidence for price stickiness of roughly the sort implied

by the Calvo pricing model. The degree to which the model fits U.S. inflation dynamics is

perhaps surprising, given that the assumption of a fixed probability of price change for all

suppliers has been chosen for analytical convenience rather than out of any belief that it

ought to be realistic. Probably this reflects the fact that, given the small value of ξ implied

by Sbordone’s estimates (and hence the high degree of smoothing of marginal cost in the

price dynamics), the details of the distribution of intervals between price changes does not

matter much for the evolution of the aggregate price index, but only the average rate at

which prices are revised. But the fit of the model does clearly depend upon the existence of

staggered price changes of the kind assumed by Calvo. The “New Classical” pricing model

considered above, for example, would imply that fluctuations in the ratio of price to marginal

cost should be unforecastable, so that the predicted P/ULC series would necessarily exhibit

no serial correlation. The significant serial correlation of the P/ULC series shown in Figure

3.5, and the closely similar degree of serial correlation of the series predicted by the Calvo

35Sbordone selects this value as her estimate, on the ground that it minimizes the mean-squared error of
the model’s predicted path for log Pt, when β is assigned a value of 1. Note that she actually reports the
value of ξ−1 = 18.3.

36Gali and Gertler (1999) obtain similar results for U.S. inflation, using an alternative, instrumental-
variables strategy for estimating equation (2.8). Gali and Gertler find that they can statistically reject this
baseline pricing model in favor of a generalization in which some price-setters use a backward-looking “rule of
thumb”, discussed further below in section xx. However, they find that the baseline model already explains
historical inflation dynamics quite well, as Figure 3.6 shows; and the validity of the standard errors used to
determine that the rejection of the baseline model is statistically significant might also be questioned. Batini
et al. (2000) similarly find that the Calvo pricing model can explain U.K. inflation dynamics, while Gali et
al. (2001) obtain similar results for several European countries.
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Figure 3.6: Actual path of inflation (quarterly U.S. data) compared to prediction of the
Calvo pricing model. Source: Sbordone (2002).

model,37 suffices to show that the kind of price stickiness allowed in that model cannot

similarly explain the U.S. data. Perhaps more surprisingly, Sbordone shows that the U.S.

price index cannot be fit nearly as well by any purely backward-looking moving average of

unit labor costs, either; the kind of smoothing reflected in the figures depends importantly

upon the presence of the forward-looking terms on the right-hand side of (2.10), and not

simply upon the partial-adjustment term.38

One might, of course, doubt the accuracy of the simple unit-labor-cost measure of

marginal cost, for various reasons that are reviewed by Rotemberg and Woodford (1999b).

37The autocorrelation functions of both series, with standard errors for the data series, are presented in
Sbordone (1998, 2002).

38Sbordone shows this formally by separately estimating the weights λ1 and λ−1
2 in (2.10), without imposing

the restriction that they correspond to the two roots of (2.11). She finds not only that both coefficients are
significantly positive, but that the values that yield the best fit are nearly equal in size, as the Calvo pricing
model would imply. (Note that the two roots of (2.11) necessarily satisfy λ1λ2 = β−1.)
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But it seems fortuitous that such a simple model of price-setting can explain actual inflation

dynamics so well, if unit labor cost is not in fact a fairly accurate measure of variations

in marginal cost, at least at moderate frequencies.39 In fact, Sbordone experiments with a

number of possible corrections to her simple measure of marginal cost, and finds that none of

them improves the fit of the pricing model. One might also wonder whether forecasts based

on a VAR model with constant coefficients fit to the entire period 1960-97 should correspond

very closely to people’s expectations, even assuming that their expectations were rational,

on the ground that the dynamics of unit labor costs need not have been constant over this

period. (One might think, for example, that inflation dynamics have been substantially

different since the disinflation of the early 1980s; but this would imply that unit labor cost

dynamics should have been different as well.) But, once again, the close fit of the model,

and the fact that it fits equally well both before and after the 1979-82 period, suggest that

the hypothesis of a common (and at least roughly unbiased) forecasting rule over the entire

period is not too inaccurate.

2.2 A “New Keynesian” Phillips Curve

We can use the model of optimal price-setting just derived to obtain an aggregate supply

relation — i.e., a structural relation between inflation dynamics and the level of real activity

— by adjoining to our above pricing equation a theory of how real marginal costs depend

upon the level of real activity. The simple model used earlier in this chapter (recall equation

(1.14)) implies that

ŝt = (ω + σ−1)(Ŷt − Ŷ n
t ). (2.12)

Substituting this into (2.8) then yields an aggregate supply relation of the form

πt = κ(Ŷt − Ŷ n
t ) + βEtπt+1, (2.13)

39Because of the degree of smoothing involved in (2.10), high-frequency error in the measure of marginal
cost will have relatively little effect upon the predicted path for prices. And Figure 3.5 itself indicates at
least a small amount of low-frequency specification error, which might be due to low-frequency error in the
measure of marginal cost.
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where

κ ≡ (ω + σ−1)ξ =
(1− α)(1− αβ)

α

ω + σ−1

1 + ωθ
> 0.

Alternatively, the slope coefficient can be written as

κ =
(1− α)(1− αβ)

α
ζ, (2.14)

where ζ is defined in (1.22). This is what Roberts (1995) calls the “New Keynesian Phillips

Curve,” as this specification, or one similar to it, is implied by a variety of simple models

of optimal price-setting.40 From (2.14) we observe once again that the short-run Phillips

curve is flatter (for any given inflation expectations) the smaller the value of ζ, and thus the

greater the degree of strategic complementarity in price-setting. It is also flatter the larger

is α, which is to say, the longer the average time interval between price changes.

Our aggregate supply relation again has the form of an expectations-augmented Phillips

curve, but now the inflation expectations that shift the curve are current expectations of

future inflation, rather than past expectations of the current inflation rate, as in (1.23). The

difference turns out to be crucial for the model’s ability to allow for forecastable fluctuations

in the output gap. It is now possible for non-zero values of Ŷt− Ŷ n
t to be forecasted at some

earlier date t− j; this simply requires that Et−jπt not equal βEt−jπt+1.

2.3 Persistent Real Effects of Nominal Disturbances

We return now to the question of the persistence of the real effects of disturbances to nominal

spending. Once again, we assume a given stochastic process for aggregate nominal spending

Yt, and consider what processes for Pt and Yt are then implied by the aggregate supply

relation (2.13). As a simple example, suppose that an unexpected disturbance permanently

increases logY by a unit amount at date zero, which is then expected to maintain the higher

40Notably, the same form of aggregate supply relation, up to our log-linear approximation, is implied
by a model with convex costs of price adjustment, as shown by Rotemberg (1987). Note that in Roberts’
presentation of the “New Keynesian Phillips Curve,” the discount factor β is set equal to one. This simpli-
fication may seem appealing, in that it implies a vertical “long-run” inflation-output tradeoff. But correctly
accounting for the presence of the discount factor in (2.13) has important consequences for the analysis of
optimal policy, as is shown in chapters 6 and 7.
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value. Thus

E0 logYt = 1 (2.15)

for all t ≥ 0, where logYt is measured as a deviation from the constant level that would

have been expected in the absence of the disturbance. Let us consider the expected paths

E0 log Pt and E0 log Yt that are consistent with (2.13), given the initial condition log P−1 = 0,

where log Pt and log Yt are also measured as deviations from the levels that would have been

maintained but for the shock. We assume that the shock (a purely nominal disturbance)

involves no change in the constant expected level for the natural rate of output.

Let p̃t denote E0 log Pt−1, the extent to which the expected price-level response in period

t differs from exact proportionality to the permanent increase in nominal spending. Then

we must have E0 log Yt = −p̃t for each horizon t ≥ 0; substituting this into (2.13), we find

that the price-level responses must satisfy

p̃t−1 − (1 + β + κ)p̃t + βp̃t+1 = 0 (2.16)

for each t ≥ 0, starting from the initial condition p̃−1 = −1. The unique bounded solution is

easily seen to be given by

p̃t = −λt+1, (2.17)

where 0 < λ < 1 is the smaller of the two real roots41 of the characteristic equation

P (λ) ≡ βλ2 − (1 + β + κ)λ + 1 = 0. (2.18)

Since E0 log Pt = 1+ p̃t, we observe that the log price level is expected to rise monotonically,

asymptotically reaching a level proportional to the increase in nominal spending. Since

E0 log Yt = −p̃t, we observe that output increases in the period of the disturbance, by an

amount less than (though possibly close to) proportional to the increase in nominal spending,

then decays monotonically back to its original level. (These impulse responses of the price

level and of output are plotted in Figure 3.7, for the illustrative parameter values β = .99

and κ = .024.42)
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Figure 3.7: Impulse responses to an immediate permanent increase in nominal GDP.

The degree of persistence of the effect upon real activity is thus dependent upon the size

of the root λ; the closer λ is to one (its theoretical upper bound), the longer the time it takes

for real activity to return to its “potential” level following a nominal disturbance. (Note that

λ also determines the size of the initial effect upon real activity in period zero, as well. Thus

the same factors that increase the amplitude of the effect upon real activity — by making

aggregate price adjustment more sluggish — also make the effect more persistent.) It is

easily seen, in turn, that the smaller root of P (λ) varies inversely with the size of κ, with a

value that approaches zero in the case of very large κ, and a value that approaches one for κ

near zero. Thus a small value of κ (a flat short-run Phillips curve) is required for significant

persistence. This in turn could occur either as a result of α being near one (infrequent price

41Since P (0) > 0, P (1) < 0, P (β−1) < 0, and P (λ) > 0 for all large enough λ > 0, it is evident that the
equation has two real roots, 0 < λ < 1 and another root greater than β−1.

42These values are taken from the estimates of Rotemberg and Woodford (1997), discussed further in
chapter 4.
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Figure 3.8: Persistence of real effects of an increase in nominal spending as a function of
the frequency of price adjustment, for alternative degrees of strategic complementarity in
price-setting.

changes) or ζ being small (strong strategic complementarity).

It is perhaps most interesting to observe that the degree of strategic complementarity

can have a considerable effect upon the degree of persistence, holding fixed the frequency of

price changes. Note that for any value of α, the value of κ can be made arbitrarily small,

or arbitrarily large, through assignment of an appropriate value to ζ. The effects of α and

ζ upon the degree of persistence are shown quantitatively in Figure 3.8, where the implied

value of λ is plotted as a function of these two parameters, assuming the value β = .99.

One observes that λ > α if and only if ζ < 1, i.e., if and only if pricing decisions are

strategic complements in the sense discussed above. This can be shown analytically by

observing that

P (α) = (1− α)(1− αβ)(1− ζ),
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where we have used (2.14) to substitute for κ. Thus P (α) > 0, so that α < λ < 1, if and

only if ζ < 1. It is in this case that the rate of adjustment of the aggregate price index is

slower than would be expected mechanically as a result of the fact that not all prices have

yet had an opportunity to be updated since the occurrence of the shock. (The fraction of

prices in period t that have not yet been adjusted even once since the shock is given by αt.)

In this case, Taylor (1980) speaks of the existence of a “contract multiplier” as a result of the

staggering of price adjustments.43 Such a multiplier depends upon the existence of strategic

complementarity among different suppliers’ pricing decisions, so that the fact that other

prices have not fully adjusted makes an individual supplier adjust its own price less. In the

case of strategic substitutes (ζ > 1), there is actually even less persistence than one would

expect for purely mechanical reasons (λ < α), because the first prices that are adjusted

actually over-adjust in reaction to the failure of other prices to adjust in proportion to the

increase in nominal spending.

In fact, the connection between the value of ζ and the value of κ indicated by (2.14)

continues to hold when additional sources of strategic complementarity are introduced, such

as non-CES preferences over differentiated goods, or intermediate inputs. If we generalize

our assumptions about demand and production costs in both of these directions, as in section

xx above, nominal profits are instead of the form

Πi
t(p) = [pYtd(p/Pt)− wt(i)f

−1((1− sm)d(p/Pt)Yt/At)− smPtYtd(p/Pt),

generalizing (2.3). Here d(pt(i)/Pt) is the relative demand ct(i)/Ct implied by (1.27). The

corresponding first-order condition for optimal price-setting by a firm that chooses its price

at date t is then

Et

{ ∞∑

T=t

αT−tQt,T YT d(pt(i)/PT )[pt(i)− µT (i)ST (i)]

}
= 0,

generalizing (2.4). Here the desired markup is given by µT (i) = µ(d(pt(i)/PT )), where the

function µ(x) is again defined by (1.30), and marginal cost is now given by (1.35). As before,

43In Taylor’s original formulation, it is actually the staggered negotiation of wage contracts that gives rise
to the “multiplier”.
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we may log-linearize this to obtain

Et

∞∑

T=t

(αβ)T−t {p̂t,T − [µ̂t,T + ŝt,T ]} = 0, (2.19)

generalizing (2.7). Here we introduce the notation

p̂t,T = p̂∗t −
T∑

τ=t+1

πτ

for the (log) relative price at date T of a firm that has set its price at date t, ŷt,T for its (log)

output relative to steady state, and

µ̂t,T = εµ(ŷt,T − ŶT )

for its (log) desired markup relative to steady state.

Noting that

p̂t,T − [µ̂t,T + ŝt,T ] = p̂t,T − (εµ + sy)(ŷt,T − ŶT )− (sy + sY )(ŶT − Ŷ n
T )

= [1 + θ(εµ + sy)]p̂t,T − (sy + sY )(ŶT − Ŷ n
T ),

we observe that (2.19) can equivalently be written

Et

∞∑

T=t

(αβ)T−t
{
p̂∗t − ζ(Ŷt − Ŷ n

t )
}

= 0, (2.20)

where ζ is now given by (1.37). This in turn allows once again to derive an aggregate supply

relation of the form (2.13), where κ is again given by (2.14). Thus it continues to be the

case that the degree of strategic complementarity is a crucial determinant of the degree of

persistence of the real effects of an increase in nominal spending; each of the factors discussed

above that increase strategic complementarity increases persistence.

Can staggering of price changes give rise to an empirically realistic degree of persistence,

assuming an empirically realistic average interval between price changes? Chari, Kehoe and

McGrattan (2000) argue that it cannot. However, their conclusion depends both upon an

exaggeration of the size of the “contract multiplier” that would be needed, and an under-

estimate of the empirically plausible degree of strategic complementarity. They define the
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contract multiplier as “the ratio of the half-life of output deviations after a monetary shock

with staggered price-setting to the corresponding half-life with synchronized price-setting”

(p. 1152). In our analysis above of the response of output under Calvo price-setting to

a monetary shock that permanently increases the level of nominal GDP,44 we have shown

that the level of output returns to its steady-state level following a shock as λt, where λ

is the smaller root of (2.18). Thus the “half-life” with staggered price setting would equal

log 2/ log λ−1 periods.

By the corresponding half-life “with synchronized price-setting”, Chari et al. mean the

case in which each price that is revised after the shock occurs is immediately adjusted

all the way to the new expected long-run price level, so that the fraction of the eventual

aggregate price adjustment that has occurred at any time is equal to the fraction of prices

that have been revised at least once since the occurrence of the monetary shock. In the case

of the Calvo pricing model, the fraction of prices that have not yet been adjusted k periods

following a shock is αk+1, so that the “half-life with synchronized price-setting” would equal

log 2/ log α−1.45 The contract multiplier implied by the Calvo pricing model is then equal to

log α−1/ log λ−1. It follows from our results above that the multiplier is greater than one if

and only if ζ < 1, which is to say if and only if there is strategic complementarity in the

pricing decisions of different suppliers.46 In fact, in the continuous-time limit of the Calvo

44This is not exactly the form of monetary shock considered by Chari et al., who instead assume an
exogenous process for the money supply, and consider its implications within a complete general-equilibrium
model of the monetary transmission mechanism. However, in their analysis of a “stripped-down version” of
their baseline model, they assume a static money demand function according to which nominal GDP is at
all times proportional to the money supply, and also assume a random walk for the (log) money supply; this
is thus an experiment of exactly the kind we consider here.

45Chari et al. instead assume fixed-length price commitments, as a result of which this half life is equal
to N/2 periods, where is the number of periods that each price remains fixed.

46As noted in the previous two footnotes, Chari et al. consider a different model of staggered pricing, but
obtain this same conclusion; their finding that the multiplier is necessarily less than one in their “stripped-
down” model follows from the fact that ζ is necessarily greater than one, for the reasons that we have
discussed above. (They call this parameter γ; their equation (34) shows that it must exceed one.) In their
analysis, as here, the question of whether a contract multiplier much greater than one is possible amounts
largely to a consideration of whether ζ can plausibly be much less than one.
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model, one can show that the contract multiplier is equal to

2a∗

[4a∗(a∗ + 1)ζ + 1]1/2 − 1
, (2.21)

where a∗ is the ratio of the (continuous) rate of price adjustment to the (continuous) rate

of time preference, independent of the values of the other parameters.47 In the case that

a∗ >> 1, this is approximately ζ−1/2, regardless of the size of a∗; this provides an analytical

explanation for the finding of Chari et al. that the predicted contract multiplier in a model

with staggered price-setting depends little upon the assumed length of time between price

changes.

Chari et al. argue that a very large multiplier would be needed in order for staggered

price-setting to account for observed persistence. They fit a univariate ARMA model to de-

trended real GDP for the postwar U.S., and conclude that the half-life of output fluctuations

around trend is approximately 10 quarters. At the same time, they argue that a reasonable

length of time to assume that prices are fixed would be only one quarter, implying a half-life

with synchronized price-setting of only half a quarter. Thus they argue that a contract mul-

tiplier of 20 would be needed; this would be possible only if ζ were quite small (.004 in the

case of our continuous-time limit).48 Instead, they find that their baseline parameter values

imply a value of ζ well above one, and so a contract multiplier less than one; and while

alternative parameter values can raise the multiplier somewhat, they argue that it cannot

plausibly be greater than two. They conclude that one must believe that prices remain fixed

for many years in order to account for observed persistence.

However, this way of identifying the persistence of the output effects of monetary shocks

assumes that all fluctuations of output around a deterministic trend path are due to monetary

shocks. There is no reason to assume this; indeed, a central contention of this study is

47Here we fix ζ and let α and β decrease with ∆, the period length, so that as ∆ → 0, log β−1/∆
and log α−1/∆ both approach positive constants, ρ and a respectively. Then, expanding the characteristic
polynomial (2.18) in powers of ∆, one can show that log λ−1/∆ approaches a positive constant n as well,
which depends upon ζ and the ratio a∗ ≡ a/ρ. The multiplier (2.21) is then equal to a/n.

48This value follows from (2.21) under the assumption that a∗ = 33, a value suggested by survey evidence
on the frequency of price change in the U.S. economy, as discussed below. Note, however, that a similarly
small value of ζ is required in the case of any large value for a∗.
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that the task of monetary policy is to respond appropriately to a large variety of types of

real disturbances to which economies are subject. One may attribute great importance to

monetary policy without holding that any large fraction of the overall variability of output

is due (in the sense of ultimate causation) to the random component of monetary policy; for

systematic monetary policy can greatly change the effects of real disturbances. For example,

the estimated model of Rotemberg and Woodford (1997), discussed in section xx of chapter

4, attributes only a few percent of the overall variance of real GDP around trend over the

sample period to monetary policy shocks; yet the counter-factual simulations reported in

that paper show that alternative systematic monetary policies would have implied greatly

different paths of real as well as nominal variables.

One needs, then, to identify the real effects of monetary policy shocks alone in order

to determine the relevant half-life. This may be much shorter than the one estimated by

Chari et al., without any implication that monetary policy is unimportant for business

fluctuations. For example, the impulse response reported in Figure 3.3 above shows that

only three quarters after the peak output response, the level of (log) output has already

returned halfway to the level that would have been expected prior to the shock; and two

quarters after that, the response has fallen to only 20 percent of its peak level. This suggest a

“half-life” of only 2.5 to 3 quarters. The structual VAR of Rotemberg and Woodford (1997),

discussed in chapter 4, yields an output response that involves more nearly exponential decay

after the quarter in which output is first substantially affected; this response, shown in Figure

xx below, exhibits a “half-life” of only about 3 quarters.49

Furthermore, survey evidence indicates that many prices remain unchanged for longer

than a quarter on average. For example, the survey of Blinder et al. (1998) indicates an aver-

age time between price changes (for a representative sample of U.S. firms) of 9 months.50 This

49As shown in Figure xx, the peak (and first significant) output contraction occurs two quarters following
a contractionary policy shock; log output has returned about half-way to its trend level by the fifth quarter
following the shock. Nonetheless, the model of Rotemberg and Woodford is fully consistent with the ob-
served degree of persistence of the deviations of output from trend; compare the predicted and estimated
autocorrelation functions reproduced in Figure xx below.

50See Rotemberg and Woodford (1997) for discussion of other survey evidence from studies of smaller
sectors of the economy.
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suggests that the continuous rate of price change should be parameterized as approximately

0.33/quarter, implying a half-life of 2.08 quarters. Thus the required contract multiplier is

only 1.44, within the range that Chari et al. find to be possible. In the continuous-time limit

of the Calvo pricing model derived above,51 this requires only that ζ = 0.49, and (as shown

in Table 3.1 above) a value this low or even lower is easily consistent with the assumptions

about preferences and technology made by Chari et al., once we allow for non-CES prefer-

ences and intermediate inputs, or alternatively for at least some degree of factor specificity.52

A larger value of σ makes this even easier, and as we shall argue in chapter 4, it is most

reasonable to calibrate this model with a value of σ much larger than one.

In fact, our discussion above has indicated that a variety of plausible assumptions can

justify a value of ζ in the range of 0.10-0.15. This would imply a contract multiplier (in

the continuous-time limit of our model) in the range of 2.6 to 3.3, or a “half-life” for the

output response (assuming the rate of price adjustment indicated by the survey evidence)

between 5.5 and 6.8 quarters. This is a degree of persistence of the effects on real activity of

an increase in nominal expenditure considerably greater than the one indicated by the VAR

evidence cited by Rotemberg and Woodford, but is comparable to the degree of persistence

indicated by some other studies of the effects of identified monetary shocks.53

51Here we use (2.21), assuming that a = 0.33/quarter and ρ = 0.01/quarter, so that a∗ = 33.
52In fact, the model of Rotemberg and Woodford is not able to reproduce their estimated impulse response

function for real GDP in response to a monetary policy shock without a considerably smaller value of ζ,
approximately 0.13. The difference is obtained because their model is a discrete-time model with “periods” of
length three months (which results in a degree of persistence somewhat different than that in the continuous-
time limit), because they set α = 2/3 (so that exactly one-third of all prices are changed each quarter, rather
than the fraction 1 − e−a = 0.28 implied by integration of the continuous-time model), and because their
identified monetary policy shock does not result in an immediate, permanent increase in nominal GDP as
assumed above.

53The real effects of the identified monetary policy shocks obtained by Rotemberg and Woodford (1997)
are less persistent than those obtained in some other VAR studies, mainly using longer sample periods. For
example, in the baseline results of Christiano et al. (1999), using quarterly data and identifying monetary
policy shocks with innovations in the federal funds rate (first column of their Figure 2), the peak contraction
in real GDP following an unexpected monetary tightening occurs only five to six quarters after the shock,
while output has returned half-way to its original trend path by the eleventh quarter following the shock;
this would indicate a “half-life” of five to six quarters. The later results of Christiano et al. (2001) indicate
a half-life of less than three quarters, however, as noted above.
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2.4 Consequences of Persistence in the Growth of Nominal Spend-
ing

We have thus far considered only the response of real activity to an unexpected, permanent

increase in nominal spending. While this particular thought experiment allows us a clear

definition of the degree of persistence, such a perturbation of the expected path of nominal

spending has little similarity to the estimated responses of nominal spending to the monetary

policy shocks identified in the VAR literature; thus the model’s predictions for this case

cannot be directly compared to any empirical estimates. Identified monetary policy shocks

tend to affect nominal spending only slightly (if at all) in the first few months, with an effect

that increases cumulatively over a period of several quarters, eventually bringing expected

future nominal spending to a new permanent level.

As a simple case that allows for shocks of this kind, let us assume that the growth rate

of nominal spending follows a first-order autoregressive process,

∆ logYt = ρ∆ logYt−1 + εt (2.22)

with 0 < ρ < 1, where εt is an i.i.d. random variable, assumed for simplicity to have

mean zero. This process implies that an innovation εt increases the conditional expectation

Et logYt+j by an amount (1−ρ)−1(1−ρj+1)εt which increases monotonically with j, asymp-

totically approaching a permanent effect that is (1 − ρ)−1 > 1 times as large as the initial

effect.54 Let us consider the impulse response to a positive innovation ε0 = 1 − ρ, which

results in a unit increase in the expected long-run level of nominal spending. Again letting

p̃t denote E0 log Pt − 1, we find that the price-level responses must satisfy

p̃t−1 − (1 + β + κ)p̃t + βp̃t+1 = κρt+1, (2.23)

a generalization of (2.16), again starting from initial condition p̃−1 = −1. (Because nominal

spending does not immediately jump to its expected long-run value, we now have E0 log Yt =

54This form of stochastic process is used as a rough approximation of actual U.S. time series in Rotemberg
(1996).
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[E0 logYt − 1] − p̃t = −(p̃t + ρt+1).) The unique bounded solution to (2.23) is given by the

solution to the first-order equation,

p̃t = λp̃t−1 − κ

λ−1 − βρ
ρt+1,

again starting from the given value for p̃−1, where 0 < λ < 1 is again defined as in (2.17).

(Note that in the limiting case ρ = 0, this reduces to the same solution (2.17) as before.)

Then using the relations

E0 log Pt = p̃t + 1,

E0 log Yt = −(p̃t + ρt+1),

we can compute the impulse responses of the price level and of aggregate output to an inno-

vation in the nominal spending process. These are plotted in Figure 3.9, for the illustrative

parameter values β = .99, κ = .024, and ρ = .4, along with the impulse response of nominal

spending itself.55 We observe that in this case innovation in nominal spending results in an

increase in real activity, that continues to grow larger, reaching its peak only in the second

and third quarters after the shock, and then declines monotonically back to its original level.

This “hump-shaped” output response is predicted in the case of any large enough value of

ρ, specifically, for any value such that λ + ρ > 1. The responses ỹt ≡ E0 log Yt satisfy

(1− ρL)(1− λL)ỹt = 0

for all t ≥ 1, starting from initial values ỹ−1 = 0 and

ỹ0 =
(1− ρ)(1− βρ)

(λ−1 − βρ)
> 0.

A second-order difference equation of this kind has a solution that either decays monotoni-

cally back to zero after a peak in the period of the shock, or that first increases to a peak,

and then decays monotonically back to zero. Since ỹ2 = (λ + ρ)ỹ1, the second case occurs if

and only if λ + ρ > 1.

55The figure also shows the impulse response of the inflation rate, here measured in annual percentage
points, so that the inflation rate plotted is defined as 4 ∆ log Pt. The dynamics of the inflation rate are
discussed further in section xx below.
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Figure 3.9: Impulse responses to an innovation in nominal GDP, in the case of persistence
in nominal GDP growth.

The reason for such an equilibrium response is simple. Even though prices do not change

much immediately following the shock, the increase in output is not initially large, because

nominal spending has not yet increased much. As nominal spending increases further, real

output increases as well. Eventually, prices adjust, and real activity falls back to its original

level (or, in a model with trend output growth, back to its original trend).

The “hump-shaped” output response shown in Figure 3.9 is at least roughly of the kind

typically estimated using structural VAR methodology (see, e.g., Figure 3.3 above). Indeed,

Cochrane (1996) finds that a slightly modified version of the “New Keynesian” aggregate

supply relation (2.13) can more closely match the estimated response of output to a monetary

policy shock than any of the other simple aggregate supply relations that he considers.56 A

particular advantage of this specification is that it can allow significant output effects of

56The form used by Cochrane is actually equation (3.2), with a delay d = 1 quarter.
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a nominal disturbance even when there is little immediate effect upon nominal spending.

This can be seen by considering the above calculation in the case that ρ is close to 1. In

such a case, there is little increase in nominal spending in period zero (log Y0 increases only

by 1 − ρ, yet the peak output effect may be an arbitrarily large fraction of 1. (For small

enough κ, the value of λ may be made arbitrarily close to 1, so that the adjustment of prices

is slow compared to the rate at which expected nominal spending approaches its long-run

value.) This contrasts sharply with the prediction of the “New Classical” aggregate supply

relation (1.23), which implies that the peak output effect (which must occur in period zero)

is bounded above by 1− ρ, no matter how flat the short-run Phillips curve may be.

2.5 Consequences of Sectoral Asymmetries

Thus far we have considered only a completely symmetric model, in the sense that all pref-

erences and production relations would remain the same if we interchanged the labels of

different goods. In particular, we have assumed that all real disturbances affect supply and

demand conditions for all goods in exactly the same way: technical progress lowers the cost

of producing each good in exactly the same proportion, and so on. In reality, of course, there

are many kinds of disturbances that differentially affect various sectors of the economy. Here

we briefly consider an extension of the basic model with staggered pricing that allows for

several kinds of asymmetries. One reason for interest in this extension is that in the presence

of such asymmetries, it is no longer generally the case that stabilization of an aggregate price

index and stabilization of an aggregate output gap are equivalent policies (an important but

obviously special implication of the “New Keynesian” Phillips curve (2.13)). Allowing for

sectoral asymmetries is also especially important in analyzing monetary policy for an open

economy (where, for example, one will want to consider the consequences of shocks that

affect the terms of trade), though we do not develop that extension here.57

Instead of assuming that the consumption index Ct that enters the utility function of the

57In fact, the two-sector model presented here closely resembles the treatment of a two-country monetary
union in Benigno (1999).
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representative household is defined by the CES index (1.2), let us suppose that it is a CES

aggregate of two sub-indices,

Ct ≡
[
(n1ϕ1t)

1
η C

η−1
η

1t + (n2ϕ2t)
1
η C

η−1
η

2t

] η
η−1

, (2.24)

for some elasticity of substitution η > 0. The sub-indices are in turn CES aggregates of the

quantities purchased of the continuum of differentiated goods in each of the two sectors,

Cjt ≡
[∫

Nj

ct(i)
θ−1

θ di

] θ
θ−1

,

for j = 1, 2, where the intervals of goods belonging to the two sectors are respectively

N1 ≡ [0, n1] and N2 ≡ (n1, 1], and once again θ > 1.58 In the aggregator (2.24), nj is the

number of goods of each type (n2 ≡ 1− n1), and the random coefficients ϕjt are at all times

positive and satisfy the identity n1ϕ1t+n2ϕ2t = 1. (The variation in the ϕjt thus represents a

single disturbance each period, a shift in the relative demand for the two sectors’ products.)

It follows from this specification of preferences that the minimum cost of obtaining a unit

of the sectoral composite good Cjt will be given by the sectoral price index

Pjt ≡
[∫

Nj

pt(i)
1−θdi

] 1
1−θ

for j = 1, 2, and that the minimum cost of obtaining a unit of Ct will correspondingly be

given by the overall price index

Pt ≡
[
n1ϕ1tP

1−η
1t + n2ϕ2tP

1−η
2t

] 1
1−η .

The optimal allocation of demand across the various differentiated goods by price-taking

consumers will satisfy

ct(i) = Cjt (pt(i)/Pjt)
−θ

for each good i in sector j, and the index of sectoral demand will satisfy

Cjt = njϕjt Ct (Pjt/Pt)
−η

58We need not assume that η > 1 in order for there to be a well-behaved equilibrium of the two-sector
model under monopolistic competition. In fact, the limiting case in which η → 1 and the aggregator (2.24)
becomes Cobb-Douglas is frequently assumed; see, e.g., Benigno (1999).
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for each sector, regardless of total consumption expenditure in a given period. Note that the

random factors ϕjt appear as multiplicative disturbances in the sectoral demand functions.

The aggregators have been normalized so that in the event of a common price p for all

goods, the price indices each are equal to that common price, and the demands are equal to

ct(i) = ϕjtCt for each good i in sector j.

We furthermore assume a disutility of supplying labor of type i equal to v(ht(i); ξjt) in

the case of each good i in sector j; thus we allow for a sector-specific (though not good-

specific) disturbance to preferences regarding labor supply. The production function for this

good is assumed to be of the form

yt(i) = Ajt f(ht(i)),

where the function f(·) is common to all goods as before, but we now allow for a sector-

specific technology disturbance as well. Assuming that each firm is a wage-taker in a firm-

specific labor market as before, nominal profits for firm i in sector j are given by

Πij
t (p) = YjtP

θ
jtp

1−θ − wt(i) f−1(A−1
jt YjtP

θ
jtp

−θ),

generalizing (2.3).

The real marginal cost of supplying any good i in sector j will be given by

sj(yt(i), Yt; ξ̃t) ≡ vh(f
−1(yt(i)/Ajt); ξjt)

uc(Yt; ξt)Ajt

Ψ(yt(i)/Ajt),

a function of the quantity supplied of the individual good, aggregate output, and sector-

specific real disturbances. Because each firm faces a demand curve with constant elasticity

θ as before, the desired markup will again be µ. We can then define a natural rate of output

Y n
jt for each sector j as the common equilibrium output of each good i in that sector in the

case of flexible prices. These levels satisfy

µ sj(Y n
jt , Y

n
t ; ξ̃t) =

(
Y n

jt

njϕjtY n
t

)− 1
η

,

for j = 1, 2, where the right-hand side indicates the relative price Pjt/Pt required to induce

the relative demand Y n
jt/Y n

t , and the natural rate of aggregate output, Y n
t , aggregates Y n

1t
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and Y n
2t using (2.24). In the case that ξ̃t = 0 for all t, and in addition ϕjt = 1 for all t and

both sectors, then the flexible-price equilibrium involves a common level of output Ȳ for all

goods, defined in the same way as before. Log-linearizing around this allocation, the real

marginal cost function in sector j can be approximated by

ŝj
t(i) = ω(ŷt(i)− Ŷ n

jt) + σ−1(Ŷt − Ŷ n
t ) + η(ϕ̂jt + Ŷ n

t − Ŷ n
jt), (2.25)

generalizing (1.14). (Here ϕ̂jt ≡ log ϕjt, and the hatted output variables all represent log

deviations from Ȳ .)

Let us now suppose that there is Calvo-style staggered pricing in each of the two sectors,

with αj the fraction of goods prices that remain unchanged each period in sector j. A

supplier in sector j that changes its price in period t chooses its new price pt(i) to maximize

Et

{ ∞∑

T=t

αT−t
j Qt,T [Πij

T (pt(i))]

}
, (2.26)

generalizing (2.2). This implies a first-order condition that, when log-linearized as before, is

of the form

Et

∞∑

T=t

(αjβ)T−t



p̂∗jt − [ŝj

t,T − p̂jT +
T∑

τ=t+1

πjτ ]



 = 0, (2.27)

where p̂∗jt ≡ log(p∗jt/Pjt) is the relative price at date t (relative to other firms in the same

sector) of the firms in sector j that have newly revised their prices, p̂jt ≡ log(Pjt/Pt) is

the relative price index for sector j (relative to goods prices in the entire economy), πjt ≡
log(Pjt/Pj,t−1) is the rate of inflation in sector j, and ŝj

t,T is the value of ŝj
T (i) for firms in sector

j that last revised their prices at date t. (This generalizes (2.7) above.) Log-linearization of

the equation defining the sectoral price index further implies that

πjt =
1− αj

αj

p̂∗jt, (2.28)

generalizing (2.6).

Equations (2.27) – (2.28) then determine the evolution of the sectoral rate of inflation as

a function of expected future inflation in that sector and expectations regarding ŝj
t,T − p̂j

T at
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all future dates T . It further follows from (2.25) that

ŝj
t,T = ŝj

T − ωθ[p̂∗jt −
T∑

τ=t+1

πjτ ],

where ŝj
t denotes the deviation of the log of the average level of real marginal cost in sector

j from its steady-state value. A series of manipulations analogous to those discussed earlier

then yields a sectoral inflation equation of the form

πjt = ξj(ŝ
j
t − p̂jt) + βEtπj,t+1, (2.29)

where

ξj ≡ 1− αj

αj

1− αjβ

1 + ωθ
> 0.

This generalizes our inflation equation (2.8) for the one-sector model.

Finally, (2.25) implies that

ŝj
t = ω(Ŷjt − Ŷ n

jt) + σ−1(Ŷt − Ŷ n
t ) + η(ϕ̂jt + Ŷ n

t − Ŷ n
jt).

Substituting

Ŷjt = ϕ̂jt + Ŷt − ηp̂jt

from the sectoral demand equation, we can alternatively express this as

ŝj
t − p̂jt = (ω + σ−1)(Ŷt − Ŷ n

t )− (1 + ωη)(p̂jt − p̂n
jt),

where p̂n
jt is the log relative price index for sector j in a flexible-price equilibrium (a function

solely of the exogenous real disturbances). Substituting this into (2.29), we obtain

πjt = κj(Ŷt − Ŷ n
t ) + γj(p̂Rt − p̂n

Rt) + βEtπj,t+1, (2.30)

generalizing (2.13). Here we have written each of the sectoral relative prices as multiples of

the single relative price p̂Rt ≡ log(P2t/P1t) using the identities

p̂1t ≡ −n2 p̂Rt, p̂2t ≡ n1 p̂Rt,
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p̂n
Rt = n−1

1 p̂n
2t is the “natural” level of this relative price, and the coefficients are given by

κj ≡ ξj (ω + σ−1) > 0

for j = 1, 2, and

γ1 ≡ n2ξ1 (1 + ωη) > 0, γ2 ≡ −n1ξ2 (1 + ωη) < 0.

Inflationary pressure in each sector is thus a function of the aggregate level of real ac-

tivity (relative to its “natural” level) and of the sector’s relative price index (relative to the

“natural” value of this relative price). High aggregate output increases inflationary pressure

in both sectors, while a high relative price in one sector reduces inflationary pressure in that

sector. Combining equations (2.30) for j = 1, 2 with the identity

p̂Rt = p̂R,t−1 + π2t − π1t, (2.31)

one has a complete system of equations for the evolution of the price indices for both sectors

given the evolution of aggregate real activity and the two composite real disturbances Ŷ n
t

and p̂R
t . The latter term reflects the various ways in which the real disturbances differentially

affect the two sectors, and is given by

p̂n
Rt ≡

1

η
[(ϕ̂2t − ϕ̂1t)− (Ŷ n

2t − Ŷ n
1t)].

In general, this model implies that inflation in both sectors, and hence aggregate inflation

as well, depends on a lagged endogenous variable, p̂R,t−1; thus inflation is not so purely

forward-looking in this theory as in the fully symmetric (one-sector) case. However, in the

case that prices are equally sticky in both sectors (α1 = α2), ξ1 = ξ2, and hence

n1ξ1 + n2ξ2 = 0.

It follows that if we average the relation (2.30) over the two sectors, weighting each relation by

the size of the corresponding sector, we obtain once again equation (2.13) for the evolution

of aggregate inflation. Thus we find that the existence of an equilibrium relation of the
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form (2.13) — implying that there is no incompatibility between stabilization of the overall

price index and stabilization of the “output gap” Ŷt − Ŷ n
t — does not require that all

real disturbances affect the demand for and cost of production of each good identically, as

assumed earlier. In the case of a model that is otherwise symmetrical (the same degree

of price stickiness for all goods, the same form of production function for all goods up

to, and so on), a relation of this kind is obtained even in the presence of several types of

asymmetric disturbances: disturbances to the relative disutility of supplying different types

of labor, disturbances to the relative productivity of labor in different sectors, and shifts in

the relative preferences of households for different goods.

On the other hand, if prices are not equally sticky for different types of goods, it ceases

to be true that the same policy can simultaneously stabilize the aggregate output gap and

the overall inflation rate. The consequences of the resulting tradeoff for optimal stabilization

policy are considered in chapter 6.

3 Delayed Effects of Nominal Disturbances on Infla-

tion

We have seen that the assumption of staggered price-setting (as interpreted by Calvo in

particular) gives rise to an aggregate-supply relation that fits much better with basic facts

about the effects of monetary disturbances than did the simple “New Classical Phillips

curve”. For this reason, the “New Keynesian Phillips curve” has been employed in many

recent discussions of monetary policy that seek to take account of forward-looking private-

sector behavior. Nonetheless, even this model has been subject to a good bit of criticism

as not fitting too well with econometric evidence regarding the comovements of real and

nominal variables.

A central criticism has been that the model implies that inflation should be a more

purely forward-looking process than it seems to be in reality. Note that (2.13) can be
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“solved forward” to yield

πt = κ
∞∑

j=0

βj Et[Ŷt+j − Ŷ n
t+j]. (3.1)

Thus the predicted rate of inflation at any time should depend solely upon the predicted

output gaps at that time and later, in a way that is completely independent of either output

gaps or inflation in the past. This does not square well with many economists’ intuitive view

of the inflation process, or with the inflation dynamics implied by the models currently used

in most central banks; these models instead assume a substantial degree of inertia in the

inflation process, so that recent past inflation figures as an important determinant of current

inflation.

Clear evidence that the New Keynesian Phillips curve cannot account for the co-movement

that is observed between real activity and inflation, or for the persistence of inflation dy-

namics themselves, is not as easy to obtain as often seems to be assumed. Claims that the

equation is grossly at odds with the facts are often based upon the use of one or another

conventional “output gap” series as a proxy for Ŷt − Ŷ n
t . For example, (2.13) implies that

the series πt+1 − β−1πt, which is essentially the rate of acceleration of inflation, should be

negatively correlated with Ŷt − Ŷ n
t .59 Instead, conventional series for the U.S. “output gap”

(which subtract one relatively smooth trend or another from a log real GDP series) are gen-

erally found to be positively correlated with the subsequent acceleration of inflation. But

our model gives us good reason to suppose that Ŷ n
t may not be a smooth trend; it should be

affected immediately by changes in government purchases or other “autonomous” compo-

nents of expenditure, and by variations in household impatience to consume or in attitudes

toward work, in addition to such slower-moving factors as capital accumulation, technical

progress and growth in the labor force. If there are relatively high-frequency variations in

Ŷ n
t , traditional “gap” measures could easily be negatively correlated with Ŷt − Ŷ n

t , owing

to policies tending to stabilize output around a smooth trend rather than around the time-

varying natural rate (Gali, 1999). The fact that average real unit labor costs — which should

59To be precise, it implies that this quasi-acceleration statistic should equal −β−1κ (Ŷt − Ŷ n
t ), plus a

forecast error that should be uncorrelated with all period t information, including Ŷt − Ŷ n
t .
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correspond to variations in Ŷt − Ŷ n
t under fairly general assumptions about the nature of

the disturbances, as discussed above — are negatively correlated with detrended real GDP

suggests that this may well be the case. In fact, real unit labor costs are negatively correlated

with inflation acceleration in U.S. data, and the New Keynesian Phillips curve accounts quite

well for U.S. inflation dynamics when real unit labor costs are used to measure Ŷt − Ŷ n
t , as

discussed above.

However, evidence that the simple New Keynesian Phillips curve may indeed be too

forward-looking can be found by considering the dynamics of output and inflation in response

to identified monetary policy shocks. If the identification of monetary shocks in the VAR

studies mentioned earlier is correct, then the estimated impulse responses for real GDP

should also correspond to the impulse response for the theoretically correct gap measure,

Ŷt− Ŷ n
t , since the path of Ŷ n

t should be unaffected.60 Hence the estimated impulse responses

for real GDP and inflation should satisfy (2.13), or equivalently (3.1).

Typically, they do not. In particular, one generally observes that the main effect of a

monetary policy shock on inflation occurs in the quarters following those in which the output

response is strongest. (For example, Figure 3.10 shows the responses obtained in the study

of Christiano et al. (2001) discussed earlier.) But this is inconsistent with (3.1), regardless of

the assumed parameter values, because this equation states that the inflation response each

quarter should be an increasing function of the output responses that are expected in that

quarter and later. Thus the effect on inflation should precede the effect on output, insofar as

the latter effect is predictable in advance (as the output impulse response indicates to be the

case); and it should peak earlier than does the effect on output, since once the peak output

effect is reached, the output gaps that can be anticipated from then on are smaller than

those that could still be expected a short while earlier. This is not what the VAR studies

60This is no longer exactly true once we allow for endogenous capital accumulation, as we do in chapter 4.
But even so, the effect upon Ŷ n

t owing to endogenous variation in the capital stock should not be large during
the first few quarters. Furthermore, taking account of this effect will only exacerbate the problem sketched
here: the true output gap really returns to its previously expected level even faster than does real GDP,
because increased investment during the early quarters following an interest-rate reduction should raise the
natural rate of output. This would only make the tendency of inflation to peak after the main effect on the
output gap even more dramatic than it appears to be in Figure 3.10.
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Figure 3.10: Estimated impulse responses of real GDP and inflation to an unexpected
interest-rate reduction. Source: Christiano et al. (2001).

indicate. Instead, the effects of monetary disturbances on inflation are delayed, and more

persistent than would be predicted by our simple model of staggered pricing.

The model of staggered pricing can be extended, however, in a number of ways that

make it more realistic in this respect, while continuing to derive inflation dynamics from

optimal pricing decisions, subject to certain assumed constraints. Here we give particular

attention to two approaches that have been useful in reconciling optimizing models with

VAR evidence.

3.1 Staggered Pricing with Delayed Price Changes

One simple way of avoiding the counterfactual prediction that — because of the forward-

looking character of inflation in the Calvo model — the rate of inflation should respond

immediately to a monetary disturbance that is expected to affect nominal expenditure even-
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tually, is to modify the assumption that newly chosen prices take effect immediately. We

have assumed in our derivation above that the fraction 1−α of prices that change in a given

period are chosen optimally, given aggregate conditions in the period in which the new price

takes effect. One reason for this assumption was that it allowed us to nest the case of fully

flexible prices within our specification (as the limiting case in which α = 0). However, the

literature on staggered wage- and price-setting has often assumed that new wage contracts

and/or price commitments are chosen at a date before they first take effect — and as a

result, are optimal only conditional upon the information that was available at that earlier

date. Allowing for a delay before newly chosen prices take effect will obviously have the

consequence that a monetary policy shock will not affect prices until after this delay. It

could then also affect output sooner than its effect on inflation.

We can easily modify our presentation above of the discrete-time Calvo model to allow

for such delays in the introduction of new prices. Suppose that each of the new prices chosen

in period t takes effect only in period t + d, for some integer d ≥ 0. Conditional upon a

new price being chosen for a given good in period t, that price applies in periods prior to

period t+ d with probability zero, in period t+ d with probability 1, in period t+ d+1 with

probability α, and more generally in period t + d + k with probability αk, for any k ≥ 0. A

supplier i that chooses a new price in period t chooses that new price pt+d(i) to maximize

Et





∞∑

T=t+d

αT−t−dQt,T [Πi
T (pt+d(i))]



 ,

generalizing (2.2), where once again nominal profits each period are given by (2.3). Corre-

sponding to (2.5) we obtain in this case the first-order condition

Et





∞∑

T=t+d

(αβ)T−t−duc(YT ; ξT )YT P θ
T [p∗t+d − µPT s(YT P θ

T p∗−θ
t+d , YT ; ξ̃T )]



 = 0

to implicitly define the optimal price p∗t+d, that is the same for all suppliers choosing a new

price at date t. The value of p∗t then determines the evolution of the price index Pt through

(2.1), just as before.
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Through a series of manipulations similar to those presented above, log-linearization of

the above first-order condition yields a log-linear aggregate supply relation of the form

πt = κEt−d(Ŷt − Ŷ n
t ) + βEt−dπt+1, ) (3.2)

generalizing (2.13). (All variables and coefficients in this equation have the same definitions

as before.) In the case that d = 1, this is the form of aggregate supply relation used by

Cochrane (1996) and by Bernanke and Woodford (1997). Note that the right-hand side of

(3.2) consists entirely of terms that are a function of period t−d information; thus this model

implies that inflation πt is a predetermined variable, depending only upon disturbances in

period t− d or earlier. In this case, only fluctuations in Et−dŶ
n
t , the forecastable component

of the natural rate of output, matter for inflation and output determination.

An alternative interpretation of this model would be not that price changes must actually

be determined in advance (say, because advance notice to customers is expected), but rather

that when an opportunity to change price arises at date t, the new price (that applies

beginning in period t) is chosen on the basis of old information, namely, the state of the world

as of period t − d. This assumption would result in exactly the same optimality criterion

for new prices as above, and hence exactly the same aggregate supply relation (3.2). Thus

the hypothesis may alternatively be described as one involving information delays, as for

example in the work of Mankiw and Reis (2001a, 2001b).61

Under either interpretation, the model implies that a monetary policy shock in period

t has no effect on inflation before period t + d. This eliminates an embarrassing feature of

the basic “New Keynesian” specification that is especially evident when we recognize that,

according to the VAR studies, monetary disturbances affect aggregate nominal expenditure

only with a delay (as in Figure 3.2). Suppose that nominal GDP evolves according to a

61One advantage of the hypothesis of information delays is that we need not assume the same delay in
the case of all types of news. In order to obtain the result that monetary policy shocks do not affect
inflation within the first year, for example, it would be necessary to assume a delay of a year in the receipt
of information about changes in interest rates; but one might simultaneously assume that other kinds of
disturbances are observed by suppliers much more quickly, so that one would not have to assert that all
price changes are determined entirely by conditions in the previous year and earlier. We do not pursue this
extension here, however.
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Figure 3.11: Impulse responses to a monetary disturbance with a delayed effect on nominal
expenditure (s = 2), according to the basic Calvo model.

stochastic process of the form

∆ logYt = ρ∆ logYt−1 + εt−s, (3.3)

where the integer s ≥ 0 indicates the lag between the time at which the monetary policy

shock occurs and the first time at which it affects nominal GDP. (As before, εt is assumed

to be a mean-zero disturbance realized at date t, completely unforecastable before that

date.) We can once again solve for the equilibrium paths of inflation and output given the

aggregate supply relation (3.2). We now wish to consider the consequences of alternative

assumed delays d in the latter relation.

Figure 3.11 shows the implied impulse responses of inflation and output to a monetary

disturbance at date zero according to the standard “New Keynesian” Phillips curve, in the

case that the effect of the disturbance on nominal GDP is delayed. Our shock is once again
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an unexpected loosening of policy that implies an eventual increase in nominal GDP of one

percentage point, and the assumed value of ρ is equal to 0.4, as in Figure 3.9; but we now

assume that s = 2, to match the delay in the effect of an interest-rate reduction on nominal

GDP shown in Figure 3.2. (The values assumed for β and κ are the same as in the case of

Figure 3.9.)

In the case of the basic “New Keynesian” specification, we obtain the embarrassing

prediction that a monetary disturbance that is expected to increase nominal expenditure

beginning two periods later should contract real activity in the short run. This is because

an expectation of higher real activity and/or inflation two periods from now implies that

those suppliers who change prices sooner than that (but after learning of the shock) should

already raise their prices at a higher than normal rate, in anticipation of high demand

and high competitors’ prices in the future. Inflation should thus increase immediately in

response to the expectation of higher nominal expenditure in the near future; but since

nominal expenditure does not increase immediately (by hypothesis), this implies a temporary

contraction of real activity. This is not, of course, at all what estimated output response is

like (recall Figure 3.3).

The problem can be solved by assuming a delay d = 2 quarters before newly chosen

prices take effect (replacing (2.13) by (3.2)). The corresponding impulse responses in this

case are shown in Figure 3.12. The predicted responses of all variables are exactly the same

as in Figure 3.9, except that the entire impulse response functions are shifted to the right

by 2 quarters. Note that the hypothesis of delayed price changes also implies no effect of

the monetary shock on output until two quarters later, given the assumption of a delay in

the effect of the shock on nominal GDP.62 The implied response of output in this case is

qualitatively fairly similar to what the VAR studies estimate — an effect that is delayed for

two quarters, “hump-shaped” thereafter, persistent, and never significantly negative.

This figure still differs from the responses shown in Figure 3.10, though, in that the

62Of course, the question remains why an interest-rate reduction should have no effect on nominal GDP
until two quarters later. This is a question about the aggregate-demand block of our model, to be deferred
until the next chapter.
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Figure 3.12: Impulse responses to the same monetary disturbance when d = 2 quarters in
AS relation (3.2).

inflation effect peaks earlier than the output effect. This problem can be ameliorated by

assuming an even longer delay d before price changes take effect. (We note that the response

shown in Figure 3.10 implies that the price level is no higher than it would have been in the

absence of the shock, until six quarters following the shock; so these estimated responses are

consistent with d being as long as 6 quarters.) Figure 3.13 shows the corresponding impulse

responses in the case that d = 4 quarters. We observe now that the effect of the shock on real

output peaks before there is any effect on inflation at all (i.e., in the third quarter following

the shock).

Even so, the effects on inflation, once the delay d is past, are predicted to appear abruptly;

the peak effect on inflation is very clearly in the first quarter in which any effect on prices

can occur, with a sharp decline in the inflation effect thereafter. Thus the predicted inflation

response still does not exhibit the kind of persistence seen (at least according to the point
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Figure 3.13: Impulse responses to the same monetary disturbance when d = 4 quarters.

estimates) in Figure 3.10. A further modification of the Calvo model can help with this.

3.2 Consequences of Indexation to Past Inflation

In the classic Calvo model, it is assumed that prices remain fixed in money terms between

those occasions upon which they are re-optimized. While this is a simple way of resolving

the question of what to do about prices between revisions, and the assumption conforms

with apparent practice at many firms, we have certainly not shown that there is anything

optimal about this aspect of the Calvo pricing model; we have instead analyzed optimal

pricing policy taking this feature of it as a constraint. One might instead assume that prices

are automatically raised in accordance with some mechanical rule between the occasions on

which they are reconsidered. If the rule is simple enough, the fact that firms refrain from

reconsidering the optimality of their prices for intervals of months at a time will still result

in substantial savings on managerial costs, and so it may be plausible that such an interim
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“rule of thumb” would be used.

One obvious type of more sophisticated interim rule than simply fixing prices in terms of

money is one that seeks to correct, in at least a simple way, for increases in the general price

index. As an example, Yun (1996) assumes that prices are automatically increased at some

rate π̄ between occasions on which they are reconsidered, where π̄ is the actual long-run

average rate of inflation in the economy. This results in an aggregate supply relation of the

form

πt = (1− β)π̄ + κ (Ŷt − Ŷ n
t ) + β Etπt+1,

generalizing (2.13). In comparing the expected consequences of monetary policy rules that

imply different long-run average rates of inflation, Yun assumes that the parameter π̄ of

firms’ pricing policies should change accordingly; this results in a vertical “long-run Phillips

curve” relation, unlike the classic Calvo model.

In practice, in economies where inflation has been enough of a problem for indexation of

long-term monetary commitments to be worth undertaking, indexation schemes are generally

based on a measure of inflation over some relatively short recent time interval, as there is

no presumption that inflation can be expected to remain always near some non-zero steady-

state value. (Of course, this is related to the fact that there has been little experience of

stable commitment to a fixed inflation target in any country, before the past decade!) This

suggests that it may be more plausible to assume automatic indexation of price commitments

(or wages, as discussed in the next section) to the change in the overall price index over some

recent past period. Note, however, that it is not realistic to assume that it should be possible

to index individual prices to the current price index. Apart from the simultaneity problem

that this would create, the assumption that this is possible would not be in the spirit of our

assumption that continual monitoring of current conditions in order to maintain a constantly

optimal price is too costly to be worthwhile. It is far more plausible, then, to imagine a policy

of automatic indexation of one’s price (between the occasions on which a full review of the

optimality of the price is undertaken) to the change in an overall price index over some past

time interval.
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Christiano et al. (2001) and Smets and Wouter (2001) assume partial or full indexation

of this kind for both wages and prices, and argue that this extension of the Calvo pricing

model improves the empirical fit of their models. Here we examine the consequences of

backward-looking indexation for inflation dynamics, continuing for now to assume efficient

labor-market contracting. Let us suppose once again that each period a randomly chosen

fraction 1− α of all prices are reconsidered, and that these are set optimally; but the price

of each good i that is not reconsidered is adjusted according to the indexation rule

log pt(i) = log pt−1(i) + γ πt−1, (3.4)

where 0 ≤ γ ≤ 1 measures the degree of indexation to the most recently available inflation

measure. (Note that even when γ = 1, as assumed by Christiano et al., nominal rigidities

still matter for the effects of aggregate disturbances, because of the one-quarter lag in the

indexation.)

This assumption about how prices are adjusted in the interim between re-optimizations

affects the way in which prices should be set when they are reconsidered. If we assume, as

in the basic Calvo model, that newly-optimized prices take effect immediately, then a new

price pt(i) chosen in period t should be selected to maximize

Et

{ ∞∑

T=t

αT−tQt,T [Πi
T (pt(i) (PT−1/Pt−1)

γ)]

}
.

This results in a first-order condition

Et





∞∑

T=t

(αβ)T−tuc(YT ; ξT ) YT P θ
T

(
PT−1

Pt−1

)γ(1−θ) [
p∗t − µPT s(YT (p∗t /PT )−θ(PT−1/Pt−1)

−γθ, YT ; ξ̃T )
]


 = 0

to implicitly define the optimal price p∗t , once again the same for all suppliers choosing a

new price at date t. Given the choice of p∗t each period, the overall price index then evolves

according to

Pt =


(1− α)p∗1−θ

t + α

(
Pt−1

(
Pt−1

Pt−2

)γ)1−θ



1
1−θ

, (3.5)

generalizing (2.1).
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Log-linearization of the first-order condition and of the law of motion (3.5) for the Dixit-

Stiglitz price index, together with a series of manipulations analogous to those presented

earlier, then yields a log-linear aggregate supply relation of the form

πt − γπt−1 = κ (Ŷt − Ŷ n
t ) + β Et(πt+1 − γπt), ) (3.6)

where β, κ, and Ŷ n
t all have the same definitions as in (2.13). The allowance for backward-

looking indexation generalizes the New Keynesian Phillips curve in a fairly straightforward

way: it is now the quasi-differenced inflation rate, πt − γπt−1, rather than the inflation rate

itself, that is related to the output gap in the way indicated by the previous relation.

In particular, it is still possible to solve (3.6) forward to obtain

πt = γπt−1 + κ
∞∑

j=0

βj Et[Ŷt+j − Ŷ n
t+j],

generalizing (3.1). The quasi-differenced inflation rate is still a purely forward-looking func-

tion of the expected path of the output gap; but now the inflation rate predicted for periods

t and later will depend not only upon the predicted path of the output gap in those peri-

ods, but also upon the initial inflation rate πt−1. Thus the extended theory implies inflation

inertia, to an extent that is greater the larger is the indexation parameter γ.

The difference that is made by a substantial degree of indexation can be illustrated by

again considering the predicted impulse responses of inflation and output to a monetary

policy shock that results in a persistent increase in the growth rate of nominal GDP. Figure

3.14 shows the predicted impulse responses in the case of aggregate supply relation (3.6), in

the case γ = 1, when (as in Figure 3.9) there is no delay in the effect of the shock on nominal

expenditure. We see now that even without the hypothesis of delay before new prices can

take effect, it is possible to explain the observed delay in the effect of a monetary disturbance

on inflation, relative to its effect on output. We also observe that in this model, the inflation

response is “hump-shaped,” rather than immediately declining sharply after the quarter of

the disturbance, as is predicted by the basic Calvo model (see Figure 3.9).

A number of authors have argued that this kind of modification of the basic Calvo model

results in a more realistic specification. Christiano et al. (2001) argue that a model with
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Figure 3.14: Impulse responses to the same monetary disturbance as in Figure 9 (s = 0), in
the case of backward-looking indexation of prices (γ = 1).

γ = 1 better fits their estimated impulse responses than does the standard model with

γ = 0. Smets and Wouter (2001) treat γ as a free parameter (in addition to using a different

estimation strategy), and conclude that the best-fitting value of γ is an intermediate value,

approximately 0.7. Boivin and Giannoni (2001) also let γ be a free parameter, and estimate

(using a strategy based on matching impulse responses, but for a different sample period

than that used by Christiano et al.) a value of xx.

It should also be noted that when γ = 1, relation (3.6) is essentially identical to the

aggregate supply relation of Fuhrer and Moore (1995a, 1995b), that has been popular in

econometric work.63 Relation (3.6) is also of essentially the same form as the generalization

of the Calvo model proposed by Gali and Gertler (1999). Gali and Gertler assume that

63In the limiting case β = 1, the relation is identical to that of Fuhrer and Moore, although the derivation
that they offer for their relation is different from the one given here.
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prices remain fixed in monetary terms for stochastic intervals of time, as in the Calvo model;

but when prices are adjusted, some prices are chosen optimally (as in the Calvo model),

while others are adjusted according to a backward-looking rule of thumb that introduces

dependence upon lagged inflation. The fraction of suppliers who are backward-looking is

treated as a free parameter; variation in this parameter has essentially the same effect as

variation in γ in the indexation model. In the limiting case β = 1, the two models have

identical implications; relation (3.6) for any given value of γ can be obtained from the Gali-

Gertler model through an appropriate choice of the fraction of backward-looking price-setters.

While Gali and Gertler find that the basic Calvo model fits U.S. inflation dynamics fairly

well (once real unit labor cost is used as a proxy for the output gap, rather than a traditional

output-based measure), their instrumental variables estimates indicate significant rejection

of the hypothesis of no backward-looking price-setters. Their point estimates for U.S. data

since 1980 indicate a fraction of backward-looking price-setters that would imply (in terms

of our notation) a value of γ on the order of 0.6. Gali, Gertler and Lopez-Salido (2000)

obtain similar results using European data. Thus there exists a fair amount of consensus —

using a variety of empirical proxies for the output gap, and a variety of estimation strategies

— that the relation (3.6) better characterizes U.S. inflation dynamics when an indexation

parameter between 0.5 and 1.0 is included.

The backward-looking indexation model retains one unfortunate feature of the basic

Calvo model, however, even when γ is large. That is that if a monetary disturbance increases

nominal GDP only with a lag, as indicated in Figure 3.2, the model predicts that output

should initially contract in response to such a shock. The reason is that the expectation of

a future output increase implies a desire to increase πt− γπt−1 immediately; so there should

be an increase in inflation even before nominal GDP begins to increase.

This problem can be solved, once again, by assuming a delay of d quarters before a newly

chosen price takes effect. (In the meantime, a firm’s price continues to be adjusted using

(3.4).) In this case, the aggregate supply relation instead becomes

πt − γπt−1 = κ Et−d(Ŷt − Ŷ n
t ) + β Et−d(πt+1 − γπt).) (3.7)
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Figure 3.15: Impulse responses to the same monetary disturbance as in Figures 11-13 (s = 2),
in the case of backward-looking indexation (γ = 1) and a delay of d = 2 quarters in price
changes.

Figure 3.15 shows the dynamic responses of output and inflation to an innovation in the

process (3.3) for nominal GDP, in the case that s = 2 quarters for conformity with Figure

3.2, and in the case of aggregate supply relation (3.7) with γ = 1 and d = 2. In this

case there is no effect on output until two quarters following the shock, and then a “hump-

shaped” response, as in Figure 3.3. In addition, inflation exhibits a “hump-shaped” response

of its own, which peaks later than the output response; in this respect, note that this figure

is much more similar to Figure 3.10 than was Figure 3.12 (the case γ = 0). Figure 3.16

shows the responses to the same disturbance in the case that d = 4. This results in a

stronger output response and a further delay in the inflation response. This figure results in

predicted responses that are most similar to those implied by the VAR estimates shown in

Figure 3.10.64
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Figure 3.16: Impulse responses to the same monetary disturbance as in Figure 15, in the
case that γ = 1 and d = 4 quarters.

4 Consequences of Nominal Wage Stickiness

Thus far the only form of nominal rigidity considered is a delay of one sort or another

in the adjustment of the money prices at which goods are offered for sale. In particular,

we have not assumed any corresponding stickiness of nominal wages, though this is another

familiar explanation for the real effects of monetary policy, emphasized for example in Keynes

(1936). We have instead assumed that wages are fully flexible, or equivalently (as far as the

derivation of our aggregate supply relations is concerned) that there is efficient contracting

between firms and their workers.65

64We could do better at quantitatively matching the responses shown in Figure 3.10 if we were to treat κ
as a free parameter. In the experiments reported here, we have fixed the value of κ at the value estimated
by Rotemberg and Woodford (1997). However, their estimates are for a model without backward-looking
indexation, in addition to being based on a VAR and a sample period different from those of Christiano et
al.
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Our exclusive emphasis upon price stickiness has allowed our models to take a particularly

simple form; in particular, it has been possible, for many purposes, to analyze inflation and

output dynamics without any reference to the labor market. Furthermore, as between the

two simple hypotheses (only sticky prices or only sticky wages), the hypothesis of sticky

prices is often regarded as more compelling on both theoretical and empirical grounds. We

have mentioned in the introduction to this chapter the objection that nominal wages might

be constant in the face of disturbances even when the effective cost of marginal hours of labor

to firms changes, owing to the existence of implicit contracts between firms and workers. The

hypothesis of pure wage stickiness has also often been criticized on account of its implication

that real wages should move countercyclically (a criticism of Keynes’ model first raised by

Dunlop, 19xx, and Tarshis, 19xx). More relevant than overall business-cycle correlations is

the finding, in VAR studies such as that of Christiano et al. (1997, 2001), of mildly pro-

cyclical real wage movements in response to identified monetary policy disturbances. (See,

for example, Figure 3.17, which shows the estimated impulse response of the average real

wage from the latter study. Here the impulse response of real GDP to the same type of

disturbance is also shown for purposes of comparison.) Since these responses ought to be

uncorrelated with changes in technology, the failure of the real wage to sharply decline at the

time of the increase in real activity is difficult to reconcile with a sticky-wage/flexible-price

model.

But even if a model with only sticky wages is unappealing, it may be desirable to allow

for stickiness of wages as well as prices. Indeed, the study by Christiano et al. (1997)

criticizes sticky-price (but flexible-wage) models of the monetary transmission mechanism

on the ground that they imply too sharp a real wage decline in response to a tightening of

monetary policy — one so strong that producers’ profits ought actually to increase, despite

65As far as the relation between price changes and output is concerned, it is enough that goods suppliers
face a cost of marginal labor input at each point in time that is equal to the marginal disutility of labor
supply expressed in the monetary unit of account. It does not matter whether this occurs because this is the
wage that clears a competitive spot market for labor (as assumed explicitly above in our discussion of the
relation between unit labor costs and prices), or because an efficient labor contract leads firms to internalize
the cost to their workers of requiring additional hours of work.
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Figure 3.17: Estimated impulse response of the real wage to an unexpected interest-rate
reduction. Source: Christiano et al. (2001).

their reduced sales (and contrary to fact). This problem can be ameliorated by assuming

preference parameters that imply more elastic labor supply, as in the model of Rotemberg

and Woodford (1997). But slow adjustment of wages to changes in labor demand may be a

more plausible explanation for the relatively modest response of real wages seen in Figure

3.17, and, as we discuss in chapter 6, the choice among these two explanations matters for

welfare analysis. Hence we develop here an extension of our baseline model that incorporates

wage as well as price stickiness.

4.1 A Model of Staggered Wage-Setting

Here we follow Erceg et al. (1999) and model wage-setting in a way that is directly analogous

to the model of staggered pricing introduced by Calvo (1983). We introduce wage-setting

agents by assuming monopolistic competition among the suppliers of differentiated types
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of labor, analogous to our treatment above of the goods market. The exposition will be

simplest if we follow Erceg et al. in assuming a single economy-wide labor market, with the

producers of all goods hiring the same kinds of labor and facing the same wages.66 However,

we assume that the labor used to produce each good is a CES aggregate of the continuum

of individual types of labor supplied by the representative household, defined by

Ht ≡
[∫ 1

0
ht(j)

θw−1
θw dj

] θw
θw−1

(4.1)

for some elasticity of substitution θw > 1. Here ht(j) is the labor of type j that is hired; note

that the continuum of differentiated types of labor is no longer identified with the continuum

of differentiated goods indexed by i, as labor of all types is used in producing each good. It

follows that the demand for labor of type j on the part of wage-taking firms will be given by

ht(j) = Ht

(
wt(j)

Wt

)−θw

, (4.2)

where wt(j) is the (nominal) wage demanded for labor of type j and Wt is a wage index

defined analogously with (1.3).

We assume that the wage for each type of labor is set by the monopoly supplier of that

type, who then stands ready to supply as many hours of work as turn out to be demanded

at that wage. As in our model of monopolistic competition in the goods market, we assume

an independent wage-setting decision for each type j, made under the assumption that the

choice of that individual wage has no non-negligible effect upon the the wage index Wt or

upon the demand Ht for the labor aggregate.67 We furthermore assume, as in the Calvo

66The model presented here differs, however, from that of Erceg et al. in that we do not assume that capital
can be instantaneously reallocated among firms so as to equalize the return to capital services across firms
that change their prices at different times. Instead, as in the baseline model of the previous section, capital
is here assumed to be completely immobile. We also adopt less parametric specifications of preferences and
technology than in the paper of Erceg et al.

67Both the assumption of a monopoly supplier of each type of labor and that the supplier of an individual
type of labor has no power to affect the wage index Wt indicate that we can no longer assume a continuum of
identical households, each supplying the same continuum of types of differentiated labor. Instead, we must
assume that households specialize in supplying a particular type of labor, the disutility of which is additively
separable from the utility of consumption as before. Risk-sharing among the households that supply types
of labor that set their wages at different dates can then result in a common budget constraint for each of
the households, which is the same as if each household were to receive its pro rata share of the economy’s
total wage bill, as earlier.
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model of staggered pricing, that each of the wages is adjusted with only a probability 1−αw

each period, for some 0 < αw < 1, which probability is independent of the time since a given

wage was last adjusted or the current level of that wage.

It follows that a wage wt(j) that is adjusted in period t should be chosen to maximize

Et

{ ∞∑

T=t

(αwβ)T−t[ΛT wt(j)hT (wt(j))− v(hT (wt(j)); ξT )]

}
, (4.3)

where ΛT is the representative household’s marginal utility of nominal income68 in period

T and the dependence of labor demand hT (j) upon the wage is given by (4.2). (We have

omitted a j in our notation for this last function because the function hT (w) is the same for

all j.) The solution to this problem satisfies the first-order condition

Et

{ ∞∑

T=t

αT−t
w Qt,T HT W θw

T [wt(j)− µwV(hT (j), CT ; ξT )PT ]

}
= 0, (4.4)

which has a form analogous to (2.4). Here

V(h,C; ξ) ≡ vh(h; ξ)

uc(C; ξ)

is the marginal rate of substitution between work and consumption for the supplier of a given

type of labor, and µw ≡ θw/(θw − 1) > 1 is the desired markup of a household’s real wage

demand over its marginal rate of substitution owing to its monopoly power. If we substitute

(4.2) for hT (j) in (4.4), we obtain a relation that implicitly defines the optimal wage choice

w∗
t , which is the same for all wages j that are adjusted at date t. The choice of w∗

t then

determines the evolution of the wage index Wt, through a law of motion analogous to (2.1).

Again it is useful to approximate equilibrium wage dynamics in the case of small dis-

turbances using a log-linear approximation, computed under the assumption that Wt/Pt,

Pt/Pt−1 and w∗
t /Wt all remain close to their steady state-values (w̄, 1 and 1 respectively) at

all times. For the law of motion of the wage index we obtain

πw
t ≡ ∆ log Wt =

1− αw

αw

ŵ∗
t , (4.5)

68Note that although there is technically not a representative household in the present model, in the sense
of a household whose trades are equal to its per capita share of all trades in the economy (owing to labor
specialization), it remains true that all households have the same consumption budget and choose the same
consumption. Hence they have the same marginal utility of income Λt at all times, equal to uc(Ct; ξt)/Pt.



92 CHAPTER 3. OPTIMIZING MODELS WITH NOMINAL RIGIDITIES

where ŵ∗
t ≡ log(w∗

t /Wt), analogous to the approximate relation (2.6) for the price index. As

an approximation to (4.4) we obtain

Et

∞∑

T=t

(αwβ)T−t



ŵ∗

t − [v̂t,T − ŵT +
T∑

τ=t+1

πw
τ ]



 = 0, (4.6)

where v̂t,T denotes the deviation (from its steady-state value) of the log of the marginal rate

of substitution between labor and consumption in period T for a type of labor with wage

w∗
t , and ŵT denotes deviation of the log of the real wage WT /PT from log w̄, analogous to

relation (2.7) for optimal price-setting. Noting furthermore that

v̂t,T = v̂T − νθw[ŵ∗
t −

T∑

τ=t+1

πw
τ ],

where v̂T is the average value of v̂t,T over different types of labor, and

ν ≡ vhh(h̄; 0)

h̄vh(h̄; 0)
> 0,

we can solve (4.6) for

ŵ∗
t = (1− αwβ)Et

∞∑

T=t

(αwβ)T−t[(1 + νθw)−1(v̂T − ŵT ) +
T∑

τ=t+1

πw
τ ].

This allows us to express the relative wage of types of labor that adjust their wage at date

t as a forward-looking function of aggregate conditions.

Manipulations directly analogous to those used in our analysis of staggered pricing allow

us to obtain a relation of the form

∆ log Wt = ξw[v̂t + log w̄ + log Pt − log Wt] + βEt[∆ log Wt+1], (4.7)

where

ξw ≡ (1− αw)(1− αwβ)

αw(1 + νθw)
> 0.

If we continue to assume a production function of the form (1.7) for each good (i.e., a fixed

allocation of capital across firms, even though there is a single economy-wide labor market),

the corresponding equation for the price dynamics is

∆ log Pt = ξp[ψ̂t − log w̄ + log Wt − log Pt] + βEt[∆ log Pt+1], (4.8)
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where ψ̂t denotes minus the average deviation of the log marginal product of labor from its

steady-state value. Here

ξp ≡ (1− αp)(1− αpβ)

αp(1 + ωpθp)
> 0,

where the parameters previously denoted α and θ are now denoted αp and θp, and ωp is

defined as in (1.15). Note that equation (4.8) is just an alternative way of writing (2.8),

given that

ŝt = log Wt − log Pt + ψ̂t.

(The only difference is that the expression for ξp is different now owing to the assumption of

an economy-wide labor market.)

Our assumed forms for the utility and production functions furthermore imply that

ψ̂t = ωpŶt − (1 + ωp)at,

v̂t = (ωw + σ−1)Ŷt − (ω + σ−1)Ŷ n
t + (1 + ωp)at,

where ωw, ωp represent the decomposition presented in (1.15) and at ≡ log At. In deriving

the second equation, we use the fact that ωw ≡ νφ, where

φ ≡ f(h̄)

h̄f ′(h̄)
> 1

is the elasticity of the representative firm’s labor requirement with respect to its level of

production. Note that log w̄ + v̂t represents the equilibrium log real wage in a model with

flexible wages, so that the above expressions imply expression (2.12) for the case of flexible

wages. Substituting these into (4.7) and (4.8), we obtain a pair of coupled equations for

evolution of wages and prices given the path of real activity and the exogenous disturbances.

These can be written in the form

∆ log Wt = κw(Ŷt − Ŷ n
t ) + ξw(log wn

t + log Pt − log Wt) + βEt[∆ log Wt+1], (4.9)

∆ log Pt = κp(Ŷt − Ŷ n
t ) + ξp(log Wt − log Pt − log wn

t ) + βEt[∆ log Pt+1], (4.10)

where

κw ≡ ξw(ωw + σ−1) > 0, κp ≡ ξpωp > 0,
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and

log wn
t ≡ log w̄ + (1 + ωp)at − ωpŶ

n
t

represents the “natural real wage”, i.e., the equilibrium real wage when both wages and

prices are fully flexible.

These equations generalize the aggregate supply relation derived earlier for the flexible-

wage model in an obvious respect. Note that if we define a particular weighted average of

wage and price inflation,

π̄t ≡
ξ−1
p πt + ξ−1

w πwt

ξ−1
p + ξ−1

w

, (4.11)

then the corresponding weighted average of (4.9) and (4.10) reduces to

π̄t = κ(Ŷt − Ŷ n
t ) + βEtπ̄t+1, (4.12)

where

κ ≡ σ−1 + ω

ξ−1
p + ξ−1

w

> 0 (4.13)

is a coefficient that is smaller the greater the degree of rigidity of either wages or prices. In

the limit as αw → 0, ξw → ∞, π̄t simply measures price inflation, and (4.12) is again the

aggregate supply relation (2.13) obtained earlier, in which (4.13) corresponds once more to

(2.14) using the value (1.25) for ζ. More generally, we find that an alternative inflation index

is the same kind of purely forward-looking function of the output gap, but this index involves

wage inflation with a weight that is greater the greater the relative stickiness of wages. In

the limiting case that only wages are sticky, (4.12) becomes a “Phillips curve” for wages.

4.2 Sticky Wages and the Real Effects of Nominal Disturbances

We turn now to the implications of wage stickiness for the real effects of fluctuations in

nominal expenditure due to a purely monetary disturbance. As is well-known, nominal wage

stickiness implies that such disturbances should have temporary effects on real activity,

during the time that it takes for wages to adjust, even in the case of fully flexible goods

prices. A more subtle question is whether this mechanism should result in real effects that
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are more or less persistent than those that would result from sticky prices. Some authors

(e.g., Andersen, 1998; Huang and Liu, 1998) have argued that sticky wages result in more

persistent effects than do sticky prices, and that the assumption of sticky prices (as in our

treatment in the earlier part of this chapter) therefore underestimates the likely importance

of the real effects of monetary policy.

In order to compare the degree of persistence resulting from wage stickiness with that

resulting from price stickiness, it is useful to consider once again the effects of an unexpected

permanent increase in nominal GDP, unrelated to any real disturbance (that could affect

Ŷ n
t or wn

t ). Let us again assume a shock that results in (2.15) holding for all t ≥ 0, and

consider the expected paths E0 log Pt, E0 log Wt and E0 log Yt that are consistent with the

system (4.9) – (4.10), given initial conditions log W−1 = log P−1 = 0.

In the case of sticky wages but purely flexible prices, (4.10) reduces to an equilibrium

relation between the real wage and the output gap, that can be written in the form

log Wt − log Pt = log wn
t −

ωp

1 + ωp

(logYt − log Wt + log wn
t − log Y n

t ); (4.14)

Substituting this into (4.9) yields

∆ log Wt = κ̂[logYt − log Wt + log wn
t − log Y n

t ] + βEt[∆ log Wt+1]

for nominal wage dynamics given the evolution of nominal GDP and the real disturbances,

where

κ̂ ≡ κ̃

1 + ωp

> 0.

This equation has the same form as the equation for price dynamics in the model with flexible

wages and sticky prices, and so our reasoning in section xx above directly applies. It follows

that if we let w̃t denote E0 log Wt − 1, the unique bounded solution is of the form

w̃t = −λt+1,

by analogy with (2.17), where 0 < λ < 1 is the smaller root of (2.18) when κ̂ is substituted

for κ. Then noting that (4.14) implies as well that

log Yt = log Y n
t +

1

1 + ωp

(logYt − log Wt + log wn
t − log Y n

t ),
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we see that (4.2) implies an output response of the form

E0 log Yt = −(1 + ωp)
−1w̃t = (1 + ωp)

−1λt+1.

The degree of persistence of the output response thus depends upon the root λ, and

hence upon the size of κ̃, in the same way as in the sticky-price model. The only possibility

of a difference between the two models as to the likely degree of persistence would be if it

is judged more plausible that κ̃ should be small in the case of the sticky-wage model than

that κ should be small in the case of the sticky-price model. One possible reason for this,

of course, would be if it were observed that wages are in fact adjusted less frequently than

prices. But it is not obvious that this is true to any dramatic extent; in an economy like that

of the U.S., most wages, like most prices, are adjusted annually if not more often. (And this

is in any event not the basis of Andersen’s argument, that assumes two-period commitments

in each case.)

Let us instead consider the likelihood of there existing a “contract multiplier” in the

sense discussed above. We have seen that in the case of the sticky-price model, λ > αp, so

that output effects decay more slowly than the rate at which prices are revised following the

shock, if and only if ζ < 1 (the case of strategic complementarity among pricing decisions),

where ζ is again given (for the present setup) by (1.25). We can similarly show that for the

sticky-wage model, λ > αw if and only if ζ̃ < 1, where

ζ̃ =
ω + σ−1

(1 + νθw)(1 + ωp)
. (4.15)

(Once again, the size of ζ̃ can be interpreted as a measure of the degree of strategic com-

plementarity among the wage-setting decisions of suppliers of different types of labor.) Our

question then reduces to asking whether it is more plausible that ζ̃ should be less than one

in the sticky-wage model than it is that ζ should be less than one in the sticky-price model.

This turns out to be true in the analysis of Andersen (1998), but his simple model omits

a number of important considerations. His analysis of the sticky-wage model effectively

assumes (in terms of our notation) that ν = σ−1 = 0 (which also implies that ωw = 0), and
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hence concludes that

ζ̃ =
ωp

1 + ωp

< 1,

implying the existence of a “contract multiplier” regardless of the size of ωp > 0. However,

this result is not as general as it would appear; a contract multiplier less than one is still

theoretically possible in the sticky-wage model (if, for example, one assumes ν = 0 but

σ < 1).

Andersen’s analysis of the sticky-price model similarly effectively assumes that ωp =

σ−1 = 0 (which also implies that ωw = ν), and hence concludes that ζ = ν, which may or

may not be less than one.69 But this comparison of the two models is misleading. In fact,

as we have seen, the numerators of the expressions for ζ and ζ̃ are identical, both being

equal to ω + σ−1; Andersen obtains the value ωp for the sticky-wage model (which should

be small even if ν is large) only because he has assumed ν = 0 in that model. The most

important difference between the two cases is instead the presence of the factor (1 + νθw)

in the denominator of (4.15), whereas the corresponding factor in the denominator of (1.25)

is (1 + ωpθp) — neither of which factors appear in Andersen’s analysis. If one regards ν

as being substantially larger than ωp,
70 and one supposes that there is at least as much

substitutability among types of labor as among different goods (so that ωw ≥ ωp), then it

would indeed follow that ζ̃ should be significantly smaller than ζ, and wage stickiness would

lead to more output persistence than would price stickiness.

This is in fact the basis for the conclusions of Huang and Liu (1998), who also present

a comparison of the consequences of wage and price stickiness, but with explicit micro-

foundations for the assumed wage- and price-setting equations (and hence consistent assump-

69Andersen suggests that the most plausible assumption about preferences would involve ν > 1; smaller
values are popular in calibrated quantitative business-cycle models in order to account for the relative acycli-
cality of real wages, but he proposes that this reflects wage stickiness rather than the nature of preferences
regarding labor supply.

70It is not obvious that this must be true. For example, Hansen (1995) argues for preferences with ν = 0,
as a result of the indivisibility of labor; in his model, variation in hours worked is entirely associated with
variation in the number of workers who work a shift of fixed length, rather than variation in the number
of hours worked by each member of the labor force, as assumed in the representative-household model used
here.
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tions about preferences and technologies in the two cases). Their basic model (abstracting

from capital accumulation and endogenous velocity of money) is a special case of the one

just presented, in which the production function f(·) is assumed to be linear, so that ωp = 0

and ωw = ν, and in which u(C) = log C, so that σ = 1. They accordingly find that

ζ̃ =
1 + ν

1 + νθw

< 1, ζ = 1 + ν > 1,

so that there is necessarily strategic complementarity in the sticky-wage model and neces-

sarily none in the sticky-price model.

Yet this conclusion depends upon ignoring a number of reasons discussed earlier for a low

value of ζ to be plausible in the model with only sticky prices. In particular, we have shown

above that if we assume that the producers of different goods hire labor from distinct labor

markets, the value of ζ is instead given by (1.22). In this case, the factor in the denominator

is (1 + ωθp); this is larger than the factor that appears in (1.25), and especially noteworthy

is the fact that a large value for ν increases the size of this factor in much the same way as

in the case of (4.15). Indeed, under the special parametric assumptions of Huang and Liu,

we would find

ζ =
1 + ν

1 + νθp

,

which is just as small as the value that they obtain for ζ̃ , as long as θp ≥ θw, i.e., as long as

price-setters have no more market power than do wage-setters. Thus there is little reason to

expect that persistence should be greater in the case of a sticky-wage model than in that of

a sticky-price model, once one allows for specific labor markets in the sticky-price model.71

It is nonetheless true that wage stickiness will generally increase the size and persistence

of the real effects of nominal disturbances, holding fixed the degree of price stickiness. Note

that if we subtract (4.10) from (4.9) we obtain

∆ log wt = −(ξw + ξp)(log wt− log wn
t )+ (κw−κp)(log Yt− log Y n

t )+βEt[∆ log wt+1], (4.16)

71Edge (2002) demonstrates this quantitatively, in the case of a complete general-equilibrium model of the
monetary transmission mechanism with endogenous capital accumulation.
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where wt ≡ Wt/Pt is an aggregate real wage. In the special case that κw = κp (so that wages

are sticky to roughly the same extent as are prices), the output term drops out, and the

only endogenous variable in (4.16) is the real wage. One easily verifies that this equation

has a unique bounded solution for the path of the real wage, given a bounded process for

the exogenous disturbance wn
t ; hence in this case, the equilibrium real wage is determined

by this equation alone, independent of monetary policy or any other factors that affect only

the demand side of the model. Let the solution for wt be denoted w̄t. Then substitution of

this solution into (4.10) gives us an equation for price inflation of the form

πt = κ(Ŷt − Ŷ n
t ) + Etπt+1 + ut, (4.17)

where κ is the common value of κw and κp, and ut is an exogenous term defined as

ut ≡ ξp(log w̄t − log wn
t ). (4.18)

This is again an aggregate supply relation of the same form as (2.13), except that the

exogenous intercept is no longer equal to Ŷ n
t . It follows that the effect upon output of a

monetary disturbance is exactly the same as in our previous analysis, and depends upon

the value of κ in the way discussed earlier. (The nature of the exogenous intercept term

does not matter for this question, since in any event it is unaffected by a purely monetary

disturbance.) We note that in the present case (with both wages and prices sticky), the

slope coefficient κ is equal to ξpωp,, while in the case of flexible wages analyzed earlier, it

was equal to ξp(ω +σ−1). Thus κ is a smaller positive quantity in the present case (assuming

that all parameters take the same values, except the parameter αw determining the degree

of wage stickiness), implying both larger and more persistent output effects of a monetary

disturbance.

Allowing for wage stickiness can also be important in improving the ability of the model

to account for the observed behavior of wages as well as prices. The model with fully flexible

wages implies that a monetary contraction should lower wages by more than the decline in

prices, for in this limiting case, (4.9) reduces to the equilibrium relation

log Wt − log Pt = log wn
t + (ωw + σ−1)(Ŷt − Ŷ n

t ). (4.19)
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Thus the predicted decline in real wages must be substantial relative to the decline in output,

unless both ω and σ−1 are quite small in value; in particular, this requires that ν be quite

small (as it is necessary that ω > ν). But if wages are sticky as well as prices, it is possible

for the decline in real wages to be small, or even non-existent, even if ν is of substantial

magnitude. Indeed, we have just seen that if κw = κp, there is no effect of a monetary

disturbance upon the real wage at all, and this condition can hold regardless of the value of

ν. (For any values of the other parameters, it is possible to arrange that κw = κp simply by

assigning an appropriate value to αw.) 72

The model with both wage and price stickiness also allows for more complicated wage

dynamics than can be achieved in the flexible-wage model through any choice of the parame-

ters ω and σ, for it ceases to be necessary that the effects of monetary policy on the real wage

be any constant multiple of the effects upon real GDP. For arbitrary coefficients ξw, ξp > 0

and bounded processes {Yt, Y
n
t , wn

t }, equation (4.16) has a unique bounded solution for the

real wage. This is given by

log wt = λ1 log wt−1 + β−1
∞∑

j=0

λ−j−1
2 Etzt+j, (4.20)

where 0 < λ1 < 1 < λ2 are the two roots of the characteristic polynomial

P (λ) ≡ βλ2 − (1 + β + ξw + ξp)λ + 1 = 0,

and the forcing process {zt} is defined by

zt ≡ (ξw + ξp) log wn
t + (κw − κp)(log Yt − log Y n

t ).

A monetary disturbance affects the path of zt solely through its effect on Yt, as the other

terms are exogenous. In the case that either wages or prices are perfectly flexible (so that

either ξw or ξp is unboundedly large), both λ1 and λ−1
2 equal zero, and (4.20) implies that

log wt is a multiple of zt; but when both are sticky, so that ξw + ξp is finite, log wt is instead

proportional to a smoothed version of the forcing process.

72If wages are made sufficiently sticky, the model would predict an actual increase in the real wage follow-
ing a monetary contraction (the prediction of the classic Keynesian model), though evidence such as that
presented by Christiano et al. (1997) does not indicate that this actually occurs.
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Figure 3.18: Predicted impulse response of the real wage, for alternative degrees of wage
stickiness. The solid line indicates the response of real GDP.

The effects of wage stickiness are illustrated in Figure 3.18. Here a given impulse response

function for output in response to a monetary disturbance is assumed, and the implied

response of the real wage to the same disturbance is then inferred from (4.20). The implied

real-wage responses are plotted along with the output response for each of several alternative

assumed degrees of nominal wage stickiness, corresponding to different values of ξw. Here

the assumed response of output is the same as in Figure 3.9, and the values assumed for the

parameters ξp, ωw, ωp, and σ are again those of Rotemberg and Woodford (1997) (see Table

4.1 of chapter 4). The limiting case ξw = ∞ (complete wage flexibility) corresponds to the

assumptions of Rotemberg and Woodford; the other cases shown each involve some degree

of wage stickiness.

As the degree of wage stickiness increases, the size of the real wage increase associated

with a given size of effect on output declines. When ξw = 0.55, κw falls to a value equal
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to that of κp, and wages and prices are in a sense “equally sticky”; in this case, there is no

longer any real wage response at all to a monetary disturbance that increases output. For

even lower values of ξw, wages are stickier than prices, and the real wage is predicted to move

counter-cyclically.

The estimated real wage response shown in Figure 3.17 suggests that the empirically

relevant case is one in which κw is slightly larger than κp, but not much. Amato and Laubach

(1999) reach a similar conclusion when they estimate a model that allows for wage as well as

price stickiness, as discussed in section xx of chapter 4. Christiano et al. (2001) and Smets

and Wouter (2001) similarly find that the impulse responses to identified monetary policy

shocks are best fit by a model that incorporates both wage and price stickiness.

Furthermore, allowing for wage as well as price stickiness allows additional ways in which

real disturbances may shift the aggregate supply curve, i.e., the short-run relation between

inflation and output for given inflation expectations. In the aggregate supply relation (2.13)

derived under the assumption of sticky prices but flexible wages, any of a variety of real

disturbances can shift this relation — variation in the rate of technical progress, government

purchases, and various types of shifts in preferences — but in each case, the aggregate supply

relation is shifted exactly to the extent that the disturbance in question changes the natural

rate of output (i.e., the equilibrium output level with flexible wages and prices). But in

(4.17), this is no longer true, unless the term ut is zero.

In general this term is not identically zero (i.e., w̄t 6= wn
t ), even when the degree of wage

stickiness is exactly that required to make κw = κp. One notes that wt = wn
t is a solution to

(4.16) in the case that κw = κp only if ∆ log wn
t = βEt∆ log wn

t+1, which in turn is possible,

if wn
t is a stationary process, only if wn

t is a constant — i.e., if the real disturbances present

in the model would never affect the equilibrium real wage in the case of flexible wages and

prices. This is true only for extremely special parameter values and/or assumptions about

the kinds of real disturbances that can occur. Under any other assumptions, solving (4.16)

allows us to determine how various types of real disturbances shift the aggregate supply
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relation in a way that differs from their effect upon the natural rate of output.73 Here we

do not pursue the topic further, except to note that the existence of a non-zero ut term

implies a tension between the goals of stabilizing inflation and of stabilizing the output gap

Ŷt − Ŷ n
t that does not appear in our baseline sticky-price model. The consequences of this

for optimal stabilization policy are taken up in section xxx of chapter 6.

Finally, we note that infrequent reoptimization of wage demands need not mean that

wages remain fixed in money terms between the occasions on which they are re-optimized;

instead, wages might be indexed to an aggregate price index in the interim, just as in our

discussion of goods-price indexation in section xxx. Indeed, indexation schemes of this kind

for wages are sometimes a part of multi-year union contracts, so that there is more direct

evidence for the idea of indexation in the case of wages than for prices; and in practice, such

indexation is always to a lagged price index. Suppose we let 0 ≤ γw ≤ 1 be the indexation

rate for wages that are not-reoptimized; that is, if the wage demanded for labor of type j is

not reoptimized in period t, it is adjusted according to the indexation rule

log wt(j) = log wt−1(j) + γwπt−1.

This modifies the relations for optimal wage-setting in a way that is directly analogous to

our discussion of optimal price-setting with backward-looking indexation in section xxx.

The result is that the system (4.9)–(4.10) becomes instead

πw
t − γwπt−1 = κw(Ŷt − Ŷ n

t ) + ξw(log wn
t − log wt) + βEt[π

w
t+1 − γwπt], (4.21)

πt − γpπt−1 = κp(Ŷt − Ŷ n
t ) + ξp(log wt − log wn

t ) + βEt[πt+1 − γpπt], (4.22)

where πw
t ≡ ∆ log Wt is the rate of wage inflation, wt ≡ Wt/Pt is the aggregate real wage,

γp is the rate of indexation of price commitments (called simply γ in section xxx), and the

coefficients κw, κp, ξw, ξp are again defined exactly as in (4.9)–(4.10). These equations once

73For general parameter values, of course, we are not able to solve for the equilibrium real wage independent
of the evolution of real activity, as indicated by (4.20). In the general case there is no exogenous term ut for
which an aggregate supply relation of the simple form (4.17) holds. But our more general point, that when
both wages and prices are sticky it is no longer true that inflation stabilization and output-gap stabilization
imply one another, continues to hold.



104 CHAPTER 3. OPTIMIZING MODELS WITH NOMINAL RIGIDITIES

again provide a pair of coupled equations for the evolution of the aggregate wage and price

indices, given the path of aggregate output and the real disturbances. Note that in the

case that γw = γp = 1, this represents a simplified version of the aggregate-supply block

of the model of Christiano et al. (2001), in which we abstract from complications such as

endogenous capital accumulation. Smets and Wouters (2001) also estimate a model with an

aggregate-supply block of this kind, but treat γw and γp as free parameters to be estimated.

(Their best-fitting values are xxxx.) Both groups of authors find that a model of this type

— incorporating staggered wage-setting as well as staggered price-setting, and automatic

indexation of both wages and prices to recent past inflation — can account fairly well for

the joint dynamics of wages, prices, and real activity.

The existence of the additional terms due to indexation results in inflation inertia much

as has already been discussed in the context of the flexible-wage model of section xxx. For

example, the inflation dynamics associated with the Fuhrer-Moore aggregate supply relation

(3.6) can occur as a result of wage rather than price indexation. In the case of fully flexible

(and hence non-indexed) prices, and the special case of a linear production function (so that

ωp = 0), (4.14) reduces to wt = wn
t , in which case (4.9) implies that

πt − γπt−1 = κ(Ŷt − Ŷ n
t ) + βEt[πt+1 − γπt] + ut, (4.23)

where γ = γw, κ = κw, and

ut ≡ βEt∆ log wn
t+1 −∆ log wn

t .

Alternatively, similar inflation dynamics can result from a similar degree of indexation of

wages and prices. For example, in the special case that γw = γp = γ and κw = κp = κ,

subtracting (4.22) from (4.21) again yields an equation that can be solved for the real wage

dynamics independent of monetary policy. Substituting this solution wt = w̄t into (4.22)

again yields an aggregate supply relation of the form (4.23), but where now ut is defined as

in (4.18).

We thus find that allowing for wage stickiness does not matter all that much, if our goal

is simply to construct a positive model of the co-movement of inflation and output, and the
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way that both can be affected by monetary policy. (Stickiness of wages reduces the slope of

the short-run Phillips curve, but a similar degree of flatness could alternatively be obtained

by choosing different values for other parameters in a flexible-wage model, without any

counterfactual consequences for the dynamics of output and inflation; stickiness of wages

creates a new way in which real disturbances can shift the short-run Phillips curve, but

similar consequences for the evolution of inflation and the output gap would be obtained by

simply postulating an exogenous “cost-push shock” as many authors do.) To this extent, the

relative neglect of wage-setting in the early literature on the optimizing models with nominal

rigidities can be given a justification.

On the other hand, we shall see that there is an important respect in which it does matter

whether one thinks that wages, prices or both are sticky. This has to do with the proper

goals of monetary stabilization policy from a welfare-theoretic point of view. If one takes as

given an ad hoc stabilization goal, defined in terms of the stability of a certain price index

and a certain measure of the output gap, then an adequate model for determining how policy

can best achieve this goal may well be formulated without having to take a stand on the

question of wage stickiness. But if one asks whether it is really appropriate, from the point

of view of economic welfare, to define the goal of policy in that way, it turns out to matter

after all whether one believes that wages are sticky. Even in the cases discussed above in

which monetary policy is unable to affect the evolution of the real wage (so that the effects

of purely monetary disturbances on wage and price inflation must be identical), it does not

follow that wage and price inflation should be indistinguishable: they will be differentially

affected by real disturbances. But it then follows that seeking to stabilize wage inflation

and seeking to stabilize price inflation will not be equivalent policies. Which is the more

appropriate goal? The answer depends on the degree to which wages as opposed to prices

are sticky, as we show in chapter 6.
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Chapter 4

A Neo-Wicksellian Framework for the
Analysis of Monetary Policy

We are now ready to consider the effects of alternative interest-rate rules for monetary policy,

in a setting in which monetary policy has real effects owing to the nominal rigidities discussed

in the previous chapter. As in chapter 2, a crucial first issue in the choice of an interest-

rate feedback rule is the selection of a rule that results in a determinate equilibrium. We

reconsider this issue (previously treated under the case of full price flexibility), and show

that the “Taylor principle” — the requirement that interest rates be increased more than

one-for-one in response to sustained increases in the inflation rate — continues to be essential

for determinacy.

We may then consider the nature of inflation and output determination in the case that a

determinate equilibrium exists. Once again, we shall show that the equilibrium evolution of

these variables can be understood without reference to the implied path of the money supply,

or to the determinants of money demand. When monetary policy is specified in terms of an

interest-rate feedback rule — a specification which more directly matches the terms in which

monetary policy is discussed within actual central banks — then it is possible to understand

the effects of such policies by directly modeling the effects of interest rates upon spending and

pricing decisions, without attaching any central importance to the question of how various

monetary aggregates may also happen to evolve. This is in fact the approach already taken

1
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in many of the econometric models used for policy simulations within central banks.1 A

primary goal of the present exposition will be to show how models with this basic structure

— roughly speaking, models that consist of an “IS block,” and “aggregate supply (AS) block”

and an interest-rate feedback rule — can be derived from explicit optimizing foundations.

In this way it is established that a non-monetarist analysis of the effects of monetary policy

does not involve any theoretical inconsistency or departure from neoclassical orthodoxy.

Instead, we shall argue that inflation and output determination can be usefully explained

in Wicksellian terms — as depending upon the relation between a “natural rate of interest”

determined primarily by real factors and the central bank’s rule for adjusting the short-

term nominal interest rate that serves as its operating target. Increases in output gaps

and in inflation result from increases in the natural rate of interest that are not offset by

a corresponding tightening of monetary policy (positive shift in the intercept term of the

interest-rate feedback rule), or alternatively from loosenings of monetary policy that are not

justified by declines in the natural rate of interest.2

While this basic approach to inflation determination has already been introduced in

chapter 2, it is only in an environment with sticky prices that we are able to introduce

the crucial Wicksellian distinction between the actual and the “natural” rate of interest, as

the discrepancy between the two arises only as a consequence of failure of prices to adjust

sufficiently rapidly. Here we also discuss the underlying real determinants of variation in the

natural rate of interest, and discuss the way in which a central bank would respond to such

variations in order to maintain stable prices or a stable rate of inflation.

We first expound our neo-Wicksellian analysis in the context of a very simple intertem-

poral equilibrium model, in which we abstract from endogenous variation in the economy’s

capital stock. We then extend the model in section 3 to consider the consequences for the

1See, e.g., Black et al. (1997), Brayton et al. (1997), and Coletti et al. (1996), for discussions of the
models currently used at the U.S. Federal Reserve Board, the Bank of Canada, and the Reserve Bank of
New Zealand. A similar approach is also already common in small macro-econometric models used for policy
evaluation in the academic literature as well (e.g., Fuhrer and Moore, 1995a), but such models are typically
not derived from explicit optimizing foundations.

2For Wicksell’s views see Wicksell (1898, 1906, 1907). Recent discussions include Humphrey (1992),
Fuhrer and Moore (1995b), and Woodford (1998).



1. A BASIC MODEL OF THE EFFECTS OF MONETARY POLICY 3

monetary transmission mechanism of endogenous capital accumulation. We show that many

aspects of the basic model are preserved by this extension. In particular, it is still true that

a useful approach to inflation stabilization involves commitment to a “Taylor rule” under

which the intercept term varies one-for-one with variation over time in the Wicksellian natu-

ral rate of interest. Finally, in section 4 we consider further extensions of the basic framework

that incorporate more realistic delays in the effects of monetary policy upon inflation and

economic activity.

1 A Basic Model of the Effects of Monetary Policy

We here present a first complete general-equilibrium model of the monetary transmission

mechanism, of which we shall make frequent use in the remainder of this essay. (References

below to “the baseline model” refer to the model presented in this section.) This model

combines the relation between interest-rate targeting by the central bank and intertemporal

resource allocation developed in section 1 of chapter 2 with the relation between real activity

and inflation developed in section 2 of chapter 3. One should note that the assumptions made

in separately deriving these equilibrium relations are in fact mutually consistent, so that

our separate partial results can be combined to yield a complete, though highly stylized,

model. The resulting framework indicates how interest rates, inflation and real output

are jointly determined in a model that abstracts from endogenous variations in the capital

stock, and that assumes perfectly flexible wages (or some other mechanism for efficient labor

contracting), but monopolistic competition in goods markets, and sticky prices that are

adjusted at random intervals in the way assumed by Calvo (1983).3

3The model expounded here was first presented as a simple example of an optimizing framework for the
analysis of alternative monetary policies in Woodford (1994a, 1996). Similar models have been extensively
used in the recent literature; see, e.g., Kerr and King (1996), Bernanke and Woodford (1997), Rotemberg
and Woodford (1997, 1999a), McCallum and Nelson (1999), and Clarida et al. (1999).
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1.1 An Intertemporal IS Relation

We recall from chapter 2 that the representative household’s optimal intertemporal allocation

of consumption spending must satisfy the Euler equation

1 + it = β−1

{
Et

[
uc(Ct+1; ξt+1)

uc(Ct; ξt)
Π−1

t+1

]}−1

, (1.1)

where it is the riskless one-period nominal interest rate controlled by the central bank. As

shown in chapter 2, the simple form (1.1) can be derived either in the case of a utility

function that is additively separable between consumption and real money balances, or

(our preferred interpretation) in the “cashless limit” discussed in section 3.3 of chapter 2.

(The consequences of allowing for non-trivial monetary frictions and a non-separable utility

function are taken up in section xx below.) In chapter 2, we neglected labor supply, as we

treated the economy’s supply of goods as a simple endowment; but even with endogenous

labor supply, condition (1.1) is unaffected as long as utility is separable in consumption and

leisure, as assumed in chapter 3.4 Finally, in chapter 2 we assumed a single perishable good,

whereas we now assume the existence of a continuum of differentiated goods, in order to

allow price-setting by monopolistically competitive producers, as in chapter 3. However, as

long as utility depends only upon the Dixit-Stiglitz aggregate of consumption of the various

differentiated goods (defined in equation xx of chapter 3), then the Euler equation (1.1)

continues to apply, where now Ct refers to the representative household’s demand for the

consumption aggregate, and Πt ≡ Pt/Pt−1 refers to the gross rate of increase in the Dixit-

Stiglitz price index Pt (defined in equation xx of chapter 3).

Of course, equation (1.1) is not the only requirement that must be satisfied for the

household’s consumption plan to be optimal. Consumption spending must also be optimally

allocated each period across the various differentiated goods; this requirement leads to the

constant-elasticity demand curve for each of the individual goods (equation xx of chapter

4More precisely, we assume that utility is additively separable between a function of consumption and
real balances on the one hand, and a function of leisure or hours worked on the other. In the cashless limit,
the marginal utility of additional consumption is essentially independent of the level of real money balances,
as is assumed in (1.1).
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3), assumed in our model of optimal pricing behavior. And (1.1) is not the only first-order

necessary condition for optimal intertemporal allocation of aggregate consumption expendi-

ture; in addition, the marginal rate of substitution between consumption at date t and any

possible state at date t + 1 must equal the relevant stochastic discount factor (equation xx

of chapter 2). However, this much more detailed set of first-order conditions turns out not

to be necessary for the derivation of a complete set of equilibrium conditions sufficient to

determine interest rates, inflation and output, as long as the central bank’s reaction function

does not itself involve any asset prices other than the short riskless nominal interest rate.5

The additional equilibrium conditions are needed only if we wish also to determine the equi-

librium values of other asset prices, and we set that question aside here. Finally, optimality

also requires exhaustion of the household’s intertemporal budget constraint (conditions xx

or xx in chapter 2). But, just as in chapter 2, this additional equilibrium condition plays

no role in our analysis of equilibrium determination, as long as fiscal policy is “locally Ri-

cardian” (so that the additional equilibrium condition is automatically satisfied in the case

of all paths involving small enough deviations of interest rates, inflation and output from

certain reference values) and as long as we are concerned solely with local analysis (i.e., with

the equilibrium responses to sufficiently small shocks).

In a model where the only source of demand for produced goods is private consumption

demand, equilibrium requires that the Dixit-Stiglitz index of aggregate demand Yt (that

figures, for example, in the demand curve for an individual good, given by equation xx of

chapter 3) is equal to the representative household’s choice of the consumption aggregate

Ct. We can thus once again substitute6 Yt for Ct in the Euler equation (1.1), and obtain the

5If, as is sometimes assumed, the central bank sets its short-rate instrument as a function of an observed
long bond rate or a term-structure spread, then a complete model of the consequences of such a rule would
have to include a model of the equilibrium term structure of interest rates as well. The statement in the text
also assumes that fiscal policy is locally Ricardian (in the sense to be explained in chapter 5), as we shall
suppose throughout this chapter, or else that all outstanding government debt consists of riskless one-period
nominal bonds, so that again the short nominal rate is the only asset price that matters for equilibrium
determination. In the case of a non-Ricardian fiscal policy and long-term government debt, a complete
model again must include a model of the term structure, as discussed in section 2.3 of chapter 5.

6Recall that we have already made this same substitution in the derivation of our aggregate supply
relation in chapter 3. Thus the assumptions made there and those used here are mutually consistent.
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equilibrium condition

1 + it = β−1

{
Et

[
uc(Yt+1; ξt+1)

uc(Yt; ξt)
Π−1

t+1

]}−1

, (1.2)

linking interest rates and the level of real activity. This condition is necessary for equi-

librium here, just as in chapter 2, since the derivation there depended in no way upon the

assumption that output was given exogenously. However, its interpretation is now somewhat

different. When we first encountered this relation (as equation xx in chapter 2), its natural

interpretation was as a relation that deternined the equilibrium real rate of return, given

the economy’s exogenous supply of goods. In the present context it is instead most usefully

viewed as the analog, in an intertemporal equilibrium model, of the Hicksian “IS curve”.7

That is, it determines the level of real aggregate demand associated with a given real interest

rate, and then since output is demand-determined in the present model, it determines the

equilibrium level of output associated with a given real interest rate.

It might seem that this intertemporal “IS relation” depends upon an extremely restrictive

conception of the demand for produced goods, namely that all demand is private demand

for non-durable consumption goods. However, the model can be understood to allow for

government purchases through a simple reinterpretation of the notation, as already noted

in chapter 2. The function u(Y ; ξ) should be understood to indicate the level of utility

from private consumption when aggregate demand is Y , even if that aggregate demand also

includes government purchases; as long as government purchases are an exogenous state

variable, we can regard them as simply another element of the vector ξ of exogenous random

disturbances to the functional relation between utility and Y .

Furthermore, one need not understand the model to assume that investment demand is

zero. (This point matters when it comes time to “calibrate” our model for use in quantitative

analysis.) A more generous view of our baseline model would be that it abstracts from the

effects of variations in private spending (including those classified as investment expenditure

7The analogy between this equilibrium relation and the “IS curve” is stressed in particular in Woodford
(1994a, 1996), Kerr and King (1996), Bernanke and Woodford (1997), and McCallum and Nelson (1999).
An early derivation of an “IS relation” from intertemporal optimization in the same spirit was provided by
Koenig (1987, 1993).
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in the national income accounts) upon the economy’s productive capacity; the theory of

marginal supply cost that underlies our model of optimal pricing behavior assumes that the

capital stock in each sector of the economy evolves exogenously, so that any variations can

be subsumed under variation in the exogenous technology factor At. In addition, it assumes

that the marginal utility of additional real private expenditure at any point in time is a

function solely of the aggregate level of such expenditure, together with exogenous factors

— as if all forms of private expenditure (including those classified as investment expenditure)

were like non-durable consumer purchases. This is not a preposterous theory of “investment”

spending, since the existence of convex adjustment costs of the sort assumed in standard

neoclassical investment theory does imply that the marginal utility of additional investment

spending at a given point in time is decreasing in the real quantity of investment spending at

that time. However, neoclassical investment theory does imply in general that the marginal

utility of additional investment spending also depends upon other endogenous factors, such as

variations in expected future returns to capital, and our present model must be understood to

abstract from variations in these factors. (The implications of a fully-developed neoclassical

model of investment demand are presented in section 3 below, and compared to those of the

present model.)

This simple model of the effects of real interest rates on aggregate demand is obviously

extremely stylized, and it might be wondered why we even bother to derive it from optimizing

foundations, if we intend to abstract from so many features of a more realistic equilibrium

model. The answer is that the model’s simplicity makes it useful as a source of insight into

basic issues; yet the consideration of intertemporal optimization introduces some subtleties,

even in this simple specification, that we believe are of considerable general importance. The

most important advantage of (1.2) over many simple “IS” specifications (including those often

assumed in linear rational-expectations models with an IS-LM structure) is that it implies

that expected future real interest rates, and not just a current short real rate, matter for the

determination of aggregate demand.

Note that if we are interested solely in characterizing equilibria involving small fluctu-
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ations around a deterministic steady state, it suffices to use a log-linear approximation of

(1.2). As in chapter 2, this takes the form

Ŷt = gt + Et(Ŷt+1 − gt+1)− σ(̂ıt − Etπt+1), (1.3)

where once again the parameter σ > 0 represents the intertemporal elasticity of substitution

in private spending, and gt is a particular component of the exogenous disturbance ξt (which

may be interpreted, among other ways, as representing variation in government purchases).8

Furthermore, in the case of any solutions in which Yt and gt are both stationary variables,

it follows from (1.3) that

Ŷt = Ŷ∞ + gt − σ
∞∑

j=0

Et(̂ıt+j − πt+j+1), (1.4)

using the fact that

lim
T→∞

Et(ŶT − gT ) = Ŷ∞, (1.5)

where Ŷ∞ is the long-run average value of Ŷt under the policy regime in question.9

Thus aggregate demand in this model depends upon all expected future short real rates,

and not simply upon a current ex ante short real rate of return; and unless fluctuations

in short rates are both highly unforecastable and highly transitory, expectations of sl fu-

ture short rates will matter more than the current short rate.10 The exact way in which

8See equations (xx) and (xx) of chapter 2. Here we have written the equilibrium relation somewhat
differently. We no longer subsume all sources of variation in the equilibrium real rate of return under a
single term r̂t, because output is no longer an exogenous factor. And we now put Ŷt on the left-hand side,
to stress that the equation may now be viewed as determining aggregate demand.

9The long-run average value of gt is assumed to be zero, by definition. The long-run average value of
log Yt is not necessarily equal to log Ȳ , the zero-inflation steady-state level around which we log-linearize. In
the case of the “New Keynesian” aggregate supply relation (1.6), a policy that results in a long-run average
rate of inflation π∞ different from zero will also imply a non-zero value for Ŷ∞, namely (1 − β)/κ times
π∞; and while our approximations assume that the inflation rate is always near zero, they do not require
that inflation be exactly zero on average. If instead we assume the “New Classical” AS relation discussed
in chapter 3, or we assume complete indexation of prices to a lagged price index (AS relation (2.23) below,
with γ = 1), then any policy that makes the inflation rate a stationary variable results in Ŷ∞ = 0.

10One way of interpreting (1.4) is as saying that it is a long-term real rate of interest, rather than a short
rate, that determines aggregate demand in this model. In fact, the part of the term structure that matters
according to (1.4) is the yield on a bond of infinite duration, i.e., the sort of “very long discount” bond
discussed by Kazemi (1992) and Fisher and Gilles (2000). These authors show that in an environment of
the kind assumed here, the yield on the VLD bond defines the stochastic discount factor that can be used to
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expectations of future short rates matter in (1.4) is undoubtedly special, and unlikely to

be precisely correct in reality. (We reconsider the question below in the context of a more

sophisticated model of investment dynamics.) Nonetheless, the conclusion that expected

future short rates matter a great deal is likely to be robust, and this general insight is of

considerable importance for the theory of monetary policy, as we shall see. It implies that

a central bank’s primary impact upon the economy comes about not through the level at

which it sets current overnight interest rates, but rather through the way it affects private

sector expectations about the likely future path of overnight rates. This in turn implies that

the credibility of policy commitments must be a paramount concern, that discretionary opti-

mization will almost surely lead to a suboptimal outcome, and that interest-rate smoothing

is desirable, among other consequences, as we discuss below in chapters 7 and 8.

1.2 A Complete Model

We may now close our model by combining the above “IS relation” with any of several

aggregate supply relations derived in chapter 3. Alternative possible assumptions about the

timing of price changes, the information used in price-setting, or the degree of automatic

indexation of prices between revisions have no effect upon the derivation above, which simply

depends on price-taking behavior by the buyers of goods. As our baseline case we shall

assume the “New Keynesian” model of staggered price-setting expounded in section 2 of

chapter 3.

In this model, prices are adjusted at random intervals, and remained fixed (in units of

the domestic currency) between the dates at which discrete adjustments occur, as proposed

by Calvo (1983). The model as expounded in chapter 3 is consistent with the assumptions

used in deriving our intertemporal “IS” relation above, in that the marginal utility of income

price all financial assets; as it happens, it also suffices to determine the optimal level of private expenditure,
given the value of the preference shock gt. The reason is that additive separability of preferences over time
allow one to define a “Frisch demand function” for consumption, in which desired consumption at any point
in time is a function of the marginal utility of income at that time. The marginal utility of income that
enters the Frisch demand function is in turn just the stochastic discount factor that is shown in the asset
pricing literature to equal the yield on a VLD bond.
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(which matters for optimizing wage demands and hence for marginal supply costs) is assumed

to be a decreasing function of the current level of real activity Yt; this relation is shifted by

various exogenous factors, but is independent of all other endogenous variables. (In section

3 below, we consider how both our “IS” and “AS” relations must be modified in order to

take account of endogenous capital accumulation.)

As we are here concerned solely with equilibria involving only small fluctuations in in-

flation and output, it suffices to recall the log-linear approximation to the “AS relation”

implied by this model. This is the so-called “New Keynesian Phillips Curve”,

πt = κ(Ŷt − Ŷ n
t ) + βEtπt+1, (1.6)

where κ > 0 is a coefficient that depends upon both the frequency of price adjustment and

the elasticity of real marginal supply cost with respect to the level of real activity, where

0 < β < 1 is again the discount factor of the representative household, and where Ŷ n
t

represents exogenous variation in the “natural rate of output” as a result of any of several

types of real disturbances. Let us combine equations (1.3) and (1.6) with an interest-rate

rule, such as a “Taylor rule” of the form

ı̂t = ı̄t + φπ(πt − π̄) + φyŶt/4, (1.7)

where ı̄t is an exogenous (possibly time-varying) intercept, and φπ, φy and the (implicit)

inflation target π̄ are constant policy coefficients.11 We then obtain a complete system of

equations for determination of the three endogenous processes {ı̂t, πt, Ŷt}, given the evolution

of the exogenous disturbances {gt, Ŷ
n
t , ı̄t}. As long as the only endogenous variables to

which the central bank’s reaction function responds are inflation and output (as in the

specification (1.7)), these three equations suffice for equilibrium determination under such a

policy rule. (Dependence upon additional lags of the interest rate instrument, inflation or

output, considered below, does not change this conclusion; nor does arbitrary dependence

upon exogenous state variables.)

11Here we write the coefficient on the output term as φy/4 so that φy corresponds to the output coefficient
in a standard “Taylor rule”, written in terms of annualized interest and inflation rates. In terms of our
notation here, these annualized rates are 4ı̂t and 4πt respectively.
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It will often be useful to write our system of equilibrium conditions in terms of the output

gap xt ≡ Ŷt − Ŷ n
t . This allows us (at least under our baseline assumptions) to write the AS

relation without any residual term; and it will be shown in chapter 6 that (under those same

assumptions) it is fluctuations in xt rather than in Ŷt that are relevant for welfare. “Taylor

rules” are also often specified in terms of a response to variations in the output gap, though a

question must raised as to whether the “output gap” measure that would be used in practice

corresponds to our theoretical definition here. (We can in any event write our interest-rate

rule in terms of the gap, as a purely notational matter, by allowing the intercept to be a

function of the natural rate of output.) Our baseline model then consists of the equations

xt = Etxt+1 − σ(̂ıt − Etπt+1 − r̂n
t ), (1.8)

πt = κxt + βEtπt+1, (1.9)

together with an interest-rate rule such as

ı̂t = ı̄t + φπ(πt − π̄) + φx(xt − x̄)/4. (1.10)

Note that this equation describes the same family of policy rules as (1.7), but that the

exogenous term ı̄t is not the same under the two representations of any given rule. We

have also here written the “gap” term in our rule as xt − x̄, where x̄ ≡ (1 − β)π̄/κ is the

steady-state value of the output gap consistent with the inflation target π̄, so that in an

equilibrium in which the inflation target is achieved on average, the nominal interest rate ı̂t

will on average equal ı̄t.

The intertemporal “IS” relation (1.8) now involves a composite exogenous disturbance
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term12

r̂n
t ≡ σ−1[(gt − Ŷ n

t )− Et(gt+1 − Ŷ n
t+1)]. (1.11)

This represents deviations of the Wicksellian “natural rate of interest” from the value con-

sistent with a zero-inflation steady state,13 a concept about which we shall have more to say

in the next section. Here it suffices to note that the only exogenous disturbance terms in

the system consisting of (1.8) – (1.11) are the terms r̂n
t and ı̄t. Hence insofar as our policy

rule implies a determinate rational expectations equilibrium, it must be one in which fluctu-

ations in both inflation and the output gap are due solely to variations in these two factors

— variations in the natural rate of interest due to real disturbances, on the one hand, and

variations in monetary policy (whether deliberate or accidental) on the other. The exact

way in which these factors affect inflation and the output gap is explored further in the next

section.

2 Interest-Rate Rules and Price Stability

We turn now to a brief consideration of implications of our baseline framework for the

explanation of economic fluctuations and the choice of a monetary policy rule. As in chapter

2, a first question to be addressed concerns the conditions under which an interest-rate rule

such as (1.11) implies a determinate rational expectations equilibrium. In the case that

equilibrium is determinate, we then inquire as to how equilibrium inflation and real activity

are affected by both real disturbances and shifts in monetary policy. Finally, we use this

12Note that the framework used by Clarida et al. (1999) includes an “IS” relation of exactly this form,
but with a disturbance term “gt” that is described as a “demand shock”. This interpretation is somewhat
misleading, since it is apparent from (1.11) that any source of transitory variation in the natural rate of
output will also affect the natural rate of interest. As a result, the conclusions of Clarida et al. about the
optimal policy response to “supply shocks” as opposed to “demand shocks” must be interpreted with care.
Real disturbances that have a transitory effect upon the natural rate of output are not “supply shocks” in
the sense of Clarida et al., because they do not result in any disturbance term in equation (1.6), while they
are “demand shocks” in the sense of those authors, because they affect the disturbance term in equation
(1.8).

13The steady-state value of the natural rate is equal to the value of the nominal interest rate consistent
with that same zero-inflation steady state, so (1.11) takes the same form if we interpret ı̂t as the (continuously
compounded) nominal interest rate itself and r̂n

t as the (continuously compounded) natural rate of interest.
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analysis to consider the design of a monetary policy rule that should maintain stable prices.

The question of the extent to which price stability should be the goal of monetary policy is

deferred to chapter 6.

2.1 The Natural Rate of Interest

We first consider the relatively simple question of how interest rates must be adjusted in

order for monetary policy to be consistent with stable prices. To answer this question, we

simply solve our AS and IS relations for the equilibrium paths of output and interest rates,

under the assumption of zero inflation at all times. We first observe from the AS relation

that πt = 0 at all times requires that xt = 0 at all times, i.e., that output equal the natural

rate of output at all times. From the derivation of the AS relation in chapter 3, we observe

that this conclusion is exact, and not merely a property of the log-linear approximation. For

the natural rate of output is exactly the level of output in all sectors for which real marginal

cost of supplying each good will equal µ−1, the reciprocal of the desired gross markup. (See

equation (xx) of chapter 3.) This latter quantity is equal to marginal revenue for a firm

that adjusts its price, in the case that all firms charge identical prices. Thus Yt = Y n
t is

exactly the condition needed for no firm to wish to charge a price different from the common

price charged by all other firms, which is in turn the condition under which firms that adjust

their prices will continue to charge the same price as firms that do not, so that there is no

inflation.

Substituting these paths for inflation and output into the intertemporal IS relation, we

obtain the required path of nominal interest rates. Substituting Πt = 1 and Yt = Y n
t into

(1.2), we see that interest rates must satisfy it = rn
t at all times, where

1 + rn
t ≡ β−1

{
Et

[
uc(Y

n
t+1; ξt+1)

uc(Y n
t ; ξt)

]}−1

. (2.1)

That is, the interest rate must at all times equal the Wicksellian natural rate of interest,

which may be defined as the equilibrium real rate of return in the case of fully flexible prices.

Under this definition, we observe a direct correspondence with our previously introduced
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concept of the natural rate of output;14 indeed, the natural rate of interest is just the real

rate of interest required to keep aggregate demand equal at all times to the natural rate of

output.15 Log-linearizing (2.1), we observe that the exogenous term r̂n
t in (1.11) corresponds

to the percentage deviation of the natural rate of interest from its steady-state value,

r̂n
t ≡ log

(
1 + rn

t

1 + r̄n

)
= log(1 + rn

t ) + log β.

We have thus far referred only to the conditions under which one could obtain complete

price stability, in the sense of a constant price level (and hence zero inflation). As we shall

see, there is a certain normative interest in this case, as, at least under the assumptions of

our baseline model, it would eliminate the distortions resulting from price stickiness. Yet

most “inflation targeting” countries instead seek to maintain inflation at a low positive level,

and so policies that stabilize inflation at some constant target level π̄ are also of obvious

interest. In fact, in our log-linear approximation, our conclusions are exactly the same in

the case, up to certain constant terms. The required path for the output gap will still be a

constant (though not zero unless π̄ = 0), and the required path for the nominal interest rate

will now be

ı̂t = r̂n
t + π̄.

Though the average values of output and of the nominal interest rate depend upon the target

inflation rate, the way in which they should respond to shocks does not (up to a log-linear

approximation).

Equation (2.1) (or equally usefully for most purposes, the log-linear version (1.11) pro-

vides us with a theory of how various types of real disturbances affect the natural rate of

interest, and hence with a theory of how the interest rate controlled by the central bank

should respond to those disturbances, in an equilibrium characterized by price stability. To

14Of course, Friedman (1968) originally proposed the concept of a “natural rate” of output (or of unem-
ployment) by analogy with Wicksell’s concept of a natural rate of interest, a notion that was at that time
more familiar!

15The concept is thus closely related to Blinder’s (1998, chap. 2, sec. 3) notion of the “neutral” rate of
interest.
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consider the effects of individual disturbances, we need first to recall how various real dis-

turbances affect the natural rate of output. Log-linearization of equation (xx) from chapter

3 implies that

Ŷ n
t ≡ σ−1gt + ωqt

σ−1 + ω
, (2.2)

where gt denotes the variation in log output required to maintain a constant marginal utility

of real income as in (1.3), qt correspondingly denotes the variation in log output required

to maintain a constant marginal disutility of output supply as in chapter 3, σ > 0 is the

intertemporal elasticity of substitution of private expenditure as in (1.3), and ω > 0 is the

elasticity of real marginal cost with respect to a firm’s own output as in chapter 3.

These composite disturbance terms can furthermore be expressed in terms of more fun-

damental disturbances as

gt = Ĝt + sCC̄t, (2.3)

qt = (1 + ω−1)at + ω−1νh̄t.

Here, as in chapter 2, Ĝt denotes the deviation of government purchases from their steady-

state level, measured as a percentage of steady-state output Ȳ , which shifts the level of

private expenditure implied by any given level of aggregate demand Ŷt, and C̄t denotes the

percentage shift in the Frisch (constant marginal utility of income) consumption demand,

due to a shift in the utility-of-consumption function. And as in chapter 3, at represents

variation in the log of the multiplicative technology factor that is common to all sectors,

and h̄t is the percentage shift in the Frisch labor supply, due to a shift in the disutility-of-

labor function v. (The exogenous shifts in the Frisch demand schedules are measured at

the steady-state values of their arguments.) In addition, 0 < sC ≤ 1 is the steady-state

share of private expenditure in total demand , and ν > 0 is the inverse of the Frisch (or

intertemporal) elasticity of labor supply. It then follows from (2.2) that

Ŷ n
t =

σ−1

σ−1 + ω
(Ĝt + (1− sG)c̄t) +

1

σ−1 + ω
((1 + ω)at + νh̄t).

We observe that each of the exogenous disturbances Ĝt, C̄t, at, and h̄t increases the natural
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rate of output, and thus, under a policy aimed at price stability, each of them must be

allowed to perturb the equilibrium level of economic activity Ŷt.

Substituting this solution into (1.11), and furthermore assuming (for simplicity) that each

of the exogenous disturbances follows an independent first-order autoregressive process, we

find that the required interest-rate variations are given by

r̂n
t = (σ + ω−1)−1[(1− ρG)Ĝt + sC(1− ρc)C̄t − (1 + ω−1)(1− ρa)at − ω−1ν(1− ρh)h̄t], (2.4)

where ρG, ρc, ρa, and ρh are the coefficients of serial correlation of the four exogenous

disturbance processes. Since stationarity requires that ρi < 1 in each case, we observe

that under this assumption, interest rates must increase in response to temporary increases

in government purchases or in the impatience of households to consume, and decrease in

response to temporary increases in productivity or in the willingness of households to supply

labor. In each case, the effects upon the natural rate of interest are larger the more temporary

the disturbance (i.e., the less positive the serial correlation).

This prescription may appear quite different from that of Clarida et al. (1999), who state

(in their “Result 4”) that optimal policy involves “adjusting the interest rate to perfectly

offset demand shocks,” while “perfectly accommodat[ing] shocks to potential output by

keeping the nominal interest rate constant”. In fact, the variable (their “gt”) here referred

to as a “demand shock” corresponds to our natural rate of interest rn
t .16 What these authors

mean by “perfectly offsetting” movements in this variable is that the central bank’s interest-

rate instrument should move one-for-one with variations in the natural rate of interest. (Thus

“perfectly offsetting” the shocks does not mean that output is insulated from them, but that

the output gap is.) And what they mean by “perfectly accommodating shocks to potential

output” is that, given the value of the natural rate of interest, the interest rate should be

independent of the natural rate of output. That is, disturbances to the natural rate of output

that do not shift the natural rate of interest should not affect nominal interest rates. Stated
16The variable is evidently thought of as a “demand shock” because it is the disturbance term in the Euler

equation (1.8). But because this condition has been written in terms of the output gap xt rather than the
level of output Ŷt, the composite disturbance r̂n

t , unlike our variable gt, cannot properly be regarded as a
pure demand shock, if one supposes that transitory disturbances to the natural rate of output occur.
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this way, there is no difference between their recommendation and our own.17 However, it

is not true, in general, that optimal policy involves no interest-rate response to shocks that

affect the natural rate of output, because, as shown by (2.4) such shocks almost always do

affect the natural rate of interest to some extent.

It is worth noting that the required interest-rate variations (2.4) in response to the various

types of shocks cannot be achieved, in general, through a simple “Taylor rule” under which

the nominal interest rate is a function solely of inflation and the deviation of output from

trend. In the equilibrium with completely stable prices, inflation does not vary in response

to the shocks at all, and so conveys no information about them. Output does vary in

response to each of the shocks, but the desired interest-rate response is not proportional to the

desired output response across the various types of shocks; indeed, one wants interest rates

to vary procyclically in the case of government-purchase or consumption-demand shocks, but

countercyclically in response to technology or labor-supply shocks. Thus the central bank

will need additional information in order to implement its policy, if complete price stability

is its aim.

Analysis of the sources of variation in the natural rate of interest is also important in

determining whether complete price stability is necessarily feasible. Our analysis above

suggests that it should be, insofar as we have been able to solve for paths of output and

interest rates that would imply that the IS and AS relations would be satisfied at all times by

a zero inflation rate. However, even supposing that the central bank possesses the information

required to adjust its interest-rate instrument as required by the above analysis, there is

another potential problem, and this is that the natural rate of interest may sometimes be

negative.18 If this occurs, then it is not possible for the nominal interest rate to perfectly

17Actually, the results referred to in Clarida et al. are characterizations of optimizing central bank policy
under discretion, which is not in general optimal policy, in the sense of the policy that best achieves the central
bank’s assumed objectives, as we explain in chapter 7. However, in the case that complete stabilization of
both inflation and the output gap are possible, doing so corresponds both to optimal policy and to the result
of discretionary optimization, as we shall see.

18Another possible problem is the existence of a non-Ricardian fiscal policy, of a sort that makes a constant
price level inconsistent with the condition that households exhaust their intertemporal budget constraints.
This potential problem and its implications are taken up in chapter 5.
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track the natural rate, owing to the zero lower bound on nominal interest rates. (Recall the

discussion of equation (xx) from chapter 2.) Whether the natural rate of interest is ever

negative is a topic of some debate, though Summers (1991) has suggested that it fluctuates

sufficiently in the U.S. for a inflation target several percentage points above zero to be

desirable in order to allow more successful stabilization, and Krugman (1998) has argued

that it has recently been far below zero in Japan. Here we note simply that our theory

allows for variation over time in the natural rate for a variety of reasons, and no reason

why it should not sometimes be negative. (Our model does imply a positive average level of

the natural rate, determined by the rate of time preference of the representative household.)

Policy options when the natural rate of interest is temporarily negative are discussed further

in section xx below, and in chapters 6 and 7. We argue in the later chapters that in this

case it is appropriate not only to choose a non-zero inflation target, but to accept a small

amount of inflation variation in order to maintain a lower average rate of inflation despite

the constraint on interest-rate policy imposed by the zero bound.

2.2 Conditions for Determinacy of Equilibrium

We have thus far only considered how interest rates would have to vary, in order for there

to be an equilibrium with stable prices. Our answer to this question does not yet, in itself,

explain what sort of interest-rate rule would be suitable to bring about an equilibrium of this

kind. In particular, it should not be inferred from the above discussion that a suitable policy

rule would be simply to set the central bank’s interest-rate instrument to equal its estimate of

the current natural rate of interest. A policy rule of the form ı̂t = r̂n
t would be consistent with

the desired equilibrium, but may allow many other, less desirable equilibria as well. Such a

rule makes the nominal interest rate a function of purely exogenous state variables, and just

as in the flexible-price analysis of chapter 2, all such rules imply indeterminacy of rational

expectations equilibrium. We thus must again take up the question of the determinacy of

equilibrium under alternative interest-rate rules, but now in the context of our model with

sticky prices and endogenous output variation.
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We begin with a formal consideration of interest-rate rules, such as the one just proposed,

under which {ı̂t} is an exogenous process. In this case we wish to solve the system (1.8)

– (1.9) for the endogenous variables {πt, xt}, given exogenous stationary processes {r̂n
t , ı̂t}.

We observe that this system can be written in the form

Etzt+1 = Azt + a(r̂n
t − ı̂t),

where the vector of endogenous variables is

zt ≡
[

πt

xt

]
,

and the matrices of coefficients are

A ≡
[

β−1 −β−1κ
−β−1σ 1 + β−1κσ

]
, a ≡

[
0
−σ

]
.

The matrix A has characteristic equation

P(µ) = µ2 − [1 + β−1(1 + κσ)]µ + β−1 = 0.

As our parameters satisfy κ, σ > 0 and 0 < β < 1, we observe that P(0) > 0, P(1) < 0, and

P(µ) > 0 again for large enough µ > 1. Hence A has two real eigenvalues, satisfying

0 < µ1 < 1 < µ2.

Since neither endogenous state variable is predetermined, the existence of an eigenvalue

|µ1| < 1 implies that rational expectations equilibrium is indeterminate, just as in the

flexible-price model of chapter 2 (and in the rational-expectations IS-LM-AS model of Sargent

and Wallace (1975)). Here the situation differs from that in chapter 2 in that the alternative

stationary solutions include a large number of alternative stochastic processes for output

(and also for the expected component of inflation), rather than it being only the unexpected

component of inflation that fails to be uniquely determined. In the present context it is

also clearer that this indeterminacy is undesirable, since in the presence of staggered price-

setting, variations in inflation due to self-fulfilling expectations create real distortions (of a

kind further characterized in chapter 6).
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This result implies that even if the central bank has perfect information about the exoge-

nous fluctuations in the natural rate of interest, a desirable interest-rate rule will also have

to involve feedback from endogenous variables such as inflation and/or real activity, if only

to ensure determinacy of equilibrium. In fact, if one is seeking to find a rule that imple-

ments the equilibrium with completely stable prices (or more generally, a completely stable

inflation rate), then neither the variable πt nor xt will be useful as a source of information

about the real disturbances to the economy, for in the desired equilibrium neither variable

responds at all to any of the real disturbances.19 Nonetheless, it may be desirable for the

central bank to commit itself to respond to fluctuations in these variables, in addition to

its response to other sources of information about the real disturbances, in order to render

equilibrium determinate.

We illustrate this possibility by considering the determinacy of equilibrium under a Taylor

rule of the form (1.10). (Note that it is now necessary to write explicitly the dependence of

the interest-rate operating target upon the output gap, since output is here an endogenous

variable.) In this case, substitution of (1.10) into (1.8) to eliminate ı̂t again yields a system

of the form

Etzt+1 = Azt + a(r̂n
t − ı̄t + π̄), (2.5)

where now

zt ≡
[

πt − π̄
xt − x̄

]
,

and

A ≡
[

β−1 −β−1κ
σ(φπ − β−1) 1 + σ(φx/4 + β−1κ)

]
, a ≡

[
0
−σ

]
.

We observe that

trA = 1 + β−1(1 + κσ) + σφx/4, det A = β−1[1 + σ(φx/4 + κφπ)].

19This is a common problem for an approach to stabilization policy based upon a commitment to respond
solely to deviations of one’s target variables from their (constant) target values, discussed in Bernanke and
Woodford (1997). It should be noted, however, that if complete stabilization of inflation and the output gap
is not desirable — owing, say, to a desire to reduce the degree of interest-rate volatility — then it may be
possible to implement an optimal equilibrium through commitment to a rule that responds directly to no
variables other than inflation and the output gap, as shown in chapter 8.
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Let us furthermore restrict our attention to the case of rules for which φπ, φx ≥ 0. Then

necessarily det A > 1. We note that a 2 × 2 matrix with positive determinant has both

eigenvalues outside the unit circle (our condition for determinacy) if and only if20

det A > 1, det A− trA > −1, det A + trA > −1. (2.6)

Under our sign restrictions, the first and third of these inequalities necessarily hold, so that

both eigenvalues are outside the unit circle if and only if

φπ +
1− β

4κ
φx > 1. (2.7)

Condition (2.7) for determinacy can be given a simple interpretation. We note that

the “New Keynesian Phillips Curve” implies that each percentage point of permanently

higher inflation (i.e., quarterly inflation πt permanently higher by 1/4 of a percent) implies a

permanently higher output gap of (1− β)/4κ percentage points.21 Hence the left-hand side

of (2.7) represents the long-run increase in the nominal interest rate prescribed by (1.10)

for each unit permanent increase in the inflation rate. Our condition then corresponds once

more to the “Taylor principle”: at least in the long run, nominal interest rates should rise

by more than the increase in the inflation rate.

We note that contrary to our result in chapter 2, determinacy now depends upon the

output response coefficient φx, and not solely upon the inflation response coefficient φπ; and

indeed, a large enough positive value of either coefficient suffices to guarantee determinacy.

This complicates slightly our interpretation of the Taylor (1999) contrast between pre-Volcker

and post-Volcker U.S. monetary policy. Taylor’s estimates (discussed above in section 2.3 of

chapter 2) imply that φπ < 1 in his pre-Volcker sample; but as they also imply that φx > 0

in that period, this does not in itself suffice to imply that equilibrium should have been

indeterminate under the earlier policy. Still, plausible numerical values for the parameters

of the NKPC imply this, at least if Taylor’s point estimates for the policy-rule coefficients

20See Proposition 1 of the Appendix.
21Thus the “long-run Phillips curve” is not perfectly vertical in this model. We show, however, in chapters

6 and 7 that this does not imply that the optimal long-run inflation rate is positive, even if the optimal
output level exceeds the natural rate.
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are taken to be correct. For example, if one assumes the parameter values given in Table

1 below (based upon the estimates of Rotemberg and Woodford (1997)), then determinacy

would require that the inflation coefficient plus .1 times the output coefficient be greater than

one. Taylor’s estimates for the period 1960-79 would then imply an interest-rate increase

of only .81 + .1(.25) = .84 percentage points per percentage point long-run increase in

inflation. Thus just as we concluded in chapter 2, these estimates suggest that equilibrium

should have been indeterminate under the pre-Volcker regime, though clearly determinate

under the post-Volcker regime.

As discussed in chapter 1, most empirical estimates of Taylor rules incorporate some form

of partial adjustment of the short-term interest-rate instrument toward an implicit target

that depends upon the current inflation rate and output gap. (We shall also argue in chapter

8 that rules of that kind are desirable on normative grounds.) It is therefore of some interest

to consider the effects of interest-rate inertia upon the question of determinacy. For the sake

of simplicity we restrict our analysis here to the family of generalized Taylor rules

ı̂t = ı̄t + ρ(̂ıt−1 − ı̄t−1) + φπ(πt − π̄) + φx(xt − x̄)/4, (2.8)

where we assume that ρ, φπ, φx ≥ 0. Substituting (2.8) into (1.8), we again obtain a system

of equations that may be written in the form (2.5), but where now where the vector of

endogenous variables is

zt ≡



πt − π̄
xt − x̄

ı̂t−1 − ı̄t−1


 ,

and

A ≡



β−1 −β−1κ 0
σ(φπ − β−1) 1 + σ(φx/4 + β−1κ) σρ

φπ φx/4 ρ


 , a ≡




0
−σ
0


 .

As there is now a predetermined state variable (namely, ı̂t−1−ı̄t−1), equilibrium is determinate

in this case if and only if the 3 × 3 matrix A has exactly two eigenvalues outside the unit

circle.

Necessary and sufficient conditions for determinacy in a system of this form are given by

Proposition 2 of the Appendix. We note that in the present case, the characteristic equation
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of matrix A is of the form

P(µ) = µ3 + A2µ
2 + A1µ + A0 = 0,

where

A0 = −β−1ρ < 0,

A1 = ρ + β−1(1 + ρ(1 + κσ)) + β−1σ(κφπ + φx/4) > 0,

A2 = −β−1(1 + κσ)− 1− ρ− σφx/4 < 0.

The proposition lists three possible sets of conditions under which there is determinacy.

Because of the signs of the coefficients Ai, we see immediately that condition (A.2) is violated

and that condition (A.4) must instead hold; thus we can exclude Case I of the proposition.

In the present case, the remaining conditions (in addition to (A.4) that, as we have just

noted, is necessarily satisfied) required for Case II of the proposition reduce to

φπ +
1− β

4κ
φx > 1− ρ, (2.9)

φπ +
1− ρ

4κ
φx + (β−1 − 1)[κ−1σ−1(1− ρ)(β − ρ)− ρ] > 0. (2.10)

The remaining conditions required for Case III22 are instead (2.9) and

β−1(1 + κσ) + ρ + σφx/4 > 2. (2.11)

Equilibrium is determinate if and only if the coefficients of the policy rule (2.8) satisfy both

(2.9) and at least one of (2.10) and (2.11).

In fact, one can show that under our sign assumptions, (2.9) is necessary and sufficient

for determinacy. We prove this by showing that any parameter values that satisfy (2.8) and

not (2.11) must necessarily satisfy (2.10). We first note that under our sign assumptions,

22In the statement of the proposition in the Appendix, another condition listed is (A.6), which is the denial
that (2.10) holds. But this is not necessary, for if instead (2.10) holds, determinacy also obtains, as Case II
then applies. (The condition is listed in the statement of the proposition simply in order to make the three
cases disjoint.) Also condition (A.7) as written in the statement of the proposition allows the coefficient A2

to be either less than -3 or greater than 3. But as in the present case A2 is necessarily negative, it is only
the possibility that A2 may be less than -3 that is relevant; this is condition (2.11).
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(2.11) can fail to hold only if ρ < β. (Here we use the fact that β−1 + β > 2.) We next

observe that the left-hand side of (2.10) is a decreasing function of ρ, for given values of all

the other parameters, for all values ρ < β. Thus the values of φπ required in order for (2.10)

not to hold become smaller, the smaller is ρ. On the other hand, the values of φπ consistent

with (2.9) become larger, the smaller is ρ. Thus if (2.9) is to be satisfied while (2.10) is not,

for any given values of β, κ, σ and φx, this must occur for the largest value of ρ consistent

with (2.11) being (weakly) violated. (Note that this last quantity is independent of φπ.)

Furthermore, the left-hand side of (2.10) is an increasing function of φπ. Thus if (2.9) is

to be satisfied while (2.10) is not, for any given values of β, κ, σ, φx, and ρ, this must occur

for the smallest value of φπ that is (weakly) consistent with (2.9). (The geometry of these

regions is illustrated in Figure 4.1.) It therefore suffices that we consider values of ρ and φπ

for which (2.9) and (2.11) hold as equalities, for given values of the other parameters. (This

is the point shown by the intersection of the solid line and the dashed line in Figure 4.1.) If

(2.10) is not violated in this case, it can never be.

The algebra required to check this is simplest if we solve (2.9) and (2.11) for φπ and φx

as functions of ρ, rather than for ρ and φπ as functions of φx. We obtain

φπ = (1− ρ)− 1− β

κσ

[
2− ρ− 1 + κσ

β

]
,

φx =
4

σ

[
2− ρ− 1 + κσ

β

]
.

Substituting these values into the left-hand side of (2.10), we obtain

1

βκσ
(β − ρ)2 > 0,

which holds as a strict inequality because ρ < β. Thus (2.10) holds in this case, and so must

hold in any case where (2.9) holds but (2.11) does not. (This is illustrated for particular

numerical parameter values in Figure 1.23) It follows that condition (2.9) is necessary and

sufficient for determinacy.

23The values assumed for β, κ, and σ are given in Table 1 below; the value assumed for φx is .05. This last
value has no particular significance, except that the relative locations of the various regions are especially
easily seen for a small positive value of this order.
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Figure 4.1: Regions in which each of three inequalities fail to hold. Grey region indicates
policy rules for which equilibrium is indeterminate; white region indicates determinacy.

Condition (2.9) will be recognized as a generalization of (2.7), and once again it can

be interpreted as requiring adherence to the Taylor principle. In the case that ρ < 1, the

rule (2.8) implies that a sustained increase in inflation of a certain size results in an eventual

cumulative increase in the nominal interest rate of Φπ ≡ (1−ρ)−1φ times as much; similarly, a

sustained increase in the output gap results in an eventual cumulative increase in the interest

rate of (1/4 of) Φx ≡ (1 − ρ)−1φx times as much.24 In this case, (2.9) can equivalently be

written as

Φπ +
1− β

4κ
Φx > 1,

which clearly has the same interpretation as (2.7) in the non-inertial case. Furthermore, if

ρ ≥ 1, the eventual cumulative increase in the nominal interest rate is infinite if at least

24It may be recalled that the estimated Fed reaction functions described in chapter 1 are described in
terms of the values of these long-run response coefficients Φπ and Φx rather than the immediate responses
φπ and φx.
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one of φπ or φx is positive, so that the Taylor principle is necessarily satisfied; but (2.9) is

necessarily satisfied in this case as well. Thus (2.9) is equivalent to requiring conformity

with the Taylor principle.25 This result — that the Taylor principle continues to be a crucial

condition for determinacy, once understood to refer to cumulative responses to a permanent

inflation increase, even in the case of an inertial interest-rate rule — recalls our finding in

chapter 2 in the case of a flexible-price model. The finding that a determinate rational

expectations equilibrium necessarily exists for rules with ρ ≥ 1 (“super-inertial rules”) also

recalls an earlier result.

Some empirical papers (e.g., Clarida et al., 2000; Bernanke and Boivin, 2000) instead

estimate “forward-looking” variants of the Taylor rule, in which interest rates respond to

deviations of expected future inflation from its target level, instead of responding to the

amount that prices have already risen. As a simple example, let us consider the family of

rules

ı̂t = ı̄t + φπ(Etπt+1 − π̄) + φx(xt − x̄)/4, (2.12)

where we again assume that φπ, φx > 0. Substituting (2.12) into (1.8) to eliminate ı̂t, we

again obtain an equation system of the form (2.5), but where now

zt ≡
[

πt − π̄
xt − x̄

]
,

25 In fact, one finds for a wide variety of types of simple interest-rate rules that the Taylor principle is
one of the conditions required for determinacy, even if it is not a sufficient condition in itself, as is true here.
This should not be too surprising. One observes quite generally — in the case of any family of policy rules
that involve feedback only from inflation and output, regardless of how many lags of these might be involved
— that the boundary between sets of coefficients that satisfy the Taylor principle and those that do not will
consist of coefficients for which there is an eigenvalue exactly equal to one. The eigenvalue of one exists for
any policy rule with the property that the long-run increase in the nominal interest rate is exactly equal to
the long-run increase in the inflation rate, for the associated right eigenvector is one with an element 1 for
each current or lagged value of inflation or the interest rate, and an element (1− β)/4κ for each current or
lagged value of the output gap. This is because under the hypothesis about the policy rule, the IS relation,
the AS relation and the policy all share the property that the equation continues to be satisfied if inflation,
output and interest rates are increased at all dates by the constant factors just mentioned. It follows that
a real eigenvalue crosses the unit circle as the sign of the inequality corresponding to the Taylor principle
changes. This boundary is therefore one at which the number of unstable eigenvalues increases by one. Often
this results in moving from a situation of indeterminacy to determinacy, though we do not seek to establish
general conditions for this.



2. INTEREST-RATE RULES AND PRICE STABILITY 27

and

A ≡
[

β−1 −β−1κ
σβ−1(φπ − 1) 1 + σ(φx/4− β−1κ(φπ − 1))

]
, a ≡

[
0
−σ

]
.

Thus in this case we have

trA = 1 + β−1 + σ(φx/4− β−1κ(φπ − 1)),

det A = β−1(1 + σφx/4).

Determinacy again obtains if and only if conditions (2.6) are satisfied. In the present

case, the first condition takes a slightly different form than before, but it is again necessarily

satisfied by all rules satisfying our sign assumptions. The second condition again is equivalent

to (2.7). However, the third condition now takes a slightly different form than in the case

of conventional (backward-looking) Taylor rules, and is no longer necessarily satisfied by all

rules satisfying our sign restrictions. This condition now takes the form

φπ < 1 +
1 + β

4κ
(φx + 8σ−1). (2.13)

Equilibrium is then determinate if and only if the coefficients of the policy rule (2.12) satisfy

(2.7) and (2.13).

We note that condition (2.7) can once again be interpreted in terms of the Taylor princi-

ple. Thus yet again we find that conformity to the Taylor principle is a necessary condition

for determinacy. But as in the last case, we here find that it is not sufficient. In particular,

condition (2.13) fails to hold for large enough values of φπ, even though the “Taylor princi-

ple” is satisfied. Thus adjusting interest rates in response to deviations of expected future

inflation from target can give rise to equilibrium fluctuations due purely to self-fulfilling

expectations, as shown by Bernanke and Woodford (1997) for a closely related model; this

problem does not arise in the case of a strong response to the inflation that has already

occurred, no matter how large φπ is made. The region in which equilibrium is determinate

for rules of this family is shown in Figure 4.2, again assuming the same structural parameters

β, σ, κ as in Figure 4.1. As Clarida et al. (2000) also conclude, indeterminacy results from

too high a value of φπ only in the case of quite high values relative to empirical estimates
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Figure 4.2: Regions of determinacy and indeterminacy for “forward-looking” Taylor rules.

for any central banks. However, this would be a problem if a central bank were to seriously

attempt to completely stabilize inflation through extremely tight “targeting” of an inflation

forecast, as we discuss below.

The interest-rate rule estimated by Clarida et al. (2000) for the Fed is more complicated

than rules of the family (2.12), most notably because it allows for interest-rate inertia. Thus

in order to interpret their results we need to consider forward-looking rules of the more

general family26

ı̂t = ı̄t + ρ(̂ıt−1 − ı̄t−1) + φπ(Etπt+1 − π̄) + φx(xt − x̄)/4, (2.14)

26Note that even this family is still too restricted to include any of the rules actually estimated by Clarida
et al., as they also replace the output gap term by a forecast of the future output gap. However, analysis of
the family of rules (2.14) does allow insight into how the three key parameters estimated by these authors
should be expected to affect the determinacy of equilibrium, and indeed their own numerical examination of
the conditions under which equilibrium is determinate considers this family of rules, rather than anything
more general. Furthermore, for the reason explained in footnote 25, the Taylor principle has the same
importance for the eigenvalues of the equation system if the current output gap is replaced by an expected
future output gap; so the most important of our conditions for determinacy is likely to continue to apply.
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where we now assume ρ, φπ, φx ≥ 0.

This again implies a system of equations that may be written in the form (2.5), but where

now

A ≡



β−1 −β−1κ 0
σβ−1(φπ − 1) 1 + σ(φx/4− β−1κ(φπ − 1)) σρ

β−1φπ φx/4− β−1κφπ ρ


 , a ≡




0
−σ
0


 .

Once again there is a single predetermined state variable (namely, ı̂t−1 − ı̄t−1), so that

equilibrium is determinate if and only if A has exactly two eigenvalues outside the unit

circle, and once again necessary and sufficient conditions for this are given by Proposition

2 in the appendix. We observe that conditions (A.1) and (A.2) imply that φx < 0, so that

Case I is once again impossible under our sign assumptions. It then follows that conditions

(A.3) and (A.4) are necessary for determinacy, as these are required by both cases II and III

of the proposition. In the present case, (A.3) corresponds once again to (2.9), while (A.4)

corresponds to

φπ < 1 + ρ +
1 + β

4κ
(φx + 8σ−1(1 + ρ)). (2.15)

Note that the latter condition generalizes (2.13).

Once again condition (2.9) corresponds to the Taylor principle, and so we see that once

more conformity with that principle is necessary for determinacy. However (as we have

already concluded for the case ρ = 0), this principle does not suffice for determinacy in the

case of forward-looking policy rules. In particular, it is necessary that φπ satisfy the upper

bound expressed in (2.15). We observe that higher values of ρ relax this constraint, but do

not eliminate it. Thus it continues to be true that too large a degree of sensitivity of the

interest rate to the inflation forecast results in indeterminacy. This is illustrated in Figure

4.3, where the values of φπ and ρ consistent with a determinate equilibrium are indicated, in

the case of rules of the form (2.14) with φx = 0, and assuming the same model parameters

as in Figure 4.2.27

27Note that conditions (2.9) and (2.15) are necessary for determinacy, but not sufficient. Determinacy
requires in addition that at least one of a further set of three inequalities hold: either (A.5) must hold, or
one of the two cases allowed in (A.7) must hold, i.e., either A2 > 3 or A2 < −3. However, for the parameter
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Figure 4.3: Regions of determinacy and indeterminacy for “forward-looking” Taylor rules
with interest-rate inertia.

In the case of rules with coefficients in the range that is likely to be of practical interest,

however, the other requirements for determinacy are unlikely to be a problem. The require-

ment for determinacy that is of most practical interest thus remains the Taylor principle.

Like Taylor, Clarida et al. find that an estimated policy rule for the period 1960-79 in-

volves an insufficient response to inflation to be consistent with determinacy, whereas their

estimated rule for the period 1982-96 satisfies the Taylor principle and would imply a deter-

minate equilibrium. For example, their baseline estimates for the earlier period are ρ = .68,

φπ = .27, φx = .09. In the absence of any increase in the output gap, these values imply

that a sustained increase in inflation of one percentage point would eventually raise nomi-

nal interest rates by only 83 basis points. Thus the Taylor principle is violated unless the

values used in this figure, all policy-rule coefficients that satisfy (2.9) and (2.15) also satisfy at least one of the
other three inequalities. Thus these two conditions turn out to be necessary and sufficient for determinacy,
at least in this case.
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associated increase in the output gap is quite large. Condition (2.9) will be satisfied only if

κ < .4(1 − β), which is to say, if κ < .004; this is much smaller than any plausible value,

either from the point of view of the underlying microfoundations of price adjustment or of

estimated Phillips curves. On the other hand, their baseline estimates for the later period

are ρ = .79, φπ = .45, and φx = .20. Since in this case φπ > 1 − ρ, the Taylor principle is

satisfied regardless of the assumed slope of the long-run Phillips curve. On the other hand,

because φπ < 1, condition (2.15) is necessarily satisfied as well, and such a policy rule implies

a determinate equilibrium.

Another class of possible policy rules that is of at least theoretical interest is that of rules

which incorporate a price level target — the “Wicksellian” rules considered in chapter 2.

In the case of a model with endogenous output, one must also consider the consequences of

possible feedback from the level of output, and so the class of rules previously considered is

generalized to include all rules of the form

ı̂t = ı̄t + φp(pt − p̄t) + φx(xt − x̄)/4, (2.16)

where now pt is the log price level, and {p̄t} is a target path for the log price level, growing

deterministically at some rate π̄ (to which x̄ again corresponds). Once again we shall restrict

attention to rules with φp, φx ≥ 0. Giannoni (2000) shows that in the case of rules of this

sort, a sufficient condition for determinacy is that φp > 0. On the other hand, when φp = 0,

rules of this sort correspond to rules of the form (1.10) with φπ = 0, and so we already know

that determinacy obtains if and only if

φx >
4κ

1− β
. (2.17)

Thus necessary and sufficient conditions are that either φp > 0 or φx exceeds the bound

(2.17). These conditions correspond once again to the Taylor principle. For sustained infla-

tion above the rate π̄ must eventually make pt − p̄t arbitrarily large, and then if φp takes

any positive value at all, a rule of the form (2.16) must eventually imply arbitrarily large

increases in the level of nominal interest rates. If on the other hand, φp = 0, then (2.17)
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corresponds to the Taylor principle, as discussed earlier. Thus the Taylor principle is yet

again determinative. Note also that the weakness of the condition required for determinacy

in the case of a rule of the form (2.16) is one of the appealing features of rules of this kind,

as discussed by Giannoni.

2.3 Stability under Learning Dynamics

[TO BE ADDED]

2.4 Determinants of Inflation

Having established that interest-rate rules can result in a determinate equilibrium, we turn

now to the further characterization of that equilibrium. We are particularly interested in

the determinants of equilibrium inflation under the kinds of policies just considered, and the

conditions under which fluctuations in the price level can be minimized.

Each of the classes of interest-rate rules considered above has the property that the

equilibrium conditions can be written entirely in terms of πt− π̄, xt− x̄, ı̂t− ı̄t, and rn
t − ı̄t+ π̄.

This implies that when equilibrium is determinate, it is possible to solve for the endogenous

variables in this list (the first three) as a function of initial conditions and the current and

expected future values of the exogenous variable (the last one). In the case of policy rules

(1.10) or (2.12), the equation system involves no predetermined endogenous variables, so

that there are no relevant initial conditions (other than those relating to the path of the

exogenous variables). One therefore obtains in these cases a solution of the form

πt = π̄ +
∞∑

j=0

ψπ
j Et(r̂

n
t+j − ı̄t+j + π̄), (2.18)

xt = x̄ +
∞∑

j=0

ψx
j Et(r̂

n
t+j − ı̄t+j + π̄), (2.19)

ı̂t = ı̄t +
∞∑

j=0

ψi
jEt(r̂

n
t+j − ı̄t+j + π̄). (2.20)
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In particular, if both eigenvalues of A are outside the unit circle (the condition for determi-

nacy), then A−1 is a stable matrix, and one can obtain a unique bounded solution to (2.5)

by “solving forward”, namely

zt =
∞∑

j=0

A−j−1aEt(r̂
n
t+j − ı̄t+j + π̄). (2.21)

This allows us to identify the coefficients in equations (2.18) – (2.19). Substitution of the

solutions for these variables into the policy rule then allows us to identify the coefficients in

(2.20) as well.

In the case of a rule such as (2.8) or (2.14), instead, the lagged nominal interest rate is a

predetermined endogenous variable that is relevant for equilibrium determination, because

of the way that it enters the policy rule. In cases of this sort, one instead obtains solutions

of the form

πt = π̄ + ωπ (̂ıt−1 − ı̄t−1) +
∞∑

j=0

ψπ
j Et(r̂

n
t+j − ı̄t+j + π̄),

and similarly for the other endogenous variables.

Thus our model implies that for policy rules of these types, equilibrium inflation depends

solely upon the path of the gap between the natural rate of interest r̂n
t and the intercept

term ı̄t indicating the tightness of central-bank policy. In the case of the inertial interest-

rate rules, equilibrium inflation also depends upon a lagged interest rate (specifically, upon

ı̂t−1− ı̄t−1), but in equilibrium this variable will itself be a function of the history of the gaps

r̂n
t−j − ı̄t−j. As has already been noted in chapter 2, our theory of inflation determination

thus has a distinctively Wicksellian flavor: variations in the rate of inflation depend upon

the interaction between the real factors that determine the natural rate of interest on the

one hand, and the way in which the central bank adjusts short-term nominal interest rates

on the other. Inflation will be stable insofar as the stance of monetary policy is varied to

keep up with the exogenous variations in the natural rate of interest that occur as a result of

real disturbances, and not varied otherwise; it will be variable insofar as either factor varies

other than in perfect tandem with the other. Our analysis here has a more fully Wicksellian

character than that presented in chapter 2, because we are now able to distinguish between
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Figure 4.4: Consequences of varying the coefficient φπ in the Taylor rule.

the natural rate of interest (which would be the equilibrium real rate of return, in the

absence of nominal rigidities, and depends purely upon real factors) and the actual real rate

of return (which can differ from the natural rate as a result of short-run disequilibrium,

and is affected by monetary policy among other factors). We are thus now able to explain

economic fluctuations in terms of the development of a gap between the natural and the

actual real rate of return, and to discuss the role of monetary policy in helping to minimize

such gaps.

Examples of numerical solutions for the coefficients {ψπ
j } and {ψx

j } in the case of the

Taylor rules of the form (1.10) are presented in Figures 4.4 and 4.5. Here the numerical

values assigned to the structural parameters β, σ, κ are again as in Table 4.1. Here we take

as our “baseline” policy rule a Taylor rule with coefficients φπ = 2, φx = 1; Figure 4.4

then illustrates the consequences of varying φπ around this baseline value, while Figure 4.5
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illustrates the consequences of varying φx. We observe that for a range of parameter values

representing reaction functions similar to actual central-bank policies, the coefficients ψπ
j and

ψx
j are positive for all small enough j, which are the coefficients of primary importance in

determining the equilibrium responses to typical shocks.28 Thus we find that higher output

gaps and inflation result from increases in the current or expected future natural rate of

interest, not offset by a sufficient tightening of monetary policy, or by current or expected

future loosening of monetary policy, not justified by a decline in the natural rate of interest.

This is essentially a forward-looking variant of the traditional Wicksellian analysis. We also

observe that a higher response coefficient on inflation in the Taylor rule results in weaker

equilibrium responses of inflation to exogenous disturbances, especially to disturbances ex-

pected several quarters in the future; the response of output is also reduced, though less

dramatically. A higher response coefficient on the output gap in the Taylor rule instead sig-

nificantly attenuates the equilibrium response of the output gap to news about the natural

rate or monetary policy in the current quarter or the next one, and this also weakens the

equilibrium response of inflation.

The consequences of interest-rate inertia in the Taylor rule are shown in Figure 4.6. Here

we assume a rule of the form (2.12), with values for φπ and φx as in the baseline case of

Figures 4.4 and 4.5, but with various positive values for ρ. We observe that for given φπ

and φx, a higher value of ρ reduces the equilibrium response of both inflation and output,

though the effect is much more dramatic in the case of the inflation response. This should

be intuitive, since for given φπ and φx, a higher ρ implies a larger eventual interest-rate

response to a sustained increase in inflation or the output gap. When one considers super-

inertial rules (i.e., rules with ρ > 1), the response of inflation to an increase in the natural

rate (not offset by a corresponding tightening of monetary policy) actually becomes negative.

This is because the output gap still increases, as a result of which interest rates increase; the

strong interest-rate inertia then implies an expectation of much higher future interest rates

28The coefficients for large j would dominate, in computing the effects of news about the natural rate or
monetary policy, only if the news were to affect expectations only about conditions many quarters in the
future.
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Figure 4.5: Consequences of varying the coefficient φx in the Taylor rule.

as well, even if the output gap no longer exists. The expectation of future tightening leads to

an expectation of lower future output gaps, which in turn motivates an immediate reduction

in inflation, despite the initially higher output gap. (The reduction in inflation is insufficient

to prevent interest rates from rising under the policy rule, as there would otherwise be no

increase in expected future interest rates to generate the incentive to disinflation.)

These figures indicate the immediate response of inflation and output to a disturbance

that shifts the current and/or expected future values of r̂n
t or ı̄t. The figures do not, however,

indicate the dynamic response to such disturbances. In the case that ρ = 0, inflation and

the output gap are both purely forward-looking functions of the current and expected future

disturbances, as indicated in (2.18) – (2.19). In this case, the dynamics of the response of

inflation and output to a shock are a straightforward consequence of the dynamics of the

disturbance itself. (A transitory disturbance must have a purely transitory effect; a more
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Figure 4.6: Consequences of varying the coefficient ρ in the Taylor rule with interest-rate
inertia.

persistent disturbance has a correspondingly more persistent effect, though the effect is also

larger, owing the effects of the anticipation of the continued disturbance in the future.)

But when the policy rule incorporates feedback from lagged endogenous variables, it is also

possible to obtain persistent effects on inflation and output from even a purely transitory

disturbance. Since estimated central-bank reaction functions generally incorporate lagged

endogenous variables of several sorts, both lagged interest rates and lags of variables such as

inflation and the output gap as well (as discussed in chapter 1), it is not implausible to assume

such lags in seeking to account for the degree of persistence of the responses of output and

inflation to identified monetary policy shocks in historical data. Alternatively, of course, one

could simply assume that the monetary policy disturbance {ı̄t} is serially correlated. This

would suffice to allow our model to predict persistent responses to a monetary policy shock,

and indeed the two explanations are not even conceptually distinguishable. For example, a
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policy rule of the form (1.10) where

ı̄t − π̄ = ρ(̄ıt−1 − π̄) + εt

and {εt} is an i.i.d. mean-zero shock is equivalent to a policy rule of the form

ı̂t = (1− ρ)π̄ + ρı̂t−1) + φπ(πt− ρπt−1− (1− ρ)π̄) + φx(xt− ρxt−1− (1− ρ)x̄)/4 + εt, (2.22)

which now has a serially uncorrelated disturbance term, but feedback from lagged endogenous

variables.

As an example of the kind of persistent response to a transitory shock that can result in

the case of feedback from lagged endogenous variables, Figure 4.7 presents impulse responses

to a monetary policy shock in the case of a policy rule of the form (2.22), where again {εt} is

an i.i.d. mean-zero shock. In the figure, the intertia coefficients are set equal to ρ = 0.6, 0.7,

or 0.8, while φπ and φx are chosen to imply the same long-run responses Φπ ≡ (1−ρ)−1φπ = 2

and Φx ≡ (1 − ρ)−1φx = 1 in each case. Because these coefficients satisfy (2.7) in each

case, equilibrium is determinate. The figure shows the dynamic response to an unexpected

monetary tightening (an unexpected increase in εt that raises the short-term interest rate by

one percentage point, for given values of the other arguments of the central-bank reaction

function).29 The baseline case is chosen to be ρ = 0.7, because this is approximately the

sum of the coefficients on lags of the federal funds rate in the rule estimated by Rotemberg

and Woodford (1997), as discussed below, and we wish to provide insight into the theoretical

responses obtained in their more complicated model.

One observes that the responses of both output and inflation to such a shock last for

many quarters; in the case of the present completely forward-looking model of inflation and

output determination, the degree of persistence of all four responses is determined directly

by the assumed value of ρ in the policy rule. The amplitude of the equilibrium responses, for

any given long-run responses to inflation and output in the policy rule, also depends on the

29The responses plotted for the nominal and real interest rate and for inflation are all expressed in per-
centage points of the equivalent annualized rate, so that “inflation” actually means the variable 4πt, and so
on. The shock increases 4ı̄0 by one percentage point.
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Figure 4.7: Impulse responses to a contractionary monetary policy shock, for alternative
degrees of policy inertia.

value of ρ. The initial effect on output is essentially the same regardless of ρ, but the effect

is more persistent the larger is ρ; and a more persistent output contraction reduces inflation

more (and more persistently). Hence the reduction in inflation is greater, and the effects on

both variables are more persistent, for larger values of ρ.

In the case of sufficiently modest values of ρ, a contractionary monetary policy shock is

associated with a temporary increase in nominal interest rates; but for ρ = 0.7 or larger,

the predicted inflation reduction is strong enough that nominal interest rates are actually

predicted to decrease temporarily. Thus there is predicted to be no “liquidity effect” in

the latter cases, a feature that has often been considered an embarrassment for calibrated

optimization-based models of the monetary transmission mechanism (see, e.g., Kimball, 1995,

or Edge, 2000). Figure 4.7 shows that a “liquidity effect” is possible for some parameter

values. However, a more satisfactory resolution of the problem requires that additional
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delays in the effects of monetary policy be introduced, as discussed in section 4. There we

argue that the response shown in Figure 4.7 for the case ρ = 0.7 is not too different from the

empirically estimated responses for the second quarter following the shock and later. (By

that time, nominal interest rates are predicted to return nearly to the level that would have

been expected in the absence of the shock, as shown in Figure 4.xx.) It is the estimated

responses in the first two quarters that cannot be explained by this simple model; and here

the real puzzle is not that nominal interest rates temporarily increase, but rather that output

and inflation do not immediately fall, as indicated in Figure 4.7. Once that problem is solved,

the problem of obtaining a “liquidity effect” is easily solved as well.

Our model can also be used to predict the response of the economy to real disturbances

of various sorts, under one or another monetary policy rule. This is important for the

explanation of business fluctuations, since it is widely agreed that the greater part of cyclical

variation in real activity is ultimately caused by real disturbances rather than by random

monetary policy.30 But it is also important for the choice of a monetary policy rule, for the

crucial question for the theory of monetary policy has to do with the choice of the systematic

component of monetary policy (and not the exogenous random component, which one plainly

wishes to eliminate to the extent possible), in the light of the implications of alternative

systematic policies for the way that the economy will respond to disturbances that, in their

origin, have nothing to do with monetary policy.

We shall not attempt a detailed treatment of the issue here. However, two general lessons

from our baseline model are worth pointing out. The first is that, insofar as we are concerned

solely with the responses of inflation, the output gap, and nominal interest rates to the real

disturbances (and in chapter 6 we shall explain why these are exactly the variables which

should be matter from the point of view of social welfare, under the assumptions that underly

the present model), and insofar as we restrict attention to policy rules of the general type

considered here (and in chapter 8 we shall show that optimal policy can be represented in

30This is the implication, for example, of the variance decompositions implied by typical VAR studies.
Again see, e.g., Christiano et al. (1999).
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this way), then the only feature of the real disturbances that matters is their effect upon

the path of the natural rate of interest. The second is that the responses of inflation and

the output gap to a disturbance to the natural rate of interest are exactly the same as their

responses to a monetary policy shock (disturbance to the ı̄t term in the policy rule) that has

the same serial correlation properties and the opposite sign. Both conclusions follow from

the fact that, in the case of the classes of policy rules considered above, equilibrium inflation

and the output gap are functions solely of the path of the “gap” r̂n
t − ı̄t. Thus Figure 4.7,

for example, also indicates the response of inflation and the output gap to an unexpected

reduction in the natural rate of interest, if the natural rate follows a first-order autoregressive

process with a coefficient of ρ, and the monetary policy rule is of the form (1.10).

Thus far we have considered inflation and output-gap determination only in the case of

a purely forward-looking model of inflation determination, namely, the basic Calvo pricing

model introduced in chapter 3. But as discussed in section xx of that chapter, there is a fair

amount of evidence suggesting that a model that allows for some degree of inflation inertia

can better explain observed inflation dynamics. To what extent does allowance for inflation

inertia require us to modify the neo-Wicksellian account just developed?

In fact, inflation inertia of the kind assumed by Christiano et al. (2001) makes only a

small difference for our qualitative results, though the exact specification matters, of course,

for quantitative purposes. Let the aggregate supply relation (1.9) be replaced by

πt − γπt−1 = κxt + βEt[πt+1 − γπt], (2.23)

where 0 ≤ γ ≤ 1 indicates the degree of indexation of individual prices to a lagged price

index, as in section xx of chapter 3. For simplicity let us again consider a policy rule of

the form (1.10). Our complete system of equations for the determination of the equilibrium

paths of inflation, output and the nominal interest rate then consists of equations (1.8),

(1.10), and (2.23). It is then easily seen that in the case of a policy rule that implies a

determinate equilibrium, this equilibrium is described by laws of motion of the form

πt = π̄ + ωπ(πt−1 − π̄) +
∞∑

j=0

ψπ
j Et(r̂

n
t+j + π̄ − ı̄t+j), (2.24)
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Figure 4.8: Inflation and output-gap responses under a contemporaneous Taylor rule, for
alternative degrees of inflation inertia.

xt = x̄ + ωx(πt−1 − π̄) +
∞∑

j=0

ψx
j Et(r̂

n
t+j + π̄ − ı̄t+j), (2.25)

ı̂t = ı̄t + ωi(πt−1 − π̄) +
∞∑

j=0

ψi
jEt(r̂

n
t+j + π̄ − ı̄t+j). (2.26)

Figure 4.8 plots the numerical values of the coefficients ψπ
j and ψx

j as a function of the

horizon j, for three alternative values of γ. Here the assumed values of β, σ and κ are again

those given in Table 4.1, while the coefficients assumed in the policy rule are φπ = 2, φx = 1.

(Thus the case γ = 0 in this figure corresponds once again to the baseline cases of Figures

4.4 and 4.5, and to the ρ = 0 case of Figure 4.6.) We observe once again that the qualitative

impact of news at date t on inflation and the output gap is the same as discussed earlier:

an increase in the expected natural rate of interest (now or in the near future) increases

both inflation and the output gap, while a tightening of monetary policy lowers both. The
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main difference made by a positive value of γ in this regard is that the inflation rate is

more sensitive to expectations regarding the natural rate and the policy-rule intercept many

quarters in the future.

The other difference in the response of inflation and the output gap to these two types

of disturbances results from the presence of the πt−1 − π̄ terms in each of equations (2.24)

– (2.25). When γ = 0, these terms are zero, but as γ increases, ωπ takes an increasingly

larger positive value, while ωx takes an increasingly larger negative value.31 In this model,

for any given expectations regarding current and future natural rates of interest and mon-

etary policy, the fact of a higher rate of inflation in the past acts as an adverse “supply

shock,” increasing current inflation while lowering the current output gap. This results in

an additional mechanism for the propagation of the effects of fluctuations in the natural rate

and/or in the monetary policy rule applied by the central bank. Nonetheless, it continues

to be true that the natural rate of interest is a sufficient statistic for the effects of all real

disturbances on the evolution of inflation and the output gap; that it is only the gap between

the natural rate and the Taylor-rule intercept at each date that matters in this regard; and

that at least the immediate effects of disturbances are have the same sign as in our earlier

analysis.

2.5 Policy Rules for Inflation Stabilization

We now briefly consider the implications of the model of inflation determination just devel-

oped for the design of a monetary policy that would succeed at stabilizing the general level

of prices, or more generally at stabilizing the rate of inflation around some target rate.32

The theory of inflation implied by solutions such as (2.18) yields a simple prescription for

a policy under which (if the private sector regards the central bank’s policy commitment as

31For the parameter values used in Figure 4.8, one obtains ωπ = 0.42, ωx = −1.95 in the case γ = 0.5,
and ωπ = 0.73, ωx = −3.17 in the case γ = 1.

32Here we assume without further discussion a “locally Ricardian” fiscal regime, in the sense discussed in
chapter 5; the role of fiscal policy in the design of a regime conducive to price stability is taken up further in
that chapter. We also take it for granted that price stability is the goal of monetary policy, without seeking
to justify such an objective; the welfare-theoretic justification for such a goal is treated in chapter 6.
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perfectly credible) inflation should never deviate from the target rate π̄. The central bank

should commit itself to a policy rule belonging to one of the families discussed in the previous

section (or a generalization of these), with the further stipulations that (i) the time-varying

intercept term ı̄t should track the exogenous variation in the natural rate of interest, so that

ı̄t = r̂n
t + π̄ at all times, and (ii) response coefficients such as φπ, φx and ρ should be chosen so

as to imply a determinate rational expectations equilibrium. The latter proviso implies that

the rule should respect the Taylor principle (at least in the case of each of the simple families

considered above), but it may also place further restrictions upon the response coefficients

as well.

As shown in the previous section, as long as the policy rule involves feedback only from

current, lagged, or expected future values of the variables πt − π̄, xt − x̄ and ı̂t − ı̄t, then if

equilibrium is determinate, the solution will make each of the variables just listed a function

solely of current and expected future values of the “gap” terms r̂n
t − ı̄t + π̄, plus lagged values

of the endogenous variables that enter the central bank’s feedback rule and/or the aggregate

supply relation.33 This means that if ı̄t = r̂n
t + π̄ at all times, there will be no equilibrium

fluctuations in the endogenous variables, except those due to non-zero initial values of those

variables; the latter variation will be purely deterministic, and will approach zero as time

passes, assuming a credible permanent commitment to the policy. Thus such a policy should

succeed in principle in complete stabilization of both inflation and the output gap (as here

defined).34 Note that this conclusion holds equally in the case that we assume an aggregate

supply relation of the form (2.23), incorporating inflation inertia.

Such an approach to policy would make the natural rate of interest a key concept in

monetary policy-making. Furthermore, unlike some discussions (see, e.g., Monetary Policy

Committee, 1999) of the “neutral rate of interest”, which imply that this should not vary over

33A similar conclusion holds if we allow for lagged endogenous terms in the IS relation as well, as discussed
in section xx below.

34That it is possible to completely stabilize both inflation and the output gap depends, of course, upon
the absence in our baseline model of inefficient supply disturbances of the kind discussed in section xx of
chapter 3. The nature of the trade-off between inflation stabilization and output-gap stabilization goals that
arises in the presence of such disturbances is considered in chapters 6 through 8.
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time, our theoretical analysis implies that the natural rate of interest should vary in response

to any of a wide range of types of real disturbances, and keeping track of its current value

would be an important (and far from trivial) task of central-bank staff under such a regime.

Of course, insofar as the policy rule involves feedback from the output gap, as allowed for in

our discussion above, implementation of such a rule would also require a central bank to track

variations in the current natural rate of output (a topic that already receives a great deal

of discussion in most central banks). However, our analysis above implies that this concept

is less essential to the central bank’s task. For given an ability to adjust ı̄t perfectly in

response to variations in the natural rate of interest, it would not matter what the responses

to endogenous variables are, as long as the response coefficients are large enough to imply

determinacy. As we have seen, the latter concern does not require any non-zero response to

the output gap. Thus it would be possible, in principle, to commit to a rule such as (1.10)

with ı̄t = rn
t + π̄, φπ > 1, and φx = 0, and completely stabilize inflation and the output gap;

but the implementation of such rule would not require the central bank to be aware of the

current natural rate of output.

On the other hand, simply producing an accurate estimate of the current natural rate of

interest and adjusting the bank’s operating target for an overnight interest rate accordingly

is not quite sufficient for inflation stabilization; a commitment to the right sort of response

to variations in endogenous variables such as inflation is also necessary, in order to ensure

determinacy. It is true that, if the central bank’s adjustment of ı̄t so as to track variations

in the natural rate of interest is exact, the precise degree of response to endogenous state

variables is irrelevant, as long as it suffices to put one in the range required for determinacy.

This is because, in equilibrium, variations in those variables never occur; the commitment

to a response to them matters not in order to change the nature of the desired equilibrium,

but simply in order to exclude other possible equilibria. However, one must recognize that

in practice, perfect tracking of the current natural rate of interest will be impossible, as

real-time information about the natural rate will inevitably be imprecise.35 In this case,

35The way in which optimal policy is affected by imperfect observability of the current state of the economy
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for any given degree of irreducible variation in the gap process r̂n
t − ı̄t due to limits on the

central bank’s ability to track variations in the natural rate, the equilibrium fluctuations in

inflation implied by a solution such as (2.18) will also depend upon the policy rule’s response

coefficients.

If one’s goal is simply to stabilize inflation (and the output gap, as these goals are

equivalent in the present model) to the greatest extent possible, then one would want to

choose response coefficients that make the coefficients {ψπ
j } and {ψx

j } as small as possible.

In the case of the backward-looking Taylor rules, (1.10) or (2.8), it is possible to make all of

these coefficients simultaneously as close to zero as one likes, simply by making the response

coefficients φπ and φx large enough. (In fact, it suffices to make either of these coefficients

sufficiently large; for an equilibrium with small fluctuations in the output gap must also have

small fluctuations in inflation, and vice versa.) Through this approach one can, in principle,

make the equilibrium fluctuations in inflation arbitrarily small, even without attempting

to track variations in the natural rate of interest at all. This represents an advantage

of backward-looking Taylor rules over the forward-looking variants; for in the latter case,

making the response coefficient on the inflation forecast too large results in indeterminacy

(see Figure 4.2), as is also found by Bernanke and Woodford (1997) in a related model. There

is thus a limit on the extent to which inflation fluctuations in response to real disturbances

can be reduced using a forward-looking rule, if one restricts attention to rules that result in

a determinate equilibrium.36

However, complete reliance upon the threat of extreme responses to inflation and/or

output-gap variations should they occur, as a means of preventing such variations from ever

occurring, is not obviously the most desirable approach. For under such a regime, there is

the obvious danger that random noise in the particular measure to which the central bank

responds might require violent adjustments of interest rates, that in turn create havoc in

is considered formally in chapter 8.
36In the case of rules in the family (2.12), it is still possible to reduce inflation fluctuations to an arbitrary

extent without loss of determinacy by making the output-gap coefficient φx large. But this term in the rule
is the same as in a backward-looking (standard) Taylor rule, and a rule with the main weight on that term
is essentially equivalent to a backward-looking rule.
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the economy. If we suppose that the inflation measure to which the central bank responds

represents the average of the prices set by optimizing suppliers, plus an exogenous measure-

ment error term, then a policy rule with a very large coefficient φπ would cause no great

trouble if price-setters were able to observe the quarter t measurement error disturbance

before choosing new prices for quarter t. In that case, the equilibrium rate of actual infla-

tion would adjust to (nearly perfectly) offset the measurement error, so that the inflation

measure used by the central bank would be nearly perfectly stabilized. This would result in

some variation in actual inflation, but this would be limited by the size of the measurement

error, and fluctuations in interest rates would be minimal. However, in the more realistic

case that quarter t prices are chosen prior to private-sector observation of the measurement

error in the government statistics, then it would not be possible for private-sector pricing

decisions to offset the measurement error, and large interest-rate variations would occur in

equilibrium. This could make too extreme a version of such a strategy highly undesirable.

Thus if one wishes to stabilize inflation to the greatest extent possible, it is fairly certain

that attempting to vary policy in response to estimates of the natural rate of interest will

improve policy.

On the other hand, as we show in chapters 6 and 7, there are good reasons why a central

bank may not wish to fully stabilize inflation — for example, because the amount of interest-

rate variation required would be undesirable. In this case, a constrained-optimal equilibrium

will still involve non-trivial fluctuations in inflation and the output gap in response to real

disturbances, and as a result, feedback from these endogenous variables may substitute for

response to more direct measures of the real disturbances. It then may be possible, as we

show in chapter 8, to find an optimal policy rule in which there is no time-varying term ı̄t

at all.
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3 Money and Aggregate Demand

Thus far, our analysis of the effects of monetary policy has made no reference to the evolution

of the money supply, which may seem to some a surprising omission. Here we discuss the way

in which the analysis can be extended to include analysis of the evolution of the money supply

under alternative policy rules, should that be desired, in the case that there exist monetary

frictions sufficient for a well-defined money demand function to exist. This extension of the

model also makes it possible to consider monetary targeting rules or rules that respond to

variations in money growth among the candidate policy proposals. We also consider the

extent to which allowance for “real balance effects” would modify the conclusions reached

above about inflation determination under interest-rate rules.

3.1 An Optimizing IS-LM Model

We shall now again assume the existence of transactions frictions of the kind considered in

chapter 2, that can be represented by the inclusion of liquidity services from real money

balances in the household utility function. Once again, this results in a first-order condition

for the representative household’s optimal demand for money balances of the form

Um(Ct,mt; ξt)

Uc(Ct,mt; ξt)
=

it − imt
1 + it

, (3.1)

where mt denotes the household’s end-of-period real money balances, and imt denotes the

interest (if any) paid on such balances. As with our discussion of the intertemporal IS

relation above, we note that the first-order conditions describing the optimal behavior of a

price-taking household are the same in the case of the sticky-price model considered in this

chapter as in the flexible-price model of chapter 2. (The only difference here is that Ct now

refers to an index of consumption of a large number of differentiated goods, rather than the

single consumer good of chapter 2.) Imposing the requirements that the demands of the

representative household equal the economy’s aggregate supply of both goods and financial
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assets, we obtain the equilibrium condition

M s
t

Pt

= L(Yt, ∆t; ξt), (3.2)

where ∆t ≡ (it− imt )/(1+ it) is the interest differential between non-monetary and monetary

assets and the money demand function L(y, ∆; ξ) has the same properties as in chapter 2.

When log-linearized around the steady-state equilibrium with zero inflation, we again obtain

a relation of the form

m̂t = ηyŶt − ηi(̂ıt − ı̂mt ) + εm
t , (3.3)

where ηy, ηi > 0 and εm
t is an exogenous disturbance process.

The other equilibrium conditions used in the analysis thus far continue to apply in the

presence of monetary frictions. The only difference between a cashless economy and one in

which central-bank money facilitates transactions is that in the latter case, the marginal util-

ity of additional real expenditure by the representative household is given by Uc(Ct, mt; ξt),

the value of which will in general depend on the level of real money balances in addition to

the level of real expenditure. However, in either the case of preferences additively separable

between consumption and real balances or the “cashless limit” discussed in section xx of

chapter 2, we may neglect the effect of variations in real money balances on the value of

Uc, and the intertemporal IS relation and aggregate supply relation take exactly the form

assumed above. The complete system of equilibrium conditions for determination of the

nominal interest rate, the price level, and output (in the case of a money-growth rule) or

the price level, output and the money supply (in the case of an interest-rate rule) is then

given by the IS and AS relations considered above, together with (3.2) or (3.3). This system

of equations has essentially the structure of an IS-LM-AS system of the kind familiar from

undergraduate textbooks, though here the IS and AS relations are not purely static ones.

We note also that the “LM relation” (3.2), considered as an equilibrium relation between it

and Yt, is shifted by variations in either M s
t or imt , which appear as two separate instruments

through which monetary policy may be implemented, in addition to potentially being shifted

by the exogenous disturbances ξt.
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In the case of an interest-rate rule of one of the forms considered above, the equilibrium

paths of inflation and output are determined by the IS and AS relations as above, but

the LM relation now allows us to solve for the implied path of the money supply as well,

under an assumption about the path of the interest rate on money (such as the conventional

specification ı̂mt = 0).37 In the case of a “cashless limiting economy” — perhaps the most

attractive justification for our neglect of real balance effects in the analysis thus far — the

absolute size of equilibrium real money balances is assumed to be negligible. However,

this does not mean that there may not be non-negligible (and well-defined) fluctuations in

equilibrium real balances relative to their (extremely small) steady-state level, indicated by

the variable m̂t in (3.2). Similarly, there may be non-negligible, well-defined fluctuations

in the rate of growth of the nominal money supply, even in the absence of a well-defined

absolute level of the equilibrium money supply.

For example, one may consider how money growth must respond to various kinds of real

disturbances, under a policy that succeeds in stabilizing inflation and the output gap. To

answer this question, we simply substitute the required interest-rate variations, discussed in

section xx above, into equation (3.3) to determine the implied path of the money supply.

We find that, in general, the money supply should be allowed to vary in response to all five

of the types of exogenous disturbances considered in section xx above, so that a constant

money growth rate is certainly not the best way to stabilize inflation .

Nor does the path of the money supply required for price stability necessarily involve

“leaning against the wind”. For example, procyclical variations in the money supply are

required in response to temporary fluctuations in productivity, as argued by Ireland (1996);38

for an increase in at raises Ŷ n
t while lowering r̂n

t , thus warranting an increase in log M s
t at the

same time as an increase in Ŷt. The same is true of temporary labor-supply shocks, and while

37It is worth noting, however, that in the absence of a constraint on the evolution of imt , the required path
of the money supply is not uniquely determined; for a given interest-rate policy may be implemented using
either quantity variations or variations in the interest paid on money, or some combination of the two.

38Aiyagari and Braun (1998) reach a similar conclusion, in the case of their model with sticky prices,
though they assume convex costs of price changes, following Rotemberg (1995), rather than predetermined
prices as in the models considered here. These authors also reach a similar conclusion with regard to
government-purchase shocks, in the case of their numerical calibration of their model.
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the result depends upon parameter values, it is also true of government-purchase shocks and

consumption-demand shocks, at least if these are sufficiently persistent. Furthermore, in the

case of technology or labor-supply shocks, it is actually desirable for the money supply to

be more procyclical than would be the case if interest rates were held unchanged; for one

actually wants nominal interest rates to decline in response to a positive shock. In the case

of the other two shocks, this is not true, but it is still possible that holding the nominal

interest rate fixed is closer to the optimal response that holding the money supply fixed; in

particular, this is necessarily true if the shocks are sufficiently persistent, as in that case the

natural rate of interest is affected very little.

Thus variations in the rate of money growth should not, in general, be a very accurate

indicator of whether interest rates have been allowed to adjust to the extent that they ought

to in response to disturbances. Monetary targeting amounts to an automatic mechanism

for bringing about procyclical interest rate variation (and interest-rate increases in response

to price-level increases as well); but the required change in the level of interest rates for

stabilization — which depends upon the change in the natural rate of interest — might not

even have the same sign as this. Monetary targeting also causes interest rates to vary in

response to money-demand disturbances, even though these should have negligible effects

upon the natural rate of interest, so that it is not desirable for interest rates to respond to

them. One should therefore expect to be able to do better by adopting an interest-rate rule

that (i) achieves a desired degree of response of interest rates to price-level and/or output

gap increases through explicit feedback from measures of these variables, as called for in

the “Taylor rule,” and (ii) incorporates a direct response to changes in the central bank’s

estimate of the current natural rate of interest.

Our conclusions with regard to the usefulness of monetary targeting contrast with the

classic analysis of Poole (1970), according to which monetary targeting should be desirable

as long as money-demand disturbances are of less importance than real disturbances to

aggregate demand (“IS shocks”). Our government-purchase or consumption-demand shocks

presumably correspond to what Poole intends by “IS shocks”; yet even in the case of these
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shocks, we have argued that some degree of accommodation (allowing the money supply to

vary in order to reduce the interest-rate response) is often desirable. And if the shocks are

sufficiently persistent, the optimal degree of accommodation of the “IS shift” may be nearly

100 percent. The difference, of course, is that Poole assumes that output stabilization should

be the goal of policy, whereas here we assume a goal of stabilizing the output gap instead,39

by which we mean output relative to a natural rate that is affected by “IS shocks” among

other real disturbances. If we consider the possibility of technology or labor-supply shocks,

neglected by Poole altogether, our results are even more different, and even more strongly

support a presumption in favor of accommodation.

But the most important limitation of Poole’s analysis is that it assumes that monetary

targeting is the only alternative to a complete interest-rate peg. Yet the kind of policy that

we have proposed above (or that has been advocated by Wicksell or by Taylor) is not one

that fixes nominal interest rates in the face of changing macroeconomic conditions. Once

one recognizes that an interest-rate rule may specify interest-rate adjustments in response to

changes in the price level and/or in output, then Poole’s IS-LM analysis provides no ground

whatsoever for belief that it is desirable to respond to changes in monetary aggregates as

well.

One might, of course, make a case for responding to changes in the growth rate of

monetary aggregates if such statistics provide more up-to-date information about prices

and/or output than is otherwise available. This seems unlikely; at best, one might on these

grounds justify paying attention to monetary aggregates along with a large number of other

indicators.40 And even in this case, it would be most useful to understand the central bank’s

policy commitment in terms of its response to its estimates of inflation and the output gap,

rather than in terms of a commitment to respond to — let alone to stabilize — particular

indicators.

39This objective is justified in terms of social welfare in chapter 6.
40The optimal use of indicator variables given that inflation and the output gap are not perfectly observed

in real time is treated in chapter 8.
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3.2 Real-Balance Effects

Thus far we have considered only models in which monetary policy affects aggregate demand

through the effects of real interest rates on the desired timing of private expenditure. While

this is surely the most important single channel through which monetary policy matters, it is

sometimes argued that this channel alone is not the only one way in which monetary policy

matters, and that under at least some circumstances the neglect of other mechanisms may

lead to significantly misleading conclusions. One proposal of this kind with an especially

venerable history, is the argument often found in monetarist writing that the level of real

money balances held by the private sector should directly influence aggregate demand, for

reasons that are independent of the reduction in equilibrium interest rates that will ordinarily

accompany a higher real money supply in order to induce the private sector to choose to

hold the higher money balances. Pigou (1943) argued for the existence of such a “real

balance effect”, and proposed that its existence was especially important in guaranteeing

the effectiveness of monetary policy even under the circumstances of a “liquidity trap” of

the kind posited by Keynes (1936). We take up the case of a liquidity trap below; but first

we consider the nature of real balance effects under more ordinary circumstances.

It is first important to note that we have not omitted any effect of real money bal-

ances upon aggregate demand that results from a simple (Hicksian) wealth effect, as Pigou

supposed. The Euler equation (1.1) for the optimal timing of private expenditure, which

(when converted to the form (1.2) by imposing market-clearing) has proven to be the cru-

cial equilibrium condition of our Wicksellian framework, does not in any way contradict the

contribution of financial wealth to the intertemporal budget constraint of the representative

household (discussed in detail in chapter 2). Furthermore, solving our log-linearized Euler

equation forward to obtain a relation of the form (1.4) between the level of aggregate ex-

penditure at a given date and a very-long-term real rate (or equivalently, a distributed lead

of expected future short real rates) involves no neglect of any wealth effects. It is true that,

for an individual household, optimal consumption demand is a function of the household’s

current financial wealth in addition to its future (after-tax) income expectations and its ex-
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pectations regarding the available rate of return on its savings. But still, optimal current

expenditure relative to expected future expenditure depends only on the expected rates of

return on assets between now and the future date; for greater financial wealth should im-

ply greater expected future spending in the same proportion as it increases desired current

spending. And for households in aggregate, expected spending in the long-run future must

be tied down by the exogenous evolution (in the kind of model considered here) of the natural

rate of output. Given this anchor for the representative household’s expected long-run level

of expenditure, the sequence of expected future real interest rates does suffice to determine

what optimal expenditure must be in the present.

Nonetheless, there is a type of real-balance effect from which the above analysis has

abstracted. Thus far, we have assumed the special class of utility functions described by

equation (xx) of chapter 2, that are additively separable between consumption and real

money balances. This familiar assumption makes the algebra simpler in many places, but

it can hardly be defended as realistic. If utility is obtained from holding money, this must

be because money balances facilitate transactions, and it is hardly sensible that the benefits

of such balances should be independent of the real volume of transactions that a household

actually undertakes. In particular, as already argued in chapter 2, it is plausible that the

marginal benefit of additional real balances should be higher when real transactions are

greater, so that the cross-partial derivative Ucm > 0.

We accordingly here consider how our above results extend to the case of a more general

preference specification. We shall argue that the simple case treated above remains a good

guide to intuition, and indeed that it may be justified as an approximation without any

appeal to the plausibility of additive separability. But it is also useful to be able to see how

real balance effects require our previous calculations to be modified, if we wish to be more

precise.

Let us recall from chapter 2 that in the general case, the equilibrium condition derived
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from the Euler equation for the optimal timing of private expenditure takes the form

1 + it = β−1

{
Et

[
Uc(Yt+1,M

s
t+1/Pt+1; ξt+1)

Uc(Yt,M s
t /Pt; ξt)

Π−1
t+1

]}−1

. (3.4)

(See equation (xx) of chapter 2.) This reduces to equation (1.2) above only under the

assumption of additively separable preferences (or the absence of non-negligible transactions

frictions). In the general case, a log-linear approximation to this relation takes the form

ı̂t = σ−1[Et(Ŷt+1 − gt+1)− (Ŷt − gt)]− χ(Etm̂t+1 − m̂t) + Etπt+1, (3.5)

generalizing (1.3), where

χ ≡ m̄Ucm

Uc

with partial derivatives evaluated at the steady state. Here gt is again the exogenous factor

defined in (2.3), where the shift in the marginal utility of consumption C̄t is now evaluated

at the steady-state values of both Ct and mt. Note that (3.5) is the same as equation (xx)

of chapter 2, except that now we make the dependence on real output explicit, as output is

no longer exogenous.

Solving (3.5) forward again yields an “IS equation” of the form

Ŷt = Ŷ∞ + gt + χσm̂t − σ
∞∑

j=0

Et [̂ıt+j − πt+j+1]. (3.6)

If χ > 0, then there is indeed a “real-balance effect” upon aggregate demand. This results

not from a wealth effect, but from the fact that even controlling for the path of real interest

rates, times when real balances are high are particularly convenient times to spend, due to

the way in which money balances facilitate transactions. We shall also see that, contrary to

Pigou’s suggestion, this effect does not imply that increases in the money supply can increase

demand even in a liquidity trap; but this question is deferred until section xx below.

Let us first consider instead the consequences of the existence of a real-balance effect

for inflation determination under an interest-rate rule, in the case of only small fluctuations

around the zero-inflation steady state (so that the zero lower bound on nominal interest rates
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is never approached). As in section xx of chapter 2, it is convenient to use (3.3) to eliminate

real balances from the intertemporal IS equation (3.5), yielding

(1+ηiχ)̂ıt = (σ−1−ηyχ)(EtŶt+1−Yt)+Etπt+1+ηiχEtı̂t+1−σ−1(Etgt+1−gt)−χ(Etε
m
t+1−εm

t )−ηiχ(Etı̂
m
t+1−ı̂mt ).

(3.7)

This gives us an equilibrium relation written solely in terms of the evolution of interest rates,

inflation and output, like (1.3).

Let us then define the natural rate of output Y n
t as the equilibrium level of output at

each point in time that would obtain under flexible prices, given a monetary policy that

maintains a constant interest-rate spread ∆t between non-monetary and monetary riskless

short-term assets. This last stipulation in our definition is now necessary, since when utility is

non-separable, equilibrium output under flexible prices is no longer independent of monetary

policy.41 Let us similarly define the natural rate of interest rn
t as the equilibrium real rate of

interest under the same hypothetical circumstances. Then we observe from (3.7), that must

hold equally whether prices are flexible or sticky, that

r̂n
t = (σ−1 − ηyχ)(EtŶ

n
t+1 − Y n

t )− σ−1(Etgt+1 − gt)− χ(Etεm,t+1 − εmt). (3.8)

Note that this reduces to our previous definition (1.11) in the case that χ = 0. Using this to

substitute for terms on the right-hand side of (3.7), and rearranging terms, we obtain

(1−σηyχ)xt = (1−σηyχ)Etxt+1−σ(̂ıt−Etπt+1− r̂n
t )+σηiχ[Et(̂ıt+1− ı̂mt+1)− (̂ıt− ı̂mt )], (3.9)

generalizing (1.8), where again xt ≡ Ŷt− Ŷ n
t . Thus we once more obtain an intertemporal IS

relation in terms of the output gap xt in which the only exogenous disturbance term is the

shift in the natural rate of interest r̂n
t .42

Allowing for non-trivial monetary frictions and non-separable utility between consump-

tion and real balances also requires modification of our derivation of the aggregate supply

41One might, of course, choose other definitions of the natural rate, such as the flexible-price level of
output in the case of a monetary policy that results in a stable price level. The choice made here turns out
to be convenient in simplifying the welfare analysis of chapter 6.

42Note that in the case of flexible prices and an exogenous goods supply, so that necessarily xt = 0 at
all times, equation (3.9) reduces to equation (xx) of chapter 2, with r̂n

t corresponding to the composite
exogenous disturbance r̂t of that model.
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relation (1.6). (Throughout chapter 3, we assumed either negligible monetary frictions or

separable utility.) In the case of non-separable utility, the marginal utility of income depends

upon real money balances as well as real expenditure, so that the household labor supply

equation becomes

wt(i) =
vh(ht(i); ξt

Uc(Ct,mt; ξt)
.

It follows that the real marginal cost of supplying good i, when log-linearized, is given by

ŝt(i) = ω(ŷt(i)− qt) + σ−1(Ŷt − gt)− χm̂t,

where the exogenous disturbances qt and gt continue to be defined as before. Substituting

(3.3) for real money balances m̂t, and recalling the definition just proposed for the natural

rate of output, we can write average real marginal cost in the form

ŝt = εmc(Ŷt − Ŷ n
t ) + ηiχ(̂ıt − ı̂mt ), (3.10)

where the elasticity of average marginal cost with respect to aggregate output is now equal

to

εmc = ω + σ−1 − ηiχ, (3.11)

and the natural rate of output is now given by

Ŷ n
t =

ωqt + σ−1gt + χεm
t

εmc

, (3.12)

generalizing (2.2).

Expression (3.10) can alternatively be written in the form

ŝt = εmc [xt + ϕ(̂ıt − ı̂mt )],

where

ϕ ≡ ηiχ

εmc

.

The case that would be seem to be of greatest empirical relevance is that in which χ satisfies

the bounds

0 ≤ χ < η−1
y (ω + σ−1),
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in which case both εmc and ϕ are positive coefficients.43 A calculation exactly parallel to

that given in chapter 3 then allows us to derive an aggregate supply relation of the form

πt = κ[xt + ϕ(̂ıt − ı̂mt )] + βEtπt+1, (3.13)

generalizing (1.6). Here

κ ≡ (1− α)(1− αβ)

α

εmc

1 + ωθ

as before, but εmc is now given by (3.11). We find that in the non-separable case, inflationary

pressure depends not only on the output gap, but also on the interest differential between

non-monetary and monetary assets. The greater this return differential is, the greater the

cost of holding the money balances needed to facilitate transactions; hence the greater is

the marginal cost of supplying a given level of output, and ultimately the incentive to raise

prices.

How much of a difference is made by the inclusion of the additional terms in (3.9) and

(3.13)? If we assume an interest-rate rule of one of the kinds considered in section xx above,

and add the additional stipulation that the interest rate imt paid on the monetary base is

adjusted along with all changes in the central bank’s interest-rate operating target, so as to

maintain a constant spread ∆t, then our previous conclusions are entirely unchanged, under

an appropriate calibration of the numerical coefficients. The reason is that in the case that

ı̂mt = ı̂t at all times, equations (3.9) and (3.13) reduce to precisely our previous equations

(1.8) and (1.6) respectively, given the new definition (3.8) of the natural rate of interest, with

one exception: in our “IS relation” (3.4), the coefficient indicating the interest-sensitivity of

real expenditure is no longer σ, as in (1.8), but rather (σ−1−ηyχ)−1.44 As long as χ < (ηyσ)−1

— the empirically realistic case, under the calibration proposed below45 — then there is no

43As discussed in section xx below, Rotemberg and Woodford (1997) argue that a reasonable value for εmc

is about .63 for the U.S. economy. We have argued in chapter 2 that a realistic value for χηy for the U.S.
would be about .01, so this would imply a value for σ−1 +ω of about .64. Even if these values are inaccurate,
σ−1 + ω is likely to be much larger than χηy.

44In our analysis of price-level determination under this kind of policy in chapter 2, where we assumed flex-
ible prices, this difference did not matter, as no fluctuations in the output gap xt could occur in equilibrium.
In the case of price stickiness, the additional qualification is needed.

45In a more realistic extension of our model, where we distinguish among different categories of private
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qualitative change in our conclusions; we would obtain identical numerical results to those

presented in our earlier figures under a suitably different calibration of the value of σ.

Inflation and the output gap (the latter, rather than detrended output, being the welfare-

relevant quantity, as we shall argue in chapter 6) thus evolve according to exactly the formulas

derived earlier, once we take into account the modification of the effects of real disturbances

on the natural rate of interest. (Computation of the implied path of detrended output

requires that one also take into account the modified expression for the effects of real dis-

turbances on the natural rate of output.) Thus our previous results apply not only to fully

(or nearly) “cashless” economies, and to economies in preferences are additively separable

between consumption and real balances, but also to economies in which central-bank interest-

rate targets are implemented through adjustments of the interest paid on the monetary base,

rather than through adjustments of the supply of base money.46

If, however, interest-rate adjustments are implemented through variation in the supply

of base money, holding fixed the rate of interest paid on the monetary base — as under

current U.S. monetary arrangements, for example — then the additional terms in both the

IS relation and the AS relation matter, assuming non-trivial monetary frictions and non-

separable preferences. Nonetheless, for many purposes the additional terms do not seem

likely to have too large an effect on our quantitative conclusions. We can illustrate this by

considering a numerical calibration of our model based on U.S. data.

As argued in section xx of chapter 2, evidence on long-run U.S. money demand suggests

money-demand elasticities on the order of ηy = 1, ηi = 28 quarters, and a value of χ = 0.02

expenditure with differing degrees of interest-sensitivity, this would be even more clearly true. For one might
well calibrate a lower degree of interest-elasticity (larger σ−1) for those expenditures that are complementary
with real money balances (the ones for which χ > 0).

46Another case in which the previous results apply would be a hybrid of two of those just mentioned.
Suppose that utility each period is given by U(Ct,m

cb
t ; ξt) + V (mcu

t ; ξt), where mcb
t indicates the real value

of the clearing balances held at the central bank to facilitate payments and mcu
t indicates the real value of

currency in circulation. (Here the liquidity services provided by clearing balances are assumed to depend on
the volume of aggregate transactions in the economy, while the usefulness of currency is assumed to be largely
unaffected by variations in aggregate real expenditure.) Then it suffices for the validity of our previous results
that the interest rate icb

t paid on clearing balances be adjusted so as to maintain a constant spread between
this and the central bank’s interest-rate operating target, as is true under the channel systems mentioned in
chapter 1; it does not matter whether there is any interest paid on currency as well.
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(or lower) for the elasticity of the marginal utility of expenditure with respect to additional

real money balances. Suppose that the other coefficients of our structural equations are

based on the parameter values used by Rotemberg and Woodford (1997), shown in Table 4.1

below, and discussed further there. Since Rotemberg and Woodford infer the value of ω from

their estimate of εmc, rather than the reverse, allowing for χ 6= 0 does not imply any change

in our calibrated value of εmc. Thus the value that we shall assume for ϕ is (.02)(28)/(.63)

= 0.89 quarters.47 The values assumed for the parameters β, σ, and κ are those reported in

Table 4.1.

Using similar methods as above, we can show that in the case that a determinate equi-

librium exists,48 an interest-rate rule of the form (1.10)49 together with the stipulation that

ı̂mt = 0 implies equilibrium paths for the endogenous variables of the form

πt = π̄ +
∞∑

j=0

ψπ
j (Etr̂

n
t+j + π̄)−

∞∑

j=0

ψ̃π
j Etı̄t+j, (3.14)

xt = x̄ +
∞∑

j=0

ψx
j (Etr̂

n
t+j + π̄)−

∞∑

j=0

ψ̃x
j Etı̄t+j, (3.15)

ı̂t = ı̄t +
∞∑

j=0

ψi
j(Etr̂

n
t+j + π̄)−

∞∑

j=0

ψ̃i
jEtı̄t+j. (3.16)

In the case that χ 6= 0, the coefficients ψ̃π
j and so on are no longer exactly equal to the

coefficients ψπ
j and so on. The extent to which allowance for real-balance effects affects the

quantitative size of these coefficients is shown in Figures 4.10 and 4.11, for the calibrated

parameter values stated in the previous paragraph.

The figures show the results in the case of a rule with φπ = 2, φx = 1, corresponding to

the baseline case in the previous Figures 4.4 and 4.5; Figure 4.10 shows the coefficients ψπ
j

and ψx
j , while Figure 4.11 shows the coefficients ψ̃π

j and ψ̃x
j , for various future horizons j. In

47This value multiplies a quarterly interest rate; if instead the interest rate is expressed as an annualized
rate, ϕ should equal 0.22 years.

48The conditions for determinacy of equilibrium can also be generalized using the same methods as above.
One again obtains a set of inequalities that the coefficients of the interest-rate rule must satisfy, and these
expressions are continuous functions of χ, so that the set of interest-rate rules that imply a determinate
equilibrium remain nearly the same when we assume a small positive value for χ.

49Once again, we assume an output-gap target x̄ consistent with the inflation target π̄. In the case that
χ 6= 0, this requires that x̄ = (1− β)π̄/κ + ϕπ̄.
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Figure 4.10: Effects of anticipated natural-rate fluctuations under a simple Taylor rule,
allowing for real-balance effects.

each panel, the coefficients are computed both for the parameter values stated above (the

dashed lines), and for the same values of β, σ, and κ, but under the assumption that χ and

ϕ are equal to zero (as in the earlier figures). We observe that the predicted effects of both

types of disturbances on inflation and the output gap are not much affected by allowing

for real-balance effects. The main difference is a greater inflationary impact of increases

in the natural rate of interest that are foreseen several quarters in advance, as a result of

the contribution of the resulting increase in the interest differential to the marginal cost of

supply. But even this will matter for predicted inflation dynamics only to the extent that

fluctuations in the natural rate of interest are predictable several quarters in advance.

In the case of an interest-rate rule of the form (2.8), again combined with the stipulation
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Figure 4.11: Effects of anticipated policy shifts under a simple Taylor rule, allowing for
real-balance effects.

that ı̂mt = 0, we correspondingly obtain solutions of the form

πt = π̄ + ωπ (̂ıt−1 − ı̄t−1) +
∞∑

j=0

ψπ
j Et(r̂

n
t+j + π̄)−

∞∑

j=0

ψ̃π
j Etı̄t+j,

and similarly for the other endogenous variables. Once again, the coefficients ψ̃π
j and so on

are no longer exactly equal to the coefficients ψπ
j when χ 6= 0. The quantitative significance of

the allowance for real-balance effects is shown in Figures 12 and 13, using the same format as

in Figures 10 and 11. Here the assumed coefficients of the policy rule are φπ = 0.6, φx = 0.3,

and ρ = 0.7, as in the baseline case of Figure 4.6. Our conclusions in this case are essentially

the same.

Another way of considering the consequences of real-balance effects for our previous

conclusions is to compute the predicted impulse responses of inflation, the output gap and

the nominal interest rate to a monetary policy shock using our modified structural equations.
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Figure 4.12: Effects of anticipated natural-rate fluctuations under an inertial Taylor rule,
allowing for real-balance effects.

Let us again consider a policy rule of the form (2.22), with coefficients φπ = 0.6, φx = 0.3,

and ρ = 0.7, as in the baseline case of Figure 4.7. The impulse responses to an unexpected

monetary tightening, both in the case that χ = 0 (as in Figure 4.7) and in the case that

χ = 0.02, are shown in Figure 4.14 below. (The responses shown in that figure are actually

for a variant model in which there is no effect on inflation or output during the quarter of the

policy shock; but the responses shown for quarter 1 and later are identical to those implied

by the model with structural equations (3.9) and (3.13). Note that the responses indicated

by the solid lines in Figure 4.14 are identical, for periods 1 and later, to those shown by the

solid lines in Figure 4.7.) We observe that the responses of none of the variables are very

different when real-balance effects are considered, relative to the overall scale of variation in

the variables in question.50
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Figure 4.13: Effects of anticipated policy shifts under an inertial Taylor rule, allowing for
real-balance effects.

Thus far we have only considered how large real-balance effects might be expected to

be, according to our theory, when the model parameters are calibrated on the basis of the

observed demand for money in the U.S. One might also wonder whether there is much

evidence for real-balance effects in IS or AS relations from econometric estimates of those

relations. To answer this question, Ireland (2000) presents maximum-likelihood estimates of

a structural model consisting of equations (3.3), (3.9) and (3.13), together with a monetary

policy rule, estimated using quarterly U.S. data on inflation, output, nominal interest rates

50In the case of the nominal interest rate, allowance for real-balance effects would predict a substantially
greater decline, relative to the size of the decline predicted in the baseline case (which is very small), if we did
not assume a one-quarter delay in the effects of monetary policy shocks on spending and pricing decisions.
However, this is of little importance, since empirical estimates (see Figure xx below) indicate that most of
the variation in nominal interest rates due to identified monetary policy shocks represents responses that
occur prior to any effect on real expenditure — like the response in period zero of Figure xx, rather than
the responses in periods one and later. A substantial proportionate effect on the response predicted in those
later periods still makes very little difference to the overall predicted variation in nominal interest rates.
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and money growth. His estimated value for χσ, the coefficient indicating the size of the

effect of variations in real money balances on aggregate demand, is -.02, with a standard

error of nearly .04; it is thus not significantly different from zero. Nor is this result obtained

only because the effect is not precisely estimated; the 95 percent confidence interval implied

by Ireland’s results would allow the coefficient to have as large a positive value as .05 or as

negative value as −.09, but it would not allow values as large as the coefficient of .13 assumed

in the case shown in Figures xx-xx. Thus Ireland’s estimates would imply real-balance effects

even more modest than those exhibited in those figures.

3.3 Monetary Policy in a “Liquidity Trap”

[TO BE ADDED]

4 Delayed Effects of Monetary Policy

The simple optimizing model of the effects of interest-rate changes on aggregate demand

presented above differs in a number of respects from the kind of specification that is common

in macroeconometric models. One is the degree to which the model is forward-looking:

(1.4) implies that changes in expected future interest rates should affect current aggregate

expenditure as much as do changes in current (short-term) interest rates. However, in

practice, expected future interest rates (at least, insofar as these expectations are based on

atheoretical time series models) co-move very closely with current short-term interest rates,

as shown by Fuhrer and Moore (1995b). Thus the coefficients multiplying current short

rates in the expenditure equations of econometric models might simply be proxies for a long

distributed lead of expected future short rates. While the two specifications may allow a

similar fit to historical data, the forward-looking model has a much clearer rationale in terms

of optimizing behavior (for any of a variety of reasons, as noted in chapter 1); and taking

account of the forward-looking character of aggregate demand has important consequences
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for our analysis of optimal policy in Part II of this study.

Another difference between the optimizing model and common econometric specifications,

however, gives us more reason to doubt the empirical realism of the theoretical model. This is

the fact that our model implies that aggregate expenditure responds to current as opposed to

lagged interest rates. Hence our model predicts that a monetary policy disturbance should

immediately effect real expenditure, as shown for example in Figure xx above (where, in

fact, the maximum effect on real activity occurs in the quarter of the shock). Instead, the

conventional wisdom in central banks is that monetary policy can have little immediate

effect on either real activity or inflation, and VAR studies typically confirm this view. For

example, the estimated impulse response of real GDP shown in Figure xx of chapter 3 shows

no non-negligible effect until two quarters following the quarter of the monetary policy shock.

This would be consistent with an equation for aggregate expenditure involving only interest

rates two or more quarters in the past, but not with the theory that we have derived from

consideration of the optimal timing of expenditure.

In this section, we briefly discuss ways in which our basic model can be extended to allow

for a more realistic delay in the predicted effects of a change in monetary policy. As we shall

see, optimization-based theories incorporating such delays continue to imply that interest-

rate expectations should matter as much as do actual interest rates. And they continue to

imply that the key to inflation stabilization should be a policy under which the interest rate

controlled by the central bank tracks variations in the natural rate of interest as accurately

as is possible. Thus central insights derived from our basic analysis above continue to apply

in more realistic settings.

4.1 Consequences of Predetermined Expenditure

One simple way in which one can explain the observed delay in the effect of monetary

policy shocks on aggregate expenditure is to assume that expenditure decisions are, to some

important extent, made in advance, just as some or all prices are determined in advance

in the pricing models introduced in chapter 3. Alternatively, we might assume that many
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expenditure decisions are based on old information. We shall first present a model in which

expenditure decisions are predetermined, i.e., in which aggregate real expenditure in period

t must be decided upon in period t − d. Later we discuss a closely related model in which

expenditure decisions are not based on completely up-to-date information about financial

market conditions. In either case, the level of expenditure in period t must be a function

only of period t− d information about interest rates, and so can depend on monetary policy

shocks in period t− d and earlier, but not on any more recent shocks.

How plausible are such assumptions? In the strict forms in which they have just been

stated, both assumptions are obviously too extreme to be entirely realistic; nonetheless,

they capture in a simple way a feature of many actual expenditure decisions. Many of the

most interest-sensitive components of expenditure, such as investment spending, are in fact

predetermined to an important extent, owing both to the existence of planning lags and to the

fact that individual projects require expenditure over a period of time (“time to build”, in the

terminology of Kydland and Prescott, 1982), which expenditure will in most cases be worth

continuing once the project has been started. (See, e.g., Edge, 2000, for discussion of both

types of delay and their likely quantitative magnitudes.) Once again, while we here model

all interest-sensitive expenditure as if it were household consumption (abstracting from any

effects of this expenditure on productive capacity), our model should really be interpreted as

a model of the timing of private expenditure more generally, and the relevant delays are the

ones that apply to the most interest-sensitive components of such expenditure. And even in

the case of household consumption, Gabaix and Laibson (2002) have argued that it makes

sense to model households as changing their planned consumption levels only intermittently;

they show that this hypothesis can help to reconcile the behavior of aggregate consumption

with the behavior of asset prices. The simple model of predetermined expenditure decisions

proposed here is in the spirit of such a model, though it involves a cruder hypothesis. (The

consequences of intermittent adjustment of the kind proposed by Gabaix and Laibson are

discussed in section xx below.)

As a simple example, let us suppose that the state-contingent consumption plan from
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date t onward is chosen to maximize

Et−d

{ ∞∑

s=t

βs−tu(Cs; ξs)

}

subject to an intertemporal budget constraint of the form

∞∑

s=t

Et−dQt−d,sPsCs ≤ Et−dQt−d,tWt +
∞∑

s=t

Et−dQt−d,s[PsYs − Ts], (4.1)

where {Qt,s} is the same system of stochastic discount factors as in chapter 2. Here d is the

assumed length of the delay (in periods) between expenditure decisions and the time that

the expenditure actually occurs (or alternatively, the delay in the receipt of new information

about aggregate conditions). The intertemporal budget constraint (4.1) is required to hold

only in present value discounting back to the state of the economy at date t− d, because we

assume as before (sequentially) complete financial markets, allowing a household to insure

itself at date t − d against the realization of state at date t in which the present value of

its subsequent after-tax income is unusually low. The present value Et−dQt−d,tWt of period

t initial wealth is given as an initial condition, as it follows from period t − d wealth, the

consumption path already chosen for periods t−d through t−1, after-tax income expectations

for those same periods, and financial-market prices.

A necessary condition for an interior solution to this optimization problem is that

βdEt−duc(Ct; ξt) = Λt−d Et−d[Qt−d,tPt] (4.2)

at each date t− d ≥ 0 and each possible state at that date, where Λt−d > 0 is the Lagrange

multiplier on the household’s budget constraint (4.1) looking forward from that date, indi-

cating the shadow value (in terms of period t − d utility) of additional nominal income at

date t− d. Another necessary condition, given the existence of complete financial markets,

is that

ΛtQt,s = βs−tΛs, (4.3)

for any two dates 0 ≤ t < s and any possible state at date s. Note further that using (4.3),

we can equivalently write (4.2) as

Et−duc(Ct; ξt) = Et−d[ΛtPt]. (4.4)
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One can furthermore show that a system of Lagrange multipliers {Λt} and a consumption

plan {Ct} such that (i) for each date, Ct depends only on the state of the world at t − d;

(ii) conditions (4.3) – (4.4) are satisfied in each possible state at each date; and (iii) the

intertemporal budget constraint (4.1) holds with equality, looking forward from the initial

date; suffice to characterize an optimal plan.51

As in section 1, it is useful to give an approximate characterization of the optimal timing

of private expenditure in the case of small disturbances by log-linearizing these equilibrium

conditions around the deterministic steady-state consumption plan that is optimal in the case

of no real disturbances and a monetary policy consistent with zero inflation and a nominal

interest rate equal to the rate of time preference. Substituting Yt − Gt for Ct in (4.4) and

log-linearizing, we obtain

Ŷt = gt − σEt−dλ̂t, (4.5)

where λ̂t ≡ log(ΛtPt/uc(C̄; 0)). Here the composite disturbance term is defined as

gt = Ĝt + sCEt−dC̄t,

generalizing (2.3); note that this need not be predetermined at date t − d, if government

purchases are not determined as far in advance as is interest-sensitive private expenditure.52

The disturbances Ĝt, C̄t and the coefficient σ > 0 are defined as before.

Equation (4.3) implies that

1 + it = β−1Λt[EtΛt+1]
−1,

which when log-linearized becomes

it = λ̂t + Et[πt+1 − λ̂t+1].

51Here it is assumed that the household faces prices such that the right-hand side of (4.1) is well-defined
and finite; otherwise, no optimal plan is possible, as before. Thus this condition is also a requirement for
equilibrium, as in chapter 2. Similarly, if we assume that households can choose to hold a non-negative
quantity of non-interest-bearing currency if they wish, then it is also a requirement for the existence of an
optimal plan that the household face a non-negative nominal interest at all times.

52The assumption that gt is not public knowledge at t−d does not require that the government has better
information about macroeconomic conditions or a shorter planning horizon than the private sector. This
simply indicates exogenous random variation in government purchases that cannot be forecasted d periods
in advance on the basis of public information.
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This can be solved forward to yield

λ̂t = λ̂∞ +
∞∑

j=0

Et(it+j − πt+j+1),

which when substituted into (4.5) yields

Ŷt = Ŷ∞ + gt − σ
∞∑

j=0

Et−d(̂ıt+j − πt+j+1), (4.6)

generalizing (1.4). Alternatively, our intertemporal “IS relation” can be written in differenced

form as

Ŷt = gt + Et−d(Ŷt+1 − gt+1)− σEt−d(it − πt+1). (4.7)

This is essentially the same form of IS relation as in the basic model, except that now it

is past expectations of current and future real interest rates that matter, rather than current

interest rates or current expectations. Such a specification implies that an unexpected change

in monetary policy in period t can have no effect on aggregate real expenditure before period

t + d. Yet the delayed effect of a monetary policy shock does not occur because it is actual

past interest rates, rather than current or expected future rates, that matter for current

expenditure; only past expectations regarding real rates of return from now on are relevant

to the desired substitution between current and future expenditure, even when the decision

itself has been made at a past date.

The difference between this specification and an IS relation according to which current

real expenditure depends on lagged (but not current) interest rates has quite important

implications for the conduct of monetary policy. If expenditure depends on actual lagged

interest rates, it would follow that interest rates should be adjusted now to offset disturbances

that are expected to affect the output gap in the future, even if these disturbances have no

immediate effect; for once the disturbances have their effect, it may be too late for an

interest-rate change to have any countervailing effect on expenditure. Thus policy should

be forward-looking, and respond immediately to news that affects the economic outlook

some quarters in the future. If instead, as in this optimizing model, expenditure depends

on past expectations of current and future rates, it follows that interest-rate policy affects
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expenditure only to the extent that it is forecastable in advance. There would therefore be no

advantage (from the point of view of output-gap stabilization) in responding at all to news

except after it has been known to the public for d periods. Instead, it would be important

to base current interest rates on past conditions (possibly including past perceptions of the

outlook for the future), in order to bring about forecastable interest-rate variations that

could be used to offset the effects of predictable disturbances.

Under this alternative specification of our forward-looking model of the determinants of

real expenditure, the effects of an (anticipated future) monetary disturbance are similar to

those analyzed earlier, only delayed in time. Suppose, for example, that there is a lag of the

same length before new price decisions take effect, so that the aggregate-supply relation is

of the form

πt = κEt−dxt + βEt−dπt+1, ) (4.8)

where once again xt ≡ Ŷt− Ŷ n
t , and Ŷ n

t is defined as before. (Recall equation (xx) of chapter

3.) The component of the output gap that is forecastable d periods in advance furthermore

satisfies

Et−dxt = Et−dxt+1 − σEt−d(̂ıt − πt+1 − r̂n
t ), (4.9)

as a consequence of (4.7). This relation together with

xt = Et−dxt + (gt − Ŷ n
t )− Et−d(gt − Ŷ n

t ) (4.10)

is in fact equivalent to (4.7).

Finally, let monetary policy be specified by a rule of the form (2.22), as in Figure 4.7.

Then for the same parameter values as are assumed in the baseline case (ρ = 0.7) of that

figure, but with a delay of d = 1 quarter, the predicted impulse responses to a contractionary

monetary policy shock are those shown by the solid lines in Figure 4.14. Note that for

quarters 1 and later following the shock, the responses are identical to those shown in Figure

4.7. The only difference is that there are no effects on output or inflation in the quarter of

the shock itself; as a consequence, the initial increase in the nominal interest rate is much

larger, as the increase in ı̄t is not offset by the reaction to any immediate declines in output
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Figure 4.14: Impulse responses to a contractionary monetary policy shock, when both ex-
penditure and prices are predetermined for one quarter.

or inflation (as occurred in Figure 4.7). This modification of the model greatly increases

its realism, not only because the effects on output and inflation are delayed, but because

of the prediction of a transitory “liquidity effect” of a monetary tightening. Note that the

predicted increase in nominal interest rates is weaker and more persistent (or even absent,

as in the cases ρ = 0.7 or 0.8) in Figure 4.7. The responses shown in Figure 4.14 are much

more similar to empirical estimates, discussed further in the next section.53

Under this extension of our basic model, the key to inflation and output-gap stabilization

continues to be the adjustment of interest rates so as to track the variations in the natural

rate of interest due to exogenous real disturbances. For example, suppose that monetary

53The figure also shows the predicted impulse responses in the case that we allow for real-balance effects,
parameterizing monetary frictions in the way discussed in section xx above. These are not substantially
different from those predicted in the cashless case. Hence we continue to abstract from real-balance effects
in the remainder of this section and in our discussion of empirical models.
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policy is described by a Taylor rule of the form

ı̂t = ı̄t + Et−d[φπ(πt − π̄) + φx(xt − x̄)], (4.11)

where x̄ is consistent with π̄ as assumed earlier, and ı̄t is again an exogenous intercept term.54

The evolution of the forecastable components of inflation, the output gap, and the nominal

interest rate is then determined by the system of equations consisting of (4.8), (4.9) and

the equation obtained by taking the conditional expectation of both sides of (4.11) at date

t − d. This system of equations has a structure that is precisely analogous to the system

consisting of (1.8), (1.9) and (1.10) in the case of the basic model. It implies a determinate

rational-expectations equilibrium in exactly the same case as with the previous system, i.e.,

if and only if the coefficients satisfy the Taylor Principle.

In this case, the unique bounded solution is given by

πt = π̄ +
∞∑

j=0

ψπ
j Et−d(r̂

n
t+j − ı̄t+j + π̄), (4.12)

xt = x̄ +
∞∑

j=0

ψx
j Et−d(r̂

n
t+j − ı̄t+j + π̄) + (gt − Ŷ n

t )− Et−d(gt − Ŷ n
t ), (4.13)

ı̂t = ı̄t +
∞∑

j=0

ψi
jEt−d(r̂

n
t+j − ı̄t+j + π̄), (4.14)

where the coefficients {ψy
j } for y = π, x, i are exactly the same as before. Here the solutions

for the forecastable components of all three variables are given by the forecasts d periods in

advance of the solutions previously presented in (2.18) — (2.20). The variables πt and ı̂t− ı̄t

have no unforecastable components, while the unforecastable component of xt is given by

(4.10).

This solution implies, once again, that inflation and the output gap are both stabilized,

to the greatest extent possible, by commitment to a Taylor rule in which the intercept term

tracks variation in the natural rate of interest. The only difference is that now it is only

necessary to track the fluctuations in the natural rate that can be forecasted d periods in

54The assumption that the endogenous terms involve only the components of inflation and the output gap
that are forecastable at t− d is purely notational. For it follows from (4.8) that πt is entirely forecastable at
t− d, while it follows from (4.10) that the unforecastable component of xt is purely exogenous.
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advance. A rule of the form (4.11) with ı̄t = Et−dr̂
n
t and coefficients φπ, φx satisfying (2.7)

implies a determinate equilibrium in which

πt = π̄, Et−dxt = x̄

at all times. This obviously stabilizes inflation to the greatest extent possible. Since the

forecastable and unforecastable components of the output gap are necessarily uncorrelated,

var{xt} = var{Et−dxt}+ var{xt − Et−dxt}
= var{Et−dxt}+ var{(gt − Ŷ n

t )− Et−d(gt − Ŷ n
t )},

as a consequence of (4.10). Given that the second term is independent of monetary policy,

the most that can be done to stabilize the output gap is to reduce the variance of the

forecastable component to zero; the proposed policy achieves this.

Certain complications arise when we seek to combine this alternative model of the effects

of interest rates on aggregate demand with aggregate-supply relations of the sort derived in

chapter 3. The derivations in chapter 3 assume that period t expenditure is chosen optimally

on the basis of period t information, so that (4.5) holds with d = 0. The place at which we

have used this assumption in chapter 3 is in replacing the marginal utility of income by a

function of current consumption, in our account of optimizing labor supply (and hence of the

marginal cost of supplying goods). More generally, the (log-linearized) real marginal cost

function for the model with flexible wages is given by

ŝt(i) = ω(ŷt(i)− Ŷ n
t ) + σ−1(Ŷt − Ŷ n

t )− µt, (4.15)

where

µt ≡ λ̂t − σ−1(gt − Ŷt) (4.16)

is the discrepancy between the (log) marginal utility of real income and the (log) marginal

utility of consumption. When period t expenditure is chosen optimally at date t, µt = 0, and

the aggregate supply relations derived in chapter 3 are correct. But when interest-sensitive
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private expenditure must be chosen in advance, (4.5) implies only that Et−dµt = 0, whereas

µt need not equal zero.

Now suppose that even though the aggregate index of demand (i.e., the demand for the

composite good) is determined d periods in advance, the way that this demand is allocated

across the various differentiated goods is not committed in advance. It follows that a supplier

who considers a price change that will take effect in less than d periods will still calculate

the optimal price taking into account the effect on demand for its good from the first period

in which the price change takes effect. Then in the case of random intervals between price

changes of the kind assumed by Calvo, and a delay of s periods before a newly chosen price

takes effect, the aggregate-supply relation should be of the form

πt = κEt−sxt − κ

εmc

Et−sµt + βEt−sπt+1.) (4.17)

where εmc > 0 is the elasticity of average real marginal cost with respect to the level of

aggregate output.

Only in the case that s ≥ d could the Et−sµt term be neglected (as in (4.8) above). If

s < d, one would instead need to use the form (4.17), together with the relation

µt =
d−1∑

j=0

Et [̂ıt+j − πt+j+1] + σ−1[(Ŷt − gt)− Et(Ŷt+d − gt+d)] (4.18)

relating µt to observables using (4.5).55 The presence of the Et−sµt term indicates a moder-

ating effect on expected supply costs in period t, and hence on inflationary pressure, of an

expectation at t − s of real rates of return between periods t and t + d − s that are higher

than those that were anticipated at the time that expenditure was planned for periods t

through t + d− s− 1. Unexpectedly high real rates of return increase the value of income in

period t, and so lower average wage demands, even if they occur as a result of shocks that

(because unanticipated) are unable to affect aggregate demand.

There appears, however, to be little evidence of an effect of interest rates on supply

costs of the kind implied by the Et−sµt term in (4.17). If anything, unexpected interest-rate

55See the empirical model of Rotemberg and Woodford (1997) for an illustration.
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increases probably increase supply costs in the short run, as found by Barth and Ramey

(2000) and Christiano et al. (2001). It is thus important to note that this effect appears in

(4.17), even under the assumption that s < d, only in the case that the delay in the effect

of interest rates on expenditure is derived from a planning delay rather than in delay in

obtaining up-to-date information about financial conditions.

Under an alternative interpretation of (4.6), period t spending decisions are made at

date t, but on the basis of an estimate of the household’s marginal utility of real income that

reflects information available at date t− d rather than the complete information available to

financial market participants at date t. Let us suppose that each household has an agent that

optimally manages its investments. This agent, with full information about financial market

conditions (as well as about the household’s tastes and labor income prospects) produces an

estimate of the marginal utility of additional wealth; individual household members who go

into the goods markets then purchase individual goods to the point at which the marginal

utility from an additional dollar of spending on a given good equals the current estimate of

the marginal utility of wealth. But suppose there is a time delay in the transmission of the

financial advisor’s estimate, so that in period t the household’s spending decisions are based

on the financial advisor’s period t − d estimate of what the household’s marginal utility of

real wealth in period t would be.

Suppose further that the household members simply use this estimate, rather than up-

dating it on the basis of what they should be able to infer about unexpected changes in

financial conditions from the prices that they observe.56 The level of expenditure Ct is then

determined at date t to satisfy the first-order condition

uc(Ct; ξt) = Et−d[ΛtPt], (4.19)

where the right-hand side is the signal transmitted by the financial advisor at date t − d.

This has identical implications to (4.4), except that taste shocks ξt that are not forecastable

at date t− d can still affect private expenditure in this version.57 Equating Ct with Yt −Gt

56There is admittedly an element of bounded rationality in this assumption, that is not required if we
assume that the household has committed itself in advance to a particular level of real expenditure.
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and log-linearizing, we again obtain (4.5) except that in this case gt is again defined as in

(2.3). We then again obtain an IS relation of the form (4.6).

Under this alternative interpretation, however, each household’s labor supply decisions

should also be affected by its imperfect information about current financial-market condi-

tions. Thus real wages, and hence real marginal costs, should depend on Et−dλ̂t rather than

upon the true value of λ̂t, as this would be evaluated by the household’s financial advisor.

But (4.5) implies that Et−dλ̂t can be written as −σ−1(Ŷt − gt), even if λ̂t cannot. Thus

we obtain (4.15) without the µt term, and correspondingly (4.17) without the Et−sµt term.

That is, we obtain exactly the form of AS relation derived in chapter 3 for the case d = 0.

4.2 Small Quantitative Models of the Effects of U.S. Monetary
Policy

A model only slightly more complex than those just described is used by Rotemberg and

Woodford (1997, 1999a) as a basis for quantitative analysis of alternative interest-rate rules

for the U.S. economy. Rotemberg and Woodford assume an intertemporal IS equation of the

form (4.7) with a delay of d = 2 quarters, and interpret the delay as due to predeterminedness

of interest-sensitive private expenditure. Their AS equation is instead a more complex version

of (4.8), in which the delay required before revised prices take effect is not the same for all

goods. Instead, it is assumed that for a fraction ϕ of all goods, a new price that is chosen in

period t (or at any rate, on the basis of public information in period t) applies to purchases

beginning in period t+1, while for the remaining goods, a new price chosen in period t takes

effect only beginning in period t + 2. In the case of both types of goods, it is assumed (as in

the Calvo model) that a fraction 1− α of all goods prices are revised each period, with the

price of each good having the same probability of being revised in any given period.

In this case, the aggregate supply relation (4.17) generalizes to

πt =
1

1 + ψ

{
κEt−1xt − κ

εmc

Et−1µt + βEt−1πt+1

}
+

ψ

1 + ψ
{κEt−2xt + βEt−2πt+1} , ) (4.20)

57An appealing feature of this alternative derivation is that it makes it clear why expenditure at date t on
individual goods should still depend on the prices of the individual goods, as we have assumed, rather than
only on the forecast of their prices at date t− d.
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where ψ ≡ (1− ϕ)/ϕα > 0, while (4.18) implies that

Et−1µt = Et−1 [̂ıt − πt+1] + σ−1[(Ŷt − gt)− (Ŷt+1 − gt+1)]. (4.21)

(Note that when d = 2, (4.7) implies that the value of the second term in square brackets

here is known at date t − 1, so that we may omit the conditional expectation operator

for that term.) The log-linearized structural equations of the Rotemberg-Woodford model

then consist of the intertemporal IS relation (4.7) with d = 2, the aggregate supply relation

obtained by substituting (4.21) into (4.20), a specification of the exogenous disturbance

processes {gt, Ŷ
n
t }, and a monetary policy rule specifying ı̂t as function of its own history,

current and lagged values of inflation and output, and a serially uncorrelated58 exogenous

monetary policy shock. (Once the processes {gt, Ŷ
n
t } have been specified, the evolution of

the natural rate of interest r̂n
t that appears in (4.7) is given by (1.11).)

The monetary policy rule, the laws of motion for the exogenous disturbances, and certain

parameters of the structural equations are also specified so as to allow the model to fit as well

as possible the joint evolution of short-term nominal interest rates, inflation and output in

the U.S. economy. Rotemberg and Woodford characterize the co-movements of these latter

three variables by estimating an unrestricted VAR model for the federal funds rate, the rate

of growth of the GDP deflator, and the linearly detrended log of real GDP, using quarterly

data for the sample period 1980:1-1995:2. These particular measures of the interest rate,

inflation and output are used following Taylor (1993), as it is desired that one equation of the

VAR should represent an estimate of the Fed’s reaction function. The sample period begins

at the beginning of 1980 because of the general recognition that an important change in the

way that monetary policy was conducted in the U.S. occurred around this time. (Recall the

discussion in chapter 1 of the alternative interest-rate rules estimated for different sample

periods. An even shorter sample period might be preferred on the same ground — say, a

post-1987 sample as in Taylor, 1993, 1999b — but this would allow even less precise estimates

58Note that if a sufficient number of lags of the endogenous variables are included, this specification is
equivalent to one in which the monetary policy disturbance is allowed to be an arbitrary autoregressive
process.
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of the impulse responses to a monetary policy shock.)

In the VAR model, ı̂t, πt+1, and Ŷt+1 are regressed on three lags of each of these variables,

with the coefficients otherwise unrestricted. (Additional lags are not included as they were

not found to be significant.) The particular lags that are included in the case of each variable

are chosen in this way because the model implies that ı̂t, πt+1 and Ŷt+1 are all part of the same

information sets: these variables are known by period t (in particular, before the period t+1

interest-rate decision is made), because both inflation and output are predetermined,59 but

not yet known in period t−1 (i.e., before the period t interest-rate decision is made). Because

the model implies that the period t interest-rate decision cannot affect the determination

of either period t output or period t inflation, an OLS regression of ı̂t on the lags of all

three variables (which include πt and Ŷt) should identify the coefficients of the monetary

policy rule, and the residual of this equation should identify the sequence of monetary policy

shocks.60 The two VAR residuals orthogonal to this one are instead interpreted as the two

innovations in the joint exogenous process for the disturbances {gt, Ŷ
n
t }.

With this identification of the historical monetary policy shocks, the just-identified VAR

model can be used to estimate the impulse responses of all three variables to an monetary

policy shock. Figure 4.15 plots the estimated responses, together with the associated (+/- 2

s.e.) confidence intervals, in the case of a one-standard-error innovation in the federal funds

rate, i.e., an unexpected monetary tightening. By construction, the funds rate increases,

while there is no effect on either output or inflation in the quarter of the shock. However,

the results also indicate (as in Figure xx of chapter 3) that there is no noticeable effect on

output in the following quarter, either, though output sharply declines in the second quarter

following the shock; this is the reason for the inclusion of a delay d = 2 quarters in the

determination of private expenditure in the Rotemberg-Woodford model. The contraction

of output relative to trend persists for several quarters, though Rotemberg and Woodford find

59Note that it is assumed that the composite exogenous disturbance gt is known at date t − 1, i.e., prior
to the determination of the period t interest rate. Since government purchases are in fact typically budgeted
in advance, this is not implausible.

60The assumptions used to identify the monetary policy shock here are common in the structural VAR
literature on this question; see, e.g., Christiano et al. (1999).
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Figure 4.15: Predicted [solid line] and estimated [dashed line] impulse responses to a mon-
etary policy shock. Dash-dotted lines indicate bounds of the confidence intervals for the
estimated responses. Source: Rotemberg and Woodford (1997).

a peak output effect in the second quarter following the monetary shock, which is sooner

than what is indicated by most studies using a longer sample.61 (Compare Figure xx of

chapter 3.) The effects of a monetary policy shock on inflation are less well-estimated, but

the point estimates indicate lower inflation for many subsequent quarters as a result of the

policy tightening.

One equation of the VAR can also be interpreted as indicating the Fed’s reaction function

over this period. The estimated coefficients on the three lags of the funds rate itself are all

61Boivin and Giannoni (2001) compare the results that would be obtained using a similar method to analyze
the response to monetary policy shocks in a pre-1980 sample. They argue that much of the difference can
be accounted for by the change in their estimated monetary policy rule between the pre-1980 and post-1980
samples, though they also find that a better fit to the pre-1980 responses is possible in the case of a model
that incorporates additional grounds for persistence in the effects of interest-rate changes on private-sector
expenditure, as discussed below.
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positive, and they sum to 0.69; this implies substantial inertia in the Fed’s interest-rate

policy, as in the estimated rules discussed in chapter 1. The sums of the coefficients on

current and lagged values of inflation and detrended output are also both positive, and imply

long-run interest-rate responses to sustained increases in these two variables of Φπ = 2.13 and

Φy = 0.47 respectively. Thus except for the additional dynamics implied by the inclusion

of lags of all three variables, the estimated reaction function is similar to Taylor’s (1993)

characterization of Fed policy under Greenspan’s chairmanship.

Rotemberg and Woodford then estimate certain parameters of their model so as to fit the

estimated responses to a monetary policy shock as closely as possible, given that monetary

policy is described by the estimated interest-rate rule. It can be shown that the model’s

predicted responses depend only on the parameters β, σ, κ, and a certain function of ω and

ψ, in addition to the coefficients of the monetary policy rule.62 There are thus at most four

free parameters that can be chosen (within certain a priori bounds) so as to improve the

model’s fit. Furthermore, because the model implies that β−1 − 1 should equal the long-run

average real rate of interest, Rotemberg and Woodford calibrate the discount factor β = 0.99

on this ground, rather than using information about the responses to shocks to estimate this

parameter. They then estimate the values of the other three parameters that minimize the

distance between the predicted impulse responses and those implied by the unrestricted VAR

estimates. The predicted impulse responses in the case of these parameter values are shown

by the solid lines in Figure 4.15.

Note that the model can account quite well for both the size and persistence of the

estimated response of real GDP. The predicted output response is in fact essentially the same

as the one shown in Figure 4.7 for the inertial policy rule with ρ = 0.7, with the magnitude

of the policy shock appropriately rescaled63 and the response delayed for two quarters. For

the IS and AS relations of the Rotemberg-Woodford model are identical to those of the

62Parameter identification, along with other aspects of the estimation strategy, are discussed in detail in
the Appendix to the 1998 working paper version of their paper.

63The size of the effective shift in the intercept term of the policy rule in the second period following the
shock is found by substituting the predicted responses in the previous two periods for the lagged interest-rate
and inflation terms in the rule.



82 CHAPTER 4. A NEO-WICKSELLIAN FRAMEWORK

baseline model if one takes expectations conditional upon information two quarters earlier.

It follows that the predicted responses of all variables two or more quarters following the

shock are the same as in our earlier analysis, if the initial conditions that apply two quarters

later are appropriately adjusted; the result follows for the same reason as in the case of

the one-quarter delay shown in Figure 4.14. Thus the predicted output response would be

exactly the same as in Figures 4.7 or 4.14, but with a two-quarter delay, if the policy rule

were of the simpler form assumed in those figures.

The model also accounts well for the estimated response of the funds rate itself to a

monetary policy shock: the theoretical model predicts, as the VAR indicates, that the funds

rate returns essentially to the level that would have been predicted in the absence of any

shock within two quarters following the shock. (This occurs for the same reason that in

Figure 4.7 there is very little response of the nominal interest rate to the policy shock, and

that in Figure 4.14 the interest rate returns to its normal level after one quarter.) Note that

this fact does not mean, as is sometimes supposed, that an “interest-rate channel” cannot

account for the timing of the observed real effects of monetary policy disturbances, which

instead occur only beginning two quarters after the shock. The reason is that it is the real

rate of interest, and not the nominal rate, that primarily matters for aggregate demand; and

if a monetary tightening is expected to lower inflation for several quarters (as predicted both

by the theoretical responses and the VAR), this implies a higher real rate of interest that

persists for several quarters, even if the nominal rate has returned to its normal level. The

predicted and estimated inflation responses do not match as well as in the case of the other

two variables, but it should be noted that the estimated responses are highly imprecise.

The parameter values required for this degree of fit are consistent with the a priori

restrictions implied by the model’s microeconomic foundations. The values estimated by

Rotemberg and Woodford are shown in Table 4.1. The table also includes their “calibrated”

values for several model parameters that cannot be identified from the impulse responses;

these are included so as to provide further insight into the economic significance (and plau-

sibility) of the estimated parameters, and also because some of the additional parameters
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Table 4.1: Parameter values in the quarterly model of Rotemberg and Woodford (1997).

α 0.66
β 0.99
ϕ 0.63
ψ 0.88

σ−1 0.16
ν 0.11

φ−1 0.75
ωw 0.14
ωp 0.33
ω 0.47

εmc 0.63
(θ − 1)−1 0.15

ζ 0.14
κ .024

matter for the welfare evaluation of alternative policies.

Like most of the equilibrium business-cycle literature, they assume a Cobb-Douglas ag-

gregate production function, f(h) = hλ, and calibrate the elasticity λ to be 0.75 on the basis

of the observed labor share in national income.64 This implies that the component of the

elasticity of real marginal cost with respect to output that is due to the diminishing marginal

product of labor should equal ωp = 0.33. They furthermore propose, on the basis of other

structural VAR studies that estimate real wage responses, that the elasticity of the real wage

with respect to output changes not associated with any change in production possibilities is

approximately of the magnitude 0.3. This would imply an overall elasticity of average real

marginal cost with respect to aggregate output of εmc = 0.63.

Since in their cashless model, εmc = ω + σ−1, the estimated value of σ−1 implies that

ω = ωw + ωp = 0.47, and hence that ωw = 0.14. Since ωw = νφ, where ν measures the

curvature of the disutility of labor function and φ is the inverse of the labor elasticity, the

64Because the assumed value of θ implies a ratio of price to marginal cost of 1.15, a labor elasticity of
0.75 implies that one should observe a labor share of 0.75/1.15 = 0.65, which is about what is observed on
average for the U.S.
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implied value of ν is 0.75(0.14) = 0.11. This is a very low degree of curvature, but still

a positive one, and so the implied preferences for the representative household satisfy the

standard concavity restrictions. While the implication of highly elastic responses of voluntary

labor supply to real wage variations may be judged implausible, the problem is a familiar

one for equilibrium business-cycle models (such as standard RBC models) that incorporate

a wage-taking representative-household model of labor supply.65

Given this value for ω, it is then possible to estimate a value for ψ, namely 0.88. This

value is also positive, as required by the model. A variety of values of α and ϕ would be

consistent with this value for ψ. Rotemberg and Woodford calibrate α = 0.66 on the basis

of survey evidence on the typical frequency of price changes in the U.S. economy, such as

that of Blinder et al. (1998, Table 4.1). (This value of α implies a mean time between price

changes of 3 quarters.) The estimate of ψ then implies the value ϕ = 0.63, which is between

zero and one as required by the theory.

Finally, given these values for α and β, the estimated value of κ is consistent with the

theoretical prediction that66

κ ≡ (1− α)(1− αβ)

α
ζ

in the case that ζ (the measure of “real rigidity” from a variety of sources, discussed in

chapter 3) is equal to 0.14. Under the Rotemberg-Woodford assumptions regarding the

structure of production costs and demand, the degree of real rigidity should be given by

ζ =
εmc

1 + ωθ
,

as shown in chapter 3. Hence the required value of ζ is consistent with the values obtained for

εmc and ω in the case that the elasticity of substitution among alternative differentiated goods

is equal to θ = 7.88. This value is greater than one, as required by the theoretical model, and

65Rotemberg and Woodford point out that the assumption of extremely elastic labor supply is not necessary
to make their estimated low value of κ consistent with the theoretical restrictions of the model, but only
to make the model consistent with the observation of an only modestly procyclical real wage response to
monetary policy shocks.

66See equation (xx) of chapter 3. This corresponds to the case of specific factor markets, CES preferences
over differentiated goods, and no intermediate inputs, as in the baseline model developed in that chapter.
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Figure 4.16: Predicted [solid line] and estimated [dashed line] second moments of quarterly
U.S. data, 1980:1-1995:4. Source: Rotemberg and Woodford (1997).

is also a fairly plausible magnitude; it is neither so small as to imply an implausible degree

of market power for the typical producer in the U.S. economy (it implies an average markup

of prices over marginal cost of less than 15 percent), nor so large as to make it implausible

that suppliers should leave their prices unchanged for a period of nine months on average.

It is thus possible to account for the estimated impulse responses to an identified monetary

policy shock fairly accurately, assuming parameter values that are not only theoretically

possible, but that are also consistent with a variety of other observations about the U.S.

economy. Once the parameters of the structural equations have been assigned numerical

values in this way, it is then possible to specify the joint stochastic process for the two

composite real disturbances {gt, Ŷ
n
t } so as to match other features of the estimated joint

distribution of the three time series characterized by the Rotemberg-Woodford VAR. Figure

4.16 shows the extent to which this is possible. The figure plots the estimated autocovariance
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and cross-covariance functions for the three variables (the ones implied by the estimated

VAR model), and together with these the predictions of the theoretical model, given the

Rotemberg-Woodford specification of the exogenous disturbance processes. These match

quite closely. For example, it is worth noting that the model has no difficulty accounting for

the observed degree of persistence of either the fluctuations in inflation or in the deviations

of output from trend over this sample period. Nor does it have difficulty accounting for such

often-remarked features of the data as the negative correlation between output and lagged

interest rates and the positive correlation between output and interest-rate leads.

Of course, these last successes of the theoretical model are mainly a result of assuming

real disturbances with the proper statistical properties; Rotemberg and Woodford impose no

a priori restrictions upon the joint law of motion for the two composite disturbances, except

that they be stationary processes that evolve independently of the monetary policy shocks.

Because the structural VAR model implies that only a small amount of the variability of any

of the three variables is ultimately caused by the identified monetary policy disturbances,

the restriction that the assumed real disturbances be independent of the identified monetary

policy shocks constrains only slightly their ability to choose disturbance processes that imply

the desired second moments for the data series. If one were instead to start with tightly

parameterized a priori assumptions about the laws of motion of the disturbance processes,

as is common both in the literature on maximum-likelihood estimation of structural macroe-

conometric models and in the literature on calibrated equilibrium business-cycle models, one

might instead find that the model would fit the properties of the time series less well.67 Yet

the theory developed here gives one no reason to assume particular kinds of “simple” laws

of motion for the real disturbances. Indeed, it implies that each of the real disturbances is

actually a composite of many different sorts of underlying real disturbances, and that many

kinds of real disturbances should affect both gt and Ŷ n
t , albeit with different dynamics. Thus

67For criticism of the model on this ground, see Fuhrer (1997), who assumes that the real disturbances
should be serially uncorrelated. McGrattan (1999) also finds considerably worse performance when the real
disturbance processes are assumed to consist solely of a production-function residual and variation in real
government purchases. But the theoretical model allows for preference disturbances as well, which may play
an important role in accounting for the historical time series.



4. DELAYED EFFECTS OF MONETARY POLICY 87

there is no reason to expect the two processes to have simple serial correlation properties, or

to be uncorrelated with one another.

Because the approach to the design of optimal monetary policy rules emphasized in

chapter 8 below makes the form of an optimal policy rule independent of the statistical

properties of the real disturbances, I do not here further discuss the details of the disturbance

processes estimated by Rotemberg and Woodford. However, it is perhaps of some interest

to note the implications of their estimates for the question of the variability of the natural

rate of interest. In their IS relation (4.7), it is only the forecastable component Etr̂
n
t+2 that

matters, owing to the assumption that interest-sensitive private expenditure is predetermined

two quarters in advance. Thus it seems most appropriate to ask about the variability of this

exogenous term that is implied by the residuals of the estimated IS relation. As reported

in Woodford (1999a), this (annualized) series has a standard deviation of 3.72 percentage

points. Since the estimated long-run average funds rate and inflation rate imply a mean

natural rate of interest of only 2.99 percentage points, this implies that even a one-standard

deviation decline in the natural rate involves a natural rate well below zero.68

Thus these estimates imply that the natural rate of interest should be negative fairly

often. This means that a policy under which the funds rate would always equal Et−2r̂
n
t + π̄ —

as would be necessary, according to the Rotemberg-Woodford model, in order to completely

stabilize both Et−2πt and Et−2xt — would be consistent with the zero lower bound for the

funds rate only if the inflation target π̄ is well above zero. Thus the zero bound creates a

tension between inflation stabilization and the pursuit of a low average rate of inflation, as

is discussed further in section xx of chapter 6.69

68Using a quite different approach, Laubach and Williams (2001) estimate a natural-rate series for the
U.S. that exhibits substantial variability, though not quite so much. When they assume that the component
of the natural rate of interest due to factors other than variation in the economy’s long-run growth rate is
a stationary AR(2) process, they estimate the standard deviation of the natural rate to be 1.98 percentage
points. Their estimate of low-frequency variation implies that the natural rate was as low as only 10 basis
points in late 1994. Since their method seeks only to isolate a low-frequency component of natural-rate
variations, while theory indicates that higher-frequency variations are likely as well, it is quite plausible that
the overall variability of the natural rate should be greater than that estimated by Laubach and Williams,
even assuming that they correctly identify low-frequency variations.

69The tradeoff between these two objectives is demonstrated quantitatively in the context of the estimated
model by Figure 5 in Rotemberg and Woodford (1997).
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Figure 4.17: Predicted [solid line] and estimated [dashed line] impulse responses to a mone-
tary policy shock. Source: Amato and Laubach (2001).

Amato and Laubach (2002) extend the analysis of Rotemberg and Woodford by adding a

real wage series to the VAR, and estimating the impulse response to wages as well prices to a

monetary policy shock. Their estimated impulse responses to an identified monetary policy

shock are shown in Figure 4.17. They find that the real wage response is never significantly

different from zero, just as in the estimates of Christiano et al. (2001) reported in Figure xx

of chapter 3. As a result, the estimated responses (taking account of the real wage response

along with the others, which are changed very little by the inclusion of the additional series in

the VAR) are no longer consistent with the simple Rotemberg-Woodford model, with wage-

taking households, for any assumed preference parameters. Amato and Laubach extend the

model to allow wages as well as prices to be sticky, along the lines of the models discussed in

section xx of chapter 3. The aggregate-supply block of their model consists of a pair of wage

and price inflation equations that generalize equations (xx) – (xx) of chapter 3 to incorporate
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Table 4.2: Parameter values in the quarterly model of Amato and Laubach (2002).

αw, αp 0.66
β 0.99

ϕw, ϕp 0.56
σ−1 0.26
ωw 0.27
ωp 0.33

(θw − 1)−1 0.13
(θp − 1)−1 0.19

ξw .066
ξp .058
κw .035
κp .019

predetermined wage and price changes like those in the Rotemberg-Woodford model.

The numerical parameter values in the Amato-Laubach model are given for comparison

purposes in Table 4.2. Here the meaning of the parameters is the same as in the presentation

of the model of Erceg et al. (2000) in chapter 3, except for the introduction of the parameters

ϕw, ϕp (assumed for simplicity to take a common value) that indicate the fraction of newly

revised wages and prices respectively that take effect after only one quarter. The values of

αp, β, and ωp are calibrated as in Rotemberg and Woodford, and αw = αp and γw = γp are

assumed to reduce the number of free parameters. Given the calibrated value for ωp, the

ratio κp/ξp is also fixed. The free parameters σ, ξw, κw, κp and the common value of ψ in

both inflation equations are then estimated to minimize a measure of the distance between

the theoretical and estimated impulse responses. These estimates then imply the remaining

parameter values listed in the table.

The Amato-Laubach model parameter values imply predicted responses of output, infla-

tion and the nominal interest rate quite similar to those of the Rotemberg-Woodford model,

but in addition the model now implies a smaller real wage response, and one that is more

gradual and more persistent than the output response. (The responses predicted by their

model, given the estimated parameter values, are shown in Figure 4.17.) The model yields
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these predictions as a result of substantial wage as well as price stickiness, indicated by the

small estimated value for κw. While κw is estimated to be larger than κp, so that the real wage

is predicted to move slightly procyclically (see Figure xx of chapter 3), the two coefficients

are similar in magnitude, and the predicted real wage response is quite small. Note that

despite the fact that wages are estimated to be relatively sticky, the estimated model still

implies very low curvature of the disutility of labor supply. Even though ωw can no longer be

directly inferred from the relative magnitudes of the output and real-wage responses, it can

be inferred from the relative magnitudes of κw and ξw; the fact that Amato and Laubach

estimate that ξw is large relative to the size of κw can be reconciled with the underlying

microeconomic foundations of the model only if the marginal disutility of working does not

rise much with increases in employment.

Another weakness of the simple Rotemberg-Woodford model is its failure to predict an

inflation response as persistent as the one indicated by the VAR. This response is estimated

quite imprecisely by their VAR; but as discussed in chapter 3, a large number of other

studies also conclude that inflation responses are both more delayed and more persistent

than predicted by their model. A simple way to increase the realism of this aspect of their

model is to assume that prices are indexed to past inflation between the occasions on which

they are re-optimized, as discussed in section xx of chapter 3.70 Let us assume flexible

wages and staggered price-setting, with individual prices partially indexed to a lagged price

index, and again let the parameter 0 ≤ γ ≤ 1 indicate the degree of indexation between

the occasions on which prices are revised. Suppose that there is a delay of s = 1 quarter

before price revisions take effect, but once again a delay of d = 2 quarters before interest-rate

disturbances can affect real expenditure. Finally, suppose that this latter delay is interpreted

as an information delay rather than actual precommitment of real expenditure, so that the

µt term disappears from (4.15) as discussed at the end of the previous section.71 With the

70Boivin and Giannoni (2001) also estimate a variant of the Rotemberg-Woodford model that allows for
inflation inertia of a similar sort to that discussed here, but derived from the hypothesis of backward-looking
“rule-of-thumb” price-setters proposed by Gali and Gertler (1999). Their estimated fraction of backward-
looking price-setters for the post-1980 sample period implies a degree of inflation inertia that is only very
slightly greater than that implied by the model discussed in the text in the case that γ = 1.
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Figure 4.18: Predicted [solid line] and estimated [dashed line] impulse responses to a mon-
etary policy shock, in the case of a model with inflation inertia. Estimated responses are
again taken from Rotemberg and Woodford (1997).

addition of the partial indexation, and specializing to the case just described, the aggregate

supply relation (4.17) becomes

πt − γπt−1 = κ Et−1xt+1 +
(

1− α

α
+ αβ

)
Et−1(πt+1 − γπt). (4.22)

In this variant model, it is no longer necessary to assume that some goods price changes

must be determined two quarters in advance (as in the Rotemberg-Woodford model) in order

to account for the fact that the maximum decline in inflation does not occur in the quarter

71If one instead adopts the alternative interpretation, as in Rotemberg and Woodford, Amato and Laubach,
and Boivin and Giannoni, one finds that the model best fits the estimated impulse responses when the
coefficient on Et−1µt in the AS relation is made as small as possible. This indicates the superiority of the
interpretation proposed here. Note that the problem does not appear in Rotemberg and Woodford (1997)
because the Et−1µt term affects only the predicted response of inflation in the first quarter following the
quarter of the shock, and in their model that particular response can be matched by assuming a sufficiently
large value for ψ > 0. Here instead the assumption affects the degree of fit because we impose ψ = 0.
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Table 4.3: Parameter values in an estimated quarterly model with inflation inertia.

α 0.83
β 0.99
γ 1.00
ψ 0

σ−1 0.22
ζ 0.15
κ .0052

following the monetary policy shock. As shown in Figure 4.18, the model proposed here

predicts a further decline in inflation in the second quarter even when ψ = 0; hence we

impose the assumption that ψ = 0 for the sake of simplicity.

Except for the replacement of (4.20) by (4.22), we continue to assume the same model

as in Rotemberg and Woodford. The model parameters σ, κ, and γ are estimated so as

to match the same three impulse responses as in Figure 4.8, assuming β = 0.99 as before,

and imposing the constraint that 0 ≤ γ ≤ 1. The estimated parameter values are shown in

Table 4.3.72 We find the best fit when γ = 1, implying full indexation to lagged inflation,

as assumed by Christiano et al. (2001).73 The resulting aggregate supply relation is fairly

similar to the one proposed by Fuhrer and Moore (1995a, 1995b), and used in other small

econometric models of the U.S. monetary transmission mechanism, such as Orphanides et

al. (1997).74

72These parameters are those that minimize the simple sum of squared deviations between the predicted
and estimated responses of the three variables in the first ten quarters following the shock, i.e., the statistic
shown in the last column of Table 4.4.

73This implies roughly equal weights on lagged inflation and expected future inflation in the aggregate
supply relation (4.22), which is similar to what Boivin and Giannoni (2001) find when the estimate a model
with a similar, but not quite identical, specification. In addition to introducing inflation inertia through
“rule-of-thumb” price-setting of the kind hypothesized by Gali and Gertler (1999), the model of Boivin and
Giannoni differs from this one in assuming that only aggregate purchases are predetermined two quarters in
advance, and not the purchases of individual goods.

74Indeed, the three-equation model, consisting of (4.7), (4.22), and the estimated federal funds-rate reaction
function, is quite similar in form to the three-equation model of Fuhrer and Moore (1995b). The main
difference is in the way that delays in the effects of monetary policy are introduced here; Fuhrer and Moore
assume an AS relation that involves no delay, and an IS relation in which output responds to a long-term
real interest rate one quarter earlier, as opposed to the expectation two quarters earlier of the present
quarter’s long-term real rate (as in Rotemberg and Woodford and here). Other differences in the Fuhrer and
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Table 4.4: Root-mean-square deviations between predicted and estimated responses for each
of three variables, averaged over quarters 1 through 10 following the monetary policy shock.
(Each reported value should be multiplied by 10−3.) The final column indicates the sum of
squared deviations over the ten quarters, summing over the three variables. (These values
should be multiplied by 10−6.)

Model rms(y) rms(π) rms(i) SSD
γ = 0 0.30 0.73 1.02 10.49
γ = 1 0.40 0.59 0.58 8.48

Because this specification predicts a more inertial response of inflation (and hence of the

real rate of interest), the value of σ required to account for the observed output decline

following a monetary tightening is now somewhat smaller. In addition, because the effects

of low real marginal costs on inflation cumulate over time under the γ = 1 specification, the

size of κ required to account for the observed inflation decline is now much smaller than that

indicated in Table 4.1. If we continue to assume that α = 0.66, as in the model of Rotemberg

and Woodford, this would imply ζ = 0.03, a value that is perhaps too small to be plausible

(see the discussion in chapter 3). However, survey evidence on the frequency of price changes

no longer requires that α be this small, as one might interpret some of the observed price

changes as automatic price changes as a result of indexation, rather than reconsiderations of

pricing policy. If, for example, we assume that re-optimizations occur once every six quarters

on average (rather than every three quarters, as assumed by Rotemberg and Woodford), then

α = 0.83. In this case, the estimated value of κ would correspond to ζ = 0.15, as shown

in the table. This requires only real rigidities of a magnitude that can be reconciled with

plausible assumptions about preferences and technology, as shown in chapter 3. If one is

willing to assume an even larger value of α, less real rigidity would be required; for example,

if α = 0.9, one would only need ζ = 0.43.

The degree of fit to the estimated impulse responses obtained under these parameter

values is shown in Figure 4.18. Table 4.4 gives the root-mean-square deviation between the

Moore specification include the inclusion of lagged output terms in the IS relation and the assumption of an
interest-rate rule involving only first differences of the funds rate.
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predicted and estimated responses in the case of each of the three panels of the figure, and

compares these with the corresponding measures for Figure 4.15. Despite the imposition

of the restriction that ψ = 0, the model that incorporates inflation inertia better fits the

estimated responses of both inflation and the nominal interest rate, though at the price of a

somewhat worse fit to the estimated output response. (Assuming that γ = 1 increases the

predicted persistence of the effect of the shock on inflation, which better fits the estimated

response, but also reduces the predicted persistence of the effect on output, despite the lower

assumed value of κ. Thus there is some tension between the assumptions required to account

for the persistence of inflation responses and those required to account for the persistence of

output responses.) The overall sum of squared deviations is reduced by 19 percent.

While the model with inflation inertia better fits the point estimates for the response of

inflation and interest rates to a monetary policy shock implied by the VAR of Rotemberg

and Woodford (1997), the imprecision of those estimates makes it hard to say, on the basis

of this evidence alone, that a large value of γ is clearly more realistic. However, as discussed

in chapter 3, a number of other studies — both single-equation estimates and complete

estimated models — have also found that similar aggregate supply relations fit U.S. data

better than do specifications that do not incorporate inflation inertia. Hence in part II of

this study we consider in some detail the consequences for optimal policy of indexation to

lagged inflation of this kind.

4.3 Additional Sources of Delay

[TO BE ADDED]

5 Monetary Policy and Investment Dynamics

One of the more obvious omissions in the baseline model developed above is the absence

of any effect of variations in private spending upon the economy’s productive capacity, and
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hence upon supply costs in subsequent periods. This means that we have treated all private

expenditure as if it were non-durable consumption expenditure; and while this has kept our

analysis of the effects of interest rates on aggregate demand quite simple, one may doubt the

accuracy of the conclusions obtained, given the obvious importance of variations in invest-

ment spending both in business fluctuations generally and in the the transmission mechanism

for monetary policy in particular. We have suggested that the baseline model ought not be

interpreted as one in which investment spending is literally constant; in particular, we have

argued that the parameter σ in that model ought not be “calibrated” on the basis of studies

of intertemporal substitution of consumer expenditure, but should instead be taken to refer

to the degree of intertemporal substitutability of overall private expenditure, largely as a

result of intertemporal substitution in investment spending. In this section we develop an

extended version of the model in which investment spending is explicitly modeled, to see to

what extent such a more detailed model has properties different than those of the baseline

model, when the latter is calibrated to reflect an elasticity of intertemporal substitution of

overall spending that is several times as large as the elasticity of non-durable consumption.

5.1 Investment Demand with Sticky Prices

Our first task is to develop a model of optimizing investment demand by suppliers with sticky

prices, and that are demand-constrained as a result. We begin by modifying our production

function to include an explicit representation of the effects of variation in the capital stock.

The production function for good i is assumed to be of the form

yt(i) = kt(i)f(Atht(i)/kt(i)), (5.1)

where f is an increasing, concave function as before, with f(0) = 0. Note that in the case

that kt(i) is a constant, this reduces to the form of production function assumed in chapter 3,

except that the technology factor At is now assumed to multiply the labor input rather than

the entire production function (“labor-augmenting” technical progress). We now change the

specification of the technology factor so that a one permanent increase in At will still result
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in a one percent long-run increase in equilibrium output, now that the eventual increase in

the capital stock is taken into account. (In our model with endogenous capital accumulation,

the capital used per unit of labor will eventually increase in proportion to the increase in At,

in order to maintain a constant long-run relation between the marginal product of capital

and the rate of time preference of households.)

We shall assume that each monopolistic supplier makes an independent investment deci-

sion each period; there is a separate capital stock kt(i) for each good, that can be used only

in the production of good i, rather than a single capital stock that can “rented” for use in

any sector, at a single economy-wide “rental rate” for capital services. The latter assump-

tion is instead remarkably common in the literature on intertemporal general-equilibrium

models with sticky prices; important early examples of models of that kind include Hairault

and Portier (1993), Kimball (1995), Yun (1996), King and Watson (1996), King and Wol-

man (1996), and Chari et al. (2000), among others. Simplicity probably accounts for this

(together with the bad example set by early examples of intertemporal general-equilibrium

models with imperfect competition, such as Rotemberg and Woodford, 1992). But the as-

sumption of a single economy-wide rental market for capital is plainly unrealistic, and its

consequences are far from trivial in the present context. For it would imply that differences

in the demand for goods that have set their prices at different times should result in instan-

taneous reallocation of the economy’s capital stock from lower-demand to higher-demand

sectors, and this in turn has an important effect upon the degree to which marginal cost of

supply should vary with the demand for a given good. We have shown in chapter 3 that the

assumption of economy-wide factor markets greatly reduces the predicted degree of strategic

complementarity of the pricing decisions of different suppliers, and in so doing increases the

speed of adjustment of the overall level of prices to varying demand conditions. Hence we

here assume instead that while all sectors purchase investment goods from the same suppliers

(i.e., that the investment goods used by the different sectors are perfect substitutes for their

producers), these goods cease to be substitutable once they have been purchased for use

in production in a particular sector. Capital can be reallocated from low-demand to high-
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demand sectors only over time, through reduced new investment in the former sectors and

increased new investment in the latter; and the speed with which this occurs is limited by the

assumption of adjustment costs. The resulting model is more realistic, and also represents

a more direct generalization of the constant-capital model developed in chapter 3. (That

model implicitly assumed a constant quantity of capital kt(i) available for the production of

each individual good, rather than a constant aggregate capital stock that would be efficiently

reallocated each period among sectors. We show below that the constant-capital model can

be recovered as a limiting case of the present model, in the limit of very high adjustment

costs for investment.)

We assume convex adjustment costs for investment by each firm, of the usual kind as-

sumed in neoclassical investment theory. Increasing the capital stock to the level kt+1(i)

in period t + 1 requires investment spending in the amount It(i) = I(kt+1(i)/kt(i))kt(i) in

period t. Here It(i) represents purchases by firm i of the composite good, defined as the

usual Dixit-Stiglitz aggregate over purchases of each of the continuum of goods (with the

same constant elasticity of substitution θ > 1 as for consumption purchases). In this way,

the allocation of investment expenditure across the various goods is in exactly the same

proportion as consumption expenditure, resulting in a demand curve for each producer that

is again of the form

yt(i) = Yt

(
pt(i)

Pt

)−θ

, (5.2)

but where now aggregate demand is given by Yt = Ct+It+Gt, in which expression It denotes

the integral of It(i) over the various firms i. We assume as usual that the function I(·) is

increasing and convex; the convexity implies the existence of costs of adjustment. We further

assume that near a zero growth rate of the capital stock, this function satisfies I(1) = δ,

I ′(1) = 1, and I ′′(1) = εψ, where 0 < δ < 1 and εψ > 0 are parameters. This implies that

in the steady state to which the economy converges in the absence of shocks (which involves

a constant capital stock, as we abstract from trend growth), the steady rate of investment

spending required to maintain the capital stock is equal to δ times the steady-state capital

stock (so that δ can be interpreted as the rate of depreciation). It also implies that near the
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steady state, a marginal unit of investment spending increases the capital stock by an equal

amount (as there are locally no adjustment costs). Finally, in our log-linear approximation

to the equilibrium dynamics, εψ will be the parameter that indexes the degree of adjustment

costs.

Profit-maximization by firm i then implies that the capital stock for period t + 1 will be

chosen in period t to satisfy the first-order condition

I ′(kt+1(i)/kt(i)) = EtQt,t+1Πt+1 {ρt+1(i) +

(kt+2(i)/kt+1(i))I
′(kt+2(i)/kt+1(i))− I(kt+2(i)/kt+1(i))} ,

where ρt+1(i) is the (real) shadow value of a marginal unit of additional capital for use by firm

i in period t + 1 production, and Qt,t+1Πt+1 is the stochastic discount factor for evaluating

real income streams received in period t + 1. Expressing the real stochastic discount factor

as βλt+1/λt, where λt is the representative household’s marginal utility of real income in

period t, and then log-linearizing this condition around the steady-state values of all state

variables, we obtain

λ̂t + εψ(k̂t+1(i)− k̂t(i)) = Etλ̂t+1 +

[1− β(1− δ)]Etρ̂t+1(i) + βεψEt(k̂t+2(i)− k̂t+1(i)), (5.3)

where λ̂t ≡ log(λt/λ̄), k̂t(i) ≡ log(kt(i)/K̄), ρ̂t(i) ≡ log(ρt(i)/ρ̄), and variables with bars

denote steady-state values.

Note that ρt+1(i) would correspond to the real “rental price” for capital services if a

market existed for such services, though we do not assume one. It is not possible in the

present model to equate this quantity with the marginal product, or even the marginal

revenue product of capital (using the demand curve (5.2) to compute marginal revenue).

For suppliers are demand-constrained in their sales, given the prices that they have posted;

it is not possible to increase sales by moving down the demand curve. Thus the shadow

value of additional capital must instead be computed as the reduction in labor costs through
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substitution of capital inputs for labor, while still supplying the quantity of output that

happens to be demanded. We thus obtain

ρt(i) = wt(i)

(
f(h̃t(i))− h̃t(i)f

′(h̃t(i))

Atf ′(h̃t(i))

)
,

where wt(i) is the real wage for labor of the kind hired by firm i and h̃t(i) ≡ Atht(i)/kt(i)

is firm i’s effective labor-capital input ratio.75 We can alternatively express this in terms of

the output-capital ratio for firm i (in order to derive an “accelerator” model of investment

demand), by substituting (5.1) to obtain

ρt(i) =
wt(i)

At

f−1(yt(i)/kt(i))[φ(yt(i)/kt(i))− 1], (5.4)

where φ(y/k) is the reciprocal of the elasticity of the function f , evaluated at the argument

f−1(y/k).

We the recall from chapter 3 the first-order condition for optimizing labor supply, which

we may write in the form

wt(i) =
vh(f

−1(yt(i)/kt(i))kt(i)/At; ξt)

λt

, (5.5)

again writing labor demand in terms of the demand for good i. Substituting this into (5.4)

and log-linearizing, we obtain

ρ̂t(i) =

(
νφ +

φ

φ− 1
ωp

)
(ŷt(i)− k̂t(i)) + νk̂t(i)− λ̂t − ωqt, (5.6)

where φ > 1 is the steady-state value of φ(y/k), i.e., the reciprocal of the elasticity of the

production function with respect to the labor input, ωp > 0 is the negative of the elasticity

of f ′(f−1(y/k)) with respect to y/k, and ν > 0 is once again the elasticity of the marginal

disutility of labor with respect to labor supply. (The composite exogenous disturbance qt

is defined as in equation (2.2).) Substituting this into (5.3), we then have an equation to

solve for the dynamics of firm i’s capital stock, given the evolution of demand ŷt(i) for its

product, the marginal utility of income λ̂t, and the exogenous disturbance qt.

75Note that in the case of a flexible-price model, the ratio of wt(i) to the denominator would always equal
marginal revenue, and so this expression would equal the marginal revenue product of capital, though it
would be a relatively cumbersome way of writing it.
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As the coefficients of these equations are the same for each firm, an equation of the same

form holds for the dynamics of the aggregate capital stock (in our log-linear approximation).

Our equilibrium condition for the dynamics of the capital stock is thus of the form

λ̂t + εψ(K̂t+1 − K̂t) = β(1− δ)Etλ̂t+1 +

[1− β(1− δ)][ρyEtŶt+1 − ρkK̂t+1 − ωqt] + βεψEt(K̂t+2 − K̂t+1), (5.7)

where the elasticities of the marginal valuation of capital are given by

ρy ≡ νφ +
φ

φ− 1
ωp > ρk ≡ ρy − ν > 0.

The implied dynamics of investment spending are then given by

Ît = k[K̂t+1 − (1− δ)K̂t], (5.8)

where Ît is defined as the percentage deviation of investment from its steady-state level, as

a share of steady-state output, and k ≡ K̄/Ȳ is the steady-state capital-output ratio.

We have here derived investment dynamics as a function of the evolution of the marginal

utility of real income of the representative household. This is in turn related to aggregate

spending through the relation λt = uc(Yt − It −Gt; ξt), which we may log-linearize as

λ̂t = −σ−1(Ŷt − Ît − gt), (5.9)

where the composite disturbance gt once again reflects the effects both of government pur-

chases and of shifts in private impatience to consume.76 Finally, recalling the relation between

the marginal utility of income process and the stochastic discount factor that prices bonds,

the nominal interest rate must satisfy

1 + it = {βEt[λt+1/(λtΠt+1)]}−1,

which we may log-linearize as

ı̂t = Etπt+1 + λ̂t − Etλ̂t+1. (5.10)

76Note that the parameter σ in this equation is no longer the intertemporal elasticity of substitution in
consumption, but rather C̄/Ȳ times that elasticity. In a model with investment, these quantities are not
exactly the same, even in the absence of government purchases.
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The system of equations (5.7) – (5.10) then comprise the “IS block” of our model. These

jointly suffice to determine the paths of the variables {Ŷt, Ît, K̂t, λt}, given an initial capital

stock and the evolution of short-term real interest rates {ı̂t − Etπt+1}. The nature of the

effects of real interest-rate expectations on these variables is discussed further in section 3.3

below.

5.2 Optimal Price-Setting with Endogenous Capital

We turn next to the implications of an endogenous capital stock for the price-setting decisions

of firms. The capital stock affects a firm’s marginal cost, of course; but more subtly, a firm

considering how its future profits will be affected by the price it sets must also consider how

its capital stock will evolve over the time that its price remains fixed.

We begin with the consequences for the relation between marginal cost and output. Real

marginal cost can be expressed as the ratio of the real wage to the marginal product of labor.

Again writing the factor input ratio as a function of the capital/output ratio, and using (5.5)

for the real wage, we obtain

st(i) =
vh(f

−1(yt(i)/kt(i))kt(i)/At; ξt)

λtAtf ′(f−1(yt(i)/kt(i)))

for the real marginal cost of supplying good i. This can be log-linearized to yield

ŝt(i) = ω(ŷt(i)− k̂t(i)) + νk̂t(i)− λ̂t − [νh̄t + (1 + ν)at], (5.11)

where once again ω ≡ ωw + ωp ≡ νφ + ωp > 0 is the elasticity of marginal cost with

respect to a firm’s own output, and

qt ≡ ω−1[νh̄t + (1 + ν)at]

is the percentage change in output required to maintain a constant marginal disutility of

output supply, in the case that the firm’s capital remains at its steady-state level.77

77That is, qt measures the output change that would be required to maintain a fixed marginal disutility
of supply given possible fluctuations in preferences and technology, but not taking account of the effect of
possible fluctuations in the firm’s capital stock; thus qt is again an exogenous disturbance term. Note that
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Letting ŝt without the index i denote the average level of real marginal cost in the

economy as a whole, we note that (5.11) implies that

ŝt(i) = ŝt + ω(ŷt(i)− Ŷt)− (ω − ν)(k̂t(i)− K̂t).

Then using (5.2) to substitute for the relative output of firm i, we obtain

ŝt(i) = ŝt − (ω − ν)k̃t(i)− ωθp̂t(i), (5.12)

where p̂t(i) ≡ log(pt(i)/Pt) is the firm’s relative price, and k̃t(i) ≡ k̂t(i) − K̂t is its relative

capital stock.

As in chapter 3, the Calvo price-setting framework implies that if firm i resets its price

in period t, it chooses a price to satisfy the (log-linear approximate) first-order condition

∞∑

k=0

(αβ)kEt[p̂t+k(i)− ŝt+k(i)] = 0.

Substituting (5.12) for st+k(i) in this expression, we obtain

∞∑

k=0

(αβ)kEt[(1 + ωθ)p̂t+k(i)− ŝt+k + (ω − ν)k̃t+k(i)] = 0. (5.13)

We can as before express the entire sequence of values {p̂t+k(i)} as a linear function of the

relative price p̂∗t chosen at date t and aggregate variables (namely, the overall rate of price

inflation over various future horizons). However, we cannot yet solve for the optimal choice

of p̂∗t , because (5.13) also involves the relative capital stock of firm i at a sequence of future

dates, and this depends upon the investment policy of the firm.

We must therefore use the investment theory of the previous section to model the evolu-

tion of firm i’s relative capital stock. Equation (5.7) implies that

εψ(k̃t+1(i)− k̃t(i)) = [1− β(1− δ)][ρyEt(ŷt+1(i)− Ŷt)− ρkk̃t+1(i)] + βεψEt(k̃t+2(i)− k̃t+1(i)).

the expression given here for qt in terms of the underlying disturbances differs from that in section 2.1 above,
because of our differing specification here of how the technology factor At shifts the production function.
Nonetheless, this definition of qt is directly analogous to that used in the case of the constant-capital model;
it is actually our use of the notation at that is different here.
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Again using the demand curve to express relative output as a function of the firm’s relative

price, this can be written as

Et[Q(L)k̃t+2(i)] = ΞEtp̂t+1(i), (5.14)

where the lag polynomial is

Q(L) ≡ β − [1 + β + (1− β(1− δ))ρkε
−1
ψ ]L + L2,

and

Ξ ≡ (1− β(1− δ))ρyθε
−1
ψ > 0.

One can easily show78 that the lag polynomial can be factored as

Q(L) = β(1− µ1L)(1− µ2L),

where the two roots satisfy 0 < µ1 < 1 < β−1 < µ2. We also note that

Ξ = −θ
ρy

ρk

Q(1) = βθ
ρy

ρk

µ2(1− µ1)(1− µ−1
2 ).

It then follows that in the case of any bounded process {p̂t(i)}, (5.14) has a unique bounded

solution for the evolution of {k̃t(i)}, given an initial capital stock for the firm. This solution

is given by

k̃t+1(i) = µ1k̃t(i)− zt(i), (5.15)

which we may integrate forward starting from an initial condition k̃t(i); here we define

zt(i) ≡ β−1Ξ
∞∑

j=1

µ−j
2 Etp̂t+j(i).

Condition (5.13) requires that we evaluate the infinite sum
∑∞

k=0(αβ)kEtk̃t+k(i). We note

that (5.15) implies that

Etk̃t+k+1(i) = µ1Etk̃t+k(i)− Etzt+k(i)

78The properties asserted follow directly from the observations that Q(0) = β > 0, Q(β) < 0, Q(1) < 0,
and that Q(z) > 0 for all large enough z > 0. These conditions imply that Q(z) has two real roots, one
between 0 and β and another that is greater than 1.
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for all k ≥ 0. Integrating this law of motion we then find that

Etk̃t+k(i) = µk
1k̃t(i)−

k−1∑

j=0

µk−1−j
1 Etzt+j(i),

from which it follows that

∞∑

k=0

(αβ)kEtk̃t+k(i) =
1

1− αβµ1

k̃t(i)− αβ

1− αβµ1

∞∑

j=0

(αβ)jEtzt+j(i). (5.16)

The final term in this last relation can furthermore be expressed in terms of expected relative

prices, yielding

∞∑

j=0

(αβ)jEtzt+j(i) =
Ξ

β(1− αβµ2)



∞∑

j=1

µ−j
2 Etp̂t+j(i)−

∞∑

j=1

(αβ)jEtp̂t+j(i)


 . (5.17)

Now substituting (5.16) – (5.17) for the sum of expected relative capital stocks in (5.13),

we obtain a relation that involves only the initial relative capital stock k̃t(i). This relation

can furthermore be simplified if we average it over all of the firms i that choose new prices

at date t. Because the Calvo model assumes that all firms are equally likely to choose new

prices at date t, the average value of k̃t(i) is zero (even though the average value of Etk̃t+k(i)

need not be zero for horizons k > 0). The average value of Etp̂t+k(i) can also be expressed

as

p̂∗t −
k∑

j=1

Etπt+j,

where p̂∗t denotes the average relative price (average value of log pt(i)/Pt) for the firms that

choose new prices at date t. With these substitutions, (5.13) yields an equation for p̂∗t of the

form

(a− b)p̂∗t =
∞∑

k=0

(αβ)kEtŝt+k + a
∞∑

k=1

(αβ)kEtπt+k − b
∞∑

k=1

µ−k
2 Etπt+k, (5.18)

where

a ≡ 1 + ωθ

1− αβ
+ (ω − ν)

α

1− αβ

Ξ

(1− αβµ1)(1− αβµ2)
> 0,

b ≡ (ω − ν)
α

1− µ−1
2

Ξ

(1− αβµ1)(1− αβµ2)
> 0.
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This allows us to solve for the average relative price chosen at date t by optimizing price-

setters, as a function of information at that date about the future evolution of average real

marginal costs and the overall rate of price inflation.

As in chapter 3, it is useful to quasi-difference this pricing relation in order to obtain an

aggregate supply relation. Equation (5.18) implies that

(a− b)Et[(1− αβL−1)(1− µ−1
2 L−1)p̂∗t ] =

Et[(1− µ−1
2 L−1)ŝt] + aαβEt[(1− µ−1

2 L−1)πt+1]− bµ−1
2 Et[(1− αβL−1)πt+1]. (5.19)

We then recall that in the Calvo pricing model the overall rate of price inflation will be given

by

πt =
1− α

α
p̂∗t .

Using this to substitute for p̂∗t in (5.19), we obtain an inflation equation of the form

πt = ξ0ŝt − ξ1Etŝt+1 + ψ1Etπt+1 − ψ2Etπt+2, (5.20)

where

ξ0 ≡ 1− α

α

1

a− b
, ξ1 ≡ µ−1

2 ξ0,

ψ1 ≡ a(β + µ−1
2 )− b(αβ + α−1µ−1

2 )

a− b
, ψ2 ≡ βµ−1

2 .

Once again, this allows us to solve for equilibrium inflation as a function of the current

and expected future average level of real marginal costs across sectors. (The sign of this

relationship is investigated numerically below.)

It remains to connect the expected evolution of real marginal costs, in turn, with ex-

pectations regarding real activity. Averaging (5.11) over firms i, and substituting (5.9) to

eliminate λ̂t, we obtain

ŝt = (ω + σ−1)Ŷt − σ−1Ît − (ω − ν)K̂t − [σ−1gt + ωqt]. (5.21)

Once again, real marginal costs are increasing in the current level of real activity; but now

this relation is affected not merely by exogenous disturbances to tastes and technology, but



106 CHAPTER 4. A NEO-WICKSELLIAN FRAMEWORK

also by fluctuations in the aggregate capital stock, and by the share of current aggregate

demand that is investment as opposed to consumption demand. Equations (5.20) – (5.21)

constitute the “aggregate supply block” of our extended model. They jointly replace the

aggregate supply relation of our baseline model, and serve to determine equilibrium inflation

dynamics as a function of the expected evolution of aggregate real expenditure, the aggregate

capital stock, and aggregate investment spending.

5.3 Comparison with the Baseline Model

Our complete extended model then consists of the system of equations (5.7) – (5.10) and

(5.20) – (5.21), together with an interest-rate feedback rule such as (1.7) specifying mon-

etary policy. We have a system of seven expectational difference equations per period

to determine the equilibrium paths of seven endogenous variables, namely the variables

{πt, ı̂t, Ŷt, K̂t, Ît, ŝt, λ̂t}, given the paths of three composite exogenous disturbances {gt, qt, ı̄t}.
It is useful to comment upon the extent to which the structure of the extended (variable-

capital) model remains similar, though not identical, to that of the baseline (constant-capital)

model.

We have already noted that the equations of the extended model consist of an “IS

block”(which allows us to solve for the paths of real output and of the capital stock, given

the expected path of real interest rates and the initial capital stock), an “AS block” (which

allows us to solve for the path of inflation given the paths of real output and of the capital

stock), and a monetary policy rule (which implies a path for nominal interest rates given the

paths of inflation and output). In this overall structure it is similar to the baseline model,

except that the model involves an additional endogenous variable, the capital stock, which is

determined by the “IS block” and taken as an input to the “AS block”, along with the level

of real activity.79 It also continues to be the case that real disturbances affect the determina-

tion of inflation and output only through their effects upon the two composite disturbances

79The structure of the model is thus similar to rational-expectations IS-LM models such as that of Sargent
and Wallace (1975), which allows for an endogenous capital stock.
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gt and qt. Previously, we had emphasized instead the disturbances gt and Ŷ n
t , but these

contained the same information as a specification of gt and qt. (The appropriate definition

of the natural rate of output in the context of the extended model is deferred to the next

subsection.) In the case of inflation determination alone (and determination of the output

gap) we were previously able to further reduce these to a single composite disturbance, r̂n
t .

This is no longer possible in the case of the extended model, although, as we discuss in the

next subsection, it is still possible to explain inflation determination in terms of the gap

between an actual and a “natural” real rate of interest; the problem is that with endogenous

variation in the capital stock, the natural rate of interest is no longer a purely exogenous

state variable.

We note also that the extended model’s “AS block” continues to be nearly as forward-

looking as that of the baseline model. The inflation equation (5.20) can once again be “solved

forward”80 to yield a solution of the form

πt =
∞∑

j=0

ΨjEtŝt+j, (5.22)

where the {Ψj} are constant coefficients. In the case of the baseline model, the coefficients

of this solution are necessarily all positive, and decay exponentially: Ψj = ξβj, for some

ξ > 0.81 In the extended model, the coefficients are not necessarily all positive. Nonetheless,

numerical analysis suggests that for empirically realistic parameter values, one has Ψj > 0

for all small enough values of j.

This is illustrated in Figure 4.19 in the case of parameter values chosen in the following

way. The values used for parameters α, β, φ, ν, ωp, ω, and θ are those given in Table 4.1,

drawn from the work of Rotemberg and Woodford (1997). The value used for σ is not the

same as in that study, instead, since as discussed earlier, the parameter σ of the baseline

model (and similarly of the model of Rotemberg and Woodford) should not be interpreted

80The existence of a unique bounded solution of this form depends as usual upon the roots of a characteristic
equation satisfying certain conditions, that we do not here examine further. We note however that in the
numerical work presented here, we find that the relevant condition is satisfied in the case of what we judge
to be empirically realistic parameter values.

81This follows from “solving forward” the corresponding inflation equation (xx) of chapter 3.
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Figure 4.19: The coefficients Ψj in inflation equation (5.22), for alternative sizes of investment
adjustment costs.

as the intertemporal elasticity of substitution of non-durable consumption expenditure —

it instead indicates the substitutability of private expenditure as a whole. In the extended

model, instead, σ does refer solely to the substitutability of consumption; so we now calibrate

this parameter to equal 1, which is roughly the degree of substitutability typically assumed

in the real business cycle literature (see, e.g., Kydland and Prescott, 1982; or King, Plosser

and Rebelo, 1988).82

We must also assign values to two new parameters, δ and εψ, relating to the dynamics of

the capital stock. We note that our model implies that the steady-state capital-output ratio

k ≡ K̄/Ȳ must satisfy

β−1 =
θ − 1

θ

φ− 1

φ

1

k
+ (1− δ).

82Strictly speaking, our calibration here is not identical to the standard RBC choice. For as noted above,
our σ is actually the consumption share in output times the intertemporal elasticity of substitution of
consumption, rather than the elasticity itself; thus a value of 0.7 would be closer to the standard RBC
assumption. But we have no ground for choosing a precise value, and so choose 1 as a round number.
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Given the values just assumed for β, θ and φ in our quarterly model, it follows that the

model will predict an average capital-output ratio of 10 quarters (roughly correct for the

U.S.) if and only if we assume a quarterly depreciation rate of δ = .012 (about five percent

per year). Finally, the figure compares the consequences of a range of different possible

positive values for εψ. Here the value εψ = 3 (indicated by the solid line in the figure) is the

one that we regard as most empirically plausible; this results in a degree of responsiveness

of overall private expenditure to monetary policy shocks that is similar to that estimated by

Rotemberg and Woodford, as we shall see. But we also consider the consequences of smaller

and larger values for this crucial new parameter.

In the limit of an extremely large value for εψ, the coefficients reduce to those implied by

the constant-capital model. One observes from the form given for the polynomial Q(L) in

(5.14) that as εψ is made large, the two roots approach limiting values µ1 → 1, µ2 → β−1. It

then follows that the coefficients in (5.18) approach limiting values a → (1 + ωθ)/(1− αβ),

b → 0, and hence that the coefficients in (5.20) approach limiting values

ξ0 → ξ ≡ 1− α

α

1− αβ

1 + ωθ
> 0, ξ1 → βξ > 0,

ψ1 → 2β, ψ2 → β2.

Thus in the limit, (5.20) takes the form

Et[(1− βL−1)πt] = ξEt[(1− βL−1)ŝt] + βEt[(1− βL−1)πt+1].

This relation has the same bounded solutions as the simpler relation

πt = ξŝt + βEtπt+1

derived for the baseline model in chapter 3, and in particular it implies that (5.22) holds

with coefficients Ψj = ξβj. (These are the coefficients indicated by the upper dashed curve

in the figure.)

If εψ is finite but still quite large, the coefficients {ψj} again decay only relatively grad-

ually as j increases, though more rapidly than would be predicted by the baseline model.
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If instead εψ takes a more moderate value (anything in the range that we could consider

empirically plausible), the coefficients decline more sharply with j, and indeed become neg-

ative if horizons as long as five or six years in the future are considered. Intuitively, the

expectation of a high average level of real marginal cost several years in the future is no

longer a motive to increase prices now, if firms can instead plan to build up their capital

stocks in the meantime. Nonetheless, higher expected future real marginal costs continue to

increase inflation, as long as the expectations relate to horizons three years in the future or

less. And if the expectations relate to the coming year (i.e., the next four quarters), then the

coefficients are not just positive but of roughly the same magnitude as in the baseline model.

And it is these coefficients for low j that mainly matter, given that shocks will typically have

a relatively transient effect on average real marginal costs. (With flexible prices, average

real marginal costs would never vary at all; even with a realistic degree of price stickiness,

price adjustment is rapid enough to make mean-reversion in the level of real marginal costs

relatively rapid.)

The remaining relation in the “AS block” of the extended model is the real marginal cost

relation (5.21. This relation reduces to the same one as in the baseline model if the Ît and K̂t

terms are omitted. The relation between real marginal costs and output is no longer as simple

in the extended model, owing to the presence of those additional terms. However, insofar

as cyclical variation in investment is highly correlated with cyclical variation in output, and

cyclical variation in the capital stock is not too great, the implied cyclical variation in real

marginal costs in the extended model is not too different. (In this case, the cyclical variation

in Ŷt− Ît is highly correlated with, but smaller in amplitude than, the cyclical variation in Ŷt

itself. One corrects for the difference in amplitude by using a substantially larger value for

σ−1 when calibrating the constant-capital model.) We illustrate this below when we report

the impulse response of real marginal costs to a monetary policy shock, in Figure 4.21. Of

course, in the limiting case of large εψ, the equilibrium fluctuations in both Ît and K̂t are

negligible, and the entire “AS block” reduces to an AS relation like that of the baseline

model.



5. MONETARY POLICY AND INVESTMENT DYNAMICS 111

The “IS block” of the extended model also retains broad similarities to that of the baseline

model. It is first useful to consider the implied long-run average values for capital, output

and investment as a function of the long-run average rate of inflation π∞ implied by a given

monetary policy. Equations (5.8) – (5.9) imply that the long-run average values of the various

state variables must satisfy

λ̂∞ = ρyŶ∞ − ρkK̂∞,

Î∞ = δkK̂∞,

λ̂∞ = −σ−1(Ŷ∞ − Î∞).

These relations can be solved for Ŷ∞, Î∞ and K̂∞ as multiples of λ̂∞; this generalizes the

relation between Ŷ∞ and λ̂∞ obtained for the baseline model. Equation (5.11) similarly

implies that the long-run average level of real marginal cost must satisfy

ŝ∞ = ωŶ∞ − (ω − ν)K̂∞ − λ̂∞;

substituting the above solutions, we obtain ŝ∞ as a multiple of λ̂∞ as well. Finally, (5.20)

implies that

π∞ =
ξ0 − ξ1

1− ψ1 + ψ2

ŝ∞.

Using this together with the previous solution allows us to solve for λ̂∞, and hence for Ŷ∞, Î∞

and K̂∞ as well, as multiples of π∞.

We turn next to the characterization of transitory fluctuations around these long-run

average values. Using (5.8) – (5.9) to eliminate Ŷt+1 from (5.7), we obtain a relation of the

form

Et[A(L)K̂t+2] = Et[B(L)λ̂t+1] + zt, (5.23)

where A(L) is a quadratic lag polynomial, B(L) is linear, and zt is a linear combination of

the disturbances gt and qt. For empirically realistic parameter values, the polynomial A(L)

can be factored as (1 − µ̃1L)(1 − µ̃2L), where the two real roots satisfy 0 < µ̃1 < 1 < µ̃2.

It follows that there is a unique bounded solution for K̂t+1 as a linear function of K̂t, the
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expectations Etλ̂t+j for j ≥ 0, and the expectations Etzt+j for j ≥ 0. Then solving (5.10)

forward to obtain

λ̂t = λ̂∞ +
∞∑

j=0

Et(̂ıt+j − πt+j+1), (5.24)

and using this to eliminate the expectations Etλ̂t+j, we finally obtain a solution of the form

K̂t+1 = (1− µ̃1)K̂∞ + µ̃1K̂t −
∞∑

j=0

χ̃jEt(̂ıt+j − πt+j+1) + ek
t , (5.25)

where the {χ̃j} are constant coefficients and ek
t is an exogenous disturbance term (a linear

combination of the {Etzt+j}). This can be solved iteratively for the dynamics of the cap-

ital stock, starting from an initial capital stock and given the evolution of the exogenous

disturbances and of real interest-rate expectations.

Equation (5.24) can also be substituted into (5.9) to yield

Ŷt = (Ŷ∞ − Î∞) + Ît + gt − σ
∞∑

j=0

Et(̂ıt+j − πt+j+1),

a direct generalization of (1.4), which now however takes account of investment spending.

Using (5.8) and (5.25) to substitute for Ît, this expression takes the form

Ŷt = (Ŷ∞ − ΣK̂∞) + ΣK̂t −
∞∑

j=0

χjEt(̂ıt+j − πt+j+1) + ey
t , (5.26)

where Σ ≡ k[µ̃1 − (1 − δ)], {χj} is another set of constant coefficients, and ey
t is another

exogenous disturbance term (a linear combination of gt and of the {Etzt+j}). The joint

evolution of output and of the capital stock are then determined by the pair of equations

(5.25) – (5.26), starting from an initial capital stock and given the evolution of the exogenous

disturbances and of real interest-rate expectations.

Except for the need to jointly model the evolution of output and of the capital stock,

this system of equations has implications rather similar to those of the “IS relation” (1.4)

of the baseline model. In particular, for typical parameter values, the coefficients {χj} in

(5.26) are all positive, and even of roughly similar magnitude for all j. For example, these

coefficients are plotted in Figure 4.20 for a model that is calibrated in the same way as in
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Figure 4.20: The coefficients χj in aggregate demand relation (5.26), for alternative sizes of
investment adjustment costs.

Figure 4.19, again allowing for a range of different possible values of εψ. In the limit of very

large εψ, the coefficients all approach the constant value σ (here assigned the value 1), as

in (1.4). For most lower values of εψ, the coefficients are not exactly equal in magnitude,

and each coefficient is larger the smaller are the adjustment costs associated with investment

spending. However, the coefficients all remain positive, and quite similar in magnitude to

one another, especially for values of εψ near our baseline value of 3.

We can show analytically that χj takes the same value for all j (though a value greater

than σ) if it happens that B(L) in (5.23) is of the form −h(1− µ2L), where h > 0 and µ2 is

the root greater than one in the factorization of A(L). In this case (5.23) is equivalent to

(1− µ1L)K̂t+1 = −hλ̂t,

and substitution of (5.24) yields a solution for aggregate demand of the form (5.26) with

χj = σ+h for all j ≥ 0. For our calibrated parameter values, the root of B(L) coincides with a
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root of A(L) in this way if and only if εψ happens to take a specific value, equal approximately

to 3.23. This is in fact not an unrealistic value to assume. Perhaps more interesting, however,

is the fact that the coefficients {χj} are all reasonably similar in magnitude even when εψ is

larger or smaller than the critical value.

Thus it continues to be true, as in the baseline model, that changes in interest-rate

expectations (due, for example, to a shift in monetary policy) affect aggregate demand

through their effect upon a very long real rate; the existence of endogenous variation in

investment spending simply makes the degree of sensitivity of aggregate demand to the level

of the very long real rate greater. For example, we see from the figure that when εψ = 3,

the degree of interest-sensitivity of aggregate demand is about four times as large as if εψ

were extremely large; the response to interest-rate changes is thus roughly the same as in

a constant-capital model with a value of σ near 4, rather than equal to 1 as assumed here.

This justifies our use of a value of σ much larger than 1 when calibrating the baseline model.

However, even if we adjust the value assumed for σ in this way, the predictions of the

constant-capital model as to the effects of real interest rate changes are not exactly the same

as those of the model with variable capital. This is because lower investment spending as

a result of high long real rates of interest soon results in a lower capital stock, and once

this occurs aggregate demand is affected through the change in the size of the ΣK̂t term in

(5.26). In the case of sufficiently moderate adjustment costs (the empirically realistic case),

the value of Σ is negative; for given real interest-rate expectations, a higher existing capital

stock depresses investment demand (because returns to existing capital are low).83 Thus a

sustained increase in long real rates of interest will initially depress aggregate demand, in

the variable-capital model, by more than it does later on; once the capital stock has fallen

this fact helps investment demand to recover, despite the continued high real rates.

83For the particular parameter values discussed in the text, our baseline value εψ = 3 implies that Σ =
−1.246 in our quarterly model. Note that our model does not require Σ to be negative; one can show
that Σ > 0 (because µ1 > 1 − δ) if and only if εψ exceeds the critical value ρk(1 − δ)/δ > 0. For our
calibrated parameter values, this critical value is approximately equal to 114.5, and thus would imply a
level of adjustment costs in investment that would be inconsistent with the observed degree of volatility of
investment spending.
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Figure 4.21: Impulse responses to an unexpected monetary tightening: the constant-capital
and variable-capital models compared.

The degree to which endogenous variation in the capital stock is likely to matter in

practice can be illustrated by considering the predicted effects of a monetary policy shock,

in the case of a systematic monetary policy rule again given by (2.22) with coefficients

φπ = 2, φx = 1, and ρ = 0.8. Impulses responses to an unexpected monetary tightening

(again increasing nominal interest rates by one percent per year) are plotted in Figure 4.21,

which also reproduces the predictions of the baseline model corresponding to the case ρ = 0.8

in Figure 4.7. We observe that when we assume εψ = 3 (and all other parameter values as

in Figures 4.19 and 4.20), the predicted output response in the extended model is essentially

the same as in the baseline model. (It is for this reason that we choose εψ = 3 as our baseline

calibration of the extended model.)

However, this does not mean that the extended model with εψ = 3 and σ = 1 makes

predictions that in all respects identical to those of a constant-capital model with σ = 6.37.
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For example, we see from Figure 4.20 that when εψ = 3, the coefficients {χj} of the IS relation

are approximately constant, but the constant value is a bit less than 4, rather than being

greater than 6 as in the baseline model. We could instead arrange for the extended model to

predict the same degree of interest-sensitivity of aggregate demand as in the baseline model

if we were to assume a value near εψ = 1.5. But this would then result in overprediction of

the output contraction that should result from a monetary policy tightening. The reason

has to do with the effects of endogenous variation in the capital stock, abstracted from

in the baseline model. The ΣK̂t term in (5.26) contributes a positive stimulus to output

(i.e., reduces the size of the output decline) several quarters after the shock, as the low

capital stock induces greater investment spending than would otherwise be chosen given the

higher-than-average real interest rates.84 This means that an output response that decays

at the same rate as in the constant-capital model (and as in the estimates of Rotemberg and

Woodford, 1997, discussed below) requires a more persistent increase in real interest rates

in the case of the variable-capital model. (One can see from the figure that the simulation

does indeed have this property.) On the other hand, because of the very forward-looking

character of the model — real interest-rate expectations several years in the future affect

aggregate demand to essentially the same extent as the current short-term real rate — a

more persistent increase in the short real rate will cause a larger immmediate contraction

of aggregate demand, unless the size of the coefficients {χj} is reduced. This is achieved in

the simulation shown in Figure 4.21 by assuming a large enough value of εψ to reduce the

interest-rate sensitivity of aggregate demand by a factor of about 40 percent, relative to the

baseline model.

The fact that the two alternative models can be calibrated so as to predict very similar

output and inflation dynamics in response to the same kind of monetary policy shock indi-

cates that the predictions of the models need not be too different; indeed, their respective

84The effect is quite significant. For example, in the simulation shown in Figure 4.21, by the eighth quarter
following the shock the positive effect of the ΣK̂t term is 65 percent of the size of the cumulative negative
effect of all of the real-interest-rate terms, so that the contraction in aggregate demand is only a bit more
than a third of the size it would otherwise have.
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abilities to fit empirical evidence as to the response to a particular kind of (historically typ-

ical) disturbance might well be quite similar. On the other hand, the mechanisms within

the models that produce these predictions are not too closely parallel, owing to the signif-

icant effects of endogenous capital accumulation in the extended model. This means that

even if the models are calibrated so as to predict similar responses to a particular kind of

policy (as in Figure 4.21), it will not follow that the models calibrated in this way would

also predict similar responses to all other policies that might be contemplated. Thus while

a number of general lessons that may be drawn from the baseline model (e.g., the degree

to which aggregate demand should depend upon expected real rates years in the future) are

found to be robust to an explicit consideration of endogenous capital accumulation, accurate

quantitative conclusions about the nature of optimal monetary policy are likely to require

explicit allowance for the dynamics of the capital stock.

5.4 Capital and the Natural Rate of Interest

We now consider the extent to which the concept of the “natural rate of interest”, introduced

in section 2 in connection with our baseline model, can be extended to a model which allows

for endogenous variation in the capital stock. The most important difference in the case

of our extended model is that the equilibrium real rate of return under flexible prices is no

longer a function solely of current and expected future exogenous disturbances; it depends

upon the capital stock as well, which is now an endogenous state variable (and so a function

of past monetary policy, among other things, when prices are sticky). Hence if we continue

to define the natural rate of interest in this way, it ceases to refer to an exogenous process.

An alternative possibility (pursued in Neiss and Nelson, 2000) would be to define the

“natural rate of interest” as what the equilibrium real rate of return would be if prices not

only were currently flexible and were expected always to be in the future, but also had

always been in the past — so that what matters for the computation is not the capital stock

that actually exists, but the one that would exist under this counterfactual, given the actual

history of exogenous real disturbances. Under that definition the natural rate of interest
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would be exogenous, but at the cost of less connection with equilibrium determination in

the actual (sticky-price) economy. It seems odd to define the economy’s “natural” level

of activity, and correspondingly the associated “natural” level of interest rates, in a way

that makes irrelevant the capital stock that actually exists and the effects of this upon the

economy’s productive capacity. And a clear cost of the alternative definition would be less

connection between this concept of “natural” output and the efficient level of output, which

clearly depends on the actual capital stock. For this reason, we instead continue to define

the “natural rates” of output and interest as those that would result from price flexibility

now and in the future, given all exogenous and predetermined state variables, including the

economy’s capital stock. (The connection between this definition and a welfare-based policy

objective is taken up in chapter 6.)

Since the equilibrium with flexible prices at any date t depends only on the capital stock

at that date85 and current and expected future exogenous real disturbances, we can write a

log-linear approximation to the solution in the form

Ŷ n
t = Ŷ ncc

t + ηyK̂t,

r̂n
t = r̂ncc

t + ηrK̂t,

and so on, where the terms Ŷ ncc
t and r̂ncc

t refer to exogenous processes (functions solely of

the exogenous real disturbances). These “intercept” terms in each expression indicate what

the level of real output (or the real interest rate, and so on) would be, given current and

expected future real disturbances, if prices were flexible and the capital stock did not differ

from its steady-state level; we shall call this the constant-capital natural rate of output (or

of interest, and so on). We shall also find it useful to define a “natural rate” of investment

În
t and of the marginal utility of income λ̂n

t in a similar way. We can even define a “natural”

capital stock K̂n
t+1, as what the capital stock in period t + 1 would be if it had been chosen

in a flexible-price equilibrium in period t, as a function of the actually existing capital stock

85This is true up to the log-linear approximation that we use here to characterize equilibrium. More
precisely, it would depend on the capital stock in place in each of the firms producing differentiated goods.



5. MONETARY POLICY AND INVESTMENT DYNAMICS 119

K̂t and the exogenous disturbances at that time; thus we similarly write

K̂n
t+1 = K̂ncc

t=1 + ηkK̂t.

Finally, we shall use tildes to indicate the “gaps” between the actual and “natural” values

of these several variables: Ỹt ≡ Ŷt − Ŷ n
t , r̃t ≡ r̂t − r̂n

t , and so on.

Once again, in a flexible-price equilibrium, real marginal cost must at all times be equal

to a constant, (θ − 1)/θ. It then follows from (5.21) that fluctuations in the natural rate of

output satisfy

Ŷ n
t =

ω − ν

ω + σ−1
K̂t +

σ−1

ω + σ−1
Ît +

σ−1

ω + σ−1
gt +

ω

ω + σ−1
qt.

This relation generalizes equation (2.2) for the baseline model. Note that this does not

allow us to solve for the natural rate of output as a function of the capital stock and the

real disturbances without also simultaneously solving for the natural rate of investment.

However, comparison with (5.21) allows us to derive an expression for real marginal cost in

terms of the “gaps”,

ŝt = (ω + σ−1)Ỹt − σ−1Ĩt, (5.27)

generalizing equation (xx) of chapter 3.

Because condition (5.7) must also hold in a flexible-price equilibrium, we observe that

λ̂n
t + εψ(K̂n

t+1− K̂t) = β(1− δ)[Etλ̂t+1− ηλK̃t+1] +

[1− β(1− δ)][ρy(EtŶ
n
t+1 − ηyK̃t+1)− ρkK̂

n
t+1 − ωqt] + βεψ[(EtK̂

n
t+2 − ηkK̃t+1)− K̂n

t+1].

Here we use the fact that in a flexible-price equilibrium, the conditional expectation at t of

period t + 1 output does not correspond to the value of EtY
n
t+1 at date t in the sticky-price

equilibrium, for the latter depends upon the value of K̂t+1 in the sticky-price equilibrium,

which is generally not the same as what the period t+1 capital stock would be in a flexible-

price equilibrium. Thus the conditional expectation at t of period t + 1 output in a flexible-

price equilibrium (beginning at t and conditional upon the actual period t capital stock) is

actually equal to EtŶ
n
t+1 − ηyK̃t+1; and similarly for the expectation at t of other variables
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determined at t + 1. Comparing this with (5.7), we see that in the sticky-price equilibrium,

the “gap” variables must satisfy

λ̃t + εψK̃t+1 = β(1− δ)[Etλ̃t+1 + ηλK̃t+1] +

[1− β(1− δ)][ρy(EtỸt+1 + ηyK̃t+1)− ρkK̃t+1] + βεψ[(EtK̃t+2 + ηkK̃t+1)− K̃t+1]. (5.28)

This equation is similar in form to (5.7), except that it is purely forward-looking: it de-

termines the equilibrium size of the gap K̃t+1 without any reference to predetermined state

variables such as K̃t.

Equations (5.8) – (5.10) similarly must hold in a flexible-price equilibrium, implying that

the “gaps” must also satisfy equations

Ĩt = kK̃t+1, (5.29)

λ̃t = −σ−1(Ỹt − Ĩt), (5.30)

r̃t = λ̃t − (Etλ̃t+1 + ηλK̃t+1). (5.31)

Using equations (5.29) and (5.30) to eliminate λ̃t and K̃t+1 from (5.28) and (5.31), we are

left with a system of two equations that can be written in the form

Etzt+1 = Azt + ar̃t, (5.32)

for a certain matrix A and vector a of coefficients, where now

zt ≡
[

Ỹt

Ĩt

]
.

This pair of coupled difference equations generalizes the “gap” version (1.8) of the IS relation

of the baseline model.86

Let us now close our system by specifying monetary policy in terms of an interest-rate

feedback rule of the form

ı̂t = ı̄t + φπ(πt − π̄) + φx(xt − x̄)/4, (5.33)

86Note, however, that it is typically not possible to solve this system “forward” to obtain a solution for
the output gap as a function of current and expected future interest-rate gaps, as in equation (2.19) for the
baseline model. [ADD MORE]
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where we re-introduce the notation xt ≡ Ỹt for the output gap. (Once again, x̄ is the steady-

state output gap corresponding to the steady-state inflation rate π̄.) With policy specified

by a “Taylor rule” of this kind, the interest-rate gap will be given by

r̃t = (̄ıt − r̂n
t − π̄)− Et(πt+1 − π̄) + φπ(πt − π̄) + φx(xt − x̄)/4. (5.34)

Note that in this last relation, the only endogenous variables are “gap” variables if we make

the further assumption that

ı̄t = ı̄cct + ηrK̂t, (5.35)

where ı̄cct } is an exogenous process. This implies that in addition to systematic responses to

endogenous variation in inflation and in the output gap, the policy rule (5.33) also involves

a systematic response to endogenous variation in the capital stock, of a specific sort: the

central bank’s interest rate operating target is adjusted to exactly the same extent as the

natural rate of interest is changed by the variation in the capital stock. This is obviously a

special case, but not an entirely implausible one, if we posit a desire to stabilize inflation, and

hence to arrange for interest rates to vary one-for-one with variation in the natural rate of

interest. For of all the possible sources of variation in the natural rate of interest, variations

due to changes in the economy’s aggregate capital ought to be the easiest for a central bank

to track with some accuracy (owing to the slowness of movements in the capital stock).

A complete system of equilibrium conditions for the determination of the variables

{Ỹt, Ĩt, r̃t, ŝt, πt} is then given by (5.20), (5.27), (5.32), and (5.34). The system of equa-

tions may furthermore be written in the form

Etẑt+1 = Âẑt + â(r̂n
t − ı̄t + π̄), (5.36)

where now

ẑt ≡




Ỹt − x̄

Ĩt − Ī
Etπt+1 − π̄

πt − π̄




,

Ī is the steady-state value of Ĩt corresponding to steady inflation at the rate π̄, and Â and â

are again a matrix and vector of coefficients. We obtain this system as follows. The first two
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rows are obtained by substituting for r̃t in (5.32) using (5.34).87 The third row is obtained

by solving (5.20) for Etπt+2, and then substituting for ŝt and Etŝt+1 using (5.27); one finally

substitutes for EtỸt+1 and EtĨt+1 using the first two rows of (5.36), just derived. The fourth

row is simply an identity.

Because the system (5.36) is purely forward-looking (i.e., there are no predetermined

endogenous state variables), a policy rule of the kind defined by (5.33) and (5.35) then

results in determinate equilibrium dynamics for inflation and the output gap (among other

variables) if and only if the matrix Â has all four eigenvalues outside the unit circle. When

this is true, the system can be “solved forward” in the usual way to obtain a unique bounded

solution. The solutions for inflation and the output gap will once again be of the form (2.18)

– (2.19), and the implied solution for the nominal interest rate will correspondingly again

be of the form (2.20), just as in the baseline model, though the numerical values of the

coefficients {ψπ
j , ψx

j , ψi
j} in these expressions will be different. Figure 4.22 plots coefficients

{ψπ
j , ψx

j } for j = 0 through 10, in the case of model parameters chosen as in the earlier

figures, and a policy rule of the form defined by (5.33) and (5.35), with feedback coefficients

φπ = 2, φx = 1. Here the solid line indicates the coefficients in the case of the variable-capital

model, and the dashed line the coefficients in the case of the baseline model. (The dashed

line here corresponds to the baseline case shown in Figures 4 and 5 earlier.)

Once again one finds that, at least in the case of changes in the expected gap Et(r̂
n
t+j−ı̄t+j)

only a few quarters in the future, increases in the expected gap increase both inflation and

the output gap; and once again, this is true even many quarters in the future in the case

of inflation, whereas expected gaps Et(r̂
n
t+j − ı̄t+j) more than a few quarters in the future

have little effect upon the output gap. Thus fluctuations in inflation and the output gap

can still be explained in essentially the same way as in the constant-capital model. Once

again, inflation and positive output gaps result from increases in the natural rate of output

that are not fully matched by a tightening of monetary policy, or by loosenings of monetary

87Note that all of these equations continue to be valid when we replace variables by the difference of those
variables from their steady-state values. We choose to express the equations in this form in (5.36) because
the policy rule (5.33) has already been expressed in this form.
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Figure 4.22: Coefficients of the forward-looking solution for inflation and the output gap.

policy not justified by any decline in the natural rate of interest.

An immediate consequence is that once again a possible approach to the goal of inflation

stabilization is to commit to a policy rule of the form (5.33) such that (i) the coefficients

φπ, φx are chosen so as to imply a determinate equilibrium, and (ii) the intercept adjustments

track variations in the natural rate of interest as well as possible, i.e., the central bank seeks

to set ı̄t = r̂n
t + π̄ at all times. (Note that this is an example of a rule of the form (5.35), with

ı̄cct = r̂ncc
t .) If it is possible to satisfy this condition with sufficient accuracy, then inflation can

in principle be completely stabilized with finite response coefficients. Thus the requirement

of tracking variations in the natural rate of interest continues to be as important to the

pursuit of price stability as in our analysis of the baseline model.
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Chapter 6

Inflation Stabilization and Welfare

We turn now to the evaluation of alternative monetary policy rules, using the analytical

framework developed in the previous chapters. A first question, of course, is what the goals

of monetary policy should be. Most discussions give primary, if not exclusive, attention to two

goals in terms of which alternative policies should be evaluated. The first, which has attained

particular prominence in recent discussion, is the goal of maintaining a low and stable rate

of inflation. It is sometimes argued that this should be the exclusive goal of monetary

policy, and various recent developments – the explicit responsibility given to several central

banks in the 1990’s for achievement of inflation targets, or the exclusive concern with price

stability that is specified in the Maastricht treaty as the goal of the European Central Bank

– indicate that this view has become influential among policymakers.1 At the same time,

most discussions of actual monetary policy, even now, and even in countries with “inflation

targeting” central banks, assume at least some degree of concern with the stabilization of

economic activity as well; in the early literature (e.g., Poole, 1970), this was often treated

as the primary goal of monetary stabilization policy.

There is thus a fair amount of consensus in the academic literature that a desirable

monetary policy is one that achieves a low expected value of a discounted loss function,

where the losses each period are a weighted average of terms quadratic in the deviation

of inflation from a target rate and in some measure of output relative to potential. But

1It may, however, be questioned whether the “inflation targeting” central banks should be understood to
care solely about inflation stabilization. See, e.g., Svensson (1999a).

1
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even agreement upon this general form of the objective still allows considerable scope for

disagreement about details, that may well matter a great deal for the design of an optimal

policy. First of all, obviously, there is the question of the relative weight to be placed upon

inflation stabilization and output stabilization. But this is hardly the only ambiguity in the

conventional prescription. For instance, which kind of output measure should be stabilized?

In particular, should one seek to stabilize output relative to a concept of “potential output”

that varies in response to real disturbances that shift the short-run aggregate supply curve,

or should one seek to stabilize output relative to a smooth trend?2

Similarly, in which sense should price stability be pursued? Should one seek to stabilize

deviations of the price level from a deterministic target path (as proposed, for example,

by Hall and Mankiw, 1994), so that unexpected inflation in excess of one’s target rate

should subsequently be deliberately counteracted, in order to bring the price level back to

its target path? Or should one seek to stabilize deviations of the inflation rate from its

target level (as assumed, for example, by Svensson, 1997), so that – assuming that the

variance of the unforecastable component of inflation cannot be reduced by policy – one

should not seek to counteract past inflation fluctuations, in order to minimize variation in

the forecastable component of inflation? Should greater priority perhaps be given to reducing

the variability of unforecastable inflation, on the ground that this is what causes unexpected

modifications of the real consequences of pre-existing nominal contracts, while forecastable

variations in inflation can simply be incorporated into contracts? Or should greater priority

be given to stabilization of forecastable inflation, on the ground that expected inflation

distorts incentives (like an anticipated tax), while unforecastable inflation has no incentive

effects (like an unanticipated wealth levy)?

The aim of the present chapter is to show how economic analysis can be brought to bear

upon these questions. An important advantage of using a model founded upon private-sector

optimization to analyze the consequences of alternative policy rules is that there is a natural

2Different answers to this question lead Bean (1983) and West (1986) to reach diametrically opposite
conclusions about the case in which nominal GDP targeting would be preferable to money-supply targeting.
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welfare criterion in the context of such a model, provided by the preferences of private agents

that are displayed in the structural relations that determine the effects of alternative policies.

Such a utility-based approach to welfare analysis has long been standard in the theory of

public finance. It is not yet too common in analyses of monetary policy, perhaps because

it is believed that the main concerns of monetary stabilization policy are assumed away in

models with explicit micro-foundations. But we have seen that models founded on individual

optimization can be constructed that, thanks to the presence of nominal rigidities, allow for

realistic effects of monetary policy upon real variables. Here we shall see those same nominal

rigidities provide welfare-economic justification for central bankers’ traditional concern for

price stability.

Individuals are not assumed, of course, to care directly about prices; their economic

welfare depends directly only upon the goods they consume and the amount of effort they

expend upon production. But just as taxes can cause deadweight losses because of their ef-

fects upon the equilibrium allocation of resources, so can inflation. In a model with nominal

rigidities – more specifically, in one in which it is recognized that prices are not adjusted in

perfect synchronization with one another (which requires, but is stronger than, the observa-

tion that they are not all adjusted continually) – instability of the general price level leads to

unnecessary and undesired variation in the relative prices of goods whose prices are adjusted

at different times. These relative price distortions result in deadweight losses, just as in the

case of distorting taxes. We shall see that this effect can justify not only a loss function that

penalizes inflation variations, but indeed – if one assumes parameter values implied by the

apparent degree of nominal rigidity in actual economies – a much larger relative weight on

inflation variation than upon output variation than is assumed in the loss functions used in

many monetary policy evaluation exercises.

Derivation of a utility-based welfare criterion in this way can not only allow us to jus-

tify a general concern with price stability, but can furthermore provide exact answers to

the questions raised above about the precise formulation of the appropriate loss function.

These answers, of course, depend upon the assumptions we make about the structure of the
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economy; for example, they depend crucially upon the nature of the nominal rigidities that

are present. Insofar as the correct structural relations of our model of the economy remain

controversial, the proper welfare criterion to use in evaluating policy will remain controver-

sial as well; and our goal here is more to illustrate a method than to reach final conclusions.

But insofar as particular parameter values are found to be empirically justified in that they

are required in order for our structural equations to fit historical data, they will contain

important information about the proper welfare criterion as well.

1 Approximation of Loss Functions and of Optimal

Policies

The method that we shall employ in the analysis below derives a quadratic loss function, that

represents a quadratic (second-order Taylor series) approximation to the level of expected

utility of the representative household in the rational expectations equilibrum associated

with a given policy. There are several reasons for our resort to this approximation. One is

simply mathematical convenience; with a quadratic approximation to our objective function

and linear approximations to our structural equations, we can address the nature of opti-

mal policy within a linear-quadratic optimal control framework that has been extensively

studied, and numerical computation of optimal policy is relatively simple. This convenience

is especially great when we turn to questions such as the optimal use of indicator variables

under circumstances of partial information.

But there are other advantages as well. One is comparability of our results with those

of the traditional literature on monetary policy evaluation, which almost always assumes a

quadratic loss function of one sort or another. Casting our own results in this familiar form

allows us to discuss similarities and differences between our utility-based welfare criterion and

those assumed in other studies without letting matters be obscured by superficial differences

in functional form that may have relatively little consequence for the results obtained.

And finally, it does not make sense to be concerned with a higher-order approximation

to our welfare criterion if we do not plan to characterize the effects of alternative policies
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with a degree of precision sufficient to allow computation of those higher-order terms. In

the first part of this study, we have shown how to derive a log-linear approximation to the

equilibrium fluctuations in inflation and output under alternative policies, using a log-linear

approximation to the exact structural equations of our model. Using this method, we com-

pute the equilibrium fluctuations in these variables only up to a residual of order O(||ξ||2),
where ||ξ|| is a bound on the amplitude of the exogenous disturbances. Given that we do

not compute the terms of second order in ||ξ|| in characterizing equilibrium fluctuations, we

cannot expect to compute the terms of third or higher order in ||ξ|| in evaluating the ex-

pected utility of the representative household.3 Of course, one might also wish to undertake

a more accurate approximation of the predicted evolution of the endogenous variables under

alternative regimes. However, such a study would introduce a large number of additional

free parameters, to which numerical values would have to be assigned for purposes of com-

putation; and there is likely to be little empirical basis for the assignment of such values

in most cases, given the degree to which the empirical study of macroeconomic time series

makes use of linear models.4

However, even a second-order approximation to utility can be computed on the basis

of a merely linear approximation to our model structural equation only under special cir-

cumstances. We shall assume that these hold in our calculations here, but it is important

to be clear about the scope of validity of our results. Let x represent a vector of endoge-

nous variables, and suppose that we wish to evaluate E[U(x; ξ)] under alternative policies,

where ξ is a vector of random exogenous disturbances, and U(·; ξ) is a concave function for

3There is thus no obvious advantage to the approach sometimes adopted in utility-based welfare analyses,
such as Ireland (1997) or Collard et al. (1998), of evaluating an exact utility function but using a log-linear
approximation to the model’s structural equations in order to compute the equilibrium.

4A common approach in the quantitative equilibrium business cycle literature, of course, is to assume
special functional forms for preferences and technology that allow the higher derivatives of these functions
to be inferred from the same small number of parameters as determine the lower-order derivatives, which
may then be inferred from first and second moments of the time series alone. This approach often obscures
the relation between the properties of the time series and the model parameters that are identified by them,
and allows “identifications” that are in fact quite sensitive to the arbitrary functional form assumption. We
prefer instead to assume special functional forms as little as possible, but to be clear about the order of
approximation that is involved in our calculations.
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each possible realization of ξ, and at least twice differentiable. Now suppose that we are

able to compute a linear (or log-linear) approximation to the equilibrium responses of the

endogenous variables, under a given policy regime, of the form

x = x0 + a′ξ +O(||ξ||2), (1.1)

where the vectors of coefficients xss and a may both depend upon policy. (This represents a

first-order Taylor series approximation to the exact equilibrium responses x(ξ), assumed to

be nonlinear but differentiable, taken around the mean values ξ = 0. The conditions under

which the solution to the linearized structural equations yield a valid approximation of this

kind to the solution to the exact structural equations are discussed in Appendix A.)

Under the assumption that the constant term x0 in (1.1) is itself of at most order O(||ξ||),
we can take a similar Taylor series expansion of the utility function U(x), and be confident

that terms that are of at most order O(||x||3) are of at most order O(||ξ||3). We then can

write

U(x; ξ) = Ū + Uxx̃ + Uξξ +
1

2
x̃′Uxxx̃ + x̃′Uxξξ +

1

2
ξ′Uξξξ +O(||ξ||3), (1.2)

where Ū ≡ U(x̄; 0), x̃ ≡ x − x̄, and all partial derivatives of U are evaluated at (x̄; 0). We

wish to use approximation (1.1) to the equilibrium fluctuations in x to compute the terms

of second or lower order in approximation (1.2) to utility. But the term Uxx̃ in (1.2) will

generally contain terms of second order that depend upon the neglected second order terms

in (1.1). In order to be able to neglect these terms, we must also assume that Ux(x̄; 0) is at

most of order O(||ξ||). In that case, the neglected terms of order O(||ξ||2) contribute only to

terms of order O(||ξ||3) in Uxx̃.

Assuming this, substitution of (1.1) minus the residual into (1.2) minus the residual yields

a correct quadratic approximation to U(x; ξ). Taking the expected value of this expression,

and using the fact that we normalize ξ so that E(ξ) = 0, we obtain the approximate welfare

criterion

E[U ] = Ū + UxE[x̃] +
1

2
tr{Uxxvar[x]}+ tr{Uxξcov(ξ, x̃)}+

1

2
tr{Uξξvar[ξ]}+O(||ξ||3). (1.3)
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Here we use the notation E[z] for the expectation of a random vector z, var[z] denotes the

variance-covariance matrix, and cov(z1, z2) the matrix of covariances between two random

vectors z1, z2. In expression (1.3) it is understood that the various first and second moments

are those that one computes using the linear approximation (1.1).

The validity of this last expression, when the first and second moments are computed

using (1.1), thus depends upon two special assumptions. These are that x0 is only of order

O(||ξ||), and that Ux(x̄; 0) is similarly only of order O(||ξ||). Technically, we shall suppose

that ||ξ|| is a bound both upon the amplitude of the exogenous disturbances, and upon the

size of x0 and Ux(x̄; 0). Our approximation result then refers to a sequence of economies in

which ||ξ|| eventually becomes arbitrarily small; as we progress along this sequence, both the

distribution of the disturbances, and certain other parameters of the model that determine

x0 and Ux, are varied so as to respect the changing bound, while keeping the specification of

the policy rule the same. What the Taylor theorem guarantees is then that if (1.3)minus the

residual yields a higher value for one policy than for another, it will be true for all economies

far enough out in this sequence that the first policy yields higher expected utility than the

other in the equilibrium of the exact model.

The stipulation regarding x0 is an assumption about the kind of policy regime which we

seek to evaluate, while the stipulation regarding Ux(x̄; 0) is an assumption about the point

around which we choose to compute the Taylor expansion in in (1.3). The latter assumption

implies that we expand around a state of affairs x̄ that is close to being optimal, not simply

in the sense of being the best we can do using the set of policies under consideration, but in

the sense of being near the maximum of U(x; 0) over all possible values of x.5 Of course, it

is really only necessary that Ux be small in directions in which it is possible for the average

value of x to differ under alternative policies. Thus it is not necessary for households to

5One way to guarantee this would be to stipulate that x̄ is in fact the value that maximizes U(x; 0).
We do not wish, however, to insist upon this. In some cases, those “first-best” values do not correspond
to a possible equilibrium, even in the absence of disturbances. We could linearize the model’s structural
equations around such values nonetheless, but we prefer to follow convention in linearizing around values
that represent a particular equilibrium in the absence of shocks. One advantage of this convention is that
our linearized structural equations always have zero constant terms.
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be nearly satiated both in consumption and in leisure in order for x̄ to be optimal in the

necessary sense; it is enough that it not be possible to greatly increase utility by varying

both consumption and work effort in a way that is feasible given the economy’s production

function. But it is somewhat delicate to draw conclusions about the directions in which it

is possible for policy to vary the second-order terms in x without actually computing the

second-order terms in (1.1), and so we prefer to substitute constraints of this kind into our

definition of the objective function U(x), and then require all elements of the vector Ux to

be small.

Kim and Kim (1998) provide an example of a problem, relating to the welfare gains

from risk-sharing, where this requirement for validity of a welfare calculation based upon

the linear approximation (1.1) is not satisfied. They consider the expected utility E[U(Ci)]

obtained by a household i in each of two cases. In the first case (autarchy), each household

consumes its own random income Yi, while in the second case (perfect risk-sharing), two

households pool their incomes, so that Ci = (Y1 + Y2)/2 for each. Kim and Kim consider

the validity of a log-linear approximation to the relation between consumption and income.

In the case of autarchy, the log-linear relation (which is exact) is given by

Ĉi = Ŷi,

where as usual hatted variables denote deviations of the logs from the value log Ȳ around

which one log-linearizes. In the case of perfect risk-sharing, the log-linear approximation is

instead

Ĉi = (Ŷ1 + Ŷ2)/2.

Substitution of these two log-linear expressions into a quadratic approximation to the utility

function,

U(Ci) = U(Ȳ ) + Ȳ U ′(Ȳ )
[
Ĉi +

1− γ

2
Ĉ2

i

]
,

where γ > 0 is the coefficient of relative risk aversion (evaluated at consumption level Ȳ ),

does not yield a correct quadratic approximation to utility as a function of Ŷ1 and Ŷ2. Indeed,

if 0 < γ < 1, this approximation implies that expected utility is higher under autarchy.
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The problem is that the partial derivative of U with respect to log Ci (which is equal

to Ȳ U ′(Ȳ )) is non-zero, so that the correct quadratic approximation to expected utility in

the case of risk-sharing involves quadratic terms in the Taylor series expansion for Ĉi. (The

omitted terms raise expected utility in that case, since less variable consumption means

a higher expected value for log consumption, by Jensen’s inequality.) It does not make

sense to assume that this derivative can be made arbitrarily close to zero as we make the

bound ||ξ|| on the amplitude of income variations smaller, either. This could be done only

by varying preferences and/or average income as we make ||ξ|| smaller in such a way that

proportional variations in consumption cease to matter much; but this would mean that in

the limit, no comparisons between alternative consumption processes would be possible. This

difficulty does not arise in the case of our analysis of the welfare gains from macroeconomic

stabilization, below, as long as we log-linearize around a level of economic activity (in each

sector) that is sufficiently near to being efficient; since an interior optimum does exist in our

case, this is possible. But it is important that we check that the derivatives in question are

indeed small, under our assumptions, and that the qualifications that this requires to our

results be noted.

The assumption that x0 is small means that the policies considered are all ones with

the property that in the absence of shocks, the equilibrium value of x would be near the

linearization point x̄ — or alternatively, that in equilibrium the mean value of x is near x̄.

Given our assumption about x̄, this means that the policies considered are ones under which

the equilibrium value x is nearly optimal, in the sense discussed above. As we are primarily

interested in whether our approximate welfare criterion correctly identifies the optimal policy,

the essential requirement is that our model (and the family of available policies) be such

that the best available policy can achieve an outcome that is sufficiently close to being fully

optimal. Thus the unavoidable frictions – the ones that cannot be ameliorated through an

appropriate choice of policy – must be small, even if there exist frictions that imply that

outcomes under a bad policy could be significantly worse.

In the case of our baseline model, the only frictions that prevent equilibrium from being
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efficient are (i) the market power possessed by suppliers of goods, as a result of monopolistic

competition, and (ii) the failure to adjust all goods prices each period. We log-linearize our

structural equations around the steady state with zero inflation each period, that represents

a possible equilibrium in the absence of real disturbances. In this equilibrium, the failure to

adjust prices constantly results in no distortion of the allocation of resources; this allocation

is thus nearly optimal as long as the distortion due to market power is sufficiently small. In

our calculations below, we assume that it is.

The other assumption required for the validity of the quadratic approximation obtained

from our log-linear structural equations is that the policy rules considered be ones under

which the equilibrium rate of inflation in the absence of shocks would in fact be near zero – or

alternatively, that these policies be ones under which the average rate of inflation is low. This

also is assumed; since we conclude that it is optimal for a country with characteristics like

those of the U.S. to choose a policy under which the average rate of inflation is slightly, but

only slightly, positive, this last assumption is relatively innocuous. However, it is important

to realize that under other circumstances – say, an analysis of optimal monetary policy in

the presence of a need for significant seignorage revenues – this assumption as well might be

inappropriate.

Finally, it is important to note that the conditions required for validity of a quadratic

approximation to welfare obtained from log-linear approximations to the structural equations

do not relate solely to the structure of the economy; it also matters in which form we choose

to express our approximate loss function. Alternative quadratic approximations to U , each

equally valid second-order Taylor series expansions (but in terms of different variables), may

not yield equally valid approximations to welfare when evaluated using a log-linear solution

(1.1) for the model’s endogenous variables.

For example, consider a model like that of the next section. Each period’s contribution

to the utility of the representative household can be approximated by an expression of the

form

U = aĈ − bĤ + Q1 + R1, (1.4)
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where Ĉ, Ĥ denote the percentage deviations in consumption and hours worked respectively,

Q1 is a set of quadratic terms in the log deviations, and the residual R1 contains terms

of third or higher order, or terms that are independent of the policy chosen, that can be

neglected. Alternatively, one may eliminate hours using the necessary relation between

aggregate consumption and aggregate hours implied by the production function, and obtain

a Taylor series expansion of the form

U = cĈ + Q2 + R2, (1.5)

where Q2, R2 are other quadratic terms and residual. Under the assumptions just described,

the coefficient c is of order O(||ξ||). It follows that substitution into (1.5) of the solution to

our log-linear structural equations yields a valid second-order approximation to utility.

However, the same is not true of substitution of the same solution into (1.4). The

structural equations include a production-function relation between Ĉ and Ĥ, of the form

Ĉ = fĤ + Q3 + R3, (1.6)

and one of the log-linear structural relations is given by the linear terms in this. In ap-

proximation (1.5), c = a − bf−1, so that the first-order terms in the two approximations

would have the same value. But the terms Q2 are not equal to Q1, because of the presence

of non-zero quadratic terms Q3 in (1.6).6 Hence (1.4) will not yield a correct second-order

approximation to welfare, if one substitutes the solutions for Ĉ and Ĥ implied by the log-

linear structural relations, including the linear part of (1.6). In terms of the criterion set

out above, substitution of the log-linear approximate solutions into (1.4) yields an incorrect

result because the coefficients a and b are not individually of order O(||ξ||), even though

the linear combination c is. Thus it is not enough that one expand around a near-optimal

equilibrium; the expansion must be written in a form that contains no first-order terms that

do not involve coefficients of order O(||ξ||).
6Even if the production function is of a constant-elasticity form, the log-linear approximation (1.6) will

contain non-zero quadratic terms in the event of variations in government purchases.
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2 A Utility-Based Welfare Criterion

We turn now to the computation of a utility-based approximate welfare criterion, of the kind

discussed in the previous section, for the case of our baseline model.7 The natural welfare

criterion in our model is the level of expected utility

E

{ ∞∑

t=0

βtUt

}
(2.1)

associated with a given equilibrium, where the period contribution to utility Ut is given

by expression (xxx) of chapter 3. Here we shall abstract from the welfare consequences of

monetary frictions.8 Then, substituting the equilibrium condition Ct = Yt,
9 we can express

the period utility of the representative household as a function solely of the level of production

of each of the goods in period t,

Ut = u(Yt; ξt)−
∫ 1

0
ṽ(yt(i); ξ̃t)di. (2.2)

Here

Yt ≡
[∫ 1

0
yt(i)

θ−1
θ di

] θ
θ−1

(2.3)

is again the index of aggregate demand, where yt(i) is production (and consumption) in

period t of differentiated good i.10

The function ṽ(y; ξ̃) indicates the disutility of supplying quantity y. If we assume a “yeo-

man farmer” model, as in Rotemberg and Woodford (1997, 1999a), this can be interpreted

directly as the household’s disutility of supplying output. Alternatively, if we assume firms

and a labor market, as in section xx of chapter 3, we can define

ṽ(y; ξ̃) ≡ v(f−1(y/A); ξ), (2.4)

7The derivation follows essentially the lines of that presented in Rotemberg and Woodford (1997, 1999a)
in the context of a variant model with additional decision lags.

8The welfare criterion derived in this section thus applies in the “cashless limit” introduced in section
3.3 of chapter 2. The additional term that must be added in the case of non-negligible monetary frictions is
derived in section 4.1 below.

9Recall that we can interpret the model as allowing for government purchases, treating these as a shift
term in the utility function u(Y ; ξ).

10If there is trend growth in productivity and output, the variables Yt, yt(i), and At (introduced in the
next paragraph) should all be interpreted as having been deflated by a common exponential trend factor, to
render them stationary.
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where v(h; ξ) is the disutility of working h hours in any given production activity, and Af(h)

is the output produced using that labor input. Here ξ̃ ≡ (ξ, a) denotes the complete vector of

exogenous disturbances, including both the preference shocks ξ11 and the technology shock

a ≡ log A.12

Our Taylor series expansions group terms of different powers in the elements of ξ̃, though

we shall continue to use the notation ||ξ|| for the bound on the magnitude of the entire vector

of disturbances.

2.1 Output-Gap Stability and Welfare

Under our previous assumptions, u is an increasing, concave function of Y for each possible

value of ξ, while ṽ is an increasing, convex function of y for each possible value of ξ̃. Thus

(2.2) implies that Ut is a concave function of the entire vector of levels of production of

the various goods. Note also that in terms of this notation, the real marginal cost function

introduced in chapter 3 is given by

s(y, Y ; ξ̃) =
ṽy(y; ξ̃)

uc(Y ; ξ)
. (2.5)

It follows that the elasticity of ṽy with respect to y is given by ω > 0, the elasticity of real

marginal cost with respect to own output, introduced in chapter 3. One may also observe

that the elasticity of real marginal cost with respect to aggregate output is given by σ−1,

where once again

σ ≡ − uc

Ȳ ucc

measures the intertemporal elasticity of substitution in private expenditure.

The steady-state level of output associated with zero inflation, in the absence of real

11Once again, the vector ξ contains many elements, so that the disturbances to the utility of consumption
may or may not be correlated with the disturbances to the disutility of working.

12We assume a normalization of the productivity measure A such that the unconditional expectation of a
is zero. We include a rather than A in our definition of ξ̃ because it is a rather than A that is assumed to be
always sufficiently close to zero (in order for our Taylor series approximation to be accurate), and because
we wish to approximate the production-function relationship by one that is linear in a rather than linear in
A.
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disturbances (i.e., when ξ̃t = 0 at all times) is the quantity Ȳ that satisfies

s(Ȳ , Ȳ ; 0) =
1− τ

µ
≡ 1− Φ. (2.6)

Here τ is the constant proportional tax rate on sales proceeds, and µ ≡ θ/(θ − 1) is the

desired markup as a result of suppliers’ market power. The parameter Φ then summarizes

the overall distortion in the steady-state output level as a result of both taxes and market

power. Since the efficient output level Ȳ e for all goods in the absence of shocks satisfies

s(Ȳ e, Ȳ e; 0) = 1, we observe that Ȳ /Ȳ e is a decreasing function of Φ, equal to one when

Φ = 0. When Φ is small, we may make use of the log-linear approximation

log(Ȳ /Ȳ e) = −(ω + σ−1)−1Φ. (2.7)

It is plainly realistic to assume that Φ > 0. However, we shall assume that Φ is small, specif-

ically of order O(||ξ||), so that (2.7) is accurate up to a residual of order O(||ξ||2). This is

the assumption of near-efficiency of the steady state level of output with zero inflation that

is made in order to allow us to use our log-linear approximations to the model structural

equations in welfare comparisons, as explained in the previous section. Note that the intro-

duction of the distorting tax rate τ allows us to contemplate a series of economies in which

Φ is made progressively smaller, without this having to involve any change in the size of θ,

a parameter that also affects the coefficients of the log-linearized equilibrium conditions.13

We now proceed to compute a quadratic Taylor series approximation to (2.2). The first

term can be approximated as

u(Yt; ξt) = ū + ucỸt + uξξt +
1

2
uccỸ

2
t + ucξξtỸt +

1

2
ξ′tuξξξt +O(||ξ||3)

13Rotemberg and Woodford (1997, 1999a) instead assume that τ is of exactly the (negative) size required
to offset the distortion due to market power, so that Φ = 0. The intention is to consider optimal monetary
stabilization policy as part of a broader analysis of optimal policy, in which another instrument (tax policy)
is assigned responsibility for achieving the optimal average level of economic activity, while monetary policy
is used to ameliorate the economy’s response to shocks. However, it is clear that monetary policy must in
practice be chosen in an environment in which such an output subsidy does not, and probably cannot, exist.
Furthermore, the fact that the “natural rate” of output is inefficiently low is of importance for certain issues,
notably the inflationary bias associated with discretionary policymaking, treated in chapter 7. Hence we
here allow for Φ > 0, while still assuming that Φ is of order O(||ξ||).
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= ū + Ȳ uc · (Ŷt +
1

2
Ŷ 2

t ) + uξξt +
1

2
Ȳ 2uccŶ

2
t

+Ȳ ucξξtŶt +
1

2
ξ′tuξξξt +O(||ξ||3)

= Ȳ ucŶt +
1

2
[Ȳ uc + Ȳ 2ucc]Ŷ

2
t − Ȳ 2uccgtŶt + t.i.p. +O(||ξ||3)

= Ȳ uc

{
Ŷt +

1

2
(1− σ−1)Ŷ 2

t + σ−1gtŶt

}
+ t.i.p. +O(||ξ||3). (2.8)

Here the first line represents the usual Taylor expansion, in which ū ≡ u(Ȳ ; 0) and Ỹt ≡
Yt− Ȳ , and we assume that the fluctuations in Ỹt are only of order O(||ξ||). The second line

substitutes for Ỹt in terms of Ŷt ≡ log(Yt/Ȳ ), using the Taylor series expansion

Yt/Ȳ = 1 + Ŷt +
1

2
Ŷ 2

t +O(||ξ||3).

The third line collects together in the term “t.i.p.” all of the terms that are independent of

policy, as they involve only constants and exogenous variables, and uses again the notation

gt ≡ −ucξξt

Ȳ ucc

for the percentage variation in output required in order to keep the marginal utility of

expenditure uc at its steady-state level, given the preference shock.14 The final line collects

terms in a useful way; note that the only part of this expression that differs across policies

is the expression inside the curly braces.

We may similarly approximate ṽ(yt(i); ξt) by

ṽ(yt(i); ξt) = Ȳ ṽy

{
ŷt(i) +

1

2
(1 + ω)ŷt(i)

2 − ωqtŷt(i)
}

+ t.i.p. +O(||ξ||3)

= Ȳ uc

{
(1− Φ)ŷt(i) +

1

2
(1 + ω)ŷt(i)

2 − ωqtŷt(i)
}

+ t.i.p. +O(||ξ||3),(2.9)

where ŷt(i) ≡ log(yt(i)/Ȳ ), ω is the elasticity of real marginal cost with respect to own

output discussed above, and

qt ≡ − ṽyξξt

Ȳ ṽyy

14As in chapters 2 and 4, the exogenous shifts ξt in the relation between the marginal utility of expenditure
uc and aggregate demand Yt should be understood to include variations in the level of government purchases
as well as taste shocks. The approximation derived here continues to apply in the presence of government
purchases, as long as the function u in (2.8) is understood to refer to the indirect utility function called
ũ(Yt; ξ̃t) in chapter 2.
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is the percentage variation in output required to keep the marginal disutility of supply ṽy

at its steady-state level, given the preference shock. The second line uses (2.5) and (2.6) to

replace ṽy by (1−Φ)uc, and the assumption that Φ is of order O(||ξ||) to simplify. Note that

the term premultiplying the expression in curly braces is now the same as in (2.8).

Integrating this expression over the differentiated goods i, we obtain

∫ 1

0
ṽ(yt(i); ξt) = Ȳ uc

{
(1− Φ)Eiŷt(i) +

1

2
(1 + ω)[(Eiŷt(i))

2 + variŷt(i)]− ωqtEiŷt(i)
}

+t.i.p. +O(||ξ||3)
= Ȳ uc

{
(1− Φ)Ŷt +

1

2
(1 + ω)Ŷ 2

t − ωqtŶt +
1

2
(θ−1 + ω)variŷt(i)

}

+t.i.p. +O(||ξ||3), (2.10)

using the notation Eiŷt(i) for the mean value of ŷt(i) across all differentiated goods at date

t, and variŷt(i) for the corresponding variance. In the second line, we use the Taylor series

approximation to (2.3),

Ŷt = Eiŷt(i) +
1

2
(1− θ−1)variŷt(i) +O(||ξ||3), (2.11)

to eliminate Eiŷt(i).

Combining (2.8) and (2.10), we finally obtain

Ut = Ȳ uc

{
ΦŶt − 1

2
(σ−1 + ω)Ŷ 2

t + (σ−1gt + ωqt)Ŷt − 1

2
(θ−1 + ω)variŷt(i)

}

+t.i.p. +O(||ξ||3)
= − Ȳ uc

2

{
(σ−1 + ω)(xt − x∗)2 + (θ−1 + ω)variŷt(i)

}
+ t.i.p. +O(||ξ||3). (2.12)

Here the second line rewrites the expression in terms of the output gap xt ≡ Ŷt− Ŷ n
t , where

Ŷ n
t again denotes the (log of the) natural rate of output, the equilibrium level of output

under complete price flexibility, given by

Ŷ n
t ≡ σ−1gt + ωqt

σ−1 + ω
, (2.13)

and in terms of the efficient level of the output gap, x∗ ≡ log(Ȳ e/Ȳ ), given by (2.7). (Note

that if Φ is positive and of order O(||ξ||), the same is true of x∗.)
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Expression (2.12) represents a quadratic approximation to (2.2), under the assumption

that Φ (and hence the inefficiency of the steady-state level of output) is of order O(||ξ||).
It is interesting to observe that the preference and technology shocks ξ̃t matter, in this

approximation, only through their effects upon a single exogenous state variable, the natural

rate of output Ŷ n
t . Furthermore, output variability as such does not matter for our utility-

based welfare criterion; rather, it is the variability of the output gap that matters, and the

measure of potential output with respect to which the gap should be measured for purposes

of the welfare criterion is the same “natural rate” of output that (as shown in chapter 3)

determines the short-run relation between output and inflation. Thus we can already offer an

answer to one question posed in the introduction to this chapter: it is the output gap, rather

than output relative to trend, that one should seek to stabilize, and (if the only distortions

in the economy are those associated with monopolistic competition and sticky prices) the

relevant output gap is the same one that appears in the short-run aggregate supply curve.

However, (2.12) implies that stabilization of the output gap should not be the sole concern

of policy, since the dispersion of output levels across sectors matters as well.15 In fact, in

our baseline framework, there is no reason for equilibrium output to be different for different

goods except as a result of relative price distortions that result from sticky prices in an

environment where the overall price level is unstable. It is through this channel that price

stability turns out to be relevant for welfare, in a way that goes beyond the mere association

between inflation and the level of the aggregate output gap.

Specifically, our assumed CES (Dixit-Stiglitz) preferences over differentiated goods imply

that each supplier faces a constant-elasticity demand curve of the form

log yt(i) = log Yt − θ(log pt(i)− log Pt). (2.14)

15More generally, it is the dispersion of output gaps across sectors that matters, along with the aggregate
output gap. We here assume that the only disturbances ξ̃t that affect the natural rate of output have identical
effects upon all sectors, so that the dispersion of output gaps across sectors is identical to the dispersion
of output levels. In section xx below, we consider the consequences of allowing for shocks with asymmetric
effects on different sectors.
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It follows from this that

vari log yt(i) = θ2vari log pt(i),

so that (2.12) may equivalently be written

Ut = − Ȳ uc

2

{
(σ−1 + ω)(xt − x∗)2 + θ(1 + ωθ)vari log pt(i)

}
+ t.i.p. +O(||ξ||3). (2.15)

Thus we find that, in addition to stabilization of the output gap, it is also appropriate for

policy to aim to reduce price dispersion. In our framework, this is achieved by stabilizing the

general price level; but the exact way in which fluctuations in the general price level affect

price dispersion, and hence welfare, depend upon the details of price-setting.

2.2 Inflation and Relative-Price Distortions

The approximation (2.15) to the utility of the representative household applies to any model

with no frictions other than those due to monopolistic competition and sticky prices, re-

gardless of the nature of the delays involved in price-setting. The relation between the price

dispersion term and the stability of the general price level depends, instead upon the details

of price-setting. Here we do not attempt a general treatment, but illustrate the form of the

relation in three simple examples, including our baseline model of staggered price-setting

from chapter 3.

As a first example, consider again the case, discussed above in section xx of chapter 3,

of an economy in which a fraction 0 < ι < 1 of goods prices are fully flexible, while the

remaining 1− ι must be fixed a period in advance. In such an economy, as shown above, the

aggregate supply relation takes the familiar “New Classical” form

πt = κxt + Et−1πt, (2.16)

where the slope coefficient is given by

κ ≡ ι

1− ι

σ−1 + ω

1 + ωθ
> 0.
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In this model, in any period all flexible-price goods have the same price, p1
t , and all

sticky-price goods have the same price, p2
t , which satisfies

log p2
t = Et−1 log p1

t +O(||ξ||2). (2.17)

The overall price index (defined by equation (xx) of chapter 3) furthermore satisfies

log Pt = ι log p1
t + (1− ι) log p2

t +O(||ξ||2),

so that

πt − Et−1πt = ι[log p1
t − Et−1 log p1

t ] +O(||ξ||2)
= ι[log p1

t − log p2
t ] +O(||ξ||2),

using (2.17). It follows that under this assumption about pricing,

vari log pt(i) = ι(1− ι)(log p1
t − log p2

t )
2

=
1− ι

ι
(πt − Et−1πt)

2.

As asserted above, equilibrium price dispersion is closely connected with the stability of

the general price level; but in this special case, it is only the volatility of the unexpected

component of inflation that matters.

Substituting this expression into (2.15), we obtain

Ut = −ΩLt + t.i.p. +O(||ξ||3),

where Ω is a positive constant and Lt is a quadratic loss function of the form

Lt = (πt − Et−1πt)
2 + λ(xt − x∗)2, (2.18)

with a relative weight on output gap variability of λ = κ/θ. We thus obtain precise con-

clusions regarding both the sense in which aggregate output and inflation variations matter

for welfare (it is the output gap that matters, and the unexpected component of inflation),
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and the relative weight that should be placed upon the two concerns (the relative weight on

output gap variations is proportional to the slope κ of the short-run Phillips curve).

In fact, in the context of this model, there is no tension between the goals represented by

the two terms of (2.18). For (2.16) implies that the output gap is itself proportional to the

surprise component of inflation. Thus we can simplify (2.18) further, and say that the sole

goal of policy should be to minimize the variability of unexpected inflation, or alternatively,

that the sole goal should be to stabilize the output gap (when properly measured).16

While we obtain a simple result in this case, the model is not a very realistic one, since,

as discussed earlier, it is unable to account for the persistence of the observed output effects

of monetary disturbances. Let us consider instead, then, the consequences of the kind of

staggered pricing assumed in our baseline model, a discrete-time version of the Calvo (1983)

pricing model. In this model, a fraction 0 < α < 1 of all prices remain unchanged each

period, with the probability of a price change assumed to be independent of both the length

of time since the price was last changed and of the degree to which that good’s price is out

of line with others. This implies that each period, the distribution of prices {pt(i)} consists

of α times the distribution of prices in the previous period, plus an atom of size (1 − α) at

the price p∗t that is chosen at date t by all suppliers who choose a new price at that date. As

shown in chapter 3, the aggregate supply relation takes in this case the “New Keynesian”

form

πt = κxt + βEtπt+1, (2.19)

where now the slope coefficient is given by

κ ≡ (1− α)(1− αβ)

α

(σ−1 + ω)

1 + ωθ
> 0. (2.20)

Letting

P̄t ≡ Ei log pt(i), ∆t ≡ vari log pt(i),

16However, if we allow for disturbances to the short-run aggregate supply relation (2.16) that – unlike the
preference, technology, or government-purchase shocks considered in chapter 3 – do not shift the efficient
level of output to the same extent, then the loss function (2.18) would still be correct, while the output gap
that appears in this formula would no longer coincide perfectly with unexpected inflation. In that extension
of the model, it would be quite important to know the correct relative weight λ to place on output-gap
variations. See section xx below.
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we observe from the above recursive characterization of the distribution of prices at date t

that

P̄t − P̄t−1 = Ei[log pt(i)− P̄t−1]

= αEi[log pt−1(i)− P̄t−1] + (1− α)(log p∗t − P̄t−1)

= (1− α)(log p∗t − P̄t−1).

Similar reasoning about the dispersion measure ∆t yields

∆t = vari[log pt(i)− P̄t−1]

= Ei{[log pt(i)− P̄t−1]
2} − (Ei log pt(i)− P̄t−1)

2

= αEi{[log pt−1(i)− P̄t−1]
2}+ (1− α)(log p∗t − P̄t−1)

2 − (P̄t − P̄t−1)
2

= α∆t−1 +
α

1− α
(P̄t − P̄t−1)

2.

Finally, substituting the log-linear approximation

P̄t = log Pt +O(||ξ||2),

we obtain

∆t = α∆t−1 +
α

1− α
π2

t +O(||ξ||3) (2.21)

as a law of motion for the dispersion of prices. Note that price dispersion is again a function

of the degree of instability of the general price level, though now the relation is a dynamic

one. Note also that under this assumptions about pricing, both expected and unexpected

inflation contribute equally to increases in price dispersion.

Integrating forward (2.21) starting from any initial degree of price dispersion ∆−1 in the

period before the first period for which a new policy is contemplated, the degree of price

dispersion in any period t ≥ 0 under the new policy will be given by

∆t = αt+1∆−1 +
t∑

s=0

αt−s
(

α

1− α

)
π2

s +O(||ξ||3).

Note that the first term will be independent of the policy that is chosen to apply in periods

t ≥ 0. Thus if we take the discounted value of these terms over all periods t ≥ 0, we obtain
∞∑

t=0

βt∆t =
α

(1− α)(1− αβ)

∞∑

t=0

βtπ2
t + t.i.p. +O(||ξ||3).
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Substitution of this in turn into (2.15), we find that

∞∑

t=0

βtUt = −Ω
∞∑

t=0

βtLt + t.i.p. +O(||ξ||3), (2.22)

where in this case the normalized quadratic loss function is given by

Lt = π2
t + λ(xt − x∗)2. (2.23)

Here the relative weight on output gap variability is again given by λ = κ/θ, but now the

value of κ referred to is that given in (2.20).17

The loss function (2.23) is in fact of a form widely assumed in the literature on monetary

policy evaluation (and also in positive models of central bank behavior).18 Here, however, we

are able to present a theoretical justification for the attention to variations in inflation (rather

than, say, variations in the price level), as well as for the common assumption that inflation

variations are equally costly whether forecastable or not, in terms of the relative-price distor-

tions resulting from price-level instability in the Calvo model of staggered price-setting. We

are also able to derive an optimal rate of inflation with respect to which deviations should

be measured (namely, zero, as it is in this case that no relative-price distortions result from

imperfect synchronization of price changes). And finally, we are again able to derive an

optimal relative weight upon output-gap variation as opposed to inflation variation; this

depends upon model parameters, but in a way that makes an estimate of the slope of the

short-run aggregate supply curve directly informative about the proper size of this weight.19

17Note that the values of Ω and λ obtained here are slightly different from those that follow from the
derivation presented in Rotemberg and Woodford (1999a). The reason is that we are here interested in
approximating the expected value of the discounted sum of utilities, conditioning upon the pre-existing
degree of price dispersion at date −1, whereas they compute an unconditional expectation. Note that the
loss measure that we compute here, for a given policy, will not depend upon the initial price dispersion ∆−1.
Nonetheless, it matters whether one conditions upon the value of ∆−1 in computing the expected utility.
Computing the unconditional expectation, rather than conditioning upon the value of ∆−1, penalizes policies
that lead to higher average price dispersion also for the higher average value assumed for ∆−1 if one integrates
over the unconditional distribution of values for ∆t associated with a given stationary equilibrium.

18See, e.g., Walsh (1998, chap. 8), Clarida et al. (1999), or Svensson (1999a).
19The size of this weight is of greater interest in the case of this model, since aggregate supply relation

(2.19) does not imply that inflation and the output gap should perfectly co-vary under most circumstances.
It is true that complete stabilization of one implies complete stabilization of the other, as we discuss further
in the next section, and in this sense there is no tension between the two goals if (2.19) holds. But it may not
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As we discuss further in section 4.2 below, the estimate of the slope of the short-run

aggregate supply curve for the U.S. of Rotemberg and Woodford (1997) implies a value for

λx on the order of .05, if the output gap is measured in percentage points and inflation is

measured as an annualized percentage rate. This value is much lower than the value λx = 1

often assumed in the literature on evaluation of monetary policy rules, on a ground such as

“giving equal weight to inflation and output” as stabilization objectives.20 Our utility-based

analysis implies instead that if one assumes the degree of price stickiness that is needed

to account for the persistence of the real effects of monetary policy shocks, the distortions

associated with inflation are more important than those associated with variation in the

aggregate output gap.

As yet another alternative, suppose that prices are indexed to a lagged price index be-

tween the occasions on which they are re-optimized, as in the model with “inflation inertia”

set out in section xx of chapter 3. In this case, the aggregate supply relation takes the form

πt − γπt−1 = κxt + βEt[πt+1 − γπt], (2.24)

generalizing (2.19), where γ measures the degree of indexation to the lagged price index,

and κ is again defined as in (2.20). Recall that in the periods in which a given price is not

re-optimize, it is automatically increased by an amount

log pt(i) = log pt−1(i) + γπt−1

owing to the change in the lagged price index. It follows that (2.21) generalizes to

∆t = α∆t−1 +
α

1− α
(πt − γπt−1)

2 +O(||ξ||3). (2.25)

Price dispersion is increased only when the prices that are re-optimized are increased by

an amount different than γπt−1, the amount by which the prices that are not re-optimized

increase. This occurs if and only if the overall rate of inflation πt differs from γπt−1.

be possible to achieve complete stabilization, e.g., because of the zero lower bound on nominal interest rates,
or informational restrictions upon feasible policies; and in such cases optimal policy will generally depend
upon the relative weight placed upon the two goals.

20See, e.g., Rudebusch and Svensson (1999) and Williams (1999).
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We can integrate (2.25) forward as before, and again obtain an expression of the form

(2.22) for discounted utility. But now the normalized quadratic loss function is given by

Lt = (πt − γπt−1)
2 + λ(xt − x∗)2, (2.26)

where λ > 0 and x∗ ≥ 0 are defined as in (2.23). In the case of full indexation of individual

prices to the lagged price index (γ = 1),21 this implies that it is the rate of inflation accel-

eration, ∆πt, rather than the rate of inflation itself, that should be stabilized around zero

in order to reduce the distortions associated with price dispersion.22 Owing to the existence

of complete indexation to past inflation, there are no distortions resulting from constant

inflation, only from changes in the rate of inflation. In its implication that steady inflation

at any rate causes no harm, this model is like the “New Classical” model (with which it

shares the prediction of a vertical “long run Phillips curve”). But in the model with full

indexation, inflation changes distort the allocation of resources, whether they are predictable

in advance or not.

3 The Case for Price Stability

While the loss measures derived above under the various assumptions about the timing of

pricing decisions are each different in certain respects, they all share an important common

property. This is that the deadweight losses due to relative price distortions can in each

case be completely eliminated, in principle, by stabilizing the aggregate price level. The

intuition for this result is simple. The aggregate price level is stabilized by creating an

environment in which suppliers who choose a new price have no desire at any time to set a

price different from the average of existing prices. But if this is so, the average of existing

21Note that in this case, the aggregate supply relation is essentially identical to the popular empirical
specification proposed by Fuhrer and Moore (1995a, 1995b).

22Steinsson (2000) and Amato and Laubach (2001b) similarly find, in the case of an AS relation with
inflation inertia owing to the presence of backward-looking “rule-of-thumb” price-setters of the kind proposed
by Gali and Gertler (1999), that the utility-based loss function should penalize variations in ∆πt as well as
variations in πt. The result (2.26) is simpler, however, than the one obtained by these authors, and leads to
simpler conclusions regarding the character of optimal policy in the presence of inflation inertia. This is one
reason that we emphasize indexation to a lagged price index as a possible source of inflation inertia in this
study.
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prices never changes, and so the new prices that are chosen at all times are always the same,

and eventually all goods prices are equal to that same, constant value. Thus aggregate price

stability is a sufficient condition for the absence of price dispersion in our simple framework.

At the same time, in most cases, it is also a necessary condition. This is not true in the

pure “New Classical” case, as in that case it is only necessary that there be no unexpected

changes in the aggregate price level in order for there to be no price dispersion. But this

is clearly a highly special case; even if some prices are fully flexible, if the sticky goods

prices as in the Calvo model, complete price stability will again be necessary to eliminate

distortions. Similarly, even in the model of Mankiw and Reis (2001), which is like the “New

Classical” model in assuming that each goods price at any date is set optimally conditional

on information available at some prior date (though the dates are different for different

goods), complete price stability is necessary to eliminate distortions. This is because in the

Mankiw-Reis model, for any horizon k, there are a positive fraction of goods prices that

are set more than k periods in advance (or on the basis of information that is more than k

periods out of date). This means that relative-price distortions will be created in the case of

any disturbance that affects the price level, even if it has no effect upon the price level until

k periods later. Since this is true for arbitrary k, distortions are completely eliminated only

if exogenous disturbances never imply any change in the price level.

Similarly, in the model with staggered pricing and full indexation to a lagged price index,

price stability is not necessary for the absence of price dispersion; it is simply necessary

that the inflation rate be constant over time. But again this is a highly special case. If the

indexation parameter γ takes any value other than one, only zero inflation is consistent with

an absence of price dispersion.23 The same conclusion would be reached if only some prices

are indexed to the lagged price index.

The argument for the necessity of stability of the general price index for the elimination of

23To be precise, an absence of price dispersion will require that prices change at a common rate πt satisfying
the difference equation πt = γπt−1, given some arbitrary initial rate of inflation. But when γ < 1, this
implies zero inflation every period, at least asymptotically. A stationary policy regime that fully eliminates
distortions resulting from price dispersion would have to be one with zero inflation at all times.
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price dispersion is also independent of the specific details of the way that the timing of price

changes is modeled by Calvo (1983). One need not assume that the probability of revision

of any given price in a given period is the same for all prices; one might instead assume that

prices are revised at fixed time intervals, as in the models of Taylor (1980), Blanchard and

Fischer (1989, sec. 8.2), King and Wolman (1999), or Chari et al. (2000), among others, or

one might endogenize the timing of price revisions as in the model of Dotsey et al. (1999). In

any of these cases, price dispersion is eliminated only by a policy that completely stabilizes

the general price index.

Moreover, price stability is not only the case in which the distortions associated with

inefficient output composition are eliminated. As we shall see, it is also the route to min-

imization of the distortions associated with an inefficient level of output; and so, in the

context of the kind of simple model considered thus far, it is an unambiguously desirable

goal for monetary policy. The argument for this is simplest in the case that the equilibrium

level of output under flexible prices is optimal, so we take up this case first. But as we shall

see, our conclusions require only minor modification even when we allow for the possibility

that the natural rate of output is inefficiently low.

3.1 The Case of an Efficient Natural Rate of Output

Here we assume not merely that the inefficiency wedge Φ defined in (2.6) is of order O(||ξ||),
but that it is equal to zero (or at any rate, that it is of order O(||ξ||2), so that we may

neglect it in our quadratic approximation to expected utility). This implies that Ȳ = Ȳ e

(or at least that their log difference x∗ is of order O(||ξ||2)), so that the steady-state level

of output under flexible prices is efficient (at least to second order). Since we have already

verified, above, that percentage fluctuations in the natural rate are equal (to second order)

to the percentage fluctuations in the efficient level of output, this actually implies that (to

second order) the natural rate of output coincides with the efficient level of output at all

times.

In this case, we easily obtain a very simple conclusion about the nature of optimal
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monetary policy. For each of the individual terms in our quadratic loss function can be

shown to achieve its minimum possible value, zero, if inflation is zero at all times. We have

just discussed the fact that this is true of the terms that measure the deadweight loss due

to an inefficient composition of output. But in the present case, x∗ = 0, so that the term

in the loss function that involves the aggregate output gap is also minimized (and equal to

zero) if and only if xt = 0 at all times. Each of the aggregate supply relations (2.16), (2.19)

and (2.24) implies that this will be true in the case of zero inflation at all times.

In the informal argument just given, we have ignored the role of initial conditions that

may not be consistent with an equilibrium with zero inflation and zero output gap at all

times. If we wish to consider optimal policy from some initial date, however, the initial

conditions that happen to exist — not necessarily ones that result from an anticipation of

the policy that will be followed from now on — may constrain possible outcomes from now

on. Thus it may not be possible to completely stabilize both inflation and the output gap

at zero each period from the initial period onward.

In the case of the “New Keynesian” aggregate supply relation (2.19), there is no problem;

because this AS relation is purely forward-looking, the set of paths for inflation and the

output gap that are feasible from date zero onward are independent of anything that has

happened previously. In this case, πt = 0 and xt = 0 for all t ≥ 0 is a possible equilibrium

outcome regardless of initial conditions, and so this is plainly the optimal outcome given

a loss function (2.23). On the other hand, in the case of the “New Classical” AS relation

(2.16), such an outcome represents a possible equilibrium only in the case of initial conditions

under which E−1π0 = 0. In the case of other initial conditions, it is obvious that an optimal

policy will involve π0 = E−1π0 6= 0 and x0 = 0, which reduces the period zero loss (2.18) to

its minimum possible value, zero. A loss of zero is also possible in all later periods, through

commitment to any path for inflation that is completely predictable a period or longer in

advance; in particular, a commitment to πt = 0 in all periods t > 0 is one way of achieving

the minimum possible discounted stream of losses.

Thus a commitment to price stability would again represent an optimal policy, except
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possibly during a brief transition period. If we seek to choose a time-invariant policy rule

that achieves the pattern of behavior that it would be optimal to commit eventually to

follow — as it is argued in chapters 7 and 8 that we should24 — then a commitment to

price stability would be an example of such a policy. One reason why it might be sensible to

commit to follow such a rule from the beginning, even when E−1π0 6= 0, is that a willingness

to deliver whatever rate of inflation may have been expected “just this once” may allow the

private sector to expect that the same principle would be followed in the future as well, if it

ever turned out that Et−1πt differed from zero, in which case there would be no determinate

equilibrium level of inflation for the private sector to expect.

In the case of indexation to a lagged price index, resulting in an AS relation (2.24) that

implies inflation inertia, matters are still more complex. An equilibrium with πt = 0 and

xt = 0 for all t ≥ 0 is possible only in the case of initial conditions under which π−1 = 0.

However, it is evident from the form of the AS relation that the set of possible paths for

the variables πd
t ≡ πt − γπt−1 and xt from period zero onward is independent of the initial

conditions, and one also notes that the utility-based loss function (2.26) depends only on the

paths of these two variables. It is thus obvious that the optimal policy, from the point of

view of minimizing the discounted sum of losses from period zero onward given the economy’s

prior state, is one under which πt = γπt−1 and xt = 0 for all t ≥ 0. Thus the resulting path

of inflation will depend on the economy’s initial rate of inflation, prior to adoption of the

optimal policy; specifically it will satisfy πt = γt+1π−1.

As long as γ < 1, optimal policy in this case is again one under which the inflation

will asymptotically equal zero — and not just on average, but in all possible states of the

world. Thus optimal policy will involve a commitment to eventual stabilization of the price

level. Furthermore, even in the transition period, the optimal path of inflation will be

deterministic, which implies that will be unaffected by any random disturbances that may

occur from period zero onward. Thus optimal policy has the immediate consequence that the

price level should no longer be affected at all by any random disturbances that may occur,

24See the discussion in those chapters of policymaking “from a timeless perspective”.
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be they disturbances to technology, to preferences, or to the level of government purchases.

The existence of inflation inertia only affects the rate at which it is optimal for the central

bank to commit to lowering the rate of inflation (assuming an initial positive level) to its

long-run target of zero.

It is only in the special case that γ = 1 (full indexation to the lagged price index) that this

result is not obtained. In that case, the optimal commitment given initial conditions is to a

constant inflation rate πt = π−1 for all t ≥ 0; it is therefore optimal never to disinflate, once

inflation has been allowed to begin. But such a result plainly depends on the absence, in this

simple model, of any distortions associated with steady inflation. If the prices of even a few

goods are not fully indexed to the lagged price index, zero inflation is required to eliminate

relative-price distortions. Similarly, if the adjustment of prices as a result of indexation is

not continuous, but occurs only occasionally (though more frequently than re-optimizations

of pricing policy), relative-price distortions will again be completely eliminated only in the

case of zero inflation. In either case, optimal policy will steadily reduce inflation over time,

to a long-run rate of zero, as there is always a motive for some reduction in the inflation rate

(as long as the current rate remains positive) but never a motive for increasing it (as opposed

to keeping it near its recent level). Thus one finds quite generally that optimal policy will

involve a commitment to price stability, at least eventually. And this means that eventually

inflation will not only equal zero on average, but zero regardless of the real disturbances that

may affect the economy.

This strong conclusion regarding the optimality of complete price stability depends upon

various details of our model, as we discuss further in section xx. Nonetheless, it is interesting

to remark that it holds despite our having allowed for several different kinds of stochastic

disturbances. In particular, our framework allows for exogenous disturbances to technology,

to government purchases, to households’ impatience to consume, to their willingness to

supply labor, or to the transactions technology that determines their demand for money

balances. In the face of each of these types of disturbance, it remains optimal, under the

circumstances assumed here, for the general level of prices to be held fixed.
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The generality of the conclusion results from a simple intuition, stressed by Goodfriend

and King (1997). Under the circumstances assumed here, the failure of prices to be con-

tinually adjusted is the only distortion that prevents rational expectations equilibrium from

achieving an optimal allocation of resources. Thus an optimal monetary policy is one that

achieves the same allocation of resources as would occur with flexible prices, if this is pos-

sible. Flexible-price equilibrium models of aggregate fluctuations (i.e., real business cycle

models25) are then of practical interest, not as descriptions of what aggregate fluctuations

should be like regardless of the monetary policy regime, but as descriptions of what they

would be like under an optimal policy regime. Finally, our models of optimal price-setting

imply that price stickiness will have no effects upon equilibrium outcomes in the case that

monetary policy keeps the general price level completely unchanged over time, since in this

case suppliers of goods would not wish to change their prices more frequently even if it were

costless for them to do so. Thus complete price stability achieves the optimal allocation of

resources.

Verifying that it is in fact possible, in principle, to achieve this first-best allocation

through suitable monetary policy requires that we verify that we can solve the equations

of our model for the evolution of all variables (including the interest-rate instrument of the

central bank) under the assumption that πt = 0 at all times. As discussed in chapter 4,

this is possible, as long as the natural rate of interest rn
t is always non-negative; in this

case, what is required is that output equal the natural rate of output at all times, and that

25Standard real business cycle models (King and Rebelo, 1999) differ from the flexible-price limit of the
model assumed here in that product markets are competitive, rather than monopolistically competitive; in
that all output is produced using inputs purchased from the same factor markets, so that there is a common
level of marginal cost for all firms at any time; and in that the endogenous dynamics of the capital stock
in response to shocks is modeled, and indeed emphasized (as the only endogenous propagation mechanism
in simple RBC models). However, in the flexible-price limit of our baseline model, all goods prices move
together, and similarly the levels of production of each good, so that marginal cost is in fact the same for all
firms. If we assume, as in this section, that an output or employment subsidy offsets the distortion due to
firms’ market power, the flexible-price equilibrium is equivalent to that of a competitive model with a single
good. Finally, if we extend the baseline model to take account of capital-accumulation dynamics (which, as
we have argued in chapter 4, are not so important for our concerns), then the flexible-price dynamics of our
model are fully equivalent to those of a standard RBC model. Note that these models, like our “cashless”
model, abstract from real-balance effects upon consumption demand, labor supply, and so on.
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the nominal interest rate equal the natural rate of interest at all times. Hence such an

equilibrium is possible (under the qualification stated), and thus such an outcome is the one

that an optimal policy would aim at.

Further discussion of exactly what kinds of output and interest-rate variations in re-

sponse to real disturbances this should imply can be found in section xx of chapter 4. Here

we recall simply that in the case of none of the types of real disturbances discussed there

would it be desirable to use monetary policy to suppress all effects of the real disturbance on

aggregate output. Nor can we support, in general, so simple a conclusion as that reached by

Ireland (1996), who argues that one should use monetary policy to “insulate aggregate out-

put” against “shocks to demand”, while accommodating “shocks to supply”. Many readers

might assume that “shocks to demand” would include disturbances such as our government-

purchase or consumption-demand shocks, but the result just derived here (together with

our discussion in chapter 4 of variation in the natural rate of output) implies that it is not

optimal to stabilize output in response to these shocks. In fact, in Ireland’s theoretical anal-

ysis, “shocks to demand” refer solely to money-demand shocks, as this is the only type of

exogenous disturbances other than technology shocks that he considers.

3.2 Consequences of an Inefficient Natural Rate of Output

We now consider the extent to which the above conclusions must be modified in the case

that (quite realistically) we assume that Φ > 0, so that the equilibrium rate of output under

flexible prices would be inefficiently low. The distortions represented by the coefficient Φ, i.e.,

the market power resulting from monopolistic competition and the constant rate of distorting

taxation τ , introduce a wedge between this natural rate of output and the efficient output

level. However, this wedge is assumed to be constant over time, so that percentage changes

in the natural rate still correspond precisely (in our log-linear approximation) to percentage

changes in the efficient level of output.26 Thus, as shown above, the distortions associated

with a suboptimal aggregate level of economic activity are still measured a quadratic function

26The consequences of time-variation in the size of this wedge are considered below in section xx.
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of the output gap, λ(xt − x∗)2, even if now the constant x∗ is assumed to be positive. (Note

that we assume even in this case that Φ, and hence x∗, is of order O(||ξ||).)
While this difference matters for the optimal average levels of inflation and output – that

is, for the deterministic part of our above description of the optimal policy commitment – it

has no effect (in our log-linear approximation to optimal policy) upon the optimal responses

to shocks. We first demonstrate this in the simple context of our “New Classical” model of

price-setting. In this case, the normalized quadratic loss function (2.18) can be written

Lt = (πt − Et−1πt)
2 − 2λx∗xt + λx2

t , (3.1)

dropping the term λx∗2 that is independent of policy. The second term on the right-hand

side now indicates a welfare gain from an increase in the expected output gap in any period.

However, because x∗ is of order O(||ξ||), a first-order approximation to the solution for xt

suffices to give us a second-order approximation to this term. Hence we may substitute using

the aggregate supply relation (2.16), to obtain

Lt = (πt − Et−1πt)
2 − 2θ−1x∗[πt − Et−1πt] + λx2

t ,

recalling that λ = κ/θ.

Taking the expected discounted value of such terms (and dropping the term E−1π0 that

is independent of policy), we obtain the utility-based welfare criterion

E0

{ ∞∑

t=0

βtLt

}
= −2θ−1x∗π0 + E0

{ ∞∑

t=0

βt[(πt − Et−1πt)
2 + λx2

t ].

}
(3.2)

Note that each of the terms proportional to x∗ has canceled, except the one indicating a

welfare gain from surprise inflation at date zero, the time at which a new policy commitment

is adopted. Because it is not possible to commit in advance to an inflation surprise at any

later date, the corresponding terms for dates t ≥ 1 do not matter. But this means that

allowing for x∗ > 0 has no effect upon the nature of the optimal policy commitment, except

in the initial (transitional) period, when it is possible to take advantage of the fact that

private sector expectations of period zero inflation are already given, before the policy is
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adopted.27 It is arguable (as we discuss in the next chapter) that it does not make sense

to behave differently in this initial period than one commits to behave later, if one wants

the commitment to be credible. But regardless of how one manages the transition to the

optimal regime, it is optimal to commit to an eventual zero rate of inflation, and to a path

for inflation that is unaffected by any stochastic disturbances.28

It might be thought that this result depends upon the fact that in the special case in

which all prices are changed every period (though some are committed a period in advance),

only unexpected inflation has an effect upon output. Yet a similar conclusion is obtained in

our baseline model, with Calvo price-setting. In this case, we can similarly substitute into

(2.23) using the aggregate supply relation (2.19), to obtain

Lt = π2
t − 2θ−1x∗[πt − βEtπt+1] + λx2

t ,

noting again that λ = κ/θ. Taking the expected discounted value, we obtain the utility-based

welfare criterion

E0

{ ∞∑

t=0

βtLt

}
= −2θ−1x∗π0 + E0

{ ∞∑

t=0

βt[π2
t + λx2

t ]

}
. (3.3)

Once again all of the terms proportional to x∗ cancel, except the one indicating welfare

gains from a surprise inflation in period zero. Committing in advance to non-zero inflation

in any later period does not produce any such effect. For the value of the increase in output

in any period t ≥ 1 resulting from higher inflation in period t must be offset by the cost

of the reduction in output in period t− 1 as a result of expectation of that higher inflation

in period t. From the standpoint of the discounted loss criterion (3.2), the costs resulting

from the anticipation of the inflation are weighted more strongly (by a factor of β−1 > 1),

as they occur earlier in time. On the other hand, the output effect of anticipated inflation,

by shifting the short-run aggregate supply curve, is also smaller than the effect of current

27Of course, this different prescription in the case of the initial period shows that optimal policy is not
time-consistent in this case. This issue is taken up in the next chapter.

28Of course, in this model, there is no advantage of complete price stability over any other policy that
makes inflation completely forecastable a period in advance. But in order to stress the similarity of the
results obtained under the alternative aggregate supply specifications, it is worth noting that also in this
case there is no advantage to any variation in inflation in response to shocks.
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inflation, by exactly the factor β < 1, with the result that the two effects exactly cancel, to

first order (which is to say, to second order when multiplied by x∗). Thus once again there

is no welfare gain, up to our order of approximation, from a commitment to inflation that

can be anticipated in advance. In particular, we find once again that except for transition

effects, resulting from the different term in (3.3) for the initial period, it is again optimal to

commit to zero inflation, independent of the shocks to the economy.

Nonetheless, the term in (3.3) that is linear in π0 now affects the optimal commitment

for periods later than π0 as well. That is because of the intertemporal linkage implied by

aggregate supply relation (2.19). The welfare gain from inflation at date zero can be obtained

with less increase in the period zero output gap (and hence less increase in the λx2
0 term)

if it is accompanied by an increase in expected inflation at date one; and since the welfare

loss from such inflation is merely quadratic, it is optimal to commit to some amount of such

inflation. Thus the inflation associated with the transition to the optimal regime lasts for

more than a single period in this case.

The optimal transition path is characterized in section xx of chapter 7. Here we content

ourselves with a few observations about the form of the solution to this problem. First,

because the only reason to plan a non-zero inflation rate in period 1 is for the sake of the

effect of expected period 1 inflation on the location of the period 0 output-inflation tradeoff,

there is no gain from planning on a period 1 inflation rate that is not deterministic. The

same is true of planned inflation in all later periods. Thus the optimal commitment from

date zero onward involves a deterministic path for inflation; it continues not to be optimal

for the inflation rate to respond at all to real disturbances of the various types considered

thus far. In addition, as shown in the next chapter, the deterministic path for planned

inflation should converge asymptotically to zero, the rate that would be optimal but for the

opportunity to achieve an output gain from unexpected inflation in the initial period.

Thus it is optimal (from the point of minimizing discounted losses from date zero onward)

to arrange an initial inflation, given that the decision to do so can have no effect upon

expectations prior to date zero (if one is not bothered by the non-time-consistency of such a
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principle of action). The optimal policy involves positive inflation in subsequent periods as

well, but there should be a commitment to reduce inflation to its optimal long-run value of

zero asymptotically. And the rate at which inflation is committed to decline to zero should

be completely unaffected by random disturbances to the economy in the meantime.29 Thus

the assumption that Φ > 0 makes no difference for the conclusions of the previous section

with regard to the optimal response to shocks. And if one takes the view (as we shall argue

in the next chapter) that one should actually conduct policy as one would have optimally

committed to do far in the past, thus foregoing the temptation to exploit the private sector’s

failure to anticipate the new policy, then it is optimal simply to choose πt = 0 at all times –

i.e., to completely stabilize the price level – just as in the previous section.

It is interesting to note that this result – that the optimal commitment involves a long-

run inflation rate of zero, even when the natural rate of output is inefficiently low – does not

depend upon the existence of a vertical “long-run Phillips curve” tradeoff. For the aggregate

supply relation (2.19) in our baseline model implies an upward-sloping relation

xss = (1− β)κ−1πss

between steady-state inflation πss and the steady-state output gap xss. (This is because the

expected-inflation term has a coefficient β < 1, unlike that of the “New Classical” relation

(2.16).) It is sometimes supposed that the existence of a long-run Phillips-curve tradeoff,

together with an inefficient natural rate, should imply that the Phillips curve should be

exploited to some extent, resulting in positive inflation forever, even under commitment. But

here that is not true, because the smaller coefficient on the expected-inflation term relative

to that on current inflation – which results in the long-run tradeoff – is exactly the size of

shift term in the short-run aggregate supply relation that is needed to precisely eliminate any

long-run incentive for non-zero inflation under an optimal commitment. If one were instead

to “simplify” the New Keynesian aggregate supply relation, putting a coefficient of one on

expected inflation (as is done in some presentations,30 presumably in order to conform to

29These results agree with those of King and Wolman (1999) in the context of a model with two-period
overlapping price commitments in the style of Taylor (1980).
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the conventional wisdom regarding the long-run Phillips curve), we would then fail to obtain

such a simple result. The optimal long-run inflation rate would actually be found to be

negative, as the stimulative effects of lower expected inflation would be judged to be worth

more than the output cost of lower current inflation – even though there would actually be

no long-run output increase as a result of the policy!

And once again, the character of optimal policy in the presence of inflation inertia due

to partial indexation to a lagged price index can be determined directly from our results

for the Calvo pricing model with no indexation; the optimal time path for πt in the case

of the model without indexation becomes the optimal time path for πd
t ≡ πt − γπt−1 in the

case with indexation. It then follows that once again the optimal path of inflation will be

completely deterministic. And while there will be initial inflation (even starting from an

initial condition with π−1 = 0) if the central bank allows itself to exploit initial expectations

by choosing πd
0 > 0, optimal policy will involve a commitment to reduce πd

t asymptotically

to zero. In the case of any γ < 1, this will once again mean a commitment to eventual price

stability. And optimal policy has this character despite the fact that the level of output

associated with stable prices is inefficiently low, and despite the existence of a positively

sloped long-run Phillips curve trade-off, as this is ordinarily defined.

3.3 Caveats

We have seen that, within the class of sticky-price models discussed above, the optimality of

a monetary policy that aims at complete price stability is surprisingly robust. Not only does

this conclusion not depend upon the fine details of how many prices are set a particular time

in advance or left unchanged for a particular length of time, but it remains valid in the case

of a considerable range of types of stochastic disturbances, and in the case of an inefficient

natural rate of output. Nonetheless, it is likely that some degree of deviation from full price

stability is warranted in practice. Some of the more obvious reasons for this are sketched

here.

30See, e.g., Roberts (1995) or Clarida et al. (1999).
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First of all, complete price stability may not be feasible. We have just argued, in section

3.2, that in our baseline model, it is feasible, because we are able to solve for the required

path of the central bank’s nominal interest-rate instrument. This is correct, as long as the

random disturbances are small enough in amplitude. But if they are larger, such a policy

might not be possible, because it might require the nominal interest rate to be negative at

some times, which, as explained in chapter 2, is not possible under any policy. Specifically,

this will occur if it is ever the case that the natural rate of interest is negative. On average,

it does not seem that it should be, and thus zero inflation on average would seem to be

feasible; but it may be temporarily negative as a result of certain kinds of disturbances, and

this is enough to make complete price stability infeasible. As a result, a policy will have to

be pursued which involves less volatility of the short nominal interest rate in response to

shocks, and some amount of price stability will have to be sacrificed for the sake of this.31

The way in which optimal monetary policy is different in the presence of such a concern is

an important concern of chapter 7.

Varying nominal interest rates as much as the natural rate of interest varies may also be

desirable as a result of the “shoe-leather costs” involved in economizing on money balances.

As argued by Friedman (1969), the size of these distortions is measured by the level of

nominal interest rates, and they are eliminated only if nominal interest rates are zero at all

times.32 Taking account of these distortions – from which we have abstracted thus far in our

welfare analysis – provides another reason for the equilibrium with complete price stability,

even if feasible, not to be fully efficient; for as Friedman argues, a zero nominal interest rate

will typically require expected deflation at a rate of at least a few percent per year.

One might think that this should make no more difference to our analysis of optimal policy

31In general, it will be optimal to back off from complete price stability both by allowing inflation to
vary somewhat in response to disturbances, and by choosing an average rate of inflation that is somewhat
greater than zero, as suggested by Summers (1991), in order to allow more room for interest-rate fluctuations
consistent with the zero lower bound. However, the quantitative analysis undertaken below finds that the
effect of the interest-rate lower bound on the optimal response of inflation to shocks is more significant than
the effect upon the optimal average rate of inflation.

32See Woodford (1990) for justification of this relation in a variety of alternative models of the demand
for money.
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than does the existence of an inefficient natural rate of output due to market power – that it

may similarly affect the deterministic part of the optimal path for inflation without creating

any reason for inflation to vary in response to random shocks. But monetary frictions do

not have implications only for the optimal average level of nominal interest rates. As with

distorting taxes, it is plausible that the deadweight loss is a convex function of the relative-

price distortion, so that temporary increases in nominal interest rates are more costly than

temporary decreases of the same size are beneficial. In short, monetary frictions provide a

further reason for it to be desirable to reduce the variability of nominal interest rates, even

if one cannot reduce their average level. (At the same time, reducing their average level will

require less variable rates, because of the zero floor.) Insofar as these costs are important,

they too will justify a departure from complete price stability, in the case of any kinds of

real disturbances that cause fluctuations in the natural rate of interest, in order to allow

greater stability of nominal interest rates. This tradeoff is treated more explicitly in section

xx below.

Even apart from these grounds for concern with interest-rate volatility, it should be

recognized that the class of sticky-price models analyzed above are still quite special in

certain respects. One of the most obvious is that there are assumed to be no shocks as a

result of which the relative prices of any of the goods with sticky prices would vary over

time in an efficient equilibrium (i.e., the shadow prices that would decentralize the optimal

allocation of resources involve no variation in the relative prices of such goods). This is

because we have assumed that only goods prices are sticky, that all goods enter the model in

a perfectly symmetrical way, and that all random disturbances have perfectly symmetrical

effects upon all sectors of the economy. These assumptions are convenient, but plainly an

idealization. Yet it should be clear that they are relied upon in our conclusion that stability

of the general price level suffices to eliminate the distortions due to price stickiness.

If an efficient allocation of resources requires relative price changes, due to asymmetries

in the way that different sticky-price commodities are affected by shocks, this will not be

true. We show, however, in section xx below, that even in the presence of asymmetric shocks,
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it is possible to define a symmetric case in which it is still optimal to completely stabilize

the general price level, even though this does not eliminate all of the distortions resulting

from price stickiness. But this holds exactly only in a special case, in which different goods

are similar, among other respects, in the degree of stickiness of their prices. If sectors of

the economy differ in their degree of price stickiness (as is surely realistic), then complete

stabilization of an aggregate price index will not be optimal. Stabilization of an appropriately

defined asymmetric price index (that puts more weight on the stickier prices) is a better

policy, as argued by Aoki (2001) and Benigno (1999), though even the best policy of this

kind need not be fully optimal.

An especially important reason for disturbances to require relative price changes between

sticky commodities with sticky prices is that wages are probably as sticky as are prices.

Real disturbances almost inevitably require real wage adjustments in order for an efficient

allocation of resources to be decentralized, and if both wages and prices are sticky, it will

then not be possible to achieve all of the relative prices associated with efficiency simply by

stabilizing the price level – specifically, the real wage will frequently be misaligned, as will be

the relative wages of different types of labor if these are not set in perfect synchronization. In

such circumstances, complete price stability may not be a good approximation at all to the

optimal policy, as Erceg et al. (1999) show. As we show in section xx below, stabilization of

an appropriately weighted average of prices and wages may still be a good approximation to

optimal policy, and fully optimal in some cases. Thus concerns of this kind are not so much

reasons not to pursue price stability as they are reasons why care in the choice of the index

of prices (including wages) that one seeks to stabilize may be important.

Yet another qualification to our results in this section is that we have assumed a frame-

work in which the flexible-price equilibrium rate of output is efficient, or at most differs

from the efficient level by only a (small) constant factor. As we have seen, this assumption

is compatible with the existence of a variety of types of economic disturbances, including

technology shocks, preference shocks, and variations in government purchases. But it would

not hold in the case of other sorts of disturbances, that cause time variation in the degree
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of inefficiency of the flexible-price equilibrium. These could include variation in the level of

distorting taxes, variation in the degree of market power of firms or workers, or variation in

the size of the wage premium that must be paid on efficiency-wage grounds.

In the case of a time-varying gap between the flexible-price equilibrium level of output

and the efficient level, complete stabilization of inflation is no longer sufficient for complete

stabilization of the welfare-relevant output gap. For while inflation stabilization may imply

a level of output at all times equal to the flexible-price equilibrium level, as discussed above,

this will no longer minimize the variability of the gap between actual output and the efficient

level of output. As a result, complete stabilization of inflation will not generally be optimal.

It is not obvious that stabilization of any alternative price index makes sense as a solution to

the problem in this case, either, whereas some degree of concern for stabilization of the (ap-

propriately measured) output gap is clearly appropriate, even if it should not wholly displace

a concern for inflation stabilization. This is an especially serious challenge to the view that

price stability should be the sole goal of monetary policy, if one believes that disturbances

of this kind are quantitatively important in practice. Their importance, however, remains

a matter of considerable controversy. Furthermore, even if disturbances of this kind are of

substantial magnitude, the degree of departure from price stability that can be justified on

welfare-theoretic grounds may well be less than is often supposed, as we show in section xx

below.

4 Extensions of the Basic Analysis

Here we sketch extensions of our utility-based welfare criterion to incorporate several compli-

cations from which we have abstracted in the basic analysis presented in section 2. We shall

give particular attention to complications that illustrate some of the reasons just sketched

for complete stabilization of the price level not to be optimal.
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4.1 Transactions Frictions

In section 2, we have abstracted from the welfare consequences of the transactions frictions

that account for the demand for the monetary base. Our results therefore apply to a “cash-

less” of the kind discussed in chapter 2. Here we consider the way in which they must be

modified in order to allow for non-negligible welfare effects of transactions frictions.

As in chapter 2, we may represent the welfare consequences of variations in the degree to

which these frictions distort transactions by including real money balances as an additional

argument of the utility function of the representative household. This generalization makes

real marginal cost, and hence the equilibrium level of output under flexible prices a function of

the (endogenous) level of real balances, in addition to the exogenous state of preferences and

technology, in the case that the indirect utility function u(c,m) is not additively separable.

Substituting the equilibrium level of real balances

m̂t = ηyŶt − ηi(̂ıt − ı̂mt ) + εm
t (4.1)

into the household labor-supply relation, we have shown in chapter 4 that average real

marginal cost is given by

ŝt = εmc[xt + ϕ(̂ıt − ı̂mt )], (4.2)

where

εmc ≡ σ−1 + ω − χηy, (4.3)

ϕ ≡ ηiχ

εmc

, (4.4)

and

Ŷ n
t ≡ σ−1gt + ωqt + χεm

t

εmc

. (4.5)

In these expressions, we once again use the coefficient χ ≡ m̄ucm/uc to measure the degree

of complementarity between private expenditure and real balances.

Here we define the natural rate of output Ŷ n
t as the flexible-price equilibrium level of

output when the interest rate differential ∆t is fixed at its steady-state level ∆̄, so that Ŷ n
t is

again an exogenous process. This definition also has the advantage that, up to a log-linear
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approximation, the amount by which the (log) efficient level of output exceeds the (log)

natural rate is a constant,33 in the case that both the steady-state inefficiency wedge Φ and

the steady-state interest-rate differential ∆̄ are only of order O(||ξ||). This constant gap (up

to a residual of order O(||ξ||2)) is given by

x∗ ≡ Φ + smηy

εmc

, (4.6)

where sm ≡ m̄um/c̄uc ≥ 0 measures the interest cost of real balances as a fraction of the value

of private expenditure. We assume as in chapter 4 that εmc > 0, so that if Φ ≥ 0, x∗ > 0.

We observe that the signs of the effects upon the natural rate of output of the various real

disturbances discussed in section 3.2 remain the same. Now, however (if χ 6= 0), disturbances

to the money demand function, possibly due to shifts in the transactions technology, also

affect the natural rate of output.

It follows from (4.2) that in this more general case, the “New Classical” aggregate supply

relation takes the form

πt = κ[xt + ϕ(̂ıt − ı̂mt )] + Et−1πt (4.7)

instead of (2.16), where again xt ≡ Ŷt − Ŷ n
t , and

κ ≡ ι

1− ι

εmc

1 + ωθ
> 0.

In the case of Calvo pricing, instead, the aggregate supply relation now takes the form

πt = κ[xt + ϕ(̂ıt − ı̂mt )] + βEtπt+1, (4.8)

where again

κ ≡ (1− α)(1− αβ)

α

εmc

1 + ωθ
> 0.

Note that in either case the interest-rate differential appears as a shift factor in the aggregate

supply relation, because of its (small) effect on the real marginal cost of supply.

33In the present case, the efficient level of output at any point in time is the solution to two equations,
stating that real marginal cost is equal to one and that there is satiation in real money balances. Because the
second condition implies a zero interest-rate differential regardless of the real disturbances, both the natural
rate of output and the efficient level can be defined as output variations in response to real disturbances that
maintain real marginal cost constant in the case of a constant interest differential.
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We can again approximate the utility from private expenditure using a second-order

Taylor series expansion, obtaining

u(Yt,mt; ξt) = Ȳ uc

{
Ŷt +

1

2
(1− σ−1)Ŷ 2

t + σ−1gtŶt + smm̂t +
1

2
sm(1− σ−1

m )m̂2
t

+ χm̂tŶt + smσ−1gtm̂t + sm(χ + σ−1
m )εm

t m̂t

}
+ t.i.p. +O(||ξ||3) (4.9)

as a generalization of (2.8). Here we again define the elasticity σm ≡ −um/m̄umm > 0, the

exogenous disturbance term gt is defined as in the cashless model, and

εm
t ≡ (χ + σ−1

m )−1
[
umξ

um

ξt − σ−1gt

]

is the exogenous disturbance term in the money-demand relation (4.1).

Once again, we can legitimately substitute into this our log-linear approximate solution

to our structural equations only if the coefficients on the linear terms are at most of order

O(||ξ||). This means that we must assume that the economy is sufficiently close to being

satiated in money balances. In order to contemplate a series of economies that come as close

as we like to this limit, without having to change the specification of preferences or technology

(including the transactions technology), it is important to allow for interest payments on the

monetary base, which we shall suppose are always close to a steady-state rate of ı̄m. The

steady-state interest differential ∆̄ ≡ (̄ı − ı̄m)/(1 + ı̄) as a measure of the degree to which

there is not complete satiation in money in the steady state around which we expand, we

shall now assume that both ∆̄ and Φ are of order O(||ξ||).
As we consider economies with progressively smaller positive values for ∆̄, obtained by

raising the value of ı̄m, we assume that the steady-state quantities Ȳ , m̄ approach finite,

positive limiting values, and that the partial derivatives of utility also have well-defined

limits from this direction. We furthermore assume that the limiting value of umm is negative

(so that σm is finite), even though this requires that umm be discontinuous at the satiation

level of real balances.34 Then in the limit of small ∆̄, we find that sm is of order O(∆̄), as

34Note that our assumption that um = 0 in the case of all levels of real balances in excess of that required
for satiation implies that umm = 0 for all values of m higher than the limiting value m̄, in the case of an
income level Ȳ . This sort of discontinuity typically occurs, for example, in the case of a cash-constraint
model of the transactions technology, like that considered in chapter 2, section xx.
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is σm, though the ratio smσ−1
m approaches a positive limit as ∆̄ → 0, since

sm

σm

= −m̄2umm

Ȳ uc

+O(∆̄).

This allows us to drop some of the quadratic terms from (4.9), the coefficients of which are

only of order O(∆̄).

We note also that in the limit of small ∆̄, the elasticities of the money-demand relation

(4.1) reduce to

ηy = − Ȳ ucm

m̄umm

+O(∆̄), ηi = − uc

m̄umm

+O(∆̄). (4.10)

This allows us to substitute (ηiv̄)−1 for smσ−1
m and χηiv̄ for ηy in the coefficients of quadratic

terms,35 where v̄ ≡ Ȳ /m̄ is the steady-state “velocity of money”. With these substitutions,

(4.9) can be written as

u(Yt,mt; ξt) = Ȳ uc

{
Ŷt +

1

2
(1− σ−1)Ŷ 2

t + σ−1gtŶt + smm̂t

+ χm̂tŶt − 1

2
(ηiv̄)−1(m̂t − εm

t )2
}

+ t.i.p. +O(||ξ||3). (4.11)

We can then substitute (4.1) for equilibrium real balances m̂t, obtaining

u(Yt, mt; ξt) = Ȳ uc

{
Ŷt +

1

2
(1− σ−1)Ŷ 2

t + σ−1gtŶt + smηyŶt − smηi(̂ıt − ı̂mt )

+
1

2
χηyŶ

2
t + χεm

t Ŷt − 1

2
v̄−1ηi(̂ıt − ı̂mt )2

}
+ t.i.p. +O(||ξ||3). (4.12)

Subtracting (2.10) from (4.12), we obtain

Ut = Ȳ uc

{
(Φ + smηy)Ŷt − smηi(̂ıt − ı̂mt ) + [σ−1gt + ωqt + χεm

t ]Ŷt − 1

2
v̄−1ηi(̂ıt − ı̂mt )2

−1

2
εmcŶ

2
t −

1

2
(θ−1 + ω)variŷt(i)

}
+ t.i.p. +O(||ξ||3) (4.13)

= − Ȳ uc

2

{
εmc(xt − x∗)2 + v̄−1ηi(̂ıt − ı̂mt + ∆̄)2

+(θ−1 + ω)variŷt(i)
}

+ t.i.p. +O(||ξ||3) (4.14)

35The advantage of replacing ηy by χηiv̄ is that it is then clear what form our results take in the familiar
special case in which it is assumed that ucm = 0; we simply set χ equal to zero in the expressions derived
below.
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as a generalization of (2.12). Note that in (4.13), the linear terms both have coefficients that

are of order O(||ξ||), as is required for validity of welfare comparisons based on a log-linear

solution to our model, as long as both Φ and ∆̄ are of order O(||ξ||). In (4.14), the optimal

level x∗ for the output gap is given by (4.6), while the optimal level for the interest-rate

differential is zero, since the condition it = imt , the Friedman (1969) condition for satiation

in real money balances, corresponds to ı̂t = ı̂mt − ∆̄ +O(∆̄2).

Finally, substituting for output dispersion as a function of inflation as before, in the

case of our baseline (Calvo) model of price-setting, we again obtain an approximate welfare

criterion of the form (2.22), where now the normalized loss function is given by

Lt = π2
t + λx(xt − x∗)2 + λi(̂ıt − ı̂mt + ∆̄)2, (4.15)

with weights

λx =
κ

θ
> 0, λi =

ηi

v̄εmc

λx > 0. (4.16)

An alternative expression for the weight on the interest-rate term, equivalent under our

small-∆̄ approximation, though applicable only in the case that χ 6= 0, is

λi =
ηi

ηy

ϕλx. (4.17)

Thus taking account of transactions frictions adds an additional term to the loss function,

with a positive weight on squared deviations of the interest-rate differential from its optimal

size, which is zero.

Note that in the “cashless limit” discussed in chapter 2, v̄−1 → 0, so that λi → 0,

and we recover our results above for the cashless model. However, it is important to note

that the interest-rate variability term does not vanish under the assumption that utility is

additively separable between consumption and real balances, so that ucm = 0. While this last

assumption (which implies that χ = 0) results in the disappearance of real-balance effects

from both the aggregate-supply and IS relations of our model of the transmission mechanism,

and similarly implies that money-demand disturbances have no effect on the natural rates of

output or of interest, it does not imply that λi = 0. Thus it makes a difference whether one
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assumes that χ is negligible in size because of approximate additive-separability, or instead

because equilibrium real balances are small (velocity is large).

One case in which our previous conclusions are largely unaffected is that in which the

central bank’s interest-rate operating target is implemented through adjustments of the

interest paid on the monetary base, so that ∆t is equal to a fixed spread at all times,

regardless of how it varies.36 In this case, the (̂ıt − ı̂mt + ∆̄)2 term in (4.15) is a constant,

independent of how inflation, output and interest rates vary over time. Optimal policy will

then again be one that minimizes a loss function of the form (2.23); the only difference that

monetary frictions make would be to the definitions of εmc (and hence of κ and λx) and of

Ŷ n
t . In particular, we will find once again that optimal policy involves complete stabilization

of the price level, just as in our analysis of the cashless model in section xx.

If, instead, the interest paid on the monetary base is equal to a constant ı̄m at all times

(perhaps zero, as in the U.S. at present), then the final term in (4.15) is not irrelevant. In

this case, the welfare-theoretic loss function reduces to

Lt = π2
t + λx(xt − x∗)2 + λi(̂ıt − i∗)2, (4.18)

where now the optimal nominal interest rate is given by

i∗ ≡ log
1 + ı̄m

1 + ı̄
= −∆̄ +O(∆̄2);

that is, it is equal to the constant interest rate paid on the monetary base. Note that the final

term results in a loss function of the kind assumed by Williams (1999), where the additional

term is instead motivated by reference to “aversion to interest-rate variability”.

The additional term means that complete stabilization of the price level is no longer

optimal, for two reasons. The first is that, as long as im < ı̄ ≡ β−1 − 1, the steady-state

nominal interest rate that minimizes the last term in (4.15) requires expected deflation, as

36As discussed in chapter 1, a number of central banks do already implement policy through channel
systems under which the interest rate paid on central bank balances is always equal to the current operating
target for the overnight cash rate minus a constant spread. However, even in these countries, no interest
is paid on currency, and currency balances continue to constitute most of the monetary base. Thus these
countries do not actually represent examples of the ideal system considered here.



4. EXTENSIONS OF THE BASIC ANALYSIS 47

argued by Friedman (1969). There is thus now a conflict between the steady-state rate of

inflation needed to minimize the first term and that needed to minimize the third. In fact,

the long-run inflation rate under an optimal policy commitment, in the absence of stochastic

disturbances, is generally intermediate between the two – higher than the Friedman rate

(i.e., minus the rate of time preference), but still negative, as shown in chapter 7.

And second, there is now a conflict between the pattern of responses to shocks that

minimizes the first term (i.e., no inflation variation at all) and the pattern required to

minimize the third term (no interest-rate variation). Insofar as shocks affect the natural rate

of interest (and we have shown that many different types of real disturbances all should),

nominal interest-rate variations are required to keep inflation stable, and vice versa. In

addition, it need not even be true any longer that complete inflation stabilization minimizes

the second term – for if κi > 0, the interest-rate variations required to stabilize inflation will

result in at least a small amount of output-gap variation as well.

A special case is possible in which no such conflict arises. Suppose that we assume instead

the “New Classical” model of pricing, in which all prices are adjusted each period, though

some new prices are chosen a period in advance. Let us again suppose that imt = ı̄m at all

times. In this case, the corresponding normalized loss function is given by

Lt = (πt − Et−1πt)
2 + λx(xt − x∗)2 + λi(̂ıt − i∗)2, (4.19)

where the weights are again given by (4.16), but using the definition of κ in (4.7). If we

also assume that Φ = 0, then the approximations (4.10) imply that x∗ = −ϕi∗ > 0, up to

a residual of order O(||ξ||2). Then the aggregate-supply relation (4.7) can alternatively be

written

πt = κ[(xt − x∗) + ϕ(̂ıt − i∗)] + Et−1πt. (4.20)

Then there is no problem with simultaneously minimizing all three terms in (4.19). This

simply requires that one set ı̂t = i∗ each period, and make inflation equal whatever value

was forecasted in the previous period, in which case (4.7) implies that xt = x∗ as well.

Minimization of the interest-rate variation term has implications only for expected inflation,
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while minimization of the term representing the costs of price dispersion has implications

only for unexpected inflation, and so, in this special case, there is no conflict between fully

achieving both goals at all times.

Even if Φ > 0, we note that

x∗ + ϕi∗ =
Φ

εmc

> 0. (4.21)

Using this to substitute for x∗, the discounted loss measure can be written as

E0

{ ∞∑

t=0

βtLt

}
= −2

Φ

θεmc

[π0 − κîi0] + E0

{ ∞∑

t=0

βt
[
(πt − Et−1πt)

2

+λx(xt + ϕi∗)2 + 2
λxϕΦ

εmc

(̂ıt − i∗) + λi(̂ıt − i∗)2

]}
, (4.22)

generalizing (3.2). All terms on the right-hand side except the first one are again minimized

by setting ı̂t = i∗ and πt = Et−1πt each period. (The third term inside the large square

brackets is necessarily non-negative each period, because of the equilibrium requirement

that it ≥ ı̄m, or ı̂t ≥ i ∗ .) The first term indicates that there is an additional welfare gain

from unexpected inflation in period zero, because what is decided for this period cannot affect

inflation expectations in the previous period; and if one allows oneself to take advantage of

that opportunity, the inflation rate in period zero should be chosen to be somewhat higher

than had been expected. But thereafter, one will make unexpected inflation equal zero

every period, as this is not inconsistent with setting ı̂t = i∗ in every period. Furthermore,

under a policy that is optimal from a timeless perspective, one will simply arrange for zero

unexpected inflation and ı̂t = i∗ each period.

But this case, in which the distortions resulting from price stickiness can be completely

eliminated without putting any restriction upon the process that expected inflation may

follow, is clearly a very special one. In general, variations in expected inflation as a re-

sult of fluctuations in the natural rate of interest (as will be required in order to maintain

ı̂t = i∗ at all times) will result in relative-price distortions. Hence the goal of minimizing

the distortions associated with transactions frictions will conflict with that of minimizing

the distortions resulting from price stickiness. Before discussing further the nature of this
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tension between alternative stabilization objectives, we shall argue that a similar concern

with nominal interest-rate stabilization can be justified on alternative grounds.

4.2 The Zero Interest-Rate Lower Bound

Even in the case of a cashless economy, incomplete inflation stabilization may be optimal,

in order to reduce the variability of nominal interest rates in response to shocks. The reason

is the equilibrium requirement that it ≥ 0 at all times.37 If shocks are sufficiently small,

this poses no obstacle to complete inflation stabilization, but if the natural rate of interest is

sometimes negative (and by this we mean the natural short rate, which is more volatile than

the associated natural longer rates), complete stabilization of inflation will be infeasible.

In that case, which seems reasonably likely, it is of some interest to consider the nature of

optimal policy subject to the constraint of respecting the zero lower bound. It is reasonably

clear that such policy will involve less variation in nominal interest rates than occurs in the

natural rate of interest; in particular, market rates will not fall as much as the natural rate

does in those states in which it becomes negative. Characterizing the optimal behavior of

market rates is a problem beyond the scope of the linear-quadratic optimization methods

used here; however, we can consider a related problem that gives some insight into the way

in which such a constraint should affect optimal policy. This is to replace the constraint

that the nominal interest must be non-negative in every period with a constraint upon its

variability.

Specifically, Rotemberg and Woodford (1997, 1999a) propose to approximate the effects

of the lower bound by imposing instead a requirement that the mean federal funds rate be at

least k standard deviations above the theoretical lower bound, where the coefficient k is large

enough to imply that violations of the lower bound should be infrequent. The alternative

constraint, while inexact, has the advantage that checking it requires only computation of

37More generally, the requirement is that it ≥ imt , but here we shall suppose that zero interest is paid on
the monetary base, in order to make this constraint as weak as possible. We assume that the payment of
negative interest on the monetary base, as proposed by Gesell, Keynes (1936), and more recently, Buiter and
xxxx, is technically infeasible.
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first and second moments under alternative policy regimes, whereas checking whether the

funds rate is predicted to be negative in any state would depend upon fine details of the

distribution of shocks. In addition, a constraint of this form has the advantage that, assuming

linear structural equations and a quadratic loss function, the constrained-optimal policy is a

linear rule, just like the unconstrained optimum. Hence our linear methods can still be used

to characterize optimal policy.

This can be demonstrated as follows. Note that the constraint can equivalently be ex-

pressed as a requirement that the average value of i2t be not more than K ≡ 1 + k−2 times

the square of the average value of it,
38 which latter average must also be non-negative. If

we use discounted averages, for conformity with the other terms in our welfare measure, we

obtain constraints of the form

E0

{
(1− β)

∞∑

t=0

βtit

}
≥ 0, (4.23)

E0

{
(1− β)

∞∑

t=0

βti2t

}
≤ K

[
E0

{
(1− β)

∞∑

t=0

βtit

}]2

. (4.24)

Now suppose that we wish to minimize an expected discounted sum of quadratic losses

E0

{
(1− β)

∞∑

t=0

βtLt

}
(4.25)

subject to (4.23) – (4.24), and let m1,m2 be the discounted average values of it and i2t

associated with the optimal policy. Then this is also the policy that minimizes (4.25) subject

to the two constraints

E0

{
(1− β)

∞∑

t=0

βtit

}
≥ m1,

E0

{
(1− β)

∞∑

t=0

βti2t

}
≤ m2,

since any policy consistent with both of these also satisfies the weaker constraints (4.23) –

(4.24).

38By the expression it we here actually mean log(1 + it), or ı̂t + ı̄.
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Then by the Kuhn-Tucker theorem, the policy that minimizes the expected discounted

value of (4.25) subject to (4.23) – (4.24) can be shown to also minimize an (unconstrained)

loss criterion of the form

E0

{
(1− β)

∞∑

t=0

βtLt

}
− µ1E0

{
(1− β)

∞∑

t=0

βtrt

}
+ µ2E0

{
(1− β)

∞∑

t=0

βtr2
t

}
,

where µ1 and µ2 are appropriately chosen Lagrange multipliers. (Both multipliers are non-

negative, and if the constraint (4.24) binds, µ1 = 2Km1µ2 > 0.) Finally, the terms in this

expression can be rearranged to yield a discounted loss criterion of the form (4.25), but with

Lt replaced by

L̃t ≡ Lt + λ̃i(̂ıt − i∗∗)2, (4.26)

where λ̃i = µ2 ≥ 0 and (if µ2 > 0)

i∗∗ =
µ1

2µ2

− ı̄ = Km1 − ı̄.

(There is also a constant term involved in completing the square, but as usual we drop this

as it has no effect upon our ranking of alternative policies. Note that we have written the

quadratic term in terms of a target value for ı̂t ≡ it − ı̄ rather than it, for consistency with

our previous results.)

Thus the optimal policy minimizes the expected discounted value of a quadratic loss

function (4.26), subject to the constraints imposed by the structural equations of our model.

If the latter are linear, the optimal policy will itself be linear. Note that the effective loss

function (4.26) contains a quadratic penalty for interest-rate variations (in the case that

constraint (4.24) binds), even if the “direct” social loss function Lt is independent of the

path of the interest rate. For example, consider again our baseline model of Calvo pricing,

in the “cashless limit”. The direct loss function is then given by (2.23), which involves

only inflation and the output gap. But if the fluctuations in the natural rate of interest are

large enough for (4.24) to bind – i.e., if (4.24) is violated by the solution ı̂t = r̂n
t – then

optimal policy actually minimizes a loss function of the form (4.15), exactly as we previously

concluded by taking account of transactions frictions. The particular type of departure from
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price stability that is motivated by the need to respect the interest-rate lower bound is

exactly the same as the kind that results from taking account of transactions frictions.

The primary qualitative difference between the loss functions motivated in the two ways is

that transactions frictions lead to a loss function (4.15) with a “target” interest rate i∗ < 0

(i.e., lower than the steady-state interest rate ı̄ consistent with zero inflation), while the

interest-rate lower bound alone would suggest a “target” interest rate i∗∗ > 0. For we have

shown above that when (4.24) does not bind, optimal policy in the cashless limit involves

a deterministic component of inflation that is non-negative (and converging asymptotically

to zero); hence average inflation is non-zero. If instead (4.24) does bind, the only reason

to choose a different deterministic component for inflation would be in order to relax the

constraint, which would involve making average inflation higher (so that the average funds

rate can be higher). Thus optimal policy should involve m1 > ı̄. But since K > 1, this

implies that i∗∗ > 0.

If transactions frictions are non-negligible and the interest-rate lower bound binds as

well, the quadratic interest-rate term in (4.26) is added to the quadratic interest-rate term

already present in (4.15). The result is a loss function that again has the same form,

L̂t = π2
t + λx(xt − x∗)2 + λ̂i(̂ıt − ı̂)2, (4.27)

where now λ̂i = λi + µ2 is an even larger positive coefficient, while ı̂ is intermediate be-

tween i∗ and i∗∗ (and thus may have either sign). In fact, the value of ı̂, like the value of

x∗, matters only for the deterministic component of optimal policy; the optimal responses

to shocks depend only upon the weights λx, λ̂i of the loss function. Thus in this regard

both considerations point in the same direction, toward the likely importance of including a

quadratic interest-rate term in the loss function. Hence we shall give considerable attention

in chapter 7 to the consequences for optimal policy of including such a term.39

39Note, however, that both considerations justify a concern to reduce the variability of the level of interest
rates, and not a concern with the variability of interest-rate changes. The latter sort of “interest-rate
smoothing” goal is often assumed to characterize the behavior of actual central banks. As we show in
chapter 7, it is possible to justify such the assignment of such a goal to the central bank as part of an
optimal delegation problem, even if it is not part of the social loss function with which are concerned here.
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How much are such considerations likely to matter? We investigate this numerically in

a calibrated example. The values of the parameters α, β, σ, κ, and εmc are as in Table 4.1,

based upon the estimates of Rotemberg and Woodford (1997) discussed in chapter 4.40 The

values for ηy, ηi, and χ given in the table are those implied by estimates of long-run money

demand for the U.S., as discussed in chapter 2.41

For present purposes, the only aspect of the exogenous disturbances that matters is the

implied evolution of the natural rate of interest r̂n
t ; for simplicity, we assume that this variable

follows a stationary first-order autoregressive process, with a mean of zero, and a standard

deviation and serial correlation coefficient as specified in the table. As is explained further

in chapter 7, these numerical values are motivated by aspects of the estimated model of

Rotemberg and Woodford (1997), though that model involves a more complex specification

of the shock processes.

Finally, the structural parameters given in the table imply a value for θ equal to 7.88.

Using this, we are able to obtain a theoretical value for λx in the utility-based loss function

(2.23), which value is also given in the table.42 We simplify our calculations by assuming

that Φ = 0, so that x∗ = 0.

Using these parameter values, we can explore the tradeoff between minimization of the

deadweight losses measured by (2.23) and stabilization of the short-term nominal interest

rate. Letting L0
t be this loss function (i.e., the loss function abstracting from any costs of

interest-rate variability), we can compute its expected discounted value

Ê[L0] ≡ E

{
(1− β)

∞∑

t=0

βtL0
t

}
(4.28)

40Note that the value of ω reported in Table 4.1 is not exactly the one implied by the values given here,
since in Rotemberg and Woodford the value of ω is inferred from the value of εmc assuming that χ = 0.

41The value for χ used here is actually slightly higher than that derived in chapter 2, as the value of χ
implied by the long-run money demand estimates depends upon the assumed value of σ. However, the values
used in both chapters agree to the first three decimal places.

42Note that the value given here is equal to 16κ/θ, rather than κ/θ. This is because we report the
loss function weights λx, λi that are appropriate to use when inflation and interest rates are measured as
annualized percentage rates, despite the fact that our model is quarterly. The square of the annualized
percentage inflation rate is thus not π2

t but 16π2
t , in terms of the notation used in our earlier theoretical

derivations.
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Table 6.1: Calibrated parameter values for the quarterly model used for Figure 6.1.

Structural parameters
α 0.66
β 0.99

σ−1 0.16
κ .024

εmc 0.63
ηy 1
ηi 28
χ 0.02

Shock process
ρ(r̂n) 0.35
sd(r̂n) 3.72

Loss function
x∗ 0
λx .048
λi .077

Interest-Rate Bound
k 2.26
r̄ 2.99

in the case of any stochastic processes for inflation and the output gap. Here we use the nota-

tion Ê to denote a discounted expectation rather than simply the unconditional expectation

of the random variable L0
t ; and the operator E on the right-hand side indicates that we take

an unconditional expectation over possible initial states of the exogenous disturbance r̂n
0 .

We measure the degree of interest-rate variability43 associated with any possible equilibrium

in terms of the statistic

V [i] ≡ E

{
(1− β)

∞∑

t=0

βtı̂2t

}
.

We then consider the policies that minimize Ê[L0] subject to a constraint that V [i] not

43The statistic actually measures the average squared deviation of interest rates from the level ı̄ consistent
with zero inflation in the absence of disturbances. However, all equilibria on the efficient frontier shown
in Figure 6.1 involve zero average values of ı̂t, since any non-zero steady-state inflation rate would increase
the value of both Ê[L0] and V [i], holding constant the way the variables deviate from their steady-state
values as a function of the history of disturbances. Among stochastic processes with that property, V [i] is a
discounted measure of the series’ variability about its mean.
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exceed some finite value.

The efficient frontier for these two statistics is shown in Figure 6.1. (The nature of the

constrained-efficient policies is discussed in the next chapter.) We observe that it is possible

to achieve the theoretical lower bound of zero for Ê[L0], by completely stabilizing inflation

and the output gap as discussed in section 3, only if we are willing to tolerate an interest-

rate variability of V [i] = 13.83, corresponding to a (discounted) standard deviation of 3.72

percentage points for the federal funds rate. (This is of course just the assumed standard

deviation of fluctuations in the natural rate of interest.) Lower interest-rate variability

requires that one accept less complete stabilization of inflation and the output gap, indicated

by a positive value for Ê[L0]. Complete interest-rate stabilization would require that Ê[L0]

take a value of 2.10, a level of deadweight loss more than twice that associated with steady

inflation of one percent per year.44 Statistics relating to the variability of inflation, the

output gap, and the federal funds rate in these two extreme cases are given by the first and

last lines of Table 6.2, using measures analogous to V [i] in the case of the other two variables

as well. Note that in terms of these measures,

Ê[L0] = V [π] + λxV [x].

This frontier indicates how a concern with interest-rate variability, for whatever reason,

would affect the degree to which it would be optimal to stabilize inflation and the output

gap. We are particularly interested, however, in the degree of attention to this goal that

would be justified by either of the two considerations treated above. Taking account of

transactions frictions, we would wish to minimize Ê[L], where now Lt is the loss function

(4.15) including an interest-rate variability term. The fact that i∗ 6= 0 in (4.15) affects

only the deterministic part of the optimal paths of the endogenous variables, as with our

discussion of the case x∗ 6= 0 in section 3; it has no effect upon the optimal responses to

shocks. Thus we can determine the optimal responses to shocks by minimizing Ê[L] with i∗

set equal to zero, which amounts to minimizing Ê[L0] + λiV [i]. This policy corresponds to

44A similar efficient frontier in the case of the more complicated model estimated by Rotemberg and
Woodford (1997) is shown in Figure 5 of that paper.
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Figure 6.1: The tradeoff between inflation/output-gap stabilization and interest-rate stabi-
lization.

a point on the frontier in Figure 6.1, namely the point at which the slope is equal to −λi,

where λi is given by (4.17).

Assuming the structural parameters given in Table 6.1, equation (4.4) implies that for the

U.S., ϕ should equal approximately .22 years. Then (4.17) implies that λi = .077, the value

also given in the table.45 This corresponds to point A on the frontier in the figure.46 Line 2

of Table 6.2 reports the variability of each of the endogenous variables in this equilibrium.

45This value, based on an assumption that χ = .02, is probably too large by a factor of two or more, for
reasons discussed in chapter 2. Williams (1999), for example, assumes a value (if the weight on the squared
inflation term is normalized as one) equal to .02.

46In order to show the optimal equilibria under differing assumptions on a single diagram, we use the same
structural model in each case – namely, our baseline model, abstracting from real-balance effects, that is also
used in the numerical analysis of chapter 7 – simply varying the assumed welfare criterion in each case. This
means that in the case of point A, we are actually assuming parameter values in the structural equations
(χ = 0) that are not completely consistent with those used to derive the loss function (χ = .02). However,
this makes only a small difference to our characterization of optimal policy when transactions frictions are
allowed for; the most important effect is upon the loss function, rather than upon the structural equations.
Were we to assume additively separable preferences u(c,m), there would be no effect upon the structural
equations at all, but the loss function would nonetheless be modified as indicated in (4.15).
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Table 6.2: Examples of Policies on the Efficient Frontier.

λ̂i V[π] V[x] V[i] Ê[L0]
0 0 0 13.83 0

.077 .037 4.015 4.961 .231

.236 .130 10.60 1.921 .643

.277 .151 11.75 1.623 .719
∞ .677 29.35 0 2.096

Now suppose instead that we abstract from transactions frictions, but take account of

the lower bound on nominal interest rates, or more precisely, that we impose the constraints

(4.23) – (4.24). Following Rotemberg and Woodford (1997), we let k equal the ratio of

the standard deviation of the funds rate to its mean in the long-run stationary distribution

implied by their estimated VAR model of U.S. data. We also assume a value for ı̄, the

steady-state real funds rate, equal to the mean real funds rate implied by this same long-run

stationary distribution. These values are indicated in Table 6.1.

As shown above, the optimal policy subject to these constraints will minimize Ê[L̃],

where L̃t is defined by (4.26) with Lt equal to L0
t . Once again, the fact that i∗∗ 6= 0 does not

affect the optimal responses to shocks, and so these are as in one of the equilibria on the

frontier shown in Figure 6.1. As is explained further in section xx of chapter 7, under our

assumed parameter values the implied value of λ̃i in (4.26), given by the Lagrange multiplier

on constraint (4.24), is equal to .236. (See Table 7.1.) The corresponding optimal responses

to shocks are those associated with point B on the frontier, which is the point at which

the frontier has this steeper slope. The third line of Table 6.2 reports the variability of

each of the endogenous variables in this equilibrium. (In the computations reported in the

table, the deterministic component of each variable is equal to zero in all periods, so that

these statistics refer only to the variations in the variables due to fluctuations in the natural

rate of interest.) The higher effective penalty upon interest-rate variability results in less

equilibrium variation in nominal interest rates, at the cost of more variation in both inflation

and the output gap.
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Finally, suppose that in our welfare analysis we take account both of transactions frictions

and of the lower bound on nominal interest rates. We then find the policy that minimizes

Ê[L̃] when Lt is given by (4.15) rather than by L0
t . As noted above, this policy minimizes a

criterion of the form Ê[L̂], where L̂t is given by (4.27). In the case of our assumed parameter

values, λ̂i is equal to .277, a larger value than we would obtain taking account of either of

these considerations individually. Once again, the optimal responses to shocks correspond

to a point on the frontier shown in Figure 6.1, the point labeled C. The variability of the

endogenous variables in this equilibrium is indicated on the fourth line of Table 6.2.

It is interesting to note that the value λ̂i is not greatly larger than λ̃i, so that point C

is not too much higher than point B on the efficient frontier. This indicates that taking

account of transactions frictions does not matter as much for our welfare analysis, once we

have already taken account of the interest-rate lower bound, though the reverse is not true.

There is a simple intuition for this result. Whether or not we allow for transactions frictions,

imposition of constraint (4.24) makes it optimal to choose a policy under which interest-

rate variability is roughly of the size that makes (4.24) consistent with an average inflation

rate of zero.47 The level of interest-rate variability that this would involve, the point on

the frontier corresponding to it, and the associated weight on interest-rate variations in the

effective loss function (which is given by the negative of the slope of the efficient frontier at

that point) are all independent of whether the loss function directly penalizes interest-rate

variations (because of transactions frictions) or not. For this reason, increasing the weight

λi on interest-rate variations in the direct loss function Lt has relatively little effect on the

weight λ̂i in the effective loss function. The increase in λi results in a smaller Lagrange

multiplier on constraint (4.24), as there is less desire to vary interest rates even in the

absence of the constraint; and so the sum of the two weights increases much less than the

47When we take account of only the interest-rate lower bound, it is already optimal to reduce interest-rate
variability to a degree consistent with a long-run average inflation rate of only 14 basis points per year.
When one takes account of the welfare consequences of transactions frictions as well, it instead becomes
optimal to reduce interest-rate variability to an extent consistent with a long-run average inflation rate of
negative 11 basis points per year. This does not require a great deal of further reduction in the variability
of the short-term interest rate.
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increase in λi. For this reason, there is not a great loss in accuracy involved in neglecting the

welfare consequences of transactions frictions, if the interest-rate lower bound has already

been taken account of (as in Rotemberg and Woodford, 1997, 1999a, or Woodford, 1999a).

Furthermore, the conclusions reached in those analyses are the same as would have been

obtained if transactions frictions were allowed for, but the lower bound were treated as

slightly less of a constraint — as for example if one assumed slightly less variability or a

slightly higher average value of the natural rate of interest.

4.3 Asymmetric Disturbances

Next we consider the consequences of real disturbances that, unlike those considered in

section 2, do not have identical effects upon demand and supply conditions for all goods.

Instead, we wish to allow for disturbances of kinds that would affect equilibrium relative

prices even in the case that all prices were fully flexible. In the presence of such disturbances,

it is generally not possible to arrange for the equilibrium of an economy with sticky prices

to reproduce the state-contingent resource allocation of a flexible-price economy simply by

choosing a monetary policy that stabilizes an aggregate price index. We shall also allow

for asymmetries between sectors in that we shall no longer assume that the frequency of

price adjustments must be the same for all goods. (This introduces another reason for

different sectors of the economy to be differentially affected by shocks.) What are appropriate

stabilization goals in such a case?

The analysis here generalizes the work of Aoki (2001), and is essentially a closed-economy

interpretation of the analysis of Benigno (1999).48 We return again to the model with

asymmetric disturbances described in section xx of chapter 3. Our welfare measure is again

given by the utility of the representative household, that is once again of the form (2.2),

except that now Yt is a (time-varying) CES aggregate of the sectoral indices of aggregate

48In the model of Benigno, there are two countries that specialize in the production of different sets of
goods, and real disturbances may have differential effects upon the markets for goods produced in a given
country. Here the two sets of goods are instead interpreted as simply two sectors of a single national economy.
However, our conclusions with regard to appropriate stabilization objectives directly follow from his analysis
of stabilization objectives for a two-country monetary union.
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demand Y1t and Y2t, and the disturbances affecting the disutility of output supply (2.4) are

now allowed to be different in the case of goods i in different sectors.

A second-order expansion of the equation defining Yt as a function of the sectoral demand

indices is of the form

Ŷt =
∑

j

= 12nj(1 + η−1ϕ̂jt)Ŷjt +
1

2
n1n2(1− η−1)(Ŷ2t − Ŷ1t)

2 + t.i.p. +O(||ξ||3), (4.29)

where nj is the fraction of the goods that belong to sector j, η is the elasticity of substitution

between the composite products of the two sectors (assumed equal to one by Benigno), and

ϕ̂jt is the exogenous disturbance to the sectoral composition of demand (all as in chapter 3).

A similar second-order expansion of the index of sectoral demand is of the form

Ŷjt = Ej
i ŷt(i) +

1

2
(1− θ−1)varj

i ŷt(i) +O(||ξ||3), (4.30)

for each of the sectors j = 1, 2, generalizing (2.11). Here we introduce the notation Ej
i (·)

and varj
i (·) for the mean and variance of the distribution of values for the different goods i

belonging to a given sector j.

Similarly, in the case of any good i in sector j, a second-order expansion of the disutility

of output supply can be written in the form

ṽ(yt(i); ξ
j
t ) = Ȳ uc

{
(1− Φ)ŷt(i) +

1

2
(1 + ω)ŷt(i)

2 − ωqjtŷt(i)
}

+ t.i.p. +O(||ξ||3), (4.31)

generalizing (2.9), where now

qjt ≡ − ṽyξξ
j
t

Ȳ ṽyy

represents the sector-specific variation in the level of output required to maintain a constant

marginal disutility of supply. Integrating (4.31) over the goods i belonging to sector j, and

using (4.30) to eliminate Ej
i ŷt(i), we obtain

∫

Nj

ṽ(yt(i); ξ
j
t )di = njȲ uc

{
(1− Φ)Ŷjt +

1

2
(1 + ω)Ŷ 2

jt − ωqjtŶjt +
1

2
(θ−1 + ω)varj

i ŷt(i)
}

+t.i.p. +O(||ξ||3).
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Then summing over the two sectors and using (4.29) to eliminate
∑

j njŶjt, we obtain

∫ 1

0
ṽ(yt(i); ξt)di = Ȳ uc



(1− Φ)Ŷt +

1

2
(1 + ω)Ŷ 2

t −
2∑

j=1

nj(ωqjt + η−1ϕ̂jt)Ŷjt

+
1

2
n1n2(η

−1 + ω)(Ŷ2t − Ŷ1t)
2 +

1

2
(θ−1 + ω)

2∑

j=1

njvarj
i ŷt(i)



 + t.i.p. +O(||ξ||3), (4.32)

generalizing (2.10).

Combining (2.8) and (4.32), we finally obtain

Ut = Ȳ uc



ΦŶt − 1

2
(σ−1 + ω)Ŷ 2

t +
2∑

j=1

(σ−1gt + ωqjt + η−1ϕ̂jt)Ŷjt

−1

2
n1n2(η

−1 + ω)(Ŷ2t − Ŷ1t)
2 − 1

2
(θ−1 + ω)

2∑

j=1

varj
i ŷt(i)



 + t.i.p. +O(||ξ||3)

= − Ȳ uc

2



(σ−1 + ω)(xt − x∗)2 + n1n2(η

−1 + ω)x2
Rt + (θ−1 + ω)

2∑

j=1

varj
i ŷt(i)





+t.i.p. +O(||ξ||3), (4.33)

generalizing (2.12). Here once again xt ≡ Ŷt − Ŷ n
t is the aggregate output gap and we

correspondingly define the relative output gap xRt ≡ x2t − x1t, where xjt ≡ Ŷjt − Ŷ n
jt is the

gap for sector j. In deriving (4.33) from the expression above, we use the fact that the

definitions of the aggregate and sectoral natural rates of output in chapter 3 imply that

(σ−1 + ω)Ŷ n
t = σ−1gt +

2∑

j=1

njqjt,

(η−1 + ω)(Ŷ n
2t − Ŷ n

1t) = η−1(ϕ̂2t − ϕ̂1t + +ω(q2t − q1t).

Using the sectoral demand equation to write relative sectoral demand as a function of relative

sectoral price, and the demand equation for an individual good to write sectoral output

dispersion as a function of sectoral price dispersion this can alternatively be written as

Ut = − Ȳ uc

2

{
(σ−1 + ω)(xt − x∗)2 + n1n2η(1 + ωη)(p̂Rt − p̂n

Rt)
2

+θ(1 + ωθ)
2∑

j=1

varj
i log pt(i)



 + t.i.p. +O(||ξ||3). (4.34)
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Here p̂Rt ≡ log(P2t/P1t) is again the (log) sectoral relative price and p̂n
Rt its “natural” value

(i.e., the equilibrium relative price under full price flexibility, a function solely of the asym-

metric exogenous disturbances).

This quadratic approximation to the utility flow each period is valid regardless of our

assumptions about pricing. If we assume Calvo-style staggered price-setting in each sector,

then the measure of sectoral price dispersion

∆j
t ≡ varj

i log pt(i)

evolves according to the approximate law of motion

∆j
t = αj∆

j
t−1 +

αj

1− αj

π2
jt +O(||ξ||3),

where πjt is the rate of price inflation in sector j and αj is the fraction of prices that remain

unchanged each period in sector j. Summing over time we then obtain

∞∑

t=0

βt∆j
t =

αj

(1− αj)(1− αjβ)

∞∑

t=0

βtπ2
jt + t.i.p. +O(||ξ||3).

Using this substitution for the price dispersion terms in (4.34), we again find that discounted

lifetime utility can be approximated by (2.22), where now the period loss function is of the

form

Lt =
2∑

j=1

wjπ
2
jt + λx(xt − x∗)2 + λR(p̂Rt − p̂n

Rt)
2, (4.35)

generalizing (2.23). Here the weights (normalized so that w1 + w2 = 1) are given by

wj ≡ njκ

κj

> 0, λx ≡ κ

θ
> 0, λR ≡ n1n2η(1 + ωη)

σ−1 + ω
λx > 0,

where the coefficients κj are defined as in equation (xx) of chapter 3, and

κ ≡ (n1κ
−1
1 + n2κ

−1
2 )−1 > 0

is a geometric average of the two.

We now find that deadweight loss depends not only upon the economy-wide average rate

of inflation, but on the rate of inflation in each of the sectors individually; the relative weight
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on inflation variations in sector j is greater the larger the relative size of this sector, and also

the smaller the relative value of κj, which measures the degree of price stickiness in sector j.

(A smaller value of κj indicates slower price adjustment in sector j; κj is unboundedly large

in the limit of perfectly flexible prices in sector j.) The relative weight on aggregate output-

gap variations depends as before on the measure κ of the overall degree of price stickiness in

the economy. Finally, misalignments of the relative price between the two sectors (relative

to what it would be under fully flexible prices) also distort the allocation of resources.49 The

relative weight on this stabilization objective is greater the larger the elasticity of substitution

η between the products of the two sectors.

In general, it is not possible to simultaneously satisfy all of these stabilization objectives.

In particular, if the natural relative price p̂n
Rt varies over time, it is not possible simultaneously

to stabilize inflation in both sectors and to eliminate gaps between the relative price and its

natural value. Accordingly, in this case we must consider second-best optimal policies. And

in general, complete stabilization of the aggregate inflation rate

πt ≡ n1π1t + n2π2t

is not the best available policy. This is most easily seen in the case considered by Aoki,

in which prices are fully flexible in one sector, but sticky in the other. If prices are fully

flexible in sector j, κ−1
j = 0, so that wj = 0. In this limiting case, we can also show that

the relative-price gap p̂Rt − p̂n
Rt is a constant multiple of the output gap xt, regardless of

policy, so that the same policy completely stabilizes both gap variables; and that complete

stabilization of both gaps implies zero inflation in the sticky-price sector.

Hence all three terms in (4.35) with non-zero weights are minimized by the same policy,

one which completely stabilizes the price index for the sticky-price sector, and this is clearly

the optimal policy in this case. (Aoki interprets this policy as stabilization of an index

of “core inflation”.) Again the intuition is a simple one: such a policy achieves the same

49In Benigno’s open-economy application, this corresponds to the real exchange rate, and we obtain a
welfare-theoretic justification for a real exchange-rate stabilization objective. However, it should be noted
that it is the gap between the real exchange rate and its “natural” level that should be stabilized, rather
than the real exchange rate itself.
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allocation of resources as would occur under complete price flexibility, since no suppliers

in the sticky-price sector have any desire to change their prices more frequently than they

already do. But in general, such a policy does not completely stabilize the broader price

index, despite the fact that an alternative policy exists that would do so. For if p̂Rt is to

track p̂n
Rt while the sticky-price index remains constant, there must be a variable inflation

rate in the flexible-price sector.

There is one case in which complete stabilization of πt continues to be optimal even in

the presence of relative-price disturbances; this is the case in which prices are equally sticky

in the two sectors (in addition to the sectors being symmetrical in the other ways assumed

in chapter 3). When α1 = α2, so that κ1 = κ2, w1 = w2 = 1/2, and the loss function can

alternatively be written

Lt = π2
t +

1

4
(p̂Rt − p̂R,t−1)

2 + λx(xt − x∗)2 + λR(p̂Rt − p̂n
Rt)

2.

As shown in chapter 3, in this symmetric case, stabilization of the aggregate inflation rate

πt is equivalent to stabilization of the aggregate output gap xt, while the relative price p̂Rt

evolves in the same way regardless of monetary policy. Thus while it is not possible for any

policy to reduce all terms in Lt to zero each period (since p̂Rt 6= p̂n
Rt in general), a policy

that completely stabilizes πt reduces the value of each term to the greatest extent possible,

and so is optimal.

More generally, Benigno finds that a policy that completely stabilizes an appropriately

weighted average of the sectoral inflation rates,

πtarg
t ≡ φπ1t + (1− φ)π2t, (4.36)

typically provides a reasonably good approximation to optimal policy, if the weight 0 ≤ φ ≤ 1

is properly chosen. (We have just described cases in which each of the values φ = 0, 1/2, or

1 is optimal, suggesting the interest of this general family of rules.) This can be illustrated

in a calibrated example.

Suppose that n1 = n2 = 1/2, η = 1, and let β, σ, κ, ω and θ take the values reported in

Table 4.1, derived from the study of Rotemberg and Woodford (1997).50 The implied values
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Table 6.3: Calibrated parameter values for the quarterly model used for Figure 6.2.

Additional structural parameters
n1, n2 0.5

η 1

Shock process
ρ(p̂n

R) 0.8
sd(p̂n

R) 1.67

Loss function
x∗ 0
λx .048
λR .028

of α1 and α2 are then derived from these coefficient values for an arbitrary choice of the

relative weight 0 ≤ w2 ≤ 1. (In the case that w2 = 0.5 is chosen, α1 = α2, and the common

value of α is the one reported in Table 4.1.) This allows us to vary the assumed relative

stickiness of prices in the two sectors between the two extremes of complete flexibility in

sector 2 (w2 = 0) and complete flexibility in sector 1 (w2 = 1), while assuming the same

overall degree of price stickiness (as measured by κ). Note that the assumed coefficients λx

and λR in the loss function (4.35) remain the same as we vary w2; the values implied by the

above calibration are indicated in Table 6.3.51 The tensions between alternative stabilization

objectives just discussed exist only insofar as the natural relative price p̂n
Rt is not constant; for

purposes of illustration, we assume that this follows an AR(1) process with an autoregressive

coefficient of 0.8. The assumed variance of the innovations in this process do not matter for

our results (all of our expected losses are proportional to this assumed variance), so it is set

equal to 1 without loss of generality.52

The solid line in Figure 6.2 plots the minimum attainable value for the expected dis-

50Note that the model of Rotemberg and Woodford can be interpreted as a two-sector model in which
α1 = α2. Because no data on relative prices are used in that study, it provides no estimate of η.

51As in Table 6.1, the reported weights λx and λR are sixteen times as large as those implied by the
formulas given above, so that they correspond to the relative weights on these terms in the loss function
when the inflation rate is measured as an annual rather than a quarterly rate.

52Note that an innovation variance of 1 implies a variance of 1/1− (0.8)2 for the disturbance process, or
a standard deviation of 1.67.
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Figure 6.2: Welfare losses under alternative policies with asymmetric disturbances.

counted period loss Ê[L], again defined as in (4.28), for each possible choice of the coefficient

w2 measuring the relative stickiness of sector 2.53 Only in the case that w2 takes one of the

extreme values (i.e., prices are completely flexible in one sector or the other) is the minimum

attainable value zero, for only in this case is it is possible for monetary policy to achieve the

allocation of resources associated with complete price flexibility. The expected loss under a

policy that strictly targets (completely stabilizes) aggregate inflation is instead shown by the

dashed line. The two lines coincide only when w2 = 0.5, the only case in which aggregate-

inflation targeting is optimal. Whenever the degrees of price stickiness in the two sectors

differ, aggregate-inflation targeting results in greater losses, and the losses associated with

this policy are greater the greater the degree of asymmetry, whereas the unavoidable losses

are smaller the greater the asymmetry. The expected losses resulting from strict targeting

53The precise definition that we assume of constrained-optimal policy in cases like this, as well as the
Lagrangian method that we use to characterize it, are explained in chapter 7.
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Figure 6.3: The optimal price index to stabilize as a function of the relative stickiness of prices
in the two sectors. The dotted line shows the price index that is equivalent to output-gap
targeting.

of the weighted index (4.36), where the weight φ is optimally chosen for each value of w2, is

instead shown by the dotted line. This coincides with the solid line when w2 = 0, 0.5, or 1

(the three special cases already discussed), but not otherwise; thus these are the only cases

in which optimal policy is exactly described by a simple targeting rule of this kind. But even

in the other cases, the dotted line is only slightly above the solid line; thus a rule of this kind

is a reasonable approximation to optimal policy, if φ is properly chosen.

The optimal value of φ for each value of w2 is shown in Figure 6.3. The optimal value

are φ = 1 when w2 = 0, φ = 0.5 when w2 = 0.5, and φ = 0 when w2 = 1, for reasons

already discussed. More generally, the optimal φ is a decreasing function of w2, as the

special cases had already suggested: the near-optimal policy stabilizes an inflation measure

that puts more weight on prices in the sector where prices are stickier. As Aoki suggests,
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this provides theoretical justification for a policy that targets “core inflation” rather than

the growth of a broader price index, and offers a theoretical criterion for the construction of

such an index. It also explains why it is not appropriate to target an inflation measure that

includes “asset price inflation” along with goods price increases, as is sometimes proposed;

even if asset prices are also prices, and also can be affected by monetary policy, they are

among the prices that are most frequently adjusted in response to new market conditions,

and so their movements do not indicate the kind of distortions which we seek to minimize.

The choice of the right rule of the form (4.36) depends, however, upon on an accurate

estimate of the relative stickiness of prices in the two sectors. A simple rule that performs

relatively well regardless of the value of w2 is strict targeting of the output gap: using

monetary policy to ensure that xt = 0 at all times. The expected loss resulting from this

rule is shown in Figure 6.3 by the dotted solid line. This policy is only fully optimal in three

cases (w2 = 0, 0.5 or 1), and otherwise it is somewhat worse than the best weighted-inflation

targeting rule; but it is relatively good over the entire range of possible values of w2 (unlike

the equal-weighted inflation targeting rule, for example), despite involving no coefficients

that must be assigned values that vary with the changing value of w2.

In fact, the output-gap targeting rule is reasonably successful regardless of the value of

w2 because it incorporates the principle of stabilizing more the prices that are most sticky.

If one multiplies the inflation equation for sector j (equation (xx) of chapter 3) by wj and

sums over j, one obtains

π̄t = κxt + βEtπ̄t+1

where

π̄t ≡ w1π1t + w2π2t.

From this it follows that output-gap stabilization is equivalent to stabilization of π̄t. This is

thus a policy of the form (4.36), with φ = w1. Thus the weights are automatically adjusted

to place less weight on the prices in the sector with more flexible prices. This is not done in

precisely the optimal way (see the comparison of this function of w2 with the optimal one in
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Figure 6.3), but this simple rule is not too different from the optimal member of the family

(4.36) for any value of w2.

Thus we conclude that even in the case of asymmetric disturbances, stabilization of a

price index provides a fairly good recipe for monetary policy, as long as the right price index

is chosen. On the other hand, this does not mean that seeking to stabilize the output gap

cannot be a sound approach as well, as long as the output gap is properly measured; in fact, in

the absence of information about which sector’s prices are more sticky, an output-gap target

is a more robustly desirable simple policy rule. The choice between the two approaches,

then, must turn on which sorts of information the central bank is able to rely upon with

more confidence. In practice, banks are likely to be more confident that they can estimate

the relative stickiness of different prices with some confidence than that they can accurately

track the natural rate of output in real time; for the former question can be studied using past

data, while the latter depends upon correctly judging the economy’s current state despite

the possible occurrence of a vast number of different types of disturbances. For this reason,

one may still conclude that an appropriately chosen inflation target represents a sensible

approach to policy.

4.4 Sticky Wages and Prices

Similar issues arise if we assume that wages as well as prices are sticky. Once again, some

types of real disturbances will modify the “natural” relative price, i.e., the equilibrium real

wage under flexible wages and prices, so that no monetary policy can eliminate all of the

distortions resulting from wage and price stickiness. Here we analyze welfare-theoretic sta-

bilization goals for the model with sticky wages and prices set out in section xx of chapter

3; our results essentially recapitulate those of Erceg et al. (2000).

In this model, all firms hire the same composite labor input; nonetheless, there exist

differential demands for the labor supplied by different households j, owing to wage dispersion

(as a result of staggered wage adjustment). The demand for each differentiated type of labor
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is given by

ht(j) = Ht

(
wt(j)

Wt

)−θw

,

where θw > 1 is the elasticity of substitution among different types of labor on the part of

firms. A quadratic expansion of v(ht(j); ξt), integrated over the continuum of different types

of labor, yields

∫ 1

0
v(ht(j); ξ)dj = H̄vh

{
Ĥt +

1

2
(1 + ν)Ĥ2

t − νh̄tĤt

+
1

2
θw(1 + νθw)varj log wt(j)

}
+ t.i.p. +O(||ξ||3), (4.37)

where once again

ν ≡ H̄vhh

vh

> 0.

The aggregate demand for the composite labor input Ht is in turn given by

Ht =
∫ 1

0
f−1(yt(i)/At)di, (4.38)

integrating over the demands of each of the firms i. Using a quadratic approximation to an

individual firm’s labor demand

f−1(yt(i)) = H̄
{
1 + φŷt(i) +

1

2
(1 + ωp)φŷt(i)

2
}

+O(||ξ||3),

where once again

φ ≡ Ȳ

H̄f ′
> 1, ωp ≡ − ff ′′

(f ′)2
> 0,

we can expand (4.38) as

Ĥ = φ (Eiŷt(i)− Ât) +
1

2
(1 + ωp − φ)φ (Eiŷt(i)− Ât)

2

+
1

2
(1 + ωp)φ variŷt(i) +O(||ξ||3)

= φ (Ŷt − Ât) +
1

2
(1 + ωp − φ)φ (Ŷt − Ât)

2

+
1

2
(1 + ωpθp)θpφ vari log pt(i) +O(||ξ||3). (4.39)

In the second line we have again used (2.11) to eliminate Eiŷt(i) and (2.14) to write variŷt(i)

as a function of the dispersion of individual goods prices, and adopted the notation θp for
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the elasticity of demand across differentiated goods. Substituting (4.39) for Ĥt in (4.37),

and then combining this with (2.8), we obtain the expansion

Ut = − Ȳ uc

2

{
(σ−1 + ω)(xt − x∗)2 + θp(1 + ωpθp)vari log pt(i)

+θwφ−1(1 + νθw)varj log wt(j)
}

+ t.i.p. +O(||ξ||3), (4.40)

where xt and x∗ are again defined as in our basic (flexible-wage) model.

This expression for the utility flow each period holds regardless of our assumptions about

wage- and price-setting. If, following Erceg et al., we assume Calvo-style staggered adjust-

ment of both wages and prices, we again obtain a representation of the form (2.22), where

now the period loss function is of the form

Lt = λpπ
2
t + λwπ2

wt + λx(xt − x∗)2. (4.41)

Here the weights (normalized so that λp + λw = 1) are given by

λp =
θpξ

−1
p

θpξ−1
p + θwφ−1ξ−1

w

> 0, λw =
θwφ−1ξ−1

w

θpξ−1
p + θwφ−1ξ−1

w

> 0,

λx =
σ−1 + ω

θpξ−1
p + θwφ−1ξ−1

w

> 0,

where ξw, ξp > 0 are again the elasticities appearing in equations (xx) – (xx) of chapter 3.

Note that the relative weight on output-gap stabilization is again related to the slope

of the aggregate supply relation in a similar way as in the basic (flexible-wage) model. In

particular, in the case that θwφ−1 = θp, the expression for λx reduces to κ/θ, where κ > 0

is the slope of the short-run Phillips-curve relation between a weighted average of price and

wage inflation and the output gap (equation (xx) of chapter 3) and θ > 1 is the common

value of θp and θwφ−1. The weight on inflation stabilization is now, however, divided between

a price-inflation stabilization goal and a wage-inflation stabilization goal; the relative weights

on each depend on the relative stickiness of wages and prices (as indicated by the relative

sizes of ξ−1
w and ξ−1

p ). If only prices are sticky, only price inflation matters (λw = 0), and

optimal policy involves complete stabilization of prices (as this also completely stabilizes
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the output gap, in that case). If instead only wages are sticky, only wage inflation matters

(λp = 0), and optimal policy involves complete stabilization of wages (which also completely

stabilizes the output gap, in this case). In the intermediate case, both goals matter, and

complete stabilization is impossible in the presence of fluctuations in the “natural real wage”

wn
t .

An intermediate case in which optimal policy is nonetheless simple to characterize is the

special case in which θwφ−1 = θp and κw = κp, where κw, κp are the coefficients indicating

the effects of output-gap variations on wage and price inflation respectively (see equations

(xx) – (xx) of chapter 3). Note that (4.41) can alternatively be written

Lt = π̄2
t + λpλw(log wt − log wt−1)

2 + λx(xt − x∗)2, (4.42)

where

π̄t ≡ λpπt + λwπwt

and wt is the real wage. In the case that κw = κp, the evolution of the real wage is independent

of monetary policy, as shown in chapter 3; hence the middle term in (4.42) is irrelevant. In

the case that θwφ−1 = θp, the weights λp, λw define a weighted average of price and wage

inflation that is stabilized if and only if the output gap is stabilized. (This follows from

equation (xx) of chapter 3.) Hence the two terms in (4.42) that can be affected by monetary

policy are both minimized by the same policy, one that completely stabilizes π̄t.
54

This last result suggests that even when both wages and prices are sticky, and Lt cannot

be reduced to zero by any policy, a policy that stabilizes a weighted inflation measure of the

form

πtarg
t ≡ φπ1t + (1− φ)π2t, (4.43)

may be desirable. In fact, except in the special case just described, fully optimal policy

cannot be represented by such a simple rule, but numerical experimentation suggests that a

targeting rule of this kind can nonetheless be nearly optimal, if the weight φ is appropriately

chosen.
54Even when x∗ = 0, one can show that this is the optimal policy from the “timeless perspective” that is

explained further in chapters 7 and 8. See in particular section xx of chapter 8.
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Table 6.4: Calibrated parameter values for the quarterly model used for Figure 6.4.

Additional structural parameters
θp 7.88

θwφ−1 7.88
ξ−1
w + ξ−1

p 26.7
κ .024

Shock process
ρ(ŵn) 0.8
sd(ŵn) 1.67

Loss function
x∗ 0
λx .048

This can be illustrated by a calibrated example. We again let the parameters β, σ, ωw, ωp

and θp take the values estimated by Rotemberg and Woodford (1997) and reported in Table

4.1,55 and in the absence of any direct evidence we assume the same value for θwφ−1 as

for θp. We wish to let the assumed relative degree of wage as opposed to price stickiness

vary between the two extremes of full wage flexibility and full price flexibility on the other;

but we assume a given degree of overall nominal rigidity by fixing the value of the slope

coefficient κ in the generalized Phillips-curve relation described by equation (xx) of chapter

3. The value assumed for κ is again the one shown in Table 4.1. (Note that in the case

of wage flexibility, as assumed by Rotemberg and Woodford, their estimated coefficient κ

corresponds to the κ of this model, rather than to κp.) This implies a fixed value for the sum

ξ−1
w + ξ−1

p , shown in Table 6.4,56 though we wish to vary the relative contributions of the two

terms to this sum (between ξ−1
w = 0 when wages are fully flexible to ξ−1

p = 0 when prices

are). We parameterize our assumption about the relative degree of wage and price stickiness

by the value of λw = ξ−1
w /(ξ−1

w + ξ−1
p ), which we allow to vary over the interval from zero to

one. The assumed value of ξ−1
w + ξ−1

p implies a value for λx that is independent of the choice

55Note that the parameter θp is referred to simply as θ in the previous table.
56Note that the estimates of Amato and Laubach (2001), reported in Table 4.2, would instead imply a

value of 32.4, or a slightly greater overall degree of nominal rigidity than we assume here.
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Figure 6.4: Welfare losses under alternative policies with sticky wages and prices.

of λw; once again this is the same as in Table 6.1.

The only exogenous disturbance that matters for the optimal state-contingent evolution

of wages and prices is the “natural real wage” process ŵn
t . For the sake of illustration, we

assume an AR(1) process with the properties listed in Table 6.4. (Note that once again the

assumed variance of the disturbance has no effect on our results, other than to scale up the

expected value of each term of the loss function equally.)

The solid line in Figure 6.4 then shows the minimum attainable value of Ê[L] associated

with these parameter values, for each possible value of λw. As in Figure 6.3, distortions can

be reduced to zero only in the two extreme cases (here corresponding to full wage flexibility

when λw = 0 and full price flexibility when λw = 1). The dashed line instead shows the

expected discounted loss associated with a policy of complete stabilization of the rate of

price inflation πt; this policy is optimal only if λw = 0 (completely flexible wages), and grows
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Figure 6.5: The optimal index to stabilize as a function of the relative stickiness of wages
and prices. The dotted line shows the generalized inflation-targeting rule that is equivalent
to output-gap targeting.

worse the greater the relative stickiness of wages. The expected loss achievable by instead

targeting a weighted average of wage and price inflation, when the weight φ is optimally

chosen, is instead indicated by a dotted line. This only coincides exactly with the solid

line (indicating that the optimal policy belongs to this simple family) at three points, when

λw = 0, 0.48, or 1. (The intermediate special case is that in which λw = (σ−1+ωw)/(σ−1+ω),

so that κw = κp.) However, the dotted line can barely be distinguished from the solid line

over the entire interval; hence a well-chosen policy of this form offers a good approximation

to optimal policy in all cases. The optimal choice of the weight φ is plotted as a function

of λw in Figure 6.5. Note that it is monotonically decreasing: the optimal weight to put on

price as opposed to wage inflation is lower the greater the relative stickiness of wages.

Once again, we also find that output-gap targeting is a fairly robust policy that does
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not require knowledge of the exact degrees of wage and price stickiness. The expected losses

associated with this policy are shown by the dotted solid line in Figure 6.4. Output-gap

targeting is only fully optimal in the three special cases just mentioned, and otherwise it is

also not as good as the best policy within the generalized inflation-targeting family. In fact,

output-gap targeting is equivalent to a generalized inflation-targeting policy, corresponding

to an index with φ = λp = 1 − λw. But as shown in Figure 6.5, this choice of φ is not too

different from the optimal one, regardless of the relative stickiness of wages and prices; this is

exactly why output-gap targeting is a relatively robust policy prescription. Yet once again,

this observation is only of practical importance if direct measures of the output gap in real

time are fairly accurate; in practice, the best way to stabilize the output gap may well be to

seek to stabilize an appropriate weighted average of wage and price inflation.

4.5 Time-Varying Tax Wedges or Markups

Finally, as discussed above, complete stabilization of inflation ceases to be optimal, even when

this implies that aggregate output should perfectly track the equilibrium level of output

under flexible wages and prices, if the gap between this latter quantity and the efficient

level of output is not a constant. In such a case, unlike those considered in the previous

two subsections, there are time-varying distortions that do not result from delays in the

adjustment of any kind of prices; thus there exists no way of defining the price index to be

stabilized that can make price stability an adequate proxy for welfare-maximizing policy.

Hence the challenge to price stability as a goal of policy is strongest in this case.

For simplicity, let us assume again a model in which wages are flexible, all prices are

equally sticky, and all real disturbances affect the demand for and production costs of all

goods symmetrically, as in the models considered in section 2. Let us suppose now, however,

that the relative price pt(i)/Pt at which the supplier of a differentiated good i would be

willing to supply a quantity yt(i) of that good, under conditions of full price flexibility, is

given by

p̃(yt(i), Yt; ξ̃t, Φt) ≡ 1

1− Φt

ṽy(yt(i); ξ̃t)

ũc(Yt; ξ̃t)
, (4.44)
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where Φt is an exogenous time-varying composite distortion. Here the term Φt includes the

distortions resulting from the market power of the supplier of each differentiated good and

from the existence of distorting taxes on output, consumption, employment or wage income.

We have allowed for these distortions earlier, but assumed them to be constant over time

(and represented their composite effect by a constant factor Φ ≥ 0); we now allow them

to vary over time, but assume that their variation is exogenous. The composite distortion

Φt can also include the effects of a wedge between the representative household’s marginal

rate of substitution between leisure (less supply of the labor used in producing good i) and

consumption and the real wage demanded from producers of good i, as a result of (possibly

time-varying) market power in labor supply.

The flexible-price equilibrium level of output for each good Y f
t is then implicitly defined

at each time by the relation

p̃(Y f
t , Y f

t ; ξ̃t, Φt) = 1. (4.45)

The time-varying efficient level of output Y e
t is instead implicitly defined by the relation

ṽy(Y
e
t ; ξ̃t)

ũc(Y e
t ; ξ̃t)

= 1. (4.46)

Note that Y e
t is a function solely of the exogenous disturbances to tastes, technology and

government purchases at date t, reflected by the vector ξ̃t. The flexible-price equilibrium level

of output Y f
t is also a function solely of exogenous disturbances at date t; but the exogenous

disturbances that affect it include all of the various disturbances that affect the value of Φt.

These latter disturbances result in inefficient variations in the flexible-price equilibrium. In

particular, log-linearizing both (4.45) and (4.46) and comparing terms, we find that

log Y f
t = log Y e

t − (ω + σ−1)−1Φt +O(||ξ||2),

where ||ξ|| is now a bound on the size of both disturbances ξ̃t and Φt.

Which of these ideal levels of output should be defined as the “natural rate”? The

definition that conforms most closely to standard usage would define the natural rate of

output as the flexible-price equilibrium rate of output in the case of certain constant values
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for the tax wedges and the markups due to market power in price- and/or wage-setting, where

the constant values are the long-run average values around which these exogenous series

fluctuate. Under this definition, the average “output gap” associated with price flexibility

— or alternatively, with zero inflation — will again be zero, as above. But price flexibility

would no longer imply a zero output gap at all times; for the flexible-price equilibrium level

of output varies in response to variations in Φt, while our “natural rate” of output (like the

efficient level) does not.57

The natural rate of output defined in this way also differs from the efficient level of

output, although (up to our log-linear approximation) the difference is a constant. For the

natural rate Y n
t is implicitly defined each period by the relation

p̃(Y n
t , Y n

t ; ξ̃t, Φ̄) = 1, (4.47)

where Φ̄ represents the long-run average value of Φt. Log-linearization of this indicates that

log Y n
t = log Y f

t + (ω + σ−1)−1Φ̂t +O(||ξ||2), (4.48)

where Φ̂t ≡ Φt − Φ̄t, so that

log Y n
t = log Y e

t − (ω + σ−1)−1Φ̄ +O(||ξ||2).

As a result, it continues to be desirable to stabilize the output gap xt ≡ log(Yt/Y n
t ). At the

same this definition (rather than defining the output gap relative to Y e
t directly) has the

advantage that in terms of this output gap measure, our aggregate supply relation continues

to have a zero constant term.58

57Note that defining the natural rate in a way that implies that it does not vary in response to variation in
the size of the tax wedge is consistent with our definition in the case of monetary frictions in section xx above.
There we defined the natural rate as what equilibrium output would be, given current tastes, technology,
and government purchases, if wages and prices were flexible and the interest-rate differential between non-
monetary and monetary assets were at its steady-state level. While time-variation in the distortion associated
with an interest-rate differential may cause variation in the flexible-price equilibrium level of output, our
definition implies no variation in the natural rate. Here we treat the consequences for aggregate supply of
time-variation in the tax wedge in a similar way.

58This choice allows us to follow the literature, such as Clarida et al. (1999) in representing a non-zero
average gap between the level of output consistent with zero inflation and the efficient level by a non-zero
target value x∗ in the loss function, rather than by a constant in the aggregate-supply relation, while at the
same time representing time variation in this gap by a random term in the aggregate-supply relation, rather
than a time-varying target for the output gap that appears in the loss function.
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Our derivation of the aggregate supply relation under the assumption of Calvo pricing in

chapter 3 continues to hold under these assumptions, except that the output gap must be

replaced by

Ŷt − Ŷ f
t = Ŷt − Ŷ n

t + (ω + σ−1)−1Φ̂t,

using (4.48), as it is the gap between actual output and the flexible-price level of output that

determines real marginal cost. Hence (2.19) becomes instead

πt = κxt + βEtπt+1 + ut, (4.49)

where

ut ≡ κ

ω + σ−1
Φ̂t

is a composite exogenous disturbance that Clarida et al. (1999) refer to as a “cost-push

shock”.59

Because under definition (4.47), the natural rate of output continues to be the same

function of preferences, technology and government purchases as before, our derivation above

of the normalized utility-based loss function (2.23) still applies, with λ > 0 and x∗ ≥ 0 defined

as before. But the appearance of the random term ut in the constraint (4.49) implies that

it is no longer possible to simultaneously stabilize both inflation and the welfare-relevant

output gap.

The tradeoff that exists between these two stabilization goals in the presence of ineffi-

cient supply shocks can be illustrated, for a calibrated numerical example, using a figure

of a kind popularized by Taylor (1979b). The coefficients β and κ of the AS relation are

again calibrated as in Table 6.1; the exogenous disturbance ut is assumed to be an AR(1)

process with serial correlation ρ(u) = 0.8 and an innovation variance of one.60 (Once again,

59The terminology is not entirely satisfactory, however, as there is no necessary connection between shocks
that affect inflation by increasing costs of production and time variation in the degree of inefficiency of the
natural rate of output. Technology shocks, energy price shocks, or variations in real wage demands may
all shift the aggregate supply curve in terms of the output relative to trend, without changing the relation
between inflation and the output gap as we have defined it.

60To be more precise, it is assumed that a one-standard-deviation innovation in the “cost-push shock”
raises the annualized inflation rate 4πt by one percentage point. In figure 6.6, V [π] refers to the variability
of the annualized inflation rate, and the units on both axes are percentage points squared.
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Figure 6.6: The tradeoff between inflation and output-gap stabilization in a model with
inefficient supply shocks. The solid line shows the efficient frontier, while the dotted line
corresponds to a class of simple rules that are efficient among purely forward-looking policies
(see chapter 7).

the assumed variance of the single disturbance is irrelevant for our conclusions, though it

determines the scale of the axes in Figure 6.6.) We then compute the efficient frontier in

V [π]− V [x] space, by computing the policy commitment that minimizes Ê[L] for arbitrary

values of λ > 0 in the loss function (2.23). The values of V [π] and V [x] associated with

each possible value of λ are then plotted as the lower of the two convex curves (i.e., the

one closer to the origin) in Figure 6.6.61 Point A (optimal policy when λ = 0) indicates

how much variability of the output gap must be accepted in order to completely stabilize

61The other curve shows the possible combinations of V [π] and V [x] that are attainable using a particular
family of simple targeting rules, rules that prescribe stabilization of a weighted average of inflation and
the output gap. (The equilibria achieved using such rules correspond to the “optimal non-inertial plan”
characterized in chapter 7, for alternative assumed relative weights on inflation and output-gap stabilization.)
As shown, these rules are generally not on the efficient frontier. This indicates the suboptimality of purely
forward-looking policy, as is discussed further in the next chapter.
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inflation, while point E (optimal policy when λ is unboundedly large) instead indicates how

much variability of inflation must be accepted in order to completely stabilize the output

gap. Points B, C and D instead represent optimal policies for various finite, positive values

of λ.

Since λ > 0 in the utility-based loss function, complete stabilization of inflation is seen

not to be optimal. However, this does not mean that the optimal degree of variability in

inflation need be very great. First of all, we observe from the figure that the efficient frontier

is quite flat in the lower right region; thus it is possible to substantially reduce the variability

of the output gap without too much variability of inflation being required. Instead, on the

upper part of the frontier, where efficient policies involve substantial inflation variability, the

frontier is quite steep. Thus policies on that part of the frontier would be optimal only if the

relative weight λ on output-gap stabilization were quite large. Second, the value of λ that

can be justified on welfare-theoretic grounds is likely to be quite small. As shown in Table

4.1, our calibrated parameter values imply a value of λ = 0.05. In Figure 6.6, the point on

the efficient frontier that minimizes this weighted average of the two criteria (and hence that

represents optimal policy) is point B. This policy involves quite a modest degree of inflation

variability, relative, for example, to the inflation variability that would be required to fully

stabilize the output gap.

The value of λ in our utility-based loss function is much smaller than the relative weight on

output-gap stabilization that is often assumed in ad hoc policy objectives in the literature

on monetary policy evaluation. A commonly assumed value would be λ = 1; this would

correspond to point D in the figure. We see that optimal policy involves much more stable

inflation than would be chosen under an ad hoc criterion of that kind. As another example of

a familiar policy recommendation, it has sometimes been proposed that given the existence

of “supply shocks”, and hence a necessary tension between output stabilization and inflation

stabilization, nominal GDP targeting would represent a reasonable balance between the two

goals. In our model, in the case that there are no fluctuations in Y e
t (so that all variations in

the output level consistent with price stability are inefficient, as arguments for nominal GDP
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targeting typically assume), nominal GDP targeting is a policy on the efficient frontier, as

shown in chapter 7.62 However, for our calibrated parameter values, nominal GDP targeting

would correspond to point C on the frontier; this still involves considerably more variation

in inflation than an optimal policy under the utility-based criterion. Thus according to our

utility-based analysis, the degree of departure from complete inflation stabilization that can

be justified even in the case of inefficient supply shocks of significant magnitude is quite

modest.

It should also be noted that the quantitative importance of shocks of this kind is far

from clear. The literature on monetary policy evaluation has given considerable emphasis

to the tension between the goals of inflation stabilization and output stabilization created

by the existence of “supply shocks”. It is taken as well established that such shocks are an

important factor in practical monetary policy. But the mere existence of “supply shocks,”

in the sense of real disturbances that shift the short-run Phillips curve, does not imply the

existence of inefficient supply shocks, the kind of shifts resulting from variation in Φt as

opposed to the elements of ξ̃t. As we have seen, the vector ξt includes a variety of types

of real disturbances that are of clear importance in actual economies, and that can easily

cause substantial fluctuations in the flexible-price equilibrium level of output; but in our

model, these fluctuations are (to a first-order approximation) also shifts in the efficient level

of output. While one can also think of possible sources of variation in the flexible-price

equilibrium level of output that would clearly not be efficient, such as variations in tax

distortions or in market power, such factors have not been clearly established as important

sources of short-run fluctuations in economic activity. Thus while it is certainly possible that

substantial disturbances of this kind occur, the matter is far from having been established.

We shall nonetheless give considerable attention in the next two chapters to the design

of optimal policies in the case that inefficient supply shocks occur. One reason for this is

62The policies on the efficient frontier correspond to complete stabilization of log Pt + φxt, for alternative
values of φ > 0. The value of λ required to make one of these policies optimal is 16κφ. In the case that
Y e

t (and hence Y n
t ) is a constant, so that xt = Ŷt, nominal GDP targeting represents the efficient policy

corresponding to a weight λ = 16κ. In our calibrated example, this corresponds to λ = 0.38.
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that, as explained in chapter 8, we wish to choose policy rules that are robust to alternative

beliefs about the nature of the real disturbances to the economy — for example, to alternative

beliefs about how frequently particular types of shocks occur. Thus we wish to consider the

possibility of inefficient supply shocks, and to choose policy rules that would be optimal

whether or not disturbances of this kind are significant source of macroeconomic instability

in a given economy. In order to undertake this challenge, we must consider what optimal

policy would seek to achieve in the case that such shocks occur.
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Chapter 7

Gains From Commitment to a Policy
Rule

We now turn to the characterization of optimal policy in the (realistic) case that not all of the

stabilization objectives discussed in the previous chapter can simultaneously be achieved, so

that it is not possible to fully eliminate all of the distortions that can be affected by monetary

policy. It is in this case that the problem of optimal monetary policy becomes non-trivial,

in that the character of the optimal equilibrium cannot be read directly from the nature

of the loss function derived above. In this chapter we discuss how the constrained-optimal

equilibrium pattern of responses to disturbances can be characterized in such a case, and

consider in general terms the problem of the choice of a policy rule intended to bring about

the desired equilibrium.

The idea that it should be necessary to compromise among several stabilization goals,

each desirable in itself but not mutually attainable in an absolute sense, is likely to be

intuitive to most practical policymakers. It may be less obvious that it is desirable to

attempt to characterize the optimal compromise among these objectives in terms of a rule

for the systematic conduct of policy. One might think that it should suffice instead to clarify

the proper goals of policy on the one hand, and to develop a reliable quantitative model of

the effects of alternative policy actions on the other, and then simply to charge the central

bank with the pursuit of the appropriate goals using an appropriate model to inform its

decisions. Economists are often willing to suppose that households and firms do a fairly

1
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good job of pursuing their objectives without external guidance, even when the optimization

problems that they face are quite complex; why not similarly trust that central bankers can

be relied upon to behave in something close to an optimal fashion, once their objectives and

constraints have been made clear?

But the reason that rules are important in monetary policy is not that central bankers

cannot be relied upon to pursue the public interest, or that their highly trained staffs cannot

be expected to bring the latest knowledge to bear upon the analysis of the likely effects

of alternative policies. It is rather that the central bank’s stabilization goals can be most

effectively achieved only to the extent that the central bank not only acts appropriately, but

is also understood by the private sector to predictably act in a certain way. The ability to

successfully steer private-sector expectations is favored by a decision procedure that is based

on a rule, since in this case the systematic character of the central bank’s actions can be

most easily made apparent to the public.

Of course, one might imagine that market participants could become accurate predictors

of central-bank behavior without any articulation by the central bank of the principles of

its behavior, just as they predict the behavior of firms that do not commit themselves to

rules of conduct. Yet while expertise of this kind certainly exists, the degree to which

central-bank behavior can be confidently predicted simply through extrapolation from past

actions is limited; the membership of monetary policy committees changes fairly often (and

invites speculation about the consequences for future decisions), and new circumstances are

constantly faced that are not too closely analogous to others confronted by the central bank

in the recent past. Articulation by the central bank of a rule that guides its decision process

(and commitment by the bank to actually follow it!) can greatly improve the predictability

of policy by the private sector, even when the rule is less explicit than a mechanical formula

that yields an unambiguous prescription on the basis of publicly available data.

Moreover, an optimal pattern of conduct by the central bank will generally not correspond

to what would result from discretionary optimization, as first stressed by Prescott (1977)

and Kydland and Prescott (1977, 1980). By discretionary optimization we mean a procedure
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under which at each time that an action is to be taken, the central bank evaluates the

economy’s current state and hence its possible future paths from now on, and chooses the

optimal current action in the light of this analysis, with no advance commitment about

future actions, except that they will similarly be the ones that seem best in whatever state

may be reached in the future. This might seem an eminently sensible procedure; it allows

the bank to make use of all of its detailed knowledge about current conditions, rather than

having to classify the current state as one of the coarsely described possible future states

considered at some earlier time. It also avoids the necessity of making an explicit decision

about anything other than the action that must currently be taken (although a view about

likely future policy will be implicit in the evaluation of alternative possible current actions).

And it might seem to involve no loss of efficiency relative to a once-and-for-all optimal plan,

insofar as a large literature on dynamic programming and optimal control has stressed the

usefulness of recursive methods for the solution of dynamic optimization problems. Under

these methods, a dynamic problem is broken into a sequence of individual decision problems,

in which the optimal action at each stage is chosen given the state at that time, taking as

given the nature of optimizing behavior at stages yet to be reached.

But as Kydland and Prescott showed, these methods are appropriate only for the optimal

control of a system that evolves mechanically as a function of its past state, exogenous dis-

turbances, and the current action of the controller. They are not appropriate for the optimal

control of a forward-looking system, in which people’s expectations about future policy are

one of the determinants of current outcomes. This is because a dynamic-programming ap-

proach considers the optimal action at a given point in time considering only the discounted

current and future losses associated with alternative feasible continuation paths, given the

system’s current state. It thus neglects any effects of the anticipation at earlier dates of

a different current action than the one that would be judged best by a discretionary opti-

mizer. By credibly committing itself in advance to behave differently, a central bank can

steer expectations in a way that furthers its stabilization goals.

It follows, once again, that successful management of expectations is unlikely to be pos-
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sible except through commitment of the central bank to a fairly explicit rule for the determi-

nation of its appropriate action at any point in time. For conscious guidance by a rule is not

only an aid to the private sector’s understanding of policy; it also makes it more likely that

the central bank itself will act correctly. For the temptation to behave in a discretionary

fashion must be resisted; optimal policy requires that most of the time the central bank does

not set interest rates at the level that would be optimal from the point of view of its stabi-

lization objectives, taking as given both past and future policy, and past, present and future

private-sector policy expectations.1 This means that good will and a sound understanding of

the effects of alternative policy actions and of the economic welfare associated with alterna-

tive possible paths for the economy is not enough; there must be a conscious commitment to

a criterion for action that will be counterintuitive for a discretionary policymaker, but that

actually serves (and can be understood to serve) the bank’s goals if pursued in a predictable

way.

The importance of creating the right sort of expectations regarding future policy has

another important lesson, of a somewhat subtler character, for the way that policy should

be conducted. This is that an optimal decision procedure will generally not be purely

forward-looking, in the sense of allowing the proper current action to be determined solely

from an analysis of the set of possible future paths for the economy given its current state.

The point seems to be contrary to the intuitions even of many who recognize the importance

of commitment to a rule in order to avoid the dangers of discretionary policy. Indeed,

many popular current proposals for policy rules are purely forward-looking in character.

For example, inflation-forecast targeting as currently practiced at the Bank of England (see,

e.g., the description in Vickers, 199xx), or as described in the early analytical literature (e.g.,

Svensson 1997, 1999; Leitemo, 199xx), selects a current interest-rate target on the basis of

the conformity of projections of the economy’s future evolution under that policy choice with

a criterion that is purely forward-looking (e.g., that RPIX inflation be predicted to equal 2.5

1In the thought experiment proposed here, it is assumed that the private sector’s current and future
expectations about future policy are and will be correct, but that the current action need not be chosen in
a way consistent with past expectations regarding this decision.
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percent per year at a horizon two years in the future). Similarly, Taylor’s classic formulation

(Taylor, 1993) of his policy rule prescribes a reaction to current inflation and output-gap

estimates that is independent of both past aggregate conditions and past monetary policy.2

And in discussions elsewhere (e.g., Taylor, 1999a), Taylor stresses the desirability of adjusting

the federal funds rate target immediately to changing aggregate conditions, without any of

the “partial adjustment” dynamics typically indicated by estimated Fed reaction functions,

such as those described in section xx of chapter 1.

The intuition of the proponents of purely forward-looking approaches, presumably, is that

it is not desirable for policy to depend on “irrelevant” state variables, that is, on something

that affects neither the set of possible future paths for the central bank’s target variables

nor the proper ranking of alternative paths. Yet such an argument would be incorrect, for

the same reason that dynamic programming does not yield a truly optimal policy, as just

discussed. Optimal policy must take account of the advantages of the anticipation of the

policy at earlier dates; and for this reason it must generally be history-dependent rather

than purely forward-looking. Past conditions should be taken into account in choosing the

current policy setting, because it is desirable that people be able, at the earlier time, to

count on the fact that the central bank will subsequently do so. Alternative approaches to

the incorporation of history-dependence of an appropriate sort into policy deliberations are

discussed in sections xx below.

We begin our discussion of the advantages from policy commitment with a review in

section 1 of the most famous disadvantage of discretionary policy, namely the “inflation

bias” stressed by Kydland and Prescott (1977) and Barro and Gordon (1983). This issue

is one that can be treated in a purely deterministic analysis, and we consider the question

first in such a setting. Once we allow in section 2 for random disturbances, the bias in

2In the empirical implementation of the rule (Taylor 1993, 1999b), Taylor uses the cumulative increase in
the log of the GDP deflator over the previous four quarters as his proposed measure of current inflation; this
might appear to imply that Taylor’s rule is somewhat history-dependent, unlike the purely contemporaneous
“Taylor rules” analyzed in much of the subsequent theoretical literature. However, it appears from Taylor’s
discussion of the logic of his proposal that the use of a measure of inflation over a year-long period should
be understood as a simple attempt to estimate the current value of a target variable that is only imperfectly
measured by higher-frequency data, rather than genuine advocacy of history-dependent policy.
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the long-run average inflation rate continues to exist, but there is a further problem with

discretionary policy as well: suboptimal equilibrium responses to unexpected shocks. Unlike

the inflation bias, the distortion of the response to shocks cannot generally be cured by any

purely forward-looking policy; it is the emphasis on the inflation bias in many discussions

of the disadvantages of discretionary policy that probably accounts for the widespread as-

sumption that the advantages of commitment can be obtained within a decision framework

that remains purely forward-looking.

We then consider the problem of implementation of the desired equilibrium responses to

disturbances through commitment of the central bank to an appropriate policy rule. A mere

characterization of the desired state-contingent evolution of the economy does not suffice as

a policy prescription, for a number of reasons outlined in section 3. One of the simplest

of these is that a specification of the future evolution of policy (say, a specification of the

future path of overnight interest rates, to be concrete) that allows for enough contingencies

to represent a desirable policy will be too complex to actually write out in advance.

Instead, there are a variety of ways in which one may specify a decision procedure for

the central bank that suffices (in the context of an evaluation of current conditions and

possible future paths for the economy) to determine a policy action at each date, and such

that an understanding that the central bank will follow the procedure determines a rational

expectations equilibrium in which the economy’s state-contingent evolution is of the desired

sort. We compare several alternatives in sections 4 and 5, and argue in section 5 for the

particular desirability of a conception of rule-based policymaking under which the central

bank seeks in each decision cycle to determine the current interest-rate operating target that

is consistent with a projection of the economy’s subsequent path that satisfies a “target

criterion”. Decision procedures of this kind are similar in form to the inflation-forecast

targeting currently practiced at the Bank of England and a number of other central banks.

But the content of the target criterion is likely to be somewhat different under an optimal

rule than under current U.K. practice; in particular, an optimal criterion will be history-

dependent, as we illustrate here through a simple example.
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1 The Optimal Long-Run Inflation Target

We begin our discussion of methods that can be used to characterize the economy’s optimal

evolution by considering the optimal rate of inflation in a purely deterministic setting. This

problem is non-trivial when it is not possible to simultaneously eliminate all of the distortions

that are affected by monetary policy, for one of the reasons discussed in section xx of chapter

6; and the problem provides a simple first setting in which to analyze the distortions resulting

from discretionary policy. As it turns out, in the context of the linear-quadratic policy

problems that are mainly studied below, the optimal long-run average rate of inflation in the

presence of random disturbances continues to be the same one as in the deterministic analysis

presented here; this is a consequence of the familiar certainty-equivalence principle for such

problems. Hence our characterization here of the optimal rate of inflation also applies to the

stochastic settings considered in section 2.

1.1 The Inflationary Bias of Discretionary Policy

Let us consider once again the basic neo-Wicksellian model of chapter 4 — a purely cash-

less economy with exogenous capital, flexible wages (and/or efficient labor contracting), and

Calvo-style staggered pricing in goods markets — and suppose that there are no real distur-

bances (ξ̃t = 0 for all t). Alternative possible perfect-foresight equilibrium paths for inflation

and output must satisfy the “new Keynesian” aggregate-supply relation

πt = κxt + βπt+1 (1.1)

for all dates t ≥ 0, where πt is the rate of inflation, xt is the output gap (here equivalent

simply to detrended output), and the coefficients satisfy κ > 0, 0 < β < 1. This is of course

only a log-linear approximation to the exact relation derived in section xx of chapter 3, valid

for the characterization of possible equilibrium paths in which inflation is always near zero.

But as we shall see, it is optimal in the present case for inflation to equal exactly zero, so

that a comparison of paths in the neighborhood of this particular steady state suffices for a

valid characterization of the optimal rate of inflation.
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Equilibrium paths must also satisfy another restriction, the intertemporal Euler equation

(or IS relation) that relates interest rates to the timing of expenditure. However, in the

present case, the optimal paths of inflation and output can be determined without reference

to that constraint, which simply determines the path of interest rates associated with any

given equilibrium path for inflation and output. We do need to verify that the implied path

for nominal interest rates is always non-negative; but we shall see that in the present case,

this is true for both the optimal commitment and the equilibrium resulting from discretionary

optimization.

We have shown in chapter 6 that a quadratic approximation to the utility of the repre-

sentative household in this model is a decreasing function of

∞∑

t=0

βt[π2
t + λ(xt − x∗)2] (1.2)

where λ > 0, x∗ ≥ 0 are functions of model parameters discussed in that chapter.3 As dis-

cussed in section 1 of chapter 6, a log-linear approximation to the model structural equations

suffices for a correct linear approximation to optimal policy only in the case that x∗ is small

enough. Specifically, since in the present case there are no random disturbances, the solution

for the optimal paths for inflation and output obtained by minimizing (1.2) subject to the

constraint that (1.1) hold each period will be accurate up to a residual of order O(||x∗||2).
This suffices, however, for a characterization of the first-order effects of allowing for x∗ > 0

(i.e., for inefficiency of the natural rate of output). And this, in turn, is enough to allow us

to understand the basic character of the inflation bias resulting from discretionary policy,

even if we cannot expect our analysis to yield an accurate estimate of the size of this bias

except when x∗ is small.4

We therefore consider the choice of monetary policy to minimize (1.2) subject to the se-

quence of constraints (1.1). Let us first consider the equilibrium outcome under discretionary

3It does not matter for our characterization of optimal policy here whether we assume that the loss
function parameters are the ones that correctly reflect economic welfare as characterized in chapter 6 or not;
our results will be equally applicable if (1.2) is taken to represent an ad hoc policy objective of some other
kind.

4Discuss Benigno-Woodford extension.....
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optimization by the central bank. This is fairly simple to characterize, without any need to

fully specify the strategic interaction between the central bank and private sector. In the

model just recalled, the set of possible equilibrium paths for inflation and output from any

period T onward are independent of what inflation, output or interest rates have been in any

periods prior to T ; nor does the central bank’s evaluation of continuation paths from period

T onward depend on prior history. Hence in a Markov equilibrium,5 neither the equilibrium

behavior of the private sector nor that of the central bank from period T onward should

depend on what has happened earlier. This means that in such an equilibrium, the central

bank can (correctly) assume in period t that the action it chooses will have no effect on

outcomes in any periods T ≥ t + 1; nor (since the private sector has rational expectations)

will it have any effect on the private sector’s expectations in period t regarding πt+1.

Let these equilibrium expectations be denoted πe. (In a Markov equilibrium, inflation

expectations are the same at all dates, owing to the time-invariant form of the continuation

game.) Then the central bank will perceive itself as being able to choose in period t among

inflation-output pairs that satisfy the constraint

πt = κxt + βπe. (1.3)

As it can no longer affect the contributions to (1.2) from periods prior to t and expects its

current decision to have no effect on the contributions from later periods, a discretionary

optimizer will choose an action in period t intended to bring about the inflation-output pair

that minimizes π2
t + λ(xt − x∗)2 subject to this constraint. The first-order condition for this

static optimization problem is given by

πt +
λ

κ
(xt − x∗) = 0. (1.4)

Substitution of this into (1.3) implies that the bank will generate inflation satisfying

πt =

(
1 +

κ2

λ

)−1

[κx∗ + βπe] (1.5)

5There may, of course, be additional “reputational” equilibria in a policy game of this kind, as analyzed,
for example, by Chari et al. (199xx) in the context of a sticky-price model with some prices fixed a period
in advance. But for present purposes, the demonstration that one possible equilibrium under discretion is
bad suffices to show that there is a potential gain from commitment to a suitable rule.
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in the case of any given expectations πe.

Rational expectations on the part of the private sector, of course, require that πe be such

that exactly that same inflation rate is generated. Thus the expected rate of inflation under

discretionary policy is

πe =
κλ

(1− β)λ + κ2
x∗ > 0, (1.6)

and this will also be the rate of inflation that the central bank chooses to generate each period,

given the (correctly) perceived inflation-output tradeoff (1.3). Hence we have obtained the

following result.

Proposition 7.1. Consider a cashless economy with flexible wages, Calvo pricing, and

no real disturbances. Assume that the initial dispersion of prices var{log p−1(i)} is small

(of order O(||ξ||2)),6 and suppose furthermore that real distortions are small (Φ = O(||ξ||)),
so that an approximation to the welfare of the representative household of the form (1.2) is

possible, with x∗ > 0 a small parameter (x∗ = O(||ξ||)). Then, at least among inflation paths

in which inflation remains forever near enough to zero, there is a unique Markov equilibrium

with discretionary optimization by the central bank. In this equilibrium, inflation is constant

at the value given by the right-hand side of (1.6), up to an error that is only of order O(||ξ||2).

But this outcome is not in fact the best possible rational-expectations equilibrium. Con-

sider instead the problem of choosing bounded deterministic paths for inflation and output

to minimize (1.2), subject to the constraint that the sequences must satisfy (1.1) each period.

We can write a Lagrangian for this problem of the form

L =
∞∑

t=0

βt
{

1

2
[π2

t + λ(xt − x∗)2] + ϕt[πt − κxt − βπt+1]
}

,

where ϕt is a Lagrange multiplier associated with the period t aggregate-supply relation.

Differentiation of the Lagrangian with respect to each of its arguments yields a pair of first-

6One should recall that this assumption was used in chapter 6 in establishing that welfare is decreasing in
(1.2), neglecting terms independent of policy and a residual of only third order. In the equilibrium described
in this proposition, the condition continues to hold forever if it holds for the initial price distribution.
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order conditions

πt + ϕt − ϕt−1 = 0, (1.7)

λ(xt − x∗)− κϕt = 0, (1.8)

for each t ≥ 0, where in (1.7) for t = 0 we substitute the value

ϕ−1 = 0, (1.9)

as there is in fact no constraint associated with fulfillment of a period -1 aggregate-supply

relation.

Using (1.7) and (1.8) to substitute for πt and xt respectively in (1.1), we obtain a difference

equation for the evolution of the multipliers,

βϕt+1 −
(

1 + β +
κ2

λ

)
ϕt + ϕt−1 = κx∗, (1.10)

that must hold for all t ≥ 0, along with the initial condition (1.9). The characteristic equation

βµ2 −
(

1 + β +
κ2

λ

)
µ + 1 = 0 (1.11)

has two real roots

0 < µ1 < 1 < µ2,

as a result of which (1.10) has a unique non-explosive solution consistent with the initial

condition (1.9), given by

ϕt = −λ

κ
x∗(1− µt+1

1 ) (1.12)

for all t ≥ 0. This solution, which is the only one satisfying the relevant transversality con-

dition, represents the optimal perfect-foresight path from standpoint of period zero. Substi-

tuting this solution for the multipliers into (1.7), we find that the path of inflation under the

optimal commitment is given by

πt = (1− µ1)
λ

κ
x∗µt

1 (1.13)

for all t ≥ 0.
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This result indicates that discretionary optimization leads to excessive inflation. Indeed,

under the optimal commitment, inflation should asymptotically approach zero, despite the

assumption that x∗ > 0. As has been mentioned in chapter 6, this results because the

aggregate-supply relation (1.1) implies that in any perfect-foresight equilibrium, the objective

(1.2) must equal

−2
x∗

θ
π0 +

∞∑

t=0

βt[π2
t + λx2

t ]

plus a positive constant. All terms in the above expression except the initial one are min-

imized by choosing πt = 0 each period, regardless of the value of π∗; the presence of the

initial term implies an advantage from an initial positive rate of inflation, but because the

additional term applies only to inflation in the initial period, it remains optimal to commit

to an inflation rate that is eventually zero.

Indeed, it is not obviously desirable to choose a positive inflation rate even initially. It is

true that (1.2) is minimized by choosing the inflation path (1.13) rather than zero inflation

from the initial date onward. This welfare gain, however, is obtained as a result of the fact

that the inflation rate that is chosen initially has no consequences for expectations prior to

date zero (that are taken as given at the time of the policy deliberations). This exploitation

of the fact that initially existing expectations need not be fulfilled, however, is unattractive.

It implies that the optimal policy determined on the above grounds (optimality from the

standpoint of date zero) is not time consistent: if the same reasoning is used at any later date

t > 0 to determine the optimal policy commitment from that date onward, the policy chosen

will not be a continuation of the policy selected at date zero. (This can be seen from the fact

that the inflation rate πt varies with the date t in (1.13), even though the constraints defining

the possible inflation paths from any date onward, and the social valuation of alternative

inflation paths looking forward from any date, are the same at all times.) This failure of

time consistency means that adherence to the policy must be due solely to a willingness to

conform to a commitment entered into at an earlier date. In practice, it is difficult to imagine

that a central bank would ever regard itself as being committed to a specific sequence of
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actions chosen at an earlier date, simply because they seemed desirable at the earlier time7

— whereas it is easier to imagine a bank being committed to a systematic decision procedure

in the light of which its current actions are always to be justified. Furthermore, the above

analysis assumes that it is possible to commmit to an arbitrary time path for inflation, and

have this be expected by the private sector; it is assumed to be possible to choose inflation

“just this time” while committing never to create inflation in the future. But there is reason

to fear that the public should observe the central bank’s method of reasoning, rather than

its announced future actions, and conclude instead that in the present it should always wish

to create inflation “just this time”.

A similar problem of time consistency is familiar in the context of fiscal policy, and in that

context it is common to conclude that if, say, one wishes the public to be able to confidently

expect that capital will not be expropriated in the future, then one should adopt the rule

of refusing to expropriate already existing capital, even though the latter action should not

have the same kind of effects on investment incentives (since the investment decisions in

question have already occurred). Similarly, if one wishes for the public to believe that a

non-inflationary policy will eventually be pursued, and there is no difference between the

current situation and the one that is anticipated in the future (except that one currently has

an opportunity to create inflation without its having been expected), then it makes sense

that the central bank should be willing to choose a non-inflationary policy as well. Rather

than doing one thing now but promising to behave differently in the future, one should follow

a time-invariant policy that is of the kind that one would always wish to have been expected

to follow. Woodford (1999) calls such a policy “optimal from a timeless perspective.”8

More specifically, we shall say that a time-invariant policy is optimal from a timeless

perspective if the equilibrium evolution from any date t0 onward (at which date one may

consider the justification of the policy) is optimal subject to the constraint that the economy’s

7Such an understanding of the meaning of policy commitment raises the question posed by Svensson
(1999xx): “What is special about date zero?”

8For additional discussions of the selection of policy rules from a timeless perspective, see McCallum and
Nelson (199xx), Giannoni and Woodford (2002xx), Svensson and Woodford (2002xx), and section xx below.
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initial evolution be the one associated with the policy in question. (The presence of such a

constraint on the initial outcomes that may be contemplated is a way of committing oneself

to forswear the temptation to exploit the already given past expectations regarding those

initial outcomes.) In our present context, a time-invariant policy will imply a constant

inflation rate π̄. A constant inflation target π̄ is optimal from a timeless perspective if the

problem of maximizing (1.2) subject to the constraint that the bounded sequences {πt, xt}
satisfy (1.1) for each t ≥ 0, and the additional constraint that π0 = π̄, has a solution in which

πt = π̄ for all t.9 The first-order conditions for this latter problem are again given by (1.7)

and (1.8) for each t ≥ 0, but now the initial condition (1.9) is replaced by the requirement

that π0 = π̄. One easily sees that this system of equations has a solution in which πt = π̄ for

all t if and only if π̄ = 0. Hence this is the uniquely optimal inflation target from a timeless

perspective.

Proposition 7.2. Consider a cashless economy with flexible wages, Calvo pricing, and

no real disturbances, and suppose that the initial dispersion of prices is small (of order

O(||ξ||2)). Then a monetary policy under which inflation is zero for all t is optimal from a

timeless perspective, and is the unique policy with this property among all policies under

which inflation remains always in a certain interval around zero.

Note that for this proposition, unlike Proposition 7.1, it is not necessary for x∗ to be small,

since the optimal path is found to be near the zero-inflation steady state regardless of the

value of x∗.

Under this analysis of the character of an optimal policy, there is a constant inflation bias

associated with discretionary policy, which is clearly positive when x∗ = 0. This is illustrated

in Figure 7.1, which plots the time paths of inflation under discretionary policy, under

the date-zero-optimal commitment, and under the policy that is optimal from a timeless

perspective.10 Inflation is lowest under the last of these policies, since only in this last case

9See section xx below for a definition of optimal policy from a timeless perspective in a more general
context.
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Figure 7.1: Optimal policy from a timeless perspective compared to the result of discretionary
optimization, and to the policy commitment that is optimal from the standpoint of period
zero.

does the central bank refrain from the temptation to create inflation that cannot affect prior

expectations, both in the short run and in the long run.

1.2 Extensions of the Basic Analysis

A striking conclusion of the previous section is that the optimal inflation rate is exactly zero

in our baseline model with Calvo pricing, regardless of parameter values, including those that

determine the size of the gap x∗ between the optimal level of output and that consistent with

zero inflation. However, this analysis does neglect various other factors that may bear on

the choice of a long-run average inflation target. One is the neglect of monetary frictions of

10In this numerical example, the values of β κ are again those given in Table 6.1, λ is assigned the value
given there for λx, and x∗ = 0.2. This last value follows from equation (xx) in chapter 6 for the optimal
output gap, under the assumptions that the elasticity of substitution among alternative differentiated goods
(and hence the elasticity of demand faced by each firm) is equal to 7.88, the value obtained by Rotemberg
and Woodford (1997) (see Table 4.1), and that there are no distorting taxes.
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the sort that led Friedman (1969) to argue for the optimality of deflation at the rate of time

preference.

As shown in the previous chapter, in the presence of non-negligible transactions frictions,

the welfare-theoretic loss function takes the form

∞∑

t=0

βt[π2
t + λx(xt − x∗)2 + λi(it − imt )2], (1.14)

where λx > 0 is the coefficient called λ in (1.2), λi > 0 as well, it is the short-term nominal

interest yield on non-monetary assets, and imt is the interest rate paid on the monetary base.11

In the event that monetary policy is implemented by varying imt so as to maintain a constant

interest differential regardless of the desired level of nominal interest rates — and that this

differential is taken to be an institutional datum rather than an aspect of monetary policy

— then the additional term in (1.14) relative to (1.2) makes no difference, as it is simply a

constant independent of the chosen target path for inflation. In this case, the conclusions of

the previous section continue to apply: the optimal policy from a timeless perspective will

involve a zero inflation rate at all times. But if, instead, the interest paid on the monetary

base is an institutional datum, and ı̄m is lower than the rate consistent with zero inflation

(for example, if there is zero interest paid on money, as assumed by Friedman), then the

rate of inflation that would otherwise be optimal may not be because of its consequences for

nominal interest rates and hence the size of the last term in (1.14).

In the case that real balances enter the utility function in an additively separable way,

transactions frictions do not affect the structural equations that determine equilibrium in-

flation and output, as discussed in chapter 4. (While additively separability is not realistic,

as discussed earlier, the quantitative magnitude of the real-balance effects that are neglected

by such an assumption is likely to be small.) Feasible perfect-foresight equilibrium paths

11In the present chapter and the next one, it refers to the continuously compounded rate of interest on
non-monetary assets, log(1 + it) in the notation of the previous chapters, and similarly for imt and the
natural rate of interest rn

t , appearing in equation (xx) below. Hence the interest differential it − imt is equal
to ı̂t − ı̂mt + ∆̄ in the notation of chapter 6, up to a term of order O(||∆̄||2) that can be neglected in our
quadratic approximation to the welfare-theoretic loss function. The change in notation should not create
confusion, now that we need no longer discuss the exact nonlinear equations that are log-linearized in deriving
the linear structural relations assumed in this chapter and the next.
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for inflation, output and nominal interest rates then must satisfy (1.1), together with the

corresponding deterministic IS equation

xt = xt+1 − σ(it − πt+1 − r̄), ) (1.15)

for periods t ≥ 0, where r̄ > 0 represents the constant natural rate of interest. A stationary

policy commitment resulting in a constant inflation rate π̄, output gap x̄, and nominal interest

rate ı̄ will be optimal from a timeless perspective if the bounded sequences {πt, xt, ıt} that

minimize (1.14) subject to the constraints that (1.1) and (1.15) hold for each t ≥ 0, and that

π0 = π̄, x0 = x̄,

are given by πt = π̄, xt = x̄, it = ı̄ for all t.

The Lagrangian for this generalization of our previous problem is of the form

L =
∞∑

t=0

βt
{

1

2
[π2

t + λx(xt − x∗)2 + λi(it − im)2] + ϕ1t[xt − xt+1 + σ(it − πt+1 − r̄)]

+ϕ2t[πt − κxt − βπt+1]} − β−1ϕ1,−1[x0 + σπ0]− ϕ2,−1π0,

where there are now Lagrange multipliers ϕ1t, ϕ2t corresponding to constraints (1.15) and

(1.1) respectively, and multipliers β−1ϕ1,−1, ϕ2,−1 corresponding to the constraints on the

values of x0 and π0 respectively. (The notation chosen for these last multipliers is selected

in order to give the first-order conditions below a time-invariant form.)

The first-order conditions are then

πt − β−1σϕ1,t−1 + ϕ2t − ϕ2,t−1 = 0, (1.16)

λx(xt − x∗) + ϕ1t − β−1ϕ1,t−1 − κϕ2t = 0, (1.17)

λi(it − im) + σϕ1t = 0 (1.18)

for each period t ≥ 0. Conditions (1.17) – (1.18) have a solution with the output gap and

interest rate constant over time only if both Lagrange multipliers are also constant over time;
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but substituting constant values for the Lagrange multipliers in (1.16) and (1.18), one finds

that these relations can be simultaneously satisfied only if

λi(̄ı− im) = −βπ̄.

At the same time, equation (1.15) is satisfied by constant values if and only if ı̄ = r̄ + π̄.

These two relations are jointly satisfied if and only if the inflation target is equal to

π̄ = − λi

λi + β
(r̄ − im). (1.19)

We thus obtain the following result.

Proposition 7.3. Consider an economy with flexible wages, Calvo pricing, and no real

disturbances, with transactions frictions such that the quadratic approximation to welfare

be given by (1.14), while the log-linear approximate structural relations are of the form (1.1)

and (1.15). Suppose that the only feasible monetary policies are ones involving a constant

interest rate im on the monetary base, where im = r̄ − O(||ξ||). Then the policy that is

optimal from a timeless perspective involves a constant inflation rate equal to the right-hand

side of (1.19).

Note that in the case that λi > 0 and im < r̄, the optimal inflation target will be negative.

In the limiting case of flexible prices, κ, and hence λi, becomes unboundedly large, and the

optimal rate of deflation is −(r̄− im), the rate required to make the real return on money as

high as r̄, as argued by Friedman (1969). When prices are sticky, and κ is finite, the optimal

rate of deflation is more moderate, and the optimal policy is one under which ı̄ > im; but

some deflation is still optimal, in order to reduce the distortions resulting from transactions

frictions. In the “cashless limit”, in which m̄ is negligible, λi is much smaller than β, and

the optimal rate of inflation is essentially zero, as found in the previous section.

In the case that real-balance effects are non-negligible in the aggregate-supply and IS

equations, the same method can be employed as above, but (1.19) takes the more general
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form12

π̄ = − λi(r̄ − im) + ϕλxx
∗

λi + ϕ2λx + β − (1− β)ϕ(θ−1 + ω)
, (1.20)

where the coefficient ϕ indexes the size of the real-balance effects, as in chapter 4. If we use

the calibrated parameter values from Table 6.1, except that x∗ is computed from equation

(xx: xstaristar) of chapter 6 under the assumption that Φ/εmc = 0.2 as assumed in the

previous section, and we assume that im = 0, this equation implies an optimal inflation rate

of -0.4 percent per year.13 This involves mild deflation, but much less deflation than would

be suggested by the arguments of Friedman (1969) or Lucas (2000), according to which the

optimal rate of inflation (under our parameter values and those of Lucas) would be -3 percent

per year. And we should recall that these parameter values have been chosen to exaggerate

the size of real-balance effects; under the more plausible assumption that χ = 0.01, we would

obtain an optimal rate of deflation of only 0.2 percent per year.

It is perhaps surprising to observe that if ϕ > 0 (the empirically realistic case, as argued

in chapter 2), and if the denominator of (1.20) is positive (as must be true if real-balance

effects are not too strong), a higher value of x∗ actually lowers the optimal inflation target.

It is commonly supposed that a higher value of x∗ should justify higher inflation, in a model

(like the present one) that incorporates an upward-sloping “long-run Phillips curve” relation

between inflation and output. Yet this is not so. As shown in chapter 6, in this model,

commitment to a higher inflation rate in any period t > t0 (i.e., any period for which the

anticipation effects must be considered) does not change the discounted sum of output-gap

terms implied by the aggregate-supply relation; for the increase in output in period t is

exactly offset by a reduction in output in period t − 1. The only effects of policy that do

12Equation (1.20) applies in the case that this inflation rate implies a nominal interest rate no lower
than im. In the case that this bound is not satisfied, the analysis must be modified to take account of the
constraint on policy resulting from the zero lower bound on nominal interest rates, assumed not to bind in
this derivation.

13In this calculation, the values of λx, λi, r̄ and β are taken directly from Table 6.1. The value used for ϕ
is 0.22 years, the value implicit in the Table 6.1 parameter values, as discussed there; similarly, we assume
the value θ = 7.88 as in the derivation of the values given in the table. The values for εmc, σ

−1, χ, and ηy

given in the table imply a value ω = 0.48. In using equation (xx) of chapter 6 to derive x∗, we recall that in
the notation of that chapter i∗ = −(r̄− im). Finally, we note that in the denominator of (1.20), if we use an
annual measure for ϕ, it is necessary to multiply (1− β) by 4 to obtain an annual discount rate as well.
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not cancel in this way are the real-balance effects on aggregate supply, when these exist. If

ϕ > 0, a lower nominal interest rate causes a favorable shift in the aggregate-supply relation

each period, allowing a higher value for the discounted sum of output gaps. When x∗ > 0,

this channel creates a reason to prefer a lower nominal interest rate than the one consistent

with zero inflation, and hence to prefer deflation for reasons independent of Friedman’s.

Thus far we have discussed only reasons why the optimal inflation target might be even

lower than zero. Other considerations may instead justify a positive long-run average infla-

tion rate. These include a desire the prevent the zero lower bound on nominal interest rates

from being so tight a constraint on cyclical variation in real rates for stabilization purposes

(Summers, 1991), or a desire to make a social norm that prohibits nominal wage declines

less of a constraint upon the degree to which real wages can decline when necessary for an

efficient allocation of resources (Akerlof et al., 199xx). These latter considerations matter

only in the case of random disturbances, and cannot be addressed without considering the

optimal responses to such disturbances. It is worth noting, however, that they cast some

doubt on the desirability of deliberately aiming for deflation, as opposed to zero inflation

or even a very modest positive rate of inflation, of the sort typically aimed at by current

inflation targeting central banks.14

Our analyses thus far have also argued for the optimality of a policy that would bring

about a constant inflation rate in the absence of stochastic disturbances. Yet a number of

countries that have actually adopted inflation targets in the past decade have thought it

desirable to lower the target inflation rate from an (undesirably high) initial rate of inflation

only gradually, over several years, rather than announcing an intention to immediately jump

to the inflation rate that is regarded as optimal over the long run. The argument made for

the desirability of gradualism of this sort generally involves a belief that there is substantial

inertia in the inflationary process, though the models used above do not allow for this. We

can consider the effect of inflation inertia on the optimal time path for inflation, still within a

14The consequences of the zero lower bound have been considered in section xx of chapter 6, and are
considered further in section xx of this chapter. Both analyses display conditions under which a policy
would be chosen that involves a positive average rate of inflation.
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purely deterministic context, by allowing for indexation of individual prices to a lagged price

index, as considered in section xx of chapter 3. In this case, the aggregate-supply relation

(1.1) generalizes to

πt − γπt−1 = κxt + β(πt+1 − γπt), (1.21)

where 0 ≤ γ ≤ 1 indicates the degree of indexation, if we once again abstract from real-

balance effects. Hence the possible perfect-foresight paths for inflation and output from any

date t0 onward depend upon the pre-existing rate of inflation t0 − 1.

As shown in chapter 6, the welfare-theoretic loss function (1.2) for a cashless economy

generalizes to
∞∑

t=0

βt[(πt − γπt−1)
2 + λ(xt − x∗)2] (1.22)

in the presence of inflation inertia. Because both the constraints (1.21) and the loss function

(1.22) are of the same form as before, but with πt − γπt−1 replacing πt in the previous

equations, the same calculations as before may be directly used to characterize optimal

policy (as well as the consequences of discretionary optimization), except that our previous

solutions for the path of πt now apply instead to the path of πt − γπt−1.

Figure 7.2 shows the implied equilibrium paths for inflation under discretion, under an

unconstrained optimal commitment from the standpoint of period zero, and under a policy

that is optimal from a timeless perspective, when all parameters are the same as those

assumed in Figure 7.1, except that γ = 0.5, and (since the initial inflation rate now matters)

an inflation rate of 10 percent per year prior to period zero is assumed. In all three cases,

the fact that the economy starts from a condition of fairly high inflation makes the inflation

rate in the early periods higher than it would otherwise be; in fact, one can show that in

each of the three cases, the equilibrium value of πt is given by π−1γ
t+1 plus a term that is

independent of the initial condition. However, despite this effect of inertial inflation, the

comparisons among the three paths remain of the kind discussed earlier: discretion leads to

an inflation rate that is permanently higher than the inflation that would occur under an

optimal policy, and unconstrained (time-inconsistent) optimization at date zero leads to the

choice of a higher inflation rate in the early periods, reflecting an attempt to exploit the
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Figure 7.2: Timelessly optimal policy, date-zero-optimal policy, and discretionary policy, in
the case of inflation inertia [γ = 0.5].

initially given expectations of inflation, though it leads to the same inflation rate as under a

timelessly optimal policy in the long run.

The proof of Proposition 7.2 above can be directly adapted to provide the following

characterization of optimal policy in this case.

Proposition 7.4. Consider an economy of the kind assumed in Proposition 7.2, except

that prices are (partially) indexed to a lagged aggregate price index, to a degree measured

by 0 ≤ γ ≤ 1, and suppose that the initial inflation rate satisfies π−1 = O(||ξ||). Then the

policy that is optimal from a timeless perspective involves a path of inflation along which

πt = γπt−1 (1.23)

at each date t ≥ 0, up to a residual of order O(||ξ||).
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This path has the property that the policy that minimizes discounted losses from any date

t0 onward, given the inflation history up through period t0− 1 and subject to the constraint

that (1.23) hold in period t0, is one in which (1.23) holds for all t ≥ t0. Note that (1.23)

can easily be solved to show that πt = π−1γ
t+1 for any t ≥ 0. Once again we find (in the

case that γ < 1) that the optimal long-run inflation rate is zero; but it is now optimal to

approach this inflation rate only over a period of time, if the economy starts (for whatever

reason) from an initial situation in which inflation has been higher.

In the case of full indexation (γ = 1), this result implies that it is not optimal ever to

reduce inflation below whatever its initial level happens to be. Such a result should not be

acceptable as having too much practical relevance. It comes about because, in our simple

model, all prices are adjusted to reflect past inflation in a perfectly synchronized way, except

when they are reoptimized. When γ = 1, a policy that keeps inflation steady will result in all

prices being increased by exactly the same amount each period, so that no price dispersion

is created, regardless of the rate of inflation. But in practice, even in an economy with

substantial indexation (as one generally observes in economies with chronic high inflation),

inflation results in price dispersion, and higher inflation is generally associated with greater

dispersion. If our model were extended to allow for this — for example, by supposing

that prices are not continuously adjusted in response to variations in the aggregate price

index between the occasions on which they are re-optimized, but that these mechanical price

adjustments also occur only at certain intervals — then price dispersion would be minimized

only with zero inflation, though we would again find that changes in the rare of inflation

would increase price dispersion and hence lower welfare. We do not attempt to develop an

extended indexation model of this kind here. But it is fairly obvious that we can in this

way, or in various others, justify the assumption that there are at least some distortions

associated with a high rate of inflation, regardless of how steady it may be; and once we

introduce even a small amount of such a distortion, it will again be optimal to eventually

disinflate, regardless of the degree of inflation inertia.

For example, suppose that we allow again for transactions frictions and suppose that the
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interest paid on the monetary base is constant. For simplicity, let us consider only the case

in which χ = 0 though λi > 0. In this case, the structural equation (1.15) must be combined

with (1.21) as constraints on possible perfect-foresight paths, and the welfare-theoretic loss

function is of the form

∞∑

t=0

βt[(πt − γπt−1)
2 + λ(xt − x∗)2 + λi(it − im)2].

The first-order condition (1.16) generalizes to

(πt − γπt−1)− βγ(πt+1 − γπt)− β−1σϕ1,t−1 + ϕ2t − ϕ2,t−1 = 0,

while (1.17) – (1.18) continue to apply as written above. The same analysis as above can

again be used to derive a unique long-run steady-state rate of inflation that is consistent

with these first order conditions, given by

π̄ = − λi

λi + β(1− γ)(1− βγ)
(r̄ − im) < 0,

generalizing (1.19).

While in the case that λi = 0 (the cashless case just considered), this equation yields a

determinate outcome only when γ 6= 1, in the case that λi > 0, there is a uniquely optimal

long-run inflation rate even when γ = 1, namely

π̄ = −(r̄ − im),

the rate of deflation called for by Friedman (1969). It is worth noting that the degree to

which it is eventually desirable to disinflate is independent of how large λi may be — it

is simply necessary to allow for some frictions of this kind, that increase with the rate of

expected inflation. In fact, if we assume full indexation of prices to a lagged price index, this

indexation actually increases the degree to which it is optimal to eventually lower the rate

of inflation; for it is no longer true that steady deflation creates relative-price distortions

owing to the failure of prices to be re-optimized at perfectly synchronized times. This last

result, however, is again an example of an extreme conclusion that results from too simple
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a model of indexation. In reality, even steady deflation is likely to create distortions, for

reasons identical to those mentioned in the case of steady inflation; and as a result, the

optimal long-run rate of inflation is likely not to be so low as the Friedman rate.

2 Optimal Responses to Disturbances

The inflationary bias resulting from discretionary policy has been much discussed. However,

emphasis on the problem of inflation bias has often led to a supposition that the problems

resulting from discretion can be cured through a simple adjustment of the targets and/or the

relative weights on alternative stabilization objectives assigned to the central bank, while

allowing the central bank’s decisionmaking framework to be otherwise one of unfettered

discretion. For example, our baseline analysis in section 1.1 above implied an inflation bias

equal to

κλ

(1− β)λ + κ2
x∗,

when the central bank seeks to minimize the true social loss function, in which we have argued

that λ > 0, x∗ > 0. But if the central bank instead seeks to minimize a loss function of the

form (1.2) with some other coefficients, the preceding analysis still applies; in particular, the

equilibrium inflation rate will be zero each period, even under discretion, as long as either

λ = 0, x∗ = 0, or both. Thus one might suppose that the problem can be solved by appointing

a central banker with appropriate preferences, or by charging the central bank with the task

of minimizing a particular loss function that differs from true social welfare. The choice

of a loss function with λ = 0 corresponds to Rogoff’s (1985) proposal that a “conservative

central banker” be chosen, while King (1997) and Blinder (1998) propose that the central

bank should have an objective under which x∗ = 0, i.e., an output target consistent with its

inflation target.

But while it is fairly simple to eliminate the bias in the average rate of inflation resulting

from discretionary policy through either of these means, this does not suffice to yield an

optimal policy framework, for in general the equilibrium responses to shocks that result
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will be sub-optimal, even if the long-run average values of the various state variables are the

optimal ones. It is perhaps obvious that the Rogoff proposal to alter the relative weight on the

two stabilization objectives will often result in incorrect responses to disturbances; indeed,

Rogoff discusses this as an important qualification to his proposal (so that the optimal degree

of “conservativeness” is argued to be less than absolute, in the presence of certain kinds of

disturbances). But in the context of a linear-quadratic framework of the kind that we use

here to approximate the central bank’s problem, an adjustment of the target values of one or

more variables affects the average equilibrium values of the endogenous variables resulting

from central-bank optimization without having any effect on the equilibrium responses to

shocks; hence one might think that the proposal of King and Blinder should not result

in any distortion of stabilization policy.15 But in general, the equilibrium resulting from

discretionary optimization is sub-optimal, not only in the long-run average values of variables

such as inflation, but also in the equilibrium responses of these variables to random shocks,

for reasons discussed in the introduction; and an adjustment of the target values assigned to

the central bank does nothing to cure this problem.

In this section, we contrast the optimal responses to shocks to those resulting from

discretionary optimization in two simple examples, and then discuss the structure of the

problem more generally. We show not only that the optimal responses to shocks are generally

different from those resulting from discretionary optimization, but that they generally require

that equilibrium be history-dependent in a way that cannot result from any purely forward-

looking decision procedure for monetary policy. This implies, among other things, that an

approach to the implementation of optimal policy that charges the central bank with the

minimization of a loss function under discretion, which loss function involves the same target

variables as the true social loss function — only with different target values and a different

matrix of weights in the quadratic form over deviations from those target values — will

15Indeed, King (1997) shows, in the context of a simple model in which an aggregate-supply relation of
the “New Classical” form discussed in chapter 3 is combined with an assumed stabilization objective of the
form (1.2), that under his proposed modification of the central bank’s loss function, the equilibrium resulting
from discretionary optimization is optimal. However, this result depends on extremely special features of
the example that he considers.
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generally be inadequate, as such a decision procedure will be purely forward-looking.

2.1 Cost-Push Shocks

Probably the simplest example of this general problem arises in the case of “cost-push shocks”

that shift the aggregate-supply relation when written in terms of the welfare-relevant inflation

and output-gap measures.16 In the case of such disturbances, complete stabilization of both

inflation and the output gap is impossible; thus we need not assume any concern with

interest-rate stabilization, or other stabilization objectives, in order to conclude that there

is an essential tension among the stabilization objectives of monetary policy. In such a case,

discretionary policy does not generally lead to optimal responses to shocks.17

We can see this by considering the minimization of a social loss function given by the

expected value of (1.2), if the aggregate-supply relation each period is given by

πt = κxt + βEtπt+1 + ut, (2.1)

where ut is an exogenous cost-push shock. Let us first consider the case of discretionary

optimization by the central bank. Let st be the exogenous state at date t that contains all

information available at that time about current and future cost-push disturbance terms.

We observe that the set of possible equilibrium evolutions of inflation and the output gap

from period t onward depend only on st, and in particular are independent of the past values

of all endogenous variables. It follows that in a Markov equilibrium, πt and xt should be

functions only of st. Hence the central bank in period t believes that its policy action in that

16Several interpretations of such disturbances are possible, as discussed in sections xx of chapter 6.
17If complete stabilization of each of the target variables is simultaneously possible, then there is no

difference in the responses to shocks under discretion and under an optimal commitment. A discretionary
optimizer finds it optimal to completely stabilize each of the target variables in any given period, given the
assumption that they will be stabilized in the future; hence complete stabilization is an equilibrium under
discretionary policy, and is also optimal. This is obvious in the case that the target values of the various
state variables are mutually consistent with equilibrium in the absence of shocks, so that it is possible for
the loss function to equal zero at all times. But even when this is not so — when, for example, x∗ is too high
to be consistent with zero inflation on average — the same result is true, because the equilibrium responses
to shocks, both under discretion and under an optimal commitment, are independent of the assumed target
values, which matter only for the average values of the variables in equilibrium.
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period can have no effect on terms in the loss function for periods T ≥ t + 1, and also that

its action will have no effect on the private sector’s expectations Etπt+1.

Then the central bank will perceive itself as being able to choose in period t among

inflation-output pairs that satisfy the constraint (2.1), for a given value of Etπt+1 (that

depends only on st), and it will choose an action in period t intended to bring about the

inflation-output pair that minimizes π2
t + λ(xt − x∗)2 subject to this constraint. The first-

order condition for this static optimization problem is again given by (1.4). Substitution of

this into (2.1) implies that the bank will generate inflation satisfying

πt =

(
1 +

κ2

λ

)−1

[κx∗ + ut + βEtπt+1], (2.2)

generalizing (1.5). The Markov solution to this equation is then an inflation process

πt =
κλ

(1− β)λ + κ2
x∗ +

∞∑

j=0

βj

(
λ

λ + κ2

)j+1

Etut+j. (2.3)

Proposition 7.5. Consider an economy of the same kind as in Proposition 7.1, except

that the aggregate-supply relation (2.1) is perturbed by an exogenous disturbance process

{ut} satisfying a uniform bound ||ξ||. Then there is a neighborhood of zero in which there

is a unique Markov equilibrium inflation process under discretionary optimization by the

central bank, for any small enough ||ξ||. In this equilibrium, inflation evolves according to

(2.3).

The corresponding Markov solution for output can be obtained by substituting this solution

for inflation into (2.1). Note that the long-run average rate of inflation in this equilibrium,

given by the constant term in (2.3), is the same as in the deterministic analysis. The

equilibrium responses of inflation and output are purely forward-looking; if ut is a Markov

process, with the value of ut being revealed only in period t, then equilibrium πt and xt

depend only on the current disturbance ut, and the effects of a disturbance on the paths of

inflation and output will be only as persistent as the disturbance itself.
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Now consider instead the nature of an optimal policy commitment.18 We first consider

the state-contingent evolution from some period t0 onward that minimizes the expected

discounted sum of losses from period t0 onward, conditioning upon the state of the world

in period t0, and subject to the constraint that this evolution represent a possible rational-

expectations equilibrium, i.e., that it satisfy (2.1) for all periods t ≥ t0. The Lagrangian

associated with this problem is of the form

Lt0 = Et0

∞∑

t=t0

βt−t0

{
1

2
[π2

t + λx(xt − x∗)2] + ϕt[πt − κxt − βπt+1]
}

. (2.4)

Once again, if there is no welfare loss resulting from nominal interest-rate variation, we may

omit the constraint terms corresponding to the IS relation, as these constraints never bind.

And in writing the constraint term associated with the period t AS relation, it does not

matter that we substitute πt+1 for Etπt+1; for it is only the conditional expectation of the

term at date t0 that matters in (2.4), and the law of iterated expectations implies that

Et0 [ϕtEtπt+1] = Et0 [Et(ϕtπt+1)] = Et0 [ϕtπt+1]

for any t ≥ t0.

Differentiating (2.4) with respect to the levels of inflation and output each period, we

obtain a pair of first-order conditions of exactly the form (1.7) – (1.8) for each period t ≥ t0

(and for each possible state of the world at that date), together with the initial condition

ϕt0−1 = 0. (2.5)

Using (1.7) and (1.8) to substitute for πt and xt respectively in (2.1), we again obtain a

difference equation for the evolution of the multipliers,

βEtϕt+1 −
(

1 + β +
κ2

λ

)
ϕt + ϕt−1 = κx∗ + ut, (2.6)

which is a stochastic generalization of (1.10). Once again, the characteristic equation (1.11)

has two real roots 0 < µ1 < 1 < µ2, as a result of which (2.6) has a unique bounded solution

18Early treatments of this problem in the context of the present model with cost-push shocks include
Clarida et al., (1999), Woodford (1999xx), and Vestin (2000). Svensson and Woodford (2002xx) discuss a
similar problem, but with a one-period delay in the effects of policy on both inflation and output.
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for {ϕt}, given by

ϕt = µ1ϕt−1 − (1− µ1)
λ

κ
x∗ − β−1

∞∑

j=0

µ−j−1
2 Etut+j, (2.7)

in the case of any bounded disturbance process {ut}. Note that this equation can be solved

recursively for the evolution of {ϕt} starting from any initial condition for ϕ−1. Substituting

this solution for the path of the Lagrange multipliers into (1.7) – (1.8), one obtains unique

bounded solutions for the paths of inflation and the output gap.

These bounded solutions necessarily satisfy the relevant transversality condition; hence

the solution obtained starting from the initial condition (2.5) represents the state-contingent

evolution of inflation and output under the t0−optimal commitment. (Note that the infla-

tion solution thus obtained is a stochastic generalization of (1.13).) However, this solution

contains a deterministic component that depends on the time that has elapsed since the

date t0 at which the plan was chosen, and so is not time-consistent. Once again, we prefer a

time-invariant policy that is optimal from a timeless perspective, meaning that continuation

of the policy from any date t0 onward leads to an equilibrium from that date onward that

minimizes the expected discounted sum of losses, subject to a constraint of the form

πt0 = π̄t0 , (2.8)

where the value of π̄t0 may depend on the state of the world at date t0.

Minimization of expected discounted losses subject to the constraint (2.8) leads to a

Lagrangian of the same form (2.4), except with the addition of a term representing the

additional constraint. This in turn leads to exactly the same system of first-order conditions,

except that initial condition (2.8) replaces (2.5). Hence there is a unique bounded solution

for the state-contingent evolution of inflation and output from date t0 onward, in the case of

any given specification of the initial condition. This solution will again be of the form (2.7),

for some choice of the initial value φt0−1; the proper choice of this initial multiplier depends

on the constraint value π̄t0 .

In order for such a policy to be time-consistent, we need to select the constraint value

π̄t0 as a function of exogenous and predetermined variables at date t0, according to some
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time-invariant rule that is satisfied by the constrained-optimal state-contingent inflation path

(i.e., the solution to the optimization problem with constraint (2.8)) at all dates t > t0. One

example of such a specification would be

π̄t0 = β−1
∞∑

j=0

µ−j−1
2 Et0ut0+j

− β−1(1− µ1)
∞∑

k=1

∞∑

j=0

µk−1
1 µ−j−1

2 Et0−kut0+j−k, (2.9)

as a consequence of the following result.

Proposition 7.6. The state-contingent evolution of inflation {πt} from some date t0

onward that minimizes the expected value of (1.2), taking as given the economy’s evolution

prior to date t0 and subject to the constraint (2.8), where π̄t0 is given by (2.9), is given by

πt = β−1
∞∑

j=0

µ−j−1
2 Etut+j

− β−1(1− µ1)
∞∑

k=1

∞∑

j=0

µk−1
1 µ−j−1

2 Et−kut+j−k (2.10)

for all t ≥ t0.

The proof is given in the appendix. Note that in the constrained-optimal evolution, inflation

in every period after t0 is chosen to be the same time-invariant function of past disturbances

as it has been constrained to be in period t0. This makes the constraint self-consistent in the

desired sense.

One can easily show that (2.9) represents the only specification of π̄t0 as a function of the

history of exogenous disturbances (only) that is self-consistent in this sense. For regardless

of the specification of π̄t0 , the constrained-optimal evolution from t0 onward must satisfy

(2.7), for some choice of ϕt0−1. Solving for πt as a function of ϕt0−1 and the history of

disturbances between dates t0 and t, and then taking the limit as t0 → −∞ for some fixed

date t, one obtains (2.10), regardless of the assumed value of φt0−1.
19 Hence regardless of

19The asymptotic independence of the initial condition ϕt0−1 results from the fact that |µ1| < 1.
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the specification of π̄t0 , the dependence of inflation upon the history of disturbances must

eventually be of the form (2.10). The only self-consistent specification of π̄t0 as a function

of the history of disturbances must then be of that same form.

This does not mean, however, that in order for a policy to be optimal from a timeless

perspective, it must result in the state-contingent evolution of inflation indicated by (2.10).

For one can also find self-consistent specifications of the initial inflation constraint that

involve predetermined endogenous variables. As a simple example, the specification

π̄t0 = (1− µ1)
λ

κ
xt0−1 + β−1

∞∑

j=0

µ−j−1
2 Et0ut0+j (2.11)

also results in a self-consistent constraint.

Proposition 7.7. Consider the same optimization problem as in Proposition 7.6, but

with π̄t0 given by (2.11). Then in the constrained-optimal state-contingent evolution of

inflation and output, the inflation rate satisfies

πt = (1− µ1)
λ

κ
xt−1 + β−1

∞∑

j=0

µ−j−1
2 Etut+j (2.12)

at each date t ≥ t0.

Again, the proof is in the appendix. Hence a time-invariant policy rule that results in a

determinate equilibrium in which the inflation rate always satisfies (2.12) will be optimal

from a timeless perspective.

Yet another self-consistent constraint would be

π̄t0 = −(1− µ1)(pt0−1 − p̄) + β−1
∞∑

j=0

µ−j−1
2 Et0ut0+j, (2.13)

where pt ≡ log Pt, and p̄ is an arbitrary constant, that has the interpretation of a target price

level. (It is the long-run average log price level in the equilibrium that is optimal subject

to this constraint, as discussed below.) In this case the initial constraint is perhaps most

intuitively expressed as a constraint on the initial log price level, pt0 = p̄t0 , where

p̄t0 = (1− µ1)p̄ + µ1pt0−1 + β−1
∞∑

j=0

µ−j−1
2 Et0ut0+j. (2.14)
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For any choice of p̄, this is a self-consistent constraint, owing to the following result.

Proposition 7.8. Consider the same optimization problem as in Proposition 7.6, but

with π̄t0 given by (2.13), or equivalently with a constraint on the initial price level given by

(2.14). Then in the constrained-optimal state-contingent evolution of inflation and output,

the equilibrium price level each period satisfies

p̄t = (1− µ1)p̄ + µ1pt−1 + β−1
∞∑

j=0

µ−j−1
2 Etut+j. (2.15)

Again, the proof is in the appendix. Note that this defines an entire one-parameter family

of self-consistent constraints. For one particular choice of p̄, namely

p̄ = pt0−1 +
λ

κ
xt0−1,

this constraint is identical to (2.11), and the implied state-contingent evolutions are the

same. But any other value for p̄ would lead to a self-consistent constraint as well.

We see that the state-contingent evolution of inflation under a policy that is optimal

from a timeless perspective is not uniquely determined. However, these alternative processes

for inflation and output differ only in transitory, deterministic components of the solutions

for inflation and the output gap; they agree both as to the long-run average values of both

inflation and the output gap, and as to the response of both variables to unexpected shocks

in any period from t0 onward.

Proposition 7.9. Consider again an economy of the kind assumed in Proposition 7.5.

Then in the case of any small enough ||ξ|| and any initial values of predetermined endogenous

variables that are close enough to the values associated with the zero-inflation steady state,

the long-run average values of inflation and the output gap satisfy

lim
T→∞

EtπT = 0,

lim
T→∞

EtxT = 0
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under the t0−optimal policy that would be chosen at any date t0, and the same is true of

the equilibrium implemented by any policy that is optimal from a timeless perspective.

Furthermore, let the unexpected change in the forecast of any variable yt+m at date t be

denoted

It[yt+m] ≡ Etyt+m − Et−1yt+m.

Then the effects of unanticipated shocks at any date t on the expected paths of inflation and

output are given by

It[πt+m] = β−1
∞∑

j=0

µ−j−1
2 It[ut+j]

− β−1(1− µ1)
m∑

k=1

∞∑

j=0

µk−1
1 µ−j−1

2 It[ut+m−k+j], (2.16)

It[xt+m] = −β−1
m∑

k=0

∞∑

j=0

µk
1µ

−j−1
2 It[ut+m−k+j], (2.17)

for each m ≥ 0 under a t0−optimal policy chosen at any date t0 ≤ t, and again the same is

true of the equilibrium implemented by any policy that is optimal from a timeless perspective.

(In each of these characterizations of the paths of inflation and the output gap, the results

given are accurate up to an error term of order O(||ξ||2.)

The proof is in the appendix; essentially, the result follows from the fact that in any of the

cases allowed for, the economy’s state-contingent evolution must satisfy (2.7).

Comparing Proposition 7.9 with Proposition 7.5, we again find, as in our deterministic

analysis in section 1, that there is an inflationary bias to discretionary policy, under the

assumption that x∗ > 0. (The size of the average-inflation bias is exactly the same as deter-

mined under the deterministic analysis, as a result of the well-known certainty-equivalence

property of both the equilibrium outcome under discretionary optimization and the opti-

mal plan under commitment, in the case of linear-quadratic policy problems of the kind

considered here.20) However, there is also a difference in the responses to shocks under an

20For discussions of certainty equivalence in the context of forward-looking models like the ones discussed
in this chapter, see, e.g., Backus and Driffill (1986), xxxxxx.



2. OPTIMAL RESPONSES TO DISTURBANCES 35

0 2 4 6 8 10 12
−2

0

2

4

inflation

0 2 4 6 8 10 12

−5

0

5

output

0 2 4 6 8 10 12
0

0.5

1

1.5

2
price level

= discretion
 = optimal

Figure 7.3: Optimal responses to a transitory cost-push shock compared with equilibrium
responses under discretionary policy.

optimal policy commitment from those that result from discretionary optimization. And

this “stabilization bias” is present even when x∗ = 0, so that there is no average-inflation

bias associated with discretionary policy.21

The difference in the equilibrium responses to a “cost-push shock” under discretionary

policy and under an optimal commitment are contrasted in Figure 7.3, in the simple case

that the cost-push shock is purely transitory, and unforecastable before the period in which

it occurs (so that Etut+j = 0 for all j ≥ 1). Here the assumed values of β, κ, and λ are

again as in Figure 7.1, and the shock in period zero is of size u0 = 1, meaning that a one

21Thus the result of King (1997), according to which discretionary policy achieves an optimal state-
contingent evolution for the economy as long as the output-gap target x∗ in the central bank’s loss function
is modified so as to be consistent with its inflation target, is special to the specific simple model of aggregate
supply that he assumes. Early discussions of “stabilization bias” in the context of other forward-looking
models include xxxxx.
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percent increase in the general level of prices would be required to prevent any decline in

output relative to the natural rate (or more generally, its target level) from occurring, on

the assumption that prices will then be stabilized at the new higher level. Once again, the

periods represent quarters, and the inflation rate is plotted as an annualized rate, meaning

that what is plotted is actually 4πt.

Under the discretionary policy characterized in Proposition 7.5, the effect of the dis-

turbance on equilibrium inflation and the equilibrium output gap last only as long as the

disturbance itself, so that both variables are expected to return to their normal levels by the

following quarter. Under an optimal commitment, instead, monetary policy remains tight

even after the disturbance has dissipated, so that the output gap returns to zero only much

more gradually. As a result of this, while inflation overshoots its long-run target value at the

time of the shock, it is held below its long-run target value for a time following the shock, so

that the unexpected increase in prices is subsequently undone. In fact, as the bottom panel

shows, under an optimal commitment, the price level eventually returns to exactly the same

path that it would have been expected to follow if the shock had not occurred.

This simple example illustrates a very general feature of optimal policy once one takes

account of forward-looking private-sector behavior: optimal policy is almost always history-

dependent in a way that discretionary policy would not be. Discretionary policy (in a

Markov equilibrium) is purely forward-looking, in the sense that the action chosen at any

date t depends solely upon the set of possible state-contingent paths for the target variables

(here, inflation and the output gap) from period t onward, given the economy’s state at

that time (the values of predetermined or exogenous variables at date t). In the present

example, the forward-looking aggregate-supply relation (2.1), which implies that the set of

possible equilibrium paths for inflation and output from period t onward are independent

of all lagged endogenous variables, together with the assumption that the disturbance ut

is completely unforecastable, imply that the only aspect of the economy’s state in period

t that affect the set of possible paths for inflation and output from that period onward is

the current disturbance ut. Hence under any purely forward-looking decision procedure for
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monetary policy, πt and xt will depend only on the current disturbance ut, and the effects

of a shock on the paths of these variables will be as transitory as the effect on ut itself.

(The same is true of the associated path of nominal interest rates, if the intertemporal IS

equation is of the form (2.23).) Instead, under an optimal policy, both πt and xt will depend

on disturbances in periods prior to t, in the case of any period t > t0.

Optimal policy is history-dependent (and conventional optimal-control or dynamic-programming

methods lead to suboptimal policy) because the anticipation by the private sector that future

policy will different as a result of conditions at date t — even if those conditions no longer

matter for the set of possible paths for the target variables at the later date — can improve

stabilization outcomes at date t. Suppose that there is a positive cost-push shock at date

t, as illustrated in Figure 7.3. If the transitory disturbance is expected to have no effect on

the conduct of policy in later periods (as under any purely forward-looking policy), then the

short-run tradeoff between inflation and the output gap in period t is shifted vertically by

the amount of the disturbance, ut, requiring the central bank to choose between an increase

in inflation, a negative output gap, or some of each. If instead the central bank is expected to

pursue a tighter policy in period t+1 and later as a result of the shock in period t, as occurs

under the optimal policy depicted in the figure, then the short-run tradeoff between inflation

and the output gap is shifted only by the amount of the total change in ut + βEtπt+1, which

is smaller than the increase in ut. Hence greater stabilization (less of an increase in inflation,

less of a reduction in output, or both) is possible in period t. (The anticipation of tighter

policy later restrains price increases in period t, so that less contraction of output is needed

in period t to achieve a given degree of moderation of inflationary pressure.) Of course, to

achieve this beneficial shift in expectations in period t, it is necessary that the central bank

be committed to actually tightening policy later. This will mean less successful stabilization

in later periods than would otherwise have been possible; but nonetheless, the discounted

sum of expected stabilization losses can be reduced through some use of this tool.

It may not be obvious from Figure 7.3 that commitment to a history-dependent policy

can simultaneously improve the stabilization of inflation and of the output gap, since in
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this numerical example, the overall variability of the output gap is higher under the optimal

policy than under discretionary policy. (This need not have been true, but happens to be

true for the calibrated parameter values used here, which involve quite a low relative weight λ

on output-gap stabilization, for reasons discussed in chapter 6.) The point can be illustrated

numerically by computing the inflation/output variance frontier associated with history-

dependent as opposed to purely forward-looking policies. These two variance frontiers are

shown in Figure 6.6 of the previous chapter, in the case that β and κ are calibrated as in

Figure 7.3, and ut is assumed to be an AR(1) process,

ut = ρuut−1 + εu
t , (2.18)

with ρu = 0.8. (Here εu
t is an i.i.d. mean-zero random variable.)

The variance frontier in the case of general linear policies (allowing arbitrary history-

dependence) is obtained by computing the optimal responses to disturbances, characterized

in Proposition 7.9, for values of λ > 0 that are allowed to vary over the entire positive real

half-line. For each equilibrium in this one-parameter family, we compute the statistics V [π]

and V [x], where we again use the discounted measure of variability

V [y] ≡ (1− β)
∞∑

t=0

βtvar(yt)

for any random variable {yt}. Note that for each value of λ, the date zero-optimal policy

minimizes

E

{ ∞∑

t=0

βt[π2
t + λ(xt − x∗)2]

}
=

∞∑

t=0

βt
{
(E[πt]

2 + λ(E[xt]− x∗)2
}

+ (1− β)V [π] + (1− β)λV [x].

Furthermore, the first term on the right-hand side depends only on the deterministic com-

ponent of policy, while the remaining two terms depend only on the prescribed responses

to shocks. As these two aspects of policy can be independently specified, the optimal equi-

librium responses to shocks minimize V [π] + λV [x]. It follows that the responses to shocks
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characterized in Proposition 7.9 for alternative values of λ describe the policies on the V [π]-

V [x] efficient frontier.

The variance frontier for the more restricted class of purely forward-looking (linear) poli-

cies can similarly be obtained by computing the policy from within this class that minimizes

V [π] + λV [x], for each possible value of λ > 0. In the present context, this means that we

restrict consideration to state-contingent evolutions in which πt and xt are linear functions

of the current value of ut,

πt = π̄ + fπut, xt = x̄ + fxut. (2.19)

State-contingent evolutions within this family represent possible rational-expectations equi-

libria if and only if the coefficients satisfy

(1− β)π̄ = κx̄, (2.20)

(1− βρu)fπ = κfx + 1, (2.21)

as a consequence of (2.1). Finally, in the case of processes of the form (2.19),

V [π] + λV [x] = [f 2
π + λf 2

x ]var(u).

Thus we choose the response coefficients fπ, fx so as to minimize f 2
π+λf 2

x subject to constraint

(2.21). The optimal response coefficients are easily seen to be

fπ =
1− βρu

κ2λ−1 + (1− βρu)2
> 0, fx = − κλ−1

κ2λ−1 + (1− βρu)2
< 0. (2.22)

For each member of this one-parameter family of equilibria, the implied values of V [π]

and V [x] yield a point on the dotted frontier shown in Figure 6.6. (Point B′ on this frontier

indicates the efficient plan in the case of the value λ = 0.05 corresponding to the welfare-

theoretic loss function.) We observe that this frontier is entirely inside the one computed

when policy is allowed to be history-dependent; thus commitment to a history-dependent

policy can simultaneously improve the stabilization of both inflation and the output gap.

A striking feature of the impulse responses under an optimal policy displayed in Figure

7.3 is the fact that following a cost-push shock, the unexpected inflation caused by the shock
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is entirely “undone”, so that the price level returns completely to its previously anticipated

path. This result is not special to the case of serially uncorrelated, completely unanticipated

disturbances assumed in the figure.

Proposition 7.10. Under the same assumptions as in Proposition 7.9, under the

t0−optimal plan, there exists a well-defined long-run expected price level,

lim
T→∞

EtpT = p∞,

that is the same in every period t ≥ t0, regardless of the history of disturbances between

periods t0 and t. And the same is true under any policy followed from period t0 onward

that is optimal from a timeless perspective. In the particular case of the latter sort that is

optimal subject to the initial constraint (2.13) or (2.14), the long-run expected price level

corresponds to the constant p̄ in the constraint.

This is also shown in the appendix. Note that the long-run price level p∞ generally depends

on initial conditions (including the pre-existing price level pt0−1) at the time that the optimal

policy is adopted; it is furthermore different (for given initial conditions) under different

policies within the set to which the proposition applies. (In the case of initial constraints of

the form (2.13) or (2.14), p∞ is independent of initial conditions at the time that the policy

is adopted, as it is in fact determined solely by the constant p̄ in the initial constraint; but

any long-run price level is possible, under a suitable choice of p̄.) Nonetheless, under any

policy of the kind specified in the proposition, the intitial conditions plus the form of optimal

policy adopted determine a long-run price level, which is not subsequently affected by the

realization of any random disturbances. Hence equilibrium fluctuations in the price level are

stationary.

This feature of optimal policy may seem counter-intuitive. Indeed, it is often argued that

if one wishes to stabilize inflation, and does not care about the absolute level of prices, then

surprise deviations from the long-run average inflation rate should not have any effect on

the inflation rate that policy aims for subsequently: one should “let bygones be bygones,”
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Figure 7.4: Equilibrium responses to a transitory cost-push shock under discretionary policy,
for varying degrees of inflation inertia.

even though this means allowing the price level to drift to a permanently different level.

The claim is that “undoing” past deviations from the target rate of inflation simply creates

additional, unnecessary variability in inflation. And this would be correct if the commit-

ment to subsequently “undo” target misses had no effect on the probability distribution of

the unexpected deviations from the inflation target. However, if price-setters are forward-

looking, the anticipation that a current increase in the general price level will predictably be

“undone” soon gives suppliers a reason not to increase their own prices currently as much

as they otherwise would, and so leads to smaller equilibrium deviations from the inflation

target in the first place. Hence such a policy can reduce equilibrium inflation variability, and

not simply the range over which the absolute price level varies.

Nonetheless, the result that optimal policy involves a stationary (or even trend-stationary)

price level depends on fairly special assumptions. For example, in the event of partial index-
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Figure 7.5: Responses to a transitory cost-push shock under optimal policy, again for varying
degrees of inflation inertia.

ation of prices to a lagged price index, it ceases to be optimal to completely restore the price

level to the path that it would have been expected to follow in the absence of a shock, even

though it continues to be optimal for positive inflation surprises to be predictably followed by

periods in which inflation is temporarily below its long-run average value. This is illustrated

in Figures 7.4 and 7.5, which display the impulse responses to the same kind of shock as in

Figure 7.3, but for economies with a range of values for the indexation parameter γ. (The

case γ = 0 corresponds to the basic Calvo pricing model, the case already shown in Figure

7.3.) In Figure 7.4, the responses are shown in the case that the central bank optimizes under

discretion, seeking to minimize the expected value of the loss function (1.22). In Figure 7.5,

the corresponding responses are shown in the case of an optimal policy commitment.

In the case of discretionary policy, we see that a positive cost-push shock results not only

in a burst of inflation during the period of the disturbance, but additional above-normal
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price increases in subsequent periods, as the rate of inflation only gradually returns to its

normal level. As before, the perturbation of the target variable πt− γπt−1 is as transitory as

the disturbance ut; but the inflation inertia resulting from the automatic indexation creates

additional inflation for several more quarters. In the limiting case of full indexation (γ = 1),

inflation remains permanently higher as a result of the transitory cost-push shock.

Instead, under optimal policy, the initial unexpected increase in prices is eventually

undone, as long as γ < 1; and this once again means that inflation eventually undershoots

its long-run level for a time. However, for any large enough value of γ, inflation remains

greater than its long-run level for a time even after the disturbance has ceased, and only

later undershoots its long-run level; the larger is γ, the longer this period of above-average

inflation persists. In the limiting case that γ = 1, the undershooting never occurs; inflation

is simply gradually brought back to the long-run target level.22 In this last case, a temporary

disturbance causes a permanent change in the price level, even under optimal policy. (Under

optimal policy, the price is an integrated process of order 1, while under discretion it is an

integrated process of order 2, since there is a unit root in the inflation rate.)

Even if there is not full indexation to a lagged price index, the result that the price level

is stationary under optimal policy is relatively fragile, given that welfare does not depend at

all on the range of variation in the absolute level of prices. Under many small perturbations

of the precise model considered here, optimal policy will involve a price-level process with a

unit root; this is true, for example, if there is even a small weight on interest-rate stabilization

in the loss function, as discussed in the next section, or if the zero lower bound on nominal

interest rates ever binds, as discussed in section xx. The more robust conclusion about

optimal policy is not that it is important for the price level to actually be stationary (or

trend-stationary); it is rather that it is desirable for an inflationary disturbance to be followed

22The reason for this is easily seen. Optimal policy in the case that γ > 0 is the same as under the
characterization in Proposition 7.9, except that πt must be replaced by the quasi-differenced inflation rate
πt − γπt−1 in each expression. In the case that γ = 1, the optimal evolution of the inflation rate πt is the
same as the optimal evolution of pt when γ = 0. Thus the impulse response of inflation (for γ = 1) in panel
1 of Figure 7.5 is the same as the impulse response of the price level (under optimal policy) in panel 3 of
Figure 7.3. The scales are different because the inflation rate plotted is an annualized rate, 4πt rather than
πt.
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by a period of tight monetary policy which keeps output below the natural rate for a time,

the anticipation of which helps to restrain price increases as a result of the disturbance.

2.2 Fluctuations in the Natural Rate of Interest

We turn now to the optimal response to real disturbances that cause temporary fluctuations

in the natural rate of interest rn
t . In the case that inflation stabilization and output-gap

stabilization are the only objectives of monetary policy (as in the case of loss function (1.2)),

and the zero interest-rate bound never binds (as assumed thus far), fluctuations in the

natural rate of interest do not prevent the central bank from completely stabilizing both

inflation and the output gap; it only effects the kind of nominal interest-rate variations that

are required in order to achieve this. In such a case, optimal policy continues to involve zero

inflation and a zero output gap at all times, just as in the deterministic analysis in section

1.1. In this special case, there is no difference between discretionary policy and an optimal

policy commitment, as regards the equilibrium responses to disturbances of this kind: in

either case, inflation and the output gap will not respond at all to the disturbance, while the

nominal interest-rate operating target will perfectly track the current value of the natural

rate of interest.23

However, our conclusion is different if the central bank is also concerned to minimize the

degree of variability of nominal interest rates, for either of the reasons discussed in section xx

of chapter 6, or perhaps for other reasons as well. In this case, as discussed in the previous

chapter, it is possible to reduce interest-rate variation at the price of increased variability

of inflation and the output gap, and optimal policy will do this to some extent. And once

simultaneous satisfaction of all of the stabilization objectives ceases to be possible, it is

almost inevitably the case that optimal policy will no longer coincide with discretionary

policy, and indeed that optimal policy will no longer be purely forward-looking.

In particular, there are important advantages to a more inertial adjustment of interest

23These conclusions are easily obtained from the analysis of discretionary policy and optimal commitment
in the previous section, since it did not matter in that analysis what we assumed about fluctuations in the
natural rate of interest.
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rates than would occur under a purely forward-looking policy. As discussed in chapter 4,

in an optimizing model, aggregate demand should depend on the expected path of (short-

term) real interest rates far into the future, and not simply on their current level. Hence a

commit to maintain real rates at a moderately high level for a longer period of time can be

as effective a way of preventing a surge in aggregate demand due to real disturbances as a

sharper increase in real rates that is expected to be only temporary; but the former policy has

the advantage of requiring less variable interest rates. Of course, as in the previous section,

conditioning policy on past disturbances rather than current conditions causes distortions;

but the gains from anticipation of such behavior can make it nonetheless worthwhile to

engage in such behavior to an extent. It can therefore be desirable for the central bank to

raise interest rates only gradually in response to an increase in the natural rate of interest,

and similarly to lower them again only gradually once the disturbance has passed — even

though the type of loss function proposed in chapter 6, section xx, penalizes deviations of

the level of nominal interest rates from the optimal level, and not large rates of change in

the interest rate. This is another example of the history-dependence of optimal policy.

Woodford (1999xx) shows that inertial interest-rate adjustment is optimal in the case of

the basic neo-Wicksellian model presented in chapter 4. If interest-rate variations matter

for welfare, the aggregate-supply relation (2.1) must be augmented by an intertemporal IS

relation

xt = Etxt+1 − σ[it − Etπt+1 − rn
t ], (2.23)

generalizing (1.15), where now {rn
t } is an exogenous disturbance process. We wish to choose

a policy to minimize a social loss function of the form

Et0

∞∑

t=t0

βt−t0 [π2
t + λx(xt − x∗)2 + λi(it − i∗)2]. (2.24)

Here i∗ = im, as in (1.14), if the interest-rate stabilization objective appears solely as a result

of transactions frictions; but we may wish to assign a higher value to i∗ (and to λi) in order

to reflect the need to avoid negative nominal interest rates.

Once again, the model is one in which the possible rational-expectations equilibrium
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paths of inflation, the output gap, and the nominal interest from any date t onward depend

only on the real disturbances (rn
t , ut) at date t, and upon information at date t about the

subsequent evolution of those disturbances. Hence if these disturbances are Markovian, so

that their current values contain all available information about their likely future evolution,

then any purely forward-looking policy will make all three of the target variables vary solely

in response to the current disturbances, and the effects of any disturbance on any of these

variables will be only as persistent as the disturbance itself.

The optimal responses to such disturbances can instead be characterized using the same

Lagrangian method as in the previous section. We again obtain the first-order conditions

(1.16) – (1.18) for each t ≥ t0.
24 In order to compute the t0−optimal commitment, these

conditions are solved under the initial conditions

ϕ1,t0−1 = ϕ2,t0−1 = 0. (2.25)

A policy that is optimal from a timeless perspective is instead only required to minimize

(2.24) subject to constraints of the form

πt0 = π̄t0 , xt0 = x̄t0 . (2.26)

The equilibrium associated with such a policy will solve the same system of first-order condi-

tions, but with different initial values for the Lagrange multipliers ϕ1,t0−1, ϕ2,t0−1 than those

given in (2.25). The following result, due to Giannoni and Woodford (2002b), guarantees

that these conditions determine a unique bounded solution.

Proposition 7.11. For any parameter values 0 < β < 1, κ, σ, λx, λi > 0, any bounded

processes for the exogenous disturbances {rn
t , ut}, and any specification of the initial lagged

Lagrange multipliers ϕ1,t0 , ϕ2,t0 , the system of equations consisting of (1.16) – (1.18), (2.1)

and (2.23) has a unique bounded solution for the paths of the variables {πt, xt, it, ϕ1t, ϕ2t}
for periods t ≥ t0.

24In the general case, the coefficient im in (1.18) must be replaced by i∗.
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Figure 7.6: Optimal responses to a disturbance to the natural rate of interest.

This is proved in the appendix. It follows that the t0−optimal commitment involves bounded

fluctuations in response to the disturbances, characterized by the unique bounded solution

to these equations. And once again, the responses under a timelessly optimal policy are of

the same kind.

The optimal responses to a disturbance to the natural rate of interest characterized by

these equations are history-dependent, as a result of the presence of the lagged Lagrange

multipliers in the first-order conditions. (For example, even in the case that {rn
t } is Marko-

vian, the period t endogenous variables will not be independent of the history of natural-rate

disturbances prior to period t.) These optimal responses are illustrated by the solid lines in
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Figure 7.6 for the case of an AR(1) process for the natural rate of interest,

rn
t = (1− ρr)r̄ + ρrr

n
t−1 + εr

t , (2.27)

with an autoregressive coefficient ρr = 0.35. (The numerical values for β, σ, κ, λx, and λi

used in this example are also again taken from Table 6.1.) The impulse response of the

natural rate of interest itself is shown by the dotted line in the first panel of the figure.

The equilibrium responses of inflation, output, and the nominal interest rate under the best

possible purely forward-looking policy (the “optimal non-inertial plan,” characterized in the

next section) are also shown for purposes of comparison.

Under an optimal policy, the responses of these variables are not simple multiples of the

current deviation of the natural rate of interest from its long-run average value. The nominal

interest rate is raised much more gradually in response to an increase in the natural rate than

under the optimal purely forward-looking policy, but the higher interest rates are maintained

longer than the time for which the disturbance itself persists. This more persistent change in

the level of interest rates restrains the initial increase in the output gap to the same extent as

under the forward-looking policy, despite the more modest increase in interest rates; and it

returns the gap to zero (and even undershoots) quickly, as people come to foresee real rates

in the near future that will be even higher than the natural rate. Because the increase in

the output gap is much more transitory (and is even soon reversed), the immediate increase

in inflation is much smaller under the optimal policy. Yet this improved stabilization of

inflation and output requires less volatility of nominal interest rates as well.

The way in which nominal interest rates evolve in an optimal equilibrium can be roughly

described as partial adjustment toward a “desired” level that is a function of current and

expected future levels of the natural rate; hence interest-rate inertia of the kind suggested by

the estimated Fed reaction functions discussed in chapter 1 is actually a feature of optimal

policy, rather than an indication of failure to react quickly enough to changing conditions.

The nature of the partial-adjustment dynamics can be seen especially clearly in a limiting

case of this model, in which κ = 0, so that the inflation rate never varies (or at any rate
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evolves exogenously), regardless of the evolution of the output gap.

In this case, our problem reduces to one of choosing state-contingent paths for {xt, it} to

minimize the discounted sum of losses resulting from output-gap and interest-rate variation,

subject to the constraint that (2.23) be satisfied each period (given the exogenous path of

inflation). The first-order conditions characterizing optimal policy are then simply (1.17) –

(1.18), with the terms involving ϕ2t omitted. Using the latter of these equations to eliminate

the Lagrange multiplier ϕ1t from the former, we obtain25

σλx(xt − x∗)− λi[(it − i∗)− β−1(it−1 − i∗)] = 0.

Using this condition, in turn, to eliminate xt from (2.23), the latter relation becomes26

it − β−1it−1 = Et[it+1 − β−1it]− λ−1
i λxσ

2(it − rn
t ). (2.28)

This equation in turn has a unique bounded solution of the form

it = µ1it−1 + (1− µ1)̄ıt, (2.29)

in the case of any bounded process for the disturbance {rn
t }, where

ı̄t = (1− µ2)
∞∑

j=0

µ−j
2 Etr

n
t+j, ) (2.30)

and 0 < µ1 < 1 < µ2 are the two roots of the characteristic equation

µ2 −
(

1 + β−1 +
λxσ

2

λi

)
µ + β−1 = 0.

Equation (2.29) takes the form of partial-adjustment dynamics toward the time-varying

desired level of short-term interest rates ı̄t, with the root µ1 determining the speed of ad-

justment. The desired level ı̄t is a weighted average of current and expected future natural

25In eliminating the lagged multiplier using the same relation, we are in effect choosing a particular time-
invariant way of selecting the initial lagged multiplier ϕ1,t0−1, using a relation between this multiplier and
it0−1 that would have been true in the case of any optimal commitment chosen at a date earlier than t0.
Hence the solution obtained here represents at least one of the possible equilibria from date t0 onward that
are optimal from a timeless perspective. Since the equilibrium responses to natural-rate disturbances from
date t0 onward are the same in all such equilibria, the method used here gives the uniquely appropriate
characterization of the optimal dynamic response to such a disturbance.

26Here we assume that the limiting case with κ = 0 is one in which prices are so sticky that inflation is
zero at all times. If instead inflation varies in response to exogenous “cost-push shocks”, then (2.28) again
holds, but with the exogenous forcing process rn

t replaced by the exogenous variation in rn
t + Etπt+1.
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rates of interest, with the root µ2 determining how far in the future the expected values of

the natural rate are averaged. In the case that the natural rate process is of the Markovian

form (2.27), ı̄t is an increasing linear function of rn
t (an average of rn

t and the long-run av-

erage natural rate r̄), with a slope less than one (though closer to one the more persistent

are the fluctuations in the natural rate). The optimal inertia coefficient µ1 in these partial-

adjustment dynamics is an increasing function of λi/(λxσ
2); if interest-rate stabilization is

sufficiently important relative to output-gap stabilization, the optimal rate of adjustment

of the central bank’s operating target in response to a shift in the current natural rate of

interest may be quite slow.

While this simple characterization of optimal interest-rate dynamics is exactly true only

in the limiting case in which κ = 0, the optimal interest-rate dynamics shown in Figure 7.6

are fairly similar to those described by (2.29), as is discussed further in Woodford (1999xx).

For while κ > 0 in a realistic model, the slope of the aggregate-supply relation that is

estimated econometrically is often fairly small; thus the limiting case just discussed provides

considerable insight into the character of optimal interest-rate dynamics.

3 Optimal Simple Policy Rules

We have thus far discussed the character of the state-contingent evolution that one would

ideally wish to arrange, and seen that this requires commitment to systematic behavior of a

kind that would not be chosen by a discretionary optimizer. We turn now to the question

of the type of policy rule to which a central bank should commit itself, in order to reap the

benefits of policy commitment that we have discussed.

Much of the recent literature has addressed this question by asking which rule would be

best within some parametric family of relatively simple rules — for example, the family of

contemporaneous Taylor rules

it = ı̄ + φπ(πt − π̄) + φx(xt − x̄)/4. (3.1)

Often it is supposed that commitment to a relatively simple rule of this sort represents the
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only feasible form of commitment, perhaps because of difficulties of explaining to the public

the nature of the central bank’s commitment in some more complex case. Here we consider

the optimal choice of a policy rule from within such a restricted class, from the point of view

of the sort of forward-looking models of the effects of policy commitments presented above.

We begin by discussing the optimality criterion that is appropriate in such an exercise.

It might seem that the obvious way in which to choose an optimal rule from within

a family such as (3.1) is to compute the rational-expectations equilibrium associated with

any given rule in the family, and evaluate a loss function such as (1.14) given the state-

contingent evolution of the target variables in that equilibrium. The optimal rule within the

family would then be the rule leading to the lowest expected loss. This is the definition of

an “optimal simple rule” given, for example, in Currie and Levine (1991).

However, this criterion has undesirable features in the context of a forward-looking model

of the effects of policy. As in our discussion of the t0−optimal commitment in the previous

two sections, one is evaluating alternative policies under a criterion which will favor policies

that exploit the fact that initial expectations are already given at the time that policy

is chosen; and in general, this will lead to a time-inconsistent policy choice, even when

policies are restricted to a simple family. The criterion favors policies that create inflation

in the initial periods following the policy choice, while committing to negligible average

inflation farther in the future. If a rule from within family (3.1) is chosen at a time when

negative output gaps are anticipated in the near term (while the long-run average output

gap is expected to be zero), a rule will be preferred under which a negative output gap

justifies a loosening of policy, exactly because this is expected to create the desired initial

inflation without implying long-run inflation. But if the question of the optimal simple rule is

reconsidered at a later date, at which a positive output gap is anticipated in the near term,

a rule will be preferred under which it is a positive output gap that justifies a loosening

of policy. The choice of an optimal simple rule on these grounds is time-inconsistent (as

Currie and Levine note), for essentially the same reason as in our earlier discussion of the

unconstrained policy problem. We wish to propose instead a criterion which will result in a



52 CHAPTER 7. COMMITMENT TO A POLICY RULE

time-consistent selection.

Another disadvantage of this criterion is that even when applied to a class of policies

flexible enough to include a policy that is optimal from a timeless perspective, that policy

may well not be judged optimal within the restricted class of policies.27 This can be seen

from a reconsideration of the deterministic problem treated in section 1.1 above. There the

optimal policy from a timeless perspective was found to be one that resulted in zero inflation

each period. One might also consider the optimal policy within the restricted class of policies

that keep inflation constant at some rate π̄ for all time. If one simply evaluates (1.2) for the

paths of inflation and output associated with any such policy, one obtains a value

(1− β)−1


π̄2 + λ

(
1− β

κ
π̄ − x∗

)2

 ,

which is not minimized at π̄ = 0, in the case that x∗ > 0. One instead would prefer a

somewhat positive inflation rate under this criterion, in order to take advantage of the gains

from unanticipated inflation in period t0, even though the extent to which this is chosen is

limited by the restriction that one must choose the same inflation rate for all later periods

as well. In order to obtain a criterion that will result in choice of the policy that is optimal

from a timeless perspective when the class of simple policies is flexible enough to contain it,

it is necessary to evaluate the outcomes associated with alternative rules from a perspective

that penalizes a rule for taking advantage of pre-existing expectations at the time of policy

choice.

We accordingly propose to evaluate policy rules according to a criterion of the following

sort. A quadratic loss criterion such as (1.2), evaluated conditional on the economy’s state

at date t0, can be expressed as the sum of two components, Ldet + Lstab, where Ldet depends

only on the deterministic component of the equilibrium paths of the target variables, and

Lstab depends only on the equilibrium responses to unexpected shocks in periods after t0.

27For example, Jensen and McCallum (2002) find that the targeting rule (5.1) below, that brings about
the equilibrium characterized by Proposition 7.7 and hence is optimal from a timeless perspective, is not
optimal (in the sense that they consider) within a family of simple linear rules that includes rule (5.1). This
is because they do not rank alternative policies according to the stabilization loss measure Lstab proposed
below. For further discussion of the Jensen-McCallum calculations, see xxxxxx.
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For example, in the case of (1.2), the deterministic component is given by

Ldet =
∞∑

t=t0

βt−t0 [(Et0πt)
2 + λ(Et0xt − x∗)2],

while the stabilization component is given by

Lstab =
∞∑

t=t0

βt−t0 [vart0(πt) + λvart0(xt)].

Under any policy rule that is optimal from a timeless perspective (or, for that matter,

under a t−optimal commitment chosen at any date t ≤ t0), the equilibrium responses to

shocks in periods after t0 will be exactly those that minimize Lstab, among the set of possible

dynamic responses to shocks that are consistent with the (linear) structural equations. Hence

we wish to evaluate rules within more restricted families of linear rules according to the same

criterion: the coefficients that determine the equilibrium responses to shocks — e.g., the

coefficients φπ, φx in the case of the family (3.1) — should be chosen so as to minimize Lstab,

to the extent that this is possible within the class of simple rules considered. This is a criterion

that will allow a choice of these coefficients that is independent of the economy’s state at

date t0; for that state may affect the predicted deterministic component of the paths of the

target variables implied by given response coefficients, but it has no effect on the predicted

variances that enter Lstab, given a linear model for the evolution of the disturbances. Thus

the proposed criterion leads to a time-consistent choice. And it is a criterion that implies

that if the family of rules considered is flexible enough to include one that is optimal from

a timeless perspective, the response coefficients in that rule will be judged optimal.

Given this choice of the response coefficients, the coefficients that determine the long-run

average values of the target variables with which the rule is consistent (the values ı̄, π̄, x̄

in (3.1)) are not then chosen to minimize Ldet. Instead, in accordance with our discussion

of deterministic policy problems in section 1, a rule is chosen that is consistent with the

long-run average values that occur under the t0− optimal commitment. (These are the same

values as would occur under an optimal commitment chosen at any other date, or under

a policy that is optimal from a timeless perspective.) Unlike the criterion of minimizing
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Ldet, this criterion leads to a choice that is independent of the state at t0, and hence that

is time-consistent. And it leads to a rule that is consistent with the same long-run average

values of the target variables as any rule that is optimal from a timeless perspective; so if

the family of rules under consideration includes such a rule, it will be found optimal within

the restricted family. We turn now to some simple examples of policies that could be judged

optimal within a restricted family of simple alternatives, though they are not fully optimal.

3.1 The Optimal Non-Inertial Plan

A restricted class of policies of particular interest is the class of purely forward-looking

policies, under which policy (and hence equilibrium outcomes) at each date depend only on

the set of possible evolutions for the target variables that are possible from that date onward.

Basing policy solely on projections of the economy’s current and possible future states has

a certain intuitive appeal, and the forecast-targeting procedures of central banks often seem

to have this character; hence it may be of interest to know how different from fully optimal

policy the best possible rules of this kind are.

In order to consider this question, we may begin by considering which state-contingent

evolution we should wish to bring about, among all those consistent with any purely forward-

looking policy, and then subsequently ask which policy (or policies) can be used to implement

the desired equilibrium. The set of possible state-contingent evolutions to which we may re-

strict attention consists of those under which the current endogenous non-predetermined

state variables zt depend only on the vector of exogenous states st that contains all informa-

tion available in period t about the disturbances to the structural equations in period t or

later, and on the vector Zt of exogenous disturbances that matter for determination of the

variables zt. For the set of possible evolutions of the economy from date t onward depends

only on the values of st and Zt. It follows that if policy depends only on this set, it will also

depend only on those variables, and if the policy rule results in a determinate equilibrium,

it must be one in which the equilibrium values zt also depend only on (st, Zt).

We shall call the optimal state-contingent evolution from within this restricted class the
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optimal non-inertial plan, following Woodford (1999xx). To be precise, this is the plan under

which (i) the long-run average values of the variables zt are those associated with a policy

that is optimal from a timeless perspective, and (ii) the fluctuations in response to shocks

are those that minimize the stabilization loss Lstab, subject to the constraint that zt depend

only on (st, Zt).

As an example, consider again the model consisting of aggregate-supply relation (2.1),

and suppose once more that social welfare is measured by the expected value of (1.2). For

simplicity, suppose that the disturbance ut evolves according to (2.18), for some 0 ≤ ρu < 1.

As discussed above, in this case the set of variables (st, Zt) reduces simply to the current

value of ut, and the only possible state-contingent paths that can be implemented by a purely

forward-looking (linear) rule are ones in which πt and xt are linear functions of the current

value of ut, as in (2.19). Plans of this form are consistent with the equilibrium relation (2.1)

if and only if

(1− β)π̄ = κx̄, (3.2)

(1− βρu)fπ = κfx + 1. (3.3)

Furthermore, in the case of any plan of this form, the stabilization loss is given by

Lstab =
β

1− β

1− rho2
u

1− βρ2
u

[f 2
π + λf 2

x ]σ2
u, (3.4)

where σ2
u is the unconditional variance of the disturbance process {ut}.

It follows from Proposition 7.2 that the long-run average values of inflation and the output

gap associated with a timelessly optimal policy are π̄ = x̄ = 0. The optimal values of the

coefficients (fπ, fx) are those that minimize (3.4), or equivalently, that minimize f 2
π + λf 2

x ,

subject to constraint (3.3). The solution to this latter problem is given by

f oni
π =

1− βρu

κ2λ−1 + (1− βρu)2
, f oni

x = − κλ−1

κ2λ−1 + (1− βρu)2
. (3.5)

Thus we obtain the following.

Proposition 7.12. Consider the baseline (Calvo pricing) model, in which the aggregate-

supply relation is of the form (2.1), and abstract from any grounds for a concern with
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interest-rate stabilization, so that the period loss function is of the form (1.2). Let the cost-

push disturbance {ut} evolve according to (2.18), for some 0 ≤ ρu < 1. Then the optimal

non-inertial plan is a state-contingent evolution of the form (2.19) in which π̄ = x̄ = 0, and

the coefficients fπ, fx indicating the response to cost-push shocks are given by (3.5).

Applying (2.3) to the case of an AR(1) disturbance process (2.18), we find that the

equilibrium responses under discretion are also of the form (2.19), but with

π̄disc =
κλ

(1− β)λ + κ2
x∗ > 0

and

fdisc
π =

λ

κ2 + (1− βρu)λ
≥ f oni

π ,

where the last inequality is strict if ρu > 0. Thus discretionary policy is suboptimal, even

within the class of purely forward-looking policies, except in the special case that x∗ = 0 and

the cost-push shocks are serially uncorrelated. In general, discretionary policy leads both to

too high an average rate of inflation (if x∗ > 0), and to too large an inflation response to

cost-push shocks (if ρu > 0). It follows from (3.3) that too large a positive inflation response

fπ also means too small a negative output-gap response fx.

A similar analysis is possible in the case that welfare is reduced by variation in the level

of nominal interest rates, for reasons such as those discussed in chapter 6, section xx. If

the period loss function is of the form (2.24), then both (2.1) and (2.23) are constraints

on possible equilibrium paths of the target variables {πt, xt, it}. If we assume that the

disturbances to both structural equations are Markovian — in particular, that {ut} evolves

according to (2.18) for some 0 ≤ ρu < 1, and {rn
t } similarly evolves according to a law of

motion (2.27) for some 0 ≤ ρr < 128 — then under any purely forward-looking policy that

28It is not actually necessary to assume that the two disturbances evolve according to independent AR(1)
processes, as posited here, in order for the form (3.6) to be correct; one might more generally assume that
both rn

t and ut are linear functions of (rn
t−1, ut−1) plus an unforecastable innovation term, where the two

innovation terms need not be uncorrelated with each other. Certainly there is no economic reason to assume
that these disturbance processes must be independent; in the case that steady-state distortions are large,
discussed in chapter 6, section xx, many types of disturbances, such as variations in government purchases,
will affect rn

t and ut simultaneously. However, the case of two independent disturbance processes is easier
to treat, and allows us to conduct thought experiments such as the one considered in Figure 7.6.
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results in a determinate equilibrium, each of the target variables must evolve according to

equations of the form

yt = ȳ + fyut + gyr
n
t , (3.6)

where (ȳ, fy, gy) are constant coefficients for each of the variables y = π, x, i. The equilibrium

relations (2.1) and (2.23) imply two linear restrictions on the coefficients fy, and another set

of two linear restrictions on the coefficients gy.

Under the assumption that the two disturbance processes are independent, the stabiliza-

tion loss can be decomposed into two parts,

Lstab = Lstab,r + Lstab,u,

corresponding to the losses resulting from responses to unexpected shocks of the two types.

In the case of a plan of the form (3.6), these terms are equal to

Lstab,r =
β

1− β

1− rho2
r

1− βρ2
r

[g2
π + λxg

2
x + λig

2
i ]σ

2
r , (3.7)

Lstab,u =
β

1− β

1− rho2
u

1− βρ2
u

[f 2
π + λxf

2
x + λif

2
i ]σ2

u, (3.8)

where σ2
r , σ

2
u are the unconditional variances of the disturbance processes {rn

t , ut} respec-

tively. Note that Lstab,r involves only the coefficients gy, while Lstab,u involves only the

coefficients fy.

The optimal non-inertial plan is then the state-contingent evolution of the form (3.6)such

that (i) the coefficients ȳ are the long-run average values under a timelessly optimal policy

(characterized in Proposition 7.3), (ii) the coefficients fy minimize Lstab,u subject to the two

constraints implied by (2.1) and (2.23), and (iii) the coefficients gy minimize Lstab,r subject to

the corresponding two constraints on these coefficients. The solution to this problem, derived

in Giannoni and Woodford (2002xx), is presented in section xx of the appendix.29 Here we

note simply that the optimal response coefficients to either of the real disturbances (for

example, the coefficients gy in the case of the natural-rate disturbance) are independent of

29Note that the dashed lines plotted in Figure 7.6 indicate the responses implied by the coefficients gy in
the case of the calibrated parameter values assumed in that figure.
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the properties of the other disturbance; indeed, they are the same regardless of whether other

(independent) disturbances are assumed to exist or not. The optimal response coefficients

to a given disturbance are also independent of the degree of variability of that disturbance,

though they do depend (as in Proposition 7.12) on the degree of serial correlation of the

disturbance.

3.2 The Optimal Taylor Rule

We now consider the optimal choice of a policy rule from within the simple family of Taylor

rules (3.1). Let us suppose that inflation and output determination under such a rule are

governed by equilibrium relations (2.1) and (2.23) of the basic neo-Wicksellian model intro-

duced in chapter 4. As shown in that chapter,30 a rule of this kind (with φπ, φx ≥ 0) implies

a determinate rational-expectations equilibrium if and only if it conforms to the “Taylor

principle,” i.e., its coefficients satisfy

φπ +
1− β

4κ
φx > 1. (3.9)

In the case that the disturbance processes are of the form (2.18) and (2.27), this equilibrium

is one in which the equilibrium values of πt, xt, and it will all depend only on the current

disturbances rn
t and ut. The state-contingent evolution of the target variables will then be

of the form (3.6), for certain coefficients ȳ, fy, gy given in the appendix.

We are thus interested in choosing the coefficients of the policy rule (3.1), from within the

class of rules satisfying (3.9), so as to bring about a state-contingent evolution of the form

(3.6) that achieves as low as possible a value for Lstab, together with the long-run average

values ȳ associated with a timelessly optimal policy. For at least a certain range of parameter

values, it will be possible to choose the coefficients of the Taylor rule so as to implement the

30In chapter 4, we considered a version of the “New Keynesian Phillips curve” in which no disturbance
term ut appeared. But the analysis of determinacy of equilibrium there would be unaffected by the addition
of such a term. The solutions given in chapter 4 for the equilibrium evolution of inflation and the output gap
must be modified to take account of the cost-push disturbances. However, the equations given in chapter 4
remain applicable under the interpretation that the variable called “xt” in chapter 4 corresponds to xt+κ−1ut

in the notation used in equation (2.1). In the notation of chapter 4, then, the policy rule (3.1) would be one
with a time-varying intercept (equal to ı̄− (φx/4κ)ut) in addition to the linear response to xt + κ−1ut.
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best possible state-contingent evolution from within the restricted family (3.6), i.e., so as to

implement the optimal non-inertial plan. (Note that the 9 coefficients ȳ, fy, gy must satisfy

6 equalities in order to be consistent with the equilibrium conditions (2.1) and (2.23). Hence

a 3-parameter family of policy rules suffices, in principle, to support any plan within this

family; it is thus not fortuitous that, for a non-trivial range of parameter values, a Taylor

rule can be found that implements the optimal non-inertial plan.) An example of a case in

which is this is so is given by the following result of Giannoni and Woodford (2002xx).

Proposition 7.13. Suppose that the disturbance processes in the basic neo-Wicksellian

model are of the form (2.18) and (2.27), with a common degree of serial correlation ρr =

ρu = ρ. Then if ρ is in the range such that

0 <

[
(1− βρ)(1− ρ)

κσ
− ρ

]
λi <

(1− β)(1− βρ)

κ2
λx + 1, (3.10)

the optimal non-inertial plan is consistent with a Taylor rule (3.1) with coefficients φπ, φx > 0

that also satisfy (3.9). Hence commitment to this rule implies a determinate equilibrium,

and implements the optimal non-inertial plan. It follows that this is the optimal Taylor rule.

The coefficients of this optimal rule are given by

π̄ =
λi

λi + β
(i∗ − r̄), x̄ =

1− β

κ
π̄, ı̄ = r̄ + π̄, (3.11)

φπ =

[
(1− βρ)(1− ρ)

κσ
− ρ

]−1

λ−1
i ,

φx

4
= (1− βρ)

λx

κ
φπ. (3.12)

The proof is in the appendix. It is also shown there that the inequalities (3.10) are

necessarily satisfied for ρ in some non-empty interval ρ < ρ < ρ̄, where 0 < ρ̄ < 1, so that

this interval also contains some positive values of ρ (but not values of ρ that are too close

to one).31 Hence in an at least some cases, there exists a Taylor rule (with positive feedback

coefficients satisfying the Taylor principle) that represents optimal policy, at least among the

31In the case of the calibrated parameter values given in Table 6.1 for β, κ, σ, λx, and λi, this interval
corresponds to 0.17 < ρ < 0.68.
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class of purely forward-looking policies. Nor is this result dependent upon the assumption

that ρr = ρu, made in Proposition 7.13 solely for the sake of algebraic simplification. As

shown in the appendix, there exists a pair of feedback coefficients (φπ, φx) consistent with

the optimal non-inertial plan for almost all possible parameter values, even when ρr 6= ρu.

(Certain functions of the model parameters must be non-zero in order for a system of linear

equations to have a solution; but this excludes only certain extremely special parameter

values.) One must then check whether the required feedback coefficients satisfy the inequality

(3.9), so that the rule implies a determinate equilibrium.32 Proposition 7.13 shows that

some parameter values exist for which the implied feedback coefficients (3.12) satisfy this

inequality. Then, since the required feedback coefficients are continuous functions of the

model parameters (except at the degenerate parameter values where no solution exists), the

inequality is also satisfied for all model parameters (including values of ρr and ρu) sufficiently

close to these ones. For any values of the other parameters, there will thus be an open set of

non-negative values for (ρr, ρu) for which the results announced in Proposition 7.13 obtain,

though the algebraic expressions for the optimal feedback coefficients are considerably more

complex in the general case.33

Optimality of the Taylor rule within the class of purely forward-looking policies implies in

particular that there is no gain from adopting a more forward-looking interest-rate feedback

rule, at least in the case of this simple model. For example, suppose that we consider rules

of the form

it = ı̄ + φπ(Etπt+k − π̄) + φx(Etxt+k − x̄)/4, (3.13)

for some forecast horizon k > 0. Such a rule is again purely forward-looking, and so can at

32This condition is necessary and sufficient for determinacy, as shown in chapter 4, only under the re-
striction that φπ, φx ≥ 0. Thus we must also verify that these two additional inequalities are satisfied, in
order to ensure that the conclusions of Proposition 7.13 hold. Alternatively, we could allow for rules with
negative feedback coefficients, as long as they imply a determinate equilibrium; but in that case, there are
again additional inequalities that must be checked. The presence of these additional inequalities does not
affect the validity of the argument made in the text; the statement “the inequality is also satisfied” should
simply be modified to refer to “inequalities.”

33Proposition xx of Giannoni and Woodford (2002xx) gives an example of an open set of values for (ρr, ρu)
for which this is true, though the conditions established in that result are again only sufficient conditions,
and not necessary for existence of an optimal Taylor rule.
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best implement the optimal non-inertial plan. However, in a case such as that treated in

Proposition 7.13, the Taylor rule already implements this plan, so that a consideration of

rules with a forecast horizon k > 0 yields no possible improvement. In fact, forward-looking

rules may be an inferior approach even to implementation of the optimal non-inertial plan.

It is true that it should be equally possible to find a rule of the form (3.13) that is consistent

with that state-contingent evolution. For example, in the case treated in Proposition 7.13,

there exists a rule of this form that is consistent with the optimal non-inertial plan, for any

k ≥ 0; it is the rule with coefficients ȳ as in (3.11) and coefficients φy given by

φy = ρ−kφ̄y, (3.14)

for y = π, x, where φ̄y refers to the coefficients given in (3.12). However, this alternative

policy rule, while equally consistent with the optimal non-inertial plan when k > 0, may not

also imply determinacy of equilibrium. Indeed, for large enough k, it necessarily does not,

as established by Giannoni and Woodford (2002xx).

Proposition 7.14. Consider an economy satisfying the assumptions of Proposition

7.13. Then for all forecast horizons k longer than some critical value, the rule of the form

(3.13) that is consistent with the optimal non-inertial plan implies indeterminacy of rational-

expectations equilibrium.

The proof is in the Appendix.34 Thus if the forecast horizon k is sufficiently long, it is not

possible to implement the optimal non-inertial plan using a rule of the form (3.13).35 It

follows that, at least when model parameters satisfy (or are close enough to satisfying) the

conditions of Proposition 7.13, the best rule in this forward-looking family is not as desirable

as the best purely contemporaneous Taylor rule.

34Batini and Pearlman (2002) establish a related result for a general family of interest-rate feedback rules
in which the current nominal interest rate operating target is a linear function of an inflation forecast and a
lagged nominal interest rate.

35For example, in the case of the calibrated parameter values given in Table 6.1, the rule (3.13) with
coefficients (3.14) implies indeterminacy for all k ≥ 1.
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Yet even in this case, while the Taylor rule is optimal among the class of purely forward-

looking policies, it does not follow that one cannot do better; for optimal policy is history-

dependent, as shown in section 2.2. We show in chapter 8 that a generalized Taylor rule, that

includes dependence of the right kind on lagged variables (in particular, lags of the nominal

interest rate), can instead implement a fully optimal equilibrium (understood to mean one

that is optimal from a timeless perspective). And even the optimality of the simple Taylor

rule among purely forward-looking policies depends on fairly strong restrictions; for example,

it will not be true if the disturbances are not (at least jointly, if not individually) Markovian.

Moreover, even when one is willing to assume Markovian disturbances, the coefficients of

the optimal Taylor rule depend quite critically on the degree of serial correlation of the

disturbances, as indicated by (3.12). As shown in chapter 8, it is instead possible to choose

a generalized Taylor rule with the property that the same feedback coefficients are optimal

regardless of the serial correlation properties of the disturbances. Hence the more complex

rule is better not only in terms of the expected losses in the case of a particular specification

of the disturbance processes, but is also more robust.

4 The Optimal State-Contingent Instrument Path as

a Policy Rule

We turn now to the problem of the choosing a policy commitment that would be fully optimal

— that would lead not only to the optimal long-run average values of the target variables

characterized in section 1, but also to the optimal responses to disturbances characterized

in section 2. It might be thought that our characterization of the economy’s optimal state-

contingent evolution in section 2 has already given as complete a characterization of fully

optimal policy as may be desired. For we have shown how to compute the optimal state-

contingent paths of the various endogenous variables, including the optimal state-contingent

path for the central bank’s nominal interest-rate instrument. And it might be supposed that

a solution for the optimal state-contingent instrument path — a formula that would tell

what the nominal interest-rate operating target should be at each date, as a function of the
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history of disturbances up to that time — is itself a good example (perhaps even the canonical

example) of a fully optimal policy rule. That is, one might propose that commitment to a

fully optimal policy should mean a commitment by the central bank to choose its operating

target in each decision cycle according to this formula.

We shall argue that this is not a desirable way of deriving an optimal policy rule; but it is

first useful to illustrate what such an approach would mean. Let us consider again the model

with cost-push shocks and no penalty for interest-rate variations treated in section 2.1. We

recall from Proposition 7.6 that equation (2.10) describes the state-contingent evolution of

inflation under one kind of policy that would be optimal from a timeless perspective.36 If

we substitute a specific stochastic process for the disturbances {ut}, such as (2.18), into this

equation we obtain the solution

πt =
1

β(µ2 − ρu)
{ut − (1− µ1)

∞∑

k=1

µk−1
1 ut−k} (4.1)

for inflation as a function of the history of disturbances up through the current date. We

may substitute this in turn into (2.1) to obtain a similar solution for xt, and substitute both

of these solutions into (2.23) to obtain the following solution for the path of the nominal

interest rate.

Proposition 7.15. Consider again the policy problem treated in Proposition 7.6, and

suppose that the exogenous cost-push disturbances evolve according to (2.18). Then in

the timelessly optimal equilibrium characterized in Proposition 7.6, the state-contingent

evolution of the nominal interest rate is given by

it = rn
t +

(
1− κ

λσ

) {
µ1 + ρu − 1

β(µ2 − ρu)
ut − 1− µ1

β(µ2 − ρu)

∞∑

k=0

µk
1ut−k

}
. (4.2)

36While this is only one of several possible specifications of the initial inflation constraint π̄t0 that is self-
consistent in the sense discussed in section 2.1, one can also show that it is the only specification of the
initial constraint that leads to an expression (4.2) that is time-invariant, i.e., independent of the date t0
at which the policy rule is chosen. For example, the alternative specification (2.11) would lead instead to
a state-contingent path for the nominal interest rate in periods t ≥ t0 that would depend on the value of
xt0−1, and on the number of periods t − t0 that had elapsed since the date at which the commitment was
chosen. Because we wish to choose a time-invariant policy rule, in order to address the problem of time
consistency discussed above, we accordingly assume that the specification of interest for present purposes is
the one discussed in Proposition 7.6.
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We might then take equation (4.2) to specify an optimal rule for setting the central

bank’s interest-rate operating target; indeed, some may suppose that this kind of description

of optimal policy, specifying the optimal instrument setting in each possible state of the

world (identified by the history of exogenous disturbances), should represent the canonical

specification of a policy rule. But this approach to the specification of optimal policy has

serious disadvantages. One is that a commitment to the rule by the central bank, even if

fully credible and correctly understood by the private sector, need not ensure that the desired

(optimal) equilibrium evolution of inflation and output is realized.

For a commitment to set interest rates according to (4.2), regardless of how inflation

and output may evolve, is an example of a policy that would specify an exogenous nominal

interest-rate path. It then follows from Proposition 4.xx that under the basic model (con-

sidered here), rational expectations equilibrium is indeterminate under such a policy. The

optimal inflation path (4.2) will be one possible equilibrium path for inflation under this

policy, but there will also be an uncountably infinite number of other non-explosive equi-

librium paths for inflation, includes ones in which inflation (and hence output) responds to

cost-push shocks in an entirely different way, and also ones in which inflation and output are

affected by pure “sunspot” states. The fact that such a rule does not exclude these other,

quite undesirable, equilibria makes this an unattractive approach to the implementation of

optimal policy.

We have similarly seen in chapter 4 that commitment to a rule of this kind, that specifies

an exogenous path for the nominal interest rate, implies that the minimum-state-variable

equilibrium (which in the present case corresponds to the optimal inflation evolution (4.1))

will not be learnable through least-squares regression techniques. Hence from this point of

view as well, a rule such as (4.2) represents an undesirable approach to the implementation

of optimal policy.

Addressing both of these problems requires that the central bank’s policy commitment be

specified in a different way, so that the implied interest-rate path will depend on the observed

(or projected) paths of inflation and output, and not simply on the bank’s evaluation of the
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history of exogenous disturbances. The Taylor rule is an example of a policy rule with this

latter property, and we have seen in chapter 4 that a rule of this kind results both in a

determinate equilibrium and in one that is stable under least-squares learning dynamics.

However, in the present context, we have seen that a simple (contemporaneous) Taylor rule

does not result in an equilibrium that is optimal, as it fails to bring about the history-

dependence required for an optimal equilibrium. The question that remains to be addressed,

then, is whether we can find a rule that introduces feedback from inflation and/or output

to the central bank’s interest-rate target of the kind needed to ensure determinacy and

learnability, and that at the same time involves the sort of history-dependence needed to

implement an optimal equilibrium. We show in the next section how this is possible.

Equation (4.2) is also unappealing as a policy rule, however, for a quite independent

reason. The specific formula (4.2) has been shown to be consistent with an optimal state-

contingent evolution of inflation and output only under a single very specific assumption

about the statistical properties of the cost-push shocks — that they evolve according to

a process of the form (2.18) with serial correlation coefficient ρu, with the innovation εu
t

completely unforecastable before period t. Were we to assume any other stochastic process

for the cost-push shock — something more complex than an AR(1) process, or even an AR(1)

process with a different degree of persistence, or even an AR(1) process with the same degree

of persistence but with innovations revealed some number of periods in advance — then the

solution for the optimal interest rate as a function of the history of the shocks would be

given by a different formula.

Yet there is little practical interest in a characterization of optimal policy such as (4.2),

which is valid only under the assumption that the real disturbances are of one specific type,

no matter how that type is chosen. Suppose that we have estimated the coefficients of the

aggregate supply relation (2.1), and that we have an accurate historical series for both infla-

tion and the output gap, and thus can construct a historical series for the disturbance term

ut in this equation. We might then propose to estimate ρu using the historical disturbance

series, and could then compute the numerical coefficients of a rule of the form (4.2). But a
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central bank would be highly unlikely to be willing to commit itself to follow the rule even

in that case.

For central bankers always have a great deal of highly specific information about the kind

of disturbances that have just occurred, which are always somewhat different than those that

have been faced at other times. Hence even if it is understood that “typically” cost-push

disturbances have had a coefficient of serial correlation of 0.7, there will often be grounds to

suppose that the particular shock that has just occurred is likely to be either more persistent

or less persistent than a “typical” disturbance. And it is unlikely that central bankers will

be willing to commit themselves to stick rigidly to a rule that is believed to lead to outcomes

that would be optimal in the case of “typical” disturbances, even in the case that they are

aware of the economy’s instead being subjected to “atypical” disturbances. In order for an

a proposed policy rule to be of practical interest, it must instead be believed that the rule is

compatible with optimal (or at least fairly good) outcomes in the case of any of the extremely

large number of possible types of disturbances that might be faced on different occasions.

Of course, the sort of analysis that we have used to derive (4.2) can be extended to deal

with the case in which there are many different types of real disturbances that may shift the

aggregate-supply relation. That is, we may suppose that the residual in equation (2.1) is

actually of the form

ut =
∑

j

ψjkε
j
t−k, (4.3)

where the {εj
t} are large set of different types of shocks that may occur in period t, that

affect the aggregate-supply relation in that period or later to varying degrees, with varying

degrees of persistence, and in ways that are forecastable in advance to varying extents. Given

a specification of the dynamic effects on the AS relation of a given type of shock εj
t , we can

compute the response of the nominal interest rate to this particular type of shock in an

optimal equilibrium; and we can do this in principle for each of the types of shocks indexed

by j, and thus obtain an optimal state-contingent path for the nominal interest rate, where

the state in period t is now specified by the histories of realizations of each of the different

shocks. But in this case, the formula corresponding to (4.2) will contain separate terms, with
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different numerical coefficients, for each of the possible types of shocks. Such a description of

optimal policy will thus become completely unwieldy in the case of any attempt to capture

even in very coarse terms the sorts of differing situations that central banks actually confront

at different times.

Giannoni and Woodford (2002a) instead show that if the central bank’s policy com-

mitment is described in terms of a relation among endogenous variables that the bank is

committed to bring about — rather than in terms of a mapping from exogenous states to

the instrument setting, as in (4.2) — it is possible, in a large class of policy problems, to

find a rule that is robustly optimal, in the sense that the same rule (with given numerical

coefficients) continues to be optimal regardless of the assumed statistical properties of the

(additive) disturbance terms such as ut. Indeed, the rule is optimal even if the disturbance

terms in the model structural equations are actually composites of an extremely large (not

necessarily finite) number of different types of real disturbances, as in (4.3). We illustrate

how this is possible in the next section, and discuss the kinds of policy rules to which this

approach leads one in greater detail in the next chapter. A rule of this kind represents a

policy commitment that a central bank could reasonably make, despite its awareness that it

will constantly be receiving quite fine-grained information about current conditions. For a

belief that the rule represents a good criterion for judging whether policy is on track does not

require the central bank to believe that all shocks are alike, or even that all of the possible

types of disturbances to which it may have to respond can all be listed in advance.

5 Commitment to an Optimal Targeting Rule

We now consider an alternative approach to the specification of a policy rule that can im-

plement an optimal equilibrium, and show that this approach can avoid the problems just

discussed with a specification of optimal policy in terms of a state-contingent instrument

path. The alternative is what Svensson (1999, 20xx) calls a targeting rule. Under such a

rule, the central bank is committed to adjust its instrument as necessary in order to ensure

that a certain target criterion is satisfied at all points in time, or more precisely (as this is
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all that is possible in practice), so that the criterion is projected to be satisfied, according

to the central bank’s forecast of the economy’s evolution. The target criterion specifies a

condition that the projected evolution of the bank’s target variables — such as inflation, the

output gap, and possibly interest rates as well — must be projected to satisfy if policy is to

be regarded as “on track.” A simple example would be the criterion that RPIX inflation two

years in the future be expected to equal 2.5 per cent per annum; this is the criterion used

to explain the policy decisions of the Bank of England under current procedures (Vickers,

1998).

A rule of this kind represents a “higher-level” description of policy than an explicit

specification of the instrument setting in each possible state of the world, such as (4.2). The

instrument setting that is implied by such a rule at any point in time can only be determined

through the use of a quantitative model of the effects of monetary policy on the economy.

In each decision cycle, the central bank must use its model (and, of course, the judgment

of policymakers) to determine what interest-rate operating target will result in projections

that satisfy the target criterion. But a targeting rule is not different, in this respect, from

commitment to a rule like the Taylor rule discussed in section 3.2. For in our basic neo-

Wicksellian model (the model for which the Taylor rule was shown to constitute an optimal

purely forward-looking policy), both inflation and the output gap in period t depend on

period t interest rates; hence the policy rule (3.1) does not indicate what the level of interest

rates in period t should be, without a calculation of what πt and xt are projected to equal in

the case of one level of interest rates or another. Our discussion above (as in chapter 4) of

the consequences of commitment to such a rule assumed that implementation of an “implicit

instrument rule” of this kind is possible.37

While such incompleteness of the specification of prescribed central-bank behavior has

some disadvantages — for example, it makes it more difficult for the private sector to be

37McCallum (19xx) has instead criticized the Taylor rule for not being an “operational” policy proposal,
and proposed that one ought instead to consider only candidate rules that explicitly specify the interest-rate
operating target as a function of data available to the central bank at the time that the numerical value of
this target must be chosen. We do not accept this stricture here, because of our interest in the design of
robustly optimal rules.
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certain that the central bank is precisely following the announced policy rule — it has the

important advantage of making possible a commitment to a rule that is optimal under a much

broader range of circumstances, as discussed by Svensson and Woodford (1999) and Giannoni

and Woodford (2002a). This can be usefully illustrated through a further consideration of

optimal policy in the case treated in sections 2.1 and 4.

5.1 Robustly Optimal Target Criteria

Let us recall the characterization of timelessly optimal policy given in section 2.1. For

example, in the case to which Proposition 7.7 applies, the state-contingent evolution of

inflation given by equation (2.12) is obtained by solving a system of equations consisting of

the first-order conditions (1.7) – (1.8) together with the structural equation (2.1), under the

initial condition (2.11). Note furthermore that conditions (1.7) – (1.8) must be satisfied in

the equilibrium associated with a timelessly optimal policy for all periods t ≥ t0 (for some

value of the initial Lagrange multiplier ϕt0−1), regardless of the form of the initial constraint

(2.8).

If we use equation (1.8) to substitute for the Lagrange multiplier ϕt in (1.7), we obtain

the relation

πt +
λ

κ
(xt − xt−1) = 0 (5.1)

that must hold for each t ≥ t0 + 1 under any timelessly optimal policy. We cannot show in

the same way that the relation must hold at date t = t0, for equation (1.8) need not hold for

dates t < t0, and so cannot be used to eliminate ϕt0−1. Nonetheless, the fact that (5.1) must

be satisfied for all dates t ≥ t0 + 1 under any timelessly optimal policy (and indeed, under

a t0−optimal commitment as well), makes a commitment to ensure that relation (5.1) holds

at all times a reasonable candidate for a timelessly optimal policy rule. The following result

shows that this guess is correct.

Proposition 7.16. Consider again the problem of choosing monetary policy from date

t0 onward so as to minimize the expected value of (1.2), where the joint evolution of infla-



70 CHAPTER 7. COMMITMENT TO A POLICY RULE

tion and output must satisfy (2.1) for each date t ≥ t0. Let {ut} be a bounded exogenous

disturbance process, the statistical character of which is otherwise unspecified. Then if the

central bank commits itself to a policy that ensures that (5.1) will be satisfied at each date

t ≥ t0, there are unique bounded rational-expectations equilibrium processes {πt, xt} for

dates t ≥ t0 consistent with this policy rule. Furthermore, the equilibrium determined by

this policy commitment is the same as the one characterized in Proposition 7.7. Thus the

proposed policy rule is optimal from a timeless perspective.

This result is proved in the appendix. Note that the result that the system of equations

consisting of (2.1) and (5.1) for each t ≥ t0 has a determinate rational-expectations solution

is important for two reasons. First, the existence of a solution is important, in order for

the proposed targeting rule to be feasible; Proposition 7.16 implies that there are in fact

equilibrium paths for inflation and output that would satisfy the target criterion at all times.

(We discuss the instrument settings required to implement such a rule in the next section.)

Second, the uniqueness of the solution implies that this policy rule, unlike the proposed rule

discussed in section 4, is not only consistent with an optimal equilibrium, but is furthermore

consistent with no other equilibria of a less desirable character. Hence a commitment to the

targeting rule can be said to implement the desired equilibrium, in a way that a commitment

to the associated state-contingent interest-rate path does not.

The determinacy result announced in the proposition is established directly in the ap-

pendix, through a consideration of the equation system consisting of (2.1) and (5.1). How-

ever, the result has a simple intuition; it is a consequence of the existence of a unique

bounded solution to the system of equations consisting of (1.7) – (1.8) together with (2.1),

that characterize the t0−optimal plan. For equation (5.1) is equivalent to conditions (1.7) –

(1.8) plus the stipulation of an initial Lagrange multiplier38

ϕt0−1 =
λ

κ
(xt0−1 − x∗). (5.2)

38Note that (5.2) is just what the multiplier would have to have been equal to if the first-order condition
(1.8) also held at date t = t0 − 1, as it would in the case of an optimal commitment chosen at date t0 − 1 or
earlier.
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However, the initial condition (5.2) is irrelevant for the question whether a determinate so-

lution exists; if a determinate solution exists in the case of the initial condition (2.5), then it

also should exist in the case of the initial condition (5.2). Hence a commitment to achieve-

ment of the target criterion (5.1) implies a determinate rational-expectations equilibrium.

We thus have an example of a policy rule that results in a determinate equilibrium that is

optimal from a timeless perspective. Moreover, the proposed rule is also robustly optimal in

the sense of Giannoni and Woodford (2002a). For Proposition 7.16 relies on no assumptions

about the nature of the exogenous disturbance process {ut}, except that it is bounded (as is

generally necessary in order for bounded equilibrium paths for inflation and the output gap

to be possible under any monetary policy, and hence for our approximate characterizations

of the equilibrium conditions and of welfare to be valid) and that its effect on the aggregate-

supply relation (2.1) is additive (in a log-linear approximation). The first-order conditions

from which the target criterion (5.1) is derived are independent of any assumptions about the

statistical properties of the disturbances, and so the optimal policy rule obtained in this way

is optimal regardless of their character. Hence a commitment to bring about the optimality

condition (5.1) is equally sensible regardless of the particular type of shocks that the central

bank may believe to have most recently disturbed the economy.

The robustly optimal rule is an example of a flexible inflation targeting rule, in the sense

discussed by Svensson (1999, 20xx).39 The central bank commits itself to adjust the level of

nominal interest rates so that the projected inflation rate is consistent at all times with the

target criterion. However, the acceptable inflation rate depends on the projected path of the

output gap. An inflation rate higher than the long-run target rate (here, zero) is acceptable

if the output gap is projected to decline, and a lower inflation rate could be achieved only

by reducing the output gap even more sharply, making the left-hand side of (5.1) negative;

similarly, an inflation rate lower than the long-run target rate should be sought if even this

rate of inflation requires a growing output gap, so that any higher current inflation rate

39To be more precise, the type of rule that we consider here corresponds to what Svensson calls a “specific”
targeting rule.
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would be possible only with a positive value for the left-hand side of (5.1).

The optimal target criterion (5.1) differs, however, from a common conception of “flexible

inflation targeting” in that it is the projected rate of change of the output gap, rather than

the absolute level of the output gap, that should determine the acceptable deviation from

the long-run inflation target. This might seem paradoxical, in that it is the absolute level of

the output gap, rather than its rate of change, that one wishes to stabilize. But this is simply

a reflection, once again, of the fact that optimal policy is not purely forward-looking. The

target criterion is history-dependent in the sense that acceptable projections (πt, xt) depend

on the value of the lagged output gap xt−1, even though the lagged output gap is irrelevant

both to the determination of current and future inflation and output gap and to the welfare

evaluation of alternative possible paths for those variables from the present time onward.

But this sort of history-dependence is exactly what is necessary in order for the targeting

rule to bring about the kind of dynamic responses to a cost-push shock shown in Figure 7.3.

Once an adverse cost-push shock has caused a negative output gap, the history-dependent

target criterion requires that the output gap be restored only gradually to its long-run level,

and that inflation be kept below its long-run level during the period in which the output

gap is catching up to its long-run level. This kind of dynamic response to a transitory cost-

push shock implies that price-level increases due to the cost-push shock will subsequently

be undone, and as discussed above, the anticipation that this will be the case restrains price

increases at the time of the shock, reducing the extent to which either inflation or a negative

output gap are necessary at that time.

The optimal target criterion (5.1) also differs from the kind of target criteria typically used

by inflation-targeting central banks to justify their policy settings — such as the criterion

used by the Bank of England, mentioned above — in that it specifies an acceptable near-

term inflation rate (that is allowed to vary, under stated conditions) rather than a medium-

term inflation objective (that should remain always the same, despite short-term inflation

variability). It is important to note that this criterion does incorporate a long-run inflation

target (namely, zero); because the change in the output gap from one quarter to the next must
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be zero on average, ensuring that (5.1) holds each quarter will require a zero inflation rate

on average. Nonetheless, the rule requires the central bank to justify its instrument setting

in each decision cycle by reference to whether it is projected to result in an acceptable near-

term inflation rate, and not simply by reference to whether policy continues to be consistent

with a projection that inflation should eventually approach the long-term target value.

A flexible (but specific!) target criterion of this kind provides a clearer guide to short-run

policy decisions — that is, to the only kind of decisions that a central bank is actually called

upon to make — than does a mere specification of the long-run inflation target. After all, the

interest-rate decision made at any point in time is of little import for the expected long-run

inflation rate, which should depend entirely on how policy is expected to be conducted in

the future. A commitment to return inflation to its long-run target rate by a specified (not

too distant) horizon may have less trivial implications for current policy, but a horizon that

is short enough for such a commitment to determine current policy is likely to result in too

rigid a criterion for such a commitment to be desirable. Hence the desirability of a target

criterion that specifies the conditions under which near-term deviations from the long-run

target are justifiable, rather than merely specifying the long-run target.

Actual inflation-targeting central banks have probably avoided the articulation of a flex-

ible nearer-term target criterion of this kind out of skepticism about whether it is possible

to specify in advance all of the conditions under which a given degree of temporary depar-

ture from the long-run inflation target should be justifiable. But we have seen that it is

possible to derive a robustly optimal target criterion, that correctly determines whether a

given degree of departure of projected near-term inflation from the long-run target rate is

consistent with the optimal state-contingent inflation path, regardless of the size and nature

of the disturbances that have most recently affected the economy. If the soundness of such a

criterion is accepted, then it ought to be possible for a central bank to commit itself to the

conduct of policy in accordance with a nearer-term target criterion of this kind.

While (5.1) represents an example of a robustly optimal target criterion, it is not the

only possible criterion with that property. Note that satisfaction of (5.1) each period implies
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that the quantity pt + (λ/κ)xt never changes (since the left-hand side of (5.1) is just the

first difference of this quantity). Hence in any equilibrium that is optimal from a timeless

perspective, there exists some value of p̄ such that

pt +
λ

κ
xt = p̄ (5.3)

at all times. This suggests an alternative policy rule, namely, that the central bank commit

to ensure that (5.3) holds each period. This too can be shown to be a robustly optimal

targeting rule.

Proposition 7.17. Under the same assumptions as in Proposition 7.16, suppose that

the central bank commits itself to a policy that ensures that (5.3) will be satisfied at each date

t ≥ t0. Then there are unique bounded rational-expectations equilibrium processes {πt, xt}
for dates t ≥ t0 consistent with this policy rule. Furthermore, the equilibrium determined

by this policy commitment is the same as the one characterized in Proposition 7.8. Thus

the proposed policy rule is optimal from a timeless perspective.

The proof is in the appendix. This type of rule corresponds to the “flexible price-level

target” advocated by Hall (1984).40 Note that our analysis provides a theoretical ground for

choosing a particular coefficient on the output gap in such a rule. As shown in chapter 6,

in the welfare-theoretic loss function, λ = κ/θ, where θ > 1 is the elasticity of substitution

among alternative goods, and the elasticity of demand faced by each of the monopolistically

competitive suppliers. It then follows that the optimal flexible price-level targeting rule

stabilizes the value of pt + θ−1xt. Since a reasonable calibration of θ must be much larger

than one (a valid on the order of 10 is most commonly assumed, in order for the model not

to imply an implausible degree of market power), this implies that the weight on the output

40The observation that timelessly optimal policies bring about equilibria consistent with a rule of this kind
explains our comment, in section xx of chapter 6, that the efficient frontier in Figure 6.xx corresponds to
flexible price-level targets with alternative weights on the output gap. The efficient frontier is constructed by
computing the optimal state-contingent evolution of inflation and of the output gap in the case of alternative
values of λ ranging between 0 and +∞. For each value of λ, the optimal policy is a member of the family
(5.3), but with a different weight on the output gap in each case.
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gap should be only a small fraction of the weight on the price level.

The targeting rule (5.3) is closely related to (5.1); indeed, committing to (5.1) from some

date t0 onward is equivalent to committing to a rule of the form (5.3) with a particular choice

of the price-level target, namely

p̄ = pt0−1 +
λ

κ
xt0−1.

However, the choice of p̄ is arbitrary, if one wishes only to ensure that the rule chosen is

optimal from a timeless perspective. Different rules in the family lead to the same long-run

average inflation rate (though different long-run average price levels), the same long-run

average output gap, and the same equilibrium responses to shocks. The associated equilibria

differ only in a transitory, deterministic component, as to which we can make no choice from

a timeless perspective.

5.2 Implementation of a Targeting Rule

The results in the previous section (Propositions 7.16 and 7.17) describe the state-contingent

evolution of inflation and output that should result, in a rational-expectations equilibrium,

if the central bank succeeds in ensuring that the target criterion is satisfied at all times.

But can a central bank actually ensure this, and hence bring about such an equilibrium?

It is appropriate to discuss further what sort of adjustment of its interest-rate instrument

this would involve. This means describing the conduct of policy in accordance with such

a rule in terms of the associated reaction function for the nominal interest rate that is the

policy instrument. We can then consider whether such a reaction function determines a

unique (or at least a unique non-explosive) rational-expectations equilibrium, and whether

this equilibrium should be learnable, along the lines of our analysis of the determinacy and

learnability of equilibrium under simple interest-rate rules in chapter 4.

Let us first consider the implementation of the targeting rule (5.1). The policy rule

specifies that it should be set in period t in such a way that the central bank projects values of

πt and xt consistent with equation (5.1). The interest-rate decision that this implies depends
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on the way in which the central bank constructs the projections for current inflation and

output conditional on alternative interest-rate decisions.

We shall suppose that the central bank’s model of the effects of alternative policies is

the correct one, i.e., that it consists of equations (2.1) and (2.23), together with a correct

understanding of the laws of motion of the exogenous disturbance processes. But this in

itself does not answer the question of what the central bank’s projection conditional on

its interest-rate decision should be, for according to the equations of the structural model,

current inflation and output, given the current nominal interest rate, depend on expectations

regarding the economy’s future evolution. One way of specifying these expectations would

be for the central bank to assume that the private sector expects the economy to evolve in

the future (i.e., in period t + 1 and later) according to the rational-expectations equilibrium

described in Proposition 7.16. That is, it assumes that the private sector expects it to succeed

in enforcing the target criterion in all periods from t + 1 onward, even though, for purposes

of constructing the conditional projection, the central bank contemplates the consequences

of deviation from the interest rate consistent with the policy rule in period t.

This means that the central bank expects the private sector to expect that in period t+1,

inflation and the output gap will be given by

πt+1 = (1− µ1)
λ

κ
xt +

1

β

∞∑

j=0

µ−j−1
2 Et+1ut+j+1,

xt+1 = mu1xt +
κ

βλ

∞∑

j=0

µ−j−1
2 Et+1ut+j+1.

Taking the expectations of these two expressions conditional upon period t information, one

obtains solutions for Etπt+1 and Etxt+1 as linear functions of xt and terms of the form Etut+j.

Substituting these solutions into the structural relations (2.1) and (2.23), one can then solve

those two relations for πt and xt as linear functions of it, r
n
t , and terms of the form Etut+j.

The bank’s projection of the current-period value of its target πt + (λ/κ)xt, conditional on

its current instrument choice it and given its information about the exogenous disturbances,



5. COMMITMENT TO AN OPTIMAL TARGETING RULE 77

would then equal

−σ

λ−1κ− σ

1

µ1(1− µ1)
(it − rn

t ) + ut − 1

β(1− µ1)

κ2 + λ

λ

∞∑

j=1

µ−j
2 Etut+j.

If the central bank equates this expression to (λ/κ)xt−1, as required in order for the

projection to satisfy (5.1), it obtains a relation that can be solved for it, yielding

it = rn
t + µ1

(
1− λσ

κ

) 



(1− µ1)κ

λσ
ut − κ

βλσ

(
1 +

κ2

λ

) ∞∑

j=1

µ−j
2 Etut+j − 1− µ1

σ
xt−1



 . (5.4)

This is what Evans and Honkapohja (2002) call the “fundamentals-based reaction function”

for implementation of the target criterion (5.1);41 it gives a formula for the central bank’s

operating target purely in terms of exogenous and predetermined variables.

However, while this relation is consistent with the desired state-contingent evolution of

the interest rate and other variables, a commitment to set interest rates in this way does

not necessarily imply a determinate equilibrium; Evans and Honkapohja show that for many

parameter values, it does not.42 For while the right-hand side of (5.4) does not depend solely

on exogenous variables, all dependence on either current or expected future endogenous

variables has been eliminated, by substituting the values that these variables are expected

to take in the desired equilibrium. But a central bank that commits itself to act as if the

desired equilibrium is being realized regardless of whether this is observed to be the case

does not act sufficiently decisively to ensure that this equilibrium is realized, rather than

some other one which is less desirable.

An alternative approach, recommended by Evans and Honkapohja, is for the central bank

not to substitute out for what the expectations Etπt+1 and Etxt+1 ought to be, given the

economy’s current state and the laws of motion that obtain in the desired equilibrium, but

41They define this reaction function, like (xxx) below, only for the case of disturbance processes of the
special forms (2.18) and (2.27); but the logic of their derivation is the one given here. Note that the
determinacy of equilibrium when the central bank commits itself to a reaction function of this form does not
depend on the statistical properties of the exogenous disturbance processes; only the coefficient with which
the lagged endogenous variable xt−1 enters matters for that.

42Svensson and Woodford (1999) reach a similar conclusion in the case of a closely related reaction function
in the case of a model in which the endogenous components of both inflation and output are predetermined
a period in advance.
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rather to condition its policy decision on what it actually observes current private-sector

expectations to be. Under this approach, the central bank produces its projections for

current-period inflation and output by solving the structural equations (2.1) and (2.23) for

πt and xt as functions of it, period t expectations, and the exogenous disturbances. In this

case, the bank’s projection for πt + (λ/κ)xt conditional on its current instrument choice is

given by

−σ
κ2 + λ

κ
(it − rn

t ) + ut +

[
β + σ

(
κ2 + λ

κ

)]
Etπt+1 +

κ2 + λ

κ
Etxt+1.

Equating this to (λ/κ)xt−1 and solving for it, one obtains the alternative reaction function

it = rn
t +

κ

σ(κ2 + λ)
ut +

[
1 +

βκ

σ(κ2 + λ)

]
Etπt+1 +

1

σ
Etxt+1 − λ

σ(κ2 + λ)
xt−1. (5.5)

Evans and Honkapohja call this an “expectations-based reaction function” intended to im-

plement (5.1).

If the central bank can commit itself to set interest rates in accordance with this reaction

function at all times, then rational-expectations equilibrium is necessarily determinate, due

to the following result.

Proposition 7.18. Consider an economy in which inflation and output are determined

by structural relations of the form (2.1) and (2.23), where the exogenous disturbances {ut, r
n
t }

are bounded processes but otherwise unrestricted, and suppose that the central bank sets

its nominal interest-rate instrument in accordance with (5.5) in each period t ≥ t0. Then

there is a determinate rational-expectations equilibrium evolution for inflation, output and

the nominal interest rate in periods t ≥ t0, and the state-contingent paths of inflation and

output are the ones characterized in Proposition 7.7. Hence such a policy is optimal from a

timeless perspective.

The proof of this result is simple. Equation (5.5), together with (2.1) and (2.23), implies

that (5.1) must hold in each period t ≥ t0. (This just reverses the steps in the derivation of

(5.5) sketched above.) But the system consisting of equations (2.1) and (5.1) has a unique
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bounded solution for inflation and output, from Proposition 7.16. Equation (2.23) can then

be solved for the associated bounded solution for the path of the nominal interest rate.

Furthermore, we know from Proposition 7.16 that the equilibrium determined in this way is

the one characterized in Proposition 7.7.

We thus see that a commitment to achieving the flexible inflation target (5.1) is actually

an equivalent policy to one that results from commitment to an interest-rate rule of the form

(5.5).

[MORE TO BE ADDED]
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