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Preface
There has been a tremendous improvement over the last twenty years in the mathemati-

cal, statistical, probabilistic and computational tools available to applied macroeconomists.
This extended set of tools has changed the way researchers have approached the problem of
testing models, validate theories or simply collect regularities from the data. The rational
expectation and the calibration revolutions have also forced researchers to try to build a
more solid bridge between theoretical and applied work, a bridge which was often missing
in much of the applied exercises conducted in the 1970s and the 1980s.

This books attempts to bring together dynamic general equilibrium theory, data analy-
sis, advanced econometric and computational methods to provide a comprehensive set of
techniques which can be used to address questions of interest to academics, business and
central bank economists in the fields of macroeconomics, business cycle analysis, growth
theory, monetary, financial, and international economics. The point of view taken is the
one of an applied economist facing time series data (at times a panel of them, coming from
different countries), who is interested in verifying the prediction of dynamic economic theo-
ries and in advising model builders and theorists on how to respecify existing constructions
to obtain better match between the model and the data. The book illustrates a number
of techniques which can be used to address the questions of interest, agnostically evalu-
ates their usefulness in bringing out information relevant to the users, provides examples
where the methods work (and where they don’t) and points out problems when approaches
developed for microeconomic data are used in time series frameworks.

Unavoidably, a modern treatment of such a complex topic requires a quantitative per-
spective, a solid dynamic theory background and the development of both empirical and
numerical methods. A quantitative perspective is needed to give empirical content to the-
ories; empirical methods must provide an effective link between economic theory and the
data; numerical techniques help us to solve complicated dynamic stochastic general equi-
librium (DSGE) models and to implement advanced econometric estimators, both in the
classical and Bayesian tradition. In some cases empirical methods are intimately linked with
the numerical procedure chosen to solve the model. In others, they are only constrained by
the restrictions economic theory imposes on the data.

Given this background, the structure of this book is quite different from the typical
graduate textbook both in macroeconomics and in econometrics. Rather than listing a series
of estimators and their properties for different data generating processes, this book starts
from a class of DSGE models, finds an approximate (linear) representation for the decision
rules and describes methods needed to estimate/choose their parameters, to examine their
fit to the data and to conduct interesting policy exercises. The first three chapters of the
book are introductory and review material extensively used in later chapters. In particular,
chapter 1 presents basic time series and probability concepts, a list of useful law of large
numbers and central limit theorems, which are employed in the discussions of chapters 4
to 8, and gives a brief overview of the basic elements of spectral analysis, heavily used
in chapters 3, 5 and 7. Chapter 2 presents a number of macroeconomic models currently
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used in the profession and discusses numerical methods needed to solve them. Most of
the examples and exercises of this book are based on versions of these models. Chapter
3 discusses procedures used to obtain interesting information about secular and cyclical
fluctuations in the data.

In the remaining chapters we present various methodologies to confront models to the
data and discuss how they can be used to address other interesting economic questions.
Given our empirical perspective, formal results are often stated without proofs and em-
phasis is given to their use in particular macroeconomic applications. Chapter 4 describes
minimalist vector autoregressive (VAR) approaches, where a limited amount of economic
theory is used to structure the data. Chapter 5 presents limited information methodologies
such as Generalized Methods of Moments (GMM), Simulated Method of Moments (SMM)
and general simulation approaches. Chapter 6 examines full information Maximum Likeli-
hood and in chapter 7 Calibration techniques are discussed. In chapter 8, we then branch
into dynamic macro panel methods, which can be used to effectively study cross-country
issues, and conclude the book with an extensive description of Bayesian methods and their
use for VAR and panel VAR models, for advanced time series specifications, and for DSGE
models (Chapters 9 to 11).

The approach of this book differs, for example, from the one of Hamilton (1994) or
Hayashi (2002), both of which are primarily directed to econometricians and are not directly
concerned with the question of validating dynamic economic models. The emphasis also
differs from more macroeconomic oriented books like Sargent and Liungqvist (2001) or
computationally oriented books like Judd (1998) or Miranda and Fackler (2002) in that
empirical methods play a larger role and the connection between theory, numerical and
empirical tools is explicitely spelled out.

The book is largely self-contained but presumes a basic knowledge of modern macroeco-
nomic theory (say, one or two quarters of a Ph.D. course in macroeconomics), of standard
econometrics (say, a quarter of a Ph. D. course in econometrics) and assumes that the reader
has or will acquire in the process some programming skills (e.g., RATS, Matlab, Gauss).
The book is thought for a year long sequence starting from second semester of a first year
econometric/ applied macroeconomics course and continuing with the first semester of a
second year macroeconometric course. Roughly, the first 5 chapters and the seventh could
be thought in first part, chapter 6 and the last four in the second part. This is the setup I
have used in teaching this material over a number years and it seems the natural division
between what I consider basic and advanced material.

Ph. D. students at Brown University, University of Rochester, Universitat Pompeu
Fabra, Universita’ di Napoli, University of Porto, University of Southampton, London Busi-
ness School, Bocconi University, Universita’ Milano-Bicocca; participants in various editions
of the Barcelona Summer School in Macroeconomics (BSSM), of the European Economic
Association (EEA) Summer school in Macroeconomics, Paris, of the Center for Financial
Studies (CFS) Summer school in Macroeconomics, Eltville (Germany), of the ZEI Summer
School in Bonn, of the course for Central Bankers in Genzersee (Switzerland); and atten-
dants of various intense and short courses at the ECB, Bank of England, Bank of Italy,
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Bank of Canada, Bank of Hungary, Riksbank, Bundesbank and European Business Cycle
Network (EABCN) have passed through several versions of this book and played around
with some of the codes which implement the procedures discussed in the book with some
practical examples. Some suffered; some enthusiastically embraced the philosophy of this
book; some were critical; some made useful comments and helped in debugging the codes,
all of them were encouraging. To all goes my thanks. I have learned a lot through the
process of writing this book and teaching its material, probably as much as students have
learned from the lectures and practical sessions.

Three people taught me to approach empirical problems in a sensible but rigorous way,
combining economic theory with advanced statistical tools and numerical methods, and to
be suspicious and critical of analyses which leave out one of the main ingredients of the cake.
Christopher Sims and Tom Sargent where of crucial importance in making me understand
that the grey area at the crossroad between theory and econometrics is a difficult but
exciting place to be and their uncompromising intellectual curiosity, their stern intuition
and their deep understanding of economic and policy issues has been an extraordinary
lever behind this book. Adrian Pagan shaped my (somewhat cynical) view of what should
and can be done with the data and the models. I always like to argue with him because
his unconventional views helped to bring out often forgotten methodological and practical
aspects. And on most issues of interest to applied macroeconomists he was more often
right than wrong. This book would not have been possible without their fundamental
inputs. As mentors, there was no one comparable to them. I also have an intellectual debit
with Ed Prescott. It was his brusc refusal to follow the traditional econometric track that
made me understand the need to create a different and more solid link between theory,
econometric and statistical techniques and the data. Several of my collegues, in particular
Albert Marcet and Morten Ravn, Jordi Gali, Lucrezia Reichlin, Harald Uhlig, Carlo Favero,
Marco Maffezzoli and Luca sala contributed to form and develop some of the ideas presented
in the book. A special thanks goes to Tom Doan, Marco del Negro, Chris Sims, Kirdan
Lees and Adrian Pagan, who spotted mistakes and imprecisions in earlier versions of the
manuscript.

Writing a textbook is difficult. Writing an advanced textbook, which bring together
material from different fields, is even more formidable. Many times I run out of steam,
I got bored and was ready to give up and do something different. Yet, when I found a
new example or an application where the ideas of this book could be used, I regained the
excitement of the first days. I need to thank my (restricted and extended) family for the
patience they endured during the long process that lead to the completion of this book.
Dynamic macroeconomics is in part about intertemporal substitution. Patience is probably
built on the same principle.



Chapter 1: Preliminaries

This chapter is introductory and it is intended for readers who are unfamiliar with time
series concepts, with the properties of stochastic processes, with basic asymptotic theory
results and with the a-b-c of spectral analysis. Those who feel comfortable with these topics
can skip it and directly proceed to chapter 2.

Since the material is vast and complex, an effort is made to present it at the simplest
possible level, emphasizing a selected number of topics and only those aspects which are
useful for the central topic of this book: comparing the properties of dynamic stochastic
general equilibrium (DSGE) models to the data. This means that intuition rather than
mathematical rigor is stressed. More specialized books, such as Brockwell and Davis (1990),
Davidson (1994), Priestley (1980) or White (1984), provide a comprehensive and in-depth
treatment of these topics.

When trying to provide background material, there is always the risk of going too far
back to the basics and so to speak ”attempt to reinvent the wheel”. To avoid this, we
assume that the reader knows simple calculus concepts like limits, continuity and uniform
continuity of functions of real numbers and that she is familiar with distributions functions
and measures.

The chapter is divided in six sections. The first defines what a stochastic process is. The
second examines the limiting behavior of stochastic processes introducing four concepts of
convergence and characterizing their relationships. Section 3 deals with time series concepts.
Section 4 deals with laws of large numbers. These laws are useful to insure that functions
of stochastic processes converge to appropriate limits. We examine three situations: a
case where the elements of a stochastic process are dependent and identically distributed;
one where they are dependent and heterogeneously distributed and one where they are
martingale differences. Section 5 describes three central limit theorems corresponding to
the three situations analyzed in section 4. Central limit theorems are useful to derive the
limiting distribution of functions of stochastic processes and are the basis for (classical)
tests of hypotheses and for some model evaluation criteria.

Section 6 presents elements of spectral analysis. Spectral analysis is useful for breaking
down economic time series into components (trends, cycles, etc.), for building measures
of persistence in response to shocks, for computing the asymptotic covariance matrix of
certain estimators and for defining measures of distance between a model and the data. It
may be challenging at first. However, once it is realized that most of the functions typically
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performed in everyday life employ spectral methods (frequency modulation in a stereo;
frequency band reception in a cellular phone, etc.), the reader should feel more comfortable
with it. Spectral analysis offers an alternative way to look at time series, translating serially
dependent time observations in contemporaneously independent frequency observations.
This change of coordinates allows us to analyze the primitive cycles which compose time
series, discuss their length, amplitude and persistence.

Whenever not explicitly stated, the machinery presented in this chapter applies to both
scalar and vector stochastic processes. The notation {yt(κ)}∞t=−∞ indicates the sequence
{. . . , y0(κ), y1(κ), . . . , yt(κ), . . .} where, for each t, the random variable yt(κ) is a measur-
able function 1 of the state of nature κ, i.e. yt(κ) : K → R, where R is the real line and
K the space of states of nature. We also assume that at each τ {yτ (κ)}tτ=−∞ is known
so that any function h(yτ ) will be ”adapted” to this information structure. To simplify
the notation at times we write {yt(κ)} or yt. A normal random variable with zero mean
and variance Σy is denoted by yt ∼ N(0,Σy) and a random variable uniformly distributed
over the interval [a1, a2] is denoted by yt ∼ U[a1, a2]. Finally, iid indicates identically and
independently distributed random variables.

1.1 Stochastic Processes

Definition 1.1 (Stochastic Process): A stochastic process {yt(κ)}∞t=1 is a probability
measure defined on sets of sequences of real vectors (the “paths” of the process).

The definition implies, among other things, that the set of paths X = {y : yt(κ) ≤ (},
for arbitrary ( ∈ R, t fixed, has well-defined probabilities. In other words, choosing
different ( ∈ R for a given t, and performing countable unions, finite intersections and
complementing the above set of paths, we generate a set of events with proper probabilities.
Note that yt is unrestricted for all τ ≤ t: the realization needs not to exceed ( only at t.
Observable time series are realizations of a stochastic process {yt(κ)}∞t=1, given κ 2.

Example 1.1 Two simple stochastic processes are the following:
1) {yt(κ)} = e1 cos(t×e2), where e1, e2 are random variables, e1 > 0 and e2 ∼ U[0, 2π), t >
0. Here yt is periodic: e1 controls the amplitude and e2 the periodicity of yt.
2) {yt(κ)} is such that P [yt = ±1] = 0.5 for all t. Such a process has no memory and flips
between -1 and 1 as t changes.

Example 1.2 It is easy to generate complex stochastic processes from primitive ones. For
example, if e1t ∼ N(0, 1), e2t ∼ U(0, 1] and independent of each other, yt = e2t exp{ e1t

1+e1t
}

is a stochastic process. Similarly, yt =
PT

t=1 et, et iid ∼ (0, 1) is a stochastic process.
1A function of h is F-measurable if for every real number (, the set [κ : h(κ) < (] belongs to F, where

F is typically chosen to be the collection of Borel sets of R∞ = R×R× . . . .
2A stochastic process could also be defined as a sequence of random variables which are jointly measurable,

see e.g. Davidson, 1994, p. 177.
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1.2 Concepts of Convergence

In a classical framework the properties of estimators are obtained using sequences of es-
timators indexed by the sample size, and showing that these sequences approach the true
(unknown) parameter value as the sample size grows to infinity. Since estimators are contin-
uous functions of the data, we need to insure that the data possesses a proper limit and that
continuous functions of the data inherit these properties. To show that the former is the
case one can rely on a variety of convergence concepts. The first two deal with convergence
of the sequence, the next with its moments and the latter with its distribution.

1.2.1 Almost sure (a.s.) convergence

The concept of a.s. convergence extends the idea of convergence to a limit employed in the
case of a sequence of real numbers.

As we have seen, the elements of the sequence yt(κ) are functions of the state of nature.
However, once κ = κ̄ is drawn, {y1(κ̄), . . . , yt(κ̄), . . .} looks like a sequence of real numbers.
Hence, given κ = κ̄, convergence can be similarly defined.

Definition 1.2 (almost sure convergence) yt(κ) converges almost surely to y(κ) < ∞,
denoted by {yt(κ)} a.s.→ y(κ), if limT→∞ P [||yt(κ) − y(κ)|| ≤ ε, ∀t > T ] = 1, for
κ ∈ K1 ⊆ K, and every ε > 0.

According to definition 1.2 {yt(κ)} converges almost surely (a.s.) if the probability of
obtaining a path for yt which converges to y(κ) after some T is one. The probability is
taken over κ’s. The definition implies that failure to converge is possible, but it will almost
never happen. When K is infinite dimensional, a.s. convergence is called convergence almost
everywhere; sometimes a.s. convergence is termed convergence with probability 1 or strong
consistency criteria.

Next, we describe the limiting behavior of functions of a.s. convergent sequences.

Result 1.1 Let {yt(κ)} a.s.→ y(κ). Let h be a n × 1 vector of functions, continuous at
y(κ). Then h(yt(κ))

a.s.→ h(y(κ)). 2

Result 1.1 is a simple extension of the standard fact that continuous functions of con-
vergent sequences are convergent.

Example 1.3 Given κ, let {yt(κ)} = 1− 1
t and let h(yt(κ)) =

1
T

P
t yt(κ). Then h(yt(κ))

is continuous at limt→∞ yt(κ) = 1 and h(yt(κ))
a.s.→ 1.

Exercise 1.1 Suppose {yt(κ)} = 1/t with probability 1 − 1/t and {yt(κ)} = t with proba-
bility 1/t. Does {yt(κ)} converge almost surely to 1?

In some applications we will be interested in examining situations where a.s. convergence
does not hold. This can be the case when the observations have a probability density
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function that changes over time or when matrices appearing in the formula for estimators
do not converge to fixed limits. However, even though h(y1t(κ)) does not converge to
h(y(κ)), it may be the case that the distance between h(y1t(κ)) and h(y2t(κ)) becomes
arbitrarily small as t → ∞, where {y2t(κ)} is another sequence of random variables.
To obtain convergence in this situation we need to strengthen the conditions by requiring
uniform continuity of h (for example, assuming continuity on a compact set).

Result 1.2 Let h be continuous on a compact set R2 ∈ Rm. Suppose that {y1t(κ)} −
{y2t(κ)} a.s.→ 0 and there exists an � > 0 such that for all t > T , [|y1t − y2t| < �] ⊂ R2, t
large. Then h(y1t(κ))− h(y2t(κ))

a.s.→ 0. 2

One application of result 1.2 is the following: suppose {y1t(κ)} is some actual time
series and {y2t(κ)} is its counterpart simulated from a model where the parameters of the
model and κ are given, and let h be some continuous statistics, e.g. the mean or the
variance. Then, result 1.2 tells us that if simulated and actual paths are close enough as
t→∞, statistics generated from these paths will also be close.

1.2.2 Convergence in Probability

Convergence in probability is weaker concept than almost sure convergence.

Definition 1.3 (Convergence in Probability) If there exists a y(κ) < ∞ such that, for

every � > 0, P [κ : ||yt(κ)− y(κ)|| < �]→ 1, for t→∞, then {yt(κ)} P→ y(κ).

P→ is weaker than
a.s.→ because in the former we only need the joint distribution of

(yt(κ), y(κ)) not the joint distribution of (yt(κ), yτ (κ), y(κ)) ∀τ > T.
P→ implies that it

is less likely that one element of the {yt(κ)} sequence is more than an � away from y(κ) as
t→∞. a.s.→ implies that after T, the path of {yt(κ)} is not far from y(κ) as T →∞.

Hence, it is easy to build examples where
P→ does not imply

a.s.→ .

Example 1.4 Let yt and yτ be independent ∀t, τ , let yt be either 0 or 1 and let

P [yt = 0] =


1/2 t = 1, 2
2/3 t = 3, 4
3/4 t = 5 · · · 8
4/5 t = 9 · · · 16

Then P [yt = 0] = 1 − 1
j for t = 2(j−1)+1, . . . , 2j , j > 1, so that yt

P→ 0. This is because
the probability that yt is in one of these classes is 1/j and, as t → ∞, the number
of classes goes to infinity. However, yt does not converge almost surely to zero since the
probability that a convergent path is drawn is zero; i.e., if at t we draw yt = 1, there is a

non-negligible probability that yt+1 = 1 is drawn. In general, yt
P→ 0 is too slow to insure

that yt
a.s.→ 0.
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Although convergence in probability does not imply almost sure convergence, the fol-
lowing result shows how the latter can be obtained from the former.

Result 1.3 If yt(κ)
P→ y(κ), there exist a subsequence ytj (κ) such that ytj(κ)

a.s.→ y(κ)
(see, e.g., Lukacs, 1975, p. 48). 2

Intuitively, since convergence in probability allows a more erratic behavior in the converging
sequence than almost sure convergence, one can obtain the latter by disregarding the erratic
elements. The concept of convergence in probability is useful to show “weak” consistency
of certain estimators.

Example 1.5 (i) Let yt be a sequence of iid random variables with E(yt) < ∞. Then
1
T

PT
t=1 yt

a.s.→ E(yt) (Kolmogorov strong law of large numbers).

(ii) Let yt be a sequence of uncorrelated random variables, E(yt) <∞, var(yt) = σ2y <

∞, cov(yt, yt−τ ) = 0 for all τ 6= 0. Then 1
T

PT
t=1 yt

P→ E(yt) (Chebyshev weak law
of large numbers).

In example 1.5 strong consistency requires iid random variables, while for weak con-
sistency we just need a set of uncorrelated random variables with identical means and
variances. Note also that, weak consistency requires restrictions on the second moments of
the sequence which are not needed in the former case.

The analogs of results 1.1 and 1.2 for convergence in probability can be easily obtained.

Result 1.4 Let {yt(κ)} be such that {yt(κ)} P→ y(κ). Then h(yt(κ))
P→ h(y(κ)), for

any h continuous at y(κ) (see White, 1984, p. 23). 2

Result 1.5 Let h be continuous on a compact R2 ⊂ Rm. Let {y1t(κ)} and {y2t(κ)} be
such that {y1t(κ)} − {y2t(κ)} P→ 0 for t → ∞. Then h(y1t(κ)) − h(y2t(κ))

P−→ 0 (see
White, 1984, p. 25). 2

Sometimes yt may converge to a limit which does not belong to the space of the random
variables which make up the sequence; e.g., the sequence yt =

P
j ej , where each ej is iid

has a limit which is not in the space of iid variables. In other cases, the limit point may be
unknown. For all these cases, we can redefine almost sure convergence and convergence in
probability using the concept of Cauchy sequences.

Definition 1.4 (Convergence a.s and in Probability): {yt(κ)} converges a.s. if and only
if for every � > 0, limT→∞ P [||yt(κ) − yτ (κ)|| > �, for some τ > t ≥ T (κ, �)] → 0 and
converges in probability if and only if for every � > 0, limt,τ→∞ P [||yt(κ)−yτ (κ)|| > �]→ 0.
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1.2.3 Convergence in Lq-norm.

While almost sure convergence and convergence in probability concern the path of yt, Lq-
convergence refers to the q-th moment of yt. Lq-convergence is typically analyzed when
q = 2 (convergence in mean square); when q = 1 (absolute convergence); and when q =∞
(minmax convergence).

Definition 1.5 (Convergence in the norm): {yt(κ)} converges in the Lq-norm, (or, in

the qth-mean), denoted by yt(κ)
q.m.→ y(κ), if there exists a y(κ) < ∞ such that

limt→∞E[|yt(κ)− y(κ)|q] = 0, for some q > 0.

Obviously, if the qth-moment does not exist, convergence in Lq does not apply (i.e., if
yt is a Cauchy random variable, Lq convergence is meaningless for all q), while convergence
in probability applies even when moments do not exist. Intuitively, the difference between
the two types of convergence lies in the fact that the latter allows the distance between yt
and y to get large faster than the probability gets smaller, while this is not possible with
Lq convergence.

Exercise 1.2 Let yt converge to 0 in Lq. Show that yt converges to 0 in probability.
(Hint: Use Chebyshev’s inequality.)

Exercise 1.2 indicates that Lq convergence is stronger than convergence in probability.
The following result provides conditions insuring that convergence in probability imply

Lq-convergence.

Result 1.6 If yt(κ)
P→ y(κ) and supt{lim∆→∞ E(|yt|qI[|yt|≥∆])} = 0, where I is an indi-

cator function, then yt(κ)
q.m.→ y(κ) (Davidson, 1994, p.287). 2

Hence, convergence in probability plus the restriction that |yt|q is uniformly integrable,
insures convergence in the Lq-norm. In general, there is no relationship between Lq and
almost sure convergence. The following shows that the two concepts are distinct.

Example 1.6 Let yt(κ) = t if κ ∈ [0, 1/t) and yt(κ) = 0 otherwise. Then the set {κ :
limt→∞ yt(κ) 6= 0} includes only the element {0} so yt

a.s.→ 0. However E|yt|q = 0 ∗ (1 −
1/t) + tq/t = tq−1. Since yt is not uniformly integrable it fails to converge in the q-mean
for any q > 1 ( for q = 1, E|yt| = 1, ∀t). Hence, the limiting expectation of yt differs from
its almost sure limit.

Exercise 1.3 Let

yt =


1 with probability 1− 1/t2

t with probability 1/t2

Show that the first and second moments of yt are finite. Show that yt
P→ 1 but that yt

does not converge in quadratic mean to 1.
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The next result shows that convergence in the Lq0 -norm obtains when we know that
convergence in the Lq-norm occurs, q > q0. The result makes use of Jensen’s inequality,
which we state next: Let h be a convex function on R1 ⊂ Rm and y be a random
variable such that P [y ∈ R1] = 1. Then h[E(y)] ≤ E(h(y)). If h is concave on
R1, h(E(y)) ≥ E(h(y)).

Example 1.7 For h(y) = y−2, Eh(y) = E(y−2) ≤ 1/E(y2) = h(E(y)).

Result 1.7 Let q0 < q. If yt(κ)
q.m.→ y(κ), then yt(κ)

q0.m.→ y(κ). 2

Example 1.8 Let K = {κ1,κ2} and P (κ1) = P (κ2) = 0.5. Let yt(κ1) = (−1)t, yt(κ2) =
(−1)t+1 and let y(κ1) = y(κ2) = 0. Clearly, yt converges in the Lq-norm. To confirm this
note, for example, that limt→∞E[|yt(κ)− y(κ)|2] = 1. Since yt converges in mean square,
it must converge in absolute mean. In fact, limt→∞E[|yt(κ)− y(κ)|] = 1.

1.2.4 Convergence in Distribution

Definition 1.6 (Convergence in Distribution): Let {yt(κ)} be a m× 1 vector with joint
distribution Dt. If Dt(z)→ D(z) as t→∞, for every point of continuity z, where D
is the distribution function of a random variable y(κ), then yt(κ)

D→ y(κ).

Convergence in distribution is the weakest convergence concept and does not imply, in
general, anything about the convergence of a sequence of random variables. Moreover,
while the previous three convergence concepts require {yt(κ)} and the limit y(κ) to be
defined on the same probability space, convergence in distribution is meaningful even when
this is not the case.

It is useful to characterize the relationship between convergence in distribution and
convergence in probability.

Result 1.8 Suppose yt(κ)
P→ y(κ) < ∞, y(κ) constant. Then yt(κ)

D→ Dy, where
Dy is the distribution of a random variable z such that P [z = y(κ)] = 1. Conversely, if

yt(κ)
D→ Dy, then yt

P→ y (see Rao, 1973, p. 120). 2

Note that the first part of result ?? could have been obtained directly from result 1.4,
had we assumed that Dy is a continuous function of y.

The next two results are handy when demonstrating the limiting properties of a class
of estimators in dynamic models. Note that y1t(κ) is Op(t

j) if there exists an O(1)

nonstochastic sequence y2t such that ( 1
tj
y1t(κ) − y2t)

P→ 0 and that y2t is O(1) if for
some 0 < ∆ <∞, there exists a T such that |y2t| < ∆ for all t ≥ T .
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Result 1.9 (i) If y1t
P→ (, y2t

D→ y then y1ty2t
D→ (y, y1t + y2t

D→ (+ y, where ( is a
constant (Davidson, 1994, p.355).

(ii) If y1t and y2t are sequences of random vectors, y1t − y2t
P→ 0 and y2t

D→ y imply

that y1t
D→ y. (Rao, 1973, p.123) 2

Part (ii) of result 1.9 is useful when the distribution of y1t cannot be determined
directly. In fact, if we can find a y2t with known asymptotic distribution, which converges
in probability to y1t, then the distributions of y1t and y2t will coincide. We will use
this result in chapter 5 when discussing two-steps estimators.

The limiting behavior of continuous functions of sequences which converge in distribution
is easy to characterize. In fact we have:

Result 1.10 Let yt
D→ y. If h is continuous, h(yt)

D→ h(y) (Davidson, 1994, p. 355). 2

1.3 Time Series Concepts

Most of the analysis conducted in this book assumes that observable time series are sta-
tionary and have memory which dies out sufficiently fast over time. In some cases we will
use alternative and weaker hypotheses which allow for selected forms of non-stationarity
and/or for more general memory requirements. This section provides definitions of these
concepts and compare various alternatives.

We need two preliminary definitions:

Definition 1.7 (Lag operator): The lag operator is defined by cyt = yt−1 and c−1yt = yt+1.
When applied to a sequence of m ×m matrices Aj , j = 1, 2, . . ., the lag operator produces
A(c) = A0 +A1c+A2c2 + . . ..

Definition 1.8 (Autocovariance function): The autocovariance function of {yt(κ)}∞t=−∞
is ACFt(τ) ≡ E(yt(κ)−E(yt(κ)))(yt−τ (κ)− E(yt−τ (κ))) and its autocorrelation function
ACRFt(τ) ≡ corr(yt, yt−τ ) = ACFt(τ)√

var(yt(κ))var(yt−τ (κ))
.

In general, both the autocovariance and the autocorrelation functions depend on time
and on the gap between yt and yt−τ .

Definition 1.9 (Stationarity 1): {yt(κ)}∞t=−∞ is stationary if for any set of paths X =
{yt(κ) : yt(κ) ≤ (, ( ∈ R,κ ∈ K}, P (X) = P (cτX), ∀τ , where cτX = {yt−τ (κ) : yt−τ (κ) ≤
(}.

A process is stationary if shifting a path over time does not change the probability
distribution of that path. In this case the joint distribution of {yt1, . . . , ytj} is the same as
the joint distribution of {yt1+τ , . . . , ytj+τ }, ∀τ. A weaker concept is the following:
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Definition 1.10 (Stationarity 2): {yt(κ)}∞t=−∞ is covariance (weakly) stationary if E(yt)
is constant; E|yt|2 <∞; ACFt(τ) is independent of t.

Definition 1.10 is weaker than 1.9 in several senses: first, it involves the distribution of yt
at each t and not the joint distribution of a (sub)sequence of yt’s. Second, it only concerns
the first two moments of yt. Clearly, a stationary process is weakly stationary, while the
converse is true, only when yt’s are normal random variables. In fact, when yt is normal,
the first two moments characterize the entire distribution and the joint distribution of a
{yt}∞t=1 path is normal.
Example 1.9 Let yt = e1 cos(ωt)+e2 sin(ωt), where e1, e2 are uncorrelated with mean zero,
unit variance and ω ∈ [0, 2π]. Clearly, the mean of yt is constant and E|yt|2 < ∞. Also
cov(yt, yt+τ ) = cos(ωt) cos(ω(t+τ))+sin(ωt) sin(ω(t+τ)) = cos(ωτ). Hence yt is covariance
stationary.

Exercise 1.4 Suppose yt = et if t is odd and yt = et +1 if t is even, where et ∼ iid (0, 1).
Show that yt is not covariance stationary. Show that yt = ȳ + yt−1 + et, et ∼ iid (0, σ2e),
where ȳ is a constant is not stationary but that ∆yt = yt − yt−1 is stationary.

When {yt} is stationary, its autocovariance function has three properties: (i) ACF (0) ≥
0, (ii) |ACF (τ)| ≤ ACF (0), (iii) ACF (−τ) = ACF (τ) for all τ . Furthermore, if y1t and
y2t are two stationary uncorrelated sequences, y1t+y2t is stationary and the autocovariance
function of y1t + y2t is ACFy1(τ) +ACFy2(τ).

Example 1.10 Consider the process yt = ȳ + at + Det, where |D| < 1 and et ∼ (0, σ2).
Clearly yt is not covariance stationary since E(yt) = ȳ+at, which depends on time. Taking
first difference we have ∆yt = a +D∆et. Here E(∆yt) = a, E(∆yt − a)2 = 2D2σ2 > 0,
E(∆yt − a)(∆yt−1 − a) = −D2σ2 < E(∆yt − a)2, and E(∆yt − a)(∆yt+1 − a) = −D2σ2.

Exercise 1.5 Suppose y1t = ȳ + at + et, where et ∼ iid (0, σ2e) and ȳ, a are constants.
Define y2t =

1
2J+1

PJ
j=−J y1t+j. Compute the mean and the autocovariance function of y2t.

Is y2t stationary? Is it covariance stationary?

Definition 1.11 (Autocovariance generating function): The autocovariance generating
function of a stationary {yt(κ)}∞t=−∞ is CGF (z) =

P∞
τ=−∞ACF (τ)zτ , provided that the

sum converges for all z satisfying (−1 < |z| < (, ( > 1.

Example 1.11 Consider the process yt = et − Det−1 = (1 − Dc)et, |D| < 1, et ∼
iid (0, σ2e ). Here cov(yt, yt−j) = cov(yt, yt+j) = 0,∀j ≥ 2; cov(yt, yt) = (1 + D2)σ2e ;
cov(yt, yt−1) = −Dcσ2e ; cov(yt, yt+1) = −Dc−1σ2e . Hence

CGFy(z) = −Dσ2ez
−1 + (1 +D2)σ2ez

0 −Dσ2ez
1

= σ2e(−Dz−1 + (1 +D2)−Dz) = σ2e(1−Dz)(1−Dz−1) (1.1)
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Example 1.11 can be generalized to more complex processes. In fact, if yt = D(c)et,
CFGy(z) = D(z)ΣeD(z−1)0, and this holds for both univariate and multivariate yt. One
interesting special case occurs when z = e−iω = cos(ω)− i sin(ω), ω ∈ (0, 2π), i = √−1,
in which case S(ω) ≡ GCFy(e−iω)

2π = 1
2π

P∞
τ=−∞ACF (τ)e−iωτ is the spectral density of yt.

Exercise 1.6 Consider yt = (1 + 0.5c + 0.8c2)et, and (1 − 0.25c)yt = et where et ∼
iid (0, σ2e). Are these processes covariance stationary? If so, show the autocovariance and
the autocovariance generating functions.

Exercise 1.7 Let {y1t(κ)} be a stationary process and let h be a n×1 vector of continuous
functions. Show that y2t = h(y1t) is also stationary.

Stationarity is a weaker requirement than iid, where no dependence between elements of
a sequence is allowed, but it is stronger that the identically (not necessarily independently)
distributed assumption.

Example 1.12 Let yt ∼ iid (0, 1) ∀t. Since yt−τ ∼ iid (0, 1),∀τ any finite subsequence
yt1+τ , . . . , ytj+τ will have the same distribution and therefore yt is stationary. It is easy to
see that a stationary series is not necessarily iid. For instance, let yt = et − Det−1. If
|D| < 1, yt is stationary but not iid.

Exercise 1.8 Give an example of a process yt which is identically (but not necessarily
independently) distributed which is nonstationary.

A property of stationary sequences which insures that the sample average converges to
the population average is ergodicity. Ergodicity is typically defined in terms of invariant
events.

Definition 1.12 (Ergodicity 1): Suppose yt(κ) = y1(ct−1κ), all t. Then {yt(κ)} is ergodic
if and only if for any set of paths X = {yt(κ) : yt(κ) ≤ (, ( ∈ R}, with P (cτX) = P (X), ∀τ ,
P (X) = 0 or P (X) = 1.

Note that the ergodicity definition applies only to stationary sequences and that not all
stationary sequences are ergodic. In fact, only those for which the set of path X is itself
invariant to shifts qualify for the definition.

Example 1.13 Consider a path on a unit circle. Let X = (y0, . . . , yt) where each element
of the sequence satisfies yj(κ) = yj−1(cκ). Let P (X) be the length of the interval [y0, yt]).
Let cτX = {yo−τ , . . . , yt−τ} displace X by half a circle. Since P (cτX) = P (X), yt is
stationary. However, P (cτX) 6= 1 or 0 so yt is not ergodic.

A weaker definition of ergodicity is the following:

Definition 1.13 (Ergodicity 2): A (weakly) stationary process {yt(κ)} is ergodic if and
only if 1T

PT
t=1 yt

a.s.→ E[yt(κ)], where the expectation is taken with respect to κ.
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Definition 1.12 is stronger than definition 1.13 because it refers to the probability of
paths (the latter concerns only their first moment). Intuitively, if a process is stationary
its path converges to some limit. If it is stationary and ergodic, all paths (indexed by κ)
will converge to the same limit. Hence, one path is sufficient to infer the moments of its
distribution.

Example 1.14 Consider the process yt = et − 2et−1, where et ∼ iid (0, σ2e ). It is easy to
verify that E(yt) = 0, var(yt) = 5σ2e <∞ and cov(yt, yt−τ ) does not depend on t. Therefore
the process is covariance stationary. To verify that it is ergodic consider the sample
mean 1

T

P
t yt, which is easily shown to converge to 0 as T → ∞. The sample variance is

1
T

P
t y
2
t =

1
T

P
t(et − 2et−1)2 = 5

T

P
t e
2
t which converges to var(yt) as T →∞.

Example 1.15 Let yt = e1 + e2t t = 0, 1, 2, . . ., where e2t ∼ iid (0, 1) and e1 ∼
(1, 1). Clearly yt is stationary and E(yt) = 1. However,

1
T

P
t yt = e1 +

1
T

P
t e2t and

limT→∞ 1
T

P
t yt = e1 + limT→∞ 1

T

P
t e2t = e1, because 1

T

P
t e2t

a.s.→ 0. Since the time
average of yt (equal to e1) is different from the population average of yt (equal to 1), yt
is not ergodic.

What is wrong with example 1.15? Intuitively, yt is not ergodic because it has ”too
much” memory (e1 appears in yt for every t). In fact, for ergodicity to hold, the process
must ”forgets” its past reasonably fast.

Exercise 1.9 Consider the process yt = 0.6yt−1 + 0.2yt−2 + et, where et ∼ iid (0, 1). Is
yt stationary? Is it ergodic? Find the effect of a unitary change in et on yt+3. Repeat the
exercise for yt = 0.4yt−1 + 0.8yt−2 + et.

Exercise 1.10 Consider the bivariate process:

y1t = 0.3y1t−1 + 0.8y2t−1 + e1t

y2t = 0.3y1t−1 + 0.4y2t−1 + e2t

where E(e1te1τ ) = 1 for τ = t and 0 otherwise, E(e2te2τ ) = 2 for τ = t and 0 otherwise,
and E(e1te2τ ) = 0 for all τ, t. Is the system covariance stationary? Is it ergodic? Calculate
∂y1t+τ
∂e2t

for τ = 2, 3. What is the limit of this derivative as τ →∞?

Exercise 1.11 Suppose that at t time 0, {yt}∞t=1 is given by

yt =


1 with probability 1/2

0 with probability 1/2

Show that yt is stationary but not ergodic. Show that a single path (i.e. a path composed of
only 1’s and 0’s ) is ergodic.
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Exercise 1.12 Let yt = cos(π/2 · t) + et, where et ∼ iid (0, σ2e ). Show that yt is neither
stationary nor ergodic. Show that the sequence {yt, yt+4, yt+8 . . .} is stationary and ergodic.

Exercise 1.12 shows an important result: if a process is non-ergodic, it may be possible
to find a subsequence which is ergodic.

Exercise 1.13 Show that if {y1t(κ)} is ergodic, y2t = h(y1t) is ergodic if h is continuous.

A concept which bears some resemblance with ergodicity is the one of mixing.

Definition 1.14 (Mixing 1) Let B1 and B2 be two Borel algebra 3 and B1 ∈ B1 and
B2 ∈ B2 two events. Then φ-mixing and α-mixing are defined as follows:

φ(B1,B2) ≡ sup
{B1∈B1,B2∈B2:P (B1)>0}

|P (B2|B1)− P (B2)|

α(B1,B2) ≡ sup
{B1∈B1,B2∈A2}

|P (B2 ∩B1)− P (B2)P (B1)|.

Intuitively, φ-mixing and α-mixing measure the dependence of events. We say that
events in B1 and B2 are independent if both φ and α are zero. The function φ provides a
measure of relative dependence while α measures absolute dependence.

For a stochastic process α-mixing and φ-mixing are defined as follows. Let Bt−∞ be
the Borel algebra generated by values of yt from the infinite past up to t and B∞t+τ be the
Borel algebra generated by values of yt from t + τ to infinity. Intuitively, Bt−∞ contains
information up to t and B∞t+τ information from t+ τ on.

Definition 1.15 (Mixing 2): For a stochastic process {yt(κ)}, the mixing coefficients φ
and α are defined as: φ(τ) = supt φ(Bt−∞,B∞t+τ ) and α(τ) = supt α(B

j
−∞,B∞t+τ )

φ(τ) and α(τ), called respectively uniform and strong mixing, measure how much de-
pendence there is between elements of {yt} separated by τ periods. If φ(τ) = α(τ) = 0,
yt and yt+τ are independent. If φ(τ) = α(τ) = 0 as τ → ∞, they are asymptotically
independent. Note that because φ(τ) ≥ α(τ), φ-mixing implies α-mixing.

Example 1.16 Let yt be such that cov(ytyt−τ1) = 0 for some τ1. Then φ(τ) = α(τ) =
0, ∀τ ≥ τ1. Let yt = Ayt−1 + et, |A| ≤ 1, et ∼ iid (0, σ2e ). Then α(τ) = 0 as τ →∞.

Exercise 1.14 Show that if yt = Ayt−1+ et, |A| ≤ 1, et ∼ iid (0, σ2e), φ(τ) does not go to
zero as τ →∞.

3A Borel algebra is the smallest collection of subsets of the event space which allow us to express the
probability of an event in terms of the sets of the algebra.
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Mixing is a somewhat stronger memory requirement than ergodicity. Rosenblatt (1978)
shows the following result:

Result 1.11 Let yt be stationary. If α(τ)→ 0 as τ →∞, yt is ergodic. 2

Exercise 1.15 Use result 1.11 and the fact that φ(τ) ≥ α(τ) to show that if φ(τ)→ 0 as
τ →∞, a φ-mixing process is ergodic.

Both ergodicity and mixing are hard to verify in practice. A concept which bears some
relationship with both and it is easier to check is the following:

Definition 1.16 (Asymptotic Uncorrelatedness): yt(κ) has asymptotic uncorrelated ele-
ments if there exist constants 0 ≤ (τ ≤ 1, τ ≥ 0 such that

P∞
τ=0 (τ <∞ and cov(yt, yt−τ ) ≤

(τ
p
(var(yt)var(yt−τ ), ∀τ > 0, where var(yt) <∞, for all t.

Intuitively, if we can find an upper bound to the correlation of yt and yt−τ , ∀τ , and if the
accumulation over τ of this bound is finite, the process has a memory that asymptotically
dies out.

Example 1.17 Let yt = Ayt−1 + et et ∼ iid (0, σ2e ). Here corr(yt, yt−τ ) = Aτ and if
0 ≤ A < 1,

P
tA

τ <∞, so that yt has asymptotically uncorrelated elements.

Note that in definition 1.16 only τ > 0 matters. From example 1.17 it is clear that
when var(yt) is constant and the covariance of yt with yt−τ only depends on τ , asymptotic
uncorrelatedness is the same as covariance stationarity.

Exercise 1.16 Show that for
P∞

τ=0 (τ < ∞ it is necessary that (τ → 0 as τ → ∞ and
sufficient that ρτ < τ−1−b for some b > 0, τ sufficiently large.

Exercise 1.17 Suppose that yt is such that the correlation between yt and yt−τ goes to zero
as τ →∞. Is this sufficient to ensure that yt is ergodic?

Instead of assuming stationarity and ergodicity or mixing, one can assume that yt satis-
fies an alternative set of conditions. These conditions considerably broadens the set of time
series a researcher can deal with.

Definition 1.17 (Martingale): {yt} is a martingale with respect to the information set Ft
if yt ∈ Ft ∀t > 0 and Et[yt+τ ] ≡ E[yt+τ |Ft] = yt, for all t, τ.

Definition 1.18 (Martingale difference): {yt} is a martingale difference with respect to
the information set Ft if yt ∈ Ft, ∀t > 0 and Et[yt+τ ] ≡ E[yt+τ |Ft] = 0 for all t, τ.

Example 1.18 Let yt be iid with E(yt) = 0. Let Ft = {. . . , yt−1, yt} and let Ft−1 ⊆ Ft.
Then yt is a martingale difference sequence.
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Martingale difference is a much weaker requirement than stationarity and ergodicity
since it only involves restrictions on the first conditional moment. It is therefore easy to
build examples of processes which are martingale difference but are not stationary.

Example 1.19 Suppose that yt is iid with mean zero and variance σ2t . Then yt is a mar-
tingale difference, nonstationary process.

Exercise 1.18 Let y1t be a stochastic process and let y2t = E[y1t|Ft] be its conditional
expectation. Show that y2t is a martingale.

Using the identity yt = yt − E(yt|Ft−1) + E(yt|Ft−1) − E(yt|Ft−2) + E(yt|Ft−2) . . .,
one can write yt =

Pτ−1
j=0 Revt−j(t) + E(yt|Ft−τ ) for τ = 1, 2, . . . where Revt−j(t) ≡

E[yt|Ft−j ]−E[yt|Ft−j−1] is the one step ahead revision in yt, made with new information
accrued from t− j− 1 to t− j. Revt−j(t) plays an important role in deriving the properties
of functions of stationary processes, and will be extensively used in chapters 4 and 10.

Exercise 1.19 Show that Revt−j(t) is a martingale difference.

1.4 Law of Large Numbers

Laws of large numbers provide conditions to insure that quantities like 1T
P

t x
0
txt or

1
T

P
t z
0
txt,

which appear in the formulas of linear estimators like OLS or IV, stochastically converge
to well defined limits. Since different conditions apply to different kinds of economic data,
we consider here situations which are typically encountered in macro-time series contexts.
Given the results of section 2, we will describe only strong law of large numbers since weak
law of large numbers hold as a consequence.

Laws of large numbers typically come in the following form: given restrictions on the
dependence and the heterogeneity of the observations and/or some moments restrictions,
1
T

P
yt − E(yt)

a.s.→ 0. We will consider three cases: (i) yt has dependent and identically
distributed elements, (ii) yt has dependent and heterogeneously distributed elements, (iii)
yt has martingale difference elements. To better understand the applicability of each case
note that in all cases observations are serially correlated. In the first case we restrict the
distribution of the observations to be the same for every t; in the second we allow some
carefully selected form of heterogeneity (for example, structural breaks in the mean or in the
variance or conditional heteroschedasticity); in the third we do not restrict the distribution
of the process, but impose conditions on its moments.

1.4.1 Dependent and Identically Distributed Observations

To state a law of large numbers (LLN) for stationary processes we need conditions on
the memory of the sequence. Typically, one assumes ergodicity since this implies average
asymptotic independence of the elements of the {yt(κ)} sequence.
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The LLN is then as follows: Let {yt(κ)} be stationary and ergodic with E|yt| <∞ ∀t.
Then 1

T

P
t yt

a.s.→ E(yt) (See Stout, 1974, p. 181). 2

To use this law when dealing with econometric estimators recall that for any measurable
function h such that y2t = h(y1t), y2t is stationary and ergodic if y1t is stationary and
ergodic.

Exercise 1.20 (Strong consistency of OLS and IV estimators): Let yt = xtα0 + et; let
x = [x1 · · ·xT ]0, z = [z1, · · · zT ]0, e = [e1, · · · , eT ]0 and assume:
(i) x0e

T

a.s.→ 0

(i’) z0e
T

a.s.→ 0

(ii) x0x
T

a.s.→ Σxx, Σxx finite, |Σxx| 6= 0
(ii’) z0x

T

a.s.→ Σzx, Σzx finite, |Σzx| 6= 0
(ii”) z0x

T −Σzx,T
a.s.→ 0, where Σzx,T is O(1) random matrix which depends on T and has

uniformly continuous column rank.
Show that αOLS = (x

0x)−1(x0y) and αIV = (z
0x)−1(z0y) exist almost surely for T large

and that αOLS
a.s.→ α0 under (i)-(ii) and that αIV

a.s.→ α0 under (i’)-(ii’). Show that under
(i)-(ii”) αIV exists almost surely for T large, and αIV

a.s.→ α0. (Hint: If An is a sequence
of k1 × k matrices, then An has uniformly full column rank if there exist a sequence of
k × k submatrices ∆n which is uniformly nonsingular.)

1.4.2 Dependent and Heterogeneously Distributed Observations

To derive a LLN for dependent and heterogeneously distributed processes we drop the
ergodicity assumption and we substitute it with a mixing requirement. In addition, we
need to define the size of the mixing conditions:

Definition 1.19 Let 1 ≤ a ≤ ∞. Then φ(τ) = O(τ−b) for b > a/(2a − 1) implies that
φ(τ) is of size a/(2a − 1). If a > 1 and α(τ) = O(τ−b) for b > a/(a − 1), α(τ) is of size
a/(a − 1).

With definition 1.19 one can make precise statements on the memory of the process.
Roughly speaking, the memory of a process is related to a. As a → ∞, the dependence
increases while as a→ 1, the sequence exhibits less and less serial dependence.

The LLN is the following. Let {yt(κ)} be a sequence with φ(τ) of size a/(2a−1) or α(τ) of
size a/(a−1), a > 1 and E(yt) <∞, ∀t. If for some 0 < b ≤ a,

P∞
t=1(

E|yt−E(yt)|a+b
ta+b

)
1
a <∞,

then 1
T

P
t yt − E(yt)

a.s.→ 0. (see McLeish, 1975, theorem 2.10). 2.
Note that in the above law, the elements of yt are allowed to have distributions that

vary over time (e.g. E(yt) may depend on t) but the condition (E|yt−(E(yt)|
a+b

ta+b
)
1
a < ∞

restricts the moments of the process. Note that for a = 1 and b = 1, the above collapses to
Kolmogorov law of large numbers.

The moment condition can be weakened somewhat if we are willing to impose a bound on
the (a+ b)-th moment.
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Result 1.12 Let {yt(κ)} be a sequence with φ(τ) of size a/(2a− 1) or α(τ) of size a/(a−
1), a > 1 such that E|yt|a+b is bounded for all t. Then 1

T

P
t yt −E(yt)

a.s.→ 0. 2

The next result mirrors the one obtained for stationary ergodic processes.

Result 1.13 Let h be a measurable function and y2τ = h(y1t, . . . y1t+τ ), τ finite. If y1t is
mixing such that φ(τ) (α(τ)) is O(τ−b) for some b > 0, y2τ is mixing such that φ(τ) (α(τ))
is O(τ−b). 2

From the above result it immediately follows that if {zt, xt, et} is a vector of mixing
processes, {x0txt}, {x0tet}, {z0txt}, {z0tet}, are also mixing processes of the same size.

A useful result when observations are heterogeneous is the following:

Result 1.14 Let {yt(κ)} be a such that
P∞

t=1E|yt| <∞. Then
P∞

t=1 yt converges almost
surely and E(

P∞
t=1 yt) =

P∞
t=1E(yt) <∞ (see White, 1984, p.48). 2

A LLN for processes with asymptotically uncorrelated elements is the following. Let
{yt(κ)} be a process with asymptotically uncorrelated elements, mean E(yt), variance σ2t <
∆ <∞. Then 1

T

P
t yt −E(yt)

a.s.→ 0.
Compared with result 1.12, we have relaxed the dependence restriction from mixing

to asymptotic uncorrelation at the cost of altering the restriction on moments of order
a+ b (a ≥ 1, b ≤ a) to second moments. Note that since functions of asymptotically uncor-
related processes are not asymptotically uncorrelated, to prove consistency of econometric
estimators when the regressors have asymptotic uncorrelated increments we need to make
assumptions on quantities like {x0txt}, {x0tet}, etc. directly.

1.4.3 Martingale Difference Process

A LLN for this type of processes is the following: Let {yt(κ)} be a martingale difference.
If for some a ≥ 1,P∞

t=1
E|yt|2a
t1+a <∞, then 1

T

P
t yt

a.s.→ 0.

The martingale LLN requires restrictions on the moments of the process which are
slightly stronger than those assumed in the case of independent yt. The analogous of result
1.12 for martingale differences is the following.

Result 1.15 Let {yt(κ)} be a martingale difference such that E|yt|2a < ∆ < ∞, some
a ≥ 1 and all t. Then 1

T

P
t yt

a.s.→ 0. 2

Exercise 1.21 Suppose {y1t(κ)} is a martingale difference. Show that y2t = y1tzt is a
martingale difference for any zt ∈ Ft.

Exercise 1.22 Let yt = xtα0+et, and assume (i) et is a martingale difference; (ii) E(x
0
txt)

is positive and finite. Show that αOLS exists and αOLS
a.s.→ α0.
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1.5 Central Limit Theorems

There are also several central limit theorems (CLT) available in the literature. Clearly,
their applicability depends on the type of data a researcher has available. In this section we
list CLTs for the three cases we have described in section 4. Loeve (1977) or White (1984)
provide theorems for other relevant cases.

1.5.1 Dependent and Identically Distributed Observations

A central limit theorem for dependent and identically distributed observations can be ob-
tained using two conditions. First, we need a restriction on the variance of the process.
Second, we need to impose E(yt|Ft−τ ) → 0 for τ → ∞ (referred as linear regularity in

chapter 4) or E[yt|Ft−τ ] q.m.−→ 0 as τ →∞. The second condition is obviously stronger than
the first one. Restrictions on the variance of the process are needed since when yt is a
dependent and identically distributed process its variance is the sum of the variances of the
forecast revisions made at each t, and this may not converges to a finite limit. We ask the
reader to show this in the next two exercises.

Exercise 1.23 Let var(yt) = σ2y <∞. Show that cov(Revt−j(t), Revt−j0(t)) = 0, j < j0,
where Revt−j(t) was defined right before exercise 1.19. Note that this implies that σ2y =
var(

P∞
j=0Revt−j(t)) =

P∞
j=0 var(Revt−j(t)).

Exercise 1.24 Let σ2T = T × E((T−1
PT

t=1 yt)
2). Show that σ2T = σ2y + 2σ

2
y

PT−1
τ=1 ρτ (1 −

τ/T ), where ρτ = E(ytyt−τ )/σ2y . Give conditions on yt that make ρτ independent of t. Show
that σ2T grows without bound as T →∞.

A sufficient condition insuring that σ2T converges is that
P∞

j=0(varRevt−j(t))
1/2 <∞.

ACLT is then as follows: Let (i) {yt(κ)} be stationary and ergodic process, yt ∈ Ft ∀t >
0 ; (ii)E(y2t ) = σ2y <∞; (iii)E(yt|Ft−τ )

q.m.−→ 0 as τ →∞; (iv)P∞
j=0(varRevt−j(t))

1/2 <∞.
Then, as T →∞, 0 6= σ2T −→ σ̄2y <∞ and

√
T
( 1
T t yt)

σT

D→ N(0, 1) (see Gordin, 1969). 2

Example 1.20 An interesting pathological case obtains when σ̄2T = 0. Consider for example
yt = et − et−1, et ∼ iid(0, σ2e). Then σ̄2T = 2σ

2
e − 2σ2e = 0. Hence 1

T

P
t yt =

1
T (yt − y0) and√

T ( 1T
P

t yt)
P→ 0.

Exercise 1.25 Assume that (i) E[xtjietj |Ft−1] = 0 ∀t i = 1, . . . ; j = 1, . . .; (ii) E[xtjietj ]2

< ∞; (iii) ΣT ≡ var(T−1/2x0e) → var(x0e) ≡ Σ as T → ∞ is nonsingular and positive
definite; (iv)

P
j(varRevt−j(t))

−1/2 <∞; (v) (xt, et) are stationary ergodic sequences; (vi)
E|xtji|2 <∞; (vii) Σxx ≡ E(x0txt) is positive definite. Show that (Σ−1xxΣΣ−1

0
xx )

−1/2√T (αOLS−
α0)

D∼ N(0, I) where αOLS is the OLS estimator of α0 in the model yt = xtα0 + et and T
is the number of observations.
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1.5.2 Dependent Heterogeneously Distributed Observations

The CLT in this case is the following: Let {yt(κ)} be a sequence of mixing random
variables such that either φ(τ) or α(τ) is of size a/a− 1, a > 1 with E(yt) = 0; and
E|yt|2a < ∆ <∞, ∀t. Define yb,T = 1√

T

Pb+T
t=b+1 yt and assume there exists a 0 6= σ2 <∞,

such that E(y2b,T ) −→ σ2 for T → ∞, uniformly in b. Then
√
T
( 1
T t yt)

σT

D→ N(0, 1),
where σ2T ≡ E(y20,T ) (see White and Domowitz (1984)). 2

As in the previous CLT, we need the condition that the variance of yt is consistently
estimated. Note also that we have substituted stationarity and ergodicity assumptions with
the one of mixing and that we need uniform convergence of E(y2b,T ) to σ2 in b. This is
equivalent to imposing that yt is asymptotically covariance stationary, that is, that hetero-
geneity in yt dies out at T increases (see White, 1984, p.128).

1.5.3 Martingale Difference Observations

The CLT in this case is as follows: Let {yt(κ)} be a martingale difference process with
σ2t ≡ E(y2t ) <∞, σ2t 6= 0, Ft−1 ⊂ Ft, yt ∈ Ft ; let Dt be the distribution function of yt
and let σ2T =

1
T

PT
t=1 σ

2
t . If for every � > 0, limT→∞ σ−2T

1
T

PT
t=1

R
y2>�Tσ2T

y2dDt(y) = 0

and ( 1T
PT

t=1 y
2
t )/σ

2
T − 1

P→ 0 then
√
T
( 1
T t yt)

σT

D→ N(0, 1) (See McLeish, 1974). 2

The last condition is somewhat mysterious: it requires that the average contribution of
the extreme tails of the distribution to the variance of yt is zero in the limit. If this condition
holds then yt satisfies a uniform asymptotic negligibility condition. In other words, none
of the elements of {yt(κ)} can have a variance which dominates the variance of 1

T

P
t yt.

We illustrate this condition in the next example.

Example 1.21 Suppose σ2t = ρt, 0 < ρ < 1. Then Tσ2T ≡
PT

t=1 σ
2
t =

PT
t=1 ρ

t = ρ
1−ρ as

T → ∞. In this case max1≤t≤T σ2t
Tσ2T

= ρ/ ρ
1−ρ = 1 − ρ 6= 0, independent of T . Hence

the asymptotic negligibility condition is violated. Let now σ2t = σ2, σ2T = σ2. Then

max1≤t≤T
σ2t
Tσ2T

= 1
T
σ2

σ2
−→0 as T →∞ and the asymptotic negligibility condition holds.

The martingale difference assumption allows us to weaken several of the conditions
needed to prove a central limit theorem relative to the case of stationary processes and will
be the one used in several parts of this book.

A result, which we will become useful in later chapters concerns the asymptotic distri-
bution of functions of converging stochastic processes.

Result 1.16 Suppose the m× 1 vector {yt(κ)} is asymptotically normally distributed with
mean ȳ and variance a2tΣy, where Σy is a symmetric, non-negative definite matrix and
at → 0 as t → ∞. Let h(y) = (h1(y), . . . , hn(y))0 be such that each hj(y) is continuously

differentiable in the neighborhood of ȳ and let Σh =
∂h(ȳ)
∂y0 Σy(

∂h(ȳ)
∂y0 )

0 have nonzero diagonal

elements, where ∂h(ȳ)
∂y0 is a n×m matrix. Then h(yt)

D→ N(h(ȳ), a2tΣh) . 2
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Example 1.22 Suppose yt is iid with mean ȳ and variance σ2y , ȳ 6= 0, 0 < σ2y <∞. Then
by the CLT 1

T

P
t yt

D→ N(ȳ,
σ2y
T ) and by result 1.16 (

1
T

P
t yt)

−1 D→ N(ȳ−1, σ2y
T ȳ4 ).

1.6 Elements of Spectral Analysis

A central object in the analysis of time series is the spectral density.

Definition 1.20 (Spectral density): The spectral density of stationary {yt(κ)} process at
frequency ω ∈ [0, 2π] is Sy(ω) = 1

2π

P∞
τ=−∞ACFy(τ) exp{−iωτ}.

We have already mentioned that the spectral density is a reparametrization of the co-
variance generating function and it is obtained setting z = e−iω = cos(ω)− isin(ω), where
i =
√−1. Definition 1.20 also shows that the spectral density is the Fourier transform of

the autocovariance of yt. Hence, the spectral density simply repackages the autocovariances
of {yt(κ)} using sine and cosine functions as weights but at times it is more useful than the
autocovariance function since, for ω appropriately chosen, its elements are uncorrelated.

Example 1.23 Two elements of the spectral density typically of interest are S(ω) = 0
and

P
j S(ωj). It is easily verified that S(ω = 0) = 1

2π

P
τ ACF (τ) =

1
2π (ACF (0) +

2
P∞

τ=1 ACF (τ)), that is, the spectral density at frequency zero is the (unweighted) sum of
all the elements of the autocovariance function. It is also easy to verify that

P
j S(ωj) =

var(yt), that is, the variance of the process is the area below the spectral density.

To understand how the spectral density transforms the autocovariance function select,
for example, ω = π

2 . Note that cos(
π
2 ) = 1, cos(

3π
2 ) = −1, cos(π) = cos(2π) = 0 and that

sin(π2 ) = sin(3π2 ) = 0, sin(0) = 1 and sin(π) = −1 and that these values repeat themselves
since the sine and cosine functions are periodic.

Exercise 1.26 Calculate S(ω = π). Which autocovariances enter at frequency π?

It is typical to evaluate the spectral density at Fourier frequencies i.e. at ωj =
2πj
T , j =

1, . . . , T − 1, since for any two ω1 6= ω2 such frequencies, S(ω1) is uncorrelated with S(ω2).
Note that Fourier frequencies change with T , making recursive evaluation of the spectral
density cumbersome. For a Fourier frequency, the period of oscillation is 2πωj =

T
j .

Example 1.24 Suppose you have quarterly data. Then at the Fourier frequency π
2 , the

period is equal to 4. That is, at frequency π
2 you have fluctuations with an annual periodicity.

Similarly, at the frequency π, the period is 2 so that biannual cycles are present at π.

Exercise 1.27 Business cycle are typically thought to occur with a periodicity between 2 and
8 years. Assuming that you have quarterly data, find the Fourier frequencies characterizing
business cycle fluctuations. Repeat the exercise for annual and monthly data.
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Given the formula to calculate the period of oscillation, it is immediate to note that low
frequencies are associated with cycles of long periods of oscillation - that is, with infrequent
shifts from a peak to a through - and high frequencies with cycles of short periods of
oscillation - that is, with frequent shifts from a peak to a through (see figure 1.1). Hence,
trends (i.e. cycles with an infinite periodicity) are located in the low frequencies of the
spectrum and irregular fluctuations in the high frequencies. Since the spectral density is
periodic mod(2π) and symmetric around ω = 0, it is sufficient to examine S(ω) over the
interval [0, π].
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Figure 1.1: Short and long cycles

Exercise 1.28 Show that S(ωj) = S(−ωj).

Example 1.25 Suppose {yt(κ)} is iid (0, σ2y). Then ACFy(τ) = σ2y for τ = 0 and zero

otherwise and Sy(ωj) = σ2

2π , ∀ωj. That is, the spectral density of an iid process is constant
for all ωj ∈ [0, π].

Exercise 1.29 Consider a stationary AR(1) process {yt(κ)} with autoregressive coefficient
equal to 0 ≤ A < 1. Calculate the autocovariance function of yt. Show that the spectral
density is monotonically increasing as ωj → 0.
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Exercise 1.30 Consider a stationary MA(1) process {yt(κ)} with MA coefficient equal to
D. Calculate the autocovariance function and the spectral density of yt. Show its shape
when D > 0 and when D < 0.

Economic time series have a typical bell shaped spectral density (see figure 1.2) with
a large portion of the variance concentrated in the lower part of the spectrum. Given the
result of exercise 1.29, it is therefore reasonable to posit that most of economic time series
can be represented with relatively simple AR processes.
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Figure 1.2: Spectral Density

The definitions we have given are valid for univariate processes but can be easily ex-
tended to vector of stochastic processes.

Definition 1.21 (Spectral density matrix): The spectral density matrix of an m×1 vector
of stationary processes {yt(κ)} is Sy(ω) = 1

2π

P
τ ACFy(τ)e

−iωτ where

Sy(ω) =


Sy1y1(ω) Sy1y2(ω) . . . Sy1ym(ω)
Sy2y1(ω) Sy2y2(ω) . . . Sy2ym(ω)

. . . . . . . . . . . .
Symy1(ω) Symy2(ω) . . . Symym(ω)
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The elements on the diagonal of the spectral density matrix are real while the elements
off-the diagonal are typically complex. A measure of the strength of the relationship between
two series at frequency ω is given by the coherence.

Definition 1.22 Consider a bivariate stationary process {y1t(κ), y2t(κ)}. The coherence
between {y1t(κ)} and {y2t(κ)} at frequency ωj is Co(ω) = |Sy1,y2(ω)|√

Sy1,y1(ω)Sy2,y2(ω)
.

The coherence is the frequency domain version of the correlation coefficient. Notice that
Co(ω) is a real valued function where |y| indicates the real part (or the modulus) of complex
number y.

Example 1.26 Suppose yt = D(c)et, where et ∼ iid (0, σ2e). It is immediate to verify that
the coherence between et and yt is one at all frequencies. Suppose, on the other hand, that
Co(ω) monotonically declines to zero as ω moves from 0 to π. Then yt and et have similar
low frequency but different high frequency components.

Exercise 1.31 Suppose that et ∼ iid (0, σ2e) and let yt = Ayt−1+ et. Calculate Coyt,et(ω).

Interesting transformations of yt can be obtained with the use of filters.

Definition 1.23 A filter is a linear transformation of a stochastic process, i.e. if yt =
B(c)et, et ∼ iid (0, σ2e), then B(c) is a filter.

A moving average (MA) process is therefore a filter since a white noise is linearly trans-
formed into another process. In general, stochastic processes can be thought of as filtered
versions of some white noise process (the news). To study the spectral properties of filtered
processes let CGFe(z) be the covariance generating function of et. Then the covariance gen-
erating function of yt is CGFy(z) = B(z)B(z−1)CGFe(z) = |B(z)|2CGFe(z), where |B(z)|
is the modulus of B(z).

Example 1.27 Suppose that et ∼ iid (0, σ2e ) so that its spectrum is Se(ω) = σ2

2π ,∀ω.
Consider now the process yt = D(c)et, where D(c) = D0 +D1c +D2c

2 + . . .. It is typical
to interpret D(c) as the response function of yt to a unitary change in et. Then Sy(ω) =
|D(e−iω)|2Se(ω), where |D(e−iω)|2 = D(e−iω)D(eiω) and D(e−iω) =

P
τ Dτ e

−iωτ measures
how a unitary change in et affects yt at frequency ω.

Example 1.28 Suppose that yt = ȳ+at+D(c)et, where et ∼ iid (0, σ2e). Since yt displays
a (linear) trend is not stationary and S(ω) does not exist. Differencing the process we have
yt−yt−1 = a+D(c)(et−et−1) so that yt−yt−1 is stationary if et− et−1 is a stationary and
all the roots of D(c) are greater than one in absolute value. If these conditions are met, the
spectrum of ∆yt is well defined and equals S∆y(ω) = |D(e−iω)|2S∆e(ω).
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The quantity B(e−iω) is called transfer function of the filter. Various functions of this
quantity are of interest. For example, |B(e−iω)|2, the square modulus of the transfer func-
tion, measures the change in variance of et induced by the filter. Furthermore, since B(e−iω)
is complex two alternative representations of the transfer function exist. The first decom-
poses it into its real and complex part, i.e. B(e−iω) = B†(ω) + iB‡(ω), where both B† and
B‡ are real. Then the phase shift Ph(ω) = tan−1[−B‡(ω)B†(ω) ], measures how much the lead-lag
relationships in et are altered by the filter. The second can be obtained using the polar
representation B(e−iω) = Ga(ω)e−iPh(ω), where Ga(ω) is the gain. Here Ga(ω) = |B(e−iω)|
measures the change in the amplitude of cycles induced by the filter.
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Figure 1.3: Filters

Filtering is an operation frequently performed in every day life (e.g. tuning a radio on
a station filters out all other signals (waves)). Several types of filters are used in modern
macroeconomics. Figure 1.3 presents three general types of filters: a low pass, a high pass,
and a band pass. A low pass filter leaves the low frequencies of the spectrum unchanged
but wipes out high frequencies. A high pass filter does exactly the opposite. A band pass
filter can be thought as a combination of a low pass and a high pass filters: it wipes out
very high and very low frequencies and leaves unchanged frequencies in middle range.

Low pass, high pass and band pass filters are non-realizable, in the sense that with sam-
ples of finite length, it is impossible to construct objects that looks like those of figure 1.3.
In fact, using the inverse Fourier transform, one can show that these three filters (denoted,
respectively, by B(c)lp,B(c)hp,B(c)bp) have the time representation:
• Low pass: Blp0 = ω1

π ; Blpj = sin(jω1)
jπ ; ∀j > 0, some ω1 ∈ (0, π).

• High pass: Bhp0 = 1− Blp0 ; Bhpj = −Blpj ; ∀j > 0.
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• Band pass: Bbpj = Blpj (ω2)− Blpj (ω1); ∀j > 0, ω2 > ω1.

When j is finite the box-like spectral shape of these filters can only be approximated
with a bell-shaped function. This means that relative to the ideal, realizable filters generate
a loss of power at the edges of the band (a phenomenon called leakage) and an increase in the
importance of the frequencies in the middle of the band (a phenomenon called compression).
Approximations to these ideal filters are discussed in chapter 3.

Definition 1.24 The periodogram of a stationary yt(κ) is Pey(ω) =
P

τ
[ACF (τ)e−iωτ ,

where [ACF y =
1
T

P
t(yt − 1

T

P
t yt)(yt−τ − 1

T

P
t yt−τ )

0.

Perhaps surprisingly, the periodogram is an inconsistent estimator of the spectrum (see
e.g. Priestley (1981, p. 433)). Intuitively, this occurs because it consistently captures
the power of yt over a band of frequencies but not in each single one of them. To obtain
consistent estimates it is necessary to ”smooth” periodogram estimates with a filter. Such
a smoothing filter is typically called a ”kernel”.

Definition 1.25 For any � > 0, a filter B(ω) is a kernel (denoted by KT (ω)) if KT (ω)→ 0
uniformly as T →∞, for |ω| > �.

Kernels can be applied to both autocovariance and periodogram estimates. When ap-
plied to the periodogram, a kernel produces an estimate of the spectrum at frequency ω
using a weighted average of the values of the periodogram in a neighborhood of ω. Note that
this neighborhood is shrinking as T →∞, since the bias in ACF estimates asymptotically
disappears. Hence, in the limit, KT (ω) looks like a δ-function, i.e. it puts all its mass at
one point.

There are several types of kernels. Those used in this book are the following:

1) Box-Car (Truncated) KTR(ω) =

½
1 if |ω| ≤ J(T )
0 otherwise

2) Bartlett KBT (ω) =

(
1− |ω|

J(T ) if |ω| ≤ J(T )

0 otherwise

3) Parzen KPR(ω) =


1− 6( ω

J(T ) )
2 + 6( |ω|J(T ) )

3 0 ≤ |ω| ≤ J(T )/2

2(1− |ω|
J(T ) )

3 J(T )/2 ≤ |ω| ≤ J(T)

0 otherwise

4) Quadratic spectral KQS(ω) =
25

12π2ω2
( sin(6πω/5)

6πω/5
− cos(6πω/5))

Here J(T ) is a truncation point, typically chosen to be a function of the sample size T .
Note that the quadratic spectral kernel has no truncation point. However, it is useful to
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Figure 1.4: Kernels

define the first time that KQS crosses zero (call it J
∗(T )) and this point plays the same role

as J(T ) in the other three kernels.
The Bartlett kernel and the quadratic spectral kernel are the most popular ones. The

Bartlett kernel has the shape of a tent with width 2J(T). To insure consistency of the

spectral estimates, it is standard to select J(T ) so that J(T )
T → 0 as T →∞. In figure 1.4

we have set J(T)=20. The quadratic spectral kernel has the form of a wave with infinite
loops, but after the first crossing, side loops are small.

Exercise 1.32 Show that the coherence estimator \Co(ω) = |Sy1,y2(ω)|
Sy1,y1(ω)Sy2,y2(ω)

is consistent,

where bSyi,yi0 (ω) = 1
2π

PT−1
τ=−T+1 [ACF yi,yi0 (τ)KT (ω)e

−iωτ , KT (ω) is a kernel and i, i0 = 1, 2.

While for most part of this book we will consider stationary processes, we will deal at
times with processes which are only locally stationary (e.g. processes with time varying
coefficients). For these processes, the spectral density is not defined. However, it is possible
to define a ”local” spectral density and practically all the properties we have described
apply also to this alternative construction. For details, see Priestley (1980, chapter 11).

Exercise 1.33 Compute the spectral density of consumption, investment, output, hours,
real wage, consumer prices, M1 and the nominal interest rate using quarterly US data and
compute their pairwise coherence with output. Are there any interesting features at business
cycle frequencies you would like to emphasize? Repeat the exercise using EU data. Are there
important differences with the US? (Hint: Careful with potential non-stationarities in the
data).
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Chapter 2: DSGE Models,
Solutions and Approximations

This chapter describes some standard Dynamics Stochastic General Equilibrium (DSGE)
models which will be used in examples and exercises throughout the book. Since these
models do not have a closed form solution, except in very special circumstances, we also
present a number of methods to obtain approximate solutions to the optimization problems.

There is a variety of models currently used in macroeconomics. The majority is based
on two simple setups: a competitive structure, where allocations are, in general, Pareto
optimal; and a monopolistic competitive structure, where one type of agents can set the
price of the goods she supplies and allocations are suboptimal. Typically, an expression for
the variables of interest in terms of the exogenous forces and the states is found in two ways.
When competitive allocations are Pareto optimal the principle of dynamic programming
is typically used and iteration on Bellman equation are employed to compute the value
function and the policy rules, whenever they are known to exist and to be unique. As
we will see, calculating the value function is a complicated enterprise except with simple
but often economically unpalatable specifications. For general preference and technological
specifications, quadratic approximations of the utility function, and discretization of the
dynamic programming problem are generally employed.

When the equilibrium allocations are distorted, one must alter the dynamic program-
ming formulation and in that case Bellman equation does not have an hedge over a more
standard stochastic Lagrangian multipliers methodology, where one uses the first order con-
ditions, the constraints and the transversality condition, to find a solution. Solutions are
hard to find also with the Lagrangian approach since the problem is nonlinear and it involves
expectations of future variables. Euler equation methods, which approximate the first order
conditions, the expectational equations or the policy function can be used in these frame-
works. Many methods have been developed in the literature. Here we restrict attention to
the three widely used approaches: discretization of the state and shock space; log-linear and
second order approximations; and parametrizing expectations. For a thorough discussion
of the various methodologies see Cooley (1995, chapters 2 and 3) or Marimon and Scott
(1999).

The next two sections illustrate features of various models and the mechanics of different
solution methods with the aid of examples and exercises. A comparison between various
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approaches concludes the chapter.

2.1 Few useful models

It is impossible to provide a thorough description of the models currently used in macroeco-
nomics. Therefore, we focus attention on two prototype structures: one involving only real
variables and one considering also nominal ones. In each case, we analyze models with both
representative and heterogeneous agents and consider both optimal and distorted setups.

2.1.1 A basic Real Business Cycle (RBC) Model

A large portion of the current macroeconomic literature uses versions of the one sector
growth model to jointly explain the cyclical and the long-run properties of the data. In the
basic setup we consider there is a large number of identical households that live forever and
are endowed with one unit of time, which they can allocate to leisure or to work, and K0

unit of productive capital, which depreciates at the rate 0 < δ < 1 every period. The social
planner chooses {ct,Nt,Kt+1}∞t=0 to maximize

maxE0
X
t

βtu(ct, ct−1,Nt) (2.1)

where ct is consumption, Nt is employment (hours) and Kt is capital and E0 ≡ E[.|F0]
is the expectations operator, conditional on the information set F0, 0 < β < 1. The in-
stantaneous utility function is bounded, twice continuously differentiable, strictly increasing
and strictly concave in all arguments. It depends on ct and ct−1 to account for possible
habit formation in consumption. The maximization of (2.1) is subject to the sequence of
constraints

ct +Kt+1 ≤ (1− T y)f(Kt, Nt, ζt) + Tt + (1− δ)Kt (2.2)

0 ≤ Nt ≤ 1 (2.3)

where f(.) is twice continuously differentiable, strictly increasing and strictly concave in Kt

and Nt production technology; ζt is a technological disturbance, T y is a (constant) income
tax rate and Tt lump sum transfers.

There is a government which finances a stochastic flow of current expenditure with
income taxes and lump sum transfers: expenditure is unproductive and does not yield
utility for the agents. We assume a period-by-period balanced budget of the form

Gt = T yf(Kt,Nt, ζt)− Tt (2.4)

The economy is closed by the resource constraint, which provides a national account identity:

ct +Kt+1 − (1− δ)Kt +Gt = f(Kt,Nt, ζt) (2.5)
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Note that in (2.4) we have assumed that the government balances the budget at each
t. This is not restrictive since agents in this economy are Ricardian; that is, the addition
of government debt does not change optimal allocations. This is because, if debt is held in
equilibrium, it must bear the same rate of return as capital, so that (1 + rBt ) = Et[fk(1 −
T y)+ (1− δ)], where fk =

∂f
∂K . In other words, debt is a redundant asset and can be priced

by arbitrage, once (δ, T y, fk) are known. One example where debt matters is considered
later on.

Exercise 2.1 Decentralize the RBC model so that there is a representative consumer and
a representative firm. Assume that the consumer makes the investment decision while the
firm hires capital and labor from the consumer. Is it true that decentralized allocations are
the same as those obtained in the social planner’s problem? What conditions need to be
satisfied? Repeat the exercise assuming that the firm makes the investment decision.

Exercise 2.2 Set ct−1 = 0 in (2.1) and assume T y = 0 ∀t.
i) Define the variables characterizing the state of the economy at each t (the states) and the
choice variables (the controls).
ii) Show that the problem described by (2.1)-(2.5) can be equivalently written as:

V(K, ζ,G) = max
{K+,N}

{u([f(K,N, ζ)+(1−δ)K−G−K+],N)+βE[V(K+, ζ+,G+)|K, ζ,G]}
(2.6)

0 < Nt < 1 where the value function V is the utility value of the optimal plan, given
(Kt, ζt,Gt), E(V|.) is the expectation of V conditional on the available information and the
superscript 00+00 indicates future values.
iii) Assume u(ct, ct−1,Nt) = ln ct+ ln(1−Nt) and that GDPt ≡ f(Kt,Nt, ζt) = ζtK

1−η
t Nη

t .
Find steady state values for ( K

GDP ,
c

GDP , N).

Note that (2.6) define the so-called Bellman equation, a functional equation giving the
maximum value of the problem for each value of the states and the shocks, given that from
next period on agent behave optimally.

There are few conditions that need to be satisfied for a model to be fitted into a Bellman
equation format. First, the utility function must be time separable in the contemporaneous
control and state variables. Second, the objective function and the constraints have to be
such that current decisions affect current and future utilities but not past ones. While
these conditions are typically satisfied, there are situations where Bellman equation (and
its associated optimality principle) may fail to characterize particular economic problem.
One is the time inconsistency problem analyzed by Kydland and Prescott (1977), a version
of which is described in the next example.

Example 2.1 Suppose agents in the economy maximize E0
P

t βt(ln ct + γ ln Bt
pt
) subject

to ct + Btpt ≤ wt + Bt−1pt + Tt ≡ Wet, where Bt are goverment backed assets, wt is
labor income and Tt lump sum taxes (tranfers), by choice of sequences for ct and Bt, given
Tt, pt. The goverment budget constraint is gt = Btpt − Bt−1pt + Tt where gt is random.
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We assume that the goverment chooses Bt to maximize agents’ welfare. Agents’ problem is
recursive. In fact, using their wealth Wet as a state for the problem, Bellman equation is
V(We) = maxc,B(ln c + γ ln B

p ) + βV(We+) and the constraint is We = c + B
p . The first

order conditions for the problem can be summarized via 1
ctpt

= β 1
ct+1pt+1

+ γ
Bt
. Therefore,

solving forward and using the resource constraint, we have

1

pt
= γ(wt − gt)

∞X
j=0

βj
1

Bt+j+1
(2.7)

The goverment takes (2.7) as given and maximizes agents’ utility subject to the resource
constraint. Substituting (2.7) into the utility function we have

max
Bt

X
t

βt(ln ct + γ ln(Btγ(wt − gt)
∞X
j=0

βj
1

Bt+j+1
) (2.8)

Clearly in (2.8) future controls Bt affect current utility. Therefore, the goverment problem
can not be cast into a Bellman equation.

Exercise 2.3 Show how to modify Bellman equation (2.6) when T y 6= 0.
A solution to (2.6) is typically hard to find since V is unknown and there is no analytic

expression for it. Had the solution been known, we could have used (2.6) to define a function
h mapping every (K,G, ζ) into (K+,N) that gives the maximum.

Since V is unknown, methods to prove its existence and uniqueness and to describe
its properties have been developed (see e.g. Lucas and Stokey (1989)). These methods
implicitly provide a way of computing a solution to (2.6) which we summarize next:

Algorithm 2.1

1) Choose a differentiable and concave function V0(K, ζ,G).

2) Compute V1(K, ζ,G) = max{K+,N} {u([f(K, ζ,N) + (1− δ)K −G−K+],N) + β
E[V0(K+, ζ+,G+)|K, ζ,G]}.

3) Set V0 = V1 and iterate on 2) until |Vl+1 − Vl| < ι, ι small.

4) When |Vl+1 − Vl| < ι, compute K+ = h1(K, ζ,G) and N = h2(K, ζ,G).

Hence, V can be obtained as the limit of Vl for l→∞. Under regularity conditions, this
limit exists, it is unique and the sequence of iterations defined by algorithm 2.1 achieves it.

For simple problems algorithm 2.1 is fast and accurate. For more complicated ones,
when the combined number of states and shocks is large, it may computationally demanding.
Moreover, unless V0 is appropriately chosen, the iteration process may be time consuming.
In a few simple cases, the solution to Bellman equation has a known form and the simpler
method of undetermined coefficients can be used. We analyze one of these cases in the next
example.
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Example 2.2 Assume that u(ct, ct−1,Nt) = ln ct + ϑn ln(1 − Nt), δ = 1; the production
function has the form GDPt+1 = ζt+1K

1−η
t Nη

t ; the resource constraint is GDPt = Kt + ct,
ln ζt is an AR(1) process with persistence ρ, and set Gt = T y = Tt = 0. The states of
the problem are GDPt and ζt while the controls are ct,Kt, Nt. We guess that the value
function has the form V(K, ζ) = V0 +V1 lnGDPt +V2 ln ζt. Then Bellman equation maps
logarithmic functions into logarithmic ones. Therefore the limit, if it exists, will also have a
logarithmic form. To find the constants V0,V1,V2 we proceed as follows. First we substitute
the constraint into the utility function and use the guess to solve out future GDP. That is:

V0 + V1 lnGDPt + V2 ln ζt = [ln(GDPt −Kt) + ϑN (1−Nt)] + βV0 + βV1(1− η) lnKt

+ βV1η lnNt + βEt(V2 +V1) ln ζt+1 (2.9)

Maximizing (2.9) with respect to (Kt,Nt) we have Nt =
βV1η

ϑN+βV1η andKt =
β(1−η)V1
1+β(1−η)V1GDPt.

Substituting these expressions into (2.9) and using the fact that Etζt+1 = ρζt we obtain

V0+V1 lnGDPt+V2 ln ζt = constants+(1+(1−η)βV1) lnGDPt+βρ(V2+V1) ln ζt (2.10)

Matching coefficients on the two sides of the equation we have 1 + (1 − η)βV1 = V1 or
V1 = 1

1−(1−η)β and βρ(V2+V1) = V2 or V2 =
ρβ

(1−(1−η)β)2 . Using the solution for V1 into the
expressions for Kt,Nt we have that Kt = (1−η)βGDPt and Nt =

βη
ϑN(1−β(1−η)+βη and from

the resource constraints ct = (1− (1− η)β)GDPt. Hence, with this preference specification,
the optimal labor supply decision is very simple: keep hours constant, regardless of the state
and the shocks of the economy.

Exercise 2.4 Assume that u(ct, ct−1,Nt) = ln ct, δ = 1; the production function has the
form GDPt = ζtK

1−η
t Nη

t ; the resource constraint is ct +Kt+1 +Gt = GDPt, and Gt = Tt
that both (ζt, Gt) are iid. Guess that the value function is V(K, ζ,G) = V0 + V1 lnKt +
V2 ln ζt + V3 lnGt. Determine V0,V1,V2,V3. Show the optimal policy for K+.

Two other cases where a solution to the Bellman equation can be found analytically are
analyzed in the next exercise.

Exercise 2.5 i) Suppose that u(ct, ct−1, Nt) = a0 + a1ct − a2c2t and that Gt = Tt = T y =
0 ∀t. Show that the value function is of the form V(K, ζ) = [K, ζ ]0V2[K, ζ] + V0. Find the
values of V0 and V2. (Hint: use the fact that E(e0tV2et) = tr(V2)E(e0tet) = tr(V2)σ2e where
σ2e is the covariance matrix of et and tr(V2) is the trace of V2). Show that the decision rule
for c and K+ is linear in K and ζ.

ii) Suppose u(ct, ct−1,Nt) =
c1−ϕt
1−ϕ ; Kt = 1 ∀t and assume that ζt can take three values. Let

ζt evolve according to P (ζt = i|ζt−1 = i0) = pii0 > 0. Assume that there are claims to
the output in the form of stocks St, with price pst and dividend sdt. Write down Bellman
equation. Let β = 0.9, pii = 0.8, i = 1, . . . , 3; pi,i+1 = 0.2 and pii0 = 0 otherwise. Show the
first two terms of the value function iterations. Can you guess what the limit is?
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We can relax some of the assumptions we have made (e.g. we can use a more general law
of motion for the shocks), but except for these simple cases, even the most basic stochastic
RBC model does not have a closed form solution. As we will see later, existence of a closed
form solution is not necessary to estimate the structural parameters (here β, δ, η), and the
parameters of the process for ζt and Gt and to examine its fit to the data. However, a
solution is needed when one wishes to simulate the model, compare its dynamics with those
of the data, and/or perform policy analyses.

There is an alternative to Bellman equation to solve simple optimization problems. It
involves substituting all the constraints in the utility function and maximizing the resulting
expression unconstrained or, if this is not possible, using a stochastic Lagrange multiplier
approach. We illustrate the former approach next with an example.

Example 2.3 Suppose a representative consumer obtains utility from the services of durable
and nondurable goods according to E0

P
t β

t(cst − υt)0(cst − υt), where 0 < β < 1, υt is a
preference shock and consumption services cst satisfy cst = b1cdt−1+b2ct, where cdt−1 is the
stock of durable goods, accumulated according to cdt = b3cdt−1 + b4ct, where 0 < b1, b3 < 1
and 0 < b2, b4 ≤ 1 are parameters. Output is produced with the technology f(Kt−1, ζt) =
(1− η)Kt−1 + ζt, where 0 < η ≤ 1 and ζt is a productivity disturbance, and divided between
consumption and investment goods according to b5ct + b6invt = GDPt. Physical capital
accumulates according to Kt = b7Kt−1 + b8invt, where 0 < b7 < 1, 0 < b8 ≤ 1.

Using the definition of (cst, cdt, Kt) and the resource constraint we have

cst + cdt = (b1 + b3)cdt−1 +
(b2 + b4)

b5
((1− η)Kt−1 + ζt − b6

b8
(Kt − b7Kt−1)) (2.11)

Letting b9 = (b1 + b3), b10 =
(b2+b4)

b5
, b11 = b10

b6
b8
, b12 = b11b7 and using (2.11) in the utility

function the problem can be reformulated as

max
{cdt,Kt}

E0
X
t

βtC1[cdt,Kt]
0 + C2[cdt−1, kt−1, ζt, υt]0)0(C1[cdt, Kt]

0 + C2[cdt−1, kt−1, ζt, υt]0)
(2.12)

where C1 = [−1,−b11], C2 = [b9, b12 + b10(1 − η), b10,−1]. If C01C1 is invertible, and the
shocks (ζt, υt) are known at each t, the first order condition of the model imply [cdt,Kt]

0 =
(C01C1)−1(C01C2) [cdt−1,Kt−1, ζt, υt]0. Given (cdt, Kt, ζt, υt), values for cst and ct can be found
from (2.11) and from consumption services constraint.

Economic models with quadratic objective functions and linear constraints can also be
cast into standard optimal control problem formats, which allows calculation of the solution
with simple and fast algorithms.

Exercise 2.6 Take the model of example 2.3 but let υt = 0. Cast it into an optimal
linear regulator problem of the form maxE0

P
t β

t[y2tQ2y02t + y1tQ1y01t + 2y2tQ3y01t] subject
to y2t+1 = Q4y2t +Q5y1t +Q6y3t+1 where y3t is a vector of (serially correlated) shocks, y2t
a vector of states and y1t a vector of controls. Show the form of Qi, i = 1, . . . , 6.
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. A stochastic Lagrange multiplier approach works even when Bellman equation does
not characterize the problem under consideration but requires a somewhat stronger set
of assumptions to be applicable. Basically, we need that the objective function is strictly
concave, differentiable and that the derivatives have finite expectations; that the constraints
are convex, differentiable and that the derivatives have finite expectations; that the choice
variables are adapted to the information set; that expected utility is bounded and converges
to a limit as T → ∞ and that there exists a sequence of multipliers λt such that at the
optimum the Kuhn-Tucker conditions hold with probability 1 (see Sims (2002) for a formal
statement of these requirements).

It is straightforward to check that these conditions are satisfied for the simple RBCmodel
we have considered so far. Then, letting fN =

∂f
∂N , Uc,t =

∂u(ct,ct−1,Nt)
∂ct

, UN,t =
∂u(ct,ct−1,Nt)

∂Nt
,

the Euler equation for capital accumulation in the basic RBC model is

Etβ
Uc,t+1

Uc,t
[(1− T y)fk + (1− δ)]− 1 = 0 (2.13)

while the intratemporal marginal condition between consumption and labor is:

Uc,t

UN,t
= − 1

(1− T y)fN
(2.14)

(2.13)-(2.14), the budget constraint and the transversality condition, limt→∞ supβt(Uj,t −
λtgj,t)(jt− ĵt) ≤ 0, where j = c, N ,gj,t is the derivative of the constraints with respect to j,
ĵt is the optimal choice and jt any other choice, then need to be solved for (Kt+1, Nt, ct),
given (Gt, ζt,Kt). This is not easy. Since the system of equations is nonlinear and involves
expectations of future variables, no analytical solution exists in general.

Exercise 2.7 Solve the problem of example 2.3 using a Lagrange multiplier approach. Show
the conditions you need for the solution to be the same as in example 2.3.

Versions of the basic RBC model with additional shocks, alternative inputs in the pro-
duction function or different market structures have been extensively examined in the macro-
economic literature. We consider some of these extensions in the next four exercises.

Exercise 2.8 (Utility producing government expenditure) Consider a basic RBC model and
suppose that government expenditure provides utility to the agents; that private and public
consumption are substitutes in the utility function; and that there is no habit in consumption,
e.g. U(ct, ct−1,Gt,Nt) = (ct + ϑGGt)ϑ(1−Nt)1−ϑ.
i) Using steady state relationships describe how private and public consumption are related.
Is there some form of crowding out?
ii) In a cross section of steady states, is it true that countries which have higher level of
government expenditure will also have lower levels of leisure (i.e. is it true that the income
effect of distortionary taxation is higher when G is higher)?
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Exercise 2.9 (Production externalities) In a basic RBC model assume that output is pro-
duced with firm specific inputs and the aggregate capital stock, i.e. f(Kit,Nit, ζt,Kt) =
Kℵ

t K
1−η
it Nη

itζt, ℵ > 0 and Kt =
R
Kitdi.

i) Derive the first order conditions and discuss how to find optimal allocations.
ii) Is it appropriate to use Bellman equation to find a solution to this problem? What
modifications do you need to introduce to the standard setup?

Exercise 2.10 (Non-competitive labor markets) Assume that, in a basic RBC model, there
are one-period labor contracts. The contracts set the real wage on the basis of the expected
marginal product of labor. Once shocks are realized, and given the contractual real wage, the
firm chooses employment to maximize its profits. Write down the contractual wage equation
and the optimal labor decision rule by firms. Compare it with a traditional Phillips curve
relationship where lnNt −Et−1(lnNt) ∝ ln pt −Et−1(ln pt).

Exercise 2.11 (Capacity utilization) Assume Gt = Tt = T y = 0; that the production func-
tion depends on capital (Kt) and its utilization (kut) and it is of the form f(Kt, kut,Nt, ζt) =
ζt(Ktkut)1−ηN

η
t . This production function allows firms to respond to shocks by varying uti-

lization even when the stock of capital is fixed. Assume that capital depreciates in proportion
to its use. In particular, assume δ(kut) = δ0 + δ1ku

δ2
t , where δ0, δ1 and δ2 are parameters.

i) Write down the optimality conditions of the firm’s problem and Bellman equation.
ii) Show that, if capital depreciates instantaneously, the solution of this problem is identical
to the one of a standard RBC model examined in part ii) of exercise 2.2.

Although it is common to proxy for technological disturbances with Solow residuals,
such an approach is often criticized in the literature. The main reason is that such a proxy
tends to overstate the variability of these shocks and may capture not only technology but
also other sources of disturbances. The example below provides a case where this can occur.

Example 2.4 Suppose that output is produced with part-time hours (NP ) and full-time
hours (NF ) according to the technology GDPt = ζtK

1−η
t (NF

t )
η + ζtK

1−η
t (NP

t )
η. Typically,

Solow accounting proceeds assuming that part-time and full time hours are perfect substitutes
and use total hours in the production function, i.e. GDPt = ζtK

1−η
t (NF

t + NP )η. An

estimate of ζt is obtained via dln ζt = lnGDPt−(1−η) lnKt−η ln(NF
t +NP

t ), where η is the

share of labor income. It is easy to see that dln ζt = ln ζt+ln((NF
t )

η+(NP )η)−η ln(NF
t +N

P ),

so that the variance of dln ζt overestimates the variance of ln ζt. This is a general problem:
whenever a variable is omitted from an estimated equation, the variance of the estimated
residuals is at least as large as the variance of the true one. Note also that if NF

t > NP
t

and if NF
t is less elastic than NP

t to shocks (e.g., if there are differential cost in adjusting
full and part-time hours), ln((NF

t )
η + (NP )η) − η ln(NF

t + NP ) > 0. In this situation
any (preference) shock which alters the relative composition of NF and NP could induce
procyclical labor productivity movements, even if ζt = 0, ∀t.

Several examples in this book are concerned with the apparently puzzling correlation
between hours (employment) and labor productivity - the so-called Dunlop-Tashis puzzle.
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What is puzzling is that this correlation is roughly zero in the data while is high and positive
in an RBC model. We will study later how demand shocks can affect the magnitude of this
correlation. In the next example we examine how the presence of government capital alters
this correlation when an alternative source of technological disturbance is considered.

Example 2.5 (Finn) Suppose agents’ utility is u(ct, ct−1,Nt) =
(cϑt (1−Nt)1−ϑ)1−ϕ

1−ϕ , the budget

constraint is (1 − T y)wtNt + (rt − TK(rt − δ))KP
t + Tt + (1 + rBt )Bt = ct + invPt + Bt+1

and private capital evolves according to KP
t+1 = (1 − δ)KP

t + invPt , where TK are capital
taxes, rB is the net rate on real bonds and rt the net return on private capital. Suppose the
Government budget constraint is T ywtNt+T

K(rt−δ)KP
t +Bt+1 = invGt +Tt+(1+r

B
t )Bt, and

government investments increase government capital according to invGt = KG
t+1−(1−δ)KG

t .
The production function is GDPt = ζtN

η(KP )1−η(KG)ℵ and ℵ ≥ 0. Output is used for
private consumption and investment.

This model does not have an analytic solution but some intuition on how hours and
labor productivity move can be obtained analyzing the effects of random variations in invGt .
Suppose that invGt is higher than expected. Then, less income is available for private use
and, at the same time, more public capital is available in the economy. Which will be
the dominant factor depends on the size of the investment increase relative to ℵ. If it is
small, there will be a positive instantaneous wealth effect so that hours, investment and
output decline while consumption and labor productivity increases. If it is large, a negative
wealth effect will result in which case hours and output will increase and consumption and
labor productivity decreases. In both cases, despite the RBC structure, the contemporaneous
correlation between hours and labor productivity will be negative.

2.1.2 Heterogeneous agent models

Although representative agent models constitute the backbone of current dynamic macro-
economics, the literature has started examining setups where some heterogeneities in either
preferences, the income process, or the type of constraints that agent face are allowed for.
The presence of heterogeneities does not change the structure of the problem: it is only
required that the sum of individual variables match aggregate ones and that the planner
problem is appropriately defined. The solution still requires casting the problem into a
Bellman equation or setting up a stochastic Lagrange multiplier structure.

We consider few of these models here. Since the scope is purely illustrative we restrict
attention to situations where there are only two types of agents. The generalization to a
larger but finite number of agents’ type is straightforward.

Example 2.6 (A two country model with full capital mobility) Consider two countries and
one representative agent in each country. Agents in country i choose sequences for consump-

tion, hours, capital and contingent claim holdings to maximize E0
P∞

t=0 β
t [c

ϑ
it(1−Nit)1−ϑ]1−ϕ

1−ϕ
subject to the following constraint

cit+
X
j

Bjt+1p
B
jt ≤ Bjt+witNit+ ritKit− (Kit+1− (1− δ)Kit− b

2
(
Kit+1

Kit
− 1)2)Kit (2.15)
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where witNit is labor income; ritKit is capital income; Bjt is a set of Arrow-Debreu one
period contingent claims and pBjt is its price; b is an adjustment cost parameter and δ
the depreciation rate of capital. Since financial markets are complete, agents can insure
themselves against all form of idiosyncratic risk.

We assume that factors of production are immobile. Domestic consumers rent capi-
tal and labor to domestic firms which produce an homogeneous intermediate good using a
constant returns to scale technology. Domestic markets for factors of production are com-
petitive and intermediate firms maximize profits. Intermediate goods are sold to domestic
and foreign final good producing firms. The resource constraints are:

inty11t + inty12t = ζ1tK
1−η
1t Nη

1t (2.16)

inty21t + inty22t = ζ2tK
1−η
2t Nη

2t (2.17)

where inty12t are exports of goods from country 1 and inty21t imports from country 2.
Final goods are an aggregate of the goods produced by intermediate firms of the two coun-

tries. They are assembled with a constant returns to scale technology GDPit = (ai(inty
1
it)
1−a3)

+(1 − ai)(inty
2
it)
1−a3))

1
1−a3 , where a3 ≥ −1 while a1 and (1 − a2) measure the domes-

tic content of domestic spending. The resource constraint in the final goods market is
GDPit = cit + invit. The two countries differ in the realizations of technology shocks.
We assume ln(ζit) is an AR(1) with persistence |ρζ | < 1 and variance σ2ζ .

To map this setup into a Bellman equation assume that there is a social planner who
attributes the weights W1 and W2 to the utilities of the agents of the two countries. Let the

planner’s objective function be usp(c1t, c2t, N1t,N2t) =
P2

i=1Wi E0
P∞

t=0 β
t [c

ϑ
it(1−Nit)

1−ϑ]1−ϕ
1−ϕ ;

let y1t = [inty1it, inty2it, cit, Nit, Kit+1, B1t+1, i = 1, 2], y2t = [K1t,K2t, B1t] and y3t =
[ζ1t, ζ2t]. Then Bellman equation is V(y2, y3) = max{y1}u

sp(c1, c2,N1,N2)+EβV(y+2 , y
+
3 |y2,

y3) and the constraints are given by (2.15) -(2.17) and the law of motion of the shocks.
Clearly, the value function has the same format as in (2.6). Since the functional form

for utility is the same in both countries, the utility function of the social planner will also
have the same functional form. Some information about the properties of the model can
be obtained without computing a solution by examining the first order conditions and the
properties of the final good production function. In fact, we have:

cit + invit = p1tinty
1
it + p2tinty

2
it (2.18)

Tott =
p2t
p1t

(2.19)

nxt = inty12t − Tottinty
2
1t (2.20)

(2.18) implies that output of the final good is allocated to the inputs according to their prices,
p2t =

∂GDP1t
∂inty21t

, p1t =
∂GDP1t
∂inty11t

; (2.19) gives an expression for the terms of trade and (2.20)

defines the trade balance.

Exercise 2.12 Show that the demand functions for the two goods in country one are

inty11t = a
1
a3
1 (a

1
a3
1 + (1− a1)

1
a3 Tot

− 1−a3
a3

t )
− a3
1−a3GDP1t
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inty21t = a
1
a3
2 Tot

− 1
a3

t (a
1
a3
1 + (1− a1)

1
a3 Tot

−(1−a3)
a3

t )
− a3
1−a3GDP1t

i) Describe terms of trade relate to the variability of final goods demands.

ii) Noting that Tott =
(1−a1)(inty21t)−a3
a1(inty11t)

−a3 show that when the elasticity of substitution between

domestic and foreign good 1
a3
is high, any excess of demand in either of the two goods induces

small changes in the terms of trade and large changes in the quantities used.

Exercise 2.13 Consider the same two country model of example 2.6 but now assume that
financial markets are incomplete. That is, agents are forced to trade only a one-period bond
which is assumed to be in zero net supply (i.e B1t + B2t = 0). How would you solve this
problem? What does the assumption of incompleteness imply? Would it make a difference
if agents of country 1 have limited borrowing capabilities, e.g. B1t ≤ K1t?

Interesting insights can be added to a basic RBC model when some agents are not
optimizers.

Example 2.7 Suppose that the economy is populated by standard RBC agents (their frac-
tion in the total population is Ψ) which maximize E0

P
t β

tu(ct, ct−1,Nt) subject to the
budget constraint ct + invt + Bt+1 = wtNt + rtKt + (1 + rBt )Bt + prft + Tt, where prft
are firm’s profits, Tt are government transfers and Bt are real bonds. Suppose that capital
accumulates at the rate Kt+1 = (1− δ)Kt + invt. The remaining 1−Ψ agents are myopic
and consume all their income every period, that is cRTt = wtNt + TRT

t and supply all their
work time inelastically at each t.

Rule-of-thumb consumers play the role of an insensitive buffer in this economy. There-
fore total hours, aggregate output and aggregate consumption will be much less sensitive to
shocks than in an economy where all agents are optimizers. For example, goverment ex-
penditure shocks crowd out consumption less and under some efficiency wage specification,
they can even make it increase.

Exercise 2.14 (Kiyotaki and Moore) Consider a model with two goods, land La, which is
in fixed supply, and fruit which is non-storable, and a continuum of two types of agents:
farmers of measure 1 and gatherers of measure Ψ. Both types of agents have utilities of
the form Et

P
t βjcj,t, where cj,t is the consumption of fruit of agents type j and where

βfarmers < βgatherers. Let pLt be the price of land in terms of fruit and rt the rate of
exchange of a unit of fruit today for tomorrow. Both agents have technologies to produce
fruit from land. Farmers use f (Lat)farmer = (b1 + b2)Lat−1 where b1 is the tradeable part
and b2 the bruised one (non-tradable), gatherers use f(Lat)gatherer, where fgatherer is a
decreasing returns to scale function and all output is tradable. The budget constraint for the
two agents is pLt (Lajt − Lajt−1) + rtBjt−1 + c†jt = f(Lat) +Bjt, where c

†
jt = cjt + b2Lat−1

for farmers and c†jt = cjt for gatherers, Bjt are loans and pLt (Lajt −Lajt−1) is the value of
new land acquisitions. The farmers’ technology is idiosyncratic so that only farmer i has
the skill to produce fruit from it. Gatherer’s technology does not require specific skills. Note
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that if no labor is used, fruit output is zero. i) Show that in equilibrium rt = r = 1
βgatherers

and that for farmers to be able to borrow a collateral is required. Show that the maximum

amount of borrowing is Bt ≤ pLt+1Lat
r .

ii) Show that if there is no aggregate uncertainty, farmers borrow from gatherers up to their
maximum, invest in land and consume b2Lat−1. That is, for farmers Lat = 1

pLt −r−1pLt+1
(b1+

pLt )Lat−1− rBt−1 where pLt − r−1pLt+1 is the user cost of land (the down payment needed to
purchase land) and Bt = r−1pLt+1Lat. Argue that if p

L
t increases, Lat will increase (provided

b1 + pLt > rBt−1/Lat−1) and Bt will also increase. Hence, the higher is the land price, the
higher is the net worth of farmers and the more they will borrow.

2.1.3 Monetary Models

The next set of models explicitly includes monetary factors. Finding a role for money in
a general equilibrium model is difficult: with a full set of Arrow-Debreu claims, money is
a redundant asset. Therefore, frictions of some sort need to be introduced for money to
play some role. This means that the allocations produced by the competitive equilibrium
are no longer optimal and that Bellman equation needs to be modified to include aggregate
constraints. We focus attention on two popular specifications - a competitive model with
transactional frictions and a monopolistic competitive framework where either sticky prices
or sticky wages or both are exogenously imposed - and examine what they have to say
about two questions: do monetary shocks generate liquidity effects? That is, do monetary
shocks imply negative comovements between interest rates and money? Do expansionary
monetary shocks imply expansionary and persistent output effects?

Example 2.8 (Cooley and Hansen) The representative household maximizes E0
P

t β
tu(c1t,

c2t,Nt), where c1t is consumption of a cash good, c2t is consumption of a credit good and Nt

is hours worked. The budget constraint is: c1t + c2t + invt +
Mt+1

pt
≤ wtNt + rtkt +

Mt
pt
+ Tt

pt
where Tt =Mt+1 −Mt and pt is the price level. There is a cash-in-advance constraint that
forces households to buy c1t with cash. We require ptc1t ≤Mt+Tt and assume that the mon-
etary authority sets lnMs

t+1 = lnM
s
t + lnM

g
t , where lnM

g
t is an AR(1) process with mean

M̄ , persistence ρM and variance σ2M . Households choose sequences for the two consumption
goods, for employment, for investment and real balances to satisfy the budget constraint.
We assume that shocks are realized at the beginning of each t so agents know their values
when they take decisions. The resource constraint is c1t + c2t + invt = f(Kt,Nt, ζt), where
ln ζt is an AR(1) process with persistence ρζ and variance σ

2
ζ . Since money is dominated

in expected rate of return (by physical investments) the cash-in-advance constraint will be
binding and agents hold just the exact amount of money needed to purchase c1t

When M̄ > 0, money (and prices) grow over time. To map this setup into a stationary
problem define M∗

t =
Mt
Ms
t
and p∗t =

pt
Ms
t+1
. Then the value function is:

V (K, k,M∗, ζ,Mg) = U(
M∗ + M̄ − 1

p∗M̄
+

Tt
pt
, wN + [r+ (1− δ)]k − k+ − c2 − (M

∗)+

p∗
, N)
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+ βEV (K+, k+, (M∗)+, ζ+, (Mg)+) (2.21)

where K+ = (1 − δ)K + Inv, k+ = (1 − δ)k + inv, c1 =
M∗+M̄−1

M̄p∗ + Tt
pt
and K represents

the aggregate capital stock. The problem is completed by the consistency conditions K+ =
h1(K, ζ,Mg), N = h2(K, ζ,Mg), p∗ = h3(K, ζ,Mg).

Not much can be done with this model without taking some approximation. However,
we can show that monetary disturbances have perverse output effects and produce expected
inflation but not liquidity effects. Suppose c2t = 0, ∀t. Then an unexpected increase in
Mg

t makes agents substitute away from c1t (which is now more expensive) toward credit
goods - leisure and investment - which are cheaper. Hence, consumption and hours fall
while investment increases. With a standard Cobb-Douglas production function output then
declines. Also, since positive Mg

t shocks increase inflation, the nominal interest rate will
increase, because both the real rate and expected inflation have temporarily increased. Hence,
a surprise increase in Mg

t does not produce a liquidity effect nor output expansions.

There are several ways to correct for the last shortcoming. For example, introducing
one period labor contracts (as we have done in exercise 2.10) does change the response of
output to monetary shocks. The next exercise provides a way to generate the right output
and interest rates effects by introducing a loan market, forcing consumers to take decisions
before shocks are realized and firms to borrow to finance their wage bill.

Exercise 2.15 (Working capital) Consider the same economy of example 2.8 with c2t =
0 ∀t but assume that consumers deposit part of their money balances at the beginning of
each t in banks. Assume that deposit decisions are taken before shocks occur and that firms
face a working capital constraint, i.e. they have to pay for the factors of production before
the receipts from the sale of the goods are received. Consumers maximize utility by choice of

consumption, labor, capital and deposits, i.e. max{ct,Nt,Kt+1,dept}E0
P

t β
t (c

ϑ
t (1−Nt)1−ϑ)1−ϕ

1−ϕ .
There are three constraints. First, goods must be purchased with money, i.e. ctpt ≤ Mt −
dept + wtNt. Second, there is a budget constraint Mt+1 = prf1t + prf2t + rtptKt +Mt −
dept+wtNt− ctpt− invtpt, where prf1t(prf2t) represent the share of firms’ (banks’) profits
and rt is the real return to capital. Third, capital accumulation is subject to an adjustment
cost b ≥ 0, i.e. invt = Kt+1− (1− δ)Kt− b

2 (
Kt+1

Kt
−1)2Kt. Firms rent capital and labor and

borrow cash from the banks to pay for the wage bill. Their problem is max{Kt,Nt} prf1t =
(ptζtK

1−η
t Nη

t − ptrtKt − (1 + it)wtNt), where it is the nominal interest rate. Banks take
deposits and lend them together with new money to firms. Profits prf2t are distributed,
pro-rata to the households. The monetary authority sets its instrument according to

Ma0
t = ia1t Y a2

t πa3t Mg
t (2.22)

where ai are parameters. For example, if a0 = 0, a1 = 1, the monetary authority sets the
nominal interest rate as a function of output and inflation and stands ready to provide
money when the economy needs it. Let (ln ζt, lnM

g
t ) be AR(1) with persistence ρζ , ρM and
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variances σ2ζ , σ
2
M .

i) Set b = 0. Show that the labor demand and the labor supply are:

−UN,t =
wt

pt
EtβUc,t+1

pt
pt+1

wtit
pt

= fN,t (2.23)

Argue that labor supply changes in anticipation of inflation while labor demand is directly
affected by interest rates changes so that output will be positively related to money shocks.
ii) Show that the optimal saving decision satisfies Et−1

Uc,t
pt
= Et−1itβ

Uc,t+1
pt+1

. How does this
compare with the saving decisions of the basic CIA model of example 2.8?
iii) Show that the money demand can be written as ptGDPt

Mt
= 1

1+(η/it)
, where GDPt =

ζtK
1−η
t Nη

t . Conclude that velocity
ptGDPt

Mt
and the nominal rate are positively related and

that a liquidity effect is generated in response to monetary disturbances.

Exercise 2.16 (Dunlop-Tarshis puzzle) Suppose agents maximize E0
P∞

t=0 β
t[ln ct + ϑm

ln Mt+1

pt
+ ϑN ln(1 − Nt)] subject to ct +

Mt+1

pt
+ Kt+1 = wtNt + rtKt + (Mt+Tt

pt
). Let

πt+1 =
pt+1
pt

be the inflation rate. Firms rent capital from the households and produce

using GDPt = ζtK
1−η
t Nη

t , where ln ζt is a technological disturbance and capital depreciates
in one period. Let the quantity of money evolve according to lnMs

t+1 = lnM
s
t + lnM

g
t and

assume at each t the government takes away Gt units of output.
i) Assume Gt = G ∀t. Write down the first order conditions for the optimization problem
of consumers and firms and find the competitive equilibrium for (ct,Kt+1,Nt, wt, rt,

Mt+1

pt
).

ii) Show that, in equilibrium, employment is independent of the shocks, that output and
employment are uncorrelated and that real wages are perfectly correlated with output.
iii) Show that monetary disturbances are neutral. Are they also superneutral (i.e. do changes
in the growth rate of money have real effects)?
iv) Suppose there are labor contracts where the nominal wage rate is fixed one period in ad-
vance according to wt = Et−1Mt+ln(η)−ln(ϑm(ηβ)/(1−β))−Et−1 lnNt Show that monetary
disturbances produce contemporaneous negative correlation between real wages and output.
v) Now assume that Gt is stochastic and set lnM

g
t = 0 ∀t. What is the effect of gov-

ernment expenditure shocks on the correlation between real wages and output? Give some
intuition for why adding labor contracts (Benassy) or government expenditure (Christiano
and Eichenbaum) could reduce the correlation between real wages and output found in ii).

The final type of model we consider adds nominal rigidities to a structure where mo-
nopolistic competitive firms produce intermediate goods which they sell to competitive final
goods producers.

Example 2.9 (Sticky prices) Suppose consumers choose {ct,Nt,Kt+1,Mt+1} to maximize
E0
P

t β
t(

cϑt (1−Nt)1−ϑ)1−ϕ
1−ϕ + 1

1−ϕm (
Mt+1

pt
)1−ϕm) subject to the budget constraint pt(ct+ invt)+

Bt+1+Mt+1 ≤ rtptKt+Mt+(1+ it)Bt+wtNt+prft and the capital accumulation equation
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invt = Kt+1 − (1 − δ)Kt − b
2 (

Kt+1

Kt
− 1))2Kt, where b is an adjustment cost parameter.

Here prft =
R
prfitdi are profits obtained from owning intermediate firms. There are two

types of firms: monopolistic competitive, intermediate good producing firms and perfectly
competitive, final good producing firms. Final goods firms take the continuum of intermediate
goods and bundle it up for final consumption. The production function for final goods is

GDPt = (
R 1
0 inty

1
1+ςp

it di)1+ςp, where ςp is the elasticity of substitution between intermediate

goods. Profit maximization implies a demand for each input i intyit
GDPt

= (pitpt )
− 1+ςp

ςp , where pit

is the price of intermediate good i and pt the price of the final good, pt = (
R 1
0 p

− 1
ςp

it di)−ςp.
Intermediate firms minimize costs and choose prices to maximize profits. Price decisions

can not be taken every period: only (1 − ζp) of the firms are allowed to change prices
at t. Their costs minimization problem is min{Kit,Nit}(rtKit + wtNit) subject to intyit =

ζtK
1−η
it Nη

it and their profit maximization problem is max{pit+j}
P

j
Uc,t+j
pt+j

ζjpprfit+j, where
Uc,t+1
pt+1

is the value of a unit of profit, prfit, to shareholders next period, subject to the

demand function from final goods firms. Here prft+j = (pit+j −mcit+j)intyit+j and mcit =
witNit+ritKit

intyit
are marginal costs.

We assume that the monetary authority uses a rule of the form (2.22). Since only
a fraction of the firms can change prices at each t, aggregate prices evolve according to:

pt = (ζpp
− 1
ςp

t−1 + (1 − ζp)p̃
− 1
ςp

t )−ςp, where p̃t is the common solution (all firms allowed to
change prices are identical) to the following optimality condition (dropping the i subscript)

0 = Et

X
j

βjζjp
Uc,t+j

pt+j
[
πjpt
1 + ςp

−mct+j ]intyt+j (2.24)

where π is the steady state inflation rate. Hence, firms choose prices so that the discounted
marginal revenues equals the discounted marginal costs in expected terms. Note that if
ζp → 0 and no capital is present, (2.24) reduces to the standard condition that the real wage
equals the marginal product of labor. (2.24) is the basis for the so-called New Keynesian
Phillips curve (see e.g. Woodford (2003, ch. 3)), an expression relating current inflation
to expected future inflation and to current marginal costs . To explicitly obtain such a
relationship, (2.24) needs to be log-linearized around the steady state.

To see what expression (2.24) involves, consider the case in which utility is logarithmic
in consumption, linear in leisure and the marginal utility of real balances is negligible, i.e.
U(ct,Nt,

Mt+1

pt
) = ln ct + (1 − Nt), output is produced with labor, prices are set every two

periods and in each period half of the firms change their price. Optimal price setting is

p̃t
pt
= (1 + ςp)(

Uc,tctwt + βUc,t+1ct+1wt+1π
1+ςp
ςp

t+1

Uc,tct + βUc,t+1ct+1π
1
ςp

t+1

) (2.25)

where p̃t is the optimal price, pt the aggregate price level, wt the wage rate and πt =
pt+1
pt

the inflation rate. Hence, ideally firms would like to charge a price which is a constant
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markup (1 + ςp) over marginal (labor) costs. However, because the price level may change
and prices are set for two periods, firms can’t do this and chose a higher markup than
(1 + ςp) in the period where prices are allowed to be changed. Note that if there are no
shocks, πt+1 = 1, wt+1 = wt, ct+1 = ct and

p̃t
pt
= (1 + ςp)wt.

Exercise 2.17 i) Cast the sticky price model of example 2.9 into a Bellman equation for-
mulation. Define states, controls and the value function.
ii) Assuming that firms of type i have weight Wi in the total, write down the first order
conditions of the problem and interpret them.
iii) Show that if all firms set prices one period in advance, the solution to (2.24) is pit =

(1+ ςp)Et−1
Et

Uc,t+j
pt+j

p

1+ςp
ςp

t intyit

Et−1
Uc,t+j
pt+j

p

1+ςp
ςp

t intyit

mcit. Conclude that if expectations do not change, firms set

the price of goods as a constant markup over marginal costs.
(iv) Intuitively explain why money expansions are likely to produce positive output effects.
What conditions need to be satisfied for monetary expansions to produce a liquidity effect?

Extensions of the model that allow also for sticky wages are straightforward. We ask
the reader to study a model with both sticky prices and sticky wages in the next exercise.

Exercise 2.18 (Sticky wages) Assume that households are monopolistic competitive in the
labor market so that they can choose the wage at which to work. Suppose capital is in fixed
supply and that the period utility function is u1(ct) + u2(Nt) +

1
1−ϕm (

Mt+1

pt
)1−ϕm. Suppose

that households set nominal wages in a staggered way and that a fraction 1− ζw can do this
every period. When the household is allowed to reset the wage, she maximizes the discounted
sum of utilities subject to the budget constraint.
i) Show that utility maximization leads to:

Et

∞X
j=0

βjζjw(
πjwt

(1 + ςw)pt+j
U1,t+j +U2,t+j)Nt+j = 0 (2.26)

where β is the discount factor, and ςw is the elasticity of substitution in the labor aggregator
Nt = (

R
Nt(i)

1/(1+ςw)di)1+ςw , i ∈ [0, 1]. (Note: whenever the wage rate can not be changed
wt+j = πjwt, where π is the steady state inflation).

ii) Show that if ζw = 0, (2.26) reduces to
wt
pt
= −U2,t

U1,t
.

iii) Calculate equilibrium output, real rate and real wage when prices and wages are flexible.

Exercise 2.19 (Taylor contracts, Edge) Consider a sticky wage model with no capital so
that labor demand is Nt = yt, real marginal costs are mct = wt = 1 and yt = ct. Suppose
consumption and real balances are non substitutable in utility so that the money demand
function is Mt+1

pt
= ct. Suppose lnMs

t+1 = lnM s
t + lnM

g
t , where lnM

g is iid with mean

M̄ > 0 and assume two period staggered labor contracts.
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i) Show that the real wage satisfies wt = (0.5( w̃tpt )
− 1
ςw + wt−1

pt
)−

1
ςw )−ςw , where w̃t is the

nominal wage reset at t.

ii) Show that πt =
pt

pt−1 = ((
w̃t−1
pt−1 )

− 1
ςw /(2− ( w̃tpt )

− 1
ςw ))−ςw and that Nit = Nt((

w̃t
pt
)/wt)

− 1
ςw
−1

if the wage was set at t and Nit = Nt((
w̃t−1
pt−1 )/(wtπt)

− 1
ςw
−1 if the wage was set at t− 1.

iii) Show that if utility is linear in Nt, monetary shocks have no persistence.

While expansionary monetary shocks produce expansionary output effects, their size is
typically small and their persistence minimal, unless price stickiness is extreme. The next
example shows a way to make output effects of monetary shocks sizable.

Example 2.10 (Benhabib and Farmer) Consider an economy where output is produced

with labor and real balances i.e. GDPt = (a1N
η
t + a2(

Mt
pt
)η)

1
η . Suppose agents’ utility is

u(ct, nt, Nt) = E0
P

t β
t( c

1−ϕc
1−ϕc − 1

1−ϕn
n
(1−ϕn)
t

N
(ϕN−ϕn)
t

), where nt is individual employment, Nt is

aggregate employment and ϕc, ϕn, ϕN are parameters. The consumers’ budget constraint

is Mt
pt

= Mt−1
pt

+ f(Nt,
Mt−1+Mg

t
pt

) − ct and assume that M
g
t is iid with mean M̄ ≥ 0.

Equilibrium in the labor market implies −UNUc
= fN (Nt,

Mt
pt
) and the demand for money is

Et[
βfM,t+1Uc,t+1

πt+1
] = Et[

it+1Uc,t+1
πt+1

] and 1+it is the gross nominal rate on a one-period bond, πt

the inflation rate and fM = ∂f
∂(M/p)

. These two standard conditions are somewhat special in
this model. In fact, individual labor supply is downward sloped because it is shifted by changes
in the economy-wide labor supply. Decentralizing in a competitive equilibrium and log lin-
earizing the labor market condition we have ϕc ln ct+ϕnnt− (ϕN +ϕn) lnNt = lnwt− lnpt.
Since agents are all equal, the aggregate labor supply will be downward sloping function of
the real wage and given by ϕc ln ct − ϕN lnNt = lnwt − ln pt. Hence, a small shift in labor
demand increases consumption (which is equal to output in equilibrium) makes real wages
fall and employment increase. That is, a demand shock can generate procyclical consump-
tion and employment paths. Also, since money enters the production function, an increase
in money could shift labor demand as in the working capital model. However, contrary to
that case, labor market effects can be large because of the slope of the aggregate labor supply
curve, even when money is relative unimportant as productive factor.

We will see in exercise 2.35 that there are other more conventional ways to increase
output persistence following monetary shocks without using too much price stickiness.

Sticky price models applied to international context produce at least two interesting
implications for exchange rate determination and for international risk sharing.

Example 2.11 (Obstfeld and Rogoff) Consider a structure like the one of example 2.9
where prices are chosen one period in advance, there are two countries , purchasing power
parity holds and international financial markets are incomplete, in the sense that only a
real bond, denominated in the composite consumption good, is traded. In this economy the
domestic nominal interest rate is priced by arbitrage and satisfies i+ i1t = Et

p1t+1
p1t

(i+ rBt ),
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where rBt is the real rate on internationally traded bonds and uncovered interest parity holds,
i.e. 1 + i1t = Et

nert+1
nert

(1 + i2t), where nert ≡ p1t
p2t

and p1t is the consumption based money
price index in country 1. Furthermore, the Euler equations for each country imply the
international risk sharing condition Et[(

c1t+1
c1t
)−ϕ−(c2t+1c2t

)−ϕ] = 0. Hence, while consumption
growth needs not be a random walk, the difference in adjusted consumption growth is a
martingale difference.

The money demand for each country is Mit+1

pit
= ϑmcit(

1+iit
iit
)

1
ϕm , i = 1, 2. Hence, using

uncovered interest parity and log-linearizing, M̂1t − M̂2t ∝ 1
ϕm
(ĉ2t − ĉ1t) +

β
(1−β)ϕmdnert

where .̂ indicates deviations from the steady state. Hence, differential in money supplies
or consumption levels across countries will make the nominal exchange rate jump to a new
equilibrium.

Variations or refinements of the price (wage) technology exist in the literature (see
Rotemberg (1984) or Dotsey et al. (1999)). Since these refinements are tangential to the
scope of this chapter, we invite the interested reader to consult the original sources for
details and extensions.

2.2 Approximation methods

As mentioned, finding a solution to the Bellman equation is, in general, complicated. Bell-
man equation is a functional equation and a fixed point needs to be found in the space
of functions. If the regularity conditions for existence and uniqueness are satisfied, this
requires iterations which involves the computation of expectations and the maximization of
the value function.

We have also seen in example 2.2 and exercise 2.4 that when the utility function is
quadratic (logarithmic) and time separable and the constraints are linear in the states and
the controls, the form of the value function and of the decision rules is known. In these two
situations, if the solution is known to be unique, the method of undetermined coefficients
can be used to find the unknown parameters of the solution. Quadratic utility functions
are not very appealing, however, as they imply implausible behavior for consumption and
asset returns. Log-utility functions are easy to manipulate but they are also restrictive
regarding the attitude of agents towards risk. Based on a large body of empirical research,
the macroeconomic literature specifies a general power specification for preferences. With
this choice one has either to iterate on the Bellman equation or resort to approximations to
find a solution.

We have also mentioned that solving general nonlinear expectational equations as those
emerging from the first order conditions of a stochastic Lagrangian multiplier problem is
complicated. Therefore, also in this case, approximations need to be employed.

This section considers a few approximation methods currently used in the literature.
The first approximates the objective function quadratically around the steady state. In the
second, the approximation is calculated forcing the states and the exogenous variables to
take only a finite number of possible values. This method can be applied to both the value
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function and to the first order conditions. The other two approaches directly approximate
the optimal conditions of the problem. In one case a log-linear (or a second order) approxi-
mation around the steady state is calculated. In the other, the expectational equations are
approximated by nonlinear functions and a solution is obtained by finding the parameters
of these nonlinear functions.

2.2.1 Quadratic approximations

Quadratic approximations are easy to compute but work under two restrictive conditions.
The first is that there exists a point - typically, the steady state - around which the approxi-
mation can be taken. Although this requirement may appear innocuous, it should be noted
that some models do not possess a steady or a stationary state and in others the steady
state may be multiple. The second is that local dynamics are well approximated by linear
difference equations. Consequently, such approximations are inappropriate when problems
involving large perturbations away from the approximation point (e.g. policy shifts), non-
linear dynamic paths or transitional issues are considered. Moreover, they are incorrect for
problems with inequality constraints (e.g. borrowing or irreversibility constraints), since
the non-stochastic steady state ignores them.

Quadratic approximations of the objective function are used in situations where the
social planner decisions generate competitive equilibrium allocations. When this is not the
case the method requires some adaptation to take into account the fact that aggregate
variables are distinct from individual ones (see e.g. Hansen and Sargent (1998) or Cooley
(1995, chapter 2)) but the same principle works in both cases.

Quadratic approximations can be applied to both value function and Lagrangian mul-
tiplier problems. We will discuss applications to the former type problems only since the
extension to the other type of problems is straightforward. Let Bellman equation be:

V(y2, y3) = max{y1}
u(y1, y2, y3) + βEV(y+2 , y

+
3 |y2, y3) (2.27)

where y2 is a m2× 1 vector of the states, y3 is a m3× 1 vector of exogenous variables, y1 is
a m1 × 1 vector of the controls. Suppose that the constrains are y+2 = h(y3, y1, y2) and the
law of motion of the exogenous variables is y+3 = ρ3y3 + �+, where h is continuous and � a
vector of martingale difference disturbances. Using the constraints into (2.27) we have

V(y2, y3) = max
{y+2 }

u(y2, y3, y
+
2 ) + βEV(y+2 , y

+
3 |y2, y3) (2.28)

Let ū(y2, y3, y
+
2 ) be the quadratic approximation of u(y2, y3, y

+
2 ) around (ȳ2, ȳ3, ȳ2). If

V0 is quadratic, then (2.28) maps quadratic functions into quadratic functions and the
limit value of V (y2, y3) will also be quadratic. Hence, under some regularity conditions,
the solution to the functional equation is quadratic and the decision rules for y+2 linear.
When the solution to (2.28) is known to be unique, an approximation to it can be found
either iterating on (2.28) starting from a quadratic V0 or by guessing that V(y2, y3) =
V0 +V1[y2, y3] + [y2, y3]V2[y2, y3]0, and finding V0,V1,V2.
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It is important to stress that certainty equivalence is required when computing the
solution to a quadratic approximation. This principle allows us to eliminate the expectation
operator from (2.28) and reinsert it in front of all future unknown variables once a solution
is found. This operation is possible because the covariance matrix of the shocks does not
enter the decision rule. That is, certainty equivalence implies that we can set the covariance
matrix of the shocks to zero and replace random variables with their unconditional mean.

Exercise 2.20 Consider the basic RBC model with no habit persistence in consumption

and utility given by u(ct, ct−1, Nt) =
c1−ϕt
1−ϕ , no government sector and no taxes and consider

the recursive formulation provided by the Bellman equation.
i) Compute the steady states and a quadratic approximation to the utility function.
iii) Compute the value function assuming that the initial V 0 is quadratic and calculate the
optimal decision rule for capital, labor and consumption (you are supposed to do this by
hand but if it becomes overwhelming because of algebra, you can adapt one of the computer
programs which comes with this book to undertake the iterations).

While exercise 2.20 takes a brute force approach to iterations, one should remember that
approximate quadratic value function problems fit into the class of optimal linear regulator
problems. Therefore, an approximate solution to the functional equation (2.28) can also be
found using methods developed in the control literature. One example of an optimal linear
regulator problem was encountered in exercise 2.6. The general setup is the following: we
want to maximize Et

P
t β

t[y2t, y3t]0Q2[y2t, y3t] + y01tQ1y1t +2[y2t, y3t]0Q03y1] with respect to
y1t, y20 given, subject to y2t+1 = Q04y2t +Q05y1t +Q06y3t+1. Bellman equation is
V(y2, y3) = max{y1}

([y2, y3]
0Q2[y2, y3] + y01Q1y1 + 2[y2, y3]0Q03y1]) + βEV(y+2 , y

+
3 |y2, y3) (2.29)

Hansen and Sargent (1998) show that, starting from arbitrary initial conditions, iterations
on (2.29) yield at the j-th step, the quadratic value function Vj = y20Vj2y2 + V

j
0 where

Vj+1
2 = Q2 + βQ4Vj

2Q04 − (βQ4Vj
2Q05 +Q03)(Q1 + βQ5Vj

2Q05)−1(βQ5Vj
2Q04 +Q3) (2.30)

and Vj+1
0 = βVj

0 + βtr(Vj
2Q06Q6). (2.30) is the so-called matrix Riccati equation which

depends on the parameters of the model (i.e. the matrices Qi), but it does not involve Vj
0.

(2.30) can be used to find the limit value V2 which, in turns, allows us to compute the
limit of V0 and of the value function. The decision rule which attains the maximum at each
iteration j is yj1t = −(Q1 + βQ5Vj2Q05)−1(βQ5Vj

2Q04 + Q3)yj2t and can be calculated given
Vj
2 and the parameters of the model.

While it is common to iterate on (2.30) to find the limits of Vj
0,V

j
2, the reader should

be aware that algorithms which can produce this limit in one step are available (see e.g.
Hansen, Sargent and McGrattan (1996)).

Exercise 2.21 Consider the two country model analyzed in example 2.6.
i) Take a quadratic approximation to the objective function of the social planner around the
steady state and map the problem into a linear regulator problem.
ii) Use the matrix Riccati equation to find a solution to the maximization problem.
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The alternative to brute force or Riccati iterations is the method of undetermined coef-
ficients. Although the approach is easy conceptually, it may be mechanically cumbersome,
even for small problems. If we knew the functional form of the value function (and/or
of the decision rule) we could posit a specific parametric representation and use the first
order conditions to solve for the unknown parameters, as we have done in exercise 2.4. We
highlight few steps of the approach in the next example and let the reader fill in the details.

Example 2.12 Suppose the representative agent chooses sequences for (ct,
Mt+1

pt
) to maxi-

mize E0
P

t β
t(cϑt +

Mt+1

pt

1−ϑ
), where ct is consumption, M

†
t+1 =

Mt+1

pt
are real balances, and

let πt be the inflation rate. The budget constraint is ct+
Mt+1

pt
= (1−T y)wt+

Mt
pt
, where T y

is an income tax. We assume that wt and Mt are exogenous and stochastic. The govern-
ment budget constraint is Gt = T ywt +

Mt+1−Mt

pt
which, together with the consumer budget

constraint, implies ct+Gt = wt. Substituting the constraints in the utility function we have

E0
P

t β
t[(1−T y)wt+

M †
t

πt
+M†

t+1)
ϑ+(M†

t+1)
1−ϑ. The states of the problem are y2t = (M

†
t , πt)

and the shocks are y3t = (wt,M
g
t ). Bellman equation is V(y2, y3) = max{c,M †}[u(c,M†) +

βEV(y+2 , y
+
3 |y2, y3)]. Let (css,M†ss, wss, πss) be the steady state value of consumption, real

balances, income and inflation. For πss = 1, wss = 1, consumption and real balances are
given by css = (1 − T y) and (M†)ss = [ (1−β)ϑ1−ϑ ((1 − T y))ϑ−1]−

1
ϑ . A quadratic approxima-

tion to the utility function is B0 + B1xt + x0tB2xt where xt = (wt,M
†
t , πt,M

†
t+1), B0 =

(css)ϑ + ((M†)ss)1−ϑ, B1 = [ϑ(c
ss)ϑ−1(1− T y); ϑ(c

ss)ϑ−1
πss ;ϑ(css)ϑ−1(− (M†)ss

(πss)2
);−ϑ(css)ϑ−1 +

(1− ϑ)((M†)ss)−ϑ] and the matrix B2 is
κ(1− T y)2 κ(1−T y)

πss κ((1− T y)(− M †ss
(πss)2

) −κ(1− T y)
κ(1−Ty)

πss
κ

(πss)2
(− (M †)ss

(πss)2
)[ κ
πss + ϑ(css)−1)] − κ

πss

κ(1− T y)(− (M †)ss
(πss)2

) (− (M†)ss
(πss)2

)[ κ
πss +

ϑ
css ] (− (M †)ss

(πss)2
)(κ+ ϑ

css (− 2
πss ) − (M†)ss

(πss)2
)(−κ)

−κ(1− T y) − κ
πss −κ(− (M†)ss

(πss)2
)2 κ+ κ ((M

†)ss)ϑ−1
(css)2−ϑ


where κ = ϑ(ϑ − 1)(css)ϑ−2. One could guess then a quadratic form for the value function
and solve for the unknown coefficients. Alternatively, if the decisions rules is everything
that is needed, one could directly guess a linear policy function (in deviation from steady

states) of the form M†
t+1 = Q0+Q1M†

t +Q2wt+Q3πt +Q4Mg
t and solve for Qi using the

linear version of the first order conditions.

Exercise 2.22 Find the approximate first order conditions of the problem of example 2.12.
Show the form of Qj , j = 0, 1, 2, 3 (Hint: use the certainty equivalence principle).

When the number of states is large, analytic calculation of first order and second order
derivatives of the return function may take quite some time. As an alternative numerical
derivatives, which are much faster to calculate and only require the solution of the model
at a pivotal point, could be used. Hence, in example 2.12, one could use e.g. ∂u

∂c =
[(1−Ty)wss+ι]ϑ−[(1−T y)wss−ι]ϑ

2ι , for ι small.
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Exercise 2.23 (Ramsey) Suppose households maximize E0
P

t β
t(

υtc
1−ϕc
t

1−ϕc +
N1−ϕn
t
1−ϕn ), where

υt is a preference shock and ϕc, ϕn are parameters. Suppose the resource constraint is
ct + Gt = GDPt = ζtN

η
t and that the consumer budget constraint is E0

P
t β

tp0t [(1 −
T y
t )GDPt+ sb0t− ct] = 0, where sb0t is a stream of coupon payments promised by the govern-
ment at 0 and p0t is an Arrow Debreu price at time zero. The government budget constraint
is E0

P
t β

tp0t [(Gt + sb0t) − T y
t GDPt] = 0. Given a process for Gt and the present value

E0
P

t β
tp0t s

b
0t, a feasible tax process must satisfy the government budget constraint. As-

sume that (υt, ζt, sb0t,Gt) are random variables with AR(1) representation. Agents choose
sequences for consumption and hours and the government selects the tax process preferred
by the representative household. The government commits at time 0 to follow the optimal
tax system, once and for all.
i) Take a quadratic approximation to the problem, calculate the first order conditions of the
household problem and show how to calculate the Arrow-Debreu price p0t .
ii) Show the allocations for ct,Nt and the optimal tax policy T

y
t . Is it true that the optimal

tax rate implies tax smoothing (random walk taxes), regardless of the process for Gt?

Example 2.13 Consider the setup of exercise 2.8 where the utility function is u(ct, Gt,Nt) =
ln(ct+ϑGGt)+ϑN (1−Nt) and where Gt is an AR(1) process with persistence ρG and vari-
ance σ2G and it is financed with lump sum taxes. The resource constraint is ct+Kt+1+Gt =

K1−η
t Nη

t ζt + (1 − δ)Kt, where ln ζt is an AR(1) disturbance with persistence ρζ and vari-
ance σ2ζ . Setting ϑG = 0.7, η = 0.64, δ = 0.025, β = 0.99, ϑN = 2.8, we have that
(K/GDP )ss = 10.25, (c/GDP )ss = 0.745, (inv/GDP )ss = 0.225, (G/GDP )ss = 0.03
and Nss = 0.235. Approximating quadratically the utility function and linearly the con-
straint we can use the matrix Riccati equation to find a solution. Convergence was achieved
at iteration 243 and the increment in the value function at the last iteration was 9.41e-
06. The value function is proportional to [y2, y3]V2[y2, y3]0 where y2 = K; y3 = (G, ζ) and

V2 =

 1.76e− 09 3.08e− 07 7.38e− 09
−1.54e− 08 −0.081 −9.38e− 08
−2.14e− 06 −3.75e− 04 −8.98e− 06

. The decision rule for y1 = (c,N)0 is

y1t =

· −9.06e− 10 −0.70 −2.87e− 09
−9.32e− 10 −1.56e− 07 −2.95e− 09

¸
y2t.

2.2.2 Discretization

As an alternative to quadratic approximations, one could solve the value function problem
by discretizing the state space and the space over which the exogenous processes take values.
This is the method popularized, for example, by Merha and Prescott (1985). The idea is that
the states are forced to lie in the set Y2 = {y21, . . . y2n1} and the exogenous processes in the
set Y3 = {y31, . . . y3n2}. Then the space of possible (y2t, y3t) combination has n1×n2 points.
For simplicity, assume that the process for the exogenous variables is first order Markov
with transition P (y3t+1 = y3j 0 |y3t = y3j) = pj0j . The value function associated with each
pair of states and exogenous processes is V(y2i, y3j), which is of dimension n1×n2. Because
of the Markov structure of the shocks, and the assumptions made, we have transformed an
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infinite dimensional problem into the problem of mapping of n1 × n2 matrices into n1 × n2
matrices. Therefore, iterations on the Bellman equation are easier to compute. The value
function can be written as (T V)(y2i, y3j) = maxn u(y1, y2i, y3j) + β

Pn2
l=1Vn,lpl,j , where y1n

is such that h(y1n, y2i, y3j) = y2n, n = 1, . . . n1×n2. An illustration of the approach is given
in the next example.

Example 2.14 Consider a RBC model where a random stream of government expendi-
ture is financed by distorting income taxes, labor supply is inelastic and production uses

only capital. The social planner chooses {ct,Kt+1} to maximize E0
P

t β
t c
1−ϕ
t
1−ϕ , given Gt

and Kt, subject to ct + Kt+1 − (1 − δ)Kt + Gt = (1 − T y)K1−η
t , where Gt is an AR(1)

with persistence ρg , variance σ2g and (ϕ, β, T
y, η, δ) are parameters. Bellman equation is

V(K,G) = max{K+}
[(1−Ty)K1−η+(1−δ)K−G−K+]1−ϕ

1−ϕ + βE(V(K+,G+|K,G)). Given K0, de-

fine T by (T V)(K,G) = max{K+}
[(1−T y)K1−η+(1−δ)K−G−K+]1−ϕ

1−ϕ + βE(V(K+,G+|K,G).
Suppose that the capital stock and government expenditure can take only two values, and let
the transition for Gt be pj0j . Then the discretization algorithm works as follows:

Algorithm 2.2

1) Choose values for (δ, η, ϕ, T y, β) and specify the elements of pj,j0 .

2) Choose an initial 2× 2 matrix V(K,G), e.g. V0 = 0.

3) For i, i0, j, j0 = 1, 2, calculate (T Vi,i0)(K,G) = max([
(1−Ty)K1−η

i +(1−δ)Ki−Ki−Gi0 )
1−ϑ

1−ϑ ] + β

[Vi,i0pi,i0 + Vi,j 0pi,j 0)]; [
(1−T y)K1−η

i +(1−δ)Ki−Kj−Gi0)1−ϑ
1−ϑ ] + β[Vj,i0pj,i0 +Vj,j0pj,j 0)]).

4) Iterate on 3) until e.g. maxi,i0 | T lVi,i0 − T l−1Vi,i0 | ≤ ι, ι small, l = 2, 3, . . ..

Suppose T y = 0.1, δ = 0.1;β = 0.9, ϕ = 2, η = 0.66, choose G1 = 1.1;G2 = 0.9,
K1 = 5.3, K2 = 6.4, p11 = 0.8; p22 = 0.7 , V0 = 0.
Then (T V)11 = max1,2{( (1−T

y)K1−η
1 +(1−δ)K1−K1−G1)1−ϕ

1−ϕ ); (
(1−Ty)K1−η

1 +(1−δ)K1−K2−G1)1−ϑ
1−ϑ )}

= max1,2(14.38, 0.85) = 14.38. Repeating for the other entries, T V =
·
14.38 1.03
12.60 −0.81

¸
;

T 2V =
·
24.92 3.91
21.53 1.10

¸
, and liml→∞ T lV =

·
71.63 31.54
56.27 1.10

¸
. Implicitly the solution de-

fines the decision rule; for example, from (T V)11 we have that Kt = K1.

Clearly, the quality of the approximation depends on the finess of the grid. Therefore,
it is a good idea to start from course grids and after convergence is achieved check whether
a finer grid in the space of states or in the space of shocks produces different results.

The discretization approach is well suited for problems of modest dimension (i.e. when
the number of state variables and of exogenous processes is small) since constructing a grid
which systematically and effectively covers high dimensional spaces is difficult. For example,
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when we have one state, two shocks and 100 grid points, 1,000,000 evaluations are required
in each step. Nevertheless, even with this large number of evaluations, it is easy to leave
large portions of the space unexplored.

Exercise 2.24 (Search) Suppose an agent has the choice of accepting or rejecting a wage
offer. If she has worked at t−1, the offer is wt = b0+b1wt−1+et, where et is a shock; if she
was searching at t−1, the offer is drawn from some stationary distribution. Having observed
wt agents decide whether to work or not (i.e. whether Nt = 0 or Nt = 1). Agents can’t save
so ct = wt if Nt = 1 and ct = c̄ if Nt = 0, where c̄ measures unemployment compensations.

Agents maximize discounted utility where u(c) =
c1−ϕt
1−ϕ and ϕ is a parameter.

i) Write down the maximization problem and the first order conditions.
ii) Define states and controls and write down the Bellman equation. Suppose et = 0, b0 =
0, b1 = 1; β = 0.96 and wt ∼ U(0, 1). Calculate the optimal value function and describe the
decision rules.
iii) Assume that the agent has now also the option of retiring so that xt = 0 or xt = 1.
Suppose xt = xt−1 if xt−1 = 0 and that ct = wt if Nt = 1, xt = 1; ct = c̄ if Nt = 0, xt = 1
and ct = ¯̄c if Nt = 0, xt = 0, where ¯̄c is the retirement pay. Write down Bellman equation
and calculate the optimal decision rules.
iv) Suppose that the agent has now the option to migrate. For each location i = 1, 2 the wage
is wi

t = b0 + b1wl
t−1 + eit if the agent has worked at t− 1 in location i, and by wi

t ∼ U(0, i)
otherwise. Consumption is ct = wt if it = it−1 and ct = c̄−( if it 6= it−1, where ( = 0.1 is a
migration cost. Write down the Bellman equation and calculate the optimal decision rules.

Exercise 2.25 (Lucas tree model) Consider an economy where infinitely lived agents have
a random stream of perishable endowments sdt and decide how much to consume and save,
where savings can take the form of either stocks or bonds and let u(ct, ct−1,Nt) = ln ct
i) Write down the maximization problem and the first order conditions. Write down the
Bellman equation specifying the states and the controls.
ii) Assume that the endowment process can take only two values sd1 = 6, sd2 = 1 with

transition

·
0.7 0.3
0.2 0.8

¸
. Find the 2× 1 vector of value functions, one for each state.

iii) Find the policy function for consumption, stock and bond holdings and the pricing func-
tions for stocks and bonds.

One can employ a discretization approach also to solve the optimality conditions of the
problem. Hence, the methodology is applicable to problems where the value function may
not exist.

Example 2.15 For general preferences, the Euler equation of exercise 2.25 is

pst (sdt)Uc,t = βE[Uc,t+1(p
s
t+1(sdt+1) + sdt+1)] (2.31)

where we have made explicit the dependence of pst on sdt. If we assume that sdt = [sdh, sdL],
use the equilibrium condition ct = sdt and let U1i ≡ ps(sdi)Usdi ; U

2
i = β

P2
i0=1 sdiUsdipii0,
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(2.31) can be written as U1i = U2i + β
P

i0 pii0U
1
i0 or U

1 = (1 − βP )−1U2, where P is the
matrix with typical element {pij}. Therefore, given a functional form for the utility, share

prices satisfy ps(sdi) =
P

i0(I + βP + β2P 2 + . . .)ii0
U2
i0

Usdi
, where the sum is over the (i, i0)

elements of the matrix.

Exercise 2.26 Consider the interteporal condition (2.13), the intratemporal condition (2.14)
of a standard RBC economy. Assume T y = 0 and that (Kt, ζt) can take two values. Describe
how to find the optimal consumption/leisure choice when U(ct, ct−1,Nt) = ln ct+ϑN(1−Nt).

2.2.3 Log linear Approximations

Log linearizations have been extensively used in recent years following the work of Blanchard
and Khan (1980), King, Plosser and Rebelo (1987) and Campbell (1994). Uhlig (1999) has
systematized the methodology and provided software useful to solve a variety of problems.
King and Watson (1998) and Klein (2000) provided algorithms for singular systems and
Sims (2001) for problems where the distinction between states and controls is unclear.

Log linear approximations are similar, in spirit, to quadratic approximations and the
solutions are computed using similar methodologies. The former may work better when
the problem displays some mild non-linearities. The major difference between the two
approaches is that quadratic approximations are typically performed on the objective func-
tion while log-linear approximations are calculated using the optimality conditions of the
problem. Therefore, the latters are useful in situations where, because of distortions, the
competitive equilibrium is suboptimal.

The basic principles of log linearization are simple. We need a point around which the
log-linearization takes place. This could be the steady state or, in models with frictions,
the frictionless solution. Let y = (y1, y2, y3). The optimality conditions of the problem
can be divided into two blocks, the first containing expectational equations and the second
non-expectational equations:

1 = Et[h(yt+1, yt)] (2.32)

1 = f(yt, yt−1) (2.33)

where f (0, 0) = 1; h(0, 0) = 1. Taking first order Taylor expansions around (ȳ, ȳ) = (0, 0)

0 ≈ Et[ht+1yt+1 + htyt] (2.34)

0 = ftyt + ft−1yt−1 (2.35)

where fj =
∂ ln f
∂y0j

and hj =
∂ lnh
∂y0j

. (2.34) and (2.35) form a system of linear expectational

equations.
Although log linearization only requires calculations of the first derivatives of the func-

tions f and h, Uhlig (1999) suggests a set of approximations to calculate (2.34)-(2.35)
directly without differentiation. The tricks involve replacing any yt with ȳeỹt , where ỹt is
small and using the following three rules (here a0 is a constant and b1t, b2t small numbers).
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• eb1t+a0b2t ≈ 1 + b1t + a0b2t.
• b1tb2t ≈ 0.
• Et[a0e

b1t+1 ] ∝ Et[a0b1t+1].

Example 2.16 To illustrate how to use these rules consider the resource constraint Ct +
Gt+ Invt = GDPt. Set c̄ect + ḡegt + inveinvt = GDPegdpt and use rule i) to get c̄(1+ ct) +
ḡ(1 + gt) + δk̄(1 + invt) − GDP (1 + gdpt) = 0. Then using c̄ + ḡ + inv = GDP we get

c̄ct + ḡgt + invinvt −GDPgdpt = 0 or
c̄

GDP
ct +

ḡ

GDP
gt +

inv
GDP

invt − gdpt = 0.

Exercise 2.27 Suppose yt and yt+1 are conditionally jointly log-normal homoschedastic
processes. Replace (2.32) with 0 = log{Et[exp(h̄(yt+1, yt))]}, where h̄ = log(h). Us-
ing log h(0, 0) ≈ 0.5vart[h̄t+1yt+1 + h̄tyt], show that the log linear approximation is 0 ≈
Et[h̄t+1yt+1
+ h̄tyt)]. What is the difference between this approximation and the one in (2.34)?

Exercise 2.28 Suppose that the private production is GDPt = K1−η
t Nη

t ζt(
Kt
Popt

)ℵ1/(1−η)( Nt
Popt

)ℵ2/η

where ( Kt
Popt

) and ( Nt
Popt

) are the average endowment of capital and hours in the econ-

omy. Suppose the utility function is Et
P

t β
t[ln( ct

Popt
) − 1

1−ϕN (
Nt
Popt

)1−ϕN ]. Assume that
(ln ζt, lnPopt) are AR(1) processes with persistence equal to ρζ and 1.
i) Show that the optimality conditions of the problem are

ct
Popt

(
Nt

Popt
)−ϕN = η

GDPt
Popt

(2.36)

Popt
ct

= Etβ
Popt+1
ct+1

[(1− δ) + (1− η)
GDPt+1

Kt+1
] (2.37)

ii) Find expressions for the log-linearized production function, the labor market equilibrium,
the Euler equation and the budget constraint.
iii) Write the log linearized expectational equation in terms of an Euler equation error. Give
conditions under which sunspot equilibria may obtain (Hint: find conditions under which
there are more stable roots than state variables).

There are several economic models which do not fit the setup of (2.32)-(2.33). For
example, Rotemberg and Woodford (1997) describe a model where consumption at time
t depends on the expectations of variables dated at t + 2 and on. This model can be
accommodated in the setup of (2.32)-(2.33) using dummy variables, as the next example,
shows. In general, restructuring of the timing convention of the variables, or enlarging the
vector of states, suffices to fit these problems into (2.32)- (2.33).

Example 2.17 Suppose that (2.32) is 1 = Et[h(y2t+2, y2t)]. We can transform this second
order expectational equation into a 2× 1 vector of first order expectational equations using
a dummy variable y∗2t. In fact, the above is equivalent to 1 = Et[h(y∗2t+1, y2t)] and 0 =
E∗t (y2t+1, y∗2t) as long as the vector [y2t, y

∗
2t] is used as state variables for the problem.
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Exercise 2.29 Consider a model with optimizers and rule of thumb consumers like the
one of example 2.7 and assume that optimizing agents display habit in consumption. In
particular, assume that their utility function is (ct − γct−1)ϑ(1 − Nt)1−ϑ. Derive the first
order conditions of the model and map them into (2.32)-(2.33).

Example 2.18 Log-linearizing around the steady state the equilibrium conditions of the
model of exercise 2.14, and assuming an unexpected change in the productivity of farmers
technology (represented by ∆) lasting one period we have: (1 + 1

()
cLat = ∆ + r

r−1 p̂
L
t for

τ = 0 and (1 + 1
()
cLat+τ = cLat+τ−1 for τ ≥ 1 where ( is the elasticity of the supply of

land with respect to the user costs in the steady state and p̂Lt =
r−1
r(

1
1− (

r(1+()

cLat, where .̂

indicates percentage deviations from the steady state. Solving these two expressions we have
p̂Lt =

∆
( and

cLat = 1
1+ 1

(

(1+ r
(r−1)()∆. Three interesting conclusions follows. First, if ( = 0,

temporary shocks have permanent effects on farmers land and on its price. Second, since
1

1+ 1
(

(1 + r
(r−1)() > 1, the effect on land ownership is larger than the shock. Finally, in the

static case (p̂Lt )
∗ = r−1

r( ∆ < p̂Lt and (cLat)∗ = ∆ < cLat. This is because ∆ affects the net
worth of farmers: a positive ∆ reduces the value of the obligations and implies a larger use
of capital by the farmers, therefore magnifying the effect of the shock on land ownership.

Exercise 2.30 Show that the log-linearized first order conditions of the sticky price model
of example 2.9 when Kt = 1, ∀t are

0 = wt +
Nss

1−Nss
Nt − ct

(
1

1 + iss
)it+1 = (1− ϑ(1− ϕ))(ct+1 − ct)− (1− ϑ)(1− ϕ)(Nt+1 −Nt)

Nss

1−Nss
− πt+1

Mt+1

pt
=

ϑ(1− ϕ)− 1
ϕm

ct +
N ss

1−N ss

(1− ϑ)(1− ϕ)

ϕm
Nt − 1

ϕm(1 + iss)
it

βEtπt+1 = πt − (1− ζp)(1− ζpβ)

ζp
mct (2.38)

where mct are real marginal costs, ζp is the probability of not changing the prices, wt is the
real wage, ϕ is the risk aversion parameter, ϑ is the share of consumption in utility, ϑM is
the exponent on real balances in utility and the superscript ss refers to steady state.

As with quadratic approximations, the solution of the system of equations (2.34)-(2.35)
can be obtained in two ways when the solution is known to exist and be unique: using the
method of the undetermined coefficients or finding the saddle-point solution (Vaughan’s
method). The method of undetermined coefficients is analogous to the one described in
exercise 2.20. Vaughan’s method works with the state space representation of the system.
Both methods require the computation of eigenvalues and eigenvectors. For a thorough
discussion of the methods and a comparison with second order difference equation meth-
ods, the reader should consult e.g. the chapter of Uhlig in Marimon and Scott (1999) or
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Klein (2000). Here we briefly describe the building blocks of the procedure and highlight
important steps with some examples.

Rather than using (2.34) and (2.35), we employ a slightly more general setup which
directly allows for structures like those considered in exercises ?? and 2.29, without any
need to enlarge the state space.

Let y1t be of dimension m1 × 1, y2t of dimension m2 × 1, and y3t of dimension m3 × 1
and suppose the log linearized first order conditions, the budget constraint and the law of
motion of the exogenous variables be written as:

0 = Q1y2t +Q2y2t−1 +Q3y1t +Q4y3t (2.39)

0 = Et[Q5y2t+1 +Q6y2t +Q7y2t−1 +Q8y1t+1 +Q9y1t +Q10y3t+1 +Q11y3t] (2.40)
0 = y3t+1 − ρy3t − �t (2.41)

where Q3 is a m4 ×m1 matrix and of rank m1 ≤ m4, and ρ has only stable eigenvalues.
Assume that a solution is given by:

y2t = A22y2t−1 +A23y3t (2.42)

y1t = A12y2t−1 +A13y3t (2.43)

Letting Z1 = Q8Q+3 Q2 −Q6 +Q9Q+3 Q1, Uhlig (1999) shows that:

a) A22 satisfies the (matrix) quadratic equations:

0 = Q03Q1A22 +Q03Q2 (2.44)

0 = (Q5 −Q8Q+3 Q1)A222 − Z1A22 −Q9Q+3 Q2 +Q7 (2.45)

The equilibrium is stable if all eigenvalues of A22 are less than one in absolute value.
b) A12 is given by A12 = −Q+3 (Q1A22 +Q2).
c) Given Z2 = (Q5A22 +Q8A12) and Z3 = Q10ρ+Q11, A13 and A23 satisfy:·

Im3 ⊗Q1 Im3 ⊗Q3
ρ0 ⊗Q5 + Im3 ⊗ (Z2 +Q6) ρ0 ⊗Q8 + Im3 ⊗Q9

¸ ·
vec(A23)
vec(A13)

¸
= −

·
vec(Q4)
vec(Z3)

¸
where vec(.) is columnwise vectorization; QG

3 is a pseudo inverse of Q3 and satisfies
QG
3 Q3QG

3 = QG
3 and Q3QG

3 Q3 = Q3; Q03 is an (m4 −m1) ×m4 matrix whose rows
are a basis for the space of Q03 and Im3 is the identity matrix of dimension m3.

Example 2.19 Consider a RBC model with an intermediate monopolistic competitive sec-
tor. Let the profits in firm i be prfit = mktintyt, where mkt = (pit−mcit) is the markup. If

the utility function is of the form u(ct, ct−1,Nt) =
c1−ϕt
1−ϕ + ϑN (1−Nt), the dynamics depend

on the markup only via the steady state. For this model the log linearized conditions are

0 = −(invss/GDP ss)invt − (css/GDP ss)ct + gdpt (2.46)
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0 = (invss/Kss)invt − kt+1 + (1− δ)kt (2.47)

0 = (1− η)kt − gdpt + ηnt + ζt (2.48)

0 = −ϕct + gdpt −Nt (2.49)

0 = −kt + gdpt − rss

mkss(1− η)(GDP ss/Kss)
rt (2.50)

0 = Et[−ϕct+1 + rt+1 + ϕct] (2.51)

ζt+1 = ρζζt + �1t+1 (2.52)

where (invss/GDP ss) and (css/GDP ss) are the steady state investment and consumption
to output ratios, rss is the steady state real rate and mkss steady state markup. Letting
y1t = (ct, gdpt,Nt, rt, invt), y2t = kt, y3t = ζt, we have Q5 = Q6 = Q7 = Q10 = Q11 = [0]

Q2 =


0

(1− δ)Kss

1− η
0
−Dss

; Q3 =

−Css GDP ss 0 0 −invss
0 0 0 0 invss

0 −1 η 0 0
−ϕ 1 −1 0 0
0 Dss 0 −rss 0

; Q1 =


0
−Kss

0
0
0

 ;

Q4 =


0
0
1
0
0

 ; Q8 = [−ϕ, 0, 0, 1, 0]; Q9 = [ϕ, 0, 0, 0, 0], ρ = [ρζ ]; where Dss = mkss(1 −

η)(GDP ss/Kss).

It is important to stress that the method of undetermined coefficients properly works
only when the state space is chosen to be of minimal size, that is, no redundant state
variables are included. If this is not the case, A22 may have zero eigenvalues and this will
produce ”bubble” solutions.

Computationally, the major difficulty is to find a solution to the matrix equation (2.45).
The toolkit of Uhlig (1999) recasts it into a generalized eigenvalue-eigenvector problem.
Klein (2000) and Sims (2001) calculate a solution using the generalized Shur decomposi-
tion. When applied to some of the problems described in this chapter, the two approaches
yield similar solutions. In general, the Shur (QZ) decomposition is useful when generalized
eigenvalues may not be distinct. However, the QZ decomposition is not necessarily unique.

Exercise 2.31 Suppose the representative agent maximizes E0
P

t β
t c
1−ϕc
t
1−ϕc +

(
Mt+1
pt

)1−ϕm

1−ϕm ,

where ϕc and ϕm are parameters, subject to the resource constraint ct + Kt+1 +
Mt+1

pt
=

ζtK
1−η
t Nη

t +(1−δ)Kt+
Mt
pt
where ln ζt is an AR(1) process with persistence ρζ and standard

error σζ . Let M
†
t+1 =

Mt+1

pt
be real balances, πt the inflation rate, rt the rental rate of capital

and assume lnMs
t+1 = lnM

s
t +lnM

g
t where lnM

g
t has mean M̄ ≥ 0 and standard error σM .

i) Verify that the first order conditions of the problem are

rt = (1− η)ζtK
−η
t Nη

t + (1− δ)
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1 = Et[β(
ct+1
ct
)−ϕcrt+1]

(M†
t+1)

−ϑmc−ϕct = 1 +Et[β(
ct+1
ct
)−ϕcπt+1] (2.53)

ii) Log linearize (2.53), the resource constraint, and the law of motion of the shocks and
cast these equations into the form of equations (2.39)-(2.41).

iii) Guess that a solution for [Kt+1, ct, rt,M
†
t+1] is linear in (Kt,M

†
t , ζt,M

g
t ). Determine

the coefficients of the relationship.

Exercise 2.32 Suppose agents maximize E0
P∞

t=0 β
tu(ct, 1 − Nt) subject to ct +

Mt+1

pt
+

Kt+1 ≤ (1−δ)Kt+(GDPt−Gt)+
Mt
pt
+Tt,

Mt
pt
≥ ct, where GDPt = ζtK

1−η
t Nη

t and assume

that the monetary authority sets ∆ lnMs
t+1 = lnMg

t + ait, where a is a parameter and it

the nominal interest rate. The government budget constraint is Gt +
Mt+1−Mt

pt
= Tt. Let

[lnGt, ln ζt, lnM
g
t ] be a vector of random disturbances.

i) Assume a binding CIA constraint, ct =
Mt+1

pt
. Derive the optimality conditions and the

equation determining the nominal interest rate.
ii) Compute a log-linear approximation around the steady states of the first order conditions
and of the budget constraint, of the production function, of the CIA constraint, of the
equilibrium pricing equation for nominal bonds and the of government budget constraint.
iii) Show that the system is recursive and can be solved for (Nt,Kt,

Mt+1

pt
, it) first while

(GDPt, ct, λt, Tt) can be solved in a second stage as a function of (Nt,Kt,
Mt+1

pt
, it), where

λt is the Lagrangian multiplier on the private budget constraint.
iv) Write down the system of difference equations for (Nt,Kt,

Mt
pt
, it). Guess a linear solution

(in deviation from steady states) in Kt and [lnGt, ln ζt, lnM
g
t ] and find the coefficients.

v) Assume prices are set one period in advance as a function of the states and of past shocks,
i.e. pt = a0+a1Kt+a21 lnGt−1+a22 ln ζt−1+ a23 lnM

g
t−1. What is the state vector in this

case? What is the most likely guess for (Nt,Kt,
Mt
pt
, it)? Use the method of undetermined

coefficients to find a solution.

The next example shows the form of the log-linearized solution of a version of the sticky
price-sticky wage model described in exercise 2.18.

Example 2.20 Assume that capital is fixed so that the only variable factor in production

is labor and the utility function is E0
P

t β
t( c

ϑ
t (1−Nt)1−ϑ)1−ϕ

1−ϕ + ϑm
1−ϕm (

Mt+1

pt
)1−ϕm). Set Nss =

0.33, η = 0.66, πss = 1.005, β = 0.99, ( c
GDP )

ss = 0.8, where ( c
GDP )

ss is the share of
consumption in GDP, Nss is hours worked and πss is gross inflation in the steady states,
η is exponent of labor in the production function, β is the discount factor. These choices
imply, for example, that in steady-state the gross real interest rate is 1.01, output is 0.46,
real balances 0.37 and the real (fully flexible) wage 0.88. We select the degree of price and
wage rigidity to be the same and set ζp = ζw = 0.75. Given the quarterly frequency of the
model, this choice implies that on average firms (consumers) change their price (wage) every
three quarters. Also, we choose the elasticity of money demand ϑm = 7. In the monetary
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policy rule we set a2 = −1.0;a1 = 0.5; a3 = 0.1;a0 = 0. Finally, ζt and Mg
t are AR(1)

processes with persistence 0.95. The decision rules for real wage, output, interest rates, real
balances and inflation, in terms of lagged real wages and the two shocks are

bwtbytbitd
M†

tbΠt

 =

0.0012
0.5571
0.0416
0.1386
0.1050

 £ bwt−1
¤
+


0.5823 −0.0005
0.2756 0.0008
0.0128 0.9595
0.0427 −0.1351
−0.7812 0.0025


" bζtdMg

t

#
.

Two features of this approximate solution are worth commenting upon. First, there is
little feedback from the state to the endogenous variables, except for output. This implies
that the propagation properties of the model are limited. Second, monetary disturbances
have little contemporaneous impact on all variables, except interest rates and real balances.
These two observations imply that monetary disturbances have negligible real effects. This
is confirmed by standard statistics. For example, technology shocks explain about 99 percent
of the variance of output at the four years horizon and monetary shocks the rest. This
model also misses the sign of few important contemporaneous correlations. For example,
using linearly detrended US data the correlation between output and inflation is 0.35. For
the model, the correlation is -0.89.

Exercise 2.33 (Delivery lag) Suppose the representative agent maximizes E0
P

t β
t[ln ct −

ϑlNt] subject to ct + it ≤ ζtK
1−η
t Nη

t and assume one period delivery lag, i.e. Kt+1 = (1 −
δ)Kt+invt−1. The Euler equation is βEt[c

−1
t+1(1−η)GDPt+1K

−1
t+1]+(1−δ)c−1t −β−1c−1t−1 = 0.

Log linearize the system and find a solution using Kt and c
∗
t = ct−1 as states.

Vaughan’s method, popularized by Blanchard and Kahn (1980) and King, Plosser and
Rebelo (1987), takes a slightly different approach. First, using the state space represen-
tation for the (log)-linearized version of the model, it eliminates the expectation operator
either assuming certainty equivalence or substituting expectations with actual values of the
variables plus an expectational error. Second, it uses the law of motion of the exogenous
variables, the linearized solution for the state variables and the costate (the Lagrangian mul-
tiplier) to create a system of first order difference equations (if the model delivers higher
order dynamics, the dummy variable trick described in example 2.17 can be used to get the
system in the required form). Third, it computes an eigenvalue-eigenvector decomposition
on the matrix governing the dynamics of the system and divides the roots into explosive
and stable ones. Then, the restrictions implied by the stability condition are used to derive
the law of motion for the control (and the expectational error, if needed).

Suppose that the log-linearized system isΥt = AEtΥt+1 whereΥt = [y1t, y2t, y3t, y4t], y2t
and y1t are, as usual, the states and the controls, y4t are the costates and y3t are the shocks
and partition Υt = [Υ1t,Υ2t]. Let A = PVP−1 be the eigenvalue-eigenvector decomposition
of A. Since the matrix A is symptletic, the eigenvalues come in reciprocal pairs when
distinct. Let V = diag(V1,V−11 ), where V1 is a matrix with eigenvalues greater than one
in modulus and P−1 =

· P−111 P−112
P−121 P−122

¸
. Multiplying both sides by A−1, using certainty
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equivalence and iterating forward we have·
Υ1t+j
Υ2t+j

¸
= P

"
V−j1 0

0 Vj1

#· P−111 Υ1t +P−112 Υ2t
P−121 Υ1t +P−122 Υ2t

¸
(2.54)

We want to solve (2.54) under the condition that Υ2t+j goes to zero as j →∞, starting
from some Υ20. Since the components of V1 exceed unity, this is possible only if the terms
multiplying V1 are zero. This implies Υ2t = −(P−122 )−1P−121 Υ1t ≡ QΥ1t so that (2.54) is· QΥ1t+j

Υ2t+j

¸
=

"
QP11V−j1 (P−111 Υ1t + P−112 Υ2t)
P21V−j1 (P−111 Υ1t +P−112 Υ2t)

#
(2.55)

which also implies Q = P21P−111 . Note that, for quadratic problem, the limit value of Q is
the same as the limit of the Riccati equation (2.30).

Example 2.21 The basic RBC model with labor-leisure choice, no habit, Gt = Tt = T y =
0, production function f(Kt,Nt, ζt) = ζtK

1−η
t Nη

t and utility function u(ct, ct−1,Nt) = ln ct+
ϑN (1 − Nt) when log linearized, delivers the representation Υt = A−10 A1EtΥt+1, where

Υt = [ĉt, K̂t, N̂t, ζ̂t] (since there is a one-to-one relationship between ct,Nt and λt we can
solve λt out of the system) where .̂ indicates percentage deviations from steady states and

A0 =


1 η − 1 1− η −1
−1 0 0 0
−( cK )ss (1− η)(N

ss

Kss )η + (1− δ) η(N
ss

Kss )η (N
ss

Kss )η

0 0 0 ρ

 ;

A1 =


0 0 0 0
−1 −βη(1− η)(N

ss

Kss )η βη(1− η)(N
ss

Kss )η β(1− η)(N
ss

Kss )η

0 1 0 0
0 0 0 1

.
Let A−10 A1 = PVP−1, where P is a matrix whose columns are the eigenvectors of A−10 A1

and V contains, on the diagonal, the eigenvalues. Then

P−1Υt ≡ Υ†t = VEtΥ
†
t+1 ≡ VEtP−1Υt+1 (2.56)

Since V is diagonal, there are four independent equations which can be solved forward, i.e.

Υ†it = viEtΥ
†
i,t+τ i = 1, . . . , 4 (2.57)

Since one of the conditions describes the law of motion of the technology shocks, one of the
eigenvalues is ρ−1ζ (the inverse of the persistence of technology shocks). One other condition
describes the intratemporal efficiency condition (see equation (2.14)): since this is a static
relationship the eigenvalue corresponding to this equation is zero. The other two conditions,
the Euler equation for capital accumulation (equation (2.13)) and the resource constraint
(equation (2.5)) produce two eigenvalues: one above and one below one. The stable solution
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is associated with the vi > 1 since Υ
†
it →∞ for vi < 1. Hence for (2.57) to hold for each t

in the stable case, it must be that Υ†it = 0 for all vi < 1.
Assuming β = 0.99, η = 0.64, δ = 0.025, ϑn = 3, the resulting steady states are

css = 0.79; Kss = 10.9; Nss = 0.29, GDP ss = 1.06 and

Υ†t =


1.062 0 0 0
0 1.05 0 0
0 0 0.93 0
0 0 0 0

Et


−2.18 −0.048 0.048 24.26
0 0 0 23.01

−2.50 1.36 0.056 1.10
−2.62 0.94 −0.94 2.62

Υ†t+1.
The second row has v2 = ρ−1ζ , the last one the intertemporal condition. The remaining two
rows generate a saddle path. Setting the third and the forth rows to zero (v3, v4 < 1) we
have ct = 0.54Nt+0.02Kt+0.44ζt and Nt = −2.78ct+Kt+2.78ζt. The law of motion of the
capital stock can be read off the first equation: Kt+1 = −0.07ct+1.01Kt+0.06Nt+0.10ζt.

Exercise 2.34 Suppose agents maximize the separable utility : E0
P∞

t=0 u(ct, 1 − Nt) by
choices of consumption, hours and nominal money balances subject to the following three
constraints:

gdpt = ζtN
η
t = Gt + ct

ct = Mt/pt

Mt+1 = (Mt − ptct) + pt(yt −Gt) +Mt(M̄ +Mg
t ) (2.58)

where ζ is a technology shock, Gt goverment expenditure, ct consumption, Mt nominal bal-
ances and pt prices. Here Gt, ζt,M

g
t are exogenous. Note that the third constraint describes

the accumulation of money: M̄ is a constant and Mg
t is a mean zero random variable.

i) Derive and log-linearize the first order condition of the problem. What are the states?
ii) Solve the linear system assuming that the growth rate of the exogenous variables (ζt,Gt,M

g
t )

is an AR(1) process with common parameter ρ. Calculate the equilibrium expressions for
inflation, output growth and real balances.
iii) Suppose you want to price the term structure of nominal bonds. Such bonds cost 1 unit
of money at time t and give 1 + it+τ units of money at time t+ τ, τ = 1, 2, . . .. Write the
equilibrium conditions to price these bonds. Calculate the log-linear expression of the slope
for the term structure between a bond with maturity τ →∞ and a one period bond.
iv) Calculate the equilibrium pricing formula and the rate of return for stocks which costs
pst units of consumption at t and pays dividends p

s
tsdt which can be used for consumption

only at t + 1 (Hint: the value of dividends at t + 1 is pstsdt/pt+1). Calculate a log-linear
expression for the equity premium (the difference between the nominal return on stocks and
the nominal return on a 1 period bond).
v) Simulate the responses of the slope of term structure and of the equity premium to a
unitary shock in the technology (ζt), in government expenditure (Gt) and in money growth
(Mg

t ). Is the pattern of responses economically sensible? Why?

Exercise 2.35 (Pappa) Consider the sticky price model with the capital utilization setup
analyzed in exercise 2.11 but without adjustment costs to capital. Log linearize the model
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and compute output responses to monetary shocks (still assume the monetary rule 2.22).
How does the specification compare in terms of persistence and amplitude of real responses
to the standard one, without capacity utilization, but with capital adjustment costs?

2.2.4 Second order approximations

First order (linear) approximation are fairly easy to construct, useful for a variety of pur-
poses and accurate enough for fitting DSGE models to the data. However, first order
approximations are insufficient, when evaluating welfare across policies that do not have
direct effects on the deterministic steady state of the model, when analyzing asset pricing
problems or when risk considerations become important. In some cases it may be enough to
assume that nonlinearities, although important, are small in some sense (see e.g. Woodford
(2002)). In general, one may want to have methods to solve second order (linear) system and
producing locally accurate approximations to the dynamics of the model, without having
to explicitly consider global (nonlinear) approximations.

Suppose the model has the form:

EtJ(yt+1, yt, σ�t+1) = 0 (2.59)

where J is an n × 1 vector of functions, yt is an n × 1 vector of endogenous variables and
�t a n1 × 1 vector of shocks. Clearly, some components of (2.59) may be deterministic and
others may be static. So far we have been concerned with the first order expansions of
(2.59), i.e with the following system of equations

Et[J1(dyt+1 + J2dyt + J3σd�t+1) = 0 (2.60)

where dxt is the deviation of xt from some pivotal point. As we have seen, solutions to
(2.60) are found positing a functional relationship yt+1 = J∗(yt, σ�t, σ), linearly expanding
it around the steady state J∗(yss, 0, 0), substituting the linear expression in (2.60) and
matching coefficients.

Here we are concerned with approximations of the form:

Et[J1(dyt+1 + J2dyt + J3σd�t+1 +

0.5(J11dyt+1dyt+1 + J12dyt+1dyt + J13dyt+1σd�t+1 +

J22dytdyt + J23dytσd�t + J33σ
2d�t+1d�t+1) = 0 (2.61)

which are obtained from a second order Taylor expansion of (2.59). These differ from
standard linearization with log-normal errors since a second order terms in dyt, dyt+1 appear
in the expression.

Since the second order terms enter linearly in the specification, solutions to (2.61) can
also be obtained with the method of undetermined coefficients, assuming there exists a
solution of the form yt+1 = J∗(yt, σ�t, σ), taking a second order expansion of this guess
around the steady states J∗(yss, 0, 0), substituting the second order expansion for yt+1 into
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(2.61) and matching coefficients. As shown by Schmitt Grohe and Uribe (2004), the problem
can be sequentially solved, finding first the first order terms and then the second order ones.

Clearly, we need regularity conditions for the solution to exist and to have good prop-
erties. Kim, et. al. (2004) provide a set of necessary conditions. We first need that the
solution implies that yt+1 remains in the stable manifold defined by H(yt+1, σ) = 0 and sat-
isfies {H(yt, σ) = 0, H(yt+1, σ) = 0 almost surely and J1(yt+1, yt, σ�t+1) = 0 almost surely
imply EtJ

2(yt+1, yt, σ�t+1) = 0 }, where J = (J1,J2) . Second, we need H(yt+1, σ) to be
continuous and twice differentiable in both its arguments Third, we need that the smallest
unstable root of the first order system to exceed the square of its largest stable root. This
last condition is automatically satisfied if the dividing line is represented by a root of 1.0,
but, in general, one need to check that the roots of J1 have this property.

Under these conditions, Kim et al, argue that the second order approximate solution
to the dynamics of the model is accurate, in the sense that the error in the approximation
converges in probability to zero at a more rapid rate than ||dyt, σ||2, when ||dyt, σ||2 → 0.
This claim does not depend on the almost sure boundness of the process for �, which is
violated when its distribution has unbounded support, or on the stationarity of the model.
However, for non-stationary systems the n-step ahead accuracy deteriorates quicker than in
the stationary case.

Example 2.22 We consider a version of the two country model analyzed in example 2.6,
where the population is the same in the two countries, the social planner equally weights
the utility of the agents of the two country, there is no intermediate good sector, capital
adjustment costs are zero and output is produced with capital only. The planner objective

function is E0
P

t β
t(
c1−ϕ1t
1−ϕ +

c1−ϕ2t
1−ϕ , the resource constraint is c1t + c2t + k1t+1 + k2t+1 − (1−

δ)(k1t + k2t) = ζ1tk
1−η
1t + ζ2tk

1−η
2t and ln ζit, i = 1, 2 is assumed to be iid with mean zero

and variance σ2. Given the symmetry of the two countries, it must be the case that in
equilibrium c1t = c2t and that the Euler equations for capital accumulations in the two
countries are identical. Letting ϕ = 2, δ = 0.1, 1 − η = 0.3, β = 0.95, the steady state is
(ki, ζi, ci) = (2.62, 1, 00, 1.07), i = 1, 2 and a first order expansion of the policy function is

£
kit+1

¤
=
£
0.444 0.444 0.216 0.216

¤
k1t
k2t
ζ1t
ζ2t

 (2.62)

A second order expansion of the policy function in country i is

kit+1 =
£
0.444 0.444 0.216 0.216

¤
k1t
k2t
ζ1t
ζ2t

− 0.83σ2
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+ 0.5
£
k1t k2t ζ1t ζ2t

¤
0.22 −0.18 −0.02 −0.08
−0.18 0.22 −0.08 −0.02
−0.02 −0.08 0.17 −0.04
−0.08 −0.02 −0.04 0.17




k1t
k2t
ζ1t
ζ2t

(2.63)
Hence, apart for the quadratic terms in the states, first and second order solutions differ

in the sense that the variance of the technology shock matter. In particular, when technology
shocks are highly volatile, more consumption and less capital will be chosen with the second
order approximation. Clearly, the variance of the shocks is irrelevant for the for the decision
rules obtained with the first order approximation.

Exercise 2.36 Consider the sticky price model whose log-linear approximation is described
in exercise 2.30. Assuming that ϑ = 0.5, ϕ = 2, ϑM = 0.5, ζp = 0.75, β = 0.99 find a first
and second order expansions of the solution for ct,Nt, it, πt, assuming that there are only
monetary shocks, which are iid with variance σ2, that monetary policy is conducted using a
rule of the form it = πa3t Mg

t and that wt is equal to the marginal product of labor.

2.2.5 Parametrizing expectations

The method of parametrizing expectations was suggested by Marcet (1989) and further
developed by Marcet and Lorenzoni (1999)). With this approach the approximation is
globally valid as opposed to valid only around a particular point as it is the case with
quadratic, log-linear or second order approximations. Therefore, with such a method we
can undertake experiments which are, e.g., far away from the steady state, unusual from
the historical point of view or involve switches of steady states. The approach has two
advantages: first, it can be used when inequality constraints are present. Second, it has
a built-in mechanism that allows us to check whether a candidate solution satisfies the
optimality conditions of the problem. Therefore, we can implicitly examine the accuracy of
the approximation.

The essence of the method is simple. First, one approximates the expectational equations
of the problem with a vector of functions }, i.e. Et[h(y2t+1, y2t, y3t+1, y3t)] ≈ }(α, y2t, y3t),
where y2t and y3t are known at t and α is a vector of (nuisance) parameters. Polynomial,
trigonometric, logistic or other simple functions which are known to have good approxima-
tion properties can be used. Second, one estimates α by minimizing the distance between
Et[h(y2t+1(α), y2t(α), y3t+1, y3t)] and }(α, y2t(α), y3t), where y2t(α) are simulated states from
the approximate solution. Let α∗ be the distance minimizer. Define

Q(α,α∗) = argmin{α∗}|Et[h(y2t+1(α), y2t(α), y3t+1, y3t)]− }(α∗, y2t, y3t)|q (2.64)

some q ≥ 1. The method then looks for a α̃ such that Q(α̃, α̃) = 0.

Example 2.23 Consider a basic RBC model with inelastic labor supply, utility given by

u(ct) =
c
1−ϕ
t
1−ϕ , where ϕ is a parameter, budget constraint ct+Kt+1+Gt = (1−T y)ζtK

1−η
t +
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(1 − δ)Kt + Tt and let (ln ζt, lnGt) be AR processes with persistence (ρζ , ρg) and unit
variance. The expectational (Euler) equation is

c−ϕt = βEt[c
−ϕ
t+1((1− T y)ζt+1(1− η)K−η

t+1 + (1− δ))] (2.65)

where β is the rate of time preferences. We wish to approximate the expression on the right
hand side of (2.65) with a function }(Kt, ζt,Gt, α), where α is a set of parameters. Then
the parametrizing expectation algorithm works as follows:

Algorithm 2.3

1) Select (ϕ, T y, δ, ρζ, ρg, η, β). Generate (ζt,Gt), t = 1, . . . T , choose an initial α
0.

2) Given a functional form for } calculate ct(α0) from (2.65) with }(α0, kt, ζt, Gt), in
place of βEt[c

−ϕ
t+1((1−T y)ζt+1(1− η)K−η

t+1+ (1− δ))] and Kt+1(α
0) from the resource

constraint. Do this for every t. This produces a time series for ct(α0) and Kt+1(α0).

3) Run a nonlinear regression using simulated ct(α0),Kt+1(α0) of }(α,Kt(α0), ζt, Gt) on
βct+1(α0)−ϕ((1 − T y)ζt+1(1 − η)Kt+1(α0)−η + (1 − δ). Call the resulting nonlinear
estimator α0∗ and with this α0∗ construct Q(α0, α0,∗).

4) Set α1 = (1− ()α0 + (Q(α0, α0∗), where ( ∈ (0, 1].
5) Repeat steps 2)-4) until until Q(α∗L−1, α∗L) ≈ 0 or |αL − αL−1| ≤ ι, or both, ι small.

6) Use another } function and repeat steps 2)-5).

When convergence is achieved }(α∗, Kt, ζt,Gt) is the required approximating function.
Since the method does not specify how to choose }, it is typical to start with a simple function
(a first order polynomial or a trigonometric function) and then in 6) check the robustness
of the solution using more complex functions (e.g a higher order polynomial).

For the model of this example, setting ϕ = 2, T y = 0.15, δ = 0.1, ρg = ρζ = 0.95, η =
0.66, β = 0.99, q = 2 and choosing } = exp(lnα1+α2 lnKt+α3 ln ζt+α4 lnGt), 100 iterations
of the above algorithm led to the following optimal approximating values α1 = −0.0780, α2 =
0.0008, α3 = 0.0306, α4 = 0.007 and with these values Q(α∗L−1, α∗L) = 0.000008.

We show how to apply the method when inequality constraints are present next.

Example 2.24 Consider a small open economy which finances current account deficits
issuing one period nominal bonds. Assume that there is a borrowing constraint B̄ so that
Bt − B̄ < 0. The Euler equation for debt accumulation is

c−ϕt − βEt[c
−ϕ
t+1(1 + rt)− λt+1)] = 0 (2.66)

where rt is the exogenous world real rate, λt the Lagrangian multiplier on the borrowing
constraint and the Kuhn-Tucker conditions is λt(Bt − B̄) = 0. To find a solution use
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0 = c−ϕt − β}(α, rt, λt, ct) and λt(Bt − B̄) = 0 and calculate ct and Bt, assuming λt = 0. If
Bt > B̄ set Bt = B̄, find λ from the first equation and ct from the budget constraint. Do
this for every t; find α0∗; generate α1 and repeat until convergence. Hence, λt is treated as
an additional variable, to be solved for in the model.

Exercise 2.37 Suppose in the model of example 2.23 that u(ct, ct−1,Nt) =
(ct−γct−1)1−ϕ

1−ϕ ,
Tt = T y = 0. Provide a parametrized expectation algorithm to solve this model (Hint: there
are two state variables in the Euler equation).

Exercise 2.38 (CIA with taxes) Consider a model where agents maximize a separable util-
ity function of the form: E0

P∞
t=0 β

t(ϑc ln(c1t) + (1 − ϑc) ln(c2t) − ϑN (1 −Nt)) by choices
of consumption of cash and credit goods, leisure, nominal money balances and investments,
0 < β < 1. Suppose that the household is endowed with K0 units of capital and one unit of
time. The household receives income from capital and labor which is used to finance con-
sumption purchases, investments and holdings of money and government bonds. c1t is the
cash-good and needs to be purchased with money, c2t is the credit good. Output is produced
with capital and labor by a single competitive firm with constant returns to scale technology
and 1− η is the share of capital. In addition, the government finances a stochastic flow of
expenditure by issuing currency, taxing labor income with a marginal tax rate T y

t and issuing
nominal bonds, which pay an interest rate it. Assume that money supply evolves according
to lnMs

t+1 = lnM
s
t + lnM

g
t . Suppose agents start at time t with holdings of money Mt and

bonds Bt. Assume that all the uncertainty is resolved at the beginning of each t.
i) Write down the optimization problem mentioning the states and the constraints and cal-
culate the first order conditions (Hint: you need to make the economy stationary).
ii) Solve the model parametrizing the expectations and using a first order polynomial.
iii) Describe the effects of an iid shock in T y

t on real variables, prices and interest rates,
when Bt adjusts to satisfy the government budget constraint. Would your answer change if
you keep Bt fixed and let instead Gt change to satisfy the government constraint?

Example 2.25 (Marcet and Den Haan) The method of parametrizing expectations has a
built-in mechanism to check the accuracy of the approximation. In fact, whenever the ap-
proximation is appropriate, the simulated time series must satisfy the Euler equation. As
we will describe in more details in chapter 5, this implies that if α̃ solves Q(α̃, α̃) = 0 then
Q(α̃, α̃)⊗ h(zt) = 0, where zt is any variable in the information set at time t; h is a q × 1
vector of continuous differential functions. Under regularity conditions, when T is large,
S = T × ( 1T

P
t(Qt⊗h(zt)))0WT (

1
T

P
t(Qt⊗h(zt)))→ χ2(ν), where Qt is the sample coun-

terpart of Q, ν is equal to the dimension of the Euler conditions times the dimension of h

and WT
P→ W is a weighting matrix. For the example 2.23, the first order approximation

is accurate since S has a p-value of 0.36, when two lags of consumption are used as zt.

While useful in a variety of problems, the parametrizing expectations approach has two
important drawbacks. First, the iterations defined by algorithm 2.3 may led nowhere since
the fixed point problem does not define a contraction operator. In other words, there is
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no guarantee that the distances between the actual and approximating function will get
smaller as the number of iterations grows. Second, the method relies on the sufficiency of
the Euler equations. Hence, if the utility function is not strictly concave, the solution that
the algorithm delivers may be inappropriate.

2.2.6 A Comparison of methods

There exists some literature comparing various approximation approaches. For example,
the special issue of the Journal of Business and Economic Statistics of July 1991 shows
how various methods perform in approximating the decision rules of a particular version
of the one sector growth model for which analytic solutions are available. Some additional
evidence is in Ruge-Murcia (2002) and Fernandez-Villaverde and Rubio-Ramirez (2003).
In general, little is known about the properties of various methods in specific applications.
Experience suggests that even for models possessing simple structures (i.e. models without
habit, adjustment costs of investment, etc.), simulated series may display somewhat different
dynamics depending on the approximation used. For more complicated models no evidence
is available. Therefore, caution should be employed in interpreting the results obtained
approximating models with any of the methods described in this chapter.

Exercise 2.39 (Growth with corruption) Consider a representative agent who maximizes

E0
P

t βt
c
1−ϕ
t
1−ϕ by choices of consumption ct, capital Kt+1 and bribes brt subject to

ct +Kt+1 = (1− T y
t )Ntwt + rtKt − brt + (1− δ)Kt (2.67)

T y
t = T e

t (1− a ln brt) + T y
0 (2.68)

where wt is the real wage, T
y
t is the income tax rate, T

e
t is an exogenously given tax rate, T

y
0

is the part of the tax rate which is unchanged by bribes, and (ϕ, a, δ) are parameters. The
technology is owned by the firm and it is given by f (Kt,Nt, ζt,KG

t ) = ζtK
1−η
t Nη

t (K
G
t )
ℵ,

where ℵ ≥ 0, Kt is the capital stock and Nt the hours. Government capital KG
t evolves

according to KG
t+1 = (1 − δ)KG

t + NtwtT
y
t . The resource constraint for the economy is

ct + Kt+1 + KG
t+1 + brt = f(Kt,Nt, ζt) + (1 − δ)(Kt + KG

t ) and (ζt, T
e
t ) are independent

AR(1) processes, with persistence (ρζ , ρe) and variances (σ
2
ζ , σ

2
e).

i) Define a competitive equilibrium and compute the first order conditions.
ii) Assume ϕ = 2, a = 0.03, β = 0.96, δ = 0.10, ρe = ρζ = 0.95 and set σ2ζ = σ2e = 1.
Take a quadratic approximation of the utility and find the decision rule for the variables of
interest.
iii) Assume that (ζt, T e

t ) and the capital stock can take only two values (say, high and low).
Solve the model discretizing the state space (Hint: use the fact that shocks are independent
and the values of the AR parameter to construct the transition matrix for the shocks).
iv) Take a log-linear approximation of the first order conditions of the problem. Solve the
model using a first order linear approximation method.
v) Use the parametrized expectations method with a first order power function to find a
global solution.
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vi) Compare the time series properties for consumption, investment and bribes across meth-
ods. Are they different? In what?

Exercise 2.40 (Transmission with borrowing constraints) Consider an economy where pref-

erences are described by u(ct, ct−1,Nt) =
(cϑt N

1−ϑ
t )1−ϕ
1−ϕ and accumulates capital according to

Kt+1 = (1−δ)Kt+ invt, where δ is the depreciation rate. Assume that the production func-
tion is Cobb-Douglas in hours (Nt), capital (Kt), and land (Lat) and of the form GDPt =
ζtK

ηk
t NηN

t LaηLt . Suppose individual agents have the ability to borrow and trade land and that
their budget constraint is ct+Kt+1+Bt+1+p

L
t Lat+1 ≤ GDPt+(1−δ)Kt+(1+r

B
t )Bt+p

L
t Lat,

where Bt are bond holdings, and suppose that there is a borrowing constraint of the form
pLt Lat −Bt+1 ≥ 0, where pit is the price of land in terms of consumption goods
(i) Show that in the steady state the borrowing constraint is binding if GDP ss

Kss + (1 − δ) >
(1 + rBt ). Give conditions which insure that the constraint is always binding.
(ii) Describe the dynamics of output following a technology shock when: (a) the borrowing
constraint never binds, (b) the borrowing constraint always binds, (c) the borrowing con-
straints binds at some t. (Hint: Use an approximation method which allows the comparison
across cases).
(iii) Is it true that the presence of (collateralized) borrowing constraints amplifies and
stretches over time the real effects of technology shocks?



Chapter 3: Extracting and
Measuring Cyclical Information

Most of the models considered in chapter 2 are designed to explain or replicate cyclical
features of the actual data. Unfortunately, most economic time series display trends or
marked growth patterns so that it is not immediately obvious what the cyclical properties
of the data are. This chapter is concerned with the process of obtaining cyclical information
from the actual data and with the problem of efficiently and meaningfully summarizing it.

Cyclical information can be obtained in many ways. For example, Burns and Mitchell
(1943) and the traditional cycle dating literature look at turning points of a reference series
to extract this information. Following Lucas (1977), in macroeconomics it is however more
common to obtain the cyclical information first eliminating a permanent component (the
”trend”) of the data, typically thought to be unrelated with those features that business
cycle models are interested in explaining, and then computing second moments for the
residuals (the ” cycle” or better the ”growth cycle”). In practice, since trends and cycles
are unobservable, assumptions are needed to split observable series into components. Many
assumptions can be make and it is impossible to formally choose among alternatives with a
finite stretch of data. This means that standard criteria, such as lack of empirical relevance
or statistical optimality, cannot be used.

The picture is further complicated by the fact that the literature has interchangeably
used the terms detrending and filtering for the process of extracting growth cycles, even
though the two concepts are distinct. Detrending should be intended as the process of mak-
ing economic series (covariance) stationary. Detrending is necessary if one wants to compute
functions of second moments of the data, which may not exist if a time series is e.g. a ran-
dom walk, to estimate the parameters of the model with several of the procedures described
in this book, but unnecessary for other purposes, such as dating turning points, measuring
amplitudes or the responses to behavioral shocks. That is, certain cyclical information can
be directly obtained from the raw data without any need of detrending.

The term filtering has a much broader applicability. As we have seen in chapter 1, filters
are operators which carve out particular frequencies of the spectrum. One can build filters
to eliminate very low frequency movements, to emphasize the variability in a particular
frequency range, to smooth out high frequency idiosyncratic movements, or to mitigate the
effect of measurement errors. Filtering is unnecessary when comparing the cyclical behavior

67



68

of the data to those of models, but it may help to bring out more clearly the differences
between the two which are of most interest. In particular, since variability at frequencies
corresponding to cycles of 6 to 24-32 quarters is considered of crucial economic importance -
because business cycles reported, e.g. by the NBER and the CEPR, have periodicity which
is, approximately, in this range - filtering may facilitate the comparison.

An important source of confusion emerges when time series econometricians and applied
macroeconomists attempt to communicate the results of their studies since the formers
attempt to isolate ”periodic” components in growth cycles, that is, that is components
which are representable with some form of sine and cosine functions and that show up as
peaks in the spectral density in a particular frequency band. The latters, on the other
hand, often consider business cycle phenomena the presence of serially correlate movements
in the growth cycle (see e.g. Long and Plosser (1983)). Therefore, while they are satisfied
when the growth cycle produced by their model is, for example, an AR(1) process, time
series econometricans often use the argument that AR(1) have no peaks at business cycle
frequencies and therefore there is no business cycle to speak of.

A final problem arises because some economic models feature shocks which have both
transitory (short run) and permanent (long run) effects, in which case decompositions which
assume that the two phenomena are separate are wrong; or because the effects they describe
are not necessarily linked to statistical permanent/growth cycle decompositions. Monetary
disturbances are a classic example of shocks having transitory effects on real variables (mean-
ing not specifically located at any frequencies or of a particular periodicity) and permanent
effect on nominal ones (meaning, in this case full, pass-though in the long run). Because
the link between economic theory and empirical practice is embryonic, and because there is
little consensus on the type of economic model one should use to guide the decomposition
(which shocks are permanent?, which are transitory?, which dominates?, etc.), it is also
hard to use economic theory to guide the decomposition.

Because traditional procedures displayed both conceptual and practical problems, new
approaches have appeared over the last 20 years. We describe a subset of these methods,
characterize their properties, discuss their relative merits, and highlight possible distortions
that may appear when using them in comparing the output of a DSGE model and the
data. We consider both univariate and multivariate methods and categorize decompositions
into three somewhat arbitrary classes: statistical methods, economic methods and hybrid
methods. In the first class we include procedures which have a statistical or a probabilistic
justification. They use time series assumptions on the observable or the trend to measure the
cycle. In the second class, extraction procedures are dictated by economic theory. Here, the
cycles we obtain have relevance only to the extent that the model is a valid approximation
to the data generating process (DGP). In the third class we include procedures which are
statistical in nature but have an economic justification of some sort.

Throughout this chapter we denote the logarithm of the observables by yt, their growth
rate by ∆yt = (1− c)yt, the trend (permanent component) by yxt and the cycle by y

c
t . Also,

we use the convention that a variable is integrated of order d0 [I(d0)] if it is (covariance)
stationary after d0-differencing.
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3.1 Statistical Decompositions

3.1.1 Traditional methods

Traditionally, the trend of a series was taken to be deterministic and the cyclical component
was measured as the residual of a regression of yt on polynomials in time. That is, yt =
yx + yct ; y

x
t = a0 +

P
j ajt

j and corr(yxt , y
c
t ) = 0 so that ŷct = yt − â0 −

P
j âjt

j and
âj , j = 0, 1, 2, . . . are estimates of aj . While the trend in such a setup can easily be estimated
with least square methods, the specification is unsatisfactory in two senses. First, since the
trend is deterministic, it can be perfectly predicted arbitrarily far into the future. Second,
the growth rate of yt cannot accelerate or decelerate, contradicting the evidence of a number
of macroeconomic time series in many countries since WWII. This latter problem can be
partially eliminated if we allow for structural breaks at preselected points.

Example 3.1 Suppose yt = yx+yct , y
x
t = a10+

P
j a1jt

j for t < t1 and yxt = a20+
P

j a2jt
j

for t ≥ t1, a1j 6= a2j, some j ≥ 0 and let corr(yxt , yct ) = 0 ∀t. Then ŷct = yt− â10−
P

j â1jt
j

for t < t1; ŷct = yt − â20 −
P

j â2jt
j for t ≥ t1. Multiple breaks at known dates can be

similarly obtained.

The traditional alternative to linear/segmented trend specifications is to assume that
the growth rate of yt captures the cyclical properties of the data. Here ∆yt = yct and
therefore yxt = yt−1. This approach is also simple but has several disadvantages. First,
the time plot of yct does not visually conform to the idea one has of cyclical fluctuations.
Second, yct does not necessarily have zero mean. Third, somewhat counterintuitively, the
variance of yxt may be very large.

Exercise 3.1 Let ∆yt = yct . Show that E(∆yct∆y
c
t−τ ) = 2ACFy(τ) − ACFy(τ − 1) −

ACFy(τ + 1), where ACFy(τ) = cov(yt, yt−τ ). What can you say about the autocorrelation
properties of yct if yt = ρyt−1 + et, et ∼ iid(0, 1), 0 < ρ < 1?

3.1.2 Beveridge-Nelson (BN) decomposition

Beveridge and Nelson (1981) also assume that yt is integrated of order one but define the
trend as the conditional mean of the predictive distribution for future yt’s. Then the cyclical
component is the forecastable momentum in yt at each t. Let yt be represented as:

∆yt = ȳ +D(c)et et ∼ iid (0, σ2e) (3.1)

where D(c) = 1+D1c+D2c2 + . . ., ȳ is a constant, and the roots of D(c) lie on or outside
the complex unit circle. Let the forecast of yt+τ based on time t information be yt(τ) ≡
E(yt+τ |yt, yt−1, . . . , y0) = yt + E[∆yt+1 + . . . + ∆yt+τ |∆yt, . . . ,∆y0] ≡ yt +

Pτ
j=1

c∆yt(j).
Using (3.1), c∆yt(j) = ȳ +Djet +Dj+1et−1 + . . . so that yt(τ) = yt + τ ȳ + (

Pτ
j=1Dj)et +

(
Pτ+1

j=2 Dj)et−1 + . . .. Let yxt be the time t forecast of yt+τ , adjusted for its mean rate of
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change, i.e. yxt ≡ yt(τ)−τ ȳ. For τ large, yt(τ) is approximately constant and yxt is the value
the series would have taken if it were on its long-run path. Hence

lim
τ→∞ yxt = lim

τ→∞[yt + (
τX

j=1

Dj)et + (
τX

j=2

Dj)et−1 + . . .] = yxt−1 + ȳ + (
∞X
j=0

Dj)et (3.2)

where the second equality comes from the fact that (
P∞

j=1Dj)et is a white noise and that
yxt − yxt−1 = yt− yt−1+(

P∞
j=1Dj)et−

P∞
j=1Djet−j . Hence the trend is a random walk and

the cyclical component is yct = yt − yxt = −
P∞

j=0(
P∞

i=j+1Di)et−j .
One advantage of the BN decomposition over traditional approaches is that it produces

a decomposition without any assumptions on the structure of the components or on their
correlation. In fact, since it uses a forecast based definition of the trend, it does not need
additional identifying restrictions to become operative.

Example 3.2 (Pagan and Harding) Suppose ∆yt − ȳ = ρ(∆yt−1 − ȳ) + et, ρ < 1, et ∼
iid(0, σ2e). Then yxt = yt +

ρ
1−ρ(∆yt − ȳ) and yct = − ρ

1−ρ(∆yt − ȳ). Since ρ is a constant,
the properties of yct and ∆yt are similar. Hence, for simple AR(1) processes, using the BN
and growth rate decompositions give cycles with similar correlation properties.

Several interesting features of the BN decomposition should be noted. First, since the
two components are driven by the same shock, trend and cycle are perfectly correlated.
Second, since estimates of Dj and forecasts c∆yt(j) are typically obtained from ARIMA
models, the standard identification problems of ARIMA specifications plague this method.
Third, since long run forecasts of ∆yt are based on past values of yt only, trend estimates
may be very imprecise and estimates of var (∆yct )/var (∆y

x
t ) arbitrarily small. Finally,

since innovations in yxt are e
x
t = (

P∞
j=0Dj)et, the variability of the innovations in the trend

may be larger than the variability of the innovations in the series.

Example 3.3 Suppose yt = yt−1+ ȳ+ et+D1et−1 with 0 < |D1| < 1 and et ∼ iid (0, σ2e).
Note that if D1 is positive, ∆yt is positively correlated. Then limτ→∞∆yxt = ȳ+(1+D1)et =
ȳ + ext and yct = −D1et. Here var(ext ) > var(et) and yct is a white noise. In general, if
Dj > 0 ∀j ≥ 1, var(ext ) > var(et). Note that, if D1 = 0, ∆yxt = et and yct = 0. Hence,
the presence of AR components are necessary to have serially correlated cycles and the
decomposition correctly recognizes that if the AR components are missing, the cycle is either
a white noise or inexistent.

Exercise 3.2 (Coddington and Winters): Show that if ∆yt = ȳ+ D2(c)
D1(c)

et, et ∼ iid (0, σ2e),

yxt satisfies y
x
t = yxt−1+ ȳ+

(1− d2
j=1D2j )

(1− d1
j=1D1j )

et, where d1 and d2 are the lengths of the polynomial

D1(c) and D2(c). and Suggest a way to recursively estimate yxt .

Exercise 3.3 Suppose yt = (1−A)yt−1 +Ayt−2 + et, et ∼ iid (0, σ2e ). Find yxt and y
c
t .
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Extending the BN decomposition to multivariate frameworks is straightforward (see e.g.
Evans and Reichlin (1994)). Let yt = [∆y1t, y2t] be an (m×1) vector of stationary processes,
where y1t are I(1) variables and y2t are (covariance) stationary; assume yt = ȳ + D(c)et,
where et ∼ iid (0,Σe) and (i) D0 = I; (ii) the roots of det(D(c)) are on or outside the
complex unit circle; (iii) D1(1) 6= 0, where D1(c) is the matrix formed with the first m1

rows of D(c). Condition (i) is a simple normalization, condition (ii) insures that D(c) is
invertible so that et are the innovations in yt; the latter condition insures the existence of
at least one stochastic trend. Note that for m1 = m there are m stochastic trends and
that m1 6= 0 is necessary for the decomposition to be meaningful. Then the multivariate
Beveridge and Nelson decomposition isµ

∆y1t
∆y2t

¶
=

µ
ȳ1
0

¶
+

µ
D1(1)
0

¶
et +

Ã
(1− c)D†

1(c)

(1− c)D†
2(c)

!
et (3.3)

where D†
1(c) ≡ D1(c)−D1(1)

1−c , D†
2(c) ≡ D2(c)

1−c , rank[D1(1)] ≤ m1 and yxt = yxt−1 + [ȳ1 +
D1(1)et, 0]0 is the trend (permanent component) of yt.

Example 3.4 It is easy to verify that (3.3) is consistent with a univariate decomposition.
Let the first component of y1t be y11t. Then yx11t = limτ→∞[Ety11t+τ − τ ȳ1], where ȳ1 is
the first element of ȳ. Hence ∆yx11t = ȳ1 + D1

1(1)et where D1
1 is the first row of D1 and

∆yc11t = (1− c)D1†
1 (c)et, where D

1†
1 (c) =

D1
1(c)−D1

1(1)
1−c , and yc11t =

P
j(
P

i=j+1D
1
1i)et−j.

Exercise 3.4 Consider a system with output, prices, interest rates and money and US
quarterly data. Suggest a way to estimate the two components of a multivariate BN decom-
position (Hint: Specify a VAR of the form A(c)yt = ȳ+ et and find out which variables are
in y1t and which in y2t).

Three properties of multivariate BN decompositions should be noted. First, var(∆yx1t ) =
D1(1)ΣeD1(1)0 = S∆y1(0). That is, the variance of the permanent component is equal to the
spectral density of ∆y1t at frequency ω = 0. Hence, the spectral density of ∆yc1t at ω = 0
is zero. Second, permanent and transitory components can be obtained without identifying
meaningful economic shocks. Third, the variance the cycle depends on the variables used
to forecast yt. In fact, var(∆yc1t) = var(∆y1t)+var(∆yx1t)+ cov(∆y1t,∆yx1t) which implies,

after a few manipulations,
var(∆yc1t)
var(∆yx1t)

≥ var(∆y1t)
var(∆yx1t)

+ 1 − 2
q

var(∆y1t|Ft−1)
var(∆yx1t)

, where Ft−1 is the
info set available at t. Since var(∆y1t|F1t−1) ≤ var(∆y1t|F2t−1) if F2t−1 ⊂ F1t−1, it is possible
to increase the variability of the (difference of the) cycle relative to the variability of the
(difference of the) trend by enlarging the set of variables included in yt (adding irrelevant
variables does not help). Hence, the magnitude of var(∆yc1t)−var(∆yx1t) in univariate and
multivariate decompositions could be dramatically different.

Example 3.5 Let yt be a 2× 1 vector and let the first element be ∆y1t = e1t +D11e1t−1 +
D21e2t−1. Here var (∆yc1t) - var (∆yx1t) = [D2

11−1−2D11]σ2e1+D2
21σ

2
e2 ≥ [D2

11−1−2D11]σ2e1=
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var (∆yct ) - var (∆y
x
t ) obtained from a univariate model. Note that, if D21 is large enough

or if σ2e2 >> σ2e1, var (∆y
c
1t) - var (∆y

x
1t) could be positive even if var (∆y

c
t ) - var (∆y

x
t ) is

negative. Clearly, complicated patterns may arise when yt is a large scale VAR.

Exercise 3.5 Show that if ∆yt is positively correlated at all lags: (i) var(∆yt) < var(∆yxt );
(ii) cov(∆yct ,∆y

x
t ) < 0; (iii) cov(∆yt, y

c
t ) = −

P∞
τ=1ACF∆yt(τ) < 0.

As in the univariate case, the properties of estimated multivariate BN decompositions
depend on a number of auxiliary assumptions e.g., the lag length of the model, the number of
cointegrating relationships, etc. It is therefore important to carefully monitor the sensitivity
of the results and the quality of the estimates to alterations in these assumptions.

Exercise 3.6 Consider a bivariate VAR(1) where both variables are I(1). Show how to
compute a multivariate BN decomposition in this case. Repeat the exercise when one variable
is I(2) and one is I(1).

3.1.3 Unobservable Components (UC) decompositions

Unobservable components decompositions are popular in the time series literature since
cycle estimates obtained enjoy certain optimality properties (see e.g. Harvey (1989)). UC
specifications are generally preferred to ARIMA representations for obtaining cyclical com-
ponents for two reasons. First, there is no guarantee that an ARIMA model identified with
standard methods will have those features that a series is postulated to exhibit (e.g. a cycle
of the BN type requires the identification of an AR component). Second, the ARIMA(0,1,1)
model favoured by applied researchers fails to forecast certain long run components.

Two basic features characterize UC decompositions. First, a researcher specifies flexible
structures for the trend, the cycle and the other features of the data. These structures
in turns imply an ARIMA representation for yt which is more complicated than the one
typically selected with standard methods. Second, given the assumed structure, the data
is allowed to select the characteristics of the components and diagnostic testing can be
employed to examine what is left unexplained.

For most of the discussion, we assume that there are only two unobservable components,
i.e. yt = yxt + yct . Extensions to series containing, e.g., seasonals or irregular are immediate
and left as an exercise to the reader. Assume that yxt can be represented as a random walk
with drift:

yxt = ȳ + yxt−1 + ext ext ∼ iid (0, σ2x) (3.4)

and that (yct , e
x
t ) is a jointly covariance stationary process. Note that if σ

2
x = 0 ∀t, yxt is a

linear trend. While for the rest of this subsection we restrict attention to (3.4), more general
trend specifications are possible. For example, ”cyclical” trend movements are obtained by
setting yxt = ȳ+yxt−1+yct−1+ext , e

x
t ∼ iid (0, σ2x). This specification makes trend and cycle

correlated and was shown to fit US data better than (3.4) plus a simple cycle specification
(see Harvey (1985)). Trends with higher order of integration are obtained if ȳ drifts itself
as a random walk.
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Exercise 3.7 (Harvey and Jeager) Suppose

yxt = yxt−1 + ȳt−1 + ext ext ∼ iid (0, σ2x) (3.5)

ȳt = ȳt−1 + vt vt ∼ iid (0, σ2v) (3.6)

Show that if σ2v > 0 and σ2x = 0, yxt is an I(2) process. Under what conditions is yt
”smooth”, i.e. ∆2yt are small? Verify that if σ2v = 0, (3.5)-(3.6) collapse to (3.4) and that
if σ2v = σ2x = 0, the trend is deterministic.

To complete the specification we need to postulate a process for yct and the relationship
between yct and ext . There are three possibilities. In the first case we assume

yct = Dc(c)ect ect ∼ iid (0, σ2c ) (3.7)

where Dc(c) = 1+Dc
1c+ . . . and ect is orthogonal to e

x
t−τ , ∀τ . Then (3.1)-(3.4)-(3.7) imply:

D(c)et = ext + (1− c)D(c)cect (3.8)

so that |D(1)|2σ2e = σ2x and the coefficients ofD(c)
c can then be found usingD(c)D(c−1)σ2e−

σ2x = (1− c)(1− c−1)D(c)cD(c−1)cσ2c , provided that the roots of Dc(c) are on or outside the
complex unit circle. Note that, as in the BN decomposition, the spectral density of ∆yct has
zero power at the zero frequency. Hence, (3.8) places restrictions on yt as we show next.

Exercise 3.8 Show that when the model is composed of (3.1)-(3.4)-(3.7) S∆yt(ω) has a
global minimum at ω = 0. Conclude that yt can not be represented as an ARIMA(1,1,0)
with high autoregressive root.

Since the restrictions imposed by (3.8) may not be appropriate for all yt, we want to
have other cyclical structures to describe models of the form (3.1). A second representation
is

yct = Dcx(c)ext (3.9)

whereDcx(c) = 1+Dcx
1 c+. . .. In (3.9) innovations to the trend and to the cycle are perfectly

correlated. Note that while the orthogonality of ect and ext restricts the ARIMA processes
suitable to represent yt, perfect correlation of the two innovations place no testable con-
straints on the ARIMAmodel for yt. In particular, it is no longer true that an ARIMA(1,1,0)
is an unlikely representation for yt. A third representation for yct is

yct = Dc(c)ect +Dcx(c)ext (3.10)

This specification is observationally equivalent to the cyclical-trend model discussed above.
While it is typical to specify an AR process for yct , one could also choose trigonometric

functions. Such representations are useful if one is interested in emphasizing a particular
frequency where the cycle may have most of its power. For example, one could set

yct =
(1− ρy cosωc)e

1c
t + (ρy sinωc)e

2c
t

1− 2ρy cosωc+ ρ2yc
2

(3.11)

where eict ∼ iid (0, σ2ei), i = 1, 2, 0 ≤ ρy ≤ 1 and 0 ≤ ω ≤ π.
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Exercise 3.9 Show that yct in (3.11) is an ARMA(2,1) process. Show that it reduces to an
AR(2) if σ2e1 = 0. Note that for 0 < ω < π, the roots of the AR(2) polynomial are complex
with modulus ρy. Finally, show that for ω = 0 or ω = π, yct is an AR(1) process.

Since cycles at frequency ωi specified via (3.11) are orthogonal to cycles at frequency
ωi0 when ωi and ωi0 are Fourier frequencies, cycles of multiple length can be accounted for
by taking a linear combination of (3.11) at any two frequencies.

Example 3.6 Suppose we are convinced that cycles in the data have changed average peri-
odicity over time from, say, 8 to 6 years. If quarterly data are available then yct = yc1t +y

c2
t =

(1−ρy cosω1c)e1ct +(ρy sin ω1c)e2ct
1−2ρy cosω1c+ρ2yc2 +

(1−ρy cosω2c)e1ct +(ρy sin ω2c)e2ct
1−2ρy cosω2c+ρ2yc2 where ω1 =

2π
32 and ω2 =

2π
24 .

Given (3.4) and a model for yct , it is immediate to show that yt has an ARIMA format.

Example 3.7 Consider the trend specification (3.4), the trigonometric cycle specification
(3.11) and assume that yt = yxt +yct +et where et ∼ iid (0, σ2e). Then ∆yt = ȳ+ext +∆y

c
t +

∆et. Therefore if yct is an ARMA(2,1), ∆yt is a restricted ARMA(2,3). The restrictions
insure that i) a cycle if it exists can be found and ii) the local identifiability of the various
components (if ρy > 0, there are no common factors in the AR and MA parts).

Two methods are typically employed to obtain estimates of yxt in UC models: Linear
Minimum Mean Square (LMMS) and the Kalman filter. The Kalman filter will be discussed
in chapter 6. To obtain LMMS estimates, we let F∞−∞ = {. . . , y−1, y0, y1, . . . , } and use
the Wiener-Kolmogorov prediction formulas (see e.g Whittle (1980). Then yxt = Bx(c)yt,
where Bx(c) is two-sided and, for a model composed of (3.1)-(3.4)-(3.10), given by: Bx(c) =
σ2x[1 + (1 − c−1)Dcx(c−1)][D(c)D(c−1)σ2y]−1. Since only Fτ

0 = {y0, y1, . . . , yτ} is available,
define yxt (τ) ≡ E[yxt |F τ

0 ]. Then yxt (τ) =
P

j BxjE[yt−j |F τ
0 ] and estimates of the trend are

obtained substituting unknown values of yt with forecasts or backcasts constructed from
Fτ
0 . Clearly, Bx(c) depends on the model for yct but differences across specifications arise
only from the way future data is used to construct yxt (τ).

Exercise 3.10 Show that estimates of yxt (τ) for all τ < t are the same regardless of whether
(3.8),(3.9) or (3.10) is used.

One implication of exercise 3.10 is that to obtain yct (t), it is sufficient to construct an
ARIMA model for yt, forecast in the distant future and set yct (t) = yt − yxt (t), where y

x
t (t)

is the (forecast) estimate of the trend based on F t
0, adjusted for deterministic increases.

Hence, yxt (t) is similar to the permanent component obtained with the BN decomposition.
However, as Morley, Nelson and Zivot (2002) have shown, this does not mean that the two
cyclical components have similar (time series) properties.

Multivariate versions of UC decompositions have been initially suggested by Stock and
Watson (1989)-(1990) and used by several other researchers. Multivariate UC decomposi-
tions typically impose the restriction that a yt vector is driven in the long run by a reduced
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number of permanent components; the transitory components, on the other hand, are al-
lowed to be series specific. The multivariate UC setup is very close to the one employed in
factor models (which we discuss in Chapter 11). In factor models there is an unobservable
factor which captures the portion of the dynamics which are common to the series. Here
the unobservable factor only captures the long run patterns in the data.

For a m× 1 vector of integrated series, a multivariate UC decomposition is:
∆yt = ȳ +Q(c)∆yxt + yct (3.12)

Ac(c)yct = ect (3.13)

Ax(c)∆yxt = ȳx + ext (3.14)

where yt and yct are m × 1 vectors and yxt is a m1 × 1 vector, m1 < m; while Ac(c) and
Ax(c) are one-sided polynomial matrices in the lag operator.

There are two main identifying assumptions implicit in (3.12)-(3.14). First, the long run
movements in yt are driven by m1 < m processes. Second, (yc1t, . . . , y

c
mt,∆y

x
1t, . . . ,∆y

x
m1t)

are uncorrelated at all leads and lags. Since it is impossible to separately identify Ax(c)
and Q(c) one typically sets Q(c) = Q and assumes that at least one ∆yxi0t enters each ∆yit.
Note that when Ax(c) 6= 1, yxt (t) is a m1 × 1 vector of coincident indicators, while yct (t)
captures idiosyncratic movements.

Since the system (3.12)-(3.14) has a state space format, the unknown parameters (Ac(c),
Ax(c), ȳx, ȳ,Q,Σc,Σx) and the unobservable components can be estimated by likelihood
methods, recursively, with the Kalman filter. We defer the presentation of the Kalman
filter recursions and of the prediction error decomposition of the likelihood to chapter 6.

3.1.4 Regime shifting decomposition

Although Hamilton’s (1989) method has been devised to model recurrently segmented
trends rather than to extract cycles, it naturally produces cyclical components which can
be used as a benchmark to compare the properties of simulated DSGE models.

The idea of the approach is simple. Instead of choosing either a deterministic or a con-
tinuously changing stochastic specification, the trend is assumed to be regime specific, with
the regime varying randomly over time. Within a regime, trend movements are determin-
istic. Two features of the approach need to be emphasized: (i) the resulting model for yt is
nonlinear in the conditional mean; (ii) shifts in the trend are driven by nonnormal errors.

For simplicity, we consider here only two regimes. Extensions to multiple regimes are
straightforward and left as an exercise to the reader. Let ∆yt be stationary; let yxt and yct
be mutually independent and let yxt = a0+a1κt+yxt−1, where κt ∈ (1, 0) is an unobservable
two-state Markov chain indicator with P [κt = i|κt−1 = i0] =

·
p1 1− p1

1− p2 p2

¸
, p1, p2 < 1.

Because κt has a first order Markov structure we can rewrite it as

κt = (1− p2) + (p1 + p2 − 1)κt−1 + ext (3.15)

where ext can take four values [1−p1,−p1,−(1−p2), p2] with probabilities [p1, 1−p1, p2, 1−p2].
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Exercise 3.11 Show that κt is covariance stationary. Is the process ergodic?

The residuals ext in (3.15) have two properties which we summarize next.

Exercise 3.12 Show that (i) E[ext |κt−1 = i, i = 0, 1] = 0; (ii) var[ext |κt−1 = 1] = p1(1−p1)
and var[ext |κt−1 = 0] = p2(1− p2).

Exercise 3.12 shows that ext are uncorrelated with previous realizations of the state but
not independent. Note that if ext were normal, uncorrelation implies independence. There-
fore, the particular structure present in ext implies separation between the two concepts.

The non-independence of ext implies non-independence of κt. Solving backward (3.15)
and taking expectations at time zero we have E0κt = 1−p2

2−p1−p2 (1− (p1 + p2 − 1)t) + (p1 +
p2 − 1)tE0κ0 and, taking limits, limt→∞E0κt = 1−p2

2−p1−p2 ≡ p̃. Let P [κt = 1|F0] = p0.

Exercise 3.13 Show that var0κt =
var[ext |κ0]
(2−p1−p2)2 (1− (p1+ p2 − 1)t)2 + (p1+ p2− 1)2tE[κ0 −

Eκ0]2. Compute limt→∞ var0κt and show that it is not statistically independent of κt−j.

Exercise 3.13 shows that the moment structure of κt (and therefore yxt ) is nonlinear.
This is important for forecasting. In fact, the model for yxt can be rewritten as:

(1− (p1+p2−1)c)∆yxt = a1(1− (p1+p2−1)c)κt = a1(1−p2)+a0(2−p1−p2)+ext (3.16)

Hence, although yxt looks like an ARIMA(1,1,0) structure, forecasts of y
x
t+τ , τ ≥ 1 based on

a such a model are suboptimal since the non-linear structure in ext is ignored. In fact, the
optimal trend forecasts are:

Et∆y
x
t+τ = a0 + a1Etκt+τ = a0 + a1[p̃+ (p1 + p2 − 1)t(P [κt = 1|Ft]− p̃)] (3.17)

where Ft represents the information set. (3.17) is optimal since it incorporates the infor-
mation that yxt changes only occasionally due to the discrete shifts in ext .

Exercise 3.14 Let κ̄t ≡
Pt

j=1 κj, i.e. κ̄t is the cumulative number of ones. Show (i)
yxt = yx0 +a1κ̄t+a0t; (ii) E0[yxt |yx0 , p0] = yx0 +a1[p̃t+

Pt
j=1(p1+ p2− 1)j(p0− p̃)]+ a0t and

(iii) limt→∞E0[yxt − yxt−1|yx0 , p0] = a0 + a1p̃.

Exercise 3.14 indicates that the growth rate of yxt is asymptotically independent of
the information at time 0. Intuitively, as t → ∞, yt will be in the growth state a0 + a1
with probability p̃ and in the growth state a0 with probability (1 − p̃). Note also that
information concerning the initial state has permanent effects on yxt . In fact, p

0 − p̃ 6= 0
produces permanent changes in yxt .

To complete the specification, a process for yct needs to be selected.

Example 3.8 Suppose yct ∼ iid N(0, σ2c ). Then yt has the representation (1− (p1 + p2 −
1)c)∆yt = a1(1−p2)+a0(2−p1−p2)+et−D1et−1 with et−D1et−1 = ext+y

c
t−(p1+p2−1)yct−1,

where D1 and σ2e satisfy (1−D2
1)σ

2
e = (1−(p1+p2−1)2)σ2c+σ2x and D2

1σ
2
e = (p1+p2−1)2σ2c .
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Exercise 3.15 Suppose that ∆yct = Ac(c)∆yct−1+ ect , where e
c
t ∼ iid N(0, σ2c ), ∀τ > 1 and

Ac(c) is of order qc. Show the implied model for yt.

Given (3.15) and a model for yct (for example the one of exercise 3.15), our task is to
estimate the unknown parameters and to obtain an estimate of κt. First, we consider a
recursive algorithm to estimate κt. That is, given P [κt−1 = κ̄t−1,κt−2 = κ̄t−2, . . . ,κt−τ =
κ̄t−τ |yt−1, yt−2, . . .], we want P [κ = κ̄t,κt−1 = κ̄t−1, . . . ,κt−τ+1 = κ̄t−τ+1|yt, yt−1, . . .]. The
algorithm consists of 5 steps.

Algorithm 3.1

1) Compute P [κ = κ̄t,κt−1 = κ̄t−1, . . . ,κt−τ = κ̄t−τ |∆yt−1,∆yt−2, . . .]= P [κ = κ̄t|κt−1 =
κ̄t−1]P [κt−1 = κ̄t−1,κt−2 = κ̄t−2, . . . ,κt−τ = κ̄t−τ |∆yt−1,∆yt−2, . . .] where P [κt =
κ̄t|κt−1 = κ̄t−1] is the transition matrix of κt.

2) Compute the joint probability of ∆yt and {κj}tj=t−τ , i.e.: f(∆yt,κt = κ̄t,κt−1 =
κ̄t−1, . . . ,κt−τ = κ̄t−τ |∆yt−1,∆yt−2, . . .) = f(∆yt|κ = κ̄t,κt−1 = κ̄t−1, . . . ,∆yt−1,
∆yt−2, . . .)P [κ = κ̄t,κt−1 = κ̄t−1, . . . ,κt−τ = κ̄t−τ |∆yt−1,∆yt−2, . . .] where f(∆yt|κt =
κ̄t,κt−1 = κ̄t−1, . . . ,∆yt−1,∆yt−2, . . .) = 1√

2πσc
exp[− 1

2σ2c
((∆yt−a0−a1κt)(1−Ac(c))2].

3) Compute f(∆yt|∆yt−1,∆yt−2, . . .) =
P1
κt=0

P1
κt−1=0 . . .

P1
κt−τ=0 f(∆yt,κ = κ̄t,κt−1 =

κ̄t−1, . . . ,κt−τ = κ̄t−τ |∆yt−1,∆yt−2, . . .). This is the predictive density of ∆yt based
on t− 1 information.

4) Apply Bayes theorem to obtain: P (κt = κ̄t, κt−1 = κ̄t−1, . . . |∆yt, ∆yt−1, ∆yt−2, . . .) =
f(∆yt,κt=κ̄t,κt−1=κ̄t−1,...,κt−τ=κ̄t−τ |∆yt−1,∆yt−2,...)

f (∆yt|∆yt−1,∆yt−2,...) .

5) Obtain P [κt = κ̄t,κt−1 = κ̄t−1, . . . ,κt−τ+1 = κ̄t−τ+1|∆yt,∆yt−1,∆yt−2, . . .] =
P1
κτ−r=0

P [κt = κ̄t,κt−1 = κ̄t−1, . . . ,κt−τ = κ̄t−τ |∆yt,∆yt−1,∆yt−2, . . .].

To start the algorithm one needs P [κ0 = κ̄0,κ−1 = κ̄−1, . . . ,κ−τ+1 = κ̄−τ+1|y0, y−1, . . .].
If this is unknown, one can use P [κ0 = κ̄0,κ−1 = κ̄−1, . . . ,κ−τ+1 = κ̄−τ+1], the uncondi-
tional probability of the τ − 1 histories of κ0, which is obtained setting P [κ−τ+1 = 1] =
p̃, P [κ−τ+1 = 0] = 1− p̃ and recursively constructing P [κ−τ+j ] j = 2, 3, . . . using step 1) of
the algorithm. Alternatively, one could treat P [κ−τ+1 = 1] as a parameter to be estimated.

Extensions of the basic setup are considered in the next exercise

Exercise 3.16 i) Suppose there are n states so that the input of the algorithm consists of
nτ elements. Write down the algorithm to estimate κt with information up to t− 1.
ii) Let Ac(c) = Ac(c,κt). Write down the algorithm to estimate κt.
iii) Let σ2c = σ2c (κt). Write down the algorithm to estimate κt.
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Example 3.9 One interesting extension is obtained when the probability of switching states

depends on observable variables. For example, set P (κt = i|κt−1 = i, xt−1αi) =
exp(x0t−1αi)
1+exp(x0t−1αi)

and P (κ = i|κt−1 = i0, xt−1αi0) = 1−P (κ = i|κt−1 = i, xt−1αi), where xt−1 = (1, y1,t−1, . . .
,yq,t−1), αi = (αi0, αi1, . . . , αiq) and let f(∆yt|κ, θ) = 1√

2πσc
exp[−(∆yt(κ)−∆y(κ))2

2σ2c
]. Then

∆yt has potentially a switching mean and the probability of switching is time dependent.
Hence there may be duration dependence in the fluctuations of ∆yt.

Next, we consider parameters estimation. Since in step 3) of algorithm 3.1 we con-
structed the likelihood of the t − th observation, parameters estimate can be obtained
once algorithm 3.1 has been run for all t’s, summing the log of these likelihoods. In fact,
lnf (∆yt,∆yt−1, . . . ,
∆y1|∆y0, . . . ,∆y−τ+1) =

PT
t=1 ln f(∆yt|∆yt−1, . . . ,∆y1, . . . ,∆y−τ+1) can be numerically

maximized with respect to (α0, α1, p1, p2, Aj) (and P [κ−τ+1 = 1] if needed).
From step 4) of the algorithm, we can also infer κt given current and past values of yt,

integrating out κt−j , j ≥ 1, i.e., P [κt = κ̄t|∆yt,∆yt−1, . . .] =
P1
κt−1=0, . . . ,

P1
κt−τ=0 P [κ =

κ̄t,κt−1 = κ̄t−1, . . . |∆yt,∆yt−1, . . .]. This could be useful, e.g., to decide whether at some
date the economy was in a recession or not.

Example 3.10 Step 4) of algorithm 3.1 can also be used to evaluate the ex-post probability
that κt−j = κ̄t−j (given time t information). For example, we could calculate the probability
that in 1975:1 we were in the low growth state, given information up to, say, 2003:4. This
involves, computing P [κt̄ = κ̄t̄|∆yt,∆yt−1, . . .] for some t− τ ≤ t̄ ≤ t.

The above framework is easy to manipulate but it unrealistically assumes that the cycli-
cal component has a unit root. Eliminating this unit root brings realism to the specification
but substantially complicates the calculations since the algorithm has to keep track of the
entire past history of κt. To illustrate the point suppose yt = yxt + yct and

yxt = yxt−1 + a0 + a1κt (3.18)

(1−Ac(c))yct = ect , ect ∼ iid N(0, σ2c ) (3.19)

where κt is a two-state Markov chain. Then ∆yt = a0 + a1κt +∆yct and solving backward
yct = (

Pt
i=1∆yi−a0t−a1

Pt
i=1 κi)+yc0 and e

c
t = (1−Ac

1c−Ac
2c
2, . . . ,−Ac

qcc
qc)[
Pt

i=1∆yi−
a0t]+(1−Ac

1−Ac
2, . . . ,−Ac

qc)y
c
0−a1(1−Ac

1−Ac
2−. . .−Ac

qc)
P

i κi+a1
Pqc

j=1(
Pqc

i=j A
c
i)κt−j+1.

If Ac(c) has a unit root (1−Ac(1)) = 0 so that ect = (1−Ac
1c−Ac

2c
2−. . .)[Pi∆yi−a0t]+

a1
P

j(
P

iA
c
i)κt−j+1 which is the same expression obtained when yct is an ARIMA(qc,1,0).

If it is not the case, the entire history of κt becomes a state variable for the problem. To
solve this computation problem, Lam (1990) uses the sum of κt as a state variable. Note
that since yc0 affects the likelihood, it is treated as a parameter to be estimated.

Exercise 3.17 Modify algorithm 3.1 to allow (
Pt

i=1 κi) to be a new state variable.
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Note that the probability distribution of
Pt

i=1 κi can be computed as P [
P

iκi =
¯̄κi|∆yt, . . . ,∆y1] =

P1
κt=0 . . .

P1
κt−τ=0 P [κt = κ̄t, . . . ,κt−τ = κ̄t−τ

P
iκi = ¯̄κi|∆yt, . . . ,∆y1].

An estimate of yct is ŷ
c
t =

Pt
i=1∆yi−a0t+yc0−a1

Pt
j=0

¯̄κP [
P

iκi = ¯̄κ|∆yt,∆yt−1, . . . ,∆y1]
and, given yc0, an estimate of the Markov trend is ŷ

x
t = yt − ŷct .

3.2 Hybrid Decompositions

3.2.1 The Hodrick and Prescott (HP) Filter

The HP filter has been and still is one of the preferred methods to extract cyclical com-
ponents from economic time series. Two basic features characterize HP decompositions.
First, trend and cycle are assumed to be uncorrelated. Second, the trend is assumed to be
a ”smooth” process, that is, it is allowed to change over time as long as the changes are not
abrupt. Hodrick and Prescott make the ”smoothness’ concept operational by penalizing
variations in the second difference of the trend. Under these conditions yxt can be identified
and estimated using the following program

min
yxt
{

xX
t=0

(yt − yxt )
2 + λ

TX
t=0

((yxt+1 − yxt )− (yxt − yxt−1))
2} (3.20)

where λ is a parameter controlling the smoothness of the trend. As λ increases yxt be-
comes smoother and for λ →∞, it becomes linear. A program like (3.20) can be formally
derived as follows. Let the cyclical component and the second difference of the trend be

white noises. Then weighted least square minimization leads to min{yxt }{
PT

t=0
(yt−yxt )2

σ2
yc

+
T
t=0(y

x
t+1−2yxt+yxt−1)2
σ2
∆2yx

}, which produces λ = σ2yc

σ2
∆2yx

, where σ2
∆2yx

is the variance of the inno-

vations in the second difference of the trend and σ2yc is the variance of the innovations in the

cycle. When λ =
σ2
yc

σ2
∆2yx

, Wabha (1980) shows that (3.20) defines the best curve in a cloud

of points, in the sense of making the mean square of the fitting error as small as possible.
Interestingly, the trend produced by (3.20) is identical to the one produced by a UC

decomposition where the drift in the trend is itself a random walk and the cyclical component

is a white noise (see Harvey and Jeager (1993)) . In particular, if we set λ = σ2c
σ2v
, restrict

σ2x = 0 in the setup of exercise 3.7 and let T → ∞, (3.20) is the optimal signal extraction
method to recover yxt (see e.g. Gomez (1999)). Clearly, if yt is not simply trend plus noise
or when the cyclical component is not iid, the filter is no longer optimal. Hence, rather
than estimating λ, the literature selects it a-priori so as to carve out particular frequencies
of the spectrum. For example, the value λ = 1600 typically used for quarterly data, implies
that the standard error of the cycle is 40 times larger than the standard error of the second
difference of the trend and this, in turns, implies that cycles longer than 6-7 years are
attributed to the trend. The choice of λ is not necessarily innocuous and implicit estimates
of λ obtained using BN or UC decompositions are only in the range [2, 8].
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Exercise 3.18 Show that the solution to (3.20) is yx = (FHP )−1y, where y = [y1, y2, . . . , yT ]0,
yxt = [y

x
1 , y

x
2 , . . . , y

x
T ]
0. Display the T × T matrix FHP .

For quarterly data FHP has a particular form: only t−2, t−1, t, t+1, t+2 observations
at each t matter in constructing yxt and the weights on leads and lags of yt depend on λ
but are symmetric. Therefore, the HP trend extractor is a two-sided, symmetric moving
average filter. Once yxt is available, an estimate of the cyclical component is y

c
t = yt − yxt .

The filter defined by exercise 3.18 is time dependent. Furthermore, its two-sided nature
creates beginning and end-of-the-sample problems. In fact, the elements of FHP for the
initial two and the final two observations differ from those of observations in the middle of
the sample. This creates distortions when one is interested in the properties of yt around
the end of the sample. One unsatisfactory solution is to throw away these observations
when constructing interesting statistics. Alternatively, one could dump the effects of these
observations by appropriately weighting them in the computation of the autocovariance
function of the filtered data. The preferred solution is to use a version of (3.20) where t
runs from −∞ to +∞. This modified problem defines a set of linear, time invariant weights
which, away from the beginning and the end, are close to those obtained in exercise 3.18.

The modified minimization problem produces an estimate of the cycle of the form yct =
B(c)(1− c)4yt ≡ Bc(c)yt, where B(c) is (see e.g. Cogley and Nason (1995)):

B(c) = |λ1|2
c2

[1− 2Re(λ1)c+ |λ1|2c2]−1[1− 2Re(λ1)c−1 + |λ1|2c−2]−1 (3.21)

λ−11 is the stable root of [λ−1c2 + (1 − c)4], Re(λ1) is the real part of λ1 and |λ1|2 is its
squared modulus. Note that when λ = 1600, Re(λ1) = 0.89, |λ1|2 ' 0.8 and the cyclical
weights Bcj , j = −∞, . . . , 0, . . . ,∞ can be written as (see Miller (1976)):

Bcj = −(0.8941)j [0.0561 ∗ cos(0.1116j) + 0.0558 ∗ sin(0.1116j)] j 6= 0 (3.22)

= 1− [0.0561 ∗ cos(0) + 0.0558 ∗ sin(0)] j = 0 (3.23)

The cyclical filter can also be written as (see King and Rebelo (1993)):

Bc(c) = (1− c)2(1− c−1)2
1
λ + (1− c)2(1− c−1)2

(3.24)

Figure 3.1 plots Bcj from (3.22)-(3.23) and its gain function for λ = 100, 400, 1600, 6400.
The weights have a sharp bell shape appearance, with the first time crossing of the zero
line at lag 2 and again around lag 20.

For stationary yt, increasing λ, adds to yct cycles with longer and longer periodicity.
Alternatively, since the area under the spectrum is the variance of yt, increasing λ increases
the importance of yct relative to y

x
t .

To study the properties of the cyclical HP filter, it is worth distinguishing whether yt is
covariance stationary or integrated (and of what order). When yt is stationary and λ = 1600,

the gain of Bc(c) is Ga0(ω) ' 16 sin4(ω
2
)

1
1600

+16 sin4(ω
2
)
= 4(1−cos(ω))2

1
1600

+4(1−cos(ω))2 , which has the form depicted
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in the top left panel of figure 3.2. It is immediate to notice that Ga0(ω = 0) = 0, so that
the power of yt at frequency zero goes to the trend. Furthermore, Ga0(ω)→ 1 for ω → π.
Hence, the cyclical HP filter operates like a high pass filter, damping fluctuations with
mean periodicity greater than 24 quarters per cycle (ω = 0.26) and passing short cycles
without changes. Because of this last feature, the cyclical HP filter leaves ”undesirable”
high frequency variability in yct .
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Figure 3.1: Cyclical weights and gain function, HP filter

When yt is integrated, the cyclical HP filter has different properties. In fact, one can
think of Bc(c) as a two-step filter: in the first step it renders yt stationary; in the second it
smooths the resulting stationary series with asymmetric moving average weights.

Example 3.11 When yt is integrated of order one, the first step filter is (1 − c) and the
second is B(c)(1 − c)3. When λ = 1600, the gain function of the latter is Ga1(ω) ' [2(1 −
cos(ω))]−1Ga0(ω) which has a peak at ω∗ = arccos[1 −

q
0.75
1600 ] = 0.21 (roughly 7.6 years

cycles) (see top central panel of figure 3.2). Hence, Ga1(ω = 0) = 0, but when applied to
quarterly data, B(c)(1− c)3 damps long and short run growth cycles and strongly amplifies
growth cycles at business cycle frequencies. For example, the variance of the cycles with
average duration of 7.6 years is multiplied by 13 and the variance for cycles with periodicity
between 3.2 and 13 years by a factor of 4.

Exercise 3.19 Suppose that yt is I(2). What is the gain of B(c)(1− c)2? (call it Ga2(ω)).
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A plot of Ga2(ω) when yt is I(2) is in the top right panel of figure 3.2. Here Ga2(ω =
0) = 0 but the cyclical peak is very large. In fact, the variability of cycles corresponding
to 60 periods or more is increased by 400 times. To summarize, the cyclical HP filter may
induce spurious periodicity in integrated series. In particular, it may produce ”periodic”
cycles in series which have no power at business cycle frequencies (Yule-Slutsky effect).
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Figure 3.2: Gain functions, HP and ES filters

Example 3.12 While macroeconomists agree that aggregate time series display persistent
fluctuations, it is an open question whether they are integrated or not. Therefore, one may
be tempted to dismiss the above arguments suggesting that a largest root around 0.95 is more
probable than a root of 1.0. Unfortunately, for roots of the order of 0.95, the problem still
remains. In fact, the cyclical HP filter is B(c)(1− c)3 1−c

1−0.95c . The top middle panel of figure
3.2 plots the gain of this filter (dotted line in upper central panel). It is easy to see that the
shape of the gain function and the magnitude of the amplification produced at business cycle
frequencies is similar to the I(1) case.

Exercise 3.20 Suppose that yt = a0 + a1t + a2t2 + et. Show that the HP filter eliminates
linear and quadratic trends. (Hint: you can do this i) analytically; ii) applying the HP filter
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to a simulated process and explaining what is going on; iii) figuring out the spectral power
of deterministic trends).

Exercise 3.21 Consider the process yt = 10 + 0.4t + et where et = 0.8et−1 + vt and vt ∼
iid (0, 1). Generate yt, t = 1, . . . , 200, and filter it with the HP filter. Repeat the exercise
using yt = ρyyt−1+10+et, where ρy = 0.8, 0.9, 1.0 and y0 = 10. Compare the autocovariance
functions of yct in the two cases. Is there any pattern in the results? Why?

Because Bc(c) contains a term of the form (1 − c)4, yct will have, in general, a non-
invertible MA representation (see chapter 4 for a definition of invertibility). For example,
if yt is stationary, yct has four MA unit roots while if yt is I(1), y

c
t has three MA unit roots.

Non-invertibility implies that no finite AR representation for yct exists. In other words, y
c
t

will display strong serial correlation, regardless of whether yt is serially correlated or not.

Example 3.13 We have simulated data using yt = 10 + 0.4t+ et, where et = ρeet−1 + vt,
vt ∼ iid (0, 1) and ρe = 0.4, 0.7, 1.0. Figure 3.3 reports the ACF functions of the true and
the HP filtered cyclical component. Clearly, the higher is ρe the stronger is the persistence
in the yct and the longer it takes for the ACF to settle down at zero.
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Figure 3.3: ACF of the cyclical component

The cyclical HP filter may not only induce artificial persistence or spurious periodicity;
it may also create comovements that look like business cycle fluctuations in series which
have no cycle. We show one extreme version of this phenomenon in the next exercise.
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Exercise 3.22 Let y1t = y1t−1 + e1t and y2t = y2t−1 + e2t and let [e1t, e2t]0 ∼ (0,Σe).
(i) Show that the spectral density matrix of [∆y1t,∆y2t] is S(ω) ∝ Σe.
(ii) Show that the spectral density matrix of [yc1t, y

c
2t]
0 is S(ω)Ga1(ω), where Ga1(ω) is the

gain of B(c)(1− c)3.
(iii) Let σ1 = σ2 = 1 and let σ12 = 0.9, 0.5, 0.0. Simulate y1t, y2t and plot Syc(ω) in the three
cases. Argue that when σ12 6= 0, yc1t and yc2t display cycles of roughly the same periodicity
as NBER cycles and that yc1t and yc2t have strong comovements.

Exercise 3.23 Using quarterly US data for consumption and output, plot the spectral den-
sity matrix of [∆ct,∆GDPt]

0. Plot the spectral density matrix of the HP detrended version
of consumption and output. Describe the features of the plots and contrast them.

In general, the use of the HP filter should be carefully monitored: uncritical use may
produce a misleading impression of the ability of a model to reproduce the data. In partic-
ular, models which have little propagation mechanism and minor fluctuations, may acquire
strong propagation and significant cyclical components once filtered with the HP filter (see
Soderlin (1994) and Cogley and Nason (1995), for examples). Furthermore, as exercise 3.22
shows, even though the model and the data are only contemporaneous linked, application
of the HP filter may make the similarities strong precisely at business cycle frequencies.

Example 3.14 We have simulated 200 data points from the basic RBC model of chapter 2

with utility U(ct, ct−1,Nt) =
c1−ϕt
1−ϕ + ln(1−Nt) assuming β = 0.99, ϕc = 2.0, δ = 0.025, η =

0.64, steady state hours equal to 0.3. We log linearize the model and assume an AR(1)
parameter equal to 0.9 and a variance equal to 0.0066 for the logarithm of the technology
shock and an AR(1) parameter equal to 0.8 and a variance equal to 0.0146 for the goverment
expenditure shock. Table 3.1 reports the mean of the cross correlation function of GDP with
capital (K), real wage (W) and labor productivity (np) at lag zero and one and the mean
standard deviations of the latter three variables calculated over 100 simulations, before and
after HP filtering. Since the data generated by the model is stationary, the filtered statistics
should be interpreted as describing the medium-high frequency properties of the simulated
data. Clearly, both the relative ranking of variabilities and the size of the cross correlations
are significantly different.

Raw data HP filtered data

Statistic Kt Wt npt Kt Wt npt
Correlation of GDPt with 0.49 0.65 0.09 0.84 0.95 -0.20
Correlation of GDPt−1 with 0.43 0.57 0.05 0.60 0.67 -0.38
Standard deviation 1.00 1.25 1.12 1.50 0.87 0.50

Table 3.1: Simulated statistics

Since the smoothing parameter is chosen a-priori, one may wonder how to translate the
value λ = 1600 into a value for monthly or annual data. For example, researchers have used
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λ = 400, 100, 10 to compute yct in annual data. Ravn and Uhlig (2002) show that insistence
on the requirement that cycles of the same periodicity should be extracted, regardless of
the frequency of the data, leads to select λ = 129600 for monthly data and λ = 6.25 for
annual data when end-of-the-period data is used. While it is possible to derive these values
analytically, we illustrate the logic for these choices by means of an example.

Example 3.15 We generated 12000 (monthly) data points from an AR(1) process with
ρ = 0.98 and variance of innovations equal to 1.0 and sampled it at quarterly and annual
frequencies (using either end-of-the-period values or time averages) for a total of 4000 and
1000 observations. We have then applied the HP filter to monthly, quarterly and annual
data where for quarterly data λ = 1600, for monthly data λj = 3jλ and for annual data
λj = 0.25jλ, j = 3, 4, 5. The variability of the quarterly HP filtered cycles are 2.20 (end-
of-the period sampling) and 2.09 (averaging monthly data). The variability of the monthly
series are 1.95 when j=3, 2.21 j=4, 2.48 for j=5. The variability of the annual series are
2.42 when j=3, 2.09 for j=4 and 1.64 for j=5 (end-of-the-period sampling) and 2.15 for
j=3, 1.74 for j=4, and 1.33 for j=5 (time averaged data). Hence with end-of the period
data, j = 4 is the most appropriate. For averaged data, j=4 or j=5 should probably be used.

Exercise 3.24 Let Bc(ω, λ) be the cyclical HP filter for the quarterly data and let Bc(ωτ , λτ )
the cyclical HP filter for the sampling frequency ω

τ , where τ measures the frequency of
the observations relative to quarterly data, i.e. τ = 0.25 for annual data and τ = 3 for
monthly data. Let λτ = τ jλ. Calculate the gain function for monthly and annual data
when j = 3.8, 3.9, 4, 4.1, 4.2. For which value of j is the gain function closer to the one for
quarterly data?

As we have seen, the HP filter is a mechanical device which defines the cycles it extracts
via the selection of λ. In cross country comparisons the use of a single λmay be problematic
since the mean length of domestic cycles in not necessarily the same. For example, if a
country has cycles with average length of 9 years, mechanical application of the HP filter
will move these cycles to the trend. The fact that quarterly HP filtered GDP data for
Japan, Italy or Spain display very improbable expansions around the time of the first oil
shock, when λ = 1600 is used, have prompted researchers to look for alternative ways
to introduce smoothness in the trend. Marcet and Ravn (2000) suggested that for cross
country comparisons one could either fix the amount of variability assigned to the trend or
restrict the relative variability of the trend to the cycle. Roughly speaking, this amounts to
making λ endogenous (as opposed to exogenously) when splitting the spectrum of yt into
components. The problem (3.20) in the latter case can be written as

min
yxt

TX
t=1

(yt − yxt )
2 (3.25)

V1 ≥
PT−2

t=1 [(y
x
t+1 − yxt )− (yxt − yxt−1)]2PT

t=1(yt − yxt )
2

(3.26)
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where V1 ≥ 0 is a constant to be determined by the researcher, which measures the vari-
ability of the acceleration in the trend relative to the variability of the cyclical component.
(3.25)-(3.26) and (3.20) are equivalent as the next exercise shows.

Exercise 3.25 i) Show that if V1 = 0, yxt is a linear trend and if V1 →∞, yxt = yt.
ii) Let λ̄ be the (exogenous) value of λ. Show that the Lagrangian multiplier on (3.26) is
λ̄ = λ

(1−λV1) . Compute λ when λ̄ = 1600 and the ratio of variabilities is 1, 12 ,
1
4 ,
1
8 ,

1
16 .

iii) Show that a solution for V1 can be found iterating on V1(λ) =
T−1
t=2 (y

x
t+1(λ)−2yxt (λ)+yxt−1(λ))2
T−1
t=2 (yt−yxt (λ))2

.

Intuitively, part ii) of exercise 3.25 indicates that if we want to make useful international
comparisons (say, using the US as a benchmark) we should choose a λ that satisfy λ̄ =
λ(1 − V1λ)−1, where λ̄ = 1600 and V1 is the relative variability of the two components in
the US. Keeping V1 fixed across countries is more appealing than fixing λ since V1 is a
parameter with some economic interpretation. Since in international comparisons it may
not be clear which benchmark country one should use, one could substitute (3.26) with

V2 ≥ 1

T − 2
T−1X
t=2

[(yxt+1 − yxt )− (yxt − yxt−1)]
2 (3.27)

Note that if V2 is the same across units, the acceleration in the trend is common. Therefore
(3.27) imposes some form of balance growth across countries. The main difference between
(3.26) and (3.27) is that the former allows countries with more volatile cyclical component
to have also more volatile trend, while this is not possible in the latter.

Endogenously selecting the frequencies belonging to the cycle can be useful in certain
contexts but care should be exercised since uncritical application of this idea may lead to
absurd conclusions if the mechanism generating the data differs across units.

Exercise 3.26 Consider the following processes: i)(1 − 0.99c)yt = et; ii)(1 − 1.34c +
0.7c2)yt = et; yt = (1 − 0.99c)et. Show the implied value of λ in the three cases when
V1 = 0.5 and λ̄ = 1600 and the resulting business cycle frequencies.

3.2.2 Exponential smoothing (ES) filter

The exponential smoothing filter, used e.g. in Lucas (1980), is obtained from the program:

min
yxt
{

TX
t=0

(yt − yxt )
2 + λ

TX
t=0

(yxt − yxt−1)
2} (3.28)

The ES filter therefore differs from the HP filter in the penalty function: here we penalize
changes in the trend, while in the HP we penalize the acceleration of the trend.

The first order conditions of the problem are 0 = −2(yt−yxt )+2λ(yxt −yxt−1)−2λ(yxt+1−
yxt ). Therefore, as in the HP filter, the trend component is y

x
t = (FES)−1yt and the cyclical

component is yct = yt − yxt = (1− (FES)−1)yt.
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Exercise 3.27 Display the form of FES and compare it with FHP .

Note that if t runs from −∞ to ∞, the solution to the minimization problem can be
written as yxt = [λ(1− c)(1− c−1) + 1]−1yt.

Example 3.16 The ES filter automatically removes a linear trend from yt. To show this
let FESyxt = yt and FES ỹxt = ỹt, where ỹt = yt + a0 + a1t. Combining the two expressions
we have FES(yxt − ỹxt ) = yt − ỹt = −a0 − a1t or FES(yct − ỹct ) + (FES − 1)(−a0 − a1t) = 0.
Hence for yct = ỹct we need (FES − 1)(−a0 − a1t) = 0. The result follows since (FES − 1) is
symmetric.

Exercise 3.28 Using the same logic of example 3.16 examine whether the ES filter is able
to remove a quadratic trend from the data.

Given the form of the trend remover ES filter, one can show that yct = (1− Bx(c))yt =
(1−c)(1−c−1)

1
λ
+(1−c)(1−c−1)yt. Hence, application of the ES filter induces stationarity in yct for yt inte-

grated up to order 2. Conversely, if yt is integrated of order less than 2, yct will display unit
root moving average and therefore strong (and possibly artificial) persistence.

The next exercise shows the effect of applying the ES filter to various types of data.

Exercise 3.29 i) Show that when yt is stationary, the gain function of the cyclical ES filter

is 2(1−cos(ω))
1
λ
+2(1−cos(ω)) . Show that y

c
t has zero power at ω = 0, has the same power as yt at ω→ π

and that the larger is λ, the smoother is yxt (the more variable is y
c
t ).

ii) Show that when yt is I(2), the gain function of the cyclical filter is
1

1
λ
+2(1−cos(ω)) . Describe

what is the effect of this filter at ω = 0, π and at business cycle frequencies.

The broad similarities of ES and HP filter can be appreciated in figure 3.2 where we
plot the gain function of the two filters when λ = 1600. It is clear that the ES filter picks
up trends with longer periodicity, but generally speaking, the two filters are very similar.

Exercise 3.30 Let yt = ρyyt−1 + et, et ∼ iid (0, 1) and ρy = 0.5, 0.9, 1.0. Simulate 2000
data points with y0 = 10 and pass the last 1500 through the HP and the ES filters. Plot the
cyclical components, compute their variability and their auto and cross correlation.

Both the HP and the ES trend extractors are special cases of a general class of low
pass filters that engineers call Butterworth (BW) filters. Such filters have a squared gain

function of the form |Ga(ω)|2 = 1/(1 + ( sin(ω/2)sin(ω̄/2))
2κ) where κ is a parameter and ω̄ is the

frequency where the frequency response of the filter is equal to 0.5. For BW filters, the
trend estimate is yxt =

1
1−λ(1−c)κ(1−c−1)κ yt where λ =

1
22κsin2κ(ω̄/2)

.

Example 3.17 It is easy to show that if κ = 2 and ω̄ solves λ = (16 sin4(ω̄/2))−1, |Ga(ω)|2
is the square gain function of the HP trend extractor filter while if κ = 1 and ω̄ solves
λ = (4 sin2(ω̄/2))−1, it produces the square gain function of the ES trend extractor filter.
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Relative to HP and ES filters, general BW filters have a free parameter κ, which can
be used to tailor the gain function to particular needs. In fact, a higher κ moves |Ga(ω)|2
to the right (i.e. ω̄ increases). Hence, for a fixed λ, it controls which cycles are included
in yct . Designing a low pass BW filter is easy. We need two parameters a1, a2 and two
frequencies ω1, ω2 such that 1− a1 < GaBW (ω) ≤ 1 for ω ∈ (0, ω1) and 0 < GaBW (ω) ≤ a2
for ω ∈ (ω2, π). Given, a1, a2, ω1, ω2, one finds ω̄ and κ solving 1+( sin(ω1/2)sin(ω̄/2)

)2κ = (1−a1)−1
and 1 + ( sin(ω2/2)

sin(ω̄/2)
)2κ = (a2)−1, rounding off κ to the closest integer.

3.2.3 Moving average (MA) filters

MA filters have a long history as smoothing devices and their use goes back, at least, to
the work of Burns and Mitchell (1946). MA filters are defined by a polynomial in the lag
operator B(c) which is either one or two-sided (that is, it operates on J lags or on J leads
and J lags of yt). A MA filter is symmetric if Bj = B−j ,∀j.

The frequency response function of a symmetric MA filter is B(ω) = B0+2
P

j Bj cos(ωj),
where we have used the trigonometric identity 2 cos(ω) = exp(iω) + exp(−iω). Symmetric
filters are typically preferred since they have zero phase shift. This is a desirable property
since for Ph(ω) = 0, ∀ω, the timing of the cycles in yt and B(c)yt is the same.

Example 3.18 A simple symmetric two-sided (truncated) moving average filter is Bj =
1

2J+1 , 0 ≤ j ≤ |J | and Bj = 0, j > |J|. If we set yct = (1 − B(c))yt ≡ Bc(c)yt the cyclical
weights are Bc0 = 1− 1

2J+1 and Bcj = Bc−j = − 1
2J+1 , j = 1, 2 . . . , J . It is easy to recognize that

Bj are the weights used in the Box-car kernel in chapter 1. The Bartlett and the quadratic
spectral kernels are also two-sided symmetric filters.

Note that B(ω = 0) =
P∞

j=−∞ Bj . Therefore, the condition limJ→∞
PJ

j=−J Bj = 1 is
necessary and sufficient for a MA filter to have unitary gain at the zero frequency. If this
is the case, Bc(ω = 0) = 1− B(ω = 0) = 0, and yct has zero power at the zero frequency.

Example 3.19 The effect of asymmetric filters can be appreciated in figure 3.4 where we
present the gain of the filter of example 3.18, of the HP filter, and of an asymmetric filter
with right side equal to the one of example 3.18 and left side with weights 1

2j+1 , j < J = 12.
In general, MA filters have unit gain only for ω ≈ π and leave a lot of high frequency
variability in the trend. Relative to a symmetric MA filter, an asymmetric one has gain
different from zero at ω = 0 and leaves much more cyclical variability in the trend.

Exercise 3.31 (Baxter and King) i) Show that a symmetric MA filter with limJ→∞
PJ
−J Bj =

1 is sufficient to extract the quadratic trend from yt = et + a0 + a1t+ a2t
2, where et is ar-

bitrarily serially correlated but stationary process.
ii) Show that if limJ→∞

PJ
−J Bj = 1, the cyclical filter can be decomposed as Bc(c) =

(1− c)(1− c−1)Bc†(c) , where Bc† is a symmetric MA filter with J − 1 leads and lags. That
is, yct will be stationary when yt integrated of order up to two.
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Exercise 3.32 Is the ES filter a symmetric MA filter? Does it satisfy limJ→∞
PJ

j=J Bj =
1?

y(t) ~ I(0)

Frequency
0.0 1.0 2.0 3.0

-1.2

-0.8
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-0.0

0.4
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1.6

maB, J=12
ma-asy,J=12
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y(t)~ I(1)

Frequency
0.0 1.0 2.0 3.0
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0
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maB1, J=12
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Figure 3.4: Gain: symmetric and asymmetric MA and HP filters

Example 3.20 One type of MA filter extensively used in the seasonal adjustment literature
is the so-called Henderson filter. The filter is symmetric, operates on J leads and J lags of yt
and Bj are found solving minJj=−J ((1− c)3Bj)2 subject

P
j Bj = 1,

P
jBj = 0,

P
j j
2Bj = 0.

Intuitively, the objective function of the problem measures the degree of smoothness of the
curve described by the weights. The constraints imply that polynomials of degree up to
the second are required to be part of the weights. When J = 6, B0 = .2401 and Bj =
(.2143, .1474, .0655, 0,−0.279,−0.19). These bell-shaped weights define a filter whose gain
function resembles the one of the HP trend extractor filter and is smoother than the one
constructed using a tent-like filter.

3.2.4 Band Pass (BP) filters

Band Pass filters have become popular in applied macro following the work of Canova (1998),
Baxter and King (1999) and Christiano and Fitzgerald (2003). One reason for preferring BP
filters is that the majority of the other filters have high pass characteristics and therefore
leave or exaggerate the amount of variability present at high frequencies. As we have seen
in chapter 1, band pass filters are combinations of MA filters designed to eliminate both
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high and low frequencies movements in the data. Furthermore, BP filters are appealing
because they make the notion of business cycle operational by selecting fluctuations in a
prespecified range (say, 6 to 24 quarters).

The output of high, low and band pass filters can be represented in time domain with
infinite two-sided symmetric moving averages of yt. In chapter 1 we have seen that the
coefficients of a low pass filter are Blp0 = ω1

π ; Blpj = sin(jω1)
jπ , j = ±1,±2, . . . where ω1 is the

upper frequency of the band; the ones of a high pass filter are Bhp0 = 1− Blp0 ; Bhpj = −Blpj
and those of a band pass filter are Bbpj = Blpj (ω2) − Blpj (ω1) for ω1 < ω2. Unfortunately,
with a finite amount of data, these filters are not implementable. Therefore, one needs to
approximate them with finite MA weights. One set of approximating weights can be found
truncating optimal ones.

Exercise 3.33 (Koopman) Show that if one chooses the finite symmetric approximation
BAJ that minimizes

R π
π |BA(ω)−B(ω)|2dω, where J stands for the number of leads/lags used

and B(ω) is the ideal filter, the solution is BAj = Bj for |j| ≤ J and BAj = 0 otherwise.

Intuitively, such a truncation is optimal since the weights for |j| > J are small.
To insure that the approximating BP filter has unit root removal properties we impose

BA(ω = 0) = 0. The next exercise shows how to modify BAJ to account for this restriction.

Exercise 3.34 (Baxter and King) Show that for a low pass filter, imposing BA(ω = 0) = 1
implies that the constrained approximate weights are BAj +

1− J
j=−J BAj
2J+1 . Show the constrained

approximate weights for the approximate BP filter.

Clearly, the quality of the approximation depends on the truncation point J (see chapter
5 for a similar problem). One way to quantify the biases introduced by the truncation is
the following.

Exercise 3.35 i) Plot the gain function of the optimal and the approximate band pass
filter obtained when J=4,8,12,24 Examine both the leakage and the compression that the
approximate filter has relative to the optimal one at business cycle frequencies.
ii) Simulate yt = 0.9yt−1 + et, where et ∼ iid N(0, 1). Apply the approximate band pass
filter weights for J = 4, 8, 12, 24. Calculate sample statistics of the filtered data for each J .
iii) Simulate the model (1− c)yt = et − 0.7et−1. Repeat the steps in point ii).

Roughly speaking, J must be sufficiently large for the approximation to be reasonable.
However, the larger is J, the shorter is the time series for yct available (we are loosing J
observations at the beginning and at the end of the sample), and therefore the less useful
the approximation is to measure the current state of the cycle. Simulation studies have
shown that if one is to extract cycles with periodicity between 6-24 quarters, a constrained
band pass filter with J ≈ 12 has little leakage and minor compression relative to other filters
and produces cyclical components which are similar (but less volatile) to those extracted
with HP filter for observations to the middle of the sample.
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The modified approximate band-pass filter has the same problems as other high pass
filters when applied to I(1) series. In fact, for symmetric MA filters with zero gain at ω = 0
we can write BA(c) = −(1− c)(1− c−1)BA∗(c), where BA∗|j| =

PJ
i=|j|+1(i− |j|)BAi .

The next exercise shows that if the data are stationary up to a quadratic trend, then
no distortion in yct results. Distortions however obtain if yt is integrated.

Exercise 3.36 (Murray) Show that if yt = a + b1t + b2t2 + et, then yct = BA(c)et. Show
that if (1− c)yt = et, then yct = −(1− c−1)B̄A∗(c)et. Plot the gain functions of BA(c) and
−(1− c−1)BA∗(c) and describe their differences.

Example 3.21 If yt is integrated, the BP filter may also generate spurious periodicity
in filtered data. To show this we have generated 1000 samples of 500 data points from
∆yt = et, et ∼ iid (0, σ2); and constructed yct using the −(1 − c−1)BA∗(c) filter. We then
computed the mean value of the ACF of yct for J = 4, 8, 12. The ACF of ∆yt is zero for all
τ ≥ 1 while ACFyc(τ) is different from zero, at least for τ < 10. Hence an integrated process
produces autocorrelated yct if passed with the above filter. Interestingly, the persistence of y

c
t

increases with J . For example, the mean of ACFyc(τ) fails to converge to zero for J = 12
for at least τ ≤ 15.

Exercise 3.37 (Murray) Let yt = yxt + yct and let

yxt = 0.82 + yxt−1 + ext ext ∼ iid N(0, (1.24)2) (3.29)

(1− 1.34c+ 0.71c2)yct = ect ect ∼ iid N(0, (0.75)2) (3.30)

i) Calculate the autocovariance function of the cyclical component.
ii) Simulate 2000 data points for yt, filter them with an approximate BP filter using J=8,
16, 24, 40. Calculate the autocovariance function of the estimated yct .
iii) Simulate 2000 data points for yt setting var(ext ) = 0. Pass the simulated time series
through an approximate BP filter using J=8,16,24,40. Calculate the autocovariance function
of the estimated cyclical component. When is the autocovariance function calculated in ii)
and iii) closer to the one you have calculated in i)?
iv) Repeat i), ii) and iii) 1000 times and store the values of the first five elements of the
ACF. Calculate the number of times that the ACF in i) lies within the 68% band you have
computed for each step.

The approximate BP filter of exercise 3.33 is constructed equally penalizing deviations
from the ideal filter at all frequencies. This may not be the best approximating distance.
Intuitively, we would like the approximate filter to reproduce as closely as possible the ideal
filter at those frequencies where the spectrum of yt is large while we are less concerned
about deviations when the spectrum of yt is small. Christiano and Fitzgerald (CF) (2003)
construct an approximation to the ideal filter which has these features using projection
techniques. The filter they obtain is non-stationary, asymmetric, and depends on the time
series properties of yt. The non-stationarity comes from the fact that there is a different
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projection problem for each t. Asymmetry is produced since all observations are used at
each t to construct the filtered series. The dependence on the properties of yt comes from
the fact that the power of Sy(ω) at different ω depends on the features of yt. Contrary to the
approximating filter of exercise 3.33, the approximating filter of Christiano and Fitzgerald
does not truncate the optimal weights, except for some special DGP. Note that the CF filter
could be made stationary and symmetric if these features are deemed necessary.

The CF filter can be obtained as follows. Suppose we want to choose BA,t−1,T−tj , j =

T − t, . . . , t − 1, to minimize R π−π |BA,t−1,T−t(ω)−B(ω))|
1−e−iω S∆y(ω)dω. CF show that the solution

to this problem can be represented as a (T + 1) system of linear equations of the form
FCF0 = FCF1 BA,t−1,T−t where FCF0 ,FCF1 depend on the properties of S∆y and B(ω).
Example 3.22 There are few cases for which the solution to the problem is of interest.
The first is when yt is a random walk. Here, the approximate band pass filtered version of
yt is yct = BAT−tyT + BAT−t−1yT−1 + . . .+ BA1 yt+1 + BA0 yt + BA1 yt−1 + . . .+ BAt−2y2 + BAt−1y1,
for t = 2, 3, . . . T − 1, where BA0 =

2π
ω1
− 2π
ω2

π ; BAj = sin(2jπ/ω1)−sin(2jπ/ω2)
jπ , j 6= t − 1, T − t;

BAT−t = −0.5BA0 −
PT−t−1

j=1 BAj while BAt−1 solves 0 = BA0 + BA1 + . . . + BAT−1−t + BAT−t +
BA1 + . . . + BAt−2 + BAt−1, where ω2(ω1) is the upper (lower) frequency of the band. For
t = 1 the expression is yc1 = 0.5BA0 y1 + BA1 y2 + . . .+ BAT−2yT−1 + BAT−1yT and for t = T is
ycT = 0.5BA0 yT +BA1 yT−1+ . . .+BAT−2y2+BAT−1y1. From the above, it is clear that the filter
uses all the observations for each t, that the weights change with t and become asymmetric
if t is away from the middle of the sample.

A second interesting case obtains if yt is iid in which case the weights Sy(ω) = σ2y
2π are

independent of ω. Then BA,t−1,T−tj = Bj for j = T − t, . . . , t− 1 and zero otherwise, which
produces the solution of exercise 3.33 if the filter is required to be symmetric and Bj is
truncated for j > J.

We present the gain function of the approximate asymmetric and approximate symmet-
ric truncated CF filters, both obtained when yt is a random walk, of the ideal filter and
of the approximate BK filter produced in exercise 3.33 in figure 3.5. The two truncated
symmetric filters are similar but the CF filter gives more weights to the lower frequencies of
the band (since a random walk has more power in those frequencies) and has smaller side
loops. The asymmetric filter, on the other hand, is very close to the ideal one.

Exercise 3.38 Describe how to make the approximate CF filter BA(c) symmetric.
The approximate CF filter is general and solves beginning and end-of-the-sample prob-

lems. The costs of this general setup is that one has to decide a-priori how S∆y(ω) looks
like (in particular, if yt is stationary or integrated and what are its serial correlation prop-
erties) and that the filter imposes phase shifts in the autocovariance function of yt. By way
of examples, Christiano and Fitzgerald suggest that phase shifts are small in practice and
can be safety neglected in the analysis. Also, they indicate that, in practice, the approxi-
mation obtained arbitrarily assuming that yt is a random walk works well for a variety of
macroeconomic time series.
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Figure 3.5: Gain, ideal and approximate BP filters

As other MA filters, the approximate CF filter also faces problems when yt is integrated.
In fact, it increases the variability at business cycle frequencies if a term (1− c) is used to
make yt stationary.

What kind of statistics should one use to compare the quality of the approximation to
the ideal BP filter? The following exercise suggests two possible alternatives.

Exercise 3.39 Suppose the optimal band pass filtered series is yct and the approximate band
pass filtered series is yAct . Let y

c
t = yAct + et, where by optimality of the projection problem

E(et|Ft) = 0, and Ft is the information set at time t. Show that var(yct − yAct |Ft) =

var(yct )(1− corr(yAct , yct )). Conclude that corr(y
Ac
t , yct ) and

var(yAct )
var(yct )

can be used to evaluate

the closeness of the approximation.

Exercise 3.40 Consider the DGP used in exercise 3.37. Simulate data for the two compo-
nents, compute yt 1000 times and calculate ACF (τ) of yct for τ = 1, . . . 6. For each draw,
estimate yct using the fixed weight approximate BP filter, the non-stationary, asymmetric
BP filter and the simulated yt, and compute ACF (τ) of yct for τ = 1, . . . 6. Using the true
and the simulated distribution of ACF (τ) for each BP filter, examine which method better
approximates the cyclical component of the data.

While it has become common to use the time domain representation of the filter and
therefore worry about the effects of truncation, one can directly implement BP filters in
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frequency domain (see Canova (1998)). The advantage of this approach is that no approx-
imation is needed and no loss of data is involved. However, two major drawbacks need
to be mentioned. First, the definition of the cyclical component depends on the sample
size. This is because Fourier frequencies are function of T . Hence, when new information
arrives, the measurement of yct for all t needs to be changed. The time domain version of the
truncated BP filter does not have this problem since the filter weights are independent of t.
Second, since the spectrum of yt is undefined at ω = 0 when the series is non-stationary, a
stationary transformation is required before the spectrum is computed. Hence one should
decide whether a deterministic or a stochastic trend should be preliminary removed.

Recently Corbae and Ouliaris (2001) suggested a way to implement band pass filters
in frequency domain which does not suffer from the latter problem. Their implementation
is useful since it also solves the problem of the spurious periodicity induced by band pass
filters when yt is integrated. Suppose ∆yt = D(c)et where et ∼ (0, σ2) with finite fourth
moments and

P
j D

2
j < ∞. For ω 6= 0 Corbae, Ouliaris and Phillips (COP)(2002) showed

that the spectrum of yt is

Sy(ω) =
1

1− eiω
D(ω)Se(ω)− 1√

T

eiω

1− eiω
(yT − y0) (3.31)

where the last term is the bias induced by the unit root at ω = 0. From (3.31) one can
see that Sy(ω1) is not independent of Sy(ω2) for ω1 6= ω2 and both Fourier frequencies.
Since (yT − y0) is independent of ω and does not disappear even if T →∞, COP also show
that the leakage from frequency zero creates biases in yct that do not disappear if yt is first
detrended in time domain.

(3.31) suggests a simple way to eliminate this bias. The last term looks like a determin-
istic trend (in frequency domain) with random coefficient (yT −y0). Hence, to construct an
ideal BP filter in frequency domain when yt is integrated, one could use the following:

Algorithm 3.2

1) Compute Sy(ω) for ω 6= 0.
2) Run a (cross-frequency) regression of Sy(ω) on 1√

T
eiω

1−eiω for ω ∈ (0, π] and let \(yT − y0)

be the resulting estimator of (yT − y0).

3) Construct S∗y (ω) = Sy(ω)− \(yT − y0)
1√
T

eiω

1−eiω . Apply the ideal band pass filter to S∗y (ω).

Two features of algorithm 3.2 should be mentioned. First \yT − y0 is a
√
T - consistent

estimator of (yT−y0) and when yt is stationary \yT − y0 = 0. Second, no data is lost because
of the filter and no parameters are chosen by the investigator (the approximate BP filter
requires, at least, a truncation point J).

Exercise 3.41 Suppose you are willing to loose two observations, yT and y0. Show how
to modify algorithm 3.2 to obtain an ideal BP filter. Intuitively describe why this modified
filter can have better finite sample properties then the one produced by algorithm 3.2.
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3.3 Economic Decompositions

The decompositions of this group are diverse, but have one feature in common: they all use
an economic model to guide the extraction of the cyclical component. They should be more
appropriately called permanent-transitory decompositions since they define the trend as
the component of the series driven by permanent shocks. All decompositions use structural
VARs (which we discuss in chapter 4) even though the ”level” of identification is minimal.
In fact, instead of trying to obtain behavioral disturbances, they simply look for shocks
with permanent or transitory features.

3.3.1 Blanchard and Quah (BQ) Decomposition

The most prominent decomposition of this class was suggested by Blanchard and Quah
(1989) who use a version of Fischer (1979) partial equilibrium model with overlapping labor
contracts consisting of four equations:

GDPt = Mt − Pt + aζt (3.32)

GDPt = Nt + ζt (3.33)

Pt = Wt − ζt (3.34)

Wt = W |{Et−1Nt = Nfe} (3.35)

where Mt = Mt−1 + �3t, ln �3t ∼ iid (0, σ2M ), ζt = ζt−1 + �1t, ln �1t ∼ iid (0, σ2ζ ) and

where GDPt is output, Nt is employment, N fe is full employment, Mt is money, Pt are
prices, ζt is a productivity disturbance - all these variables are measured in logs - and
Wt is the real wage. The first equation is an aggregate demand equation, the second a
short run production function, the third and the fourth describe price and wage setting
behavior. Here money supply and productivity are exogenous and integrated processes.
Also, contrary to the models of chapter 2, these equations are postulated and not derived
from micro-principles.

Letting UNt = Nt − Nfe, the solution to the model implies a bivariate representation
for (GDPt, UNt) of the form

GDPt = GDPt−1 + �3t − �3t−1 + a(�1t − �1t−1) + �1t (3.36)

UNt = −�3t − a�1t (3.37)

The model therefore places restrictions on the data. In particular (3.36)-(3.37) imply that
fluctuations in UNt are stationary while GDPt is integrated. Furthermore, its permanent
component is GDPx

t ≡ GDPt−1 + a(�1t − �1t−1) + �1t and its transitory component is
GDP c

t ≡ �3t − �3t−1. In other words, while demand shocks drive GDP cycle, both supply
and demand shocks drive the cycle in UNt. To extract the transitory component of GDP
we need the following steps:
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Algorithm 3.3

1) Check that GDPt is integrated and UNt is stationary (possibly after some transforma-
tion). This step is necessary for the decomposition to be meaningful.

2) Identify two shocks, one which has a permanent effect on GDPt and one which has a
transitory effect on both GDPt and UNt.

3) Compute GDP c
t = GDPt −GDPx

t and UNc
t ≡ UNt.

In step 2) one could generically specify a bivariate VAR for the data (if the model is
believed to provide only qualitative restrictions) or condition on the exact structure provided
by (3.36)-(3.37) to derive the shocks.

It is important to stress that decompositions like (3.36)-(3.37) are conditional on the
economic model. Hence, it is possible to produce different cyclical components using the
same model but introducing different features or frictions.

Exercise 3.42 (Lippi and Reichlin) Suppose the productivity shock has the structure ζt =
ζt−1 + Q(c)�1t where

P
j Qj = 1 and ln �1t ∼ iid(0, σ2). Show that a solution for ∆GDPt

and UNt can be written as

·
∆GDPt

UNt

¸
=

·
1− c (1− c)a+Q(c)
−1 −a

¸·
�1t
�3t

¸
. Argue that

trend and cycle may not be identifiable from the data for y = [∆GDPt, UNt]. (Hint: the
data has a representation yt = ȳ + D(c)et, where the roots of D(c) are on or outside the
complex unit circle, see also section 6 of chapter 4).

Exercise 3.43 (Gali) Suppose a representative household maximizes E0
P

t β
t [lnCt +

ϑM ln(
Mt
Pt
)− ϑn

1−ϕnN
1−ϕn
t − ϑef

1−ϕef ef
1−ϕef
t ], where Ct = (

R 1
0 C

1
1+ςp

it di)1+ςp, ςp is the elasticity

of substitution, pt = (
R 1
0 p

− 1
ςp

it di)−ςp is the aggregate price index, Mt
Pt
are real balances, Nt is

hours worked and eft is effort. The budget constraint is
R 1
0 pitCitdi+Mt = wNtNt+weteft+

Mt−1 +Tt+Prft, where Tt are monetary transfers and Prft profits. A continuum of firms
produces a differentiated good: intyit = ζt(N

η2
it ef

1−η2
it )η1 , where Nη2

it ef
1−η2 is the quantity

of effective input, ζt an aggregate technology shock, ∆ζt = �1t where ln �1t ∼ iid (0, σ2ζ ).
Firms set prices one period in advance, taking pt as given but not knowing the current
realization of the shocks. Once shocks are realized, firms optimally choose employment and
effort. So long as marginal costs are below the predetermined price, firms will then meet

demand and choose an output level, equal to (pitpt )
− 1+ςp

ςp Ct. Optimal price setting implies

Et−1[ 1Ct ((η1η2)pitintyit − (ςp + 1)wNtNit)] = 0. Assume ∆Mt = �3t + aM �1t, where ln �3t ∼
iid (0, σ2M ) and aM is a parameter.
i) Letting lower case letters denote natural logs, show that, in equilibrium, output growth
(∆gdp), log employment (nt), and labor productivity growth (∆np) satisfy

∆gdpt = ∆�3t + aM �1t + (1− aM )�1t−1 (3.38)
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nt =
1

ηs
�3t − 1− aM

ηs
�1t (3.39)

∆npt = (1− 1

ηs
)∆�3t + (

1− aM
ηs

+ aM )�1t + (1− aM )(1− 1

ηs
)�1t−1 (3.40)

where npt = gdpt − nt and ηs = η1(η2 + (1− η2)
1+ϕn
1+ϕef

).

ii) Describe a trend-cycle decomposition using (∆gdp, nt). How does this decomposition
differ from the one computed using (∆npt, nt)?

BQ and multivariate BN decompositions share important similarities. In both cases,
in fact, the trend is a random walk. However, while here trend and cycle are driven by
orthogonal shocks, in the BN decomposition they are driven by the same combination
of shocks. Hence, the disturbances in a BQ decomposition have some vague economic
interpretation, while this is not the case for those of a multivariate BN decomposition.

Example 3.23 We have derived BQ and BN decompositions of a bivariate system with
∆GDPt and UNt (proxied by the unemployment rate) using US data for the period 1950:1-
2003:3. Both series are demeaned and a linear trend is eliminated from the unemployment
rate. The cyclical component of output is computed using ”structural” shocks (BQ decom-
position) or ”reduced form” shocks (BN decomposition). The estimated cyclical components
are quite different. For example, while both of them have similar AR(1) coefficient (0.93 for
BN and 0.90 for BQ), their contemporaneous correlation is only 0.21. This occurs because
the BQ cyclical component is much more volatile (the standard error is 2.79 as opposed
to 0.02) and that the swings induced by temporary shocks have longer duration - about 10
quarters while the mean length of BN cycles is about 5 quarters.

3.3.2 King, Plosser Stock and Watson (KPSW) Decomposition

King, Plosser, Stock and Watson (1991) start from a RBC model where the log of total
factor productivity (TFP) is driven by a unit root. This assumption implies that all
endogenous variables but employment will be trending and that the trend will be common,
in the sense that the long run movements will be driven by changes in TFP. Hence, for any
vector yt of endogenous variables, yt = Ayxt + yct , where y

x
t is a scalar process, A is a vector

of loading and yct is a vector of cycles. If yt has the representation ∆yt = ȳ +D(c)et, the
(common) trend component of yt can be obtained using D(1)et = [1, . . . , 1]

0ext , where ext is
the innovation in the permanent component.

Exercise 3.44 Suppose there exists a structural model of the form ∆yt = A(c)yt−1 +A0�t,
where E(�it�0i0t) = 0, ∀i, i0. Show how to compute yct .

Exercise 3.45 Consider a trivariate system including (∆GDP, c/GDP, inv/GDP ) and
suppose that �1t has long run effects only on GDP . Show that if the RBC model is correct
c/GDP, inv/GDP are stationary. How would you identify a permanent and two transitory
shocks?
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BQ and KPSW procedures are similar. However, in the latter, more information is
used to estimate the trend, including cointegration restrictions and a larger number of
variables. Also, the KPSW approach is easily generalized to large systems while the BQ
decompositions is primarily designed for bivariate models.

The KPSW decomposition is also similar to the BN decomposition. The major dif-
ference is the ”behavioral” content of identified shocks: here the trend is driven by one
of the identified shocks of the system, while in the BN decomposition ∆yxt is driven by a
combination of all reduced form shocks.

Example 3.24 General equilibrium models that extensively exploit BQ and KPSW de-
compositions to identify permanent ”behavioral” shocks are somewhat difficult to construct
since multiple permanent shocks may not be separately identifiable. One exception is the
two country RBC model of Ahmed et al. (1993). Here output is produced via GDPit =
K1−η

it (ζb1t Nit)
η, i = 1, 2 where ∆ ln ζt = ζ̄ + �1t is the common world technology shock and b1

measures the (asymmetric) impact of the shock in the two countries (i.e b1 = 1 if i = 1 and
b1 < 1 if i = 2). Labor supply is exogenously given (in the long run) by ∆ lnNit = N̄ + �i2t.
Governments consume an exogenously given amount git ≡ Git

GDPit
= git−1+�i3t+b2�i

0
3t, where

b2 captures the comovements of the shocks in the two countries. Representative agents in
country i maximize Et

P
t β

t[υit lnCit + υi0t lnCi0t + V (Nit)] where
υi0t
υit

measures the ex-
tent of home bias in consumption. We assume that lnυit are random walk with distur-
bances �i4t, i = 1, 2. Finally, the growth rate of relative money supplies evolves according to
∆ lnM1t−∆ lnM2t = b4+ b6�1t+ b5�12t+ b7�22t+ b8[(1− b2)(�23t− �13t]+ b9(�24t− �14t)+ b10(1−
b15)(�

1
5t − �25t), where �

i
5t are money demand shocks.

Let pt = pb31tp
1−b3
2t and let the relative price of foreign goods in terms of domestic price be

Tott =
p2t
p1t
. The model delivers an expression for the evolution of private output (GDP p

it)
which can be added to those determining aggregate domestic labor supply, total output in
the two countries, relative money supplies and the terms of trade to produce a system of
the form ∆yt − ȳ = D0�t where ∆yt = [∆ lnN1t,∆ lnGDP1t,∆ lnGDP2t,∆ lnGDP p

1t −
∆ lnGDP p

1t,∆ lnTott,∆ lnM1t−∆ lnM2t], �t = [�12t, �1t, �
2
2t, (1−b2)(�23t−�13t), �24t−�14t, b10(�15t−

�25t]; D0 =


1 0 0 0 0 0
1 1 0 0 0 0
0 b1 1 0 0 0
1 1− b1 −1 1 0 0
b3 b3(1− b1) −b3 b3 b3 0
b5 b6 b7 b8 b9 1

 and ȳ = [N̄1, ζ̄ + N̄1, b1ζ̄ + N̄2, (N̄1 − N̄2) +

(1 − b1)ζ̄, b3[(N̄1 − N̄2) + (1 − b1)ζ̄ ], b4]0. Given the (restricted) lower triangular structure
of D0, it is possible to obtain 6 long run shocks. Methods to identify them are described in
chapter 4. Note that, because there is no cointegrating relationship, all shocks have perma-
nent effects on yt. Hence, the permanent-transitory decomposition produced by this model is
trivial (∆yct = 0 for all t.) Clearly, if a general system ∆yt = D(c)et is estimated, ∆y

c
t 6= 0.

Note that a BN decomposition for this latter system is ∆yt = D(1)et+
(D(c)−D(1)

1−c ∆et, where
et are reduced form shocks.
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3.4 Time Aggregation and Cycles

A problem not fully appreciated in the literature occurs when data is time aggregated. In
fact, time series which show important high frequency periodicities may display significant
power at business cycle frequencies, when the data is time aggregated. Time aggregation
is essentially a two-step filter. In the first step, the variable under consideration is passed
through a one-sided filter B(c) = 1 + c2c + . . . + cn−1, if averages over n periods are taken,
or B(c) = ck, k = {0, 1, , . . . , n− 1} if systematic sampling takes place. In the second step,
one typically samples B(c)yt every n-th observation to obtain non-overlapping aggregates.

In terms of spectra, a time aggregated series is related to its original counterpart via the
folding operator F(S(ω)) = PI

j=−I S(ω + 2πj
n ) where F(S(ω)) is defined over ω = [−π

n ,
π
n ]

and I is the largest integer such that (ω + 2πj
n ∈ [−ω,ω]). The folding operator reflects

the aliasing problem where harmonics of the various frequencies can not be distinguished
from one another in the sample data. In essence, aliasing implies that frequencies outside
[−π

n ,
π
n ] in the time aggregated process are folded back inside the [−π

n ,
π
n ] range. Then

SyTA(ω) = F(|B(c)|2S(ω)).

Simulated data
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Figure 3.6: Monthly and Quarterly spectrum, simulated data and IP growth

Example 3.25 Using the folding operator, it is easy to show that a series which shows
no power at business cycle frequencies (meaning that no peaks in the spectral density at
frequency range corresponding to cycles from 18 to 96 months is visible) with monthly data
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has power at these frequencies when quarterly aggregates are constructed. Consider, for
example, the process depicted in the left hand side panel of figure 3.6 which has most of
its power in the area around ω = 2.2 (slightly less than 3 months cycles). If we quarterly
aggregate this series the area between ω = 1.05, and ω = 3.14 will be folded over the range
ω ∈ [0.0, 1.04]. Hence, the spectrum of the quarterly series has a peak around ω = 0.20,
which correspond to cycles of roughly 30 quarters (see dotted line).

Time series which have these features are not unusual. For example, in the right panel of
figure 3.6 we plot the spectrum of the US industrial production growth series using monthly
and quarterly data. Clearly, the same phenomena occurs.

Exercise 3.46 Using stock returns for G-7 countries examine whether time aggregation
creates spurious peaks at business cycle frequencies using monthly, quarterly and annual
data.

3.5 Collecting Cyclical Information

Once the components of a time series are obtained, statistics summarizing their features
can be computed and reported. Typically, two complementary scopes should be balanced.
First, statistics should contain sufficient information to allow policymakers and practitioners
to assess the state of the economy. Second, they should summarize the characteristics of
the cycle efficiently to allow academics to distinguish between different theoretical models
of propagation.

While the growth literature has concentrated on great ratios (consumption to output,
investment in physical and human capital to output, saving ratios, etc.), the business cycle
literature has typically focused attention on the autocovariance function of yct . Hence, in
general, variability, auto and cross correlations are presented. When a detailed description
of the variability and of the correlations at various frequencies is of interest, spectral den-
sities or bivariate coherence measures are reported. All these statistics can be analytically
computed from the ACF of yt if the form of the cyclical filter Bc(c) is known.
Example 3.26 Let Bc(c) be a cyclical filter and let ACFy(τ) be the autocovariance function
of yt. The autocovariance function of yct = Bc(c)yt is ACFyc(τ) = ACFy(0)

P∞
i=−∞ BciBci−τ+P∞

τ 0=1ACFy(τ
0)
P∞

i=−∞ BciBci−τ 0−τ+
P∞

τ 0=1[ACFy(τ
0)]0
P∞

i=−∞ BciBci−τ 0−τ . The actual com-
putation of ACFc(τ) requires truncation of the above expressions, for example, letting i go
from i to ı̄ and letting τ 0 go from 1 to τ̄ 0. For some cyclical filters (e.g. the growth filter)
no truncation is needed. In general, a researcher needs to take a stand on the truncation
points and, for comparability, it is important to clearly state what τ̄ 0, i and ı̄ are.

Apart from differences in truncation points, different studies may report different cyclical
statistics because the Bc(c) used is different. As we have seen, Bc(c) are different because
(a) some decompositions use univariate while others multivariate information (hence, that
estimates of yct may have different precision); (b) some decompositions impose orthogonality
between the components while others do not (hence, estimates of yct have different spectra);
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(c) some decompositions produce estimated long run components with both business cycle
as well as high frequency variability (so that the average periodicity of estimated cycles is
different); and (d) the weights used in different cyclical filters differ - they could be tent-like
or wave-like, they could be symmetric or asymmetric, they may be truncated or exact, etc..
Hence, it is by mere accident that alternative methods produce cyclical components with
similar ACFs. While there is a tendency to sweep these differences under the rug or treat
them unimportant, major discrepancies may result.

Example 3.27 We repeat the exercise of Canova (1998) and pass standard US macroeco-
nomic series through a number of filters. In table 3.2 we report the results produced using
HP filter with λ = 1600 and λ = 4, the BN filter, a frequency domain BP filter and the
KPSW filter using US data from 1955:1 to 1986:4.

Few features deserve attention. First, not only the variability of each series but also
the relative ranking of variabilities changes with the method. Particularly striking is the
alteration of the relative variability in the real wage. Second, the magnitude of correlations
differs significantly (see e.g. the consumption output correlations). Third, the two HP filters
deliver different statistics and the HP4 results mimic those of the BN filter. Finally, the
average periodicity of the GDP cycles produced is substantially different.

These difference are also present in other statistics. For example Canova (1999) shows
that the dating of cyclical turning points is not robust and that, apart from the BP filter,
most methods generate several false alarms relative to the standard NBER classification.

Variability Relative Variability Contemporaneous Correlations Periodicity

Method GDP Consumption Real wage (GDP,C) (GDP,Inv) (GDP, w) (quarters)
HP1600 1.76 0.49 0.70 0.75 0.91 0.81 24
HP4 0.55 0.48 0.65 0.31 0.65 0.49 7
BN 0.43 0.75 2.18 0.42 0.45 0.52 5
BP 1.14 0.44 1.16 0.69 0.85 0.81 28
KPSW 4.15 0.71 1.68 0.83 0.30 0.89 6

Table 3.2: Summary statistics

While somewhat disturbing, the results of example 3.27 should not be a deterrent to
conscientious researchers and do not support the claim that ”there are no business cycle
facts” to compare models to. On the contrary, observed differences stress the need to
properly define a criteria to assess the empirical relevance of various decompositions. If it
were possible to know with reasonable precision what assumptions characterize observables
and unobservables, e.g. whether the series is integrated or the trend deterministic; whether
the trend is cyclical or not; whether relevant cycles have constant median periodicity or
not, one could select among methods on the basis of some statistical optimality criteria
(e.g. minimization of the MSE). Given that this is not possible the literature has arbitrarily
concentrated on an economic criteria: interesting periodicities are those within 6 and 32
quarters. However, even with this focus, care should be exercised for three reasons. First,
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within the class of methods which extract cycles with these periodicities, differences may
emerge if variables have most of their spectral power concentrated in a neighborhood of
the trend/cycle cut-off point (see Canova (1998) for an example involving the hours and
productivity correlation). Second, especially in international comparisons, results may differ
if a series has different cyclical periodicity across countries. Third, filters which allow to
single out these frequencies, may produce spurious periodicity and correlations.

Exercise 3.47 Simulate data for the output gap, inflation and the nominal interest rate
from a basic sticky price model (e.g. the one whose solution is given in exercise 2.31, after
you proxy marginal costs with the output gap and use the identity that consumption equal
to the output gap) driven by three shocks: a monetary policy, a cost push and an Euler
equation shock. Choose the parameters appropriately and compute the spectral density of
simulated data and for actual EU data. How do they compare? Repeat the exercise using
HP and Band Pass filtered versions of the actual data.

These arguments bring us to an important aspect of the comparison between the actual
data and the data produced by DSGE models. It is often stressed that, for comparability,
the same filtering approach should be used to compute the ACF of yct in both data. Rarely,
however, this principle takes into account the (known) properties of simulated data. For
example, in several of the models of chapter 2, the simulated series inherit the properties
of the driving forces (they are persistent if shocks are; integrated if shocks are, etc.). If
the purpose of filtering is the removal of the trend, no transformation (or a growth trans-
formation) should then be applied to simulated data. On the other hand, if the purpose
of filtering is to bring out cycles with certain periodicity, one should rememeber that ap-
proximate BP or HP filters may produce distortions in highly persistent series like the one
typically produced by DSGE models. Hence, it is not very difficult to build examples where
simulated and actual filtered data look similar at business cycle frequencies even though
the model and the data are substantially at odds with each other.

Example 3.28 Consider two AR(1) processes: y1t = 1.0 + 0.8y1t−1 + et, et ∼ N(0, 1) and
y2t = 1.0− 0.55y2t−1 + et, et ∼ N(0, 1) The spectra of the two series are specular but if the
shocks to the two series are the same, their variability at business cycle frequencies will be
similar. In fact, BP filtered variabilities are 1.32 in both cases. Clearly, the two DGPs have
very different features.

Hence, it is not clear that comparability is a relevant criterion and, for some purposes,
it may be more reasonable to filter actual data but not the simulated one or filter the two
types of data with different filters, especially if the model is not assumed to be the correct
process generating the actual data.

All in all, mechanical application of filters is dangerous. If one insists on trying to
compare actual and simulated data using second moments, one should carefully look into
the properties of the data and be aware of the features of the cycle extracting filter used.
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The alternative is to shift attention away from the second moments of the growth cycle
and as in Pagan and Harding (2002), (2005), use statistics which can be obtained directly
from the observable series (see also Hess and Iwata (1997) and King and Plosser (1989)).

The approach is closely related to Burns and Mitchell (1946) methodology and requires
the identification of turning points in the ”reference” variable (say, GDP or an aggregate of
important macro series), the measurement of durations, amplitudes and cumulative changes
of the cycles and of their phases, and the documentation of asymmetries over various phases.
All these statistics can be computed from the (log) level of yt using a version of the so-called
Bry and Boschen (1971) algorithm, which we describe next:

Algorithm 3.4

1) Smooth yt with a series of filters (to eliminate outliers, high frequency variations, irreg-
ular or uninteresting fluctuations). Call ysmt the smoothed series.

2) Use a dating rule to determine a potential set of turning points. One simple rule is
∆2ysmt > 0(< 0),∆ysmt > 0(< 0),∆ysmt+1 < 0(> 0),∆

2ysmt+1 < 0(> 0).

3) Use a censoring rule to ensure that peaks and throughs alternate and that the duration
and the amplitude of phases is meaningful.

Hence, to obtain turning points and business cycle phases, one needs to make some
choices. While there are differences in the literature, the consensus is that a two-quarter
rule like the one used in 2) or slight variations of it (see e.g. Lahiri and Moore (1991))
suffices to date turning points. As for censoring rules, it is typical to impose a minimum
duration of each phase of two or three quarters, so that complete cycles should be at least
5 to 7 quarters long, and/or some minimum amplitude restriction, e.g. peaks to throughs
drops of less than one percent should be excluded. Note also that the first step could be
dispensed of if the censoring rule in 3) is strong enough.

Once turning points are identified one could compute a number of interesting statistics.
For example, average durations (AD), i.e. average length of time spent between peaks or
between peaks and throughs, average amplitudes (AA), i.e. the average size of the drop
between peaks and throughs or of the gain between troughs and peaks; average cumulative
changes over phases (CM = 0.5 ∗ (AD ∗ AA)) and excess average cumulative changes
((CM − CMA + 0.5 ∗ AA)/AD), where CMA is the actual average cumulative change.
Finally, one can compute a concordance index CIi,i0 = n−1[

PIi0tIit − (1 − Ii0t)(1 − Iit)],
which can be used to assess the strenght of the comovements of two variables over business
cycle phases. Here n is the number of complete cycles, Iit = 1 in expansions and Iit = 0 in
contractions. Note that CIi,i0 = 1 if the two series are in the same phase at all times and
zero if the series are perfectly negatively correlated.

Example 3.29 Applying the dating rule described in algorithm 3.4 with a minimum dura-
tion of the cycle of 5 quarters, to US output, US consumption and US investment for the
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Variable Duration Amplitude Excess change Concordance
(quarters) (percentage) (percentage) (percentage)

PT TP PT TP PT TP

GDP 3 18.7 -2.5 20.7 -0.1 1.1
C 2.9 38 -2.0 39 0.2 0.1 0.89
Inv 5.2 11.1 23.3 34.7 1.7 2.7 0.78

Table 3.3: US Business Cycle Statistics

period 1947:1-2003:1 the statistics contained in table 3.3 are obtained. Expansion phases
are under the heading TP and recession phases under the heading PT.

On average, expansions in consumption are much longer and much stronger than those
in GDP. Also, investment displays a much stronger change in expansions than GDP but
shorter average duration and relatively long contraction phases. In general, asymmetries
over cyclical phases are present in all three series.

Exercise 3.48 Repeat the calculations performed in example 3.29 using i) the dating rule
∆ysmt > 0,∆ysmt+1 < 0 to find peaks and ∆y

sm
t < 0,∆ysmt+1 > 0 to find throughs; ii) requiring

a minimum duration of 7 quarters for the full cycle.

Exercise 3.49 Using Euro area data for output, consumption and investment for the period
1970:1-2002:4 calculate the same four statistics presented in example 3.29 and compare them
to the one of the US. Is there any interesting pattern that makes the Euro area different?

There are two appealing features of the approach. First, cyclical statistics can be ob-
tained without extracting cyclical components. Second, they can be computed even when
no cycle exists, in the sense that all shocks have permanent effects or that yt does not
have any power at business cycle frequencies. This latter feature is important in comparing
DSGE models and the data. In fact, barring few cases, the models described in chapter
2 produce (approximate) VAR(1) solutions. Hence, the data produced by the model does
not display peaks in the spectral density at cyclical frequencies, and therefore is ill-suited
to be compared to the data using decompositions which look for important periodicities or
simply emphasize business cycle frequencies. A couple of drawbacks should also be men-
tioned. First, statistics may be sensitive to dating and censoring rules. Since the rules of
algorithm 3.4 are arbitrary, one should carefully monitor the sensitivity of turning point
dates to the choices made. Second, it is not clear how to adapt dating and censoring rules
when international comparisons needs to be made.

Finally, one should remember that both second moments and turning point statistics
provide reduced form information. That is, they are uninformative about comovements in
response to economically interesting shocks and silent about the sources of cyclical fluctua-
tions. This kind of conditional information is exactly what structural VARs, considered in
the next chapter, deliver.



Chapter 4: VAR Models

This chapter describes a set of techniques which stand apart from those considered in the
next three chapters, in the sense that economic theory is only minimally used in the infer-
ential process. VAR models, pioneered by Chris Sims about 25 years ago, have acquired
a permanent place in the toolkit of applied macroeconomists both to summarize the infor-
mation contained in the data and to conduct certain types of policy experiments. VAR are
well suited for the first purpose: the Wold theorem insures that any vector of time series
has a VAR representation under mild regularity conditions and this makes them the natural
starting point for empirical analyses. We discuss the Wold theorem, and the issues con-
nected with non-uniqueness, non-fundamentalness and non-orthogonality of the innovation
vector in the first section. The Wold theorem is generic but imposes important restrictions;
for example, the lag length of the model should go to infinity for the approximation to
be ”good”. Section 2 deals with specification issues, describes methods to verify some of
the restrictions imposed by the Wold theorem and to test other related implications (e.g.
white noise residuals, linearity, stability, etc.). Section 3 presents alternative formulations
of a VAR(q). These are useful when computing moments or spectral densities, and in de-
riving estimators for the parameters and for the covariance matrix of the shocks. Section
4 presents statistics commonly used to summarize the informational content of VARs and
methods to compute their standard errors. Here we also discuss generalized impulse re-
sponse functions, which are useful in dealing with time varying coefficients VAR models
analyzed in chapter 10. Section 5 deals with identification, i.e with the process of trans-
forming the information content of reduced form dynamics into structural ones. Up to this
point economic theory has played no role. However, to give a structural interpretation to
the estimated relationships, economic theory needs to be used. Contrary to what we will be
doing in the next three chapters, only a minimalist set of restrictions, loosely related to the
classes of models presented in chapter 2, are employed to obtain structural relationships.
We describe identification methods which rely on conventional short run, on long run and
on a sign restrictions. In the latter two cases (weak) restrictions derived from DSGE mod-
els are employed and the structural link between the theory and the data explicitly made.
Section 6 describes problems which may distort the interpretation of structural VAR re-
sults. Time aggregation, omission of variables and shocks and non-fundamentalness should
always be in the back of the mind of applied researchers when conducting policy analyses
with VAR. Section 7 proposes a way to validate a class of DSGE models using structural
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VARs. Log-linearized DSGE models have a restricted VAR representation. When a re-
searcher is confident in the theory, a set of quantitative restrictions can be considered, in
which case the methods described in chapters 5 to 7 could be used. When theory only pro-
vides qualitative implications or when its exact details are doubtful, one can still validate a
model conditioning on its qualitative implications. Since DSGE models provide a wealth of
robust sign restrictions, one can take the ideas of section 5 one step further, and use them
to identify structural shocks. Model evaluation then consists in examining the qualitative
(and quantitative) features of the dynamic responses to identified structural shocks. In this
sense, VAR identified with sign restrictions offer a natural setting to validate incompletely
specified (and possibly false) DSGE models.

4.1 The Wold theorem

The use of VAR models can be justified in many ways. Here we employ the Wold repre-
sentation theorem as major building block. While the theory of Hilbert spaces is needed
to make the arguments sound, we keep the presentation simple and invite the reader to
consult Rozanov (1967) or Brockwell and Davis (1991) for precise statements.

TheWold theorem decomposes anym×1 vector stochastic process y†t into two orthogonal
components: one linearly predictable and one linearly unpredictable (linearly regular). To
show what the theorem involves let Ft be the time t information set; Ft = Ft−1⊕Et, where
Ft−1 contains time t − 1 information and Et the news at t. Here Et is orthogonal to Ft−1
(written Et⊥Ft−1) and ⊕ indicates direct sum, that is Ft = {y†t−1+et, y†t−1 ∈ Ft−1, et ∈ Et}.

Exercise 4.1 Show that Et⊥Ft−1 implies Et⊥Et−1 so that Et−j is orthogonal to Et−j0 , j0 < j.

Since the decomposition of Ft can be repeated for each t, iterating backwards we have

Ft = Ft−1 ⊕ Et = . . . = F−∞ ⊕
∞X
j=0

Et−j (4.1)

where F−∞ =
T
j Ft−j . Since y†t is known at time t (this condition is sometimes referred

as adaptability of y†t to Ft), we can write y†t ≡ E[y†t |Ft] where E[.|Ft] is the conditional
expectations operator. Orthogonality of the news with past information then implies:

y†t = E[y
†
t |Ft] = E[y†t |F−∞ ⊕

X
j

Et−j ] = E[y†t |F−∞] +
∞X
j=0

E[y†t |Et−j] (4.2)

We make two assumptions. First, we consider linear representations, that is, we substi-
tute the expectations operator with a linear projection operator. Then (4.2) becomes

y†t = aty−∞ +
∞X
j=0

Djtet−j (4.3)
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where et−j ∈ Et−j and y−∞ ∈ F−∞. The sequence {et}∞t=0, defined by et = y†t −E[y†t |Ft−1],
is a white noise process (i.e. E(et) = 0; E(ete

0
t−j) = Σt if j = 0 and zero otherwise).

Second, we assume that at = a; Djt = Dj; ∀t. This implies

y†t = ay−∞ +
∞X
j=0

Djet−j (4.4)

Exercise 4.2 Show that if y†t is covariance stationary, at = a, Djt = Dj.

The term ay−∞ on the right hand side of (4.4) is the linearly deterministic component

of y†t and can be perfectly predicted given the infinite past. The term
P
jDjet−j is the

linearly regular component, that is, the component produced by the news at each t. We
say that y†t is deterministic if and only if y

†
t ∈ F−∞ and regular if and only if F−∞ = {0}.

Three important points need to be highlighted. First, for (4.2) to hold, no assumptions

about y†t are required: we only need that new information is orthogonal to the existing
one. Second, both linearity and stationary are unnecessary for the theorem to hold. For
example, if stationarity is not assumed there will still be a linearly regular and a linearly
deterministic component even though each will have time varying coefficients (see (4.3)).

Third, if we insist on requiring covariance stationary, preliminary transformations of y†t may
be needed to produce the representation (4.4).

The Wold theorem is a powerful tool but is too generic to guide empirical analysis. To
impose some more structure, we assume first that the data is a mean zero process, possibly
after deseasonalization (with deterministic periodic functions), removal of constants, etc.
and let yt = y†−ay−∞. Using the lag operator we write

P∞
j=0Djet−j =

P
jDj`

jet = D(`)et
so that yt = D(`)et is the MA representation for yt where Dj is a m ×m matrix of rank
m, for each j. MA representations are not unique: in fact, for any nonsingular matrix H(`)
satisfying H(`)H(`−1)0 = I such that H(z) has no singularities for |z| ≤ 1, where H(`−1)0
is the transpose (and possibly complex conjugate) of H(`), we can write yt = D̃(`)ẽt with
D̃(`) = D(`)H(`), ẽt = H(`−1)0et.
Exercise 4.3 Show that E(ẽtẽ

0
t−j) = E(ete

0
t−j). Conclude that if et is covariance station-

ary, the two representation produce equivalent autocovariance functions for yt.

Matrices likeH(`) are called Blaschke factors and are of the formH(`) =Qm
i=1 %iH†(di, `)

where di are the roots of D(`), |di| < 1, %i%0i = I and, for each i, H†(di, `) is given by:

H†(di, `) =


1 0 . . . 0
. . . . . . . . . . . .

0 `−di
1−d−1

i `
. . . 0

0 0 . . . 1

 (4.5)

Exercise 4.4 Suppose

µ
y1t
y2t

¶
=

µ
(1+ 4`) 0
0 (1+ 10`)

¶µ
y1t
y2t

¶
. Find the Blaashke

factors of D(`). Construct two alternative moving average representations for yt.
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Example 4.1 Consider y1t = et−0.5et−1 and y2t = ẽt−2ẽt−1. It is easy to verify that the
roots of D(z) are 2 in the first case, and 0.5 in the second. Since the roots are one the inverse
of the other, the two processes span the same information space as long as the variance of
innovations is appropriately adjusted. In fact, using the covariance generating function
to have CGFy1(z) = (1 − 0.5z)(1 − 0.5z−1)σ21 and CGFy2(z) = (1 − 2z)(1 − 2z−1)σ22 =
(1− 0.5z)(1− 0.5z−1)(4σ22). Hence, if σ21 = 4σ22 the CGF of the two processes is the same.

Exercise 4.5 Let y1t = et − 4et−1, et ∼ (0,σ2). Set y2t = (1− 0.25`)−1y1t. Show that the
CGF(z) of y2t is a constant for all z. Show that y2t = ẽt − 0.25ẽt−1 where ẽt ∼ (0, 16σ2) is
equivalent to y1t in terms of the covariance generating function.

Among the class of equivalent MA representations, it is typical to choose the ”funda-
mental” one. The following two definitions are equivalent.

Definition 4.1 (Fundamentalness)
1) A MA is fundamental if det(D0E(ete

0
t)D

0
0) > det(DjE(et−je0t−j)D

0
j), ∀j 6= 0.

2) A MA is fundamental if the roots of D(z) are all greater than one in modulus.

The roots of D(z) are related to the eigenvalues of the companion matrix of the system
(see section 3). Fundamental representations, also termed Wold representations, could
also be identified by the requirement that the completion of the space spanned by linear
combinations of the yt’s has the same information as the completion of the space spanned
by linear combinations of et’s. In this sense Wold representations are invertible: knowing
yt is the same as knowing et.

As it is shown in the next example, construction of a fundamental representation requires
”flipping” all roots that are less than one in absolute value.

Example 4.2 Suppose yt =

·
1.0 0
0.2 0.9

¸
et+

·
2.0 0
0 0.7

¸
et−1 where et ∼ iid (0, I). Here

det(D0) = 0.9 < det(D1) = 1.4 so the representation is not fundamental. To find a funda-
mental one we compute the roots of D0 +D1z = 0; their absolute values are 0.5 and 1.26
(these are the diagonal elements of −D−11 D0). The problematic root is 0.5 which we flip to
1.0/0.5=2.0. The fundamental MA is then yt =

·
1.0 0
0.2 0.9

¸
et +

·
0.5 0
0 0.7

¸
et−1.

Exercise 4.6 Determine which of the following polynomial produces fundamental repre-
sentations when applied to a white noise innovation:(i) D(`) = 1 + 2` + 3`2 + 4`3, (ii)

D(`) = 1 + 2` + 3`2 + 2`3 + `4, (iii) D(`) = I +

·
.8 −.7
.7 .8

¸
`, (iv) D(`) =

·
1 1
3 4

¸
+·

3 2
4 1

¸
`+

·
4 3
2 1

¸
`2.
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Exercise 4.7 Show that yt = et +

·
1.0 0
0 0.8

¸
et−1 where var(et) =

·
2.0 1.0
1.0 1.0

¸
and

yt = et +

·
0.9091 0.1909
0 0.8

¸
et−1 where var(et) =

·
2.21 1.0
1.0 1.0

¸
generate the same ACF

for yt. Which representation is fundamental?

Exercise 4.8 Let

µ
y1t
y2t

¶
=

µ
(1+ 4`) 1+ 0.5`
0 (1+ 5`)

¶µ
e1t
e2t

¶
where et = (e1t, e2t) has uni-

tary variance. Is the space spanned by linear combinations of the yt and et the same? If
the MA is not fundamental, find a fundamental one.

While it is typical to use Wold representations in applied work, there are economic
models that do not generate a fundamental format. Two are presented in the next examples.

Example 4.3 Consider a RBC model where households maximize E0
P
t β

t(ln(ct)−ϑNNt)
subject to ct + invt ≤ GDPt; Kt+1 = (1 − δ)Kt + invt; ct ≥ 0; invt ≥ 0; 0 ≤ Nt ≤ 1
where 0 < β < 1 and δ,ϑn are parameters and assume that the production function is
GDPt = k

1−η
t Nη

t ζt where ln ζt = ln ζt−1+0.1²1t+0.2²1t−1+0.4²1t−2+0.2²1t−3+0.1²1t−4. Such
a diffusion of technological innovations is appropriate when e.g., only the most advanced
sector employs the new technology (say, a new computer chips) and it takes some time for
the innovation to spread to the economy. If ²1t = 1, ²1t+τ = 0,∀τ 6= 0 ζt looks like in figure
1. Clearly, a process with this shape does not satisfy the restrictions given in definition 4.1.

Example 4.4 Consider a model where fiscal shocks drive economic fluctuations. Typically,
fiscal policy changes take time to have effects: between the programming, the legislation and
the implementation of, say, a change in income tax rates several months may elapse. If
agents are rational they may react to tax changes before the policy is implemented and,
conversely, no behavioral changes may be visible when the changes actually take place. Since
the information contained in tax changes may have a different timing than the information
contained, say, in the income process, fiscal shocks may produce non-Wold representations.

Whenever economic theory requires non-fundamental MAs, one could use Blaaske fac-
tors to flip the representations provided by standard packages, as e.g. in Lippi and Reichlin
(1994). In what follows we will consider only fundamental structures and take yt = D(`)et
be such a representation.

The ”innovations” et play an important role in VAR analyses. Since E(et|Ft−1) = 0
and E(ete

0
t|Ft−1) = Σe, et are serially uncorrelated but contemporaneously correlated. This

means that we cannot attach a ”name” to the disturbances. To do so we need an orthogonal
representation for the innovations. Let Σe be the covariance matrix of et, let Σe = PVP 0 =
P̃P̃ 0 where V is a diagonal matrix and P̃ = PV0.5. Then yt = D(`)et is equivalent to

yt = D̃(`)ẽt (4.6)
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Figure 4.1: Non fundamental technological progress

for D̃(`) = D(`)P̃ and ẽt = P̃−1et. There are many ways of generating (4.6). One is a
Choleski factorization, i.e. V = I and P is a lower triangular matrix. Another is obtained
when P contains the eigenvectors and V the eigenvalues of Σe.
Example 4.5 If et is a 2 × 1 vector with correlated entries, orthogonal innovations are
ẽ1t = e1t − be2t and ẽ2t = e2t where b = cov(e1te2t)

var(e2t)
and var(ẽ1t) = σ21 − b2σ22, var(ẽ2t) = σ22.

It is important to stress that orthogonalization devices are void of economic content:
they only transform the MA representation in a form which is more useful when tracing out
the effect of a particular shock. To attach economic interpretations to the representation,
these orthogonalizations ought to be linked to economic theory. Note also that while with
the Choleski decomposition P has zero restrictions placed on the upper triangular part, no
such restrictions are present when an eigenvalue-eigenvector decomposition is performed.

As mentioned, when the polynomial D(z) has all its roots greater than one in modulus
(and this condition holds if, e.g.,

P∞
j=0D

2
j <∞ (see Rozanov (1967)) the MA representation

is invertible and we can express et as a linear combination of current and past yt’s, i.e.
[A0−A(`)]yt = et where [A0−A(`)] = (D(`))−1. Moving lagged yt’s on the right hand side
and setting A0 = I a vector autoregressive (VAR) representation is obtained

yt = A(`)yt−1 + et (4.7)

In general, A(`) will be of infinite length for any reasonable specification of D(`).
There is an important relationship between the concept of invertibility and the one of

stability of the system which we highlight next.
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Definition 4.2 (Stability) A VAR(1) is stable if det(Im−Az) 6= 0, ∀|z| ≤ 1 and a VAR(q)
is stable if det(Im −A1z − . . .−Aqzq) 6= 0 ∀|z| ≤ 1.

Definition 4.2 implies that all eigenvalues of A have modulus less or equal than 1 (or
that the matrix A has no roots inside or on the complex unit circle). Hence, if yt has an
invertible MA representation, it also has a stable VAR structure. Therefore, one could start
from stable processes to motivate VAR analyses (as, e.g. it is done in Lutkepohl (1991)).
Our derivation shows the primitive restrictions needed to obtain stable VARs.

Example 4.6 Suppose yt =

·
0.5 0.1
0.0 0.2

¸
yt−1 + et. Here det(I2 − Az) = (1 − 0.5z)(1 −

0.2z) = 0 and |z1| = 2 > 1, |z2| = 5 > 1. Hence, the system is stable.

Exercise 4.9 Check if yt =

·
0.6 0.4
0.5 0.2

¸
yt−1 +

·
0.1 0.3
0.2 0.6

¸
yt−2 + et is stable or not.

To summarize, any vector of time series can be represented with a constant coefficient
VAR(∞) under linearity, stationarity and invertibility. Hence, one can interchangeably
think of data or the VAR for the data. Also, with a finite stretch of data only a VAR(q),
q finite, can be used. For a VAR(q) to approximate any yt sufficiently well, we need Dj to
converge to zero repidly as j increases.

Exercise 4.10 Consider yt = et+0.9et−1 and yt = et+0.3et−1. Compute the AR represen-
tations. What lag length is needed to approximate the two processes? What if yt = et+et−1?

Two concepts which are of some use are in applied work are those of Granger non-
causality and Sims (econometric) exogeneity. It is important to stress that they refer to
the ability of one variable to predict another one and do not imply any sort of economic
causality (e.g. the government takes an action, the exchange rate will move). Let (y1t, y2t)
be a partition of a covariance stationary yt with fundamental innovations e1t and e2t; let
Σe be diagonal and let Di,i0(`) be the i, i

0 block of D(`).

Definition 4.3 (Granger causality) y2t fails to Granger cause y1t if and only if D12(`) = 0.

Definition 4.4 (Sims Exogeneity) We can write y2t = Q(`)y1t + ²2t with Et[²2ty1t−τ ] =
0, ∀τ ≥ 0 and Q(`) = Q0 + Q1` + . . . if and only if y2t fails to Granger cause y1t and
D21(`) 6= 0.

Exercise 4.11 Show what Granger non-causality of y2t for y1t implies in a trivariate VAR.

We conclude examining cases where the data deviates from the setup considered so far.
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Exercise 4.12 (i) Suppose that yt = D(`)et where D(`) = (1− `)D†(`). Derive a VAR for
yt. Show that if D

†(`) = 1, there is no convergent VAR representation for yt.
(ii) Suppose that y†t = a0 + a1t+D(`)et if t ≤ T̄ and y†t = a0 + a2t+D(`)et if t > T̄ . How
would you derive a VAR representation for yt?
(iii) Suppose that yt = D(`)et and var(et) ∝ y2t−1 Find a VAR for yt.
(iv) Suppose that yt = D(`)et, var(et) = b var(et−1) + σ2. Find a VAR for yt.

4.2 Specification

In section 4.1 we showed that a constant coefficient VAR is a good approximation to any
vector of time series. Here we examine how to verify the restrictions needed for the ap-
proximation to hold. The model we consider is (4.7) where A(`) = A1`+ . . .+Aq`

q, yt is
a m × 1 vector, and et ∼ (0,Σe). VARs with econometrically exogenous variables can be
obtained via restrictions on A(`) as indicated in definition 4.4. We let A01 = (A01, . . . , A0q)0
be a (mq ×m) matrix and set α = vec(A1) where vec(A1) stacks the columns of A1 (so α
is a m2q × 1 vector).

4.2.1 Lag Length 1

There are several methods to select the lag length of a VAR. The simplest is based on a
likelihood ratio (LR) test. . Here the model with a smaller number of lags is treated as a
restricted version of a larger dimensional model. Since the two models are nested, under
the null that the restricted model is correct, differences in the likelihoods should be small.
Let R(α) = 0 be a set of restrictions and L(α,Σe) the likelihood function. Then:

LR = 2[lnL(αun,Σune )− lnL(αre,Σree )] (4.8)

= (R(αun))0[
∂R

∂αun
(Σree ⊗ (X 0X)−1)(

∂R

∂αun
)0]−1(R(αun)) (4.9)

= T (ln |Σree |− ln |Σune |) D→ χ2(ν) (4.10)

where Xt = (y0t−1, . . . , y0t−q)0, and X 0 = (X0, . . . , XT−1) is a mq × T matrix and ν the
number of restrictions. (4.8)-(4.9)-(4.10) are equivalent formulations of the likelihood ratio
test. The first is the standard one. (4.9) is obtained maximizing the likelihood function
with respect to α subject to R(α) = 0. (4.10) is convenient for computing actual test values
and to compare LR results with those of other testing procedures.

Exercise 4.13 Derive (4.9) using a Lagrangian multiplier approach.

Four important features of LR tests need to be highlighted. First, a LR test is valid when
yt is stationary and ergodic and if the residuals are white noise under the null. Second, it
can be computed without explicit distributional assumptions on the yt’s. What is required
is that et is a sequence of independent white noises with bounded fourth moments and
that T is sufficiently large - in which case αun,Σune ,α

re,Σree are pseudo maximum likelihood
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estimators. Third, a likelihood ratio test is biased against the null in small samples. Hence
it is common to use LRc = (T−qm)(ln |Σre|−ln |Σun|) where qm is the number of estimated
parameters in each equation of the unrestricted system. Finally, one should remember that
the distribution of the LR test is only asymptotically valid. That is, significance levels only
approximate probabilities of Type I errors.

In practice, an estimate of q is obtained sequentially as the next algorithm shows:

Algorithm 4.1

1) Choose an upper bound q̄.

2) Test a VAR(q̄−1) against VAR(q̄) using a LR test. If the null hypothesis is not rejected
3) Test a VAR(q̄ − 2) against VAR(q̄ − 1) using an LR test. Continue until rejection.

Clearly, q̄ depends on the frequency of the data. For annual data q̄ = 3; for quarterly
data q̄ = 8; and for monthly data q̄ = 18 are typical choices. Note that with a sequential
approach each null hypothesis is tested conditional on all the previous ones being true
and that the chosen q crucially depends on the significance level. Furthermore, when a
sequential procedure is used it is important to distinguish between the significance level of
individual tests and the significance level of the procedure as a whole - in fact, rejection of
a VAR(q̄ − j) implies that all VAR(q̄ − j0) will also be rejected, ∀j0 > j.

Example 4.7 Choose as a significance level 0.05 and set q̄ = 6. Then a likelihood ratio
test for q=5 vs. q=6 has significance level 1− 0.95 = 0.05. Conditional on choosing q=5, a
test for q=4 vs. q=5 has a significance level 1− (0.95)2 = 0.17 and the significance level at
the j − th stage is 1− (1− .05)j. Hence, if we expect the model to have three or four lags,
we better adjust the significance level so that at the second or third stage of the testing, the
significance is around 0.05.

Exercise 4.14 A LR test restricts each equation to have the same number of lags. Is it
possible to choose different lag lengths in different equations? How would you do this in a
bivariate VAR?

While popular, LR tests are unsatisfactory lag selection approaches when the VAR is
used for forecasting. This is because LR tests look at the in-sample fit of models (see
equation 4.10). When forecasting one would like to have lag selection methods which
minimize the (out-of-sample) forecast error. Let yt+τ − yt(τ) be the τ -step ahead forecast
error based on time t information and let Σy(τ) = E[yt+τ −yt(τ)][yt+τ −yt(τ)]0 be its mean
square error (MSE). When τ = 1, Σy(1) ≈ T+mq

T Σe where Σe is the variance covariance
matrix of the innovations (see e.g. Lutkepohl (1991, p.88)). The next three information
criteria choose lag length using transformations of Σy(1).

• Akaike Information criterion (AIC) : minq AIC(q) = ln |Σy(1)|(q) + 2qm2

T .
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• Hannan and Quinn criterion (HQC): minqHQC(q) = ln |Σy(1)|(q) + 2qm2

T ln(lnT ).

• Schwarz criterion (SWC): minq SC(q) = ln |Σy(1)|(q) + 2qm2

T lnT .

All criteria add a penalty to the one-step ahead MSE which depends on the sample
size T , the number of variables m and the number of lags q. While for large T penalty
differences are unimportant, this is not the case when T is small, as shown in table 4.1.

Criterion T=40, m=4 T=80, m=4 T=120, m=4 T=120, m=4
q=2 q=4 q=6 q=2 q=4 q=6 q=2 q=4 q=6 q=2 q=4 q=6

AIC 0.4 3.2 4.8 0.8 1.6 2.4 0.53 1.06 1.6 0.32 0.64 0.96
HQC 0.52 4.17 6.26 1.18 2.36 3.54 0.83 1.67 2.50 0.53 1.06 1.6
SWC 2.95 5.9 8.85 1.75 3.5 5.25 1.27 2.55 3.83 0.84 1.69 2.52

Table 4.1: Penalties of Akaike, Hannan and Quinn and Schwarz criteria

In general, for T ≥ 20 SWC and HQC will always choose smaller models than AIC.
The three criteria have different asymptotic properties. AIC is inconsistent (in fact, it

overestimates the true order with positive probability) while HQC and SWC are consistent
and when m > 1, they are both strongly consistent (i.e. they will choose the correct model
almost surely). Intuitively, AIC is inconsistent because the penalty function used does not
simultaneously goes to infinity as T → ∞ and to zero when scaled by T . Consistency
however, it is not the only yardstick to use since consistent methods may have poor small
sample properties. Ivanov and Kilian (2001) extensively study the small sample properties
of these three criteria using a variety of data generating processes and data frequencies
and found that HQC is best for quarterly and monthly data, both when yt is covariance
stationary and when it is a near-unit root process.

Example 4.8 Consider a quarterly VAR model for the Euro area for the sample 1980:1-
1999:4 (T=80); restrict m = 4 and use output, prices, interest rates and money (M3) as
variables. A constant is eliminated previous to the search. We set q̄ = 7. Table 4.2 reports
the sequential p-values of basic and modified LR tests (first two columns) and the values of
the AIC, HQC, SWC criteria (other three columns).

Different tests select somewhat different lag length. The LR tests select 7 lags but the
p-values are non-monotonic and it matters what q̄ is. For example, if q̄ = 6, LRc selects two
lags. Nonmonotonicity appears also for the other three criteria. In general, SWC, which
uses the harshest penalty, has a minimum at 1; HQC and AIC have a minimum at 2. Based
on these outcomes, we tentatively select a VAR(2).

4.2.2 Lag Length 2

The Wold theorem implies, among other things, that VAR residuals must be white noise.
A LR test can therefore be interpreted as a diagnostic to check whether residuals satisfy
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Hypothesis LR LRc AIC HQC SWC

q=6 vs. q=7 2.9314e-05 0.0447 -7.5560 -6.3350 -4.4828
q=5 vs. q=6 3.6400e-04 0.1171 -7.4139 -6.3942 -4.8514
q=4 vs. q=5 0.0509 0.5833 -7.4940 -6.6758 -5.4378
q=3 vs. q=4 0.0182 0.4374 -7.5225 -6.9056 -5.9726
q=2 vs. q=3 0.0919 0.6770 -7.6350 -7.2196 -6.5914
q=1 vs. q=2 3.0242e-07 6.8182e-03 -7.2266 -7.0126 -6.6893

Table 4.2: Lag length of a VAR

this property. Similarly, AIC, HQC and SWC can be seen as trading-off the white noise
assumption on the residuals with the best possible out-of-sample forecasting performance.

Another class of tests to lag selection directly examines the properties of VAR residuals.
Let ACRFe(τ)i,i

0
denote the cross correlation of eit and ei0t at lag τ = . . . ,−1, 0, 1, . . ..

Then , under the null of white noise ACRFe(τ)
i,i0 = ACFe(τ)i,i

0
√
ACFe(0)i,iACFe(0)i

0,i0 → N(0, 1T ) for
each τ (see e.g. Lutkepohl (1991, p.141).

Exercise 4.15 Design a test for the joint hypothesis that ACRFe(τ) = 0 ∀i, i0, τ fixed.
Care must be exercised in implementing white noise tests sequentially - say, starting

from an upper q̄, checking if the residual are white noise and, if they are, decrease q̄ by one
value at the time until the null hypothesis is rejected. Since serial correlation is present in
incorrectly specified VARs, one must choose a q̄ for which the null hypothesis is satisfied.

Exercise 4.16 Provide a test statistic for the null that ACRFe(τ)
i,i0 = 0, ∀τ which is

robust to the presence of heteroschedasticity in VAR residuals.

In implementing white noise tests, one should remember that since VAR residuals are
estimated, the asymptotic covariance matrix of the ACRF must include parameter un-
certainty. Contrary to what one would expect, the covariance matrix of the estimated
residuals is smaller than the one based on the true ones (see e.g. Lutkepohl (1991, p.142-
148)). Hence, 1T is conservative in the sense that the null hypothesis will be rejected less
often than indicated by the significance level.

Portmanteau or Q-tests for the whiteness of the residuals can also be used to choose
the lag length of a VAR. Both Portmanteau and Q-tests are designed to verify the
null that ACRF τe = (ACRFe(1), . . . , ACRFe(τ)) = 0, (the alternative is ACRF τe 6= 0).

The Portmanteau statistic is PS(τ) = T
Pτ
i=1 tr(ACF (i)

0ACF (0)−10ACF (i)ACF (0)−1) D→
χ2(m2(τ − q)) for τ > q under the null. The Q-statistic is QS(τ) = T (T + 2)

Pτ
i=1

1
T−i

tr(ACF (i)0ACF (0)−10ACF (i)ACF (0)−1). For large T , it has the same asymptotic distri-
bution as PS(τ).

Exercise 4.17 Use US quarterly data from 1960:1 to 2002:4 to optimally select the lag
length of a VAR with output, prices, nominal interest rate and money. Use modified LR,
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AIC, HQC, SWC and white noise tests. Does it make a difference if the sample is 1970-2003
or 1980-2003? How do you interpret differences across tests and/or samples?

4.2.3 Nonlinearities and nonnormalities

So far we have focused on linear specifications. Since time aggregation washes most of the
nonlinearities out, the focus is hardly restrictive, at least for quarterly data. However, with
monthly data nonlinearities could be important (especially if financial data is used). Fur-
thermore, time variations in the coefficients (see chapter 10), outliers or structural breaks
may also generate (in a reduced form sense) nonlinearities and nonnormalities in the resid-
uals of a constant coefficient VAR. Hence, one wants methods to detect departures from
nonlinearities and nonnormalities if they exist.

In deriving the MA representation we have used linear projections. Since omitted non-
linear terms will end up in the error term, the same ideas employed in testing for white
noise residuals can be used to check if nonlinear effects are present.

Two ways of formally testing for nonlinearities are the following: i) run a regression
of estimated VAR residuals on nonlinear functions of the lagged dependent variables and
examine the significance of estimated coefficients adjusting standard errors for the fact that
et is proxied by estimated residuals. ii) Directly insert high order terms in the VAR and
examine their significance. Graphical techniques, e.g. a scatter plot of estimated residuals
against nonlinear functions of the regressors, could also be used as diagnostics.

There is also an indirect approach to check for nonlinearities which builds on the idea
that whenever nonlinear terms are important, the moments of the residuals have a special
structure. In particular, their distribution will be non-normal, even in large samples.

Testing for nonnormalities is simple: a normal white noise process with unit variance
has zero skewness (third moment) and kurthosis (the forth moment) equal to 3. Hence, an
asymptotic test for nonnormalities is as follows. Let êt = yt−

P
j Âjyt−j ; Σe =

1
T−1

P
t êtê

0
t;

ẽt = P̃−1êt; P̃P̃ 0 = Σe where Âj is an estimator of Aj . Define S1i =
1
T

P
t ẽ
3
it; S2i =

1
T

P
t ẽ
4
it, i = 1, . . . ,m, Sj = (Sj1, . . . ,Sjm)0, j = 1, 2 and let 3m be a m× 1 vector with 3

in each entry. Then
√
T

·
S1

S2 − 3m
¸
D→ N(0,

·
6× Im 0
0 24× Im

¸
).

4.2.4 Stationarity

Covariance stationarity is crucial to derive a VAR representation with constant coefficients.
However, a time varying MA representation for a nonstationary yt always exists if the other
assumptions used in the Wold theorem hold. If

P
j D

2
jt < ∞ for all t, a non-stationary

VAR representation can be derived. Hence, time varying coefficient VAR models, which we
examine in chapter 10, are the natural alternative to covariance stationary structures.

While covariance stationarity is unnecessary, it is a convenient property to have when
estimating VAR models. Also, although models with smooth changes in the coefficients
may be the natural extensions of covariance stationary models, the literature has focused
on a more extreme form of nonstationarity: unit root processes. Unit root models are
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less natural for two reasons: they imply drastically different dynamic properties; classical
statistics has difficulties in testing this null hypothesis in the presence of a near-unit root
alternative (see e.g. Watson (1995)). Despite these problems, contrasting stationary vs.
unit root behavior has become a rule, the common wisdom being that macroeconomic time
series are characterized by near-unit root behavior, i.e. they are in the grey area where the
tests have low power. Hence, it will take a long time for a randomly perturbed series to
revert back to the original (steady) state.

Unit root tests are somewhat tangential to the scope of the book. Favero (2001) pro-
vides an excellent review of this literature. Hence, we limit attention to the implications
that nonstationary (or near nonstationary) has for the specification of the VAR, for the
estimation of the parameters and for the identification of structural shocks.

If a test has detected one or more unit roots, how should one proceed in specifying a
VAR? Suppose we are confident in the testing results and that all variables are either sta-
tionary or integrated, but no cointegration is detected. Then one would difference unit-root
variables until covariance stationary is obtained and estimate the VAR using transformed
variables. For example, if all variables are I(1), a VAR in growth rates is appropriate.

Specification is simple also when there are some cointegrating relationships. For ex-
ample, both prices and money may display unit root behavior but real balances may be
stationary. In this case, one typically transforms the VAR into a vector error correction
model (VECM) and either imposes the cointegrating relationships (using the theoretical
or the estimated restrictions) or jointly estimates short run and long run coefficients from
the data. VECMs are preferable here to differenced VARs because the latters throw away
information about the long run properties of the data. Plugging-in estimates of the long run
relationships is justified since estimates of the long run relationships are super-consistent,
i.e. they asymptotically converge at the rate T (estimates of short run relationships con-
verge asymptotically at the rate T 0.5). Since a VECM is a reparametrization of the VAR in
levels, the latter is appropriate if all variables are cointegrated, even though some (or all)
of its components are not covariance stationary.

Despite two decades of work in the area, unit root tests still have poor small sample
properties. Furthermore, barring exceptional circumstances, neither explosive nor unit root
behavior has been observed in long stretches of OECD macroeconomic data. Both reasons
may cast doubts about the non-stationarities detected and the usefulness of such tests.

When doubts about the tests exist, one can indirectly check the reasonableness of the
stationarity assumption by studying estimated residuals. In fact, if yt is nonstationary and
no cointegration emerges, the estimated residuals are likely to display nonstationary path.
Hence a plot of the VAR residuals may indicate a problem if it exists. Practical experience
suggests that VAR residuals show breaks and outliers but they rarely display unit root type
behavior. Hence, a level VAR could be appropriate even when yt looks nonstationary. It is
also important to remember that the properties of yt are important in testing hypotheses
about the coefficients since classical distribution theory is different when unit roots are
present. Consistent estimates of VAR coefficients obtain with classical methods even when
unit roots are present (see Sims, Stock and Watson (1990)).
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A final argument against the use of specification tests for stationarity comes from a
Bayesian perspective. In Bayesian analysis the posterior distribution of the quantities of
interest is all that matters. While Bayesian and classical analyses have many common
aspects, they dramatically differ when unit roots are present. In particular, while the
classical asymptotic distribution of coefficients estimates under unit roots is nonstandard,
the posterior distribution is unchanged. Therefore, if one takes a Bayesian perspective to
testing, no adjustment for nonstationarity is required.

Finally, one should remember that pretesting has consequences for the distribution of
parameters estimates since incorrect choices produce inconsistent estimates of the quantities
of interest. To minimize pretesting problems, we recommend to start assuming covariance
stationarity and deviate from it only if the data overwhelmingly suggests the opposite.

4.2.5 Breaks

While exact unit root behavior is unlikely to be relevant in macroeconomics, changes in
the intercept, in the dynamics or in the covariance matrix of a vector of time series are
quite common. A time series with breaks is neither stationary nor covariance stationary.
To avoid problems, applied researchers typically focus attention on subsamples which are
(assumed to be) homogenous. However, this is not always possible: the break may occur
at the end of the sample (e.g. creation of the Euro); there maybe several of them; or they
may be linked to expansions and contractions and it may be unwise to throw away runs
with these characteristics.

While structural breaks with dramatic changing dynamics may sometimes occur (e.g.
breakdown or unification of a country), it is more often the case that time series display
slowly evolving features with no abrupt changes at one specific point - a pattern which would
be more consistent with a time varying coefficient specifications. Nevertheless, it may be
useful to have tools to test for structural breaks if visual inspection suggests that such a
pattern may be present. If the break date is known, Chow tests can be used. Let Σree be the
covariance matrix of the VAR residuals with no breaks and Σune = Σune (1, t̄)+Σ

un
e (t̄+ 1, T )

is the covariance matrix when a break is allowed at t̄. Then CS(t̄) = |Σree |−|Σune |)/ν
|Σune |/T−ν ∼

F (ν, T − ν) where ν is the number of regressors in the model. When t̄ is unknown but
suspected to occur within an interval, one could run Chow tests for all t̄ ∈ [t1, t2], take
maxt̄CT (t̄) and compare it with a modified F-distribution (critical values are e.g. in Stock
and Watson (2002, p. 111)).

An alternative testing approach can be obtained by noting that if no break occurs the τ -
steps ahead forecast error of yt+τ , et(τ) = yt+τ−yt(τ), should be similar to sample residuals.
Then, under the null of no breaks at forecasting horizon τ , τ large et(τ)

D→ N(0,Σe(τ)).

Exercise 4.18 Show that an appropriate statistic to check for breaks over τ forecasting

horizons is FT (τ) = etΣ
−1
e et

D→ χ2(τ) under the null of no breaks, T large, where et =
(et(1), . . . et(τ)). (The alternative here is that the DGP for yt differs before and after t).
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As usual these tests may be biased in small samples. A small sample version of the

forecasting test is obtained using Σce(τ) = Σe(τ) +
1
TE[

∂yt(τ)
∂α0 Σα

∂yt(τ)
∂α

0
] in place of Σe(τ).

4.3 Alternative Representations of VAR(q)

There are two alternative representations for a V AR(q) which are easier to manipulate than
(4.7) and are of use when deriving estimators of the unknown parameters of the model.

4.3.1 Companion form representation

The companion form representation transforms a VAR(q) model in a larger scale VAR(1)
model and it is useful when one needs to compute moments or derive parameter estimates.

Let Yt =


yt
yt−1
. . .
yt−q+1

 ; Et = [

 et0
. . .

 0; A =


A1 A2 . . . Aq
Im 0 . . . 0
. . . . . . . . . . . .
0 . . . Im 0

. Then (4.7) is
Yt = AYt−1 + Et Et ∼ (0,ΣE) (4.11)

where Yt,Et are mq × 1 vectors and A is mq ×mq matrix.
Example 4.9 Consider a bivariate VAR(2) model. Here Yt = [yt, yt−1]0 Et = [et, 0]0, are a

4× 1 vectors, and A =
·
A1 A2
I2 0

¸
is a 4× 4 matrix.

Moments of yt can be immediately calculated from (4.11).

Example 4.10 The unconditional mean of yt can be computed using E(Yt) = [(I−A`)−1]
E(Et) = 0 and a selection matrix which picks the first m elements out of E(Yt). To calculate
the unconditional variance notice that, because of covariance stationarity

E[(Yt −E(Yt))(Yt −E(Yt))0] = AEt[(Yt−1 −E(Yt−1))(Yt−1 −E(Yt−1)0]A0 +ΣE
ΣY = AΣY A0 +ΣE (4.12)

To solve (4.12) for ΣY we will make use of the following result.

Result 4.1 If T, V,R are conformable matrices, vec(TV R) = (R0 ⊗ T )vec(V ).
Then vec(ΣY ) = [Imq − (A⊗A)]−1vec(ΣE) where Imq is a mq ×mq identity matrix.
Unconditional covariances and correlations can also be easily computed. In fact

ACFY (τ) = E[(Yt −E(Yt))(Yt−τ −E(Yt−τ )0]
= AEt[(Yt−1 −E(Yt−1))(Yt−τ −E(Yt−τ ))0] +E[Et(Yt−τ −E(Yt−τ ))0]
= AACFY (τ − 1) = AτΣY τ = 1, 2, . . . (4.13)
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The companion form could also be used to obtain the spectral density matrix of yt. Let
ACFE(τ) = cov(Et,Et−τ ). Then the spectral density of Et is SE(ω) = 1

2π

P∞
τ=−∞ e

−iωτ

ACFE(τ) and vec[SY (ω)] = [I(ω) − A(ω)A(−ω)0]vec[SE(ω)] where I(ω) =
P
j e
−iωjI,

A(ω) =
P
j e
−iωjAj and A(−ω)0 is the complex conjugate of A(ω).

Exercise 4.19 Suppose a VAR(2) has been fitted to unemployment and inflation data and

Â1 =

·
0.95 0.23
0.21 0.88

¸
, Â2 =

· −0.05 0.13
−0.11 0.03

¸
and Σ̂e =

·
0.05 0.01
0.01 0.06

¸
have been obtained.

Calculate the spectral density matrix of yt. What is the value of SY (ω = 0)?

A companion form representation has also computational advantages when deriving
estimators of the unknown parameters of the model. We first consider estimators obtained
when no constraints (lag restrictions, zero restrictions, etc.) are imposed on the VAR; when
y−q+1, . . . y0 are fixed and et are normally distributed with covariance matrix Σe.

Given the VAR structure, (yt|yt−1, . . . , y0, y−1, . . . , y−q+1) ∼ N(A1Yt−1,Σe) where A1 is
am×mqmatrix containing the firstm rows ofA. The density of yt is f(yt|yt−1, . . . ,A1,Σe) =
(2π)0.5m|Σe|−0.5exp[−0.5(yt −A1Yt−1)0Σ−1e (yt −A1Yt−1)]. Hence f(yt, yt−1, . . . , |A1,Σe) =QT
t=1 f(yt|yt−1, . . . ,A1,Σe) and the log likelihood is

L(A1,Σe|yt) = −T
2
(m log(2π)− log |Σe|)− 1

2

X
t

(yt −A1Yt−1)0Σ−1e (yt −A1Yt−1)] (4.14)

Taking the first order conditions with respect to vec(A1) leads to

A01,ML = [
TX
t=1

Yt−1Y0t−1]−1[
TX
t=1

Yt−1y0t] = A01,OLS (4.15)

Hence, when no restrictions are imposed, ML and OLS estimators of the first m rows of
the companion matrix A coincide. Note that an estimator of the j-th row of A1 (an 1×mq
vector) is A01j = [

P
tYt−1Y0t−1]−1[

PT
t=1Yt−1yjt].

Exercise 4.20 Provide conditions for A1,ML to be consistent. Is it efficient?

Exercise 4.21 Show that if there are no restrictions on the VAR, OLS estimation of the
parameters, equation by equation, is consistent and efficient.

The result of exercise 4.21 is important: as long as all variables appear with the same
lags in every equation, single equation OLS estimation is sufficient. Intuitively, such a VAR
is a seemingly unrelated regression (SUR) model and for such models single equation and
system wide methods are equally efficient (see e.g. Hamilton (1994, p.315)).

Using A1,ML into the log likelihood we obtain lnL(Σe|yt) = −Tm2 ln(2π)− T
2 ln |Σe|)−

1
2

PT
t=1 e

0
t,MLΣ

−1
e et,ML where et,ML = (yt − A1,MLYt−1). Taking the first order conditions



Methods for Applied Macro Research 4: VAR Models 119

with respect to vech(Σe), where vech(Σe) vectorizes the symmetric matrix Σe, and using

the fact that ∂(b
0Qb)
∂Q = b0b; ∂ log |Q|∂Q = (Q0)−1 we have T2Σ0e − 1

2

PT
t=1 et,MLe

0
t,ML = 0 or

Σ0ML =
1

T

TX
t=1

et,MLe
0
t,ML (4.16)

and the ML estimate of the (i, i0) element of Σe is σi,i0 = 1
T

PT
t=1 eit,MLe

0
i0t,ML.

Exercise 4.22 Show that ΣML is biased but consistent.

4.3.2 Simultaneous equations format

Two other useful transformations of a VAR are obtained using the format of a simultaneous
equations system. The first is obtained setting xt = [yt−1, yt−2, . . .]; X = [x1, . . . , xT ]

0 (a
T ×mq matrix), Y = [y1, . . . , yT ]

0 (a T ×m matrix) and letting A = [A01, . . . A0q]0 = A01 be
a mq ×m matrix to have

Y = XA0 +E (4.17)

The second transformation is obtained from (4.17). The equation for variable i in fact
is Yi = XAi +Ei. Stacking the columns of Yi,Ei into mT × 1 vectors we have

y = (Im ⊗X)α+ e ≡ Xα+ e (4.18)

Note that in (4.17) all variables are grouped together for each t; in (4.18) all time periods
for one variable are grouped together. As shown in chapter 10, (4.18) is useful to decompose
the likelihood function of a VAR(q) into the product of a normal density, conditional on
the OLS estimates of the VAR parameters, and a Wishart density for Σ−1e .

Using these representations it is immediate to compute moments of yt.

Example 4.11 The unconditional mean of yt is E(Y) = E(X)A
0 or E(y) = E(Im⊗X)α.

The unconditional variance is E[Y] ≡ ΣY = E{[X − E(X)]A0 − E}2 or ΣY = E{[(Im ⊗
X)−E(Im ⊗X)]α+ e}2.

Exercise 4.23 Using (4.18), assuming that Σxx = p lim X0X
T exists and is non-singular

and 1√
T
vec(Xe)

D→ N(0,Σxx ⊗ Σe) show: (i)p limT→∞ αOLS = α; (ii)
√
T (αOLS − α) D→

N(0,Σ−1xx ⊗Σe); (iii) Σe,OLS = (y−Xα)(y−Xα)0
T−mq is such that p lim

√
T (Σe,OLS − ee0

T ) = 0.

Estimators of the VAR parameters can also be obtained via the Yule-Walker equations.
From (4.7) we have that E[(yt −E(yt))(yt−τ − E(yt−τ ))] = A(`)E[(yt−1 −E(yt−1))(yt−τ −
E(yt−τ ))] + E[et(yt−τ − E(yt−τ ))] for all τ ≥ 0. Hence, letting ACFy(τ) = E[(yt −
E(yt))(yt−τ −E(yt−τ ))] we have

ACFy(τ ) = A1ACFy(τ − 1) +A2ACFy(τ − 2) + . . .+AqACFy(τ − q) (4.19)
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Example 4.12 If q = 1 (4.19) reduces to ACFy(τ) = A1ACFy(τ − 1). Given estimates of
A1 and Σe, we have that ACFy(0) ≡ Σy = A1ΣyA01+Σe so vec(Σy) = (I−A1⊗A1)vec(Σe)
and ACFy(1) = A1ACFy(0), ACFy(2) = A1ACFy(1), etc.

Equation (4.19) can also be more compactly written asACFy = A1ACF ∗y whereACFy =

[ACFy(1), . . . ACFy(q)]; and ACF ∗y =

 ACFy(0) . . . ACFy(q − 1)
. . . . . . . . .
ACFy(−q + 1) . . . ACFy(0)

. Then an
estimate of A1 is A1,Y W = ACFy(ACF

∗
y )
−1.

Exercise 4.24 Show that A1,Y W = A1,ML. Conclude that Yule-Walker and ML estimators
have the same asymptotic properties.

Exercise 4.25 Show how to modify the Yule-Walker estimator when E(yt) is unknown.
Show that the resulting estimator is asymptotically equivalent to A1,Y W .

It is interesting to study what happens when a VAR is estimated under some restrictions
(exogeneity, cointegration, lag elimination, etc.). Suppose restrictions are of the form α =
Rθ + r where R is mk × k1 matrix of rank k1; r is a mk × 1 vector; θ a k1 × 1 vector.
Example 4.13 i) Consider the restriction Aq = 0. Here k1 = m2(q − 1), r = 0, and
R = [Ik1 , 0]
ii) Suppose that y2t is exogenous for y1t in a bivariate VAR(2). Here R = blockdiag[R1, R2]
where Ri, i = 1, 2 is upper triangular.

Using (4.18) we have y = (Im ⊗X)α+ e = (Im ⊗X)(Rθ + r) + e or y − (Im ⊗X)r =
(Im ⊗X)Rθ + e. Since ∂ lnL

∂θ = R∂ lnL∂α then

θML = [R0(Σ−1e ⊗X0X)R]−1R0[Σ−1e ⊗X](y − (Im ⊗X)r) (4.20)

αML = R θML + r (4.21)

Σe =
1

T

X
t

eMLe
0
ML (4.22)

Exercise 4.26 Verify that when a VAR is estimated under some restrictions:
i) ML estimates are different from OLS estimates.
ii) ML estimates are consistent and efficient if the restrictions are true but inconsistent if
the restrictions are false.
iii) OLS is consistent when stationarity is incorrectly assumed but t-tests are incorrect.
iv) OLS is inconsistent if lag restrictions are incorrect.

4.4 Reporting VAR results

It is rare to report estimated VAR coefficients. Since the number of parameters is large
presenting all of them is cumbersome. Furthermore, they are poorly estimated: except
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for the first own lag, in general, they are all insignificant. It is therefore typical to report
functions of the VAR coefficients which summarize information better, have some economic
meaning and, hopefully, are more precisely estimated. Among the many possible functions,
three are typically used: impulse responses, variance and historical decompositions. Impulse
responses trace out the MA of the system, i.e. they describe how yit+τ responds to a shock
in ei0t; the variance decomposition measures the contribution of ei0t to the variability of
yit+τ ; the historical decomposition describes the contribution of shock ei0t to the deviations
of yit+τ from its baseline forecasted path.

4.4.1 Impulse responses

There are three ways to calculate impulse responses which roughly correspond to recursive,
nonrecursive (companion form) and forecast revision approaches. In the recursive approach,

the impulse response matrix at horizon τ is Dτ =
Pmax[τ,q]
j=1 Dτ−jAj where D0 = I, Aj =

0 ∀ τ ≥ q. Clearly, a consistent estimate is obtained if a consistent Âj is used in place of
Aj .

Example 4.14 Consider a VAR(2) with yt = A0+A1yt−1+A2yt−2+et. Then the response
matrices are: D0 = I, D1 = D0A1, D2 = D1A1 +D0A2, . . . ,Dτ = Dτ−1A1 +Dτ−2A2.

Calculation of meaningful impulse responses requires orthogonal disturbances. Let P̃
be a square matrix such that P̃P̃ 0 = Σe. Then the impulse response matrix to orthogonal
shocks ẽt = P̃−1et at horizon τ is D̃τ = Dτ P̃.

Exercise 4.27 Provide the first 5 elements of the MA representation of a bivariate VAR(3)
with orthogonal shocks.

When the VAR is in a companion form, we can compute impulse responses in a different
way. Using (4.11) and repeatedly substituting for Yt−τ , τ = 1, 2, . . . we have:

Yt = AtY0 +
t−1X
τ=0

AτEt−τ (4.23)

= AtY0 +
t−1X
τ=0

Ãτ Ẽt−τ (4.24)

where Ãτ = Aτ P̃, Ẽt−τ = P̃−1Et, P̃P̃0 = ΣE. (4.23) is used with non-orthogonal residuals,
(4.24) with orthogonal ones. The first m rows of Aτ provide the required responses.

Exercise 4.28 Using the companion form of a bivariate VAR(2) show the first 4 elements
of Aτ .

A final way to compute impulse responses uses forecast revisions of future yts. We
will use the companion form representation to illustrate the point but the argument goes
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through with any representation. Let Yt(τ) = AτYt and Yt−1(τ) = Aτ+1Yt−1 be the τ -steps
and τ + 1-steps ahead forecast of Yt. Hence the forecast revision is

Revt(τ) = Yt(τ)−Yt−1(τ) = Aτ [Yt −AYt−1] = AτEt (4.25)

Example 4.15 Suppose we shock the i’-th component of et once at time t, i.e. ei0t =
1; ei0τ = 0, τ > t; eit = 0 ∀i 6= i0, ∀t. Then Revt,i0(1) = Ai0,.; Revt,i0(2) = A2i0,.; Revt,i0(τ) =
Aτi0,. where Ai0,. is the i-th column of A. Therefore, the response of yi,t+τ to a shock in ei0t
can be read off the τ-step ahead forecast revisions.

Example 4.16 At times cumulative multipliers are required. For example, in examining
the effects of fiscal disturbances on output one may want to measure the cumulative dis-
placement produced by a shock up to horizon τ . Alternatively, in examining the relationship
between money growth and inflation one may want to know whether an increase in the for-
mer translates in an increase in the latter in the long run of the same amount. In the first
case one computes

Pτ
j=0Dj, in the second limj→∞

Pτ
j=0Dj.

4.4.2 Variance decomposition

To derive the variance decomposition we use (4.7). The τ -step ahead forecast error is
yt+τ − yt(τ) =

Pτ−1
j=0 D̃j ẽt+τ−j where D0 = I and ẽt = P̃−1et = P̃−11 e1t + . . .+ P̃−1m emt are

orthogonal disturbances. Hence Σẽ = P̃−11 P̃−101 Σe + . . . + P̃−1m P̃−10m Σe. The MSE of the
forecast is

MSE(τ) = E[yt+τ − yt(τ)]2 = Σe +D1ΣeD01 + . . .+Dτ−1ΣeD0τ−1
=

mX
i=1

Σẽ(P̃−1i P̃−10i + D̃1P̃−1i P̃−10i D̃01 + . . .+ D̃τ−1P̃−1i P̃−10i D̃0τ−1) (4.26)

Hence the percentage of the variance in yi,t+τ due to ei0,t

VDi,i0(τ) =
Σẽ(P̃−1i0 P̃−1

0
i0 + D̃1iP̃−1i0 P̃−1

0
i0 D̃01i + . . .+ D̃τ−1,iP̃−1i0 P̃−1

0
i0 D̃0τ−1,i)

MSE(τ)
(4.27)

A compact way to rewrite (4.27)is V D(τ) = Σ−1Dτ
Pτ−1
j=0 Dj

J
Dj whereΣDτ = diag[ΣDτ,11 , . . . ,

ΣDτ,mm ] =
Pτ−1
j=0 DjD

0
j and where Dj

J
Dj is a matrix with D

i,i0
j ∗Di,i0j in the i, i0 position

(
J
is called Hadamman product (see e.g. Mittnick and Zadrozky(1993)).

4.4.3 Historical decomposition

Let ei,t(τ) = yi,t+τ − yi,t(τ) be the τ -steps ahead forecast error in the i-th variable of the
VAR. The historical decomposition of ei,t(τ) can be calculated using

ei,t(τ) =
mX
i0=1

D̃i
0
(`)ẽi0t+τ (4.28)
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Example 4.17 Consider a bivariate VAR(1). At horizon τ we have yt+τ = Ayt+τ−1 +
et+τ = . . . = Aτyt +

Pτ−1
j=0 A

jet+τ−j so that et(τ) =
Pτ−1
j=0 A

jet+τ−j = A(`)et+τ . Hence,
deviations from the baseline forecasts of the first variable from t to t+τ due to, say, structural
supply shocks are Ã11(`)ẽ1,t+τ and to, say, structural demand shocks are Ã12(`)ẽ2,t+τ .

From (4.27) and (4.28) it is immediate to notice that the ingredients needed to compute
impulse responses, variance and historical decompositions are the same. Therefore, these
statistics package the same information in a different way.

Exercise 4.29 Using the estimate obtained in exercise 4.19, compute the variance and the
historical decomposition for the two variables at horizons 1,2 and 3.

4.4.4 Distribution of Impulse Responses

To assess the statistical (and the economic) significance of the effect of certain shocks, we
need standard errors. As we have shown, impulse responses, variance and historical decom-
positions are complicated functions of the estimated VAR coefficients and of the covariance
matrix of the shocks. Therefore, even when the distribution of the latters is known, it is not
easy to find their distribution. In this subsection we describe three approaches to compute
standard errors: one based on asymptotic theory and two based on resampling methods.
All procedures are easy to implement when orthogonal shocks are generated by Choleski
factorizations, i.e. if P̃ is lower triangular and need minor modification when the system
is not contemporaneously recursive (but just-identified). In the other cases, resampling
methods have a slight computational hedge.

Since impulse responses, variance and historical decompositions all use the same infor-
mation we only discuss how to compute standard errors for impulse responses. The reader
will be asked to derive the corresponding expressions for the other two statistics.

•The δ-method

The method pioneered by (Lutkepohl (1991)) and Mittnick and Zadrozky (1993) uses

asymptotic approximations and works as follows. Suppose that α
D→ N(0,Σα). Then any dif-

ferentiable function f(α) will have asymptotically the distribution N(0, ∂f∂αΣα
∂f
∂α

0
) provided

that ∂f
∂α 6= 0. Since impulse responses are differentiable functions of the VAR parameters

and of the covariance matrix, their asymptotic distribution can be easily obtained.

Let S = [I, 0, . . . , 0] be a m × mq selection matrix so that yt = SYt and Et = S0et,
consider the revision of the forecast at step τ and let

revt(τ) = SRevt(τ) = S[Yt(τ)−Yt−1(τ)] = S[AτS0Et] ≡ ψτet (4.29)

We want the asymptotic distribution of the m×m matrix ψτ . Taking total differentials

dψτ = S[IdAAτ−1 +AdAAτ−2 + . . .+Aτ−1dAI]S0 (4.30)
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Since var(Yt+τ ) = Aτvar(Et+k)(Aτ )0, using the fact that dZ =
·
dZ1
0

¸
= S0dZ1 and result

4.1, we have that vec(SAj(dA)Aτ−(j+1)S0) = vec(SAj(S0dA1)Aτ−(j+1)S0) = [S(Aτ−(j+1))0 ⊗
SAjS0]vec(dA1) = [S(Aτ−(j+1))0 ⊗ ψj ]vec(dA1). Hence

vec(dψτ )

vec(dA1)
=
τ−1X
j=0

[S(A0)τ−(j+1) ⊗ ψj ] ≡ ∂vec(ψτ )

∂vec(A1)
(4.31)

Given (4.31), it is immediate to find the distribution of ψτ .

Exercise 4.30 Derive the asymptotic distribution of ψτ .

The above formulas, which use the companion form, may be computationally cumber-
some when m or q are large. In these cases, the following recursive formula may be useful

∂Dτ
∂α

=

max[τ,q]X
j=1

[(D0τ−j ⊗ Im)
∂Aj
∂α

+ (Im ⊗Aj)∂Dτ−j
∂α

)] (4.32)

Exercise 4.31 Derive the distribution of VD(τ) for orthogonal shocks.

Standard error bands computed with the δ-method have three problems. First, they tend
to have poor properties in experimental designs featuring small scale VARs and samples of
100-120 observations. Second, the asymptotic coverage is also poor when near unit roots or
near singularities are present. Third, since estimated VAR coefficients have large standard
errors, impulse responses have large standard errors as well resulting, in many cases, in
insignificant responses at all horizons. For these reasons, methods which employ the small
sample properties of the VAR coefficients might be preferred.

Exercise 4.32 Derive the asymptotic distribution of the τ-th term of a historical decom-
position.

• Bootstrap methods

Bootstrap standard errors, first employed in VARs by Runkle (1987), are easy to com-
pute. Using equation (4.7) one proceeds as follows:

Algorithm 4.2

1) Obtain A(`)OLS and et,OLS = yt −A(`)OLSyt−1.
2) Obtain elt,OLS via bootstrap and construct y

l
t = A(`)OLSy

l
t−1 + elt,OLS , l = 1, 2, . . . , L.

3) Estimate A(`)lOLS using data constructed in 2). Compute D
l
j, (D̃

l
j), j = 1, . . . , τ.
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4) Report percentiles of the distribution of Dj, (D̃j) (i.e. 16-84% or 2.5-97.5%), or the
simulated mean and the standard deviation of Dj , (D̃j), j = 1, . . . , τ .

Algorithm 4.2 is easily modified to produce confidence bands for other statistics.

Example 4.18 To compute standard error bands for the variance decomposition one would
insert the calculation of VDi,i0(τ)

l as suggested in (4.27) after step 3) of algorithm 4.2.
VDi,i0(τ)

l is the percentage of the variance of yi,t explained by ei0,t at horizon τ in replication
l. Then in 4) order VDi,i0(τ)

l and report percentiles or the first two moments.

Few remarks are in order. First, bootstrapping is appropriate when et is a white noise
with constant variance. Therefore, the approach yields poor standard error band estimates
when the lag length of the VAR is misspecified or when heteroschedasticy is present.

Since conditional heteroschedasticity is less likely to emerge with low frequency data,
one possible solution is to time aggregate the data before a VAR is run and standard errors
are computed.

Second, estimates of the VAR coefficients are typically biased downward in small sam-
ples. For example, in a VAR(1) with the largest root around 0.95, a downward bias of
about 30 percent is to be expected even when T = 80− 100. Biasedness of A(`) is a prob-
lem because in step 2) we are generating biased yt series. Hence, the resulting distribution
is likely to be centered around an incorrect estimate of the true VAR coefficients.
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Figure 4.2: Bootstrap responses

Third, the bootstrap distribution of Dj(D̃j) is not scale invariant. In particular, units
matter. This implies that standard error bands may not include, point estimates of the
impulse responses. Such a problem emerges e.g. in figure 4.2, where we report one standard
error bands for log output (right panel) or log linearly detrended level of output (left panel)
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in response to an orthogonal price shock in a bivariate VAR(4) system together with the
point estimate of the responses. Clearly, the size and the shape of the band depend on
the units. Furthermore, in the right panel there are horizons where the point estimate is
outside the computed standard error band.

Finally, while it is common to report the mean and construct confidence bands using
numerical standard deviations (across replications), this approach is unsatisfactory since it
assumes symmetric distributions. Since simulated distributions of impulse responses tend to
be highly skewed when T < 100, we recommend the use of simulated distribution percentiles
in constructing confidence intervals (i.e extract the relevant band directly from the ordered
replications at each horizon).

To solve the biasedness and the lack of scale invariance, Kilian (1998) has suggested a
bootstrap-after-the-bootstrap procedure. The approach can be summarized as follows:

Algorithm 4.3

1) Given A(`)OLS, obtain e
l
t,OLS and construct y

l
t = A(`)OLSy

l
t−1 + elt,OLS , l = 1, 2, . . . , L.

2) Estimate A(`)lOLS for each l. If the bias is approximately constant in a neighbor of
A(`)OLS, Bias(`) = E[A(`)OLS −A(`)] ≈ E[A(`)lOLS −A(`)OLS ].

3) Calculate the largest root of the system. If it is greater or equal than one, set Ã(`) =
A(`)OLS - here the bias is irrelevant since estimates are superconsistent. Otherwise
set Ã(`) = A(`)OLS −Bias(`)OLS, where Bias(`)OLS = 1

L

PL
l=1[A(`)

l
OLS −A(`)OLS ].

4) Repeat 1)-3) of algorithm 4.2, L1 times using Ã(`) in place of A(`)OLS.

Kilian shows that the procedure of eliminating the bias, assuming that it is constant
in a neighborhood of A(`)OLS , has an asymptotic justification and that the bias correction
becomes negligible asymptotically. It also shows that such an approach has a better small
sample coverage properties than a simple bootstrap. However, when the bias is not constant
in the neighborhood of A(`)OLS , the properties of the bands produced from algorithm 4.3
may still be poor.

• Monte Carlo methods
Monte Carlo methods will be described in details in the last three chapters of this book.

Here we describe a simple approach which allows the computation of standard error bands
using the simultaneous equation representation of an unrestricted VAR(q).

As mentioned, the likelihood function of a VAR(q), L(α,Σe|yt), can be decomposed
into a Normal portion for α, conditional on Σe, and a Wishart portion for Σ−1e . Assuming
that no prior information for α,Σe is available, i.e. g(α,Σe) ∝ |Σe|

−(m+1)
2 , the posterior

distribution (which is proportional to the product of the likelihood and the prior) will have
a form which is identical to the likelihood. Furthermore, the posterior for (α,Σe) will
be proportional to the product of the posterior of (α|Σe, yt) and of (Σe|yt). As detailed in
chapter 10, the posterior for Σ−1e has a Wishart form with T −mq degrees of freedom .
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The posterior of (α|Σe, yt) is normal centered at αOLS with variance equals to var(αOLS).
Hence, standard error bands for impulse responses can be constructed as follows:

Algorithm 4.4

1) Generate T −mq iid draws for e−1t from a N(0, (Y−XAOLS)
0(Y−XAOLS)). Compute

Σle = (
1

T−mq
PT−mq
t=1 (e−1t − 1

T−mq
PT−mq
t=1 e−1t )2)−1.

2) Draw αl = αOLS + ²
l
t, where ²

l
t ∼ N(0,Σle). Compute Dlj(D̃lj), j = 1, . . . τ .

3) Repeat 1)-2) L times and report percentiles.

Three features of algorithm 4.4 are important. First, the posterior distribution is exact
and conditional on the OLS estimator - which summarizes the information contained in
the data. Therefore, biasedness of A(`)OLS is not an issue. Second, given the exact small
sample nature of the posterior distribution, standard error bands are likely to be skewed
and, possibly, leptokurtic. Therefore, bands extracted from percentiles are preferable to 1
or 2 standard error bands around mean. Third, algorithm 4.4 is appropriate only for just
identified systems (both of semi-structural or of structural types). When the VAR system
is overidentified, the technique described in section 3 of chapter 10 should be used.

Exercise 4.33 Show how to use algorithm 4.4 to compute confidence bands for variance
and historical decompositions.

All three approaches we have described produce standard error bands estimates which
are correlated. This is because responses at each step are correlated (see e.g. the recursive
computation of impulse responses). Hence, plots connecting the points at each horizon are
likely to misrepresent the true uncertainty. Sims and Zha (1999) propose a transformation
which eliminates this correlation. Their approach relies on the following result.

Result 4.2 If D̃1, . . . , D̃τ are normally distributed with covariance matrix ΣD̃, the best
coordinate system is given by the projection on the principal components of ΣD̃.

Intuitively, we need to orthogonalize the covariance matrix of the impulse responses to
break down the correlation of its elements. To implement such an orthogonalization, for
structural coefficients, steps 1) to 3) of algorithm 4.4 remain unchanged, but we need to
add the following two steps

4) Let the τ × τ covariance matrix of D̃ be decomposed as PD̃VD̃P 0D̃ = ΣD̃, where VD̃ =
diag{vj} PD̃ = col{pp., j}, j = 1, . . . , τ , PD̃P 0D̃ = I.

5) For each (i, i0) report D̃∗(i, i0)±Pτ
j=1 %jpp.,j, where D̃

∗(i, i0) is the mean of D̃(i, i0) and
%j = ppj,.D̃(i, i

0).
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In practice, it is often sufficient to use the largest eigenvalue of ΣD̃ to have a good idea of

the existing uncertainty. Then standard error bands are D̃∗(i, i0)± pp.,j√vsup (symmetric)
and [(D̃∗(i, i0)−%sup,.16; D̃∗(i, i0)+%sup,.84] (asymmetric), where %sup,.r is the r-th percentile
of %j computed using the largest eigenvalue of ΣD̃ and vsup = supj vj

Exercise 4.34 Show how to apply the Sims and Zha approach to orthogonalize standard
error bands computed with the δ-method.

Given that the asymptotic approach has poor small sample properties, which of the
two resampling methods should one prefer? A-priori the choice is difficult: the bootstrap
method does not require distributional assumptions but it requires homoschedasticity. Also,
unless Kilian method is used, bands may have little meaning. The MC approach works even
with heteroschedasticity but normality of the errors or a large sample are required. The
question is therefore empirical. Sims and Zha (1999) show that, in specific experiments, the
MC approach outperforms the bootstrap approach but not uniformly so.

4.4.5 Generalized Impulse Responses

This subsection discusses the computation of impulse responses for nonlinear structures.
Since VARs with time varying coefficients fit well into this class, it is worthwhile to study
how impulse responses for these models can be constructed. The discussion here is basic;
more details are in Gallant, Tauchen and Rossi (1993) and Koop, Pesaran and Potter (1995).

In linear models impulse responses do not depend on the sign or the size of shocks nor
on their history. This simplifies the computations but prevents researchers from studying
interesting economic questions such as: do shocks which occur in a recession produce dif-
ferent dynamics than those in an expansion? Are large shocks different than small ones? In
nonlinear models, responses do depend on the sign, the size and the history of the shocks
up to the point where they are computed.

Let Ft−1 be the history of yt−1 up to t − 1. In general, yt+τ depends on Ft−1, the
parameters α of the model and the innovations et+j , j = 0, . . . , τ . Let Rev(τ,Ft−1,α, e∗) =
E(yt+τ |α, Ft−1, et = e∗, et+j = 0, j ≥ 1)−E(yt+τ |α,Ft−1, et+j = 0, j ≥ 0).
Example 4.19 Consider yt = Ayt−1+et, let τ = 2 and assume |A| < 1. Then E(yt+2|A,Ft−1,
et+j = 0, j ≥ 0) = A3yt−1 and E(yt+2|A,Ft−1, et = e∗, et+j = 0, j ≥ 1) = A3yt−1 +A2e∗
and Revy(τ,Ft−1, A, e∗) = A2e∗ which is independent of history and of the size of the shock
(hence set e∗ = 1 or e∗ = σe) and symmetric in the sign of e∗ (hence set e∗ > 0).

Exercise 4.35 Consider the model ∆yt = A∆yt−1 + et; |A| < 1. Calculate the impulse
response function at a generic τ . Show it is independent of the history and that the size of
e∗ scales the whole impulse response function. Consider an ARIMA(d1, 1, d2): D1(`)∆yt =
D2(`)et. Show that Rev(τ,Ft−1,D2(`),D1(`), e∗) is history and size independent.

Example 4.20 Consider the model∆yt = A1∆yt−1+A2∆yt−1I[∆yt−1≥0]+et, where I[∆yt−1≥0]
= 1 if ∆yt−1 ≥ 0 and zero otherwise. Let 0 < A = A1 + A2 < 1. Then, for et = e∗
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Rev(τ,∆yt−1, A, e∗) = 1−Aτ+1

1−A e∗ if ∆yt−1 ≥ 0 and Rev(τ,∆yt−1, A, e∗) =
1−Aτ+1

1
1−A1

e∗ if
∆yt−1 < 0. Here Rev(τ,∆yt−1, A, e∗) depends on the history of ∆yt−1.

Exercise 4.36 Consider the logistic map ỹt = aỹt−1(1− ỹt−1) + vt where 0 ≤ a ≤ 4. This
model can be transformed into a nonlinear AR(1) model: yt = A1yt−1 − A2y2t−1 + et for
A2 6= 0, −2 ≤ A1 ≤ 2, A1 = 2−a, et = 2−A1

A2
vt, yt =

A1−1
A2

+ 2−A1
A2

ỹt. Simulate the impulse
response function. Does the sign and the size of e∗ matter?

In impulse responses computed from linear models et+j = 0, ∀j ≥ 1. This is inappropri-
ate in nonlinear models since it may violate bounds for et. In exercise 4.36 the bounds occur
because the logistic map is unstable if yt−1 passes a threshold. These bounds depend on the
realizations of vt−τ and therefore vary over time. Also, when parameters are estimated, we
either need to condition on a particular α (e.g. αOLS) or integrate α out to compute forecast
revisions. Generalized impulse (GI) responses are designed to meet all these requirements:
in fact we condition on the size, the sign, the history of the shocks and, if required, on a
particular estimate of α and integrate out all future shocks.

Definition 4.5 Generalized impulse responses conditional on a shock et, a history Ft−1
and a vector α are GIy(τ,Ft−1,α, et) = E(yt+τ |α, et, Ft−1)−E(yt+τ |α, Ft−1) .

Responses produced by definition 4.5 have three important properties. FirstE(GIy) = 0.
Second, E(GIy|Ft−1) = 0. Third, E(GIy|et) = E(yt+τ |et)−E(yt+τ ).

Example 4.21 Three interesting cases where definition 4.5 is useful are the following:

• (Impulse responses in recession): GI conditional only on a history Ft−1 in a region:
GIy(τ,Ft−1 ∈ F1,α, et) = E(yt+τ |α, Ft−1 ∈ F1, et)−E(yt+τ |α, Ft−1 ∈ F1).

• (Impulse responses on average over histories): We have two options. GI conditional
only on α: GIy(τ,α, et) = E(yt+τ |α, et) − E(yt+τ |α) and GI unconditional on α :
GIy(τ, et) = E(yt+τ |et)−E(yt+τ ).

• (Impulse responses if oil prices go above 40 dollars a barrel) GI conditional on a shock
in a region: GIy(τ,Ft−1,α, et) = E(yt+τ |Ft−1,α, et ∈ E1)−E(yt+τ |Ft−1,α)

Definition 4.5 conditions on a particular value of α. In some situations we may want to
treat parameters as random variables. This is important in applications where symmetric
shocks may have asymmetric impact on yt depending on the value of α. Alternatively, we
may want to average α out of GI. As an alternative to definition 4.5 one could use:

Definition 4.6 Generalized impulse responses, conditional on a shock et and a history
Ft−1, are GIy(τ,Ft−1, et) = E(yt+τ |Ft−1, et)−E(yt+τ |Ft−1).

Exercise 4.37 Extend definitions 4.5-4.6 to condition on the size and the sign of et.



130

In practice, GI are computed numerically using Monte Carlo methods. We show how
to do this conditional a on history and a set of parameters in the next algorithm.

Algorithm 4.5

1) Fix yt−1 = ŷt−1, . . . , yt−τ = ŷt−τ ; α = α̂.

2) Draw elt+j, j = 0, 1, . . . , from N(0,Σe), l = 1, . . . L and compute GI l = (ylt+τ |ŷt−1, . . . ŷt−τ ,
α̂, et, e

l
t+j , j > 1)− (ylt+τ |ŷt−1, . . . ŷt−τ , α̂, et = 0, elt+j , j > 1).

3) Compute GI = 1
L

PL
l=1GI

l, E(GI l −GI)2 and/or the percentiles of the distribution.

Note that in algorithm 4.5 the history (yt−1, . . . , yt−τ ) could be a recession or expansion
and α̂ an OLS or a posterior estimator. In practice, when the model is multivariate we
need to orthogonalize the shocks so as to be able to measure the effect of a shock. When
et is normal, its response to a shock in ei0t is E(et|ei0t = e∗i0) = E(etei0t)σ

−2
i0 e

∗
i0 where

σ2i = E(ei0t)
2 and this can be inserted in step 2) of algorithm 4.5 to compute GI. For

example, for a linear VAR GI(τ,Ft−1, eit) = (AτE(et,ei0t)σi
) e

∗
σi
and the generalized impulse of

variable i equals SiGI(τ,Ft−1, eit) where Si is a selection vector with one in the i-th position
and zero everywhere else. Here the term e∗

σi
is a scale factor and the first term measures

the effect of a one standard error shock in the i0 − th variable. Note also, that (AτE(et,ei0t)σi
)

corresponds to the effect obtained when the variables are assumed to have a Wold causal
chain. Hence meaningful interpretations are possible only if the orthogonalization is derived
from relevant economic restrictions.

Exercise 4.38 Describe a Monte Carlo method to compute GI without conditioning on a
particular history or a particular α.

Example 4.22 Consider the model∆yt = A1∆yt−1+A2∆yt−1I[∆yt−1≥0]+et, where I[∆yt−1≥0]
is an indicator function. Then:
• GI responses allowing for randomness in et can be computed by fixing yt−1, A1, A2 and
drawing elt+j , j ≥ 0, l = 1, . . . L.
• GI responses allowing for randomness in history can be computed fixing et+j j ≥ 0, A1, A2
and drawing ylt−1.
• GI responses allowing for randomness in the parameters can be computed fixing yt−1, et+j , j ≥
0 and drawing Al1, A

l
2 from some distribution (e.g. the asymptotic one).

• GI responses allowing for randomness in the size of et can be computed fixing yt−1, A1, A2,
et+j j > 1 and keeping those e

l
t that satisfy e

l
t ≥ e∗ or elt < e∗. If the process is multivariate

apply the above to e.g. e1t, after averaging over draws of (e2t, . . . , emt).

Exercise 4.39 Consider a bivariate model with inflation π and unemployment UN, yt =
A1yt−1+A2yt−1I[π≥0]+ et where I[π>0] is an indicator function. Calculate GI at steps 1 to
3 for an orthogonal shock in π when π ≥ 0 and when π < 0. Does the size of et matter?
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Exercise 4.40 Consider a switching bivariate AR(1) model with money and output:

∆yt =

½
α01 + α11∆yt−1 + e1t if ∆yt−1 ≤ ∆ȳ, e1t ∼ N(0,σ21)
α02 + α12∆yt−1 + e2t if ∆yt−1 > ∆ȳ, e2t ∼ N(0,σ22)

Fix the size of the shock and the parameters and compute GI as a function of history. Fix
the size of shocks and the history and compute GI as function of the parameters.

We defer further discussion on the computation of impulse responses for a particular
type of non-linear model to chapter 10.

4.5 Identification

So far in this chapter, economic theory has played no role. Projections methods are used
to derive the Wold theorem; statistical and numerical analysis are used to estimate the
parameters and the distributions of interesting functions of the parameters. Since VARs
are reduced form models it is impossible to structurally interpret the dynamics induced by
their disturbances unless economic theory comes into play. As seen in chapter 2, Markovian
DSGE models when approximated linearly or log linearly around the steady state typically
deliver VAR(1) solutions. The reduced form parameters are complicated functions of the
structural ones and the resulting set of extensive cross equations restrictions could be used to
disentangle the latters if one is willing to take the model seriously as the process generating
the data. When doubts about the quality of the model exists, one can still conduct inference
as long as a subset of the model restrictions are credible or uncontroversial. Typical restric-
tions employed in the literature include constraints on the short run or long run impact of
certain shocks on variables or informational delays (e.g. output is not contemporaneously
observed by Central Banks when deciding interest rates). As we will argue later on, these
restrictions are rarely produced by DSGE models. Restrictions involving lag responses or
the dynamics are generally ignored being perceived as non robust or controversial.

To conduct structural analyses, one therefore starts from an unrestricted VAR(q) where
all variables appear with the same lags in each equation, estimates the parameters of the
VAR by OLS, imposes a minimal set of ”structural” restrictions, possibly consistent with a
variety of behavioral theories, and constructs impulse responses, historical decomposition,
etc. to structural shocks. In this sense, VARs are at the antipodes of maximum likelihood
or generalized method of moments approaches: the majority of the theoretical restrictions
are disregarded; there is no interest in estimating preference and technology parameters;
and only a structural interpretation of the shocks is sought.

We first examine identification in stationary and non-stationary VAR using zero-type
(or constant-type) restrictions. Afterward, we discuss identification via sign restrictions.

4.5.1 Stationary VARs

Let the reduced form VAR be

yt = A(`)yt−1 + et et ∼ iid (0,Σe) (4.33)
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We assume that associated with (4.33) there is a structural model of the form

yt = A(`)yt−1 +A0²t ²t ∼ iid (0,Σ² = diag{σ2²i}) (4.34)

Equation (4.34) generically defines a class of models but it is easy to show that it is non-
empty. For example, many of the log-linearized DSGE models of chapter 2, produce so-
lutions like (4.34) with A(`) = A(θ) and A0 = A0(θ) where θ are structural parameters.
Matching contemporaneous coefficients in (4.33) and (4.34) implies et = A0²t or

A0Σ²A00 = Σe (4.35)

To compute responses to structural shocks we can proceed in two steps. First, we can
estimate A(`) and Σe from (4.33) using the techniques described in section 3. Second, from
(4.35) and given identification restrictions, we estimate Σ², free parameters of A0 and the
structural dynamics A(`). This two-step approach resembles the indirect least square (ILS)
technique used in a system of (static) structural equations (see Hamilton (1994, p. 244)).
The main difference lies in the fact that here restrictions are imposed on the covariance
matrix of reduced form residuals and not on the lags of the VAR or on the exogenous
variables. This is convenient: had we imposed restrictions on the lags of the VAR, joint
estimation of A(`), Σe, Σ² and of free parameters of A0 would be required.

As in simultaneous equation systems there are necessary and sufficient conditions that
need to be satisfied for identification. An order condition can be calculated as follows. On
the left hand side of (4.35) there are m2 free parameters, while given the symmetry of Σe,
the right hand side has only (m(m + 1)/2) free parameters. Hence, to go from reduced
form to structural shocks we need, at least, m(m−1)/2 restrictions (with more restrictions
structural shocks are overidentified).

Example 4.23 Consider a trivariate model with hours, productivity, and interest rates.
Suppose that A0 is lower triangular, that is, suppose that shocks to hours enter contempo-
raneously in the productivity and interest rate equations and that productivity shocks enter
only contemporaneously in the interest rate equation. This obtains, e.g. if interest rate
shocks take time to produce effects and if hours are predetermined with respect to productiv-
ity. If structural shocks are independent, A0 has m(m−1)/2 = 3 zeros restrictions. Hence,
the order condition is satisfied.

Example 4.24 Consider VAR with includes output, prices, nominal interest rates and
money, yt = [GDPt, pt, it,Mt]. Suppose that a class of models suggests that output contem-
poraneously reacts only to its own shocks; that prices respond contemporaneously to output
and money shocks; that interest rates respond contemporaneously only to money shocks,

while money contemporaneously responds to all shocks. Then A0 =


1 0 0 0
a012 1 0 a022
0 0 1 a031
a041 a042 a043 1

.
Since there are six (zero) restrictions, structural shocks are identifiable.
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Exercise 4.41 Suppose we have extraneous information which allows us to pin down some
of the parameters of A0. For example, suppose in a trivariate system with output, hours
and taxes, we can obtain estimates of the elasticity of hours with respect to taxes. How
many restrictions do you need to identify the shocks? Does it make a difference if zero or
constant restriction is used?

Exercise 4.42 Specify and estimate a bivariate VAR using Euro area GDP and M3 growth.
Using the restriction that output growth is not contemporaneously affected by money growth
shocks, trace out impulse responses and evaluate the claim that money has no medium-
long run effect on output. Repeat the exercise assuming that the contemporaneous effect
of money growth on output growth is in the interval [-0.5, 1,5] (do this in increments of
0.1 each). What can you say about the medium-long run effect of money growth on output
growth in general?

There is one additional (rank) condition one should typically check: i.e. rank(Σe) =
rank(A0Σ²A0) (see Hamilton (1994) for a formal derivation). Intuitively, this restriction
rules out that any column of A0 can be expressed as linear combination of the others. While
the rank condition is typically important in large scale SES, it is almost automatically
satisfied in small scale VAR identified with economic theory restrictions. When other types
of restrictions are employed, the condition should be always checked.

Rank and order conditions are only valid for ”local identification”. That is, the system
may not be identified even though m(m − 1)/2 restrictions are imposed. This requires
experimenting with different initial conditions when estimating the parameters of A0.

Example 4.25 Suppose Σ² = I and that A10 =
·
1 4
0 3

¸
. It is immediate to verify that the

likelihood obtained with these two matrices and any positive definite Σe is equivalent to the

one obtained with the same Σ² and Σe and A20 =
·
5 0.8
0 0.6

¸
. Clearly the two decompositions

have different economic interpretations. Depending on the initial conditions, the maximum
can be reached at A20 or A10.

To estimate the free parameters in (4.35) one typically has two options. The first is to
write down the likelihood function of (4.35) (conditional on Σe), that is

lnL = 2 ln |A0|+ ln |Σ²|+ trace(Σ−1² A−10 ΣeA−1
0

0 ) (4.36)

Maximizing (4.36) with respect to Σ² and concentrating it out we obtain 2 ln |A0|+
Pm
i=1

ln(A−10 ΣeA−100 )ii. An estimate of the parameters can be found maximizing this expression
with respect to the free entries of A0. Since the concentrated likelihood is nonstandard,
maximization is typically difficult. Therefore, it is advisable to get some estimates with a
simple method (e.g. a simplex algorithm) and then use these as initial conditions in other
algorithms (see chapter 6) to find a global maximum.

A likelihood approach is general and works with both just-identified and overidentified
systems. For a just identified system one could also use instrumental variables, as suggested,
e.g. by Shapiro and Watson (1988). We describe in a example how this can be done.
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Example 4.26 Consider a bivariate VAR model with inflation and unemployment. Sup-
pose that theory tells us that the structural system (4.34) is·

πt
UNt

¸
=

· A11(`) A12(`)
A21(`) A22(`)

¸·
πt−1
UNt−1

¸
+

·
1 0
α01 1

¸·
²1t
²2t

¸
Since ²1t = e1t is predetermined with respect to ²2t it can used as an instrument to estimate
α01. Therefore choosing as a vector of instruments zt = [e1t, e1t−1, . . . , e2t−1, . . .] joint
estimates of the α and A(`) can be obtained, applying the IV techniques described in chapter
5.

4.5.2 Nonstationary VARs

The identification process in non-stationary VAR models is similar but additional identi-
fication restrictions are available. Furthermore, the presence of cointegration constraints
may change the nature of the order condition.

Let the MA representations of the VAR and of the structure be

∆yt = D(`)et = D(1)et +D
∗(`)∆et (4.37)

∆yt = D(`)A0²t = D(`)(1)A0²t +D∗(`)A0∆²t (4.38)

where D∗(`) ≡ D(`)−D(1)
1−` , D∗(`) ≡ D(`)−D(1)

1−` and ∆ = (1− `).
In (4.37)-(4.38) we have rewritten the system in two ways: the first is a standard MA; the

second exploits the multivariate BN decomposition (see chapter 3). Matching coefficients
we have D(`)A0²t = D(`)et. Separating permanent and transitory components and using
in the latter case only contemporaneous restrictions we have

D(1)A0²t = D(1)et (4.39)

A0∆²t = ∆et (4.40)

When yt is stationary, D(1) = D(1) = 0, (4.39) is vacuous and only (4.40) is available.
However, if yt is integrated the restrictions linking the permanent components of the reduced
and of the structural form could also be used for identification. (4.39) is the basis, e.g., for
the Blanchard and Quah’s decomposition discussed in chapter 3. To obtain estimates of
structural parameters we need the same order and rank restrictions. However, the m(m−
1)/2 constraints could be placed either on (4.39) or (4.40) or both. In this latter case
iterative approaches are needed to estimate the free parameters of A0 and the structural
shocks ²t.

Example 4.27 In a bivariate VAR system imposing (4.39) is simple since only one restric-
tion is needed. Suppose that D(1)12 = 0 (i.e. ²2t has no long run effect on y1t). If Σ² = I
the three elements of D(1)A0Σ²A00D(1)0 can be obtained from the Choleski factorization of
D(1)ΣeD(1)

0.



Methods for Applied Macro Research 4: VAR Models 135

Exercise 4.43 Consider the model of example 4.24 and assume that all variables are in-
tegrated. Suppose we impose the same 6 restrictions via the long run multipliers D(1)A0.
Describe how to undertake maximum likelihood estimation of the free parameters.

Exercise 4.44 (Gali) Consider a structural model of the form

yt = α0 + ²
S
t − α1(it −Et∆pt+1) + ²ISt (4.41)

Mt − pt = α2yt − α3it + ²MDt (4.42)

∆Mt = ²MSt (4.43)

∆pt = ∆pt−1 + α4(yt − ²St ) (4.44)

where ²St is a supply shock; ²
IS
t is an IS shock; ²MSt is a money supply shock and ²MDt is

a money demand shock, GDPt is output, Pt prices, it the nominal interest rate and Mt

money. Identify these shocks from a VAR with (∆GDPt, ∆it, it−∆pt, ∆Mt−∆pt) using
Euro area data and the following restrictions: (i) only supply shocks have long run effects
on output, (ii) money demand and money supply shocks have no contemporaneous effects
on ∆GDP , (iii) money demand shocks have no contemporaneous effect on the real interest
rate. Trace out the effects of a money supply shock on interest rates and output.

When some of the variables of the system are cointegrated, the number of permanent
structural shocks is lower than m. Therefore, if long run restrictions are used, one only
needs (m−m1)(m−m1−1)/2 constraints to identify all m shocks where m1 is the number
of common trends (rank of D(1) =m−m1).

Example 4.28 As shown in exercise 3.4 of chapter 3, a RBC model driven by integrated
technology shocks implies that all variables are integrated but Ct

GDPt
and Invt

GDPt
are stationary.

Consider a trivariate VAR with ∆gdpt, ct−gdpt, invt−gdpt where lower case letters indicate
logarithms of the variables. Since the system has two cointegrating vectors, there is one
permanent shocks and two transitory ones and (1, 1, 1)0²t = D(1)et identifies the permanent
shock. If all structural shocks are orthogonal we need one extra restriction to identify the
two transitory disturbances - for example, we could assume a Choleski structure.

Exercise 4.45 (Shapiro and Watson) Consider a bivariate system ∆yt = D(`)et where
et ∼ (0,Σe) and let the structural model be ∆yt = D(`)²t where ²t ∼ (0, I) and D(1) is
lower triangular. Show that D(1) = D(1)Σ0.5e is lower triangular. Show that to estimate
D(1) and D0 one could normalize the system ∆y∗t = Σ−0.5e ∆yt and run a regression of
∆y∗1t on q lags of ∆y∗1t and the current and q − 1 lags of ∆y∗2t and a regression of ∆y∗2t
on q lags of ∆y∗1t and ∆y∗2t, instrumenting current values with ∆y∗t−j , j = 1, 2, . . ..

4.5.3 Alternative identification schemes

The identification of structural shocks is, in general, a highly controversial enterprise because
researchers imposing different identifying assumptions may reach different conclusions about
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interesting economic questions (e.g. the sources of business cycle fluctuations). However,
an embarrassing uniformity has emerged over the last 10 years since identifying restrictions
have become largely conventional and unrelated to the class of DSGE models described in
section 2. Criticisms to the nature of identification process have repeatedly appeared in the
literature. For example, Cooley and LeRoy (1985) criticize Choleski decompositions because
contemporaneous recursive structures are hard to obtain in general equilibrium models.
Faust and Leeper (1997) argue that long run restrictions are unsatisfactory as they may
exclude structures which generate perfectly reasonable short run dynamics but fail to satisfy
long run constraints by infinitesimal amounts. Cooley and Dwyer (1998) indicate that
long restrictions may also incompletely disentangle permanent and transitory disturbances.
Canova and Pina (2004) show that standard DSGE models almost never provide the zero
restrictions employed to identify monetary disturbances in structural VAR systems and that
misspecification of the features of the underlying economy can be substantial.

Figure 4.3 shows the extent of the problem when a working capital model, similar to
the one presented in chapter 2, with either a partial accommodative (PA) or a Taylor type
(FB) rule for monetary policy is used to generate data and monetary shocks are identified
in the VAR for simulated data either with a Choleski scheme (CEE), with variables in the
order (GDPt, pt, it,

Mt
pt
) or via an overidentified structure (SZ) where it responds only to

Mt
pt
.

The straight line is the response produced by the model, the dotted ones one standard error
bands produced by the VAR. Note that a Choleski system correctly recognizes the policy
input when a Taylor rule is used, while the overidentified model correctly characterizes the
policy rule in the partial accommodative case. Misspecification is pervasive even when one
correctly selects the inputs of the monetary policy rule. For example, a Choleski scheme fails
to capture the persistent response of real balances to interest rate increases and produces
perverse output responses (first box, first column) while a price puzzle is produced (second
row, first and third boxes).

We would like to stress that the patterns presented in figure 4.3 are not obtained be-
cause the model is unrealistic or the parametrization ”crazy”. As shown in Canova and
Pina (2004) a sticky price, sticky wage model, parametrized in a standard way, produces
similar outcomes. The problem is that a large class of DSGE structures do not display the
zero restrictions imposed by the two identification schemes (in particular, that output and
prices have a Wold causal structure and do not respond instantaneously to policy shocks).
Therefore, misspecification results even when the policy rule is correctly identified.

To produce a more solid bridge between DSGE models and VARs, a new set of identifica-
tion approaches have emerged. Although justified with different arguments, the procedures
of Faust (1998), Uhlig (2003) and Canova and De Nicoló (2002) have one feature in common:
they do not use zero-type of restrictions. Instead, they achieve identification restricting the
sign (and/or shape) of structural responses. Restrictions of this type are often used by ap-
plied researchers informally: for example, monetary shocks which do not generate a liquidity
effect (e.g. opposite comovements in interest rate and money) are typically discarded and
the zero restrictions reshuffled in the hope to produce the required outcome. One advantage
of these approaches is to make restrictions of this type explicit.
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Figure 4.3: Impulse responses to monetary shocks, Working capital model
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Sign restrictions are enticing. While (log)-linearized versions of DSGE models seldomly
deliver the m(m− 1)/2 set of zero restrictions needed to recover m structural shocks, they
contain a large number of sign restrictions usable for identification purposes.

Example 4.29 (Technology shocks) All RBC-type models examined in chapter 2 have the
feature that positive technology disturbances increase output, consumption, and investment
either instantaneously or with a short lag, while prices and interest rates decline as the
aggregate supply curve shifts to the right. Therefore, such a class of models suggests that
technology disturbances can be identified via the restriction that in response to positive shocks
real variables increase and prices decrease, either contemporaneously or with a lag.

Example 4.30 (Monetary shocks) Several of the models of chapter 2 have the feature that
policy driven increases in the nominal interest rates reduce real balances instantaneously and
induce a fall in prices. Hence, contemporaneous (and lagged) comovements of real balances,
prices and nominal interest rates can be used to identify monetary disturbances.

The restrictions of examples 4.29 and 4.30 could be imposed on two or more variables,
at one or more horizons. In other words, we can ”weakly” or ”strongly” identify the shocks.
To maintain comparability with other structural VARs, weak forms of identification will
be typically preferred. However, one should be aware that restrictions which are too weak
may be unable to distinguish shocks with somewhat similar features, i.e. labor supply and
technology shocks.

It is relatively complicated to impose sign restrictions directly on the coefficients of the
VAR, as this requires maximum likelihood estimation of the full system under inequal-
ity constraints. However, it is relatively easy to do it ex-post on impulse responses. For
example, as in Canova De Nicolo’(2002), one could estimate A(`) and Σe from the data
using OLS and orthogonalize the reduced form shocks using, e.g. an eigenvalue-eigenvector
decomposition, Σe = PVP 0 = P̃P̃ 0 where P is a matrix of eigenvectors and V is a diag-
onal matrix of eigenvalues. This decomposition does not have any economic content, but
produces uncorrelated shocks without employing zero restrictions. For each of the orthogo-
nalized shocks one can check if the identifying restrictions are satisfied. If there is one such
a shock, the process terminates. If there is more than one shock satisfying the restrictions,
one may want to increase the number of restrictions (either across variables or across leads
and lags) until one candidate remains or take an average. Practical experience suggests
that contemporaneous and/or one lag restrictions suffice to produce a unique set of shocks.

If no shock satisfies the restrictions, the non-uniqueness of the MA representation can
be used to provide alternative structural shocks. In fact, for any H with HH0 = I, Σe =
P̃P̃ 0 = P̃HH0P̃ 0. Hence, one can construct a new decomposition using P̃H and examine if
the shocks produce the required pattern.

The only remaining practical question is how to choose H and how to systematically
explore the space of MA representations, which is infinite dimensional, if this is of interest.
Canova and de Nicoló choose H = H(ω), ω ∈ (0, 2π) and search the space of H by varying
ω on a grid. Here H are matrices which rotate the columns of P by an angle ω.
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Example 4.31 Consider a bivariate system with unemployment and inflation and sup-
pose that a basic eigenvector-eigenvalue decomposition has not produced a shock which
produced contemporaneously negative comovements in inflation and unemployment. Set

H(ω) =
·
cos(ω) −sin(ω)
sin(ω) cos(ω)

¸
. Then we can trace out all possible MA representations for

the bivariate system, varying ω ∈ (0, 2π).

In larger scale systems, rotation matrices are more complex.

Exercise 4.46 Consider a four variable VAR. How many matrices rotating two or pairs
of two columns exist? How would you explore the space of rotations simultaneously flipping
the first and the second column together with the third and the fourth?

When m is of medium size, the matrix H has the following form

Hi,i0(ω) =



1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 cos(ω) . . . − sin(ω) 0
...

...
... 1

...
...

0 0 sin(ω) . . . cos(ω) 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 0 1


0 < ω ≤ 2π where the index (i, i0) indicates that columns i and i0 are rotated by the
angle ω. Let Z(Hi,i0(ω) be the space of ortonormal rotation matrices where, given ω, each
i, i0 element has proability 2

m(m−1) . Then the following search algorithm could be used to
explore the space of identifications.

Algorithm 4.6

1) Draw ωl from (0, 2π). Draw Hi,i0(ωl) from Z(Hi,i0(ωl).
2) Used H(i, i0)(ωl) to compute ²t and A(`). Check whether restrictions are satisfied in

response to ²it, i = 1, . . .m. If they are keep the draw, if they are not, drop the draw.

3) Repeat 1) and 2) unless L draws satisfying the restrictions are found. Report percentile
response bands.

Note that, by continuity, it is typical to find an interval (ω1,ω2) which produces a shock
with the required characteristics. Since within this interval the dynamics produced by
structural shocks are similar, one can average statistics for all the shocks in the interval or
choose, say, the shock corresponding to the median point of the interval or keep all of them,
as we have done in algorithm 4.6. We have already discussed what to do if more than one ²it
satisfies the restrictions for a given ωl and Hi,i0(ωl). At times one may find disjoint intervals
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where one or more shocks satisfy the restrictions. In this case it is a good idea to graphically
inspect the outcome since responses may not be economically meaningful (for example, a
shock may imply an output elasticity of 50). When visual inspection fails, increasing the
number of restrictions is typically sufficient to eliminate ”unreasonable” intervals.

Exercise 4.47 Provide a Monte Carlo algorithm to construct standard error bands for
structural impulse responses identified with sign restrictions which takes into account pa-
rameter uncertainty.

Example 4.32 Figure 4.4 presents the responses of industrial output, prices and M1 in
the US in response to a monetary policy shock. In the right column are the 68% impulse
response bands obtained requiring that a nominal interest rate increase must be accompanied
by a liquidity effect - a contemporaneous decline in M1. In the left column are the 68%
impulse response bands obtained with the Choleski system where the interest rate is assumed
to contemporaneously react to industrial output and prices but not to money.

Clearly, the standard identification has unpleasant outcomes: point estimates of money,
output and prices are all positive after the shock even though the increase is not significant.
With sign restrictions, output and prices significantly decline after a contractionary shock
and they do so for about 5 months. Note that in both systems no measure of commodity
prices is used.

4.6 Problems

While popular among applied researchers, VARs are not free of problems and a number of
common pitfalls should be avoided when interpreting the results.

First, one should be aware of time aggregation problems. As Sargent and Hansen (1991),
Marcet (1991) and others have shown time aggregation may make inference difficult. In
fact, if agents take decisions every τ periods but an econometrician observes data only every
jτ, j > 1, the statistical model used by the econometrician (with data sampled at every
jτ) may have little to do with the one produced by agents’ decisions. For example, the MA
traced out by the econometrician is not necessarily the MA of the model sampled every j
period, but a complex function of all MA coefficients from that point on to infinity.

Example 4.33 Marcet (1991) showed that if agents’ decisions are taken in continuous
time, continuous and discrete time MA representations are related via Dj = [d ¦ v0−j ][v ¦ v0]
where d is the moving average in continuous time, ¦ indicates the convolution operator and
vj = dj− b× (dj |D) is the forecast error in predicting dj using the information contained in
the discrete time MA coefficients, b is a constant and j = 1, 2, . . . , τ . Hence a humped-shaped
monthly response can easily be transformed into a smoothly declining quarterly response (see
figure 4.5).

One important special case obtains when agents’ decisions generate a VAR(1) for the
endogenous variables. In that case, the MA coefficients of, say, a quarterly model are
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the same as the quarterly sampled version of MA coefficients of a monthly model. While
log-linear or quadratic approximate solutions to many DSGE models do deliver VAR(1)
models, one should be aware that models with e.g. habit in consumption or quadratic costs
of adjustment to investments, produce more complicated dynamics and therefore may face
important aggregation problems.

Exercise 4.48 Consider a RBC model perturbed by technology and government expenditure
disturbances. Suppose that gt = Tt where Tt are lump-sum taxes and that the utility function
depends on current and lagged leisure, i.e. U(ct,Nt,Nt−1) = ln ct + (Nt − γNt−1)ϕn .
i) Calculate the linearized decision rules after you have appropriately parametrized the model
at quarterly and annual frequencies. Compare the MA coefficients of the annual model with
the annual sampling of the MA of the quarterly model.
ii) Simulate consumption and output for the two specifications. Sample at annual frequencies
the quarterly data and compare the autocovariance functions. Does aggregation hold?
iii) Set γ = 0 and assume that both capital and its utilization enter in the production function
as in exercise 2.10 of chapter 2. Repeat steps i)- ii) and comment on the results.

Exercise 4.48 suggests that one way to detect possible aggregation problems is to run
VARs at different frequencies and compare their ACF or their MA representations. If dif-
ferences are detected, given the same amount of data, aggregation is likely to be a problem.

A second important problem has to with the dimensionality of the VAR. Small scale
VAR models are typically preferred by applied researchers since parameter estimates are
more precise (and impulse response bands are tighter) and because identification of the
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structural shocks is easier. However, small scale VARs are prone to misspecification. For
example, there may be important omitted variables and shocks may be confounded or
misaggregated. As Braun and Mittnik (1993), Cooley and Dwyer (1998), Canova and
Pina (2004) have shown, important biases may result. To illustrate the effects of omitting
variables we make use of the following result:

Result 4.3 In a bivariate VAR(q):

·
A11(`) A12(`)
A21(`) A22(`)

¸·
y1t
y2t

¸
=

·
e1t
e2t

¸
, the univariate

representation for y1t is [A11(`)−A12(`)A22(`)−1A21(`)]y1t = e1t−A12(`)A22(`)−1e2t ≡ υt

Example 4.34 Suppose the true DGP has m = 4 variables but an investigator incorrectly
estimates a bivariate VAR (there are three of these models). Using result 4.3 it is immediate

to see that the system with, e.g., variables 1 and 3, has errors of the form

·
υ1t
υ2t

¸
≡
·
e1t
e3t

¸
−

Q1(`)Q−1
2 (`)

·
e2t
e4t

¸
where Q1(`) =

·
A12(`) A14(`)
A32(`) A34(`)

¸
Q2(`) =

·
A22(`) A24(`)
A42(`) A44(`)

¸
.

From this one can verify that:

• If the true system is a VAR(1), a model with m1 < m variables is a VAR(∞).
• If et’s are contemporaneously and serially uncorrelated, υt’s are typically contempora-

neously and serially correlated.

• Two small scale VAR, both with m1 < m variables, may have different innovations.

• υt is a linear combination of current and past et. The timing of innovations is preserved
if the m1 included variables are Granger causally prior to the m−m1 omitted ones (i.e. if
Q1(`) = 0).

Several implications one can draw from example 4.34. First, if relevant variables are
omitted a long lag length is needed to whiten the residuals. While long lags do not always
indicate misspecification (for example, if yt is nearly non-stationary long lags are necessary
to approximate its autocovariance function), care should be exercised in drawing inference in
such models. Second, two researchers estimating small scale models with different variables
may obtain different structural innovations, even if the same identification restrictions are
used. Finally, innovation accounting exercises when variables are omitted may misrepresent
the timing of the responses to structural shocks.

Exercise 4.49 (Giordani) Consider a sticky price model composed of an output gap (gapt =
gdpt−gdpPt ) equation, a potential output (gdpPt ) equation, a backward looking Phillips curve
(normalized on πt) and a Taylor rule of the type

gapt+1 = a1gapt − a2(it − πt) + ²ADt+1 (4.45)

gdpPt+1 = a3gdp
P
t + ²

P
t+1 (4.46)

πt+1 = πt + a4gdp
g
t + ²

CP
t+1 (4.47)

it = a5πt + a6gdp
g
t + ²

MP
t+1 (4.48)
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The last equation has an error term (monetary policy shock) since the central bank may not
always follow the optimal solution to its minimization problem. Let var(²it+1) = σ2i , i =
AD, P, CP, MP and assume that the four shocks are uncorrelated with each other.
(i) Argue that contractionary monetary policy shocks have one period lagged (negative) ef-
fects on output and two periods lagged (negative) effects on inflation. Show that monetary
policy actions do not Granger cause gdpPt for all t.
(ii) Derive a VAR for [gdpt, gdp

P
t , πt, it]. Display the matrix of impact coefficients.

(iii) Derive a representation for a three variable system [gdpt, πt, it] (Careful: when you
solve out potential output from the system the remaining variables do not follow a VAR any
longer). Label the three associated shocks et = [e

AD
t , eCPt , eMPt ] and their covariance matrix

Σe. Show the matrix of impact coefficients in this case.
(iv) Show that var(eADt ) >var(²ADt ); var(eMPt ) > 0 even when ²MPt = 0 ∀t and that
corr(eMPt , ²Pt ) < 0. Show that in a trivariate system, contractionary monetary policy
shocks produce positive price responses (compare this with what you have in i))
(v) Intuitively explain why the omission of potential output from the VAR causes problems.

It is worthwhile to look at omitted variable problems from another perspective. Suppose
the structural MA for a partition with m1 < m variables of the true DGP is

yt = D(`)²t (4.49)

where ²t is an m × 1 vector, so that D(`) is m1 × m matrix ∀`. Suppose a researcher
specifies a VAR with m1 < m variables and obtains an MA of the form:

yt = D̃(`)et (4.50)

where et is an m1 × 1, and D̃(`) is a m1 ×m1 matrix ∀`. Matching (4.49) and (4.50) one
obtains D̃(`)et = D(`)²t or letting D‡(`) be a m1 ×m matrix

D‡(`)²t = et (4.51)

As shown by Faust and Leeper (1997) (4.51) teaches us an important lesson. Assume that
there are ma shocks of one type and mb shocks of another, ma+mb = m, and that m1 = 2.
Then eit, i = 1, 2 recovers a linear combination of shocks of type i

0 = a, b only if D‡(`) is
block diagonal and only correct current shocks if D‡(`) = D‡, ∀` and block diagonal. In all
other cases, true innovations are mixed up in estimated structural shocks.

Note that these problems have nothing to do with estimation or identification. Mis-
specification occurs because a VAR(q) is transformed in a VARMA(∞) whenever a variable
is omitted and this occurs even when the MA representation of the small scale model is
known.

Example 4.35 Suppose the true structural model has m = 4 shocks, that there are two
supply and two demand shocks, and that an investigator estimates a bivarate VAR. When
would the two estimated structural shocks correctly aggregate shocks of the same type? Using
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(4.51) we have

"
D‡11(`) D‡12(`) D‡13(`) D‡14(`)
D‡21(`) D‡22(`) D‡23(`) D‡24(`)

#
²1t
²2t
²3t
²4t

 =

·
e1t
e2t

¸
. Hence, e1t will

recover only type 1 shocks if D‡13(`) = D‡14(`) = 0 and e2t will recover type 2 shocks if

D‡21(`) = D
‡
22(`) = 0. Furthermore, e1t recovers current type 1 shocks if D

‡
13(`) = D

‡
14(`) = 0

and D‡ii0(`) = D
‡
ii0 , ∀`.

The conditions required for correct aggregation are therefore somewhat strong. As it is
shown in the next example, they are not satisfied in at least one type of DSGE model. It
is likely that such a problem also appears in other models macroeconomists currently use.

Example 4.36 We simulate data from a version of the working capital economy of example
2.14 of chapter 2 with a permanent (technology) disturbance and temporary labor supply,
monetary and government expenditure shocks. Monetary policy is characterized by a Taylor
rule. Using output and employment data we estimate a bivariate VAR and extract a per-
manent and a transitory shock where the latter is identified by the requirement that it has
no long run effects on output. Table 4.3 presents the estimated coefficients of a distributed
lag regression of two of the theoretical shocks on the estimated ones. In parenthesis are
t-statistics. The last column presents the p-value of a F-test excluding monetary distur-
bances from the first equation and technological disturbances from the second. Estimated
supply shocks mix both current and lagged monetary and technology disturbances while for
estimated demand shocks current and lagged monetary disturbances matter but only current
technology disturbances are important. This pattern is independent of the sample size.

Technology Shocks Monetary Shocks P-value
0 -1 -2 0 -1 -2

Estimated 1.20 0.10 0.04 0.62 -0.01 -0.11
Supply Shocks (80.75) (6.71) (3.05) (45.73) (-0.81) (-8.22) 0.000

Estimated -0.80 0.007 0.08 0.92 -0.48 -0.20
Demand Shocks (-15.27) (0.13) (1.59) (19.16) (-10.03) (-4.11) 0.000

Table 4.3: Regressions on simulated data

Exercise 4.50 (Cooley and Dwyer) Simulate data from a CIA model where a representative
agent maximizes E0

P
t β

t[a ln c1t+(1−a) ln c2t−ϑNNt] subject to ptc1t ≤Mt+(1+ it)Bt+

Tt −Bt−1 and c1t + c2t + invt + Mt+1

pt
+ Bt+1

pt
≤ wtNt + rtKt + Mt

pt
+ (1+ it)

Bt
pt
+ Tt

pt
where

Kt+1 = (1− δ)Kt + invt, yt = ζtK1−η
t Nη

t , ln ζt = ρζ ln ζt−1 + ²1t, lnMs
t+1 = lnM

s
t + lnM

g
t ,

Mg
t is a constant and ρζ = 0.99 (you are free to choose the other parameters, but motivate

your choices). Consider a bivariate system with output and hours and verify that output
has a unit root but hours does not. Using the restriction that demand shocks have no long
run effects on output, plot output and hours responses in theory and in the VAR. Is there
any feature of the theoretical economy which is distorted?
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In section 5 we have seen that for a just identified structural model, a two-step esti-
mation approach is equivalent to a direct 2SLS approach on the structural system. Since
structural shocks depend on the identification restrictions, we may have situations where a
2SLS approach produces ”good’ estimators, in the sense that they nicely correlate with the
structural shocks they instrument for, and situations where they are bad. Cooley and Dwyer
(1998) present an example where, by changing the identifying restrictions, the correlation
of the instruments with the structural shocks go from high to very low, therefore resulting
in instrumental variables failures (see chapter 5). Hence, if such a problem is suspected, a
maximum likelihood approach should be preferred.

Finally, we would like to mention once again that there are several economic models
which generate non-Wold decompositions, see e.g. Leeper (1991), Quah (1990), Hansen
and Sargent (1991). Hence examining these models with Wold decompositions is meaning-
less. When a researcher suspects that this is a problem Blaascke factors should be used to
construct non-fundamental structural MA representations. Results do depend on the rep-
resentations used. For example, Lippi and Reichlin (1993) present a non-Wold version of
Blanchard and Quah (1989)’s model which gives opposite conclusions regarding the relative
importance of demand and supply shocks in generating business cycle fluctuations.

Exercise 4.51 (Quah) Consider a three equations permanent income model

ct = rWet

Wet = sat + [(1+ r)
−1X

j

(1+ r)−jEtGDPt+j

sat+1 = (1+ r)sat +GDPt − ct (4.52)

where ct is consumption, Wet is wealth, r is the (constant) real rate, sat are savings and
∆GDPt = D(`)²t is the labor income. Show that a bivariate representation for consump-

tion and output is

·
∆GDPt
∆ct

¸
=

·
A1(`) (1− `)A0(`)
A1(β) (1− β)A0(β)

¸ ·
e1t
e0t

¸
where β = (1 + r)−1,

e1t is a permanent shock and e0t a transitory shock. Find A1(`) and A0(`). Show that

if ∆Yt = ²t, the representation collapses to

·
∆GDPt
∆ct

¸
=

·
1 (1− `)
1 (1− β)

¸·
e1t
e0t

¸
. Show

that the determinant of the matrix vanishes at ` = β < 1 so that the MA representa-
tion for consumption and income is non-fundamental. Show that the fundamental MA is·
∆GDPt
∆ct

¸
= b(β)−1

"
(2− β)(1− 1−β

2−β `) (1− β`)
1+ (1− β)2 0

#·
ẽ1t
ẽ0t

¸
, var(ẽ0t)=var(ẽ1t) = 1.

4.7 Validating DSGE models with VARs

VARs are extensively used to summarize those conditional and unconditional moments that
”good” models should be able to replicate. Generally, informal comparisons between the
models and the data are performed. At times, the model’s statistics are compared with
68 or 95% bands for the statistics of the data (see e.g. Christiano Eichenbaum and Evans
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(2001)). There conclusions about the quality of the model rest on whether model’s statistics
are inside or outside these bands for a number of variables. If parameter uncertainty is
allowed for, comparison of posterior distributions is possible (see chapters 7 and 11).

However, DSGE theories can be more directly tested via VARs. For example, in Canova,
Pagan and Finn (1994) theoretical cointegration restrictions coming from a RBC model
driven by permanent technology shocks are imposed on a VAR and tested using standard
statistical tools. Their point of view can be generalized and the applicability of their idea
extended if qualitative implications, which are more robust than quantitative ones, are used
to restrict the data and if restrictions are used for identification rather than for estimation.

DSGE models are misspecified in the sense that they are too simple to capture the com-
plex probabilistic nature of the data. Hence, it may be senseless to compare their outcomes
with the data: if one looks hard enough and data is abundant, statistically or economically
large deviations can always be found. Both academic economists and policymakers use
DSGE models to tell stories about how the economy responds to unexpected movements
in exogenous variables. Hence, there may be substantial consensus in expecting output to
decline after an unexpected interest rate increase but considerable uncertainty about the
size of the impact and the timing of the output responses. The techniques described in
chapter 5 to 7 have hard time to deal with this uncertainty. Estimation and testing with
maximum likelihood requires the whole model to be the correct DGP (up to uncorrelated
measurement errors), at least under the null. Generalized methods of moments and sim-
ulation estimators can be tailored to focus only on those aspects where misspecification
could be smaller (e.g. the Euler equation, or the great ratios). However, estimation and
validation still requires that these aspects of the model are quantitatively correct under the
null. When one feels comfortable only with the qualitative implications of a model and is
not willing to (quantitatively) entertain a part or the whole of it as a null hypothesis, the
approach described in section 5.3 can be used to formally evaluate the fit of any model or
the relative merit of two competitor models.

The method agrees with the minimalist identification philosophy underlying VARs. In
fact, one can use some of the least controversial qualitative implications of a model to
identify structural shocks in the data. Once shocks in data and the model are forced to have
qualitatively similar features, the dynamic discrepancy between the two in the dimensions
of interest can be easily examined. We summarize the main features of the approach in the
next algorithm.

Algorithm 4.7

1) Find qualitative, robust implications of a class of models.

2) Use (a subset of ) these implications to identify shocks in the actual data. Stop validation
if data does not conform to the qualitative robust restrictions of the model.

3) If theoretical restrictions have a data counterpart, qualitatively evaluate the model (use
e.g. sign and shape of responses to shocks, the pattern of peak responses, etc.)
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4) Validate qualitatively across models if more than one candidate is available.

5) If results in 3) and 4) are satisfactory, and policy analyses need to be performed, compare
model and data quantitatively.

6) Repeat 2)-5) using other robust implications of the model(s), if needed.

7) If mismatch between theory and data is relevant, alter the model so as to maintain re-
strictions in 1) satisfied and repeat 3) and/or 5) to evaluate improvements. Otherwise,
proceed to policy analyses.

Few comments on algorithm 4.7 are in order. In 1) we require theoretical restrictions
to be robust, that is independent of parametrization and/or of the functional forms of
primitives. The idea is avoid restrictions which emerge only in special cases of the theory.
In the second step we force certain shocks in the data and in the model to be qualitatively
similar. In steps 2) to 7) evaluation is conducted at different levels: first, we examine
whether the restrictions are satisfied in the data; second, we evaluate qualitative dynamic
features of the model; finally, quantitative properties are considered. Qualitative evaluation
should be considered a prerequisite to a quantitative one: many models can be discarded
using the former alone. Also, to make the evaluation meaningful economic measures of
discrepancy, as opposed to statistical ones, should be used.

The algorithm is simple, easily reproducible, and computationally affordable, particu-
larly in comparison to ML or the Bayesian methods we discuss in Chapter 11; it can be used
when models are very simplified descriptions of the actual data; and can be employed to
evaluate one or more dimensions of the model. In this sense, it provides a flexible, limited
information criteria which can be made more or less demanding, depending on the desires
of the investigator. We illustrate the use of algorithm 4.7 in an example.

Example 4.37 We take a working capital (WK) and a sticky price (SP) model, with the
idea of studying the welfare costs of employing different monetary rules. We concentrate on
the first step of the exercise, i.e. in examing which model is more appropriate to answer the
policy question.

Canova (2002) shows that these two models produce a number of robust sign restrictions
in response to technology and monetary policy shocks. For example, in response to a policy
disturbance the WK economy generates negative comovements of inflation and output, of
inflation and real balances, and of inflation and the slope of the term structure and positive
comovements of output and real balances. In the SP economy, the correlation between infla-
tion and output is positive contemporaneously and for lags of output and negative for leads
of output. The one between inflation and real balances is negative everywhere, the one of
output and real balances is positive for lags of real balances and negative contemporaneously
and for leads of real balances. Finally, the correlation of the slope of the term structure
with inflation is negative everywhere. One could use some or all of these restrictions to
characterize monetary shocks in the two models. Here we select restrictions on the con-
temporaneous cross correlation of output, inflation and the slope of the term structure for
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the WK model and on the cross correlation of output, inflation and real balances in the SP
model and impose them in a VAR composed of output, inflation, real balances, the slope
of the term structure and labor productivity using US, UK and EURO data from 1980:1 to
1998:4.

We find that WK sign restrictions fail to recover monetary shocks in the UK, while SP
sign restrictions do not produce monetary shocks in the Euro land. That is to say, out of
10000 draws for ω and Hi,i0(ω) we are able to find less than 0.1% of teh cases where the
restrictions are satisfied. Since no combination of reduced form residuals produces cross
correlations for output, inflation and the slope (or real balances) with the required sign, both
models are at odds with the dynamic comovements in response to monetary shocks in at
least one data set. One may stop here and try to respecify the models, or proceed with the
data sets where restrictions hold and evaluation can continue examining e.g. the dynamic
responses of the two other VAR variables to identified monetary shocks.

There are at least two reasons for why a comparison based on real balances (or the
slope) and labor productivity may be informative of the quality of the model’s approximation
to the data. First, we would like to know if identified monetary shocks produce liquidity
effects, a feature present in both models and a simple ”test” often used to decide whether a
particular identification schemes is meaningful or not (see e.g. Leeper and Gordon (1994)).
Second, it is common to use the dynamics of labor productivity to discriminate between
flexible price real business cycle and sticky price demand driven explanations of economic
fluctuations (see Gali (1999)). Since the dynamics of labor productivity in response to
contractionary monetary shocks are similar in the two models (since employment declines
more than output, labor productivity increases), it is interesting to check if the identified
data qualitative conforms to these predictions.

Figure 4.6 plots the responses of these two variables for each data set (straight lines)
together with the responses obtained in the two models (dotted lines), scaled so that the vari-
ance of the monetary policy innovation is the same. Two conclusions can be drawn. First,
the WK identification scheme cannot account for the sign and the shape of the responses
of labor productivity in US and Euro area and generates monetary disturbances in the Euro
area which lack liquidity effects. Second, with the SP identification scheme monetary shocks
generate instantaneous responses of the slope of the term structure which have the wrong
sign in the US and lack persistence with UK data.

Given that the two theories produce dynamics which are qualitatively at odds with the
data, it is not surprising to find that quantitative predictions are also unsatisfactory. For
example, the percentage of output variance accounted for by monetary shocks in US at the 24
step horizon is between 11 and 43% with the WK scheme and 3 and 34% with the SP scheme.
In comparison, and regardless of the parametrization used, monetary disturbances account
for 1% of output variance in both models. Hence, both models lack internal propagation.

Given the mismatch of the models and the data one should probably go back to the
drawing board before answering any policy question. Canova (2001) shows that adding
capacity utilization and/or labor hoarding to the models is not enough to enhance at least
the qualitative match. Whether other frictions will change this outcome is an open question.
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Figure 4.6: Responses to Monetary Shocks
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Until a better match is found, it is probably unhealthy to try to answer any policy question
with any of the two models.

Exercise 4.52 (Dedola and Neri) Take a standard RBC model with habit persistence in
consumption and highly persistent but stationary technology shocks. Examine whether ro-
bust sign restrictions for the correlation of output, hours and labor productivity exist when
the extent of habit (γ), the power of utility parameter (ϕ), the share of hours in production
(η), the depreciation rate (δ), and the persistence of technology shocks (ρζ) are varied within
reasonable ranges. Using a VAR with labor productivity, real wages, hours, investment, con-
sumption and output examine whether the model fits the data, when robust sign restrictions
are used to identify technology shocks in the data.

Exercise 4.53 (Pappa) In a sticky price model with monopolistic competitive firms any-
thing that moves aggregate demand (e.g. goverment shocks) induces a shift in the labor
demand curve and therefore induces positive comovements of hours and real wages. In a
flexible price RBC model, on the other hand, goverment expenditure shocks shift both the
aggregate supply and the aggregate demand curve. For many parametrizations movements
in the former are larger than movements in the latter and therefore negative comovements
of hours and real wages are generated. Using a VAR with labor productivity, hours, real
wages, investment, consumption and output, verify whether a RBC style model fits the data
better than a sticky price, monopolistic competitive model.
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Chapter 5: GMM and Simulation
Estimators

A class of statistical and economic models feature orthogonality conditions of the form:

E[g(yt, θ)− %] ≡ g∞(θ) = 0 (5.1)

where yt is a m × 1 vector of data observed at t, θ is a k × 1 vector of parameters, g
is a n × 1 vector of functions and % is a constant vector. Typically, E is the conditional
expectation operator, i.e., E[·] ≡ E[·|Ft] where Ft is the information set at t. Sometimes,
it represents unconditional expectations i. e. E[·] ≡ E(E[·|Ft]).

Orthogonality conditions like (5.1) can be obtained from the first-order conditions of an
intertemporal optimization problem, in which case θ contains preferences and technology
parameters and yt are the endogenous and the exogenous variables of the model; they
emerge from some steady state relationship or appear among the identifying restrictions in
(time series) regression models.

Whenever the model generating (5.1) is thought to represent the true data generating
process (DGP), one can estimate θ using a variety of techniques. For example, noting that
E[g(yt, θ)] = g(yt, θ)− et where et is an expectational error, one could estimate θ by non-
linear least square (NLLS) . Alternatively, one could use maximum likelihood (ML) once (a)
the distributional properties of yt are specified, and (b) an explicit closed-form solution,
expressing the endogenous variables as a function of parameters and exogenous variables,
is found. Clearly, in nonlinear models (b) is hard to obtain. Moreover, if n is large, both
NLLS and ML may be computationally burdensome. Finally, distributional assumptions
may be hard to justify if yt includes endogenous variables.

The techniques we present in this chapter are designed to estimate θ and to test the
validity of (5.1) without requiring either distributional assumptions or an explicit solution
for the endogenous variables. The methodology can be applied to both linear and nonlinear
specifications; it can be used for univariate (n = 1) and multivariate setups and requires only
mild regularity conditions to produce estimators with ”good” properties. One restriction
we impose, at least in the initial framework, is that yt only contains observable variables.
Later, we relax it and allow some of the components of yt to be unobservable.

The approaches we discuss are of limited information type. That is, estimation and
testing is limited to conditions like (5.1). Therefore, although the model may have additional
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equations, its degree of approximation to the data is examined only through the subset of its
implications represented by (5.1). In the context of DSGE models this is not so restrictive:
as we will see, optimality conditions will in fact imply restrictions like (5.1).

5.1 Generalized Method of Moment and other standard es-
timators

Definition 5.1 Let g∞(θ) be the population mean of g(yt, θ)−%, let gT (θ) = 1
T

PT
t=1(g(yt, θ)−

%) be its sample mean and let WT be a symmetric positive definite n× n matrix. Then a
Generalized Method of Moments (GMM) estimator θT solves

argmin
θ
(gT (θT )− g∞(θ))0WT (gT (θT )− g∞(θ)) (5.2)

A GMM estimator makes the sample version of certain orthogonality conditions “close”
to their population counterpart and the matrix WT describes what ”close” means. GMM
is therefore similar to a number of other estimators. For example, minimum distance es-
timators (see e.g. Malinvaud (1980)) also solve a problem like (5.2) but gT (θ) − g∞(θ) is
not necessarily the difference between sample and population orthogonality conditions. Ex-
treme estimators , i.e. estimators maximizing some criterion function (see Amemiya (1985))
are also obtained from a problem similar to (5.2).

Definition 5.1 includes several subcases of interest. For example, in many setups g∞(θ) =
0 in which case a GMM estimator sets the sample version of certain orthogonality conditions
to zero. In other problems, expectations are conditional on time t information. Hence, if
E(g1t(θ)) = 0, where g1 is a scalar function, for any zt ∈ Ft also g∞(θ) = E(ztg1t(θ)) = 0
in which case the solution to (5.2) produces a Generalized Instrumental Variable (GIV)
estimator. Note that, if zt is a constant, conditional and unconditional expectations are the
same, so that GMM and GIV coincide.

We next present examples of economic models which deliver orthogonality conditions
like (5.1) as part of the first order conditions of the problem.

Example 5.1 Suppose a social planner maximizes E0
P
t β

tu(ct, (1 − Nt)) by choices of
{ct, Nt,Kt+1}∞t=0 subject to ct +Kt+1 ≤ f(Kt,Nt) −Gt + (1 − δ)Kt where Nt are hours
worked, Kt is capital and Gt is a random government expenditure disturbance. The first
order conditions of the problem imply an Euler equation of the form

Et[β
Uc,t+1
Uc,t

[fK + (1− δ)]− 1] = 0 (5.3)

where fK =
∂f
∂K , Uc,t =

∂u
∂ct
. (5.3) fits (5.1) for g(yt, θ) = β

Uc,t+1

Uc,t
(fK +(1− δ)) and % = 1.
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Example 5.2 In the model of exercise 1.18 of chapter 2, the wage setting equation of
monopolistic competitive workers was given by

Et

∞X
j=0

βjζjw(
πjwt

(1 + ςw)pt+j
Uc,t+j + Un,t+j)Nt+j = 0 (5.4)

where β is the discount factor, Uc,t+j (Un,t+j) is the marginal utility of consumption (labor)
at t + j, pt is the price level, π the steady state inflation rate, wt the wage rate, ςw is
a parameter in the labor aggregator Nt = (

R
Nt(i)

1/(1+ςw)di)1+ςw , i ∈ [0, 1] and 1 − ζw
is the fraction of workers allowed to change the wage each t. Then (5.4) fits (5.1) for

g(yt, θ) =
P∞
j=0 β

jζjw(
πjwt

(1+ςw)pt+j
Uc,t+j + Un,t+j)Nt+j and % = 0

Exercise 5.1 Suppose agents maximize E0
P
t β

tu(ct−γct−1) choosing {ct, sat+1}∞t=0, sub-
ject to the constraint ct+ sat+1 ≤ wt+ (1+ r)sat where wt is an exogenous labor income,
sat+1 are savings maturing at t+1 and rt = r, for all t. Show the orthogonality conditions
of this problem. When is consumption a martingale process?

Exercise 5.2 A class of asset pricing models generates conditions like

Et−1rit = rp0,t−1 +
JX
j=1

αijrpj,t−1 (5.5)

i = 0, 1, . . . ,m, where rit is the rate of return on asset i from t− 1 to t, rpjt−1 are market
wide expected risk premiums (conditional expected excess returns) and αij is the conditional
beta of asset i relative to the j − th ”risk factor”. Here rpjt−1 are latent variables.
i) Let r̃it = rit − r0t, where r0t is the return on a arbitrarily chosen asset. Show that (5.5)
implies Et−1(r̃t) = rpt−1θ where θ is a J ×m matrix with θij = αij − α0j. Show that, for
any partition r̃ = (r̃1, r̃2), Et−1r̃2t must be proportional to Et−1r̃1t.
ii) Show how to use (5.5) to set up orthogonality conditions to estimate the proportionality
factor between expected returns of any two groups of assets.

Conditions like (5.1) are also common in consumption- based CAPM models.

Example 5.3 Suppose agents maximize the same utility function as in example 5.1 choos-
ing {ct, Bt+1, St+1}∞t=0 subject to ct +Bt+1 + pstSt+1 ≤ yt + (1 + rt)Bt + (pst + sdt)St where
Bt are one period bond holdings, St are stock holdings, sdt the dividends paid at t, r

B
t is the

return on bonds and pst the price of stocks at t. Optimality implies:

Et[β
Uc,t+1
Uc,t

pst+1 + sdt+1

pst
− 1] = 0 (5.6)

Et[β
Uc,t+1
Uc,t

(1 + rBt+1)− 1] = 0 (5.7)

where the first condition holds for stocks and the second for bonds. (5.6) and (5.7) fits (5.1)

setting g1(yt, θ) = β
Uc,t+1

Uc,t

pst+1+sdt+1

pst
and g2(yt, θ) = β(1 + r

B
t+1)

Uc,t+1

Uc,t
and %1 = %2 = 1.
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In sum, rational expectations models displaying some intertemporal link will generate
at least one equation where a conditional expectation of some function of the variables is
set to zero. Therefore, structures like (5.1) are pervasive in modern macroeconomics.

Many econometric and time series estimators can also be derived from orthogonality
conditions like (5.1). We consider a few examples next.

Example 5.4 Let f(yt, θ) be the density of yt and θ is a k × 1 vector. Let E(yit(θ)) =R
yitf(yt, θ)dyt, and ŷ

i
T =

1
T

PT
t=1 y

i
t be, respectively, the i − th population and sample mo-

ment of yt. A method of moment estimator θMM solves E(yit(θ)) = ŷ
i
T , i = 1, . . . , k. Hence

gi(yt, θ) = [yit −E(yit(θ)] and % = 0.

Note that the estimator of example 5.4 requires k moments but it does not specify
which ones a researcher should use. Since different moments produce different estimators, a
method of moments estimator is not necessarily efficient. As we will see, a GMM estimator
eliminates this source of inefficiency.

Example 5.5 Let yt = xtθ+et with Et[x
0
tet] = 0, where yt is a scalar and xt a 1×k vector.

Premultiplying by x0t, and taking conditional expectations we have Et(x0tyt) = Et(x0txt)θ +
Et(x0tet). Let y = (y1, . . . , yt)0 and x = (x1, . . . , xt)0. Then θOLS = (x0x)−1x0y, is a GMM
estimator for g(xt, θ) ≡ x0tyt − x0txtθ = x0tet.

Exercise 5.3 Suppose in example 5.5 that Et(x0tet) 6= 0. Let zt be a set of instruments,
correlated with xt and satisfying Et[z

0
tet] = 0. Show the orthogonality conditions in this

case. Show the g function that θIV solves.

Example 5.6 Suppose yt = f(xt, θ)+et. Assume Et[f(xt, θ)
0et] 6= 0 and that there exists

a set of zt correlated with xt such that Et[z
0
tet] = 0. Then Et[z

0
tet] = Et[z

0
t(yt−f(xt, θ))] =

Et[g(yt, zt, xt, θ)] = 0. Therefore, θNLIV is a GMM estimator for g(yt, zt, xt, θ) = z
0
t(yt −

f(xt, θ)).

Exercise 5.4 Consider a NLLS estimator of the model of example 5.6 when Et(f(xt)0et) =
0. Show the orthogonality conditions that NLLS solves.

When g is linear in θ, a solution to the minimization problem is easy to find. When g
is nonlinear, an estimator is found with an iterative procedure. An algorithm to find the
estimator of example 5.6 is the following:

Algorithm 5.1

1) Choose a θ0, compute e(θ0) = yt − f(xt, θ0).
2) Find θ1 solving

1
T

P
t gt =

1
T

P
t z
0
te(θ

1) = 0.

3) Iterate on 1)-2) until ||θl − θl−1|| < ι, ι small, l = 2, 3, . . . .



Methods for Applied Macro Research 5: GMM and Simulation Estimators 157

Perhaps surprisingly, a ML estimator is also solves orthogonality conditions. Let {yt}Tt=0
be a stochastic process with density f(yt, θ). Let LT (θ) =

PT
t=1 log f(yt, θ) be the sample log

likelihood function for sample size T. If LT (θ) is strictly concave and differentiable, ∂LT (θ)∂θ =

0 is sufficient for the maximum. Then if g(yt, θ) =
1
T
∂LT (θ)
∂θ = 1

T

PT
t=1

∂ log f(yt,θ)
∂θ , θML is

a GMM estimator. If L(θ) is not globally concave, θML obtained solving orthogonality
conditions may be different from θML obtained evaluating the likelihood directly, since the
former is not designed to choose among local maxima.

Exercise 5.5 Consider a m× 1 VAR(q) model yt = A(`)yt−1 + et where et ∼ (0,Σe) and
Et(ete

0
t−τ ) = 0 ∀τ 6= 0. Show that Et(yty0t) = AEt(yt−1y0t) where A is the companion of the

matrix A(`). Show the form of the g function θT will solve, where θ = vec(A1) and A1 are
the first m rows of A.

While the class of GMM estimators is dense, there are less popular estimators that do
not fit this framework. An example is given below

Example 5.7 (Robust estimators) Consider the model of example 5.5, but suppose you
want to neglect outliers. One way to do this is to minimize the sum of squares of et in
a prescribed set, i.e min(

P
t e
2
t ) × I[e,ē] where I. is an indicator function for the set [e, ē].

The resulting trimmed estimator is generated from a g function with jumpy derivatives and
violates one of the conditions given in section 5.3.

5.2 IV estimation in a linear model

To understand the intuition behind GMM estimation it is useful to start from the problem
of estimating regression parameters using instrumental variables. The intuition gained in
this case carries over to more complicated nonlinear setups. Let y = xθ0 + e, e ∼ (0,σ2I)
where y is a (T × 1) vector, x is a (T × k) stochastic matrix of rank k, θ0 is a (k× 1) vector
and e is a (T×1) vector of disturbances. Let z be a (T ×n) matrix of instruments satisfying
E(et|zt) = 0 (or E(z0tet) = 0) ∀t and let zt be the t-th row of z (xt could be an element
of zt). Let e0z = 1

T

P
t et(θ)

0zt, where e(θ) = y − xθ, z0x = 1
T

P
t z
0
txt, z

0y = 1
T

P
t z
0
tyt, let

WT
a.s.−→W be a n× n positive definite, symmetric matrix and define

QT (θ) = [e(θ)
0z]WT [e(θ)

0z]0 (5.8)

Let θIV = argmin [QT (θ)]. Taking the first-order condition of (5.8) with respect to θ and
using the definition of e(θ) we have x0zWT z

0y = x0zWT z
0xθ. We consider two cases n = k

and n > k. We neglect the third one, n < k, since in this case θ is underidentified, i.e.,
there is insufficient information to estimate θ uniquely. This is because the (k× k) matrix
x0zWT z

0x will have rank n < k.
When n = k, the number of instruments is the same as the number parameters and

x0z is a square matrix. Hence, θIV = (z0x)−1z0y = θ0 + (z
0x)−1z0e as long as (z0x) is

nonsingular. To show that θIV is consistent note that since E(z0e) = 0 ∀t, by the strong
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law of large numbers we have that z0e(θ0)
a.s.−→ 0. Also, since WT > 0, QT (θ) ≥ 0. Hence,

if θIV = arg min [QT (θ)]; z
0e(θ0)

a.s.−→ 0 and z0x is bounded; it must be that θIV
a.s.−→ θ0.

Clearly the argument breaks down if for some zt, E[z
0
te(θ0)] 6= 0, i.e. the instruments are

invalid. Here θIV does not depend on WT .
When n > k, θ is overidentified, i.e., there is more information (orthogonality con-

ditions) than it is necessary to estimate θ. In this case the choice of WT matters. In
fact, x0zWT is a (k×n) matrix so that x0zWT z

0e(θIV ) = 0 does not necessarily imply that
z0e(θIV ) = 0 but only that k linear combinations of the n orthogonality conditions
z0e(θ) are set to zero with weights given by x0zWT . The solution for θIV is

θIV = (x
0zWT z

0x)−1x0zWT z
0y (5.9)

Exercise 5.6 Give sufficient conditions to insure that θIV
a.s.→ θ0 in (5.9).

To characterize the asymptotic distribution of θIV when n ≥ k, use the model and (5.9)
to obtain √

T (θIV − θ0) = (x0zWT z
0x)−1x0zWT

√
Tz0e (5.10)

We make three assumptions: (i) limT→∞ z0z = Σzz, |Σzz| 6= 0; (ii) limT→∞ x0z =
Σxz, rank |Σxz| = k; (iii) limT→∞

√
Tz0e D−→ N(0,σ2Σzz). The first condition requires

that each instrument provides unique information; the second that at least k instruments
correlate with the x’s; the third that the scaled sample orthogonality conditions evaluated
at θ0 converge to a normal distribution.

Exercise 5.7 Using the three above conditions, show that (5.10) implies

√
T (θIV − θ0) D−→ N(0,Σθ) (5.11)

where Σθ = (ΣxzWΣzx)
−1ΣxzWσ2ΣzzW 0Σzx((ΣxzWΣzx)−1)0 and Σzx = Σ0xz. Show that

when k = n, the expression simplifies to Σθ = (Σ
−1
xz σ

2ΣzzΣ
−1
zx ).

Exercise 5.8 Suppose that rank |Σxz| < k. What does this tells you about your instru-
ments? Would a IV approach work? What would the distribution in (5.11) be?

To summarize, θIV minimizes a quadratic form in z0e(θ). The estimator is consistent
because E(z0e(θ)) = 0 and asymptotically normal because all quantities converge to non-
stochastic matrices. These same principles underlie GMM estimation and the proofs of its
asymptotic properties.

Since both θIV and Σθ depend on W , it is natural to ask which W will lead to the most
efficient θIV , i.e the one which minimizes Σθ. Once such a W is found, WT could be any
sequence of matrices converging to W almost surely.

Exercise 5.9 Show that a solution to minW Σθ(W ) is W
† = σ−2Σ−1zz and that Σ†θ ≡

Σθ(W
†) = Σ−1zx σ2ΣzzΣ−1xz (Note that this is only sufficient for efficiency. Why?).
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The optimal weighting matrix is proportional to the asymptotic covariance matrix of
the instruments. To gain intuition into this choice, note that different instruments contain
different information about θ (because they have different variabilities). The optimal
weighting matrix gives less weight to instruments which are very volatile. When n > k, one
can choose which conditions to use. If the first k restrictions are employed the estimator
(say, θ1(IV )) would be numerically different but it will have the same asymptotic properties
of θ2(IV ) obtained using, say, the last k conditions. The optimal weighting matrix combines
the information contained in all conditions and maximizes efficiency.

Exercise 5.10 Consider the money demand function (derived from a cash-in-advance model)
Mt
pt
= GDPtθ+et where θ is the inverse of the constant velocity and et appears because GDPt

could be measured with error or because variables (for example, the nominal interest rate)
are omitted. Since current GDP could be correlated with et, consider two sets of instruments
z1t = [GDPt−1] and z2t = [GDPt−1,GDPt−2]. Show that θ2IV obtained using z

2
t is at least as

efficient as θ1IV obtained using z
1
t . Give some intuition for why it is the case and conditions

under which the asymptotic covariance matrix of the two estimators is identical.

When W † is used, θIV becomes:

θ†IV = (x̂
0x̂)−1x̂0y (5.12)

where x̂ = z(z0z)−1z0x. Consistent estimators of σ2 and Σθ can be constructed using

σ̂2 =
(y−xθ†IV )0(y−xθ†IV )

T and the sample matrices 1
T

P
t z
0
txt and

1
T

P
t z
0
tzt. Note that we

need an iterative approach to compute W † since it depends on θ†IV via σ̂
−2and θ†IV depends

on W † via W †
T . A standard way to proceed is to choose WT suboptimally, e.g., WT = I

or WT ∝ 1
T

P
t z
0
tzt and obtain a θ

1
IV which is consistent although inefficient. Given θ

1
IV we

can construct W †
T and obtain θ

2
IV . Under regularity conditions θ

2
IV will be equivalent to a

fully iterative θIV .

Exercise 5.11 Consider the linear model

y = xθ1 + e (5.13)

x = zθ2 + v (5.14)

where y, x, e, v are T × 1 vectors, z is a T × n matrix, θ2 is a n× 1 vector and θ1 a scalar.
Suppose that E(v|z) = 0, let θ1,ols = (x0x)−1(x0y) and θ1,IV = (x̂0x̂)−1(x̂y).
(i) Show p lim θ1,ols = θ1 +

cov(x,e)
var(x) ; p lim θ1,IV = θ1 +

cov(x̂,e)
var(x̂) . Argue that unless E(e|z) = 0

and E(x|z) 6= 0, p lim θ1,IV may not exist.
(ii) Show that the inconsistency of θ1,IV relative to θ1,OLS is RI =

cov(x̂,e)
cov(x,e)/R

2
xz where R

2
xz

is the regression R2 in (5.14)
(iii) Let n = 1. Show that if z is weakly correlated with x, RI →∞ even if E(e|z) ≈ 0.
(iv)An approximate bias for θIV is

cov(e,v)
var(v)

var(v)
θ02z0zθ2

(n−2). Argue that the bias of θ1,IV relative
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to the θ1,OLS is inversely proportional to the F-statistics on the instruments in (5.14) so
that weakly cotrrelated instruments will send the relative bias to infinity. Propose a statistic
to test for the IV bias and suggest a sequential procedure to choose instruments.

Exercise 5.12 Show that a 2SLS estimator of the form θ2SLS = [(x
0z)(z0z)−1(z0x)]−1

[(x0z)(z0z)−1(z0y)] corresponds to the optimal estimator derived in (5.12). Display the or-
thogonality conditions and the g function in this case.

Extensions of these concepts to an m × 1 vector of equations are straightforward and
left as exercises for the reader.

Exercise 5.13 Show that θ3SLS = [(X
0(I ⊗ Z0)0)(Σ−1e ⊗ (Z0Z)−1)((I ⊗ Z0)X)]−1

[(X0(I ⊗Z0)0)((Σ−1e ⊗Z0Z)−1((I ⊗Z0)y)] is the optimal estimator obtained from the mn× 1
orthogonality conditions E((I ⊗ Z)0e) = 0 where E(ee0|z) = Σe is a m × m matrix and
the same Z matrix is used in all equations. Show that var(θ3SLS) = [(X

0(I ⊗ Z0)0)(Σ−1e ⊗
(Z0Z)−1)((I ⊗ Z0)X)]−1. Provide conditions for consistency and asymptotic normality of
θ3SLS.

Example 5.8 As seen in chapter 4, a VAR is a particular simultaneous equation sys-
tem with the same regressors in every equation. In this case the orthogonality conditions
of exercise 5.13 are of the form E(zjieji0) = 0 ∀i, i0 = 1, . . . ,m, since regressors are
orthogonal across equations. Hence zi becomes irrelevant and the optimal estimator is
θSUR = (X

0(Σ−1e ⊗ I)X)−1(X0(Σ−1e ⊗ I)y).
So far we have assumed that et are conditional homoskedastic. In some applications

it is more reasonable to assume that Et[z0tete0tzt] can not be factored into the product of
σ2 and of Σzz. Most of the arguments made go through if Et[z0tete0tzt] = Σez. However,
to prove consistency and asymptotic normality we need to strengthen the assumptions to
include the condition that E(z0xx0z) exists and it is finite (see Hayashi (2002, p. 212)).

Exercise 5.14 Suppose limT→∞
√
Tz0e D−→ N(0,Σez). Derive the distribution of the opti-

mal IV estimator. Provide an estimate for W †
T and show the form of Σ†θ.

Example 5.9 A widely used statistical model with conditional heteroskedasticity is a regres-
sion model with GARCH errors. Here y = xθ0+ e and var(et) ≡ σ2t = b1σ2t−1+ e2t + b2e2t−1.
Since σ2t depends on the level of the regressors and since the instruments are correlated by
construction with the level of the regressors, E(z0tet)(z0tet)0 = Σt and Σt is serially correlated.

Exercise 5.15 Suppose that in the log-linearized version of money demand equation used in
exercise 5.10 we had erroneously used GDP deflator (GDPD) in place of CPI for measuring
prices. In that case et = log(CPIt)−log(GDPDt). Suppose a researcher estimates logMt =
θ1 logGDPDt+ θ2 logGDPt+ et and guessing that some misspecification occurs, estimates
θ = (θ1, θ2) using one lag of GDPDt and of GDPt as instruments. Show the conditions
under which the orthogonality conditions will display conditional heteroskedasticity. Are
there conditions that make the orthogonality conditions serially uncorrelated?
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In some applications, the condition that Et(g(yt, θ)) = 0 is hard to maintain. For exam-
ple, et may be serially correlated in which case E(gtgt−j) 6= 0, j = 1, . . .. The asymptotic
distribution and the consistency proof are unchanged by this alteration. However, as in
regression models with serially correlated errors, the asymptotic covariance matrix needs to
be modified. We defer the presentation of such covariance matrix to a later section.

Example 5.10 Consider the problem of a representative agent who chooses how much to
consume and save and at what maturities to lock her savings in. Assume that there are only
one and τ periods government bonds, issued in fixed supply every period, paying (1+ rjt) at
time t, j = 1, τ . The Euler equations are

Et[β
Uc,t+1
Uc,t

− 1

1 + r1t
] = 0 (5.15)

Et[β
τ Uc,t+τ
Uc,t

− 1

1 + rτt
] = 0 (5.16)

These two conditions imply that the expected (at t) forward rate for τ−1 periods must satisfy
the no arbitrage condition Et[β

τ−1Uc,t+τ
Uc,t+1

− 1+r1t
1+rτt

] = 0. Log linearizing around the steady

state, assuming a separable log utility and letting yt+τ = −ĉt+τ + ĉt+1, xt = − rτ
1+rτ

r̂τt +
r1
1+r1

r̂1t where .̂ represents percentage deviations from the state, yt+τ = θxt+et+τ and θ0 = 1.
Note that Et[et+τ ] = 0 but that unless the sampling interval of the data exactly equals the
forward rate interval, et+τ will be serially correlated. For example, if data is monthly and
τ is 12, there will be moving average terms of order 11.

Exercise 5.16 Suppose analysts are asked each quarter to produce output forecasts τ peri-
ods ahead and suppose an investigator is asked to evaluate whether the forecasts are rational
or not. Let yt+τ be realized output at t+ τ and yt(τ) the forecast at t of yt+τ .
(i) Show that rationality implies orthogonality conditions with moving average terms of or-
der up to τ .
(ii) Explain why GLS estimates obtained from yt+τ = θ1 + θ2yt(τ) + et+τ are inconsistent.
(iii) Show that the asymptotic covariance matrix for θ = (θ1, θ2) is (

1
T

P
t z
0
txt)

−1
( 1T
P
t z
0
tΣzt)(

1
T

P
t x
0
tzt) where zt are instruments, Σ = {σij} and σij = σ2ACF (|i− j|) for

|i−j| < τ and zero otherwise and ACF (|i−j|) is the (i−j)-th element of the autocovariance
function of et+τ

Exercise 5.17 In the context of example 5.10 consider the question of pricing a ”crop
insurance”. Let pt,τ (ct, θ) be the price at t in terms of consumption goods of a claim to
consumption at t + τ if the crop ct falls below θ. It is easy to verify that pt,τ (ct, θ) =

βt
R θ
0
Uc,t+τ
Uc,t

Pt,t+τdct+τ where Pt,t+τ is the transition probability from ct to ct+τ . Show the
pricing formula for a crop insurance of maturity up to 2. Conclude that the Euler equation
for pricing crop insurance up to maturity τ will have errors with up to τ−1 MA components.
Exercise 5.18 Suppose the orthogonality conditions are serially correlated, but an investi-
gator neglects to take this into account. Is the optimal IV still consistent? Is it efficient?
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Before testing hypotheses on θ, one may want to check whether the orthogonality con-
ditions are correctly specified. For a simple regression setup many tests for adequacy exist,
e.g., tests for serial correlation, for heteroskedasticity, etc. In general setups, including those
implied by DSGE models , the assumption that et are serially uncorrelated or homoskedas-
tic can not be made. Hence, we need a procedure to check model adequacy without focusing
on these “statistical” features.

When n = k, z0e(θ) = 0 by construction, so no test is possible. When n > k, only k
linear combinations of z0e(θ) are set to zero so that z0e(θIV ) may differ from zero. However,
if the population conditions are true, one should expect z0e(θIV ) ≈ 0. Hence a specification
test under the null that E[z0e(θ0)] = 0, is given by T ×{[e(θ†IV )0z][σ̃2Σzz]−1[z0e(θ†IV )]}

D−→
χ2(n − k). (This is typically called J−test ). Since k conditions are used to obtain θ†IV ,
n − k conditions are left free for testing and the number of degrees of freedom of the test
equals the number of overidentifying restrictions.

Consistent estimators can be used in place of the true σ2 and Σzz without changing the
distribution of the tests.

Tests of hypotheses on θ can be conducted in standard ways. We defer the discussion
of general testing to a later section.

Example 5.11 In exercise 3.12 of chapter 2 we have asked the reader to verify that a
log-linearized version of a New-Keynesian Phillips curve is

πt = βEtπt+1 + κ
(1− ζp)(1− ζpβ)

ζp
mct (5.17)

where mct =
Ntwt
GDPt

are real marginal costs, ςp is the probability of not changing the prices,
κ is a function of the risk aversion parameter and the labor supply elasticity and πt is the
inflation rate. Clearly (5.17) is an orthogonality condition. In earlier works, the marginal
cost was proxied by output gap and the parameters of πt+1 = α1πt − α2gapt + et+1 where
et is an expectational error, gapt is the difference between output and its potential output,
were estimated using zt = (πt, gapt) as instruments. Fixing β = 1, Gali and Gertler (1999)
found α2 to be negative and significant, contrary to the theory. However, when marginal
costs were proxied by the labor share, estimates of α2 were positive and significant.

We estimate (5.17) using CPI inflation data for US, UK and Germany for the sample
1980:1-2000:4 proxing marginal costs with the output gap (computed using a HP filter)
or with unit labor costs. The first two columns of table 5.1 show that Gali and Gertler’s
conclusions roughly hold, even though the coefficient of the labor share in the US is only
marginally significant (t-tests are in parenthesis). Letting κ = 1, columns 3 and 4 report
IV estimates of ζp and β obtained using CPI inflation for the three countries. Instruments
include a constant, lags of π and lags of the output gap (or of the labor share). In each
case we report estimates which are most favorable to the theory. In many cases estimates
obtained from just or overidentified specifications, where the optimal weighting matrix is
used, are similar. Three main results stand out. First, when output gap is used, estimates
of ζp are reasonable for US and UK (they imply, on average, slightly less than 3 quarters
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Reduced Form Structural

Country α1 α2 β ζp J-test p-value

US-Gap 0.993(16.83) -0.04 (-0.31) 0.907 (10.35) 0.700 (5.08) χ2(5)=0.15
US-LS 0.867(10.85) 0.001( 1.75) 0.932 ( 7.74) 0.991 (150.2) χ2(9)=0.54
UK-Gap 0.667(7.18) 0.528( 1.30) 0.924 ( 4.96) 0.684 (1.37) NA
UK-LS 0.412(3.81) 0.004( 4.05) 0.853 ( 4.07) 0.994 (166.1) χ2(1)=0.25
GE-Gap 0.765(10.02) -0.01 (-0.22) 0.972 (7.48) 1.014 (0.03) NA
GE-LS 0.491(3.34) 0.03 ( 1.85) 0.919 ( 4.45) 0.958 (7.18) χ2(1)=0.83

Table 5.1: Estimates of New Keynesian Phillips curve

between price changes) but not for Germany. Second, when labor share is used estimates
of ζp are close to 1, except for Germany, while estimates of β are smaller indicating that
the two parameters may not be separately identifiable. Finally, despite the poor structural
estimates, the model’s orthogonality conditions are not rejected. One reason for why this
happens could be that the instruments are poor.

5.3 GMM Estimation: An overview

The machinery described in section 2 can be applied with slight variations to setups where
the orthogonality conditions are nonlinear in θ.

Assume that gt satisfies E(Et[g(yt, θ0)]) = E[g(yt, θ0)]. Let gT (θ) =
1
T

PT
t=1 g(yt, θ)

and hT (θ) = gT (θ)− g∞(θ). Then the θT which minimizes QT (θ) = hT (θ)0WThT (θ) solves

HT (θT )
0WThT (θT ) = 0 (5.18)

where HT (θT ) is a n×k matrix of rank k, [HT (θT )]ij = ∂hTi(θT )/∂θj where hTi(θT ) is the
ith element of hT (θT ). When n = k, HT (θT ) and WT are nonsingular and θT solves
hT (θT ) = 0. When k < n, θT depends on WT . To derive the asymptotic distribution
of θT , we need a closed form solution for θT which, in general, is unavailable. Using the
mean value theorem we can write (5.18):

(θT − θ0) = −[HT (θ̄)0WTHT (θ)]
−1HT (θ̄)0WThT (θ0) (5.19)

where θ̄ ∈ [θ0, θT ]. To show that θT is consistent, the expression on the right hand side of
(5.19) must go to zero almost surely or in probability. To prove asymptotic normality we

need to make assumptions on hT so that limT→∞
√
ThT (θ0)

D−→ N(0,Σh) and make sure
that the other quantities in the right hand side of (5.19) have finite non-random limiting
behavior. Then the asymptotic covariance matrix of θT is a multiple of Σ.

As in section 2, the optimalWT minimizes the asymptotic covariance matrix of θT . Also
here the computation of W †

T is complicated by the fact that θT depends on W †
T and W

†
T

can be computed only if θT is known. With a large T , a two-step GMM is as efficient as
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fully iterative GMM if the first step estimate converges to the true parameter at the rate√
T (
√
T -consistency). In small samples, iterative estimators may be more accurate.

To perform tests on θT we need to have a consistent estimate of the asymptotic
covariance matrix. While WT

a.s−→ W by construction, and consistent estimators of HT
can easily be obtained, some care is needed to get a consistent estimator of Σh which is
positive semi-definite.

As in linear models, when θ is overidentified hT (θT ) 6= 0, but if θT is “correct”

hT (θT ) ≈ 0. Hence, under the null that E[h(yt, θ0))] = 0, T × hT (θT )0Σ−1h hT (θT )
D−→

χ2(n− k). General hypothesis on θT can be tested using Wald, Lagrange or distance tests.
In the next subsections we make these arguments more precise.

5.3.1 Asymptotics of GMM estimators

The discussion here is sketchy and brief. For a more thorough presentation the reader should
refer to Gallant (1987) or Newey and Mc Fadden (1994). The conditions are general and
need to be specialized when applied to orthogonality conditions derived from stationary
DSGE models. Throughout this subsection we assume that there exists a θ0 such that

hT (θ0)
a.s.→ 0 as T → ∞ and that

√
ThT (θ0)

D→ N(0,Σh). Intuitively the first condition
implies strong ergodicity of hT ; the second asymptotic normality of the difference between
sample and population g functions.

To prove consistency we need three assumptions. First, that θ ∈ Θ, a closed and bounded
set. Second, that hT (θ) is continuous and converges uniformly to h(θ) on Θ, almost surely.
Third, that θ0 is the unique solution to hT (θ) = 0. Then the proof requires QT (θ) to
converge uniformly on Θ to some Q(θ) which has a unique minimum at θ0. The above
conditions imply that this is the case. In fact, by the second assumption QT (θ) converges
uniformly over Θ to Q(θ) = h0(θ)Wh(θ). Since we have assumed that limT→∞ hT (θ0)

a.s.→ 0
we have that h(θ0) = 0. Then, if θ0 is the unique solution of h(θ) = 0 over Θ, Q(θ) has a
unique maximum and limT→∞ θT

a.s.→ θ0.

Uniform convergence of hT (θ) is hard to verify in practice. Therefore, one typically
assumes that E[supθ||h(yt, θ)||] < ∞ - a condition easier to check. This together with
continuity of g in θ, measurability of g in yt (i.e. g must be continuous in yt for each θ)
and the uniform law of large numbers can be used to show that hT (θ) → h(θ) uniformly.
Compactness of Θ is also hard to obtain in practice (it requires knowing the upper and the
lower bound of the parameters space). The alternative assumption typically made - that
the objective function is concave together with pointwise convergence of hT (θ) to h(θ) (see
Newey and McFadden (1994), p. 2133) is unappealing since in general hT (θ) may not be
concave. Another alternative (see Gallant (1987)) is to impose restrictions on the tails of
the distribution of hT and to show that, for large T, they imply that θ is in a closed and
bounded set for all t ≥ T .

To specialize this theorem to the setup generated by DSGE models, we need to insure

hT (θ0)
a.s.→ 0 and that

√
ThT (θ0)

D→ N(0,Σh). If yt is stationary and ergodic and if g is
continuous, then gt is also stationary and ergodic. Furthermore, the sum of stationary and
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ergodic processes is also stationary and ergodic so that hT (θ0)
a.s.→ 0. If yt is station-

ary and gt is a martingale difference, the martingale central limit theorem insures that√
TgT (θ0)

D→ N(0, var[g(yt, θ0)]) and, if g∞ = 0,
√
ThT (θ0)

D→ N(0,Σh). Recall that the
martingale difference assumption requires only first moment independence. Hence, it is a
weaker condition than simple independence.

Exercise 5.19 Let yt = xtθ + et where (yt, xt) are jointly stationary and ergodic se-
quences, E(x0tet) = 0, E(x0txt) = Σxx <∞, |Σxx| 6= 0. Show θOLS

a.s.−→ θ0. How does the
proof differ from the one where observations are iid?

In certain applications the assumption of identically (homogeneously) distributed time
series is implausible (can you give an example when this is the case?). Then, it is typical
to substitute the stationarity-ergodicity assumptions for yt with some mixing requirement.

Exercise 5.20 State conditions and prove the consistency of θ2SLS = [x0z(z0z)−1z0x]−1

(x0z)(z0z)−1z0y) in the model yt = xtθ + et, where xt is a (1× k) vector; zt is a (1× n)
k < n and when yt, xt, zt satisfy α-mixing conditions.

To show asymptotic normality we need two extra assumptions: that θ0 is in the interior
of Θ and that HT (θ) is continuous and converges uniformly to H(θ) =

∂h(θ)
∂θ0 (in addition

to the fact that θT
a.s.→ θ0). The first assumption is needed to make the Taylor expansion

presented below well behaved. The second insures that the partial derivatives of the hT
function carry proper information for θ. For the typical row of hT (θ) we have

√
Thi,T (θT ) =

√
Thi,T (θ0) +

∂hiT (θ̄)

∂θ0
√
T (θT − θ0) (5.20)

where θ̄ ∈ [θ0, θT ]. Because θ̄ is in the line segment joining θ0 and θT , and because θT a.s.→ θ0
also θ̄

a.s.→ θ0. Moreover, given the assumptions, the typical row ofHT (θ) converges uniformly

over Θ to H(θ0), i.e.
∂hi,T (θ̄)
∂θ0

a.s.→ ∂hi(θ0)
∂θ0 . Applying the argument to each row we have that√

ThT (θT ) =
√
ThT (θ0) +H(θ0)

√
T (θT − θ0). Substituting in (5.18) we have

0 = HT (θT )
0WT

√
ThT (θ0) +HT (θT )

0WTH(θ0)
√
T (θT − θ0) (5.21)

Because HT (θT )
0WT

a.s.→ H(θ0)0W and
√
ThT (θ0)

D→ N(0,Σh) we have that HT (θT )0WT√
ThT (θ0)

D→ N(0,H(θ)0WΣhW 0H(θ)). Furthermore HT (θT )0WTH(θ0)
a.s.→ H(θ0)0WH(θ0).

Therefore
√
T (θT − θ0) D→ N(0,Σθ) where Σθ = (H(θ0)0WH(θ0))−1 H(θ0)0WΣhW 0H(θ0)

(H(θ0)0WH(θ0)−1)0 which simplifies to Σθ = (H(θ0)0Σ−1h H(θ0))
−1 when W = Σ−1h .

To intuitively understand the proof of asymptotic normality consider figure 5.1
Under certain assumptions we can translate knowledge of hT (θ) in information about

θT − θ0. For this to happen we need to impose regularity conditions on hT so that the
mapping is well defined. In particular, we need that (i) hT is differentiable for all yt
and that (ii) HT is such that HT (θT ) and HT (θ0) do not differ too much. While these
conditions appear to be generally satisfied, it is easy to build examples where they are not.
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h (θ )  

 
 
h (θ (0 ) )= 0  

θ  θ (T )  θ (0 )  

h(θ (T ))  

Figure 5.1: Asymptotic normality

Example 5.12

1) Suppose P [yt > θ] = .5 ∀t, where θ is the median and let g(yt, θ) =

1 if yt > θ
−1 if yt < θ
0 if yt = θ

If gT (θ) =
PT
t=1 g(yt, θ), then E(g(θ)) = 0 and gT (θT ) = 0. However the g function has

a discrete jumps. Since the discontinuity does not get smaller as T →∞, information
about hT (θ) can not be transformed in information about θ.

2) Consider the problem of minimizing 1
T

P
g(θt) reducing the effect of outliers, i.e.,

minimizing a quadratic function up to θ̄ and an absolute function afterwards. The
resulting estimator has jumping derivatives. Therefore, condition (ii) is not satisfied.

To insure that pathologies like those in example 5.12 do not occur, we use the following:

Definition 5.2 (continuity in the mean) The function f(yt, θ) is continuous in the mean
at θ0 if and only if there exists a function φ(yt, ε) such that max ||f(yt, θ)− f(yt, θ0)|| <
φ(yt, ε), ∀||θ − θ0|| < ² and E[φ(yt, ε)] = ϕ∞(yt, ²) satisfies φ∞(yt, ε) −→ 0 as ε→ 0.

Note that continuity in the mean is stronger than simple continuity since the choice of
(φ, ε) has to work for all y and θ. When applied to example 5.12 it insures that, around
θ0, the size of the maximum jump in hT has finite expectations.
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Example 5.13 In figure 5.2, hT (θ) is continuous, Eh(θ) is finite since there is only a
finite number of spikes but max[h(θ)] may be infinite if any spike has infinite height. Hence,
continuity of derivative and finiteness of expectations do not imply continuity in the mean.

 h(θ )  

h(θ (0 ))  

θ  θ (0 )    θ (T )

h(θ (T ))  

Figure 5.2: Convergence in the mean

Exercise 5.21 Show the asymptotic covariance matrix of the NLLS estimator using the
formula H((θ0)

0Σ−1h H(θ0))
−1. Show that for a ML estimator Σθ = −H(θ0)−1.

5.3.2 Estimating the Covariance Matrix

We have seen that Σθ = (H(θ0)
0Σ−1h H(θ0))

−1 when W = Σ−1h . Estimates of H(θ) and
Σh can be obtained using { 1T

P
t[
∂hT (θT )
∂θ0T

]} and 1
T

PT
t=1 hth

0
t. When gt is not a martin-

gale difference, the central limit theorem for serially correlated processes can be used
to show that the asymptotic covariance matrix is Σ+θ = (H(θ0)

0(Σ+h )
−1(H(θ0)0)−1 when

W = (Σ+h )
−1. Here Σ+h is the frequency zero of the spectrum of ht and can be estimated

using Σ̂+ =
P∞
τ=−∞

P
t hth

0
t−τ . Three assumptions are needed for this result to hold (see

chapter 1): (i) E(yty
0
t) exists and is finite, (ii) E(yt|yt−τ , yt−τ−1, . . .) q.m.→ 0, (iii) Revt−τ (t) =

E(yt|yt−τ , yt−τ−1, . . .)−E(yt|yt−τ−1, yt−τ−2, . . .) is such that
P
j(E(Revt−τ (t)Revt−τ (t)

0))0.5

exists and it is finite.

When deviations from the martingale assumption are of known form, one should use
this information in constructing an estimate of Σ+h . The next exercise examines situations
where gt is linear covering the cases studied by Hansen and Hodrick (1980), Hansen and
Singleton (1982), Cumby, Obstfeld and Huizinga (1983) and Hansen and Sargent (1982).
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Exercise 5.22 Let gt = [et ⊗ zt] where ⊗ is the Kroneker product, et is a vector of
residuals and zt a vector (matrix) of instruments and let g∞ = 0
i) (Serial correlation up to lag τ and conditional homoskedasticity ) Suppose that Et[et| zt,
et−τ , zt, et−τ−1 · · ·] = 0. Show that Et[gt|gt−τ , gt−τ−1 . . .] = 0. Let E[etet−τ |zt, et−τ , zt−τ · · ·] =
ACFe(τ). Show that Σ

+
h =

Pτ−1
i=−τ+1ACFe(i)⊗ACFz(i).

ii) (Serial correlation up to lag τ and conditional heteroskedasticity) Let Et[et|zt, et−τ , zt,
et−τ−1, . . .] = 0 and E[gtg

0
t−τ ] = ACFez(τ). Show that Σ+h =

Pτ−1
i=−τ+1ACFez(i). Show

the form of a typical element of ACFez(i) .

As we have seen there are cases when the residuals of Euler equations of a DSGE model
display serial correlation of known form. Two were described in section 2; two more are
considered next.

Exercise 5.23 (Eichenbaum, Hansen, Singleton) Suppose a representative agent ranks con-

sumption and leisure streams according to E
P
t β

t (c
∗
t )
ϑ((1−Nt)∗)1−ϑ)1−ϕ−1

1−ϕ where c∗t = (1 +
γ1`)ct and (1−Nt)∗ = (1+γ2`)(1−Nt) subject to the constraint ct+sat+1 = wtNt+(1+rt)sat
where sat are savings and wtNt is labor income.
i) Show that the marginal utility of consumption and leisure satisfy Uc,t = Et(1+βγ1`−1)Uc∗,t;
UN,t = Et(1 + βγ2`

−1)UN∗,t.
ii) Show that the optimal intratemporal allocation is Et{wt[(1+βγ1`−1)ϑ((1+γ1`)ct)ϑ(1−ϕ)−1
((1+γ2`)(1−Nt))(1−ϑ)(1−ϕ)+((1+γ1`)ct)(1−ϕ)ϑ(1+βγ2`−1)(1−ϑ)((1+γ2`)(1−Nt))(1−ϕ)(1−ϑ)−1]}
= 0 which collapses to the standard condition that the marginal rate of substitution equals
the real wage if γ1 = γ2 = 0
iii) Show that the Euler equation for saving accumulation is E{rt+1[β(1 + βγ1`−1) ((1 +
γ1`)ct+1)

ϑ(1−ϕ)−1((1 + γ2`)(1 −Nt+1))(1−ϑ)(1−ϕ)] − (1 + βγ1`−1)((1 + γ1`)ct)ϑ(1−ϕ)−1((1 +
γ2`)(1 − Nt))(1−ϑ)(1−ϕ)} = 0. Show that if the relationships in ii) or in iii) are used to
estimate the unknown parameters, the gt function is not a martingale difference. Show ex-
actly the serial correlation structure present. Construct a covariance matrix for the GMM
estimator which takes this correlation structure into account.

Exercise 5.24 (West and Wilcox) Consider a (partial equilibrium) setup where firms max-
imize the expected discounted value of future cash flows and have a cost function which in-
cludes linear and quadratic costs of producing and changing inventories. Let Slt be sales,
GDPt production, Ivt end of the period inventories, rct total costs, pt the price, et a cost
shock, observable to the firm but unobservable to the econometrician and β a discount factor.
The objective function is Et

P
t β

t(ptSlt−rct) where GDPt = Slt+Ivt−Ivt−1, rct are propor-
tional to 0.5b0∆GDP

2
t +0.5b1GDP

2
t +0.5b2(Ivt−1−b3Slt)2+Ivtet where bj, j = 0, 1, 2, 3 are

parameters and et a shock. Show that the Euler condition is Et(b0(∆GDPt−2β∆GDPt+1+
β2∆GDPt+2)+b1(GDPt−βGDPt+1)+βb2(Ivt−b3Slt+1)+%+et) = 0 where % is a constant.
Argue that it displays MA components of order 2. Describe what instruments you would use
to estimate bj and how to construct their asymptotic covariance matrix.

In general, the presence of adjustment costs, time nonseparability in the utility function;
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multiperiod forecasts or time aggregation (see Hansen and Singleton (1988)) may produce
orthogonality conditions which display serial correlation of known form.

When serial correlation is of unknown form and T is finite, one is forced to estimate Σ+h
truncating the infinite sum, that is, one uses Σ+T = ACF (0)+

PJ(T )
i=1 [ACF (i)+ACF (i)0] =P∞

i=−∞K(i, J(T ))ACF (i) where J(T ) is a function of T controlling the number of covari-
ances included and K(i, J(T )) is the Box-Car Kernel (see Chapter 1).

The truncation clearly biases Σ+T , but the bias vanishes reasonably fast as T →∞ (see
Priestley (1980, p. 458)). Unfortunately, for arbitrary J(T ), Σ+T need not be positive semi-
definite. Newey and West (1987) propose to use the Bartlett kernel , K(i, J(T )) = 1− i

J(T )+1

in place of the Box-Car kernel since it insures that Σ+T is positive semi-definite. This kernel
also truncates after J(T ) but reduces the importance of included elements using weights
that decline with i. Since Σ+h gives unitary weights to all ACF elements, this kernel induces
an additional source of bias, which typically dominates the one induced by truncation.

In general, the properties of Σ+T depend on the way J(T ) is chosen. With the Bartlett

kernel if J(T )→∞ as T →∞, and J(T )/T 1/3 → 0, then Σ+T
P−→ Σ. That is, the biases

introduced by the Bartlett kernel reduce the convergence rate of Σ+T from T
1/2 to T 1/3. This

means that, for the sample sizes used in macroeconomics, covariance estimates computed
with this kernel may be far away from the true Σh. Since W = Σ−1h , poor small sample
estimates of Σ+T may result in poor small sample properties of optimal GMM estimators.
Furthermore, if Σ+T has a large bias or a large MSE in finite samples, inference may be
severely distorted. For example, t-tests may over reject the null.

Nowadays, it has become common to construct Heteroskedasticy and Autocorrelation
consistent (HAC) covariance matrices. HAC estimates are typically of two types: kernel
based (non-parametric) and parametric based. In both cases a number of choices, which
may influence the properties of estimates, must be made.

Algorithm 5.2 (Kernel based HAC)

1) Obtain an estimate of the orthogonality conditions filtering out some serial correlation.

2) Given a kernel, choose the bandwidth parameter J(T ) optimally or use rules of thumb.

3) Provide estimates of unknown optimal quantities in 2)

4) Calculate the spectral density of the orthogonality conditions obtained in 1).

5) Calculate HAC consistent estimates of the original orthogonality conditions

When the orthogonality conditions display autocorrelation of unknown form it is a good
idea to eliminate part of this correlation before Σ+T is calculated. The reason is simple. When
hT (θ) is serially correlated it will have a non-flat spectrum. Kernel estimators average the
spectrum of hT (θ) over an interval of frequencies. Priestley (1980, p.458) showed that if
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one estimates a function f(θ) at θ0, averaging it at a number of points in a neighborhood
of θ0, then the estimator is unbiased only if f(θ) is flat over the neighborhood. Otherwise,
the bias depends on the degree of non-constancy of f(θ). Hence, if we filter hT (θ), so that
it has a flatter spectrum in the required interval, a kernel-based estimator will have much
better properties. Since the purpose of filtering is not to whiten ht but only to reduce serial
correlation, a researcher regresses ht on an arbitrary number of lags (typically, one).

We presented several types of kernel estimators in chapter 1. The HAC literature has
concentrated primarily on three: the Bartlett kernel, the Parzen Kernel (see Gallant (1987))
and the quadratic spectral (QS) kernel (see Andrews (1991)).

In all cases the choice of J(T ) is crucial. To choose this parameter, one can use rough

rules of thumb, e.g. J(T ) = T
1
3 or, given a kernel, one can choose it optimally, requiring

that Σ+T is positive definite. It turns out that selecting J(T ) is equivalent to choosing J2(w0)

in J(T ) = J1(w0)[J2(w0)T ]
1

2w0+1 where w0 is the rate of convergence of the kernel (which
is equal 2 for Parzen and QS kernels and 1 for the Bartlett kernel). Since Σ+T is consistent
but asymptotically biased, optimization requires choosing J2(w0) to minimize the MSE of
W 0(Σ+T −Σ+)W, given a weighting matrix W. Because of this bias, the resulting estimator
is not asymptotically efficient. When W is diagonal and Wii = vec(WW 0)ii, the optimal
bandwidth parameter is J2(w0) = [

W 0(Σw0 )W
W 0ΣW ]2. (see Den Haan and Levine (1996)) where

Σ(w0) =
P
τ |τ |w0

P
t htht−τ is the w0-th derivative of Σ

+
T and measures its smoothness

around frequency 0, and J1(w0) = 1.1447 if w0 = 1 and J1(w0) = 1.3221 if w0 = 2.

It turns out that among the kernels which generate positive semi-definite estimators, the
QS is optimal (Andrews (1991)). Two features of this kernel should be emphasized: first
it does not truncate the ACF of ht. Second, since the weights it gives to elements within
±J(T ) are larger than those given by, e.g. the Bartlett kernel, the second source of bias
is also reduced. This bias reduction, has important implications: Σ+T now converges to Σ

+

faster than the Bartlett Kernel (T
2
5 vs. T

1
3 ). Simulation experiments however suggest that

the small sample performance of the two kernels are roughly similar and that the choice of
J(T ) is what matters most.

The third step involves providing estimates of Σw0 and Σ (the optimal choice of J2(w0)
is non-operative). There are two approaches in the literature: Andrews and Mohanan
(1992) estimate AR(1) representations for the filtered orthogonality conditions and use these

estimates to obtain an estimate of J2(w0). In this case Ĵ2(w0) =
P
iWi4ρ̂

2
i σ̂

4
i (1−ρ̂i)−6(1+ρ̂)−2P

iWiσ̂4
i (1−ρ̂i)−4)

for

w0 = 1 and Ĵ2(w0) =
P
j wj4ρ̂

2
j σ̂

4
j (1−ρ̂j)−8P

j wj σ̂
4
j (1−ρ̂j)−4 for w0 = 2 where ρ̂j(σ̂j) is an estimate of the AR(1)

coefficient (standard deviation of the error) for the filtered condition j. Newey and West
(1994) instead choose an automatic procedure which depends on T and on one (arbitrary)

parameter. Here Σ̂w0 =
PJ(T )
τ=−J(T ) |τ |w0 1

T

P
t ete

0
t−i where et are the filtered orthogonality

conditions obtained in i); J(T ) = b1(0.01T )
2/9 for w0 = 1; J(T ) = b2(0.01T )

2/25 for w0 = 2;
b1 = 4 or 12 and b2 = 3 or 4.

Once an optimal kernel is obtained (call it K†(i, J(T )), an estimate of the covariance
matrix of the filtered error et is Σ

†
e =

P
iK†(i, J(T )) 1T

P
t ete

0
t−i and an estimate of the
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covariance matrix of the original conditions is Σ†T = [IN −
P
iAi]

−1Σ†e([IN −
P
iAi]

−1)0

where Ai are the i-th AR coefficients obtained in step 1).
There are two important features of kernel based HAC estimates worth mentioning.

First, J(T) must grow with the sample size for the resulting estimator to be consistent.
This is unfortunate since it forces the bandwidth parameter to grow with T even when
the serial correlation of ht is known to be finite. Second, even optimal kernel estimators
converge slowly. Hence, they may have worse small sample properties than a parametric
estimator (which converges at

√
T rate).

Algorithm 5.3 (Parametric HAC)

1) For each j, specify a VAR for hjt and select the order of the VAR optimally.

2) Calculate the spectral density of the ”prewhiten” orthogonality conditions.

3) Calculate HAC consistent estimates of the original orthogonality conditions.

In step i) one specifies the autoregression hjt =
P
i=1

P
τ=1Aiτhit−τ+ejt and chooses the

lag length using information criteria (see Chapter 4). Note that the same number of lags of
each hit enter the autoregression of hjt. Den Haan and Levin (1996) show that starting the

search process from τ̄ = T
1
3 produces consistent estimates. Once white noise residuals are

obtained an estimate of Σe is Σ
+
e =

1
T

P
t ete

0
t and Σ

+
T = [IN −

P
Aτ ]

−1Σ+e ([IN −
P
Aτ ]

−1)0.
Note that in the parametric approach, the question of positive definiteness does not

arise since Σ†T is positive definite by construction. Also, because the parametric estimator
produces smaller biases than kernel estimators, it has better convergence properties.

Example 5.14 Suppose that ht has two components. Then prewhitening works as follows.
For each i = 1, 2 determine the lag length of Ai1(`) and Ai2(`) in hit = Ai1(`)hit−1 +
Ai2(`)hi0t−1 + eit, i 6= i0 which could be different for different i. Collect the two equations
into a VAR and transform it into a companion form Yt = AYt−1+Et where Yt = [h1t, h2t]0.
Then var(Et) = ΣE, var(Yt) = (I −A)−1ΣE((I −A)−1)0 and cov(Yt,Yt−τ ) = Aτ var(Yt).

5.3.3 Optimizing the Asymptotic covariance matrix

There are a number of ways to make GMM estimators efficient. For example, one can
choose W to minimize the asymptotic covariance matrix of θ. As in the linear framework,
it is optimal to set W = (E(hth0t))−1 if ht is a martingale difference - with the obvious
adjustments if serial correlation is present.

As mentioned, DSGE models typically deliver orthogonality conditions of the form
E[e(yt, θ)|zt] = 0 where zt is a set of instruments in agent’s information set and et
are the residuals of an Euler equation. This restriction implies E[z0te(yt, θ)] = 0 but also
that E[f(zt)

0e(yt, θ)] = 0 for any measurable function f. What is the optimal f?
Let g(yt, θ) = f(zt)

0e(yt, θ) and assume g∞(θ) = 0. If yt, zt are jointly stationary and
ergodic; E[e(yt, θ)|zt, zt−1, . . . , et−1, et−2 · · ·] = 0; E[e(yt, θ)2|zt, zt−1, . . . , et−1, et−2, . . .]
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= σ2e ; ifH ≡ E
¯̄̄
∂h(yt,θ0)

∂θ

¯̄̄
= E

¯̄̄
f(zt)0∂e(yt,θ0)

∂θ

¯̄̄
andΣ ≡ E[h(yt, θ0)h(yt, θ0)0] = σ2eE[f(zt)0f(zt)],

then var[
√
T (θT − θ0)] = (HΣ−1H 0)−1 = (E[∂et∂θ

0
f(zt)]

−1E[f(zt)0f(zt)]E[f(zt)0 ∂et∂θ ])
−1σ2e .

The expression in parenthesis is the inverse of the population covariance matrix of the
predicted values of the linear regression of ∂et

∂θ on f(zt). Therefore, to minimize var(θT ),
one should select f to maximize the correlation between f(zt) and ∂et/∂θ.

Exercise 5.25 Show that it is optimal to set f(zt) = E[∂et∂θ (yt, θ0)|zt] (Hint: Any other
f̃(zt) will produce a covariance matrix Σ̃θ such that Σ̃θ −Σθ is positive semi-definite.)

Intuitively the result of exercise 5.25 obtains because the best MSE predictor of a se-
quence of random variables is its conditional expectation. There are few features of the
result that need to be emphasized. First, the optimal f(zt) is non-unique up to a nonsingu-
lar linear transformation of the relationship, i.e. if f(z) achieves the bound also bf(z) will
do it where b is a matrix of constants. Second, the formula is non-operative since both e
and θ0 are unknown. Hence a consistent θT is typically used to calculate the derivative of
e. Third, if e(yt, θ0) is independent of zt, then for every pair of continuous and measurable
functions f1, f2 such that E[f1(e(yt, θ0))] = 0, g̃ = f2(zt)

0f1(e(yt, θ0)) is a potential choice
of g function.

Exercise 5.26 Find the optimal (f1, f2) pair in the above problem.

Exercise 5.27 Let yθ0
t = θ1 + θ2xt + et. Assume E[f(zt)

0et] = 0, f(zt) = E[ ∂e∂θ0 |zt],
θ = [θ0, θ1, θ2].
(i) Show that a NLIV estimator obtained using f(zt) differs from a NLLS estimator obtained
using f(xt) as the instruments.
(ii) Show that the NLLS estimator is also different from a ML estimator.
(iii) Show that the NLLS estimator is inconsistent. (Hint: NLLS solves E[f(x)0et] = 0.)

Often in DSGE models the density f(y|θ) of the endogenous variables can not be cal-
culated. However, one can simulate a sequence yt and compute approximations to the
moments of f(y|θ) using a law of large numbers (see section 5) . Hence, there are cases
where ML is not applicable but GMM is. Since θML typically has the smallest asymptotic
covariance matrix in the class of estimators which are consistent and asymptotically nor-
mal, one may want to know whether it is possible to construct a θT which is as efficient as
θML. In other words, among all possible orthogonality conditions, which ones have the most
information for the parameters? Gallant and Tauchen (1996) show that such orthogonality
conditions are the scores of each observation.

Example 5.15 Let yt be iid with known density f(yt, θ). Let θT be the GMM estimator
associated with orthogonality conditions of the form E(gt(θ, yt)) = 0 and suppose Σθ is its

asymptotic covariance matrix. Then Σθ ≥ −T−1E(∂2logf(yt,θ)
∂θ∂θ0 ]−1 with equality holding if

gt(θ) =
∂logf(yt,θ)

∂θ . Hence the most efficient GMM estimator solves 1
T

P
t
∂logf(yt,θ)

∂θ0 = 0.

Exercise 5.28 Suppose that yt is serially correlated. How would you modify the argument
of example 5.15 to fit this case?
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5.3.4 Sequential GMM Estimation

There are many applied situations where θ can be naturally separated in two blocks,
θ = (θ1, θ2), and one may consider sequential estimation of the two sets of parameters
or estimation of θ1, conditional on θ2. Two cases where this may occur are presented next.

Example 5.16 Consider ML estimation of the parameters of yt = xtθ + et, et ∼ (0,Σe).
One common procedure is to get a consistent estimate for Σe, concentrate the likelihood, and
then estimate θ. It turns out that unless xt is strictly exogenous, the standard formula
for Σθ obtained using a sequential approach is incorrect - we need to take into account the
correlation of xt and et.

Example 5.17 Consider the Euler equation for capital accumulation (5.3). Here β, δ and
the marginal product of capital fK are unknown. Since β is typically hard to estimate,
one may want to fix it and use (5.3) to get GMM estimates of the real return to capital
fK +(1− δ). Alternatively, one could use extraneous information to get an estimate of fK,
and use (5.3) to estimate δ and β. In both cases, taking first stage estimates as if they were
the true ones, may distort asymptotic standard errors.

Using a GMM approach it is easy to see what kind of adjustments need to be made.
Let gT (θ1, θ2) =

1
T

PT
t=1 g(yt, θ1, θ2) and let g∞(θ1, θ2) = 0. When θ2 is known and equal

to θ20, the asymptotic distribution of θ1T is obtained using the results of section 3.1.

Exercise 5.29 Suppose θ2 = θ20 is known and that i) g(yt, θ10,θ20) is a martingale dif-
ference process, g(yt, ·, ·) is continuous in the second and third argument, where θ10 is a
k1×1 vector; ii) yt is stationary and ergodic; iii) E[g(yt, θ10, θ20)g(yt, θ10, θ20)0] = Σ <∞.
Show that

√
TgT (yT , θ1T , θ20)

D−→ N(0,Σ1).

When both θ10 and θ20 are unknown, let i), ii), iii) of exercise 5.29 be satisfied and

assume: iv) θ1T
a.s.−→ θ10, θ2T

a.s.−→ θ20; v)
h
∂h
∂θ1
, ∂h∂θ2

i
are continuous in the mean at θ10, θ20;

vi) E
h
∂h(yt,θ10,θ20)

∂θ01
, ∂h(yt,θ10,θ20)

∂θ02

i
= [H10, H20] |H10| 6= 0 where H10andH20 are n× k1 and

n× k2 matrices; vii)
√
T (θ2T − θ20) D−→ N(0,Σ2).

Exercise 5.30 Show that under i)-vii)
√
T (θ1T−θ10) D−→ N(0, (H 0

10)
−1Σ1H−1

10 +(H
0
10)

−1H 0
20

Σ2H20H
−1
10 ). (Hint: Take Taylor expansion of hT (yT , θ1T , θ2T ) around (θ10, θ20) and make

sure all the quantities converge to non-stochastic matrices in the limit).

Exercise 5.30 shows that the asymptotic covariance matrix of θ1T needs to be adjusted
when θ2 has been estimated. There is one situation when this adjustment is not needed:

if the marginal distribution of θ1 does not depend on θ2, H20 = 0, and
√
T (θ1T − θ10) D−→

N(0, (H 0
10)

−1Σ1H−1
10 ). Hence, sequential estimation does not distort standard errors of θ1T .

One special case of the setup we have considered is obtained when θ2T has a degenerate
asymptotic distribution and the g function has a special structure.
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Exercise 5.31 Suppose g∞ = 0 and g(yt, θ1, θ2) = θ2g
∗(yt, θ1) where g∗ is a martingale

difference process and θ2 a scalar. Assume that θ2T g
∗(θ1T ) = 0 and that

√
T (θ2T−θ20) con-

verges in distribution to a constant. Show that
√
T (θ1T−θ10) D−→ N(0, ((θ20H∗)0)0−1θ20Σ∗1θ020

(θ20H
∗)−1) where Σ∗1 = E[g∗(yt, θ10)g∗(yt, θ10)0], H∗ = E[∂g

∗
∂θ01
(θ10)]. Show what happens if

g(yt, θ1, θ2) = f(θ2)g
†(yt, θ1) and f is a continuous (deterministic) function.

One simple case where the machinery of this section is applicable is the following

Example 5.18 The literature has suggested two ways of estimating (ρ, θ) in the model

yt = xtθ + et (5.22)

et = ρet−1 + ²t ²t ∼ (0,σ2) (5.23)

1) Use Generalized Least Square to get θGLS = (x
0Σ−1e x)−1(x0Σ−1e y) where Σe =

σ2

(1−ρ)2 I.

2) Estimate ρols in (5.23) where eols,t = yt−xtθOLS . Transform (5.22) to yt−ρolsyt−1 =
(xt − ρolsxt−1)θ + ²t and apply OLS to get θ2step = (X 0X)0(X 0Y ); var(θ2step) =
(X 0X)−1σ2 where Xt = xt−ρolsxt−1, Yt = yt−ρolsyt−1 and X = (X1, . . . ,XT )

0, Y =
(Y1, . . . , YT )

0.

Clearly 2) does not take into account the fact that ρ has been estimated. Properly reading
off the marginal asymptotic distribution from the joint one in 1) will account for this. The
second approach gives the correct variance for θ only if the asymptotic covariance matrix
of θ and ρ is diagonal. In this case, we can treat ρols as fixed in the estimation of θ.
Problems similar to this emerge in mixed calibration-estimation setups discussed in chapter
7 or in certain panel models (see chapter 8).

5.3.5 Properties of Two-Step Estimators

GMM estimators require iterative procedures and this may make them computationally
demanding when ht is highly non-linear and k is large. As mentioned one could use a
two step approach to compute an approximation to the full GMM estimator. Under what
conditions a two step GMM estimator will asymptotically be the same as a fully iterative
GMM estimator? It turns out that if the initial estimator θ1T is a

√
T -consistent estimator

and it is bounded in probability, the difference between θ2T and θT vanishes asymptotically.

While the first condition is difficult to verify, for the second it suffices that θ1T
D→ θ0 (see

chapter 1), which is easy to check in practice.
In general, one should prefer full iterative GMM to a two-step GMM estimation when

the initial estimator has a large covariance matrix and when the space of ht is not well
approximated by a quadratic function. For example, if ht is highly nonlinear, small changes
in θ may cause large changes in Ht. Note also that the sample size needed for consistency
of θ2T and of θT may be very different: θ

1
T may be in the tail of the asymptotic distribution

and if the objective function is flat, it may take a large T for θ2T to approximate θT .
We ask the reader to verify the asymptotic equivalence of θ2T and θT in the next exercise
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Exercise 5.32 Suppose yt is stationary and ergodic ; g(yt, θ0) is a martingale difference;
g∞(θ) = 0, E[h(yt, θ0)h(yt, θ0)

0] = Σ < ∞, HT = ∂h
∂θ0 (yt, θ) exists and is continuous in

the mean at θ0; E[HT (θ0)] = H, |H| 6= 0; hT (θT ) = 0; θT
P−→ θ0. Assume that θ

1
T

is a
√
T−consistent estimator of θ0 such that

√
T (θ1T − θ0) is bounded in probability

and let θ2T ≡ θ1T −
h
∂hT (θ̄T )
∂θ

i−1
hT (θ

1
T ) where θ̄T ∈ [θ1T , θ2T ]. Show that

√
T (θ2T − θ0) D−→

N(0, (H 0)−1ΣH−1) that
√
T (θ2T − θT ) P−→ 0, where θT is the fully iterative GMM estimator.

5.3.6 Hypotheses Testing

We are concerned with the general problem of testing whether a vector of (possibly non-
linear) restriction of the form R(θ) = 0 holds. The discussion in this subsection is general:
we specialize the setup in various examples and exercises. We assume that g∞(θ) = 0; that
θT solves hT (θT ) = 0 (so that n=k) and that

√
T (θT − θ0) D−→ N(0,Σθ). Under the null,

R(θ0) = 0.

• Wald type test

To derive a Wald type test note that even though R(θT ) 6= 0, it should be small with
high probability if θT

P−→ θ0. Assume that R(θ) is a smooth function with, at least, the

first derivative and that ∂Ri(θ̄)∂θ0j
is continuous in the mean (and full rank). Taking an exact

Taylor expansion of R(θT ) around R(θ0) we have

R(θT ) = R(θ0) +R(θ̄)(θT − θ0) (5.24)

where Rij(θ̄) = ∂Ri(θ̄)
∂θ0j

i = 1, 2, . . . and θ̄ ∈ (θT , θ0).
Using continuity of ∂Ri(θ̄)

∂θ0j
and consistency of θT , we have R(θ̄) P−→ R(θ0), elemen-

twise. Then from (5.24) we have that
√
TR(θT ) =

√
TR(θ0)(θT − θ0) D−→ N(0,ΣR =

R(θ0)ΣθR(θ0)0) by the asymptotic normality of θT − θ0. Therefore, a test for R(θ) = 0 can
be conducted using:

Wo = TR(θT )
0Σ−1R R(θT ) ∼ χ2(dim(R)) (5.25)

(5.25) is entirely based on the local properties of R(θT ) around θ0. When gT is the score of
the log likelihood function, (5.25) is a standard Wald test.

Exercise 5.33 Find a consistent estimator of R(θ0). What happens to (5.25) if R(θ0) 6= 0.

• Lagrange multiplier type test

In some problems the imposition of restrictions makes estimation and testing easier.
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Example 5.19 Suppose you want to estimate the parameters of the following nonlinear

model
y
α0
t −1
α0

= α1 + α2
x
α0
t −1
α0

+ et. If α0 = 0 the model reduces to ln yt = α1 + α2 lnxt + et
while if α0 = 1 it reduces to yt = (α1 − α2 + 1) + α2xt + et and in both cases estimates of
α1 and α2 can be obtained with simple least square techniques. Given these estimates, we
may want to test whether α0 = 0 or α0 = 1 is more probable.

In cases like those of example 5.19 it may be useful to design a test which uses the local
properties of hT (θ) and R(θ) around θR, a restricted estimator. Let θR solve hT (θR) = 0

and assume that
√
T (θR − θ0) P−→ 0. Expanding hT (θT ) and R(θT ) around θR we have:

hT (θT ) = hT (θR) +
∂hT (θ̄)

∂θ0
(θT − θR) (5.26)

R(θT ) = R(θR) +
∂R(θ̄)

∂θ0
(θT − θR) (5.27)

where θ̄ ∈ (θT , θR). From (5.26) and given assumptions made
√
T (θT−θR) =

√
T (∂hT (θ̄)∂θ0 )

−1

(hT (θT )− hT (θR)) D−→ N(0,Σθ = (H 0)−1ΣhH−1).

Exercise 5.34 Give conditions sufficient to insure the above result. Intuitively explain why
the distributions of (θT − θ0) and (θT − θR) are the same.

Using (5.27) and noting that R(θR) = 0 by construction,
√
TR(θT ) =

∂R(θ̄)
∂θ0

√
T (θT −

θR)
D−→ N(0,ΣR = R(θ0)ΣθR(θ0)0). Therefore, a test for the null hypothesis is

LM = TR(θT )
0Σ−1R R(θT ) ∼ χ2(dim(R)) (5.28)

It is easy to verify that the quadratic forms in (5.25) and (5.28) are similar - (5.25) uses
the properties of an unrestricted estimator while (5.28) those of a restricted estimator - and
asymptotically equivalent. In general, this is not the case (see e.g. Engle (1983)). Here it
occurs because restricted and unrestricted estimators have the same asymptotic covariance
matrix which, in turn, is due to the fact that θR is a

√
T -consistent estimator of θ0. Note

that for the equivalence result to hold WT must be optimally chosen and the same optimal
W must be used in both specifications.

This class of tests based on the local properties of the hT function around θR is called
Lagrange multiplier test . When gT =

1
T

P ∂ log f(yt,θ)
∂θ and E(g(yt, θ)) = 0, θR is the maxi-

mum likelihood estimator obtained subject to R(θ) = 0. Then, (5.28) tests the hypothesis
that the Lagrangian multiplier on the restriction is zero (see Judge, et at. (1985, p.182)).

There is an alternative way to check the properties of hT (θ) and R(θ) around θR. Let

CT P−→ C0 be a (n− dim(R))× n matrix and let [CThT (θR), R(θR)]0 = 0 be a n× 1 vector.

Exercise 5.35 Give conditions under which
√
T (θR − θ0) = (diag [∂h(θ̄)∂θ0 ,

∂R(θ̄)
∂θ0 ])

−1 ×· √
TCT gT (θ0)√
TR(θ0)

¸
D−→ N(0,Σ† = (diag[∂h(θ̄)∂θ0 ,

∂R(θ̄)
∂θ0 ]

0)−1ΣR(diag[
∂h(θ̄)
∂θ0 ,

∂R(θ̄)
∂θ0 ]

−1) where ΣR =
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0 0

¸
. (Hint: Expand [CThT (θR), R(θR)]0 around θ0 and make sure all quantities

converge to the proper limits). Show that a test for the hypothesis that R(θ) = 0 is LM1 =
T [(θR − θ0)(Σ†)−1(θR − θ0)] ∼ χ2(n − dim(R)). Why are the degrees of freedom of the
asymptotic distributions of LM and LM1 different?

• Distance Test

Distance tests examine whether two estimators (a restricted and an unrestricted one)
are close in some metric. They are useful when the minimized value of the criterion function
is never directly computed (as e.g. with maximum likelihood). Let θR solve hT (θR) = 0
and let θT be a

√
T−consistent (unrestricted) estimator. Then 0 = hT (θR) = hT (θT ) +

H(θ̄)(θR − θT ) with θ̄ ∈ (θR, θT ) where Hij = ∂hTi(θ̄)
∂θj

.

Exercise 5.36 Give sufficient conditions to insure that H(θ̄)
p→ H and

√
T (θR − θT ) D−→

N(0,Σθ) where Σθ = (H(θ0)0)−1Σ(H(θ0))−1.

Under the conditions of exercise 5.36, a test for the null hypothesis R(θ) = 0 is

Dt = T (θR − θT )0Σ−1θ (θR − θT )0 ∼ χ2(k) (5.29)

where Σ =var(hT (θT )). If θR is a random vector, then the test has a smaller number of
degrees of freedom and this occurs even if (θT − θR) is a k × 1 vector.

Example 5.20 A likelihood ratio test is a special case of a distance test. Expanding LT (θR)
around a

√
T−consistent unrestricted estimator θT we have LT (θR) = LT (θT )+ ∂LT (θ̄)

∂θ0 (θR−
θT )+0.5(θR−θT )0 ∂

2LT (θ̄)
∂θ∂θ0 (θR−θT ). Since

√
T (θT−θ0) P−→ 0, ∂LT (θ̄)∂θ0

P−→ ∂LT (θT )
∂θ0 = 0. Hence

2T (LT (θR)− LT (θT )) = T (θR − θT )0 ∂L
2
T (θ̄)

∂θ∂θ0 (θR − θT ). Then, since ∂2LT (θ̄)
∂θ∂θ0

P−→ ∂2LT (θT )
∂θ∂θ0 ≡

Σθ = (−H−1) = Σ−1θ , we have that −2T (LT (θR)−LT (θT ))
P−→ T (θR−θT )0H−1(θR−θT ) ∼

χ2(k − k0) and k − k0 is the number of restrictions.

• Hausman Test

Hausman’s (1978) test is based on the idea that it is not necessary for the unrestricted
estimator to be efficient as long as restricted and unrestricted estimators have a joint limiting
distribution. Let θR be an efficient estimator under the null, i.e. it minimizes the asymptotic
covariance matrix; let θT be any consistent, not necessarily efficient estimator; let θ

0 =

[θ0, θ0]
0, and let θTR = [θT , θR]

0 be such that
√
ThT (θ

TR)
D−→ N(0,Σθ). If the parameter

space is compact, the uniform convergence theorem insures that the asymptotic covariance
matrix of

√
T (θTR − θ0) has zero off-diagonal elements (so that the two estimators are

asymptotically independent). A version of Hausman test is then:

Ha = T (θT − θR)0(ΣT −ΣR)−1(θT − θR) D−→ χ2(k) (5.30)
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where ΣT and ΣR are the asymptotic covariance matrices of the two estimators. Note that
if also θT is efficient, ΣT −ΣR is singular. In this case, it is still possible to implement the
test by choosing a k0 × k matrix C such that |C(ΣT −ΣR)C0| 6= 0 and the test becomes:

Ha = T (θT − θR)(C(ΣT −ΣR)C)−1(θT − θR)0 D−→ χ2(k0) (5.31)

Exercise 5.37 Show the conditions under which (5.29) and (5.30) are equivalent.

It is important to stress that while several of the tests we consider have the same
asymptotic distribution, they may have dramatically different properties in small samples.

Wald tests are easy to implement in practice, as it is shown in the next example.

Example 5.21 i) Let Σii be the i-the element of the optimal Σ and let R(θ) = 0 be θi = θ̄i.

Then T (θiT − θ̄i)(Σii)−1(θiT − θ̄i)→ χ2(1). Alternatively,
√
T (θiT−θ̄i)√

Σii
→ N(0, 1).

ii) Let the restriction be Rθ = θ̄, then the statistic is T (RθT−θ̄)0[RΣR0]−1(RθT−θ̄) D→ χ2(k)

Exercise 5.38 Consider example 5.10. Provide three test statistics for the hypothesis that
the term structure of interest rates is flat in the steady state (i.e. rτ = r1) which are robust
to the presence of autocorrelation in the orthogonality conditions.

Example 5.22 One of the basic assumptions underlying the RBC model of example 5.1
is that agents like to smooth consumption. This implies that the coefficient of relative risk
aversion should be positive. One can test this hypothesis in a number of ways. Assuming

u(c) =
c1−ϕ
t
1−ϕ and using (5.3) we can construct both restricted and unrestricted estimators

since the inequality restriction is linear. Wald and Distance statistics are Wo = Tϕ2T/ΣϕT ,
and Dt = T (ϕT−ϕR)2/ΣϕT where ΣϕT (ΣϕR) is the variance of the unrestricted (restricted)
estimator.

Exercise 5.39 Consider the asset pricing equations of example 5.3. Suppose that the utility
function is logarithmic and that consumption growth has a linear trend. How would you
undertake estimation of the discount factor in this case? Can we still use a J-test to examine
the validity of the model? How would you test β = 1?

Exercise 5.40 Simulate data for consumption, investment, output and the real interest
rate from a RBC model , using β = 0.99, δ = 1 and ϕ = 1 assuming that the log of technol-
ogy disturbance is AR(1) with persistence 0.9 and standard deviation one. Suppose, as in
exercise 5.1, that the utility function display habit persistence in consumption. Construct
restricted, unrestricted and minimum distance estimators and test the hypothesis γ = 0. Re-
peat the exercise 100 times drawing random technology shocks from a normal distribution.
What are the properties of the three tests?

In some cases we want to test only a subset of the orthogonality conditions. For example,
as in exercise 5.10 we may be interested in knowing if income lagged two periods adds
explanatory power to our estimates or not. In that case a Hausman test could be used.
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Example 5.23 Continuing with exercise 5.10 let θ1T be the estimator obtained using z1T
and θ2 the estimator obtained using z2. Clearly θ2T is as efficient as θ1T since it uses
more orthogonality conditions. If var(θ1T − θ2T ) = var(θ1T )− var(θ2T ), Hausman statistic
for testing if the second set of orthogonality conditions holds is (θ1T − θ2T )(var(θ1T ) −
var(θ2T ))

−1(θ1T − θ2T ) D→ χ2(ν) where ν is the minimum between the number of or-
thogonality conditions tested and the number of conditions minus the number of instru-
ments used for estimation. When ν = 1, var(θ1T ) − var(θ2T ) can be estimated using
Tσ2[y0(z1(z01z1)−1z01)y − y0(z2(z02z2)−1z02)y].
Exercise 5.41 Consider the situation where agents in one country (say the US) have the
option to purchase one period bonds denominated in another currency (say, yen) and let
nert the (dollar-yen) exchange rate. Show that in equilibrium

0 = Et[β
Uc,t+1/pt+1
Uc,t/pt

((1 + i1t)− nert+1
nert

(1 + i2t))] (5.32)

where iit is the nominal interest rate on bonds of country i, pt is the price level and
Uc,t+1/pt+1 the marginal utility of money. Log linearize the condition, assuming u(ct) =
ln ct. Using nominal balances, nominal interest rates and nominal exchange rate data verify
whether (5.32) holds. Test whether agents discount the future or not (i.e. whether β = 1).

Exercise 5.42 (McKinlay-Richardson) If a portfolio j of assets is mean variance efficient
and if there exists a risk free asset, it must be the case that E(r̃it) = αiE(r̃jt) (see exercise
5.2) where r̃it = rit − r0t is the excess return on asset i at time t, r̃jt = rjt − r0t is the
excess return on a portfolio j at time t, i = 1, 2, . . . I. Derive the orthogonality conditions
implied by mean-variance efficiency. Using Euroxx50 stocks data, provide an estimator for
αi which is robust to heteroschedasticity (produced, e.g. if the variance of return i depends
on the return on the market portfolio). Test the hypothesis that the efficient frontier holds.

Example 5.24 Continuing with example 5.11 we test three hypotheses. First, fixing β = 1
does not change estimates: a distance style test finds no difference between restricted and
unrestricted specifications. Second, we test for full stickiness ζp = 1 - this corresponds to
excluding marginal costs from the specification (under this null inflation is a simple AR(1)
process). A LR test rejects this hypothesis using the output gap in US, UK and the labor
share in Germany at the 5% confidence level. Finally, a test of full flexibility ζp = 0 is
rejected in 5 of the 6 specifications.

5.4 GMM estimation of DSGE models

The examples considered so far involve the estimation of one equation of a model. At times
one may want to examine its full implications so that, e.g., comparison with ML estimates
can be performed. In this case systemwide methods are necessary. Typically, there is
recursivity in the structure of DSGE models so that estimation can be usefully conducted
block by block.
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Example 5.25 Suppose a social planner maximizes E0
P
t β

t[
c1−ϕ
t
1−ϕ +ϑN(1−Nt)] by choices

of consumption (ct), hours (Nt), and capital (Kt+1) subject to Gt+ct+Kt+1 = ζtK
1−η
t Nη

t +
(1− δ)Kt where ln ζt = ζ̄+ρζ ln ζt−1+ ²1t, ²1t ∼ (0,σ2ζ ), lnGt = Ḡ+ρG lnGt−1+ ²4t, ²4t ∼
(0,σ2g), K0 given, where . Assume that government expenditure is financed with lump sum
taxes or bond creation. The optimality conditions are:

ϑNc
ϕ
t = ηζtK

1−η
t Nη−1

t (5.33)

c−ϕt = Etβc
−ϕ
t+1[(1− η)ζt+1K−η

t+1N
η
t+1 + (1− δ)] (5.34)

Furthermore, competitive input markets imply that the real wage is wt = ηζtK
1−η
t Nη−1

t and
the return to capital is rt = (1− η)ζt+1K−η

t+1N
η
t+1 + (1− δ).

The model has 11 parameters: five structural θ1 = (β,ϑN ,ϕ, η, δ) and 6 auxiliary ones
θ2 = (ζ̄, Ḡ, ρζ , ρg,σ

2
g ,σ

2
ζ ). Hence, we need at least 11 orthogonality conditions to estimate

θ = (θ1, θ2). From the capital accumulation equation and taking unconditional expectations:

E(δ − 1 + Kt+1
Kt

− invt
Kt

) = 0 (5.35)

which determines δ if data on capital and investment are available. The Euler equation
(5.34) contains four parameters (β,ϕ, η, δ). Since δ is identified from (5.35) we need to
transform (5.34) to produce at least three orthogonality conditions. Since any variable which
belongs to the information set at time t can be used as instrument, one could use e.g. a
constant, lags of the real retun to capital and of consumption growth to estimate the other
three parameters. For example, one could employ

Eβ(
ct+1
ct
)−ϕ[(1− η)ζt+1K−η

t+1N
η
t+1 + (1− δ)])− 1 = 0 (5.36)

E{β(ct+1
ct
)−ϕ[(1− η)ζt+1K−η

t+1N
η
t+1 + (1− δ)]− 1}

ct
ct−1

= 0 (5.37)

E{β(ct+1
ct
)−ϕ[(1− η)ζt+1K−η

t+1N
η
t+1 + (1− δ)]− 1}rt−1 = 0 (5.38)

The intratemporal condition implies

E[c−ϕt ηζtK
1−η
t Nη−1

t − ϑN ] = 0 (5.39)

which also involves three parameters (ϕ, η,ϑN). Given (ϕ, η), (5.39) determines ϑN .
The auxiliary parameters can be estimated using the properties of ²1t and ²4t

E(ln ζt − ζ̄ + ρζ ln ζt−1) = 0 (5.40)

E(ln ζt − ζ̄ + ρζ ln ζt−1) ln ζt−1 = 0 (5.41)

E(ln ζt − ζ̄ + ρζ ln ζt−1)2 − σ2ζ = 0 (5.42)

E(lnGt − Ḡ+ ρG lnGt−1) = 0 (5.43)

E(lnGt − Ḡ+ ρG lnGt−1) lnGt−1 = 0 (5.44)

E(lnGt − Ḡ+ ρG lnGt−1)2 − σ2g = 0 (5.45)
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While government expenditure is observable, technological disturbances are not. Therefore
an additional auxiliary condition is needed. From the production function and given esti-
mates η̂ of η we have ζ̂t = ln yt− (1− η̂) lnKt− η̂ lnNt and ζ̂t can be used in (5.40)-(5.42).
In sum, the last three conditions could be estimated separately while for the first eight joint
or recursive estimation is possible - in the latter case, we need to correct standard errors as
described in section 3.4.

Parameter Just indentified Over identified Over identified Over identified

η 0.18 (0.0002) 0.18 (0.0002) 0.64 0.18 (0.0002)
ϕ 1.0 1.0 1.0 2.0
δ 0.0202(0.00022) 0.0202 (0.00021) 0.0201 (0.00013) 0.0208 (0.00013)
β 1.007 (0.0005) 1.007 (0.0005) 0.991 (0.0004) 1.012 (0.0009)
ϑN 3.73 (0.013) 3.73 (0.012) 2.93 (0.006) 0.455 (0.001)

ρζ 1.035(0.026) 1.021 (0.025) 1.035 (0.026) 1.075 (0.034)
ρG 1.025 (0.038) 1.042 (0.033) 1.025 (0.038) 1.027 (0.0039)
σ2ζ 0.0001 (0.00001) 0.0001 (0.00001) 0.0001 (0.00001) 0.0001 (0.00001)

σ2g 0.0002 (0.00002) 0.0002 (0.00002) 0.0002 (0.00002) 0.0002 (0.00002)

χ2(6) = 259.69 χ2(5) =260.19 χ2(6) =257.71

Table 5.2: Estimates of a RBC model

Given existing experimental evidence and the relatively small sample of data, we decided
to estimate θ from a just identified system or from a weakly overidentified one without
optimal weighting. Overidentified estimates can be obtained using additional lags of rt,

ct+1

ct
,

of investment or of the output-labor ratio. Using linearly detrended US quarterly data for
the sample 1956:1-1984:1 for consumption, investment, government expenditure, output,
household hours and capital stock we estimate θ, fixing ϕ, which can not be estimated from
this data set. Since estimates of η are low, we also provide estimates conditioning on a larger
value of η. Table 5.2 reports the results with standard errors in parenthesis (estimates of Ḡ
and ζ̄ are omitted as they are insignificantly different from zero). Four main features emerge
from the table. First structural parameters are, in general, precisely estimated and the data
wants non-stationary government and technology disturbances. This obtains regardless of
whether just-identified or overidentified systems are used and indicates that the model lacks
internal propagation. Second, estimates of β are economically unreasonable except when we
set η = 0.64. Third, the model is strongly rejected in all cases with smaller χ2 statistic when
ϕ = 2. Fourth, results are broadly independent of the value ϕ. In fact, apart from ρζ and
ρG, estimates change very little for ϕ in the range [0, 3].

While J-test or other statistical devices can give a rough idea of the validity of a model,
they are insufficient from an economic point of view since, in the case of failure, they provide
no indications on how to respecify the model to improve the fit. Useful information on why
the model fails can be obtained by comparing features of the data which have economic
content (see chapter 7 for a thorough discussion). Although it is popular to examine these
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economic features informally, such comparisons are difficult to interpret since they neglect
parameter and sampling uncertainty. Whenever features of interest are continuous functions
of the unknown parameters, an (economic) Wald-type test can be employed to formally
evaluate the quality of the model’s approximation to the data.

Let the features of interest be S(θ) and the corresponding features in the data be ST

where the subscript T indicates the sample size. Let hT (θT ) = S(θT )−ST where θT is a

GMM estimate. Then the covariance matrix of hT (θT ) is Σh = (∂h(θ0)
∂θ0 )Σθ(

∂h(θ0)
∂θ0 )

0 + ΣS.
Under the null hypothesis that the model reproduces the features of interest in the data

Th(θT )
0Σ−1h h(θT )

D→ χ2(dim(S)). Hence, a large value of this statistic indicates that the
model and the data are different in the dimensions of interest. Since it is possible to run this
test for any subset of S(θ), the approach can be used sequentially to check which features
of the data are matched and which are not.

One important point needs to be emphasized. While statistical tests can be conducted
using the optimality conditions of the model, economic tests require a researcher to generate
S(θT ) given some estimate θT . In other words, to conduct economic tests, a solution to
the model needs to be computed. Therefore, one of the main advantages of GMM over
maximum likelihood and similar techniques disappears.

Example 5.26 Continuing with example 5.25, we log linearize the conditions and solve the
model. Using just-identified estimates of the parameters we evaluate the quality of the model
approximation to the data considering: a) the variance of output, consumption, investment
and hours, b) the first order autocorrelation of these four variables, (c) the contemporaneous
cross correlations of consumption, investment and hours with output. Table 5.3 reports these
statistics for the model and the data. Since S = T × h(θT )0Σ−1h h(θT ) > 800, we strongly
reject the idea that the RBC model replicates these 11 moments of the data.

Moment Data Model Moment Data Model Moment Data Model

var(y) 0.002 0.001 c-AR(1) 0.986 0.927 corr(c,y) 0.953 0.853
var(c) 0.001 0.009 inv-AR(1) 0.976 0.991 corr(inv,y) 0.911 0.703
var(inv) 0.005 0.008 N-AR(1) 0.958 0.898 corr(N,y) 0.464 0.570
var(N) 0.0004 0.0003 y-AR(1) 0.780 0.859

Table 5.3: Moments of the data and of the model

Exercise 5.43 (Burnside and Eichenbaum) Let agents’ preferences be represented by
U(c,N, ef) = ln ct+ϑNNt−1 ln(1− b0− b1eft) where eft is effort, Nt−1 is the probability of
working, ϑN is the fraction of people working, b1 is a parameter and b0 is a fixed costs one
has to pay to get to work - (1 − b0 − b1eft) are effective hours of leisure. Here effort can
respond to news instantaneously but Nt cannot. We assume a production function of the
form GDPt = ζtK

1−η
t (b1eftNt−1)η; that government consumes a random amount Gt taxing

income at the rate T y and that capital depreciates at the rate δ.

i) Show that in the steady states, if ef = 1 we have (GDP/K)ss = [β−1−(1−δ)]
1−η ; (c/GDP )ss =
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1− δ(K/GDP )ss− (g/GDP )ss; N = η
ϑN
(1− b0− b1)(GDP/c)ss; ln(1− b0− b1) = b1

1−b0−b1
.

ii) Show that the first order conditions of the problem can be written as

−ϑNb1Nt−1(1− b0 − b1eft)−1 + ηc−1t
yt
eft

= 0 (5.46)

ϑNEt ln(1− b0 − b1eft+1) +Etc−1t+1η
yt+1
Nt

= 0 (5.47)

−c−1t +Etβc
−1
t+1[(1− η)

yt+1
Kt+1

+ (1− δ)] = 0 (5.48)

ζtK
1−η
t (b1eftNt−1)η + (1− δ)Kt −Kt+1 −Gt − ct = 0 (5.49)

iii) Describe how to estimate (b0, b1, η,β, δ,ϑN) using GMM . Which parameters are identi-
fiable? What data would you use? What instruments would you consider? How would you
deal with the fact that effort is non-observable? (Hint: think of a proxy and consider the
effects of measurement error).
iv) Test the hypothesis that the model fits the first three terms of the autocovariance function
of hours and of the cross covariance of hours and productivity (wage) at lags -1, 0 and 1.
Repeat the exercise assuming that effort is fixed (i.e. drop it from the choice variables). Can
you test the variable effort model against the fix effort model? How?

Exercise 5.44 (Eichenbaum and Fisher) Consider monopolistic competitive firms which
can’t reoptimize their price because information is sticky. This is because, at each t, they
only observe variables dated at t− τ .
(i) Show that log linearizing the optimality conditions leads to pit = Et−τ [mct+

P∞
l=1(βζp)

l

(mct+l−mct+l−1+πt+l)] where β is the discount factor, ζp the share of firms not changing
prices, mct are marginal costs (lower case variables are deviations from the steady state).

Show that the (log-linearized) Phillips curve is πt = βEt−τπt+1 +
(1−βζp)(1−ζp)

ζp
Et−τmct.

(ii) Using GDP deflator and (real) labor share data for the US provide GMM estimates of
β and ζp using as instruments a constant, one/three/five lags of GDP deflator and of the
(real) labor share for τ = 0, 1, 2 correcting for serial correlation of order 0 or 2. Provide a
test of overidentifying restrictions. Which version of the model fits the data better?
(iii) Repeat (ii) jointly estimating the parameters of the log-linearized Phillips curve and
those of the log linearized Euler equation ct = Et−τ [ct+1 − 1

ϕ(it+1 − πt+1)] where ct is
consumption, it the nominal interest rate and ϕ the coefficient of relative risk aversion. In
this case, add lags of consumption and of the nominal interest rates to the instrument list.
Do the results in (ii) change?

5.4.1 Some Applied tips

A number of studies have examined the small sample properties of GMM estimators in
macro-based or finance-based experimental data (see e.g. Tauchen (1986), Kocherlakota
(1990), Mao (1993), Pagan and Yoon (1993) Ferson and Foerster (1994), Hansen et. al.
(1996), Newey and West (1996) West and Wilcox (1996), Burnside and Eichenbaum (1996),
Den Haan and Christiano (1996), Den Haan and Levin (1996), Anderson and Sörensen
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(1996), Furher, Moore and Shuh (1995), Linde (2001) Ruge Murcia (2002)). Four issues
have been primarily investigated: (i) how inefficient are estimates obtained using a subset
of the available instruments; (ii) how reasonable are two-step GMM estimators in small
samples; (iii) how large are the efficiency gains obtained using an optimal weighting matrix;
(iv) the relative performance of parametric and kernel based HAC estimates.

On the first issue there is agreement. While a large set of moment conditions improves
asymptotic efficiency, it also dramatically increases small sample biases. Hence, GMM
estimates obtained with a smaller number of instruments may have lower MSE in small
samples. There are two reasons for this: first, additional instruments may only be weakly
correlated with the quantities that they instrument for. As we have seen in exercise 5.11,
GMM estimators may not even exist if this correlation is weak. Second, when the dimension
of the weighting matrix is large, estimates may fail to converge to a non-stochastic matrix
in small samples. In general, when the sample is short, one should be careful in taking
strongly overidentified estimates at their face value.

For the second issue, the results are mixed and depend on the environment. In general, a
fully iterative GMM estimator has good properties for simple problems. However, when the
ht function is highly nonlinear and/or T is relatively small, the small sample distribution
may poorly approximate the asymptotic one. Note that in some experimental design, it has
been found that fully iterative GMM are poor even when T = 300.

As mentioned, estimation of the optimal covariance matrix is complicated, depends on
the number of instruments used, the sample size, the serial correlation properties of the ht
function and a number of other choices made by the investigator. In general, estimates of
WT tend to be poor and this, in turn, affects standard error of the estimates and overi-
dentifying tests. When problems are suspected, it may be reasonable to use either the
identity matrix or proceed with a just-identified version of the model. Hansen et al. (1996)
explored the properties of θT obtained minimizing [

1
T

P
t h(yt, θ)]

0(WT (θ))
−1[ 1T

P
t h(yt, θ)].

One reason for preferring a weighting matrix which varies with θ is that under conditional
homoskedasticity, θT is invariant to how moment conditions are scaled and corresponds to
Sargan’s IV estimator for a large class of models. It appears that such a choice produces
smaller biases in θT than a standard selection in some designs, but no other corroborat-
ing evidence has been presented in the literature. Also, researchers have found that poor
kernel estimates of Σ+ produce biases, induce small sample confidence intervals with very
poor coverage properties and t-tests which overreject the null hypothesis. Den Haan and
Levin (1996) have shown that it may be dangerous to entirely rely on automatic band-
width selection procedures, as they produce outcomes which are hard to believe (e.g that
J(T ) = 1 when T = 128). Also, distortions in Σ+ could also be created because, to in-
sure semi-positiveness, the bandwidth parameter must be the same for each orthogonality
condition.

The experimental evidence also suggests that estimates of the parameters and of the
standard errors are biased in small samples. The direction of the bias however depends on
the design while estimates of the standard errors are, in general, downward biased. Since
this implies that t-statistics have long and fat tails, tests of hypotheses when T is small
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should be undertaken with caution.

Regarding the reliability of overidentifying tests, the small sample evidence is mixed
since results depend on WT , on whether a fully iterative or a two step GMM is used, on
whether instruments carry ” good” information, on how many there are, etc. Hence, we
recommend experimenting with various alternatives - in particular, with various estimates
of W and of instruments - before deriving conclusions about parameter estimates and the
quality of the model.

Burnside and Eichenbaum (1996) find that Wald tests in an RBC model overreject
individual moment restrictions but that their size increases uniformly as the dimension of
the statistics used increases. Also in this case, difficulties are due to poor estimates of
the W matrix. Linde’ (2001) finds that GMM estimates of New-Keynesian Phillips’ curves
(obtained from data simulated by a three equation New-Keynesian model) are inaccurate
when the forward looking element is strong and when there is measurement error in marginal
costs. He also shows that ML estimates are preferable, both in large and small samples.

Two further practical issues are of interest. The asymptotic distribution of GMM esti-
mates was derived under stationarity and ergodicity . We can extend the GMM framework
to allow for linear trends in yt, as in Ogaki (1993), with minor changes. However, the pro-
cedure does not allow for unit roots or other forms of nonstationarities in yt. Hence, it is
typical to transform the data (take growth rates) or filter it before estimation is undertaken.
In example 5.25 we have eliminated a linear trend, but this did not seem to be enough as
estimates of the persistence of the shocks imply processes in the nonstationary region. The
alternative is to employ a band pass or a HP filter. As we have seen in chapter 3, filtering is
not innocuous. For example, Christiano and Den Haan (1996) find that HP filtering induces
large and persistent serial correlation in the residuals of the orthogonality conditions and
this creates problems in the estimation of the spectral density at frequency zero. Clearly,
problems are more severe when filtered data is very persistent - as is the case with the HP
or the band pass filters. If filtering is required, one should compare estimates obtained with
different approaches and judgementally select the most reasonable one.

Second, one may wonder how large should T be to be reasonably confident in the results.
Experimental evidence on simple specifications suggests that, with T=300, GMM estimators
obtained with good W estimates and good instruments approximate the true values in
distribution. However, T=300 is a large number: 40 years of time homogeneous quarterly
data make T=160 and 25 years of monthly data make T=300. Experimental evidence also
suggests that convergence is slow. Hence, caution should be exercised, probably with any
available macroeconomic data.

In conclusion, small sample distribution may deviate from the asymptotic one when the
weighting matrix is poorly estimated - and this is more of a problem when the orthogonality
conditions are highly serially correlated - when the instruments are poorly correlated with
the functions we want to instrument for and when too many moment conditions are used
in testing relative to the sample size. Hence, when T is small and hT serially correlated,
we recommend a parametric HAC approach or to avoid, when possible, the estimation of
W . Also for testing purposes, the number of instruments and/or overidentifying restrictions
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should be a function of the sample size.

5.5 Simulation Estimators

Simulation Estimators have become popular over the last 10 years for at least two reasons:
they are cheap and easy to compute and they can be used in situations where GMM can’t
be employed. Two examples where GMM is inapplicable are the following.

Example 5.27 Suppose in example 5.25 that data on capital is not available. Since equa-
tions like (5.38) contain unobservable variables, sample counterparts of theoretical condi-
tions cannot be computed, so GMM can not be employed. One could use the competitive
rental rate (approximated by the nominal interest rate minus inflation) in place of fK+(1−δ)
and still estimate (β,ϕ) with GMM. However, rejection of the orthogonality conditions is
hard to interpret, as it may be due to the approximation employed.

Example 5.28 Suppose in example 5.25 that agent’s preferences are subject to an unob-

servable shock υt with known distribution. If u(ct,Nt,υt) =
c1−ϕ
t
1−ϕ υt + ϑN (1−Nt), then

g∞(θ) = Et[β(
c−ϕt+1υt+1
c−ϕt υt

[fK + (1− δ)]− 1] = 0 (5.50)

which is not estimable even if Kt is available, because υt is unobservable. However, we can

draw {υt}l, l = 1, . . . L and use 1
L

P
l[β

c−ϕt+1υ
l
t+1

c−ϕt υlt
[fK + (1− δ)]− 1] = 0 in place of (5.50). In

fact, under regularity conditions, limL→∞ 1
L

P
l[β

c−ϕt+1υ
l
t+1

c−ϕt υlt
[fK + (1− δ)]− 1] P→ g∞(θ).

In general, simulation estimators can be used when ht contains unobservable variables
or shocks. Note that ht need not be the difference between two orthogonality conditions.
In fact, in this section, we let ht be the difference between generic continuous functions of
the parameters in the sample and in the population. Such functions could be orthogonality
conditions, moments, VAR coefficients, autocovariances, spectral densities, etc.

5.5.1 The General Problem

Let xt(θ) be a m× 1 vector of simulated time series given θ and let yt be its actual coun-
terpart. Assume that there exists a θ0 such that {xt(θ0)}Tst=1 and {yt}Tt=1 share the same
distribution. Let f be a n×1 vector of continuous functions; let FT (y) = 1

T

PT
t=1 f(yt) and

FTs(x, θ) =
1
Ts

PTs
t=1 f(xt(θ)). We would like FT (y)→E[f(yt)] and FTs(x, θ)→E[f(xt(θ))]

for each θ. If xt(θ) and yt are stationary and ergodic, and f is continuous, convergence
obtains almost surely. Furthermore, given the assumptions made, E[f(yt)]− f(xt, θ0)] = 0.
Given an n× n random matrix WT,Ts

P→W , rank(WT,Ts) ≥ k, a simulation estimator θT,Ts
solves:

argminQT,Ts = argmin
θ
[FT (y)− FTs(x(θ))]0WT,Ts [FT (y)− FTs(x(θ))] (5.51)
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The estimator in (5.51) is similar to the one in (5.2). To show the analogy set

hT (yt, xt, θ) =
1

T

TX
t=1

f(yt)− 1

κ

T×κX
t=1

f(xt(θ)) =
1

T

TX
t

[f(yt)− 1

κ

[κt]X
i=[1+(t−1)κ]

f(xi(θ))] (5.52)

where κ = Ts
T > 1 and [κt] is the largest integer less or equal than κt. Then θT,Ts is a

GMM estimator for the hT function given in (5.52). Note that we can produce a time series
for xt(θ) of length Tκ, or κ time series all of length T. Which approach one chooses is
irrelevant. What is important is that the random numbers used to calculate xt(θ) at each
replication are fixed since continuity of the objective function may be otherwise violated.
Finally, for hT to be well behaved, we need

Ts
T to stay constant as T, Ts →∞.

Because of the similarities between θT,Ts and θT , the asymptotic properties of θT,Ts
can be obtained by verifying that the general conditions of section 3.1 hold. In particular
we need yt and xt(θ) to be mutually independent, stationary and ergodic processes, that
hT has a unique zero, that f(xt, θ) and ∂f(xt, θ)/∂θ

0 are continuous in the mean at θ0 and
that F (θ) = E[∂f(xi(θ))/∂θ

0] exists, it is finite and has full rank.
Let ACFy(τ) = E[f(yt) − E(f(yt))][f(yt−τ ) − E(f(yt−τ ))]0, Σy =

P∞
−∞ACFy(τ),

ACFx(τ) = E[f(xt(θ0))−E(f(xt(θ0)))][f(xt−τ (θ0))−E(f(xt−τ (θ0)))]0; Σx =
P∞
−∞ACFx(τ).

If the above assumptions are satisfied, we have that

√
T [FT (y)−E(f(yt))] D−→ N(0,Σy) (5.53)p

Ts[FTs(x(θ0))−E(f(x(θ0)))] D−→ N(0,Σx) (5.54)

and cov[FT (y) − FTs(x(θ0))] = Σy + (1/κ)Σx = (1 + 1/κ)Σy ≡ Σ because E[f(yt)] =

E[f(xt(θ0))]. Hence, as T, Ts → ∞, TsT fixed,
√
T (θT,Ts − θ0) D−→ N(0,Σθ) where Σθ =

F (θ0)0W (F (θ0))−1F (θ0)0WΣWF (θ0)(F (θ0)0WF (θ0)0)−1).

Exercise 5.45 i) Show that it is optimal to set W † = Σ−1. Display the optimal Σ†θ.
ii) Show that it is optimal to let κ→∞. (Hint: As τ →∞, Σ̄ = Σy).
iii) Show that a goodness of fit test for model adequacy is T1 ×QT,Ts(θT,Ts) D→ χ2(n− k).

Exercise 5.46 Give the form for Σ when (i) hT is iid; (ii) hT is a finite MA process;
(iii) hT is generically serially correlated. Display parametric and non-parametric HAC
estimators of Σ in case (iii). What are the asymptotic properties of these estimators?

Note that the vector of functions f could be anything a researcher is interested in
(e.g. moments, autocorrelations, impulse responses). The only requirement is that f is
continuous and that parameters are identifiable. Identifiability, as we will see later, could
create some headaches.

Example 5.29 Suppose that f includes the relative variability of consumption, investment
and hours to output in the data and in the model of example 5.25. Then (5.51) defines an
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estimator for at most 3 parameters (n = 3 ≥ k). By part ii) of exercise 5.45 if the size of
simulated time series is sufficiently large (say, κ > 10), the resulting simulation estimator
will be as efficient as GMM - simulation error washes out.

Exercise 5.47 Consider the setup of exercise 5.2 where rpj,t−1, j = 1, 2 are unobservable
but known to come from a multivariate normal distribution with mean r̄p and variance
Σrp. Describe how to estimate αij by simulation. Make sure you specify the function f you
employ. What happens to your estimates if expected returns are measured with (iid) errors?

The setup we have discussed is appropriate in (close to) linear frameworks. In fact, two
complications may arise when xt(θ) are series generated from a DSGE model. First, draws
must be made from the ergodic distribution of xt which is unknown. Second, the simulated
xt depends on θ in nonlinear way and this implies a nonlinear feedback from parameters to
the f(xt, θ) function. We illustrate these two issues with an example.

Example 5.30 (Duffie and Singleton) Let production be f(Kt, ζt) = ζtK
1−η
t and let

the firm maximize the value of dividends by choices of capital i.e., max{Kt}∞t=0
sdt =

max{Kt}∞t=0
{ζtK1−η

t − rtKt} where rt is the rental rate of capital and ζt a technolog-

ical disturbance. The consumer problem is max{ct,Kt+1,St+1}∞t=0
E[
P
t β

t c
1−ϕ
t
1−ϕ υt] subject to

ct +Kt+1 + p
s
tSt+1 = (sdt + p

s
t)St + (rt + δ)Kt where υt is a taste disturbance, pst is

the price of stocks and δ is the depreciation rate. Let et = (ζt, υt)
0 be a stationary Markov

process with transition function et = P (et−1,φ) where φ is a set of parameters. Let
θ0 = (η,β,ϕ, δ,φ) and let y2t = (Kt, et) be the state vector. In equilibrium y2t+1 will
be a function of y2t, θ0 and this mapping may be computed analytically or by simulation.
The vector of other endogenous variables y1t, is a function of the states y2t. For example, if
υt = 1 ∀t, δ = 1 and ϕ = 1, then Kt+1 = β(1−η)ζtK1−η

t ; ct = (1−β(1−η))ζtK1−η
t ; sdt =

ηζtK
1−η
t ; pst = (β/(1− β)ηζtK1−η

t (see chapter 2).
Suppose we are not willing to make these assumptions. Then we need to compute y2t+1 by

simulation, i.e., select a y20 = ȳ2, θ0 = θ̄, draw an iid sequence for the innovations in et from
some distribution and compute y2i+1(θ̄) recursively. Define ft = f(y2t, y2t−1, . . . , y2t−τ+1)
and ft(θ) = f(y2t(θ̄), y2t−1(θ̄), . . . , y2t−τ+1)(θ̄). Then θT,Ts minimizes the distance between
FTs(θ) =

1
Ts

P
t ft(θ) and FT =

1
T

P
t ft. The properties of θT,Ts are different from the

standard simulation estimator framework since ȳ2 cannot be drawn from its (stationary)
ergodic distribution which is unknown. Hence, the simulated process for y2t depends on
the initial conditions and θ̄ and it is therefore nonstationary. If the mapping between y
and θ was linear, we could have lessened the problem generating a long time series and
throwing away an initial set of observations. However, when the mapping is nonlinear, the
dependence on the initial conditions may not die out. Note also that ft(θ) depends on θ
because of the standard parametric representation and because the transition law of y2t
depends on θ. The latter effect is troublesome since ft(θ) may not be uniformly continuous.

To take care of these two problems, we impose somewhat stronger conditions on the f
function, namely geometric ergodicity and uniform Lipschitz continuity.



Methods for Applied Macro Research 5: GMM and Simulation Estimators 189

Definition 5.3 (Geometric ergodicity) A time homogeneous Markov process {yt}∞t=0 is
geometrically ergodic if for some b ∈ (0, 1], some probability measure µ, (the ergodic distri-
bution of yt) and for every initial point y0

b−τ ||Pt,t+τ − µ||v → 0 as τ →∞ (5.55)

where Pt,t+τ is the τ-step transition probability and ||Ψ||v ≡ sup{f :|f(y)|≤1|}
R
f(y)dΨ(y) is

the total variation norm of the signed measure Ψ.

In words, geometric ergodicity holds if yt converges at the rate b to the stationary dis-
tribution. Note also that geometric ergodicity implies α-mixing with the mixing coefficient
converging geometrically to zero. In the discrete case, geometric ergodicity holds if the
Markov chain is irreducible and aperiodic and if the mapping between states and parame-
ters and next period states is uniformly convergent. Aperiodicity obtains if the transition
matrix does not deterministically alternate between blocks of states (i.e. in a 4 × 4 ma-
trix with 2 × 2 blocks we do not have

·
0 µ
µ 0

¸
). Irreducibility means that each state is

accessible from every other state with positive probability. Precise definitions of these two
concepts are given in chapter 9.

To dump the effect that θ has on ft(θ) via the transition matrix we need the following:

Definition 5.4 (Uniform Lipschitz condition): A family of functions {ft(θ)} is Lipschitz,
uniformly in probability if there is a sequence {bt}Tt=1 such that for all θ1, θ2 ∈ Θ

||ft(θ1)− ft(θ2)|| ≤ bt||θ1 − θ2|| (5.56)

all t, where bT = 1
T

PT
t=1 bt is bounded in probability.

This condition, together with geometric ergodicity of xt and a boundness restrictions on
the norm of ft(θ), implies that the ACF of ft(θ) exists and is absolutely summable. In turn,
this implies that ft(θ) satisfies a weak law of large number and this insures consistency of
the simulation estimator for problems like those of example 5.30.

To insure asymptotic normality of the estimator, we need that θ0 is in the interior of Θ;
continuity and differentiability of ft(θ), existence and finiteness of E(

∂ft
∂θ0 ). In addition we

need that ∆θft(θ) =
∂
∂θ0 f(xtθ) (the total derivative) satisfies Lipschitz condition uniformly

in probability, that E[|∆θft(θ)|] <∞ and that E(∆θft(θ)) is continuous in θ.

Exercise 5.48 Show that
√
ThT (θ0)

D−→ N(0, Σ̄ = Σy(1 + κ−1)) where hT was defined in
equation (5.52). Show the asymptotic distribution of

√
T (θT,Ts − θ0).

Exercise 5.49 Show that the asymptotic covariance matrix of the simulation estimator
when W is chosen optimally is Σ+θ = (1+κ

−1)(F 00Σ̄−1F0)−1 where F0 = E(
∂f
∂θ0 ). Argue that

as κ → ∞, Σ+θ approaches the covariance matrix of θT and that knowledge of E(f(θ))
increases the efficiency of θT1,T2, unless κ is very large.
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Exercise 5.50 Suppose ft is measured with error and let f̃†t = f(xt, θ0) + e
f
t where

eft is a mean zero, ergodic measurement error. Show that the asymptotic efficiency of a
simulation estimator is increased when one ignores the measurement error in simulation.

Two simulation estimators are popular in the literature. We examine them next.

5.5.2 Simulated Method of Moments Estimator

In a simulated method of moment (SMM) setup one selects θ to minimize the distance be-
tween moments of actual and simulated data. Therefore, ft measures variances, covariances
and autocorrelations, etc. In the context of the example 5.25, one could have selected the
11 unknown parameters by simulation using the following algorithm:

Algorithm 5.4

1) Choose arbitrary values for θ = (β,ϑN ,ϕ, η, δ, ζ̄, Ḡ, ρζ , ρg,σ
2
g ,σ

2
ζ ) and simulate the model

after an (approximate) solution is obtained.

2) Let S = (S1,S2) be the statistic of interest where S1 are the conditions dictated by the
model - Euler equation, intratemporal conditions, etc.- and S2 are those selected by
the investigator - variances, covariances and autocorrelations. Clearly dim(S) ≥ 11
and S1 could be zero. Compute S(θ) − ST . Update estimates of θ using gradient
methods (see Chapter 6).

3) Repeat 1)-2) until ||S(θ)−ST || < ι, ι small.

SMM is particularly useful whenS(θ) involves variables with no counterpart in the data.
Let xt = (x1t, x2t), let y2t be unobservable with a known distribution. Then, as in example
5.28, one can draw x2t sequences and construct Sl(x1t, xl2t, θ) for each l = 1, 2, . . . , L. If

each draw is iid, by the law of large numbers 1
L

PL
l=1 Sl(x1t, x

l
2t, θ)

P→ Et[S(x1t, x2t, θ)].
Hence, we can use SlT =

1
L

P
l S

l(x1t, x
l
2t, θ) in place of the unknown S(θ) function so long

as L is large enough.

Exercise 5.51 Consider a log-linearized version of the model of example 5.25 and suppose
you choose parameters to match the cross-covariance function of hours and productivity.
Since three parameters can be obtained from the moments of the government expenditure
process, you have 8 free parameters. Select three autocovariance of each of the two series and
three cross covariances. Using the same data as in example 5.25 provide SMM estimates of
the free parameters and a test for overidentification.

Example 5.31 We reconsider the New-Keynesian Phillips curve of example 5.11. As-
suming κ = 1, we estimate θ = (β, ζp) so as to make the variance and the first two au-
tocorrelations of inflation in the data and in the model as close as possible. Using CPI
inflation and the output gap in the three countries, a grid of 100 values for β = [0.98, 1.02]
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and ζp = [0.20, 0.98] we obtain β = (0.986, 1.009, 1.011), and of ζp = (0.155, 0.115, 0.422)
for US, UK and Germany, respectively. The values of the criterion function at θT1,T2 are
(23.32, 114.14, 37.89) indicating, perhaps unsurprisingly, that the model fails to replicate the
variability and the AR structure of actual inflation in these countries.

Exercise 5.52 Consider the setup of exercise 5.43 but assume that effort is unobservable.
Provide an algorithm to obtain SMM estimates of the free parameters. Which moments
would you consider? Which instruments? Are there parameters which are not identifiable?

5.5.3 Simulated Quasi-Maximum Likelihood/ Indirect Inference

The method of simulated quasi-maximum likelihood (SQML) is useful when a researcher
is interested in approximating the conditional density of the data. Since a VAR with iid
errors can capture well this density if T is large, SQML can be thought as selecting θ so as
to match the VAR representation of actual and simulated data.

Let the conditional density of simulated data be f(xt(θ)|xt−1(θ), . . . , xt−q(θ),α), where
α ∈ Rk

0
are “shallow” parameters, k0 ≥ k. Note that f may be misspecified in the

sense that the true conditional density of xt(α) may not belong to the set of functions
{f(xt(θ)|xt−1(θ), . . . , xt−p(θ),α)}. In principle, one could choose f to approximate as best
as possible the true conditional density but in practice computational considerations sug-
gest to select f so that it is easy to obtain a quasi-maximum likelihood estimate of α.
When f is a VAR with iid errors, α includes the VAR coefficients on lagged variables and
the parameters of the covariance matrix. Hence, while the structural model may be highly
non-linear in θ, the estimated model for xt(θ) is linear in α.

The quasi-log likelihood of the model is LTs({xt(θ)},α) ≡
PTs
t=1 logf(xt(θ), . . . , xt−q(θ),α).

We let αTs(θ) ≡ argmaxLTs({xt(θ)},α). Since there is no closed form expression, the map-
ping between θ and α needs to be computed by simulation. If Ts is sufficiently large,
αTs(θ)

p→ α(θ). Let LT ({yt},α) ≡
PT
t=1 logf(yt, . . . , yt−p,α) be the quasi-log likelihood for

the actual data and let αT ≡ argmaxLT ({yt},α). If T is sufficiently large, αT p→ α. We
set Ts = κT, κ ≥ 1.

We assume that there exists a θ0 such that α0 = α(θ0) (this condition is typically referred
as encompassing). This does not mean the theoretical model is a good representation of the
data: instead it simply requires the much weaker condition that there is a set of structural
parameters which makes the ”shallow” parameters computed from actual and simulated
data identical. Then, a simulated quasi-maximum likelihood (SQML) estimator θT,Ts of θ0
solves:

θT,Ts ≡ argmaxθLT ({yt},αTs(θ)) (5.57)

In words, we maximize the likelihood function of the actual data once we plug in the shallow
parameters obtained from maximizing the likelihood function of the simulated data.

Example 5.32 (Consumption function) Suppose a researcher is interested in finding pa-
rameters so that the consumption function generated by a RBC model matches the one in
the data. Let the actual data be represented by a bivariate normal VAR(1) in consumption
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and output. Let α include the four VAR coefficients and the three coefficients of the co-
variance matrix of the errors and let θ include all the parameters of the model. Then the
following algorithm can be used:

Algorithm 5.5

1) Choose a θ1 and simulate xt(θ1), t = 1, . . . , Ts.

2) Fit a VAR(1) to simulated consumption and output and obtain αTs(θ1).

3) Use αTs(θ1) in the quasi-log likelihood function of yt, i.e. compute VAR residuals using
the actual data and αTs(θ1) and construct the log likelihood using the prediction error
decomposition (see chapter 7).

4) Update θ1 and repeat step 1)-3) until ||LT ({yt},αTs(θl1))− LT ({yt},αTs(θl−11 ))|| ≤ ι, or
||θl1 − θl−11 || < ι ι small.

Note that if k0 ≥ k, the SQML estimator maximizes the quasi-log likelihood function
subject to a set of k0 − k (nonlinear) restrictions. If the inequality is strict, there are k0 − k
overidentifying restrictions which can be used to test the quality of the model. A bivariate
VAR(3) without a constant, has, e.g., (2× 3) ∗ 2 + 3 parameters. If dim(θ) = 5, there are
10 testable restrictions.

At times the distinction between SQML and SMM is blurred as the next example shows.

Example 5.33 In exercise 5.51 estimates are obtained matching the cross covariance func-
tion of hours and productivity. If we represent actual and simulated data with a bivariate
VAR, we can compute the cross covariance function using the companion form. That is, if
Yt = AYt−1 + Et, var(Yt) = (I −A)−1ΣE((I −A)−1)0 and cov(Yt,Yt−τ ) = Aτvar(Yt).

When the ”shallow” parameters are not the coefficients of the VAR representation of
the data, SQML is typically termed indirect inference principle. Here it is typical to split
θ = (θ1, θ2), where θ2 are nuisance parameters needed for simulations but uninteresting
from an economic viewpoint. Let fT and fTs(θ) be vectors of shallow functions in actual
and simulated data. Dridi and Renault (1998) showed the following two results:

Result 5.1 If there exists a θ̄2 ∈ Θ2 such that limT,Ts→∞ f0T = fTs(xt, θ01, θ̄2), andWT
p→W

θ1,T,Ts = argmin(fT − fTs(xt, θ1, θ̄2))0WT (fT − fTs(xt, θ1, θ̄2)) is consistent for θ01.

Result 5.2
√
T (θT,Ts−(θ01, θ̄2)0) D→ N(0, (∂[fT−fTs(xt,θ1,θ̄2)]

∂θ01
)0Σ−10

∂[fT−fTs(xt,θ1,θ̄2)]
∂θ0 )−1); where

Σ0 depends on var(fT ) var(fTs), cov(fT , fTs), cov(θ
l
T,Ts

, θl
0
T,Ts

) and l, l0 refer to simulations.

Note that if there are no nuisance parameters, the condition of result 5.1 collapses to a
standard encompassing one E(fT − fTs(xt, θ0)) = 0. Also, the conditions of results 5.1 and
5.2 are only sufficient. For necessary conditions, see e.g. Gourieroux and Monfort (1995).
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Example 5.34 (Merha and Prescott) Consider the equity premium puzzle popularized by

Merha and Prescott (1985). Here fT = (
1
T

P
tR

f
t ,

1
T

P
tEPt), the average risk free rate and

the average equity premium; θ2 represents the mean, the variance and the persistence of the
endowment process; while θ1 = (β,ϕ) are the parameters of preferences. The literature has
tried to (informally) find the range of θ1 such that fTs(θ1, θ̄2) are as close as possible to fT ,
given some estimate of θ2. A puzzle is generated because when Ts = T values for θ1 in a
reasonable range produce |fT − fTs(xt, θ1, θ̄2)| which is large.

Example 5.35 (Canova and Marrinan) It is typical to find that the forward rate (fer)
is a biased predictor of the future spot exchange rate (ner). That is, in the regression
nert+1 = α0 + α1fert,1 + et+1 estimates of α0 and α1 significantly differ from 0 and 1,
respectively. One question of interest is whether this bias is consistent with optimizing
agents and rational expectations. Suppose we can simulate nerst+1(θ) and fer

s
t,1(θ) from a

model and run the regression nerst+1(θ) = a0+ a1fer
s
t,1(θ) + e

s
t+1. Then we can ask if there

is a range of θ such that α0 = a0 and α1 = a1 or, at least, such that the sign of (α0,α1) is
the same as that of (α0,α1).

Exercise 5.53 One theory of the term structure of interest rates suggests that the return
obtained on a long term bond is a weighted average of the returns on successive short term
ones. Using a version of the model considered in example 5.25 obtain indirect inference
estimates of the structural parameters and of the parameters of the technology process so
that the coefficients in the regressions Rt,t+4 = α1+α2Rt,1+α3Rt+1,1+α4Rt+2,2+ e1t and
Rt,t+2 = α5+α6Rt,1+α7Rt+1,1+e2t obtained in the model and in the data are the same where
Rt,t+4 are returns on one year bonds and Rt,t+1(Rt,t+2) are returns on a 90 and 180 days
T-bills. (Hint: you need to impose more conditions to estimate all the parameters: several
are not identifiable from these regressions. Also, do not use a log-linear approximation to
solve this problem). Can the model match the short end of term structure of interest rates?

Example 5.36 We use an indirect inference estimator to estimate the parameters of the
New-keynesian Phillips curve of example 5.11 using US data. Here the functions we match
are the regression coefficients in πt+1 = α1πt−α2(gapt) + et+1. We present results in table
5.4 for two specifications: one where we use the actual output gap in the simulation and
one where a process for the output gap is estimated using an AR(2) and a constant on HP
filtered data and then simulated. Standard errors are in parenthesis. The model can roughly
replicate the magnitude of α1 found in actual regression. Note that, because α2 is poorly
estimated, we have hard time to produce the correct sign for this coefficient when the actual
gap is used. Note also that estimated ζp are very low (roughly, prices change every 1-2
quarters) and that β is unreasonably low when the actual gap is used.

Exercise 5.54 (Bayraktar, Sakellaris, Vermeulen) Consider the investment decision of a
monopolistic competitive firm. Output is produced ζitK

1−η
it where ζit a technology shock

which includes both individual and aggregate components. Suppose the firm chooses capital
and borrowing to maximize profits and suppose there are convex costs b1

2 (
invt
Kt
)2Kt and fixed
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α1 α2 β ζp Criterion function

Actual 0.993 (0.05) -0.04 (0.143)
Simulated (actual gap) 0.996(0.0062) 0.032 (0.001) 0.752 0.481 0.01012
Simulated (simulated gap) 0.997(0.00008) -0.004 (0.0006) 0.980 0.324 0.02321

Table 5.4: Indirect Inference Estimates of New Keynesian Phillips curve

costs b2Kt to adjust capital. Suppose that investment is partially reversible so that the
selling price of capital (pks) is lower than the buying price of capital (pkb) and suppose
there exists an external finance premium of the form b3

Bt
pksKt

where Bt are borrowing and

b1, b2, b3 are parameters (if Bt < 0, b3 = 0). The choice of the firm is partially discrete (it
must select an action between buying capital, selling capital or doing nothing) and partially
continuous (select Bt+1). The value function assocaited with each choice is Vj(ζ,K,B) =
max{K+,B+}(ζK1−η −Cj(K, inv) +B+ − (1 + r)(1 + b3 B

pksK
B) + βEV∗(ζ+,K+, B+ where

Cj(Kt, Bt) = pkbinvt +
b1
2
(
invt
Kt

)2Kt + b2Kt if invt > 0 (5.58)

= pksinvt +
b1
2
(
invt
Kt

)2Kt + b2Kt if invt < 0 (5.59)

= 0 if invt = 0 (5.60)

subject to inv = K+ − (1 − δ)K, where ”+” indicates future values. The structural pa-
rameters are θ = (β, δ, η, b1, b2, b3, p

ks, pkb) and (ρζ ,σ
2
ζ ). Using quarterly data for aggregate

output, investment, capital and total bank borrowing and the regression (invt − ¯inv) =

α0,+α1(GDPt− ¯GDP )+α2(GDPt− ¯GDP )2+α3
Bt−B̄
Kt−K̄ +α4

(ζt−ζ̄)(Bt−B̄t)2
Kt−K̄ + eit, where bar

variables are time averages, find indirect inference estimates of (b1, b2, b3, p
ks, pkb) assuming

rt = r = 0.02,β = 0.99, δ = 0.025, η = 0.66. Compute moments and compare them to those
obtained using optimal parameters.

Exercise 5.55 (Martin and Pagan) A two state Markov Switching model for yt can be
written as yt = θ0 + y1t, y1t = (θ1 + θ2y2t)

0.5e1t and y2t = (1− p2) + (p1 + p2 − 1)y2t−1 +
[(p2(1 − p2)) + (p1(1 − p1) − p2(1 − p2))y2t−1]0.5e2t where e1t ∼ N(0, 1), e2t can take two
values and p2 = P [y2t = 0|y2t−1 = 0], p1 = P [y2t = 1|y2t−1 = 1]. Suppose that p1, p2
are known. Consider a ”shallow” function α = α(θ0, θ1, θ2) and suppose α is obtained by
solving E(

P
t
∂L
∂α0 ) = 0 where L is the likelihood function of an auxiliary model involving yt

and α. Using data for US output, obtain indirect inference estimates of a0, a1, a2.

Example 5.37 It is common in to derive optimal monetary policy rules. Such rules typ-
ically involve full commitment or some kind of cooperative device which are not imple-
mentable in competitive economies. Hence researchers have approximated the optimal re-
sponse of the endogenous variables of the model with simple policy rules which involve feed-
back from observables to nominal interest rates. Let fT be a set of optimal impulse responses
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of the model and let fTs(y, θ) be the set of simulated responses where θ represents the pa-
rameters of the Taylor rule. A θT1T2 which minimizes the distance between optimal and
suboptimal (but implementable) responses to some shock is an indirect inference estimator.

Exercise 5.56 Consider matching output and price responses to monetary policy shocks
identified in the data by the requirement that when interest rate increases, real balances
decline. Using the sticky price model of example 2.18 of chapter 2, find indirect inference
estimates of the parameters that come as close as possible to match the first 10 responses of
prices and output obtained in the data (Hint: Make sure that the parameters of the money
demand function imply a negative correlation between real balances and interest rates in
response to monetary shocks, and choose the remaining parameters to match responses).

The Indirect inference principle naturally links to calibration (see chapter 7). To make
the link explicit we need to define a partial Indirect Inference Estimator. Such an estimator
is obtained if only some of the components of fTs(xt, θ) (among the many that the model
provides) are used for estimation. That is, we assume that there exists a θ01 such that f

1
T =

f1Ts(θ
0
1, θ̄2) with f

1
T ⊂ fT . This estimator is semi-parametric, since not all the features of the

model are fully specified, and fT 6= fTs(θ10, θ̄2) that is, the model is potentially misspecified
in some dimensions. Then θ1,T,Ts minimizes Q

1
T,Ts

(θ̄2) = [f
1
T −f1Ts(xt, θ1, θ̄2)]0W(1,T1,T2)[f

1
T −

f1Ts(xt, θ1, θ̄2)] and as T →∞, T ×Q1T,Ts(θ̄2)
D→ χ2(dim(f1T )− dim(θ1)). This asymptotic

distribution is valid if θ̄2 is replaced by a θ2,T,Ts satisfying
√
T (θ2,T,Ts − θ̄2) P→ 0.
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Chapter 6: Likelihood methods

Maximum likelihood (ML) techniques have enjoyed a remarkable come back in the last few
years, probably as a consequence of the development of faster computer technology and
of the substantial improvement in the specification of structural models. In fact, complex
stochastic general equilibrium models have been recently estimated and tested against the
data. This represents a shift of attitude relative to the 1980’s or the beginning of the 1990’s
where GMM and related techniques dominated the scene. As we have seen maximum like-
lihood is a special case of GMM when the scores of the likelihood are used as orthogonality
conditions. Nevertheless, (full information) ML differs from GMM in several respects.

In both cases, a researcher starts from a fully specified dynamic stochastic general
equilibriummodel. However, while with GMM the first order conditions of the maximization
are sufficient for estimation and testing, with maximum likelihood the final form, expressing
the endogenous variables of the model as a function of the exogenous variables and of the
parameters, is needed. As we have seen in Chapter 2, this is not a small enterprise in
general and approximations are often needed, transforming nonlinear specifications into a
linear ones. The presence of nonlinearities, on the other hand, does not present particular
problems for GMM estimation and testing. Moreover, while with GMM one uses only the
(limited) information contained in a subset of the equilibrium conditions, e.g. the Euler
equations, once the final form is calculated, all the implications of the model must necessarily
be taken into account for estimation. Therefore, while with the former one can estimate and
test assuming that only some of the equations of the model appropriately characterize the
data generating process, such an assumption is untenable when ML is used. An interesting
conundrum arises when misspecification is present. Following White (1982), one can show
that a quasi-ML estimator of the parameters, obtained when the distribution of the errors is
misspecified, has the same asymptotic properties as the correct ML estimator under a set of
regularity conditions. However, as we will argue in chapter 7, the misspecification present
in DSGE models is unlikely to be reducible to the distributions of the errors. Hence, it is
unknown what kind of properties ML estimates have in these setups and care must be used
in reporting and interpreting estimates and tests.

With both ML and GMM the final scope of the analysis is the evaluation of the quality of
the model’s approximation to the data and, given estimates, to study the effects of altering
interesting economic (policy) parameters. This should be contrasted with the exercises
typically performed in VARs. Here the full implications of the model, as opposed to a set of
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minimal restrictions, are used to obtain estimates of the objects of interest; the analysis is
geared towards the estimation of ”structural parameters’ as opposed to ”structural shocks”;
and model evaluation is often more important than describing the (restricted) structure of
the data in response to disturbances. Which approach one subscribes depends on how much
a researcher trusts the model. With ML (and GMM) one puts a lot of faith in the model
as a description of the data - the structure is correct, only the parameters are unknown.
With VARs the opposite is true. Therefore only a limited set of conventional or generic
restrictions are considered.

This chapter describes the steps needed to estimate models with ML. We start by de-
scribing the use of the Kalman filter and of the Kalman smoother for state space models.
State space models are general structures: any multivariate ARMA model and almost all
log-linearized DSGE model can be fit into this framework. The Kalman filter, besides
providing minimum MSE forecasts of the endogenous variables and optimal recursive es-
timates of the unobserved states, is an important building block in the prediction error
decomposition of the likelihood. In fact, the likelihood function of a state space model can
be conveniently expressed in terms of the one-step ahead forecast errors, conditional on the
initial observations, and of their recursive variance, both of which can be obtained with
the Kalman filter. Therefore, given some initial parameter values, the Kalman filter can be
used to recursively construct the likelihood function; gradient methods can be employed to
provide new estimates for the parameters and the two-step procedure can be repeated until
the gradient or the parameters do not change across iterations.

In the third section we provide some numerical tips on how to update parameter esti-
mates and on other issues often encountered in practice. The algorithms are only sketched
here. For details the reader should consult Press et al. (1980) or Judge, et. al (1985).
The last portion of this chapter applies the machinery we have developed to the problem of
estimating DSGE models. The (log)-linearized solution of such models naturally comes into
a state space format where the coefficients are highly nonlinear functions of the structural
parameters. We discuss a number of peculiarities of DSGE models relative to other time se-
ries specifications and describe how to use cross-equations restrictions to identify structural
parameters and to test the model. This is the approach popularized by Sargent (1979) and
Sargent and Hansen (1980) and exploits the fact that linearized expectational equations
impose restrictions on the VAR of the data. We conclude estimating the parameters of a
simple sticky price model driven by technology and monetary disturbances and confronting
some of the implied unconditional moments to the data.

6.1 The Kalman filter

The Kalman filter is one of the most important instruments in the toolkit of applied macroe-
conomists and we will extensively use it throughout the rest of this book. The presentation
here is basic and the reader should refer to Harvey (1991) or Anderson and Moore (1979)
for more extensive details.
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The Kalman filter is typically employed in state space models of the form

yt = x01tαt + x
0
2tv1t (6.1)

αt = D0t +D1tαt−1 +D2tv2t (6.2)

where x01t is m ×m1 matrix, x02t is m ×m2 matrix , D0t is m1 × 1 vector, D1t, D2t are
m1 ×m1 and m1 ×m3 matrices; v1t is a m2 × 1 vector of martingale difference sequences,
v1t ∼ N(0,Σv1); v2t is m3 × 1 vector of martingale difference sequences, v2t ∼ N(0,Σv2).
We also assume that E(v1tv

0
2τ ) = 0 and E(v1tα

0
0) = 0, for all t and τ . The first assumption

can be dispensed of, as we will see later on. The two together insure that the states αt and
the disturbances v1t are uncorrelated.

(6.1) is typically referred as the measurement (observation) equation while (6.2) is the
transition (state) equation. Note that, in principle, αt is allowed to vary over time and that
x1t, x2t,D0t,D1t,D2t could be fixed (i.e. matrices of numbers) or realizations of random
variables. For example, in time series context x1t could contain lagged yt’s and x2t current
and/or lagged stochastic volatility terms. Notice that it is possible to have m2 shocks
driving the m endogenous variables, m2 ≤ m.

The framework provided by (6.1)-(6.2) is general: a number of time series and regression
models can be cast in such a format. We consider a few special cases next.

Example 6.1 Consider an m variable VAR yt = A(`)yt−1+et, where A(`) is a polynomial
of order q and et is a martingale difference process, et ∼ (0,Σe). As we have seen such a
system can be rewritten in a companion form as Yt = AYt−1 +Et where A = [A1,A2]0 and
A1 = (A1, . . . , Aq)

0 contains the first m rows of A, A2 is a matrix of ones and zeros and
Et = (et, 0, . . . , 0)

0. Such a system fits into (6.1)-(6.2) setting αt = Yt = [y0t, y0t−1, . . . y0t−q]0,
x01t = [I, 0, . . . 0], D1t = A,Σv1 = 0, v2t = Et, D2t = I, D0t = 0. Hence, there is no
measurement error, the measurement equation is trivial and states and observables coincide.

Example 6.2 Consider the univariate process, yt = A1yt−1 +A2yt−2 + et +D1et−1. This
model can be equivalently written as:

yt = [1 0]

·
yt

A2yt−1 +D1et

¸
·

yt
A2yt−1 +D1et

¸
=

·
A1 1
A2 0

¸·
yt−1

A2yt−2 +D1et−1

¸
+

·
1
D1

¸
et

Hence, an ARMA(2,1) structure fits (6.1)-(6.2) setting αt =

·
yt

A2yt−1 +D1et

¸
, D1t =·

A1 1
A2 0

¸
, D2t =

·
1
D1

¸
, D0t = 0, x01t = [1, 0],Σv1 = 0,Σv2 = σ2e .

Exercise 6.1 Consider a process of the form y1t = A1(`)y1t−1 +D(`)et +A2y2t where y2t
represents exogenous variables, A1(`) is of order q1 and D(`) of order q2. Show the form of
the state space model in this case. Display D1t,D2t, x01t, x02t.
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Besides time series models, several structures naturally fit into a state space framework.

Example 6.3 1) In many economic problems the ex-ante real rate is needed but only the
ex-post real rate of interest is computable. In this case we could set αt ≡ ret = it−πet where
πet is the expected inflation rate and assume e.g., αt = D1αt−1+ v2t. The observed real rate
then is yt ≡ it − πt = αt + v1t where v1t is a measurement error.
2) A RBC model driven by unit root technology shocks implies that all endogenous variables
have a common trend (see King, Plosser, Stock and Watson (1991)). Here αt = αt−1 + v2t
is a one dimensional process; x01t = x01 are the loadings on the trend and x02t = x02 are the
loadings on everything else (cycle, irregular, etc.).

Exercise 6.2 When agents are risk neutral, uncovered interest parity implies that interest
rates differentials should be related to the expected change in the exchange rate (see example
2.3 of chapter 5). Cast such a relationship into a state space format carefully defining the
matrices x01t, x02t,D0t,D1t,D2t.

Exercise 6.3 (Nonlinear state space model) Consider the model yt = αt + v1t, αt+1 =
αtθ + v2t and suppose one is interested in θ, which is unobservable, as is αt. (In a trend-
cycle decomposition, θ represents, e.g., the persistence of the trend). Cast the problem in a
state space format; show the state vector and display the matrices of the model.

The Kalman filter can be used to optimally estimate the unobservable state vector αt
and to update estimates when a new observation becomes available. As a byproduct, it also
produces recursive forecasts of yt, consistent with the information available at t.

Suppose we want to compute αt|t, the optimal (MSE) estimator of αt using information
up to t; and Ωt|t the MSE matrix of the forecast errors in the state equation. At this stage
we let x01t = x01, x02t = x02,D1t = D1, D0t = D0, D2t = D2 be known. We also assume that
a sample {yt}Tt=1 is available. The Kalman filter algorithm has five steps.

Algorithm 6.1

1) Select initial conditions. If all eigenvalues of D1 are less then one in absolute value,
set α1|0 = E(α1) and Ω1|0 = D1Ω1|0D01 + D2Σv2D02 or vec(Ω1|0) = (I − (D1 ⊗
D01)−1)vec(D2Σv2D02), in which case the initial conditions are the unconditional mean
and variance of the process. When some of the eigenvalues of D1 are greater than one,
initial conditions cannot be drawn from the unconditional distribution and one needs
a guess (say, α1|0 = 0, Ω1|0 = κ ∗ I, κ large) to start the iterations.

2) Predict yt and construct the mean square of the forecasts using t− 1 information

E(yt|t−1) = x01αt|t−1 (6.3)

E(yt − yt|t−1)(yt − yt|t−1)0 = E(x01(αt − αt|t−1)(αt − αt|t−1)0x1) + x02Σv1x2
= x01Ωt|t−1x1 + x

0
2Σv1x2 ≡ Σt|t−1 (6.4)
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3) Update state equation estimates (after observing yt):

αt|t = αt|t−1 +Ωt|t−1x1Σ−1t|t−1(yt − x01αt|t−1) (6.5)

Ωt|t = Ωt|t−1 −Ωt|t−1x1Σ−1t|t−1x01Ωt|t−1 (6.6)

where Σ−1t|t−1 is defined in (6.4).

4) Predict the state equation random variables next period:

αt+1|t = D1αt|t +D0 = D1αt|t−1 +D0 + Kt²t (6.7)

Ωt+1|t = D1Ωt|tD01 +D2Σv2D02 (6.8)

where ²t = yt − x01αt|t−1 is the one-step ahead forecast error in predicting yt, and
Kt = D1Ωt|t−1x1Σ−1t|t−1 is the Kalman gain.

5) Repeat steps 2)-4) until t = T .

Note that in step 3) Ωt|t−1x1 = E(αt−αt|t−1)(yt−x01αt|t−1)0. Hence, updated estimates
of αt are computed using the least square projection of αt−αt|t−1 on yt−yt|t−1, multiplied
by the prediction error. Similarly, Ωt|t−1 = E(αt − αt|t−1)(αt − αt|t−1)0 is updated using a
quadratic form involving the covariance between forecast errors in the two equations and
the MSE of the forecasts. Note also that equations (6.7)-(6.8) provide the inputs for the
next step of the recursion.

Example 6.4 Consider extracting a signal αt, for example, the long run trend of output,
given that αt = αt−1 and that the trend is linked to output via yt = αt + v1t where v1t
is a normal martingale difference process with variance σ2v1. Using (6.6) we have that

Ωt|t = Ωt|t−1 − Ωt|t−1(Ωt|t−1 + σ2v1)−1Ωt|t−1 =
Ωt|t−1

1+
Ωt|t−1
σ2v1

=
Ωt−1|t−1

1+
Ωt−1|t−1

σ2v1

. Hence, starting from

some Ω0 = Ω̄0, we have Ω1|1 = Ω̄0

1+
Ω̄0
σ2v1

; Ω2|2 = Ω̄0

1+2
Ω̄0
σ2v1

; . . .; ΩT |T = Ω̄0

1+T
Ω̄0
σ2v1

. From (6.5) and

(6.7), αT+1|T+1 = αT |T +
Ω̄0
σ2v1

1+T
Ω̄0
σ2v1

(yT+1 − αT |T ). Hence, as T → ∞, αT+1|T+1 = αT |T so
that, asymptotically, the contribution of additional observations is negligible.

Exercise 6.4 Consider a vector MA process yt = et + et−1 where et ∼ N(0, I). Show that
the optimal one-step ahead predictor for yt+1 is yt+1|t = t+1

t+2 [yt − yt|t−1]. Conclude that as
T → ∞, the optimal one-step ahead predictor is just last period’s forecast error. (Hint:
Cast the process into a state space format and apply the Kalman filter).

Exercise 6.5 Consider the process yt = A1yt−1 +A2yt−2 + et. Here αt = [y0t, y0t−1]0, v2t =

[et, 0], D1 =
·
α1 α2
1 0

¸
, Σv2 =

·
σ2e 0
0 0

¸
, D0t = v1t = 0, x01 = [1, 0]. Show how to start

the Kalman filter recursions; compute prediction and updated estimates of αt for the first
two observations.
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Exercise 6.6 Suppose y1t = Aty1t−1 +Dty2t + v1t and αt = (At,Dt) = αt−1 + v2t, where
y2t are exogenous variables. Show the updating and prediction equations in this case. How
would you handle the case of serially correlated v2t?

At times, it may be useful to construct estimates of the state vector which, at each
t, contains information present in the entire sample. This is the case, in particular, in
signal extraction problems; for example, when αt is a common trend for a vector of yt, we
want estimates at each t to contain all the information available up to T . In this case the
Kalman filter can be applied starting from the last observation, working backward through
the sample, t = T − 1, . . . , 1, using αT |T ,ΩT |T and as initial conditions. That is:

αt|T = αt|t + (Ωt|tD01Ω−1t+1|t)(αt+1|T −D1αt|t) (6.9)

Ωt|T = Ωt|t − (Ωt|tD01Ω−1t+1|t)(Ωt+1|T −Ωt+1|t)(Ωt|tD01Ω−1t+1|t)0 (6.10)

Equations (6.9)-(6.10) define the recursions of the so-called Kalman smoother.

Example 6.5 Continuing with example 6.4, take αT |T and ΩT |T as initial conditions. Then

Ω1|t =
ΩT |T

1+T
ΩT |T
σ2v1

and αt|T = αt+1|T +

Ω̄T |T
σ2v1

1+T
Ω̄T |T
σ2v1

(yt|T − αt+1|T ). Can you guess what α1|T is?

As a byproduct of the estimation, the Kalman filter allows us to transform (6.1)-(6.2)
into a system driven by innovations in the measurement equation. In fact, using (6.5)-(6.7),
it is immediate to see that (6.1) and (6.2) are equivalent to

yt = x01tαt|t−1 + ²t (6.11)

αt+1|t = D1αt|t +D0 + Kt²t (6.12)

where ²t is the forecast error and Et(²t²
0
t) ≡ Σt|t−1. Hence, if the Kalman gain Kt−1 is

available and given (α1|0,Σ1|0), αt|t−1 and ²t can be computed recursively at any t. In turn,
the Kalman gain is immediately obtained when Ωt−1|t−1 is available.

Exercise 6.7 The reparametrization in (6.12)-(6.11) is trivial in the case of a constant
coefficient VAR(q), since it is always possible to rewrite the measurement equation as yt =
E[yt|Ft−1] + ²t, where Ft−1 is the information set at t − 1. Show how to transform the
ARMA(2,1) model of example 6.2 to fit such a representation.

Hansen and Sargent (1998, pp.126-128) show that equation (6.6) can also be written as
Ωt|t = D1Ωt−1|t−1D01 + D2Σv2D02 − D1Ωt−1|t−1x1Σ−1t|t−1x01Ωt−1|t−1D1. One can recognize in
this expression a version of the matrix Riccati equation used in chapter 2 to solve linear
regulator problems. Therefore, under regularity conditions, in state space models with
constant coefficients, limt→∞Ωt|t = Ω. Consequently, limt→∞ Kt = K, and the stationary
covariance matrix of the innovations is Σ = limt→∞Σt|t = x01Ωx1 + x02Σv1x2. As we show
next, the expressions for Ω,K,Σ obtained in a constant coefficient model are the same as
those asymptotically produced by a recursive least square estimator.
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Example 6.6 Consider estimating the constant (steady state) real interest rate αt us-
ing T observations on the nominal interest rate yt, demeaned by the average inflation
rate, where yt = αt + v1t and v1t is a martingale difference process with variance σ

2
v1.

An unbiased minimum variance estimator is α̂T =
1
T

PT
t=1 yt. If yT+1 becomes available

α̂T+1 =
1

T+1

PT+1
t=1 yt =

T
T+1(

1
T

PT
t=1 yt) +

1
T+1yT+1 =

T
T+1 α̂T +

1
T+1yT+1 which is a recur-

sive least square estimator. This estimator weights previous and current observations using
the number of available observations and does not forget: each observation gets equal weight
regardless of the time elapsed since it was observed. A more informative way to rewrite
this expression is α̂T+1 = α̂T +

1
T+1(yT+1 − α̂T ) and ²t ≡ (yT+1 − α̂T ) is the innovation in

forecasting yT+1. Clearly, KT+1 =
1

T+1 → 0 as T →∞. Hence, as T →∞, α̂T+1 → α̂T .

The recursions in (6.3)-(6.8) assume constant coefficients. The Kalman filter, however,
can also be applied to models with time varying coefficients, as long as they are linear in
parameters. For example, in the multivariate model

yt = αtyt−1 + v1t
αt = αt−1 + v2t (6.13)

recursive estimates of αt|t and of the forecast error ²t = yt − αt|t−1yt−1 consistent with the
information available at each t can be easily obtained. We extensively use models like (6.13)
in chapter 10 when studying time varying Bayesian VAR models.

Exercise 6.8 Consider the model yt = x
0
tαt+ v1t where αt = (I −D1)α0+D1αt−1+ v2t+1,

α0 is a constant; v1t is a martingale difference with variance σ
2
v1 and v2t is a vector of

martingale difference with variance Σv2. Define α†t = αt − α0. Show the form of the

updating equations for α†t and Ωt, assuming α
†
1 ∼ N(α1|0,Ω1|0).

A modified version of the Kalman filter can also be used in special nonlinear state space
models; for example, those displaying structures like the one of exercise 6.3. To compute
the Kalman gain in this case it is necessary to linearize the extended state space around
the current estimate. For example, the updating equations are

αt|t = αt|t−1θt|t−1 + K1t(yt − αt|t−1)
θt|t = θt|t−1 + K2t(yt − αt|t−1) (6.14)

where where K1t,K2t are matrices involving linear and quadratic terms in the predictors
θt|t−1 and αt|t−1, linear terms in the variance σ2v1 and in past Kalman gains (see Ljung and
Soderstroem (1983), pp. 39-40 for details).

If initial conditions and innovations are normally distributed, the Kalman filter predictor
is the best in both the class of linear and nonlinear predictors. Moreover, forecasts of yt
are normal with mean x01αt|t−1 and variance Σt|t−1. When the two above conditions are
not satisfied, the Kalman filter only produces the best linear predictor for yt, based on
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information at time t. That is, there are nonlinear filters which produce more efficient
estimators than those produced in (6.5)-(6.6). A nonlinear filter for a model with binomial
innovations was described in chapter 3 (see also Hamilton (1994), ch.22).

Example 6.7 As we have seen, a two-state Markov switching model for yt can be written
as yt = a0 + a1κt + yt−1 where κt has an AR(1) representation of the form

κt = (1− p2) + (p1 + p2 − 1)κt−1 + v1t (6.15)

and where v1t can take four possible values [1 − p1,−p1,−(1 − p2), p2] with probabilities
[p1, 1−p1, p2, 1−p2] and therefore is non-normal. It is immediate to verify that this process
has a state space representation and that the orthogonality assumptions needed for identifi-
cation are satisfied. However, while corr(v1t,κt−τ ) = 0 ∀τ > 0, the two processes are not
independent. Equation (6.15) can be rewritten as

(1− (p1+p2−1)`)∆yt = a1(1− (p1+p2−1)`)κt = a1(1−p2)+a0(2−p1−p2)+v1t (6.16)

Hence, although yt has a linear ARIMA(1,1,0) structure, Kalman filter estimates of yt+1|t
based on such a model are suboptimal since the non-linear structure present in v1t is ignored.
In fact, optimal forecasts are obtained using

Et∆yt+1 = a0+a1Etκt+1 = a0+a1[
1− p2

2− p1 − p2 +(p1+p2−1)(P [κt = 1|Ft]−
1− p2

2− p1 − p2 )]
(6.17)

where Ft represents the information set at t. The nonlinear filtering algorithm described in
chapter 3 uses (6.17) to obtain estimates of κt.

While we have assumed that the measurement error and the error in the state equation
are uncorrelated, in some situations this assumption may be unpalatable. For example, in
the context of a model like (6.13), one may want to have the innovations in yt and in αt to
be correlated. Relaxing this assumption requires some ingenuity. The next exercise shows
that a system with a serially correlated measurement error is equivalent to a system with
correlation between innovations in the transition and the measurement equations.

Exercise 6.9 Suppose that all coefficients are constant, that D0 = 0 and that vt in equa-
tion (6.1) satisfies v1t = ρvv1t−1 + υt where ρv has all the eigenvalues less than one in
absolute value and υt is a martingale difference with covariance matrix Συ. Assuming that
E(v2tυ

0
τ ) = 0 ∀t, and τ 6= t, show that an equivalent state space representation is given

by (6.2) and by y†t = x†1tαt + v
†
1t+1 where y

†
t = yt+1 − ρvyt, x†1t = x1tD1 − ρvx1t and

v†1t+1 = x1tD2v2t+1 + v1t+1.

Exercise 6.10 Suppose αt is normally distributed with mean ᾱ and variance Σ̄α, that yt =
x01αt + v1t, where v1t is orthogonal to αt, and v1t ∼ iid N(0,σv1).
(i) Show that yt ∼ N(x01ᾱ, x01Σ̄αx1 + σ2v1).
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(ii) Using the fact that the posterior density of αt is g(αt|yt) = g(αt)f(yt|αt)
g(yt)

, show that

g(αt|yt) ∝ exp{−0.5((αt − ᾱ)0Σ̄−1α (αt − ᾱ) + (yt − x01αt)0σ−2v1 (yt − x01αt)} ≡ exp{−0.5((αt −
α̃)0Σ̃−1α (αt − α̃)} where α̃ = ᾱ+ Σ̄αx1σ−2v1 (yt − x01ᾱ) and Σ̃α = Σ̄α + Σ̄αx1σ−2v1 x01Σ̄α.

Exercise 6.11 A generalized version of a log-linearized RBC model can be written as αt =
D1t−1αt−1 + v2t, v2t ∼ (0,Σt), and yt = x01tαt where αt represents a vector of states and
shocks and yt are the controls. Assume that Σt, x1t,D1t−1 are known.
(i) Find the updating equation for the forecast error variance and show that x01tΩt|tx1t = 0.
(ii) Show that Ωt+1|t = D1tΩt|tD01t +Σt.

Given the recursive nature of Kalman filter estimates, it is easy to compute multistep
forecasts of yt. We leave the derivation of these forecasts as an exercise for the reader.

Exercise 6.12 Consider the model (6.1)-(6.2) and the prediction of yt+τ . Show that the
τ-steps ahead forecast error is x01t+τ (αt+τ − αt+τ,t) + x02t+τv1t+τ and that the MSE of the
forecast is x01t+τΩt+τ |tx1t+τ + x02t+τΣv1x2t+τ . Show the form of αt+τ |t and Ωt+τ |t.

Example 6.8 Consider an m × 1 VAR(q) model, Yt = AYt−1 + Et. As we have seen in
example 6.1, this is a state space model for x01t = I, αt = yt, D1t = A, Σv1 = 0, v2t =
Et, D2t = I,D0t = 0. The τ-steps ahead forecast of yt is Et[yt+τ ] = SAτYt, where S is a
selection matrix. The forecast error variance is (S(Yt+τ −AτYt))(S(Yt+τ −AτYt)0)).

6.2 The Prediction error decomposition of likelihood

Maximum likelihood estimation of nonlinear models is complicated. However, even in mod-
els like (6.1)-(6.2), which are conditionally linear in the parameters, maximization of the
likelihood function is problematic when observations are not independent. This section is
concerned with the practical question of constructing the likelihood function for models
which have a format like (6.1)-(6.2), when yt is serially correlated over time. It turns out
that there is a convenient format, called prediction error decomposition, which can be used
to estimate ARMA, structural VARs and, as we will see, DSGE models.

To understand what this decomposition entitles let f(y1, . . . yT ) be the joint density of
{yt}Tt=1. Given the properties of joint densities, it is possible to decompose f(y1, . . . yT ) into
the product of a conditional and a marginal, and repeatedly substituting we have:

f(y1, . . . yT ) = f(yT |yT−1 . . . y1)f(yT−1, . . . y1)
= f(yT |yT−1 . . . yt)f(yT−1|yT−2, . . . y1)f(yT−2, . . . y1)
. . .

=
JY
j=0

f(yT−j|yT−j−1 . . . y1)f(y1) (6.18)
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and log f(y1, . . . yT ) =
P
j log f(yT−j, |yT−j−1 . . . y1) + log f(y1). If y = [y1, . . . yT ] ∼

N(ȳ,Σy)

L(y|φ) = log f(y1, . . . , yT |φ) = −T
2
(log 2π + log |Σy|)− 1

2
(y − ȳ)Σ−1y (y − ȳ) (6.19)

where φ = (ȳ,Σy). Calculation of (6.19) requires the inversion of Σy, which is a T × T
matrix, and this may be complicated when T is large. Using decomposition (6.18), we can
partition L(y1, . . . , yt|φ) = L(y1, . . . , yT−1|φ)L(yt|yT−1, . . . , y1,φ). When{yt}Tt=1 is normal,
both the conditional and the marginal blocks are normal.

Let yt|t−1 be a predictor of yt using information up to t − 1. The prediction error is
²t = yt − yt|t−1 = yt − E(yt|yt−1, . . . , y1) + E(yt|yt−1, . . . , y1)− yt|t−1 and its Mean Square
Error (MSE) is E(²t−E(²t))2 = E(yt−E(yt|yt−1, . . . y1))2+E(E(yt|yt−1, . . . y1)− yt|t−1)2.
The best predictor of yt, i.e. the one that makes the MSE of the prediction error as small
as possible, is obtained when E(yt|yt−1, . . . , y1) = yt|t−1. Given this choice, the MSE of ²t,
denoted by σ2²t , equals the variance of (yt|yt−1, . . . , y1).

The conditional density of yt given information at time t− 1 can then be written as:

L(yt|yt−1, . . . , y1,σ2²t) = −
1

2
log(2π)− log(σ²t)−

1

2

(yt − yt|t−1)2
σ2²t

(6.20)

Since (6.20) is valid for any t > 1 using (6.18) we have that

L(y1, . . . yT |σ2²1 , . . . ,σ2²T ) =
TX
t=2

L(yt|yt−1, . . . , y1,σ2²2 , . . . ,σ2epsilonT ) + L(y1|σ2²1)

= −T − 1
2

log(2π)−
TX
t=2

log σ²t −
1

2

TX
t=2

(yt − yt|t−1)2
σ2²t

− 1

2
log(2π)− log σ²1 −

1

2

(y1 − ȳ1)2
σ2²1

(6.21)

where ȳ1 is the unconditional predictor of y1. (6.21) is the decomposition we were looking for.
Three important aspects need to be emphasized. First, (6.21) can be computed recursively,
since it only involves one step ahead prediction errors and their optimal MSE. This should be
contrasted with (6.19) where the entire vector of yt’s is used. Second, both the best predictor
yt|t−1 and the MSE of the forecast σ2²t vary with time. Therefore, we have transformed a
time invariant problem into a problem involving quantities that vary over time. Third, if
y1 is a constant, prediction errors are constant and exactly equal to the innovations in yt.

Example 6.9 Consider a univariate AR(1) process yt = Ayt−1 + et, |A| < 1, where et is
normal martingale difference process with variance σ2e . Let φ = (A,σ

2
e). Assume that the

process has started far in the past but it has been observed only from t = 1 on. For any
t, yt|t−1 ∼ N(Ayt−1,σ2e). Hence, the prediction error ²t = yt − yt|t−1 = yt − Ayt−1 = et.
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Moreover, since the variance of et is constant, also the variance of the prediction error is

constant (from time t = 2 on). Setting ȳ = 0, y1 ∼ N(0, σ2e
1−A2 ) and

L(φ) =
TX
t=2

L(yt|yt−1, . . . , y1,φ) + L(y1|φ)

= −T
2
log(2π)− T log(σe)− 1

2

TX
t=2

(yt −Ayt−1)2
σ2e

+
1

2
(log(1−A2)− (1−A

2)y21
σ2e

)

Hence σ2²t = σ
2
e for all t ≥ 2, while σ2²1 = σ2e

1−A2 .

Exercise 6.13 Consider the univariate model y1t = A1(`)y1t−1+D(`)et+A2y2t, where y2t
are exogenous variables, A1(`) is a polynomial of order q1, D(`) is a polynomial of order
q2. Find y1t|t−1 and σ2²t in this case. Show the form of the log likelihood function assuming
that the first q = max[q1, q2 + 1] values of yt = [y1t, y2t] are constants.

Taking the initial observations as given is convenient since it eliminates a source of
nonlinearities. In general, nonlinearities do not allow to compute an analytical solution to
the first order conditions of the maximization problem and the maximum of the likelihood
must be located using numerical techniques. Conditioning on the initial observations makes
the maximization problem trivial in many cases. Note also that, as T →∞, the contribution
of the first observation to the likelihood becomes negligible. Therefore, exact and conditional
maximum likelihood coincide if the sample is large. Furthermore, when the model has
constant coefficients, the errors are normally distributed and the initial observations fixed,
maximum likelihood and OLS estimators are identical (see chapter 4 in the case of a VAR).
This would not be the case when a model features moving average terms (see example 6.11),
since nonlinearities do not wash out, even conditioning on the initial observations.

Example 6.10 Consider finding the ML estimator of the AR process described in example
6.9. Conditioning on y1 the log likelihood of (y2, . . . , yT ) is proportional to

PT
t=2{− log(σe)−

1
2σ2e
(yt−Ayt−1)2}. Maximizing this quantity with respect to A (conditional on σ2e), is equiv-

alent to minimizing (yt −Ayt−1)2, which produces AML = Aols. Using AML, the likelihood
can be concentrated to obtain −T−12 log(σ2e)−

P
t ²
0
t²t

2σ2e
. Maximizing it with respect to σ2e leads

to σ2ML =
P
t ²
0
t²t

T−1 . Suppose now that we do not wish to condition on y1. Then the likelihood

function is proportional to
PT
t=2{− log(σe)− 1

2σ2e
(yt−Ayt−1)2}+{−0.5 log( σ2e

1−A2 )−
y21(1−A2)
2σ2e

}.
If T → ∞, the first observation makes a negligible contribution to the likelihood of the
sample. Therefore, conditional ML estimates of A asymptotically coincide with full ML
estimates, provided |A| < 1.

Consider, finally, the case where A is time varying, e.g. At = D1At−1 + v2t. Condi-
tional on some A0, the recursive conditional maximum likelihood estimator of At|t and the
smoothed maximum likelihood estimator At|T can be obtained with the Kalman filter and the
Kalman smoother. As T →∞, the importance of the initial observation will be discounted
as long as the roots of D1 are all less than one in absolute value.
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Exercise 6.14 (i) Suppose that yt = x0tα + et where et is normal martingale difference
with variance σ2et and let xt be fixed regressors. Show how to derive the prediction error
decomposition of the likelihood for this model.
(ii) Let xt be a random variable, normally distributed with mean x̄ and variance Σx. Show
how to compute the prediction error decomposition of the likelihood in this case.

Multivariate prediction error decompositions present no difficulties. If yt is m×1 vector

L(y|φ) = −Tm
2
log(2π)− 1

2

TX
t=1

log |Σt|t−1|−
1

2

TX
t=1

(yt − yt|t−1)Σ−1t|t−1(yt − yt|t−1) (6.22)

where ²t = yt−yt|t−1 ∼ N(0,Σt|t−1) and where we assume y1 ∼ N(ȳ1,Σ1|0) and ²1 = y1− ȳ1.
Exercise 6.15 Consider the setup of exercise 6.11. Show the form of yt|t−1 and Σt|t−1 and
the prediction error decomposition of the likelihood in this case.

The prediction error decomposition is convenient in two respects. First, the building
blocks of the decomposition are the forecast errors ²t and their MSE Σt|t−1. Since the
Kalman filter produces these quantities recursively, it can be used to build the prediction
error decomposition of the likelihood of any model which has a state space format. Second,
since any ARMA process has a state space format, the prediction error decomposition of
the likelihood can be easily obtained for a variety of statistical an economic models.

Maximization of the likelihood conditional on the initial observations, can be obtained
by extending algorithm 6.1. Let φ = [vec(x01), vec(x02), vec(D1), vec(D0), vec(D2),Σv1,Σv2].
Then

Algorithm 6.2

1) Choose some initial φ = φ0.

2) Do steps 1)-4) of algorithm 6.1.

3) At each step save ²t = yt − yt|t−1 and Σt|t−1. Construct the log likelihood (6.22).
4) Update initial estimates of φ using any of the methods described in section 6.3.

5) Repeat steps 2)-4) until |φl − φl−1| ≤ ι; or ∂L(φ)
∂φ |φ=φl < ι, or both, for ι small.

Two comments on algorithm 6.2 are in order. First, the initial values of iterations can
be typically obtained by running an OLS regression on the constant coefficient version of
the model. If the assumptions underlying the state space specification are correct this will
consistently estimate the average value of the parameters. Second, for large dimensional
problems, maximization routines typically work better if Choleski factor of Σt|t−1, is used
in the computations of the likelihood.

The conditional prediction error decomposition is particularly useful to estimate models
with MA terms. Such models are difficult to deal with in standard setups but fairly easy
to estimate within a state space framework.
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Example 6.11 In testing the efficiency of foreign exchange markets one runs a monthly
regression of the realized three month change in spot exchange rate at t+ 3 on the forward
premium quoted at t for t+ 3. As seen in chapter 5, such a regression has moving average
errors of order up to 2 because of overlapping time intervals. Therefore, a model for testing
efficiency could be yt+3 = b0xt + ²t+3 with ²t+3 = et+3 + b1et+2 + b2et+1 where, under the
null hypothesis, b0 = 1 and et is a normal martingale difference with variance σ

2
e . This

model can be cast into a state space framework by defining D0 = 0,D2 = I, x02t = I, v1t = 0,

αt =


xt
et+3
et+2
et+1

 , D1 =

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

, x1t =

b0
1
b1
b2

 v2t =


xt
et+3
0
0

. Suppose we are
interested in estimating [b0, b1, b2] and in testing b0 = 1. Then ML estimates can be obtained
starting the Kalman filter at α1|0 = [x1, 0, 0, 0] and Ω1|0 = diag{σ2x,σ2e ,σ2e ,σ2e} where σ2x is
the unconditional variance of the forward premium and σ2e could be either the variance of
the error êt = yt − b̂0xt−3 in a training sample (say, from −τ to 0) or set to an arbitrarily
large number. To start the iterations we need x10, that is, we need some initial estimates of
(b0, b1, b2). An estimate of b0 could be obtained in a training sample or, if no such a sample
exists, using available data but disregarding serial correlation in the error term. Initial
estimates of b1 and b2 could then be b1 = b2 = 0. Then the sequence of iterations producing
αt|t−1 and Ωt|t−1 can be used to compute the likelihood function. Note that for this simple
problem one could evaluate the likelihood numerically at successive grids of, say, 20 points
in each dimension and locate the maximum numerically.

Exercise 6.16 Consider an AR(2) process yt = A0 + A1yt−1 + A2yt−2 + et where et ∼
iid N(0,σ2e). Show that the exact log likelihood function is L(φ) ∝ −T log(σe) + 0.5log((1 +
A2)

2[(1−A2)2 −A21]) −1+A2
2σ2

[(1−A2)(y1 − ȳ)2 − 2A1(y1 − ȳ)(y2 − ȳ) + (1−A2)(y2 − ȳ)2]
−PT

t=3
(yt−A0−A1yt−1+A2yt−2)2

2σ2
where ȳ = A0

1−A1−A2 . Which terms disappear if a condi-

tional likelihood approach is used? Show that σ2ML =
1

T−2
PT
t=3(yt −A0,ML −A1,MLyt−1 −

A2,MLyt−2)2.

6.2.1 Some Asymptotics of ML estimators

It is fairly standard to show that, under regularity conditions, ML estimates of the pa-
rameters of a state space model are consistent and asymptotically normal (see e.g. Harvey
(1991)). The conditions needed are generally of three types. First, we need the state equa-
tion to define a covariance stationary process. One simple sufficient condition for this is
that the eigenvalues of D1t are all less than one in absolute value for all t. Second, if the
model includes exogenous variables we also need them to be covariance stationary, linearly
regular processes. Third, we need the true parameters not to lie on the boundary of the

parameter space. Then, under the above conditions,
√
T (φML − φ0) D→ N(0,Σφ) where

Σφ = −T−1E(
P
t
∂2L
∂φ∂φ0 |φ=φ0)−1.
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For the case in which the innovations are the errors in the measurement equation, the
asymptotic covariance matrix is block diagonal, as it is shown next.

Example 6.12 For an AR(1) model it is quite easy to derive Σφ. In fact, conditional on the

initial observations, the log likelihood is L(φ) ∝ −T−12 log σ2² −
PT
t=2 ²

2
t

2σ2²
where ²t = yt−Ayt−1

and the matrix of second derivatives is

· −σ−2²
P
t y
2
t−1 −σ−4²

P
t ²tyt−1

−σ−4²
P
t ²tyt−1 (2σ4² )

−1(T − 1)− σ−6²
P
t ²
2
t

¸
.

Since the expectation of the off-diagonal elements is zero, the asymptotic covariance matrix

is diagonal with var(A) = σ2²
(T−1)Pt y

2
t−1

and var(σ2e) =
2σ4²
T−1 .

The derivation of the Kalman filter assumes that the innovations in the measurement
and in the observation equations are normally distributed. Since the likelihood function
is calculated with the Kalman filter estimates, one may wonder what are the properties of
maximum likelihood estimates when the distribution of the driving forces is misspecified.

As mentioned, misspecification of the distribution of the errors does not create consis-
tency problems for Kalman filter estimates. It turns out that this property carries over to
maximum likelihood estimates. In fact, maximum likelihood estimates obtained incorrectly
assuming a normal distribution (typically called quasi-ML) have nice properties under a
set of regularity conditions. We ask the reader to verify that this is the case for a simple
problem in the next exercise.

Exercise 6.17 Suppose observations on yt are drawn from a t-distribution with a small
number of degrees of freedom (say, less than 5) but that an econometrician estimates the
constant coefficient state space model yt = αt + v1t, αt = αt−1 where v1t is a normal
martingale difference with variance σ2v1. Show that the ML estimator for αt based on the
wrong (normal) distribution will be consistent and asymptotically normal. Show the form
of the asymptotic covariance matrix.

Intuitively, if the sample size is large and homogeneous, a normal approximation is
appropriate. In the context of a constant coefficient state space model, we could have
achieved the same conclusion by noting that recursive OLS is consistent and asymptotically
normal if the regressors are stationary, ergodic and uncorrelated with the errors and that
recursive OLS and Kalman filter-ML estimates coincide if a conditional likelihood is used.

When the coefficients of the state space model are time varying, ML estimates obtained
with misspecified errors are no longer asymptotically equivalent to those of the correct
model and Kalman filter estimates are not best linear MSE estimates of αt.

We have seen that maximum likelihood estimates have an asymptotic covariance ma-

trix equal to which is − 1
TE(

∂2L(φ)
∂φ∂φ0 |φ=φ0)−1. There are many ways to estimate this matrix.

One is to evaluate the quantity at the ML estimator, substituting averages for expecta-

tions, that is, var1(φ) = (−Pt
∂2Lt(φ)
∂φ∂φ0 |φ=φML

)−1. An alternative is obtained noting that
an approximation to the second derivatives of the likelihood function can be calculated
taking the derivatives of the scores, i.e. var2(φ) = (

P
t(
∂Lt(φ)
∂φ |φ=φML

)(∂Lt(φ)∂φ |φ=φML
)0)−1.
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Finally, a quasi ML estimator can be obtained combining the two above estimators. That
is, var3(φ) = −((var1(φ))(var2(φ))−1(var1(φ)).

Exercise 6.18 For the AR(1) model considered in example 6.12, show the form of the three
estimates of the asymptotic covariance matrix.

Hypothesis testing on the parameters is fairly standard. Given the asymptotic normality
of ML estimates, one could use t-tests to verify simple restrictions on the parameters or
likelihood ratio tests when more general hypotheses are involved.

Example 6.13 Continuing with example 6.11, to test b0 = 1 use
b0,ML−1
σb0,ML

and compare it

to a t distribution with T − 1 degrees of freedoms (or to a normal (0,1), if T is large).
Alternatively, one could estimate the model under the restriction b0 = 1, construct the
likelihood function, calculate −2[L(b0,ML)− L(b0 = 1)] and compare it with a χ2(1).

As we have seen with GMM, it may be more convenient at times to use estimates of
a restricted model. This would be the case, for example, if the model is non-linear, but it
becomes linear under some restrictions, or if it contains MA terms. In this case one can
use the Lagrangian Multiplier (LM) statistic 1

T [
P
t(
∂L(φ)
∂φ )|φre]0Σ−1φ [(

P
t
∂L(φ)
∂φ )φre)] ∼ χ2(ν),

where ν is the number of restrictions.

Example 6.14 For the model of example 6.2, if D1 = 0, conditional ML estimates of
A = [A1, A2]

0 solve the normal equations Ax0x = x0y where xt = [yt−1, yt−2], x = [x1, . . . xt]0.
However, if D1 6= 0 the normal equations are nonlinear and no analytical solution exists.
Therefore, one may impose D1 = 0 for estimation and test if the restriction holds.

Two non-nested hypotheses can be evaluated using, for example, forecasting accuracy
tests like the one of Diebold and Mariano (1995). Let ²it be the prediction errors produced
by specification i = 1, 2 and let ht = (²

1
t )
2 − (²2t )2. Then, under the hypothesis of similar

predictive accuracy, the statistic S = h̄
se(h) , where h̄ =

1
T

P
t ht, se(h) =

q
1
T

P
t(ht − h̄)2

is asymptotically normally distributed with mean zero and variance one. We will use this
statistic in section 6.5 when comparing the forecasting accuracy of a DSGE model relative
to an unrestricted VAR.

6.3 Numerical tips

There are many ways to update initial estimates in step 4) of algorithm 6.2. Here we only
briefly list some of them and highlighting advantages and disadvantages of each.

• Grid search.
This maximization method is feasible when the dimension of φ is small. It involves
discretizing the problem and selecting the value of φ which achieves the maximum on
the grid. One advantage of the approach is that no derivatives of the likelihood are



212

needed - which can be useful if the problem is complicated. When the likelihood is
globally concave, the approach will find an approximation to the maximum. How-
ever, if multiple peaks are present, it may select local maxima. For this reason, the
grid should be fine enough to avoid pathologies. While care should be exercised in
taking them as final estimates, grid estimates are useful as initial conditions for other
algorithms.

• Simplex method
A k-dimensional simplex is spanned by k + 1 vectors which are the vertices of the
simplex (e.g. if k = 2, two dimensional simplexes are triangles). This method is
typically fast and works as follows. If a maximum is found at some iteration, the
method substitutes it with a point on the ray from the maximum through the centroid
of the remaining points. For example, if L(φm) = maxj=1,k+1L(φj), we replace φm
by %φm + (1− %)φ̄, where φ̄ is the centroid, 0 < % < 1 and repeat the maximization.
This approach does not require the calculation of gradients or second derivatives of
the likelihood and can be used when other routines fail. The major disadvantage is
that no standard errors for the estimates are available.

• Gradient methods
All algorithms in this class update initial estimates by taking a step based on the
gradient of the likelihood at the initial estimate. They differ in the size and the
direction in which the step is taken.

a) Method of Steepest ascent.
At each iteration l, parameters are updated using: φl = φl−1 + 1

2λgr(φ
l) where

gr(φl) = ∂L(φ)
∂φ |φ=φl and λ is the Lagrangian multiplier of the problemmaxφl L(φl)

subject to (φl − φl−1)0(φl − φl−1) = κ . In words, the method updates current
estimates using the scaled gradient of the likelihood. λ is a smoothness param-
eter which prevents large jumps in φ between iterations (it plays the same role
as λ in the Hodrick Prescott or exponential smoothing filters). Note that if
φl ≈ φl−1, gr(φl) ≈ gr(φl−1) and one can use φl = φl−1 + %gr(φl−1) where %
is small positive scalar (e.g. 10−5). This choice is very conservative and avoids
jumps in the estimates. However, a lot of iterations are typically needed before
convergence is achieved and convergence could only be to local maximum. It is
therefore a good idea to start the algorithm from several initial conditions and
check whether the same maximum is obtained.

b) Newton-Raphson Method

The method is applicable if ∂
2L(φ)
∂φ∂φ0 exists and if L(φ) is concave (i.e. the matrix

of second derivatives is positive definite). In this case, taking a second order
expansion of L(φ) around φ0, we have:

L(φ) = L(φ0) + gr(φ0)(φ− φ0)− 0.5(φ− φ0)0∂
2L(φ)
∂φ∂φ0

(φ− φ0) (6.23)
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Maximizing (6.23) with respect to φ and using φl−1 as an estimate of φ0 we have

φl = φl−1 + (
∂2L(φ)
∂φ∂φ0

|φ=φl−1)−1gr(φl−1) (6.24)

If likelihood is quadratic, (6.24) generates convergence in one step. If it is close
to quadratic, iterations on (6.24) will converge quickly and the global maximum
will be achieved. However, if the likelihood is far from quadratic, not globally
concave or if φ0 is far away from the maximum, the method may have worse

properties than the method of steepest ascent. Note that (∂
2L(φ)
∂φ∂φ0 )

−1 can be used
to provide an estimate of the variance covariance matrix of φ at each iteration.

Once could combine steepest-ascent and Newton-Raphson methods into an hy-
brid one which shares the good properties of both, may speed up calculation
without producing large jumps in the parameters estimates. This is done, e.g.,

by choosing φl = φl−1+%(∂
2L(φ)
∂φ∂φ0 |φ=φl−1)−1gr(φl−1) where % > 0 is a small scalar.

c) Modified Newton-Raphson.

The basic Newton-Raphson method requires the calculation of the matrix ∂2L(φ)
∂φ∂φ0

and its inversion. When φ is of large dimension this maybe computationally
difficult. The modified Newton-Raphson method uses the fact that ∂gr(φ)

∂φ ≈
∂2L(φ)
∂φ∂φ0 and guesses the shape of

∂2L(φ)
∂φ∂φ0 at the existing estimate using the derivative

of the gradient. Let Σl be an estimate of [∂
2L(φ)
∂φ∂φ0 ]

−1 at iteration l. Then the
method updates estimates of φ using (6.24) where

(Σl) = (Σl−1) +
(−ρlΣl−1grl−1)(−ρlΣl−1grl−1)0

(−ρlΣl−1grl−1)∆grl − Σ
l−1∆grl(∆grl)0(Σl−1)−1

(∆grl)0Σl−1∆grl

and ∆φl = φl−φl−1, ∆gr(φl) = gr(φl)− gr(φl−1). If likelihood is quadratic and
the number of iterations large, liml→∞ φl = φML and liml→∞Σl = (

∂2L(φ)
∂φ∂φ0 |φ=φML

)−1.
Standard errors of the estimate can be read off the diagonal elements of Σl eval-
uated at φML.

d) Scoring Method.

This method uses the information matrix E ∂2L(φ)
∂φ∂φ0 in place of

∂2L(φ)
∂φ∂φ0 in the calcu-

lation where the expectation is evaluated at φ = φl−1. The information matrix
approximation is convenient since it typically has a simpler expression than the
Hessian.

e) Gauss-Newton-scoring method.
The Gauss-Newton method uses a function of ( ∂e∂φ |φ=φl)0( ∂e∂φ |φ=φl) as an approx-
imation to ∂2L(φ)

∂φ∂φ0 , where φ
l
0 is the value of φ at iteration l and et is the vector

of errors in the model. In the case of constant state space models, the approx-
imation is proportional to the vector of regressors constructed using the right
hand side variables of both the state and the measurement equations. When the
model is linear, Gauss-Newton and scoring approximations are identical.
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6.4 ML estimation of DSGE models

Maximum likelihood estimation of the parameters of a DSGE model is a straightforward
application of the methods we have described so far. As we have already seen in chapter 2,
the log linearized solution of a DSGE model is of the form:

y2t = A22(θ)y2t−1 +A23(θ)y3t (6.25)

y1t = A12(θ)y2t−1 +A13(θ)y3t (6.26)

where y2t includes the states and the driving forces, y1t all other endogenous variables and y3t
the shocks of the model. Here Aii0(θ), i, i0 = 1, 2 are time invariant (reduced form) matrices
which depend on θ = (θ1, . . . , θk), the structural parameters of preferences, technologies
and government policies. Note also that there are cross equation restrictions in the sense
that some θj , j = 1, . . . , k may appear in more than one entry of these matrices.

Example 6.15 In the working capital model considered in exercise 1.14 of chapter 2, set-
ting Kt = 1, ∀t, y2t includes lagged real balances Mt−1

pt−1 and lagged deposits dept−1; y3t in-
cludes shocks to the technology ζt and to the monetary rule M

g
t , while y1t includes all

the remaining endogenous variables (hours (nt), output (GDPt), the nominal interest rate
(it) and the inflation rate (πt)). Setting N

ss = 0.33, η = 0.65, πss = 1.005, β = 0.99,
( c
GDP )

ss = 0.8, the persistence of the shocks to 0.95 and the parameters of the policy rule
to a2 = −1.0; a1 = 0.5; a3 = 0.1, a0 = 0, the log-linearizing solution has the following state
space representation:

cMt

ptddept
\GDP tbntbitbΠt


=


−0.4960 0.3990
−1.0039 0.8075
−0.3968 0.3192
0.9713 −0.7813
2.0219 −1.6264


" [Mt−1

pt−1ddept−1

#
+


1.3034 −0.1941
1.1459 −1.4786
1.0427 −0.1552
−0.3545 0.3800
−0.9175 −1.2089


" bζtdMg

t

#

While in example 6.15 we have chosen a log-linear approximation, DSGE models with
quadratic preferences and linear constraints also fit into this structure (see e.g. Hansen
and Sargent (1998)). In fact, (6.25)-(6.26) are very general, do not require any certainty
equivalence principle to obtain and need not be the solution to the model, as the next
example shows.

Example 6.16 (Watson) Suppose a model delivers the condition Etyt+1 = αyt + xt where
xt = ρxt−1 + ext , x0 given. This could be, e.g., a New-Keynesian Phillips curve, in which
case xt are marginal costs, or stock price relationship, in which case xt are dividends.
Using the innovation representation we have xt = Et−1xt + ext , yt = Et−1yt + eyt where
Etxt+1 = ρxt = ρ(Et−1xt + ext ) and Etyt+1 = αyt + xt = α(Et−1yt + e

y
t ) + (Et−1xt + ext ).

Letting y1t = [xt, yt], y2t = [Etxt+1, Etyt+1], y3t = [ext , vt], where vt = eyt − E(eyt |ext ) =
eyt − κext , A11(θ) = I, A12(θ) =

·
1 0
κ 1

¸
,A22(θ) =

·
ρ 0
1 α

¸
,A21(θ) =

·
ρ 0

1 + ακ α

¸
,
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it is immediate to see that the model fits into (6.25)-(6.26). Here the parameters to be
estimated are θ = (α, ρ,κ,σ2e ,σ

2
v).

In general, one has two alternatives to derive a representation which fits (6.25)-(6.26):
solve the model, as we have done in example 6.15, or use the rational expectations assump-
tion, as we have done in example 6.16,

Exercise 6.19 Consider a version of a consumption-saving problem where consumers are
endowed with utility of the form u(c) = c1−ϕ

1−ϕ , the economy is small relative to the rest of
world and the resource constraint is ct +Bt ≤ GDPt + (1 + rt)Bt−1 where Bt are interna-
tionally traded bonds and rt is the net real interest rate, taken as given by the agents.
(i) Derive a log linearized version of the Euler equation and show how to map it into the
framework described in example 6.16.
(ii) Show the entries of the matrices in the state space representation.
(iii) How would you include a borrowing constraint Bt < B̄ in the setup?

Exercise 6.20 Consider the labor hoarding model studied in exercise 4.1 of chapter 5 where
agents have preferences over consumption, leisure and effort and firms distinguish between
labor and effort in the production function. Cast the log-linearized Euler conditions into a
state space framework using an innovation representation.

Clearly, (6.25)-(6.26) are in a format estimable with the Kalman filter. In fact, recursive
estimates of y2t can be obtained, given some initial conditions y20, if Aii0(θ), σ2y3 are known.
Given these recursive estimates forecast errors can be computed. Hence, for each choice
of θ, we can calculate the likelihood function via the prediction error decomposition and
update estimates using one of the algorithms described in section 3. Standard errors for
the estimated parameters can be read off the Hessian, evaluated at maximum likelihood
estimates, or any approximation to it.

Despite the simplicity of this procedure, there are several issues, specific to DSGE mod-
els, one must deal with when using ML to estimate structural parameters. The first has to
do with the number of series used in the estimation. As it is clear from (6.25)-(6.26), the
covariance matrix of the vector [y1t, y2t] is singular, a restriction unlikely to hold in the data.
This singularity was also present in the innovation representation (6.11). Two options are
available to the applied investigator: she can either select as many variables as there are
shocks or artificially augment the space of shocks with measurement errors. For example,
if the model is driven by a technology and a government expenditure shock, one selects two
of (the many) series belonging to [y1t, y2t] to estimate parameters. Kim (2000) and Ireland
(2000) use such an approach in estimating versions of sticky price models. While this leaves
some arbitrariness in the procedure, some variables may have little information about the
parameters. Although a-priori it may hard to know which equations carry information, one
could try to select variables so has to maximize the identifiability of the parameters. Alter-
natively, since some variables may not satisfy the assumptions needed to obtain consistent
estimates (for example, they display structural breaks), one could choose the variables that
are more likely to satisfy these assumptions.
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Example 6.17 In a standard RBC model driven by technology disturbances we have that
[N̂t,dgdpt, ĉt] are statically related to the states [K̂t, ζ̂t] via a matrix A12(θ) where .̂ refers
to deviations from the steady state. Since the number of shocks is less than the number
of endogenous variables, there are linear combinations of the controls which are perfectly
predictable. For example, using equation (6.25) into (6.26) we have that α1N̂t + α2dgdpt +
α3ĉt = 0 where α1 = A111 A321 −A121 A311 , α2 = A221 A311 − A211 A321 , α3 = A221 A111 − A311 A211 .
Similarly, using the equations fordgdpt, ĉt and the law of motion of the capital stock we have
α4ĉt+α5ĉt−1−α6dgdpt−α7dgdpt−1 = 0 where α4 = A121 +δ[1−δ(KN )η](A121 A311 −A111 A321 /[1−
δ(KN )

η], α5 = (1 − δ)A121 α6 = A321 − δ(A121 A311 − A121 A321 )/[1 − δ(KN )η], α7 = (1 − δ)A321 .
This implies that the system is stochastically singular and for any sample size the covariance
matrix of the data is postulated to be of reduced rank.

Attaching measurement errors to (6.26) is the option taken by Sargent (1979), Altug
(1989) or McGrattan, Rogerson and Wright (1997). The logic is straightforward: by adding
a vector of serially and contemporaneously uncorrelated measurement errors, we complete
the probability space of the model (the theoretical covariance matrix of [y1t, y2t] is no
longer singular). Since actual variables typically fail to match their model counterparts (e.g.
actual savings are typically different from model based measures of savings), the addition of
measurement errors is easily justifiable. Note that, if this route is taken, a simple diagnostic
on the quality of the model can be obtained by comparing the size of the estimated standard
deviation of the measurement errors and of the structural shocks. Standard deviations for
the former much larger than for the latters suggest that misspecification is likely to be
present.

Example 6.18 In example 6.15, if we wish to complete the probability space of the model,
we need to add five measurement errors to the vector of shocks. Alternatively, we could
use, e.g., real balances and deposits to estimate the parameters of the model. However, it is
unlikely that these two series have information to estimate the share of labor in production
function η. Hence, identification of the parameters may be a problem when using a subset
of the variables of the model

The introduction of a vector of serially and contemporaneously uncorrelated measure-
ment errors does not alter the dynamics of the model. Therefore, the quality of the model’s
approximation to the data is left unchanged. Ireland (2004), guessing that both dynamic
and contemporaneous misspecifications are likely to be present in simple DSGE models,
instead adds a VAR(1) vector of measurement errors. The importance of these dynamics
for the resulting hybrid model can be used to gauge how far the model is from the data,
much in the spirit of Watson (1993), and an analysis of the properties of the estimated VAR
may help in respecifying the model (see chapter 7). However, is important to note that the
hybrid model can no longer be considered ”structural”: the additional dynamics play the
same role as distributed lags which were added in the past to specifications derived from
static economic theory when confronted with the (dynamics of the) data.
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The second issue concerns the quality of the model’s approximation to the data. It is
clear that to estimate the parameters with ML and to validate model, one must assume
that it ”correctly” represents the process generating the data up to a set of unknown
parameters. Some form of misspecification regarding e.g. the distribution of the errors (see
White (1982)) or the parametrization (see Hansen and Sargent (1998)), can be handled using
the quasi-maximum likelihood approach discussed in section 6.2. However, as we will argue
in chapter 7, the misspecification that a DSGE model typically displays is of different type.
Adding contemporaneous uncorrelated measurement errors avoids singularities but it does
not necessarily reduce misspecification. Moreover, while with GMM one is free to choose
the relationships used to estimate the parameters of interest, this is not the case with ML
since joint estimation of all the relationships produced by the model is generally performed.
Under these conditions, maximum likelihood estimates of the parameters are unlikely to
be consistent and economic exercises conducted conditional on these estimates may be
meaningless. In other words, credible maximum likelihood estimation of the parameters of
a DSGE model requires strong beliefs about the nature of the model.

Third, for parameters to be estimable they need to be identifiable. For example, if θ1
and θ2 are parameters and only θ1 + θ2 or θ1θ2 are identifiable, they can not be estimated
separately. Besides this generic problem, thoroughly discussed in Hamilton (1994), DSGE
models often face partial identifiability problems in the sense that the series used may have
little information about the parameters of interest. This is not surprising: estimating,
say, parameters of a monetary policy rule out of export or the trade balance is unlikely
to be successful even if these parameters appear in the relevant equations. Furthermore,
certain parameters affect only the steady state and therefore cannot be estimated when
the model is written in deviations from the steady states or when variables are entered in
log differences. In this situation two approaches are possible. The first one, which is more
standard, is to calibrate nonestimable parameters (say θ1) and provide ML estimates for
the remaining free parameters (say θ2) conditional on the chosen θ1. As argued in chapter
7, such a choice may generate consistency problems and distort the asymptotic distribution
of θ2. The alternative is to use other moment conditions were these parameters appear and
jointly estimate θ1 and θ2 using the scores of the likelihood and these moment conditions.
Since the score of the likelihood has the format of moment conditions, this mixed approach
will produce, under regularity conditions, consistent and asymptotically normal estimates.
When this last alternative is unfeasible, local sensitivity analysis in a neighborhood of the
calibrated parameters is advisable to explore the shape of the likelihood function around
the maximum for θ2 one finds.

Note also the similarities between this and the GMM approach described in chapter 5.
Two main differences should be noted. First, the construction of the scores requires the
solution of the model (or the rational expectation assumption), which was not necessary
to estimate parameters with GMM. Second, if no misspecification is present, ML estimates
will, by construction, be more efficient than GMM estimates.

Once parameter estimates are obtained one can proceed to validate the model and/or
examine the properties of the implied system. Statistical validation can be conducted in
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many ways. For example, if interesting economic hypotheses involve restrictions on a subset
of the parameters of the model, standard t-tests or likelihood ratio tests using the restricted
and the unrestricted versions of the model can be performed.

Example 6.19 (Money demand equation) Consider a representative agent maximizing
E0
P
t β

t [ 1
1−ϕc c

1−ϕc
t + ϑM

1−ϕM (
Mt+1

pt
)1−ϕM ] by choice of (ct, Bt+1,Mt+1) subject to ct+

Bt+1
pt
+

Mt+1

pt
+ b1

2
(Mt+1−Mt)2

pt
+ b2

2
(Mt−Mt−1)2

pt
≤ wt + Mt

pt
+ (1 + it)

Bt
pt
, where b1, b2 are parameters,

wt is an exogenous labor income and Bt are nominal one-period bonds. The two optimality
conditions are c−ϕt = βEt[c

−ϕ
t+1

pt
pt+1

(1 + it+1)] and ϑM(
Mt+1

pt
)−ϕM cϕct = Et[1− 1

1+it+1
+ (b1 +

b2
1+it+1

)∆Mt+1− 1
1+it+1

(b1+
b2

1+it+2
)∆Mt+2] where ∆Mt+1 =Mt+1−Mt. Log linearizing the

two conditions, solving out for ı̂t+1 and using the budget constraint we have that φcŵt −
φM(M̂t+1 − p̂t) = α1d∆M t+1 + α2d∆M t+2 + α3d∆wt+1 + α4d∆wt+2 + α5c∆pt+1 + α6c∆pt+2
where αj are functions of the deep parameters of the model (b1, b2) and of the steady states
iss,∆Mss. If we assume that the Central bank chooses it+1 so that ∆p̂t = 0, that bonds are
in zero net supply, the above equation can be solved for ∆Mt as a function of the current
and future exogenous labor income ŵt and the current and future levels of real balances
M̂t+1 − p̂t.

The parameters of this model can be estimated in a number of ways. One is GMM.
For example, using as instruments lagged values of money growth, real balances and labor
income, one could estimate (ϕM ,ϕc, b1, b2, i

ss,∆Mss,β) from the above equation. Alterna-
tively, one could use ML. To do so the above equation needs to solved forward in order to
express current growth rate of money as a function of current and future consumption and
current money holdings. As we will see in example 6.20, this is easier to do if we represent
the available data with a VAR.

Since there is only one shock (the exogenous labor income) and the system of equations
determining the solution is singular. There are three alternatives to deal with this problem.
The one we have used expresses the solution of ∆Mt in terms of current and future labor
income and real balances. Then estimates of the parameters can be found maximizing the
likelihood of the resulting equation. The second is to attach to the policy equation an error,
∆p̂t = ²3t. This is easily justifiable if inflation targeting is only pursued on average over
some period of time. The third is to assume that labor income is measured with error. In
the latter two alternatives, the joint likelihood function of the money demand equation and
of the consumption Euler equation can be used to find estimates of the parameters. Note
also that not all the parameters may be identifiable from the first setup - the forward looking
solution requires elimination of the unstable roots which may have important information
about, e.g., the adjustment cost parameters.

Restricted and unrestricted specifications can also be compared in an out-of-sample
forecasting race; for example, using the MSE of the forecasts, or the record of turning point
predictions.

Exercise 6.21 Consider two versions of a RBC model, one with capacity utilization and
one without. Describe a Monte Carlo procedure to verify which model matches turning
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points of US output growth better. How would you compare models which are not nested
(say, one with capacity utilization and one with adjustment costs to capital)?

The stability of the estimates over subsamples can be examined in a standard way.
For example, one can split the sample in two and construct a distance test of the form
S = (θ1 − θ2)(Σθ1 + Σθ2)−1(θ1 − θ2) where θ1 is the ML estimate obtained in the first
sample and Σθ1 its estimated covariance matrix and θ

2 is the ML estimate obtained in the
second sample and Σθ2 the corresponding estimated covariance matrix. Recursive tests of
this type can also be used to determine when a structural break occurs. That is, for each
1 < τ < T , we can construct Sτ by estimating the model over two samples [1, τ ], [τ +1, T ].
Then one would compare supτ Sτ to a χ

2(dim(θ)), much in the same spirit as structural
stability tests described in chapter 4.

We have seen that the solution of DSGE models can be alternatively written in a state
space or restricted VAR(1) format. This latter offers an alternative framework to compare
the model to the data. The restrictions that DSGE imposes on VARs are of two types.
First, log-linearized DSGE models are typically VAR(1) models. Therefore, the methods
described in chapter 4 can be used to examine whether the actual data can be modelled as an
VAR(1). Second, it is well known, at least since Sargent (1979), that rational expectations
models impose an extensive set of cross equations restrictions on the VAR of the data.
These restrictions can be used to identify and estimate the free parameters and to test the
validity of the model. We discuss how this can be done next.

Example 6.20 (Kurmann) Consider an hybrid Phillips curve, πt = α1Etπt+1 + α2πt−1 +
α3mct + et which can be obtained from a standard sticky price model once a fraction of the
producers fix the price using a rule of thumb and adding some measurement error et. The
rule necessary to produce such an expression is that the new price is set to an average of
last period’s price, updated with last period’s inflation rate (as in Gali and Gertler (1999)).
Assume mct is exogenous and let Ft represents the information set available at each t.
For any zt ∈ Ft, Et(Et[yt+τ |Ft]|zt) = Et(yt+τ |zt), by the law of iterated expectations.
Let Yt = AYt−1 + Et be the companion form representation of the model where Yt is of
dimension mq × 1 (m variables with q lags each). Since Et(mct+τ |Yt) = S1AτYt and
E(πt+τ |Yt) = S2AτYt where S1 and S2 are selection matrices, a hybrid Phillips curve
implies S2[A−α1A2−α2I] = α3S1A which produce mq restrictions. For example, if q = 1,
Yt includes only the labor share and inflation and Aii0 are the parameters of the VAR we
have

A12 − α1A12A11 − α1A22A12 − α2 = α3A11

A22 − α1A21A12 − α1A222 − α2 = α3A21 (6.27)

(6.27) requires that expectations of real marginal costs and inflation produced by a VAR
are consistent with the dynamics of the model. One way to impose these restrictions is to
express the coefficients of the inflation equation in the VAR as a function of the remaining
(m − 1)mq VAR coefficients and the parameters of the theory. Here, since there are four
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unknowns and two equations, the system can be solved for, e.g., A21 and A22 as a function of
A11 and A12. The likelihood function for the restricted VAR system can then be constructed
using the prediction error decomposition and tests of the restrictions obtained comparing the
likelihood of restricted and unrestricted VARs.

Exercise 6.22 Consider an endowment economy where agents receive a random income yt
and may either consume or save it. Suppose that stocks St+1 are the only asset, that their
price is pst and that the budget constraint is ct + p

s
tSt+1 = yt + (p

s
t + sdt)St where sdt are

dividends. Assume u(c) = c1−ϕ
1−ϕ and that agents discount the future at the rate β.

i) Derive a log-linearized expression for the price of stocks as a function of future dividends,
future prices and current and future consumption.
ii) Assume that data on stock prices and stock dividends are available and that an econo-
metrician specifies the process for the data as a VAR of order 2. Derive the cross-equation
restrictions that the model imposes on the bivariate representation of prices and dividends
(Hint: use the equilibrium conditions to express consumption as a function of dividends).
iii) Assume that also data on consumption is available. Does your answer in ii) change?

Exercise 6.23 Continuing with example 6.19, consider the log-linearized money demand
equation alone. Assume that ∆Xt = [∆pt,∆wt,∆it] is exogenous and follows a VAR(q)
model which we write in the companion form Yt = AYt−1 + Et and ∆Xt = SYt, where S is
a selection matrix. Show that the forward solution can be written as ∆ lnMt =

M0
1−λ1 − (1−

1+iss

λ1
(lnMt−1− φ̃0SYt−1)+ λ1−1−(1+iss)

λ1−1 φ̃S(1− A
λ1
)−1Yt+vt where φ = [1, φcφM ,− 1

issφM
], φ̃ =

issϕM
Mss(b1+b2/(1+iss))(λ1−(1+iss−1)φ, λ1 is the stable solution of λ

2−(1+(1+iss)+( issϕM
M(b1+b2/(1+iss)

)
λ + 1 = 0, and vt is a measurement error, which appears because the econometrician in-
formation may be different from the one of the agents. Give the structure of vt. Show the
format of the solution when q = 2 and there is no constant in the VAR for ∆Xt. What
parameters can you estimate? Write down the likelihood function you want to maximize
and show the implied cross equations restrictions.

Statistical validation is usually insufficient for economic purposes, since it offers scarce
indications on the reasons why the model fails and provides very little information about
the properties of the estimated model. Therefore, as we have done in chapter 5, one would
also like to compare the predictions of the model for a set of interesting statistics of the
data. Several statistics can be used. For example, given ML estimates, one could com-
pute unconditional moments such as variability, cross correlations, spectra or cross spectra
and compared them with those in the data. To learn about the dynamic properties of
the estimated model one could compute impulse responses, variance and historical decom-
positions. Informal comparisons are typically performed but there is no reason to do so,

especially in a ML context. In fact, since
√
T (θML − θ0) D→ N(0,Σθ), we can compute the

asymptotic distribution of any continuous function of θ using the δ-method i.e. if h(θ) is

continuously differentiable,
√
T (h(θML) − h(θ0)) D→ N(0,Σh =

∂h(θ)
∂θ Σθ

∂h(θ)
∂θ

0
). If an esti-

mate hT is available in the data, a formal measure of distance between the model and the
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data is (h(θML)− hT )(Σh + ΣhT )−1(h(θML)− hT ), which is asymptotically distributed as
a χ2(dim(h)). Small sample versions of such tests are also easily designed.

Exercise 6.24 Suppose that
√
T (θML − θ0) D→ N(0,Σθ) and suppose that, for the statistic

h(θ) of interest, both hT and its standard error are available. Describe how to perform a
small sample test of the fit of the model.

Once the model is found to be adequate in capturing the statistical and the economic
features of the data, welfare measures can be calculated and policy exercises performed.

Exercise 6.25 (Blanchard and Quah) The model described in section 3.1 of chapter 3
produces a solution of the form

∆GDPt = ²3t − ²3t−1 + (1 + a)²1t − a²1t−1
UNt = −²3t − a²1t (6.28)

where ∆GDPt = GDPt − GDPt−1 and UNt = Nt − Nfe where Nfe is full employment
equilibrium, ²1t is a technology shock and ²3t a money shock.
i) Transform (6.28) into a state space model
ii) Using data for output growth and appropriately detrended unemployment provide a max-
imum likelihood estimate of α and test three hypotheses, α = 0 and α± 1.
iii) Provide impulse responses to technology and money shocks using αML. Compare them
with those obtained with a structural VAR identified using long run restrictions.

Exercise 6.26 (Habit persistence) Consider a basic RBC model driven by technology dis-
turbances and three separate specifications for preferences. The first one assumes intertem-

poral separability of consumption and leisure, that is u(ct, ct−1,Nt,Nt−1) =
c1−ϕt
1−ϕ +ln(1−Nt).

The second that there is habit persistence in consumption, that is u(ct, ct−1, Nt, Nt−1) =
(ct+γct−1)1−ϕ

1−ϕ + ln(1 − Nt). The third that there is habit persistence in leisure so that

u(ct, ct−1,Nt,Nt−1) =
c1−ϕt
1−ϕ +ln(1−Nt+γ(1−Nt−1)). The resource constraint is ct+Kt+1 =

ζtK
1−η
t Nη

t + (1 − δ)Kt where ln ζt is an AR(1) process. Using US data on consumption,
hours, output and investment estimate the free parameters of the three models assuming
that consumption, investment and output are measured with error and that each of these
errors is a contemporaneously uncorrelated martingale difference process. Test the hypothe-
ses that habit persistence either in consumption or in leisure is unnecessary to match the
data. Compare the responses of the three models to technology shocks. What is the role of
habit persistence in propagating technology disturbances? (Hint: Nest the three models in
one general specification and test the restrictions).

Exercise 6.27 (Woodford) Suppose agents maximize E0
P
t β

t²4t[u1(ct + Gt) + u2(
Mt
pt
) −

²2tu3(Nt)] where Gt is government expenditure,
Mt
pt
are real balances, Nt is hours, ct =

(
R
c

1
ςp+1

it di)ςp+1 and pt = (
R
p
− 1
ςp

it dj)−ςp . Here ²4t is a aggregate demand shock and ²2t
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a labor supply shock and ςp the elasticity of substitution across consumption goods. Let

aggregate demand for good i be cit = ct(
pit
pt
)
− 1+ςp

ςp . The budget constraint of consumers

is ct +
Mt
pt
+ Bt

pt
+ Tt = wtNt +

Mt−1
pt

+ (1+it−1)
πt

Bt−1
pt−1 , where

Bt
pt
are real bonds and πt

the inflation rate. Suppose cit = Nit and that the price index evolves according to pt =

(ζpp
− 1
ςp

t−1 + (1 − ζp)p̃
− 1
ςp

t )−ςp, where p̃t is the optimal price in a Calvo style setting and ζp
the fraction of firms not changing prices. Finally, assume that the monetary authority sets
interest rates according to 1+ it = a1+a2πt+(1+ iss)M

g
t , where i

ss is the steady state net

interest rate and the fiscal authorities sets Tt according to Tt = a3 + a4
Bt−1
pt−1 + T

ssT gt where
T ss are steady state lump sum taxes.
i) Derive the log linearized first order conditions (around the steady states) of the model.
ii) Derive a state space representation for the conditions in i) in terms of ²̂t = [²̂4t, ²̂2t, M̂

g
t , T̂

g
t ].

iii) Assuming that ²̂t is an AR(1) with diagonal persistence matrix and that output and in-
flation are measured with error, provide ML estimates of the parameters of the model using
US data for debt, real balances, inflation, output, nominal interest rate and real deficit. Test
the hypothesis a4 <

1−β
β and a2 <

1
β , which corresponds to passive fiscal policy and active

monetary policy in the terminology of Leeper (1991). What is the effect of shocks to T gt in
the economy?

6.5 Estimating a sticky price model: an example

The model we consider is the same as in exercise 3.2 of chapter 3. Our task is to estimate
its structural parameters, test interesting economic hypotheses concerning the magnitude
of the coefficients, compare the forecasting performance relative to an unrestricted VAR
and, finally, compare some conditional moment implications of the model and of the data.

For convenience we repeat the basic setup: the representative household maximizes

E0
P
t β

t[ln ct + ϑM ln(
Mt
pt
) − ϑN

1−ϕnN
1−ϕn
t − ϑef

1−ϕefEf
1−ϕef
t ] where ct = (

R
c

1
ςp+1

it di)ςp+1 is

aggregate consumption, ςp is the elasticity of substitution among consumption goods, pt =

(
R
p
− 1
ςp

it dj)−ςp is the aggregate price index, Mt
pt
are real balances, Nt is hours worked and Eft

is effort. The budget constraint is
R 1
0 pitcitdi+Mt =WNtNt +WetEft +Mt−1 + Tt + Prft

where Tt are monetary transfers, Prft profits distributed by the firms and WNt,Wet are
the reward to working and to effort. A continuum of firms produce differentiated good
using cit = ζt(N

η2
it Ef

1−η2
it )η1 where Nη2

it Ef
1−η2
it is the quantity of effective input and ζt

an aggregate non-stationary technology shock, ∆ζt = ²1t where ln ²1t ∼ iid N (0,σ2ζ ).
Firms set prices one period in advance, taking as given the aggregate price level and not
knowing the current realization of the shocks. Once shocks are realized, firms optimally
choose employment and effort. So long as marginal costs are below the predetermined
price, firms will meet the demand for their product and choose an output level equal to
cit = (

pit
pt
)−1−ς

−1
p ct. Optimal price setting implies Et−1[ 1ct ((η1η2)pitcit−(ςp+1)WNtNit)] = 0

which, in the absence of uncertainty, reduces to the standard that condition that the price



Methods for Applied Macro Research 6: Likelihood methods 223

is a markup over marginal costs. We assume that the monetary authority controls the
quantity of money and sets ∆Mt = ²3t + aM²1t where ln ²3t ∼ iid N (0,σ2M) and aM is a
parameter. Letting lower case letters denote natural logs, the model implies the following
equilibrium conditions for inflation (∆pt), output growth (∆gdp), employment (nt) and
labor productivity growth (∆npt)

∆pt = ²3t−1 − (1− aM)²1t−1 (6.29)

∆gdpt = ∆²3t + aM²1t + (1− aM)²1t−1 (6.30)

nt =
1

η
²3t − 1− aM

η
²1t (6.31)

∆npt = (1− 1
η
)∆²3t + (

1− aM
η

+ aM)²1t + (1− aM)(1− 1
η
)²1t−1 (6.32)

where npt = gdpt − nt and η = η1(η2 + (1− η2) 1+ϕn1+ϕef
).

The model therefore has two shocks (a technology and a monetary one) and impli-
cations for at least four variables (∆pt,∆gdpt,∆npt, nt). There are 11 free parameters
(η1, η2,ϕn,ϕef ,β,σ

2
ζ ,σ

2
M , aM ϑM ,ϑn,ϑef ), but many of them are do not appear in or are

not identifiable from (6.29)-(6.32). In fact it is easy to verify that only aM and η indepen-
dently enter the four conditions and therefore, together with σ2ζ and σ

2
M , are the only ones

estimable with likelihood methods.

Since there are only two shocks the covariance matrix produced by the model is singular
and we are free to choose which two variables to use to estimate the parameters. In the
baseline case we select productivity and hours. As a robustness check, we repeat estimation
using both output and hours, and prices and output. Note that, in this latter case, also η
is non-identifiable. As an alternative, we estimate the model adding serially uncorrelated
measurement errors to output and productivity. In this case we estimate six parameters:
the four structural ones and the variances of the two measurement errors.

We examine both the statistical and economic fit of the model. First, we study several
specifications which restrict aM and/or η to some prespecified value. A Likelihood ratio
test is performed in each case and the statistics compared to a χ2 distribution. For the
specification with measurement errors, we also perform a forecasting exercise comparing the
one step ahead MSE of the model to the MSE produced by a four variable VAR(1) model,
which has 20 parameters (four constants and 16 autoregressive coefficients). Since the
number of coefficients in the two specifications differs, we also compare the two specifications
with a Schwarz criterion (see chapter 4). In this latter case, the VAR model is penalized
since it has a larger number of parameters. We also compute tests of forecasting accuracy,
as detailed in section 6.2. Conditional on the estimated parameters, we compute impulse
responses, to examine the sign of the dynamics of the variables to technology and monetary
shocks, and compare few elements of the unconditional autocovariance function for the four
variables in the model and in the data.

We use CPI, GDP (constant in 1992 prices) and total hours (equal to average weekly
hours multiplied by civilian employment) for Canada for the period 1981:2-2002:3. All
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variables are logged and first differences of the log are used to compute growth rates. Total
hours are detrended using a linear trend.

(6.29)-(6.32) has a state space representation for α = [²1t, ²1t−1, ²3t, ²3t−1, v1t, v2t], where

vit, i = 1, 2 are measurement errors, x1t =


0 aM − 1 0 1 0 0
aM 1− aM 1 −1 1 0
aM−1
η 0 1

η 0 0 0
1−aM
η + aM

(1−aM )(η−1)
η

η−1
η −η−1η 0 1

,

D1 =


0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , D2 =

1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 , Σv1 = 0 with the appropriate adjust-
ments if no measurement error is included. The Kalman filter is initialized using α1|0 = 0
and Ω1|0 = I. The likelihood function is computed recursively and a simplex method is
used to locate the maximum. We use this approach instead of a one based on the gradient
because the likelihood is flat, the maximum is around the boundary of the parameter space
and convergence is hard to achieve. The cost is that no standard errors for the estimates
are available. Table 6.1 reports parameter estimates, together with the p-values of various
likelihood ratio tests.

Table 6.1: ML estimates

Data set aM η σ2
ζ σ2

M Log Likelihood

(∆npt, nt) 0.5533 0.9998 1.06e-4 6.69e-4 704.00
(∆gdpt, nt) -7.7336 0.7440 6.22e-6 1.05e-4 752.16
(∆gdpt,∆pt) 3.2007 1.26e-5 1.57e-4 847.12

aM η σ2
ζ σ2

M σ2
v1 σ2

v2 Log Likelihood

(nt,∆npt,∆gdpt,∆pt) -0.9041 1.2423 5.82e-6 4.82e-6 0.0236 0.0072 1336

Restrictions aM = 0 η = 1 η = 1 η = 1.2
aM = −1.0

(∆npt, nt), p-value 0.03 0.97 0.01 0.00
(∆gdpt, nt), p-value 0.00 0.00 0.00 0.00
(nt,∆npt,∆gdpt,∆pt) p-value 0.00 0.001 0.00 0.87

Restrictions aM = 0 aM = 1 aM = −1.0
(∆yt,∆pt), p-value 0.00 0.00 0.00

Several features of the table deserve comments. First, using bivariate specifications the
estimated value of η is less then one. Since for ϕef = ϕN , η = η1, this implies that there is no
evidence of short run increasing returns to scale. The lack of increasing returns is formally
confirmed by likelihood ratio tests: conditioning on values of η ≥ 1 reduces the likelihood.
However, when measurement errors are included, mild short run increasing returns to scale
obtain. Second, the estimated value of aM depends on the data set: it is positive and
moderate when productivity and hours are used; positive and large when output and prices
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are used, strongly negative when output and hours are used and moderately negative when
the four series are used. The reason for this large variety of estimates is that the likelihood
function is very flat in the aM dimension. Figure 6.1 illustrates this fact using the first data
set. It is easy to see that aM = 0, or aM = −0.5 are not extremely unlikely.
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Figure 6.1: Likelihood surface

Note that, at face value, these estimates imply that monetary policy is countercyclical
in two specifications and mildly accommodative in the two others. Third, the likelihood
function is also relatively flat in the σ2ζ ,σ

2
M space and achieves the maximum around the

boundary of the parameter space. Note that with all bivariate data sets, and somewhat
counterintuitively, the variance of monetary shocks is estimated to be larger than the vari-
ance of the technology shocks. Fourth, the size of the estimated variance of measurement
errors is several orders of magnitude larger than the estimated variance of structural shocks,
suggesting that misspecification is likely to be present.

Forecasts produced by the model are poor. In fact, the one-step ahead MSEs for hours,
productivity growth, output growth and inflation are 30, 12, 7, 15 times larger than the
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ones produced by a VAR(1). A test for forecasting accuracy confirms that the forecasts of
the model are different from those produced by a VAR(1). The picture improves when a
penalty for the larger number of parameters is used. In this case, the value of the Schwartz
criterion for the model is ”only” twice as large as the one of the VAR(1).

Impulse responses to unitary positive technology and money shocks are in figure 6.2.
We report responses obtained with the parameters estimated using productivity and hours
data (DATA 1) and output and hours data (DATA 2). Several features are worth dis-
cussing. First, estimates of aM do not affect the responses to monetary shocks. Second,
qualitatively speaking, and excluding the responses of output to technology disturbances,
the dynamics induced by the shocks are similar across parametrizations. Third, the shape of
the responses to technology and monetary shocks looks very similar (up to a sign change)
when productivity and hours data are used. Hence, it would be hard to distinguish the
two type of shocks by looking at the comovements of these two variables only. Fourth, as
expected, the response of productivity to technology shocks is permanent (there is an initial
overshooting) and the response of hours is temporarily negative.

Table 6.2 reports cross covariances in the model and in the data. A few features of
the table stand out. First, the model estimated with measurement errors fails to capture,
both quantitatively and qualitatively, the cross covariance of the data: the magnitude of
the estimated covariances is 10 times smaller than the one in the data and the signs of the
contemporaneous covariance of (nt,∆npt), (∆gdpt,∆pt) and (∆npt,∆npt−1) are wrong.

Second, cross covariances obtained when the model is estimated using productivity and
hours data are still somewhat poor. For example, the estimated covariances of (∆gdpt,∆gdpt−1)
and (∆npt,∆npt−1) are ten times larger than in the data and a distance test rejects the
hypothesis that the two set of cross covariances are indistinguishable. Despite these failures,
the model estimated using hours and productivity data, captures two important qualitative
features of the data: the negative contemporaneous covariance between hours and produc-
tivity and the negative lagged covariance of productivity.

Finally, note that neither of the two specifications can reproduce the negative covariance
between output growth and inflation found in the data.

Moments/Data (∆npt, nt) (∆npt, nt,∆pt,∆gdpt) Actual data

cov(∆gdpt, nt) 6.96e-04 4.00e-06 1.07e-05
cov(∆gdpt,∆npt) 5.86e-05 1.56e-06 1.36e-05
cov(∆npt, nt) -4.77e-05 1.80e-06 -4.95e-05
cov(∆gdpt,∆pt) 6.48e-04 2.67e-06 -2.48e-05
cov(∆gdpt,∆gdpt−1) 6.91e-04 3.80e-06 3.443-05
cov(∆npt,∆npt−1) -1.51e-04 1.07e-06 -2.41e-05

Table 6.1: Cross covariances
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Chapter 7: Calibration

Calibration is an econometric technique which is somewhat different from those we have
discussed in the previous two chapters. Given the many alternative definitions existing in
the literature, we start by precisely defining what we mean by calibration in this book. As
we will see, the approach involves a series of steps which are intended to provide quantitative
answers to a particular economic question. From this perspective, a theoretical model is a
tool to undertake ”computational experiments” rather than a setup to estimate parameters
and/or test hypotheses. Also here we take the structure of the model seriously. That is,
we start from a formal, abstract, tightly parametrized theoretical construction where the
general equilibrium interactions are fully specified. However, contrary to what we have
done in the previous two chapters, we will not assume that the model is the data generating
process (DGP) for the observables. In fact, one of the basic assumptions of the approach is
that theoretical structures used in economic analyses are false in at least two senses: they
do not capture all the relevant features of the data; and their probabilistic structure is likely
to be misspecified. The reluctance of an investigator to characterize the properties of the
discrepancy between the model and the data is also one of the distinctive features of the
approach, and this sets it aside from other methodologies, which e.g. assume that the error
is a white noise or pay particular attention to its statistical features.

The rest of the chapter describes in details the steps of the procedure, the relationship
with more standard estimation/evaluation techniques, with computable general equilibrium
exercises and with the type of quantitative exercises conducted in other experimental sci-
ences. Since there is no unifying framework to undertake computational experiments, we
organize existing methods according to the way they treat the uncertainty present in various
parts of the model. As we will see, approaches can be grouped according to their treat-
ment of sampling, model and other types of uncertainties. Also, we will stress the tight
relationship between the methodology used to select the parameters and the one employed
to evaluate the quality of the model’s approximation to the data. Another useful way to
characterize methods is to rank them according to the assumed degree of ”falseness” of the
model. Different opinions about this features translate in different loss functions and in
different criteria to evaluate the magnitude of the discrepancy between the model and the
data.
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7.1 A Definition

Since the literature has employed the term calibration to indicate different applied proce-
dures (see e.g. Pagan (1994)), confusion may arise when it comes to compare outcomes
across methods or studies which only apparently use a similar methodology. For exam-
ple, it has been suggested that one wants to calibrate a model (in the sense of selecting
reasonable parameters values) because there is no data to estimate its parameters. This
may be the case when one is interested in quantifying, e.g., the effect of a new tax or of
trade liberalization policies in newly created countries. In other cases, such a procedure is
employed because the sample is too short to obtain reasonable estimates of a large scale
and possible intricate model, or because the data is uninformative about the parameters of
interest. In both situations, evaluation of the experimental evidence is problematic. Since
all uncertainty is eschewed, back-of-the-envelope calculations are employed to perform some
sort of sensitivity analysis on the outcomes of the experiments (see e.g. Pesaran and Smith
(1992)). Alternatively, one may prefer to calibrate a model (as opposed to estimated it)
if the expected misspecification is so large that statistical estimation of its parameters will
produce inconsistent and/or unreasonable estimates and formal statistical testing will lead
to outright rejection. Finally, some users interpret calibration as an econometric technique
where the parameters are estimated using “economic”, as opposed to “statistical”, criteria
(see e.g. Canova (1994)).

In this chapter, the term calibration is used to indicate a particular collection of pro-
cedures designed to provide an answer to economic questions using ”false” models. The
term ”false” is used here in a broad sense: a model is ”false” if it approximate the data
generating process of (a subset of) the observable data. The essence of the methodology, as
stated, e.g. in Kydland and Prescott (1991) and (1996)), can be summarized as follows:

Algorithm 7.1 1) Choose an economic question to be addressed.

2) Select a model design which bears some relevance to the question asked.

3) Choose functional forms for the primitives of the model and find a solution for the
endogenous variables in terms of the exogenous ones and of the parameters.

4) Select parameters and convenient specifications for the exogenous processes and simulate
paths for the endogenous variables.

5) Evaluate the quality of the model by comparing its outcomes to a set of ”stylized facts”
of the actual data.

6) Propose an answer to the question, characterize the uncertainty surrounding the answer
and do policy analyses if required.

”Stylized facts” is a vague term. Originally, the literature meant a collection of sample
statistics which (i) do not involve estimation of parameters and (ii) are easy to compute.
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These were typically unconditional moments and, occasionally, conditional moments, his-
tograms or interesting deterministic (nonlinear) functions of the data. More recently, the
coefficients of a vector autoregressive model (VAR), the likelihood function or structural
impulse responses are taken to be the relevant stylized facts. In step 5) the comparison
becomes statistically meaningful only after a measure of distance is selected. This is prob-
ably the most important step in the approach: answers obtained from a model that is
incapable of explaining observed outcomes are likely to be treated with greater care than
those produced by a model which has an excellent record in matching variations in observed
series. However, it is also the most controversial part and it is on this issue that most of
the methodological debate takes place.

7.2 The Uncontroversial parts

The first two steps of the procedure - choose a question of interest and a model to address
it - require little discussion. In general, the questions posed display four types of structures:

• How much of fact X can be explained with impulses of type Y?
• Is it possible to generate features F using theory A?
• Can we reduce the discrepancy D of the theory from the data using feature F?

• How much endogenous variables change if the process for the exogenous variables is
altered?

Two questions which have received considerable attention in the literature concern the
contribution of technology and/or monetary disturbances to output variability (see e.g.
the literature pioneered by Kydland and Prescott (1982) or Chari, Kehoe and McGrattan
(2000)) and the ability of a model to quantitatively replicate the excess return of equities
over bonds - the so-called equity premium puzzle (see e.g. the literature following Merha
and Prescott (1985)). Recently, the literature has investigated the type of frictions needed
to reduce discrepancies of certain theories to the data (see e.g. Boldrin, Christiano and
Fisher (2001) or Neiss and Pappa (2002)) and examined whether certain policy choices can
explain the behavior of real variables in particular historical episodes (e.g. Ohanian (1997),
Christiano, Gust and Roldos (2001) or Beaudry and Portier (2002)).

As it is obvious from this extremely incomplete list, the questions posed are clearly
specified and the emphasis is on the quantitative implications of the exercise. Occasionally,
qualitative implications are also analyzed (e.g. J-curves in the trade balance, see Backus,
Kehoe and Kydland (1994)) or humps in responses of certain variables to shocks), but, in
general, numerical quantification is the final goal of the exercise.

For the second step - the choice of an economic model - there are essentially no rules:
the only requirement being that it has to have some relationship with the question asked.
Typically, dynamic general equilibrium models are selected. Both competitive and non-
competitive structures have been used (for the latters see Rotemberg and Woodford (1997),
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Danthine and Donaldson (1992), or Merz (1995)), and models with fundamental or nonfun-
damental sources of disturbances have also been studied (see e.g. Farmer (1997)).

It is important to stress that the model one selects is question determined and rarely
the modeler attempts to capture all the important features of the data. In other words,
one does not expect to have a realistic model to answer important questions. However, to
give credibility to her answer, a researcher needs a theory that has been tested through use
and found to provide reliable answers to a class of questions. That is to say, a model which
has matched reasonably well what happened in previous tax reforms could be a reliable
instrument to ask what would happen in a new tax reform. Similarly, a model which
captures well features of the real side of the economy could be used to address questions
concerning the nominal side.

This observation brings us to an important philosophical aspect of the methodology. In
a strict sense, all models are approximations to the DGP and, as such, false and unrealistic.
Once this point of view is accepted, it makes no sense to examine the validity of a model
using standard statistical tools which assume it to be true, at least under the null. In other
words, it is hard to think of a DSGE model as a null hypothesis to be tested - as, for
example, it is implicitly assumed with GMM and ML. At best, a DSGE model could be
considered an approximation for a subset of the observable data. The problem here has not
much to do with limited vs. full information testing - e.g. the Euler equation the model
delivers is correct but nothing else is - but with degrees of approximations. What is relevant
is the extent a ”false” model gives a coherent explanation of interesting aspects of the data.
A calibrator is satisfied with her effort if, trough a process of theoretical respecification,
the model captures an increasing number of features of the data while maintaining a highly
stylized structure. In this sense, the exercises conducted by calibrators belong to the so-
called normal science, as described by Kuhn (1970).

Example 7.1 A closed economy model is probably misspecified to examine, say, the effects
of monetary policy disturbances in the EMU: trade with non-EMU countries is about 10-15%
of EMU GDP and financial links, especially with the UK, are large. Nevertheless, such a
model can be useful to examine the propagation of monetary shocks if it can, for example,
replicate the pattern of real responses to monetary shocks and at the same time, say, the
responses of real variables to technology disturbances.

Let yt be a vector of stochastic processes and x
†
t = h†(²t, θ) be a model which has

something to say about elements of yt, where ²t are exogenous variables and θ a vector of
parameters. Because the model is only an approximation to the DGP of y1t ⊂ yt, we write

y1t = x
†
t + vt (7.1)

where vt captures the discrepancy between h
†(²t, θ) and the data generating process of

y1t. In general, the properties of vt are unknown. For example, it need not be a mean
zero, serially uncorrelated process as it would be the case if x†t = Et(y1t) where Et is the
conditional expectations. Evaluating the magnitude of vt without knowing its properties is
virtually impossible.
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To be able to provide quantitative answers is necessary to find an explicit solution for
the endogenous variables in terms of exogenous and predetermined variables and of the
parameters. In this sense, calibration is similar to ML and distinct from GMM, where
inference can be conducted without explicit model solutions. We have seen in chapter 2
that analytical solutions can not be obtained, except in very special circumstances. Both
local and global approximation procedures generate a xt = h(²t,α) where α is a function
of θ and such that ||h− h†|| is minimal in some metric. Which of the procedures outlined
in chapter 2 one selects depends on the question asked. For example, if the dynamics of the
model around the steady state are the focus of the investigation, local approximations are
sufficient. On the other hand, in comparing regimes which require drastic changes in the
parameters of the control variables, global approximation methods must be preferred.

7.3 Choosing parameters and stochastic processes

With an approximate solution, paths for the endogenous variables can be obtained once
the vector θ and the properties of ²t are specified. The selection of the properties of ²t
is relatively uncontroversial. One either chooses specifications which are tractable, e.g.
an AR process with arbitrary persistence and innovations which are transformations of a
N(0, 1) process, or that give some realistic connotation to the model, e.g. select the Solow
residuals of the actual economy, the actual path of government expenditure or of the money
supply, with the second alternative being preferred if policy analyses are undertaken. There
is more controversy, on the other hand, when it comes to select the parameters of the
model. Typically, they are chosen so that the model reproduces certain observations. The
next example clarifies how this is done and implicitly explains why calibration is at times
referred to as ”computational experiment”.

Example 7.2 Consider the problem of measuring the temperature of the water in various
conditions. To conduct the experiment an investigator will have to set the measurement
instrument (in this case, a thermometer) to insure that the outcome is accurate. One way
of doing this is to graduate the thermometer to some observations. For example, if the
experiment consists in measuring at what temperature the water boils on the top of a moun-
tain, a researcher could, at sea level, set the tick corresponding to freezing water to zero and
the one corresponding to boiling water to 100, interpolate intermediate values with a linear
scale and use the graduated thermometer to undertake the measurement. Alternatively, if
the experiment consists in checking the amount of heat released by a boiler over a period
of time, she can use the calibrated thermometer to check the water temperature after the
machine has been operating for, say, 5, 10 and 20 minutes.

In a way, the process of selecting the parameters an economic model is similar. A
model is an instrument which needs to be graduated before the measurement of interest is
performed. There are at least two ways of doing this graduation: the one suggested in the
computable general equilibrium (CGE) tradition summarized, e.g. in Showen and Walley
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(1984)-(1992) and the one used in modern DSGE models, see, e.g. Kydland and Prescott
(1982). While similar in spirit, the two methodologies have important differences.

In CGE models, a researcher typically solves a large, nonlinear intersectorial static
model, linearizing the system of equations around an hypothetical equilibrium where prices
and quantities clear the markets. It is not necessary that this equilibrium exists. However,
because the coefficients of the linear equations are functions of equilibrium values, it is
necessary to measure it. CGE users need to find a “benchmark data set” and make sure
that the linearized model replicates this data. Finding such a data set is complicated and
requires ingenuity. Often, the selection process leaves some of the parameters undetermined.
In this case a researcher assigns them arbitrary values or fixes them using existing estimates
(e.g. estimates obtained in countries at similar stages of development) and then performs
rough sensitivity analysis to determine how the outcomes vary when these parameters are
changed. Although the procedure to select the free parameters and the way sensitivity
analysis is undertaken are arbitrary, the procedure is coherent with the philosophy of CGE
models: a researcher is interested in examining deviations from an hypothetical equilibrium
not from an economy in real time (see e.g. Kim and Pagan (1994) for a discussion).

In DSGE models, the equilibrium the model needs to reproduce is typically the steady
state or, in case of models with frictions, the Pareto optimal equilibrium. In the former
case, parameters are chosen so that the steady state for the endogenous variables replicates
time series averages of the actual economy. In the latter case, parameters are selected so
that the model without frictions matches certain features of the actual data. Also in this
case, the chosen conditions do not pin down all the parameters and different researchers
have used different techniques to choose the remaining ones. For example, one can select
these parameters a-priori; pin them down using available estimates; informally estimate
them with a method of moment or formally estimate them using GMM (see e.g. Christiano
and Eichenbaum (1992)), SMM (see e.g. Canova and Marrinan (1993)) or ML (see e.g. Mc-
Grattan, Rogerson and Wright (1993)) procedures. However, choosing the parameters with
one of these latters three approaches is inconsistent with the philosophy of the methodol-
ogy, since the dimensions used to estimate the free parameters can no longer be considered
approximations to the DGP.

Formally, let θ = (θ1, θ2, θ3), let θ1 be the parameters which appear in the equilibrium
conditions and θ2, θ3 two sets of free parameters. In CGE models θ3 are absent while θ1 =
h1(y0, ²0, θ2) ≡ h1(θ2) where (y0, ²0) are the hypothetical data. Then y1t = h(²t, θ1, θ2) ≡
h̃(²t, θ2). Hence, if ²t is deterministic, the range of yit to variations in θ2 can be calculated

using the numerical derivatives of h̃ i.e. obtain h̃(θ2+ι)−h̃(θ2−ι)
2ι , ι > 0 and small. This can be

done informally (trying few values), conditionally (perturbing one parameters at the time
or using a grid), or formally (linearizing h̃ and using asymptotic theory). Also in DSGE
models, given θ2, θ1 = h1(y0, ²0, θ2) so that y1t = h̃(²t, θ2, θ3). However, here θ3 are selected
to minimize some quantity, e.g. [S( 1T

P
t ytyt−τ )− S(h̃(²t, θ2, θ3)h(²t−τ , θ2, θ3)0] for some τ ,

where S is a selection matrix, either informally or formally.

Example 7.3 (Selecting the parameters of a RBC model) Suppose that the social planner
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maximizes E0
P
t β

t (c
ϑ
t (1−Nt)1−ϑ)1−ϕ

1−ϕ by choices of (ct,Kt+1,Nt) subject to

Gt + ct +Kt+1 = ζtK
1−η
t Nη

t + (1− δ)Kt ≡ GDPt + (1− δ)Kt (7.2)

where ln ζt = ζ̄+ρζ ln ζt−1+ ²1t, ²1t ∼ (0,σ2ζ ), lnGt = Ḡ+ρg lnGt−1+ ²4t, ²4t ∼ (0,σ2g),
K0 given, where ct is consumption, Nt is hours worked, Kt is the capital stock. We assume
that Gt is financed with lump sum taxes or bond creation. Letting λt be the Lagrangian on
(7.2), the log linearized optimality conditions are

λ̂t − (ϑ(1− ϕ)− 1)ĉt + (1− ϑ)(1− ϕ) Nss

1−Nss
N̂t = 0 (7.3)

λ̂t+1 +
(1− η)(GDP/K)ss

(1− η)(GDP/K)ss + (1− δ))(
\GDP t+1 − K̂t+1) = λ̂t (7.4)

1

1−Nss
N̂t + ĉt −\GDP t = 0 (7.5)

ŵt −\GDP t + n̂t = 0 (7.6)

r̂t −\GDP t + k̂t = 0 (7.7)

\GDP t − ζ̂t − (1− η)K̂t − ηN̂t = 0 (7.8)

(
G

GDP
)ssĜt + (

c

GDP
)ssĉt + (

K

GDP
)ss(K̂t+1 − (1− δ)K̂t)−\GDP t = 0 (7.9)

where the first three equations come from consumers decisions; the next two from firms
decisions; the last two represent the production function and the resource constraint and the
superscript SS indicates steady state values. Here Kt is the state, (ζt,Gt) the shocks, and

there are 6 endogenous variables (λ̂t, ĉt, N̂t,\GDP t, ŵt, r̂t). Since there are seven equations
and seven unknowns a solution exists. The model has four types of parameters:

(i.) Technological parameters (η, δ).

(ii.) Preference parameters (β,ϑ,ϕ).

(iii.) Steady state parameters (Nss, ( c
GDP )

ss, ( K
GDP )

ss, ( G
GDP )

ss).

(iv.) Auxiliary (nuisance) parameters (ζ̄, ḡ, ρg, ρζ ,σ
2
ζ ,σ

2
g).

Equations (7.3)-(7.5) and (7.9) imply in the steady state:

1− ϑ
ϑ

(
c

gdp
)ss = η

1−Ns

Nss
(7.10)

β[(1− η)(GDP
K

)ss + (1− δ)] = 1 (7.11)

(
G

GDP
)ss + (

c

GDP
)ss + δ(

K

GDP
)ss = 1 (7.12)
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(7.10)-(7.12) determine e.g. (Nss, ( c
GDP )

ss, ( K
GDP )

ss) once ( G
GDP )

ss,β, ϑ, η and δ are se-
lected (the formers play the role of θ1 and the latters the role of θ2 in this example). The
remaining free parameters can be selected as follows. The production function can be used
to provide an estimate of ζt from which estimates of ζ̄, ρζ ,σ

2
ζ can be backed out. Data for

government expenditure can be used to back out the parameters of the Gt process. For the
last preference parameter, one can appeal to estimates obtained in other studies noting e.g.
that coefficient of relative risk aversion is 1−ϑ(1−ϕ); could fix it at some arbitrary value;
use the Euler equation and the intratemporal condition to get e.g. a GMM estimate; or
select it using simulation estimators (for example, choose ϕ so that consumption variability
in actual data is the same as in simulated data).

Note that the log linearized conditions in (7.3)-(7.9) have the form of a vector autore-
gression of order 1 or of a state space system. Letting yt = (λ̂t, K̂t, ĉt, N̂t, ˆGDP t, ŵt, r̂t),
the VAR representation is A0yt+1 = A1yt +A2Et where Et = [ζ̂t, Ĝt]0 and

A0 =



1 − (1−η)GDP
K

ss

(1−η)(GDP
K

ss
+(1−δ) 0 0

(1−η)(GDP
K

ss

(1−η)GDP
k

ss
+(1−δ) 0 0

0 1/(GDPK )ss 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, A2 =



0 0
0 −( G

GDP )
ss

0 0
0 0
−1 0
0 0
0 0



A1 =



1 0 0 0 0 0 0
0 (1− δ)/(GDPK )ss −( c

GDP )
ss 0 1 0 0

0 0 1 1
1−Nss −1 0 0

−1 0 ϑ(1− ϕ)− 1 −(1− ϑ)(1− ϕ) Nss

1−Nss 0 0 0

0 1− η 0 η −1 0 0
0 0 0 1 −1 1 0
0 1 0 0 −1 0 1


A state space representation is obtained setting y2t = (λ̂t, k̂t, ζt, Gt); y1t = (ĉt, N̂t,dgdpt, ŵt, r̂t),

y3t = (²1t, ²4t):

A20y2t+1 = A21 y2t +A22y3t
A10y1t+1 = A11 y2t +A12y3t (7.13)

where Ai0,Ai1,Ai2, i = 1, 2 are appropriate partitions of A0,A1,A2. Since y1t does not enter
in the equation for y2t, it does not Granger cause y2t (see chapter 4).

Exercise 7.1 Consider a sticky price model without capital and instantaneous utility U(c,N,M) =
ln ct+

1
1−ϕm (

Mt+1

pt
)1−ϕm. Assume Calvo pricing; let 1−ζp be the fraction of agents allowed to

change prices and β the discount factor. Derive an Euler equation, a money demand func-
tion and a Phillips curve. Log-linearize the conditions and describe how to select preferences
and production parameters, relevant steady states and auxiliary parameters.
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Exercise 7.2 Consider adding capacity utilization to the model of example 7.3. That is,
assume that the production function depends on both capital Kt and its utilization kut and
it is of the form GDPt = ζt(Ktkut)

1−ηNη
t . Assume also that depreciation is related to

utilization via the equation δ(kut) = δ0+δ1ku
δ2
t where δ0, δ1 and δ2 are parameters. Describe

how to select (δ0, δ1, δ2).

Exercise 7.3 Consider the two country model described in example 2.3 of chapter 2. Log-
linearize the first order conditions, the budget constraint and the definitions of the terms of
trade (TOTt) and net export (nxt). Describe how to choose the free parameters.

Because not all parameters can be pinned down by the reference equilibrium, there is a
degree of arbitrariness inherent in the procedure. Furthermore, all approaches designed to
choose parameters not appearing in the steady state have advantages and disadvantages.
For example, employing information present in existing studies has the advantage of allow-
ing a researcher to pin down parameters which can not be identifiable from the available
data. However, a selectivity bias is typically present (see Canova (1995)): there is a variety
of estimates available and different researchers may refer to different studies even when
examining the same question. Furthermore, such an approach artificially reduces the un-
certainty surrounding the predictions of the model and this may generate an unwarranted
confidence in the outcomes of the experiment. Finally, inference may be spurious and/or
distorted. In fact, estimates of θ3 may be biased and inconsistent unless the selected θ2 are
the true parameters of the DGP or consistent estimates of them.

Example 7.4 To illustrate this latter problem consider a framework typically studied in
undergraduate econometric textbooks where there is a linear relationship between x and y and
the disturbance is serially correlated. Letting α be the parameters of the linear relationship
and ρ the AR(1) coefficient of the errors, a GLS estimator for (α, ρ) is yt− ρyt−1 = α(xt−
ρxt−1) + et where et ∼ iid (0,σ2e). An estimator for α, conditional on ρ, is (α̂|ρ) = ((xt −
ρxt−1)0(xt−ρxt−1))−1(xt−ρxt−1)0(yt−ρyt−1)) If ρ is consistently estimated, (α̂|ρ̂) P→ (α̂|ρ)
as T →∞. However, if it is not the case, the asymptotic distribution of (α̂|ρ̂) will be centered
around a wrong value. In table 7.1 we verify that biases do occur: we report the mean and
the interquartile range of the Monte Carlo distribution of (α̂|ρ) obtained conditioning on
ρ = 0.0, 0.4, 0.9, when T = 1000, 1000 replications are used to construct distributions, and
the true values are α = 0.5 and ρ = 0.9.

25th percentile mean 75th percentile

ρ = 0 0.396 0.478 0.599
ρ = 0.4 0.443 0.492 0.553
ρ = 0.9 0.479 0.501 0.531

Table 7.1: Monte Carlo distribution of α|ρ
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While example 7.4 is highly stylized, Gregory and Smith (1989) have shown that this
problem could be important, for example, in determining the range of the risk aversion
parameter which is consistent with the magnitude of US equity premium.

Exercise 7.4 (Risk free rate puzzle) Take the economy discussed in exercise 2.6 of chapter

2. Assume that u(ct) =
c1−ϕ
t
1−ϕ and that output evolves according to gdpt+1 = gyt+1gdpt. As-

sume that gyt+1 can take n possible values (gy1, . . . , gyn) and let pij ≡ P (gyt+1 = gyi0 |gyt =
gyi) = µi0 +ρy(Iii0 −µi0) where µi0 are unconditional probabilities, Iii0 = 1 if i = i0 and zero
otherwise, and ρy ∈ (−(n− 1)−1, 1). If the current state is (gdpt, gyi), the price of an asset
paying one unit of output next period satisfies pstUc(gdpt, gyi) =

P
i0 pii0β[Uc(gdpt+1, gyi0)].

It is easy to verify that unconditionally var(pst ) = β
2ρ2y

Pn
i=1 pi(

Pn
i0=1 pi0(gy

−ϕ
i − gy−ϕi0 ))2.

i) Set n = 2, gy1 = 0.9873, gy2 = 1.0177, µ1 = 0.2, µ2 = 0.8,β = 0.99, ρy = 0.8,ϕ = 2.
Simulate asset price data from the model and treat these as the actual data.
ii) Set (n, gyi, pi,β) as in i) but now set ρy = 0.6. Choose ϕ so that the simulated variance
of asset prices matches the variance of asset prices produced in i) (you can select the loss
function you want, e.g., min|varA(pst)−varS(pst )| where varS(pst ) (varA(pst )) is the variance
of simulated (actual) data). Repeat the exercise for ρy = 0.9.
iii) Repeat i) 100 times drawing ϕ from U(1, 10) (treat this as 100 realizations of the ac-
tual data). Repeat ii) 100 times for ρy = 0.6, 0.9 and show the distributions of ϕ̂ that best
matches varA(pst ).
iv) Consider now the mean of asset prices. Repeat iii) fixing ϕ = 2 and choosing ρy to
minimize |Et((pst )A − (pst )S)|. Is there any pattern worth mentioning?

As pointed out by Kydland and Prescott (1991), choosing parameters using information
obtained from other studies imposes coherence among various branches of the profession.
For example, one uses growth models to examine business cycles fluctuations and checks its
implications using parameters obtained from e.g. micro studies of labor markets. However,
for many parameters, available estimates are surprisingly sparse (see e.g. Showen andWalley
(1992, p.105)) and often they are obtained with estimation procedures which, although
valid in the environment where they were produced, make no sense in DSGE frameworks
(see Hansen and Heckman (1996)). Hence, any choice is arbitrary and sensitivity analysis is
needed to evaluate the robustness of the measurement made to changes in these parameters.

Canova (1994)-(1995) suggested an approach which responds to these criticisms. In-
stead, of fixing θ3 to one particular value, he restricts its range to an interval using theoreti-
cal considerations and uses all the information to construct an empirical distribution for θ3i,
i = 1, 2, . . . over this interval (this is treated as the likelihood of a parameter, given existing
estimates) and draws for θ3 are made from there joint “empirical” distribution. Moreover,
since the distinction between θ2 and θ3 is artificial, intervals for both sets of parameters are
typically used (see e.g. Canova and Marrinan (1996) or Maffezzoli (2000)). An example
may clarify the approach.

Example 7.5 In the exercise 7.4 one of the free parameters is the coefficient of constant
relative risk aversion ϕ. Typically one sets ϕ to 1 or 2 (resulting in a mild curvature of
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the utility function) and, occasionally, tries a few larger values to construct upper bound
measures. As an alternative, one could limit the range of values using economic arguments
to, say, [0,20] and construct a smoothed histogram over this interval using existing esti-
mates. Since most estimates are in the range [1,2] and since in some asset pricing models
researchers have tried values up to 10, the empirical distribution for ϕ could be approxi-
mated with a χ2(4), which has the mode at 2 and about 5% probability in the region above
10. When no empirical information exists, one chooses a uniform distribution or a distri-
bution capturing the subjective beliefs a researcher has about the likelihood of the parameter
(see chapter 9).

Exercise 7.5 Suppose the representative agent maximizes Eo
P
t β

t(
c1−ϕ
t
1−ϕ+

ϑM (Mt+1/pt)1−ϕm
1−ϕm )

subject to ct+Kt+
Mt+1

pt
= ζtK

1−η
t−1 N

1−η
t +(1−δ)Kt−1+Mt

pt
where lnMt = M̄+ρM lnMt−1+

²3t, ln ζt = ζ̄+ρζ ln ζt−1+²1t and ²1t, ²3t are iid with standard error equal to σζ ,σM . Describe
what distributions you would choose for the parameters (η,ϕ, δ,ϑM ,ϕM , ρζ , ρg,σζ ,σM).

Standard statistical estimation of the free parameters has three main advantages: it
avoids arbitrary choices; it provides a coherent framework for choosing all the parameters;
and produces measures of uncertainty which can be used to evaluate the quality of the
approximation of the model to the data. The disadvantages are of various kinds. First,
formal or informal procedures require the selection of the moments/statistics to be matched,
and that may lead to inconsistencies across studies. The method employed to select θ3 in
example 7.3 can indeed be thought as a method of moment estimation where parameters are
chosen to match the first moments of the data (i.e. the long run averages). Christiano and
Eichenbaum (1992); Feve and Langot (1994) and others, use first and second moments of
actual and simulated data to obtain GMM estimates of the parameters. Smith (1993) uses
the scores of the likelihood. While the selection of moments depends on the question asked,
efficient estimation requires all moments containing information on the parameters to be
used (see chapter 5). Second, GMM estimates are biased in small (or nonstationary) samples
(see chapter 5). Therefore, simulations conducted with these estimates may lead to spurious
inference. Third, informal SMM approaches may produce estimates of parameters even
though they are not identifiable. One example of this phenomena was provided in point (iv)
of exercise 7.4. Finally, one should note that the type of uncertainty present in the outcomes
of the model when parameters are estimated is different from the uncertainty existing when
a calibrator is ignorant about the magnitude of a parameter. In fact, once the data and
moments are selected, sample uncertainty is typically small. Since the measurement depends
only on y1t and on the estimator chosen, uncertainty in measurement is also small. However,
the uncertainty present in e.g. choosing a risk aversion parameter, is typically large.

As mentioned in chapter 5, ML estimation can be thought as a GMM procedure where
the moments are the scores of the likelihood function. Therefore, discrepancies between
estimates obtained with these two methods may indicate either that either the orthogonality
conditions span a different informational space (GMMmay use only parts of the model while
ML uses all of it) or that the sample strongly deviates from normality. Asymptotically, when
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the moment restrictions and the scores span the same space, the two procedures must give
identical results. Hence, all the arguments made for GMM or SMM also apply to ML.

It is useful to compare the parameter selection process used by a calibrator with the one
used in a traditional econometric approach. In the latter parameters are chosen to minimize
some statistical criteria, e.g., the MSE. Such a loss function however does not have any
economic justification, its conventional use reflects mathematical convenience and imposes
stringent requirements on the structure of vt. The loss function used by calibrators, on the
other hand, has an economic interpretation: parameters are chosen so that the steady state
of the model matches the long run averages of the data. However, since not all parameters
are pinned down by these conditions, a calibrator may look like an econometrician who
uses different loss functions in different parts of the model. Furthermore, since choosing
parameters to match long run observations is equivalent to using GMM on first moments
only, a calibrator may also look like as an inefficient GMM econometrician.

Finally, note that when intervals are chosen for the free parameters and empirical distri-
butions are used, the parameter selection procedure shares a tight connection with Bayesian
methods, which we will discuss in details in chapters 9 to 11 of this book.

7.4 Model Evaluation

Before the measurement of interest is undertaken it is necessary to assess the quality of the
model’s approximation to the data. The most active branch of the literature is concerned
with the development of methods to evaluate the fit of calibrated models. Classical pieces,
such as Kydland and Prescott (1982), are silent on this issue. But this is not completely
surprising: since there are no free parameters and no uncertainty is allowed in either the
selected parameters or the moments used for comparison, the model deterministically links
the endogenous variables to the parameters and exogenous stochastic processes. Hence,
unless the sampling variability of the exogenous processes is used, measures of distance
between the model and the data can not be defined. The lack of formal model validation
does not seem to bother some researchers. Kydland and Prescott (1991), (1996) for example,
emphasize that the trust a researcher puts in an answer given by the model does not depend
on statistical measure of discrepancy, but on how much she believes in the economic theory
used and in the measurement undertaken - in other words, trust could be an act of faith.

Nowadays, most calibrators informally compare the properties of simulated data to a
set of stylized facts of the actual data. Such an approach is in fashion also with econometric
skeptics: simple sample statistics are believed to be sufficient to do the job since ”either you
see it with naked eyes or no fancy econometrics will find it”. The choice of stylized facts
obviously depends on the question asked but one should be aware that there are many ways
to summarize the outcome of a calibration exercise and some may be more informative than
others for comparison purposes.

In a business cycle context one typically selects a subset of auto and cross-covariances
of the data, but there is no reason for focusing on unconditional second moments, except
that their measurement does not require the estimation of time series models. One could
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also use the distributions of actual and simulated data - which also do not need parametric
time series models to be estimated - or their VAR representation and examine some of their
statistical features (e.g. the number of unit roots or exclusion restrictions (as in Canova,
Finn and Pagan (1994)), the magnitude of VAR coefficients (as in Smith (1993) or Ingram,
DeJong and Whiteman (1996)), or the pattern of semi-structural impulse responses (as
in Cogley and Nason (1994)). Alternatively, one could reduce the model to one or two
equations and compare the time series representations of the variables in the model and
in the actual data (as in Canova, Finn and Pagan (1994) or Cogley and Nason (1995)).
Finally, business cycle turning points (as in King and Plosser (1994) or Simkins (1994)),
variance bounds (as in Hansen and Jagannathan (1991)), durations and asymmetries of the
cycle (as Pagan and Harding (2002) or historical episodes (as in Ohanian (1997) or Beaudry
and Portier (2001)), could also be used for evaluation purposes.

Example 7.6 (Magnitude of the VAR coefficients/ exclusion restrictions)
A log linearized DSGE model has a state space representation where the endogenous variables
depend on the first lag of the states and on the shocks. For example, in the RBC model
of example 7.3 we have A10y1t = A11y2t−1 + A12y3t where the matrices A1i , i = 0, 1, 2 are
functions of the ”deep” parameters θ of the model. Hence, once these are selected, they
are matrices of real numbers. A simple RBC model then poses two types of restrictions on
the VAR of say, output, consumption, investment and hours. First, lagged values of these
four variables should not help to predict current values once lagged values of the states are
included. Second, in a regression of y1t on y2t−1, the coefficient matrix must be equal to
(A10)−1A11.

Example 7.7 (Final form comparison) The RBC model described in example 7.3 can also
be reduced to a bivariate VARMA(1,1) for (N̂t, ĉt). Solving for ĉt, N̂t has an ARMA(∞,∞)
representation of the type A(θ)(`)N̂t+1 = D(θ)(`)et+1, where the reduced form parameters
A(`),D(`) are functions of the ”deep” parameters θ and êt = (ζ̂t, ĝt). Given this representa-
tion there are at least two ways of comparing the data and the model. First, one can compare
the autocorrelation function of hours produced by the model (conditional on θ = θ̄) with the
autocorrelation function of hours found in the data. Second, we can estimate an ARMA
model and verify whether (i) an ARMA(∞,∞) fits the data, (ii) the estimated coefficients
are exactly equal to those implied by the model.

Table 7.2 reports few terms of the ACRF of a the version of the model where u(ct,Nt) =
ln(ct)+ϑN(1−Nt), there is no government and β = 0.99, η = 0.64,ϑN = 2.6, δ = 0.025, ρζ =
0.95,σ2ζ = 0.007; the same ACRF terms obtained from linearly detrended US data (using
Seasonally Adjusted Average Weekly Hours of Private Nonagricultural Establishments for
the sample 1964:1-2003:1) and estimates of the best ARMA specification obtained in the
data. In parenthesis are standard errors. It is clear that while standard deviations are
similar, the model’s ACRF function is less persistent than the data’s. In fact, the 12th
order correlation in the data is still 0.786, while it is roughly zero in the model. Moreover,
an ARMA(2,2) only partially fits US data: for example, neither the AR(2) nor the MA
coefficients are significant but a Q-test shows the presence of residual autocorrelation (pre-
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sumably, there are higher order dynamics in the data). Finally, the estimated values are
significantly different from those implied by the model (the AR(1) and AR(2) coefficients
in the model are, respectively, 1.57 and -0.53). While it is obvious that the model fails
to captures the dynamics of actual hours, it is hard to see how to reduce the discrepancy.
Lack of persistence could be due to many reasons (lack of investment propagation, lack of
intertemporal substitutability, etc.) and the reduced form approach used here does not allow
us to disentangle them.

Standard deviation Corr(Nt, Nt−1) Corr(Nt, Nt−2) Corr(Nt,Nt−3)
Actual data 0.517(0.10) 0.958(0.09) 0.923(0.09) 0.896(0.09)
Simulated data 0.473 0.848 0.704 0.570

Estimated ARMA(2,2) for actual hours
AR(1) AR(2) MA(1) MA(2)

Actual data 1.05(0.24) -0.07 (0.21) -0.12 (0.21) -0.05(0.09)

Table 7.2: ACF of hours

Exercise 7.6 Consider the cash-in-advance model of example 2.4 of chapter 2 where all

consumption goods are cash goods, the representative agent maximizes E0
P
t β

t c
1−ϕ
t
1−ϕ subject

to ptct ≤Mt+Tt and ct+Kt+1+
Mt+1

pt
≤ rtKt+(1− δ)Kt+ Mt+Tt

pt
where Tt =Mt+1−Mt,

lnMt+1 = M̄ + ρm lnMt + ²3t, ²3t ∼ (0,σ2m). Assume the production function GDPt =
ζtK

1−η
t where ln ζt is an AR(1) with persistence ρζ and variance σ

2
ζ .

(i) Derive a trivariate log-linear (final form) representation for (ct,Mt, pt).
(ii) Using US data on consumption, M1 and CPI estimate a trivariate VAR compare the
magnitude of VAR coefficients and of the auto and cross correlation function of M1 growth
and of consumption growth in the model and in the data (Hint: the model is a VAR(∞)).

Exercise 7.7 Consider the RBC model described in example 7.3 but now assume prefer-

ences are given by u(ct, ct−1,Nt) =
(cγt c

1−γ
t−1 )

1−ϕ

1−ϕ + ϑN(1−Nt), where ϑN is a constant. Log
linearize and appropriately select (β,ϕ, γ, η, δ,ϑN), the parameters governing the stochastic
process for ζt, Gt and steady state ratios and simulate data. Define an upturn as the situa-
tion where gdpt−2 < gdpt−1 < gdpt > gdpt−1 > gdpt−2 and a downturn as a situation where
gdpt−2 > gdpt−1 > gdpt < gdpt−1 < gdpt−2. Examine whether the model matches the turn-
ing points of US output using one realization of technology and of government disturbances.

Exercise 7.8 Using the sticky price model of exercise 7.1 and the selected parameters,
examine whether the model reproduces the persistence of US inflation by computing S(ω =
0) =

P∞
τ−∞ACFπ(τ) where ACFπ(τ) is the autocovariance of inflation at lag τ .

At times, it may be more relevant to know how good a model is not in absolute terms,
but relative to other competitors. Such a ”horse race ” is important, for example, when
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two models ”poorly” approximate the data or when one model is a restricted version of the
other. Canova, Finn and Pagan (1994), for example, take the capacity utilization model
of Burnside, et al. (1993), reduce it to two equations involving output and investment
and compare its performance to a simple investment accelerator model. More recently,
using the techniques described in chapters 9 to 11, Schorfheide (2000), DeJong, Ingram and
Whiteman (2000) or Smets and Wouters (2003) have undertaken similar comparisons.

Exercise 7.9 Consider two variants of the RBC model of example 7.3. In variant i) assume
that there are production externalities, i.e. yit = ζtK̄

ℵ
t K

1−η
it Nη

it where K̄t =
R 1
0 Kitdi is the

aggregate capital stock. In variant ii) assume one period labor contracts, so that wt =
Et−1 ytNt . Suggest ways to compare the relative performance of the two models to the data.

Comparisons based on stylized facts are important for two reasons. First, they shift the
emphasis away from statistical quantities (such as the properties of the residuals) towards
more interesting economic objects (such as functions of conditional and unconditional mo-
ments). Second, they allow to construct a larger set of diagnostics and therefore a better
comparison of the properties of different models. Within this generic comparison method-
ology, several variants, closely linked to the procedure used to select the parameters, are
available (see e.g. Kim and Pagan (1993)).

Formally, let Sy be a set of interesting economic statistics of the actual data and let
Sx(²t, θ) be the corresponding statistics of simulated data, given a vector of parameters θ
and a vector of driving forces ²t. Model evaluation consists in selecting a loss function L

measuring the distance between Sy and Sx and assessing its magnitude. At the cost of
oversimplifying, but hopefully gaining a clearer understanding of the differences, we divide
existing procedures into four groups:

• Approaches based on R2-type measure, such as Watson (1993).
• Approaches which use the sampling variability of the actual data to provide a measure
of distance between the model and the data. Among these are the GMM based
approach of Eichenbaum and Christiano (1992) or Langot and Feve (1994), the indirect
approach of Checchetti, Lam and Mark (1993) and the frequency domain approach
of Diebold, Ohanian and Berkowitz (1998).

• Approaches which use the sampling variability of the simulated data to measure the
discrepancy between the model and the data. Among these procedures we distinguish
those which take the driving forces as stochastic and the parameters as given, such
as Gregory and Smith (1991), Soderlin (1994) or Cogley and Nason (1994) and those
who take both as random, such as Canova (1994), (1995) or Maffezzoli (2000).

• Approaches which use the sampling variability of both actual and simulated data
to evaluate the fit. Again, we distinguish approaches which allow for variability in
the parameters but not in the exogenous processes such as De Jong, Ingram and
Whiteman (1995), (2000), Geweke (1999) and Schorfheide (2001) or allow both to
vary, such as Canova and De Nicolo’ (2003).
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Roughly speaking, the first approach makes assumptions about the time series properties
of L, given θ and ²t; the second uses the sampling variability of Sy (and, in some cases,
of θ) to evaluate the model; the third group of methods use sampling variability in ²t in
addition to either sampling variability or cross section variability of θ to evaluate the model;
the final group of methods accounts for the variability in Sy, the cross sectional variability
in θ and, in some cases, the variability in ²t.

7.4.1 Watson’s R2

Standard statistical measures of fit use the size of the sampling errors to judge the coherence
of a model to the data. That is, disregarding the approximation error, if ACFy is the
autocovariance function of the actual data and ACFx is the autocovariance function of
simulated data, standard measures examine whether ACFx = ACFy, given that differences
between ACFx and its estimated counterpart arises from sampling error. While this is a
sensible procedure when the null represents the data, it is much less sensible when the model
is false even under the null.

Rather than relying on the properties of the sampling error, Watson asks how much error
should be added to xt so that its autocovariance function equals the autocovariance function
of yt. The autocovariance function of this error is ACFv = ACFy+ACFx−ACFxy−ACFyx,
where ACFyx is the cross-covariance function of x and y. Hence, to study the properties
of ACFv we need a sample from the joint distribution of (xt, yt) which is unavailable.
Typically one of two assumptions is made (see e.g. Sargent (1989)): (i) ACFxy = ACFx, so
that xt and vt are uncorrelated at all leads and lags. This yields a classical error-in-variables
problem; (ii) ACFxy = ACFy, so that vt is a signal extraction noise and yt is the observable
counterpart of xt.

Example 7.8 Let yt = xt+vt where E(vtvt−τ ) = 0, for τ 6= 0 and equal to σ2v when τ = 0.
Then E(ytxt−τ ) = E(xtxt−τ ) for all τ 6= 0. Let now xt be orthogonal to vt, and let xt = αyt.
Then E(ytxt−τ ) = αE(ytyt−τ ) for all τ 6= 0.

Clearly, which assumption is adopted depends on the way data is collected and expec-
tations are formed. Here neither is very appealing since vt is not a proxy nor a forecast
error. Because any restriction used to identify ACFxy is arbitrary, Watson chooses ACFxy
to minimize the variance of vt, requiring ACFx and ACFy to be positive semidefinite. In
other words, one selects ACFxy so as to give the model the best chance to fit the data. The
choice of ACFxy depends on properties of the data and the dimension of xt and yt.

Example 7.9 When xt, yt are serially uncorrelated scalars, the problem becomesminσxy σ
2
v =

σ2x+σ
2
y−2σxy subject to σ2v ≥ 0. The solution is σxy = σxσy. That is, selecting a minimum

approximation error makes xt and yt perfectly correlated, and xt =
σx
σy
yt.

The case of xt, yt serially uncorrelated, m×1 vectors, is analogous. The problem is now
min
Σxy

tr|Σv| = tr|Σx +Σy −Σxy −Σyx| (7.14)
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subject to |Σv| ≥ 0 where tr|Σv| =
Pm
i=1Σvii is the trace of Σv. The solution is Σxy =

P 0xV 0Py where Px and Py are square roots of Σx and Σy, V = ΩΛ−1/2Ω0P 0, Ω is a matrix of
orthonormal eigenvectors and Λ is a diagonal matrix of eigenvalues of P 0P where P = PxPy.
Exercise 7.10 Describe how to compute predicted values of xt given yt when both are m×1
vectors. Argue that the joint covariance matrix of (xt, yt) is singular. Show how to modify
(7.14) to minimize a weighted average of the diagonal elements of Σv.

Typically in DSGE models, Σx is singular since the number of shocks is smaller than the
number of endogenous variables. Let xt, yt be serially uncorrelated and let the m variables
in xt be driven by m1 ≤ m shocks so that the rank of Σx is m1 ≤ m. Then, the above
analysis applies to a m1×1 subvector of elements of xt and yt. Let S be a m1×m selection
matrix such that SΣxS0 has rank m1. Define x̃t = Sxt, ỹt = Syt, Σ̃x = SΣxS0, Σ̃y = SΣyS0.
Then ṽt = x̃t − ỹt is the error we wish to minimize. The solution is x̃t = P̃ 0xṼ 0P̃−1y ỹt where

P̃x, Ṽ , P̃−1y are the reduced rank analogs of Px, V,P−1y .

Example 7.10 Suppose m = 2 (say, output and consumption) and that m1 = 1. Then we
have three possible choice: we could minimize the variance of output, S = [1, 0], the variance
of consumption, S = [0, 1], or a linear combination of the two, S = [%, 1− %].
Exercise 7.11 Show that, because both Σx and SΣxS0 have rankm1, it is possible to express
xt as a linear combination of x̃t. Set xt = Qx̃t where Q is a m×m1 matrix. Conclude that
xt = QΛ̃Syt and that it is optimal to set Σxy = QΛ̃SΣy. Display the form of ˜Lambda.

When (xt, yt) are serially correlated vectors and rank(Σx) = m1 ≤ m, the same intuition
applies. However, because of serial correlation, one wants to minimize the trace (weighted
or unweighted) of the spectral density matrix. That is, we want to minimize tr|W (ω)Sv(ω)|
where W (ω) is a matrix of weights for each frequency ω and Sṽ(ω) is the spectral density
matrix of vt. When ω are Fourier frequencies Sṽ(ω) is uncorrelated with Sṽ(ω)0 , ∀ω 6= ω0.
Hence the minimization problem can be solved frequency by frequency.

Exercise 7.12 Show that the solution to the minimization problem when xt, yt are serially
correlated and Σx is of rank m1 is ACFx̃ỹ(ω) = Λ(ω)ACFỹ(e

−iω) where Λ(ω) is the complex
analog of Λ obtained in exercise 7.11. Show that x̃t is a function of leads and lags of ỹt.

Exercise 7.13 Suppose that xt = Q1vt where xt is a 2 × 1 vector, Q01 = [1.0, 0.5] and

vt ∼ (0, 1) and let yt = Q2et, Q2 =
·
1.0 0.3
0.2 1.0

¸
and et is a 2 × 1 vector of uncorrelated

shocks with variances equal to 1 and 4. Show how to compute ACFxy(ω) and the predicted
value of xt. Show both theoretical and numerical answers (the latter based on the estimation/
simulation of the relevant quantities).

Once an expression for ACFxy is obtained, it is easy to design R
2- type measures of

fit. For example, we could use S1i(ω) =
ACFv(ω)ii
ACFy(ω)ii

or S2i(ω) =

R
[ω1,ω2] ACFv(ω)iidωR
[ω1,ω2]ACFy(ω)iidω

. S1i
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measures the variance of the i-th component of the error relative to the variance of the
i − th component of the data at frequency ω. Since this is analogous to 1 − R2 in a
regression, a plot of S1i against ω visually provides a lower bound for the ”distance” of the
model from the data, frequency by frequency. S2i may be useful to evaluate the model over
a band of frequencies. Note that since vt and xt are serially correlated, both S1i and S2i

can be greater than one.

Minimizing var(GDP)

va
r(Y

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

1.25

va
r(C

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

1.25

Frequency

co
rr(

G
D

P,
C

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

400

800

1200

1600

Minimizing var(C)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

1.25

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.25

0.50

0.75

1.00

1.25

Frequency
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.9

1.8

2.7

Figure 7.1: Watson’s measure of fit

Exercise 7.14 Show that linearly filtering xt and yt leaves S1i unchanged but alters S2i.
(Hint: The weights depend on the frequency).

Example 7.11 We illustrate Watson’s approach using simulated data from a version of
the model described in example 7.3, where there are only technology shocks, the utility of
the agents is U(ct, Nt) = ln ct + ϑN(1 −Nt) and η = 0.64, δ = 0.025,β = 0.99, ( c

GDP )
ss =

0.7, ( K
GDP )

ss = 2.5,ϑN = 2.6, ζ̄ = 0, ρζ = 0.95,σζ = 0.007. Figure 7.1 presents S1i, fre-
quency by frequency, when we minimize the variance of output (first column) or the variance
of consumption (second column). Here we care about the variability of output, the variability
of consumption and their correlation. Actual data is linearly detrended. We need to choose
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one of the two variables because there is only one shock in the model. Shaded areas indicate
business cycle frequencies. The model does not fit the data well: regardless of the minimiza-
tion, 1−R2 is high for the variable whose variance is not minimized (roughly of the order
of 0.9999) at business cycle frequencies. For the minimization variable, misspecification is
noticeable at medium-high frequencies. Moreover, the correlation of two variables is poorly
matched at low frequencies; misspecification declines with the frequency but at business cycle
ones is still substantial.

Exercise 7.15 (Wei) Consider two versions of a RBC model, one with habit persistence in
leisure, and one with production externalities. In the first case the social planner maximizes
E0
P
t β

t[ln(ct)+ϑN ln(γ(`)(1−Nt))] subject to ct+Kt+1 = K1−η
t Nη

t ζt. In the second case

she maximizes E0
P
t β

t[ln(ct) + ϑN ln(1−Nt)] subject to ct +Kt+1 = N̄ℵ
t K

1−η
t Nη

t ζt where
N̄t is the average numbers of hour worked in the economy. In both cases we assume that
ln ζt = ζ̄+ρζ ln ζt−1+ ²1t. Suppose β = 0.99, η = 0.64, δ = 0.025,σζ = 0.007, ρζ = 0.9, ϑN is
chosen so that Nss = 0.20, and ( c

GDP )
ss = 0.7, ( K

GDP )
ss = 2.5. Let γ(`) = 1+0.85`− 0.3`2

and let ℵ = 0.45. Compare the spectral densities of the two models for consumption,
investment, output and hours to the spectra of US data and to the spectra of the model of
example 7.11, linearly detrending the actual data and minimizing the variance of output
or the arithmetic sum of variances of consumption, investment, output and hours. Which
model improves over the basic one? In which dimensions?

Exercise 7.16 Consider a one sector monetary growth model with complete capital depreci-
ation, inelastic labor supply, where the representative agent solves maxct,Kt+1 E0

P∞
t=1 β

t ln ct
subject to ct +Kt+1 ≤ ζtK1−η

t Nη
t and ln ζt = ζ̄ + ρζ ln ζt−1 + ²1t, ²1t ∼ N(0,σ2ζ ). Assume a

cash-in-advance constraint Mt ≤ ptct and let lnMt = M̄ + ρm lnMt−1+ ²3t, ²3t ∼ N(0,σ2m).
(i) Assume that the uncertainty is realized before decisions are taken at each t. Solve for
the optimal path for (ct,Kt+1, yt, pt) as a function of (Kt, ζt, Mt).
(ii) Assume η = 0.64, β = 0.998, ρζ = 0.90, ρm = 0.8 σζ = 0.007, σ2m = 0.01. Apply
Watson’s approach to quarterly detrended money and price data in the US. Calculate S2i(ω)
for ω ∈ [ π16 , π4 ].

Two shortcoming of Watson’s procedure should be noted. First, while there is some
intuitive appeal in creating lower bounds statistics, it is not clear while one should concen-
trate only on the best possible fit. Canova, Finn and Pagan (1994) suggest to use both the
best and the worst fit: if the range is narrow and 1−R2 of the worst outcome small, one can
conclude that the model is satisfactory - a conclusion one can not reach using only the best
fit. Second, the method does not provide information that may be useful in respecifying
the model. R2 could be low for a variety of reasons (the variance of the shocks in the data
may be high; the dynamics of the model and of the data are different; the process for the
states has a large AR coefficient). Clearly, it makes a lot of difference whether it is the first
or the last of these causes that makes R2 low.
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7.4.2 Measure of fit based on simulation variability

A wide class of measures of fit can be obtained if a researcher is willing to randomize on
the realization of the stochastic processes of the model. This approach was popularized,
e.g., by Gregory and Smith (1991) and (1993). When the ²t’s are randomized, the distance
between relevant functions of the model and of actual data can be evaluated using either
asymptotic or probabilistic (Monte Carlo) criteria. Measures of fit of this type provide a
sense of the ”economic” distance between the model and the data, contrary, for example, to
what one would obtain with likelihood ratio tests. Standard functions used for comparison
include unconditional moments; spectral densities (see Soderlin (1994)), or semi-structural
impulse responses (see Cogley and Nason (1994)). Note that spectra based comparisons do
not require a parametric model for the actual data, but large simulated samples are needed
to insure that the bias of the spectral estimates is small.

We illustrate how to validate a model with such a technique in the next example.

Example 7.12 (Dunlop-Tarshis puzzle) Suppose we are concerned with the correlation be-
tween hours and labor productivity and suppose we are willing to draw replications for the
time series of the random disturbances of the model. Then, there are three ways to check if
the correlations produced by the model look like the actual ones. The first is as follows:

Algorithm 7.2 1) Draw ({²t}Tt=1)l. Calculate ACRFN,w(τ)l, l = 1, . . . , L, τ = 0, 1, 2, . . .
2) Order simulations and construct percentiles.

3) Calculate the number of replications for which ACRFN,w(τ)
l is less than the autocor-

relation found in the actual data (separately for each τ or jointly); the decile of the
simulated distribution whether the actual value lies or check whether the actual auto-
correlation is inside a prespecified range of the simulated distribution (say, a 68% or
a 95% interval).

The output of algorithm 7.2 is what Gregory and Smith (1993) call the ”size” of cali-
bration tests. If a model is a poor approximation to the data, the simulated distribution of
correlations will be far away from the distribution in the data and extreme statistics will be
obtained (e.g. actual correlations are in the tails of the simulated distribution or the number
of times ACRFN,w(τ)

l is less than the actual value is either zero or one).
An alternative approach can be obtained using an asymptotic normal approximation for

the distribution of correlations. For example, Anderson (1970) shows that \ACRFN,w(τ)
D→

N(ACRFN,w(τ),ΣACRF (τ)) where ΣACRF (τ) = 1
2T (1− |ACRFN,w(τ)|)2. Therefore, given

one draw for {²t}Tt=1, and letting T → ∞; √T ACRFN,w(τ)− \ACRFN,w(τ)√
ΣACRF (τ)

D→ N(0, 1), each τ .
Since little is know about the properties of correlation estimates when T is moderate or
small, one may prefer a small sample version of this test in which case the next algorithm
could be of use:

Algorithm 7.3
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1) Draw replications for ({²t}Tt=1)l and calculate ACRFN,w(τ)l , l = 1, . . . L, τ = 0, 1, 2, . . ..

2) For each l, compare
√
T
ACRFN,w(τ)− \ACRFN,w(τ)√

ΣACRF (τ)
to a N(0, 1). Record either the p-value

or construct a dummy variable which is one if the simulated distribution is statistically
different from a N(0, 1) at some confidence level and zero otherwise.

3) Construct the distribution of p-values or the percentage of times the model is rejected.

We have examined whether the RBC model of example 7.3 driven by a government
expenditure and a technology shocks can account for the correlation found in detrended US
data for the sample 1964:1 to 2003:1. We use a version of the model with separable utility (a
power specification for consumption and a linear specification for leisure). The parameters
are β = 0.99, δ = 0.025,ϑ = 0.5,ϕ = 2, Nss = 0.2, ρζ = 0.9, ρg = 0.8,σζ = 0.007,σg = 0.01.

Corr(Nt, wt−1) Corr(Nt, wt) Corr(Nt, wt+1)
Size (% below actual) 0.40 0.27 0.32
Normality (% rejection) 0.59 0.72 0.66
Bands [ 0.39, 0.65] [ 0.45, 0.70] [ 0.38, 0.64]
Actual correlations 0.517 0.522 0.488

Table 7.3: Cross correlation hours-wage

Table 7.3 reports the percentages of times the simulated correlation is below the actual one
(row labelled ”size”), the number of times the normality assumption is rejected (row labelled
”normality”) and the 68% band for simulated correlations together with the actual ones, for
τ = −1, 0, 1. It is remarkable that actual correlations are inside the bands generated by the
model at all three horizons. Also while the model has a tendency to produce correlations
which exceed those found in the actual data, the results are reasonably good. This is not
completely surprising. As suggested in exercise 1.15 in chapter 2, the presence of demand
shifters can reduce to realistic levels the almost perfect correlation between hours and real
wages produced by technology shocks.

Exercise 7.17 (Adelmann test) Consider two versions of a RBC model, one with habit
persistence in consumption and one with one-period labor contracts. Assume that there
are only productivity shocks, that the solutions are obtained log-linearizing the optimality
conditions and that the productivity process is parametrized so that it reproduces the first
two moments of actual Solow residuals for the US economy.
(i) Appropriately select the remaining parameters of both models.
(ii) Construct probabilities of turning points in output, defining a recession at t if gdpt−2 >
gdpt−1 > gdpt < gdpt+1 < gdpt+2 and an expansion at t if gdpt−2 < gdpt−1 < gdpt >
gdpt+1 > gdpt+2 (Hint: draw sequences for the exogenous disturbances and count the number
of times that at each date recession and expansion events are encountered).
(iii) Design a probabilistic statistic to assess which model fits the NBER chronology better.
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Exercise 7.18 (Money-inflation relationship) Consider a working capital economy (like the
one in exercise 1.14 of chapter 2) and a sticky price economy (like the one in example 1.5 of
chapter 2). Suppose we want to find out which model fits the actual cross correlation function
of money and inflation found in Euro area data better. Assume that there are two shocks in
each model (a technology and a monetary one), both of which are AR(1); that in both models
output requires capital and labor; that there is no habit persistence in consumption, that there
are quadratic costs to adjusting capital of the form b

2(
Kt+1

Kt
− 1)2Kt where b ≥ 0 and that

monetary policy is conducted according to a rule of the form it = i
a0
t−1gdp

a1
t π

a2
t ²3t where ²3t is

a monetary policy shock and it the nominal interest rate. Log-linearize both models around
the steady state, appropriately select the parameters and construct probabilistic measures of
fit, randomizing on the stochastic processes for monetary and technology shocks.

Instead of measuring the distance between moments, one could measure distance be-
tween structural impulse responses, where structural shocks are obtained with one of the
approaches described in chapter 4. A statistic to compare impulse responses is:

S(τ) = [IRF (τ)− IRFA(τ)]Σ(τ)−1[IRF (τ)− IRFA(τ)]0 (7.15)

where τ = 1, 2, . . . refers to the horizon, IRF (τ) is the mean response of the model
(across replications) at horizon τ , IRFA(τ) is the actual response at horizon τ and Σ(τ) =
1
L

PL
l=1[IRF (l, τ)− IRF (τ)A][IRF (l, τ)− IRF (τ)A]0. Asymptotically, T ×S(τ ) ∼ χ2(1).

For the sample sizes used in macroeconomics, a small sample version of this statistic is
probably more useful. Hence,

S(τ, l) = [IRF (τ, l)− IRFA(τ)]Σ(τ)−1[IRF (τ, l)− IRFA(τ)]0 (7.16)

could be used where IRF (τ, `) is the response of the model for horizon τ and replication `.
As suggested in algorithm 7.3, S(τ, l) can be computed at each l, using the simulated real-
ization of impulse responses. Then, the empirical distribution of S(τ, l) can be constructed
and the rejection frequency computed. Since Σ(τ) is correlated across τ , it is necessary to
eliminate the correlation if a joint comparison at more than one τ needs to be made (see
e.g. chapter 4).

Exercise 7.19 (Long run neutrality) Continuing with exercise 7.18, in both models the
long run correlation between money growth and inflation is one. Using algorithm 7.3 or a
statistic similar to (7.16) provide a probabilistic assessment of whether the actual long run
correlation of money growth and inflation could have been generated by these two models.

Exercise 7.20 (Output and prices) Continuing with the model economy described in exer-
cise 7.16, run a VAR on simulated price and income data, and identify structural shocks
using the assumption that, on impact, one of the shocks has no effect on prices.
(i) Repeat the identification exercise for actual data.
(ii) Calculate S(τ, l), τ = 1, 4, 8. Tabulate the rejection frequencies and interpret the results.
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The above setup can be easily modified to account for parameter uncertainty. To do this
we only need to change the first step of algorithms 7.2 and 7.3, randomizing both et and θ.
The empirical distribution of relevant statistics can then be constructed and from there one
can compute size tests or percentiles rejection rates, i.e. calculate in what percentage of
the model distribution the actual statistics lie. When parameter uncertainty is ”objective”,
as in Canova (1994)-(1995), the extension is straightforward: we simply draw from the
assumed joint empirical distribution for the parameters. When parameters uncertainty is
data-based, the techniques described in the next subsection could be used.

7.4.3 Measures of fit based on sampling variability

If one allows estimation variability in the parameters, or if one is willing to accept the idea
that stylized facts are measured with error, model evaluation can be conducted using a
metric which exploits sampling, as opposed to simulation, variability.

When parameters are random the procedure typically used resembles a J-test (see chap-
ter 5). However, here simulated moments are random - because of parameter uncertainty -
while moments of the actual data are assumed to be measured without error. Hence, data
moments play the role of g∞ and simulated moments the role of gT in the GMM setup.

Suppose θT solves
1
T

P
t g1(²t, θ), let g2(yt) be another vector of moments of actual data,

g2(²t, θT ) the same vector of moments obtained from simulated data and Σg2 the covariance
matrix of g2(²t, θT ). Then, as T → ∞, T × [g2(yt) − g2(²t, θT ]0Σ−1g2

[g2(yt) − g2(²t, θT )] ∼
χ2(dim(g2)). Note that Σg2 =

∂g2

∂θ Σθ
∂g2

∂θ

0
where Σθ is the covariance matrix of θT .

Exercise 7.21 Assume that g2(yt) is measured with error. Show how to modify the distance
statistic and its asymptotic distribution to take this into account.

Two points need to be stressed. First, the method is closely related to those discussed
in chapter 5. Therefore, standard conditions on yt and on the g functions are required for
the statistics to have asymptotic validity. Note also that here estimation and testing are
conducted sequentially, as opposed to simultaneously, and that θT is obtained from just
identified conditions. Second, a J-test is valid under the null the model is the true DGP in
the dimensions represented by g2. That is, the model needs to be correct at least in the g2
dimensions for the validation results to have meaningful interpretations.

An alternative approach, not requiring the assumption that the model is true, was
suggested by Diebold, Ohanian and Berkowitz (DOB) (1998). The method is close in spirit
to Watson’s but uses the sampling variability of the actual data to construct a finite sample
diagnostic of fit.

Let Sy(ω) be the spectrum of the actual data and bSy(ω) an estimate of Sy(ω). When yt
is univariate and T large, 2Ŝy(ω)Sy(ω) ∼ χ2(2) for ω 6= 0,π. For the sample sizes typically used in
macroeconomics, asymptotic approximations are probably inappropriate and DOB suggest
two bootstrap methods to construct small sample confidence intervals for the spectrum of
yt. The methods differ in the way replications are constructed: in the first the asymptotic
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distribution of the prediction error is the resampling distribution; in the second it is its
empirical distribution. Let P̃ 0P̃ = ACFy(τ ) ≡ cov(ytyt−τ ) and let ȳ be the sample mean of
yt. The methods are summarized in the following algorithm:

Algorithm 7.4

1) Draw υl from a N(0, IT ) or from the empirical distribution of υt = P̃−1(yt − ȳ).
2) Construct ylt = ȳ + P̃υlt and ACF l(τ), l = 1, . . . , L.
3) Compute Ŝly(ω) =

P
τ K(τ)ACF ly(τ)e−iωτ , where K(τ) is a kernel.

4) Order Ŝly(ω), each ω; construct percentiles and extract confidence intervals.
Note that bootstrap procedures are valid under homoschedasticity of υt. Therefore, if

heteroschedasticity is suspected, data needs to be transformed before algorithm 7.4 is used.

Exercise 7.22 Describe a bootstrap approach to compute small sample confidence intervals

for Sy(ω), drawing 2Ŝy(ω)
Sy(ω) from a χ2(2) or from its empirical distribution.

The multivariate analogs of these estimators are straightforward.

Exercise 7.23 Describe how to implement the parametric bootstrap algorithm 7.4 and the
non-parametric bootstrap algorithm of exercise 7.22 in a multivariate setting.

Bootstrap distributions are valid frequency by frequency. However, evaluation is often
performed over a band of frequencies. The results obtained by connecting the p-values, fre-
quency by frequency, are incorrect since a set of n (1−%)% confidence intervals constructed
for each frequency will not achieve a (1− %)% joint coverage. Rather, the actual confidence
level will be closer to (1 − %)n% if the pointwise intervals are independent. Hence, when
interest centers in a band of n frequencies, a more appropriate approximation is obtained
choosing a (1 − %/n)% coverage for each spectral ordinate since the resulting tunnel has
coverage of, at least, (1− %)%.

When the parameters and the stochastic processes of a model are fixed at some θ̂ and
²̂t, the spectrum of simulated data can be constructed to any degree of accuracy either by
simulating a very long time series or by replicating many times a short time series using the
distribution of ²̂t and invoking ergodicity. Let Sx(ω, θ̂, ²̂t) be the spectrum of the model. A
measure of fit is:

L(θ̂, ²̂t) =

Z ω2

ω1

L∗(Sy(ω),Sx(ω, θ̂, ²̂t))W (ω)dω (7.17)

where W (ω) is a set of weights and L∗ is a function measuring the distance between the
spectrum of actual and simulated data at frequency ω.

Exercise 7.24 Show the form of L(θ̂, ²̂t) when L∗ is quadratic and when we are interested
in comparing model and data at business cycle frequencies only. Show that if L∗ = Sx(ω,θ̂,²̂t)

Sy(ω)
detrending is irrelevant in judging the closeness of the model to the data.
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It easy to include parameter uncertainty into the evaluation criteria. In fact, one
advantage of evaluating the fit as in (7.17) is that L(θ̂, ²̂t) can also be used for esti-
mation purposes. For example, θ̃ = argminθL(θ, ²̂t) is a minimum distance type es-
timator of θ. Recall that GMM is an estimator of this form, while maximum likeli-
hood has asymptotically this form (here we would set W (ωj) = 1, ∀ωj and L(θ, ²̂t) =

−0.5Pj lnSx(ωj , θ, ²̂t) − 0.5
P
j

Sy(ωj)
Sx(ωj ,θ,²̂t)

). When this is done the assumption that the

model is correct, at least in some dimensions, is necessary for the estimation-evaluation
process to make sense.

It is also easy to combine the algorithm 7.4 with estimation: the first three steps of the
procedure are identical and we only need to estimate θ̃l for each draw, l = 1, . . . L. From
the distribution of θ̃l we can construct point estimates, confidence intervals, etc.

Exercise 7.25 Suppose L∗ is quadratic. Show how the variability of θ and of Sx(ω) affect
estimates of L(θ, ²t).

Example 7.13 (Band spectrum regression) Suppose ωj are Fourier frequencies and con-
centrate attention at business cycle frequencies (i.e. [ π16 ,

π
4 ]). Suppose that L∗ is quadratic,

W (ω) = 1, ∀ω and L(θ, ²̂t) =
P
j(Sy(ωj)−Sx(ωj, θ, ²̂t))2. When Sx(ω, θ, ²̂t) is orthogonal to

Sy(ωj)−Sx(ωj , θ, ²̂t), minimization of L(θ, ²̂t) produces band spectrum regression estimates
(see, Engle (1974)).

Exercise 7.26 For the economy of exercise 7.16 calculate the spectrum of prices and in-
come, appropriately selecting the parameters. Calculate the spectrum of prices and income
using US data and measure the distance of the two using a parametric bootstrap algorithm.
(i) Calculate L(θ̂, ²̂t) assuming that L∗ is quadratic, equally weighting deviations of prices
and income from their actual counterpart at business cycle frequencies.
(ii) Repeat the calculation when L(θ, ²̂t) = I[Sy(ω)≥Sx(ω)] and I an indicator function. Find
the θ̂ which minimizes this quantity.

Exercise 7.27 Design an asymptotic criteria to compare the spectra of a model and of the
data. Describe how to use it to compare alternative calibrated models.

Example 7.14 Continuing with the economy of example 7.11, we compute joint 68% tun-
nels for the spectra of consumption and output and for the coherence between the two vari-
ables using a parametric bootstrap approach. Figure 7.2 shows the tunnels together with the
log spectra and coherence produced by the model (business cycle frequencies are highlighted).
Clearly, consumption and output variability in the model at business cycle frequencies are
lower in the data, while the coherence is, roughly, of the same magnitude.

7.4.4 Measures of fit based on sampling and simulation variability

There is no reason to confine attention to either sampling or simulation uncertainty. The
outcomes of models are uncertain because parameters (and forcing variables) are unknown;
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Figure 7.2: Spectra and Coherences

statistics of the data are uncertain because of sampling variability. Therefore, it makes
sense to design a metric which takes both types of uncertainty into account.

Canova and De Nicolo’ (2003), for example, construct bootstrap distributions for statis-
tics of actual data and simulated distributions for the statistics produced by the model
(allowing for uncertainty in both the parameters and in the stochastic processes) and mea-
sure the quality of the approximation by examining the degree of overlap between the two
distributions - a large overlap for different contour probabilities is considered a good sign.
Actual and simulated data are treated symmetrically: one can either ask if the actual data
could have been generated by the model or, viceversa, if the simulated data are consistent
with the empirical distribution of the actual data. Roughly speaking this is equivalent to
the process of switching the null and the alternative in hypothesis testing.

Example 7.15 Continuing with example 7.12, we ask how much overlap there is between
the distributions of the contemporaneous correlation of hours and real wages in the data
and in the model when uncertainty in both parameters and stochastic processes is taken
into account. Figure 7.3 reports the two distributions: there appears to be some overlap
but the simulated distribution is much more spread out than the actual one: in fact, the
small sample 95% interval of actual correlation (0.44,0.52) is inside the 68% interval for
the model correlation (0.35, 0.75). Viceversa, only the central 25% of the mass of the
simulated distribution of the model correlation is inside the 68% interval of the small sample
distribution of the actual one.
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Figure 7.3: Distributions of Hours and Labor Productivity Correlation

DeJong, Ingram and Whiteman (1996) also take the view that uncertainty characterizes
both models and data. However, distributions characterizing the uncertainty in the param-
eters of the model and in the coefficients of the parametric representation of the data are
”subjective”. Suppose we represent a m× 1 vector of actual time series with a VAR:

yt = A(`)yt−1 + et et ∼ N(0,Σe) (7.18)

Let α = {vec(A1), vec(A2), . . . , vech(Σy)} where vec(.)(vech(.)) are the columnwise vector-
izations of rectangular (symmetric) matrices and let Σy = (I − A(`)`)−1Σe(I − A(`)`)−10 .
When yt is stationary, and given α, the second moments of yt can be obtained as ΣY =
AΣY A0 + ΣE where A is the companion matrix of A(`) and ACFY (τ) = AτΣY . Let
g(α) =

Q
i g(αi), i = 1, 2, . . . be a prior density for α. We let g(α) to be noninforma-

tive and require that g(αi) is such that yt is stationary, i.e. g(α) ∝ |ΣE |m+1
2 × I[stationary]

where I[stationary] is an indicator function. As discussed in details in chapter 10, a unin-
formative prior for α and a normal likelihood for yt generate a Normal-Wishart posterior
distribution for α. Then, the posterior distribution for ΣY , ACFY can be obtained by
simulation, drawing α from such a distribution, computing ΣY and ACFY for each draw
and collecting relevant percentiles.

Let θ be the vector of parameters of the model. The outcomes of the model can be de-
scribed by a density f(xt|θ). Let g(θ) be a prior density for θ. Then f(xt) =

R
f(xt|θ)g(θ)dθ

characterizes the realizations of the model, once parameter uncertainty is averaged out. Us-
ing draws from g(θ) and the solution to the model f(xt|θ), a simulation-based distribution
of Σx and ACFx, accounting for parameter uncertainty, can be produced.
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Given a functional form for g(θ) (say, a joint normal distribution) one can vary its
dispersion to see if the degree of overlap between the distribution of Σx and of Σy (or
ACFx and ACFy) increases. Since there is disagreement in the profession on the spread of
g(θ), such an exercise may help to understand whether uncertainty in the selection of the
parameters θ can mitigate differences between the model and the data.

Let g(Sy,i) be the data based distribution of the component i of Sy and let gj(Sx,i)
be the model based distribution for Sx,i using specification j of the prior. One way to
measure the degree of overlap between g(Sy,i) and g(Sx,i) is the following Confidence
Interval Criterion (CIC)

CICij =
1

1− %
Z 1−%/2

%/2
gj(Sx,i)dSx,i (7.19)

where 1 − % = R 1−%/2%/2 g(Sy,i)dSy,i. Note that 0 ≤ CICij ≤ 1
1−% . When CICij is low, the

fit is poor i.e. either the overlap is small or gj(Sx,i) is very diffuse; values close to
1
1−%

indicate that the two distributions overlap substantially and values greater than one that
g(Sy,i) is diffused relative to gj(Sx,i). To distinguish among the two interpretations when
CICij is low, one can supplement (7.19) with another measure, analogous to a t-statistic

for the mean of gj(Sx,i) in the g(Sy,i) distribution, i.e.,
Egj(Sx,i)−Eg(Sy,i)√

var(g(Sy,i))
. Large values of

this statistic relative to a N(0, 1) indicate differences in the location of gj(Sx,i) and g(Sy,i).
While so far we have kept % fixed, it is probably a good idea to vary it, given j, since

large differences produced by different values of % provide information on how and where
the two distributions overlap.

Exercise 7.28 Consider the economy analyzed in exercise 7.4.
(i) Using US data on equity returns and the risk free rate calculate the equity premium as

EPt = (R
e
t −Rft ) and the mean and the autocovariance of Rft and EPt at lags -1, 0, 1.

(ii) Set n = 2, gy1 = 0.9873, gy2 = 1.0177, p1 = 0.2, p2 = 0.8,β = 0.99, ρy = 0.8,ϕ = 2.

Simulate asset price data from the model and compute Sx = [E[(R
f
t ), (R

e
t )]; var[(R

f
t ), (R

e
t )].

(iii) Consider the second moments of the two variables and assume that, as in Watson’s
approach, you want to minimize the variance of the risk free rate. Provide individual and
joint measures of fit for the risk free rate and the equity premium at all frequencies.
(iv) Examine the fit of the model for the mean of the equity premium and of the risk free
rate, using a metric based on the sampling variability of simulated data.
(v) Describe a bootstrap algorithm to calculate the small sample distribution of the variance
of the two variables. Using a quadratic loss function, find the ϕ which produces the best fit
of the model to the data using Diebold, Ohanian and Berkowitz approach.
(vi) Assume ϕ ∼ N(2.0, 0.1), β ∼ N(0.96, 0.01), ρy ∼ N(0.8, 0.05) and still let gy1 =
0.9873, gy2 = 1.0177, p1 = 0.2, p2 = 0.8 Draw 100 values for these parameters, compute
Sx for each draw and calculate (plot) the joint empirical distribution. Repeat the ex-
ercise assuming ϕ ∼ N(2.0, 0.2) and still assuming β ∼ N(0.96, 0.02), ρy ∼ N(0.8, 0.05),
gy1 = 0.9873, gy2 = 1.0177, p1 = 0.2, p2 = 0.8.
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(vii) Run a bivariate VAR using a measure of real risk free rate of interest and of the equity
premium. Draw 100 parameters from a Normal-Wishart distribution for the VAR coeffi-
cients, compute Sy from each draw and plot the joint distribution.
(viii) Show the degree of overlap between the distributions you have computed in (vi) and in
(vii) letting % = 0.01, 0.10. Calculate CIC in the two cases.
(ix) In what percentile of the distribution of Sy lies the value of Sx computed in (ii)?

One can notice that there is still some asymmetry in the procedure: we compare the
predictive density of the model f(xt) and the posterior distribution of the data. In principle,
one would like to use the posterior distribution of both the model and the data. However,
to construct posterior distributions for the parameters, we need Monte Carlo Markov chain
methods. We defer the discussion of these methods to chapter 9.

Hansen and Heckman (1996) criticize users of the computational experiments on the
ground that they rarely perform out-of-sample forecasting comparisons between the model
and simple time series specifications. The setup used in this chapter allows for this type
of exercises. Such a comparison is useful in two senses. First, since DSGE models are
restricted VAR, a comparison with unrestricted VARs help us to gauge the validity of the
restrictions. Second, if a DSGE is not too bad in forecasting relative to time series models,
policymakers may have an incentive to take the reported measurement more seriously.

Example 7.16 (Using RBC model to forecast output)
We take once again the specification used in example 7.3 and use it to forecast output.
Conditional on the parameters, the model produces forecasts for gdpt(τ), τ = 1, 2, . . . at
every t via the recursive formula Syt+τ = AG0 A1Syt+τ−1, where S is a selection matrix which
extracts gdpt from the vector yt and A

G is the generalized inverse of A. We compare the
forecasts of the model to those produced by a naive random walk model, i.e. gdpt(τ) = gdpt∀τ
by computing the ratio of the MSE of the two models. For the sample 1990:1-2001:3 such a
statistic at one-step horizon is 1.13. At four steps however its value drops to 0.97, so that
the restrictions imposed by the model help at somewhat longer horizons. If we randomize
on the parameters of the model we can construct small sample distributions for the forecasts
and for the ratio of MSEs. In this case the ratio of the two MSEs is greater than one in
more than 70% of the cases at the one-step horizon, but less than one in 58% of the cases
at the four step horizon.

The setup also allows for other types of forecasting comparisons as it is explained next.

Example 7.17 Consider a bivariate VAR model with money and output and assume a
flat prior on α. From the posterior distribution of α one can draw realizations αl and use
(7.18) to forecast recursively out-of-sample. Once a prior for the deep parameters θ of the
model is available, a representation like (7.13) allows us to compute forecasts Sylt+τ , τ =
1, 2, . . . for every draw θl. Then to compare the two sets of forecasts at each τ , one can
compute the number of times the MSE of the model is lower than the MSE of the VAR or
relate T × (MSE(θ) −MSE(α))Σ−1(MSE(θ)−MSE(α))0 to a χ2(1) distribution where
Σ measures the dispersion of MSE(θ, l) and MSE(α, l) from their mean.
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It is important to stress that when one uses a DSGE model to forecast out-of-sample,
one does not necessarily subscribe to the idea the model is the DGP. In fact, comparisons
based on MSEs do not require such an assumption: forecasts could be acceptable even when
estimates are biased if the variance of the forecasts is small. Similarly, graphical analyses,
the examination of historical events or turning points do not require such an assumption.

We have repeatedly emphasized that calibrators and standard econometricians take a
different point of view regarding the nature of an economic model. For a standard econo-
metrician, the distribution of outcomes of the model is the probability density function of
the data which can be used as a likelihood function to conduct inference. Calibrators which
choose parameters using GMM or similar techniques implicitly assume that the model de-
scribes only selected features (moments) of the real data. Call these features Sy. Since the
relationship between Sy and the outcomes of the model is analogous to the one assumed
by traditional econometricians, the same evaluation techniques can be used. However, in
constructing the mapping between Sx and Sy, it is easy to fall into logical inconsistencies.
An example can clarify why this is the case.

Example 7.18 Suppose one is interested in constructing a model to explain the average
returns from holding financial assets. Let yit be the return of asset i produced by the model,
let ȳi be its first moment and assume that returns are iid with constant variance. Then,
the sampling distribution of the ȳi’s depends on the population variance of returns since,
var(ȳi) =

var(yit)
T . Hence, features of the data that the model wants to explain (first mo-

ment of returns) may depend on features that the model is not intended to explain (second
moments of the returns).

To avoid inconsistencies, Geweke (1999) suggests to view a DSGE model as a represen-
tation for the population moments of observable functions of the data - not of their sample
counterparts. This setup is advantageous because comparisons across models do not require
the likelihood function of the data. However, since DSGE models have no interpretation
for the observables, it is necessary to bridge population and sample statistics.

Formally, let Sy be a vector of functions of a subset of the data, let M1 and M2

be two different model specifications with parameters θ1 and θ2 respectively; let S∞,1 =
E[Sy|θ1,M1] and S∞,2 = E[Sy|θ2,M2] be the population functions the models produce
and let f(S∞,1|M1) and f(S∞,2|M2) be the densities for S∞ induced by the two models.
Let the prior on the parameters be g(θ1) and g(θ2) and letM3 be a time series model which
allows to compute the posterior distribution of S∞, denoted by g(S∞,3|yt,M3), given the
observables yt.

Assume that f(yt|S∞,3,M1,M3) = f(yt|S∞,3,M2,M3) = f(yt|S∞,3,M3) and that
g(S∞,1|M1,M3) = f(S∞,1|M1), g(S∞,2|M2,M3) = f(S∞,2|M2). Intuitively, we require
that knowledge of the two models carries no information for yt (they are assumed to describe
S∞) and thatM3 has nothing to say about S∞, either absolutely, or relative toM1 and
M2.

Exercise 7.29 Show that if g(S∞,3| M3) is a constant and g(S∞,1| M1, M3) =
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f(S∞,1|M1), the posterior of modelM1, given yt and the empirical modelM3, is:

g(M1|yt,M3) ∝ g(M1|M3)

Z
f(S∞,1|M1)g(S∞,1|yt,M3)dS∞,1 (7.20)

so that a posterior odds ratio for the two models is

g(M1|yt,M3)

g(M2|yt,M3)
=
g(M1|M3)

g(M2|M3)

R
f(S∞,1|M1)g(S∞,1|yt,M3)dS∞,1R
f(S∞,2|M2)g(S∞,2|yt,M3)dS∞,2

(7.21)

Equations (7.20)-(7.21) show two important facts. First, the posterior distribution of a
model is proportional to the product of the density of the model for S∞, and its posterior
obtained using the empirical model M3 and the data yt, with a factor of proportionality
depending on the prior of the model. Second, the posterior odds of modelM1 relative to
modelM2 depend on the degree of overlap of f(S∞|.) with the posterior distribution ofS∞,
givenM3. Hence, modelM1 is preferable to model M2 if the overlap of the distribution
of S∞ produced byM1 with its posterior distribution computed usingM3 is higher than
the overlap of the distribution of S∞ produced by M2 with its posterior computed using
M3. The term

g(M1|M3)
g(M2|M3)

represents the prior odds of the two models, givenM3. Since yt
could be a vector, (7.21) extends the univariate confidence interval criteria used by De Jong,
Ingram and Whiteman (1996) and provides the statistical foundations for the approach of
Canova and De Nicolo (2003).

The computation of (7.21) is straightforward. f(S∞) can be obtained for eachMi, i =
1, 2. averaging S∞ over draws of θi, given a draw of ²t. g(S∞,1|y1t,M3) can be obtained
with the techniques of chapter 9.

Exercise 7.30 Continuing with the economy analyzed in exercise 7.28, consider two ver-
sions of the model: one where dividends follow a two-state Markov Chain and one where
dividends follow a three-state Markov Chain.
(i) Estimate a bivariate VAR for the US equity premium and the US real risk free rate.
Produce 100 draws from a Normal-Wishart posterior distribution for the VAR coefficients
(i.e. draw from a Wishart for Σ−1 and, conditional on this draw, draw VAR coefficients
from a normal with mean equal to the estimates and variance given by the draw of Σ).
(ii) Assume gy1 = 0.9873, gy2 = 1.0177, p1 = 0.2, p2 = 0.8, ρy = 0.8 and let ln( β

1−β ) ∼
N(3.476, 1.4182),ϕ ∼ N(0.4055, 1.30772). Also, assume that the growth rate of dividends in
the third state is ln( gy3

1−gy3
) ∼ N(0.036, 1.1852). Draw 100 values for the parameters from

these distributions and compute the equity premium and the risk free rate generated by the
two models for each draw.
(iii) Graphically examine the degree of overlap between the cloud of points generated by the
two models and the cloud of points generated by the VAR.
(iv) Compute the posterior odds ratio (7.21) for the two models assuming that g(M1|M3)

g(M2|M3)
= 1.

(v) Construct 68% contour probabilities from the posterior of S = (E(EPt), E(Rt)) given
the data. Provide a probabilistic assessment of the validity of the two models by counting the
number of replications generating equity premium and the risk free rate within this contour.
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It is important to note that the procedure is conditional on M3, the empirical model
bridging population moments and the data. Since VARs cam accurately represent economic
data, they can be used to create this link. The procedure, however, is general: one could use
more structural or more time series oriented specifications and could even employ ”poor”
models (as far as fit to the data is concerned), so long as the posterior of S∞ is easy to
compute.

7.5 Sensitivity of the measurement

Once the quality of a model is assessed and some confidence has been placed in its ap-
proximation to the data, the measurement or policy exercises one wants to perform can
then be undertaken. In the simplest setup, the outcome of an experiment is a number (see
e.g. Cooley and Hansen (1989)) and if one is interested in examining the sensitivity of the
results to small variations in the neighbor of calibrated values, local sensitivity analysis
can be undertaken informally, replicating the experiments for various parameter values or
formally, calculating the elasticity of measurement with respect to variations in some of the
components of θ (as in Pagan and Shannon (1985)).

When some uncertainty is allowed in the simulations, the outcome of the experiment
is the realization of a random variable. Hence, one may be interested in assessing where
the realization lies relative to the range of possible outcomes of the model. Some of the
techniques outlined in section 7.4 can be used for this purpose. For example, one could
construct simulated standard errors or confidence intervals, drawing vectors of parameters
(and/or the stochastic processes for the exogenous variables) from some distribution (a-
priori, empirical or sampling based). In this case the analysis is global in the sense that
we analyze the sensitivity of the measurement to perturbations of the parameters over the
entire range. Note also that in the approaches of Canova (1994), De Jong, Ingram and
Whiteman (1996), (2000) and Geweke (1999), the evaluation procedure automatically and
efficiently provides sensitivity analysis to global perturbations for the parameters within an
economic reasonable range.

Besides simulation techniques, there are two alternative methods one can use to assess
the sensitivity of the measurement. These approaches, initially suggested by Abdekhalem
and Dufour (1998) for CGE economies, can be easily adapted to DSGE models. The first
method is based on asymptotic expansions and formalizes Pagan and Shannon’s (1985) local
derivative approach.

Exercise 7.31 Suppose
√
T (θT − θ)→ N(0,Σθ) where det(Σθ) 6= 0.

(i) Show that if h(θ) is m × 1 vector of continuous and differentiable functions of θ,√
T (h(θT )− h(θ))→ N(0,Σh = H(θ)ΣθH(θ)0) where H(θ) = ∂h(θ)

∂θ0 .

(ii) Show that if rank(H(θ)) = m, T (h(θT ) − h(θ))0Σ−1h (h(θT ) − h(θ))
D→ χ2(m). Con-

clude that an asymptotic confidence set for h(θ) at the level of (1− %) is CIh(θ) = {h(θ) :
T (h(θT )− h(θ))0Σ−1h (h(θT )− h(θ)) ≤ χ2%(m)} and P [h(θ) ∈ CIh(θ)] = 1− %.
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Exercise 7.31 uses the asymptotic distribution of the parameters to construct confidence
intervals for h(θ). Two drawbacks of this procedure are clear: first, we need to have an
asymptotic distribution for the θ, which we typically do not have and, second, we need
a model where the number of endogenous variables is equal to the dimension of θ. The
second problem can be remedied by constructing rectangular (as opposed to ellipsoid) con-
fidence sets for any i = 1, . . . ,m. That is, whenever dim[h(θ)] < m CIi(θi) = {hi(θ) :
T (hi(θT )−hi(θ))

2

σii
≤ χ2(1)} where σii = diag(Σhii) and P [hi(θ) ∈ CIi(θi)] = 1 − %i. Note

that a simultaneous confidence set not smaller than 1 − % is obtained choosing %i so thatP
i %i = % (e.g. %i =

%
m).

The second method does not employ asymptotic properties and only assumes that a
set Θ with P (θ ∈ Θ) ≥ 1− % is available. This could be a prior or a posterior estimate if
θ is random or a classical (small sample) confidence interval if Θ is random. Let h(Θ) =
{h(θ0) ∈ Rm : for at least some θ0 ∈ Θ}. Then θ ∈ Θ implies that h(θ) ∈ h(Θ) and
P [h(θ) ∈ h(Θ)] ≥ P (θ ∈ Θ) = 1− %. When h is nonlinear, direct computation of P [h(θ)]
is difficult. As an alternative, let hi(Θ) = {hi(θ0) ∈ Rm : for at least some θ0 ∈ Θ}. Then
we can construct P [hi(θ) ∈ hi(Θ), i = 1, . . . ,m] ≥ 1 − % and P [hi(θ) ∈ hi(Θ)] ≥ 1 − %,
i = 1, . . . ,m. The first represents a simultaneous rectangular confidence set, the second
a marginal rectangular confidence set. The following result establishes that these sets are
intervals under general conditions.

Result 7.1 If h is continuous and Θ compact and connected, each hi(Θ) is compact and
connected and hi(Θ) = [hloi (Θ), h

up
i (Θ)], i = 1, 2, . . . where hloi > −∞, hupi < ∞. (A set

is connected if it is impossible to find two subsets O1 and O2 ∈ Rm meeting O3 such that
O3 ⊆ O1 ∪O2 and O3 ∩O1 ∩O2 = ∅.)

To find the upper and the lower limits of the interval one can use the following algorithm

Algorithm 7.5

1) Construct Θ = {θ0 ∈ Rm : (θ − θ0)0Σ−1θ (θ − θ0) ≤ C(θ)} where Σθ = var(θ) and C a
function of θ.

2) Find the minimum and the maximum of S(θ) = hi(θ0) +
λ
2 [(θ − θ0)0Σθ(θ − θ0)− C(θ)].

3) Set θup = argmax S(θ) and θlo = argmin S(θ).

It is easy to verify that the first order conditions in 2) are ∂hi
∂θ0

− λΣθ(θ − θ0) = 0

and (θ − θ0)0Σθ(θ − θ0) − C(θ) = 0. When Σθ is non singular, the θ
up and θlo that yield

hloi (Θ) and h
up
i (Θ) are θi = θ ± (

∂hi
∂θ0

0
Σ−05
θ

∂hi
∂θ0

C(θ) )−1Σ−1θ
∂hi
∂θ0
. Note that the algorithm can be

applied one dimension at the time, using rectangular intervals instead of an ellipsoid. Then

CI(θ) = {θ ∈ Rm; (θ−θ0)0Σ−1
θ (θ−θ0)

m ≤ F%} is a confidence set for θ which contains 95% of
the values. Also, we can knock out values which are incoherent with theory or do not give
solutions to the model since P (θ ∈ Θ) = P (θ ∈ Θ ∩ Θ0) ≥ 1 − θ, where Θ0 is the set of
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admissible values of θ. Finally, derivatives of the function hi can be computed numerically,
i.e. ∂h(θ)∂θ = h(θ+ι)−h(θ−ι)

2ι , ι > 0 and small.

Example 7.19 Consider the economy described in example 2.4 of chapter 2, where all
goods are cash goods and suppose we want to calculate the welfare costs of inflation. Coo-
ley and Hansen (1989) showed that, depending on the average growth rate of money M̄ ,
the compensating variation in consumption needed to bring back consumers to the optimum
varies between 0.107 to 7.59 percentage of GDP if the cash-in-advance binds for one quarter.
Suppose that M̄ is a random variable with mean 1.04 and standard deviation 0.01 (approx-
imately the growth rate of money for the US over the 1970-2000 period). If money growth
is normally distributed then, approximately, h(θ) ∼ N(0.21, 0.025). Hence a 68% confidence
interval for the percentage of consumption in terms of steady state output needed to bring
consumers back to their optimum is (0.185, 0.235).

Exercise 7.32 (Gourinchas and Jeanne) Consider a number of small open RBC economies.
Population is growing at the rate Popt = gpitPopt−1, where gpit is country specific. The

utility for country i is
P
τ β

τPopt+τ
c1−ϕ
t+τ

1−ϕ . Assume that yit = ζitK
1−η
it , where ζit is an AR(1)

with persistence common across countries (equal to ρζ) and that capital depreciates in each
country at the rate δ. Assume that limt→∞ gpit = gp independent of i. Consider two situa-
tions: financial autharky and complete financial integration. In the former no international

borrowing or lending occurs; in the latter countries can borrow at the rate Rt =
cϕt

cϕt−1β
,

where ct
ct−1

is the gross growth rate of consumption under financial integration. Evaluate
the gains of financial integration assuming β = 0.96,ϕ = 2.0, δ = 0.10, 1− η = 0.3 and the
steady state gross growth rate of consumption equals 1.012. Repeat the calculation assuming

1− η ∼ U[0.3, 0.5] (Hint: if x ∼ U(a1, a2), E(x) = 0.5(a1 + a2), var(x) = (a2−a1)2

12 ).

7.6 Savings, Investments and Tax cuts: an example

Suppose we are interested in evaluating the effects of cuts in the income tax rate on in-
vestments and consumption and suppose we choose to study the issue with a two country
RBC economy with complete markets. Baxter and Crucini (1993) claim that such a model
can account for several features of the data, including the high correlation of domestic sav-
ings and domestic investments in open economies, without imposing restrictions on capital
flows but use informal methods to reach this conclusion. Therefore, before undertaking
the measurement of interest, we evaluate the quality of the model’s approximation to the
data using the techniques presented in this chapter. We assume that there is a single con-
sumption good and labor is immobile. For each country i = 1, 2 preferences are given by:
E0
P∞
t=0

βt

1−ϕ [C
ϑ
it(1−Nit)(1−ϑ)]1−ϕ where Cit is private consumption, 1−Nit is leisure, β is

the discount factor, 1−ϑ(1−ϕ) the coefficient of relative risk aversion and ϑ the share of con-
sumption in utility. Goods are produced according to GDPit = ζit(Kit)

1−η(XitNit)η i = 1, 2
where Kt is the capital, η is the share of labor in GDP, and Xit = gnXit−1 ∀i where gn ≥ 1
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captures the deterministic labor-augmenting technological progress. We let:·
ln ζ1t
ln ζ2t

¸
=

·
ζ̄1
ζ̄2

¸
+

·
ρ1 ρ2
ρ2 ρ1

¸·
ln ζ1t−1
ln ζ2t−1

¸
+

·
²1t
²2t

¸

where ²t = [²1t ²2t]
0 ∼ N(0,

·
σ2² σ12
σ12 σ2²

¸
) and [ζ̄1, ζ̄2]

0 is a vector of constants. Here σ12

controls the contemporaneous and ρ2 the lagged spillover of the shocks. Capital goods are
accumulated according to Kit+1 = (1 − δi)Kit + b

2(
Kit+1

Kit
− 1)2Kit i = 1, 2 where b is a

parameter. Government expenditure is deterministic and financed with income taxes T yi
and lump sum transfers Tit, Gi = Tit + T

y
i GDPit. Finally, the resource constraint is:

Ψ(GDP1t−G1t−C1t−K1t+1+Kit)+(1−Ψ)(GDP2t−G2t−C2t−K2t+1+Kit) ≥ 0 (7.22)

where Ψ is the fraction of world population living in country 1. We first scale all variables
by the labor augmenting technological progress, e.g. gdpit =

GDPit
Xit

, cit =
Cit
Xit
, etc. and solve

the model log-linearizing the optimality conditions around the steady state. The weights
in the social planner problem are proportional to the number of individuals in each of the
countries. Actual saving are computed as Sat = GDPt−Ct−Gt. Data refers to the period
1970:1-1993:3 for US and for Europe; it is in real terms, seasonally adjusted and from OECD
Main Economic Indicators. The properties of actual saving and investment are computed
eliminating from the raw time series a linear time trend. The parameters of the model are
θ = [β, ϕ, ϑ, gn, δ, ρ1, ρ2, σ², σ12, Ψ, b, T

y] plus steady state hours.

Parameter Basic Empirical Density Subjective Density
Share of consumption ϑ 0.5 Uniform [0.3,0.7] Normal (0.5, 0.02)
Steady State hours (Nss) 0.20 Uniform[0.2, 0.35] Normal (0.2, 0.02)
Discount Factor (β) 0.9875 Truncated Normal [0.9855, 1.002] Normal(0.9875, 0.01)
Utility Power (ϕ) 2.00 Truncated χ2(2)[0, 10] Normal(2, 1)
Share of Labor in Output (η) 0.58 Uniform[0.50, 0.75] Normal(0.58, 0.05)
Growth rate (gn) 1.004 Normal(1.004, 0.001) 1.004
Depreciation Rate of Capital (δ) 0.025 Uniform[0.02, 0.03] Normal(0.025, 0.01)
Persistence of Disturbances (ρ1) 0.93 Normal(0.93, 0.02) Normal(0.93, 0.025)
Lagged Spillover (ρ2) 0.05 Normal(0.05, 0.03) Normal(0.05, 0.02)
Standard Deviation of
Technology Innovations (σ²) 0.00852 Truncated χ2(1) [0, 0.0202] Normal(0.00852, 0.004)
Contemporaneous Spillover (σ12) 0.40 Normal(0.35, 0.03) Normal(0.4, 0.02)
Country Size (Ψ) 0.50 Uniform[0.10, 0.50] 0.5
Adjustment cost to capital (b) 1.0 1.0 1.0
Tax Rate (T y) 0.0 0.0 0.0

Table 7.4: Parameters selection

The exogenous processes are the two productivity disturbances so that ²t = [ln ζ1t, ln ζ2t]
0.

We generate samples of 95 observations to match the actual data and the number of repli-
cations is 500. We evaluate the quality of the model using the diagonal elements of the 4×4
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spectral density matrix of the data (savings and investment for the two countries) and the
coherence between saving and investment in the two countries. Spectral density estimates
are computed smoothing periodogram ordinates with a flat window. In the benchmark
parametrization the θ vector is the same as in Baxter and Crucini (1993) (see the first col-
umn of table 7.4) except for σ² which we take from Backus, Kehoe and Kydland (1995), and
ϑ, which does not appear in their specification. We also allow for parameter uncertainty
using the approaches of Canova (1994) and of De Jong, Ingram and Whiteman (1996). In
the first case empirical based distributions are constructed using existing estimates or, when
there are none, choosing a-priori an interval and assuming a uniform distribution. In the
second case distributions are normal, with means equal to the calibrated parameters and
dispersions a-priori chosen. The distributions are displayed in the second and third columns
of table 7.4. A comparison of the model and the data at business cycle frequencies (3-8
years) is in table 7.5. The first two rows report the average spectral densities and coherences
at business cycle frequencies for actual and simulated data when parameters are fixed. The
next two rows report Watson’s average measure of fit at business cycle frequencies. The
first is obtained minimizing the variance of saving and investment in country 1 and the
second, minimizing the variance of savings and investment in country 2.

US Spectra Europe Spectra US Coherence Europe Coherence
Sa Inv Sa Inv Sa-Inv Sa-Inv

Actual data 0.75 0.88 0.68 0.49 85.41 93.14
Simulated data 0.36 0.18 0.35 0.18 94.04 93.00

Watson
Identification 1 0.02 0.05 0.20 0.23 0.04 0.13
Identification 2 0.24 0.21 0.05 0.04 0.20 0.15

Covering
Fixed parameters 46.46 8.63 55.71 43.57 98.99 92.91
Subjective density 35.30 23.40 32.89 37.00 98.17 90.34
Empirical density 19.63 18.60 21.11 20.20 94.71 95.69

Critical Value
Fixed parameters 90.80 99.89 82.16 93.91 15.60 49.04
Subjective density 71.80 89.90 66.00 76.60 19.80 51.89
Empirical density 62.50 79.70 73.30 74.60 33.46 29.60

Error
Fixed parameters 0.25 0.55 0.30 0.28 -9.17 0.37
Subjective density 0.19 0.56 0.29 0.28 -9.01 0.81
Normal density 0.13 0.58 0.42 0.35 -6.07 -2.86

Table 7.5: The Fit of the Model

National saving is highly correlated with domestic investment in both areas and the
average coherence at business cycle frequencies is higher for Europe than for the US. The
variability of both US series is higher and US investment is almost two times more volatile
than the European one. Because the model is symmetric, the variability of simulated sav-
ing and investment is similar in the two countries, but low relative to the data. However,
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consistent with the data the variability of national savings is higher than that for domestic
investment. Consistent with Baxter and Crucini’s claims, the model produces high national
saving and investment correlations at business cycle frequencies. In fact, the model co-
herences for the US are higher than those found in the actual data. Watson’s measures
suggest that, on average, the size of the error at business cycle frequencies is between 2%
and 5% of the spectral density of those variables whose variance is minimized and between
20% and 25% of the spectral density of other variables. Changes in the coherences across
identifications are somewhat relevant and the model fits them better when we minimize the
variance of US variables.

The next three rows (Covering) report how many times on average, at business cycle
frequencies, the diagonal elements of the spectral density matrix and the coherences of model
generated data lie within a 95% confidence band for the corresponding statistics of actual
data. Clearly, a number close to 95% indicates a “good” model performance. We compute
95% confidence bands for the actual data in two ways: using asymptotic theory and using a
version of the parametric bootstrap procedure of Diebold, Ohanian and Berkowitz (1998).
In this latter case, we run a four variable VAR with 6 lags and a constant, construct
replications for saving and investment for the two countries, bootstrapping the residuals
of the VAR model, estimate the spectral density matrix of the data for each replication
and extract 95% confidence bands after ordering the replications, frequency by frequency.
Replications for the time series generated by the model are constructed using Monte Carlo
techniques in three different ways: keeping the parameters fixed at the values displayed
in the first column of table 7.4 or randomizing them using draws from the distributions
listed in the second and third columns of table 7.4. Since results are similar we only report
probability coverings using an asymptotic 95% band. This third set of statistics confirms
that the model matches coherences better than volatilities at business cycle frequencies and
that the covering properties of the model do not improve when parameters uncertainty is
allowed.

Under the heading ”Critical Value” we report the percentile of the simulated distribution
of the spectral density matrix of saving and investment in the two countries where the value
of the spectral density matrix of actual data (taken here to be estimated without an error)
lies, on average, at business cycle frequencies. Values close to 0% (100%) show poor fit -
the actual spectral density matrix is in the tail of the distribution of the spectral density
matrix of simulated data - while values close to 50% should be considered good. Also here
we report a case with fixed parameters and two with random ones.

With fixed parameters the model generates average coherences which are much higher
than in US data but close to the median for Europe (actual values are in the 15th and 50th
percentile). With random parameters (and empirical based priors), the situation improves
for the US (actual coherence moves up to the 33rd percentile) but not for Europe. Also,
with fixed parameters the model generates a distribution for variability which is skewed to
the left and only partially overlaps a normal asymptotic range of variabilities for the data.
Parameter uncertainty, by tilting and stretching the shape of the simulated distribution,
ameliorates the situation.
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Finally we computed the distributional properties of the approximation error, i.e. we
compute the distribution of the error needed to match the spectral density matrix of the
actual data, given the model’s simulated spectral density matrix. To do this we draw at
each replication, parameters and innovations from the posterior distribution of the VAR
representation of the actual data, construct time series of interest and estimate the spectral
density matrix of the four series. At each replication, we also draw parameters and inno-
vations from the distributions presented in table 7.4, construct the spectral density matrix
of simulated data and compute Slv(ω) = Sly(ω) − Slx(ω) at each l = 1, . . . L. If the model
replicates the DGP, the distribution for this error would be degenerate at each frequency.
Otherwise, features of this distribution (median value, skewness, kurthosis, etc.) may help
to pin point what is missing from the model. The last three rows in table 7.5 (”Error”)
present the median (across replications) of the average error at business cycle frequencies
for the six statistics. The first row reports results when parameters are fixed and the next
two when parameters are randomized. The results are similar in the three cases: the model
fails to generate enough variability at business cycle frequencies for US investments while
for the other three variables the error is smaller. The results for coherences depend on
the country. For the US, the model generates systematically higher coherences (negative
spectral errors) while for Europe the opposite is true.
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Figure 7.4: Effects of tax cuts

In conclusion, in agreement with Baxter and Crucini (1993), the model generates high
coherence between national saving and investment at business cycle frequencies. Its mag-
nitude is similar to the one observed in European data, but uniformly higher than the
one observed in US data, regardless of whether parameters are fixed or random. However,
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the model has hard time to account for the variability of saving and investment in both
countries at business cycle frequencies.

To measure the effects of tax cuts we perform two simulations: one with a tax rate of 0.20
and one with a tax rate of 0.0, using the parameters listed in the first column of table 7.4
and ask how large is the difference in investment responses along the adjustment path when
a positive productivity shock hits the domestic economy. Figure 7.4 reports graphically this
difference in percentage terms: investment response is significantly larger without taxes in
the first few periods but the gains dissipate reasonably fast. The utility differences induced
by these two paths are also significant, but level off after about 5 periods. In fact, the
compensating variation in consumption needed to restore the utility level obtained with no
taxes is 0.11 each period, about 14% of steady state consumption. The magnitude of this
number is robust. For example, the lower bound to the level of compensating variations
obtained for ϑ ∈ [0.3, 0.7] and ϕ ∈ [1, 4] is 0.09 each period.
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Chapter 8: Dynamic Macro Panels

Panels of macroeconomic time series are now used in many fields. For example, in studying
the transmission of shocks, one would like to have a cross country point of view. Similarly,
when examining convergence of income per capita of nations or regions, one would like to
account for both cross sectional and time series interactions.

The models we consider in this chapter borrow from the micro panel literature in the
sense that the specifications do not allow for lagged interdependencies across units. This is
an important shortcoming: since interdependencies are the results of world market integra-
tion they can hardly be neglected in applied macro work. In chapter 10 we study how to
introduce them in dynamic panel models using a Bayesian point of view. The setup we use
here is different from the standard treatments of panel data since models are explicitly dy-
namic, either because of the presence of lagged dependent variables or of lags of exogenous
variables. For a comprehensive account of existing approaches when models are static see
Hsiao (1989), Baltagi (1995) or Hayashi (2001).

The econometric theory developed in the context of micro panels is somewhat inappro-
priate for macro applications. Estimators are typically constructed for samples which have
a small time series (T) and large cross section (n). Therefore the properties of estimators
are derived exploiting asymptotics in the cross section. In macro panels, typically, neither n
nor T are large and, most of the times, T > n. This should be kept in mind when deciding
the estimator to use and the inference one is allowed to make. Another crucial problem in
macro data is dynamic heterogeneity. In micro panels, even when the model is dynamic,
no slope heterogeneity is allowed for and unit specific characteristics are mostly captured
with a time invariant fixed or random effect. In macro panels this restriction is, in general,
inappropriate: heterogeneous dynamic reflects policies or regulations and one wants to be
able to evaluate differences, if they emerge. Note also that for most of this chapter, we
consider models which are stationary or display time invariant structures. We alter this
setup in chapter 10 where panel VAR models with time varying coefficients are examined.

We start in the next section with an example to motivate our interest in dynamic panel
analysis. In section 2 we consider panel (VAR) models with no slope heterogeneities but
with unit specific factors; we describe how to estimate them using instrumental variables;
illustrate the problems that traditional fixed and random effect estimators encounter in
this specification; examine how to construct estimates of the unit specific (time invariant)
effect and, finally, how to test interesting hypotheses. In section 3 we introduce slope
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heterogeneities, describe a series of estimators for this type of models, study their properties
and propose a test to detect slope heterogeneities. In section 4 we describe approaches to
pooling and examine their pros and cons. In many situations single unit (time series)
estimates can be improved upon pooling the information coming from the cross section,
even when no interdependencies are allowed for. Finally, in the last section we use some
of the methods presented in this chapter to examine whether money is superneutral in the
long run long in the cross section of G-7 countries.

8.1 From economic theory to dynamic panel data

To motivate our use of dynamic panels in macroeconomic analysis we consider the problem
of modelling growth in open economies. Barro, Mankiw and Sala (1995) presented an
extension of the standard Solow model which has interesting insights from a theoretical
point of view and important empirical implications.

We have a set of countries, indexed by i, which are small, in the sense that they take
the world interest rate as given, and accumulate two types of capital, human and physical.

The representative agent in each country i maximizes
P
t β

t c
1−ϕ
it
1−ϕ subject to the constraint

cit+Kit+1+hkit+1+sait+1 ≤ ζηit Kηk
it hk

ηhk
it +(1− δk)Kit+(1−δhk)hkit+(1+rt)sait (8.1)

where Kit is physical capital, hkit is human capital and sait are lending to (borrowing from)
the rest of the world; ζt represents total factor productivity and its efficiency, measured by
ηi, may differ across i. We assume that each country i has limited borrowing capacity. In
particular, −sait ≤ Kit while hkit cannot be used as collateral in international borrowing.
When the constraint is binding, capital and borrowing are perfect substitutes in the portfolio
of agents and 1 + rt = (1− δk) + ηk GDPitKit

, which implies that

Kit = [(1 + rt)− (1− δk)]−1ηkGDPit (8.2)

Using (8.2) in the production function we have GDPit = ζ
†
ithk

η1
it where η1 =

ηhk
1−ηk and

ζ†it = [
ζ
ηi
t η

ηk
k

[(1+rt)−(1−δk)]ηk ]
1/1−ηk . Maximizing utility with respect to (cit, hkit) and using (8.2)

in the resource constraint yields the following two equilibrium conditions

hkit+1 = (1− ηk)ζ†ithkη1
it + (1− δhk)hkit − cit (8.3)

c−ϕit = βEt[c
−ϕ
it+1(ηhkζ

†
it+1hk

η1−1
it+1 + (1− δhk)] (8.4)

Exercise 8.1 Verify that in the steady states cssi = (1 − etak)ζ†i (hkss)η − δkhhkssi and

hkssi = [
1−β(1−δkh)
βηhkζ

†
i

](1−ηhk)/(ηhk−1+ηk) and are different across i if ηi 6= ηi0 , i 6= i0.
ii) Verify that log linearizing (8.3)-(8.4) and setting ψi1 = (1−ηk)η1ζ†i (GDPihki

)ss+(1−δhk),
ψi2 =

(1−ηk)(η1−1)ζ†i (hkssi )η1−1

(1−ηk)ζ†i (hkssi )η1−1+(1−δhk)
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ψi3 =
(1−ηk)ζ†i (hkssi )η1−1

(1−ηk)ζ†i (hkssi )η1−1+(1−δhk)
we have (in percentage deviations from the steady states)

ĥkit+1 = ψi1ĥkit + (1− ηk)(GDPi
hki

)ssζ̂†it −
cssi
hkssi

ĉit (8.5)

−ϕĉit = −ϕEtĉit+1 + ψi2Etĥkit+1 + ψi3Etζ̂†it+1 (8.6)

Letting yit = [cit, hkit] and adding an expectational error to equation (8.6) to capture

differences between actual and expected values of ĉit+1, ζ̂
†
it+1, ĥkit+1 we can rewrite (8.5)-

(8.6) as a vector of first order difference equations for each i of the form Ai0ŷit+1 = Ai1ŷit+
Ai2êit where êit is a function of ζ̂†it and of the expectational error v̂it. Letting ȳi, ēi be the
steady state values of yi and ei and adding them back we have

Ai0yit+1 = Ai1yit + %i + ²it (8.7)

where %i = (Ai0 −Ai1 −Ai2)ȳi, ²it = Ai2ȳi
ēi
ei.

Equation (8.7) is a bivariate VAR(1) model for each i, with unit specific fixed effects
and heterogeneous dynamics. The model of this section implies, in general, that whenever
the steady states are different across units, the dynamics leading to the steady state will
also be different. Therefore, models of this type deliver the framework examined in section
3. There are two special cases of equation (8.7) which can be of interest. The first obtains
when dynamics are homogenous and there are unit specific fixed effects. In the model
we have used, it is clear that this is possible if and only if β is different across units (it
is the only parameter which appears in the steady state but not in the dynamics) and if
ηi = η0i, i.e. Total factor Productivity (TFP) has the same efficiency across units. Such
a model will be dealt with in section 2. A second special case of interest emerges when
fixed effects are absent and the dynamics are heterogeneous. This is possible when Etζ

†
it+1

differs across i (e.g. because expectations are different). Finally, it is worth noting that,
by construction, there is no interaction across units. This is entirely due to the small open
economy assumption. For example, if a world budget constraint is added to the problem
important interactions across units would emerge. Hence, the panel VAR models with
interdependencies considered in chapter 10 can be originated, e.g., from a two country
model with an international budget constraint for borrowing and lending.

Exercise 8.2 Consider a basic RBC model and suppose that government expenditure pro-
vides utility to the agents and that private and public consumption are substitutes in the util-
ity function. Assume that the instantaneous utility function for country i is u(cit,Git,Nit) =
(cit + ϑgGit)

ϑ(1−Nit)1−ϑ, that the budget constraint is cit +Kit+1 +Git = ζηit K1−η
it Nη

it +
(1− δk)Kit, that Git = Gt+ aigζt and that expenditure is financed by lump sum taxation on
a period-by-period basis, where Gt is an iid stochastic process and aig is a parameter which
regulates the response of country i expenditure to the state of the home technology.
i) Write down the Euler equation for the problem for each i and log linearize it.
ii) Under what conditions would the vector of log-linearized Euler equations produce a panel
with homogeneous dynamics and country specific intercept or a panel with heterogeneous
dynamics and no fixed effects?
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8.2 Panels with Homogeneous dynamics

The model we consider in this section has the form

yit = A0t +

q1X
j=1

A1jtyit−j +
q2X
j=1

A2jtxit−j +A3t%i + eit (8.8)

where eit is a martingale difference process with covariance matrix Σi, yit is a m1×1 vector
for each i = 1, . . . , n, t = 1, . . . , T , xit is a m2 × 1 vector of exogenous variables, %i is the
(unobservable) unit specific effect and for each j, A1jt is a m1 × m1 matrix and A2jt a
m1 ×m2 matrix.

Equation (8.8) is general: lagged dependent and exogenous variables appear on the right
hand side and, in principle, time varying coefficients are allowed for. Furthermore, hetero-
geneities are possible both in the level and in the variance. One important restriction, which
will be relaxed later on, is that the dynamics are identical across units. This restriction
allows us to construct estimators of the parameters using cross sectional information at
each t and permits the use of standard asymptotic theory when testing hypotheses, even
when yit is non-stationary. We also assume that xit includes, or may be composed entirely
of, variables which are common across units. Notice that we have modelled %i as a fixed
effect. While in micro panels one has the choice between fixed and random effects, in macro
data a fixed effect specification is preferable for two reasons. First, if %i captures omitted
variables, it is likely to be correlated with the regressors (a possibility typically excluded
by a random effect specification). Second, a macro panel in general contains all the units
of interest and thus is less likely to be a random sample from a larger population (e.g. an
OECD panel typically includes all the OECD countries). Note that since et is a martingale
difference E(xit−τeit) = E(yit−τeit) = 0 for all τ < 0 and E(%ieit) = 0, for all i.

Equation (8.8) is not estimable since %i is unobservable. In a static model, one eliminates
this fixed effect by subtracting averages from (8.8) and estimating the model in deviations
from the means with OLS. In the next exercise we ask the reader to verify that estimates
obtained from the transformed model are consistent in a setup where %i is unobservable and
may be correlated with other regressors.

Exercise 8.3 Consider the model yit = xitA2 + %i + eit where i = 1, . . . , n, t = 1, . . . , T ,
E[eit|xit] = 0, E[e2it|xt] = σ2e , E[eit, ei0τ ] = 0 ∀i 6= i0, τ 6= t; E[%i|xit] 6= 0 and E[eit|%i] = 0.
(i) Show that OLS estimates of the parameters are inconsistent.
(ii) Show that consistent estimates can be obtained taking deviations from individual means,
i.e. running the OLS regression yit − ȳi = (xit − x̄i)A2 + (eit − ēi), ȳi = 1

T

P
t yit; x̄i =

1
T

P
t xit; ēi =

1
T

P
t eit. Show that coefficients which are constant for each i, in every t

cannot be estimated.
(iii) Assume that E[ei,t|xi,t] 6= 0. Write down a 2SLS estimator for the specifications in (i)
and (ii) assuming that E[ei,t|zi,t] = 0 where zi,t is a set of instruments. Show that a 2SLS
estimator is consistent in the original model but not necessarily so in the transformed one
(Hint: E[ēi|zit] 6= 0 even if E[eit|zi,t] = 0).
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Exercise 8.3 shows a peculiar result: OLS in the transformed model is consistent but
2SLS, in general, is not. To insure consistency of a 2SLS estimator we need to strengthen
the orthogonality condition and impose that E((ei,τ − ēi)|zi,t) = 0 ∀t, τ .

The case of ρi correlated with regressors is common in macroeconomics. For example,
suppose one is interested in studying the effects of money on inflation across countries.
Clearly, the path of money supply may be related to other country specific characteristics
%i, (for example, the stance of fiscal policy) therefore making potential regressors correlated
with the individual effect.

Example 8.1 (Growth and volatility) Theoretically, it is unclear what the sign of the re-
lationship between growth and volatility should be: volatility could be a manifestation of
the adoption of new technologies that induce cost restructuring and this could provide a
positive link between the two. The relationship could also be negative as volatility can re-
sult in wasted human capital or deter investment. Letting the growth rate of value added
be ∆GDPit, the volatility of the growth rate of value added be x1it and the growth rate of
other regressors be x2t, then a typical model studied in the empirical literature is ∆GDPit =
A0 + x1itA1 + x2tA2+ %i + eit. Since %i are unobservable, they are typically pooled together
with eit into an error term. Note that OLS cannot be used to estimate A1 and A2 if, e.g., %i
captures political factors, since in units were instability is strong, volatility may be high and
growth low so the residuals are negatively correlated with the regressors. Alternatively, if i
refers to sectors and %i captures industry specific technological breakthroughs, the residuals
will be positively correlated with the regressors. Imbs (2002) presents estimates of the pa-
rameters obtained using deviations from time means and the UNIDO data base, when x2t is
either omitted or when it is not, it measures competitiveness. The data refers to 15 OECD
countries, covers the sample 1970-1992 and has a maximum of 28 sectors for each country.
Estimates are obtained when i represents a sector-country combination.

Specification A1 A2 A0 R2

1 4.893 0.121 0.02
(2.63) (3.68)

2 5.007 -0.059 0.133 0.02
(2.66) (-0.39) (2.94)

Table 8.1: Growth and Volatility

The relationship between volatility and growth is statistically positive and economically
significant. For example, in the first regression a one percent increase in volatility increases
the average yearly sectorial output growth by 0.5 percent. Note also that comparative advan-
tage for the sector-country pairs is insignificant once fixed effects are taken into account.
Finally, the explanatory power of both regressions is small: volatility has only a marginal
explanatory power for value added growth.

Exercise 8.4 Consider the model yit = ȳ+%i+%t+αxit+eit, i = 1, . . . , n where %t is a time
effect and suppose

P
i %i = 0,

P
t %t = 0. Suppose you estimate this model using a dummy
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variable for each i and a time trend. Show that OLS estimates of (%i,α) are consistent if T
is large. Show that estimates of %i are inconsistent for large n. Show that, for large n, is it
better to assume that %i is a random variables with mean % and variance σ2%.

8.2.1 Pitfalls of standard methods

When lagged dependent variables are present and the time series dimension of the panel is
small or fixed, taking deviations from the mean does not produce consistent estimates.

Example 8.2 We illustrate the problems existing in this case using a version of equation
(8.8) where m1 = 1, A0t = xit = 0,∀t, A1jt = A1j and A1j = 0, j ≥ 2 and A3t = 1, ∀t.
Hence (8.8) reduces to an AR(1) model with unit specific fixed effects. We assume yio

fixed and var(eit) = σ
2. A pooled estimator for A1 is A1p =

Pn
i=1

PT
t=1(yit−ȳi)(yit−1−ȳi,−1)Pn

i=1

PT
t=1(yit−1−ȳi,−1)2

=

A1 +
Pn
i=1

PT
t=1(eit−ēi)(yit−1−ȳi,−1)/nTPn

i=1

PT
t=1(yit−1−ȳi,−1)2/nT

where ȳi,−1 is the mean of yit−1. Repeatedly substitut-

ing into the model and summing over t we have
P
t yit−1 =

1−AT1
1−A1

yio +
(T−1)−TA1+AT1

(1−A1)2
%i +PT−2

j=0
1−AT−1−j

1
1−A1

ei,1+j. Since E(%ieit) = 0

plimn→∞
1

nT

X
i

X
t

(eit − ēi)(yit−1 − ȳi,−1) = −plimn→∞ 1
n

X
i

ȳi,−1ēi

= −σ
2
e

T 2
(T − 1)− TA1 +AT1

(1−A1)2 (8.9)

plimn→∞
X
i

X
t

(yit−1− ȳi,−1)2 = σ2e
1−A21

(1− 1

T
− 2A1
(1−A1)2

(T − 1)− TA1 +AT1
T 2

) (8.10)

For consistency we need that (8.9) converges to zero and that (8.10) converges to a fixed

number. As T →∞, (8.9) does indeed go to zero and (8.10) goes to σ2
e

1−A2
1
. However if T is

fixed, the estimator is inconsistent, even when n→∞.
Exercise 8.5 Show that the asymptotic bias of A1p in the model of example 8.2 is plimn→∞
(A1p−A1) = −1+A1

T−1 (1− 1
T
1−AT1
1−A1

)[1− 2A1
(1−A1)(T−1)(1−

1−AT1
T (1−A1)

)]−1. Show that for T large,

p limn→∞(A1p −A1) ≈ −(1+A1)
T−1 .

Intuitively, the bias appears because to eliminate %i from the model we have introduced
a correlation of order 1/T between the explanatory variable and the residual of the model
(yit − ȳ) = A1(yit−1 − ȳi,−1) + (eit − ēi). In fact, ȳi,−1 is correlated with (eit − ēi) even
if eit are serially uncorrelated since ēi contains eit−1 which is correlated with yit−1. When
T is large the right hand side variables are uncorrelated with the errors, but for T small,
estimates of the mean effects are biased and this bias is transmitted to the estimates of A1.

Table 8.2 shows that if A1 > 0, the bias is generally negative and not negligible. For
highly persistent processes, like those typically observed in macro time series, the bias is
about 15 percent when T=20 and still 6 percent when T=40.
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A1 = 0.2 A1 = 0.5 A1 = 0.8 A1 = 0.95

T=10 -0.1226 -0.1622 -0.2181 -0.2574
T=20 -0.0607 -0.0785 -0.1044 -0.1300
T=30 -0.0403 -0.0516 -0.0672 -0.0853
T=40 -0.0302 -0.0384 -0.0492 -0.0629

Table 8.2: Bias in the AR(1) coefficient

Example 8.3 (Production function estimation) One typical case where problems with lagged
dependent variables exist is in estimating production functions across sectors. Let GDPit =
NηN
it K

ηk
it ζit where, in principle, ηN + ηk 6= 1 and where the technological progress ζit is

parametrized as ln ζit = ζ̄i + A1 ln ζit−1 + eit. Taking logs of the production function and
quasi-differencing, we have lnGDPit = A1 lnGDPit−1+ηN(lnNit−A1 lnNit−1)+ηk(lnKit−
A1 lnKit−1)+ζ̄i+eit. Hence, unless ζt is iid, estimation of ηk, ηN using production functions
in deviation from the mean will produce biased estimates, even when n is large.

The problem described in example 8.2 is generic and it is present even when cross
sectional techniques (as opposed to pooled techniques) are used to estimate the parameters.

Exercise 8.6 (Nickell) Consider the cross sectional OLS estimator A1t obtained using only

the t-th cross section A1t =
Pn
i=1(yit−1−ȳi,−1)(yit−ȳi)Pn

i=1(yit−1−ȳi,−1)2
where ȳi,−1 is the mean of yit−1.

(i) Show that p limn→∞(A1t−A1) = −1+A1
T−1 [1−At−11 −AT−t1 +

(1−AT1 )
T (1−A1)

][1− 2A1
(T−1)(1−A1)

(1−
At−11 −AT−t1 +

(1−AT1 )
T (1−A1)

)]−1 (this is the same as the bias obtained in exercise 8.5).
(ii) Argue that the inconsistency of A1t is of order (1/T ); that its bias depends on which
cross section t is used and that it is smaller at the end of the sample.

The standard alternative to demeaning the variables is to use a random effect estimator.
Although we have argued that such an approach is conceptually problematic for macro data,
we show that treating %i as random does not solve the inconsistency problem in models with
lagged dependent variables.

Example 8.4 Suppose we move %i into the error term and construct a pooled estimator

Ã1p = A1 +
Pn
i=1

PT
t=1(eit+%i)yit−1/nTPn

i=1

PT
t=1(yit−1)2/nT

. The numerator of this expression can be written as

1
T
1−AT1
1−A1

cov(yio, %i)+
1
T

σ2
%

(1−A1)2
((T −1)−TA1+AT1 ) and the denominator is 1−A2T

1
T (1−A1)2

P
y2
i0

n +
σ2
%

(1−A1)2
1
T (T − 2

1−AT1
1−A1

+
1−A2T

1

1−A2
1
) + 2

T (1−A1)
(
1−AT1
1−A1

− 1−A2T
1

1−A2
1
)cov(%i, yi0) +

1
T

σ2
e

(1−A2
1)

2 [(T − 1) −
TA21 − A2T1 ]. If yio is fixed the covariance term drops out of the expression (otherwise, it
would be positive (any guess why?)), but the numerator is different from zero even when
T →∞ and is larger, the larger is the variance of the unit specific effects σ2%.
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Exercise 8.7 Consider the model yit = A1yit−1+A2xit+%i+eit and let ỹit = yit−ȳi, ỹit−1 =
yit−1 − ȳi,−1, x̃it = xit − x̄i, ẽit = eit − ēi.
(i) Show that, using a pooled OLS estimator on the demeaned model, we obtain

A1p = A1 + (ỹ
0
−1(I − x̃(x̃0x̃)−1x̃0)ỹ−1)−1ỹ0−1(I − x̃(x̃0x̃)−1x̃0)ẽ

A2p = A2 − (x̃0x̃)−1x̃0ỹ−1(A1p −A1) + (x̃0x̃)−1x̃0ẽ
(ii) Show that

p lim
n→∞(A1p −A1) = (p lim

n→∞
1

nT
ỹ0−1(I − x̃(x̃0x̃)−1x̃0)ỹ−1)−1(p limn→∞

1

nT
ỹ0−1ẽ)

p lim
n→∞(A2p −A2) = −[p lim

n→∞(x̃
0x̃)−1x̃0ỹ−1]p lim

n→∞(A1p −A1)

Exercise 8.7 shows that the bias in A2p depends on the bias in A1p and the relationship
between the exogenous variables x̃ and the lagged endogenous variables ỹ−1, both in devi-
ations from their mean. If E(xy−1) > 0 the bias in A2p is positive (recall that the bias in
A1p is negative).

It is important to stress that disregarding dynamic effects does not help. In fact, if
the true model has lagged dynamics and a static model is estimated, the error term will
be correlated with the regressors and this correlation will remain even after variables are
demeaned.

Exercise 8.8 Suppose yit = ρi+A1yit−1+A2xt+eit and one estimates yit = ρi+A2xit+vit
where vit = eit + A1yit−1. Show that vit is correlated with the regressor if xit is serially
correlated. Show that demeaning the estimated model does not eliminate this correlation.

One implication of exercise 8.8 is clear: running a static demeaned regression and cor-
recting for serial correlation is unlikely to produce consistent estimates of the parameters
when the model for each unit is dynamic - the standard case with macroeconomic time
series.

8.2.2 The Correct approach

To deal with unobservable variables when lagged dependent variables are present define
ξt =

A3t
A3t−1

and quasi-difference (8.8) to get,

yit = A
+
0t +

q1+1X
j=1

A+1jtyit−j +
q2+1X
j=1

A+2jtxt−j + e
+
it (8.11)

where A+0t = A0t − ξtA0t−1, A+11t = κ1 + A11t; A
+
1jt = A1jt − ξtA1,j−1,t−1; A+1q1+1t

=

−ξtAq1,t−1, A
+
21t = A21t; A

+
2jt = A2jt−ξtA2j−1,t−1; A+2q2+1t

= −ξtA2q2t−1, e
+
it = eit−ξteit−1.

If A3t = A3, ∀t, (8.11) is simply the differenced version of (8.8) and the approach to eliminate
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the unobserved fixed effect corresponds to the one suggested by Anderson and Hsiao (1982).
Note that in (8.11) the orthogonality conditions are E(xt−τe+it) = E(yit−τe+it) = 0 for all
i, τ > 0. The Anderson and Hsiao estimator, which was designed for the AR(1) version of
this model with no xit, uses yit−2 or (yit−2 − yit−3) as instruments to estimate A+j1. Note
that, because of differencing, yit−1 is not a valid instrument - it is correlated with the error
term.

Exercise 8.9 Suppose q1 = 1, q2 = 0, A0t = A0, A1t = A1, A2t = 0,∀t, A3t = A3 = 1.
Display a IV estimator for the parameters and describe the instruments you would use.
Give conditions that insure consistency when n→∞, when T →∞ or both.

Since the orthogonality conditions are valid for any τ > 0, there are many instruments
one could use; the Anderson and Hsiao estimator uses one particular set of instruments
but, as we have seen in chapter 5, we can improve by appropriately combining all available
information. In the case of constant coefficients the derivation of a GMM-style estimator is
a straightforward application of the ideas described in chapter 5.

Example 8.5 (Arellano and Bond) Let∆yi = [∆yi2, . . . ,∆yit], ziτ = [1, yiτ−2, . . . , yi1, xτ−2,
. . . , x1] zi = diag[zi1, . . . , zit] Z = [z01, . . . , z0n]0; Xi = [∆yit−2, . . . ,∆yi1,∆xt−1, . . . ,∆x1],
X = diag [X1, . . . , Xn], ∆y = diag [∆y1, . . . ,∆yn]. Then a GMM-style estimator for
α = [A11, . . . A1q1, A21, . . . , A2q2]

0 is αGMM = (X 0ZWZ 0X)−1(X 0ZWZ 0∆y) where W is a
weighting matrix. As in chapter 5, the optimal W depends on the covariance of the instru-
ments. An estimator for W is Ŵ = ( 1n

P
iZiΩZi)

−1 where Ω is a (T − 2)× (T − 2) matrix
with 2 on the main diagonal, -1 on the first subdiagonals and zero elsewhere.

When the coefficients are time varying, little more work is needed. We start by giving
the conditions for identification in the original and the transformed model.

Exercise 8.10 Show that the order condition for identification of the parameters of the
transformed model is T > (max(q1, q2))+3. Show that the order condition for identification
of the parameters of the original model is T > 3 ∗max(q1, q2) + 2.

The next exercise adapts the results of exercise 8.10 to two important special cases.

Exercise 8.11 Show that if ξt = 1, the order condition for identification of the original
parameters is T > 2 ∗ max(q1, q2) + 2. Show that if the original parameters are time
invariant, the order condition for the identification is T > max(q1, q2) + 2.

Intuitively, more data points are needed to be able to pin down the parameters when
the model is nonstationary.

Example 8.6 Suppose yit = A1yit−1 + %i + eit − φeit−1 and suppose T = 4. Then the
model in first difference for each t is ∆yi4 = A1∆yi3+ e4−φe3; ∆yi3 = A1∆yi2+ e3−φe2;
∆yi2 = A1∆yi1+e2−φe1. Since q = 1, T ≥ q+3 = 4 and since there are (T−q−2)(T−q−1)2 = 1
restrictions, to estimate the AR coefficient we have to use yi1 as an instrument for yi3 when
T = 4 is considered. The equations for T = 3 and T = 2 are not estimable.
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The time series of a macro panel are typically of uneven quality due to differences in
recorded practices or statistical procedures. Therefore, it is important to understand what
happens when (yit, xt) are measured with error. Suppose for this purpose that x

c
t = xt+ ²

x
t ,

ycit = yit + ²
y
it where E(eit²

y
it) = E(eit²

x
t ) = 0 and that the measurement errors are iid and

uncorrelated with the true value of the series.

Exercise 8.12 Consider the version of (8.8) where A1jt = A1j, A2jt = A2j, A0t = 0, ∀t
but where both yit and xt are measured with error. Show that the system has the form
∆yit =

P
j A1j∆yit−1 +

P
j A2j∆xt + vit where ∆ is the differencing operator and vit =

∆eit +∆²
y
it +

P
j A1j∆²

y
it−j +

P
j A2j∆²

x
t−j. Let zit = [1, ycit−q−2, . . . , yci1, xcit−q−2, . . . , xci1]

where q = max{q1, q2}. Show that zit is uncorrelated with vit. Show that the order condition
for identification is T ≥ 2q + 2.

Since the presence of (classical) measurement error introduces a MA structure in the
error term, efficiency can be improved if this structure is taken into account in the estimation
process. Consistency is not affected.

To estimate time varying parameters let q = max{q1, q2}, yt = [yit, . . . ynt]
0, xt =

[yit, . . . ynt]
0, Et = [eit, . . . , ent]0,Xt = [1, yt−1, . . . , yt−q1−1, xt−1, . . . , xt−q2−1], αt = [A

+
0t, A

+
11t,

. . . , A+2,q1+1,t
, A+21t, . . . , A

+
2,q2+1,t

]0. Then (8.8) can be written in simultaneous equation for-
mat as yt = Xtαt +Et and stacking the T − q − 2 observations we have

y = Xα+E (8.12)

Let zt = [1, yt−2, . . . , y1, xt−2, . . . , x1]. Clearly zt changes with t. Let z = diag[zq+3, . . . , zt].
For the instruments to be valid we need plimn→∞Z0E

n = 0 (this is a (T − q− 2)n× 1 vector
of conditions). Then using the logic of GMM, α can be estimated with a two-step approach.

Exercise 8.13 Describe a two step approach to estimate α. Show that a 2SLS estimator in
this case is given by α2SLS = [X

0Z 0W−1Z0X]−1X 0Z 0W−1Z 0y whereWτt =
Pn
i=1 eiteiτZ

0
itZiτ ,

and eit is the (i, t) element of E. Is α2SLS efficient?

As usual, consistent estimates of eit can be used in the formula for Wτt, e.g. eit,(2sls) =
y −Xα2sls.

It is worthwhile to examine in detail GMM estimation when there are no exogenous
variables and the dynamics are restricted to be AR(1) since several empirical applications
(convergence exercises, production function estimation, growth accounting) fit into this
framework, if the left hand side variables are appropriately scaled.

Example 8.7 Consider the model yit = A1yit−1 + %i + eit where |A1| < 1 and E(eit) =
E(eiteiτ ) = 0 ∀t 6= τ , T fixed and n large. Suppose we wish to estimate A1 absent any
distributional information on %i and eit. Given the assumptions made, yit−2 is a valid
instrument for the estimation of A1 in the model in first differences. For T ≥ 3, there
are (T − 2)(T − 1)/2 linear moment restrictions of the type E[(eit − eit−1)yit−τ ] = 0 where
t = 3, . . . T ; τ = 2, . . . t− 1. For example, if T=4, there are three orthogonality restrictions
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E[(ei4 − ei3)yi2] = 0, E[(ei4 − ei3)yi1] = 0 and E[(ei3 − ei2)yi1] = 0. Rewrite the restriction
as E[z0i∆eit] = 0 where zi is a (T − 2)× (T − 2)(T − 1)/2 block diagonal matrix whose τ-th
block is (yit, . . . , yiτ ) (i.e. zi = diag{yi1, . . . yiτ}, τ = 1, . . . T − 2).

A GMM estimator of A1 is based on the sample counterpart of E(z
0
iDeltaeit], i.e.

1
n

Pn
i=1 z

0
i(ei − ei,−1) = n−1Z0∆e where ∆e = e − e−1 = ((e − e−1)1, . . . , (e − e−1)n)0 is

a n(T − 2)× 1 vector and Z = (Z1, . . . , Zn) is a n(T − 2)× (T − 2)(T − 1)/2 matrix. Then:

A1,GMM = argminA1(∆E
0Z)Wn(Z

0∆E) =
∆y0−1ZWnZ

0∆y
∆y0−1ZWnZ0∆y−1

(8.13)

where y−1 indicates lagged variables, ∆y = y − y−1 and Wn is a weighting matrix.

Exercise 8.14 (i) Using the appropriate central limit theorem argue that Σ−0.5n n−0.5Z0∆E →
N(0, 1) where Σn is the average(over the cross section) covariance matrix of z0i∆ei.
(ii) Show that with the assumptions made, Σn can be replaced by Σ̂n = n−1

Pn
i=1(z

0
i
c∆eic∆eizi)

where c∆ei = ∆yi − Â1∆yi,−1 and Â1 is a preliminary consistent estimate.
(ii) Show that a consistent estimate of the asymptotic covariance matrix of A1,GMM is

[avar(A1,GMM) = n
∆y0−1ZWnΣ̂nWnΣ̂nZ0∆y−1

∆y−1ZWnZ0∆y−1
.

As in chapter 5 we can derive the optimal choice for Wn by minimizing [avar(A1,GMM).

Exercise 8.15 (i) Show that a one-step estimator is obtained settingWn = (n
−1 P

i z
0
iΩzi)

−1

where Ω is a (T − 2)× (T − 2) matrix with +2 on the main diagonal, −1 on the first sub-
diagonals and zero otherwise.
(ii) Show that Wn = Σ̂

−1
n is optimal (it produces an estimator we denote by A1,2step).

(ii) Show that A1,GMM and A1,2step are asymptotically equivalent if eit are independent and
homoschedastic across n and T .

Clearly, since IV estimation is inefficient relative to GMM estimation, the Anderson-
Hsiao estimator of A1 obtained by regressing ∆yit on ∆yit−1 using either ∆yit−2 or yit−2
as instruments is inefficient relative to the GMM estimators derived in example 8.7 and
exercises 8.14 and 8.15.

8.2.3 Restricted models

At times in the estimation process, one would like to consider (linear) restrictions of the
form αt = Rθt+r, where dim(θt) < dim(αt). Restrictions of this type may be theory based
or may simply come from stationarity constraints. It is relatively easy to estimate restricted
models and test the validity of these restrictions. Before describing the machinery necessary
to do this, we present an example where such restrictions may occur.

Example 8.8 Consider the case of a group of small open economies which take world
interest rate as given. Suppose we are interested in examining the effect of capital tax
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rebates on investments using a model like (8.8) where the world interest rate is included in
xit. Suppose that some of these economies are dollarized and some of them are not. In
this case, it may make sense to model interdependencies within each group but not among
groups. Hence, there are restrictions on the A1jt matrices one should take into account in
the estimation process.

Following the steps we have used in chapter 4, define Y †t ≡ Yt −Xtr = XtRθt + Et ≡
X†
t θt + Et and assume that E(Z

0E) = 0 and E(Z 0X†) 6= 0. Then a GMM estimator for
θ = (θ1, . . . , θt) is θGMM = [(X†)0ZW−1Z0X†]−1((X†)0ZW−1Z0Y †).

To test the validity of the restrictions one could use any of the tests described in chapter
5. For example, let n×Sun,t = (Yt−Xtαt,GMM)ZtW−1

n Z 0t(Yt−Xtαt,GMM) and n×Sre,t =

(Y †t − X†
t θt,GMM)ZtW

−1
n Z 0t(Y

†
t − X†

t θt,GMM). Let α = (α1, . . . ,αt) and θ = (θ1, . . . , θt).

Using standard asymptotic arguments, it follows that for n → ∞, Sun,t
D→ χ2(dim(Z) −

dim(α)) and Sre,t
D→ χ2(dim(α)−dim(θ)). Hence, as n→∞, the likelihood ratio statistics

LRt = Sre,t −Sun,t
D→ χ2(dim(Z)− dim(θ)), t = 1, . . . , T .

Exercise 8.16 Assume αt = α ∀t. Describe how to implement a Wald test for the hypoth-
esis α = Rθ + r.

As in VAR models one may be interested in testing a series of hypotheses and proceed at
each stage conditional on the results obtained at the previous stage. For example, one would
like to test how many lags should be included in the model and, conditional on the results,
test some economic restriction, such as long run neutrality or steady state convergence. As
in chapter 4, the significance level needs to be appropriately adjusted to take into account
the sequential testing approach.

Example 8.9 Let the first restriction be αt = Rθt+r and the second θt = R̄φt+ r̄. Let n×
Sun,t = (Yt−Xtαt,GMM)ZtW−1

n Z0t(Yt−Xtαt,GMM), n×Sre1,t = (Y
†
t −X†

t θt,GMM)ZtW
−1
n Z0t(Y

†
t −

X†
t θt,GMM) n×Sre2,t = (Y

‡
t −X‡

t φt,GMM)ZtW
−1
n Z0t(Y

‡
t −X‡

t φt,GMM) where Y
‡
t ≡ Y †t −Xtr̄ =

XtR̄1φt + Et ≡ X‡
t φt + Et Define LR1,t = Sre1,t − Sun,t; LR2,t = Sre2,t − Sre1,t, where

the latter is a test of the second set of restrictions, conditional on the first set being true.
If aj is the significance of test j = 1, 2, a test of the second hypothesis has significance
a1 + a2 − a1a2. Hence, for a1 = a2 = 0.10, the significance level of the second restrictions,
conditional on the first being correct, is 0.19.

These testing ideas can be used to examine whether there is heterogeneity in levels
among units. From a practical point of view this is important since if %i = % ∀i and the
parameters are time invariant, across sectional/pooled OLS estimates of the parameters of
interest are consistent. However, if %i 6= %i0 , first differencing and instrumental variables are
needed. This distinction allows us to design a GMM-type test for the hypothesis of interest.

Example 8.10 Consider a univariate model yit = %i +A1yit−1 + eit = A1yit−1 + ²it. A1p
obtained pooling the cross sections is inconsistent since ²it is correlated with yit−τ for all τ .
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First differencing the specification we have ∆yit = A1∆yit−1+∆²it. Since E(yit−τ ,∆²it) =
0, τ ≥ 2, yit−2 is a valid instrument. Suppose T = 3. If %i = %∀i, there are three
orthogonality conditions E(yi2²i3) = E(yi1²i3) = E(yi1²i2) = 0, ∀i which can be used to
estimate one (common) AR parameter. The last two conditions imply = E(yi1(²i3− ²i2)) =
0. Since this condition holds both under the null and the alternative it can be employed to
estimate A1. The other two conditions, E(yi2²i3) = E(yi1²i2) = 0, ∀i are valid only under
the null. Therefore, given an estimate of A1, they can be used to test whether an individual
effect is present, given an estimate of A1.

A general formulation of the testing idea contained in example 8.10 is the following. Let
yit =

Pq1
j=1A1jyit−j + %i + eit =

Pq2
j=1A1jyit−j + ²it. Then under the null E(yit−j²it) = 0

for j = 1, . . . , T , t = q1 + 1, . . . , T . Under the alternative E(yit−j∆²it) = 0 for j =
1, . . . , T , t = q1 + 2, . . . T , but E(yit−j²it) 6= 0. Given q1 lags and T observations, there are
0.5 ∗ (T (T − 1)− q1(q1 − 1)) orthogonality conditions. Since there are q1 parameters to be
estimated under the null, there are ν = 0.5 ∗ (T (T − 1) − q1(q1 − 1)) − q1 overidentifying
restrictions. Therefore S =

(Y−P
j A1jY−j)ZW−1Z0(Y−P

j A1jY−j)
n → χ2(ν).

Exercise 8.17 Suppose yit =
Pq1

j=1A1jyit−j+
Pq2

j=1A2jxt−j+%i+eit where E(xt−τeit) = 0,
for τ = 1, . . . T, t = q + 1, . . . T where q = max(q1, q2). How many orthogonality conditions
are there? How many degrees of freedom has the test for homogeneity in this case?

In time invariant models, it is typical to use only a subset of the orthogonality conditions,
since the information contained in e.g. E(zt−τ , eit)τ large, may be negligible. In this case
let j be the number of covariances of interest and let jT − 0.5 ∗ j(j + 1)− 0.5 ∗ q1(q1 + 1)
be the number of orthogonality conditions. If j > q1, the orthogonality conditions in an
AR(q1) model under the null are:

E(yit−τ∆eit) = 0 τ = 2, . . . , t− 1, t = (q1 + 2), . . . , j (8.14)

E(yit−τ∆eit) = 0 τ = 2, . . . , j, t = (j + 1), . . . T (8.15)

E(yiq1+1−τeiq1+1) = 0 τ = 1, . . . , q1 (8.16)

E(yit−1eit) = 0 t = (q1 + 2), . . . , T (8.17)

Here (8.14)-(8.15) hold under the null and the alternative; (8.16)-(8.17) hold only under
the null. As usual, employing a limited number of instruments produces a less efficient test.

Exercise 8.18 Show the conditions that need to be satisfied if j ≤ q1.
Exercise 8.19 Consider the model yit = A1yit−1 + %i + eit; let T = 4 and j = 2.
i) Write down the orthogonality conditions implied by the model, distinguishing between
those valid under both hypotheses and those valid only under the null.
ii) Stack the equations for all time periods and write Y = A1Y−1+e. Using Z = diag(z1, . . . zn),
construct an IV variable estimator for A1.
iii) Derive a GMM estimator for A1.
iv) Write down a J-style test for the overidentifying restrictions.
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It is important, to stress that a GMM-style test for heterogeneity is inappropriate if
some time series have a unit root. In that case, one should use likelihood ratio tests, which
have good properties even when unit roots are present (see e.g. Smith and Fuertes (2003,
p. 30)).

8.2.4 Recovering the individual effect

In macro applications it is important to obtain estimates of %i’s and have a feeling of
their cross sectional distribution, since these parameters may capture differences in national
policies and/or other cross unit characteristics. When first differences are taken, %i is non-
identifiable from the estimated specification. Nevertheless, it is easy to obtain an estimate of
it. Let α̂ be an estimator of α obtained from the model in first difference. Let ²̂it = yit−xitα̂.
Taking time series averages ²̂i =

1
T

PT
t=1 ²̂it = ȳi − α̂x̄i where ȳi = 1

T

P
t yit, x̄i =

1
T

P
t xit.

Since 1
T

PT
t=1 êit → E(ei) = 0 as T →∞, ²̂i = %̂i = ȳi − α̂x̄i.

Example 8.11 We have estimated a panel AR(1) model with country specific intercepts
using quarterly real GDP data for 11 European nations for the sample 1988:1-2003:3. We
have taken first differences to estimate the common AR parameter, pooling the data, using
11 lags as instruments and averaged over T the residuals for each i. Figure 8.1 shows the
distribution of country specific effects which is clearly skewed, somewhat leptokurtic. We
have tested for homogeneity of the individual effects (assuming they are all equal to the
mean), with the test described in the previous subsection. The test has a p-value of 0.07,
indicating that heterogeneities are somewhat important. However, if we exclude Austria and
Finland, homogeneity is not rejected.

8.2.5 Some Practical issues

There are at least three issues of practical interest worth discussing when estimating models
with homogeneous dynamics and unit specific fixed effects. First, we have seen that OLS
estimates of the (common) AR parameters are biased when the model is dynamic. Hence,
how large should T be before the bias becomes negligible? Second, we know that GMM is
more efficient than IV based on a single instrument, but also that estimates of the weighting
matrix converge very slowly, therefore making the outcome unpredictable. What can we
say about the trade off between bias and efficiency in GMM estimators? Finally, what is
the trade-offs between OLS and IV? In particular, how large are the relative biases of the
two estimators for panels of the typical size found in macroeconomics? To answer these
questions we have constructed experimental data using

yit = A1yit−1 +A2xit + %i + eyit
xit = A3xit−1 + exit (8.18)
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Figure 8.1: Individual Effects, GDP

where eyit ∼ iid N(0,σ2y), exit ∼ iid N(0,σ2x). We set A2 = 1 − A1 so that changes in
A1 affect the short run dynamics but not the long run relationship between x and y. The
parameters controlling the experiments are A1, A3,σ2y ,σ

2
x. In the first experiment, we set

σx = 1, A3 = 0.5,σy = 2 and we let A1 vary with T. We also set yio = xi0 = 0 and discard
the first 100 observations. We perform 500 replications for each combination of parameters
using n=100. Table 8.3 reports the results. In parenthesis, are numerical standard errors.

T A1 Bias in A1 Bias in A2
10 0.2 -0.059 (0.025) 0.017 (0.026)

0.8 -0.232 (0.033) 0.004 (0.043)
20 0.2 -0.027 (0.015) 0.010 (0.018)

0.8 -0.104 (0.018) 0.006 (0.026)
40 0.2 -0.017 (0.011) 0.007 (0.014)

0.8 -0.056 (0.013) 0.006 (0.023)

Table 8.3: Monte Carlo evidence I

The bias in A1 is typically more severe than the bias in A2: it increases with the value
of A1 and decreases with T . Note that the bias is about 10 percent when A1 = 0.8 and
20 data points are available but it increases to about 30 percent when T= 10. When time
series are persistent, the bias is significant even when T = 40.

In the second experiment we let n vary with T and A1. We focus on GMM estimators,
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obtained using two and five instruments, using both one-step and two-step approaches.

Two important conclusions can be drawn from table 8.4. First, the bias induced by
the estimation of the optimal weighting matrix is significant and the one-step estimator is
always best. Notice that the bias in the two-steps estimator increases, surprisingly, with T
and, as expected, is larger the larger is the AR coefficient. Second, using two instruments
typically produces smaller biases. However, it is also the case that with five instruments,
the bias is more precisely estimated.

GMM one-step GMM Two-stepa

T n A1 2 Instuments 5 Instruments 2 Instruments 5 Instruments

10 20 0.2 -0.041 (0.066) -0.050 (0.056) -0.043 (0.081) -0.077 (0.102)
0.8 -0.222 (0.124) -0.241 (0.115) -0.249 (0.168) -0.336 (0.198)

10 100 0.2 -0.011 (0.035) -0.012 (0.022) -0.009 (0.036) -0.011 (0.032)
0.8 -0.056 (0.071) -0.079 (0.059) -0.056 (0.072) -0.081 (0.066)

20 20 0.2 -0.032 (0.044) -0.038 (0.038) -0.084 (0.118) -0.263 (0.199)
0.8 -0.137 (0.081) -0.144 (0.066) -0.441 (0.281) -0.880 (0.498)

20 100 0.2 -0.005 (0.022) -0.007 (0.019) -0.005 (0.025) -0.008 (0.027)
0.8 -0.028 (0.040) -0.039 (0.039) -0.030 (0.039) -0.048 (0.040)

40 20 0.2 -0.022 (0.034) -0.026 (0.032) -0.188 (0.148) -0.423 (0.363)
0.8 -0.108 (0.059) -0.111 (0.044) -0.837 (0.294) -1.154 (0.509)

40 100 0.2 -0.003 (0.018) -0.005 (0.013) -0.004 (0.017) -0.017 (0.028)
0.8 -0.024 (0.030) -0.030 (0.025) -0.031 (0.036) -0.089 (0.049)

Table 8.4: Monte Carlo evidence II

Comparing tables 8.3 and 8.4, one can see that GMM estimators perform better when n
is large but, for a fixed n, their performance is far from appealing. Also, estimators become
less biased when T increases, except when n is small. Overall, GMM and OLS biases are
similar, when using a one-step estimator and T = 40.

8.3 Dynamic heterogeneity

So far we have examined panels where the dynamics are homogeneous across units. However,
there are many situations when the homogeneity assumption is not particularly attractive
and dynamic heterogeneities should be allowed for. For example, in growth theory it has
become common to empirically study issues of convergence and polarization of income
distributions (see Barro and Sala (1992), Quah (1996), Canova and Boldrin (2001)) and
policy circles are often interested in predicting the (long run) effects of certain policy choices
across units of a panel. Alternatively, it is often emphasized that political economy issues
may shape the dynamics of government debt (see e.g. Alesina and Perotti (1995)). Finally,
in many situations researchers care if market forces or policies induce similarities in the
transitional dynamics of units with different characteristics.
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When both n and T are large, there are at least four approaches one can use to esti-
mate the parameters of the model and interesting continuous function of them, which have
economic and/or policy interpretations:

1. Estimate the parameters for each unit i = 1, . . . , n separately using the time series
dimension of the panel, (call the estimator αiA); construct the required continuous
function (steady state, long run effect, etc.) h(αiA) and average to obtain a ”typical”
effect i.e. hA(α) =

1
n

P
i h(αiA).

2. Pool cross sections and time series, estimate one average parameter vector (call the
estimator αp), and construct one average function h(αp).

3. Average over n for each t = 1, . . . , T ; estimate the parameter vector (call the estimator
αTS) and the relevant function h(αTS) using the constructed average time series.

4. Average over T and estimate the parameter vector (call the estimator αCS) and the
relevant function h(αCS) using the constructed average cross sectional data.

Example 8.12 The magnitude of the savings and investment correlation in open economies
(the so-called Feldstein and Horioka puzzle) has attracted the attention of several researchers.
Here a large cross section of data for national savings and domestic investments is typically
available so all four estimators are feasible. Nevertheless, the literature has concentrated on
the average cross sectional estimator and regressions of the type ( Sa

GDP )i = %i+A(
Inv
GDP )i+ei

are run where ( Sa
GDP )i is the average saving rate and (

Inv
GDP )i is the average investment

rate for unit i over the sample. Since both saving and investment rates are correlated
over time, and since the sample typically includes both OECD and LDC countries, one
may guess that a reasonable empirical model could be ( Sa

GDP )it = %i + α1i(
Sa
GDP )it−1 +

α2i(
Inv
GDP )it+α3i(

Inv
GDP )it−1+ eit. Hence, one may be interested in knowing how αCS relates

to αji, j = 1, 2, 3 and whether systematic biases are present.

The task of this section is to analyze the properties of the four estimators when dynamic
heterogeneity is suspected to exist and highlight the problems one is likely to encounter in
practical situations. To anticipate the results the first estimator is consistent and a modified
version of the fourth can also yield consistent estimates of h(α) (but not necessarily of α)
when T → ∞. However, in general, αp and αTS are inconsistent for T → ∞, producing
inconsistent estimates of h(α).

The model we consider has the form:

yit = A1i(`)yit−1 +A2i(`)xit + %i + eit (8.19)

αji = αj + vji j = 1, 2 (8.20)

where αji = vec(Aji(`))
0. Given (8.19)-(8.20), possible functions of interest are h1(αi) =

E(1 − A1i(1))−1A2i(1), the long run effect of changes in xit on yit, h2(αi) = E(1 −
A1i(1))

−1A1i(1), the mean lag effect and h3(αi) = (1 − A1i(1))−1, the convergence rate,
etc., where αi = vec(A1i(`), A2i(`))

0.
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Note that while we have specified how Aji(`) are distributed across i, we could have also
specified how h(αi) are distributed across i; for example, we could have assumed that

h(αi) = h(α) + vhi (8.21)

Most of the arguments given below go through also with the specification given in (8.21).
To insure that the problem is well defined we make four assumptions:
• xit and eiτ are mutually independent for all t, τ and independent of vi = [v1i, v2i] (or of
vhi ) with eit ∼ (0, σ2ei) and vji ∼ (0,σ2vj), j = 1, 2.
• Them2×1 vector xit satisfies xit = x̄i+ρxit−1+exit where x̄i is the mean and the eigenvalues
of ρ are all less then one in absolute value; exit ∼ iid (0,σ2exi ) and limT→∞

1
T

PT
τ=1ACF (τ) =

0 (this condition is referred as mean square ergodicity).
• | 1n

Pn
i=1 x̄ix̄

0
i| 6= 0 for a finite n and limn→∞ 1

n

Pn
i=1 x̄ix̄

0
i = Σxx.

• |A1i(1)| < 1. The cross sectional moments of Aji(`) and of h(αi) exist and are finite for
each i.

These assumptions imply, among other things, that eit are innovations in yit, that xit
are strictly exogenous, that yit is stationary and that h(αi) is computable.

8.3.1 Average time series estimator

When T is sufficiently large, one can run separate regressions for each i, compute h(αiA)
and average the results to obtain a ”typical” effect. When both n and T →∞, αiA, h(αiA),
hA(αi) yield consistent estimates of αi, h(αi) and of h(α). Clearly if T is short estimates
of A1i(`) are biased and, unless cointegration is present, estimates of A2i(`) will also be
biased. These biases, in turn, induce biases and inconsistencies in hA(α) even when n is
large. Intuitively, averaging biased estimates will not, in general, eliminate the bias.

Exercise 8.20 Consider an heterogeneous AR(1) model with no exogenous variables and
unit specific fixed effects. Show that estimates of A1i are biased if T is small and that the
mean lag effect E(1−A1i)−1A1i will also be biased, regardless of the size of n.

To show that hA(α) is consistent rewrite the model as

yit = %i +Xitαi + eit (8.22)

where Xit = [yit−1, . . . yit−q1, xit, . . . xit−q2 ]. Then αiA = (X
0
iΩTXi)

−1(X 0
iΩT yi) where Xi is

a T × (q1 − 1 + q2) matrix, yi a T × 1 vector, ΩT = IT − 1T (1
0
T1T )

−110T and 1T a T × 1
unit vector. Let αA =

1
n

P
i αiA and let ᾱ =

1
n

P
i αi.

Exercise 8.21 Give conditions that guarantee plimT→∞αA = ᾱ (Hint: note that plimT→∞
αA = ᾱ+

1
n

P
i p limT→∞(

(X0
iΩTXi)
T )−1p limT→∞(

X0
iΩT ei
T )).

If also n → ∞, ᾱ → E(α) since αi are iid across i, so that αA is consistent and an
estimate of the covariance matrix of αA is Σα =

1
n(n−1)

P
i(αiA − αA)(αiA − αA)0.
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Exercise 8.22 Show that E(Σα) = (1− 1
n)

P
iΣαi+

P
iE(αiA)E(α

0
iA) − 1

n

P
i

P
i0 E(αiA)

E(α0i0A) where the last two terms measure small sample biases. Argue that for n fixed, if T
is large, the bias disappears and Σα is consistent (You need a lot of algebra to show this!)

It is immediate to show that any of the h(α) we consider is also consistent. For example,

h2A converges to E(
A2i(1)
1−A1i(1)

) if n is large provided that the expression in the denominator

is not zero and its variance is Σh2(α) =
1

n(n−1)
P
i(h2(αiA)− h2A(α))(h2(αiA)− h2A(α))0.

Example 8.13 Suppose we are interested in estimating inflation persistence in G-7 coun-
tries where persistence is measured either by the spectral density at frequency zero or by the
sum of the coefficients of a regression of inflation on its lags. In the first case, we compute
the ACF for inflation in each country and the spectral density at frequency zero is obtained
summing up 40 covariances and averaging over the seven countries. In the second case,
regressions are performed with 10 lags for each country, the sum of coefficients is computed
and an average is taken. We find that the range of Si(ω = 0) across i is large, that the aver-
age persistence is 7.03 and that its cross sectional variance is 3.57. The sum of coefficients
is also somewhat dispersed: on average, it equals 1.32 and its variance is 0.42. Hence, both
statistics suggest that inflation is indeed persistent.

Exercise 8.23 Suppose heterogeneity is of binary form, i.e. there are two groups in the
data and their composition is known. Describe how to implement an average estimator for
inflation persistence in this case. What kind of properties will the estimator have? Under
what conditions will it be consistent?

Example 8.14 It is relatively easy to design a test for the hypothesis σi = σ, ∀i assuming
that both %i and αi are heterogeneous. In fact, the estimated residuals of the model are
eit = yit−%iA+XitαiA. Under the null σ2A = 1

nT

Pn
i=1

PT
t=1 e

2
it. Under the alternative σ

2
iA =

1
T

PT
t=1 e

2
it. Then the concentrated values of likelihood under the null and the alternative

are Lre ∝ −nT
2 lnσ

2
A and Lun ∝ −T

2

Pn
i=1 ln σ̂

2
Ai and 2(Lun − Lre) ∼ χ2(n− 1) as T →∞.

Exercise 8.24 Propose a LR test for the hypothesis αi = α and σi = σ, for all i.

While averaging time series estimates is feasible when T is long enough, e.g. convergence
regressions at US state level, studies focusing on the cross state effect of local fiscal policy or
cross sectional analyses of unemployment rates and labor accidents, it is relatively unusual
to see researchers estimating n separate regressions and averaging the results. A typical
alternative is to pool cross sections and time series and directly estimate an average α.

8.3.2 Pooled estimator

Substituting (8.20) into (8.19) we have

yit = A1(`)yit−1 +A2(`)xit + %i + epit (8.23)

epit = eit + v
0
1iyit−1 + v

0
2ixit (8.24)
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Since, epit is correlated with both yit−1 and xit. OLS estimates of A1(`) and A2(`) in (8.23)
are inconsistent. Formal evidence of this fact is provided in the next exercise.

Exercise 8.25 Suppose A1i(`) = A1i, A2i(`) = A2i and there is no unit specific intercept.
(i) Show that E(xit, e

p
it) =

P∞
τ=0E(v1iA2iA

τ
1i)ACFi(|τ + 1|) where ACFi(τ) is the autoco-

variance of xit at lag τ . Note that this expectation goes to zero if xit is serially uncorrelated.
(ii) Show that E(yit−1, epit) =

P∞
τ=0

P∞
τ 0=0E(v1iA

2
2iA

τ+τ 0
i )ACFi(|τ−τ 0|)+σ2i

P∞
τ=1E(v1iA

2τ
1i )+P∞

τ=0E(v2iA2iA
τ
i )ACFi(|τ +1|). Argue that this term does not vanish even when xit is iid.

When dynamics are heterogeneous and the data pooled, a standard instrumental variable
approach is unlikely to work. In fact, given the structure of epit, it is difficult to find
instruments which are correlated with the regressors and, at the same time, uncorrelated
with the error.

Example 8.15 Consider an AR(1) version of the model and let zit = [xit−1, . . . xit−τ ] be a
vector of instruments. zit is a potential candidate since it is uncorrelated with the eit and
it is correlated with the regressors of (8.23). However, solving yit from (8.23) we have that

E(vitzit) = E(
%iv1i
1−A1i )E(zit) +

∞X
τ=0

E(v1iA
j
1iA

0
2i)E(xit−j−1zit) (8.25)

E(yit−1zit) = E(
%i

1−A1i )E(zit) +
∞X
τ=0

E(Aj1iA
0
2i)E(xit−j−1zit) (8.26)

For zit to be a valid set of instruments we must have that E(vitzit) = 0 and E(yit−1zit) 6= 0.
Staring at (8.25) and (8.26) it is clear that the two sets of conditions cannot be simultane-
ously satisfied since, in general, E( %iv1i

1−A1i
) 6= 0 or E(v1iAj1iA02i) 6= 0.

Exercise 8.26 Show that in the setup of example 8.15, zit is a valid instrument set if
A1i = A1, ∀i.

Since pooled estimators are widely used, it is worthwhile to study the type of biases and
inconsistencies they produce when dynamic heterogeneity is present. In what follows we
focus on the simplest version of the model (8.19)-(8.20), where there is one lag of yit and
one exogenous variable.

Exercise 8.27 Let xit = x̄i + ρxxit−1 + exit where ρx < 1 and exit ∼ iid(0,σ2xi); let σ
2 =

1
n

P
i σ
2
i and σ

2
x =

1
n

P
i σ
2
xi. Assume that A1i = A1, ∀i but that A2i differs across i.

(i) Show that p limn,T→∞A1p = A1 +
ρx(1−A1ρx)(1−A2

1)σ
2
A2

ψ1
and that p limn,T→∞A2p = A2 −

A2ρ2
x(1−A2

1)σ
2
A2

ψ1
where ψ1 =

σ2

σ2
x
(1−ρ2x)(1−A1ρx)2+(1−A21ρ2x)σ2A2

+(1−ρ2x)A2 and σ2A2
=var(A2).

(ii) Show that the large sample bias of A1p is positive when ρx > 0 while p lim Â2 < A2 for
all parameter values. Argue that the larger is the degree of heterogeneity (i.e. the larger is
σ2A2

), the greater will be the bias. Show that the bias disappears if and only if ρx = 0.
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(iii) Show that p limn,T→∞
A2p

1−A1p
= A2

(1−A1)(1−ρx)ψ2
with ψ2 =

(1+A1)σ2
A2

σ2

σ2
x
(1+ρx)(1−A1ρx)2+(1+ρx)(A2

2+σ
2
A2
)

> 0.

Exercise 8.27 shows that OLS overestimates both A1 and
A2
1−A1

when ρx > 0 and that

the bias washes out if either ρx = 0 or σ2A2
= 0. Furthermore, it is easy to see that if

ρx → 1, p limA1p = 1 and p limA2p = 0 irrespectively of the true value of A1. Finally, when
A1 → 1, p limA1p = A1 and p limA2p = A2 (this is not necessarily true if A1 = 1).

The results of exercise 8.27 appear to depend on the presence of serial correlation in the
exogenous variables. However, ρx 6= 0 is inessential and a similar result obtains when xit
are iid but current and lagged values of the xt’s enter the regression, as shown next.

Example 8.16 Suppose that the true model is yit = %i + Ai2xit + Ai3xit−1 + eit and that
Ai = [Ai2, Ai3] = A+ vi, vi ∼ (0,Σv). Suppose that xit are iid and suppose an investigator
estimates yit = ai1yit−1 + ai2xit + ai3xit−1 + %i + ²it. Using OLS on the pooled model and
letting both T and n go to infinity we have that a2p = A2 and that a3p = A3 − a∗1A2 where
a∗1 = p lima1p =

σ12

σ11+σ22+(A2
3+

σ2

σ2
x
)
where σij are the elements of Σv. Therefore, no matter

how large T and n are, a∗1 = 0 if and only if σ12 = 0. Hence estimates of the long run effect
of x on y,

a2p+a3p

1−a1p
will converge to A2 +A3 +

a∗1A3

1−a∗1 6= A2 +A3 as T →∞.

The biases and inconsistencies of example 8.16 occur because heterogeneity in the coef-
ficients of the x’s is ignored. Note also that serial correlation in the x’s makes the problem
worse. Clearly, the size of the bias depends on the sign and the magnitude of σ12 and ρx.
When these are positive, a∗1 > 0 and there will be a tendency to underestimate the impact
of xit−j on yit and overestimate its long run effect.

When T is short, a pooled estimator is inconsistent even without dynamic heterogeneity.
As we have seen, in this situation it is typical to use either an Anderson-Hsiao (AH) or a
GMM estimator after differencing. But while with homogeneous dynamics both approaches
produce consistent estimates of the parameters, this is not the case in the current setup.

Example 8.17 After first differencing (8.23) and (8.24), become

∆yit = A1(`)∆yit−1 +A2(`)∆xit +∆epit (8.27)

∆epit = ∆eit + v
0
1i∆yit−1 + v

0
2i∆xit (8.28)

Clearly, any instrument uncorrelated with the errors will also be uncorrelated with the re-
gressors. For example, lagged values of yit are not valid instruments since they depend on
vji which, in turn, are correlated with ∆e

p
t . Similarly, current and lagged values of xit are

not valid instruments even when they are uncorrelated with eit.

There is one special case when differencing solves the problems. In fact, when vi1 = 0 ∀i,
simple algebra shows thatE(∆epitzit) = 0 butE(∆yit−1zit) =

P∞
τ=0E(A

τ
1iA

0
2i)E(∆xit−τ−1zit)

6= 0. Therefore IV estimation after differencing may yield consistent estimators of the mean
of A1i and A2i if lags of xit are used (the lags of yit are invalid instruments).
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Exercise 8.28 Show that, if A1i is independent of A2i, differencing and using appropriate
lags of ∆xit as instruments yields consistent estimates of the mean value A1 and A2.

Example 8.18 (Sorensen, Wu, Yosha) Suppose we wish to examine the cyclicality of
government expenditure over a sample of countries and run the regression ( G

GDP )it =
%i + α1i∆GDPit + α2i∆GDPit−1 + eit. If αji = αj ∀i, a pooled regression after differ-
encing produces consistent estimates of the responses of ( G

GDP )it to a shock in ∆GDPit for
each i if proper instruments are used. Consistent estimates could also be obtained even if
dynamic heterogeneity is neglected as long as cov(α1i,α2i) = 0. Furthermore consistent esti-
mates could be obtained even when ( G

GDP )it−1 enters the regression as long as its coefficient
is homogeneous across i.

8.3.3 Aggregate time series estimator

Let ȳt =
1
n

P
i yit, x̄t =

1
n

P
i xit, ēt =

1
n

P
i eit, %̄ =

1
n

P
i %i. The model we consider is:

ȳt = A1(`)ȳt−1 +A2(`)x̄t + %̄+ ēTSt (8.29)

ēTSt = ēt +
1

n

nX
i=1

(v01iyit−1 + v
0
2ixit) (8.30)

Serial correlation in xit clearly produces a complex serial correlation pattern in ē
TS
t .

What is perhaps less immediate to see is that ēTSt is correlated with the regressors so that
OLS applied to (8.29) will yields inconsistent estimates even when T or T, n→∞.

Example 8.19 We demonstrate this problem when there is only one lag of yit, when
dim(xit) = 1 and A2(`) = 0, ∀` > 0. The OLS estimator of A2 in (8.29) is A2,TS −A2
=

(
P
t ȳ

2
t−1)(

P
t x̄tē

TS
t )−(Pt x̄tȳt−1)(

P
t ȳt−1ēTSt )

(
P
t ȳ

2
t−1)(

P
t x̄

2
t )−(

P
t x̄tȳt−1)2

. Then, as T →∞,

p limA2,TS −A2 =
(Eȳ2t−1)(Ex̄tēTSt )− (Ex̄tȳt−1)(Eȳt−1ēTSt )

(Eȳ2t−1)(Ex̄2t )− (Ex̄tȳt−1)2
(8.31)

For consistency we need
P
t x̄tē

TS
t → 0 and

P
t ȳt−1ē

TS
t → 0. But

E(x̄t−τ ēTSt ) =
1

n

nX
i=1

∞X
τ 0=1

E(v2iA2iA
τ 0
1i)E(x̄t−τ , xi,t−τ 0−1) (8.32)

For E(x̄t−τ ēTSt ) = 0, we need that either xt are serially uncorrelated (the second term
vanishes) or that there is no parameter heterogeneity (the first term vanishes). Hence, the
expression in the numerator (8.31) will not, in general, be equal to zero.

Exercise 8.29 Show that, in general,
P
t ȳt−1ē

TS
t does not converge to zero as T → ∞.

Show the conditions under which this may occur.
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Since the terms in (8.32) are of order n−1 and since E(x̄t ¯eTSt ) and E(ȳt−1 ¯eTSt ) converge
to a finite limit, increasing n will not eliminate the inconsistency of the aggregate time series
estimator. Also, since the serial correlation properties of ēTS are sufficiently complex, an
IV approach is unlikely to work. For example, staring at (8.32), one can see that lags of
x̄t are invalid instruments. The problem is similar to the one encountered with the pooled
estimator: variables which are uncorrelated with ēTSt will be also uncorrelated with the
regressors. Therefore valid instruments are hard to find.

One reason for why the aggregate time series estimator is inconsistent is that averaging
over n does aggregate cross sectional information optimally. Pesaran (1995) showed that
in an heterogeneous dynamic model the optimal cross sectional aggregator has the form
ȳt =

P∞
τ=0 a

0
τ x̄t−τ + ²̄t, where aτ = E(A2iAτ1i), τ = 0, 1, . . . and ²̄t are iid independent of xt.

(8.29) misspecifies this expression because - important regressors, correlated with included
ones, are omitted from the specification. Therefore, inconsistencies are produced.

Exercise 8.30 Show that if A1i and A2i are independently distributed, there is only one
lag of yit in the model, consistent estimates of

A2
1−A1

, can be obtained from an aggregate time
series specification using an infinite distributed lag regression of ȳ on x̄.

Exercise 8.31 Consider the case where h(αi) is distributed as in (8.21). Show that the
aggregate time series estimator of h(α) is inconsistent

Example 8.20 Continuing with example 8.13 we compute the spectral density at frequency
zero of inflation using pooled and aggregate time series estimators. The point estimate for
pooled data is 9.84, which is within one standard error of the estimate obtained with the
average estimator. With aggregated data the point estimate is 13.00, a value which is in the
99 percentile of the distribution of the average estimator. The point estimate of the sum of
coefficients of the regression is 0.91 in the pooled case and 0.97 in the aggregate case, both of
which are substantially smaller than the point estimate obtained with the average estimator,
but not significantly different from it.

8.3.4 Average Cross sectional Estimator

The average cross sectional estimator is also popular in applied work and believed to un-
biasedly measure both the parameters and interesting continuous functions of them. But
while in static models such a presumption is correct, this is not necessarily the case when
heterogeneous dynamic models are considered.

Example 8.21 (Fatas and Mihov) There has been some interest in examining whether
macroeconomic volatility, typically measured by the standard deviation of output growth,
is systematically related to government size, typically measured by the log of the share of
government expenditure to GDP, since simple Keynesian models predict a negative relation-
ships between the two. To check this hypothesis, the literature has estimated one volatility
for each unit, averaged the expenditure share over t and run a cross sectional regression,
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with or without additional controls. Typically, a negative coefficient is found but there may
be doubts about the reliability of estimates since, as we will see, neglecting dynamic hetero-
geneity induces negative and large biases.

Let ȳi =
1
T

P
t yit, x̄i =

1
T

P
t xit, ēi =

1
T

P
t eit. Then the model we are estimating is:

ȳi = A1(`)ȳi,−1 +A2(`)x̄i + %i + ēCSi (8.33)

ẽCSi = ei + v
0
1iȳi,−1 + v

0
2ix̄i (8.34)

The regression defined by (8.33) is the so-called ”between” regression of the dynamic model.
Such a model when estimated with OLS yields inconsistent estimates of Aj(`) when n→∞
or n, T → ∞ since ēCS is correlated with the regressors, even when n is large. Hence,
functions of a ”between” regression estimator obtained from an heterogenous panel will
also be inconsistent.

One way to produce consistent estimates is to replace (8.33) with:

ȳi = A2i(`)x̄i +A1i(`)(ȳi −∆T yi) + ēi (8.35)

where∆T yi =
(yiT−yi0)

T . Notice that equation (8.35) is equivalent to ȳi = (1−A1i(`))−1A2ix̄i−
(1−A1i(`))−1A1i(`)∆T yi+ (1−A1i(`))−1ēi ≡ a1ix̄i + a2i∆T yi+ ²̄i. If aji, j = 1, 2 are ran-
domly distributed around the mean, then

ȳi = a1x̄i − a2∆T yi + ²̄csi (8.36)

²̄csi = (1−A1i(`))−1ēi + v02ix̄i − v01i∆T yi (8.37)

In the next exercise we ask the reader to verify that consistent estimates of a1, a2 can
be obtained with OLS if T is large enough.

Exercise 8.32 Let the cross section estimator of a1 be a
0
1,cs = (

P
i x̄ix̄i)

−1((
P
i x̄iȳ

0
i).

(i) Show that E[a01,cs − a01] = (
P
i x̄ix̄

0
i)
−1(

P
i(x̄ix̄

0
i)v2i + (

P
i x̄ix̄

0
i)
−1 P

i(1 + a2i)x̄i¯̄e
cs
i −

(
P
i x̄ix̄

0
i)
−1 or using the assumptions made that E[a01,cs−a01] = −

P∞
τ=0(

P
i x̄ix̄

0
i)
−1Pn

i=1 x̄i
(x̄i,−τ − x̄i,−τ−1)0E(a2iA2iAτ1i). Hence, for finite T, E(a01,cs) will be biased even if n→∞.
iii) Show that for T →∞ x̄i(x̄i,−τ−x̄i,−τ−1)0 = Op(T−1). Conclude that since E(a2iA2iAτ1i)
is finite, E[a01,cs − a01]→ 0 in probability.

It is important to stress that the estimator in (8.33) is inconsistent not because we have
misspecified the model. The omitted term, ∆T yi, is asymptotically uncorrelated with the
level variables so that it will not affect estimates of long run effects. The inconsistency is
instead produced by the correlation between the error and the regressors.

Exercise 8.33 Using (8.35) as reference, one lag of y and only contemporaneous x’s, show
that if A2i and A1i are random (instead of aji, j = 1, 2) a2,cs is consistent.
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In sum, if dynamic heterogeneity is present, cross sectional regressions where variables
are time series averages for each unit are problematic since, for fixed T , these will be
inconsistent, even when n is large.

In certain applied situations one may want to use cointegration ideas to get estimates of
the parameters of a dynamic model. If xit were integrated variables and each i had its own
cointegrating relationship, then unit specific regressions yield superconsistent estimates of
A2(1) and of h(αi). Then the average estimator of hA(α) will also be consistent. Note that
since parameter estimates in this case converge at the rate T and since the average converges
at the rate

√
n, the estimator of h(α) converges at the rate T

√
n. Note also that a pooled

regression will not yield a consistent estimate of α even in the presence of cointegration.
This is because the error term has an I(0) component, the residuals of the cointegrating
relationship for unit i, and an I(1) component, the product of the difference between the
coefficient of each i from the imposed common coefficient and the I(1) regressor. Therefore
the composite error is I(1) and the regression does not define a cointegrating relationship.

The next exercise examines what happens to the other two estimators when the variables
of the model are integrated.

Exercise 8.34 (i) Consider the aggregate time series estimator applied to the model ȳt =
A2x̄t + ē

TS
t where ēTSt = ēt +

1
n

P
i vixit, A2i = Ā2 + vi, and xit strictly exogenous. Show

that if xi,t = xi,t−1 + exi,t, exi,t ∼ (0,σ2xi), A2,TS is inconsistent.
(ii) Show that A2,CS = A2 +

P
i vix̄

2
i+¯̄eix̄iP
i x̄

2
i

. Show that if xit = xit−1 + x̄i + exit, exit ∼ (0,σ2xi),
A2,CS is consistent for T fixed and n→∞.

8.3.5 Testing for dynamic heterogeneity

Since the presence of heterogeneous dynamics causes problems to standard estimators even
when first differencing and instrumental variables are used, it is crucial to have a way to
assess whether homogeneity holds in the sample under consideration. One way of testing
for dynamic heterogeneities is to use a Hausman-type test, which we described in chapter
5. The idea of the test is very similar to the one presented in section 8.2: we wish to find
one estimator which is consistent under the two hypotheses and another which is consistent
(and efficient) under the null and inconsistent under the alternative.

Given these requirements we can compare, e.g., the pooled estimator and the average
time series estimator. In fact, under the null of homogeneity both are consistent and the
pooled estimator is more efficient since it uses all the available information. Under the
alternative of heterogeneity, only the average time series estimator is consistent.

The asymptotic variances of the two estimators are (for fixed n and large T) σ2 ×
(
P
i plimT→∞(X

0
iΩTXi/T ))

−1 and σ2

n2

P
i(plimT→∞(X

0
iΩTXi/T )

−1). Hence, the covariance
matrix of the difference between the estimators is σ2

n [
1
n

P
i(plimT→∞(X

0
iΩTXi/T )

−1) −
(
P
i plimT→∞(X

0
iΩTXi/nT ))

−1] which is positive definite except when plimT→∞(X 0
iΩTXi/T ))

= plimT→∞(X 0
jΩTXi0/T )), i

0 6= i. Then a test for heterogeneity can be conducted us-

ing S1 = σ̂2A(αA − αP )0Σ−1(αA − αP ) where σ̂2A = 1
n

P
i σ̂
2
i ; Σ = 1

n2

P
i(X

0
iΩTXi)

−1 −
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(
P
iX

0
iΩTXi)

−1 and α = vec(A1i(`), A2i(`)). Under the null that A1i(`) = A1(`), A2i(`) =
A2(`), σ

2
i = σ

2, ∀i S1 ∼ χ2(dim(xt) + dim(yt)).

Exercise 8.35 Show that substituting σ̂2p for σ̂
2
A does not change the asymptotic distribution

of the test.

Example 8.22 The test can also be undertaken on the relevant functions of the parame-
ters. Consider estimating h2(α) = E(1−A1i(1))−1A2i(1)). The pooled estimator is h2P =
(1−A1P (1))−1A2P (1) = E(1−A1i(1))−1A2i(1))+ (A1P (1)−A1)E(1−A1i(1))−1A2i(1))+(A2P (1)−A2)

1−A1P (1)

and the average time series estimator is h2A =
1
n

P
i h2(αi). The asymptotic variance of the

first estimator is σ2

(1−A1(1))2
D(

P
i p lim(X

0
iΩTXi/T ))

−1D0 and of the second is σ2

n2(1−A1(1))2
D×

(
P
i(p lim(X

0
iΩTXi/T )

−1))D0 where D = (a2, Im2) and Im2 is a m2 × (m2 + 1) matrix.
Then a test of homogeneity can be based on S2 =

σ̂2

(1−Â1(1))2
(h2A − h2P )0(D̂Σ̂D̂0)−1

(h2A − h2P ) where hat-variables can be obtained from either the pooled or the average time

series estimator and Σ̂ = σ̂2

n2(1− ˆA1(1))2
D̂(

P
i(p lim(X

0
iΩTXi/n)

−1))D̂0 − σ̂2

(1−Â1(1))2
D̂ ×

(
P
i p lim(X

0
iΩTXi/nT ))

−1D̂0. Under the null, S2 ∼ χ2(m2). Note that Σ̂ may not be
positive definite in small samples.

These tests are appropriate when T is large, since for small T the average time series
estimator is biased. When T is small it is still possible to conduct an homogeneity tests for
h(α) using the modified cross sectional estimator which is consistent under the alternative.
However, since Hausman test is asymptotically justified only when T is large, care must
be exercised when comparing the properties of pooled and cross section estimators. It is
also worth mentioning that the Hausman test has poor power properties when outliers are
present since the variance of the estimators tends to be very large. Similarly, if the cross
sectional data is of uneven quality, the null of homogeneity could be difficult to reject.

Exercise 8.36 Provide a statistics to test heterogeneities in h1(α) = (1−A1(`))−1A1 when
T is short.

Example 8.23 In general, it is difficult to interpret rejections of the homogeneity hypoth-
esis since heterogeneity may result from a misspecified but homogenous model. When ho-
mogeneity is rejected, one typically finds a very large dispersion of estimates, with several
economically implausible individual estimates, but the average of the estimates may turn
out to be quite sensible. Can this pattern provide information for the likely causes of het-
erogeneity? Suppose that the estimated model is yit = αix1it + ²it where ²it = x2it + eit and
x2it = θitx1it + vit where x2it are omitted variables linked in a time varying fashion to the
regressors x1it. Then it is easy to see that E(α̂it) = αi+ θit. Consequently, the specification
error in α̂it is large and significant if x2it are important for yit and θit non-negligible. If
x2it are common to all i’s for all t (e.g., commodity prices) then α̂T =

1
n

P
i α̂iT will have

a systematic bias. However, if x2it are random over the cross section, it is possible that
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E(θiT ) = 0, so that average estimates are more reliable. The same result would occur if x2it
are randomly correlated for each i across T . Finally, the structure considered in this exam-
ple may not only cause heterogeneities but also instabilities in each i since the correlation
structure between y1t and x2t evolves over time.

8.4 To Pool or not to Pool?

In many applied exercises, a researcher is interested in examining estimates of, say, long
run coefficients, elasticities, or impulse responses over the cross section hoping to infer
whether certain individual characteristics (say, labor market regulations or government
policies) are responsible for the differences. When T is short comparison is difficult and,
at times, uninformative since estimates are biased and the estimation uncertainty is large.
One question of interest is therefore whether it is possible to improve single unit estimation
of the parameters using cross sectional information. We have already seen that complete
pooling is efficient under homogeneity but produces biases and inconsistencies if dynamic
heterogeneities are present. Here we are concerned with whether some form of pooling is
advisable even under heterogeneity and on how partial pooling could be performed in a
simple and tractable way.

The simplest procedure one can use to check whether pooling is appropriate is a pre-
liminary test of equality of the coefficients over the cross section. Suppose the model is

yit = Xitαi + eit eit ∼ (0,σ2 ∗ I) (8.38)

where Xt includes a vector of ones, exogenous and lagged dependent variables and αi all the
regression parameters of unit i. If the null hypothesis is α1 = α2 = . . . = αn1 = α, n1 ≤ n,
a pooled model for n1 units is just the unpooled model with some (exact) linear restrictions
on the parameters.

To verify the null hypothesis it is typical to compare the R2 of two regressions, one

with and one without the restrictions. Given that F = (R2
re−R2

un)/n−1
R2
un/(nT−n) , where R

2
re (R

2
un) is

the R2 of the restricted (unrestricted) model, choosing the unpooled model based on the
regression R2 is equivalent to choosing the alternative hypothesis when the F-ratio exceeds
1, which implies a significance level of 50%. Information criteria such as the AIC, also
imply preference for the alternative hypothesis if the F-ratio is less than one (see Maddala
(1992)). Hence, one should be aware that the significance level used when pretesting is
different from the one used in standard hypothesis testing. Note also that the pretest
estimator of αi is discontinuous (it is αi,OLS if F-ratio > 1 and αOLS otherwise), so that
its asymptotic distribution is complicated. Furthermore, it is dominated under a quadratic
loss function by other estimators, see Judge et al (1985, p.72-80).

Apart from theoretical problems, it is very common in applied work to encounter situ-
ations like the one described in example 9.29. Therefore, without exact knowledge of the
distribution of the observations across units, surprising results may appear.
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Figure 8.2: Cross sectional distributions

Example 8.24 Suppose n = 3 and that we run a AR(1) regression with no xt’s and unit
specific parameters. Figure 8.2 plots a cloud of points for two distributions of i. Here the
regression slopes are identical for each i so one may end up pooling observations if the
standard error of the intercept is large enough. However, while pooling in the first case
will maintain the positive slope (biasing upwards the estimate of the AR coefficient), in the
second it will produce negative estimates of the common slope parameters. Since there is
no reason to a-priori exclude the second distribution, it is possible that yit and yit−1 are
positively correlated with individual data and negative correlated with pooled data.

Given these problems, pretesting does not seem to be the answer to reduce biases and
improve standard errors of estimates.

One way to produce improved estimates of the parameters using cross sectional infor-
mation is a Stein-type shrinkage estimator, i.e.

αis = αp + (1− κ

F
)(αi,ols − αp) i = 1, . . . , n (8.39)

Here αi,ols is the OLS estimator obtained with data from unit i, αp is the pooled estimator,

F is the statistics for the null hypothesis αi = α∀i, (i.e. F = (αi−α)0(αi−α)
nσ2 ) and κ =

[(n−1)dim(α)−2]/[nT−dim(α)+2], which, for large n, reduces to κ ≈ dim(α)/(T−dim(α)).
The Stein-type estimator (8.39) can be formally obtained minimizing the risk of the

estimator (see e.g. Judge et al. (1985), p. 83). Note that a Stein-type estimator combines
individual and pooled estimates using a weight which, for large n, depends on the dimension
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of α relative to the size of time series. The larger is dim(α) relative to T , the smaller will
be the shrinkage factor (1− κ

F ).
Another way to partially pool heterogenous cross sectional information is to use a ran-

dom coefficient model. Random coefficient models also lead to shrinkage-style estimators
but, contrary to Stein estimators, they combine individual estimates with a weighted aver-
age of the αi,ols. Suppose the model is

yit = xitαi + eit (8.40)

αi = ᾱ+ vi (8.41)

where ei ∼ (0,σ2i I) and vi ∼ (0,Σv). There are four approaches one can use to construct
improved estimates of αi which correspond, roughly speaking, to Classical, Bayesian, Prior
likelihood and Empirical Bayes approaches.

In a classical approach α and Σv are estimable but individual αi are not. In this case
one substitutes (8.41) into (8.40) so that yit ∼ (Xitα,Σit) where Σit = σ2i I +x0itΣvxit. This
is what the literature typically calls error-component model. The GLS estimator for α,
obtained stacking the T observations for each unit is αGLS = (

P
i xiΣ

−1
i xi)

−1(
P
i xiΣ

−1
i yi)

which collapses to the OLS estimator αi,ols = (σ
−2x0ixi)

−1(σ−2x0iyi) if the αi were fixed.

Exercise 8.37 Show that αGLS =
P
i(

Pn
j=1Ω

−1
j )

−1Ω−1i αi,ols with Ωi = (σ
2(x0ixi)

−1+Σv).

Exercise 8.37 shows that the GLS estimator of α is a weighted average of the OLS
estimators for each αi (constructed treating σ

2
i Σv as fixed), with weights given by a function

of Σv and of the data matrix (x
0x). αGLS is unfeasible since Σv and σ2 are unknown.

Therefore one would plug Σv,ols =
1
n−1

Pn
i=1(αi,ols− 1

n

Pn
i=1 αi,ols)(αi,ols− 1

n

Pn
i=1 αi,ols)

0−
1
n

P
i σ
2
i,ols(xix

0
i)
−1 and σ2i,ols =

1
T−dim(αi)(y

0
iyi−yixiαi,ols)2 in the GLS formula. Since Σv,ols

is not necessarily positive definite, it is typical to neglect the last term of the expression:
the resulting estimator is biased but non-negative definite and consistent as T →∞.

In the other three approaches, equation (8.41) is treated as a prior and α and Σv
represent a second layer of parameters (the hyperparameters) describing the features of the
prior. If α and Σv were known, the posterior of αi is normal with mean α̃i = ( 1

σ2
i
x0ixi +

Σ−1v )−1(
1
σ2
i
x0ixiαi,ols +Σ

−1
v ᾱ) where αi,ols is the OLS estimator of αi. It is easy to see that

if Σv is large α̃i → αi,ols; that is, there is no information in the prior which can be used
to improve estimates of αi. αGLS is related to α̃i via αGLS =

1
n

Pn
i=1 α̃i; that is, the GLS

estimator equals the sample average (over i) of the Bayesian estimator α̃i.
When ᾱ, σ2i , Σv are unknown, one should specify a prior distribution for these param-

eters, see e.g. chapter 9. In general, no analytical solution for the posterior mean of αi
exists. If normality is likely to hold, one could approximate posterior means with posterior
modes (see Smith (1973)), i.e. use

ᾱ∗ =
1

n

nX
i=1

α∗i (8.42)
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(σ∗i )
2 =

1

T + 2
[(yi − xiα∗i )0(yi − xiα∗i )] (8.43)

Σ∗v =
1

n− dim(α)− 1[
X
i

(α∗i − ᾱ∗)(α∗i − ᾱ∗) + κ (8.44)

where, ”*” indicates modal estimates and, typically, κ = diag[0.001]. Note that the use of
modal estimates does not change the form of the estimates of α̃i and therefore of α̃.

As an alternative, one can use the so-called prior likelihood approach. Roughly speaking,
one jointly selects (αi,σ

2
i , ᾱ,Σv) to maximize −T2

Pn
i=1 lnσ

2
i − 0.5[

Pn
i=1

1
σ2
i
(yi − xiαi)0(yi −

xiαi)− nln|Σv|−
Pn
i=1(αi − ᾱ)−1Σ−1v (αi − ᾱ)]. The solution is

αi,pl = (
1

σ2i,pl
x0ixi +Σ

−1
v,pl)

−1(
1

σ2i,pl
x0ixiαi,ols +Σ

−1
v,plᾱpl) (8.45)

ᾱpl =
1

n

nX
i=1

αi,pl (8.46)

σ2i,pl =
1

T
(yi − xiαi,pl)0(yi − xiαi,pl) (8.47)

Σv,pl =
1

n

nX
i=1

(αi,pl − ᾱpl)(αi,pl − ¯alphapl)
0 (8.48)

Note the similarities between (8.42)-(8.44) and (8.46)-(8.48).

Exercise 8.38 Suggest an iterative procedure to obtain αi,pl, ᾱpl,σ
2
i,pl,Σv,pl.

Finally, one could use empirical Bayes (EB) methods. As we will see in more details in
the next chapter, this approach treats Σv,σ

2
i , ᾱ, as unknown and estimates them using the

predictive density of y in a training sample. An EB estimator is (see e.g. Rao (1975)):

ᾱEB =
1

n

nX
i=1

αi,ols (8.49)

σ2i,EB =
1

T − dim(α)(y
0
iyi − y0ixiαi,ols) (8.50)

Σ̂v,EB =
1

n− 1
nX
i=1

(αi,ols − ᾱEB)(αi − ᾱEB)0 − 1

n

nX
i=1

(x0ixi)
−1σ2i (8.51)

Clearly, the fully Bayes and the Empirical Bayes estimators of α are similar but while the
former is an average of α̃i, the latter is an average of OLS estimates. Note that both
estimators can be computed in two steps and do not require iterative solutions. Alternative
Empirical Bayes estimators for dynamic heterogeneous panels are presented in chapter 10.

Pooling subsets of the cross sectional units is straightforward.
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Example 8.25 Suppose that it is known that

αi = ᾱ1 + vi1 vi1 ∼ N(0,Σ1) if i ≤ n1
αi = ᾱ2 + vi2 vi2 ∼ N(0,Σ2) if n1 > i > n (8.52)

Then the four procedures we have described in this subsection can be used to estimate
ᾱ1, ᾱ2,Σ1,Σ2 and αi separately for units in each group.

Clearly, the assumption that n1 is known is unrealistic in many applications. Further-
more, standard tests for break points developed in the time series literature are inappropri-
ate for panel data since the ordering of the n units is arbitrary. In chapter 10 we describe
how to choose the break point optimally when the ordering of the cross section is unknown.

Exercise 8.39 Consider a VAR model for unit i of the form yit = Ai(`)yit−1 + eit where
αi ≡ vec(Ai(`)) = ᾱ + vi. Provide classical and Bayesian estimators of the parameters of
the model which combine unit specific and cross sectional information. Is there a reasonable
way to check the extent of dynamic heterogeneities?

8.4.1 What is wrong with two-steps regressions?

There are many situations, both in macroeconomics and in finance, where the parameters
of a relationship are assumed to be related to some observable (unit specific) characteristics
and researchers employ two-step methods to uncover this relationship.

Example 8.26 In estimating the cyclicality of government expenditure one may, for exam-
ple, be interested in knowing if balance budget restrictions matter or not. Therefore, using
coefficients estimated from a time series regression as if they were the true ones, a second
stage regression on a dummy variable, describing whether a state has a balance budget re-
strictions or not, is run. Alternatively, in estimating the speed of adjustment of employment
to macroeconomic disturbances, one may want to know if labor market institutions account
for the empirical differences found. In this case, it is typical to run a regression of the
estimated speed of adjustments on cross country indicators of labor market flexibility.

Is such an approach reasonable? What sort of biases one should expect to find in the
second stage estimates? Intuitively, an estimation error is artificially introduced in the
second regression and this has important implications. To illustrate why both estimates
and standard errors computed from these two-step regressions are incorrect, consider

yit = x0it%i + x1itαi + eit (8.53)

αi = x2iθ + vi (8.54)

where i = 1, 2, . . . , n and x1it is a 1×m2 vector of exogenous and lagged dependent variables,
x2i is a m2 × m3 vector of time invariant unit specific characteristics and x0it is a 1 ×
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m1 vector of unit specific intercepts (possibly depending on t). Finally, θ is a m3 × 1
vector of parameters. We assume that E(x1iteit) = E(x2ivi) = 0 that eit ∼ N(0,σ2i ); that
E(eit, ei0τ ) = 0 ∀t 6= τ and i 6= i0; and vi ∼ N(0,Σv). Stacking the observations for each i
and using (8.54) into (8.53) we have yi = x0i%i +Xiθ + ²i where Xi = x1ix2i is a T ×m3
matrix, and ²i = x1ivi + ei so that var(²i) = x1iΣvx

0
1i + σ

2
i I ≡ Σ²i .

Exercise 8.40 Show that given Σ²i and θ the ML estimator of %i is %i,ML = (x
0
oiΣ

−1
v x0i)

−1

(x0oiΣ
−1
v (yi − xiθ) and that conditional on Σ²i θML = (

P
iXiΩiXi)

−1(
P
iXiΩiyi) where

Ωi = (Σ
−1
²i −Σ−1²i x0i(x0iΣ−1²i x0i)−1x00iΣ−1²i )

Using the same logic of exercise 8.37, we can write θML = (
P
i x
0
2iΩ̃

−1
i x2i)

−1)(
P
i x
0
2iΩ̃

−1
i α̂i)

where Ω̃ = (x01ix1i)−1Ωi. Therefore the maximum likelihood estimate of θ, which corre-
sponds to the GLS estimate of the transformed model, is a weighted average of the first
stage estimates α̂i with weights which depend on Ω.

It is easy to see that second stage estimates of θ are θ2step = (
P
i x
0
2iΣ

−1
v x2i)(

P
i x
0
2iΣ

−1
v α̂i).

Therefore θ2step incorrectly measures the effect of x2i on αi for two reasons. First, suppose
that xi0t = 0, ∀t. Then θ2step neglects the fact that αi are estimated (i.e. it neglects the
term σ2(x01ix1i)−1). Moreover, the weights used in θ2step are homoschedastic while those in
θML depend on unit specific regressors x1i. Second, if xi0t 6= 0, there are additional terms
in Ωi which θ2step neglects. It is difficult to predict what the combined effect of these two
errors would be. In general, treating estimates as if they were the true ones will make θ2step
artificially significant and, in particular situations, may also bias the sign of the relationship.

Given that ML estimates are easy to compute and are feasible once estimates of σ2i
and Σv are plugged in the formulas, there is no reason to prefer two-steps estimators. The
mismeasurement caused by a two-steps approach can be important as it is shown next.

Example 8.27 We use US state data to estimate whether the cyclicality of government
expenditure share in states with strict (ex-post) balance budget restrictions is different from
that of states with weak (ex-ante) balance budget restrictions. We use annual data for 48
states (and 13 have only weak restrictions) from 1969 to 1995 and compute two regressions:

one with a two step model, i.e. ln Git
GDPit

= %i + α1i ln
Git−1

GDPit−1
+ α2i∆ lnGDPit + eit and

α2i,ols = BBθ1 + (1 − BB)θ2 + vi where BBi is a dummy variable taking the value of
1 if strict restrictions are present and zero otherwise; and one with a one-step model i.e.
(1−α1i`) ln Git

GDPit
= %i+θ1(BB∆ lnGDPit)+θ2((1−BB)∆ logGDPit)+²it. The estimates

of the coefficients of the two regressions are the same θ1 = 0.81, θ2 = 0.54, suggesting a
larger cyclicality for states without balance budget constraints. However while with the two-
steps regression the standard error of the estimates are 0.09 and 0.07, they are 1.58 and
1.87 with the one-step regression. Hence, an asymptotic t-test for equality of the effect has
a p-value of 0.08 with the two-step regression and of 0.83 with the one-step regression.
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8.5 Is Money superneutral?

To illustrate some of the issues discussed in this chapter we study the effects of money on
output in the long run using the cross section of G-7 countries. The majority of monetary
dynamic general equilibrium models have built in some form of money neutrality so that,
in the long run, real variables are insulated from nominal ones. However, in some cash-in-
advance models, variations of the growth rate of money may have real effects, even in the
long run, because they alter the marginal rate of substitution between consumption and
leisure and induce agents to work less in the steady state.

Example 8.28 Consider the cash-in advance model described in example 1.4 of chap-
ter 2. Suppose we select as instantaneous utility function u(c1t, c2t,Nt) = ϑc log c1t +
(1 − ϑc) log c2t − ϑNNt, where c1t are cash goods and c2t are credit goods. Letting the
growth rate of money ∆M follow an AR(1) process with mean M̄ , persistence ρM and
standard deviation σM , log linearizing the conditions around the steady state and setting
β = 0.989, δ = 0.019, η = 0.6,ϑN = 2.53,ϑc = 0.4, M̄ = 0.015, ρζ = 0.95, ρM = 0.45,σ2ζ =

0.07,σ2M = 0.0089, the decision rule for hours is lnN = 0.25+1.51ζt−0.05∆Mt−0.45 lnKt.
Hence, ceteris paribus, increases in the growth rate of money have depressing short run ef-
fects on hours worked and therefore, via the production function, real activity. However,
money growth disturbances also affect the steady state of the economy. In fact, ρM = 0, the
compensating variations in consumption needed to bring agents back to the optimum, are
0.520 when M̄ = 0.10 and 0.972 when M̄ = 0.20.

The literature has thoroughly discussed the problems one may encounter when using
variations in the growth rate of money to proxy for monetary policy actions (see e.g. Gordon
and Leeper (1994)). First, there are variations which may represent responses to the state
of the economy. Second, even when innovations in growth rates are considered, they may
capture demand variations, as opposed to supply changes. With these caveats in mind we
examine whether innovations in money growth have long run effects on output growth in
the G-7 using three different estimators. In one case we average the responses of output
growth to money growth shocks across countries; in the second, we compute one average
response pooling the data across countries; in the third, we aggregate cross sectional data
for each t and compute the response of output growth to money growth shocks. Our interest
here is multiple. First, we would like to see if different estimators tell us different stories
about the superneutrality of money. Second, we want to relate differences, when they exist,
to the properties of estimators. Third, we want to see if the evidence is consistent with the
prediction of the model of example 8.28.

The data covers the sample 1980:1-2000:4, is demeaned to eliminate fixed effects, and for
each specification we run a bivariate VAR(5). We make the somewhat heroic assumption
that no variable, other than output or money, is helpful in understanding the relationship
between these two variables. Given the approximate diagonality of the covariance matrix
of reduced form shocks for all countries, the identifying restrictions imposed to separate
money growth shocks from output growth shocks give the same result.
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Figure 8.3: Output growth responses

Figure 8.3 indicates that different estimators produce different responses. For example,
when the pooled and the aggregate estimators are used (both of which are inconsistent when
dynamic heterogeneity is present). In both cases we observe negative short run output
growth responses and a jagged pattern in the medium run. With the average estimator
(which is consistent with dynamic heterogeneity) responses are consistently positive, albeit
insignificant after about a year. We checked whether dynamic heterogeneity is important by
testing the orthogonality conditions implied by the pooled and the average estimators. The
smaller statistic equals to 58.23, so that the null of homogeneity is soundly rejected when
compared with a χ2(10). This is unsurprising: it is well known that the money growth path
of Italy and the UK had very different properties than the path of, say, Germany or Japan
in the 1980s. What is remarkable is that with pooled or aggregate estimates one may be
led to accept some of the predictions of the simple cash-in-advance model of example 8.28,
while the opposite would occur when the average estimator is used.

We examine long run superneutrality in two ways. First, we check if output growth re-
sponses at the 10 year horizon are statistically significant. Second, we examine whether the
contribution of money growth shocks to the variance of output growth at the same horizon
is economically significant. Differences across estimators also emerge with these statistics.
The average and the pooled estimator produce insignificant responses while responses ob-
tained with the aggregate estimator are statistically significant. The economic differences
are however small. In fact, in the latter case, a 68% band for the contribution of money
growth shocks to output growth variability at the 10 year horizon is [0.02,0.14], which covers
almost entirely the band obtained with the other two estimators.



Methods for Applied Macro Research 8: Dynamic Macro Panels 303

Next, we examine the contribution of cross sectional information when measuring the
responses of output growth to money growth shocks in Japan. Figure 8.4 presents point
estimates of the responses obtained using (a) only local information, (b) a Stein estimator,
(c) a random coefficient estimator, where the a-priori mean of all the responses is zero
and the prior variances are 0.05. The response obtained using local information is hump
shaped and positive throughout the range, converging to zero rather slowly. This pattern
is maintained with the random coefficient estimator but the peak response is reduced and
the response is smoother. The response obtained with the Stein estimator is oscillatory,
reflecting the jagged pattern of the pooled estimator (see figure 8.3). Note also that while
in the first two cases responses are significant up to the 10 years horizon, in the latter they
are statistically significant only from 7 to 10 quarters after the shock.

To conclude, money appears to be superneutral in the long run and economic deviations
from the null hypothesis are small. The short and the medium run response of output
growth to money growth shocks depends on the estimation technique. Since with dynamic
heterogeneity two of the estimators are inconsistent, we conclude that, on average in the
G-7, money growth has a positive short run effect on output growth lasting about one year.
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Figure 8.4: Alternative Estimators of Output Responses in Japan



Chapter 9: Introduction to
Bayesian Methods

Bayesian analysis of statistical and economic models differs substantially from the classical
(frequentist) one. In classical analysis the probability of an event is the limit of the relative
frequency of that event. Furthermore, the parameters of a model are treated as fixed,
unknown quantities. In this framework, unbiased estimators are important because the
average value of the sample estimator converges to the true value via some Law of Large
Numbers. Also, minimum variance estimators are preferable because they yield values closer
to the true parameter. Finally, estimators and tests are evaluated in repeated samples since
this insures that they give correct results with high probability.

Bayesian analysis takes a different point of view on all these issues. Probabilities measure
the degree of beliefs that a researcher has in an event. Parameters are random variables
with a probability distribution. Properties of estimators and tests in repeated samples are
uninteresting since beliefs are not necessarily related to the relative frequency of an event
in large number of hypothetical experiments. Finally, estimators are chosen to minimize
expected loss function (with expectations taken with respect to the posterior distribution),
conditional on the data.

Despite these philosophical and semantic differences, it turns out that the two proce-
dures are equivalent in large samples. That is, under regularity conditions, the posterior
mode converges to some ” true” parameter value as T → ∞; furthermore, the posterior
distribution converges to a normal with mean equal to the ”true” parameter and variance
which is proportional to Fisher’s information matrix.

This chapter describes the basics of Bayesian analysis. These tools are fundamental
for the study of interesting macroeconomic problems encountered in the next two chapters.
The building block of the analysis is the Bayes theorem. Section 1 presents examples of how
Bayes theorem can be used to construct posterior distributions and to recursively update
posterior information. Crucial for the analysis is the specification of a prior distribution
for the parameters. We describe ways of selecting such a prior, distinguishing between
subjective and objective approaches; contrast informative and non-informative priors and
present conjugate priors, which play an important role in many applied problems.

The second section deals with decision theory and the third with inference. We de-
scribe how to obtain point and interval posterior estimates, discuss asymptotic properties
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of Bayesian estimators; how to compare hypotheses/models and to construct distributions
of forecasts. The fourth section deals with hierarchical models. Such models feature either
a two-stage prior or a latent variable structure, which naturally lends itself to a prior in-
terpretation. Since models of this type are common in applied work, we describe in details
the steps needed to construct posterior distributions in these setups. We will also discuss
Empirical Bayes methods here. These methods use plug-in estimates of the parameters of
a second stage hierarchy to construct posterior estimates of the first stage parameters; they
are useful for complex problems where the construction of the joint posterior of first and
second stage parameters is demanding, and have a number of applications, in particular to
VARs. Section 5 deals with posterior simulators. When the form of the posterior distribu-
tion is unknown, one can conduct posterior analysis drawing sequences from a distribution
which approximates the posterior. We discuss normal approximations; more sophisticated
acceptance/importance sampling approximations and recent Markov Chain Monte Carlo
methods. These latter methods are powerful and will be extensively used in the multi-
parameters, hierarchical, non-linear, state space and latent variable models considered in
chapters 10 and 11.

Section 6 briefly deals with robustness. Whenever samples are short, one is interested in
knowing how important is the prior in determining the shape of the posterior. We describe
a simple approach to assess the importance of a prior specification and to provide readers
and clients with ways to rebalance posterior information in a way that suits their purposes.
Section 7 applies some of the tools described in the chapter to the problem of measuring
returns to scale in the Spanish production function.

9.1 Preliminaries

Throughout this chapter, we assume that the parameters of interest α lie in a compact set
A. Prior information is summarized by a density g(α). Sample information is represented
by a density f(y|α) ≡ L(α|y), which can be interpreted as the likelihood of α once the data
y is observed. α̃ represents a posterior estimator of α and αols its sample estimator.

9.1.1 Bayes Theorem

Bayes Theorem allows to compute the posterior of α from the prior and the likelihood:

g(α|y) = f(y|α)g(α)
f(y)

∝ f(y|α)g(α) = L(α|y)g(α) ≡ ğ(α|y)

where f(y) =
R
f(y|α)g(α)dα is the predictive density; g(α|y) is the posterior density of

α, and ğ(α|y) is the posterior kernel. By construction, g(α|y) = ğ(α|y)R
ğ(α|y)dα .

Example 9.1 Suppose a Central Bank has to decide on an interest rate policy; it can
choose to increase the rate, to decrease it or leave it unchanged. In each of the three cases
a recession may occur or not. Let i1 indicate an interest rate increase, i2 an unchanged
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interest rate and i3 an interest rates decrease. Let Re be a recession event and NRe a
non-recession event. Suppose that f(Re|i1) = 0.5; f(Re|i2) = 0.4; f(Re|i3) = 0.3, and that
all interest rate policies are equally probable a-priori. Then, the probability that the interest
rate will decrease, given that a recession is observed, is g(i3|Re) = (0.3 ∗ 0.33)/(0.5 ∗ 0.33+
0.4∗0.33+0.3∗0.33) = 0.68 and the probability that the interest rate will increase, given that
no-recession occurred, is g(i1|NRe) = (0.5∗0.33)/(0.5∗0.33+0.6∗0.33+0.7∗0.33) = 0.75.

The next example uses the Bayes theorem to recursively update prior information.

Example 9.2 Suppose you are betting on the winner of the soccer World Cup. Your team
is Brazil. Let α1 represent the event that it will win the championship and α2 the event
it will loose it. Suppose Brazil meets Spain in a robin round. Your prior is g(α1) =
0.6, g(α2) = 0.4. Let y1 = 1 if Brazil wins the game and y1 = 0 otherwise. Suppose that
f(y1 = 1|α1) = 0.8, f(y1 = 1|α2) = 0.3. Then f(y1 = 1) = 0.8 ∗ 0.6 + 0.3 ∗ 0.4 = 0.6; where
f(y1 = 1) is the proportions of wins one can anticipate. Then

g(α1|y1 = 1) = f(y1 = 1|α1)g(α1)
f(y1 = 1)

=
0.8 ∗ 0.6
0.6

= 0.8 (9.1)

g(α2|y1 = 1) = f(y1 = 1|α2)g(α2)
f(y1 = 1)

=
0.3 ∗ 0.4
0.6

= 0.2 (9.2)

Hence, having beaten Spain, the probability Brazil will win the championship increases from
0.6 to 0.8. Suppose that the next opponent is Cameroon. Let y2 = 1 if Brazil wins this game
and y2 = 0 otherwise. Let g(α1) = g(α1|y1 = 1) = 0.8 and g(α2) = g(α2|y1 = 1) = 0.2,
that is, the prior at this new stage is the posterior of the previous stage. Let again f(y2 =
1|α1) = 0.8, f(y2 = 1|α2) = 0.3. Then f(y2 = 1|y1 = 1) = 0.8 ∗ 0.8 + 0.3 ∗ 0.2 = 0.7 and

g(α1|y1 = 1, y2 = 1) = f(y2 = 1|α1, y1 = 1)g(α1|y1 = 1)
f(y2 = 1|y1 = 1) =

0.64

0.7
= 0.91 (9.3)

g(α2|y1 = 1, y2 = 1) = f(y2 = 1|α2, y1 = 1)g(α2|y1 = 1)
f(y2 = 1|y1 = 1) =

0.06

0.7
= 0.09 (9.4)

Having beaten Cameroon, Brazil has now 0.91 probability of winning the championship.

Exercise 9.1 Consider the case of a chip which goes into a computer: it can be either
proper or faulty. Still, in each of the two cases, the computer may or may not work. Let
α1 be the event that the chip is proper, α2 the event that the chip is faulty and let y be
the event that the computer is working. Suppose it is known that f(y|α1) = 0.995 (that is,
the probability a computer works when the chip is proper) and f(y|α2) = 0.005. Previous
records show that g(α1) = 0.997 and g(α2) = 0.003. Calculate the probability that the chip
is proper, given that the computer under consideration is working, i.e. compute g(α1|y).

Exercise 9.2 Consider n independent draws of a two-point event (e.g. high vs. low in-
flation or high vs. low growth rate of M3). Let α be the probability that a high event
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occurs. If n1 episodes of the high event are observed, the likelihood function is f(n1|α, n) =
n!

n1!(n−n1)!
αn1(1−α)n−n1. Suppose that g(α) = (α(1−α))−1 for 0 ≤ α ≤ 1). Show the form

of the posterior density for α. What is the mean of the posterior distribution? What is the
mode? Calculate g(α|n1 = 5, n = 20).
Exercise 9.3 Consider two types of workers, high skilled (Hs) and low skilled (Ls) and let
their employment status be Em (employed) or Un (unemployed). Suppose that historically
P (Em|Hs,Em) = 0.85, P (Em|Ls,Em) = 0.6, P (Un|Hs,Un) = 0.3, P (Un|Ls, Un) = 0.7
so that, e.g., the probability that a low skilled (high skilled) unemployed will find a job this
period is 0.3 (0.7). Suppose that a priori it is known that job flows are such that P (Un) = 0.4
and P (Em) = 0.6. Calculate the posterior probability that a low skilled unemployed worker
will still be unemployed two periods from now. How would this probability change if a
training program alters P (Em|Ls, Un) from 0.3 to 0.4?

There are many situations when the vector α contains nuisance parameters (param-
eters which are of little importance for the goal of the investigation). Posterior distri-
butions for the objects of interest when nuisance parameters are present, can be eas-
ily computed. Suppose α = [α1,α2] and suppose we are interested only in α1. The
joint posterior is g(α1,α2|y) ∝ f(y|α1,α2)g(α1,α2) and g(α1|y) =

R
g(α1,α2|y)dα2 =R

g(α1|α2, y)g(α2|y)dα2, that is, the marginal posterior of α1 weights the conditional poste-
rior of α1 with the marginal posterior of α2. When the dimension of α2 is large, integrating
α2 out of the joint posterior is difficult. In this case, one could use Monte Carlo methods to
obtain an iid sequence from the posterior. Suppose g(α2|y), and g(α1|y,α2) are available.
Then the following can be used:

Algorithm 9.1

1) Draw αl2 from g(α2|y). For each αl2, draw αl
0
1 from g(α1|y,αl2), l0 = 1, . . . , L0.

2) Average αl
0
1 over draws, i.e compute α1 =

1
L0

P
l0 α

l0
i .

3) Repeat 1)- 2) L times.

The sample (α11, . . . ,α
L
1 ) is then a sequence from the marginal posterior g(α1|y).

9.1.2 Prior Selection

The Bayes theorem requires the specification of a prior density g(α). At one extreme, g(α)
may represent the subjective beliefs a researcher has in the occurrence of an event (e.g., the
probability that there is a defective CD in a lot of 1000). At the other, it may represent
an objective evaluation: it may reflect recorded information (e.g. how many times has a
lightning storm occurred in Rome on August 15 in the last 100 years), or the outcomes of
previous experiments. Half way in between are priors displaying subjective general features
(e.g. the form of the distributions) and objective details (e.g. the moments). Priors can
also be distinguished on the basis of their informational content. In this case, we classify a
prior as informative or non-informative.
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Subjective Priors

Subjective informative priors can be constructed in a number of ways. For example, one
can split the support of α into intervals, attribute a probability to each interval and connect
piecewise the intervals (histogram approach). Alternatively, one subjectively computes the
“likelihood” of various α ∈ A and connect the likelihood points (likelihood approach).
Finally, one can take moments (or fractiles) of g(α) as given and choose the functional form
for g(α) that best described by these moments (or fractiles) (functional form approach).

Non-informative priors are typically selected when information is scarce or when a re-
searcher wants to minimize the influence of the prior on the posterior. When subjective
non-informative priors are chosen, it is typical to require them to be informationally invari-
ant, i.e. if g(α) = κ is non-informative, then g(α) = %κ should also be non-informative,
where % is a constant.

The literature has developed what are called reference non-informative priors, i.e priors
which are invariant either in their location, in their scale or in both. In the next example
we describe how to obtain a location invariant prior in a general case.

Example 9.3 Suppose R1 and R2 are subsets of Rm, that the density of y is of the form
f(y − α) where α ∈ R2 is a location parameter and y ∈ R1. For example, a normal
distribution with mean α and known variance σ2 is a location distribution. To derive an
invariant non-informative prior suppose that instead of observing y, we observe y1 = y +
%, % ∈ Rm. Letting α1 = α + %, the density of y1 is of the form f(y1 − α1). Hence,
since the densities of (y,α) and (y1,α1) are identical in structure they must have the same
non-informative prior; that is, we want

g(α ∈ R2) = g(α1 ∈ R2) (9.5)

for all R2 ∈ Rm. Since g(α1 ∈ R2) = g(α+% ∈ R2) = g(α ∈ R2−%), where R2−% = {z−% :
z ∈ R2}, we have that g(α ∈ R2) = g(α ∈ R2 − %). Since % is arbitrary, a prior satisfying
this equality is a location invariant prior. Integrating the above expression we haveZ

R2

g(α)dα =

Z
R2−%

g(α)dα =

Z
R2

g(α− %)dα (9.6)

which is true if and only if g(α) = g(α− %), ∀α. Setting α = % we have g(α) = g(0), ∀%,
i.e. g must be a constant. For convenience, it is typical to choose g(α) = 1.

Exercise 9.4 Consider a scale density of the form σ−1f( yσ ) where σ > 0 (e.g. y ∼ N(0,σ2)
is a scale density). Show that an invariant non-informative prior is g(σ) = σ−1. (Hint:
repeat the steps of example 9.3, assuming you observe y1 = %y, % ∈ Rm).

Although reference priors are often taken off-the shelf, they are not automatic since
they depend on the parametrization of the model. For example, while g(σ) = σ−2 is non-
informative for σ2, g(σ1) = 1 is non-informative for σ1 = log(σ

2).
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Jeffrey (1966) proposed a method to generate non-informative priors based on Fisher
information matrix, i.e. the matrix of expected second order derivatives of the density
of the data with respect to the parameters. The idea is simple: let g(α) be given and
let α0 = h(α), where h is continuous and differentiable function. Then, the prior for

α0 is g(α0) = g(α)|∂h(α)∂α |. Jeffrey’s principle states that the g(α0) obtained through this
transformation must be the same as the one obtained using g(α0) = g(α0,y)

f(y|α0) . If g(α) ∝
[I(α)]0.5, where I(α) = −E[∂2 ln f(y|α)

∂α2 |α], then the same prior for α0 obtains with the two
approaches.

Example 9.4 Let α represents the probability that the growth rate of output yt is above
average and 1−α the probability that it is below average at each t. Then f(yt|α) = αyt(1−
α)1−yt and −E[∂2 ln f(yt|α)

∂α∂α0 ] ≈ E([∂ ln f(yt|α)∂α ]2) = E[(α−1yt + (1− α)−1(yt − 1))2] = α−1(1−
α)−1. Hence, Jeffrey’s prior for α is g(α) = α−0.5(1− α)−0.5.
Example 9.5 Consider the linear regression model y = xα + e, where α is a scalar and

e ∼ N(0, 1). Then f(y|α, x) = 1√
2π
exp{−0.5(y − xα)2} and ∂2 log f(y|α)

∂α2 = −x2 so g(α) ∝
E(x) is an invariant prior for α. Note that this prior is data based.

Exercise 9.5 Consider a location-scale density of the form σ−1f(y−ασ ) where (α,σ) are
unknown and assume that f(y−ασ ) ∝ exp{−0.5σ−2(y− α)2}. Show that Fisher information
is I(α,σ2) = diag ( 1

σ2 ,
3
σ2 ), so that a non-informative prior for (α,σ

2) is g(α,σ2) ∝ σ−2.
It is straightforward to extend Jeffrey’s formulation to the multivariate case. In fact, if

α = (α1, . . . ,αk), then g(α) = {det[I(α)]}0.5 where Ii,j(α) = −Eα[∂
2 log f(y|α)
∂αiαj

|α].

At times the terms non-informative and improper are used interchangeably to indicate
priors with diffuse information but the two concepts are distinct. Since a prior is improper
if g(α) ≥ 0, ∀α ∈ A but

R
g(α)dα is divergent, it is easy to construct examples where

the two terms are not interchangeable. That is, an improper prior may be non-informative
under one parametrization and informative under another.

Example 9.6 Suppose α is scalar, A the real line and g(α) = 1, ∀α ∈ A. This prior
is non-informative and improper. Consider the reparameterization α1 =

exp(α)
1+exp(α) . Then

α1 ∈ (0, 1), and g(α1) ∝ (α1)−1(1− α1)−1, which is informative (it is heavily concentrated
around 0 and 1) but still improper.

Objective priors

In formulating objective priors the predictive density of the data plays a crucial role. Such
a density measures the likelihood of y based on sample information and is the normalizing
constant in the Bayes theorem, i.e.:

f(y) =

Z
f(y|α)g(α)dα ≡ L(y|g) (9.7)
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Example 9.7 Suppose that y represents the number of papers a researcher publishes in
the American Economic Review (AER) in the lifetime and let y be normally distributed
around an unobservable ability variable α. Suppose that abilities in the population vary
according to a normal distribution with mean ᾱ and variance σ2a. Then f(y) represents the
actual distribution of AER articles of that researcher. Any idea what is the median of this
distribution in the cross section of economists? Zero!

Important insights can be gained with a closer look at (9.7). Since f(y|α) is fixed, L(y|g)
reflects the plausibility of g in the data. Therefore, if g1 and g2 are two prior distributions,
L(y|g1) > L(y|g2) implies that the support for g1 in the data is larger than the one for g2.
Taken one step further this idea implies that we can estimate the ”best” g using L(y|g).
In fact, let g(α) ≡ g(α|θ) be a function of some hyperparameters θ. Then L(y|g) ≡ L(y|θ)
and θML, typically called maximum likelihood type II (ML-II) estimator, is the θ which
maximizes L(y|θ) and g(α|θML) is a ML-II based prior.

Example 9.8 Let y|α ∼ N(α,σ2y), α ∼ N(ᾱ, σ̄2a), σ2y known. Then L(y|g) ∼ N(ᾱ,σ2 =
σ2y + σ̄

2
a). If T observations are available, L(y1, . . . yT |g) can be written as

L(y1, . . . yT |g) = [2π(σ2)]−0.5T exp{−0.5Ts
2

σ2
} exp{−0.5T (ȳ − ᾱ)

2

σ2
} (9.8)

where ȳ = 1
T

P
t yt, s

2 = 1
T

P
t(yt− ȳ)2. Maximizing (9.8) with respect to ᾱ yields ᾱML = ȳ.

Substituting this into (9.8) we obtain

L(y1, . . . yT |ᾱML, g) = [2π(σ2y + σ̄2a)]−0.5T exp{−0.5
Ts2

σ2y + σ̄
2
a

} (9.9)

Maximizing (9.9) with respect to σ̄2a we have σ̄
2
aML = s

2 − σ2y when s2 ≥ σ2y and σ̄2aML = 0
otherwise. Hence a ML-II prior for α is normal with mean ᾱML and variance σ̄

2
aML.

Conjugate Priors

Conjugate priors are convenient because they allow the analytical computation of the pos-
terior distribution of the unknowns in simple models.

Definition 9.1 Let F be a class of sampling distributions and G a class of prior distribu-
tions. G is conjugate for F if g(α|y) ∈ G, for all f(y|α) ∈ F and g(α) ∈ G.

A prior is conjugate if the beliefs it represents can be described by a density which has
the same form as the actual data. Since the posterior is proportional to the prior times the
likelihood, it will have the same form as the data and the prior.

Example 9.9 Let y ∼ N(α,σ2), σ2 known. Since f(y|α) = 1
σ
√
2π
exp{− 1

2σ2 (y − α)2} a
conjugate prior for α must be quadratic in the exponent, i.e: g(α) ∝ exp{−A0α2−A1α−A2},
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where A0, A1, A2 are constants. Set g(α) =
1

σα
√
2π
exp{− 1

2σ2
α
(α− ᾱ)2}, ᾱ, σ̄α known. Then

f(y,α) = 1
2πσσα

exp{−0.5( (α−ᾱ)2
σ̄2
α

+ (y−α)2
σ2 )}. Note that

(α− ᾱ)2
σ̄2α

+
(y − α)2
σ2

= α2(
1

σ̄2α
+
1

σ2
)− 2α( y

σ2
+
ᾱ

σ̄2α
) + (

y2

σ2
+
ᾱ2

σ̄2α
)

= (σ̄−2α + σ−2)(α2 − 2α

σ̄−2α + σ−2
(
y

σ2
+
ᾱ

σ̄2α
)) + (

y2

σ2
+
ᾱ2

σ̄2α
)

Since (α2 − 2α
σ̄−2
α +σ−2

( y
σ2 +

ᾱ
σ̄2
α
) = (α − 1

σ̄−2
α +σ−2

( y
σ2 +

ᾱ
σ̄2
α
))2 − 1

σ̄−2
α +σ−2

( y
2

σ2 +
ᾱ2

σ̄2
α
)2, we have

that

(α− ᾱ)2
σ̄2α

+
(y − α)2
σ2

= (σ̄−2α + σ−2)(α− 1

σ̄−2α + σ−2
(
y

σ2
+
ᾱ

σ̄2α
))2 +

(y − ᾱ)2
(σ2 + σ̄2α)

(9.10)

so that f(y,α) = 1√
2πσσ̄α

exp{−0.5(σ̄−2α + σ−2)[α − 1
σ̄−2
α +σ−2

( y
σ2 +

ᾱ
σ̄2
α
)]2}exp{− (y−ᾱ)2

2(σ2+σ̄2
α)
}.

Integrating α out we have f(y) =
R
f(y,α)dα = 1√

2π(σ̄−2
α +σ−2)

1
σσ̄α
exp{− (ᾱ−y)2

2(σ2+σ̄2
α)
} and

g(α|y) = f(y,α)
f(y) =

q
σ̄−2
α +σ−2

2π exp{−0.5(σ̄−2α +σ−2)[α− 1
σ̄−2
α +σ−2 (

ᾱ
σ̄2
α
+ y
σ2 )]

2}. Hence, (α|y) ∼
N(α̃, (σ̄−2α + σ−2)−1), where α̃(y) = 1

σ̄−2
α +σ−2

( ᾱ
σ̄2
α
+ y

σ2 ) = y − σ2

σ2+σ̄2
α
(y − ᾱ).

In example 9.9 the posterior mean α̃ is a weighted average of the prior mean ᾱ and of the

observed y with weights given by σ2

σ̄2
α+σ

2 and
σ̄2
α

σ̄2
α+σ

2 . Hence, if σ̄
2
α → 0, sample information

has no influence on the posterior while if σ̄2α → ∞, the posterior of α only reflects sample
information (see figure 9.1).

Exercise 9.6 Let yt ∼ iid N(0,σ2y), where σ2y unknown. A conjugate prior for σ2y is
obtained from the inverse-Gamma family g(σ2y) ∝ (σ2y)

−a1−1exp{− a2
σ2
y
} where a1, a2 are

parameters. When a1 = 0.5ν̄ and a2 = 0.5s̄
2, s̄2σ−2y ∼ χ2(ν̄) where ν̄ are degrees of freedom

and s̄2 a scale parameter. Assume T observations are available. Show that g(σ−2y |y) is χ2
with (ν̄ + T ) degrees of freedom and scale equal to (ν̄s̄2 +

PT
t=1 y

2
t ).

Exercise 9.7 Continuing with exercise 9.2, consider n independent draws of a two-point
event; let α be the probability that a high event occurs and n1 the number of high event
episodes observed. Suppose that g(α) is of Beta(a1, a2) form, i.e. g(α) =

Γ(a1+a2)
Γ(a1)Γ(a2)

αa1−1(1−
α)a2−1 where a1, a2 > 0 and Γ(.) is the Gamma-function. Show that the posterior distri-
bution for α is Beta(a1 + n1, a2 + n − n1). Suppose a1 = a2 = 2, n = 20, n1 = 9. Using
the fact that if α ∼Beta(a1, a2) then a2α

a1(1−α) has an F-distribution with (2a1, 2a2) degrees of
freedom, provide an estimate of the posterior mean and of the posterior standard error of
the odds ratio α

1−α . Show that the results of exercise 9.2 obtain if a1 and a2 approach zero.

Next, we describe how conjugate priors can be employed in regression models. We do
this in details as many problems can be cast into a (restricted) linear regression format.
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Figure 9.1: Prior and posterior densities.

Example 9.10 Let yt = xtα+et, where et|xt ∼ N(0,σ2e); assume rank(x) = k, and let x =
(x1, . . . xT )

0, y = (y1, . . . , yT ). The likelihood of yt is: f(y|x, α, σ2e) = (2π)−0.5Tσ−Te exp(−0.5σ−2e
(y − xα)0(y − xα)). Assume g(α,σ2e) = g(α)g(σ2e), let g(α) ∼ N(ᾱ, Σ̄α) and s̄2σ−2e ∼ χ2(ν̄).
The posterior kernel is

ğ(α,σ2e |y, x) = (2π)−0.5(T+k)[20.5ν̄Γ(0.5ν̄)]−1 (9.11)

× |Σ̄α|−0.5(s̄2)0.5νσ−0.5(T+ν̄+2)e exp(−0.5ν̄s̄2σ−2e ) (9.12)

× exp[−0.5(σ−2e (y − xα)0(y − xα) + (α− ᾱ)Σ̄−1α (α− ᾱ))] (9.13)

The exponent in (9.13) can be written as (α− α̃)0Σ̃−1α (α− α̃) +Q where

Σ̃α = (Σ̄−1α + σ−2e x
0x)−1 (9.14)

α̃ = Σ̃α(Σ̄
−1
α ᾱ+ σ

−2
e x

0y) = Σ̃α(Σ̄−1α ᾱ+ σ
−2
e x

0xαols) (9.15)

Q = σ−2e y
0y + ᾱ0Σ̄−1α ᾱ− α̃0Σ̃−1α α̃ (9.16)

and αols = (x0x)−1(x0y). Conditioning on σ2e we have: g(α|σ−2e , y, x) ∝ exp{−0.5(α −
α̃)Σ̃−1α (α−α̃)} so that (α|σ−2e , y, x) ∼ N(α̃, Σ̃α). Conditioning on α we have: g(σ−2e |α, y, x) ∝
σ
−(T+ν̄+2)
e exp(−0.5σ−2e (ν̄s̄2+(y−xα)0(y−xα)). Hence ((ν̄s̄2+(y−xα)0(y−xα))σ−2e |(α, y, x)
∼ χ2(T + ν̄).
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Note that if a Gamma density was used as a prior for σ−2e , the conditional for α would
have been unchanged and the conditional posterior for σ−2e would be of Gamma type. It
is also important to stress that in example 9.10 we calculate conditional posteriors. The
marginal posterior of α (integrating σ−2e out) is proportional to (s̄2+(α− α̃)0Σ̃−1α (α− α̃)+
Q)−0.5(T+k+ν̄). One can recognize (see e.g. the Appendix) that this is the kernel of a

t-distribution with parameters (α̃, (s̄
2+Q)Σ̃α
T+ν̄ , (T + ν̄)).

We consider two useful variants of the linear regression model in the next exercises.

Exercise 9.8 Consider the model of example 9.10 where σ2e is held fixed and α ∼ N(ᾱ, Σ̄α).
Show the form of g(α|σ2e , y, x) in this case (Hint: It is still normal).
Exercise 9.9 Suppose that the joint prior for α and σ2e is non-informative i.e. g(α,σ

2
e) ∝

σ−2e . Show the form of the conditional posterior distribution for α. Is it still true that
the g(α|y, x) is t-distributed? What are the parameters of this distribution? Show that

g(σ2e |y, x) is proportional to σ−T−2e exp( (T−2)s
2

2σ2
e
). Conclude that the marginal posterior for

σ2e is of Gamma type. Find the parameters of this distribution.

Exercise 9.9 shows that the posterior can be proper even when the prior is not. This
outcome occurs, in general, when the information content of the likelihood dominates the
one of the prior.

9.2 Decision Theory

Bayesian decision theory is voluminous and too vast to be discussed here. Since some
inferential decisions are based on such a theory and since Bayesian decision theory differs
from classical one, we sketch the basic ideas needed to understand what will come next.

Suppose a policymaker has data on y = (y1, . . . , yT ) and she needs to either (i) forecast
y, potentially conditioning on policy intervention (say, interest rate decision); or (ii) choose
an interest rate policy which maximizes consumer welfare. With each decision d(y), there
is an associated loss function L(α, d) where α describes how the economy reacts to d(y).

How would a frequentist approach the problem of selecting d? She would take α as given
and treat d as random. Then the risk of an action is R = EL(α̂, d), where the expectation is
taken over decisions and d is selected to minimize risk, given some α = α̂ obtained from the
data. Hence, the frequentist risk is calculated conditional on α̂, averaging overall possible
histories y that could have been observed as a function of d.

For a Bayesian, the history y is given and α is a random variable. Since α is random, one
could choose a decision d to minimize the risk where expectations are taken with respect to
α or, if a robust approach is preferred, minimize the loss obtained with the worst possible
outcome i.e. R = infd∈D supα∈AEαL(α, d|yT ). Such a decision problem is sensible when
the ranking of decisions is not uniform across α.

Example 9.11 Consider the following three equations model :
• Phillips curve: GDPt = απt + es,t es,t ∼ (0, 1)
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• Demand: πt = ∆mt + ed,t ed,t ∼ (0, 1)
• Policy: ∆mt = des,t
where variables are in deviation from steady states and suppose that the welfare function
is Wt = π2t + GDP

2
t = (d2 + (1 + ad)2)e2s,t + (1 + α

2)e2d,t so that expected welfare isR
Wtf(ed,t, es,t)ded,tdes,t = 1+ d

2 + (1+ αd)2 + α2. How would an optimizing policymaker
choose d?

A frequentist would estimate α from the data and minimize EL(α̂, d) = 1 + α̂2 + (1 +
α̂)E(d(y))2 + E(d(y))2, given α̂. This amounts to averaging the outcomes over all possi-
ble past trajectories that could have been generated by d. It is immediate to see that the
solution to the problem is dML(y) = − 1

1+α̂2
ML
. A Bayesian, instead, would treat α as a

random variable and minimize EL(α, d) = 1+ d2 + (1+ dE(α|y))2 +E(α|y)2, that is, she
would average the outcomes over α, given the observed y. The solution to the problem is
dBayes(Y

T ) = − 1
1+E(α2|y) .

One advantage of a Bayesian approach to decision making is that the maximand auto-
matically takes into account parameter (model) uncertainty. In fact, in example 9.11 the
expectation is taken with respect to the posterior g(α|y) ∝ L(α|y)g(α).

In general, decisions in a Bayesian framework are based on the so-called likelihood
principle. This principle states that all information about the unknown α is contained in
the likelihood, given the data. Hence, two likelihoods for α (from the same or different
experiments) contain the same information about α if and only if they are proportional to
each other. Note that the likelihood principle underlies the selection of ML-II priors.

9.3 Inference

Bayesian inference is easy since g(α|y) contains all the information one may need. We char-
acterize the scope of Bayesian inference as computing E(h(α)) =

R
h(α)dg(α|y) where h is

a continuous function of α. Examples that fit in this characterization are numerous. For
instance, h(α) could represent posterior moments or posterior quantiles of α; the difference
in the loss function corresponding to two actions e.g. h(α) = L(α, d1)−L(α, d2); or restric-
tions on α, i.e. h(α) = IA1(α) where A1 is a set and I an indicator function. Alternatively,
h(α) could represent future values of the endogenous variables, i.e. h(α) = h(yτ ), where
yτ = (yt+1, . . . , yt+τ ) and h captures turning points, prediction intervals, etc.. Finally,
it could represent posterior impulse responses, variance decompositions or other statistics
which are deterministic functions of α.

Sometimes, and primarily for comparison with non-Bayesian methods, one reports a
point estimate of h(α) and an associated measure of uncertainty. These measures are
justified from a Bayesian point of view either as crude approximations to the peak and the
curvature of the posterior, or as a summary of posterior information as T →∞.

Let L(α̂0,α0) be a loss function A×A→ R, where α0 = h(α) or α0 = [yt+1, . . . yt+τ ],
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etc. and let α̂0 be an estimator of α0. A Bayes point estimate α̃0 is obtained as

α̃0 = argminα̂0E(L(α̂0,α0)|y) = argminα̂0

Z
L(α̂0,α0)g(α0|y)dα0 (9.17)

There are several loss functions one could use in (9.17). Here is a brief list of candidates:

1. Quadratic loss: L(α̂0,α0) = (α̂0 − α0)0W (α̂0 − α0), where W is a positive definite
weighting matrix. Then α̃0 = E(α0|y) = R

α0dg(α0|y).
2. Quantile loss: L(α̂0,α0) = L1(α̂

0−α0)I[−∞,α̂0](α
0)+L2(α

0−α̂0)I[α̂0,∞](α0), L1,L2 > 0.

Then α̃0 = P (α0 ≤ α̂0|y) = L2
L1+L2

. When L1 = L2, α̃
0 is the median.

3. 0/1 loss: L(α̂0,α0, ²) = 1 − I²(α̂0)(α
0), where ²(α̂0) is an open ²-neighborhood of α̂0.

Since lim²→0 argmin L(α̂0,α0) = argmin g(α0|y), then α̃0 = argmin g(α0 ∈ ²(α̂0)|y).

For proofs of the above statements see, e.g. Berger (1985, p. 161-162). Clearly, if the
posterior is normal, the choice of loss function is irrelevant (posterior mean, median and
mode coincide). Note that, if the loss is quadratic and W = I:

E[(α̂0 − α0)(α̂0 − α0)0|y) = (α̂0 −E(α0|y))(α̂0 −E(α0|y))0
+ E(E(α0|y)− α0)(E(α0|y)− α0)0)
= Bias+ variance =MSE (9.18)

Hence α̃0 = E(α0|y) minimizes the Mean Square Error (MSE) of α.
It is useful to digress for a moment and compare Classical and Bayesian point estimation

procedures. In classical analysis an estimator is obtained conditional on a ”true” parameter
value, i.e. α̃0 = argminα̂0E(L(α̂0,α0)|α0) = argminα̂0

R
L(α̂0,α0))g(y|α0)dy. Since this

expression depends on unknown α0, the solution become a function of α0. Suppose instead
we choose an estimator to minimize:

α̃0 = argminα̂0Eα0Ey(L(α̂
0,α0)|α0)

= argminα̂0

Z Z
W(α0)L(α̂0,α0))g(y|α0)dydα0

= argminα̂0

Z
[

Z
L(α̂0,α0))g(α0|y)dα0]W(y)dy (9.19)

where W(α0) is a weighting function and g(α0|y)W(y) = g(y|α0)W(α0). The minimizer of
(9.19) is the one which minimizes the expression in brackets, and this is a Bayes estimator.
Hence, a specification which sets up a loss function and weights parameter values byW(α0)
implies that the Bayes estimator is also best from a frequentist point of view.

As in classical analysis one can construct confidence intervals around point estimates.

Definition 9.2 (Credible set) A set A0 such that P (α0 ∈ A0 ⊆ A|y) ≡ R
A0 g(α0|y)dα0 =

1− % is the 100(1− %)% credible set for α0 with respect to g(α0|y).
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A credible set measures the a-posteriori degree of beliefs that α0 ∈ A0. A classical
confidence interval CI(y) satisfies P (α0 ∈ CI(y)|α)) ≡ R

y[
R
CI(y) g(α

0|y,α)dα0]f(y|α)dy =
1 − %. Also, CI(y) depends on α0. Therefore, a confidence interval is a random variable
chosen so that it covers the true parameter value with probability 1− %.

Example 9.12 Suppose a potential manager has scored 115 points in an aptitude test,
suppose that the test score y ∼ N(α, 100), where α is the ”true” ability of the manager. If
a-priori α ∼ N(100, 225), the predictive density of y is normal with mean 100 and variance
325. Using the logic of example 9.9, it is immediate to show that g(α|y) is normal with
mean 100∗100+115∗225

100+225 = 110.39 and variance 100∗225
100+225 = 69.23. Then a 95 percent credible

set for α is [110.39 ± (1.96)(√69.23)] = [94.08, 126.7]. On the other hand, a classical 95
percent confidence interval for α is [115± (1.96)10] = [95.4, 134.6], which is larger than the
Bayesian credible set.

Exercise 9.10 Suppose that the number of firms which go bankrupt every week in a region
has a Pareto distribution with parameters (a0, a1), i.e. f(y|a0, a1) = a1

a0
(a0
y )
a1+1I(a0,∞)(a)

for 0 < a0 <∞, a1 > 1. Suppose a0 is given but that nothing is known about a1 so that a
non-informative prior is chosen, i.e. g(a1) = a

−1
1 I(0,∞)(a1). Suppose that the last 10 weeks

the number of bankruptcies observed are (0, 2, 5, 1, 0, 1, 3, 4, 0, 5). Find a 68 percent credible
set for a1.

Since credible sets may not be unique, one typically chooses the highest 100(1 − %)%
credible set, i.e. a set such that g(α0|y) ≥ κ(%), ∀α0 ∈ A0, where κ(%) is the largest constant
such that P (α0 ∈ A0|y) = 1− %.

 
  g(α |y) 

 α  0.5      1.6           2.2      3.5

Figure 9.2: Highest credible set



318

Example 9.13 Problems in computing credible sets may occur when the posterior has mul-
tiple modes. In the that case a credible set may be disjoint. For example, in figure 9.2, such
a set includes the area between 0.5 and 1.6 and between 2.2 and 3.5.

9.3.1 Inference with Multiple Models

In many situations one is faced with the dilemma of choosing a model for the analysis
among a variety of alternatives. In a classical framework, one uses tests to decide which
specification (e.g. the length of a VAR model) to employ. In a Bayesian framework it is
optimal not to discard any model but instead appropriately weight their outcomes using
their posterior probability.

Let f(y|αj ,Mj) be the likelihood for model j; let g(αj |Mj) be the prior for αj and
g(Mj) the prior on model j, j = 1, . . . , J, where

P
j g(Mj) = 1. Suppose we are interested

in the conditional mean of h(α). Then

E[h(α)] =
X
j

E[h(α)|y,Mj ]g(Mj|y) (9.20)

The first element of (9.20) was previously calculated. Conditional onMj , for αj ∈ Aj:

E[h(α)|y,Mj] =

R
Aj
h(αj)f(y|αj ,Mj)g(αj |Mj)dαjR
Aj
f(y|αj ,Mj)g(αj |Mj)dαj

(9.21)

The posterior for model j is

g(Mj|y) =
f(y|Mj)g(Mj)

f(y)
=
g(Mj)

R
f(y|αj ,Mj)g(αj |Mj)dαj

f(y)

∝ g(Mj)

Z
f(y|αj,Mj)g(αj|Mj)dαj = g(Mj)f(y|Mj) (9.22)

Hence g(Mj |y) is the product of the prior probability of model j and its predictive density.
Therefore, to calculate E[h(α)] we need three steps: (i) compute the posterior expecta-

tion of h(α) for each modelMj using (9.21), (ii) obtain the predictive density and combine
it with the prior g(Mj) as suggested in (9.22), (iii) average E[h(α|y,Mj)] across models as
suggested in (9.20).

When is it appropriate to choose only one of the J available models? It is easy to check
that such a choice is appropriate when g(Mj |y) is independent of j and E(h(α|y,Mj)) is
roughly constant across j or when g(Mj |y) is close to one for some j.

Example 9.14 Suppose two commercial forecasters are producing forecasts of GDP growth
one quarter ahead. Suppose that (yt+1|M1) = 2.5 and that (yt+1|M2) = 1.5 and that both
commercial forecasters have been equally successful in the past so that g(M1) = g(M2) =
0.5. Suppose f(y|M1) = 0.8 and f(y|M2) = 1.2. Optimal model combination implies that
the Bayes forecast of GDP growth is 2.5*(0.5*0.8)+1.5*(0.5*1.2)=1.0+0.9=1.9.
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9.3.2 Normal Approximations

In classical analysis one uses asymptotic approximations to derive the properties of esti-
mators and to test hypotheses. One could take similar approximations also in a Bayesian
framework. For example, when g(α|y) is unimodal and roughly symmetric, and the mode
α∗ is in the interior of A, a normal distribution centered at α∗ could be used. That is:

log g(α|y) ≈ log g(α∗|y) + 0.5(α− α∗)0[∂
2 log g(α|y)
∂α∂α0

|α=α∗ ](α− α∗) (9.23)

Since log g(α∗|y) is a constant from the point of view of α, letting Σ(α∗) = −[∂2 log g(α|y)
∂α2 |α=α∗ ],

we have that g(α|y) ≈ N(α∗,Σ(α∗)−1) and an approximate 100(1−%)% highest credible set
is α∗ ± SN (%/2)(Σ(α∗)−0.5), where SN(%/2) is the standard normal evaluated at (%/2).

This approximation is valid under regularity conditions when T → ∞ (see below) or
when the posterior kernel is roughly normal. It is highly inappropriate when:

• The likelihood is flat in some dimension ( −[∂2 log g(α|y)
∂α2 |α=α∗ ] is poorly estimated).

• The likelihood function has multiple peaks (a single peak approximation is incorrect).

• The likelihood function is unbounded (no posterior mode exists).

• The mode is on the boundary of A (there is a natural truncation).

• g(α|y) = 0 in the neighborhood of α∗.

Example 9.15 Let yt be iid N(α,σ2) and assume a non-informative prior for (α, log σ).
The joint posterior density is g(α, log σ|y) ∝ −T log σ− 0.5

σ2 [(T −1)s2−T (ȳ−α)2] where ȳ is
the sample mean and s2 is the sample variance of y. Then ∂g(α,log σ|y)

∂α = T (ȳ−α)
σ2 ; ∂g(α,log σ|y)∂ log σ =

−T + (T−1)s2+T (ȳ−α)2
σ2 , so that the mode is (α∗ = ȳ, log σ∗ = 0.5 log (T−1)s

2

T ). The matrix of
second derivatives with respect to (α, log σ) evaluated at the mode is diagonal with elements

equal to − T
σ2 and −2T . Hence g(α, log σ|y) ≈ N(

"
ȳ

0.5 log (T−1)s
2

T

#
,

· − T
σ2 0
0 −2T

¸
)

Exercise 9.11 Suppose you want to study the effects of fiscal policy in a stagflation. You
have data (xi, ni, yi) across countries (or across experiments using DSGE models), where
xi represents the magnitude of the fiscal impulse in country i given in the ni − th ex-
periment and yi is the proportion of cases the economy has recovered (ni is the number
of instances in which a fiscal policy shock of a particular size has occurred). Suppose
f(yi|α1,α2, ni, xi) ∝ (exp{α1 + α2xi})yi(1 − exp{α1 + α2xi})ni−yi. Suppose the prior for
(α1,α2) is non-informative i.e. g(α1,α2) ∝ 1. Compute a normal approximation to the
posterior of (α1,α2) and obtain approximate 68% and 95% contours.
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Because of the focus of this book, we only briefly describe what happens to Bayes
estimators when T →∞. In classical analysis one would provide conditions for consistency
and asymptotic normality of the estimators. Here there is no true parameter value toward
which the estimator would converge asymptotically and which could be used as a pivot
for constructing the asymptotic (normal) distribution. To have something which resembles
consistency and asymptotic normality we need the following concept of information.

Definition 9.3 Let the density of the model be f(y|α) and let the true density be f+(y).
Let t = 1, . . . T . The Kullback-Leibler (KL) information is defined at any value α by

KL(α) = E[log
f+(yt)

f(yt|α) ] =
Z
log

f+(yt)

f(yt|α)f
+(yt)dyt (9.24)

In words, the KL(α) measures the discrepancy between the model distribution and the
true distribution of the data. Using KL information one could define consistency as follows

Result 9.1 (Consistency) Suppose data is modelled with a parametric distribution function
f(y|α) and a prior g(α) is assumed. Suppose that true data density belongs to f(y|α), i.e.
f+ = f(y|α0) for some α0. Then, as T →∞, α∗ P→ α0.

Example 9.16 Suppose yt = xtα+et, et ∼ N(0, 1). Assume 1
T

P
t x
0
txt

P→ Σxx,
1
T

P
t x
0
tet

P→ 0 and that α ∼ N(0,σ2αI). The posterior mean of α is α̃ = (x0x + σ−2a I)−1x0y where
x = (x1, . . . xt)0 and y = (y1, . . . yt)0. As T → ∞, α̃ → αOLS. Moreover, α̃ = α +
(x0x+ σ−2a I)−1x0e = α+ ( 1T

PT
t=1 x

0
txt +

1
Tσ2

a
I)−1 1T

PT
t=1 x

0
tet → α as T →∞ so that α̃ is

consistent.

When the true data density is not included in the parametric family there is no longer a
true α0. If α0 is the minimizer of the KL information, then consistency can still be proved
(see e.g. Bauwens, Lubrano and Richard (1999)).

Result 9.2 (Asymptotic Normality) Suppose α0 is not on the boundary of the parame-

ter space. If α∗ P→ α0 as T → ∞, g(α|y) → N(α0, (TΣ(α0))−1) where Σ(α0) =

−E[∂2 log g(α|y)
∂α∂α0 |α=α0 ]. Here Σ(α0) can be estimated using Σ(α

∗) and α0 either satisfies
f+ = f(y|α0) or is the minimizer of (9.24).

9.3.3 Testing hypotheses/relative fit of different models

Testing hypotheses or evaluating models in a Bayesian framework means calculating their
relative posterior support. One simple way of evaluating alternatives is to use the posterior
odds (P0) ratio

PO =
g(Mj |y)
g(Mj0 |y) =

g(Mj)

g(Mj0)
× f(y|Mj)

f(y|Mj0)
(9.25)

In (9.25) the first term is the prior odds, the second is the Bayes factor.
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Example 9.17 Suppose you are betting on the stability of a fixed exchange rate regime.
Suppose that under the null hypothesis (say, normal conditions) there is a 50-50 chance that
the regime will be maintained. Under the alternative hypothesis (say, increasing oil prices)
the probability that the fixed exchange rate regime will be maintained is 0.25. Suppose that
a-priori both hypotheses are equally probable and that the fixed exchange rate regime has
been maintained in 90 of the 100 months for which you have data. Then

PO =
0.5

0.5
× (0.5)0.1(0.5)0.9

(0.75)0.1(0.25)0.9
=

0.5

0.2790
= 1.79 (9.26)

Hence, 90 months of fixed exchange rates have changed the odds of the null from 1 to 1.79.

Exercise 9.12 Continuing with example 9.12 suppose you are interested in classifying man-
agers as been below or above average. LetM0 : α ≤ 100; M1 : α > 100. Find the posterior
odds ratio forM0 vs. M1.

As it is clear from example 9.17, the Bayes factor is the ratio of the predictive densities
of the two models, i.e f(y|Mj) =

R
f(y|Mj ,αj)g(αj)dαj. Predictive densities can also be

interpreted as predictive scores (Kass and Raftery (1995)). In fact, as likelihood functions,
they can be decomposed into the product of densities of one-step ahead prediction errors
(see later on). Hence, they inform us on the relative fit of the two models to the data.

As we have done with Bayes estimators, it is possible to derive the asymptotic properties
of Bayes factors. The interested reader may consult Kass and Raftery (1995). Roughly
speaking, Bayes factors provide a consistent model choice selection criteria when (a) the
posterior distribution asymptotically concentrates around the pseudo ML estimator, (b) the
pseudo ML converges in probability to the pseudo true value, (c) Bayes factor chooses the
model which is closest to the pseudo true model in a Kullback-Leibler sense.

A Bayes factor differs from a likelihood ratio statistics: in fact, the relative agreement
of prior and likelihood and the least square fit of the models matter for the selection.

Example 9.18 Let yj = xjαj+ej , ej ∼ N(0,σ2j ), j = 1, 2. Suppose g(αj) ∼ N(ᾱj , (σ2j Σ̄αj )−1);
s̄2jσ

−2
j ∼ χ2(ν̄j). If ν̄1 = ν̄2 = ν̄ and s̄21 = s̄22, the Bayes factor of model 1 relative

to model 2 is (
|Σ̄α1 ||Σ̃α2 |
|Σ̄α2 ||Σ̃α1 |

)0.5(
ν1s2

1+(α1,ols−α̃1)0X1X1(α1,ols−α̃1)+(ᾱ1−α̃1)0Σ̄α1 (ᾱ1−α̃1)

ν2s2
2+(α2,ols−α̃2)0X2X2(α2ols−α̃2)+(ᾱ2−α̃2)0Σ̄α2 (ᾱ2−α̃2)

)−0.5(T+v) where

αjols = (x
0
jxj)

−1(x0jyj); s
2
j = (yj − xjαj,ols)2. The likelihood ratio statistics is (v1s2

1

v2s2
2
)−0.5T .

Predictive densities are typically hard to compute analytically since they require multi-
dimensional integration. Two approximations are available in the literature.

Laplace approximation

When the likelihood is highly peaked around the mode and close to symmetric, the posterior
density can be quadratically approximated around the mode. Let f(y|Mj , αj)g(αj |Mj) ≡
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exp[g‡(αj)]. Then g‡(αj) ≈ g‡(α∗j ) + 0.5(αj − α∗j )0Σj(α∗j )(αj − α∗j ) where the remainder is
o(||αj − α∗j ||2) and Σ(αj) = ∂2g‡(α)

∂α∂α0 . Integrating with respect to α we have f
∗(y|Mj) =

(2π)0.5kj |−Σ(α∗j )|−0.5exp[g‡(α∗j )], where kj is the dimension of αj , so that the approximate
Bayes factor is

f∗(y|Mj)
f∗(y|Mj0)

=
exp[g‡(α∗j )](2π)

0.5kj |−Σ(α∗j )|−0.5

exp[g‡(α∗
j0 )](2π)

0.5k
j0 |−Σ(α∗

j0 )|−0.5

Exercise 9.13 Show that 2 ∗ lnPO ≈ 2[ln f(α∗j |y) − ln f(α∗j0 |y)] − (kj − kj0) lnT+ (kj −
kj0) ln(2π)+2 ln[g(αj |Mj)]−2 ln[g(αj0 |Mj0)]+ 2 ln[g(Mj)− g(Mj0)]+ ln(|−T−1Σ(α∗j )|)−
ln(|− T−1Σ(α∗j0)|).

Exercise 9.14 Show the form of 2∗lnPO whenMj andMj0 are nested (i.e. αj = (αj0 , a)).

Exercise 9.13 shows that a Laplace approximation to the PO ratio can be composed in
several parts: the first term is the likelihood ratio statistic (evaluated at the mode) with
kj−kj0 degrees of freedom. The second measures the relative dimensions of the two models.
This makes the Laplace approximation consistent under both the null and the alternative.
The last two terms represent a correction due to the estimated curvature at the mode of
the two models. Since for T →∞ they disappear, they represent a small sample correction
to the adjusted ML ratio statistic.

Schwarz approximation

The Laplace approximation to the PO ratio requires the specification of a g(α). The Schwarz
approximation does not. However, while the error in the Laplace approximation is O(T−1),
in the Schwarz approximation it is O(1); that is, it is independent of the sample size. The
Schwarz approximation is

SCA = log[f(y|Mj,αj,ML)]− log[f(y|Mj0 ,αj0,ML)]− 0.5(kj − kj0) ln(T ) (9.27)

where αj,ML is the maximum likelihood estimator of α in model j. It is easy to see that
SCA uses the first three terms of the Laplace approximation to 2lnPO but evaluates them
at αML instead of at α

∗. Note also that, as T →∞, SCA−logPOlogPO → 0.

Testing a point null is difficult in a Bayesian framework since a continuous prior on A
implies that g(α0) = 0. There are two routes one can take. First, since a point null is a
restriction on an interval around α0, we could consider a prior on (α0± ²), where ² is small
relative to the posterior standard deviation of α. This would be the case, for example, when
the likelihood is flat over α0 ± ². In this situation, the PO ratio is well defined.

Alternatively, a prior mixing discrete and continuous distributions could be specified,
i.e. g(α0) = g0 and g(α 6= α0) = (1 − g0)g1(α), where g1(α) is a proper prior. Examples
of this specification appear, for example, in Bayesian testing of unit roots (see e.g. Sims
(1988)). There, a discrete prior is given to the unit root and a mixed discrete-continuous
prior to the stationary region.
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A question that often arises in practice is what to do when we need to compare several
models, not just two. In that case Leamer’s measure of posterior probability becomes useful.
Such a measure is given by:

LEA(Mj |y) = g(Mj|y)POj0P0
j g(Mj0 |y)POj00

(9.28)

When the set of possible models is large, one should be careful in assuming equal a-
priori probability on each of them since such a choice may counterintuitively assigns a large
weight on models which are large in size.

Example 9.19 (Sala, Doppelhofer, Miller) Suppose you have a large number of possible
determinants of growth and you are interested in examining what is the posterior probability
that a variable is important for growth, where models here are characterized by combina-
tions of the potential explanatory variables. It is easy to verify that if there are k possible
regressors, the number of possible models is 2k. If an equal prior probability of 1

2k
is used

on each model, the expected model size is k2 . This means that if k=20, the a-priori expected
number of regressors is 10.

In such a situation it is better to select the prior mean for the model size and let each
regressor have prior probability equal to 1/k times this prior mean.

Exercise 9.15 Consider the problem of forecasting quarterly exchange rate changes and
suppose you have five possible candidate variables: a constant, the price differential, the
interest rate differential, the output differential and the money differential (therefore, there
are 32 possible model specifications). Using the dollar-yen exchange rate and data on prices,
output, interest rates and money for the US and Japan, compute the posterior mean and
the posterior standard deviation for each regressor and the posterior probability that each
regressor is zero (i.e. compute one minus the sum of posterior probabilities of the models
where that variable appear). What is the posterior probability that the best model for the
dollar-yen exchange rate is a random walk with drift?

9.3.4 Forecasting

Forecasting is straightforward in a Bayesian framework since, as we have seen, the problem
fits well into the calculation of E(h(α)). The predictive density for future y’s in model j is:

f(yt+1, . . . , yt+τ |yt, . . . , y1,Mj) =

Z
g(αj |yt,Mj)

t+τY
i=t+1

f(yi|yi−1,αj,Mj)dαj (9.29)

The first term in (9.29) is the posterior of α, conditional on model j and the second term
is the recursive one-step ahead predictive density constructed from the model.
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Example 9.20 Let yt = xtα + et, et ∼ N(0,σ2e). Suppose σ2e fixed, let g(α) ∼ N(ᾱ, Σ̄α)
and let xτt = [xt+1, . . . xt+τ ] be known. Since g(α|y) ∼ N(α̃, Σ̃α) and since (yτt |α, yt, xt, xτt ) ∼
N(xτtα,σ2eI), we have that (yτt |yt, xt, xτt ) ∼ N(xτt α̃, xτt Σ̃αxτt + σ2eI).

Exercise 9.16 Using the same setup of example 9.20 show that, if s̄2σ−2e ∼ χ2(ν̄), (yτt |yt, xt, xτt )
has a t-distribution. Show the parameters of this distribution.

If one is interested in choosing the best forecasting model (the model which has the
highest posterior support), and two alternatives are available, one can use the predictive
odds ratio which is given by:

POR =
g(Mj)

g(Mj0)

f(yt+1, . . . , yt+τ |yt, . . . , y1,Mj)

f(yt+1, . . . , yt+τ |yt, . . . , y1,Mj0)
(9.30)

Note that each f(yi, |yi−1,αj ,Mj) in (9.29) is a measure of the density of the one-step
ahead error made in predicting yi, given yi−1. Therefore, examining model adequacy (as
described by the predictive density) is the same as checking its one-step ahead out-of-sample
forecasting performance.

9.4 Hierarchical and Empirical Bayes models

Hierarchical structures are useful to model situations where repeated observations on the
same phenomena are available or when either the prior or the likelihood can be broken down
into stages. For example, one may guess that parameter estimates obtained in different ex-
periments may be connected (e.g. learning about rationality using experiments on different
groups of individuals). In other cases, parameters may come in two layers and at one level
there is some information while, at the other, little is known (e.g. there is some knowledge
about the evolution of the parameters of a Phillips’ curve over time but little is known
about the distribution of the parameters regulating its evolution). Finally, there could be
latent variables and a parametric model describing how latent variables are generated is
available (e.g. in Arbitrage pricing (APT) models).

Consider first the case of a prior density with two stages: g(α, θ) = g(α|θ)g(θ) where θ
is a vector of hyperparameters. The joint posterior is g(α, θ|y) ∝ f(y|α, θ)g(α|θ)g(θ); and
the marginal posteriors are g(α|y) = R

g(α, θ|y)dθ and g(θ|y) = R
g(α, θ|y)dα.

The case when the likelihood has two stages can be similarly handled. Let f(y|z,α, θ) =
f(y|z,α)f(z|θ). If g(α, θ) is the prior, g(z,α, θ) = f(z|θ)g(α, θ) is the joint prior and the
joint posterior is g(α, θ, z|y) ∝ f(y|z,α)g(z,α, θ). Then, the marginal posterior for the
latent variable is g(z|y) = R

g(α, θ, z|y)dαdθ and the marginal posterior for α or θ can be
similarly computed. Hence, a latent variable model is a hierarchical model with a two-stage
hierarchy.

This result is important: missing data, signal extraction or any problem involving un-
observable variables can be handled with the same latent variable setup.
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Example 9.21 (Experimental data) Suppose you have experimental data for different groups
of individuals at different points in time. Suppose each experiment is characterized by the
vector (αj, yij , nj), where αj represents some interesting parameter (e.g. the proportion of
individuals who are rational), yij is the data generated for individual i participating in ex-
periment j and nj is the number of individuals in experiment j. Under some conditions, it
may be reasonable to assume that αj are drawn from the same distribution or that there are
groups of individuals with the same distribution. As we will see below, we can model this
dependence with a hierarchical Bayes model.

Example 9.22 (Probit model) Suppose we have T independent observations on yt, each
being Bernoulli distributed with P (yt = 1) = N(xtα), where N is the normal distribution.
For example, we have collected recession dates and P (yt = 1) is the probability of a recession
at t. The model can be rewritten as zt = xtα+ et, et ∼ N(0,σ2e) and yt = I[zt>0], where I.
is an indicator function. Here zt is a latent variable and the likelihood of yt has two stages.

At times it is hard to distinguish the prior from the model as the next example shows.

Example 9.23 (Panel data) Let yit = αi + eit, eit ∼ N(0,σ2e). Assume αi ∼ N(ᾱ, σ̄2α);
ᾱ ∼ N(ᾱ0, σ̄20) and let σ̄2α, σ̄20 be fixed. These assumptions imply:

αi = ᾱ+ v1i v1i ∼ N(0, σ̄2α) (9.31)

ᾱ = ᾱ0 + v2 v2 ∼ N(0,σ20) (9.32)

So αi = ᾱ0 + v2 + v1i and yit = ᾱ0 + v2 + v1i + eit. Here αi could be a latent variable and
(9.32) the prior. Alternatively, (9.31)-(9.32) are two stages of the hierarchical prior for αi.

A natural way to model the dependence of parameters in experimental data or in panels
is the notion of exchangeability.

Definition 9.4 Consider j = 1, . . . J experiments (observations on different individuals
or units) for which f(yj |αj) is available. If only yj is available to distinguish the αj and
no ordering or grouping can be made, αj must be a-priori similar. Then (α1, . . . ,αJ) are
exchangeable if g(α1, . . . ,αJ) is invariant to permutations of the order of the α

0
js.

One way to represent an exchangeable prior for α is to set g(α|θ) = Q
j g(αj |θ), i.e. αj

are independent draws from a distribution with parameter θ. Then, the marginal prior of
α is a mixture of iid distributions with weights given by g(θ) i.e. g(α) =

R Q
j g(α|θ)g(θ)dθ.

In certain finance applications the prior may depend on observables (e.g. in a CAPM
model where the return on a market portfolio depends on macroeconomic variables). In
this case an exchangeable prior is g(α1, . . . ,αj |x1, . . . xj) =

R Q
j g(αj|θ, xj)g(θ|xj)dθ.

The next example describes when the exchangeability assumption is appropriate.
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Example 9.24 Suppose you are interested in estimating inflation rates in the Euro area.
Suppose you sample inflation rates in five countries and obtain 1.7, 1.0, 0.9, 3.0, 1.8. Call
these y1, . . . , y5. What can we say about a potentialy6, having observed y1, . . . , y5?
i) If there is no information to distinguish one country from the others, observed inflation
rates are exchangeable and, lacking information about the time series pattern of inflation
rates, the prior for y1, . . . y6 should be non-informative. Based on the observed sample, one
could guess a posterior density for y6 with mean around 1.9 and range, say, [0.4, 3.5].
ii) Suppose you have the additional information that the six states are Ireland, Spain, Ger-
many, the Netherlands, France, and Belgium, but that their order is random (so you cannot
say which country corresponds to which number). The five inflation rates can still be treated
as exchangeable but the posterior moments of y6 should change since Ireland and Spain had
higher rates than France and Germany in the past (and only one high inflation rate has
been sampled).
iii) Suppose that you know that the sixth state is Spain. Now exchangeability is inappropri-
ate - you have information that distinguish Spain from the other countries - and one can
guess that the posterior of y6 will be high concentrated around 3.0.

Note that for experiments conducted at different times, with different agents and in
different laboratories it may still be reasonable to use exchangeability since these differences
imply different outcomes and not necessarily different a-priori distributions.

Posterior analysis with hierarchical models is simple and exploits the version of Bayes
theorem with nuisance parameters described in section 9.1. For example, g(α, θ|y) is pro-
portional to f(y|α, θ)g(α|θ)g(θ) = f(y|α)g(α|θ)g(θ). Similarly, predictive distributions can
be easily computed. In hierarchical models we distinguish between two types of predictive
distributions for (future) yτ : those conditional on α̃, a posterior estimate of α, and those
conditional on αl, where αl is a draw from g(α|θ̃, y) and θ̃ is a posterior estimate of θ.

To simulate samples for the unknowns from the posterior distribution one would set up
the likelihood function f(y|α), the priors g(α|θ), g(θ) and proceed as follows:
Algorithm 9.2

1) Compute the posterior kernel ğ(α, θ|y).
2) Compute (analytically) g(α|θ, y) (for fixed y, this is a function of θ).
3) Compute g(θ|y) either as g(θ|y) = R

g(α, θ|y)dα or as g(θ|y) = g(α,θ|y)
g(α|θ,y) .

4) Draw θl from g(θ|y) and αl from g(α|θl, y) (If αj is exchangeable, draw αj, g(αj |θl, y)
for each j). Draw ylτ from f(yτ |α̃) or from f(yτ |αl).

5) Repeat step 4) L times and compute h(αlj) = h(ylτ |αlj) at each step. If draws are iid,
estimate E[h(α|y)] via E[h(α|y)] = limL→∞ 1

L

P
l h(α

l).

Note that step 3) is easy if g(α|θ) is conditionally conjugate. h(α) could include, as
usual, functions of economic interest (impulse responses, welfare costs, forecasts, etc.).
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Example 9.25 (Estimating the productivity of individual workers (random effect) and the
average productivity in a plant (fixed effect)). Let yjt be the number of pieces completed
by worker j at hour t of the day. Suppose (yjt|αj) ∼ N(αj ,σ2), j = 1, . . . , J ; σ2 fixed

where αj is the average productivity of the worker. Let ȳj =
1
tj

Ptj
t=1 yjt, σ

2
j =

σ2

tj
. Then

ȳj|αj ∼ N(αj,σ2j ). There are three possible estimators for αj: i) the individual mean, ȳj,
ii) the pooled mean, yp =

P
j
ȳj
σ2
j
/

P
j
1
σ2
j
, iii) the weighted mean ȳwj = %j ȳj + (1 − %j)yp,

%j ∈ [0, 1].
Exercise 9.17 Show how to use between and within variations in yjt to choose between i)
and ii).

What kind of exchangeable prior would induce a researcher to choose as posterior es-
timator i), ii) or iii)? Estimator i) will be chosen if the prior for each αj is independent
and uniform on [−∞,+∞]; estimator ii) will be chosen if αj = α, ∀j and α is uniform on
[−∞,+∞]; finally, estimator iii) will be selected if the prior on αj is iid normal. Note that
i) and ii) are special cases of iii): i) obtains if var(αj) =∞; ii) obtains if var(αj) = 0.

Assume that σ2 is known and let g(α1, . . .αj |ᾱ, σ̄2α) =
Q
j N(αj |ᾱ, σ̄2α), where ᾱ is the

average productivity and σ̄2α its dispersion across workers. Let g(ᾱ, σ̄
2
α) = g(ᾱ|σ̄2α)g(σ̄2α) ∝

g(σ̄2α) (i.e. no information about ᾱ is available). Then, the joint posterior of (αj , ᾱ, σ̄
2
α) is

g(α, σ̄2α, ᾱ|y) ∝
JY
j=1

N(ȳj |αj ,σ2j )
Y
j

N(αj|ᾱ, σ̄2α)g(σ̄2α, ᾱ) (9.33)

Using the logic of example 9.9, the marginal for αj is g(αj|ᾱ, σ̄2α, y) ∼ N(α̃j , Σ̃j) where
α̃j = Σ̃j(

ȳj
σ2
j
+ ᾱ

σ̄2
α
), Σ̃j = (

1
σ2
j
+ 1

σ̄2
α
)−1 while the marginal posterior for ᾱ and σ̄2α is

g(ᾱ, σ̄2α|y) =
Z
g(α, ᾱ, σ̄2α|y, x)dα ∝ g(σ̄2α)f(y|ᾱ, σ̄2α) = g(σ̄2α)

Y
j

N(ȳj |ᾱ, σ̄2α + σ2j ) (9.34)

which can be obtained substituting the prior into the model i.e. yij = ᾱ+eij, eij ∼ N(0,σ2j +
σ̄2α) and using the sufficient statistic ȳj to rewrite the likelihood of yij. Using (9.34) it is
easy to see that the marginal of ᾱ, conditional on σ̄2α, is normal with mean ˜̄α and variance
Σ̃ᾱ where ˜̄α = Σ̃ᾱ

P
j

ȳj
σ̄2
α+σ

2
j
and Σᾱ = (

P
j

1
(σ̄2
α+σ

2
j )
)−1. The marginal posterior for σ̄2α is

g(σ̄2α|y) =
g(ᾱ, σ̄2α|y)
g(ᾱ|σ̄2αy)

∝ g(σ̄2α)
Q
j N(ȳj|ᾱ,σ2j + σ̄2α)

N(ᾱ|˜̄α, Σ̃ᾱ)
∝ Σ̃0.5ᾱ [

Y
j

(σ2j + σ̄
2
α)]

−0.5exp{− (ȳj − ˜̄α)2
2(σ2j + σ̄

2
α)
} (9.35)

where the second line is obtained evaluating the likelihood function at ˜̄α, when g(σ̄2α) is non-

informative. Then, a posterior 68% credible set for the average productivity is ˜̄α ±
p
Σ̃ᾱ

and a posterior 68% credible set for the individual productivity is α̃j ±
q
Σ̃j.
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Suppose now you want to predict the productivity of a new worker whose ability is similar
to the one of existing workers. To construct predictions yj̃,t j̃ 6= 1, . . . J one could use:
Algorithm 9.3

1) Draw (ᾱl, (σ̄2α)
l) from g(ᾱ, σ̄2α|y) and αlj from g(αj |ᾱl, (σ̄2α)l, y).

2) Draw yl
j̃,t
from N(αl

j̃
,σ2j ).

3) Repeat steps 1.-2. L times and average yl
j̃,t
over l.

Exercise 9.18 In example 9.25, what would you do if the new worker is different from all
the currently employed? What if she is similar only to a subset of current workers?

Example 9.26 Consider the problem of predicting financial crises and suppose that they
occur when a vector of z variables passes a threshold z∗. Suppose zt are unobservable but
related to some observable xt (e.g. liquidity of the banking system, trade balance or the
state of government finances) and that we observe yt = 1 if zt ≥ z∗ and zero otherwise.
Then the model is zt = αxt + et, et|xt ∼ N(0,σ2e); yt = I[z∗,∞)zt where σ2e is known. Let
y = [y1, . . . , yt]0, z = [z1, . . . , zt]0, x = [x1, . . . , xt]0 and f(y, z|x,α) = f(z|x,α)f(y|z). Then

f(y, z|x,α) = (2π)0.5T exp{−0.5(z − xα)0(z − xα)
TY
i=1

[ytI[z∗,∞) + (1− yt)I(−∞,z∗]}

f(y|x,α) =

Z
f(y, z|x,α)dz =

TY
i=1

[ytN(αx) + (1− yt)(1−N(αx))] (9.36)

where N(xα) is the normal distribution evaluated at xα. Since g(α, y|z, x) ∝ f(y, z|x,α)g(α)
and the marginal posterior for α is normal with variance Σ̃α = (Σ̄−1α +σ−2e x0x)−1 and mean
α̃ = Σ̃α(Σ̄−1α ᾱ + σ−2e x0y), where ᾱ and Σ̄α are the prior mean and the prior variance of
α. Furthermore, conditional on (α, y, x), the posterior for zt is normal with mean αxt and
variance σ2e and zt > z

∗ if yt = 1 and zt ≤ z∗ if yt = 0.

9.4.1 Empirical Bayes methods

Empirical Bayes (EB) methods attempt to reduce the costs of computing marginal posteriors
in hierarchical models. They do so estimating features of the prior from the data.

In example 9.25, the posterior distribution of the individual effect αj is obtained inte-
grating ᾱ and σ̄2α out the joint posterior. Alternatively, one could estimate ᾱ and σ̄

2
α, for

example, ˆ̄α = 1
J1

PJ1
j ȳj and ˆ̄σ

2
α = T

−1(
P
j(ȳj−ˆ̄α)2
J1−1 −

P
t

P
j(ytj−ȳj)2

T (J1−1) ), J1 << J , and plug-in
these estimates in the formulas for the moments of the posterior distribution. That is,
instead of computing g(α|y) = R

g(α, ᾱ, σ̄2α, θ|y)dᾱdσ̄2α, we calculate g(α|y, ˆ̄α, ˆ̄σ2α).
We have discussed data driven priors in section 9.1.2. As in that framework, the pre-

dictive density can be used to estimate features of the prior distribution.
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Example 9.27 Let the model for unit i of a panel be yit = αiyit−1 + et, t = −1, 0, 1, . . . T
where αi ∼ (ᾱ, σ̄2α), ᾱ ∼ (ᾱ0,σ

2
0) and et ∼ (0,σ2e). If σ

2
0 and σ

2
a are known (or estimable

from the data), an estimator of ᾱ0 is ˜̄α0 = (y0−1Σ−1y−1)−1(y0−1Σ−1y) where Σ = (σ2e +
σ̄2αy

0−1y−1 + σ̄20y0−1y−1), y−1 = [y1−1, . . . , yn−1]0, and y = [y10, . . . , yn0]0.

There are advantages and disadvantages in using EB methods. On the one hand, compu-
tations are simpler; furthermore, priors are data driven which makes them more appealing
to non-Bayesian audiences; finally, despite the fact that some parameters are estimated, the
form of the posterior for α is unchanged. On the other hand, posterior estimates obtained
with EB methods disregard the uncertainty present in (ᾱ, σ̄2α). This problem can be fixed
(see e.g. Morris (1983)). Another problem is that estimates of σ̄2α may be negative; finally,
while there is no problem in selecting some observations to estimate the prior in times series
(use a training sample), it is unclear how to do this in cross sectional environments (which
units should be used?). Hence validation techniques need to be employed to examine the
robustness of the conclusions one reaches.

Exercise 9.19 Why can estimates of σ̄2α be negative? How would you deal with this prob-
lem?

As we will see in chapter 10, BVARs with a Minnesota prior can be handled with EB
methods. There (ᾱ, σ̄2α) are fixed at conventional values or estimated in a training sample.

9.4.2 Meta analysis

Despite the mysterious name, Meta-analysis is relatively straightforward; in fact it tries to
efficiently summarize findings from different studies on a particular topic. Questions which
fit into such a framework are quite common in economics. Here is a brief list:

• Is the bank lending channel an important mechanism in transmitting monetary policy
shocks? (The evidence is across countries, see e.g. Angeloni et. al. (2003)).

• Does trade increase in monetary unions? (The evidence is across studies with different
samples or estimators, see e.g. Rose (2004)).

• Can financial variables predict inflation in the medium run? (The evidence may be
across regimes (high/low inflation); time periods, countries, etc.)

• Do agents behave in a risk averse fashion when faced with fair bets? (The evidence
comes from individuals of different age, social, cultural background, etc.)

• Does local fiscal policy affects local to union-wide prices? (The evidence comes from
different countries, regimes, time periods, see e.g. Canova and Pappa (2003)).

The best way to understand how to use Meta-analysis is through an example.



330

Example 9.28 Consider the question of whether monetary policy can shield economies
from recessions. Suppose we have j = 1, . . . , J studies coming from different regimes or
countries. For each j we have two sets of data: i) an action is undertaken in T0j episodes
and y0j recessions are observed; ii) no action is undertaken in T1j episodes and y1j recessions
are observed, Tj = T0j + T1j. Let the probabilities of a recession in the two cases be p0j

and p1j. Consider αj = log
p1j/(1−p1j)
p0j/(1−p0j)

, that is, the relative probability of a recession in the

two scenarios, suppose we care about αj , ∀j (single study effect) and ᾱ (average effect) and
suppose no information other than (Tij, yij), i = 0, 1 is available. A crude estimate of (αj , ᾱ)
can be obtained by taking a normal approximation to the outcome of each experiment j, i.e.
assume αj ∼ N(α̂j, σ̂2j ) where α̂j = log(

y1j

T1j−y1j
) − log( y0j

T0j−y0j
) and σ̂2j =

1
y1j
+ 1

T1j−y1j
+

1
y0j
+ 1

T0j−y0j
, in which case ˆ̄α = 1

j

P
j α̂j. Can we improve upon these estimates?

Suppose that the J studies are compatible in some sense. Here there is some latitude
regarding what compatible means. It could be that the outcomes are all drawn from the same
distribution; that study j carries no information about study j0; or that no study has more
information than others. In all these cases information is exchangeable.

Let α̂j be an estimate of αj obtained from experiment j and consider a hierarchical
structure where at the first stage the likelihood of (α̂j|αj, σ2j ) is N(αj,σ2j ),σ2j known; at the
second stage the conditional prior for αj is exchangeable and (αj |ᾱ, σ̄2α) ∼ N(ᾱ, σ̄2α); and at
the third stage the marginal for (ᾱ, σ̄2α) is non-informative. This setup is identical to the
one described in example 9.25. Hence the posteriors of αj and ᾱ can be obtained with the
same techniques.

Exercise 9.20 Consider four country studies measuring the length (in months) of a reces-
sion before and after the government started using Keynesian policies. The data is assumed
to be of the same quality across time periods and is as follows:

Before After

Min Mean Max Min Mean Max

1 25 38 62 18 24 38
2 26 29 37 19 21 25
3 22 25 34 24 25 32
4 27 32 40 21 33 37

Using a hierarchical model where the length of a recession is assumed to be exponential
with parameter α and a suitable prior for α (e.g. uniform on the positive side of the real
line), provide an estimate of the difference in the mean across regimes in each study and on
average. Construct a posterior 95% credible set for this difference. Is there any evidence
that Keynesian policies had any effect on the length of recessions?

Exercise 9.21 Suppose you are interested in evaluating the effects of EU agricultural funds
(the so-called CAP funds) on regional growth. Suppose you have run a time series regression
in each region obtaining agricultural funds with output growth on the left hand side and a
number of variables controlling for the individual characteristics of the regions on the right
hand side and found the following coefficients on the amount of structural funds received:
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Region 1Region 2Region 3Region 4Region 5Region 6Region 7Region 8

Estimate 28.39 7.94 -2.75 6.82 -0.64 0.63 18.01 12.16
Standard error 14.9 10.2 16.3 11.0 9.4 11.4 10.4 17.6
i) Argue about the advisability of continuing to provide structural funds to these regions.
ii) Compute pooled estimates. Would your conclusions in i) change?
iii) Using a hierarchical model where the estimates in the table play the role of ȳj and the
standard error the role of σj, assume σj are known, a uniform prior for (α, log(σα)) and
calculate Empirical Bayes estimates of the effect of structural funds in each region and on
average. What is the value of σα you would condition on? i.e. what is the posterior estimate
of the dispersion parameter of the effects of structural funds across regions?
iv) Simulate the posterior for (αj,σα,α) using the hierarchical structure in iii). Display
E(αj|y,σα) for a grid of values of σα between 0 and 10. Display E(α|y,σα) and the (simu-
lated) interquantile range for each αj. Is it fair to say that CAP funds do not boost growth?
[Hint: To make the point stronger, compute the posterior of max(αj)].

9.5 Posterior simulators

As we will see in more details in the next two chapters, there is large number of problems for
which the posterior distribution of α cannot be computed analytically. In others, only the
kernel of the posterior is available but f(y) is unknown. In the most favorable situation one
can take a normal approximation to the posterior to conduct inference. In others, posterior
simulators are needed. This section describes in details both approaches.

9.5.1 Normal posterior analysis

When the posterior distribution is of unknown form but suspected to be close to a normal
(either because the sample is large or because of the assumptions made), it is possible to
undertake posterior inference simulating sequences for the unknowns from an approximate
normal distribution. To do so we need the following four steps.

Algorithm 9.4

1) Find a measure of location (typically, the mode) of the posterior distribution. Several
mode finding algorithms exist in the literature. Here are two:

• Conditional maximization algorithm. Choose α0 and partition α = (α1,α2).
i) Maximize g(α1,α2 = α20|y) with respect to α1. Let α∗1 the maximizer.
ii) Maximize g(α∗1,α2|y) with respect to α2. Let α∗2 the maximizer.
iii) Set α20 = α

∗
2. Iterate on i) and ii) until convergence is achieved.

iv) Start from any other (α10,α20) and check if maximum is global.

• Newton-type algorithm. Choose an α0, let LG = log g(α|y) or LG = log ğ(α|y)
i) Compute LG0 = ∂LG

∂α (α0); LG
00
= ∂2LG

∂α∂α0 (α0); approximate LG quadratically.
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ii) Set αl = αl−1 − %(LG00
(αl−1|y))−1(LG0(αl−1|y)), % ∈ (0, 1), l = 1, 2, . . ..

iii) Iterate on i)-ii) until convergence is achieved.

Whenever analytic derivatives are difficult to calculate one could use LG0 =
LG(α+δiei|y)−LG(α−δiei|y)

2δi
and LG00 = LG(α+δiei+δjej |y)−LG(α+δiei−δjej |y)

4δiδj
+

LG(α−δiei−δjej |y)−LG(α−δiei+δjej |y)
4δiδj

. This algorithm is fast if α0 is ”good” and LG

close to quadratic. It does not work well if LG
00
is not positive definite.

In both algorithms crude estimates, obtained discarding parts of model and/or the
data, can be used as initial conditions. For example, in hierarchical models, one could
fix (ᾱ, σ̄2α), construct g(α|σ̄2α, ᾱ, y) and use this as conjugate prior for computing the
mode.

The mode α∗ does not have a special role here; it is simply the point around which to
map the shape of the posterior distribution. Therefore,

2) Find an analytic approximation to posterior density, centered at the mode.

The most typical approximation is a normal one, i.e. g(α|y) ≈ N(α∗,Σα∗) where
Σα = [−LG00

(α∗)]−1. When multiple modes are present, construct an approximation
to each mode, and set g(α|y) ∝ P

i %iN(α∗i ,Σα∗i ), where 0 ≤ %i ≤ 1. If the modes are
clearly separated and a normal approximation is chosen for each of them, it is typical to
select %i = ğ(α

∗
i |y)|Σα∗i |0.5. If the sample is small and/or the normal approximation is

inappropriate (e.g. if a parameter needs to be positive), one could use a t-distribution
with small number of degrees of freedom, i.e. g(α|y) ∝ P

i ğ(α|y)[ν+(α−α∗i )0Σ−1α∗i (α−
α∗i )]−0.5∗(k+v), where k is the dimension of α. When ν = 1 we approximate the
posterior with a Cauchy, a distribution with large overdispersion (very thick tails; the
moments do not exist). In typical economic applications, ν = 4 or 5 is appropriate.

3) Draw samples from the approximate posterior distribution. If draws are iid, the law of
large numbers permits us to approximate E(h(α)) or the posterior probability contours
of h(α) with 1

L

P
l h(α

l) or the ordered values of h(αl). Note that if a Laplace approx-

imation to g(α|y) is used, then E(h(α|y)) ≈ h(α∗)ğ(α∗|y)|− ∂2log(h(α)ğ(α|y))
∂α∂α0 |α=α∗ |0.5.

4) Check the accuracy of the approximation by computing the Importance Ratio IRl =
ğ(αl|y)
gA(αl|y) where g

A is the approximating distribution. If IRl is roughly constant across

l, the approximation is good. If it is not, other simulation methods are needed.

Exercise 9.22 Consider estimating a reduced form Phillips curve πt+1 = αππt+αgapgapt+
et where gapt is the difference between actual and potential output and et ∼ (0,σ2e). Assume
that α = (απ,αgap) ∼ N(ᾱ, Σ̄α) and that g(σ2e) is non-informative. Derive the marginal
posterior for α. Using US data on CPI inflation and linearly detrended GDP as a proxy for
the gap, construct a posterior normal approximation and report a 68% credible set for αgap.
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9.5.2 Basic Posterior Simulators

When a normal or t-distribution are not necessarily suited to approximate g(α|y), other
posterior simulators can be used. The next two work well when IRl is approximately
constant across l.

Acceptance sampling

Let gAS(α) be any function from which it is easy to simulate, defined for all α ∈ A for which
ğ(α|y) > 0. Assume R

gAS(α)dα <∞ (not necessarily equal to 1) and that IRl = g(αl|y)
gAS(αl)

≤
% < ∞, ∀α ∈ A, l = 1, . . . , L. The left panel of figure 9.3 illustrates these assumptions.
We want %gAS(α) uniformly above and approximately at the same distance from g(α|y) for
every α ∈ A. To generate an iid sequence from g(α|y), choose a % > 0 and use the following:
Algorithm 9.5

1) Draw α† from gAS(α) and U from a U(0, 1).

2) If U > ğ(αl|y)
%gAS(αl)

repeat 1); else set αl = α†.

3) Repeat 1)-2) L times.

  
 
ρgAS(α)                         g(α| y)
 
 
 
 
                    
                   
                     α 
Acceptance Sampling

gIS(α) 
                                    g(α| y) 

 
 
 
           α 
Importance Sampling

                                      g(α|y) 
 
 
                                                             gMC(1)
 gMC(0)    
 
 
 
 
                          α 

Markov Chain Sampling

Figure 9.3: Posterior Simulators

To make algorithm 9.5 operative we need to select %. Ideally gAS(α) ∝ ğ(α|y), so % is
a constant. In practice, % will be varying across draws, hopefully not too much. Since the
expected acceptance rate is 1% , the optimal value of % is supα

g(α|y)
gAS(α)

and one fiddles with %

until a 40-50% acceptance rate is achieved. Notice that algorithm 9.5 is self-monitoring: if
% is too large, it will reject frequently; if it is too small, it will accept all draws. Typical
choices of gAS(α) are t-distribution, split t-distribution for problems with normal errors and
exponential or Beta-distribution for problems with binomial/ multinomial errors.
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Example 9.29 (Consumption function) Let ct = GDPtα+et, et ∼ N(0,σ2e), σ2e fixed and
let g(α) ∝ exp[−.5(α−ᾱ)0Σ̄−1α (α−ᾱ)] if α > 0 and 0 otherwise (positive marginal propensity
to consume). The posterior kernel is exp[−.5(α − α̃)0Σ̃−1α (α − α̃)]I(α>0) where I(.) is an
indicator function, Σ̃α = (Σ̄

−1
α + σ−2e GDP 0GDP )−1, α̃ = Σ̃α(Σ̄−1α ᾱ+ σ−2GDP 0GDPαols),

where αols is the OLS estimator. Suppose g
AS(α) is N(α̃, Σ̃α). Then a draw is accepted if

α† > 0 and rejected if α† ≤ 0.

Exercise 9.23 Consider studying the duration dependence of recessions. Negative dura-
tion dependence occurs if the longer you have been in a particular state the higher is the
probability to switch away from that state. Suppose we model the duration of recessions as
Weibull with shape parameter a1 and scale parameter a2 and assume an appropriate prior
for α1 and α2 (e.g. Beta or Uniform). Using US post-WWII GDP data draw samples from
the posterior for a1 and a2 keeping only draws which produce negative duration. What is the
mean of a2? What is a 68% credible posterior interval? How would you verify the hypothesis
that a2 = 0 (i.e. no duration dependence)?

If gAS(α) is far away from g(α|y), sampling is time consuming since many draws will be
discarded. The alternative is to keep all the draws but weight them appropriately.

Importance Sampling

Let gIS(α) be an importance sampling density and ğIS(α) be its kernel. Let IR(α) = g(α|y)
gIS(α)

be a weighting function with finite expected value. If E(h(α)|y) and var(h(α)|y) exist for
a continuous h(α) and the support of gIS(α) includes the support of g(α|y), then:

hL ≡
PL
l=1 h(α

l)IR(αl)P
l IR(α

l)
P→ E(h(α)|y) (9.37)

√
L(hL −E[h(α)|y]) D→ N(0,σ2) (9.38)

σ2L =
L−1

PL
l=1[h(α

l)−E(h(α)|y)]2IR(αl)2
[
P
l IR(α

l)]2
P→ σ2 (9.39)

An importance sampling density is pictured in the second panel of figure 9.3. Equation
(9.37) implies that the acceptance sampling algorithm 9.5 can be simplified as follows:

Algorithm 9.6

1) Draw α† from gIS(α); weight h(α†) with g(α†|y)
gIS(α†) = IR(α

†).

2) Repeat step 1. L times and compute (9.37).

Acceptance and importance sampling have similarities and differences. Importance sam-
pling has a wider range of applicability since IR(αl) can be computed using the kernels of
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g(α|y) and gIS(α). However, gIS(α) must integrate to 1. Note that, if R
gAS(α)dα = 1 and

gAS(α) satisfies ğ(αl|y)
gAS(αl)

≤ % <∞, all l, it can be used as importance sampling.
To compute the marginal posterior for the subvector α1, g(α1|y) =

R
g(α1,α2|y)dα2, one

could use g(α1|y) =
R
g(α1,α2|y)

IR(α1|α2,y)
IR(α1|α2, y)dα2 ≡ EIR

R
g(α1,α2|y)
IR(α1|α2y)

. Note also that if IR(α) is

chosen so that g(α|y)
IR(α)gIS(α)

is constant, the algorithm works well. While a good importance

density for interesting macroeconomic problems can sometimes be found (see example 3.2 in
chapter 10), there are situations where IR(α) varies wildly, making this posterior simulator
unusable. Since the properties of IR(α) are application dependent, careful experimentation
is needed before the results obtained with importance sampling are to be trusted.

Finally note that, regardless of the variations in IR(αl), both acceptance and importance
sampling are difficult to use in hierarchical models or in structures where the dimension of α
is large (e.g. in VARs). The methods described next can be used in both of these situations.

Example 9.30 Continuing with example 9.29, let g(α) be defined for all α ∈ (−∞,∞).
Then one could use a t-density with (T−dim(α)) degrees of freedom as importance sampling.
Since IR(α) is now the ratio of a normal to a t-density, it is bounded for all α. Hence, a
t-density is a good importance density for this example.

Exercise 9.24 A simple model of returns states that Rit = RMtαi+eit where i = 1, . . . I, t =
1, . . . T and RMt is a market portfolio (say, the return on the SP500 index). Suppose that,
because of risk considerations, the prior for α is normal truncated outside the range (-2,2),
i.e. g(αi) = N(ᾱ, σ̄2α) ∗ I[−2,2]. Describe how to implement an importance sampling algo-
rithm to construct g(α|Ri, RM). How would you select a portfolio composed of assets whose
returns are positively correlated with the market?

Exercise 9.25 Suppose yt = a0+
Pq
j=1 ajyt−j+et and suppose you are interested in h(α) =Pq

j=1 αj, a measure of the persistence of the process. Assume that g(
P
j αj) ∼ U(0, 1).

Using EU data on CPI inflation from 1970 to 2000, draw a posterior sample for h(α) using
both acceptance and importance sampling. What is the interquartile range for h(α) in the
two cases? (Hint: make appropriate assumptions about et and its variance σ

2
e).

9.5.3 Markov Chain Monte Carlo Methods

Monte Carlo Markov Chain (MCMC) methods are simulation techniques that generate
a sample from some target distribution. The idea is to specify a transition kernel for a
Markov chain such that starting from some initial value and iterating a number of times,
we produce a limiting distribution which is the target distribution we need to sample from.
The Metropolis-Hastings (MH) algorithm was the first MCMC method employed in the
literature. Here the next value of the chain is generated from a proposal density and
accepted or rejected according to the value of the target density at the candidate point
relative to the target density at the current point. The Gibbs sampler, a method commonly
used for a variety of economic problems, is a special case of the MH algorithm where draws
for the subcomponents are made from a sequence of conditional distributions.
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The generated sample can be used to summarize the target density using graphical meth-
ods and expectations of integrable functions can be estimated using appropriate averages
of the functions. Under general conditions, the ergodicity of the Markov chain guarantees
that this estimate is consistent and has a normal distribution as the length of the simula-
tion goes to infinity. Note that, while with acceptance and importance sampling draws are
iid, here the draws are correlated because of the Markov nature of the process. Therefore
averages should be computed from approximately independent elements of the sequences
or the asymptotic covariance matrix appropriately modified.

MCMC methods can be applied directly to the kernel of the target density (that is, no
knowledge of f(y) is needed) and this makes them particularly useful for Bayesian analysis.
However, as we will see in the next chapters, MCMC methods can also be used as classical
devices to explore intractable likelihoods or to find the maximum of nasty functions using
a ”data augmentation” technique.

To see how the method works take as the limiting distribution µ(α) ≡ ğ(α|y). Then we
need a transition P (As,α), where As ⊆ A, which converges as the number of iterations goes
to infinity to µ(α), starting from any α0. Suppose P (dα

0,α) = p(α0,α)dα0 + p1(α)p2(dα0)
for some p, where α0 ∈ As, p(α,α) = 0, p2(dα

0) has a point mass at α (i.e. it equals one
if α ∈ dα0) and p1(α) = 1 − R

p(α,α0)dα0 is the probability that the chain remains at α.
Suppose µ(α)p(α,α0) = µ(α0)p(α0,α) (this condition is called reversibility). ThenZ

P (As,α)µ(α)dα =

Z
As

µ(α0)dα0 (9.40)

Exercise 9.26 Show that (9.40) holds (Hint: use the reversibility condition and the fact
that

R
p(α0,α)µ(α0)dα = (1− p1(α0))µ(α0).)

The left hand side of (9.40) is the unconditional probability of going from α to α0 ∈ As
where α is generated from µ(α). The right hand side is the unconditional probability of
being in α0 where α0 is generated by µ(α0). Condition (9.40) defines an invariant distribution
µ for P (As,α). Therefore, if µ(α) is unique, P (As,α) is chosen as above and iterated L
times, the result will be the target distribution (see last panel of figure 9.3 for the first two
steps in the iterations). To show the details of the argument we need a few definitions.

Definition 9.5 A Markov chain is a collection of random variables αt, t = 1, . . . T . The
transition matrix of a Markov chain is P (A,α‡) = pr(α0 ∈ A|α = α‡) =

R
AK(dα0,α‡)

where K is the kernel of the chain, K(.,α‡) is a probability measure for all α‡, and K(A, .)
is measurable for all A. The L-step transition matrix is PL(A,α‡) = pr(αL ∈ A|α = α‡) =R K(dα0,α‡)KL−1(AL−1,α0) with K1(dα0,α‡) = K(dα0,α‡).
Definition 9.6 Let A1 = {α ∈ A, pr(α) > 0}. The kernel of a Markov chain is irreducible
if there exists a L ≥ 1 such that KL(A1,α‡) > 0, for all α‡ ∈ A.

Definition 9.7 An irriducible Markov chain is aperiodic if for all A2 ∈ A, P (A2,α‡) >
0, ∀α‡ ∈ A.
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Definition 9.8 A Markov chain is Harris recurrent if there exists a measure P such that
the kernel of the chain is irreducible and, for every A3 with p(A3) > 0, P (A3,α

‡) = 1.

Definition 9.9 A function µ(α) is an invariant density for the kernel of the Markov chain
if µ(A4) ≡

R
A4
µ(α)dα =

R K(A4,α‡)µ(dα‡), for all measurable A4 ⊆ A.
The meaning of the irriducibility condition is shown in figure 9.4. The sequences in the

first box stays within a particular region. Therefore, there is a part of the space which has
zero probability of being visited starting either from A or B. This does not happen in the
second box. The aperiodicity condition implies that all states can be visited with positive
probability from any initial state. That is, we don’t want the chain to cycle through a finite
number of sets. Finally, a Harris recurrent chain visits A3 with probability 1.

Reducible chain Irribucible chain

     A        B       A B

Figure 9.4: MCMC draws

With these definitions we can present the two main results which justify the use of
MCMC methods to draw sequences from unknown posterior distributions.

Result 9.3 (Tierney) If a Markov chain is Harris recurrent and has a proper ergodic µ(α),
than µ(α) is the unique invariant distribution of the Markov chain.

Result 9.4 (Tierney) If a Markov chain with invariant distribution µ(α) is Harris recur-
rent and aperiodic then, for all α0 ∈ A and all A0,
1. ||PL(A0,α0)− µ(α)||→ 0 as L→∞ where ||.|| is the total variation distance.
2. For all h(α) absolutely integrable with respect to µ(α): limL→∞ 1

L

PL
l=1 h(α

l)
a.s.→R

h(α)µ(α)dα.

Part 1 of result 9.4 tells us that, as L→∞, draws from PL(α0, A0) are draws from the
invariant distribution, regardless of the initial value α0. Part 2 indicates that averages of
functions evaluated at sample values converge to their expected values calculated using the
invariant distribution. Sufficient conditions which insures that the chain is Harris recurrent
and aperiodic are given below for each posterior simulators.
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Gibbs sampler

Given that the object is to find a transition density that has the joint posterior as its
invariant distribution, the Gibbs sampler partitions the vector of unknowns into blocks and
the transition density is defined by the product of conditional densities. The next item in
the chain is obtained by successively sampling from the densities of each block, given the
most recent values of the conditioning parameters. The main value of the algorithm lays in
the fact that conditional densities are typically easy to compute and cheap to sample from.

To see exactly what the algorithm involves, partition α as α = (α1,α2, ...,αk). Suppose
g(αi|αi0 , y i0 6= i) are available (e.g. choose the partition so this is the case). Then:

Algorithm 9.7

1) Choose initial values (α
(o)
1 ,α

(o)
2 , ...,α

(o)
k ) from an approximate g(α|y), e.g. a normal

approximation or the output of another (simpler) simulator.

2) For l = 1, 2, . . . , draw αl1 from g(α1|αl−12 , ...,αl−1k , y), αl2 from g(α2|αl1, ...,αl−1k , y), . . . ,αlk
from g(αk|αl1, ...,αlk−1, y).

3) Repeat step 2) L times.

The process of drawing in step 2 defines a transition from αl−1 to αl. The algorithm
therefore produces a sequence which is the realization of a Markov chain with transition

P (αl,αl−1) =
kY
i=1

g(αli|αl−1i0 (i
0 > i),αli0(i

0 < i), y) (9.41)

By result 9.4, if P (αl,αl−1) is Harris recurrent and aperiodic, the sample αL = (αL1 ,αL2 , ...,αLk ),
L is large, is a draw from the joint posterior g(α|y). Furthermore, αLi , i = 1, . . . k is a draw
from the marginal g(αi|y).

The Gibbs sampler works well when the components are independent. Therefore highly
correlated components (e.g. the parameters of an AR process) should be grouped together
in blocks. Tractable conditional structures from intractable likelihood functions can be
derived at times using a data-augmentation technique. An example of this technique is
given below while applications to factor and Markov switching models are in chapter 11.

What kind of conditions insure that the transition kernel (9.41) converges to the poste-
rior g(α|y)? A sufficient condition is the following: if for every α0 ∈ A and every A1 ⊂ A
with pr(α ∈ A1|y) > 0, P (αl ∈ A1|αl−1, y) > 0, where P is the transition induced by (9.41),
then the Gibbs transition kernel is ergodic and its unique invariant distribution is g(α|y).

The condition P (αl ∈ A1|αl−1, y) > 0 is simple and easy to check. In fact, it requires
that all the cells of the chain can be visited with positive probability starting from any αl−1.
All the applications we discuss in chapters 10 and 11 satisfy this mild condition.

There are a few implementation issues worth discussing. The first is how to draw
uncorrelated samples for α from g(α|y). There are two alternatives. The first one produces
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one sample (of dimension J ∗ L) after an initial sequences of L̄ observations is discarded.
Then one uses only elements (L, 2L, . . . , J ∗ L) to eliminate the correlation existing among
the draws. The second produces J samples each of length L+ L̄ and the last observation
in each sample is used for inference. If L̄ is chosen appropriately, the two approaches are
equivalent. The second important issue has to do with the magnitude of L̄, the length of
the burn-out period. There are many ways to check how long L̄ should be to insure that
the algorithm has converged. Here we describe three: the first two are appropriate when
draws for α are made from one large sample. The last is applicable when J samples of L
observations are used.

One way to check for convergence is to choose two points, say L̄1 < L̄2, and compute
distributions/moments of α after these points. If the distributions/moments are stable, then
the algorithm has converged at L̄1. Taking this approach one step further, one can compute
recursive means of αl over l and graphically check if they settle after an initial period (CUM-
SUM statistic). Alternatively, one could fix L̄ and compute distributions/moments using
J1 and J2 sampled values, J2 >> J1. If convergence is achieved, the distributions/moments
computed with J1 observations should be similar to those computed using J2 observations.
A variant of this approach is the following: let h(α) be a continuous function of α. Then,
given L̄, one could also split the simulation sample into two pieces (J1 ∗ L) and (J2 ∗ L),
J = J1+J2 and compute h1 =

1
J1

P
l h(α

l); h2 =
1
J2

P
l h(α

l); σ21 =
1
J1

P
l[h(α

l)−h1]2; σ22 =
1
J2

P
l[h(α

l)− h2]2. Convergence obtains if observations in the two samples have the same
distribution, i.e. h1−h2

(σ2
1+σ

2
2)

0.5

D→ N(0, 1) as J →∞. Both L̄ and J are application dependent.
For simple problems L̄ ≈ 50 and J ≈ 200 should suffice. For more complicated problems
(for example, VARs or panel VARs), L̄ ≈ 100 and J ≈ 300− 500 should be selected.

The third approach examines whether the variance within iteration is approximately
the same as the variance across iterations. Failure to converge is indicated by the former
being significantly smaller than the latter. That is, compute ΣB = L

J−1
P
j(h̄.j − h̄..)2

where h̄.j =
1
L

P
i h(αij); h̄.. =

1
J

P
j h(α.j); and ΣW = 1

J

P
j(

1
L−1

P
i(h(αij)− h̄.j))2. Thenr

L−1
L
ΣW+

1
L
ΣB

ΣW
→ 1 as L→∞. Hence, if ΣB ≈ ΣW , convergence is achieved.

Example 9.31 We examine convergence of Gibbs sampler estimates in a linear regression
model where the log of output is regressed on a number of lags of the log of money. This
could be of some interest, for example, in studying money neutrality in the short or in
the long run. Data for the US from 1973:1 to 1993:12 are used in the exercise. We have
run fifty replications of the Gibbs sampler using 150, 300, 500 draws for a model with one
intercept and two lags of the log of money. The adjusted ratio of ΣW to ΣB was respectively
1.01, 1.003, 1.001 indicating that convergence was achieved after 150 draws. For each of
the replications with 500 draws, we split the sample in two with 300 observations in the first
part and 200 in the second part and computed the normal test. Out of 100 replications, we
rejected the null of convergence in just one case.

Inference with the output of the Gibbs sampler presents no difficulty. As suggested by
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result 9.4, E(h(α|y)) = 1
J

P
j h(α

jL) where the notation αjL indicates the j ∗ L-th draw
after L̄ iterations are performed. The variance of h(α) can be computed using the spectral

density at frequency zero, i.e. E(h(α|y)h(α|y)0) = PJ(τ)
−J(τ)K(τ)ACFh(τ), where ACFh(τ)

is the autocovariance of h(α) for draws separated by τ periods and J(τ) is the maximum
number of covariances considered. Note that this measure takes into account the possibility
that the selected draws are not spaced enough to make them independent of each other. The
marginal density for αi can be estimated using kernel methods directly from the sequence
(α1i , . . .α

J
i ) or using the fact that g(αi|y) = 1

J

PJ
j=1 g(αi|y,αji0 , i0 6= i).

Predictive inference is also easy. For example, f(yt+τ |yt) =
R
f(yt+τ |yt,α)g(α|yt)dα

can be easily simulated using Gibbs sampler draws for α and the model specification
f(yt+τ |yt,α), averaging simulated values of yt+τ over α draws. Finally, tests of model
adequacy can also be implemented using the output of the Gibbs sampler. Recall that the
Bayes factor is the ratio of the predictive density of two models. Hence, it can be numer-
ically calculated drawing α from g(α), constructing f(y|α) for each draw, and averaging
over α’s for each of the two models.

We illustrate the properties of the Gibbs sampler in a simple example next.

Example 9.32 Suppose that (x, y) is binomial with density f(x, y) ∝ n!
x!(n−x)!y

x+α0−1(1−
y)n−x+α1−1, x = 0, 1, . . . n, 0 ≤ y ≤ 1 and suppose we are interested in the marginal f(x).
Direct integration produces f(x) ∝ n!

x!(n−x)!
Γ(α0+α1)
Γ(α0)Γ(α1)

Γ(x+α0)Γ(n−x+α1)
Γ(α0+α1+n)

which is the Beta-

Binomial distribution. It is also easy to calculate the conditional distributions f(x|y) and
f(y|x). The first one is binomial with parameters (n, y), the second is Beta with parameters
(x+α0, n− x+α1). Figure 9.5 presents the histogram generated from the true f(x) when
α0 = 2, α1 = 4 and from the marginal computed via the Gibbs sampler with J = 500, L =
100, and L̄ = 20. It is remarkable how close the two distributions are, even for a small L̄.

In the next example we use the Gibbs sampler to obtain the posterior distribution of
the parameters of a seemingly unrelated regression (SUR) model - it is a good idea to store
these derivations as we will extensively use them in chapter 10.

Example 9.33 (Seemingly unrelated regression) Let yit = x0itαi+eit and et = (e01t, . . . , e0Mt)
0 ∼

N(0,Σe), where i = 1, . . . ,m, t = 1, . . . , T and αi is a k × 1 vector. Stacking the obser-
vations for each i we have yt = xtα+ et where yt = (y

0
it, . . . , y

0
mt)

0, xt = diag(x0it, . . . , x
0
mt),

α = (α01, . . .α0m)0 is an mk × 1 vector. Suppose that g(α,Σ−1e ) = g(α)g(Σ−1e ). Then:
ğ(α,Σ−1e |y) = g(α)g(Σ−1e )|Σ−1e |0.5T exp{−0.5

X
t

(yt − xtα)0Σ−1e (yt − xtα)} (9.42)

The target density that needs to be simulated is ğ(α,Σ−1
e |y)R

ğ(α,Σ−1
e |y)dαdΣe . Assume a conjugate

prior for α and Σ−1e of the Normal-Wishart form. Then g(α|Y,Σ−1e ) ∼ N(α̃, Σ̃α) and
g(Σ−1e |α, Y ) ∼ W(T+ν̄, Σ̃) where α̃ = Σ̃α(Σ̄−1α ᾱ+

P
t x
0
tΣ
−1
e yt); Σ̃α = (Σ̄

−1
α +

P
t x
0
tΣ
−1
e xt)

−1

and Σ̃ = (Σ̄−1+
P
t(yt−xtαols)(y−xtαols)0)−1, where (ᾱ, Σ̄α) are the prior mean and vari-

ance of α, Σ is the scale matrix of the prior for Σ−1e , ν̄ the prior degrees of freedom and
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Figure 9.5: True and Gibbs sampling distributions

αols is the OLS estimator of α. If we treat α and Σe as two Gibbs sampler blocks, simula-
tions of the two conditional posteriors asymptotically yield a sample such that αjL ∼ g(α|y);
Σ
−1(jL)
e ∼ g(Σ−1e |y) and (αjL,Σ−1(jL)e ) ∼ g(α,Σ−1e |y).

Exercise 9.27 Suppose in example 9.33 that m = 1, i.e. yt = xtα+ et, et ∼ N(0,σ2e).
i) Assume a non-informative prior for σ−2e and that α ∼ N(ᾱ, Σ̄α). Calculate the conditional
posterior for α and σ−2e . Describe how to employ the Gibbs sampler in this situation.
ii) Suppose that et ∼ N(0,σ2e ∗ x0x) and assume that the priors are s̄2σ−2 ∼ χ2(ν̄) and that
α ∼ N(ᾱ, Σ̄α). Find the conditional posterior for α and σ2e and show how to implement the
Gibbs sampler in this case. (Hint: Transform the model to get rid of heteroschedasticity).

Example 9.34 (Variance models) Consider the model yit = αi + eit, i = 1, . . . n, t =
1, . . . T , where αi ∼ N(ᾱ, σ̄2α), eit ∼ N(0,σ2e). Let α = [α1, . . .αn]0, y = [y11, . . . ynT ]0 and
assume that ᾱ ∼ N(ᾱ0,σ20), σ̄−2α ∼ G(aα1 , aα2 ), σ−2e ∼ G(ae1, ae2) where (σ20, ᾱ0, aα1 , aα2 , ae1, ae2)
are known. Then the conditional posteriors are (σ̄−2α |y, ᾱ,α,σ−2e ) ∼ G(aα1 + 0.5n, aα2 +
0.5

P
i(αi−ᾱ)2)); (σ−2e |y, ᾱ,α, σ̄−2α ) ∼ G(ae1+0.5nT, ae2+0.5

P
i

P
t(yit−αi)2); (ᾱ|σ̄2α, y,α,σ2e) ∼

N( σ̄
2
αᾱ0+σ2

0

P
i αi

σ̄2
α+nσ

2
0

,
σ̄2
ασ

2
0

σ̄2
α+nσ

2
0
); and (α|σ̄2α, y, ᾱ,σ2e) ∼ N( Tσ2

α
T σ̄2

α+σ
2
e
ȳ + σ2

e
T σ̄2

α+σ
2
e
ᾱ1, σ̄2

ασ
2
e

T σ̄2
α+σ

2
e
I) where

ȳ = (ȳ1, . . . ȳn)
0, ȳi = 1

T

P
t yit, 1 is a n× 1 vector of ones and I the identity matrix.

Exercise 9.28 Let yit ∼ N(αi,σ2i ), i = 1, . . . , n, t = 1, . . . Ti; where αi ∼ N(ᾱ, σ̄2α);σ−2i ∼
G(ai1, ai1), σ̄−2α ∼ G(aα1 , aα2 ), ᾱ ∼ N(ᾱ0,σ20) and (ai1, ai2, aα1 , aα2 , ᾱ0,σ20) are known. Let
ȳi =

1
Ti

P
t yit, s

2
i =

1
Ti−1

P
t(yit − ȳi)2, α = (α1, . . . ,αn)0, Y = (ȳ1, . . . ȳn, s21, . . . s

2
n)
0,
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σ2 = (σ21, . . .σ
2
n)
0.

(i) Show that (αi|Y, σ2, ᾱ, σ̄α) ∼ N(Tiȳiσ̄
2
α+ᾱσ

2
i

Tiσ̄2
α+σ

2
i
;

σ2
i σ̄

2
α

Tiσ̄2
α+σ

2
i
) (Note cov(αi,αj) = 0); (σ

−2
i |Y,α, ᾱ,

σ2α) =
Q
iG(ai1 + 0.5Ti, ai2 +

PTi
t=1(yit − αi)2); (ᾱ|Y,α, σ̄2α,σ2) ∼ N( σ̄

2
αᾱ0+σ2

0

P
i αi

σ̄2
α+nσ

2
o

;
σ2

0 σ̄
2
α

σ̄2
α+nσ

2
0
);

(σ̄−2α |Y,α, ᾱ,σ2i ) = G[aα1 + 0.5n, aα2 + 0.5
Pn
i=1(αi − ᾱ)2]

(ii) Assume ᾱ0 = 0;σ
2
0 = 1000; a

i
1 = 0.5, a

i
2 = 1, ∀i, aα1 = aα2 = 0, n = 3 and suppose you

have the following data Ti = (6, 8, 5); ȳi = (0.31, 2.03, 6.39); s2i = (0.23, 2.47, 8.78). Draw
posterior samples for α. Produce the posterior of α2 − α1 and α3 − α1.
(iii) Suppose a fourth unit is added to the sample with T4 = 2, ȳ4 = 5.67,σ

2
4 = 4.65. Con-

struct a time series of 5 observations for this new unit.

The Gibbs sampler is very useful to evaluate likelihoods with latent variables.

Example 9.35 (Latent variables) Consider the problem of modeling monthly purchases of
certain non-durable goods. We have a sample with many consumers but only a fraction of
them have acquired the good under consideration (say, tomatoes). We assume that agents
purchase tomatoes on the basis of individual characteristics. Suppose we measure purchases
in kilos and write the following censored regression model: zi = x

0
iα+ ei, ei iid ∼ N(0,σ2e),

and yi = max(0, zi). Here zi is a latent variable. Given n consumers, n1 of which buy
tomatoes, the likelihood for (α,σ2) is

L(α,σ2e |y) =
Y

i∈(n−n1)

(1− SN(x
0
iα

σe
))

Y
i∈n1

σ−2e exp{−0.5σ−2e (yi − x0iα)2} (9.43)

where SN is a standard normal distribution. This function is difficult to manipulate. How-
ever, if we treat zi as a latent variable and use the model for zi to artificially augment
the data space (we have called this approach data-augmentation technique), then the pos-
terior distribution can be easily sampled from the conditionals of (α,σ2e , z). If g(α) ∼
N(ᾱ, Σ̄α);σ−2e ∼ G(a1, a2) then (α|σ̄2e , z, y) ∼ N(α̃, Σ̃α) and (σ−2e |α, z, y) ∼ G(a1+0.5n), a2+
0.5(y − x0αols)0(y − x0αols)). Furthermore since ei are iid, g(z|y,α,σ2e) =

Q
i∈(n−n1)

g(zi|y,α,σ2e) =
Q
i∈(n−n1)

I(−∞,0]N(x0iα,σ2e) where I(−∞,0] truncates the normal distribution
outside the support (−∞, 0]. This simplification is possible because (α,σ2e) depend on zi
only through yi (see Tanner and Wong (1987)).

In applied work missing data causes headaches. However, if we treat them as latent
variables, the Gibbs sampler can be used to reconstruct them.

Exercise 9.29 (Missing data) Suppose we have missing data from a time series yt. Let y
M
t

be the missing data and yAt the data available and let yt = [y
M
t , y

A
t ]
0 = xtα+ et where et ∼

N(0,Σe). Here xt is a vector of observable variables; Σe =
·
σ21 + σ

2
2 σ22

σ22 σ21 + σ
2
2

¸
. Assume

a normal prior for α and a non-informative prior for (σ21,σ
2
2). Show that (y

M
t |yAt ,α,σ21,σ22)

is normal. Show the moments of the distribution. Describe how to use the Gibbs sampler
to draw missing data. Explain why treating yMt as a vector of unknown parameters makes
the posterior tractable.
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Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is a general simulation procedure which allows to
sample from intractable distributions. Two are the typical applications of this algorithm: to
sample blocks within a Gibbs sampler which have truncated distributions or distributions
where only a part of the kernel is tractable; to sample in problems where the block structure
needed to implement the Gibbs sampler is not available.

The MH algorithm works are follows: given that the latest value of α is αl−1, the next
value of the sequence is generated drawing from a candidate density P(α†,αl−1). The draw
is accepted with a probability which depends on the ratio of values of ğ(α†|y)×P(α†,αl−1)
to ğ(αl−1|y)×P(αl−1,α†). If a candidate is rejected, αl = αl−1. Hence, starting from some
α0 ∈ A and an arbitrary transition P(α†,αl−1) where α† ∈ A, one proceeds as follows. For
l = 1, 2, . . . L

Algorithm 9.8

1) Draw α† from P(α†,αl−1) and U from U(0, 1).

2) If U < E(αl−1,α†) = [ ğ(α
†|y)P(α†,αl−1)

ğ(αl−1|y)P(αl−1,α†) ] set α
` = α†, else set α` = α`−1.

The recursions produced by algorithm 9.8 define a Markov chain with a mixture of
continuous and discrete transitions:

P (αl−1, αl) = P(αl,αl−1)E(αl−1,αl) if αl 6= αl−1

= 1−
Z
A

P(α,αl−1)E(αl−1,α)dα if αl = αl−1 (9.44)

Note that if P(αl−1,α†) = P(α†,αl−1), the acceptance rate is independent of P and we
have the Metropolis version of the algorithm.

The logic of algorithm 9.8 is simple. Suppose that at a particular draw ğ(α†|Y )P(α†,αl−1)
≤ ğ(αl−1|Y )P(αl−1,α†). Then, loosely speaking, the process moves too rarely from α† to
αl−1 and too often from αl−1 to α†. To counteract this effect we introduce a probability
E(α†,αl−1) that the move is made so that the transition from αl−1 to α† isP(αl−1,α†)E(αl−1,α†).
Since the process does not move often enough from αl−1 to α† we set E(α†,αl−1) = 1. Using
the reversibility conditions at equality, we have E(αl−1,α†) = ğ(α†|y)P(α†,αl−1)

g̃(αl−1|y)P(αl−1,α†) . That is,

E(αl−1,α†) is insures that the reversibility condition is satisfied.
Further intuition can be gained if P(αl−1,α†) = P(α†,αl−1) so that E(αl−1,α†) =

ğ(α†|y)
ğ(αl−1|y) . Here if E(αl−1,α†) > 1 the chain moves to α† unconditionally, otherwise it moves

with probability given by ğ(α†|y)
ğ(αl−1|y) . That is, we always accept the draw if we move uphill in

the distribution since we want to visit areas where the density is higher. If the draw makes
us move downhill, we stay at the same point with probability equal to 1− E(αl−1,α†) and
explore new areas with probability equal to E(αl−1,α†). Note that, if we are already in an
area with high probability, E(αl−1,α†) will be small.
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As with the Gibbs sampler, a simple sufficient condition which insures that the MH
algorithm converges is available and only requires some restrictions on (9.44). In fact, if
for every α0 ∈ A and every A1 ∈ A with pr(α ∈ A1|y) > 0, it is the case that P (αl ∈
A1|αl−1, y) > 0, where P is the transition induced by (9.44), then the MH transition kernel
is ergodic and its unique invariant distribution is g(α|y).

In implementing the MH algorithm it is therefore important to appropriately choose
the transition density. One possibility is to set P(α†,αl−1) = P(α† − αl−1), so that the
candidate draw is taken from a multivariate distribution centered at αl−1. This is what we
call the random walk version of the MH algorithm : α† = αl−1 + v. To get ”reasonable”
acceptance rates we need to adjust carefully Σv and the choice is application dependent.

Alternatively, one could use the independent chain version of the algorithm where

P(α†,αl−1) = P(α†), in which case E(αl−1,α†) = min[ ğ(α†|y)P(α†)
ğ(αl−1|y)P(αl−1)

, 1]. If this alter-

native is chosen, both the location and the shape of P(α†) need to be monitored to insure
reasonable acceptance rates.

The independent chain version of the MH algorithm shares features with both accep-
tance and importance sampling. However, while the latter two approaches place a low
probability of acceptance (or a low weight) on a draw that is far away from the poste-
rior, the independent chain assigns a low probability of accepting the candidate draw if the
weighted ratio of the kernels at the previous and current draw is low, where the weight is

P(α†)
P(αl−1)

.

In general, one needs to make sure that the algorithm avoids excessively high or exces-
sively low acceptance rates since, in the first case, the exploration of the posterior is slow
and, in the second, a large region with high posterior probability is left undersampled. An
acceptance rate of 35-40% should be considered good.

Example 9.36 In example 9.29 we drew α† ∼ N(α̃, Σ̃α) and accepted the draw if α† > 0,
so that the probability of acceptance is (2π)−0.5|Σα|0.5

R
α>0 exp[−0.5(α− α̃)0Σ̃−1α (α− α̃)]dα.

If this probability is too small, the algorithm is impractical. Suppose instead we draw from
P(α†,αl−1) = (2π)−0.5k|Σ†|−0.5exp[−0.5(α† − αl−1)0(Σ†)−1(α† − αl−1)], where Σ† is the
variance of the shocks. If Σ† too small, a large number of draws is needed to cover the set
where α > 0. If it is too large, a large number of draws for α† will be negative. Hence, to
insure an appropriate coverage of the posterior, Σ† has to be carefully selected.

Example 9.37 Consider a bivariate normal distribution for z = (x, y) with mean (1, 2),
variances equal to 1 and covariance equal to 0.8. A scatter plot (using 4000 draws) obtained
by simulating (x,y) from this distribution is in the first box of the left hand side column
of figure 9.6: it is easy to see that the ellipsoids are very thin and positively inclined.
To approximate this distribution we use a MH algorithm with a reflecting random walk
transition (z†− z̄) = (zl−1− z̄)+v where the incremental variable v is uniformly distributed
in the interval [−0.5, 0.5] for both coordinates. Here, the probability of accepting the draw is
equal to min( exp[−0.5(z†−z̄)Σ−1(z†−z̄)]

exp[−0.5(zl−1−z̄)Σ−1(zl−1−z̄)] , 1). We also consider a Gibbs sampler, which uses
the conditional distributions (x|y) and (y|x), given by (x|y) ∼ N(1+ρ(y−2), 1−ρ2); (y|x) ∼
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N(2 + ρ(x− 1), 1− ρ2) where ρ is the correlation coefficient, to produce a sample from the
posterior. The second and third rows of figure 9.6 present a sample of 4000 draws from the
posteriors obtained with these two simulators. Both approaches approximate reasonably well
the target. The Gibbs sampler is slightly superior but the acceptance rate of the MH algorithm
is high (55%) and the tail of the distribution are not fully explored. Better acceptance rates
would probably lead to a better covering of the target distribution. Note also the sticking
similarities in the estimates of the marginal of x (see second column of figure 9.6).
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Figure 9.6: MCMC simulations

Before we close this section we would like to emphasize few important features of MCMC
methods. First, Markov Chain methods work better than importance or acceptance sam-
pling because the distribution from which draws are taken changes at each iteration (see
figure 9.3). Therefore, the transition kernel is time dependent. Second, although these
methods are based on Markov chains, the Markov property can be dispensed of. For exam-
ple, the chain may depend on the whole history of draws. Still, if the sufficiency conditions
for convergence are satisfied, both the Gibbs and the MH samplers will generate a sequence
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from the posterior. Third, it is important to stress that Markov chain methods produce cor-
related draws. Therefore, either we eliminate this dependence via skip-sampling or posterior
standard errors need to be adjusted to take this feature into account.

Exercise 9.30 Using the setup of example 9.37, vary cov(x, y) from 0.1 to 0.9 in incre-
ments of 0.2. Show the values of ΣB and ΣW , when you start from α1 = ±2.5;α2 = ±2.5,
and the interquantile range of the simulated distribution for samples of 100, 500, 1000
elements. Show the scatter plots obtained with the Gibbs sampler and the MH algorithm.

Exercise 9.31 Consider the model yt = αyt−1+et, et ∼ N(0,σ2e). The density of (y1, . . . , yt)
is f(y|α,σ2e) ∝ (σ2e)

0.5(T−1) exp{−0.5σ−2e
PT
t=2(yt − αyt−1)2} × exp{−0.5σ−2e y21(1− α2)}

[σ−2e (1−α2)]−0.5, where the last term is the density of y1. Suppose the only available prior
information is α < 1. Show the form of the posterior for (α,σ2e) and describe how to use a
MH algorithm to sample from it.

9.6 Robustness

Whenever the prior distribution has subjective features and/or the sample is small, it is
important to know how sensitive are posterior outcomes to the choice of prior distributions.
Robustness is crucial, for example, in evaluating the quality of a DSGE model. Since
prior distributions are conveniently chosen so as to make calculations simple, and typically
centered around calibrated values, it is imperative to verify that posterior inference does
not depend on the form of the prior distributions nor on its spread.

A way to assess the robustness of the posterior conclusions is to select an alternative
prior density g1(α), with support included in g(α), and use it to reweight posterior draws.

Let w(α) = g1(α)
g(α) . Then E1[h(α)] =

R
h(α)g1(α)dα =

R
h(α)w(α)g(α)dα so that h1(α) ≈P

l w(α
l)h(αl)P

l w(α
l)

.

Example 9.38 Continuing with exercise 9.27, suppose g(α) is normal with mean 1 and
variance 10. Then g(α|y) is normal with mean α̃ = Σ̃α(0.1 + σ

−2
e x

0xαols) and variance
Σ̃α = (0.1 + σ−2e x0x)−1. If one wishes to examine how forecasts produced by the model
change if the prior variance is reduced (for example, to 5) two alternatives are possible: (i)
draw a sequence αl1 from a normal posterior with mean Σ−1α (0.2+σ−2x0xαols) and variance
Σ−1α = (0.2 + σ−2x0x)−1, compute forecasts for each αl1 and compare results; (ii) weight
each original posterior draw with w(α), i.e. calculate αl1 =

g1(αl)
g(αl)

αl; compute forecast and

compare results, l = 1, 2, . . . , L.

Exercise 9.32 Suppose you are interested in comparing the welfare costs of a certain policy
in a model like the one considered in example 9.11 when you use a non-informative prior
for α and a sequence of informative priors, which are characterized by smaller and smaller
prior variances. How would you check robustness here? What ingredients do you need to
report to allow the reader to reweigh your results according to his/her own prior preferences?
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9.7 Estimating Returns to scale: Spain (1979-1999)

In this section we use Bayesian methods to measure the magnitude of the returns to scale
parameter in the aggregate Spanish production function. The literature dealing with pro-
duction function estimation is vast and cannot be summarized here. The exercise we con-
duct lies in the growth-accounting branch where output changes are explained by input
changes and all unexplained variations are lumped together under the total factor pro-
ductivity (TFP) label. We assume that output is produced with capital and labor using
a Cobb-Douglass specification and split the residual into four components: a constant, a
time trend, a term capturing efficiency improvements and one measurement errors. Hence
Yt = (α0tα1ζtet)K

α2
t N

α3
t , where K and N are measured capital and labor inputs, ζt cap-

tures efficiency improvements, et is a multiplicative measurement error, α0 a constant and
t a time trend. Taking natural logarithms and linearly detrending leads to:

yt = α2 lnKt + α3 lnNt + ln ζt + ln et (9.45)

where yt = lnYt − α1 ln t− lnα0. If we set vt = ln ζt + ln et, (9.45) is a standard regression
model with two explanatory variables. The composite error term vt is likely to be serially
correlated but, as a first step, we neglect this possibility and assume vt ∼ N(0,σ2v). Let
xt = (lnKt, lnNt) and α = (α2,α3).

Consider first a normal approximation. Using the results of example 9.9 we know
that the marginal posterior for α has a multivariate t-format. We will take a normal
approximation to each of the two components separately, centered at the mode α∗ with
curvature equal to Σ(α∗). The first row of table 9.1 gives percentiles of the posterior
of the returns to scale parameter obtained using this approximation: the interquartile
range is small and the median of the posterior is only 0.39, suggesting the presence of
strong decreasing returns to scale. Posterior estimates of (α2,α3,σ2v) can also be obtained
with the Gibbs sampler. Suppose that α =∼ N(ᾱ, Σ̄α) and that σ−2v ∼ G(a1, a2) where
ᾱ = (0.4, 0.6), Σ̄α = diag(0.05, 0.05) and we let a1 = a2 = 10−5, to make the prior on
σ−2v non-informative. The two conditional distributions are (α|σ2v , y, x) ∼ N(α̃, Σ̃) where
Σ̃α = (Σ̄

−1
α + σ−2v x0x)−1, α̃ = Σ̃α(Σ̄−1α ᾱ+ σ−2v x0xaOLS), where aOLS is the OLS estimator

of α and (σ−2v |α, y, x) ∼ G(a1 + 0.5 ∗ T, a2 + 0.5 ∗ (y − xαols)0(y − xαols)). Posterior
distributions are obtained discarding the initial 500 draws and keeping one every 50 of the
next 5000 draws. The second row of the table shows that the interquartile range of the
returns to scale parameter is smaller than the one obtained with a normal distribution and
the median is slightly higher. However, also with this approximation, decreasing returns
are strong.

Next, we allow serial correlation in vt. We assume ρ(`)vt = ²t, so that model (9.45)
is transformed into y0t ≡ ρ(`)yt = ρ(`)xtα + ²t = x0tα + ²t. The situation is now identical
to the previous one, except that a new vector of parameters ρ(`) needs to be estimated.
Let ρ(`) = 1 − ρ` and take the first observation to be fixed. The likelihood function is
L(α, ρ|y, x) = (σ2e)−0.5(T−1) exp{− 1

σ2
e

PT
t=2(y

0
t − x0tα)2}. Assume the same prior for α; let

the prior for σ−2² to be G(0.5, 0.5) and let g(ρ) be normal, centered at 0.8, with variance
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0.1, truncated outside the range (-1, 1) i.e. ρ ∼ N(0.8, 0.1) × I[−1,1]. The conditional
posterior for α is identical to the one previously derived and the one for σ−2² has the
same format as the one for σ−2v . The conditional distribution for ρ is normal with mean
ρ̃ = Σ̃ρ(8+σ

−2
² V

0v) and variance Σ̃ρ = (10+σ−2V 0V )−1, truncated outside the range (-1,1)
where v = (v2, . . . , vT )

0 = y − α2 lnK − α3 lnN , and V is a (T − 1)× 1 vector with j − th
element given by vt−j−1. Drawing from this distribution is easy since we have taken the first
observation as given. Had we not done that, the computation of the conditional posterior
for ρ would have required a pass with a MH algorithm. Serial correlation is important:
the median value of the posterior of ρ is 0.86 and the interquartile range is (0.84, 0.90).
However, returns to scale estimates are similar to the previous ones; only the estimate of
the upper 75-th percentile is slightly larger (see third row of table 9.1).

Percentiles
Method 25th 50th 75th

Normal approximation 0.35 0.39 0.47
Basic Gibbs 0.36 0.41 0.44
Gibbs with AR(1) errors 0.35 0.41 0.48
Gibbs with latent variable 0.33 0.41 0.45

Table 9.1: Posterior distribution of returns to scale

It is clear that ζt, apart from technological progress, includes everything which is ex-
cluded from the production function; for example, public capital or human capital. One
way of thinking about these influences is to treat ζt as a latent variable and let ζt = δzt+ ²

ζ
t

where zt are observables (in our case zt measures public capital) and ²
ζ
t represents the true

technological progress. With this specification, the model has a hierarchical latent variable
structure: conditional on (xt, ζt), yt is normal with mean xtα + δzt and variance σ

2
e + σ

2
ζ ;

conditional on (yt, xt), ζt is normal with mean δzt and variance σ
2
ζ . The specification has

two new parameters σ2ζ and δ. We let δ ∼ N(δ̄, Σ̄δ) and set δ̄ = 0 and Σ̄δ = 0.5. Since σ2ζ
and σ2e can not be identified separately with the short available data, we set σ

2
ζ = σ

2
e . The

conditional posterior for δ is normal with mean δ̃ = Σ̃δ(Σ̄
−1
δ δ̄ + 0.5σ

−2
e z

0ζt) and variance
Σ̃δ = (Σ̄−1δ + 0.5σ−2e z0z)−1. Since the posterior distribution for δ is centered around zero
(median -0.0004, interquartile range (-0.003, 0.004)), there is little evidence that ζt is in-
fluenced by public capital. Hence, the shape of the posterior distribution of the returns to
scale parameter is roughly unchanged (see fourth row of table 9.1).

There are many extensions one could consider to refine these estimates. For example,
we could think that measured inputs are different from effective ones and let e.g. Nt =
exp{aNzNt}N1t, where zNt are factors which affect the efficiency of measured input, such
as education, unionization, etc. In cross sectional comparisons, this refinement could be
important. Nt now becomes a latent variable and aN an additional set of parameters which
can be estimated once zNt are specified. Note that, in this case, the model has a bilinear
form, but the posterior distribution of the parameters can still be obtained with the Gibbs
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sampler, as shown by Koop, Osiewalski, Steel (2000).
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Chapter 10: Bayesian VARs

We have seen in chapter 4 that VAR models can be used to characterize any vector of
time series under a minimal set of conditions. We have also seen that since VARs are re-
duced form models, identification restrictions, motivated by economic theory, are needed
to conduct meaningful policy analysis. Reduced form VARs are also typically unsuitable
for forecasting out-of-sample. To reasonably approximate the Wold representation it is
in fact necessary to have a VAR with long lags. A generous parametrization means that
unrestricted VARs are not operational alternatives to either standard macroeconometric
models, where insignificant coefficients are purged out of the specification, or to parsimo-
nious time series models since, with a limited number of degrees of freedom, estimates of
VAR coefficients are imprecise and forecasts have large standard errors.

It is useful to think of the construction of an empirical model as the process of combining
historical and a-priori information, both of statistical and of economic nature. Alternative
modeling techniques provide different a-priori information or different relative weights to
sample and prior information. Unrestricted VARs employ a-priori information very sparsely
- in choosing the variables of the VAR; in selecting the lag length of the model; in imposing
identification restrictions. Because of this choice, overfitting may obtain when the data
set is short, sample information is weak or the number of parameters is large. In-sample
overfitting typically translates into poor forecasting performance, both in unconditional and
conditional sense. Bayesian methods can solve these problems: they can make in-sample
fitting less dramatic and improve out-of-sample performance. While Bayesian VAR (BVAR)
were originally devised to improve macroeconomic forecasts, they have evolved dramatically
and they are used now for a variety of purposes.

This chapter describes Bayesian methods for a variety of VAR models. First, we present
the decomposition of the likelihood function of a VAR and the construction of the pos-
terior distribution for a number of prior specifications. We also show the link between
posterior mean estimates and classical estimates obtained when the coefficients of the VAR
model are subject to stochastic linear constraints. The third section describes Bayesian
structural VARs and block recursive structures which arise e.g., in models with some ex-
ogenous variables or in two country models with (overidentifying) linear restrictions on the
contemporaneous impact of the shocks. The fourth section, discusses time varying BVAR
models. These models have a state space representation and this helps in constructing both
empirical Bayes and fully hierarchical posterior estimates of the VAR coefficients and of
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the covariance matrix. We show that these structures generate a variety of distributional
patterns and can be used to model series with thick tails, with smoothly evolving pattern,
or displaying coefficients switching over a finite number of states.

The fifth section deals with multiple BVAR models: these structures are becoming pop-
ular in empirical practice, for example, when comparing the effects of monetary policy
shocks in different countries or the growth behavior in different regions, and present inter-
esting complications relative to single unit BVAR models. We show how to obtain posterior
estimates of the coefficients of the model for each unit and how to obtain estimates of the
mean effect across units, which often is the center of interest for applied investigators. We
also describe a procedure to endogenously group units with similar characteristics. This is
useful when one wants to distinguish the impact of certain shocks on e.g. small or large
firms, or when policy advice requires some particular endogenous classifications (e.g. income
per-capita, education level, indebtness, etc.). The last part of the section studies Bayesian
Panel VAR models with cross unit interdependencies. These models are suited to study e.g.,
the transmission of shocks across countries or the effects of increased interdependencies in
various world economies. Because of the large number of parameters, it is impossible to
estimate them with classical methods and suitable (prior) restrictions need to be imposed
for estimation. With such a respecification, these models are easily estimable with Monte
Carlo Markov Chain methods.

Since the chapter deals with models of increasing complexity, increasingly complex meth-
ods will be used to compute posteriors. The techniques described in chapter 9 are handy
here: conjugate priors allow the derivation of analytic forms for the conditional posteri-
ors; Markov Chain Monte Carlo methods are used to draw sequences from the posterior
distributions.

10.1 The Likelihood function of an m variable VAR(q)

Throughout this chapter we assume that the VAR has the form yt = A(L)yt−1 + Cȳt +
et, et ∼ (0,Σe), where yt includes m variables, each of which has q lags, while the constant
and other deterministic variables (trends, seasonal dummies) are collected into the mc × 1
vector ȳt. Hence, the number of regressors in each equation is k = mq +mc and there are
mk coefficients in the VAR.

Following the steps described in chapter 4, we can rewrite the VAR in two alternative
formats, both of which will be used in this chapter:

Y = XA+E (10.1)

y = (Im ⊗X)α+ e e ∼ (0,Σe ⊗ IT ) (10.2)

where Y and E are T ×m matrices and X is a T × k matrix, Xt = [y
0
t−1, . . . , y0t−q, ȳ0t]; y

and e are mT × 1 vectors, Im is the identify matrix of dimension m, and α = vec(A) is a
mk × 1 vector. Using (10.2) the likelihood function is
L(α,Σe) ∝ |Σe ⊗ IT |−0.5 exp{−0.5(y − (Im ⊗X)α)0(Σ−1e ⊗ IT )(y − (Im ⊗X)α)} (10.3)
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To derive a useful decomposition of (10.3) note that

(y − (Im ⊗X)α)0(Σ−1e ⊗ IT )(y − (Im ⊗X)α) =

(Σ−0.5e ⊗ IT )(y − (Im ⊗X)α)0(Σ−0.5e ⊗ IT )(y − (Im ⊗X)α) =

[(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)α)]0[(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)α)]

Also (Σ−0.5e ⊗IT )y−(Σ−0.5e ⊗X)α = (Σ−0.5e ⊗IT )y−(Σ−0.5e ⊗X)αols+(Σ
−0.5
e ⊗X)(αols−α)

where αols = (Σ
−1
e ⊗X0X)−1(Σ−1e ⊗X)0y. Therefore:

(y − (Im ⊗X)α)0(Σ−1e ⊗ IT )(y − (Im ⊗X)α) =

((Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols)
0((Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols) + (10.4)

(αols − α)0(Σ−1e ⊗X0X)(αols − α) (10.5)

The term in (10.4) is independent of α and looks like a sum of squared errors. The one in
(10.5) looks like the scaled square error of αols. Putting the pieces back together we have:

L(α,Σe) ∝ |Σe ⊗ IT |−0.5 exp{−0.5(α− αols)0(Σ−1e ⊗X0X)(α− αols)
− 0.5[(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols)

0[(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols)]}
= |Σe|−0.5k exp{−0.5(α− αols)0(Σ−1e ⊗X0X)(α− αols)}
× |Σe|−0.5(T−k) exp{−0.5tr[(Σ−0.5e ⊗ IT )y
− (Σ−0.5e ⊗X)αols)

0(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)αols)]}
∝ N(α|αols,Σe,X, y)×W(Σ−1e |y,X,αols, T − k −m− 1) (10.6)

where tr is the trace of a matrix. The likelihood function of a VAR(q) can therefore be
decomposed into the product of a Normal density for α, conditional on the OLS estimate
αols and on Σe, and a Wishart density for Σ

−1
e , conditional on αols, with scale matrix

[(y− (Im⊗X)αols)
0(y− (Im⊗X)αols)]

−1, and (T − k−m− 1) degrees of freedom (see the
Appendix for the form of various distributions).

Hence, under appropriate conjugate prior restrictions, we can analytically derive the
conditional posterior distribution for the VAR coefficients and the covariance matrix of the
reduced form shocks. As we have seen in chapter 9, a Normal-Wishart prior conjugates the
two blocks of the likelihood. Therefore, under these assumptions, the conditional posterior
for α will be Normal and the conditional posterior of Σ−1e will be Wishart. Other prior
assumptions on α and Σe also allow analytical computation of conditional posteriors. We
examine them in the next section.

10.2 Priors for VARs

In this section we consider four alternative types of prior specification:

1. A Normal prior for α with Σe fixed.
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2. A non-informative prior for both α and Σe.

3. A Normal prior for α, and a non-informative prior for Σe.

4. A Conditionally conjugate prior, i.e. a Normal for α, and a Wishart for Σ−1e .

We examine in details the derivation of the posterior distribution for the VAR coefficients
for case 1. Let the prior be α = ᾱ+ va, va ∼ N(0, Σ̄a), with Σ̄a fixed. Then

g(α) ∝ |Σ̄a|−0.5exp[−0.5(α− ᾱ)0Σ̄−1a (α− ᾱ)]
∝ |Σ̄a|−0.5exp[−0.5(Σ̄−0.5a (α− ᾱ))0Σ̄−0.5a (α− ᾱ)] (10.7)

Let Y = [Σ̄−0.5a ᾱ, (Σ−0.5e ⊗ IT )y]0; X = [Σ̄−0.5a , (Σ−0.5e ⊗X)]0. Then:

g(α|y) ∝ |Σ̄a|−0.5 exp{−0.5(Σ̄−0.5a (α− ᾱ))0Σ̄−0.5a (α− ᾱ)} × |Σe ⊗ IT |−0.5
× exp {(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)α)0(Σ−0.5e ⊗ IT )y − (Σ−0.5e ⊗X)α)}
∝ exp {−0.5(Y −Xα)0(Y −Xα)}
∝ exp {−0.5(α− α̃)0X 0X (α− α̃) + (Y −X α̃)0(Y −X α̃)} (10.8)

where

α̃ = (X 0X )−1(X 0Y) = [Σ̄−1a + (Σ−1e ⊗X0X)]−1[Σ̄−1a ᾱ+ (Σ
−1
e ⊗X)0y] (10.9)

Since Σe and Σ̄a are fixed, the second term in (10.8) is a constant independent of α and

g(α|y) ∝ exp[−0.5(α− α̃)0X 0X (α− α̃)] ∝ exp[−0.5(α− α̃)0Σ̃−1a (α− α̃)] (10.10)

Hence, the posterior density of α is Normal with mean α̃ and variance Σ̃a = [Σ̄
−1
a +(Σ−1e ⊗

X0X)]−1. For (10.10) to be operational we need Σ̄a and Σe. Typically, Σ̄a is arbitrarily
chosen (e.g. to have a loose prior) and one uses e.g., Σe,ols =

1
T−1

PT
t=1 e

0
t,olset,ols, et,ols =

yt − (Im ⊗X)αols, in the formulas.

10.2.1 Least square under uncertain restrictions

The posterior mean for α displayed in (10.9) has the same format as a classical estimator
obtained with Theil’s mixed type approach when coefficients are stochastically restricted.
To illustrate this point consider a univariate AR(q) with no constant:

Y = XA+E E ∼ (0,Σe)
A = Ā+ va va ∼ (0, Σ̄a) (10.11)

where A = [A1, . . . Aq]
0,Xt = [yt−1, . . . yt−q]. Set Yt = [Yt, Ā

0]0, Xt = [Xt, I]
0, Et = [Et, v0a]0.

Then Yt = XtA + Et, where Et ∼ (0,ΣE), and ΣE is assumed known. The (generalized)
least square estimator is AGLS = (X 0Σ−1E X )−1(X 0Σ−1E Y), which is identical to Ã, the mean
of the posterior of A obtained with fixed Σe, fixed Σ̄a and a Normal prior for A. There
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is a simple but useful interpretation of this result. Prior restrictions on VAR coefficients
can be treated as dummy observations which are added to the system of VAR equations.
The posterior estimator will efficiently combine sample and prior information using their
precisions as weights. Additional restrictions can be tagged on to the system in exactly
the same fashion and posterior estimates can be obtained by combining the vector of prior
restrictions with the data. We will exploit this feature later on, when we design restrictions
intended to capture the existence of trends, seasonal fluctuations, etc.

Exercise 10.1 (Hoerl and Kennard) Suppose that Ā = 0 in (10.11). Show that the pos-
terior mean of A is Ã = (Σ̄−1a + X0Σ−1e X)−1(X0Σ−1e Y). Show that if Σe = σ2e × IT ,
Σ̄a = σ

2
v × Iq, Ã = (Iq + σ2

e
σ2
v
(X0X)−1)−1Aols, where Aols is the OLS estimator of A.

There are two important features of exercise 10.1. First, since the restriction Ā = 0
imposes the belief that all the coefficients are small, it is appropriate if yt is the growth
rate of financial variables like exchange rates or stock prices. Second, the last part of the
exercise indicates that the posterior estimator increases the smallest eigenvalues of the data

matrix by the factor σ
2
e
σ2
v
. Hence, it is useful when the (X0X) matrix is ill-conditioned (e.g.

when near multi-collinearity is present).

Exercise 10.2 Treating α̃ in (10.9) as a classical estimator, show what conditions insure
its consistency and its asymptotic normality.

There is an alternative representation of the prior for case 1. Set Rα = r + va, va ∼
N(0, I), where R is a square matrix. Then g(α) is N(R−1r,R−1R−10) and α̃ = [R0R+(Σ−1e ⊗
X0X)]−1[R0r + (Σ−1e ⊗X)0y]. This last expression has two advantages over (10.9). First,
it does not require the inversion of the mk ×mk matrix Σ̄a, which could be complicated
in large scale VARs. Second, zero restrictions on some coefficients are easy to impose - in
(10.9) this must be done setting some diagonal elements of Σ̄a to infinity.

Exercise 10.3 Using Rα = r + va, va ∼ N(0, I) as a prior, show that
√
T (α̃− αols) P→ 0

as T →∞.

The intuition for the result of exercise 10.3 is clear: since as T grows, the importance of
the data increases relative to the prior, α̃ coincides with the unrestricted OLS estimator.

10.2.2 The Minnesota prior

The so-called Minnesota (Litterman) prior is a special case of Case 1 prior when ᾱ and Σα
are functions of a small number of hyperparameters. In particular (see, for example, RATS
(2000)) this prior assumes that ᾱ = 0 except for ᾱi1 = 1, i = 1, . . . ,m; that Σa is diagonal
and that the σij,` element corresponding to lag ` of variable j in equation i has the form:

σij,` =
φ0
h(`)

if i = j, ∀`
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= φ0 × φ1
h(`)

× (σj
σi
)2 otherwise when i 6= j, j endogenous,∀`

= φ0 × φ2 for j exogenous (10.12)

Here φi, i = 0, 1, 2 are hyperparameters, (
σj
σi
)2 is a scaling factor and h(`) a determin-

istic function of `. The prior (10.12) captures features of interest to the investigator: φ0
represents the tightness on the variance of the first lag; φ1 the relative tightness of other
variables; φ2 the relative tightness of the exogenous variables and h(`) the relative tight-
ness of the variance of lags other than the first one. Typically, one assumes an harmonic
decay h(`) = `φ3(a special case of which is h(`) = `, a linear decay) or a geometric decay
h(`) = φ−`+13 ,φ3 > 0. Since σi, i = 1, . . . ,m are unknown, consistent estimates of the
standard errors of the variables i, j are used in (10.12).

To understand the logic of this prior note that the m time series are a-priori represented
as random walks. This specification is selected because univariate random walk models are
typically good in forecasting macroeconomic time series. Note also that the random walk
hypothesis is imposed a-priori: a posteriori, each time series may follow a more complicated
process if there is sufficient information in the data to require it.

The variance-covariance matrix is a-priori selected to be diagonal. Hence, there is no
relationship among the coefficients of various VAR equations. Moreover, the most recent
lags of a variable are expected to contain more information about the variable’s current
value than do earlier lags. Hence, the variance of lag `2 is smaller than the variance of
lag `1 if `2 > `1 for every endogenous variable of the model. Furthermore, since lags of
other variables typically have less information than lags of own variables, φ1 ≤ 1. Note
that, if φ1 = 0, the VAR is a-priori collapsed into a vector of univariate models. Finally, φ2
regulates the relative importance of the information contained in the exogenous variables
and φ0 controls the relative importance of sample and prior information. From (10.9) if
φ0 is large, prior information becomes diffuse so the posterior distribution mirrors sample
information. If φ0 is small, prior information dominates.

A graphical representation of this prior is in figure 10.1: all coefficients have zero prior
mean (except the first own lag) and prior distributions become more concentrated for co-
efficients on longer lags. Moreover, the prior distributions of the lags of the variables not
appearing on the left hand side of the equation are more concentrated than those of the
own lags.
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Figure 10.1: Minnesota prior.

Example 10.1 To see what the Minnesota prior implies consider a VAR(2) with q =
2, ȳ = 0, h(`) = `. In this case ᾱ = [1, 0, 0, 0, 0, 1, 0, 0], and

Σ̄a =



φ0 0 0 0 0 0 0 0
0 φ0φ1(

σ2
σ1
)2 0 0 0 0 0 0

0 0 φ0

2 0 0 0 0 0

0 0 0 φ0

2 φ1(
σ2
σ1
)2 0 0 0 0

0 0 0 0 φ0φ1(
σ1
σ2
)2 0 0 0

0 0 0 0 0 φ0 0 0

0 0 0 0 0 0 φ0

2 φ1(
σ1
σ2
)2 0

0 0 0 0 0 0 0 φ0
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There are considerable advantages in specifying Σ̄a to be diagonal. Since the same
variables appear on the right hand side of each equations, a diagonal Σ̄a implies a diagonal
Σ̃a so that α̃ is the same as the vector of α̃i computed equation by equation. This property
is lost with other prior specifications, regardless of the assumption made on Σ̄a.

Exercise 10.4 Using the logic of seemingly unrelated regressions show that when g(α) is
of Minnesota type, estimating the VAR jointly gives the same posterior estimator for the
coefficients of equation i as estimating each VAR equation separately.

The dimension of α for moderate VARs is typically large: for example, if there are 5
endogenous variables, 5 lags and a constant, k = 26 and a mk = 130. With standard
macro data (say, forty years of quarterly data (T=160)), maximum likelihood estimates
are unlikely to have reasonable properties. The Minnesota type makes this large number
of coefficients depend on a smaller vector of hyperparameters. If these are the objects
estimated from the data, a better precision is expected because of the sheer dimensionality
reduction (the noise to signal ratio is smaller; the number of data points per parameter
increased), and out-of-sample forecasts can be improved. Note that even when the prior is
false, in the sense that it does not reflect well sample information, this approach may reduce
the MSE of the estimates. A number of authors have shown that VARs with a Minnesota
prior produce superior forecasts to those of, say, univariate ARIMA models or traditional
multivariate simultaneous equations (see e.g. Robertson and Tallman (1999) for a recent
assessment). Therefore, it is not surprising that BVARs are routinely used for short-term
macroeconomic forecasting in Central Banks and international institutions.

It is useful to contrast the Minnesota approach and other methods used to deal with
the ”curse of dimensionality”. In classical approaches, ”unimportant” lags are purged from
the specification using t-test or similar procedures (see e.g. Favero (2001)). This approach
therefore imposes strong a-priori restrictions on what variables and which lags should be in
the VAR. However, dogmatic restrictions are unpalatable because they are hard to justify
on both economic and statistical grounds. The Minnesota prior introduces restrictions in
a flexible way: it imposes probability distributions on the coefficients of the VAR which
reduce the dimensionality of the problem and, at the same time, give a reasonable account
of the uncertainty faced by an investigator.

The choice of φ = (φ0, φ1, φ2, φ3) is important since if the prior is too loose, overfitting
is hard to avoid; while if it is too tight, the data is not allowed to speak. There are three
approaches one can use. In the first two, one obtains estimates of φ and plug-in these
estimates into the expression for ᾱ and Σ̄a. Then the posterior distribution of α can be
obtained from (10.9) in an Empirical Bayes fashion, conditional on the φ estimates. In the
third approach, one treats φ as random, assumes a prior distribution and computes fully
hierarchical posterior estimates of α. To do this we need MCMC methods. For now we
focus on the first two methods.

One way to choose φ is to use simple rules of thumb or experience. The RATS manual
(2000), for example, suggests as default values φ0 = 0.2, φ1 = 0.5,φ2 = 10

5, an harmonic
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specification for h(`) with φ3 = 1 or 2, implying a relatively loose prior on the VAR coeffi-
cients and an uninformative prior for the exogenous variables. These values work reasonably
well in forecasting a number of macroeconomic and financial variables and should be used
as a benchmark or as starting points for further investigations.

The alternative is to estimate φ using the information contained in the data. In partic-
ular, the predictive density f(φ|y) = R L(α|y,φ)g(α|φ)dα, constructed on a training sample
(−τ, . . . , 0), could be used. The next example shows how to do this in a simple model.

Example 10.2 Suppose yt = Axt+et, where A is a random scalar,et ∼ N(0,σ2e); σ2e known
and let A = Ā+ va; va ∼ N(0, σ̄2a), Ā is fixed and σ̄2a = h(φ)2 where φ is a vector of hyper-
parameters. Then yt = Āxt + ²t where ²t = et + vaxt and the posterior kernel is:

ğ(α, θ|y) = 1√
2πσeh(φ)

exp{−0.5(y −Ax)
2

σ2e
− 0.5(A− Ā)

2

h(φ)2
} (10.13)

where y = [y1, . . . yt]
0, x = [x1, . . . xt]0.Integrating (10.13) with respect to A we obtain

f(φ|y) = 1p
2πh(φ)2tr|x0x|+ σ2e

exp{−0.5 (y − Āx)2
σ2e + h(φ)

2tr|x0x|} (10.14)

which can be constructed and maximized, e.g., using the prediction error decomposition
generated by the Kalman filter.

While in example 10.2 A is a scalar, the same logic applies when α is a vector.

Exercise 10.5 Let yt = A(`)yt−1 + et, et ∼ N(0,Σe), Σe known, let α = vec(A1, . . . , Aq)0
= ᾱ+ va, ᾱ known and Σ̄a = h(φ)

2. Show f(φ|y) and its prediction error decomposition.

Exercise 10.6 Suppose that Ā = h1(φ) and Σ̄a = h2(φ) in example 10.2. Derive the first
order conditions for the optimal φ. Describe how to numerically find ML-II estimates of φ.

We summarize the features of the posterior distribution of α and Σe obtained with the
other three prior specifications in the next exercises (see Kadiyala and Karlsson (1997)).

Exercise 10.7 Suppose that g(α,Σ−1e ) ∝ |Σ−1e |0.5(m+1). Show that the joint posterior has
a Normal-Wishart shape with (α|Σe, y) ∼ N(αols, (Σ−1e ⊗X0X)−1) ; (Σ−1e |y) ∼ W([(y −
(I⊗X)αols)

0(y− (I⊗X)αols)]
−1, T −k) and that (α|y) has a t-distribution with parameters

((y − (I ⊗ X)αols)
0(y − (I ⊗ X)αols),αols, T − k), where αols is the OLS estimator of α.

Conclude that, a-posteriori, the elements of α are dependent (Hint: Stare at the variance
of α).

Exercise 10.8 Suppose that the joint prior for (α,Σ−1e ) is Normal-diffuse, i.e. g(α) ∼
N(ᾱ, Σ̄a) where both ᾱ and Σ̄a are known and g(Σe) ∝ |Σ−1e |0.5(m+1). Show that g(α|y) ∝
exp{0.5(α− ᾱ)0Σ̄−1a (α− ᾱ)} × |(y − (I ⊗X)αols)

0(y− (I ⊗X)αols) + (α− αols)0(X0X)(α−
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αols)|−0.5T . Conclude that g(α|y) is the product of the normal prior and the same t-
distribution found in exercise 10.7. Argue that there is posterior dependence among equa-
tions, even when Σ̄a is diagonal.

Exercise 10.9 Let g(α|Σe) ∼ N(ᾱ,Σe⊗Ω̄) and g(Σ−1e ) ∼W(Σ̄−1, ν̄). Show that g(α|Σe, y) ∼
N(α̃,Σe⊗ Ω̃), g(Σ−1e |y) ∼W(Σ̃−1, T + ν̄). Give the form of α̃, Ω̃, Σ̃−1. Show that (α|y) has
a t-distribution with parameters (Ω̃−1, Σ̃, α̃, T + ν̄). Assume that Ω̄ = diag{ω̄ii} where ω̄ii
is parametrized as in the Minnesota prior (except that φ1 = 1); suppose that ν̄ = m+2 and
that σ̄ii = diag(Σ̄) = (ν̄ −m − 1)s2i , where s2i is the estimated variance of ei. Show that
there is posterior dependence among the equations.

10.2.3 Adding other prior restrictions

We can add a number of other statistical restrictions to the standard Minnesota prior
without altering the form of the posterior moments. For example, an investigator may be
interested in studying the dynamics at seasonal frequencies and therefore want to use the
seasonal information to set up prior restrictions. The simplest way to deal with seasonality
is to include a set of dummies in the VAR and treat their coefficients in the same way as
the coefficients on the constant.

Example 10.3 In quarterly data, a prior for a bivariate VAR(2) with four seasonal dum-
mies has mean equal to ᾱ = [1, 0, 0, 0, 0, 0, 0, 0|0, 1, 0, 0, 0, 0, 0, 0] and the block of Σa corre-
sponding to the seasonal dummies has diagonal elements, σdd = φ0φs. Here φs represents
the tightness of the seasonal information (and a large φs implies little prior information).

Seasonality, however, is hardly deterministic (in that case, it would be easy to eliminate
it if we did not want it) and seasonal dummies only roughly account for seasonal variations.
As an alternative, note that seasonal series display a peak (or a wide mass) in the spectrum
at some or all seasonal frequencies. When a series has a peak at frequency ω0 it must be the
case that in the model yt = D(`)et, |D(ω0)|2 is large. A large |D(ω0)|2 implies that |A(ω0)|2
should be small, where A(`) = D(`)−1, which in turns implies

P∞
j=1Ajcos(ω0j) ≈ −1.

Example 10.4 In quarterly data, ω0 =
π
2 ,π (cycles corresponding to 4 and 2 quarters) and

a peak at, say, π2 implies that −A2 +A4 −A6 +A8 + . . . must be close to −1.
The same idea applies to multivariate models. Omitting constants, the MA repre-

sentation is yt = D(`)et and the spectral density of yt is Sy(ω) = |D(ω)|2Σe2π . Since
D(ω) =

P
j Dj(cos(ωj) + isin(ωj)), a peak in Sy at ω0 implies that

P
j Djcos(ω0j) is

large and
P∞
j=1Ajcos(ω0j) ≈ −1.

We can cast these restrictions in the form Rα = r + va, where r = [−1, . . . ,−1]0, R is
a m1 ×mk matrix and m1 is the number of seasonal frequencies. In quarterly data, if the
first variable of the VAR displays seasonality at both π

2 ,π then:

R =

·
0 −1 0 1 0 −1 . . . 0
−1 1 −1 1 −1 1 . . . 0

¸
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These restrictions can be added to those of the original (Minnesota) prior and combined
with the data using the logic of Theil’s mixed type estimation, once Σva is selected. The
same approach can also be used to account for the presence of peaks in other parts of the
spectrum, as it is shown in the next exercise.

Exercise 10.10 (Canova)
(i) Show that a peak in the spectral density at frequency zero in variable i implies

P∞
j=1Aji ≈

−1. Cast this constraint in the form of an uncertain linear restriction.
(ii) Show that a large mass in the band (2πj ± ε), some j, ε small, in variable i impliesP∞
j=1Ajicos(jω0) ≈ −1, for all ω0 in the band. Cast these constraints in the form of un-

certain linear restrictions.
(iii) Show that a high coherence at ω0 =

π
2 in series i and i

0 of a VAR implies thatP∞
j=1(−1)jAi0i0(2j)+

P∞
j=1(−1)jAii(2j) ≈ −2. Cast this constraint in the form of an uncer-

tain linear restriction.

Other types of probabilistic constraints can be imposed in a similar way. As long as
r, R and var(va) are fixed, combining prior and sample information presents no conceptual
difficulty: the dimensionality of R and of r changes, but the form of the posterior moments
of α is unchanged.

10.2.4 Some Applied tips

There are few practical issues a researcher faces in setting-up a Minnesota prior for a VAR.
First, in simple applications it is typical to use default values for the hyperparameters φ.
While this is a good starting point, it is not clear that this choice is appropriate in all
forecasting situations or when structural inference is required. In these cases, sensitiv-
ity analysis may give information about interesting local derivatives, e.g. how much the
MSE of the forecasts change when φ varies within a small range of the default value. If
differences are large, should hyperparameters be chosen to get the best out-of-sample per-
formance? Since hyperparameters describe features of the prior they should be chosen using
the predictive density. Using ex-post MSE statistics poses few operational problems. Which
forecasting horizon should be chosen to select the hyperparameters? If different horizons
require different parameters, how should one proceed? The use of the predictive density
provides a natural answer to these questions. Since predictive densities can be decomposed
into the product of one-step ahead prediction errors, hyperparameters chosen optimizing
the predictive density minimize the one-step ahead prediction error in the training sample.

Second, in certain applications the defaults values of the Minnesota prior are clearly
inappropriate: for example, a mean of one on the first lag for growth rates is unlikely to be
useful. In others, one may want to have additional parameters controlling, e.g., the relative
importance of certain variables in one equation or across equations. For example, one would
expect lags of other variables to be less important when the left hand side of an equation
there is a financial variable, but very important when there is a macroeconomic variable.
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Alterations of the Minnesota prior in this direction do not change the form of the posterior
so long as Σ̄a is diagonal and Σe fixed.

Although the emphasis of this section has been on type 1 priors, all the arguments
made remain valid when a general Normal-Wishart prior are used. Conditional on Σe the
posterior for α is still normal. However, equation-by-equation computations are no longer
efficient since the posterior covariance matrix obtained using the whole system is different
from the covariance matrix obtained using each equation separately. For VARs with 5 or
6 variables and 4 or 5 lags, system wide calculations are not computationally demanding,
given existing computer technology. For larger scale models such as the one of Leeper, Sims
and Zha (1996), intelligent choices for the prior may dramatically simplify the computations.

How do one selects the variables to be included in a BVAR? Using the same logic
described in chapter 9, specifications with different variables can be treated as different
models. Therefore, a posterior odds ratio or the Leamer’s version of it can be used to select
the specification that best fit the data in a training sample. Consequently, one chooses
the specification with the smallest one-step ahead prediction error will be preferred. Such
calculations can be performed both in nested and non-nested models.

Example 10.5 (Forecasting inflation) We use a BVAR with a Minnesota prior to forecast
inflation rates in Italy. The features of inflation rates have changed dramatically in the
90’s all over the world and in Italy in particular. In fact, while the autocovariance function
displays remarkable persistence in the 80’s (AR(1) coefficient equals 0.85), it decays pretty
quickly in the 90’s (AR(1) coefficient equals 0.48). In this situation, using 1980’s data to
choose a model or its hyperparameters may severely impair its ability to forecast in the 90’s.
As a benchmark for comparison we use a univariate ARIMA model, chosen using standard
Box-Jenkins methods, and a three variable unrestricted VAR, including the annualized three
month inflation, the unemployment rate and the annualized three month rent inflation, each
with four lags. These variables were chosen among a set of ten candidates using Leamer’s
posterior odds ratio approach. We present results for two alternative specifications: a BVAR
with hyperparameters sets using rules of thumb and one with hyperparameters chosen to
maximize the predictive density using data from 1980:1 to 1995:4. The prior variance is
characterized by a general tightness parameter, a decay parameter and a parameter for lags
of other variables. In the first case they are set to 0.2, 1, 0.5, respectively. In the second,
they are optimally estimated (point estimates 0.14, 2.06, 1.03). The prior variance on the
constant is diffuse. In table 10.1 we report one year ahead Theil-U statistics (the ratio of
the MSE of the model to the MSE of a random walk) for the four specifications. Posterior
standard error for the two BVAR are in parenthesis.

Sample ARIMA VAR BVAR1 BVAR2

1996:1-2000:4 1.04 1.47 1.09 (0.03) 0.97 (0.02)
1990:1-1995:4 0.99 1.24 1.04 (0.04) 0.94 (0.03)

Table 10.1: One year ahead Theil-U statistics.
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Three features deserve comments. First, forecasting Italian inflation one year ahead is
difficult: all models have a hard time to beat a random walk and three of them do worse.
Second, an unrestricted VAR performs poorly. Third, a BVAR with default choices is better
than a unrestricted VAR but not better than an ARIMA model. Finally, a BVAR with
optimally chosen parameters, outperforms both random walk and ARIMA models at the one
year horizon but the gains are small. The results are robust: repeating the exercise using
data from 1980:1 to 1989:4 to choose the variables, the hyperparameters and estimate the
models and data from 1991:1 to 1995:4 to forecast produces qualitatively similar Theil-Us.

10.2.5 Priors derived from DSGE models

The priors we have considered so far are either statistically motivated or based on rules-
of-thumb useful for forecasting macroeconomic time series. In both cases, economic theory
plays no role, except perhaps in establishing the range of values for the prior distributions.
To be able to use BVARs for purposes other than forecasting, one may want to consider
priors based on economic theory. In addition, one may be interested in knowing if theory
based priors are as good as statistically based priors in forecasting, unconditionally, out-of-
sample.

Here we consider priors which are derived from DSGE models. The nature of the model
and a prior for the structural parameters imply a prior for the reduced form VAR coefficients.
One can dogmatically take these restrictions or simply consider their qualitative content in
constructing posterior distributions. In this setup prior information measures the confidence
a researcher has that the DSGE structure has generated the observed data.

An alternative representation for the log-linearized solution of a DSGE model is:

y2t+1 = A22(θ)y2t +A23(θ)y3t+1 (10.15)

y1t = A12(θ)y2t (10.16)

where y2t is a m2 × 1 vector including the states and the driving forces; y1t is m1 × 1
vecotr including all the endogenous variables and y3t+1 are the shocks. Here Ajj0(θ) are
time invariant functions of θ, the vector of structural (preferences, technologies, policy)
parameters of the model. It is easy to transform (10.15)-(10.16) into a (restricted) VAR(1)
for yt = [y1t, y2t]

0 of the form·
0 0
0 Im2

¸
yt+1 =

· −Im1 A12(θ)
0 A22(θ)

¸
yt +

·
0

A23(θ)
¸
y3t+1 (10.17)

or A0yt+1 = A1(θ)yt+ ²t+1(θ) where ²t+1(θ) =
·

0
A23(θ)

¸
y3t+1. Hence, given a prior for θ,

the model implies a prior for A12(θ),A22(θ),A23(θ). In turn these priors imply restrictions
for the reduced form parameters A(`) = A−10 A1(`) and Σe = A−10 Σ²A−10 . Expressions
for the priors for A12(θ),A22(θ),A23(θ) can be obtained using δ-approximations, i.e. if
θ ∼ N(θ̄, Σ̄θ), vec(A12(θ)) ∼ N(vec(A12(θ̄)), ∂vec(A12(θ))

∂θ Σ̄θ
∂vec(A12(θ))

∂θ

0
), etc.
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Example 10.6 Consider a VAR(q): yt+1 = A(`)yt + et. From (10.17) the prior for A1 is
Normal with mean AG0 A1(θ̄), where AG0 is the generalized inverse of A0 and variance equal
to Σa = (AG0 ⊗ Im1+m2)Σa1(A

G
0 ⊗ Im1+m2)

0); where Σa1 is the variance of vec(A1(θ)). A
DSGE prior for A2, A3, . . . has a dogmatic form: mean zero and zero variance.

Since the states of a DSGE model typically include unobservable variables (e.g. the
Lagrangian multiplier or the driving forces of the model) or variables measured with error
(e.g. the capital stock), it may be more convenient to set up prior restrictions for a VAR
composed only of the endogenous variables, as the next example shows.

Example 10.7 (Ingram and Whiteman). A RBC model with utility function u(ct, ct−1,Nt,
Nt−1) = ln(ct) + ln(1−Nt) implies a law of motion for the states of the form·

Kt+1
ln ζt+1

¸
=

· Akk(θ) Akζ(θ)
0 ρζ

¸·
Kt
ln ζt

¸
+

·
0

²1t+1

¸
≡ A22(θ)

·
Kt
ln ζt

¸
+ ²t+1 (10.18)

where Kt is the capital stock and ζt is a technological disturbance. The equilibrium mapping

between the endogenous variables and the states is [ct, Nt, gdpt, invt]
0 = A12(θ)

·
Kt
ln ζt

¸
where ct is consumption, Nt hours, gdpt output and invt investments. Here A12(θ) and
A22(θ) are function of η, the share of labor in production, β the discount factor, δ the depre-
ciation rate, ρζ the AR parameter of the technology shock. Let y1t = [ct, Nt, gdpt, invt]

0 and
y2t = [kt, ln ζt]

0, θ = (η,β, δ, ρζ). Then y1t = A(θ)y1t−1 + e1t, where A(θ) = A12(θ)A22(θ)
(A12(θ)0A12(θ))−1A12(θ), e1t = A12(θ)²t and (A12(θ)0A12(θ))−1A12(θ) is the generalized

inverse of A12(θ). If g(θ) is θ ∼ N(


0.58
0.988
0.025
0.95

 ,

0.0006

0.0005
0.0004

0.00015

), the

prior mean of A(θ) is A(θ̄) =


0.19 0.33 0.13 −0.02
0.45 0.67 0.29 −0.10
0.49 1.32 0.40 0.17
1.35 4.00 1.18 0.64

 which implies, e.g., substantial
feedback from consumption, output and hours to investment (see the last row). The prior

variance for A(θ) is ΣA =
∂A(θ)
∂θ0 Σ̄θ

∂A(θ)
∂θ0 , where

∂A(θ)
∂θ0 is a 16×4 vector. Hence, a RBC prior

for y1t implies a normal prior on the first lag with mean A(θ̄) and variance proportional
to ΣA. To relax the dogmatic prior restriction on higher lags, we could assume a Normal
prior with zero mean and variance ∝ ΣA

h(`) where h(`) is a decaying function of `.

Exercise 10.11 (RBC cointegrating prior). In example 10.7 suppose that (ln ζt) has a
unit root. Then all endogenous variables must have a unit root and the stochastic trend is
a common one.
(i) Argue that (I −Akk(θ),−Akζ(θ)) must be a cointegrating vector for kt.
(ii) Argue that (I4,−A12(θ)) must be a cointegrating vector for y1t
(iii) Given a Normal prior on θ, derive a cointegrating prior for the A0s.
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Exercise 10.12 Suppose consumers maximize u(ct, ct−1, Nt) = ln ct − ²2t lnNt subject to
the constraint ct +Bt+1 ≤ yt + (1+ rBt )Bt − Tt where yt = Nt²1t, ²1t is a technology shock
with mean ²̄1 and variance σ

2
²1 and ²2t is a labor supply shock with mean of ²̄2 and vari-

ance σ2²2. Here Tt are lump sum taxes, Bt are real bonds and the government finances a
random stream of expenditure using lump sum taxes and real bonds according to the budget
constraint Gt − Tt = Bt+1 − (1 + rBt )Bt. In this model there are three shocks: two supply
type shocks (²1t, ²2t) and one demand type shock (Gt).
i) Find a log-linearized solution for Nt, yt, ct and labor productivity (npt).
ii) Use the results in i) to construct a prior for a bivariate VAR in hours and output. Derive
the posterior distribution for the VAR parameters and the covariance matrix of the shocks.
Be precise about the assumptions and the choices you make (Careful, there are three shocks
and two variables). Would it make a difference for the answer if you would have used a
trivariate model with consumption or labor productivity?
iii) Describe how to construct impulse responses to Gt shocks using posterior estimates.
iv) Suppose that, for identification purposes, an investigator makes the assumption that de-
mand shocks have zero contemporaneous effect on hours. Is this assumption reasonable in
the logic of the model? Under what conditions the estimated demand shocks you recover
from posterior analysis correctly represent Gt shocks?

Del Negro and Schorfheide (2003) have suggested an alternative way to append priors
derived from DSGE models onto a VAR. The advantage of their approach is that the
posterior distributions for both VAR and DSGE parameters can be simultaneously obtained.
The basic specification they use differs from the one so far described in an important way.
Up to now a DSGE model has provided only the ”form” of the prior restrictions (zero mean
on lags greater than one, etc.). Here the prior is more tightly based on the data produced
by the DSGE model.

The logic of the approach is simple. Since the prior can be thought as an additional
observation tagged on to the VAR, one way to add DSGE information is to augment the VAR
for the actual data with a prior based on data simulated from the model. The proportion
of actual and simulated data points then reflects the relative importance that a researcher
gives to the two types of information.

Let the data be represented by a VAR with parameters (α,Σe). Assume that g(α,Σe)
is of the form α ∼ N(ᾱ(θ), Σ̄(θ)); Σ−1e ∼W(TsΣ̄e(θ), Ts − k) where

ᾱ(θ) = ((Xs)0Xs)−1((Xs)0ys)
Σ̄(θ) = Σe(θ)⊗ ((Xs)0Xs)−1

Σ̄e(θ) = (ys −Xsᾱ(θ))(ys − (Xs)ᾱ(θ))0 (10.19)

Here ys is data simulated from the DSGE model, Xs = (Im ⊗Xs) is a matrix of lags in
the VAR representation of simulated data and θ the structural parameters. In (10.19),
the moments of g(α,Σe) depend on θ through the simulated data (y

s,Xs). If Ts measures
the length of simulated data, κ = Ts

T controls the relative importance of the information
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contained in actual and simulated data. Clearly, if κ → 0, the actual data dominates and
if κ→∞, the simulated data dominates.

The model has a hierarchical structure f(α,Σe|y)g(α|θ)g(Σe|θ)g(θ). Conditional on θ,
the posterior for α,Σe are easily derived. In fact, since the likelihood and the prior are
conjugate (α|θ, y,Σe) ∼ N(α̃(θ), Σ̃(θ)); (Σ−1e |θ, y) ∼W((κ+ T )Σ̃e(θ), T + κ− k) where

α̃(θ) = (κ
(Xs)0Xs

T s
+
X 0X
T
)−1(κ

(Xs)0ys

T s
+
X 0y
T
)

Σ̃(θ) = Σe(θ)⊗ ((Xs)0Xs +X 0X)−1 (10.20)

Σ̃e(θ) =
1

(1+ κ)T
[(ys)0ys + y0y)− ((ys)0Xs + y0X)((Xs)0Xs +X 0X)−1((Xs)0ys +X 0y)]

where X = (I⊗X). The posterior for θ can be computed using the hierarchical structure of
the model. In fact, g(θ|y) ∝ f(α,Σe, y|θ)g(θ) where f(α,Σe, y|θ) ∝ |Σe|−0.5(T−m−1) exp{−0.5
tr[Σ−1e (y−Xα)0(y−Xα)}×|Σ̄e(θ)|−0.5(Ts−m−1) exp{−0.5tr[Σ−1e (ys−Xsᾱ(θ))0(ys−Xsᾱ(θ))}.
We will discuss how to draw from this posterior in chapter 11.

Exercise 10.13 Use the fact that g(α,Σe, θ|y) = g(α,Σe|y, θ)g(θ|y), to suggest an algo-
rithm to draw sequences for (α,Σe). How do you compute impulse responses in the VAR?

Exercise 10.14 Suppose g(Σe) is non-informative. Show the form of (α̃, Σ̃e) in this case.

All posterior moments in (10.20) are conditional on a value of κ. Since this parameter
regulates the relative importance of sample and prior information it is important to appro-
priately select it. As in standard BVAR, there are two ways to proceed. First, we can use a
rule of thumb, e.g. set κ = 1, meaning that T simulated data are added to the actual ones.
Second, we can choose it to maximize the predictive density of the model.

Exercise 10.15 Show the form of f(y|κ). Describe how to find its maximum numerically.

Exercise 10.16 Consider the working capital model described in exercise 1.14 of chapter
2 driven by shocks to technology, government expenditure and the monetary policy rule.
Choose appropriate priors for the parameters (for example, Normal, Gamma or Beta for
parameters that lie in an interval). Simulate data for output, inflation and the nominal
interest rate. Combine this data with actual data for output, inflation and the nominal
interest rate. Explore the predictive density of inflation numerically for different values of
κ. Is there a relationship between the κ which maximizes the predictive density and the one
which minimizes the MSE of the forecasts? How would you compare such a model against
a sticky price, sticky wage model?
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10.2.6 Probability distributions for forecasts: Fan Charts

BVAR models can be used to construct probability distributions for future events and
therefore are well suited to produce e.g. fan charts or probabilities of turning points. To
see how this can be done, set ȳ = 0 and rewrite the VAR model in a companion form

Yt = AYt−1 + Et (10.21)

where Yt and Et are mq × 1 vectors, A is a mq ×mq matrix.
Repeatedly substituting we have Yt = AτYt−τ +

Pτ−1
j=0 AjEt−j or yt = SAτYt−τ +Pτ−1

j=0 Ajet−j where S is such that SYt = yt, SEt = et and S0SEt = Et. A ”point” fore-
cast for yt+τ is obtained plugging-in some location measures of the posterior of A into
yt (τ) = SAτYt. Call this point forecast ŷt(τ). The forecast error is yt+τ − ŷt (τ) =Pτ−1
j=0 Ajet+τ−j + [yt (τ)− ŷt (τ)] and the variance of the forecast error can be computed

once posterior estimates of A are available. This is easy when τ = 1. For τ ≥ 2 only
approximate expressions for the MSE are available (see e.g. Lutkepohl (1991), p. 88).

Exercise 10.17 Show the MSE of the forecasts when τ = 1.

When a distribution of forecasts is actually needed we can exploit the fact that we can
draw from g(α|y). We describe how ”fan charts” can be obtained for case 1. prior with the
obvious extension if also Σe is a random variable. Let P̃P̃ 0 be any orthogonal factorization
of Σe. Then, at a given t:

Algorithm 10.1

1) Draw vla from a N(0, 1) and set αl = α̃+ P̃−1vla, l = 1, . . . L.
2) Construct point forecasts ylt(τ), τ = 1, 2, , . . . conditioning on α

l.

3) Construct distributions at each τ using kernel methods and extract percentiles.

Exercise 10.18 Consider case 4. prior (i.e. a Normal prior for α and a Wishart prior
for Σ−1e ). Modify algorithm 10.1 to fit this situation.

Algorithm 10.1 can also be used recursively, using estimates of α̃ which are updated
through the sample. The only difference is that α̃ and P̃ now depend on t.

Example 10.8 In certain situations one wants to compute ”average” forecasts at step τ ,
i.e. may want to compute the predictive density f (yt+τ | yt) =

R
f (yt+τ | yt,α) g (α | yt)dα

where f (yt+τ | yt,α) is the conditional density of the future observation vector, given α and
the model, and g (α | yt) is the posterior of α at t. Given draws from algorithm 10.1 and the
model then ŷt(τ) = L

−1PL
l=1 y

l
t(τ) and its numerical variance is L

−1PL
l=1

PJ(L)
j=−J(L)K(j)

ACF lτ (j), where K(j) is a kernel and ACFτ (j) the autocovariance of ŷt(τ) at lag j.
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Turning point probabilities can also be computed from the numerically constructed
predictive density of future observations. For example, given ylt(τ), l = 1, . . . L we only
need to check if e.g. a two quarters rule is satisfied for each draw αl. The fraction of draws
for which the condition is satisfied is an estimate of the probability of the event at t+ τ .

Example 10.9 Continuing with example 10.5, figure 10.2 presents BVAR based 68 and 95
percent bands for inflation forecasts one year ahead where we recursively update posterior
estimates. The forecasting sample is 1996:1-1998:2. The bands are relatively tight reflecting
very precise estimates. This precision can also be seen from the distribution of the forecasts
one year ahead, constructed with data up to 1995:4. We calculate the distribution of the
number of downturns that the annualized inflation rate is expected to experience over the
sample 1996:1-2000:4. Downturns are identified with a two quarters rule. In the actual data
there are four downturns. The median number of forecasted downturns is three. Moreover,
in 90 per cent of the cases the model underpredicts the actual number of downturns and it
never produces more than four downturns.

Recursive forecasts

Year
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rc

en
t

1997 1998
-1.6

0.0

1.6

3.2

4.8

6.4

8.0

9.6 84
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16
2.5
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Data up to 1995:4

Percent
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Figure 10.2: Forecasts of Italian inflation.

10.3 Structural BVARs

The priors we have specified in section 10.2 are designed for reduced form VAR models.
What kind of priors are reasonable for structural VARs?
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There are two approaches in the literature. A naive one, employed by Canova (1991),
Gordon and Leeper (1994), is to use a Normal-Wishart structure for reduced form pa-
rameters (α,Σe). Then draws for the structural parameters are made conditional on the
identification restrictions. Hence, if Σe = A−10 A−1

0
0 , then Aj = A−10 Aj, where Aj are VAR

coefficients. This approach is appropriate if A0 is just identified since there is a unique
mapping between draws of Σe and draws of A0. When A0 is overidentified this method ne-
glects the (over-identifying) restrictions. In this case, it is better to work with the structural
model, and the prior suggested by Sims and Zha (1998). Consider the following structural
model, where A0 is non singular and ȳ only includes deterministic variables:

A0yt −A(`)yt−1 + Cȳt = ²t ²t ∼ (0, I) (10.22)

where A(`) = A1`+ . . .Aq`q. Staking the t observations we have:
YA0 −XA− = ε (10.23)

where Y is a T ×m, X is a T ×k matrix of lagged and exogenous variables, k = mq+mc; ε
is a T ×m matrix. Let Z = [Y,−X]; A = [A0,A−]0. The likelihood function is:

L(A|y) ∝ |A0|T exp{−0.5tr(ZA)0(ZA)} = |A0|T exp{−0.5b0(Imk ⊗ Z0Z)b}(10.24)
where b = vec(A) is a m(k+m)× 1 vector; b0 = vec(A0) is a m2× 1 vector; b− = vec(A−)
is a mk × 1 vector and Imk is a (mk ×mk) matrix.

Suppose g(b) = g(b0)g(b−|b0) where g(b0) may have singularities (due to zero identifica-
tion restrictions) and let g(b−|b0) ∼ N(h̄(b0), Σ̄(b0)). The posterior is :
g(b|y) ∝ g(b0)|A0|T |Σ(b0)|−0.5 exp{−0.5[b0(Imk⊗Z0Z)b} exp{(b−−h̄(b0))0Σ̄(b0)−1(b−−h̄(b0))}

(10.25)
Since b0(Imk⊗Z0Z)b = b00(Imk⊗Y0Y)b0+b0−(Ink⊗X0X)b−−2b0−(Imk⊗X0Y)b0, conditional
on b0, the quantity in the exponent in (10.25) is quadratic in b− so that g(b−|b0, y) ∼
N(h̃(b0), Σ̃(b0)) where h̃(b0) = Σ̃(b0)((Imk ⊗X0Y)ĥ(b0) + Σ̄(b0)−1h̄(b0)) and Σ̃(b0) = ((I ⊗
X0X) + Σ̄(a0)−1)−1. Furthermore

g(b0|y) ∝ g(b0)|A0|T |(Imk ⊗X0X)Σ̄(b0) + I|−0.5
exp{−0.5[b00(Imk ⊗Y0Y)b0 + h(b0)0Σ̄(b0)−1h(b0)− h̃(b0)Σ̃(b0)h̃(b0)]}

(10.26)

Since dim(b−) = mk, the calculation of g(b−|b0, y) may be time consuming. Equation
by equation computations are possible if the structural model is in SUR format, i.e. if we
can run m separate least square regressions with k parameters each. To do this we need
to choose Σ̄(b0) appropriately. For example, if Σ̄(b0) = Σ̄1 ⊗ Σ̄2 and Σ̄1 ∝ I, then even if
Σ̄2i 6= Σ̄2j , independence across equations is guaranteed since (Imk ⊗X0X) + Σ̄(b0)−1 ∝
(Imk ⊗X0X) + diag{Σ̄21, . . . , Σ̄2m} = diag{Σ̄21 +X0X, . . . , Σ̄2m +X0X}.

Note that if we had started from a reduced form VAR (as we have done in exercise 10.9)
the structure of Σ̃(b0) would have been Σ̃(b0) = [(Σe ⊗ X0X) + Σ̄(b0)−1]−1, where Σe is
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the covariance matrix of the disturbances. This means that to maintain the computations
simple Σ̄(b0) must allow correlation across equations (contrary, for example, to what the
Minnesota prior assumes).

It is interesting to map structural priors into Minnesota priors. Let A0 be given and let
the VAR be yt = A(`)yt−1 + Cȳt + et. Let α = vec[A1, . . . Aq, C]. Since A(`) = [A−A−10 ];
E(α) = [Im, 0, . . . 0] and var(α) = Σ̄α where Σ̄α was defined in (10.12) imply

E(A−|A0) = [A0, 0, . . . , 0] (10.27)

var(A−|A0) = diag(b−(ijl)) =
φ0φ1
h(`)σ2j

i, j = 1, . . .m, ` = 1, . . . , q (10.28)

= φ0φ2 otherwise (10.29)

where i stands for equation, j for variable, ` for lag, φ0 (φ1) controls the tightness of the
prior variance of A0, (A+) and φ2 the tightness of the prior variance of C.

Three features of (10.27)-(10.29) are worth mentioning: (i) there is no distinction be-
tween own and other coefficients since, in simultaneous equation models, no normalization
with one right hand side variable is available; (ii) the scale factors differ from those of re-
duced form BVARs since var(²t) = I; (iii) since α = vec[A+A−10 ] beliefs about α may be
correlated across equations (if beliefs about A0 are).

As in a reduced form BVARs, stochastic linear restrictions can be added to the specifi-
cation and combined with the data using the logic of Theil’s mixed estimation.

Exercise 10.19 (Controlling for trends: sum of coefficients restrictions) Suppose the av-
erage value of lagged yi’s (say, ¯̄yi) is a good predictor of yit for equation i. Write this

information as Y†A0 − X†A− = V where y† = {y†ij} = φ3¯̄yi if i = j and zero oth-

erwise, i, j = 1, . . .m; x† = {x†iτ} = φ3¯̄yi if i = j, for τ < k and zero otherwise,
i = 1, . . .m, τ = 1, . . . k. Construct the posterior for b− under this restriction.

Adding the sum of coefficient restrictions introduces correlation among the coefficients of
a variable in an equation. When φ3 →∞, the restriction implies a model in first difference,
i.e. the model has m unit roots and no cointegration.

Exercise 10.20 (Controlling for seasonality: seasonal sum of coefficients restrictions).
Suppose the average value of yt−j is good predictor of yt for each equation. Setup this
restriction as a dummy observation and construct the posterior for b−.

Exercise 10.21 (Controlling for cointegration: initial dummy restriction) Suppose we set

up an initial dummy observation of the form Y‡A0 − X‡A− = V where y‡ = {y‡j} =
φ4¯̄yj if j = 1, . . .M , x

‡ = {x‡τ} = φ4¯̄yj if τ ≤ k − 1 and X‡ = φ4 if τ = k. Construct the
posterior for b− under this additional restriction.

The prior of exercise 10.21 forces all the variables to be stationary. In fact, if φ4 →∞,
the dummy observation becomes [I −A−10 A(1)]ȳ0+A−10 C = 0. If C = 0, there is a one unit
root, while if C 6= 0 there are no unit roots.
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To calculate (10.26) we need g(b0). Since for identification purposes, some elements of b0
may be forced to be zero, we make a distinction between hard restrictions (those imposing
identification, possibly of blocks of equations) and soft restrictions (those involving a prior
on non-zero coefficients). Since little is typically known about b0, a non-informative prior
should be preferred i.e. g(b00) ∝ 1 where b00 are the non-zero elements of b0. In some
occasions, a Normal prior may also be appropriate.

Example 10.10 Suppose we have m(m − 1)/2 restrictions so that A0 is just identified.
Assume, for example, that A0 is lower triangular and let b00 be the nonzero elements of
A0. Suppose g(b00) =

Q
i g(b

0
0i), where each g(b

0
0i) is N(0,σ2(b00)) so that the coefficients

of, say, GDP and unemployment in the first equation may be related to each other but
are unrelated with the coefficients of GDP and unemployment in other equations. Set, for
example, σ2(b00ij) = (

φ5

σi
)2 i.e. all the elements of equation i have the same variance. Since

the system is just identified one can also use a Wishart prior for Σ−1e , with ν̄ degrees of
freedom and scale matrix Σ̄ to derive a prior for b00. Since a lower triangular A0 is just the
Choleski factor of Σ−1e , if ν̄ = m+ 1, Σ̄ = diag (

φ5

σi
)2, then a prior for b00 is proportional to

N(0,σ2(b00)), where the factor of proportionality is the Jacobian of the transformation, i.e.
|∂Σ−1

e
∂A0

| = 2mQm
j=1 b

j
jj. Since the likelihood contains a term |A0|T =

QT
j=1 b

T
jj, ignoring the

Jacobian is irrelevant if T >> m.

The posterior g(b0|y) can not be computed analytically. To simulate a sequence we can
use one of the algorithms we described in chapter 9. For example, one could:

Algorithm 10.2

1) Calculated posterior mode b∗0 of g(b0|y) and the Hessian at b∗0.
2) Draw b0 from a normal centered at b∗0 with covariance equal to the Hessian at b∗0 or a

t-distribution with the same mean and covariance and ν = m+ 1 degrees of freedom.

3) Use importance sampling to weight the draws, checking the magnitude of IRl =
g̃(bl0)

gIS(bl0)
,

where gIS(b0) is an importance density, and l = 1, . . . , L.

As alternative one could use a Metropolis-Hastings (MH) algorithm with a Normal or a
t-distribution as the target, or the restricted Gibbs sampler of Waggoner and Zha (2003).

Exercise 10.22 Describe how to use a MH algorithm to draw a sequence from g(b0|y).

It is immediate to extend the framework to the case where non-contemporaneous re-
strictions are used to identify the VAR.

Exercise 10.23 Suppose A0 is just identified using long run restrictions. How would you
modify the prior for A0 to account for this?
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Exercise 10.24 Suppose A0 is overidentified. How should the prior for A0 be changed?

Exercise 10.25 Suppose A0 is identified using sign restrictions. Let Σe = P̃(ω)P̃ 0(ω),
where ω is an angle. How would you modify the prior for A0 to take this into account?
How would you modify the algorithm to draw from the posterior distribution of A0? (Hint:
treat ω as a random variable and select an appropriate prior distribution)

There are a number of extensions one can consider. Here we analyze two:

1. Structural VAR models with exogenous stochastic variables: e.g. oil prices in a struc-
tural VAR for domestic variables.

2. Structural VARmodels with block exogenous variables and overidentifying restrictions
in some block, e.g. a two-country structural model where one is block exogenous.

We assume that yt is demeaned so that ȳt is omitted from the model. For the case of
structural models with exogenous variables, let

Ai0yt −Ai(`)yt−1 = ²it ²it ∼ N(0, I) (10.30)

where i = 1, . . . , n refers to the number of blocks; m =
Pn
i=1mi with mi equations in each

block; ²it is mi × 1 for each i, Ai(`) = (Ai1(`), . . . ,Ain(`)) and each Aij(`) is a mi ×mj
matrix for each `. (10.30) is just the block representation of (10.22). Rewrite (10.30) as

yit = Ai(`)yit−1 + eit (10.31)

where Ai(`) = (0i−, Ii, 0i+)−A−1i0 Ai(`); 0i− is a matrix of zeros of dimension mi×mi− , 0i+
is a matrix of zeros of dimension mi ×mi+ , where mi− = 0 for i = 1 and mi− =

Pi−1
j mj

for i = 2, . . . , n; mi+ = 0 for i = n and mi+ =
Pn
j=i+1mj for i = 1, . . . , n − 1 and where

E(ete0t) = diag{Σii} = diag{A−1i0 A−1
0

i0 }. Stacking the T observations to have

Yi = XiAi +Ei (10.32)

where Yi and Ei are T × mi matrices, Xi is a T × ki matrix and ki is the number of
coefficients in each block. The likelihood function is

f(Ai,Σii|yT , . . . , y1, y0 . . .) ∝
nY
i=1

|Ai0|T exp{−0.5tr[(Yi −XiAi)
0(Yi −XiAi)A0i0Ai0]}

∝
nY
i=1

|Ai0|T exp{−0.5tr[(Yi −XiAi,ols)
0(Yi −XiAi,ols)A0i0Ai0

+ (Ai −Ai,ols)
0X0

iXi(Ai −Ai,ols)A0i0Ai0]} (10.33)
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whereAi,ols = (X
0
iXi)

−1(X0
iYi) and tr indicates the trace of the matrix. Suppose g(Ai0,Ai) ∝

|Ai0|ki . Then the posterior for Ai0 and αi = vec(Ai) has the same form as the likelihood
and

g(Ai0|y) ∝ |Ai0|T exp{−0.5tr[(Yi −XiAi,ols)
0(Yi −XiAi,ols)A0i0Ai0]} (10.34)

g(αi|Ai0, y) ∼ N(αi,ols, (A0i0Ai0)−1 ⊗ (X0
iXi)

−1) (10.35)

where αi,ols = vec(Ai,ols). As before, if Ai0 is the Choleski factor of Σ−1ii and g(Σ−1ii ) ∝
|Σ−1ii |0.5ki , then the posterior for Σ−1ii hasWishart form with parameters ([(Yi−XiAi,ols)

0(Yi−
XiAi,ols)]

−1, T −mi − 1). Hence, one could draw from the posterior of Σ−1ii and use the
Choleski restrictions to draw Ai0. When Ai0 is overidentified, we need to draw Ai0 from
the marginal posterior (10.35), which is of unknown form. To do so one could use, e.g., a
version of the importance sampling algorithm 10.2.

Exercise 10.26 Extend algorithm 10.2 to the case where the VAR has different lags in
different blocks.

Exercise 10.27 Suppose g(Ai) ∼ N(Āi, Σ̄A). Show the form of g(αi|Ai0, y) in this case.

For the case of block exogenous variables with overidentifying restrictions, suppose there
are linear restrictions on Aij0, j > i. This case is different from the previous case since
overidentifying restrictions were placed on Aii0. Define A∗i (`) = Ai0 − Ai(`), i = 1, . . . n
and rewrite the system as Ai0yt = A∗i (`)yt + ²it. Stacking the observations we have

YA0i0 = XiA∗i + ²i (10.36)

whereXi is a T×k∗i matrix including all right hand side variables, k∗i = ki−mi+1−. . .−mn;
A∗i is a k∗i × mi companion matrix of A∗i (`); ²i a T × mi matrix; Y = [Y1, . . . , Yn] is a
T ×m matrix ; Ai0 = {Ai10, . . .Ain0; Aij0 = 0, j < i} is a m ×mi matrix. Let A∗

i,ols =

(X0
iXi)

−1X0
iY and let the prior for (Ai(0),A∗

i ) be non-informative. Letting α
∗
i = vec(A

∗
i ),

the posteriors are:

g(Ai0|y) ∝ |Ai0|T exp{−0.5tr[(Yi −XiA
∗
i,ols)

0(Yi −XiA
∗
i,ols)A0i0Ai0]}

g(α∗i |Ai0, y) ∼ N(α∗i,ols, (Ii ⊗ (X0
iXi)

−1)) (10.37)

Exercise 10.28 Describe how to draw posterior sequences for (α∗i ,Ai0) from (10.37).

We conclude with an example illustrating the techniques described in this section.

Example 10.11 We take monthly US data from 1959:1 to 2003:1 for the log of GDP, the
log of CPI, log of M2, the Federal funds rate and log of commodity prices. We are interested
in the dynamic responses of the first four variables to an identified monetary policy shock
and in knowing how much of the variance of output and inflation is explained by monetary
policy shocks. We use contemporaneous restrictions and overidentify the system by assuming
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that the monetary authority only looks at money when manipulating the Federal funds rate.
Hence, the system has a Choleski form (in the order in which the variables are listed) except
for the (3,1) entry which is set to zero. We assume b00 ∼ N(0, I) and use as importance
sampling a Normal centered at the mode and with dispersion equal to the Hessian at the
mode. We monitor the draws using the importance ratio and find that in only 11 out of
1000 draws the weight given to the draw is large.

The median response and the 68% band for each variable are in figure 10.3. Both output
and money persistently decline in response to an interest rate increase. The response of
prices is initially zero but turns positive and significant after a few quarters - a reminiscence
of what is typically called the ”price puzzle”. Monetary shocks explain 4-18 per cent of the
variance of output at the 20 quarters horizon and only 10-17 per cent of the variance of
prices. One may wonder what moves prices then: it turns out that output shocks explain
45-60 per cent of the variability of prices in the sample.
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Figure 10.3: Median and 68% band for the responses to a US monetary policy shock.
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10.4 Time Varying Coefficients BVARs

Economic time series tend to show evolving features. One could think of these changes as
abrupt and model the switch as a structural break (either in the intercept, in the slope
coefficients or in both). Alternatively, one may suspect that changes are related to some
unobservable state, for example, the business cycle, in which case the coefficients or the
covariance matrix or both could be made a function of a finite order Markov Chain (as
we will do in Chapter 11). Since structural changes are rare but the coefficients tend
evolve continuously one may finally prefer a model with smoothly changing coefficients.
Time varying coefficient models have a long history in applied work going back, at least,
to Cooley and Prescott (1973), and classical estimation methods, ranging from generalized
least square (Swaamy (1970)) to Kalman filtering, are available. Here we treat the law of
motion of the coefficients as the first layer of an hierarchical prior and specify, in a second
layer, the distributions for the parameters of this law of motion.

The model we consider is of the form

yt = At(`)yt−1 +Ctȳt + et et ∼ N(0,Σe) (10.38)

αt = D1αt−1 +D0ᾱ+ vt vt ∼ N(0,Σt) (10.39)

where αt = vec[At(`), Ct] and D0,D1 aremk×mk matrices. (10.39) allows for stationary and
non-stationary behavior in αt. For example, the law of motion of the coefficients displays
reversion towards the mean ᾱ if the roots of D1 are all less than one in absolute value. In
principle, Σt depends on time, therefore imparting conditional heteroschedastic movements
to both the coefficients and the variables of a VAR.

The specification in (10.38)-(10.39) is flexible and can generate a variety of non-linearities
in the conditional moment structure. In fact, substituting (10.39) into (10.38) we have

yt = (Im ⊗Xt)(D1αt−1 +D0ᾱ) + (Im ⊗Xt)vt + et = Xtα
†
t + e

†
t (10.40)

where (Im ⊗ Xt) is the matrix of regressors. Depending on the nature of the Xt and
the relationship between Xt and vt, (10.40) encompasses several specifications used in the
literature. We consider three such cases in the next example.

Example 10.12 Suppose m = 1, that Xt and vt are conditionally independent and that
var(vt) = Σv. Then, yt is conditionally heteroschedastic with mean Xtα

†
t and variance

Σe + X
0
tΣvXt. In addition, if Xt includes lagged dependent variables and a constant and

(vt|Xt) ∼ N(0,Σv), then (10.40) generates a conditionally normal ARMA-ARCH structure.
Finally, if Xt includes latent variables or variables which are not perfectly predictable at t,
then yt is non-Gaussian and heteroschedastic (as in Clark’s (1973) mixture model).

Exercise 10.29 i) Suppose m = 1, Xt = (X1t, X2t) and assume X1t is correlated with vt.
Show that (10.40) produces a version of the bilinear model of Granger and Anderson (1978).
ii) Suppose vt = v1t+v2t, where v1t is independent of Xt and v2t and has covariance matrix
Σ1, and v2t is perfectly correlated with Xt. Show that (10.38)- (10.39) can generate a model
with features similar to an ARCH-M model (see Engle, Lilien and Robbins (1987)).
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(10.38)-(10.39) also include, as a special case, Hamilton’s (1989) two-state shift model.

Exercise 10.30 Suppose ∆yt = a0+a1κt+∆yct where κt = (1−p2)+(p1+p2−1)κt−1+ext ,
ext is a binomial random variable and ∆y

c
t = A(`)∆y

c
t−1+ect. Cast such a model into a TVC

framework (Hint: Find its state space format and match coefficients with (10.38)-(10.39)).

The model can also generate non-normalities in yt. Typically, such a feature is produced
when Xt is a latent variable. However, even when Xt includes only observable variables,
et and vt are independently distributed and vt and Xt conditionally independent, (10.38)-
(10.39) can generate non-normalities. To see this set m = 1 and define êt+τ = (Dτ+11 αt−1+
D0ᾱ

Pτ
j=0D1

j)0(Xt+τ−Et−1Xt+τ )+(
Pτ−1
j=0 D1

τ−jvt+j)0Xt+τ−Et−1(
Pτ−1
j=0 D1

τ−jvt+j)0Xt+τ )+
v0t+τXt+τ + et+τ .

Exercise 10.31 Show that, for fixed t and all τ , Et−1yt+τ = (Dτ+11 αt−1 +D0ᾱ
Pτ
j=0D1

j)0

Et−1Xt+τ+Et−1(
Pτ−1
j=0 D1

τ−jvt+j)0Xt+τ ; vart−1yt+τ = Et−1(êt+τ )2; skt−1(yt+τ ) = Et−1(êt+τ )3

(vart−1yt+τ )
3
2
;

ktt−1(yt+τ ) = Et−1(êt+τ )4

(vart−1yt+τ )2
where skt−1 and ktt−1 are the conditional skewness and kurtosis

coefficients. Show that for τ = 0, skt−1(yt) = 0, ktt−1(yt) = 3, i.e. yt is conditionally
normal.

For τ = 1 the conditional mean of yt+1 is nonlinear and equal to Et−1(α0t+1Xt+1) =
(D21αt−1+D0(I+D1)ᾱ)0Et−1Xt+1+Et−1v0tD1Xt+1 whereEt−1Xt+1 = [Et−1yt, yt−1, . . . yt−`+1],
while its conditional variance isEt−1((D12αt−1+D0ᾱ(1+D1))0(Xt+1−Et−1Xt+1)+(v0tD10Xt+1−
Et−1v0tD10Xt+1)+v0t+1Xt+1+et+1)2. Note that (Xt+1−Et−1Xt+1)0 = [e†t , 0, . . . , 0] and that
((v0tD10Xt+1) − Et−1(v0tD10Xt+1)) involves, among other things, terms of the form v0tD10et.
Hence, even when vt and et are normal and independent, yt+1 is conditionally non-normal
because the prediction errors involve the product of normal random variables. The above
argument holds for any τ ≥ 1.

10.4.1 Minnesota style prior

If (10.38) is the model for the data and (10.39) the first layer for the prior, we need to
specify ᾱ, the evolution of Σt and the form of D1 and D0. For example, we could use:

D1 = φ0 I, D0 = I −D1 (10.41)

ᾱij` = 1 if i = j, ` = 1 (10.42)

ᾱij` = 0 otherwise (10.43)

Σt = σtΣ0 (10.44)

Σ0ij` = φ1
h1(i, j)

h2(`)
(
σj
σi
)2 h1(i, i) = 1 (10.45)

Σ0ij` = φ1φ4 if exogenous (10.46)

where σt = φt3+φ2
1−φt−1

3
1−φ3

. As in the basic Minnesota prior we assume that Σe is fixed, but

there is no conceptual difficulty in assuming, e.g., a Wishart prior for Σ−1e .
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With (10.41) the law of motion of the coefficients has a first order autoregressive struc-
ture with decay toward the mean. φ0 controls the speed of the decay: for φ0 = 0 the
coefficients are random around ᾱ and for φ0 = 1 they are random walks. Higher order pro-
cesses can be obtained by substituting the identity matrix in (10.41) with an appropriate
matrix. The prior mean and the prior variance for the time zero coefficients are identical
to those of the basic Minnesota prior except that we allow a general pattern of weights
for different variables in different equations via the function h1(i, j). The variance of the
innovation in the coefficients evolves linearly. The nature of time variations can be clearly
understood using: Σt = V0Σ0+ V1Σt−1, which has the same structure as the law of motion
of the coefficients, and which reduces to the expression in (10.44) if V0 = φ2×I, V1 = φ3×I.
For φ3 = 0 the coefficients are time varying but no heteroschedasticity is allowed, while for
φ2 = 0 the variance of the coefficients is geometrically related to Σ0. Finally, if φ2 = φ3 = 0,
time variations and heteroschedasticity are absent.

Empirical Bayes methods can be employed to estimate the hyperparameters φ on a train-
ing sample of data going from (−τ, 0). As usual, the predictive density can be constructed
and evaluated numerically using the Kalman filter.

Exercise 10.32 Write down the predictive density for the TVC-VAR model. Specify ex-
actly how to use the Kalman filter to numerically maximize the predictive density.

Posterior inference can be conducted conditional on the estimates of φ, i.e., we use
g(α|y, φ̂ML−II) ∝ f(y|α)g(α|φ̂ML−II) in place of g(α|y). Note that while the full posterior
averages over all possible values of φ, the empirical-Bayes posterior uses ML-II estimates.
Clearly, if f(y|φ) is flat in the hyperparameter space, differences will be minor.

Example 10.13 Continuing with example 10.5, we add time variations to the coefficients
of the BVAR and forecast inflation using the same style of Minnesota prior outlined above,
but set φ3 = 0. We use a simplex algorithm to maximize the predictive density with respect
to φ’s. The optimal values are φ0 = 0.98, φ1 = 0.11,φ2 = 0.1e − 8,φ4 = 1000, while
h1(i, j) = 0.4 ∀i, j, h2(`) = `0.4. The Theil-U statistics one year ahead are 0.93 for the
sample 1996:1-2000:4 and 0.89 for the sample 1991:1-1995:4 (the posterior standard error
is 0.03 in both cases). Therefore, time variations in the coefficients appear to be important
in forecasting Italian inflation. However, time variations in the variance hardly matter. In
fact, setting φ2 = 0, the Theil-U are 0.95 and 0.90, respectively.

Exercise 10.33 (Ciccarelli and Rebucci) Suppose y1t = A11(`)y1t−1 + y2tA12 and y2t =
A22(`)y1t−1 + vt and suppose a researcher estimates y1t = A(`)y1t−1 + et.
i) Show that Aols(`) is biased unless A22(`) = 0.
ii) Consider the approximating model y1t = A(`)y1t−1 + Ac(`)y1t−1 + et where Ac(`) =
A22(`)A12 and et = vtA12. Clearly, the estimated model sets A

c(`) = 0, otherwise perfect
collinearity would result. Suppose α = vec(Ac(`), A(`)) ∼ N(ᾱ, Σ̄α) where ᾱ = (0, ᾱ2) and
Σ̄α = diag[Σ̄α1 , Σ̄α2 ]. Show that g(α|y) ∼ N(α̃, Σ̃α). Show the form of α̃, Σ̃α. In particular,
show that, in the formula for the posterior mean, the OLS estimator receives less weight
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than in standard problems. Show that the posterior for Ac(`) is centered away from zero to
correct for the skewness produced by omitting a set of regressors. How would your answer
change if coefficients are functions of time?

10.4.2 Hierarchical prior

A BVAR with time varying coefficients is a state space model where the coefficients (vari-
ances) play the role of the unobservable states. Full hierarchical estimation of such models
do not present difficulties once it is understood that time-varying and time invariant features
can be jointly estimated. The Gibbs sampling is particularly useful for this purpose.

Here we consider a simple version of the model (10.38)-(10.39) and leave the discussion
of a more complicated setup to a later section. The specification we employ has the form:

yt = Xtαt + et et ∼ N(0,Σe)
αt = D1αt−1 + vt vt ∼ N(0,Σa) (10.47)

where Xt = (Im ⊗ Xt). We assume that D1 is known and discuss in an exercise how to
estimate it, in the case it is not. Posterior draws from the distribution of the unknown
parameters (Σe,Σa) and of the unobserved state {αt}Tt=1 can be obtained with the Gibbs
sampler. Let αt = (α0, . . . ,αt), yt = (y0, . . . , yt). To use the Gibbs sampler we need three
conditional posteriors: (Σa|yt,αt,Σe), (Σe|yt,αt,Σa) and (αt|yt,Σe,Σa).

Suppose that g(Σ−1e ,Σ−1a ) = g(Σ−1e )g(Σ−1a ) and that each is Wishart with ν̄0 and ν̄1
degrees of freedom and scale matrices Σ̄e, Σ̄a, respectively. Then, since et, vt are normal

(Σ−1e |yt,αt,Σ−1a ) ∼W(ν̄0 + T, (Σ̄−1e +
X
t

(yt −Xtαt)(yt −Xtαt)0)−1)

(Σ−1a |yt,αt,Σ−1e ) ∼W(ν̄1 + T, (Σ̄−1a +
X
t

(αt −D1αt−1)(αt −D1αt−1)0)−1)

To obtain the conditional posterior of αt notice that g(αt|yt,Σe,Σa) = g(αt|yt,Σe,Σa)
g(αt−1|yt,αt,Σe,Σa) · · · g(α0|yt,α1,Σ, V ). Therefore, a sequence αt can be obtained draw-
ing each element from the corresponding conditional posterior while αt is drawn from the
marginal g(αt|yt,Σe,Σa). Let αtτ = (ατ , . . . ,αt) and ytτ = (yτ , . . . , yt). Then

g(ατ |yt,αtτ+1,Σe,Σa) ∝ g(ατ |yτ ,Σe,Σa)g(ατ+1|yτ ,ατ ,Σe,Σa)
× f(ytτ+1,α

t
τ+1|yτ ,ατ ,ατ+1,Σe,Σa)

= g(ατ |yτ ,Σe,Σa)g(ατ+1|ατ ,Σe,Σa) (10.48)

The first two terms involve posterior distributions obtained with data up to τ and the last
term the distribution of the data and the coefficients from τ+1 until t. The last line follows
from the fact that ατ is independent of y

t
τ+1,α

t
τ+1, conditional on (y

τ ,Σe,Σa). It is immedi-
ate to recognize that the two densities in (10.48) can be computed from the smoothing and
the predictive equations of the Kalman filter (see chapter 6). Let αt|t ≡ E(αt|yt,Σe,Σa) =
αt|t−1 + Kt(yt − Xtαt|t−1); Σt|t ≡ var(αt|yt,Σa,Σe) = (I − KtXt)Σt|t−1 where αt|t−1 =
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D1αt−1|t−1, Kt = Σt|t−1X 0
t(XtΣt|t−1X 0

t + Σe)
−1, and Σt|t−1 ≡ var(αt|yt−1,Σe,Σa) =

D1Σt−1|t−1D01+Σa. Using the linearity of the model and the Gaussian structure of (10.47),
g(ατ |yτ ,Σe,Σa) is normal with mean ατ |τ and variance Στ |τ , while g(ατ+1|yτ ,ατ ,Σe,Σa)
is normal with mean D1ατ and variance Σa. Therefore, given a prior for α0, all conditional
densities are Gaussian and to keep track of these distributions we only need to update
conditional means and variances. Hence, to draw samples from g(αt|yt,Σ,Σa) we use the
following:

Algorithm 10.3

1) Run the Kalman filter, save αt|t, Σt = Σt|t −MtΣt+1|tM0
t, and Mt = Σt|tΣ−1t+1|t.

2) Draw αlt ∼ N(αt|t,Σt|t), αlt−j ∼ N(αt−j|t−j +Mt−j(αlt−j+1 − αt−j|t−j),Σt−j), j ≥ 1.
3) Repeat l = 1, . . . L times

It is straightforward to allow for an unknown D1 and a time-varying Σa.

Exercise 10.34 Assume that D1 is unknown and assume a normal prior on its nonzero
elements i.e. D01 ∼ N(D̄1, σ̄2D1

). Show that g(D01|αt, yt,Σe,Σa) ∼ N((α0t−1Σ−1a αt−1 + σ−2D1
)−1

(α0t−1Σ−1a αt + σ
−2
D1
D̄1); (α0t−1Σ−1a αt−1 + σ

−2
D1
)−1).

Exercise 10.35 Let Σat = σtΣa. How would you construct the conditional posterior dis-
tribution for Σat? (Hint: treat σt as a parameter and assume a conjugate prior).

The next extension is useful to compute the likelihood of DSGE models which are not
linearized around the steady state.

Exercise 10.36 (Non-linear state space models) Consider the state space model:

yt = f1t(αt) + et et ∼ N(0,Σe)
αt = f2t(αt−1) + vt vt ∼ N(0,Σa) (10.49)

where f1t and f2t are given but perhaps depend on unknown parameters. Show that
(αt|αj 6=t,Σe,Σa, yt) ∝ h1(αt)h2(αt)N(f2t(αt−1),Σa) where h1(αt) = exp{−0.5(αt+1−f2t(αt))0
Σ−1a (αt+1 − f2t(αt))}; h2(αt) = exp{−0.5(yt − f1t(αt))0Σ−1e (yt − f1t(αt))}. Describe how to
use an acceptance sampling algorithm to draw from this posterior distribution.

Finally, we consider the case of non-normal errors. While for macroeconomic data the as-
sumption of normality is, by and large, appropriate, for robustness purposes it may be useful
to allow for non-normalities. As noted, the conditional moments of (10.47) are nonlinear for
τ ≥ 1. To generate non-normalities, when τ = 0, it is sufficient to add a nuisance parameter
φ5 to the variance of the error term, i.e., (αt|αt−1,φ5,Σa) ∼ N(D1αt−1,φ5Σa) where g(φ5)
is chosen to mimic a distribution of interest. For example, suppose that φ5 is exponentially
distributed with mean equal to 2. Since g(αt|αt−1,Σa,φ5) is normal with mean D1αt−1 and



380

variance φ5Σa; g(φ5|yt,αt,Σa) ∝
q

1
φ5
exp{−0.5[φ5+(αt−D1αt−1)0φ−15 Σ−1a (αt−D1αt−1)]}

which is the kernel of the generalized inverse Gaussian distribution. A similar approach can
be used to model non-normalities in the measurement equation.

Exercise 10.37 Suppose (yt|αt, xt,φ6,Σe) ∼ N(xtαt,φ6Σe) and that g(φ6) is exp(2). Show
the form of the conditional posterior for φ6. Describe how to draw sequences for φ6.

Exercise 10.38 Let yt = xtαt, t = 1, . . . T where conditional on xt α
0
t = (α1t, . . .αkt)is

iid with mean ᾱ and variance Σ̄α, |Σ̄α| 6= 0. Assume that ᾱ and Σ̄α are known and let
α = (α1, . . . ,αt).
i) Show that the minimum MSE estimator of α is α̃ = (IT ⊗ Σ̄α)x0Ω−1y + (ITk − (IT ⊗
Σ̄α)x

0Ω−1x)(1⊗ ᾱ) where Ω = x(IT ⊗Σα)x0,x = diag(x01, . . . x0t) and 1 = [1, . . . , 1]0.
ii) Show that if ᾱ = α0+va, va ∼ (0,Σā) and Σā is known, the best minimum MSE estimator
of ᾱ equals (x0Ω−1x+ Σ−1ā )−1(x0Ω−1y + Σ

−1
ā α0). Show that as Σā → ∞ the optimal MSE

estimator is the GLS estimator.

Exercise 10.39 (Cooley and Prescott) Let yt = xtαt where xt is a 1×k vector; αt = αPt +
et; α

P
t = α

P
t−1+vt where et ∼ (0, (1−%)σ2Σe), vt ∼ (0, %σ2Σv) and assume Σe, Σv known.

Here % represents the speed of adjustment of αt to structural changes (for %→ 1 permanent
changes are large relative to transitory ones). Let y = [y1, . . . , yT ]

0, x = [x1, . . . , xT ]0 and
αp = (αp1t, . . . ,α

p
kt)

0.
i) Show that the model is equivalent to yt = x

0
tα
P
t + ²t; ²t ∼ (0,σ2Ω(%)). Display Ω(%).

ii) Show that, conditional on %, the minimum MSE estimators for (αp,σ2) are αpML(%) =
(x0Ω(%)−1x)−1 (x0Ω(%)−1y) and σ2ML(%) =

1
T (y−xαpML(%))0Ω(%)−1(y−xαpML(%)). Describe

a way to maximize the concentrated likelihood as a function of %.
iii) Obtain posterior estimators for (α, %,σ2) when g(α, %,σ2) is non-informative. Set up a
Gibbs sampler algorithm to compute the joint posterior of the three parameters.

10.5 Panel VAR models

We have extensively discussed macro panel data in chapter 8. Therefore, the focus of this
section is narrow. Our attention centers on three problems. First, how to specify Bayesian
univariate dynamic panels. Second, how to dynamically group units in the cross section.
Third, how to setup panel VAR models with cross sectional interdependencies. Univariate
dynamic panels emerge, for example, when estimating steady state income per-capita, or
when examining the short and long run effects of oil shocks on output across countries.
Grouping is particularly useful, for example, if one is interested in knowing if there are
countries which react differently than others after e.g. financial crises. Finally, models with
interdependencies are useful to study a variety of transmission issues across countries or
sectors which can not be dealt with the models of chapter 8.



Methods for Applied Macro Research 10: Bayesian VARs 381

10.5.1 Univariate dynamic panels

For i = 1, . . . n, the model we consider is:

yit = A1i(`)yit−1 + ȳi +A2i(`)Yt + eit eit ∼ (0,σ2i ) (10.50)

where Aji(`) = Aji1`+ . . .+Ajiqj`
qj j = 1, 2 and ȳi is the unit specific fixed effect. Here Yt

includes variables which account for cross sectional interdependencies. For example, if yit
are regional sales, one element of Yt could be a national business cycle indicator. Because
variables like Yt are included, E(eitejτ ) = 0 ∀i 6= j, all t, τ . We can calculate a number of
statistics from (10.50). For example, long run multipliers to shocks are (1−A1i(1))−1 and
long run multipliers to changes in Yt are (1−A1i(1))−1A2i(1).

Example 10.14 Let yit be output in Latin American country i and let Yt = (x1t, it), where
it is US interest rate. Suppose it = A3(`)²t. Then (1 −A1i(`)−1A2i(`)A3(`) traces out the
effect of unitary US interest rate shock at t on the output of country i from t on.

Stacking the T observations for (yit, Yt, eit) and the fixed effect into the vectors (yi, Y, ei,1),
lettingXi = (yi, Y,1), Σi = σ

2
i×IT , α = [A1, . . . An]0, Ai = (A1i1, . . . , Aiq1 , ȳi, A1i1, . . . , A2iq2)

and setting y = (y1, . . . yn)
0, e = (e1, . . . , en)0:

y = (In ⊗Xi)α+ e e ∼ (0,Σi ⊗ In) (10.51)

Clearly, (10.51) has the same format as a VAR, except that Xi are unit specific and the
covariance matrix of the shocks has a diagonal heteroschedastic structure. The first feature
is due to the fact that we do not allow for interdependencies across units. The latter is easy
to deal with once (10.51) is transformed so that the innovations have spherical disturbances.

If e is normal, the likelihood function of a univariate dynamic panel is therefore the
product of a normal for α, conditional on Σi ⊗ In, and n Gamma densities for Σ−1i . Since
the variance of e is diagonal, αML can be obtained equation by equation.

Exercise 10.40 Show that αML obtained from (10.51) is the same as the estimator ob-
tained by stacking weighted least square estimators obtained from (10.50) for each i.

Conjugate priors for dynamic panels are similar to those described in section 10.2. Since
var(e) is diagonal, we can choose σ−2i ∼ G(a1, a2), each i. Given the panel framework we
can use the exchangeability assumption if, a-priori, we expect the Ai to be similar across
units. An exchangeable prior on Ai takes the form Ai ∼ N(Ā, σ̄2A) where σ̄2A measures the
degree of heterogeneity an investigator expects to find in the cross section.

Exercise 10.41 (Lindlay and Smith) Suppose the model (10.50) has k coefficients in each
equation and that Ai = Ā+ vi, i = 1, . . . n, vi ∼ N(0, σ̄2A), where Ā, σ̄2A are known. Show
the form of the posterior mean for Ai. Assuming that σ

2
i is fixed, show the form of the

posterior variance for Ai. Argue that the posterior mean for the stacked vector of Ai is the
same as the one obtained by calculating the posterior mean for the system (10.51).
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Exercise 10.41 highlights the importance of exchangeable priors in a model like (10.51).
In fact, exchangeability preserves independence across equations and the posterior mean of
the coefficients of a dynamic panel can be computed equation by equation.

Exercise 10.42 (Canova and Marcet) Suppose you want to set up an exchangeable prior
on the difference of the coefficients across equations, i.e. αi − αj ∼ N(0,Σa). This is
advantageous since there is no need to specify the prior mean ᾱ. Show the structure of Σa
which insures that the ordering of the units in the cross section does not matter.

We already mentioned the pooling dilemma in section 4 of Chapter 8. We return to this
problem in the next exercise which gives conditions under which the posterior distribution
for Ai reflects prior, pooled and/or single unit sample information.

Exercise 10.43 (Zellner and Hong) Let yi = xiαi + ei, i = 1, . . . n where xi may include
lags of yit and for each i, yi is a T × 1 vector, xi a T × k vector and αi a k × 1 vector and
ei ∼ iid N(0,σ2e). Assume that αi = ᾱ+ vi, where vi ∼ iid N(0,κ−1σ2vIk) with 0 < κ ≤∞.
(i) Show that a conditional point estimate for α = (α01, . . . ,α0N )

0 is the Nk × 1 vector
α̃ = (x0x + κInk)−1(x0xαols + κIαp) where x = blockdiag{xi}; αols = (x0x)−1(x0y); y =
(y01, . . . , y0N)

0, αols = (α01,ols, . . .α
0
N,ols)

0, αi,ols = (x0ixi)−1(x0iyi), I = (Ik, . . . Ik), αp =

(
P
i x
0
ixi)

−1 (
P
i x
0
ixiαi,ols). Conclude that α̃ is a weighted average of individual OLS esti-

mates and of the pooled estimate αp. Show that, as κ→∞, α̃ = αp.
(ii) (g-prior) Assume that vi ∼ iid N(0, (x0ixi)−1σ2v). Show that α̃1i = (αi,ols+

σ2
e
σ2
v
ᾱ)/(1+ σ2

e
σ2
v
)

Conclude that α̃1i is a weighted average of the OLS estimate and the prior mean ᾱ.

(iii) Show that if g(ᾱ) is non-informative, α̃2i = (αi,ols+
σ2
e
σ2
v
αp)/(1+

σ2
e
σ2
v
). Conclude that, as

σ2
e
σ2
v
→∞, α̃i = αp and, as σ2

e
σ2
v
→ 0, α̃i = αi,ols.

Next we describe how dynamic univariate panels can be used to estimate the steady state
distribution of income per-capita and of the convergence rates in a panel of EU regions.

Example 10.15 Here A1i(`) has only one non-zero element (the first one), Yt is the aver-
age EU GDP per-capita and A2ij = 1 if j = 0 and zero otherwise. Hence (10.50) is:

ln(
yit
Yt
) = ȳi +Ai ln(

yit−1
Yt−1

) + eit eit ∼ N(0,σ2i ) (10.52)

We let αi = (ȳi, Ai) and assume αi = ᾱ+ vi, where vi ∼ N(0,σ2aI).
We treat σ2i as known (and estimate it from invidual OLS regressions), assume ᾱ known

(estimated averaging individual OLS estimates) and treat σ̄2a as fixed. Let
σ2
i

σ2
aj

, j = 1, 2 mea-

sures the relative importance of prior and sample information: if this ratio goes to infinity
sample information does not matter; viceversa, if it is close to zero, prior information is

irrelevant. We choose a relative loose prior (
σ2
i

σ2
aj

= 0.5, j = 1, 2). Using income per-capita



Methods for Applied Macro Research 10: Bayesian VARs 383

Convergence rate

P
ro

b
a

b
il
it
y

0.00 0.60
0.0

1.6

3.2

4.8

6.4

Steady state

P
ro

b
a

b
il
it
y

-1.0 0.5
0.0

0.9

1.8

2.7

Figure 10.4: Cross sectional distributions.

for 144 EU regions from 1980 to 1996 we calculate the relative steady state for unit i using

S̃Si = ˜̄yi
1−ÃTi
1−Ãi + Ã

T+1
i

yi0
Y0
where ˜̄yi, Ãi are posterior mean estimates. The rate of conver-

gence to the steady state is C̃V i = 1 − Ãi (If Ã > 1, we set C̃V = 0). We plot the cross
sectional distribution of C̃V and S̃S in figure 10.4. The mode of the convergence rate is
0.09, implying much faster catch up than the literature has found (see e.g. Barro and Sala
(1995)). The highest 95% credible set is however large (it goes from 0.03 to 0.55). The cross
sectional distribution of relative steady states has at least two modes: one at low relative
levels of income and one just below the EU average.

At times, when the panel is short, one wishes to use cross-sectional information to
get better estimates of the parameters of each unit. In other cases, one is interested in
estimating the average cross sectional effect. In both situations, the tools of Meta analysis
come handy.

Example 10.16 Continuing with example 10.15, suppose g(SSi) ∼ N(S̄S,σ2SS) where
σSS = 0.4 and assume g(S̄S) ∝ 1. Using the logic of hierarchical models, g(S̄S|y) combines
prior and data information and g(SSi|y) combines unit specific and pooled information. The
posterior mean for S̄S is -0.14 indicating that the distribution is highly skewed to the left,
the variance is 0.083 and a credible 95 percent interval is (-0.30, 0.02). Since a credible 95
percent posterior interval for SSi is (-0.51, 0.19), this posterior distribution largely overlaps
with the one in figure 10.4.



384

10.5.2 Endogenous grouping

There are many situations when one would like to know whether there are groups in the
cross section of a dynamic panel. For example, one type of growth theory predicts the
existence of convergence clubs, where clubs are defined by similarities in the features of the
various economies or government policies. In monetary economics, one is typically inter-
ested in knowing whether regional economies respond differently to union wide monetary
policy disturbances or whether the behavioral responses of certain groups of agents (credit
constrained vs. credit unconstrained consumers, large vs. small firms, etc.) can be identi-
fied. In general, these classifications are exogenously chosen (see for example, Gertler and
Gilchrist (1991)) and somewhat arbitrary.

In this subsection we describe a procedure which simultaneously allows for endogenous
grouping of cross sectional units and for Bayesian estimation of the parameters of the model.
The basic idea is simple: if units i and i0 belong to a group, the vector of coefficients will
have the same mean and the same dispersion but if the don’t, the vector of coefficients of
the two units will have different moments.

Let n be the size of the cross section, T the size of the time series, and O = 1, 2, . . . n! the
ordering of the units of the cross section (the ordering producing a group is unknown). We
assume there could be ψ = 1, 2, . . . , ψ̄ break points, ψ̄ given. For each group j = 1, . . . ,ψ+1
and each unit i = 1, . . . , nj(O)

yit = ȳi +A1i(`)yit−1 +A2i(`)Yt−1 + eit eit ∼ (0,σ2ei) (10.53)

αji = ᾱj + vji vji ∼ (0, Σ̄j) (10.54)

where αi = [ȳi, A1i1, . . . , A1iq1 , A2i1, . . . , , A2iq2]
0 is the ki × 1 vector of coefficients of unit

i, ki = q1 + q2 + 1, n
j(O) is the number of units in group j, given the O-th ordering,P

j n
j(O) = n, for each O. In (10.54), αi is random but the coefficients of the nj(O)

units belonging to group j have the same mean and same covariance matrix. Since the
exchangeable structure may differ across groups, (10.53)-(10.54) capture the idea that there
may be clustering of units within groups but that groups may drift apart.

The alternative to (10.53)-(10.54) is a model with homogeneous dynamics in the cross
section, that is ψ̄ = 0, and an exchangeable structure for all units of the cross section, i.e.

αi = ᾱ+ vi i = 1, . . . , n vi ∼ (0, Σ̄i) (10.55)

Let Y be a (nTm)× 1 the vector of left hand side variables in (10.53) ordered to have
the n cross sections for each t = 1, . . . T, m times, X be a (nTm) × (nk) matrix of the
regressors, α be a (nk)× 1 vector of coefficients, E a (nTm)× 1 vector of disturbances, ᾱ a
(ψ+ 1)k× 1 vector of means of α, A be a (nk)× (ψ+ 1)k matrix, A = diag{Aj}, where Aj
has the form 1⊗ Ik where Ik is a k× k identity matrix and 1 is a nj(O)× 1 vector of ones.
Given an ordering O, the number of groups ψ, and the location of the break point hj(O),
we can rewrite (10.53)− (10.54) as:

Y = Xα+E E ∼ (0,ΣE) (10.56)

α = Ξᾱ+ V V ∼ (0,ΣV ) (10.57)
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where ΣE is (nTm)× (nTm) and ΣV = diag{Σi} is a (nk)× (nk) matrix and Ξ is a matrix
of zeros and ones. To complete the specification we need priors for (ᾱ,ΣE,ΣV ) and for
the submodel characteristics M, indexed by (O, ψ, hj(O)). Since the calculation of the
posterior distribution is complicated, we take an Empirical Bayes approach.

The approach to group units proceeds in three steps. Given (ᾱ, ΣE , ΣV ,O), we examine
how many groups are present. Given O and ψ̂, we check for the location of the break points.
Finally we iterate on the first two steps, altering O. The selected submodel is the one that
maximizes the predictive density over orderings O, groups ψ, and break points hj(O).

Let f(Y |H0) be the predictive density of the data under cross sectional homogeneity.
Furthermore, let Iψ be the set of possible break points when there are ψ groups. Let
f(Y j|Hψ, hj(O),O) be the predictive density for group j, under the assumption that there
are ψ break points with location hj(O), using ordering O and let f(Y |Hψ, hj(O),O) =Qψ+1
j=1 f(Y

j |Hψ, hj(O),O). Define the quantities

• f−(Y |Hψ,O) ≡ suphj(O)∈Iψ f(Y |Hψ, hj(O),O),
• f †(Y |Hψ) ≡ supO f−(Y |Hψ,O),
• f0(Y |Hψ,O) ≡

P
hj(O)∈Iψ g

j
i (O)f(Y |Hψ, hj(O),O),

where gji (O) is the prior probability that there is a break at location hj(O) for group j of
ordering O. f− gives the maximized predictive density with respect to the location of break
points, for each ψ and O; f† the maximized predictive density, for each ψ, once the location
of the break point and the ordering of the data are chosen optimally. f0 gives the average
predictive density with ψ breaks where the average is calculated over all possible locations
of the break points, using the prior probability that there is a break point in each location
as weight. We choose gji (O) to be uniform over each (j,O) and set ψ̄ <<p(N/2).

Examining the hypothesis that the dynamics of the cross section are group-based, given
O, is equivalent to verifying the hypothesis that there are ψ breaks against the null of no
breaks. Such an hypothesis can be examined with a Posterior odds ratio:

PO(O) =
g0f(Y |H0)P

ψ gψf
0(Y |Hψ,O)J1(n) (10.58)

where g0 (gψ) is the prior probability that there are 0 (ψ) breaks. Verification of the
hypothesis that there are ψ − 1 vs. ψ breaks in the cross section can be done using:

PO(O,ψ − 1) =
gψ−1f0(ψ−1)(Y |Hψ−1,O)
gψf0(ψ)(Y |Hψ,O)J2(n)

(10.59)

Here Ji(n), i = 1, 2 are penalty functions which account for the fact that a model with ψ
breaks is more densely parametrized than a model with a smaller number of breaks. Once
the number of break points has been found (say, equal to ψ̂), we assign units to groups so
as to provide the highest total predictive density, i.e. compute f−(Y |Hψ̂,O). Since there
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are O possible permutations of the cross section over which to search for groups the optimal
permutation rule of units in the cross section is the one which achieves f†(Y |Hψ̂).

Two interesting questions which emerge are the following. Can we proceed sequentially
to test for breaks? Bai (1997) shows that such a procedure produces consistent estimates
of the number and the locations of the breaks. However, when there are multiple groups,
the estimated break point is consistent for any of the existing break points and its location
depends on the ”strength” of the break. Second, how can we maximize the predictive density
over O when n is large? When no information on the ordering of the units is available and n
is moderately large, the approach is computationally demanding. Geographical, economic
or sociopolitical factors may help to provide a restricted set of ordering worth examining.
But even when economic theory is silent, the maximization does not require n! evaluations,
since many orderings give the same predictive density.

Example 10.17 Suppose n=4, so there are n!=24 possible orderings to examine. Suppose
the initial ordering is 1234 and two groups are found: 1 and 234. Then all permutations
of 234 with unit 1 coming ahead, i.e. 1243, 1342, etc., give the same predictive density.
Similarly permutations which leave unit 1 last need not be examined, i.e. 2341, 2431, etc.
This reduces the number of ordering to be examined to 13. By trying another ordering, say
4213, and finding, for example, two groups: 42 and 13, we can further eliminate all the
orderings which rotate the elements of each group, i.e. 4132, 2341, etc.. It is easy to verify
that once four carefully selected ordering have been tried and, say, two groups found in each
trial, we have exhausted all possible combinations.

Once the submodel characteristics have been determined, we can estimate [ᾱ0, vech(ΣE)0,
vech(ΣV )

0]0 using f†(Y |Hψ). For example, if eit’s and vi are normally distributed,

ˆ̄α
j
=

1

nj(O)
nj(O)X
i=1

αji,ols

Σ̂j =
1

nj(O)− 1
nj(O)X
i=1

(αji,ols − ˆ̄αj)(αji,ols − ˆ̄αj)0 −
1

nj(O)
nj(O)X
i=1

(xix
0
i)
−1σ̂2i

σ̂2i =
1

T − k (y
0
iyi − y0ixiαi,ols) (10.60)

where xi is the matrix of regressors and yi the vector of dependent variables for unit i
and αji,ols is the OLS estimator of α

j obtained using the information for unit i (in group
j = 1, . . . ,ψ + 1). Then an Empirical Bayes posterior point estimate for the α vector is
α̃ = (X 0Σ̂−1E X + Σ̂−1V )

−1(X 0Σ̂−1E Y + Σ̂
−1
V Aˆ̄α). Alternatively, if the eit’s and the vi’s are

normal and g(a0,ΣE ,ΣV ) is diffuse, we can jointly estimate (ᾱ
j ,Σj,σ2i ) and the posterior

mean for α as follows:

ˆ̄α
j
=

1

nj(O)
nj(O)X
i=1

(α∗i )
j
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Σ̂j =
1

nj(O)− k − 1 [δ ∗ I +
nj(O)X
i=1

((α∗i )
j − ˆ̄αj)((α∗i )j − ˆ̄αj)0]

σ̂2i =
1

T + 2
(yi − xiα∗i )0(yi − xiα∗i )

(α∗i )
j = (

1

σ̂2i
x0ixi + Σ̂

−1
j )

−1(
1

σ̂2i
x0ixiαi,ols + Σ̂

−1
j
ˆ̄α
j
) (10.61)

j = 1, . . . ,ψ + 1; i = 1, . . . , nj(O); and δ > 0 but small insures that Σ̂j is positive definite.

Exercise 10.44 Derive (10.60) and (10.61).

Example 10.18 (Convergence clubs). The cross sectional posterior distribution of steady
states in example 10.15 shows a multimodal shape. One may therefore be interested in
knowing whether there are convergence clubs in the data and where the break point is.
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Figure 10.5: Convergence clubs.

We examined several ordering of cross sectional units based on initial income conditions,
growth patterns or geographical characteristics. The one which is optimal orders units using
the initial conditions of relative income per-capita. With this ordering, we set ψ̄ = 4 and
sequentially examine ψ against ψ + 1 breaks starting from ψ = 0. There are up to three
breaks in the data with PO ratios of 0.06. 0.52, 0.66 respectively. Conditioning on one
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break (ψ = 1) we plot in the first panel of figure 10.5 the marginal predictive density as a
function of the break point, together with the predictive density for ψ = 0. Visual inspection
indicates that the former is always above the latter and that units up to 23 belong to the
first group and from 24 to 144 to the second. The average convergence rates of the two
groups are 0.78 and 0.20, suggesting faster convergence to below- average steady states in
the first group. The second panel of figure 10.5 suggests that the posterior distributions of
the steady states for the two groups are distinct. Not surprisingly, the first 23 units are all
poor, Mediterranean and peripheral regions of the EU.

10.5.3 Panel VARs with interdependencies

Neither the panel VAR model studied in chapter 8 nor the specification we have considered
so far allow for cross units lagged feedbacks. This may be important e.g. when one is
interested in the transmission of shocks across countries. A panel VAR model with inter-
dependencies has the form:

yit = A1it(`)yt +A2it(`)Yt + eit (10.62)

where i = 1, ..., n; t = 1, ..., T ; yit is a m1 × 1 vector for each i, yt = (y01t, y02t, . . . y0nt)0,
Aj1it are m1 × (nm1) matrices and Aj2it are m1 ×m2 matrices for each j; Yt is a m2 × 1
vector of exogenous variables, common to all i, eit is a m1 × 1 vector of disturbances and,
for convenience, we have omitted constants and other deterministic components. In (10.62)
cross-unit lagged interdependencies appear whenever Aj1it,i0 6= 0, for i0 6= i and some j, that
is, when the matrix of lagged coefficients is not block diagonal at all lags. The presence of
lagged cross unit interdependencies adds flexibility to the specification but it is not costless:
the number of coefficients is greatly increased (there are k = nm1q1 +m2q2 coefficients in
each equation). In (10.62) we allow coefficients to vary over time.

To construct posterior distributions for the unknowns, rewrite (10.62) as:

Yt = Xtαt +Et Et ∼ N (0,ΣE) (10.63)

where Xt = (Inm⊗Xt); Xt=(y
0
t−1, y0t−2, . . . , y0t−q1

, Y 0t , . . . , Y 0t−q2
); αt = (α

0
1t, . . . ,α

0
nt)

0 and
αit = (α

10
it , . . . ,α

m10
it )

0. Here αjit are k × 1 vectors containing the coefficients for equation j
of unit i, while Yt and Et are nm× 1 vectors containing the endogenous variables and the
random disturbances.

Whenever αt varies with cross—sectional units in different time periods, it is impossible
to employ classical methods to estimate it. Two short cuts are typically used: either it is
assumed that the coefficient vector does not depend on the unit (apart from a time invariant
fixed effect), or that there are no interdependencies (see e.g. Holtz Eakin et al. (1988) or
Binder et al (2001)). Neither of these assumptions is appealing in our context. Instead, we
assume that αt can be factored as:

αt = Ξ1θ
1
t + Ξ2θ

2
t +

FX
f=3

Ξfθ
f
t (10.64)
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where Ξ1 is a vector of ones of dimensions nmk × 1; Ξ2 is a matrix of ones and zeros of
dimensions nmk × n, and Ξf are conformable matrices. Here θ2t is an n× 1 vector of unit
specific factors (the fixed effect), θ1t is the common factor and θ

f
t is a set of factors which,

in principle, is indexed by the unit i, the variable j, the lag or combinations of all of the
above.

Example 10.19 In a two variable, two lag, two country model with Yt = 0, (10.64) implies

αi,j,s,`t = θ1t + θ
2i
t + θ

3j
t + θ

4s
t + θ

5`
t (10.65)

where θ1t is a common factor, θ
2
t = (θ

21
t , θ

22
t )

0 is a 2× 1 vector of country specific factors,
θ3t = (θ31t , θ

32
t )

0 is a 2 × 1 vector of equation specific factors, θ4st = (θ41t , θ
42
t )

0 is a 2 × 1
vector of variable specific factors, θ5`t = (θ

51
t , θ

52
t )

0 is a 2× 1 vector of lag specific factors.

All factors in (10.64) are allowed to be time varying; in fact, time invariant structures
can be obtained via restrictions on the law of motion of the θt. Also, while the factorization
in (10.64) is exact, in practice only a few factors will be specified: in that case all the
omitted factors will be aggregated into an error term v1t. Note also that with (10.64) the
over-parametrization of the original model is dramatically reduced because the nmk × 1
vector αt depends on a much lower dimensional vector of factors.

Let θt = [θ1t , (θ
2
t )
0, (θ3t )0, . . . , (θ

f1
t )

0, f1 < F ] and write (10.64) as

αt = Ξθt + v1t v1t ∼ N(0,ΣE ⊗ΣV ) (10.66)

where Ξ = [Ξ1, Ξ2, . . . ,Ξf1 ] and V is a k × k matrix. We assume a hierarchical structure
on θt which allows for time variations and exchangeability:

θt = (I −D1) θ̄ +D1θt−1 + v2t v2t ∼ N (0,Σv2t) (10.67)

θ̄ = D0θ0 + v3 v3 ∼ N(0,Σv3) (10.68)

We set ΣV = σ
2
vIk and, as in section 10.4, we let Σv2t = φ3 ∗ Σv2t−1 + φ2 ∗ Σ0 where Σ0 =

diag(Σ01,Σ02, . . .Σ0,f1). We assume that vit, i = 1, 2, 3 and Et are mutually independent
and that (σ2v ,φ3,φ2,D1,D0) are known. Here D0 a matrix which restricts (part of the)
means of the factors of the coefficients via an exchangeable prior.

To sum up, the prior for αt has a multi-step hierarchical structure: with (10.66) we
make a large number of coefficients depend on a smaller number of factors. The factors are
then allowed to have a general evolving structure (equation (10.67)) and the prior mean of
e.g. unit specific factors is potentially linked across units (equation (10.68)). The variance
of the innovations in θt is allowed to be time varying to account for heteroschedasticity
and other generic volatility clustering that are unit specific or common across units. To
complete the specification we need to provide prior densities for (Σ−1E , θ0, σ

−2
v , Σ

−1
0 , Σ

−1
v3
).

Canova and Ciccarelli (2002) study both informative and uninformative priors. Here we
consider a special case of the non-informative framework they use.
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Since αt is a nmk× 1 vector, the derivation of its posterior distribution with numerical
methods is computationally demanding when m or n are large. To avoid problems rewrite
the model as

yt = XtΞθt + et

θt = (I −D1) θ̄ +D1θt−1 + v2t
θ̄ = D0θ0 + v3t (10.69)

where et = Et +Xtv1t has covariance matrix σtΣE = (1+ σ
2X 0

tXt)ΣE. In (10.69) we have
integrated αt out of the model so that θt becomes the vector of parameters of interest.

We assume Σo1 = φ1, Σ0i = φi ∗ I, i = 2, . . . , f1, where φi controls the tightness of fac-
tor i of the coefficient vector. Furthermore assume that: g(Σ−1E ,σ

−2, θ0,σ−2v ,Σv3 ,φi) =
g(Σ−1E )g(σ

−2)g(σ−2v )g(θ0,Σv3)
Q
i g(φi) where g(Σ

−1
E ) is W(ν̄1, Σ̄

−1
1 ); g(σ

−2 ∝ constant;

g(σ−2v ) ∝ σ−2v ; g(θ0,Σv3) ∝ Σ−(ν̄2+1)/2
v3 where ν̄2 = 1+N+

Pm1
j=1 dim(θ

f
j,t), f > 1 and g(φi) ∝

(φi)
−1; and the hyperparameters Σ̄1, ν̄1 are assumed to be known or estimable from the data.

The assumptions made imply that the prior for et has the form (et|σt) ∼ N (0,σtΣE), and
σ−2t is Gamma distributed so that et is distributed as a multivariate t centered at 0, with
scale matrix which depends on ΣE and degrees of freedom equal to dim(Xt). Since the likeli-

hood of the data is proportional to
³QT

t=1 σi

´−Nm/2 |ΣE |−T/2 exp h−12Pt (yt −XtΞθt)0 (σtΣE)−1 (yt −XtΞθt)
i
,

it is easy to derive the conditional posteriors of the unknowns since the prior is conjugate.
In fact, conditional on the other parameters, Σ−1E is Wishart, σ−2t is a Gamma, θ0 is Normal,
Σ−1v3

is Wishart and φ−1i is Gamma distributed.

Exercise 10.45 Derive the parameters of the posterior of Σ−1E , σ
−1
t , Σ

−1
v3
, φ−1i and θ0.

Finally, the conditional posterior distribution of (θ1, .., θT | yT ,ψ−θt) can be obtained
with the Kalman filter/ smoother as described in section 10.4. With these conditional, the
Gibbs sampler can be used to draw a sequence of parameters from the joint posterior.

10.5.4 Indicators

The panel VAR (10.63) with the hierarchical prior (10.66)- (10.68) provides a framework to
recursively construct coincident/leading indicators. In fact, the first equation in (10.69) is

yt =

f1X
f=1

Xf,tθ
f
t + et (10.70)

where Xft = XtΞf . In (10.70) yt depends on a common time index X1t, on a n×1 vector of
unit specific indices X2t, and of a set of indices which depend on variables, lags, units, etc.
These indices are particular combinations of lags of the VAR variables, while θjt measure the
impact that different linear combinations of the lags of the right hand side variables have
on the current endogenous variables. Hence, it is possible to construct leading indicators
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directly from the VAR, without any preliminary distinction between leading, coincident
and lagging variables. Also, because the model is recursive, both single-step and multi-step
leading indicators can be obtained from the posterior for θt. Finally, fan charts can be
constructed using the predictive density of future observations and the output of the Gibbs
sampler.

Example 10.20 Suppose we are interested in a model featuring a common, a unit specific
and a variable specific indicator. Given (10.70), a leading indicator for yt based on the
common information available at time t− 1 is CLIt = X1tθ1t|t−1; a vector of leading indica-
tors based on the common and unit specific information is CULIt = X1tθ

1
t|t−1 +X2tθ

2
t|t−1;

a vector of indicators based on the common and variable specific information is CV LIt =
X1tθ

1
t|t−1 +X3tθ

3
t|t−1; and vector of indicators based on the common, unit specific and vari-

able specific information is CUV LIt = X1tθ
1
t|t−1 +X2tθ

2
t|t−1 +X3tθ

3
t|t−1.

While we have derived (10.70) using a prior on the panel VAR, one may want to start the
investigation directly from (10.70). In this case, a researcher may be interested in assessing
how many indices are necessary to capture the heterogeneities in the coefficients across
time, units and variables. We can use Bayes factors to make this choice. A model with i

indices is preferable to a model with i + 1 indices, i = 1, 2, . . . , f1 − 1, if f(yt+τ |Mi)
f(yt+τ |Mi+1)

> 1

where f(yt+τ |Mi) =
R
f(yt+τ |θt,i,Mi)g(θt,i|Mi)dθt,i is the predictive density of a model

with i indices for yt+τ = [yt+1, . . . , yt+τ ], g(θt,i|Mi) is the prior for θ in model i and
f(Y t+τ |θt,i,Mi) the density of future data, given θt,i andMi. The predictive density for
future yt+τ in model i can be computed with the output of the Gibbs sampler. To do so,
draw θlt from the posterior distribution, construct forecast ylt+τ and prediction errors for
each τ and average across draws.

10.5.5 Impulse responses

Impulse responses for the model can be computed as posterior revisions of the forecast errors.
Since the model is non-linear, forecasts for the vector of endogenous variables may change
because the innovations in the model or the innovations in the coefficients are different
from zero. Furthermore, because of time variations, revisions depend on the history and
the point in time where they are computed.

To see this set Yt = 0, rewrite (10.63) as Yt = AtYt−1 + Et and let αt = vec(A1t) where
A1t are the first m1 rows of At. Iterating τ times we have

yt+τ = S(
τ−1Y
s=0

At+τ−s)Yt +
τ−1X
i=0

A∗i,t+τ et+τ−i (10.71)

where S = [I, 0, .., 0] and A∗i,t+τ = S(
Qi−1
s=0At+τ−s)S0; A∗0,t+τ = I . Using (10.67) into (10.66)

and iterating gives

αt+τ = Ξθt+τ + v1t+τ = ΞDτ+11 θt−1 + Ξ
τX
i=1

Di1(I −D1)θ̄ + Ξ
τX
i=1

Di1v2t+τ−i + v1t+τ
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(10.72)

Define responses at step j, given information at t and terminal horizon τ as Revt,j(τ) =
Et+jYt+τ −EtYt+τ , ∀τ ≥ j + 1. Using Etyt+τ = SEt(

Qτ−1
s=0 At+τ−s)Yt, we have that

Revt,j(τ) =

j−1X
s=0

(Et+jA∗τ−j+s,t+τ )et+j−s+S[Et+j(
τ−j−1Y
s=0

At+τ−s)
τ−1Y
s=τ−j

At+τ−s−Et(
τ−1Y
s=0

At+τ−s)]Yt

(10.73)
From (10.73) it is clear that forecast revisions can occur because new information present in
the innovations of the model, et, or of the coefficients, v2t, alter previous forecasts of Yt+τ .

Example 10.21 In equation (10.73) take j = 1, τ = 2. Then Revt,1(2) = Et+1Yt+2 −
EtYt+2 = Et+1

¡
A∗1,t+2

¢
et+1+S [Et+1 (At+2)At+1 −Et (At+2At+1)]Yt. Similarly, j = 2, k =

3, imply Revt,2(3) = Et+2Yt+3−EtYt+3 =
P1
s=0

¡
Et+2A∗1+s,t+3

¢
et+2−s+S[Et+2 (At+3)At+2At+1

−Et (At+3At+2At+1)]Yt where
P1
s=0

¡
Et+2A∗1+s,t+3

¢
et+2−s =

SEt+2 (At+3)S0et+2 + SEt+2 (At+3)At+2S0et+1. Hence, changes in Yt+3 due to innovations
of the model are SEt+2 (At+3)S0et+2+SEt+2 (At+3)At+2S0et+1 and due to innovations in the
coefficients are S[Et+2 (At+3)At+2At+1 −Et (At+3At+2At+1)]Yt. Clearly, responses depend
on the time when they are generated (e.g. t vs. t+ 1) and the history of yt.

The output of the Gibbs sampler can be used to compute the expressions appearing in
(10.73). Conditioning on At, assuming that et 6= 0 and that all future innovations in both
coefficients and variables are integrated out, Revt,j(τ) can be computed as follows:

Algorithm 10.4

1) Draw (et+1, . . . , et+j) and (At+1, . . . ,At+j) from the posterior distribution L+ 1 times.

2) For each draw l = 2, . . . L+ 1, compute Â∗li,j =
Qj
s=0Alt+τ−s. Average it Â∗li,j over l.

3) For each draw l = 2, . . . , L+ 1, compute êt+τ =
PL+1
l=2 e

l
t+τ , τ > 1.

4) Given Yt, (elt+j, Alt+j) from 1), Â∗li,j from 2), êt+τ from 3), compute Revt,j(τ ).

Example 10.22 We use a VAR model for G-7 countries with GDP growth, inflation, em-
ployment growth and the real exchange rate for each country and three indices: a 2 × 1
vector of common factors - one for EU and one for non-EU countries, a 7 × 1 vector of
country specific factors and a 4× 1 vector of variable specific factors.

We assume time variations in the factors, use non-informative priors on the hyperpa-
rameters but do not impose exchangeability. Figure 10.6 presents 68% bands for the CUVLI
indicator for EU GDP growth and inflation, constructed recursively using information avail-
able one year in advance. Actual values of EU GDP growth and inflation are superimposed.
The model predicts the ups and downs of both series reasonably well using one year ahead
information. The Theil-U statistics over the 1996:1-2000:4 and 1991:1-1995:4 sample are
0.87 and 0.66, respectively, much lower than those obtained with a single country VAR
(1.25, 1.06) or with a univariate AR (1.04, 0.97).
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Figure 10.6: One year ahead 68% prediction bands, EU
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Chapter 11: Bayesian time series
and DSGE models

This chapter covers Bayesian estimation of three popular time series models and returns
to the main goal of this book: estimation and inference in DSGE models, this time from a
Bayesian perspective. All three types of time series models have a latent variable structure:
the data yt depends on an unobservable xt and on a vector of parameters α, and the latent
variable xt is a function of another set of parameters θ. In factor models, xt is a common
factor or a common trend; in stochastic volatility models, xt is a vector of volatilities and in
Markov switching models, xt is an unobservable finite-state process. While for the first and
the third type of models classical methods to evaluate the likelihood function are available
(see e.g. Sims and Sargent (1977), Hamilton (1989)), for the second approximations based
on either a method of moments or quasi-ML are typically used. Approximations are needed
because the density of observable data f(y|α, θ) is a mixture of distributions i.e. f(y|α, θ) =R
f(y|x,α)f(x|θ)dx. Therefore, the computation of the likelihood function requires a T-

dimensional integral and no analytical solution is available.

As mentioned in chapter 9, the model for xt can be interpreted either as a prior or as
a description of how the latent variable evolves. This means that all three models have
an hierarchical structure which can be handled with the ”data augmentation” technique of
Tanner and Wong (1987). Such a technique treats xt = (x1, . . . xt) as a vector of parameters
for which we have to compute the conditional posterior - as we have done with the time
varying coefficients of a state space models in chapter 10. Cyclical sampling across the
conditional distributions provides, in the limit, posterior draws for the parameters and the
unobservable xt. The Markov property for xt is crucial to simplify the calculations since
we can break the problem of simulating the xt vector into the problem of simulating its
components in a conditional recursive fashion. Since for this type of models the likelihood
is bounded, if the priors are proper, the transition kernel induced by the Gibbs sampler (or
by the mixed Gibbs-MH sampler) is irreducible, aperiodic and has an invariant distribution.
Hence, sufficient conditions for convergence hold in these setups.

The kernel of (x,α, θ) is the product of the conditional distribution of (y|x,α), the
conditional distribution of (x|θ) and the prior for (α, θ). Hence the marginal posterior for
(α, θ), g(α, θ|y) = R

g(x,α, θ|y)dx, can be used for inference, while the marginal g(x|y)
provides a solution to the signal extraction problem. The main difference between this

395
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setup and traditional signal extraction problems is that here we are interested in the whole
distribution of xt, not just its conditional mean. It is important to emphasize that, contrary
to classical methods, the tools we describe allow the computation of the exact posterior
distribution of the latent variable. Therefore, we are able to describe posterior uncertainty
surrounding the latent variable and explicitly account for parameter uncertainty.

Forecasting yt and the latent variable xt is straightforward and can be handled with the
tools described in chapter 9. Since many inferential exercises have to do with the problem of
obtaining a future measure of the unobserved state (the business cycle in policy circles, the
volatility process in business and finance circles), it is important to have ways to estimate
it. Draws for future xt can be obtained from the marginal posterior and the structure of
the conditional of xt.

Although this chapter primarily focuses on models with normal errors, more heavy-
tailed distributions should be probably used, particularly in finance applications. As in the
case of state space models, such an extension presents little complications.

The last section of the chapter goes back to DSGE models and studies how to obtain
posterior estimates of the structural parameters, how to conduct posterior inference and
model comparisons, and reexamines the link between DSGE and VARs. There is very little
new material in this section: we bring together the models discussed in chapter 2, the ideas
contained in chapters 5, 6 and 7 with the simulation techniques presented in chapter 9 to
develop a framework where structural inference can be conducted in false models, taking
both parameter and model uncertainty into consideration.

11.1 Factor Models

Factor models are used in many fields of economics and finance. They exploit the insight
that there may be a source of common fluctuations in a vector of economic time series.
Factor models are therefore alternatives to the (panel) VAR models analyzed in chapter
10. In the latter, detailed cross-variable interdependencies are modeled but no common
factor is explicitly considered. Here, most of interdependencies are eschewed and a low
dimensional vector of unobservable variables is assumed to drive the comovements across
variables. Clearly, combinations of the two approaches are possible (see e.g. Bernanke,
Boivin and Eliasz (2003), Uhlig (2003) or Giannone, Reichlin and Sala (2003)). The factor
structure we consider is:

yit = ȳi +Qiy0t + eit
Aei (`)eit = vit

Ay(`)y0t = v0t (11.1)

where E(vit, vi0t−τ ) = 0, ∀i 6= i0, i = 1, . . . ,m, E(vit, vit−τ ) = σ2i , if τ = 0 and zero
otherwise, E(v0t, v0t−τ ) = σ20 if τ = 0 and zero otherwise, and y0t is an unobservable factor.
Two features of (11.1) need to be noted. First, the unobservable factor can have arbitrary
serial correlation. Second, since the relationship between observables and unobservables is
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static, eit is allowed to be serially correlated. y0t could be a scalar or a vector, as long as
its dimensions is smaller than the dimension of yt.

Example 11.1 There are several specifications which fit into this framework. For example,
y0t could be a coincident business cycle indicator which moves a vector of macroeconomic
time series yit. In this case eit captures idiosyncratic movements in yit. Alternatively,
y0t could be a common stochastic trend while eit is assumed to be stationary for all i. In
this latter case (11.1) resembles the common trend-idiosyncratic cycle decomposition studied
e.g. in Stock and Watson (1987). Furthermore, many of the models used in finance have
a structure similar to (11.1). For example, in a Capital Asset Pricing Model (CAPM),
y0t represents an unobservable market portfolio. An interesting case emerges when et =
(e1t, . . . , emt)0 follows a VAR, i.e. Ae(`)et = vt, and Ae(`) is of order qe, ∀i.

We need restrictions to identify the parameters of (11.1). Since Qi and y0t are non-
observable, both the scale and the sign of the factor and its loading cannot be separately
identified. For normalization, we choose Qi1 > 0 and assume that σ20 is a fixed constant.

Let α1i = (ȳi,Qi), i = 1, . . . ,m and α = (α1i,σ
2
i , A

e
ij, j = 1, . . . , qi, A

y
j , j = 1, . . . q0) be

the vector of parameters of the model. Let yi = (yi1, . . . , yit)
0, y = (y01, . . . , y0m)0. Given

g(α), g(α|y, y0) ∝ f(y|α, y0)g(α) and g(y0|α, y) ∝ f(y|α, y0)f(y0|α). To compute these
conditional distributions, we need to derive f(y|α, y0) and f(y0|α) =

R
f(y, y0|α)dy.

Consider first f(y|α, y0). Let y1i = (yi,1, . . . , yi,qi)0 be random and let y10 = (y0,1, . . . y0,q0)
0

be the vector of initial observations on the factors, y10 given, A
e
i = (Aei,1, . . . , A

e
i,qi
), x1i =

[1, y10], where 1 = [1, 1, . . . , 1]0 and let Ai be a (qi × qi) companion matrix representation
of Aei (`). If the errors are normal, (y

1
i |ȳi,Qi,σ2i , y10) ∼ N(ȳi +Qiy10,σ2iΣi), where Σi solves

Σi = AiΣiAi + (1, 0, . . . 0)0(1, 0, . . . 0).

Exercise 11.1 Provide a closed form solution for Σi.

Define y1∗i = Σ−0.5i y1i ;x
1∗
i = Σ−0.5i x1i . To build the rest of the likelihood, let ei =

[ei,qi+1, . . . , ei,T ]
0 (this is (T −qi)×1 vector); eit = yit− ȳi−Qiy0t and E = [e1, . . . , eqi ] (this

is a (T − qi)× qi matrix). Similarly, let y0 = (y01, . . . , y0t)0 and Y0 = (y0,−1, . . . , y0,−q0). Let
y2∗i be a (T − qi)× 1 vector with the t-row equal to Aei (`)yit and let x2∗i be a (T − qi)× 2
matrix with the t-row equal to (Aei (1), A

e
i (`)y0t). Let x

∗
i = [x

1∗
i , x

2∗
i ]
0, y∗i = [y1∗i , y2∗i ].

Exercise 11.2 Write down the likelihood of (y∗i |x∗i ,α) when et are normally distributed.
To obtain g(α|y, y0), assume that g(α) =

Q
j g(αj) and that α1i ∼ N(ᾱ1i, Σ̄α1i);A

e
i ∼

N(Āei , Σ̄Aei )I[−1,1]; Ay ∼ N(Āy, Σ̄Ay)I[−1,1]; σ−2i ∼ G(a1i, a2i) where I[−1,1] is an indicator
function for stationarity, that is, the prior for Aei (A

y) is normal, truncated outside the range
(−1, 1). The conditional posteriors are:

(α1i|yi, α−α1i) ∼ N(Σ̃α1i(Σ̄
−1
α1i
ᾱ1i + σ

−2
i x

∗
i y
∗
i ), Σ̃α1i)

(Aei |yi, y0, α−Aei ) ∼ N(Σ̃Aei (Σ̄
−1
Aei
Āei + σ

−2E0iei), Σ̃Aei )I[−1,1] ×N (Aei )
(Ay|yi, y0, α−Ay) ∼ N(Σ̃Ay(Σ̄−1AyĀ

y + σ−2Y 00y0), Σ̃Ay)I[−1,1] ×N (Ay)
(σ−2i |yi, y0, α−σi) ∼ G(a1i + T ), (a2i + (y∗i − x∗iα1i,ols)2)) (11.2)
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whereN (Aei ) = |ΣAei |−0.5 exp{− 1
2σ2 (y

1
i−ȳi−Qiy10)0Σ−1Aei (y

1
i−ȳi−Qiy10);N (Ay) = |ΣAy |−0.5 exp{− 1

2σ2

(y10 − Ay(`)y10,−1)0Σ−1Aei (y
1
0 − Ay(`)y10,−1)}; Σ̃ai = (Σ̄−1ai + σ

−2
i x

∗
i
0x∗i )−1; Σ̃Aei = (Σ̄−1Aei +

σ−2E0iEi)−1, Σ̃Ay = (Σ̄
−1
Ay + σ

−2Y 00Y0)−1.
Sampling (ȳi,Qi,σ2i ) from (11.2) is straightforward. To impose the sign restriction nec-

essary for identification, discard the draws producing Qi1 ≤ 0. The conditional posterior for
Aei (A

y) is complicated by the presence of the indicator for stationarity and the conditional
distribution of the first qi(q0) observations (absent these two, drawing these parameters
would also be straightforward). Since these distributions are of unknown form, one could
use the following variation of the MH algorithm to draw, e.g., Aei :

Algorithm 11.1

1) Draw (Aei )
‡ from N(Σ̃Aei (Σ̄

−1
Aei
Āei+σ

−2E0iei), Σ̃Aei ). If
Pqi
j=1(A

e
i,j)

‡ ≥ 1 discard the draw.

2) Otherwise, draw U ∼ U(0, 1). If U < N ((Aei )‡)/N ((Aei )l−1), set (Aei )l = (Aei )‡. Else set
(Aei )

l = (Aei )
l−1.

3) Repeat 1)-2) L times.

The derivation of g(y0|α, y) is a little more laborious but essentially straightforward.
Define the T×T matrix Q−1i =

·
Σ−0.5i 0
Ωi

¸
) where Σi is a qi×qi matrix, 0 is a qi×(T−qi)

matrix and Ωi =


−Aei,qi . . . −Aei,1 1 0 . . . 0

0 −Aei,qi . . . −Aei,1 1 . . . 0

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . −Aei,qi . . . . . . 1

). Similarly define Q−10 .
Let x†i = Q−1i xi; y†i = Q−1i (yi−1ȳi). Then the likelihood function is

Qm
i=1 f(y

†
i |Qi,σ2i , Aei , y0)

where f(y†i |Qi,σ2i , Aei , y0) = (2πσ2i )
−0.5T exp{−(2σ2i )−1(y†i − QiQ−1i y0)0(y†i − QiQ−1i y0)}.

Since the marginal of the factor is f(y0|Ay) = (2πσ20)−0.5T exp{−(2σ20)−1(Q−10 y0)0(Q−10 y0)},
the joint likelihood of the data and the factor is f(y†, y0|α) =

Qm
i=1 f(y

†
i |Qi,σ2i , Aei , y0)f(y0|Ay).

Completing the squares we have:

g(y0|y†i ,α) ∼ N(ỹ0, Σ̃y0) (11.3)

where ỹ0 = Σ̃y0 [
Pm
i=1Qiσ

−2
i Q−1

0
i Q−1i (yi − 1ȳi)]; Σ̃y0 = (

Pm
i=0Q2iσ

−2
i (Q−1i )0(Q−1i ))−1 with

Q0 = 1. Note that Σ̃y0 is a T × T matrix. Given (11.2) and (11.3), the Gibbs sampler can
be used to compute the joint conditional posterior of α and of y0, and their marginals.

To make the Gibbs sampler operative we need to select σ20 and the parameters of the
prior distributions. For example, σ20 could be set to the average variance of the innovations
in a AR(1) regression for each yit. Since little information is typically available on the
loadings and the autoregressive parameters, it is a good idea to set ᾱi1 = Āei = 0 and
assume a large prior variance. Finally, it is a good idea to choose a relatively diffuse prior
for σ−2i , for example, G(4, 0.001), a distribution without the third and fourth moments.
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The calculation of the predictive density of y0t is straightforward and it is left as an
exercise for the reader. Note that when the factor is a common business cycle indicator,
the construction of this quantity produces the density of a leading indicator.

Exercise 11.3 Describe how to construct the predictive density of y0t+τ , τ = 1, 2, . . ..

Exercise 11.4 Suppose i = 4 and let Aei (`) be of first order. In addition, suppose ȳ =
[0.5, 0.8, 0.4, 0.9]0;Q1 = [1, 2, 0.4, 0.6, 0.5]0. Let Ae = diag[0.8, 0.7, 0.6, 0.9], Ay = [0.7,−0.3],

v0 ∼ N(0, 5) and v ∼ N(0,


3 0 0 0
0 4 0 0
0 0 9 0
0 0 0 6

). Let the priors be: (ȳi,Qi) ∼ N(0, 10 ∗ I2), i =
1, 2, 3, 4; Ae ∼ N(0, I4)I[−1,1] Ay ∼ N(0, I2)I[−1,1] and σ−2i ∼ G(4, 0.001) where I[−1,1]
instructs us to drop values of such that

P
j A

e
ij ≥ 1 or

P
j A

y
j ≥ 1). Draw sequences from

the posterior of α and construct an estimate of the posterior distribution of y0.

Exercise 11.5 Let the prior for (ȳi,Qi, Aei , Ay,σ
−2
i ) be non-informative. Show that the

posterior mean estimator for y0 is the same as the one obtained by running the Kalman
filter on model (11.1).

11.1.1 Arbitrage Pricing (APT) Models

Apart from the construction of business cycle or trend indicators, factor models are exten-
sively used in finance (see e.g. Campbell, Lo, MacKinley (1997) for references). Here the
unobservable factor is a vector of portfolio excess returns; a vector of macroeconomic vari-
ables or a vector of portfolio of real returns, typically restricted to span the mean-variance
frontier. APT models are useful since economic theory imposes restrictions on nonlinear
combinations of the parameters of these models.

For illustrative purposes, consider a version of an APT model were a vector of m asset
returns yt is related to a vector of k factors y0t according to the linear relationship

yt = ȳ +Q1y0t + et (11.4)

where E(y0) = 0, E(y0y
0
0) = I, E(e|y0) = 0, E(ee0|y0) = Σe; ȳ is a vector of conditional mean

returns, Q1 is a m× k matrix of loadings and both Q1 and y0t are unknown. Traditionally,
a model like (11.4) is estimated in two steps: in the first step either the factor loadings or
the factors themselves are estimated (with a cross sectional regression). Then, taking the
first step estimates as if they were the true ones, a second pass regression (typically, in time
series) is used to estimate the other parameters (see e.g. Roll and Ross (1980)). Clearly,
this approach suffers from error-in-variables problems which can lead to incorrect inference.

A number of authors, starting from Ross (1976), have shown that, as m→∞, absence
of arbitrage opportunities implies that ȳi ≈ φ0 +

Pk
j=1Q1ijφj, where φ0 is the intercept of

the pricing relationship (the so-called zero-beta rate) and φj is the risk premium on factor
Q1ij , j = 1, 2, . . . , k. With the two-step procedure we have described, and treating the
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estimates of Q1i and of ȳ as given, the restrictions imposed become linear and tests can be
easily developed e.g. using restricted and unrestricted estimates of φj (see Campbell, Lo
and McKinley (1997)).

One way to test (11.4) is to measure the pricing errors and check their size relative to
the average returns (with large relative errors indicating an inappropriate specification).
This measure is given by S = 1

m ȳ
0[I −Q(Q0Q)−1Q0]ȳ where Q = (1,Q1) and 1 is a vector

of ones of dimension m. For fixed m, S 6= 0, while as m → ∞, S → 0. It is typically
hard to compute the sampling distribution of S. Using MCMC methods, its exact posterior
distribution can be easily obtained.

For identification we require that k < m
2 . Letting A

k
1 be a lower triangular matrix

containing the Choleski transformation of the first k independent rows of Q1, we also want
Qk1ii > 0, i = 1, . . . , k.

Exercise 11.6 Show that k < m
2 and Q

k
1ii > 0, i = 1, . . . , k are necessary for identification.

Let αi1 = (ȳi,Qi) and notice that, since the factors capture common components, Σe =
diag{σ2i }. Then f(αi1|y0,σi) ∝ exp{− 1

2σ2
i
(αi1−αi1,ols)0x0x(αi1−αi1,ols)}, where x = (1, y0)

is a T×(k+1) matrix and αi1,ols is the OLS estimators of the coefficients in a regression of yit
on (1, y0). We want to compute g(α|y0t, yt) and g(y0t|α, yt), where α = (α1i,σ2i , i = 1, 2, . . .).
We assume independence across i and standard priors for α, i.e. Q1i ∼ N(Q̄1i, σ̄2Q1

), Q1ii >
0, i = 1, . . . , k; Q1i ∼ N(Q̄1i, ω̄2Q1

), i = k + 1, . . . ,m; s̄2iσ
−2
i ∼ χ2(ν̄i); ȳi ∼ N(ȳi0, σ̄2ȳi) where

ȳi0 = φ0+
P
j Q̄1ijφj and φi are constant, while the hyperparameters of all prior distributions

are given. Note that we impose the theoretical restrictions directly -the prior distribution
of ȳi is conditional on the value of Q1 - and that by varying σ̄2yi we can account for different
degrees of credence in the ATP restrictions. The conditional posterior distributions for the
parameters are easily obtained.

Exercise 11.7 Show that

• g(ȳi|yt, y0t,Q1,σ2i ) ∼ N(˜̄yi, σ̃2ȳi) where ˜̄yi =
(σ̄2
ȳi
ȳi,ols+(σ

2
i /T )ȳi0)

(σ2
i /T )+σ̄

2
ȳi

; σ̃2ȳi =
(σ2
i σ̄

2
ȳi
)/T

σ2
i /T+σ̄

2
ȳi

, ȳi,ols =

1
T

PT
t=1(yit −

Pk
j=1Q1jy0tj).

• g(Q1i|yt, y0t, ȳi,σ2i ) ∼ N(Q̃1i, Σ̃Q1i), where Σ̃Q1i = (σ̄
−2
Q1i
+σ−2i x

†0
i x

†
i )
−1; Q̃1i = ΣQ1i(Q̄1iσ̄

−2
Q1
+

x†0i x
†
iQ1i,olsσ

−2
i ), i = 1, . . . , k and Σ̃Q1i = (ω̄

−2
Q1
+ σ−2i x

†0
i x

†
i )
−1; Q̃1i = ΣQ1i(Q̄1iω̄

−2
Q1
+

x†0i x
†
iQ1i,olsσ

−2
i ), i = k+1, . . . ,m where Q1i,ols is the OLS estimator of a regression of

(yit − ȳ0) on y01, . . . , y0i−1 and x†i is the matrix xi without the first row.

• (s̃2σ−2i |yt, y0t,Q1, ȳi) ∼ χ2(ν̃) where ν̃ = ν̄ + T ; s̃2i = ν̄s̄2i + (T − k − 1)
P
t(yit − ȳi −P

j Q1jy0tj)2.

The joint of the data and of the factor is:
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y0t
yt

¸
∼ N

·µ
0
ȳ

¶
,

µ
I Q01
Q1 Q1Q01 +Σe

¶¸
Using the properties of conditional normal distributions we have g(y0t|yt,α) ∼ N(Q01(Q01Q1

+ Σe)
−1(yt − ȳ); I − Q01(Q01Q1 + Σe)−1Q1), with (Q01Q1 + Σe)−1 = Σ−1e − Σ−1e Q1(I +

Q01Σ−1e Q1)−1Q01Σ−1e , where (I +Q01Σ−1e Q1) is a k × k matrix.
Exercise 11.8 Suppose the prior for α is non-informative, i.e. g(α) ∝Qj σ

−2
αj . Derive the

conditional posteriors for ȳ,Q1,Σe and y0t under this prior.

Exercise 11.9 Using monthly returns data on the stocks listed in Eurostoxx 50 for the last
5 years, construct 5 portfolios with the quintiles of the returns. Using informative priors
compute the posterior distribution of the pricing error in a APT model using one and two
factors (averaging over portfolios). You may want to try two values for σ20i, one large and
one small. Report the 68% posterior interval for S. Do you reject the theory? What can
you say about the posterior mean of the proportion of idiosyncratic to total risk?

11.1.2 Conditional Capital Asset Pricing models (CAPM)

A conditional capital asset pricing model combines data-based and model-based approaches
to portfolio selection into a model of the form

yit+1 = ȳit +Qity0t+1 + eit+1
Qit = x1tφ1i + v1it

ȳit = x1tφ2i + v2it

y0t+1 = x2tφ0 + v0t+1 (11.5)

where xt = (x1t, x2t) is a set of observable variables, eit+1 ∼ N(0,σ2e); v0t+1 ∼ N(0,σ20) and
both v1it and v2it are assumed to be serially correlated, to take into account the possible
misspecification of the conditioning variables x1t. Here yit+1 is the return on asset i, y0t+1
is the return on an unobservable market portfolio. (11.5) fits the factor model structure we
have so far considered when v2it = v1it = 0, ∀t, x2t are the lags of y0t and x1t = I for all t.
Various versions of (11.5) have been considered in the literature.

Example 11.2 Consider the model

yit+1 = Qit + eit+1
Qit = xtφi + vit (11.6)

Here the return on asset i depends on an unobservable risk premium Qit and on idiosyncratic
error term and the risk premium is a function of observable variables.

If we relax the constant cost of risk assumption and allow time variations in the condi-
tional variance of asset i, we have

yit+1 = xtQt + eit+1 eit ∼ N(0,σ2ei)
Qt = Q+ vt vt ∼ N(0,σ2v) (11.7)
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Here the return on asset i depends on observable variables. The loading on the observables,
assumed to be the same across assets, are allowed to vary over time. Note that by sub-
stituting the second expression into the first we have that the model’s prediction error is
heteroschedastic (the variance is x0txtσ2v + σ2ei).

Exercise 11.10 Suppose v2it = v1it = 0, ∀t and assume that y0t is known. Let α =
[φ21, . . . ,φ2m,φ11, . . . ,φ1m]. Assume a-priori that α ∼ N(ᾱ, Σ̄α). Let the covariance matrix
of et = [e1t, . . . , eMT ] be Σe and assume that, a-priori, Σ

−1
e ∼ W(Σ̄−1, ν̄). Show that,

conditional on (yit, y0t,Σe, xt), the posterior of α is normal with mean α̃ and variance Σ̃α
and that the marginal posterior of Σ−1e is Wishart with scale matrix (Σ̄−1 + Σ−1ols), where
Σols is the OLS estimate of the covariance matrix, and ν̄ + T degrees of freedom. Show the
exact form of α̃, Σ̃α and Σols.

Exercise 11.11 Still assume v2it = v1it = 0, ∀t but allow y0t to be unobservable. Postulate
a law of motion for y0t of the form y0t+1 = x2tφ0+v0t+1, where x2t are observables. Describe
the steps needed to find the conditional posterior of y0t.

The specification in (11.5) is more complicated than the one we have examined in ex-
ercises 11.10-11.11 since time variation in the coefficients adds computational difficulties to
the calculations of the posterior distribution. To highlight the steps involved, we describe
a version of (11.5) where v0it = 0 ∀t, m = 1, xt = x1t = x2t and we allow for AR(1) errors
in the law of motion of Qt, that is:

yt+1 = xtφ2 +Qty0t+1 + et+1
Qt = (xt − ρxt−1)φ1 + ρQt−1 + vt
y0t = xtφ0 + v0t (11.8)

where ρ measures the persistence in Qt.
Let α = [φ0,φ1,φ2, ρ,σ

2
e ,σ

2
v ,σ

2
v0
] and let g(α) =

Q
j g(αj). Assume that g(φ0) ∼

N(φ̄0, Σ̄φ0); g(φ1) ∼ N(φ̄1, Σ̄φ1); g(φ2) ∼ N(φ̄2, Σ̄φ2); g(ρ) ∼ N(0, Σ̄ρ)I[−1,1]; g(σ−2v ) ∼
χ(s̄2v, ν̄v); g(σ

−2
e , σ

−2
v0
) ∝ σ−2e σ−2v0

; and that all hyperparameters are known.
To construct the conditional posterior of Qt note that, if ρ is known, Qt can be easily

simulated as in state space models. Therefore, partition α = (α1, ρ). Conditional on ρ we
can rewrite the law of motion ofQt as y ≡ Q−ρQ−1 = x+φ1+v whereQ = [Q1, . . . ,Qt]0, x =
[x1, . . . , xt]

0, x+ = x−ρx−1 and v ∼ N(0,σ2vIT ). Setting Q−1 = 0 for t = 0, we have two sets
of equations, one for the first observation and one for the others, i.e. y0 ≡ Q0 = x+φ1 + v0
and yt ≡ Qt − ρQt−1 = x+t φ1 + vt. The likelihood function f(y|x,φ1, ρ) is proportional to
∝ (σ2v)−0.5T exp{−0.5[(y0 − x+0 φ1)σ−2v (y0 − x+0 φ1)0 −

PT
t=1(yt − x+t φ1)σ−2v (yt − x+t φ1)0]}.

Let φ01,ols be the OLS estimator obtained from the first observation and φ11,ols the OLS
estimator obtained from the other observations. Combining the prior and the likelihood
it is immediate to see that the posterior kernel of φ is proportional to exp{−0.5(φ01 −
φ01,ols)

0x
0+
0 σ

−2
v x

+
0 (φ

1
0−φ10,ols)−0.5

P
t(φ

1
1−φ11,ols)0x

0+
t σ

−2
v x

+
t (φ

1
1−φ11,ols)−0.5(φ1−φ̄1)0Σ̄−1φ1

(φ1−



403

φ̄1)}. Therefore, the conditional posterior for φ1 is normal. The mean is a weighted average
of prior mean and two OLS estimators, i.e. φ̃1 = Σ̃φ1(Σ̄

−1
φ1
φ̄1 + x

+0
0 σ

−2
v y0 +

P
t x
+0
t σ

−2
v yt),

and Σ̃φ1 = (Σ̄
−1
φ1
+ x+00 σ

−2
v x

+
0 +

P
t x
+0
t σ

−2
v x

+
t )
−1. The conditional posterior for σ2v can be

found using the same logic.

Exercise 11.12 Show that the posterior kernel for σ2v is (σ
2
v)
−0.5(T−1)exp{−0.5Pt σ

−2
v (yt−

x+t φ1)
0(yt−x+t φ1)} ×(

q
σ2
v

1−φ2
1
)(−0.5(ν̄v+1+2))exp{−0.5( σ2

v

1−φ2
1
)−1((y0−x+0 φ1)0(y0−x+0 φ1)+ν̄v)}.

Suggest an algorithm to draw from this (unknown) distribution

Once the distribution for the components of α1 is found, we can use the Kalman fil-
ter/smoother to construct Qt and the posterior of y0t, conditional on ρ. To find the posterior
distribution of ρ requires little more work. Conditional on φ1, rewrite the law of motion for
Qt as y†t ≡ Qt − xtφ1 = x†t−1ρ+ vt where x†t−1 = Qt−1 − xt−1φ1. Once again, split the data
in two: initial observations (y†1, x

†
0) and the rest (y

†
t , x

†
t−1). The likelihood function is

f(y†|x†,φ1, ρ) ∝ σ−T−1v exp{−0.5(y†1 − x†0φ1)0σ−2v (y†1 − x†0φ1)}
+ exp{−0.5(

X
t

y†t − x†t−1φ1)0σ−2v (y†t − x†t−1φ1)} (11.9)

Let ρols be the OLS estimator of ρ obtained with T data points. Combining the likelihood
with the prior produces a kernel of the form exp{−0.5[Pt(ρ− ρols)0(x†t)0σ−2v x†t(ρ− ρols) +
(ρ− ρ̄0)Σ̄−1ρ (ρ− ρ̄)} × (

q
σ2
v

1−φ2
1
)−0.5(ν̄v+1+2)exp{−0.5( σ2

v

1−φ2
1
)−1ν̄v + (y†1)

0( σ2
v

1−φ2
1
)−1y†1}. Hence,

the conditional posterior for ρ is normal with mean ρ̃ = Σ̃ρ(Σ̄−1ρ ρ̄+
P
t(x

†
t)
0σ−2v y

†
t ), variance

Σ̃ρ = (Σ̄−1ρ +
P
t x
†0
t σ

−2
v x

†
t)
−1, truncated outside the range [−1, 1].

Exercise 11.13 Provide a MH algorithm to draw from the conditional posterior of ρ.

Once g(α1|ρ, y0t, yt), g(ρ|α1, y0t, yt), g(y0t|α1, ρ, yt) are available, they can be inserted
in a standard Gibbs sampler to find the joint posterior of the quantities of interest.

11.2 Stochastic Volatility Models

Stochastic volatility models are alternatives to GARCH or TVC models. In fact, as these
models, they can account for time varying volatility and leptokurthosis but produce excess
kurthosis without heteroschedasticity. Typically, the log of σ2t is assumed to follow an AR
process. Therefore, changes in yt are driven by errors in the model for the observables
or errors in the model for lnσ2t . Such a feature adds flexibility to the specification and
produces richer dynamics for the observables as compared to, e.g., GARCH type models,
where the same random variable drives both observables and volatilities.

The most basic stochastic volatility specification is:

yt = σtet et ∼ N(0, 1)
ln(σ2t ) = ρ0 + ρ1 ln(σ

2
t−1) + σvvt vt ∼ iid N(0, 1) (11.10)
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where vt and et are independent. In (11.10) we have assumed, for simplicity, that yt is
demeaned. Hence, this specification could be used to model, e.g., asset returns or changes
in exchange rates. Also, again for simplicity, only one lag of σ2t is considered.

Let yt = (y1, . . . , yt), σ
t = (σ21, . . . ,σ

2
t ) and let f(σ

t|ρ,σv), be the probability mechanism
generating σt, where ρ = (ρ0, ρ1). The density of the data is f(y

t|ρ,σv) =
R
f(yt|σt)f(σt|ρ,σv)

dσt. As in factor models, we treat σt as an unknown vector of parameters, whose conditional
distribution needs to be found.

We postpone the derivation of the conditional distribution of (ρ,σv) to a later (more
complicated) application and concentrate on the problem of drawing a sample from the
conditional posterior of σ2t . First, notice that, because of the Markov structure, we can
break the joint posterior of σt into the product of conditional posteriors of the form
g(σ2t |σ2t−1,σ2t+1, ρ,σv, yt), t = 1, . . . T . Second, these univariate densities have an unusual
form: they are the product of a conditional normal for yt and a log normal for σ

2
t

g(σ2t |σ2t−1,σ2t+1, ρ,σv, yt) ∝ f(yt|σ2t )f(σ2t |σ2t−1, ρ,σv)f(σ2t+1|σ2t , ρ,σv)

∝ 1

σt
exp{− y2t

2σ2t
} × 1

σ2t
exp{−(log σ

2
t −Et(σ2t ))2
2var(σ2t )

}(11.11)

whereEt(σ
2
t ) =

(ρ0(1−ρ1)+ρ1(lnσ2
t+1+lnσ

2
t−1)

1+ρ2
1

, var(σ2t ) =
σ2
v

1+ρ2
1
. Because g(σ2t |σ2t−1,σ2t+1, ρ,σv, yt)

is non-standard, we need either a candidate density to be used as importance sampling or
an appropriate transition function to be used in a MH algorithm. There is an array of
densities one could use as importance sampling densities. For example, Jacquier, Pol-
son and Rossi (1994) noticed that the first term in (11.11) is the density of an inverse
of Gamma distributed random variable, that is, x−1 ∼ Γ(a1, a2), while the second term
can be approximated by an inverse of a Gamma distribution (matching first and second
moments). The inverse of a Gamma is a good ”blanketing” density for the log-normal be-
cause it dominates the latter on the right tail. Furthermore, the two parts of the posterior

can be combined into one inverse Gamma with parameters ã1 =
(1−2 exp(var(σ2

t )))

1−exp(var(σ2
t ))

+ 0.5 and

ã2 = [(ã1−1)(exp(Et(σt)+0.5var(σt)))+0.5y2t ]. Hence draws made from this target density.
As an alternative, since the kernel of ln(σ2t ) is of known form, we could draw ln(σ

2
t ) from

N(E(σ2t )−0.5var(σ2t ), var(σ2t )) and accept the draw with probability equal to exp{−0.5 y
2
t

σ2
t
}

(see Geweke (1994)).

Example 11.3 We have run a small Monte Carlo experiment to check the quality of these
two approximations setting. Table 11.1 below reports the percentiles using 5000 draws from
the posterior when ρ0 = 0.0, ρ1 = 0.8 and σv = 1.0. Both approximations appear to produce
similar results.

It is worthwhile stressing that (11.10) is a particular nonlinear Gaussian model which can
be transformed into a linear but non-Gaussian state space model without loss of information.
In fact, letting xt = lnσt; ²t = ln e

2
t + 1.27, equation (11.10) could be written as

ln y2t = −1.27 + xt + ²t
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5th 25th median 75th 95th

Gamma 0.11 0.70 1.55 3.27 5.05
Normal 0.12 0.73 1.60 3.33 5.13

Table 11.1: Percentiles of the approximating distributions

xt+1 = a+ ρxt + σvvt (11.12)

where ²t has zero mean but it is non-normal. A framework like this was encountered in
chapter 10 and techniques designed to deal with such models were outlined there. Here
it is sufficient to point out that a non-normal density for ²t can be approximated with a
mixture of normals, i.e. f(²t) ≈

P
j %jf(²t|Mj), where f(²t|Mj) ∼ N(²̄j ,σ2²j ), j = 1, . . . J ,

0 ≤ %j ≤ 1. Chib (1996) provides details on how this can be done.
Cogley and Sargent (2003) have recently applied the mechanics of stochastic volatility

models to a BVAR with time varying coefficients. Since the setup is an alternative to the
linear time-varying conditional structures we have studied in chapter 10, we will examine
in details how to obtain conditional posterior estimates for the parameters of such a model.

A VAR model with stochastic volatility has the form:

yt = (Im ⊗Xt)αt + et et ∼ N(0,Σ†t)
Σ†t = P−1ΣtP−10
αt = D1αt−1 + v1t v1t ∼ N(0,Σv1) (11.13)

where P is a lower triangular matrix with ones on the main diagonal, Σt = diag{σ2it},
lnσ2it = lnσ2it−1 + σv2iv2it, and D1 is such that αt is a stationary process. In (11.13)
the process for yt has time varying coefficients and time varying variances. To compute
conditional posteriors note that it is convenient to block together the αt’s, and the σ

2
t ’s and

draw a whole sequence for these two vectors of random variables.
We make standard prior assumptions, that is: α0 ∼ N(ᾱ, Σ̄a); Σ−1v1

∼W(Σ̄v1 , ν̄v1) where
Σ̄v1 ∝ Σ̄a, ν̄ε = dim(α0) + 1, σ−2v2i

∼ G(a1, a2), lnσi0 ∼ N(ln σ̄i, Σ̄σ) and letting φ represent
the non zero elements of P, φ ∼ N(φ̄, Σ̄φ).

Given these priors, the calculation of the conditional posterior for (αt,Σv1,σv2i) is
straightforward. The conditional posterior for αt can be obtained with a run of the
Kalman filter/smoother as detailed in chapter 10; the conditional posterior for Σ−1v1

is
W(Σ̄v1 + (

P
t v1tv

0
1t), ν̄v1 + T ), and that for σ

−2
v2i
is G(a1 + T, a2 +

P
t(lnσ

2
it − lnσ2it−1)2).

Example 11.4 Suppose yt = αtyt−1+et, et ∼ N(0,σ2t ), αt = ραt−1+v1t, v1t ∼ N(0,σ2v1
),

lnσ2t = lnσ
2
t−1 + σv2v2t, v2t ∼ N(0, 1). Given ρ, the conditional posterior of (σ−2v1

,σ−2v2
) are

Gamma with parameters (av1 +T, s̄
2
v1 +(

P
t v
2
1t)) and (av2 +T, b̄v2 +

P
t(lnσ

2
t − lnσ2t−1)2),

respectively.

Exercise 11.14 Derive the conditional posteriors of (ρ,σ−2v1
,σ−2v2

) in example 11.4 when ρ
is unknown and has prior N(ρ̄, σ̄2ρ)I[−1,1], where I[−1,1] is an indicator for stationarity.
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To construct the conditional of φ note that if ²t ∼ (0,Σt), then et ∼ (0,PΣtP 0). Hence,
if et is known, the free elements of P can be estimated, given (yt, xt,αt). Since P is lower
triangular, the m-th equation is

σ−1mtemt = φm1(−σ−1mte1t) + . . .+ φm,m−1(−σ−1mtem−1t) + (σ−1mt²mt) (11.14)

Hence, letting Emt = (−σ−1mte1t, . . . ,−σ−1mt−1emt), εmt = −σ−1mt²mt, it is easy to see that the
conditional posterior for φi is normal with mean φ̃i, and variance Σ̃φi .

Exercise 11.15 Show the form of φ̃i and Σ̃φi .

To draw σ2it from its conditional distribution let σ2(−i)t be the sequence of σ
2
t except its

i-th element and let et = (e1, . . . , et). Then g(σ2it|σ2(−i)t,σ²i , et) = g(σ2it|σ2it−1,σ2it+1,σ²i , et)
which is given in (11.11). To draw from this distribution we could, for each i, choose as can-

didate distribution σ−2it exp{− (lnσ
2
it−Et(σ2

it))
2

2var(σ2
t )

} and accept or reject the draw with probability
(σ‡it)

−1 exp{− e2
it

2(σ2
it

)‡ }

(σ`−1
it )−1 exp{− e2

it
2(σ2

it
)l−1 }

, where (σ2it)
l−1 is the last draw and (σ2it)

‡ is the candidate draw.

Exercise 11.16 Suppose you are interested in predicting future values of yt. Let y
t+τ =

(yt+1, . . . yt+τ ). Show that, conditional on time t information:

g(yt+τ |αt,Σ†t ,Σv1 ,φ,σv2i , y
t) = g(αt+τ |αt,Σ†t ,Σv1 ,φ,σv2i , y

t)

× g(Σ†,t+τ |αt+τ ,Σ†t ,Σv1 ,φ,σv2i , y
t)

× f(yt+τ |αt+τ ,Σ†,t+τ ,Σv1 ,φ,σv2i , y
t)

Describe how to sample (yt+1, yt+2) from this distribution. How would you construct a 68
percent prediction band ?

Stochastic volatility models are typically used to infer values for unobservable conditional
volatilities, both within sample (smoothing) and out-of-sample (prediction). For example,
option pricing formulas require estimates of conditional volatilities and event studies often
relate specific occurrences to changes in volatility. Here we concentrate on the smoothing
problem, i.e. on the computation of g(σ2t |yT ). Once this is obtained, we can use its mean
as an estimate of the smoothed variance. An analytic expression for this posterior density
is not available but we can estimate it using g(σ2t |yT ) =

R
g(σ2t , |αt, yT )g(αt|yT )dαt. Hence

g(σ2t |yT ) can be numerically obtained using the draws of σ2t and αt. Notice that this density
directly accounts for parameter uncertainty.

Exercise 11.17 i) Suppose the volatility model is lnσ2t = ρ0 + ρ(`) lnσ
2
t−1 + σvvt, where

ρ(`) is unknown of order q. Show how to extend the Gibbs sampler to this case.
ii) Assume a model of the form lnσ2t = ρ0 + ρ1 lnσ

2
t−1 + σvtvt where σvt = f(xt), xt are

observable variables and f is linear. Show how to extend the Gibbs sampler to this case
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As with factor models, cycling through the conditionals of (Σ†t ,αt,σv2i ,Σv1) with the
Gibbs sampler produces, in the limit, a sample from the joint posterior.

Uhlig (1994) proposed an alternative specification for a stochastic volatility model which,
together with a particular distribution of the innovations of the stochastic volatility term,
produces closed form solutions for the posterior distribution of the parameters and of the
unknown vector of volatilities. The approach treats some parameters in the stochastic
volatility equation as fixed but has the advantage of producing recursive estimates of the
quantities of interest.

Consider an m variable VAR(q) with stochastic volatility of the form:

Yt = AXt + P−1t et et ∼ N(0, I)
Σt+1 =

P 0tvtPt
ρ

vt ∼ Beta((ν + k)/2, 1/2) (11.15)

where Xt contains the lags of the endogenous and the exogenous variables, Pt is the upper
Choleski factor of Σt, ν and ρ are (known) parameters, Beta denotes the m-variate Beta-
distribution and k is the number of parameters in each equation.

To construct the posterior of the parameters of (11.15) we need a prior for (A,Σ1). We
assume g1(A,Σ1) ∝ g0(A)g(A,Σ1|Ā0, ρΣ̄A, Σ̄0, ν̄), where g0(A) is a function restricting the
prior for A (for example, to be stationary) and g(α,Σ1|Ā0, ρΣ̄A, Σ̄0, ν̄) is of Normal-Wishart
form, i.e. g(A|Σ1) ∼ N(Ā0, ρΣ̄A), g(Σ−11 ) ∼W(Σ̄0, ν̄), Ā0, Σ̄0, Σ̄A, ν̄, ρ known.

Combining the likelihood of (11.15) with these priors and exploiting the fact that the
Beta distribution conjugates with the Gamma distribution, we have that the posterior
kernel for (A,Σt+1) is g̀t(A,Σt+1) = g̀t(A)g̀(A,Σt+1|Ãt, ρΣ̃At, Σ̃t, ν) where g̀ is of Normal-
Wishart type, Σ̃At = ρΣ̃At−1+XtX 0

t; Ãt = (ρÃt−1Σ̃At−1+YtX 0
t)Σ̃

−1
t ; Σ̃t = ρΣ̃t−1+

ρ
ν et(1−

X 0
tΣ̃
−1
AtXt)ẽ

0
t, ẽt = Yt − Ãt−1Xt and g̀t(A) = g̀t−1(A)|(A− Ãt)Σ̃At(A− Ãt)0 + ν

ρ Σ̃t|−0.5.

Example 11.5 Consider a univariate AR(1) version of (11.15) of the form

yt = αyt−1 + σ−1t et et ∼ N(0, 1) (11.16)

ρσ2t+1 = σ2t vt vt ∼ Beta((ν + 1)/2, 1/2) (11.17)

Let g(α,σ21) ∝ g0(α)g(α,σ21|ᾱ0, ρσ̄2α0
, σ̄20, ν̄) where (ᾱ0,σα0 , σ̄0,

ν̄) are hyperparameters and assume that g(α,σ21|ᾱ0, ρσ̄2α0
, σ̄20, ν̄) is of Normal-Inverted gamma

type. Recursive posterior estimates of the parameters and of gt(α) are σ̃
2
α,t = ρσ̃2α,t−1 +

y2t−1; α̃t =
(ρα̃t−1σ2

α,t−1+ytyt−1)

σ2
α,t

; σ̃2t = ρσ̃2t−1 +
ρ
ν ẽ
2
t (1 − y2

t−1

σ2
α,t
); ẽt = yt − α̃t−1yt−1; gt(α) =

gt−1(α)((α− α̃t)2σ2α,t + ν
ρσ

2
t )
−0.5. Hence both σ̃2αt and α̃ are weighted averages with ρ mea-

suring the memory of the process. Note that past values of α̃ are weighted by the relative
change in σ̃2α,t. When σ

2
t is constant, α̃t = ρα̃t−1 +

ytyt−1

ρσ2
t−1
.

When ρ = ν
ν+1 ;

ν
ρ = 1− ρ, so that σ̃2t is a weighted average of σ̃2t−1 and the information

contained in the square of the recursive residuals, adjusted for the relative size of y2t , to
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the weighted sum of y2t−1 up to t − 1. Note also that Et−1σ2t =
σ2
t−1(ν+1)

ρ(ν+2) . Hence, when

ρ = ν+1
ν+2 , σ

2
t is a random walk. When ν →∞, σ21 = σ̄−20 , and σ2t =

σ2
t−1(ν+1)

ρ(ν+2) .

For comparison, it may be useful to map the prior into a Minnesota-type prior. For
example, we could set Σ̄0 = diag{σ̄0i} and compute σ̄0i from the average square residuals
of an AR(1) regression for each i in a training sample. Also, one could set Σ̄A =block
diag [Σ̄A1, Σ̄A2] where the split reflects the distinction between exogenous and endogenous
variables. For example, if the second block contains a constant and linear trend, Σ̄A2 =·

φ2 −0.5φ22
0.5φ22 −φ32/3

¸
), where φ2 is an hyperparameter, while we could set diag{ΣA1i} = φ20 φ

2
1
` ,

where ` refers to lags, and φ1 = 1 for lags of the same variable in an equation (Note that,
since ΣAt is an estimate of the precision, φ’s should be greater than one). Unless it is
required by the problem, set g0(A) = 1. Finally, one could select ν ≈ 20 for quarterly data;
ν ≈ 60 for monthly data and set ρ = ν

ν+1 .
Given the generic structure for the posterior of (At,Σt+1) (a time varying density mul-

tiplied by a Normal-Wishart density), we need numerical methods to draw posterior se-
quences. Any of the approaches described in chapter 9 will do it.

Example 11.6 An importance sampling approach to draw from this posterior is

1) Find the marginal for AT . Integrating ΣT+1 out of ğ(AT ,Σt+1|y) we have ğ(AT |y) =
0.5
P
t log|(A− ÃT )Σ̃AT (A− ÃT )0+ ν

ρΣT |−0.5(k+ν)|(A− ÃT )Σ̃AT (A− ÃT )0+ ν
ρΣT |.

2) Find the mode of ğ(AT |y) (call it A∗) and compute the Hessian at the mode
3) Derive the posterior for Σ−1T+1 ( conditional on AT , it isW(ρ((A−ÃT )Σ̃AT (A−ÃT )0+
νΣ̃T ), ν + k)).

4) Draw Al from a multivariate t-distribution centered at A∗ and with variance equal to
the Hessian at the mode and degrees of freedom ν << T − k(M + 1). Draw (Σ−1)l
from the Wishart distribution derived in step 3.

5) Calculate importance weights: lnW (AlT ,Σ
l
T+1) = constant+ ln(ğ(A

l))− ln(ğIS(Al)),
where gIS(Al) is the value of the importance sampling density at Al.

6) Approximate any function h(A,Σt) using h̄L =
PL
l=1 h(A

l
T ,Σ

l
T+1)W (AlT ,Σ

l
T+1)PL

l=1W (AlT ,Σ
l
T+1)

.

Exercise 11.18 Describe a MH algorithm to draw posterior sequences for (AT , ΣT+1).

Exercise 11.19 (Cogley) Consider a bivariate model with consumption and income growth
of the form yt = ȳ+At(`)yt−1+ et, αt = vec(At(`)) = αt−1+ v1t, Σt = diag{σ2it}, lnσ2t =
lnσ2t−1 + σv2v2t, where ȳ is a constant. In a constant coefficient version of the model the
trend growth rate of the two variables is (I − A(`))−1ȳ. Using a Gibbs sampler, describe
how to construct a time varying estimate of the trend growth rate, (I −At(`))−1ȳ.
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We conclude this section applying Bayesian methods to the estimation of the parameters
of a GARCH model.

Example 11.7 Consider the model yt = x
0
tA+ σtet, et ∼ N(0, 1) and σ2t = ρ0 + ρ1σ2t−1 +

ρ2e
2
t−1. Assume A ∼ N(Ā, σ̄2A), ρ0 ∼ N(ρ̄0, σ̄2ρ0

) and that the prior for ρ1, ρ2 is uniform
over [0,1] and restricted so that ρ1 + ρ2 ≤ 1. The posterior kernel can be easily constructed
from these densities. Let α = (A, ρi, i = 0, 1, 2); let the mode of the posterior be α∗.and
let t̆(.) be the kernel of a t-distribution with location α∗, scale proportional to the Hessian
at the mode and ν̄ degrees of freedom. Posterior draws for the parameters can be obtained
using an independence Metropolis algorithm, i.e. generate α‡ from t̆(.) and accept the draw

with probability equal to min[ ğ(α‡|yt)/t̆(α‡)
ğ(αl−1|yt)/t̆(αl−1)

, 1]. A t-distribution is appropriate in this case

because ğ(α|yt)
t̆(α)

is typically bounded from above.

11.3 Markov switching models

Markov switching models are extensively used in macroeconomics, in particular, when im-
portant relationships are suspected to be functions of an unobservable variable (e.g. the
state of business cycle). Hamilton (1994) provides a classical nonlinear filtering method
to obtain estimates of the parameters and of the unobservable state. Here we consider a
Bayesian approach to the problem. As with factor and stochastic volatility models, the un-
observable state is treated as ”missing” data and sampled together with other parameters
using the Gibbs sampler.

To set up ideas we start from a static model where the slope varies with the state:

yt = x1tA1 + x2tA2(κt − 1) + et et ∼ N(0,σ2e) (11.18)

Here κt is a two-state Markov switching indicator. We take κt = 1 to be the normal state
so that yt = x1tA1 + vt. In the extraordinary state, κt = 0 and yt = x1tA1 − x2tA2 + et.

We let p1 = P (κt = 1|κt−1 = 1); p2 = p(κt = 0|κt−1 = 0), both of which are
unknown; also we let yt−1 = (y1, . . . , yt−1, xi1, . . . , xit−1, i = 1, 2), κt = (κ1, . . . ,κt),
α = (A1, A2,σ2e ,κt, p1, p2). We want to obtain the posterior distribution for α. We assume
g(α) = g(A1, A2,σ

2
e)g(κt|p1, p2)g(p1, p2). We let g(p1, p2) = pd̄11

1 (1 − p2)d̄12pd̄22
2 (1 − p2)d̄21

where d̄ij are the a-priori proportions of the (i, j) elements in the sample. As usual, we
assume g(A1, A2,σ−2e ) ∝ N(Ā1, Σ̄1)×N(Ā2, Σ̄2)×G(a1, a2).

The posterior kernel is ğ(α|y) =PT
t=1 f(yt|α, yt−1)g(α) where f(yt|α, yt−1) ∼ N(Axt,σ2e),

xt = (x1t, x2t) and A = (A1, A2). To sample from this kernel we need starting values for α
and κt and the following algorithm:

Algorithm 11.2

1) Sample pi from g(p1, p2|y) = pd̄11+d11
1 (1− p1)d̄12+d12pd̄22+d22

2 (1− p2)d̄21+d21, where dij is
the number of actual shifts between state i and state j.
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2) Sample Ai from ğ(Ai|σ2e ,κT , y). This kernel is normal with variance Σ̃A =
P
t
x0txt
σ2 +

Σ̄−1)−1 and mean Ã = Σ̃A(
P
t
xtyt
σ2 +Σ̄

−1
A Ā), where Ā = (Ā1, Ā2) and Σ̄ = diag(Σ̄1, Σ̄2).

3) Sample σ−2e from ğ(σ−2e |κT , y,A). This is the kernel of a Gamma with parameters equal
to a1 + (T − 1)/2 and a2 + 0.5

P
t(yt −A1x1t +A2x2t(κt − 1))2.

4) Sample κT from ğ(κT |y,A,σ2e , pi). As usual we do this in two steps. Given g(κ0) we run
forward into the sample using g(κt|A,σ2e , yt, pi) ∝ f(yt|yt−1, A,σ2e ,κt)g(κt|A,σ2e , yt−1, pi)
where f(yt|yt−1, A,σ2e ,κt) ∼ N(Axt,σ2e) and g(κt|A,σ2e , yt−1, pi) =

P1
κt−1=0

g(κt−1|A,
σ2e , y

t−1, pi) × P (κt = i|κt−1 = j). Then, starting from κT , we run backwards to
smooth estimates, i.e. given g(κT |yT , A,σ2e , pi), we compute g(κτ |κτ+1, yτ , A,σ2e , pi) ∝
g(κτ |A,σ2e , yτ , pi)P (κτ = i|κτ+1 = j)−1, τ = T −1, T −2, . . .. Note that we have used
the Markov properties of κt to split the forward and backward problems of drawing T
joint values into the problem of drawing T conditional values.

It is immediate to recognize that step 4) of the algorithm 11.2 is the same as the one
we have used to extract the unobservable state in state space models and the amount
of computation involved is similar. In fact, the first part is similar to drawing the AR
parameters in a factor model and the second to the estimation of the factor at each stage
of the simulation. This is not surprising: a two-state Markov chain model can always be
written as a first order AR process with AR coefficient equal to p2+p1− 1. The difference,
as already mentioned, is that the AR process has binary innovations.

Exercise 11.20 Suppose that the prior for pi is non-informative. Show the form of the
conditional posterior of (A1, A2,σ−2e ). Alter algorithm 11.2 to take into account this change.

Example 11.8 We use equation (11.18) to study fluctuations in EU industrial production.
To construct a EU measure we aggregate IP data for Germany, France and Italy using GDP
weights and let yt be the yearly changes in industrial production. Data runs from 1974:1
to 2001:4. The posterior means are Ã2 = 0.46 and Ã1 = 0.96 and the standard deviations
equals 0.09 and 0.09, respectively. Hence, the annual growth rate in expansions is about
two percentage points higher and the difference is statistically significant. Estimates of the
probability of being in the extraordinary state (a ”recession”) are in figure 11.1: the algorithm
picks up the standard recessions (1975, 1980, 1982, 1993) and indicates the presence of a
new contractionary phase starting in 2001:1.

11.3.1 A more complicated structure

The model we consider here is:

Ay(`)(yt − ȳ(κt, xt)) = σ(κt)et (11.19)

where Ay(`) is a polynomial in the lag operator, ȳ(κt, xt) is the mean of yt, which depends
on observable regressors xt and on the unobservable state κt, var(et)=1, σ2(κt) also depends
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Figure 11.1: Recession probabilities.

on the unobservable state, and κt is a two-state Markov chain with transition matrix P .
We specify ȳ(κt, xt) = x0tA0 +A1κt, σ(κt) = σ2 +A2κt and assume A2 > 0, A1 > 0 since,
for A2 = A1 = 0, the two states are not identified. We restrict the roots of A

y(`) to be less
than one.

Let yt = (y1, . . . yt),κt = (κ1, . . . ,κt); let A be the companion matrix of the AR polyno-
mial Ay(`), and A1 its first m rows. Define κ = A2

σ2 and let α = (A0, A1,A1,σ2,κ, pij). The
likelihood function is f(yt|κt,α) = f(yq|κq,α)Qt

τ=q+1 f(yτ |yτ−1,κt−1,α), where the first
term is the density of the first q observations and the second the one-step ahead conditional
density of yj.

The density of the first q observations (see derivation in the factor model case) is nor-
mal with mean xqA0 + κqA1 and variance σ2Ωq, where Ωq = WqΣqWq, Σq = AΣqA0 +
(1, 0, 0, . . . , 0)0(1, 0, 0, . . . , 0), Wq = diag{(1+κκj)0,5 j = 1, . . . , q}. Using the prediction er-
ror decomposition we have that f(yτ |yτ−1,κτ−1,α) is proportional to exp{−0.5σ−2(κτ )(yτ−
yτ |τ−1)2} where yτ |τ−1 = (1−Ay(`))yt+Ay(`)(x0τA0+A1κτ ). Therefore, yt is conditionally
normal with mean yt|t−1 and variance σ2(κt). Finally, the joint density of (yt,κt) is equal
to f(yt|κt,α) Qt

τ=2 f(κτ |κτ−1)f(κ1) and the likelihood of the data is
R
f(yt,κt|α)dκt. In

chapter 3 we have produced estimates of (α,κt) using a two-step approach where in the
first step αML is obtained maximizing the likelihood function. In the second step, inference
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about κt is obtained conditional on αML. That is,

f(κt, . . . ,κt−τ+1|yt,αML) =
1X

κt−τ=0
f(κt, . . . ,κt−τ |yt−1,αML)

∝ f(κt|κt−1)f(κt−1, . . .κt−τ |yt−1,αML)f(yt|yt−1,κt,αML)
(11.20)

where the factor of proportionality is given by f(yt|yt−1,αML) =
P
κt , . . .

P
κt−τ f(yt,κt, . . . ,

κt−τ |yt−1,αML). Since the log likelihood of the sample is log f(yq+1, . . . yt|yq,α) =
P
τ log

f(yτ |yτ−1,α), once αML is obtained, transition probabilities can be computed using f(κt|yt,
αML) =

R
. . .
R
f(κt, . . . ,κt−τ+1|yt,αML)dκt−1 . . . dκt−τ+1. Note that uncertainty in αML

is not incorporated in the calculations.
To construct the conditional posteriors of the parameters and of the unobservable state,

assume that g(A0, A1,σ
−2) ∝ N(Ā0, Σ̄A0)×N(Ā1, Σ̄A1)I(A1>0)×G(aσ1 , aσ2 ) where I(A1>0) is

an indicator function. Further assume that g((1 + κ)−1) ∼ G(aκ1 , aκ2)I(κ>0), that g(A1) ∼
N(Ā1, Σ̄A1)I[−1,1] where I[−1,1] is an indicator for stationarity. Finally, we let p12 = 1−p11 =
1− p1 and p21 = 1− p22 = 1− p2 and g(pi) ∝ Beta(d̄i1, d̄i2), i = 1, 2, and assume that all
hyperparameters are known.

Exercise 11.21 Let α−ψ be the vector of parameters α except for ψ and let A = (A0, A1).
i) Repeating the same steps outlined in the previous sections, assuming that the first q
observations come from the low state, show that the conditional posteriors for the parameters
and the unobserved state are

g(A|yt,κt,α−A) ∼ N(Ã, Σ̃A)IA1>0

g(σ−2|yt,κt,α−σ2
e
) ∼ G(aσ1 + T, aσ2 + (Σ−0.5q y −Σ−0.5q xA0 +Σ

−0.5
q κA1)2)

g((1 + κ)−1|yt,κt,α−κ) ∼ G(aκ1 + T1, aκ2 + rss)I(κ>0)
g(A1|yt,κt,α−A1) ∼ N(Ã1, Σ̃A1)I[−1,1]|Ωq|−0.5 exp{−0.5σ−2(yq − xqA)0Ω−1q (yq − xqA)}
g(pi|yt,κt,α−p) ∼ Beta(d̄i1 + di1, d̄i2 + di2) i = 1, 2

g(κt|yt,α−κ−t) ∝ f(κt|κt−1)f(κt+1|κt)
Y
τ

f(yτ |yτ−1,κτ ) (11.21)

where T1 is the number of elements in T for which κt = 1, dij is the number of transitions
from state i to state j and rss =

PT1
t=1[

(1+κκt)0.5yt−(1+κκt)0.5xtA0−(1+κκt)0.5κtA1

σ ]2.

ii) Show the exact form of Ã1, Σ̃A1 , Ã, Σ̃A.
iii) Describe how to produce draws for A1 and A restricted to the correct domain.

Recently, Sims (2001) Sims and Zha (2004) have used a similar specification to estimate
a Markov switching VAR model where the switch may occur in the lagged dynamics, in the
contemporaneous effects, or in both. To illustrate their approach consider the equation

A1(`)it = ī(κt) + b(κt)A2(`)πt + σ(κt)et (11.22)
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where et ∼ N(0, 1), it is the nominal interest rate, πt is the commodity price inflation and κt

has three states with transition P =

 p1 1− p1 0
0.5 ∗ (1− p2) p2 0.5 ∗ (1− p2)
0 1− p3 p3

. The model
(11.22) imposes restrictions on the data: the dynamics of interest rates do not depend on
the state; the form of the lag distribution on πt is the same across states, except for a scale
factor b(κ); there is no possibility to jump from state 1 to state 3 (and viceversa) without
passing through state 2; finally, the nine elements of P depend only on three parameters.

Let α = vec(A1(`)), vec(A2(`)), ī(κt), b(κt),σ(κt), p1, p2, p3). The marginal likelihood of
the data, conditional on the parameters (but integrating out the unobservable state) can
be computed numerically and recursively. Let Ft be the information set at t
Exercise 11.22 Show that f(it,κt|Ft−1) is a mixture of continuous and discrete densities.
Show the form of f(it|Ft−1), the marginal of the data, and f(κt|Ft), the updating density.

Once f(κt|Ft) is obtained we can compute f(κt+1|Ft) =
 f(κt = 1|Ft)f(κt = 2|Ft)
f(κt = 3|Ft)

0 P and from
there we can calculate f(it+1,κt+1|it,πt, . . .) which makes the recursion complete. Given a
flat prior on α, the posterior will be proportional to f(α|it,πt) and posterior estimates of
the parameters and of the states can be immediately obtained.

Exercise 11.23 Provide formulas to obtain smoothed estimates of κt.

More complicated VAR specifications are possible. For example, let ytA0(κt) = x0tA+(κt)
+ et, where xt includes all lags of yt and et ∼ N(0, I). Then, as we have done in chapter 10,
assume A+(κt) = A(κt) + [I, 0]0A0(κt). Given this specification there are two possibilities:
(i)A0(κt) = Ā0Λ(κt) and A(κt) = ĀΛ(κt) or (ii) A0(κt) free and A(κt) = Ā. In the first
specification changes in the contemporaneous and lagged coefficients are proportional; in
the second the state affects the contemporaneous relationship but not lagged ones.

Equation (11.22) is an equation of a bivariate VAR. Hence, so long as we are able to
keep the posterior of the system in a SUR format (as we have done in chapter 10), the
above ideas can be applied to each of the VAR equations.

11.3.2 A General Markov switching specification

Finally, we consider a general Markov switching specification which embeds as special case
the two previous ones. So far we have allowed the mean and the variance of the process for
yt to be switching with the state but we have forced the dynamics to be independent of the
state, apart from a scale effect. This is a strong restriction: it is conceivable, e.g., that the
autocovariance functions is different in expansions and in recessions.

The general two-state Markov switching model we consider here is:

yt = x0tA01 + Y
0
tA02 + e0t if κt = 0

= x0tA02 + Y
0
tA12 + e1t if κt = 1 (11.23)
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where xt is a 1 × q2 vector of exogenous variables for each t, Y 0t = (yt−1, . . . yt−q1) is a
vector of lagged dependent variables and ejt, j = 0, 1, are iid random variables, normally
distributed with mean zero and variance σ2j . Once again the transition probability for κt
has diagonal elements pi. In principle, some of the elements of Aji may be equal to zero for
some i, so the model may have different dynamics in different states.

Without further restrictions the two states are not identified. To achieve identification,
choose the first state as a ”recession”, so that A02 < A12 is imposed. We let αc be the
parameters which are common across states, αi the parameters which are unique to the
state and αir the parameters which are restricted to achieve identification. Then (11.23)
can be written as

yt = X 0
ctαc +X

0
0tα0 +X

0
rtα0r + e0t if κt = 0

= X 0
ctαc +X

0
1tα1 +X

0
rtα1r + e1t if κt = 1 (11.24)

where (X 0
ct,X

0
it, X

0
rt) = (x

0
t, Y

0
t ) and (αc,αi,αir) = (A01, A02, A11, A12).

To construct conditional posteriors for the parameters we assume conjugate priors: αc ∼
N(ᾱc, Σ̄c); αi ∼ N(ᾱi, Σ̄i); αir ∼ N(ᾱr, Σ̄r)I(rest); s̄2iσ−2i ∼ χ2(ν̄i); pi ∼ Beta(d̄1i, d̄2i) i =
1, 2 where I(rest) is a function indicating whether the identification restrictions are satisfied.
As usual we assume that the hyperparameters (ᾱc, Σ̄c, ᾱi, Σ̄i, ᾱr, Σ̄r, ν̄i, s̄2i , d̄ji) are known
or can be estimated from the data. We take the first max[q1, q2] observations as given in
constructing the posterior distribution of the parameters and of the latent variable.

Given these priors, it is straightforward to compute conditional posteriors. For example,

the conditional posterior of αc is normal with mean α̃c = Σ̃c(
PT
t=min[q1,q2]

Xcty0c,t
σ2
t

+

Σ̄−1c ᾱc), where yc,t = yt−Xitαi−Xrtαir, and variance Σ̃c = (
PT
t=min[q1,q2]

XctX0
ct

σ2
t
+ Σ̄−1c )−1.

Exercise 11.24 Let Ti is the number of observations in state i. Show that:

i) the conditional posterior of αi is N(α̃i, Σ̃i) where αi = Σ̃i(
PTi
t=1

Xity0i,t
σ2
t
+ Σ̄−1i ᾱi), yi,t =

yt −Xctαc −Xrtαir, Σ̃i = (
PTi
t=1

XitX0
it

σ2
t
+ Σ̄−1i )

−1.

ii) the conditional posterior of αr is N(α̃r, Σ̃r). Show the form of α̃r, Σ̃r.

iii)The conditional distribution of σ−2i is such that
(s̄2
i+rss

2
i )

σ2
i

∼ χ2(νi + Ti − max[q1, q2]).
Write down the expression for rss2i .
iv) The conditional posterior for pi is Beta(d̄1i + d1i, d̄2i + d2i).

Finally, the conditional posterior for the latent variable κt can be computed as usual.
Given the Markov properties of the model, we restrict attention to the subsequence κt,τ =
(κt, . . . ,κt+τ−1). Define κt(−τ) as the sequence κt with the τ − th subsequence removed.
Then g(κt,τ |y,κt(−τ)) ∝ f(y|κt,α,σ2)g(κt,τ |κt(−τ), pi), which is a discrete distribution with
2τ outcomes. Using the Markov property, g(κt,τ |κt(−τ), pi) = g(κt,τ |κt−1,κt+τ , pi) while
f(yT |κt,α) ∝

Qt+τ−1
j=t

1
σj
exp{−0.5 e

2
j

σ2
j
}. Since the κt are correlated, it is a good idea to

choose τ > 1, but the above can be easily applied to the case τ = 1.
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Exercise 11.25 Show the components of the conditional posterior for κt when τ = 1.

In all Markov switching specifications, it is important to wisely select the initial condi-
tions. One way to do so is to assign all the observations in the training sample to one state,
obtain initial estimates for the parameters and arbitrarily set the parameters of the other
state to be equal to the estimates plus or minus a small number (say, 0.1). Alternatively,
one can split the points arbitrarily but equally across the two states.

Exercise 11.26 Suppose ∆yt = α0 + α1∆yt−1 + et, where et ∼ N(0,σ2e) if κt = 0 and
∆yt = (α0 + A0) + (α1 + A1)∆yt−1 + et where et ∼ N(0, (1 + A2)σ2e) if κt = 1. Using
quarterly EU GDP data, construct posterior estimates for A0, A1, A2. Separately test if
there is evidence of switching in the intercept, in the dynamics or in the variance of the
process.

11.4 Bayesian DSGE Models

The use of Bayesian methods to estimate and evaluate Dynamic Stochastic General Equi-
librium (DSGE) models does not present new theoretical aspects. We have repeatedly
mentioned that DSGE models are false in at least two senses:

• They provide only an approximate representation to the DGP. Since the vector of
structural parameters is of low dimension, strong restrictions are implied both in the
short and in the long run.

• The number of driving forces is smaller than the number of endogenous variables so
that the covariance matrix of a vector of variables generated by the model is singular.

These basic features make the estimation and testing of DSGE models with GMM or
ML tricky. In Chapter 4 we have described a minimalist approach, which uses qualitative
restrictions to identify shocks in the data, and can be employed to examine the match
between the theory and the data, when the model is false in the two above senses.

Bayesian methods are also well suited to deal with false models. Posterior inference, in
fact, does not hinge on the model being the correct DGP and it is feasible even when the
covariance matrix of the vector of endogenous variables is singular. Bayesian methods have
another advantage over alternatives, which make them appealing to macroeconomists. The
posterior distribution of the statistics of interest incorporates prior uncertainty, both about
the parameters and the model specification.

Since log-linearized DSGE models are state space models with nonlinear restrictions on
the mapping between reduced form and structural parameters, posterior estimates of the
structural parameters can be obtained, for appropriately designed prior distributions, using
the posterior simulators described in chapter 9. Given the non-linearity of the mapping, it
is difficult to build the conditional distributions used in the Gibbs sampler. For that reason,
Metropolis or MH algorithms are generally employed. Numerical methods can also be used
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to compute predictive densities and Bayes factors; to obtain any posterior function of the
structural parameters (in particular, impulse responses, variance decompositions, the ACF,
turning point predictions, and forecasts, etc.) and to examine the sensitivity of the results
to variations in the prior specification. Once the posterior distribution of the structural
parameters is obtained, it becomes trivial to conduct any inferential exercise a researcher
is interested in.

To estimate the posterior for the structural parameters and for the statistics of interest,
and to evaluate the quality of a DSGE model the following steps are typically used.

Algorithm 11.3

1) Construct a log-linear representation of the DSGE economy and transform it into a state
space model. Add measurement errors if evaluation/estimation is done on a vector of
variables which is larger than the one of the states.

2) Specify prior distributions for the structural parameters θ.

3) Compute the predictive density numerically, using draws from the prior distribution and
the Kalman filter. Compute the predictive density for any alternative or reference
model. Calculate Bayes factors or other measures of (relative) forecasting fit.

4) Draw sequences from the joint posterior of the parameters using Metropolis or MH al-
gorithms. Check convergence.

5) Construct statistics of interest using the draws in 4) (after an initial set has been dis-
carded). Use loss-based measures to evaluate the discrepancy between the theory and
the data.

6) Examine sensitivity of the results to the choice of priors.

Step 1) is unnecessary. We will see later on what to do if a nonlinear specification is
used. Adding measurement errors helps computationally to reduce the singularity of the
covariance matrix of the endogenous variables but it is not needed for the approach to work.

In step 2) prior distributions are centered around standard calibrated values of the
parameters while standard errors generally reflect subjective prior uncertainty faced by an
investigator. One could also specify standard errors so as to ”cover” the range of existing
estimates, as we have done in chapter 7. In some applications, it may be convenient to
select diffuse priors over a fixed range to avoid to put too much structure on the data.
In general, the form of the prior reflects computation convenience. Conjugate priors are
typically preferred. For autoregressive parameters or parameters which must lie in an
interval, truncated Normal or Beta distributions are chosen.

Step 3) requires drawing parameters from the prior specified in 2), calculating the se-
quence of prediction errors for each draw and averaging over draws. That is, we numerically
estimate the predictive density using e.g. the modified harmonic mean suggested by Gelfand

and Dey (1994), [ 1L
P
l(

gIS(θ∗)
f(y|θ∗)g(θ∗) for some high probability θ

∗ where gIS is a density with
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tail thinner than f(y|θ)g(θ), or directly using the Bayes theorem as suggested in Chib
(1995). Similar calculations can be undertaken for any alternative model and Bayes factors
can then be numerically computed. When the dimensionality of the parameters space is
large, it may be convenient to use Laplace approximations to reduce the computation bur-
den. The competitors could be structural models, which nest the one under consideration
(e.g. a model with flexible prices can be obtained with a restriction on one parameter of
a model with sticky prices); non-nested structural specifications (e.g. a model with sticky
wages) or more densely parametrized reduced form models (e.g. VAR or a BVAR).

Steps 4)-5) require choosing an updating rule, and a transition function P(θ‡, θl−1)
satisfying the regularity conditions described in chapter 9; estimating joint and marginal
distributions using kernel methods and the draws from the posterior; and setting up a loss
function reflecting the costs faced by an investigator in selecting a model. In particular, the
following steps are needed:

Algorithm 11.4

1) Given a θ0, draw θ‡ from P(θ‡, θ0).

2) Use filtering techniques to compute the prediction error decomposition of the likelihood.

3) Evaluate the posterior kernel at θ‡ and at θ0 i.e. calculate ğ(θ‡) = f(y|θ‡)g(θ‡) and
ğ(θ0) = f(y|θ0)g(θ0).

4) Draw U ∼ U(0, 1). Set θ1 = θ‡ if U < min[ ğ(θ
‡)

ğ(θ0)
P(θ0,θ‡)
P(θ‡,θ0)

, 1], otherwise set θ1 = θ0.

5) Iterate on steps 1)-4) L̄+ JL times. Discard the first L̄ draws, keep one draw every L
for inference. Alternatively, repeat iteration on steps 1)-4) using different θ0, L + 1
times and keep the last draw from each run.

6) Estimate marginal/ joint posteriors using kernel methods. Compute location estimates
and credible sets, compare them with those obtained from the prior.

7) Compute any economically interesting function of the posterior of θ. Set up a loss func-
tion. Compare the economic quality of a model using the corresponding risk function.

In step 6, to check the robustness of the results to the choice of prior, one can reweigh
the posterior draws using the techniques described in chapter 9, section 5.

Next, we present a few examples, highlighting the steps needed to use Bayesian methods
for inference in DSGE models.

Example 11.9 The first example is very simple. We simulate data from a RBC model
where the solution is contaminated by measurement errors. Armed with reasonable prior
specifications for the structural parameters and a MH algorithm, we then ask where the
posterior distribution of some crucial parameters lies relative to the ”true” parameters we
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used in the simulations when samples typical in macroeconomic data are available. We also
compare true and estimated moments to give an economic sense to the fit we obtain.

The solution to a RBC model driven by iid technological disturbances when capital depre-
ciates instantaneously, leisure does not enter the utility function and the latter is logarithmic
in consumption was obtained in chapter 2, which we repeat for convenience:

Kt+1 = (1− η)βK1−η
t ζt + v1t (11.25)

GDPt = K1−η
t ζt + v2t (11.26)

ct = ηβGDPt + v3t (11.27)

rt = (1− η)GDPt
Kt

+ v4t (11.28)

We have added four measurement errors vjt, j = 1, 2, 3, 4 to the equations to reduce the
singularity of the system and to mimic the typical situation an investigator is likely to face.
Here β is the discount factor, 1−η the share of capital in production, and σζ is the standard
error of the logarithm of the technological disturbance. We simulate 1000 data points using
k0 = 100.0; (1 − η) = 0.36;β = 0.99, ln ζ1t ∼ N(0,σ2ζ = 0.1), v1t ∼ N(0, 0.06); v2t ∼
N(0, 0.02); v3t ∼ N(0, 0.08), v4t ∼ U(0, 0.1) and keep only the last 160 data points to reduce
the dependence on the initial conditions and to match existing sample sizes.

We treat σ2ζ as fixed and, for illustrative purposes, focus attention on the two economic
parameters. We assume that the priors are (1 − η) ∼ Beta(4,9); β ∼ Beta(99,2). Beta
distributions are convenient because they limit the range for these two parameters and are
easy to draw from. In fact, if x ∼ χ2(2a); y ∼ χ2(2b) then z = x/(x + y) ∼ Beta(a,b).
Since the mean of a Beta(a,b) is (a/a + b) and the variance is ab/[(a + b)2(a + b + 1)],
the prior mean of 1− η is about 0.31 and the prior mean of β about 0.99. The variances,
approximately 0.011 and 0.0002, imply sufficiently loose prior distributions.

We draw 10000 replications. Given 1 − η0 = 0.55,β0 = 0.97, we produce candidates
for θ = [1 − η,β] using a reflecting random walk process, i.e. θ‡ = θ̄ + (θl−1 − θ̄) + vlθ
where θ‡ is a candidate, θl−1 is the previous draw, θ̄ is the mean of the process and vlθ is
a vector of errors. The first component of vθ (corresponding to 1 − η) is drawn from a
U(−0.03, 0.03) and the second (corresponding to β) from a U(−0.01, 0.01). These ranges
produces an acceptance rate of about 75%.

Since we are interested in (1−η) and β, we are free to choose which equations to use to
estimate them. We arbitrarily choose the ones determining consumption and interest rates.
Since these equations are static, Kalman filter estimates of the prediction error are identical
to those obtained with OLS equation by equation. We calculate the posterior kernel at both
the current θ‡ and the previous θl−1, evaluating separately the prior and the likelihood (which
is normal in shape). Since g(1−η,β) = g(1−η)g(β), we calculate the prior at the draw for
each of the two parameters separately. Since the transition matrix is symmetric, the ratio
of the kernels at θ‡ and θl−1 is all that is needed to accept or reject the candidates.

We discard the first 5000 draws and keep the last 5000 for inference. Because of the
serial correlation present in the draws, we keep one out of five draws. Therefore, we have
a total of 1000 draws for calculating marginal densities and the statistics of interest. We
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Figure 11.2: Priors and Posteriors, Basic RBC.

check for convergence of the Metropolis algorithm in two ways: splitting the sequences of
draws in two and computing a normal test and calculating recursive means for the estimates
for each parameter. Convergence was achieved after about 2000 draws.

Figure 11.2 presents the marginal histograms of 1 − η and β, estimated using 1000
skipped draws from the prior and posterior. Two features of the figure are worth mentioning.
First, the data is more informative about 1− η than β. Second, the posteriors for the two
parameters are unimodal and roughly centered around the true parameter values.

True Posterior 68% range

var(c) 40.16 [ 3.65, 5.10e+10]
var(r) 1.29e-05 [ 2.55e-04, 136.11]
cov(c,r) -0.0092 [ -0.15e-05, -0.011]

Table 11.2: Variances and Covariances

Using the 1000 skipped posterior draws we have calculated three statistics, the variances
of consumption and interest rates and the covariance between the two, and compared the
posterior 68% credible range with the statistics computed using the ”true” parameter values.
Table 11.2 shows that the posterior 68% range includes the actual value of the consumption
variance but not the one for the real rate or for the covariance. Also, there are posterior
combinations of parameters which make the two variances large.



420

Example 11.10 In this example we simulated data from an RBC model with habit per-
sistence in consumption and still assume that capital depreciates in one period and leisure
does not enter the utility function. We assume u(ct, ct−1) = ln(ct − γct−1), set γ = 0.8 and
add to the solution the same measurement errors used in equations (11.25)-(11.28). We
are interested in knowing how the posterior distributions of β and 1− η look like when we
mistakenly assume that there is no habit (i.e. we condition on γ = 0). This experiment is
interesting since it can give some indications of the consequences of using a dogmatic (and
wrong) prior on some of the parameters of the model.
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Figure 11.3: Priors and Posteriors, RBC with habit.

Perhaps unsurprisingly, the posterior distributions presented in figure 11.3 are very dif-
ferent from those in figure 11.2. What is somewhat unexpected is that the misspecification
is so large that the posterior probability for the ”true” parameters is roughly zero.

Exercise 11.27 Suppose you simulated data from a model where the production function
is f(Kt, kut, ζt) = (Ktkut)

1−ηζt and that the depreciation rate is a function of the utiliza-
tion, i.e. δ(kut) = δ0 + δ1ku

δ2
t . Suppose you mistakenly neglect utilization and estimate a

model like the one in equations (11.25)-(11.28). Evaluate the distortions induced by this
misspecification.

Example 11.11 The next example considers a standard New-Keynesian model with sticky
prices and monopolistic competition. Our task here is two-fold. First, we want to know
how good is this model relative to, say, an unrestricted VAR, in capturing the dynamics
of interest rates, the output gap and inflation. Second, we are interested in knowing the
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location of the posterior distribution of some important structural parameters. For example,
we would like to know how much price stickiness is needed to match actual dynamics, whether
policy inertia is an important ingredient to characterize the data and whether the model has
some internal propagation mechanism or if, instead, it relies entirely on the dynamics of
the exogenous variables to match the dynamics of the data.

The model economy we use is a simplified version of the structure considered in chapter
2 and is composed of a log-linearized (around the steady state) Euler equation, of a New-
Keynesian Phillips curve and of a Taylor rule. We assume that, in equilibrium, consumption
is equal to output and use output in deviation from steady states in the Euler equation
directly. Each equation has a shock attached to it: there is an iid policy shock, ²3t; a cost
post shock in the Phillips curve, ²2t and an arbitrary demand shock in the Euler equation,
²4t. While the latter shock is not necessary for the estimation, it is clearly needed to match
the complexity of the process of output, inflation and interest rates observed in the real
world. The equations are:

gapt = Etgapt+1 − 1

ϕ
(it −Etπt+1) + ²4t (11.29)

πt = βEtπt+1 + κ gapt + ²2t (11.30)

it = φrit−1 + (1− φr)(φππt−1 + φgapgapt−1) + ²3t (11.31)

where it is the nominal interest rate, πt is the inflation rate, gapt is the output gap, κ =
(1−ζp)(1−βζp)(ϕ+ϑN )

ζp
, where ζp is the degree of stickiness in the Calvo setting, β is the discount

factor, ϕ is risk aversion parameter, ϑN measures the inverse elasticity of labor supply, φr
the persistence of the nominal rate, while φπ and φgap measure the responses of interest
rates to lagged inflation and lagged output gap movements. We assume that ²4t and ²2t are
AR(1) processes with persistence ρ4, ρ2 and variances σ

2
4,σ

2
2 while ²3t is iid (0,σ

2
3).

The model has 12 parameters, θ = (β,ϕ,ϑ, ζp,φπ,φgap,φr, ρ2, ρ4,σ
2
2,σ

2
3,σ

2
4), seven struc-

tural and five auxiliary ones, whose posterior distributions need to be found. Our interest
centers in the posterior distributions of (ζp,φr, ρ2, ρ4). We use US quarterly detrended data
from 1948:1 to 2002:1 to estimate the model. We assume that g(θ) =

Q12
j=1 g(θj) and use the

following priors: β ∼ Beta(98, 3),ϕ ∼ N(1, 0.3752),ϑN ∼ N(2, 0.752), ζp ∼ Beta(9, 3),φr ∼
Beta(6, 2),φπ ∼ Beta(1.7, 0.12), φgap ∼ N(0.5, 0.052), ρ4 ∼ Beta(17, 3), ρ2 ∼ Beta(17, 3)
σ−2i ∼ G(4, 0.1), i = 2, 3, 4.

To generate candidate vectors θ‡, we use a random walk MH algorithm with small uni-
form errors (tuned up for each parameter so as to achieve a 40% acceptance rate) and check

convergence using CUMSUM statistics: 1
j

P
j

θij−E(θij))q
varθij

, where j = 1, 2, . . . , J ∗ L+ L̄. Fig-
ure 11.4, which presents this statistic, indicates that the chain has converged, roughly, after
15000 draws. Convergence is hard to achieve for φπ and φgap, while it is quickly achieved
(at times in less than 10000 iterations) for the other parameters. Note that difficulties
with φπ and φgap are not necessarily due to subsample instability (as we will show later).
Instead they appear to be related to the non-identifiability of these parameters. Figure
11.5 presents prior and posterior distributions (estimated with kernel methods) using the
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Figure 11.4: CUMSUM statistic.
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last 5000 draws. The data appears to be informative in at least two senses. First, in many
cases posterior distributions have smaller dispersions than prior ones. Second, in a couple
of cases, the whole posterior distribution is shifted relative to the prior. Table 11.3, which
presents some statistics of the prior and the posterior, confirms these visual impressions.
Note also that, except in a few cases, posterior distributions are roughly symmetric (mean
and median coincide).

Prior Posterior 1948-2002 Posterior 1948-1981 Posterior 1982-2002
mean std median mean std min max mean std mean std

β 0.98 0.01 0.978 0.976 0.007 0.952 0.991 0.986 0.008 0.983 0.008
ϕ 0.99 0.37 0.836 0.841 0.118 0.475 1.214 1.484 0.378 1.454 0.551
ϑl 2.02 0.75 1.813 2.024 0.865 0.385 4.838 2.587 0.849 2.372 0.704
ζp 0.75 0.12 0.502 0.536 0.247 0.030 0.993 0.566 0.200 0.657 0.234
φr 0.77 0.14 0.704 0.666 0.181 0.123 0.992 0.582 0.169 0.695 0.171
φπ 1.69 0.10 1.920 1.945 0.167 1.568 2.361 2.134 0.221 1.925 0.336
φgap 0.49 0.05 0.297 0.305 0.047 0.215 0.410 0.972 0.119 0.758 0.068
ρ4 0.86 0.07 0.858 0.857 0.038 0.760 0.942 0.835 0.036 0.833 0.036
ρ2 0.86 0.07 0.842 0.844 0.036 0.753 0.952 0.831 0.036 0.832 0.036
σ4 0.017 0.01 0.017 0.017 0.007 0.001 0.035 0.017 0.006 0.016 0.007
σ2 0.016 0.01 0.011 0.012 0.008 0.0002 0.036 0.016 0.006 0.016 0.007
σ3 0.017 0.01 0.015 0.016 0.007 0.001 0.035 0.013 0.007 0.014 0.007

Table 11.3: Prior and posterior statistics.

As far as the posterior of the four parameters of interest, note that the shocks are per-
sistent (posterior mean is 0.85) but no pile-up of the posterior distribution for the AR
parameters around one occurs. This means that although the model does not have sufficient
internal propagation to replicate the dynamics of the data, no exogenous unit-root like pro-
cesses are needed. (This would have changed if, in the policy rule, interest rates react to
output gap and inflation contemporaneously).

The posterior distribution of economic parameters is reasonably centered. The posterior
mean of ζp, the parameter regulating the stickiness in prices, is only 0.5 implying about two
quarters average time between price changes while φr, the parameter measuring policy per-
sistence, has a posterior mean of 0.7, implying some degree of policy smoothness. However,
since the posterior of ζp is bimodal, care must be exercised in using the posterior mean as a
measure of location. It is important to stress that the two modes are not produced because
the prior and the likelihood have different central tendencies.

Finally, the posterior mean of κ is about 3.0, implying a strong reaction of inflation to
movements in the output gap, contrary, for example, to the estimates we obtained in chapter
5. Given that the posterior for β has a mean of 0.98, a shock that moves the output gap by
one percent implies a long run change in inflation of about 30 percent.

The majority of these conclusions remain splitting the sample in two. For example, ζp
has a posterior mean of 0.5667 in the 1948-1981 sample and a posterior mean of 0.6573 in
the 1982-2002 sample. However, since the posterior standard error is around 0.22, differ-
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Figure 11.5: Priors (dotted) and Posteriors (solid), Sticky price model.
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ences in the two samples are statistically small. Also the other parameters seems to have
stable posterior across samples. In particular, splitting the sample does not change the fact
that the coefficients in the policy rule imply a strong reaction of interest rates to inflation.

The location and the shape of the posterior distributions are largely independent of the
priors we have selected since priors are broadly non-informative. For example, reweighing
the posterior draws with a prior whose range is 90% of the range of the original priors in all
12 dimensions produced posterior distributions which are qualitatively very similar to those
in figure 11.5.

Finally, we examine the forecasting performance of the model by comparing its predictive
density to the one of a VAR(3) and of a BVAR(3) with Minnesota prior and standard
parameters (tightness=0.1, linear lag decay and weight on other variables equal 0.5), both
with a constant. Bayes factors are small (of the order of 0.19) in both cases indicating that
the model can be improved upon in a forecasting sense. Note that, while both alternatives
are more densely parametrized than our DSGE model (30 vs. 12 parameters), Bayes factors
take model size into account and no adjustment for the number of parameters is needed.

Exercise 11.28 Consider the model of example 11.11, but replace the Phillips curve with
πt =

ω
1+ωβπt−1+

β
1+ωβEtπt+1+

κ
1+ωβ gapt+²2t where ω is the degree of indexation of prices.

Estimate this model and test if indexation is necessary to match US data.

Exercise 11.29 Consider adding to the model of example 11.11 sticky wages using the
following optimal wage equation ∆wt = βEt∆wt+1 +

(1−ζw)(1−ζwβ)
ζw(1+ςwϑN )

(mrst − (wt − pt)) + ²2t
where ζw is the probability of not changing the wage, ςw is the elasticity of substitution
between types of labor in production and mrst is the marginal rate of substitution. Estimate
this model and test whether wage stickiness add to the fit of the basic sticky price model.

11.4.1 A few applied tips

Although the models we have considered so far are small, it has become standard in Central
Banks and international institutions to estimate large scale DSGE models with Bayesian
methods. Care however should be exercised in such an enterprise for three reasons.

First, many parameters may not be identifiable from the data. For example, if a log-
linearized model in deviations from the steady state is used, parameters which enter only
in the steady state can never be identified from the data. Less trivially, there are situations
when the likelihood function is informative about certain parameters when all the equations
of the model are used but uninformative if only a subset of the equations are used to estimate
the parameters. At times, it may also happen that only a subset of equations is informative
about one parameter and this subset is not necessarily the one an investigator would like to
use for inference (an example of this was given in chapter 6). In general, extreme care should
be used because informative posterior distributions can be obtained even when parameters
are not identified in the data, if a tight enough a-priori distribution is specified. Since in
this case the prior and the posterior lie on top of each other, altering both the shape and
the spread of the prior may help to detect identification problems.
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Second, as we have seen in chapter 6, the likelihood function of a DSGE model may have
very large flat sections or very rocky appearance in some dimensions. Once again, if the
prior distribution for the parameters is tight, the posteriors appear to be well behaved only
because the prior has selected a particular region of the parameter space. While the prior
should be used to exclude regions of the parameter space which are unreasonable from an
economic point of view, it should also be made reasonably uninformative on the interesting
portions of the parameters space to avoid misleading conclusions. Note that multiple peaks
in the likelihood may indicate the presence of breaks or multiple regimes and may give
important information about the phenomena one is interested in examining. Once again,
robustness analysis may inform the investigator on the coherence of the model to the data.

Finally, while it is common to start from a model with a large number of frictions
and shocks, Bayesian methods can be used even if the model is grossly misspecified in
its dynamics or its probabilistic nature. This means that the type of sequential exercises
performed in early calibrated models (e.g. start from a competitive structure with only
technology shocks, add government shocks or introduce non-competitive markets, etc.) can
be fruitfully employed also here. Frictions and shocks which add little to the ability of
the model to reproduce interesting features of the data should be discarded. This analysis
could also help to give some of the black-box shocks estimated in the factor literature an
interesting economic content.

11.4.2 Comparing models and the data

While Bayesian estimation of structural parameters is simple, it is less straightforward to
compare the model outcomes to the data and to assess the superiority of a model among
alternative candidate specifications. Two methods are available. The first, preferred by
macroeconomists, is based on informal analysis of some interesting economic statistics.

Example 11.12 Continuing with example 11.11 we present 68 percent impulse response
bands to interest rate shocks in figure 11.6.

While responses are economically reasonable there are three features of the figure which
stand out. First, the persistence of the responses is minimal - responses die out after few
periods. Second, the responses of inflation and the output gap to an interest rate shocks are
negative. Third, despite the assumed price stickiness, the largest inflation effect of an inter-
est rate increase is instantaneous. Figure 11.7 reports response bands obtained estimating
the model over different subsamples. The figure is constructed estimating posterior distribu-
tions of the parameters, keeping a constant number of observations, but moving the sample
over time. It is remarkable that the sign, the shape and the magnitude of the posterior 68%
credible band is unchanged as we move from the late 1970’s to the early 2000. Hence, the
transmission properties of monetary shocks have hardly changed over the last 30 years.

As an alternative to the presentation of economic statistics of various nested or non-
nested models , one could compute measures of forecasting performance of various specifica-
tions. As we have seen in chapter 9, the predictive density is the product of one-step ahead
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Figure 11.6: Impulse Responses, sample 1948-2002.

forecast errors. Hence, selecting a model using Bayes factors, as we have done in example
11.11, is equivalent to choosing the specification with smallest one-step (in-sample) MSE.
Clearly, out-of-sample forecasting races are also possible, in which case predictive Bayes
factors can be computed (see e.g De Jong, Ingram and Whiteman (2000)). This is easy to
do: we leave it to the reader to work out the details.

Exercise 11.30 Show how to construct the predictive density of future endogenous variables
yt+τ , τ = 1, 2, . . . (Hint: use the restricted VAR representation of a DGSE model).

Despite their popularity, Bayes factors (or Posterior odds ratios) may not be very infor-
mative about the quality of the approximation to the data, in particular, when the models
one wishes to compare are misspecified.

Example 11.13 Suppose that there are three models, two structural ones, (M1,M2), and
a reference one (M3), densely parametrized (e.g. a VAR). The Bayes factor between the

two structural models is f(y,M1)
f(y) × f(y)

f(y,M2)
where f(y) =

R
f(y,Mi)dMi. If we use a 0-

1 loss function, and assume that the prior probability of each model is 0.5, the posterior
risk is minimized by selecting M1 if Bayes factor exceeds one. The presence of a third
model does not affect the choice since it only enters in the calculation of f(y), which cancels
out of the Bayes factor. If the prior odds do not depend on this third model, the PO
ratio will also be independent of it. When M1 and M2 are misspecified, they will have
low posterior probability relative to M3 but this has no influence on inference one makes.
Hence, comparing misspecified models with a Bayes factor may be uninteresting: one model
may be preferable to another one but it may still have close to zero posterior probability.
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Schorfheide (2000) provided a simple procedure to choose among misspecified models
(in his case a cash-in-advance and a working capital model), both of which are likely to
have very low posterior probability. The actual data is assumed to be a mixture of the
competing structural models and of a reference one, which has two characteristics: (i) it
is more densely parametrized than the DSGE models; (ii) it can be used to compute a
vector of population functions h(θ). One such model could be a VAR or a BVAR. Given
this setup, model comparisons can be undertaken using loss functions. In particular, when
several models are available, the following evaluation algorithm could be used:

Algorithm 11.5

1) Compute the posterior distribution for the parameters of each model, using tractable
priors and one of the available posterior simulators.

2) Obtain the predictive density of the data, for eachMi, that is, compute f(y|Mi) =R
f(y|θi,Mi)g(θi|Mi)dθi.

3) Compute posterior probabilities P̃i =
P̄if(y|Mi)P
i P̄if(y|Mi)

, where P̄i is the prior probability of

model i. Note that if the distribution of y is degenerated underMi (e.g if number of
shocks is smaller than the number of endogenous variables), P̃i = 0.

4) Calculate the posterior distribution of h(θ) for each model and average using posterior
probabilities i.e. obtain g(h(θ)|y,Mi), and g(h(θ)|y) =

P
i P̃ig(h(θ)|y,Mi). If all but

model i0 produce degenerate distributions for θ, g(h(θ)|y) = g(h(θ)|y,Mi0).

5) Setup a loss function L(hT , hi(θ)) measuring the discrepancy between model’s i predic-
tions and data hT . Since the optimal predictor in modelMi is ĥi(θ) = argminhi(θ)R

L(hT , hi(θ))g(hi(θ)|y,Mi)dhT , one can compare models using the risk of ĥi(θ) un-

der the overall posterior distribution g(h(θ)|yT ), i.e. R(ĥi(θ)|y) =
R

L(hT , ĥi(θ))
g(h(θ)|y)dhT .

In step 5) R(ĥi(θ)|yT ) measures how well model Mi predicts hT . Hence a model is
preferable to another one if it has a lower risk. Note also that while model comparison is
relative, g(h(θ)|yT ) takes into account information from all models. Taking step 5) further,
one should notice that, for each i, θ can be selected so as to minimize R(ĥi(θ)|yT ). Such
an estimate provides a lower bound to the posterior risk obtained by the ”best” candidate
model in the dimensions represented by hT .

To make algorithm 11.5 operative a loss function must be selected. We have presented
a few options in chapter 9. For DSGE models, the most useful are:

(a) Quadratic loss: L2(hT , h(θ)) = (hT − h(θ))0W (hT − h(θ)); W is an arbitrary posi-
tive definite weighting matrix.
(b) Penalized loss: Lp(hT , h(θ)) = I[g(h(θ)|y)<g(hT |y)] where I[x1<x2] = 1 if x1 < x2.
(c) χ2 loss: Lχ2(h(θ), hT ) = I[Qχ2 (h(θ)|y) > Qχ2 (hT |y)], Qχ2(h(θ)|y) = (h(θ)−E(h(θ)|y))0
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Σ−1h(θ)(h(θ)−E(h(θ)|y)), where Σh(θ) is the covariance of h(θ) and I[x1>x2] = 1 if x1 > x2.

(d) 0/1 loss: L(hT , h(θ), ²) = 1− I²(h(θ)(hT ), where ²(h(θ)) is a ²-neighborhood of h(θ).

Three features of these loss functions should be mentioned. First, with penalized and
χ2 loss functions two DSGE models are compared on the basis of the height of the posterior
distribution at hi(θ). Second, with a quadratic loss function comparison is based on the
weighted distance between hi(θ) and the posterior mean. Third, as mentioned, a 0-1 loss
implies thatM1 is preferred if the posterior odds exceeds one.

Exercise 11.31 (i) Show that R2 = (hT −E(h(θ))|y))0W (hT −E(h(θ))|y)) + %0 where %0
does not depend on Eh(θ). How would you choose W optimally?
(ii) Show that if g(θ|y) is normal, L2 = Lχ2 and that the optimal predictor is E(h(θ)|y,Mi).
(iii) Verify that the optimal predictor for the Lp loss is the mode of g(h(θ)|y,Mi).

Two interesting special cases obtain when the L2 loss is used.

Exercise 11.32 (Schorfheide) Suppose that there are three models.

(i) Suppose P̃1
P→1, E(hi(θ)|yT ,Mi)

P→h̄i(θ) and h̄1(θ) − h̄2(θ) = δθ, where |δθ| > 0. Show
that as T →∞, R2(ĥ1(θ))

P→0 and R2(ĥ2(θ))
P→δ0θWδθ.

(ii) Suppose that as T → ∞, P̃3,T→1 and E(hi(θ)|y,Mi)
P→h̄i(θ). Show that E(h(θ)|y) −

E(h(θ)|y,M3)
P→0

Exercise 11.32 reaches a couple of interesting conclusions. First, if for any positive
definite W , model M1 is better thanM2 with probability one, model selection using the
L2 loss is consistent and gives the same result as a PO ratio in large samples. To restate
this concept in another way, under these conditions L2-model comparison is based on the
relative one-step ahead predictive ability. Second, if the two models are so misspecified
that their posterior probability goes to zero as T → ∞, the ranking of these models only
depends on the discrepancy between E(h(θ)|y,M3) ≈ E(h(θ)|y) and ĥi(θ), i = 1, 2. If
M3 is any empirical model, then using a L2 loss is equivalent to compare sample and
population moments obtained from different models. That is to say, an informal comparison
between the predictions of the model and the data, as it is done in the simplest calibration
exercises, is optimal from a Bayesian point of view when one makes decisions based on the
L2 loss function and the models are highly misspecified. Intuitively, this outcome obtains
because the posterior variance of h(θ) does not affect the ranking of models. Note that this
conclusion does not hold with the Lp or the Lχ2 loss.

Example 11.14 Continuing with example 11.11, we calculate the risk associated with the
model when h(θ) represents the persistence of inflation and persistence is measured by the
height of the spectrum at the zero frequency. This number is large (227.09), reflecting the
inability of the model to generate persistence in inflation. In comparison, for example, the
risk generated by a univariate AR(1) is 38.09.
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11.4.3 DSGEs and VARs, once again

As mentioned in chapter 10, it is possible to use data simulated from a DSGE model to
construct a prior for reduced form VAR coefficients. Such an approach is advantageous since
it jointly allows posterior estimation of both reduced form and structural parameters. We
have already derived the posterior for VAR parameters in section 2.5 of chapter 10. Here we
describe how to obtain posterior distributions for the structural ones. Let f(y|α,Σe) be the
likelihood function of the data, conditional on the VAR parameters, let g(α,Σe|θ) be the
prior for the VAR parameters, conditional on the DSGE model parameters, and g(θ) the
prior distribution for DSGE parameters. Here g(α,Σe|θ) is the prior for the reduced form
parameters induced by the prior on the structural parameters and the details of the model.
The joint posterior of VAR and structural parameters is g(α,Σe, θ|y) = g(α,Σe, |θ, y)g(θ|y).

We have seen that g(α,Σe, |θ, y) has a Normal-inverted Wishart form so that it can
be easily computed either analytically or by simulation. The computation of g(θ|y) is
slightly more complicated since its form is unknown. The kernel of this distribution is
ğ(θ|y) = f(y|θ)g(θ) where

f(y|θ) =

Z
f(y|α,Σe)g(α,Σe, θ)dαdΣ = f(y|α,Σe)g(α,Σe|θ)

g(α,Σe|y, θ) (11.32)

Since the posteriors of (α,Σe) depends on θ only through y, g(α,Σe|y, θ) = g(α,Σe|y)
and we can use the fact that both the numerator and the denominator of (11.32) have
Normal-Wishart form to obtain

f(y|θ) =
|(Xs)0(θ)Xs(θ) +X 0X|−0.5m|(Ts + T )Σ̃e(θ)|−0.5(Ts+T−k)

|(Xs)0(θ)Xs(θ)|−0.5m|TsΣ̄se(θ)|−0.5(Ts−k)

× (2π)−0.5mT 20.5m(Ts+T−k)
Qm
i=1 Γ(0.5 ∗ (Ts + T − k + 1− i))

20.5m(T1−k)Qm
i=1 Γ(0.5 ∗ (Ts − k + 1− i))

(11.33)

where Ts is the number of observations from the DSGE model added to the actual data, Γ
is the Gamma function, X = (I ⊗X) includes all the lags of y, the superscript s indicates
simulated data and k is the number of coefficients in each VAR equation.

Exercise 11.33 Suggest an algorithm to draw sequences from g(θ|y).

11.4.4 Non linear specifications

So far we have examined DGSEmodels which are (log-)linearized around some pivotal point.
As seen in chapter 2, there are applications for which (log-)linearizations are unappealing,
for example when economic experiments involve changes of regime or large perturbation of
the relationships. In these cases one may want to work directly with the nonlinear version
of the model and some steps of the algorithms we have presented in this chapter need to be
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modified to take this into account. Consider the model

y2t+1 = h1(y2t, ²1t, θ) (11.34)

y1t = h2(y2t, ²2t, θ) (11.35)

where ²2t are measurement errors, ²1t are structural shocks, θ is a vector of structural
parameters, y2t is the vector of states and y1t is the vector of controls. Let yt = (y1t, y2t),
²t = (²1t, ²2t), y

t−1 = (y0, . . . , yt−1) and ²t = (²1, . . . , ²t). The likelihood of the model is
L(yT , θy20) =

QT
t=1 f(yt|yt−1, θ)f(y20, θ). Integrating the initial conditions and the shocks

out, the likelihood can be written as (see Fernandez-Villaverde and Rubio-Ramirez (2003))

L(yT , θ) =
Z
[
TY
t=1

Z
f(yt|²t, yt−1, y20, θ)f(²t|yt−1, y20, θ)d²t]f(y20, θ)dy20 (11.36)

where y20 is the initial state of the model. Clearly (11.36) is intractable. However, if we
have L draws for y20 from f(y20, θ) and L draws for ²t|t−1,l, l = 1, . . . , L, t = 1, . . . , T , from
f(²t|yt−1, y20, θ) we can approximate (11.36) using

L(yT , θ) = 1

L
[
TY
t=1

1

L

X
l

f(yt|²t|t−1,l, yt−1, yl20, θ)] (11.37)

Drawing from f(y20, θ) is simple, but drawing from f(²t|yt−1, y20, θ) is, in general, com-
plicated. Fernandez-Villaverde and Rubio-Ramirez suggest to use f(²t−1|yt−1, y20, θ) as
importance sampling for f(²t|yt−1, y20, θ) as the next algorithm indicates:

Algorithm 11.6

1) Draw yl20 from f(y20, θ). Draw ²
t|t−1,l L times from f(²t|yt−1, yl20, θ) = f(²t−1|yt−1, yl20, θ)f(²t|θ).

2) Construct IRlt =
f(yt|²t|t−1,l,yt−1,yl20,θ)PL
l=1 f(yt|²t|t−1,l,yt−1,yl20,θ)

and assign it to each draw ²t|t−1,l.

3) Resample from {²t|t−1,l}Ll=1with probabilities equal to IRlt. Call this draw ²t,l.
4) Repeat steps 1)-3) for every t = 1, 2, . . . , T .

Step 3) is crucial to make the algorithm work. If it is omitted, only one particle will
asymptotically remain and the integral in (11.36) diverges as T → ∞. The resampling
step prevents this from happening. Note that such a step is similar to the one employed in
genetic algorithms: you resample from candidates which have high probability and create
new branches at each step.

Clearly this algorithm is computationally demanding: in fact at each iteration, the model
needs to be solved to find an expression for f(yt|²t, yt−1, y20, θ). At this point only the most
basic RBC model has been estimated by non-linear likelihood methods and some gains have
been reported by Fernandez-Villaverde and Rubio-Ramirez (2004). When Bayesian analysis
is performed algorithm 11.6 must be inserted between steps 3) and 4) of algorithm 11.3.
This makes a full Bayesian non-linear approach unfeasible on currently available computers.
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11.4.5 Which approach to use?

There is surprisingly little work comparing estimation approaches in models which are mis-
specified, tightly parametrized and featuring less driving forces than endogenous variables.
Ruge Murcia (2002) is one recent example. Despite the lack of formal evidence, there are
few general ideas which may be useful to the applied investigator.

First, there are economic and statistical advantages in jointly estimating a system of
structural equations. From an economic point of view, this is appealing since parameter
estimates are obtained employing all the restrictions implied by the model. On the other
hand, statistical efficiency is enhanced when all available information is used. Joint esti-
mation may be problematic when a researcher is not necessarily willing to subscribe all the
details of a model. After all, tight parameter estimates which are economically unreasonable
are hard to justify and interpret.

Misspecification, a theme we have repeatedly touched upon in several chapters of this
book, creates problems to full information estimation techniques in at least two ways. When
the number of shocks is smaller than the number of endogenous variables, parameter es-
timates can be obtained only from a restricted number of series - essentially transforming
full information methods into limited information ones. Furthermore, since not all vari-
ables have the same informational content about the parameters of interest, one is forced to
experiment, with little guidance from economic or statistical theory. Second, if the model
can not be considered the DGP (because of the assumptions made or because of the purely
qualitative nature of the behavioral relationships it describes) both full information estima-
tion and testing are problematic. Maximum likelihood, in fact, attempts to minimize the
largest discrepancy between the model’s equations and the data. That is to say, it will chose
parameter estimates that are best in the dimensions where misspecification is the largest.
Therefore, it is likely to produce estimates which are either unreasonable from an economic
point of view or on the boundary of the parameter space.

There are few solutions to these problems. Adding measurement errors may eliminate
the singularity of the system but it can not remedy dynamic misspecification problems.
Adding serially correlated measurement errors, on the other hand, may solve both problems,
but such an approach lacks economic foundation. Roughly speaking, it amounts to giving
up the idea that the model is a good representation of the data, both in an economic
and in a statistical sense. The methods we have described in the last three chapters can
elegantly deal with these problems. The prior plays the role of a penalty function and if
it is appropriately specified it may make a full information approach look for a local, but
economically interesting maximum of the problem. In addition, it may reduce both biases
and skewness in ML estimates. However, it is still to be proved that computer intensive
MCMC methods have good size and power properties in the types of models we have studied
in this book. The simple example we have conducted in this chapter indicates that a lot
more work is needed.

The alternative is to use less information and therefore be theoretically less demanding
on the quality of the approximation of the model to the data. Still, the singularity of the
system imposes restrictions on the vector of moments (functions) used to estimate the struc-
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tural parameters - the functions must be linearly independent, otherwise the asymptotic
covariance matrix of the estimates will not be well defined. Nevertheless, there are situa-
tions when the model is extremely singular (for example, there is one source of shocks and
ten endogenous variables) and limited information procedures like GMM, SMM or indirect
inference may paradoxically use more information than ML. We have also mentioned that
limited information approaches may fall into logical inconsistencies whenever they claim to
approximate only parts of the DGP. To avoid these inconsistencies, what an investigator
wants to explain and ”the rest” should naturally have a block recursive structure, which is
hardly a feature of currently available DSGE models.

Despite the remarkable progress in the specification of DSGE models, one may still
prefer to take the point of view that models are still too stylized to credibly represent the
data and choose an estimation approach where only the qualitative implications (as opposed
to the quantitative ones) are entertained. Such an approach sidesteps both the singularity
and the misspecification issues, since qualitative implications can be embedded, as seen in
chapter 4, as identification devices for structural VAR models. Interacting DGSE and VAR
models either informally or more formally, as in Del Negro and Schorfheide (2004), seems
to be the most promising way to bring stylized models onto the data.

In terms of computations, a VAR based approach has clear advantages. Bayesian and
ML estimation are time consuming especially when the objective function is not well be-
haved (a typical case with DSGE models), while SMM and Indirect Inference may require
substantial computer capabilities. GMM is a close competitor, but its severe small sample
problems may well wipe out the gains from simplicity. In particular, the large biases we
discussed in chapter 5 may make GMM (and potentially SMM) unsuitable for macroeco-
nomic problems where samples are typically short and when they are not, breaks or regime
changes make the time series of data heterogeneous.

It is also important to stress that different small sample distributions for the structural
parameters do not necessarily translate in statistical and economically large differences in
interesting functions a researcher wants to compute. For example, Ruge-Murcia (2002)
documents that ML, GMM, SMM and Indirect Inference have somewhat different small
sample biases and markedly different efficiency properties. Yet, small sample impulse re-
sponse bands computed with estimates obtained with the four approaches are similar in
size and shape.
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Price Responses to a BB - shock
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Price Responses to a T - shock
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Responses to a G - shock
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Responses to a T - shock
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Figure A.7: Spillovers of T Shocks (Blue Regional Prices, Red Local Prices)
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S T A T E  S i z e  

( a r e a )  
S i z e  

( Y / Y US)  
G / Y  D E B T / Y  D F / U S D F  A C I R  

i n d e x  
M o o d y  
r a t e s  

A L  2 7  4 5  0 . 1 0  5 . 0 2  0 . 1 1  1 0  A a 3  
A R  2 6  4 7  0 . 1 0  2 . 6 4  0 . 1 2  9  A a 2  
A Z  5  3 2  0 . 0 9  1 . 7 3  0 . 1 4  1 0  A 1  
C A  2  7  0 . 0 9  3 . 8 8  0 . 1 7  6  A a 2  
C O  7  1 3  0 . 0 7  2 . 0 7  0 . 1 1  1 0  A 1  
C T  4 6  6  0 . 0 8  1 1 . 2 5  0 . 1 7  5  A a 2  
D E  4 7  3  0 . 1 0  1 4 . 2 5  0 . 1 4  1 0  A a a  
F L  2 5  3 5  0 . 0 7  3 . 3 2  0 . 1 1  1 0  A a 2  
G A  2 0  2 5  0 . 0 8  3 . 0 6  0 . 1 3  1 0  A a a  
I A  2 2  2 6  0 . 0 9  1 . 8 6  0 . 1 3  1 0  A a a  
I D  1 0  4 1  0 . 1 0  3 . 3 1  0 . 1 2  1 0  A a a  
I L  2 3  9  0 . 0 7  4 . 3 9  0 . 1 4  4  A a 2  
I N  3 7  2 7  0 . 0 8  2 . 4 7  0 . 1 3  1 0  A a 2  
K S  1 2  1 9  0 . 0 8  1 . 4 9  0 . 1 2  1 0  A a 2  
K Y  3 5  3 8  0 . 1 0  8 . 5 3  0 . 1 2  1 0  A a a  
L A  3 2  1 2  0 . 0 9  7 . 8 2  0 . 0 8  4  A 2  
M A  4 4  1 0  0 . 1 0  1 0 . 0 2  0 . 1 8  3  A a 2  
M O  1 7  2 2  0 . 0 7  3 . 1 6  0 . 1 1  1 0  A a a  
M E  3 8  4 3  0 . 1 1  8 . 3 4  0 . 1 3  9  A a 2  
M I  2 1  1 7  0 . 0 9  3 . 5 3  0 . 1 5  6  A a a  
M N  1 3  1 5  0 . 1 0  3 . 7 8  0 . 1 9  8  A a a  
M D  4 1  1  0 . 0 9  7 . 0 8  0 . 1 6  6  A a a  
M S  3 0  4 8  0 . 1 1  4 . 6 9  0 . 1 1  9  A a 3  
M T  3  3 7  0 . 1 1  6 . 1 3  0 . 0 7  1 0  A a 3  
N B  1 4  2 0  0 . 0 8  2 . 3 9  0 . 1 2  1 0  A a 3  
N C  2 8  3 0  0 . 0 9  2 . 2 2  0 . 1 4  1 0  A a a  
N D  1 6  3 3  0 . 1 2  4 . 2 0  0 . 1 0  8  A 1  
N M  4  2 8  0 . 1 2  4 . 5 0  0 . 1 3  1 0  A a 1  
N J  4 5  8  0 . 0 8  7 . 6 8  0 . 1 4  1 0  A a 2  
N H  4 3  2 9  0 . 0 8  1 0 . 0 9  0 . 0 5  2  A a 2  
N Y  2 9  5  0 . 1 0  9 . 7 7  0 . 1 8  3  A 2  
N V  6  4  0 . 0 7  3 . 5 2  0 . 1 4  4  A 1  
O H  3 4  1 8  0 . 0 8  4 . 0 0  0 . 1 1  1 0  A a 1  
O K  1 8  3 4  0 . 0 9  5 . 7 3  0 . 0 9  1 0  A a 3  
O R  9  2 1  0 . 1 0  1 2 . 0 9  0 . 1 0  8  A a 2  
P A  3 1  2 3  0 . 0 9  5 . 2 5  0 . 1 3  6  A a 2  
R I  4 8  3 1  0 . 1 1  1 4 . 5 6  0 . 1 4  1 0  A a 2  
S C  3 9  4 4  0 . 1 0  6 . 3 7  0 . 1 3  1 0  A a a  
S D  1 5  4 2  0 . 1 0  7 . 9 8  0 . 0 7  1 0  A 1  
T N  3 3  3 6  0 . 0 8  2 . 9 0  0 . 0 9  1 0  A a 2  
T X  1  1 1  0 . 0 6  1 . 8 1  0 . 0 8  8  A a 1  
U T  1 1  3 9  0 . 1 1  3 . 8 8  0 . 1 2  1 0  A a a  
V A  3 6  1 6  0 . 0 8  3 . 0 4  0 . 1 2  8  A a a  
V T  4 2  4 0  0 . 1 3  1 2 . 7 7  0 . 1 2  0  A a 1  
W A  1 9  1 4  0 . 1 0  4 . 6 0  0 . 1 4  8  A a 2  
W I  2 4  2 4  0 . 1 0  4 . 8 6  0 . 1 7  6  A a 3  
W V  4 0  4 6  0 . 1 2  8 . 7 0  0 . 1 4  1 0  A a 3  
W Y  8  2  0 . 1 0  4 . 2 6  0 . 0 6  8  B  
a v e r a g e    0 . 0 9  5 . 6 5  0 . 1 2    

 
Table A.1: Characteristics of US States
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Country Size 

(population)
Size 

(Y/YEU)
Gc/Y DEBT/Y Country 

risk 
Austria 8 7 0.19 66.3 A1 
Belgium 6 6 0.22 113.9 A1 
Finland 9 8 0.22 46.7 A1 
France 2 2 0.24 58.4 A2 
Germany 1 1 0.19 60.6 A2 
Ireland 10 10 0.15 45.5 A1 
Italy 3 3 0.18 113.0 A2 
Netherlands 5 5 0.23 60.2 A2 
Portugal 7 9 0.20 55.7 A2 
Spain 4 4 0.18 60.9 A1 
average   0.20 68.1  

 
 

Table A.2 Characteristics of EMU countries
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Table TA2: Instantaneous US Price differential Responses and Yearly Multipliers
G Shocks BB shocks T shocks

Price Y Multiplier N multiplier Price Y Multiplier N multiplier Price Y Multiplier N multiplier
AL 0.03 0.51 0.02 0.00 0.20 -0.001
AR 0.18 2.06 0.51 -0.40 1.21 0.03
AZ -0.08 0.92 0.03 0.76 2.32 0.06
CA 0.09 1.71 0.02
CO 0.01 1.62 0.06 -0.05 0.001 0.001
CT 0.25 0.72 -0.03
DE 0.01 2.91 0.01 0.03 0.45 0.005
FL 0.02 1.72 0.23
GA 0.05 0.41 0.02 0.47 3.62 0.06
IA -0.01 0.93 0.01
ID -0.02 1.50 0.06 0.01 0.57 0.01
IL -0.04 0.28 0.001 0.86 0.02 -0.001
IN -0.03 2.14 0.03 -0.02 0.13 0.01
KS -0.08 0.40 0.04 -0.12 -34.69 -0.26
KY 0.06 0.75 0.12
LA -0.08 2.73 0.02
MA -0.01 5.73 0.16
MO -0.34 -2.45 -0.09
ME -0.02 0.51 0.01 -0.60 6.57 0.05
MI -0.01 2.09 0.02 0.60 1.41 -0.08
MN -0.01 2.29 0.02
MD 0.01 0.99 0.04 -0.18 -11.09 -0.27
MS -0.06 1.47 0.06 -0.26 -17.46 -0.001
MT -0.02 -1.50 0.01 0.07 0.21 -0.001
NB 0.06 6.54 0.06 0.04 0.43 0.01
NC 0.001 2.54 0.07 0.14 3.11 0.13
ND 0.001 4.72 -0.11 0.03 0.61 0.001
NM 0.08 23.60 0.13 0.01 0.10 0.001
NJ -0.58 -3.78 0.17
NH 0.01 0.26 0.07 0.11 0.27 -0.02
NY -0.04 3.89 0.06
NV -0.05 1.03 -0.001 0.17 3.00 0.08
OH 0.00 1.20 0.07 -0.06 0.62 0.001
OK 0.22 9.06 0.09
OR 0.00 1.01 0.03 0.01 0.54 0.01
PA -0.02 -0.10 0.01
SC 0.01 0.98 0.03 -0.22 -10.56 -0.30
SD -0.03 10.80 0.08 0.06 2.06 0.001
TN 0.86 11.10 0.20
TX 0.05 1.40 0.02 0.19 7.96 0.12
UT -0.03 0.70 0.03 -0.27 -14.44 -0.39
VA 0.15 1.85 0.04
VT -0.05 1.18 0.02
WA 0.03 1.27 0.02 -0.09 -11.99 -0.15 0.59 7.91 0.27
WI -0.02 1.25 0.01 0.05 0.10 0.01
WV 0.61 22.58 0.28 -0.04 -1.82 -0.001
WY -0.04 -0.80 0.05 0.05 0.64 -0.02
average 0.02 3.19 0.05 -0.18 -0.75 -0.28 0.14 2.27 0.03
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Table TA3: Instantaneous EMU Price differential Responses and Yearly Multipliers
G Shocks BB shocks T shocks

Price Y Multiplier N multiplier Price Y Multiplier N multiplier Price Y Multiplier N multiplier
Austria 0.55 2.41 0.19
Belgium 3.66 6.30 -0.28
Finland 0.79 2.53 0.97
France 0.09 1.68 -0.01
Germany -0.09 0.25 0.01 0.06 0.13 0.001
Ireland -0.02 0.79 -0.07 0.25 9.20 0.06
Italy 0.01 1.35 -0.03 0.28 5.38 0.22
Netherland 0.07 0.62 0.01
Spain -0.08 4.69 0.04 0.10 0.60 0.01
Average 0.61 3.81 0.10 0.10 3.40 0.05
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