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1

Why Study General Equilibrium?

The reader deserves a short explanation of what general equilibrium theory
is and why it might be interesting. The theory provides a summary descrip-
tion of economic interaction in a society where people are free to pursue
their own interests. The theory may be viewed as an attempt to answer the
question of whether trade arranged through markets could match demands
with supplies for millions of goods and services in an economically efficient
way. Notice that the question is could trade achieve an efficient outcome,
not does it do so. This second question is empirical, not theoretical.

The rough outlines of the general equilibrium model are easy to describe.
Its participants or agents are consumer-workers and firms, and it contains
a description of the motives of each of them and the constraints limiting
their choices. The model’s observable variables are prices and the flows of
goods and services to and from each of the agents. A state of the economic
system in the model is a specification of all of these flows. The flows occur
through central markets that are perfect in the sense that each commodity
has only one price, all buyers and sellers know this price, and transactions
are costless. Firms choose among technically feasible flows of inputs and
outputs so as to maximize the flow of profits. Consumers possess an initial
allocation of goods and services, own the firms, and have utility functions
specifying their satisfaction from consumption. Consumers sell their ini-
tial allocations and spend the proceeds together with the firms’ profits on
goods and services so as to maximize utility. The economy is said to be
in equilibrium when all markets clear, that is, when the total demand for
each commodity equals the total supply. Since demands and supplies de-
pend on prices, these are part of the description of equilibrium. When time
and uncertainty are included in the model, it allows borrowing, lending,
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and insurance. The standard model of optimal growth is an intertemporal
general equilibrium model with no uncertainty, an infinite time horizon,
and just one consumer and one firm. This model becomes the well-known
overlapping generations model if the single consumer is replaced by a suc-
cession of consumers, each of whom lives a finite number of periods. I treat
the optimal growth and overlapping generations models as special cases of
the general equilibrium model.

The main conclusions of general equilibrium theory are that competitive
equilibria exist and are efficient in the sense that there is no other attain-
able economic state that would make some consumer better off and none
worse off. The assertion that competitive equilibria are efficient is called the
first welfare theorem. A partial converse, the second welfare theorem, is that
any efficient state can be realized as a general equilibrium occurring after
lump-sum taxes and payments redistribute wealth among consumers. In
the growth model, the equilibrium state not only is efficient but also is op-
timal in that it maximizes the single consumer’s utility over all possible eco-
nomic states, where a state of the economy is a time path of consumption
for the consumer and of inputs and outputs for the firm. The main theo-
rem applying to the growth model is that the optimal state converges over
time to an optimal stationary state, an assertion called the turnpike theo-
rem. The main theorem applying to the overlapping generations model is a
version of the second welfare theorem and asserts, roughly speaking, that
efficient paths for the economy can be achieved as equilibria with lump-
sum taxes. If we imagine that the economy has a government, then it has
debt and uses the revenue from the taxes to pay for interest on the debt. It
is natural to think of the taxes as instruments of fiscal policy and the in-
terest rate as determined by monetary policy. With this interpretation, the
interest rate is not determined by equilibrium but is chosen by some public
authority. The theorem asserts, roughly speaking, that fiscal and monetary
policy can achieve any efficient outcome. Some of the possible efficient out-
comes may have high economic growth, and others may have low growth.
Efficiency does not imply high economic growth. The rate of growth is the
outcome of choices made by a public authority, whether deliberately or un-
consciously.

One of the attractions of general equilibrium theory is that its conclu-
sions are deduced from simple assumptions about the basic constituents of
the economic system, which are consumers, firms, and markets. The theory
is reductionist in that its main conclusions are derived from premises about
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the behavior of the individuals in the system; most of the theory requires no
assumptions on collections of individuals. Within standard general equilib-
rium theory, a need for nonreductionist assumptions arises only when an
economy can have several equilibria. When this is so, equilibrium is not
determined by the characteristics of consumers and firms; it is necessary to
say that history or some unmodeled process chooses it. Apart from the diffi-
culty arising from multiple equilibria, standard general equilibrium theory
is built up entirely from microeconomic theory, which deals with the be-
havior of individual firms, consumers, workers, and investors. Its main as-
sumptions are that firms maximize profits, that consumers make their sales
and purchases so as to maximize a preference ordering or a utility function
subject to a budget constraint, and that markets clear.

Economic equilibrium appears to have two properties that may explain
some of the interest in it. First of all, in achieving equilibrium, an economy
solves an extraordinarily complex computational problem—the calculation
of equilibrium prices for each of millions of commodities. Probably this
problem would be too difficult for any computer to solve, if it were given
functions that expressed how the demands and supplies of all commodities
depended on prices. The second property is that the economy performs
this calculation without having to collect information about demand and
supply functions; consumers’ and firms’ purchases and sales automatically
reveal the needed information.

Despite appearances, the general equilibrium model, strictly speaking,
does not have the two properties just listed. An economy’s use of infor-
mation and calculation of equilibrium have to do with processes, whereas
general equilibrium theory deals only with equilibrium states. Because the
theory does not describe a process that finds equilibrium, it does not con-
front the question of whether free trade could match demands and supplies
in an efficient way. It is understandable that this question is not addressed,
because it is not at all obvious how to model an economy’s adjustment
mechanisms.

Why, then, study general equilibrium theory? One reason is that the the-
ory is the most sensible way that has been found to reduce a confusingly
complicated economic reality to a structure that is simple enough to re-
member, analyze, and interpret. The theory also serves as a framework of
thought for questions about how economies function as a whole. In addi-
tion, the model can stimulate economic insights, where by insights I mean
short descriptions of mechanisms governing economic life. Although only
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careful empirical work can substantiate such insights, they are sources of
useful ideas. I describe a few insights in this text, for instance, when I use
the overlapping generations model to discuss the impact of fiscal and mon-
etary policy and of social security on the steady-state capital stock. Another
function of the theory is that its implications inspire empirical work by
suggesting phenomena that researchers might not otherwise have thought
to look for. For instance, the turnpike theorem suggests that per capita
incomes in regions with similar natural resources and technology should
converge toward each other as the regional economies grow. Robert Barro
and Xavier Sala-i-Martin (1999, chap. 11) have tested this convergence
property extensively. Another advantage of general equilibrium theory is
that it focuses attention on the question of how to achieve economic effi-
ciency. The model serves as a reference point by describing what the world
could be like, but for various imperfections that prevent efficiency. Some
of these imperfections have to do with externalities, where an externality
is any economic influence of one economic agent on others distinct from
the purchase and sale of commodities. Examples of externalities are indus-
trial pollution or the air-freshening effects of cultivating trees. If there are
externalities, equilibrium may not be efficient, and we can ask how public
policy could achieve efficiency. The first welfare theorem describes the ideal
situation we want the economy to imitate; we want it to achieve efficiency
and to do so while spontaneously computing the efficient state. Another use
for the general equilibrium model is as a basis for simulations of the whole
economy that give useful estimates of its evolution over time and of the im-
pact of changes in taxes, technology, and resources. Such simulations are
studied in a subject called applied or computable general equilibrium, and it
has a huge literature.1 An obvious reason for learning general equilibrium
theory is to understand the major debates in economics, many of which
are expressed in the language of the theory. Probably the theory’s most im-
portant use is to guide research by providing examples of conclusions that

1. There follows an incomplete list of sources on applied general equilibrium, assembled

with the help of Herbert Scarf. Books that discuss the subject as a whole are Shoven and

Whalley (1992) and Ginzburgh and Keyzer (1997). Collections of papers that cover diverse

applications are Scarf and Shoven (1984), Pigott and Whalley (1985), and Fossati and Wie-

gard (2002). Books on tax incidence and tax policy are Keller (1980) and Ballard, et al. (1985).

Books on international trade policy are Srinivasan and Whalley (1986) and Kehoe and Kehoe

(1995). Books on economic development are Dervis, et al. (1982) and Mercenier and Srini-

vasan (1994).



1 Why Study General Equilibrium? 5

could be drawn or might have to be modified as the underlying assump-
tions of the model are made more realistic.

To understand general equilibrium theory, it is important to keep in
mind what it is not and what it should not be used for. First of all, it
would surely be unwise to elaborate the model in order to simulate an en-
tire economy in detail with the hope of making accurate predictions. Such
simulations would require radical revision of the standard general equilib-
rium model since it excludes many important aspects of reality, such as
externalities, imperfect markets, absence of certain markets, expectation
formation, increasing returns to scale, inflexible prices, and lack of market
clearance. Although many of these things are included in applied general
equilibrium models, a model that included all of them and represented an
economy in detail would probably be so big and complicated that no com-
puter could handle it and economists could understand it no better than
the actual economy. Successful simulations use reasonably simple models
to give rough estimates.

Another caveat is that general equilibrium theory is not scientific in the
sense that its main implications are not empirically testable. This state-
ment may seem surprising, and to understand it, one must distinguish
general equilibrium theory from the microeconomic theory on which it is
based. The main assertions of microeconomics are testable. For instance,
well-known work by Donald Brown and Rosa Matzkin (1996) tests the
microeconomic assumption that consumers maximize preference order-
ings subject to a budget constraint. General equilibrium theory does con-
tain testable assertions, but these require special assumptions. The turnpike
theorem is an example. It requires specific assumptions and has been tested
by Barro and Sala-i-Martin (1999), as was mentioned earlier. Another ex-
ample is the commonsense assertion that an increase in supply reduces
price. The central assumptions of general equilibrium theory do not im-
ply this assertion, and it is easy to construct a theoretical counterexample
to it. The assertion is implied, however, by models satisfying particular as-
sumptions, and such models are testable. Werner Hildenbrand (1994) has
devised such a model and has tested it extensively. In contrast, the main as-
sertions of general equilibrium theory—the existence of equilibrium and
the welfare theorems—so obviously do not apply to reality in any strict
sense that they are best thought of as assertions about ideal models.

Consider the theorem that equilibria exist. First of all, it is important to
understand that this theorem does not imply that actual economies are in
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equilibrium. The theorem cannot do so, because, like all theoretical state-
ments, it is an assertion about a model. It would be equally illogical to argue
in reverse that equilibria exist in a general equilibrium model because ac-
tual markets clear. The model and economic life are separate entities. It does
make sense to check the realism of the theorem’s assumptions and its asser-
tion in order to see whether the theorem represents reality adequately. From
this point of view, the theorem is inadequate. Actual markets sometimes do
not clear; there are prolonged periods, namely recessions and depressions,
when supply greatly exceeds demand in very important markets, namely
those for various types of labor. Also the special assumptions required to
prove the existence theorem are either unrealistic or difficult to test. One
special assumption is that consumers spend all their income, and another
is that total demand and supply for each commodity depend continuously
on prices. The first assumption is inaccurate; it is not always true that ac-
tual consumers spend all their income, and that is one reason recessions
occur. The other assumption may be impossible to verify. It is best to treat
the equilibrium existence theorem as a proposition applying exclusively to
economic models. Its significance is that it specifies conditions that may be
used to check whether a particular general equilibrium model has an equi-
librium.

The first welfare theorem is not scientific for similar reasons. It asserts
that equilibrium states are efficient. Deviations from the conditions stated
in the theorem probably prevent it from ever applying to actual economies,
even if they are in equilibrium. Examples of deviations are the presence of
monopoly power, imperfect markets, lack of some markets, externalities,
and taxes that are not lump sum. The efficiency of general equilibrium
should be thought of as an ideal that can be approximated in reality by
appropriate public policies designed to overcome obstacles to efficiency,
such as those just listed and lack of market clearance. For similar reasons,
the second welfare theorem is also best thought of as applying only to an
ideal model.

A trap to be avoided, I believe, is to accept general equilibrium theory
uncritically as true. A healthier attitude is to think of the theory as tentative
and to be modified as knowledge accumulates about how actual economies
function. As has just been explained, only microeconomic theory should
be thought testable; general equilibrium theory is a set of useful tautolo-
gies derived from microeconomics. A great deal of evidence is accumulating
that the basic assertions of microeconomic theory should be adjusted. The



1 Why Study General Equilibrium? 7

theory has, however, the advantage that it is simple and easy to use and
remember. For this reason, perhaps, many economists have long been re-
luctant to tamper with it. In the nineteenth century, John Stuart Mill argued
that the main propositions of economics are valid because they are deduced
from the self-evident premises of microeconomics.2 More recently, Mil-
ton Friedman (1953) argued that microeconomic hypotheses should not
be tested empirically, because what matters is whether the theory’s implica-
tions, not its assumptions, are valid. These seemingly opposite arguments
both discourage questioning of the standard microeconomic assumptions.
Currently, it is common for unusual microeconomic assumptions to be la-
beled as ad hoc, as if only the standard assumptions were widely applicable
and new ones were made up for particular applications, though it may be
that the new assumptions apply more generally than do standard ones. We
should keep an open mind and allow both microeconomics and theories
grounded on it to evolve with increased understanding.

This text, nevertheless, uses the standard assumptions. I describe the gen-
eral equilibrium model and present the propositions that form the basic
structure of equilibrium theory, namely, the equilibrium existence theo-
rem, the two welfare theorems, the turnpike theorem, application of these
to the overlapping generations model, and various supporting proposi-
tions. Because interesting economic ideas can be stimulated or illustrated
through simple examples, I emphasize their construction in both the text
and problem sets.

This book is based on class notes for a one-semester course taught to
third- and fourth-year undergraduates. I teach the same material to first-
year graduate students in half a semester. More difficult sections—meant
for a more advanced course—often fall at the ends of chapters.3

2. See Mill (1836), Blaug (1980, 68), and Hausman (1992, 124-125).

3. The advanced sections are 3.6, 3.7, 4.8, 4.9, 5.3, 6.5, 7.4, all of chapter 8, 9.6–9.9, and

10.7–10.14.



2

The General Equilibrium Model

The general equilibrium or Walrasian model results from a compromise be-
tween the needs for simplicity and realism. Although a great deal that goes
on in the world is excluded, the model has the advantage that it is easy to
describe and use. An important fraction of resources in a modern economy
are devoted to bringing buyers and sellers together and arranging transac-
tions, yet the perfect markets of the model require no such resources. There
are no marketers, salespeople, purchasing agents, brokers, or recruiters. Be-
cause markets are perfect, there is no need for contract law or for trust
to regulate transactions. Trade is exclusively in standardized commodities,
though in reality a great deal of trade is in items that are to an important
extent unique, such as antiques, paintings, and labor. Despite the presence
of millions of managers in modern economies, it is hard to find a place
for them in the model since firms are merely sets of technologies for trans-
forming inputs into outputs. Firms have no strategies, mission statements,
or problems of internal control. Individuals are assumed to want to max-
imize pleasure, though real human behavior is much more complicated.
Although governments are major consumers in modern economies and it
is possible to include them in the model, they are often excluded for sim-
plicity of exposition.

The participants or agents in the model are firms, consumer-workers or
consumers, and possibly a government. The state of the economy, called
an allocation, is defined by the flows of goods and services to and from the
agents. At first, the model will be static or timeless, so that the flows may be
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thought of either as stationary flows or as stocks that change hands during
one period.

2.1 Commodities

A commodity is a good or service that is traded. Commodities are homo-
geneous in that all units of a given commodity are identical. Commodities
are also assumed to be infinitely divisible, so that any nonnegative quantity
may be traded, held, or absorbed.

It is convenient to use vector notation to keep track of flows of all
commodities at once. There are N of them, indexed by n = 1, . . . , N .
A commodity vector is an N-vector, which is a sequence of N numbers,
x = (x1, . . . , xN). The component xn is the quantity of commodity n. If
the vector represents the amounts consumed by a consumer-worker, the
components are nonnegative, and the vector is called a consumption vector
or a consumption bundle. If the vector represents the flows of goods into
and out of a firm, it is called an input-output vector. Consumption vectors
are generally denoted by x and input-output vectors by y. If the nth com-
ponent, yn, of an input-output vector y is nonpositive, then commodity n

is an input into the production process of the firm. If yn is nonnegative,
then commodity n is an output of the firm. Notice that flows into a firm
are negative whereas flows into a consumer are positive. This interpretation
of the signs is a notational convention.

Throughout this text, vectors will be set in bold, variables in italic, and all
other symbols in plain text. In contexts involving the use of matrix algebra,
an N-vector is thought of an N × 1 matrix, that is, one with N rows and
one column. In this form, x would be written as

x =

⎛
⎜⎜⎜⎜⎝

x1

x2
...

xN

⎞
⎟⎟⎟⎟⎠

which is known as a column vector. The form x = (x1, . . . , xN) is called a
row vector. Since I seldom use matrix algebra, I do not often distinguish row
from column vectors. When I do, the vector in row form, x = (x1, . . . , xN),
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is written as xT, the transpose of x. When not using matrix algebra, I will
write vectors in the row form, x = (x1, . . . , xN).

2.2 Allocations

Another notational convention is that consumers are indexed by i = 1,
. . . , I and firms are indexed by j = 1, . . . , J , so that there are I consumers
and J firms.

definition 2.1 An allocation consists of (x , y) = (x1, . . . , xI ; y1, . . . ,
yJ ), where for all i, xi is a consumption bundle and, for all j , yj is an
input-output vector. That is, (x , y) = (x11, x12, . . . , x1N , x21, . . . , x1N ;
y11, y12, . . . , y1N , y21, . . . , yJN), where xin and yjn are, respectively, con-
sumer i’s consumption and firm j ’s input or output of good n.

I now say just enough about consumers and firms so as to be able to
define which allocations are technologically feasible. Each consumer is as-
sumed to start with an initial endowment, which is a consumption bundle
that may be either traded or consumed. For instance, consumers may be en-
dowed with stocks of coal, which may be exchanged for food, or they may
be endowed with their own time, which may be rented out or enjoyed as
leisure. The endowment of consumer i is denoted ei and has components
(ei1, . . . , eiN). If consumer i consumes the bundle xi = (xi1, . . . , xiN),
then xin − ein is i’s net absorption of good n. If xin − ein < 0, then con-
sumer i is a net provider of ein − xin units of commodity n. If xin − ein > 0,
then the consumer is a net consumer of xin − ein units of commodity n.
Each firm j is assumed to possess certain technologies for transforming
inputs into outputs. The set of these is represented by a set of possible input-
output vectors, Yj , called the firm’s input-output possibility set. The set Yj

consists of N-vectors, so that if yj ∈ Yj , then yj = (yj1, . . . , yjN), where
yjn is firm j ’s output of commodity n, if yjn > 0, and −yjn is firm j ’s input
commodity n, if yjn < 0.

definition 2.2 The allocation (x , y) is feasible if yj ∈ Yj , and

I∑
i=1

xin ≤
I∑

i=1

ein +
J∑

j=1

yjn, (2.1)

for all n.
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The left side of inequality 2.1 is total consumer demand for commodity
n, the sum

∑I
i=1 ein is total consumer supply of the commodity, and the

sum
∑J

j=1 yjn is its total net supply by firms.
It is possible to use vector notation to express all the N inequalities of 2.1

simultaneously with one formula. If x and y are N-vectors, then

x ≥ y means that, for all n, xn ≥ yn.

x > y means that x ≥ y and x �= y. That is, for all n, xn ≥ yn, and for
some n, xn > yn.

x � y means that, for all n, xn > yn.

Using this notation, inequality 2.1 may be written succinctly as

I∑
i=1

xi ≤
I∑

i=1

ei +
J∑

j=1

yj .

Some simple examples may help you visualize the concepts just intro-
duced. The first is an example of an input-output possibility set.

example 2.3 Suppose that food is produced from labor and that food
and labor are the only two commodities. Since inputs are negative, the
input of labor, yL, is nonpositive. Similarly, the output of food, yF, is non-
negative. Let f be a function expressing the production of food from la-
bor, so that yF ≤ f (−yL). Suppose that f (0) = 0 and that the slope of f

is positive and decreases as −yL increases. That is, nothing can be pro-
duced from nothing, output increases as input increases, and as output
increases, ever greater amounts of labor are required to produce an addi-
tional unit of food. The graph of such a function is shown in figure 2.1.
The input-output possibility set corresponding to the production function
f is Y = {(yL, yF) | yL ≤ 0, yF ≤ f (−yL)}. This set may be pictured by re-
versing the direction of the horizontal axis in this diagram, as is shown in
figure 2.2.

The next example is of the feasible set for an economy with one consumer
and one firm.

example 2.4 (The Robinson Crusoe economy) There is one consumer-
worker, Robinson Crusoe, and there is one firm, owned by the same person.
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yF

yF = f(–yL)

0 –yL

Figure 2.1 The graph of a production function

Y

yL

yF

0

Figure 2.2 An input-output possibility set

There are two commodities, food and time for labor or leisure. Robin-
son’s initial endowment may be any nonnegative vector e = (e1, e2). For
purposes of illustration, I take it to be one unit of time, so that his en-
dowment vector is e = (1, 0). The production function for food is yF =
f (−yL), where yL ≤ 0, since yL is the input into food production. Robin-
son’s input-output possibility set is Y = {(yL, yF) | yL ≤ 0, yF ≤ f (−yL)}
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e + Y

e

yF

yL0

F

Figure 2.3 The set of feasible allocations in the Robinson Crusoe economy

and is as shown in figure 2.2. If we shift Y to the right by one unit, we ob-
tain figure 2.3, which shows the set of feasible allocations, F, which I now
explain.

Notice that the definition of Y implies that if y belongs to Y and y′ ≤ y,
then y′ belongs to Y . That is, Y has what is called the free disposability
property; the economy can rid itself of surpluses of commodities at no cost.
An allocation (x , y) is feasible if x ≥ 0 (using vector inequality notation)
and if x ≤ e + y, where y belongs to Y . Among feasible allocations, (x , y),
we may restrict attention to those that satisfy the equation x = e + y, for
suppose that x ≤ e + y, where y belongs to Y . Because Y has the free
disposability property, y′ = y − (e + y − x) belongs to Y , so that (x , y′)
is an allocation and satisfies the equation x = e + y′. If x = e + y , where
y belongs to Y , then (x , y) is feasible if x ≥ 0 and also belongs to the
set e + Y = {e + z | z ∈ Y }. The set of x satisfying these conditions is the
shaded region, F, in figure 2.3.

The following example allows one to visualize the set of feasible alloca-
tions in an economy with no production.

example 2.5 (The Edgeworth box economy) There are two commodi-
ties, two consumers, and no firm. Call the consumers A and B. Their en-
dowment and consumption vectors are eA, eB, xA, and xB, respectively. The
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x

eA + eB

or 0B

0A

xB1

xB2

xA2

xA1

Figure 2.4 The Edgeworth box diagram

commodities are labeled 1 and 2. Using vector notation, the set of fea-
sible allocations may be described as {(xA, xB) | xA ∈ R

2
+, xB ∈ R

2
+, and

xA + xB ≤ eA + eB}. For ease of visualization, consider only those feasi-
ble allocations that are such that the supply of each good equals its de-
mand. That is, consider the set of allocations, {(xA, xB) | xA ∈ R

2
+, xB ∈ R

2
+,

and xA + xB = eA + eB}. Then, xA is part of a feasible allocation, if xA =
eA + eB − xB, and xB ≥ 0, that is, if xA ≤ eA + eB. Such points, xA, are in
the rectangle portrayed in figure 2.4. (The point xA is indicated by x in
the figure.) The rectangle is known as the Edgeworth box or the Edgeworth-
Bowley box. Notice that an allocation is represented by a single point of view
in the box. The point 0A in figure 2.4 is the origin from the point of view
of person A. The point 0B or eA + eB is the origin from the point of view of
person B.

2.3 Utility Functions

It is assumed that consumer behavior is governed by a utility function,
which assigns a number to each consumption bundle. Formally, such a
function is written as u: R

N → R, where R
N
+ is the set of all N-vectors

with nonnegative components and R is the set of real numbers. Again using
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formal notation, R
N
+ = {x ∈ R

N | x ≥ 0}, where R
N = {(x1, . . . , xN) | xn is

a number for all n} is the set of all N-vectors.
The requirement that the utility function be defined on all of R

N
+ ex-

cludes a convenient and well-known example, the logarithmic form of the
Cobb-Douglas utility function, which is u(x1, . . . , xN) = a1 ln(x1) + . . . +
aN ln(xN), where the coefficients an are positive numbers. This function
is not defined if any of the components of x is zero. Nevertheless, the re-
quirement that utility functions be defined on all of R

N
+ is so useful for

mathematical arguments that it is retained throughout this book.
It is not necessary to assume that actual consumers have utility functions

that they are aware of. The functions are a mathematical way of represent-
ing a consumer’s preferences among consumption bundles. A consumer
with utility function u is said to prefer consumption bundle x to bundle
y if u(x) > u(y). In this case, we write x 	 y. If u(x) ≥ u(y), we say the
consumer finds x at least as desirable as y and we write x 
 y. Similarly, if
u(x) = u(y), we say the consumer is indifferent between x and y and we
write x ∼ y. The preference relation “at least as desirable as” is what may be
observed. The utility function may be inferred from the preference relation,
but many different utility functions may be inferred from a given relation.
For instance, the utility functions u, 2u, and u2 all represent the same pref-
erence relation among bundles. These functions are examples of monotone
transformations of the function u.

definition 2.6 A utility function v: R
N
+ → R is said to be a monotone

transformation of a utility function u: RN
+ → R if v(x) = f (u(x)), for all x,

where f : R → R is an increasing function.

definition 2.7 The function f : R → R is increasing, if f (r) > f (s)

whenever r > s.

Clearly, if v is a monotone transformation of u, then v(x) ≥ v(y) if and
only if u(x) ≥ u(y), so that v and u define the same preference ordering
over consumption bundles. In fact, the converse is true, so that u and v

define the same preference ordering if and only if u is a monotone trans-
formation of v. To this extent, the utility function is not determined by the
underlying preference relations.

If there are two commodities, we may visualize utility functions by using
indifference curves, where an indifference curve is a level curve for the
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x1

x2

0

I

u

Figure 2.5 Indifference curves of a utility function

utility function. That is, it is a curve of the form I = {x in R
2
+ | u(x) = K},

where K is some constant. The curve is analogous to a contour line on a
hiking map, and the analogue of a utility function for the map gives altitude
at each location. Figure 2.5 shows indifference curves of a utility function.
If the function is increasing, the utility level increases as we move through
successive indifference curves in a northeasterly direction.

definition 2.8 The function u: R
N
+ → R is increasing if u(x) > u(y)

whenever x � y.

2.4 Economies

An economy is defined by the characteristics of its agents—the firms and
consumers. These may be listed as E = ((ui , ei)

I
i=1, (Yj)

J
j=1). In this list,

E is the economy, there are I consumers, ui and ei are, respectively, the
utility function and endowment of consumer i, Yj is the input-output
possibility set of firm j , and there are J firms. The notations (ui , ei)

I
i=1

and (Yj)
J
j=1 are abbreviations for ((u1, e1), (u2, e2), . . . , (uI , eI )) and

(Y1, Y2, . . . , UJ), respectively.



3

Economic Efficiency

Efficiency can be defined only in terms of an objective, and it is not obvious
what the objective for economic efficiency should be. We can imagine many
conflicting ones, including the welfare of each separate consumer, or collec-
tive objectives, such as military strength or the preservation of traditional
industries and a society’s culture. In general equilibrium theory, the focus
is entirely on the welfare of individual consumers, and the welfare objec-
tive is taken to be either a single utility function that amalgamates those of
individual consumers or a weak notion of efficiency called Pareto optimality.

3.1 Definition of Pareto Optimality

One allocation is said to Pareto dominate another if it makes every con-
sumer at least as well off and at least one better off.

definition 3.1 An allocation (x , y) for the economy E = ((ui , ei)
I
i=1,

(Yj)
J
j=1) Pareto dominates an allocation (x , y), if ui(x) ≥ ui(xi), for all i,

and ui(xi) > ui(xi), for some i.

A feasible allocation is Pareto optimal if there exists no other feasible
allocation that leaves every consumer at least as well off and makes at least
one consumer better off.

definition 3.2 A feasible allocation (x , y) for the economy E is said
to be Pareto optimal if there exists no other feasible allocation that Pareto
dominates (x , y).
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0

u

e

e + Y

x

Figure 3.1 The optimal allocation in the Robinson Crusoe economy

In the Robinson Crusoe example, Pareto optimality is the same as opti-
mality, since there is only one consumer. A Pareto optimal allocation max-
imizes Crusoe’s utility. In figure 3.1 the unique optimal allocation is the
point x.

In the Edgeworth box example, we may visualize the set of Pareto optima
by superimposing indifference curves on the Edgeworth box diagram, as
in figure 3.2. The indifference curves for consumer A are indicated by IA

and those of person B are indicated by IB. Because allocation y is preferred
to allocation x by both consumers, x is not economically efficient. In the
Edgeworth box diagram of figure 3.3, the set of Pareto optimal allocations
is the locus of points of tangency between the indifference curves and is the
heavy line labeled PO.

We see from this diagram that when there are two consumers, there
may be many Pareto optimal allocations, though there is only one in the
Robinson Crusoe example of figure 3.1. In the Edgeworth box example,
there is a range of Pareto optima, and as we move through it, one consumer
gains at the expense of the other.

Francis Edgeworth, the inventor of the box diagram, used it to describe
the outcome of trade (Edgeworth, 1881). He claimed that all one can say
about trade between two individuals exchanging one good for another is
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IB
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Figure 3.2 Pareto optimality in the Edgeworth box economy

that through haggling they reach an allocation that both find at least as
desirable as their initial endowments and such that further trade cannot
make both better off. Such an allocation is represented by a point on the
section of the locus of Pareto optima between the two indifference curves
through the initial allocation. In figure 3.3, the set of such points is the
segment of the curve PO between points a and b, since the endowment
point e represents the initial allocation. The technical term for this set is
the contract curve.

3.2 Existence of Pareto Optimal Allocations;
The Bolzano-Weierstrass Theorem

It is convenient to know conditions under which a general equilibrium
model has a Pareto optimal allocation. One approach is to show that there
exists a feasible allocation that maximizes the sum of the consumers’ utility
functions. To make this argument, we need a mathematical statement that
may be unfamiliar, the Bolzano-Weierstrass theorem. The explanation of
this theorem in turn rests upon several mathematical concepts, including
the Cauchy sequence concept.
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Figure 3.3 The set of Pareto optimal allocations in the Edgeworth box example

definition 3.3 A sequence of N-vectors, x1, x2, . . . is Cauchy if

lim
M→∞ sup

n, m≥M

‖xn − xm‖ = 0

where “sup” stands for supremum and the supremum of a set of numbers
is the smallest number bigger than or equal to any number in the set or is
infinity if there is no number exceeding every number in the set.

In this definition, the length or norm of an N-vector x is ‖x‖ =√
x2

1 + . . . + x2
N . A sequence xn is Cauchy if for every positive number ε

there exists a positive integer M such that ‖xn − xm‖ < ε, if n ≥ M and
m ≥ M . More loosely, xn is Cauchy if its members are arbitrarily close to-
gether far enough out in the sequence.

A key property of the real numbers is that the real numbers are complete,
which means that any Cauchy sequence of numbers converges to some
number. That is, if xn is a Cauchy sequence of numbers, then there is a
number x such that limn→∞ xn = x. The same statement applies to Cauchy
sequences of N-vectors, for if xn is a Cauchy sequence of N-vectors, then for
each m = 1, . . . , N , the mth component of xn, xnm, is a Cauchy sequence
of numbers. Therefore there is a number xm such that limn→∞ xnm = xm.
Then limn→∞ xn = x = (x1, . . . , xN). The Bolzano-Weierstrass theorem is
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the assertion that a convergent sequence can be picked out of any bounded
sequence of N-vectors. What is picked out is termed a subsequence.

definition 3.4 A subsequence of a sequence x1, x2, . . . consists of a
sequence of the form xn(1), xn(2), xn(3), . . . , xn(k), . . . , such that n(k) <

n(k + 1), for all k.

I require a few more definitions.

definition 3.5 A set of N-vectors A is closed if limn→∞ xn belongs to
A for any convergent sequence xn in A.

definition 3.6 A set of N-vectors A is bounded if there exists a positive
number b such that ‖x‖ ≤ b, for all x in A.

definition 3.7 A set of N-vectors A is compact if it is closed and
bounded.

For future reference, I introduce the concept of the closure of a set.

definition 3.8 If A is a set of N-vectors, the closure of A is the set of all
limits of sequences in A, including constant sequences always equal to the
same point in A.

It should be clear from this definition that A is contained in its closure.
It is not hard to see that a set is closed if and only if it equals its closure.

The simple examples that follow illustrate the concepts.

example 3.9 The closed interval [0, 1] = {t | t is a real number and
0 ≤ t ≤ 1} is compact.

example 3.10 The half-open interval (0, 1]= {t | t is a real number and
0 < t ≤ 1} is not closed, since the sequence 1/n (for n = 1, 2, . . .) belongs
to (0, 1] and converges to zero and yet zero does not belong to the set.
Hence, (0, 1] is not compact, though it is bounded. The closure of (0, 1]
is the closed interval [0, 1].

example 3.11 The interval [0, ∞) = {t | t is a real number and 0 ≤ t <

∞} is closed but is not bounded and so is not compact.
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Figure 3.4 Successive partitions of the set A

bolzano-weierstrass theorem 3.12 Any sequence in a compact set
of N-vectors, A, has a subsequence that converges to a point in A.

Proof. The proof is easily explained using figure 3.4, where the shaded oval
represents the set A. Let xn be a sequence in A (for n = 1, 2, . . .). Because
the set A is bounded, it is contained in some cube. Call it C1. Divide C1

into 2N congruent subcubes by dividing C1 in half along each of the N

orthogonal coordinate directions. Because C1 contains the entire sequence
xn, one of the 2N subcubes contains xn, for infinitely many values of n.
Call this subcube C2. Proceed by induction on the index of the subcube.
Suppose we have defined C1, C2, . . . , CK , so that each contains infinitely
many members of the sequence xn, and for k = 1, . . . , k, each Ck+1 is one
of 2N subcubes of the cube Ck. Divide CK into 2N congruent subcubes and
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choose one of them containing xn, for infinitely many values of n. Call the
subcube CK+1. I have defined by induction on K a sequence of cubes, Ck,
such that for all k = 1, 2, . . . , the cube Ck+1 is contained in Ck, each cube
Ck contains xn, for infinitely many values of n, and the diameter of the cube
Ck converges to zero as k goes to infinity.

I now define the subsequence xn(k), for k = 1, 2, . . . . Let xn(1) be a mem-
ber of C1. Having defined xn(1), xn(2), . . . , xn(k), where xn(m) belongs to
Cm, for all m, and n(1) < n(2) < . . . < n(k), let xn(k+1) be a member of
the sequence xn in Ck+1 such that n(k + 1) > n(k). Such an xn(k+1) exists
because Ck+1 contains infinitely many members of the sequence xn. By in-
duction on k, I have defined a subsequence xn(k) of the sequence xn such
that xn(k) belongs to Cn(k), for all k. Since Cn(m) ⊂ Cn(k), if m > k, it fol-
lows that xn(m) ∈ Cn(k), if m > k. Because the diameter of Cn(k) shrinks to
zero as k goes to infinity, the subsequence xn(k) is Cauchy and so converges.
Because the set A is closed, the limit of xn(k) belongs to A.

For our purposes, the most important consequence of the Bolzano-
Weierstrass theorem is that any continuous function achieves a maximum
and a minimum on a compact set. Before stating this result, I define conti-
nuity.

definition 3.13 Let A be a set of N-vectors, and let f : A → R
K be a

function, where K is a positive integer. Then f is continuous, if limn→∞
f (xn) = f (limn→∞ xn), whenever xn is a sequence in A converging to a
point in A.

proposition 3.14 If A is a nonempty compact set of N-vectors, any
continuous function f : A → R achieves a minimum and a maximum
on A.

Proof. I do the proof for the maximum. The assertion for the minimum
then follows, because

min
x∈A

f (x) = − max
x∈A

(−f (x)).

I must show that there exists a vector a in A such that f (a) ≥ f (x), for all
x in A. Let r = sup{f (x) | x is in A}. First of all, I show by contradiction
that r < ∞. Suppose that r = ∞. Then, for every positive integer n, there
is xn, in A such that f (xn) > n. Because A is compact, the sequence xn has



24 3 Economic Efficiency

a subsequence, xn(k), that converges to a point x in A. Therefore,

lim
k→∞ f (xn(k)) = f ( lim

k→∞ xn(k)) = f (x) < ∞,

which is impossible, because the sequence f (xn(k)) is unbounded.
I may now complete the proof. For each positive integer n, let xn be a

member of A such that f (xn) > r − 1
n

. Such an xn exists, because if it did
not, sup{f (x) | x is in A} would be less than r . By the Bolzano-Weierstrass
theorem, the sequence xn has a convergent subsequence, xn(k), that con-
verges to a point a in A. Clearly limk→∞ f (xn(k)) = r , since r ≥ f (xn(k)) >

r − 1
n(k)

, for all k, and n(k) goes to infinity as k goes to infinity. Since f is
continuous, limk→∞ f (xn(k)) = f (limk→∞ xn(k)) = f (a). In summary,

f (a) = lim
k→∞ f (xn(k)) = r ,

so that f achieves a maximum on A at a.

The following theorem on the existence of Pareto optimal allocations is
an immediate consequence of proposition 3.14.

theorem 3.15 If the set of feasible allocations for an economy E =
((ui , ei)

I
i=1, (Yj)

J
j=1) is compact and nonempty and if its utility functions

are continuous, then it has a Pareto optimal allocation.

Conditions guaranteeing the compactness and nonemptiness of the set
of feasible allocations will be presented in section 3.7. The assumption that
the utility functions are continuous is made for mathematical convenience.
It is hard to say what continuity implies about economic behavior since
most actual choices are from a finite set of alternatives.

Proof. Let F be the set of feasible allocations, and let U : F → R be defined
by

U(x , y) =
I∑

i=1

ui(xi).

Since U is the sum of continuous functions, it is continuous. Since F is
compact and nonempty, proposition 3.14 implies that there is a feasible
allocation that maximizes U . This allocation is Pareto optimal because any
allocation that Pareto dominated it would give a higher value for U .
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3.3 The Utility Possibility Frontier

The Edgeworth box diagram in figure 3.3 of section 3.1 makes clear that
the consumers’ relative utility levels can vary widely among Pareto optimal
allocations. Another way to express this variation is by means of the frontier
of the utility possibility set. This set consists of vectors of utility levels that
the economy can achieve. In order to define the set, consider the mapping

u(x , y) = (u1(x1), u2(x2), . . . , uI(xI ))

from feasible allocations (x , y) to I -vectors of utility levels. The utility
possibility set consists of the image of this map and all vectors less than
or equal to points in this image. That is, the utility possibility frontier is the
set of vectors that are not dominated in the vector sense by any other vector
in the utility possibility set. The more formal definitions follow.

definition 3.16 The utility possibility set of the economy

E = ((ui , ei)
I
i=1, (Yj)

J
j=1)

is U = {(v1, . . . , vI) | there is a feasible allocation (x , y) such that
vi ≤ ui(xi), for all i}.

definition 3.17 The utility possibility frontier is the set UF = {v =
(v1, . . . , vI) ∈ U | there is no v ∈ U such that v > v}.

The utility possibility frontier is the image under the map u(x , y) of the
set of Pareto optimal allocations. That is, the I -vector v belongs to UF, if
and only if there is a Pareto optimal allocation (x , y), such that vi = ui(xi),
for all i. The utility possibility set and frontier are illustrated in figure 3.5
for the Edgeworth box example.

The curve labeled PO on the left in figure 3.5 is the set of Pareto optimal
allocations, and the part of that curve between the points a and b is the
contract curve. On the right, the shaded set U is the utility possibility set,
and the curve UF is the utility possibility frontier. The mapping indicated
by the curved arrow labeled u is the mapping u(x , y) carrying the set
of feasible allocations to a subset of U. This mapping carries the set of
Pareto optima, the curve PO on the left, onto the curved part of the utility
possibility frontier, UF, on the right.
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Figure 3.5 Generation of the utility possibility set in the Edgeworth box example

3.4 The Calculation of Pareto Optima; Homogeneous Functions

I now explain how to calculate the optimal allocation in the Robinson Cru-
soe example as well as the set of Pareto optimal allocations and the utility
possibility frontier in simple two-dimensional Edgeworth box examples.

As is clear from figure 3.1 in section 3.1, the optimal allocation in the
Robinson Crusoe example is at the point of tangency between the fron-
tier of the set of feasible points and one of Robinson’s indifference curves.
Suppose that the feasible set is described as e + {(y1, y2) | y1 ≤ 0 and y2 ≤
f (−y1)}, where e = (e1, e2) is Robinson’s initial endowment, the first good
is the input, the second is the output, and f is a differentiable production
function with a positive derivative that decreases as −y1 increases. Recall
that the input is written as −y1 rather than as y1 because input quanti-
ties are negative. The slope of the frontier of the feasible set at the point

e + (−y1, f (−y1)) is − df (−y1)

dy
. The number df (−y1)

dy
is known as the mar-

ginal rate of transformation between commodities 1 and 2 and is abbreviated
as MRT(y1). Assuming that Robinson’s utility function, u, is differentiable,
we can calculate the slope of an indifference curve at the consumption point
(x1, x2) by differentiating the equation

u(x1, x2(x1)) = constant
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with respect to x1, where the graph of the function x2(x1) is an indifference
curve for the consumer. If we carry out this differentiation, we find that

∂u(x1, x2(x1))

∂x1

+ ∂u(x1, x2(x1))

∂x2

dx2(x1)

dx1

= 0,

so that the slope of the indifference curve, dx2(x1)

dx1
, equals

−
∂u(x1, x2)

∂x1

∂u(x1, x2)

∂x2

.

The number

∂u(x1, x2)

∂x1

∂u(x1, x2)

∂x2

is known as the marginal rate of substitution between commodities 1 and 2
and is abbreviated as MRS(x1, x2). The optimum may be found by solving
the equation

MTR(y1) = MRS(x1, x2),

which is

df (−y1)

dy
=

∂u(x1, x2)

∂x1

∂u(x1, x2)

∂x2

at a feasible allocation. That is, the optimal allocation is feasible and equates
the marginal rate of transformation to the marginal rate of substitution.
Feasibility is defined by the equations x1 = e1 + y1 and x2 = e2 + y2. There-
fore, the optimum may be found by solving the equation

df (−y1)

dy
=

∂u(e1 + y1, e2 + f (−y1))

∂x1

∂u(e1 + y1, e2 + f (−y1))

∂x2

. (3.1)

example 3.18 Let the endowment be e = (1, 0), and let f (−y1) =
2
√−y1, and u(x1, x2) = 2

√
x1x2. Then, equation 3.1 becomes
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1√−y1

=

√
2
√−y1√
1 + y1√
1 + y√

2
√−y1

= 2
√−y1

1 + y1

,

which reduces to the equation

1 + y1 = −2y1,

so that y1 = − 1
3 , and so x1 = 2

3 , and x2 = y2 = 2
√

3
3 .

Turning to the Edgeworth box example, we see from figure 3.2 that at a
Pareto optimal allocation, the indifference curves of the two consumers
are tangent. Since the slope of an indifference curve is the negative of
the marginal rate of substitution, we must find a feasible allocation where
the marginal rates of substitution are equal. Let (uA, eA) and (uB, eB) be the
utility function and endowment of consumers A and B, respectively, and
assume that the utility functions are differentiable. Equating the marginal
rates of substitution, we obtain the equation

∂uA(xA1, xA2)

∂x1

∂uA(xA1, xA2)

∂x2

=
∂uB(xB1, xB2)

∂x1

∂uB(xB1, xB2)

∂x2

. (3.2)

The equations describing feasibility are xA1 + xB1 = eA1 + eB1 and xA2 +
xB2 = eA2 + eB2. Substituting these equations into equation 3.2, we obtain

∂uA(xA1, xA2)

∂x1

∂uA(xA1, xA2)

∂x2

=
∂uB(eA1 + eB1 − xA1, eA2 + eB2 − xA2)

∂x1

∂uB(eA1 + eB1 − xA1, eA2 + eB2 − xA2)

∂x2

. (3.3)

Since this is one equation in the two unknowns xA1 and xA2, it defines
xA2 implicitly as a function of xA1 and so defines the set of Pareto optimal
allocations in the Edgeworth box. Only in some cases can we solve explicitly
for xA2 as a function of xA1.

The utility possibility frontier is the set of vectors (vA, vB) of the form
(vA, vB) = (uA(xA1, xA2), uB(xB1, xB2)) where ((xA1, xA2), (xB1, xB2)) is a
Pareto optimal allocation. It is not always possible to solve explicitly for vB

as a function of vA.
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example 3.19 Let eA = (1, 0), eB = (0, 1), and uA(x1, x2) = √
x1x2 =

uB(x1, x2).

In this example, equation 3.3 becomes

√
xA2

xA1√
xA2

xA1

=

√
1 − xA2

1 − xA1√
1 − xA2

1 − xA1

,

which reduces to the equation

xA2

xA1

= 1 − xA2

1 − xA1

.

The solution of this equation is
xA2 = xA1.

Hence, xB1 = 1 − xA1 = 1 − xB1 = xB2. The set of Pareto optima is the diag-
onal, PO, of the Edgeworth box pictured in figure 3.6. The initial endow-
ment allocation is indicated by e.

0B

0A e

PO

Figure 3.6 The set of Pareto optima in example 3.19
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Figure 3.7 The utility possibility frontier in example 3.19

To solve for the utility possibility frontier, notice that if xA1 = xA2 = t ,
then vA = uA(t , t) = t , and xB1 = xB2 = 1 − t , so that vB = uB(1 − t , 1 −
t) = 1− t . Therefore, the equation vB = 1− vA defines the utility possibility
frontier, where 0 ≤ t ≤ 1. This frontier, UF, is shown in figure 3.7.

Slight changes in example 3.19 create an example in which the utility
possibility frontier is defined only implicitly.

example 3.20 Let eA = (1, 0), eB = (0, 1), and uA(x1, x2) = x
1/3
1 x

2/3
2 ,

and uB(x1, x2) = x
2/3
1 x

1/3
2 .

Equation 3.3 now implies that

1

2

xA2

xA1

= 2
1 − xA2

1 − xA1

,

which simplifies to

xA2 = 4xA1

1 + 3xA1

. (3.4)
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0B

0A e

PO

Figure 3.8 The set of Pareto optima

Equation 3.4 describes the set of Pareto optima. The set of Pareto optimal
allocations may be expressed in terms of the parameter xA1 as{(

xA1,
4xA1

1 + 3xA1

, 1 − xA1,
1 − xA1

1 + 3xA1

)
| 0 ≤ xA1 ≤ 1

}
,

where
(
xA1, 4xA1

1+3xA1

)
is the allocation to person A and

(
1 − xA1, 1−xA1

1+3xA1

)
is

the allocation to person B. The set of Pareto optimal allocations is portrayed
in figure 3.8. By substitution into the utility functions, we find that the
utility levels of persons A and B at the Pareto optimum(

xA1,
4xA1

1 + 3xA1

, 1 − xA1,
1 − xA1

1 + 3xA1

)
are vA = 4

2
3 xA1

(1 + 3xA1)
2
3

and

vB = 1 − xA1

(1 + 3xA1)
1
3

.

These formulas for vA and vB express the utility possibility frontier as func-
tions of the parameter xA1. There is, however, no simple formula expressing
vB as a function of vA. The utility possibility frontier is nevertheless a simple
curve concave to the origin, like the curve UF in figure 3.9.
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vB

0 vA

UF

Figure 3.9 The utility possibility frontier

The previous two examples illustrate general principles that can be used
as shortcuts in computing the set of Pareto optimal allocations in examples.
The utility functions in the examples are homothetic, a concept I now
define. The definition requires first of all the definition of homogeneity.

definition 3.21 The function f : R
N
+ → R is homogeneous of degree b,

where b is a number, if f (tx) = tbf (x), for all N-vectors x and for all
nonnegative numbers t.

The definition means that the graph of f over the ray from the origin
and through the vector x is the graph of a function of the form g(t) = Atb,
where A > 0. This ray is {tx | t is a nonnegative number}. A function that
is homogeneous of degree 0 is constant along a ray. If f is homogeneous of
degree b and b �= 0, then f (0) = 0.

definition 3.22 A function f : R
N
+ → R is homothetic if some mono-

tone transformation of u is homogeneous of degree 1.
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Recall that g: R
N
+ → R is a monotone transformation of f if g(x) =

h(f (x)), for all x, where h: R → R is increasing. A function f : R
N
+ → R

is homothetic if it is homogeneous of positive degree, for suppose that f is
homogeneous of degree b, where b > 0. Then g(x) = [f (x)]1/b is homoge-
neous of degree 1, since

g(tx) = [f (tx)]1/b = [tbf (x)]1/b = t[f (x)]1/b = tg(x).

Since the function h: R → R defined by h(s) = s1/b is an increasing func-
tion and g(x) = h(f (x)), it follows that f is homothetic.

If u is homothetic, all indifference sets may be obtained from one indif-
ference set by radial projection. This remark may be visualized when N = 2
by imagining an indifference curve, I , and then shrinking it inward toward
zero or expanding it outward from zero by multiplying each vector in I by a
fixed number t . This transformation is obtained by multiplying each of the
coordinates by t . If u is homothetic, the new curve is also an indifference
curve for u. Figure 3.10 illustrates such an outward expansion. Indifference
curve Ib is twice as far from the origin as indifference curve Ia. If the utility

x2

0 x1

Ia

Ib

Figure 3.10 Indifference curves of a homothetic utility function
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x2

xa

R

xb

0 x1

Ia

La

Lb

Ib

Figure 3.11 Constancy of the marginal rates of substitution along rays, when the
utility function is homogeneous

function, u, is homothetic, any outward expansion or inward shrinking of
the indifference curve Ia is still an indifference curve of u.

If the utility function, u, is homothetic, then the slopes of its indifference
curves or its marginal rates of substitution are constant along rays through
the origin, such as the dotted lines in figure 3.10. This point is further illus-
trated in figure 3.11. The indifference curve Ib is a doubling of indifference
curve Ia. That is, the vectors y in Ib are of the form 2x, for some vector x in
Ia. The lines La and Lb are tangent to Ia and Ib, respectively, at the points
where these indifference curves intersect the ray, R, through 0. If we double
La by multiplying each vector in it by 2, we obtain a new straight line, Lb,
parallel to La and intersecting the ray R at a point, xb on Ib. Clearly, Lb is
tangent to Ib at xb. It follows that the slopes of Ia and Ib at the points, xa

and xb, respectively, are the same, since these slopes are the same as those
of La and Lb, respectively.

The same point may be made by applying calculus to a differentiable
utility function u: R

N
+ → R. In the next paragraph, I will show that the

partial derivatives, ∂u(x)
∂xn

, are constant along rays through the origin if u is

homogeneous of degree 1. It follows that if u is homogeneous of degree 1,
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the marginal rates of substitution,

∂u(x1, . . . , xN)

∂xn

∂u(x1, . . . , xN)

∂xk

are constant along rays through the origin. If u is homothetic, some mono-
tone transformation of u is homogeneous of degree 1, and so for that
monotone transformation the marginal rates of substitution are constant
along rays through the origin. Since monotone transformations do not
change indifference curves, the marginal rates of substitution of any ho-
mothetic utility function are constant along rays through 0.

The following string of equations demonstrates the statement that the
partial derivatives of u are constant along rays through 0 if u is homoge-
neous of degree 1. For any positive number t ,

t
∂u(y)

∂yn

∣∣∣∣
y=tx

= ∂u(tx)

∂xn

= ∂tu(x)

∂x
= t

∂u(x)

∂xn

, (3.5)

where the symbol
∂u(y)

∂yn

∣∣∣∣
y=tx

represents the partial derivative of u(y1, . . . , yN) with respect to its nth
variable, yn, at the point (y1, . . . , yN) = (tx1, . . . , txN). The symbol ∂u(tx)

∂xn

is the partial derivative of the function u(tx1, tx2, . . . , txN) with respect to
xn. By the chain rule for differentiation,

∂u(tx)

∂xn

= t
∂u(y)

∂yn

∣∣∣∣
y=tx

,

which is the first of equations 3.5. Canceling t from the extreme left and
right of each of equations 3.5, we see that

∂u(y)

∂yn

∣∣∣∣
y=tx

= ∂u(x)

∂xn

,

so that the nth partial derivative of u is constant along the ray through 0
and x.

Suppose that the homothetic utility function u: R
N
+ → R is such that

the marginal rate of substitution decreases along an indifference curve as
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x1 increases and x2 decreases, so that the curve gets progressively flatter
as you move to the right. If for some positive number K the equation
MRS(x1, x2) = K has a solution, then the vectors (x1, x2) satisfying this
equation belong to a unique ray through the origin. If the marginal rate
of substitution is constant along part of an indifference curve, then the
vectors (x1.x2) satisfying the equation may belong to a set of rays. For in-
stance, if u(x1, x2) = x1 + x2, then every vector in the positive quadrant R

2
+

satisfies the equation MRS(x1, x2) = 1, and no vectors satisfy the equation
MRS(x1, x2) = K , for K �= 1.

Consider an Edgeworth box economy where both consumers have ho-
mothetic utility functions such that the marginal rates of substitution de-
crease along indifference curves. At a Pareto optimal allocation, the two
consumers’ allocations must coincide in the box and their marginal rates
of substitution must be the same at that allocation. Suppose that the mar-
ginal rates of substitution equal some value, K . The points at which the
marginal rates of substitution for consumers A and B equal K lie on rays
RA and RB, respectively, as pictured in figure 3.12. The curves IA and IB

RB

RA

IB

IA

L

L

slope = –K

0B

0A

xslope = –K

Figure 3.12 Determination of a Pareto optimal allocation when both consumers
have homothetic utility functions
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RB

RA

0B

0A

Figure 3.13 Lines of constant marginal rates of substitution when both consumers
have the same homothetic utility function

are indifference curves for consumers A and B, respectively, tangent to the
straight lines, L, of slope −K . The point x is the only Pareto optimal allo-
cation with marginal rate of substitution K .

If both consumers have homothetic utility functions one of which is a
monotone transformation of the other, then the rays RA and RB are parallel,
as in figure 3.13. Parallel rays can have a point in common only if they
coincide, and if they do, they intersect along a diagonal of the Edgeworth
box, as in figure 3.14. In example 3.19, both consumers had the same
homothetic utility function, so that we know without having to make any
calculations that the set of Pareto optimal allocations equals the diagonal
of the Edgeworth box. The set of Pareto optimal allocations could be larger
than the diagonal if the indifference curves of the two consumers contained
straight line segments. For instance, if the utility function of each consumer
is u(x1, x2) = x1 + x2, then the set of Pareto optimal allocations is the whole
Edgeworth box.

The approach just explained may be applied to calculate the set of Pareto
optimal allocations in Edgeworth box examples such as example 3.20. In
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0B

0A

PO

Figure 3.14 Pareto optimal allocations when both consumers have the same
homothetic utility function

this example, the equation

(
∂uA(x1, x2(x1))

∂x2

)−1
∂uA(x1, x2(x1))

∂x1

= K

yields

xA2 = 2KxA1.

Similarly, the equation

(
∂uB(x1, x2(x1))

∂x2

)−1
∂uB(x1, x2(x1))

∂x1

= K

yields

2xB2 = KxB1.

Feasibility requires that

xA1 + xB1 = 1 and xA2 + xB2 = 1.

Solving these four simultaneous linear equations, we obtain
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xA1 = 2 − K

3K
, xA2 = 4 − 2K

3

xB1 = 4K − 2

3K
, xB2 = 2K − 1

3
.

(3.6)

Since all the consumption allocations must be nonnegative, it follows that

1

2
≤ K ≤ 2.

As K varies over this interval, equations 3.6 sweep out the set of Pareto
optimal allocations in example 3.20.

The utility functions in examples 3.19 and 3.20 are homothetic functions
of a class known as Cobb-Douglas utility functions. A Cobb-Douglas utility
function has the form

u(x1, . . . , xN) = x
a1
1 x

a2
2 . . . x

aN

N ,

where an > 0, for all n. Since the natural logarithm function is increasing,
the function

v(x1, . . . , xN) = ln(u(x1, . . . , xN)) = a1 ln x1 + . . . + aN ln xN

defines the same preference ordering. The function v is also referred to as a
Cobb-Douglas function and is normally easier to use than the exponential
form u.

A nondifferentiable but convenient homothetic utility function is the
Leontief utility function, which has the form

u(x1, . . . , xN) = min(a1x1, . . . , aNxN),

where an > 0, for all n. The indifference curves of such a function appear
in figure 3.15. Figure 3.16 depicts the set of Pareto optimal allocations for
a particular case of an Edgeworth box economy in which both consumers
have Leontief utility functions. The shaded areas are the Pareto optimal
allocations. The shape of the set of Pareto optimal allocations depends on
the parameters of the utility functions of the two consumers.

Linear functions are another class of simple homothetic utility functions.
A linear utility function is of the form u(x1, . . . , xN) = a1x1 + . . . + aNxN ,



x1

x2

x2 = ( )x1

0

a1
a2

Figure 3.15 Indifference curves of a Leontief utility function

0A

0B

Figure 3.16 The set of Pareto optima when both consumers have Leontief utility
functions
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IA

IB

0A

0B

e

Figure 3.17 Pareto optimal allocations with linear utilities when consumer A has
a greater relative preference for commodity 1

where an is a nonnegative number, for all n. Consider an Edgeworth box
economy with utility functions and endowments

uA(x1, x2) = aA1x1 + aA2x2, eA = (1, 0),

uB(x1, x2) = aB1x1 + aB2x2, and eB = (1, 0),

where aA1 > 0, aA2 > 0, aB1 > 0, and aB2 > 0. Figure 3.17 shows the Pareto
optimal allocations for the case aA1/aA2 > aB1/aB2. The parallel indiffer-
ence curves of consumer A and B are the dashed lines labeled IA and IB,
respectively. The set of Pareto optimal allocations consists of the heavy line
segments 0Ae and e0B, where e is the initial endowment allocation. In order
to see that the Pareto optimal allocations are as shown, fix attention on an
indifference curve of one person, say consumer A, and maximize the utility
of the other consumer along that curve. When you do so, you arrive at a
point on an edge of the box.

Figure 3.18 illustrates the case aA1/aA2 < aB1/aB2. The set of Pareto op-
tima consists of the heavy line segments 0AE and E0B.
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IA

IB

0A

0B

e

E

Figure 3.18 Pareto optimal allocations with linear utilities when consumer B has
a greater relative preference for commodity 1

3.5 Pareto Optimality and Optimality:
Minkowski’s Separation Theorem

Under special assumptions, an allocation is Pareto optimal if and only if it
is optimal with respect to a social-objective function that is a weighted sum
of consumers’ utilities,

∑I
i=1 aiui(xi), in which the weights, ai, are non-

negative numbers, not all of which are zero. The function
∑I

i=1 aiui(xi) is
a social-welfare function in that it assigns to each allocation a number indi-
cating aggregate welfare. (A social-welfare function is a function W : A → R,
where A is the set of allocations.) As the welfare weights, (a1, . . . , aI), vary,
the corresponding Pareto optimal allocations sweep out the entire utility
possibility frontier.

It is easy to see that an allocation that is optimal in this sense is Pareto
optimal.

proposition 3.23 Suppose that (x , y) is a feasible allocation for the
economy E = ((ui , ei)

I
i=1, (Yj)

J
j=1) that solves the problem
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max
(x , y) is a feasible

allocation

I∑
i=1

aiui(xi),

where ai > 0, for all i. Then, (x , y) is Pareto optimal.

Proof. If (x , y) is not Pareto optimal, then it is Pareto dominated by
a feasible allocation (x , y). Since the ai’s are all positive, it follows that∑I

i=1 aiui(xi) >
∑I

i=1 aiui(xi), so that the allocation (x , y) does not max-

imize the welfare function
∑I

i=1 aiui. This contradiction proves the prop-
osition.

I now describe mathematics required for the proof of a converse to this
proposition. The first concept is the dot product.

definition 3.24 If x and y are N-vectors, then the dot product or inner
product of x and y is x .y =∑N

n=1 xnyn.

If we were to use matrix notation, then we would consider vectors to be
column vectors and could write the dot product of x and y as x .y = xT y,
where xT is the transpose of x. Clearly if a and b are numbers, x .(ay +
bz) = ax .y + bx .z = (ay + bz).x. The dot product has a geometric inter-
pretation. It is not hard to show that the cosine of the angle between the

vectors x and y equals x .y
‖x‖ ‖y‖ , where ‖x‖ = √

x .x =
√

x2
1 + . . . + x2

N is the

length of x. Since x and y are perpendicular if and only if the cosine of
the angle between them is zero, it follows that x and y are perpendicular
or orthogonal if and only if x .y = 0. Fix an N-vector q and consider the
function f (x) = q.x, which assigns the number q.x to the N-vector x. If
q.x = q.y, then q.(x − y) = 0, so that q is orthogonal to the vector x − y.
If r is a number, then a level set, {x | q.x = r}, of the function f is a flat set
of vectors and is called a hyperplane. It is orthogonal to q in the sense that
{x | q.x = r} = {x | q.x = 0} + x, where x is any vector such that q.x = r . If
qn �= 0, then the hyperplane {x | q.x = r} intersects the nth coordinate axis
at the point where the nth coordinate equals r

qn
. The vectors of the form tq,

where t is a number, form a line through the origin, and as t increases, the
point tq moves along this line in the direction from 0 to q. This line inter-
sects the hyperplane {x | q.x = r} at the point r

q .q q, so that as r increases,
the hyperplane intersects the ray at a point that moves along the ray in the
direction from 0 to q. The hyperplane {x | p.x = r} is the boundary between
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0

q

q.x < r

q.x > r

{x | q.x = r}

tq

Figure 3.19 A level curve for the dot product function

two halves of R
N, one where p.x > r and one where p.x < r . If N = 2, the

hyperplane is itself a line. Figure 3.19 shows this line and the ray through q.
Suppose that B is a set of N-vectors and that b is a vector in B that solves

the problem

max
x∈B

q.x .

Then the hyperplane {x | q.x = q.b} is tangent to B at the point b and is the
hyperplane orthogonal to q and touching B that is furthest in the direction
from 0 to q. Figure 3.20 illustrates the relation between q, b, and B when
N = 2.

The welfare function W(x , y) =∑I
i=1 aiui(xi), where (x , y) is an allo-

cation, may be viewed as the composition of two functions, namely u: A →
R

I , defined as u(x , y) = (u1(x1), . . . , uI(xI )), followed by f : RI → R, de-
fined as f (v) = a.v =∑I

i=1 aivi, where A is the set of allocations. That is,

W(x , y) = f (u(x , y)). Let V be the image of the feasible allocations under
the mapping u. That is, V = {u(x , y) | (x , y) is a feasible allocation}. I will
show that the allocation (x , y) solves the problem.

max
(x , y) is a feasible

allocation

W(x , y),
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0

q

b

B

Figure 3.20 Maximization of the dot product over a set

if and only if the I -vector v = u(x , y) solves the problem maxv∈V f (v). If
a.v = f (v) ≥ f (v) = a.v, for all v = u(x , y) in V , then

W(x , y) = f (u(x , y)) = f (v) ≥ f (v) = f (u(x , y)) = W(x , y),

for any feasible allocation (x , y). Similarly if W(x , y) ≥ W(x , y), for all
feasible allocations (x , y), then, for any v = u(x , y) in V ,

f (v) = f (u(x , y)) = W(x , y) ≥ W(x , y) = f (u(x , y)) = f (v).

Because v solves the problem maxv∈V f (v), it follows that the hyperplane
in R

I , {v | a.v = a.v}, is tangent to V at v.
The utility possibility set U is simply V together with every point in R

I

dominated by points in V in the sense of vector inequality. Therefore if
(x , y) is the feasible allocation that maximizes W(x , y), then U is tangent
to the hyperplane {v | a.v = a.v} at v = u(x , y).

The geometry of the situation may be visualized in the Edgeworth box
model as in figure 3.21. It may be seen from this figure that the vector
v in the utility possibility set U maximizes the function a1v1 + a2v2 over
the set of possible utility vectors, v = (v1, v2). The vector v corresponds
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v

Figure 3.21 Dot product maximization over a utility possibility set

a

v

v

U

Figure 3.22 Dot product maximization over a utility possibility set that does not
bulge outward

to the feasible allocation x in the sense that uA(xA) = vA and uB(xB) =
vB. The allocation x maximizes the social welfare function aAuA(xA) +
aBuB(xB) over feasible allocations x = (xA, xB). Figure 3.21 illustrates a
possible approach to proving a converse of proposition 3.23.

The assertion of this converse may be false if the utility possibility set
U does not bulge outward, as is illustrated in figure 3.22. There are points
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X

x

y

Figure 3.23 A convex set

in the set U above any line through the point v and perpendicular to a
vector a. For the particular vector a shown in the diagram, the point v,
not v, maximizes the function a.v as v varies over U. We need to make
assumptions that guarantee that U does not have any coves, as the set U

in figure 3.22 does. The absence of coves and holes is known as convexity.

definition 3.25 A set X of N-vectors is said to be convex, if for all x and
y in X and for all α such that 0 < α < 1, the vector αx + (1 − α)y belongs
to X.

Since the vector αx + (1 − α)y may be written as y + α(x − y), we see
that αx + (1 − α)y is on the straight line segment between x and y and
moves from y toward x as α increases from 0 to 1. The line segment is
illustrated in figure 3.23. The set Y in figure 3.24 is not convex.

The next example shows that the utility possibility set of an economy may
not be convex.

example 3.26 There are two consumers, no firms, and one commodity.
The endowment of each consumer is 1/2, and the utility function of each is
uA(x) = uB(x) = x2. The utility possibility frontier is
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Y

Figure 3.24 A nonconvex set

UF = {(x2
A, (1 − xA)2) | 0 ≤ xA ≤ 1} = {(vA, vB) | vA ≥ 0, vB ≥ 0,

and
√

vA + √
vB = 1}.

Figure 3.25 shows this frontier and the corresponding utility possibility
set.

The reason the utility possibility set in this example is not convex is
that the slope of the consumers’ utility function increases as consumption
increases. We will see shortly that if the slope decreases, then the utility
possibility set is convex. If the slope decreased, the functions would be what
is known as concave. For functions of one or more variables, the precise
definition of concavity is as follows.

definition 3.27 If X is a convex set of N-vectors and f : X → R, then
f is concave if

f (αx + (1 − α)y) ≥ αf (x) + (1 − α)f (y),

for all x and y in X and for all α such that 0 ≤ α ≤ 1.

Figure 3.26 portrays the graph of a concave function f from the non-
negative real numbers to the real numbers. As is illustrated by the shaded
area in the figure, a function is concave if and only if all the points on or be-
low the graph of f form a convex set. Clearly an affine function is concave,
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vB

vA

UF

U

Figure 3.25 A nonconvex utility possibility set

Figure 3.26 The graph of a concave function
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where a function f is affine if

f (αx + (1 − α)y) = αf (x) + (1 − α)f (y),

for all x and y in X and for all α such that 0 ≤ α ≤ 1. The function f is affine
if and only if it is of the form f (x) = a.x + b, where a and b are N-vectors.

If the function f is twice differentiable, it is possible to characterize its
concavity in terms of its second derivative. To do so, I need the concepts of
the interior of a set and definiteness of matrices.

definition 3.28 If X is a set of N-vectors, the interior of X, written as
int X, is

{x ∈ X | for some ε > 0, y belongs to X , if ‖y − x‖ < ε}.

A point x belongs to the interior of the set X if a ball centered at x of
small enough radius is contained entirely within X. The following examples
illustrate the concept. The interior of the closed ball of 2-vectors about zero

of radius 1, {(x1, x2) ∈ R
2 |
√

x2
1 + x2

2 ≤ 1}, is {(x1, x2) ∈ R
2 |
√

x2
1 + x2

2 <

1}. The interior of the closed square of 2-vectors, {(x1, x2) ∈ R
2 | −1 ≤ x1 ≤

1 and −1 ≤ x2 ≤ 1}, is {(x1, x2) ∈ R
2 | −1 < x1 < 1 and −1 < x2 < 1}. In

both examples, the sets equal their interiors plus their boundary lines or
curves. The set {(x1, x2) ∈ R

2 | x1 + x2 = 1} has no interior.

definition 3.29 An N × N matrix, A, is positive definite if vT Av =∑N
n=1

∑N
k=1 vnankvk > 0, for every nonzero N-vector v. The matrix is pos-

itive semidefinite if vT Av ≥ 0, for every N-vector v. Similarly, A is negative
definite if vT Av < 0 for all nonzero N-vectors v, and A is negative semidef-
inite if vT Av ≤ 0, for every N-vector v.

The notation vT Av indicates the number obtained when the matrix A is
multiplied on the left by the row vector vT and on the right by the column
vector v.

I will need to use vector and matrix notation in order to describe the
first and second derivatives of a function of N variables. Let f : X → R be a
differentiable function, where X is a subset of R

N with nonempty interior.
Then

Df (x) =
(

∂f (x)

∂x1

, . . . ,
∂f (x)

∂xN

)
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is the vector of first partial derivatives of f with respect to its N variables.
It is customary to think of this vector as a row vector. If f is twice differen-
tiable, then

D2f (x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2f (x)

∂x1∂x1

. . .
∂2f (x)

∂x1∂xN

...
∂2f (x)

∂xn∂xk

. . .
...

...
. . .

...
∂2f (x)

∂xN∂x1

. . .
∂2f (x)

∂xN∂xN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is the N × N matrix of second partial derivatives of f with respect to its
variables. If f has only one variable, so that N = 1, then Df (x) = df (x)

dx
is

the first derivative of f at x, D2f (x) = d2f (x)

dx2 is the second derivative of

f at x, D2f (x) is negative definite if d2f (x)

dx2 < 0, and D2f (x) is negative

semidefinite if d2f (x)

dx2 ≤ 0.

lemma 3.30 If X is a convex set of N-vectors and f : X → R is twice dif-
ferentiable, then f is concave if the matrix D2f (x) is negative semidefinite,
for all x. If f is concave, then D2f (x) is negative semidefinite, for all x in
the interior of X.

Proof. Suppose, first of all, that N = 1, so that X is a subset of the real
numbers. Suppose that x and y are in X and that y < x. For t such that
0 ≤ t ≤ 1, let

g(t) = f (tx + (1 − t)y) − (tf (x) + (1 − t)f (y)). (3.7)

Observe that g(0) = g(1) = 0. Assume that D2f (x) is negative semidefi-

nite, so that d2f (x)

dx2 ≤ 0. In order to show that f is concave, I must show
that g(t) ≥ 0, for all t between 0 and 1. The proof is by contradiction. Sup-
pose that g(α) < 0, for some α between 0 and 1. By the mean value theorem
of calculus, there exist t and t such that 0 < α < t < 1 and

g(α) = g(α) − g(0) = dg(t)

dt
α and (3.8)

−g(α) = g(1) − g(α) = dg(t)

dt
(1 − α). (3.9)
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Since α > 0, equation 3.8 implies that
dg(t)

dt
< 0, and, since α < 1, equation

3.9 implies that dg(t)

dt
> 0. Another application of the mean value theorem

implies that d2g(t)

dt2 > 0, for some t such that t < t < t . However, d2g(t)

dt2 =
d2f (tx+(1−t)y)

dz2 (x − y)2 ≤ 0, where z is the variable of the function f . This
contradiction proves that g(t) ≥ 0, for all t between 0 and 1, and hence that
f is concave.

I continue to assume that N = 1 and show that if f is concave, then
D2f (x) is negative semidefinite, for all x in the interior of X. Suppose to

the contrary that d2f (a)

dx2 > 0, for some a in the interior of X. Because f is
twice differentiable, Taylor’s theorem implies that

f (x) = f (a) + df (a)

dx
(x − a) + d2f (a)

dx2
(x − a)2 + o[(x − a)2],

where o indicates a function with the property that limy→0
o(y)

y
= 0. Let

g(x) = f (a) + df (a)

dx
(x − a) + d2f (a)

dx2
(x − a)2.

Then,

g(a − ε) + g(a + ε)

2
− g(a) = d2f (a)

dx2
ε2 > 0,

and a − ε and a + ε belong to X if ε is sufficiently small, since a belongs
to the interior of X. Since

f (a − ε) − f (a + ε)

2
− f (a) −

[
g(a − ε) − g(a + ε)

2
− g(a)

]
= o(ε2),

it follows that

f (a − ε) − f (a + ε)

2
− f (a) > 0,

if ε is sufficiently small. Since this inequality contradicts the concavity of f ,

it must be that d2f (a)

dx2 ≤ 0, for all a in the interior of X.

Suppose now that N > 1. Assume that D2f (x) is negative semidefinite,
for all x. Let x and y belong to X, and for each t such that 0 ≤ t ≤ 1, let
g(t) be defined by equation 3.7. In order to show that f is concave, I must
show that g(t) ≥ 0, for all t between 0 and 1. The function g is a twice-
differentiable function of a single variable, and

d2g(t)

dt2
= (x − y)T D2f (tx + (1 − t)y)(x − y) ≤ 0,
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where the inequality follows because the matrix D2f (tx + (1− t)y) is neg-
ative semidefinite. Therefore, by the proof just given for the case N = 1,
g(t) ≥ 0, for all t between 0 and 1, and hence f is concave.

Assume that f is concave. I must show that D2f (x) is negative semidef-
inite, for all x in the interior of X. If D2f (x) is not negative semidefinite
for some x in the interior of X, then there exists an N-vector v such that
vT D2f (x)v > 0. If ε is a sufficiently small positive number, then a − εv

and a + εv both belong to X, since a is in the interior of X. Let g(t) =
f (a + tv). Since g is twice differentiable and is concave, the lemma for the

case N = 1 implies that 0 ≥ d2g(0)
dt2 = vT D2f (a)v, contrary to hypothesis.

This contradiction proves that D2f (x) is negative semidefinite, for all x in
the interior of X.

It is now possible to state a converse to proposition 3.23.

theorem 3.31 Assume that the economy E = ((ui , ei)
I
i=1, (Yj)

J
j=1) is

such that

1. for all j , Yj is convex, and

2. for all i , ui: R
N
+ → R is concave.

If (x , y) is a Pareto optimal allocation, then there exists an I -vector, a, such
that a > 0 and (x , y) solves the problem

max
(x , y) is a feasible

allocation

I∑
i=1

aiui(xi).

Observe that some of the components of the vector a in theorem 3.31
may be zero, so that the theorem is not, strictly speaking, a converse to
proposition 3.23, where all the components of a are positive.

If the vector a satisfies the conditions of theorem 3.31, then so does the
vector ta, for any positive number t . Since a > 0,

∑I
i=1 ai > 0, so that

the vector (1/
∑I

i=1 ai)a satisfies the conditions of the theorem. There-

fore we may assume that
∑I

i=1 ai = 1, in which case the welfare function∑I
i=1 aiui(xi) is a weighted average of the utilities of the consumers. Thus

the theorem asserts that any Pareto optimal allocation maximizes some
weighted average of the consumers’ utilities.

The assumption that the input-output possibility sets Yj are convex intu-
itively means that returns to scale are nowhere increasing and that distinct
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production processes do not interfere with each other. Suppose that y and y
belong to Yj and that α is a number between 0 and 1. If the returns to scale
are not increasing, then it should be possible to scale back production from
y to αy, that is, to shrink all inputs and outputs by the factor α. Therefore,
αy should belong to Yj . Similarly, (1 − α)y belongs to Yj . If we think of αy
and (1 − α)y as the outcomes of separate production processes and if pro-
cesses do not interfere with each other, then αy + (1 − α)y is producible
and so belongs to Yj .

The assumption that the utility functions are concave can be interpreted
in terms of choices among risky alternatives, a topic presented in sec-
tion 7.3.

The statement of theorem 3.31 should not be thought of as an assertion
about economic reality but about economic models. It would be nearly im-
possible to measure consumers’ preferences, to verify that they could be
represented by concave utility functions, and to check that an allocation
thought to be Pareto optimal maximized a weighted sum of these functions.
Theorem 3.31 is important because it is a convenient tool for analyzing
Pareto optimal and equilibrium allocations. It, in effect, reduces an econ-
omy with many consumers to one with a single consumer who has initial
endowment e =∑I

i=1 ei and utility function

U(x) = max
xi∈R

N+ , for i=1, . . . , I

I∑
i=1

aiui(xi)

s.t.
I∑

i=1

xi = x .

The proof of theorem 3.31 requires the following assertion.

lemma 3.32 Under the assumptions of theorem 3.31, the utility possibil-
ity set,

U = {v ∈ R
′ | there exists a feasible allocation (x , y) such that

vi ≤ ui(xi), for all i},

of E is convex.

Although the utility possibility set U is convex, the set V = {(u1(x1), . . . ,
uI(xI ) | (x , y)) is a feasible allocation} may not be convex under the con-
ditions of the lemma. It is for this reason that the utility possibility set is
defined to be U rather than V .
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Proof. Let v and v belong to U and let α be such that 0 ≤ α ≤ 1. I must
show that v = αv + (1 − α)v belongs to U. By the definition of U, there
exist feasible allocations (x , y) and (x , y) such that vi ≤ ui(xi) and vi ≤
ui(xi), for all i. Consider the allocation (x , y) = α(x , y) + (1 − α)(x , y).
I show that the allocation (x , y) is feasible. First of all, xi ≥ 0, for all i,
since xi = αxi + (1 − α)xi and xi ≥ 0 and xi ≥ 0. Also, yj ∈ yj , for all
j , because Yj is a convex set and y

j
and yj both belong to Yj and yj =

αy
j
+ (1 − α)yj . In addition,

I∑
i=1

xi = α

I∑
i=1

xi + (1 − α)

I∑
i=1

xi

≤ α(
∑

i

ei +
∑

i

y
i
) + (1 − α)(

∑
i

ei +
∑

i

yi)

=
∑

i

ei +
∑

i

(αy
i
+ (1 − α)yi)

=
∑

i

ei +
∑

j

yj ,

where the inequality follows from the feasibility of the allocations (x , y)

and (x , y). Finally,

vi = αvi + (1−)vi ≤ αui(xi) + (1 − α)ui(xi)

≤ ui(αxi + (1 − α)xi) = ui(xi),

for all i, where the second inequality follows from the concavity of ui.
Therefore, v belongs to U.

The proof of theorem 3.31 is an application of Minkowski’s separation
theorem, a theorem that underlies a great deal of mathematical economics.
To state this theorem, I need to define two new concepts.

definition 3.33 An N-vector a is said to separate the sets of N-vectors,
X and Y , if a �= 0 and a.x ≤ a.y, for all x in X and y in Y .

In figure 3.27, the vector a separates X from Y . Notice that if the vector a
separates X from Y , then a straight line, H , perpendicular to a lies between
X and Y . In dimensions higher than 2, if the vector a separates X from
Y , then there is a hyperplane of the form H = {x ∈ R

N | a.x = r} that
comes between X and Y , though it may touch one or both sets on their
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a

X

Y

H

Figure 3.27 Separation of sets

boundaries. Because the set H comes between X and Y , it is said to be a
separating hyperplane.

Minkowski’s separation theorem says that two sets of N-vectors may be
separated if they are convex and if one set does not intersect the interior of
the other.

minkowski’s separation theorem 3.34 Let X and Y be convex sets
of N-vectors and suppose that int X is not empty and that Y does not
intersect int X. Then, there exists a nonzero N-vector, a, that separates X

from Y .

This theorem is also known as the theorem of the separating hyperplane.
The examples that follow illustrate the need for the assumptions made in

the theorem. Figure 3.28 shows how the theorem may fail to be valid if X

or Y is not convex.
Figure 3.29 shows that one of X and Y should have nonempty interior

for Minkowski’s separation theorem to apply. Both X and Y are convex.
Neither has an interior, so that neither set intersects the interior of the other.
The sets clearly cannot be separated.
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Y

X

Figure 3.28 Disjoint but inseparable nonconvex sets

X

Y

Figure 3.29 Inseparable convex sets with empty interior

Figure 3.30 shows that a stronger separation theorem may exist. (It does.)
In the figure, X and Y may be separated, yet the theorem does not apply,
because both sets have empty interiors.

I now turn to the proof of theorem 3.31.
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X

Y

Figure 3.30 Separable convex sets with empty interior

Proof of Theorem 3.31. Let U be the utility possibility set for the economy,
and let

� = {v ∈ R
I | v ≥ v},

where v = (u1(x1), u2(x2), . . . , uI(xI )) and (x , y) is the given Pareto op-
timal allocation.

I show that the only point in the intersection of U and � is the vector v.
Clearly v belongs to both these sets. Suppose that some vector other than
v, call it w, belongs to both U and �. Because w belongs to U, there is a
feasible allocation (x , y) such that wi ≤ ui(xi), for all i. Because w �= v and
w belongs to �, it follows that w > v. Therefore, ui(xi) ≥ (xi), for all i,
and ui(xi) > ui(xi), for some i. Hence, the allocation (x , y) Pareto domi-
nates the allocation (x , y), and so (x , y) is not Pareto optimal, contrary to
hypothesis. This contradiction establishes that the intersection of U and �

equals v.
I now verify that we may apply Minkowski’s separation theorem. Because

v is the intersection of U and �, and v does not belong to the interior of �,
it follows that U does not intersect the interior of �. The interior of � is
not empty, since it contains any vector w such that w � v. The set U is
convex by the lemma 3.32, and it is obvious that � is convex. Hence, all the
assumptions of Minkowski’s separation theorem are satisfied. Minkowski’s
theorem implies that there exists a nonzero I -vector, a, such that a.w ≥ a.v,
for all w in � and all v in U. The separation argument is illustrated in
figure 3.31.
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v1

v2

0

U

v

a

Γ

Figure 3.31 The sets separated in the proof that welfare weights exist

I show that a > 0. Since a �= 0, it is sufficient to prove that a ≥ 0. I show
that a1 ≥ 0. The vector v + (1, 0, . . . , 0) belongs to �, and v belongs to U.
Therefore,

a.v + a1 = a.(v + (1, 0, . . . , 0)) ≥ a.v ,

by the separating property of the vector a. Therefore a1 ≥ 0. Since the same
argument applies to any component of a, it follows that a ≥ 0.

I next show that ∑
i

aiui(xi) ≥
∑

i

aiui(xi),

for all feasible allocations (x , y). The vector v belongs to �, and if v =
(u1(x1), . . . , uI(xI )), where (x , y) is any feasible allocation, then v belongs
to U. Hence, by the separating property of the vector a,

a.v ≥ a.v ,

which is the same as saying that∑
i

aiui(xi) ≥
∑

i

aiui(xi).
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It is natural to ask how in simple examples to calculate welfare weights
a1, . . . , aI associated with a Pareto optimal allocation, (x , y), as in theorem
3.31. Assume that there is no production and that the utility functions
are increasing, so that a Pareto optimal allocation satisfies the feasibility
constraints with equality. Suppose that the weights a1, . . . , aI are such that
the Pareto optimal allocation x solves the problem

max
(x , y) is a feasible

allocation

I∑
i=1

aiui(xi).

This problem may be written as

max
x1∈R

N+ , . . . , xI−1∈R
N+

[
I−1∑
i=1

aiui(xi) + aIuI(e1 + . . . + eI − x1 − . . . − xI−1)

]

If the ui are differentiable and xi1 > 0 for all i, then the first-order condi-
tions for this problem imply that

ai

∂ui(xi1, . . . , xiN)

∂x1

= aI

∂uI(xI1, . . . , xIN)

∂x1

,

for i = 1, . . . , I − 1, so that

ai = aI

∂uI(xI1, . . . , xIN)

∂x1

∂ui(xi1, . . . , xiN)

∂x1

,

for i = 1, . . . , I − 1. If aI = 0, then ai = 0 for all i, which is impossible
since a �= 0. Since aI > 0, we may set aI equal to any positive number, and
these equations determine a1, . . . , aI−1.

example 3.35 Consider the Edgeworth box economy with eA = (1, 0),

eB = (0, 1), uA(x1, x2) = 8x1/8
1 x

3/8
2 = uB(x1, x2). Because both consumers

have the same homothetic utility function, we know that the allocation
(xA, xB) = ((1/3, 1/3), (2/3, 2/3)) is Pareto optimal. Set a2 equal to 1
and let

a1 =
∂uB(2/3, 2/3)

∂x1

∂uA(1/3, 1/3)

∂x1

=
(2/3)3/8

(2/3)7/8

(1/3)3/8

(1/3)7/8

=
1√
2/3
1√
1/3

=
√

2

2
.
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Then the allocation (xA, xB) maximizes the welfare function
√

2
2 uA(xA) +

uB(xB) over all feasible allocations.

The significance of theorem 3.31 is that it provides a tool for economic
analysis. For instance, it is much easier to analyze the impact of economic
change on welfare optima than on competitive equilibria. Equilibrium will
not be introduced until the next chapter, but it represents the outcome of
economic interaction through competitive markets. It is therefore natural
to ask what the impact of a change in some economic parameter, such as a
technology, an endowment, or a utility function, would be on equilibrium.
Equilibria of economies with more than one consumer, however, can be
nonunique and can jump discontinuously in response to a change in a pa-
rameter. An example of such a discontinuity appears in section 4.9. Because
of the discontinuous behavior and the difficulty of calculating equilibria,
it is difficult to analyze the impact of parameter changes on equilibria. It
may not be appropriate, however, to focus on equilibrium when consid-
ering economic change. Any Pareto optimal allocation can be realized as a
competitive equilibrium with lump-sum taxes and subsidies, as is explained
in section 5.2. There are reasons that it is plausible to assume that utility
functions are concave. If we make this assumption, theorem 3.31 implies
that any Pareto optimal allocation maximizes a weighted average of con-
sumers’ utility functions, and the allocation can also be realized as that of
an equilibrium with lump-sum taxes and subsidies. Economists who esti-
mate the impact of parameter changes on economic outcomes are usually
interested in the impact on welfare, and that can be measured by a welfare
function, such as a weighted average of consumer utilities. If a government
had the same welfare objective in mind, it could adjust the taxes and sub-
sidies to keep the state of the economy near its welfare optimum as param-
eters changed. Hence it may be more appropriate to estimate the impact
of change on the welfare optimum than on equilibrium. Under somewhat
plausible assumptions, welfare optima, unlike equilibria, are unique and
even depend continuously on economic parameters. The assumptions are
that utility functions be strictly increasing and strictly concave and that
input-output possibility sets be strictly convex. The latter assumption is the
least plausible of the three.

definition 3.36 If X is a set of N-vectors and f : X → R, then f is said
to be strictly increasing if f (x) > f (y) whenever x > y.
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Figure 3.32 The graph of a strictly concave function

A strictly increasing function is increasing, as “increasing” is defined in
definition 2.8. The function u: R

2
+ → R defined by u(x1, x2) = x1 + x2 is

strictly increasing. The function u: R
2
+ → R defined by u(x1, x2) = x1x2 is

increasing but not strictly increasing, because it does not increase along the
coordinate axes. It equals zero on both axes.

definition 3.37 If X is a convex set of N-vectors and f : X → R, then
f is strictly concave if

f (αx + (1 − α)y) > αf (x) + (1 − α)f (y),

for all x and y in X such that x �= y and for all α such that 0 < α < 1.

It is clear from the definition that all strictly concave functions are con-
cave. Figure 3.32 portrays a strictly concave function, and it may be com-
pared with the graph of the concave but not strictly concave function in
figure 3.26. If a utility function u: R

2 → R is strictly concave and increas-
ing, then every indifference curve for u flattens as you move to the right
along it. An analogue of lemma 3.30 applies to strict concavity with a nearly
identical proof.

lemma 3.38 If X is convex and f : X → R is twice differentiable, then it
is strictly concave if the matrix D2f (x) is negative definite, for all x.

Although lemma 3.30 says that negative semidefiniteness of D2f (x) is
a necessary condition for concavity, the negative definiteness of D2f (x) is
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A B

Figure 3.33 A strictly convex set and a convex but not strictly convex set

not a necessary condition for strict concavity. For example, the function

f (x) = −x4 is strictly concave, yet d2f (0)
dx2 = 0.

definition 3.39 A set Y of N-vectors is strictly convex if whenever x and
y are distinct points in Y and 0 < α < 1, the point αx + (1 − α)y belongs
to the interior of Y .

The set A in figure 3.33 is strictly convex, whereas the set B is convex but
not strictly convex.

theorem 3.40 Assume that the economy E = ((ui , ei)
I
i=1, (Yj)

J
j=1) is

such that

1. for all j , Yj is strictly convex, and

2. for all i , ui: R
N
+ → R is strictly concave and strictly increasing.

Then there is at most one allocation that maximizes the welfare function

max
(x , y) is a feasible

allocation

I∑
i=1

aiui(xi),

provided ai > 0, for all i.

Proof. Suppose that the allocations (x , y) and (x , y) are distinct and both
maximize the above welfare function. Because both allocations achieve the
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welfare maximum, it follows that

I∑
i=1

aiui(xi) =
I∑

i=1

aiui(xi).

Because the input-output possibility sets Yj are convex, the allocation

(x , y) = 1
2(x , y) + 1

2(x , y) is feasible. Because ui is concave, ui(xi) ≥
1
2ui(xi)+ 1

2ui(xi), forall i. Because (x , y) �= (x , y), xi �= xi, for some i,
or yj �= y

j
, for some j . If xi �= xi, for some i, then since ai > 0, for all i, it

follows that
I∑

i=1

aiui(xi) >
1

2

I∑
i=1

aiui(xi) + 1

2

I∑
i=1

aiui(xi) =
I∑

i=1

aiui(xi),

which contradicts the optimality of (x , y). If yj �= y
j
, for some j , say for

j = 1, then y1 belongs to the interior of Y1, since Y1 is strictly convex. It
follows that if the positive number ε is sufficiently small, then y1 + εIe ∈ Y1,
where e is the N-vector (1, 1, . . . , 1). It follows that the allocation (x∗, y∗)
is feasible, where x∗

i
= xi + εe, for all i, y∗

1 = y1 + εIe, and y∗
j

= yj , for
j ≥ 2. Since the utility functions are strictly increasing, it follows that

I∑
i=1

aiui(x∗
i
) >

I∑
i=1

aiui(xi) ≥
I∑

i=1

aiui(xi),

which contradicts the optimality of (x , y). This contradiction proves the
theorem.

Under the assumptions of theorem 3.40, the optimal allocation depends
continuously on parameters of the economy, though I do not state or prove
this assertion formally.

According to theorem 3.31, every point on the utility possibility fron-
tier maximizes welfare given some choice of welfare weights. Provided the
economy satisfies certain additional assumptions, the converse statement is
true. That is, given any nonnegative and nonzero vector of welfare weights,
a = (a1, . . . , aI), a unique point on the utility possibility frontier maxi-
mizes the welfare measured with those weights. The needed assumptions
are that the set of feasible allocations be compact and nonempty and that
consumers’ utility functions be continuous, strictly increasing, and strictly
concave.

I sketch the proof that under these assumptions a unique point on the
utility possibility frontier corresponds to every vector of welfare weights,
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a = (a1, a2, . . . , aI), such that a > 0. If the set of feasible allocations is
compact and the utility functions are continuous, then proposition 3.14
implies that there is a feasible allocation that maximizes the welfare func-
tion

∑I
i=1 aiui(xi) among all feasible allocations. If the utility functions

are strictly concave, all allocations (x , y) that achieve the maximum have
the same vector of utility levels, v = (u1(x1), . . . , uI(xI )). Call this vector
of utility levels v(a). We know from proposition 3.23 that a maximizing
allocation is Pareto optimal, if ai > 0, for all i. If the utility functions are
strictly increasing, a maximizing allocation is Pareto optimal, even if some
of the components of a are zero. Therefore, v(a) belongs to the utility pos-
sibility frontier, UF, and v is a function from the set of welfare weights
to UF.

We can go further. Clearly,

I∑
i=1

aiui(xi) ≥
I∑

i=1

aiui(xi),

if and only if

I∑
i=1

taiui(xi) ≥
I∑

i=1

taiui(xi),

for any positive number t . Therefore, the feasible allocation (x , y) max-
imizes the welfare function

∑I
i=1 aiui(xi) if and only if it maximizes the

welfare function
∑I

i=1 taiui(xi). That is, v(a) = v(ta), for all t > 0, which
is the same as saying that v is homogeneous of degree 0. If a is any wel-
fare weight vector, let a = (

∑I
i=1 ai)

−1a. Then, v(a) = v(a), where the sum
of the components of a is 1. The set of nonnegative I -vectors with com-
ponents that sum to 1 is known as the I − 1 dimensional simplex and is
denoted �I−1. Formally,

�I−1 = {a ∈ R
I
+ |

I∑
i=1

ai = 1}

The I − 1 simplex �I−1 is the set of relative welfare weights.
Theorem 3.31 says that if v belongs to the utility possibility frontier UF,

then there exists a vector of welfare weights, a = (a1, . . . , aI), such that v =
v(a). Hence, by the argument of the previous paragraph, for every vector v
in UF, there exists a vector a in �I−1 such that v = v(a). That is, v maps
�I−1 onto UF. The function v: �I−1 → UF is not necessarily one to one,
however. The statement that v is “onto” is a way of saying that by varying
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the relative welfare weights, we may obtain through welfare maximization
every point on the utility possibility frontier. In case the reader does not
know what it means for a function to be one to one or onto, I give formal
definitions.

definition 3.41 A function f : A → B is said to be one to one or injective
if f (a) �= f (a′) whenever a �= a′.

definition 3.42 A function f : A → B is said to be onto or surjective if
for every b in B, there is an a in A such that b = f (a).

I now make rigorous the argument just outlined. The first step is to
show that if utility functions are strictly increasing, then an allocation that
maximizes the welfare function

∑I
i=1 aiui(xi) is Pareto optimal, even if

some of the weights ai are zero. Recall that proposition 3.23 applies to the
case in which all these weights are positive.

proposition 3.43 Suppose that the utility functions of the economy
E = ((ui , ei)

I
i=1, (Yj)

J
j=1) are strictly increasing and that the allocation

(x , y) solves the problem

max

{
I∑

i=1

aiui(xi) | (x , y) is a feasible allocation

}
,

where a = (a1, . . . , aI) > 0. Then, for all i, xi = 0, if ai = 0, and the allo-
cation (x , y) is Pareto optimal.

The assumption that the utility functions are strictly increasing is plausi-
ble, as it means that consumers prefer more to less. The assumption implies
that noxious commodities, such as garbage, are excluded from the model as
well as commodities such as air that are naturally in such abundance that
consumers do not need more of them.

Proof of Proposition 3.43. Suppose that ai = 0, for some i. Without loss of
generality, I may assume that i = 1. Since a > 0, ai > 0, for some i. Again
without loss of generality, I may assume that a2 > 0. I show that x1 = 0.
Suppose, to the contrary, that x1 �= 0. Since x1 ≥ 0, it follows that x1 > 0.
Define the allocation (x , y) by the equations x1 = 0, x2 = x2 + x1, xi =
xi), if i > 2, and y = y. The allocation (x , y) is feasible, for it is obtained
from the allocation (x , y) by giving consumer 2 the consumption allo-
cated to consumer 1. Because u2 is strictly increasing and x1 > 0, it follows
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that u2(x2) = u2(x2 + x1) > u2(x2). Since a1 = 0 and a2 > 0, it follows that∑I
i=1 aiui(xi) >

∑I
i=1 aiui(xi). Since this inequality contradicts the opti-

mality of (x , y), it follows that xi = 0. This proves that for all i, xi = 0, if
ai = 0.

I now show that (x , y) is Pareto optimal. Suppose the contrary, so that
a feasible allocation, (x , y), Pareto dominates (x , y). By the definition of
Pareto dominance, ui(xi) ≥ ui(xi), for all i. Therefore,

∑I
i=1 aiui(xi) ≥∑I

i=1 aiui(xi). Since the allocation (x , y) maximizes the welfare function∑I
i=1 aiui(xi), it cannot be the case that

∑I
i=1 aiui(xi) >

∑I
i=1 aiui(xi),

and so
∑I

i=1 aiui(xi) =∑I
i=1 aiui(xi). In addition, ui(xi) = ui(xi), for all

i such that ai > 0, for otherwise
∑I

i=1 aiui(xi) >
∑I

i=1 aiui(xi). Therefore,
ai = 0 and, hence, xi = 0, if i is such that ui(xi) > ui(xi). Because (x , y)

Pareto dominates (x , y), ui(xi) > ui(xi), for some i. Without loss of gener-
ality, I may assume that u1(x1) > u1(x1). Because u1(x1) > u1(x1), it follows
that x1 > 0. Since a > 0, there is some i such that ai > 0. Without loss of
generality, I may assume that a2 > 0. Define the allocation (x , y) by the
equations x1 = 0, x2 = x2 + x1, xi = xi, if i > 2, and y = y. This allocation
is clearly feasible. Since a1 = 0 and a2 > 0 and u2 is strictly increasing, it
follows that

∑I
i=1 aiui(xi) >

∑I
i=1 aiui(xi) =∑I

i=1 aiui(xi), which con-
tradicts the optimality of the allocation (x , y). This contradiction proves
that (x , y) is Pareto optimal.

The second step of the argument outlined earlier is to show that if utility
functions are strictly concave, then all feasible allocations that maximize the
welfare function

∑I
i=1 aiui(xi) have the same vector of utility levels.

proposition 3.44 Suppose that the economy E = ((ui , ei)
I
i=1, (Yj)

J
j=1)

is such that the utility functions ui are continuous, strictly concave, and
strictly increasing, for all i; the production possibility sets Yj are convex, for
all j ; and the set of feasible allocations is compact. Suppose also that a > 0,
where a is the vector of welfare weights (a1, . . . , aI). Then, the problem

max
x , y

I∑
i=1

aiui(xi)

s.t. (x , y) is a feasible allocation

(3.10)

has a solution and all solutions have the same consumption vector x, so that
the vector v(a) = (u1(x1), . . . , uI(xI )) is uniquely defined.
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Proof. Because the function
∑I

i=1 aiui(xi) is continuous and the set of
feasible allocations is compact, proposition 3.14 implies that there exists
an allocation (x , y) that solves problem 3.10. I will show that if (x , y) is
another solution of problem 3.10, then xi = xi, for all i. Suppose to the
contrary that xi �= xi, for some i. Because both (x , y) and (x , y) solve
problem 3.10, it follows that

W =
I∑

i=1

aiui(xi) =
I∑

i=1

aiui(xi),

where W is the maximum value of the objective function of problem 3.10.
We know from proposition 3.43 that xi = xi = 0, if i is such that ai = 0.

Therefore, ai > 0, if xi �= xi.
Let (x , y) be the allocation defined by the formulas xi = 1

2 xi + 1
2 xi, for

all i, and yj = 1
2 y

j
+ 1

2 yj , for all j . I show that the allocation (x , y) is

feasible. Because the production possibility sets are convex and y
j

and yj

both belong to Yj , it follows that yj belongs to Yj , for all j . Also,

I∑
i=1

xi =
I∑

i=1

(
1

2
xi + 1

2
xi

)
= 1

2

I∑
i=1

xi + 1

2

I∑
i=1

xi

≤ 1

2

⎛
⎝ I∑

i=1

ei +
J∑

j=1

y
j

⎞
⎠+ 1

2

⎛
⎝ I∑

i=1

ei +
J∑

j=1

yj

⎞
⎠

=
I∑

i=1

ei +
J∑

j=1

(
1

2
y

j
+ 1

2
yj

)
=

I∑
i=1

ei +
J∑

j=1

yj ,

so that all the conditions for feasibility apply.
We now see that

W ≥
I∑

i=1

aiui(xi) =
I∑

i=1

aiui

(
1

2
xi + 1

2
xi

)
>

I∑
i=1

ai

(
1

2
ui(xi) + 1

2
ui(xi)

)

= 1

2

I∑
i=1

aiui(xi) + 1

2

I∑
i=1

aiui(xi) = 1

2
W + 1

2
W = W , (3.11)

where the first inequality is valid because (x , y) is feasible and W is the
maximum value of the objective function of problem 3.10. The second in-
equality is valid because the utility functions ui are strictly concave and
xi �= xi, for some i such that ai > 0. Because inequality 3.11 is impossi-
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ble, xi = xi, for all i, and hence the consumption allocation x is uniquely
determined in any solution (x , y) of problem 3.10.

The next proposition summarizes what has been learned so far in this
section.

proposition 3.45 Suppose that the economy E = ((ui , ei)
I
i=1, (Yj)

J
j=1)

is such that the utility functions ji are continuous, strictly increasing, and
strictly concave, for all i; the production possibility sets Yj are convex, for
all j ; and the set of feasible allocations is compact. Then, there is a surjective
function v: �I−1 → UF, defined by the equation

v(a) = (u1(x1), . . . , uI(xI )),

for each a in �I−1, where (x , y) is any feasible allocation that solves the
problem

max
(x , y)

I∑
i=1

aiui(xi)

s.t. (x , y) is a feasible allocation.

The following example shows that v may not be injective.

example 3.46 There are two consumers, A and B. There is one com-
modity and no firm. Each consumer is endowed with one unit of the one
commodity, and each has utility function u defined by the formula

u(x) =
{

2
√

x , if 0 ≤ x ≤ 1,

1 + √
x , if x ≥ 1.

This utility function is strictly concave but has a kink at x = 1. Its graph
is shown in figure 3.34. The set of Pareto optimal allocations is PO =
{(xA, xB) | 0 ≤ xA ≤ 2 and xA + xB = 2}. It is easy to calculate that the utility
possibility frontier is

UF = {
(u(xA), u(xB)) | (xA, xB) is in PO

}

=
⎧⎨
⎩(vA, vB) | vB = 1 +

√
2 − v2

A

4
, if 0 ≤ vA ≤ 2,

and vB = 2
√

2 − (vA − 1)2, if 2 ≤ vA ≤ 1 + √
2

}
.
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1 x

Utility

Figure 3.34 The utility function of example 3.46

vB

vA0

UF

Figure 3.35 A kinked utility possibility frontier

The frontier UF has a kink at the point (vA, vB) = (2, 2), as is portrayed
in figure 3.35. If we let vB(vA) be the function of which the graph is UF,
then we see that at the kink point where vA = 2, the derivative from the left
of vB(vA) is − 1

2 . The derivative from the right at the same point is −2. It
follows that the welfare function aAvA + aBvB achieves a maximum over
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the utility possibility frontier UF at the point (vA, vB) = (2, 2) whenever
1
2 ≤ aA

aB
≤ 2. Therefore, the function v from �1 to UF is not injective.

3.6 The Structure of the Utility Possibility Frontier

In the previous section, we saw that welfare maximization associates, sur-
jectively, a point on the utility possibility frontier UF with every vector of
relative welfare weights in �I−1. We can also associate points in UF with
points in �I−1 by means of a function that is continuous, surjective, injec-
tive, and that has a continuous inverse. That is, the sets �I−1 and UF are
the same, up to a continuous deformation. Before making a rigorous argu-
ment, I describe the function informally. If we add constants to the utility
functions of each of the consumers, we do not change the set of Pareto op-
timal allocations and we merely displace the utility possibility frontier UF

by the vector of these constants. Therefore, we may subtract ui(0) from the
utility function ui, for each i, without changing the shape of UF. If we do
so, then each consumer’s utility of the vector 0 is zero, that is, ui(0) = 0, for
all i. If we assume that the utility functions are increasing, then ui(x) ≥ 0,
for all consumption bundles x, and UF consists of nonnegative I -vectors
and is contained in R

I
+, as is the I − 1 simplex �I−1. If v is a vector in UF

and v �= 0, then there is a unique ray from the origin through v, and this ray
intersects the simplex �I−1 at a unique point; call it π(v). The projection,
π , of UF onto �I−1 along rays through the origin establishes a one-to-one
correspondence between these two sets, provided all the vectors in UF are
nonzero. Since every one-to-one and onto function has an inverse, π has
an inverse, π−1. Both the function π and its inverse are continuous func-
tions under standard assumptions on the economy E. Figure 3.36 pictures
the projection just described.

Before describing formally the properties of π , I state an assumption that
implies that the utility possibility frontier contains a vector every compo-
nent of which is positive.

definition 3.47 The economy E = ((ui , ei)
I
i=1, (Yj)

J
j=1) is productive if

it has a feasible allocation (x , y) such that
∑I

i=1 xi � 0.

theorem 3.48 Suppose that the economy E = ((ui , ei)
I
i=1, (Yj)

J
j=1) sat-

isfies the four assumptions below.
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v2

v1

UF

I-simplex

Ray through v

0

π(v)

v

Figure 3.36 The radial projection, π , of UF onto �I−1

1. For every i, ui is continuous and strictly increasing and is such that
ui(0) = 0.

2. For every j , Yj is convex.

3. The set of feasible allocations F is compact.

4. E is productive.

Then, the utility possibility frontier UF is nonempty; the radial projection
π : UF → �I−1 is one to one, onto, and continuous; and its inverse func-
tion, π−1: �I−1 → UF, is continuous.

In proving this theorem, I use the next lemma.

lemma 3.49 Suppose that A is a compact set of N-vectors, B is a set of
K-vectors, and the function f : A → B is continuous, one to one, and onto.
Then the inverse function, f −1: B → A, is continuous.
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Proof. It must be shown that if bn is an infinite sequence in B that con-
verges to a point b in B, then the sequence f −1(bn) converges to f −1(b).
Assume that f −1(bn) does not converge to f −1(b). Because f −1(bn) does
not converge to f −1(b), there exists a positive number ε such that ‖f −1

(bn) − f −1(b)‖ > ε, for infinitely many values of n. If we ignore the mem-
bers of the sequence f −1(bn) such that ‖f −1(bn) − f −1(b)‖ ≤ ε, we obtain
a new sequence, which I may again call f −1(bn), such that ‖f −1(bn) −
f −1(b)‖ > ε, for all n. Since A is compact, the Bolzano-Weierstrass theo-
rem implies that the sequence f −1(bn) has a subsequence f −1(bn(k)) that
converges to a point a in A. Since ‖f −1(bn(k)) − f −1(b)‖ > ε, for all k, it
follows that ‖a − f −1(b)‖ ≥ ε. Since the function f is continuous, the se-
quence bn converges to f (a). Because bn(k) is a subsequence of the sequence
bn that converges to b, it follows that bn(k) converges to b and hence that
b = f (a) and so f −1(b) = a. However, f −1(b) �= a, since ‖a − f −1(b)‖ ≥
ε > 0. This contradiction completes the proof.

Proof of Theorem 3.48. I show that the inverse function π−1: �I−1 → UF

exists and is continuous. It will follow that both π and π−1 are one to
one and onto. Since �I−1 is compact, it will follow from lemma 3.49 that
π = (π−1)−1 is continuous. The proof proceeds by a series of easy steps.
During the proof, I refer to an I -vector v as attainable if v = u(x , y), where
u(x , y) = (u1(x1), u2(x2), . . . , uI(xI )) and (x , y) is a feasible allocation.

Step 1 If v is attainable, then v ≥ 0.

Proof Let (x , y) be a feasible allocation such that v = u(x , y). For all
i, xi ≥ 0. Therefore, vi = ui(xi) ≥ (0) = 0, since ui is strictly increas-
ing.

Step 2 If v is attainable and v is an I -vector such that 0 ≤ v ≤ v, then
v is attainable.

Proof Let (x , y) be a feasible allocation such that v = u(x , y). Since
ui is continuous, ui(txi) varies continuously from 0 to ui(xi) as t

varies from 0 to 1. By the intermediate value theorem of elementary
analysis, for each i, there exists a number ti such that 0 ≤ ti ≤ 1 and
ui(tixi) = vi. Let xi = tixi and x = (x1, . . . , xI ). The allocation (x , y)

is feasible, since
I∑

i=1

xi ≤
I∑

i=1

xi ≤
I∑

i=1

ei +
J∑

j=1

yj .
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By construction, v = u(x , y), so v is attainable.

Step 3 If v is attainable and v is a nonnegative I -vector such that
v > v, then there exists an attainable vector v such that v � v.

Proof Let (x , y) be a feasible vector such that v = u(x , y). Since v >

v , vi > vi, for some i. Without loss of generality, I may assume that
v1 > v1, Since u1(x1) = v1 > v1 ≥ 0, it follows that x1 > 0. Since u1 is
continuous and strictly increasing, I may choose t between 0 and 1
and so close to 1 that u1(tx1) > v1. Let x1 = tx1. For i > 1, let xi = xi +
1−t
I−1x1. And let x = (x1, . . . , xI). The allocation (x , y) is feasible, since
it is obtained by taking the vector (1 − t)x1 away from consumer 1 and
distributing it uniformly among the other consumers. Let v = u(x , y).
Since ui is strictly increasing, v � v.

Step 4 There exists an attainable vector v such that v � 0.

Proof Since the economy E is productive, there is a feasible allocation
(x , y) such that

∑I
i=1 xi � 0. Since I may redistribute consumption

among consumers, I may assume that xi � 0, for all i. Let v = u(x , y).
Then, vi = ui(xi) > ui(0) = 0, for all i, since ui is strictly increasing,
for all i.

Step 5 If b belongs to �I−1, then there is a vector v on the utility
possibility frontier, UF, such that v = tb, for some positive number t .

Proof Consider the welfare function of allocations defined by the
formula

Wb(x , y) = min

(
u1(x1)

b1

,
u2(x2)

b2

. . . ,
uI(xI )

bI

)
,

where ui(xi)

bi
is defined to be infinity if bi = 0. Since Wb is a contin-

uous function of (x , y) and the set of feasible allocations is com-
pact, proposition 3.14 implies that Wb achieves a finite maximum
at some feasible allocation (x , y). By the definition of Wb , ui(x) ≥
Wb(x , y)bi, for all i, or in vector notation, u(x , y) ≥ Wb(x , y)b. In
fact, u(x , y) = Wb(x , y)b, for if u(x , y) > Wb(x , y)b, then by step 3,
there exists a feasible allocation (x , y) such that u(x , y) � Wb(x , y)b.
Then, Wb(x , y) > Wb(x , y), which contradicts the maximality of
(x , y). The same argument implies that there is no feasible alloca-
tion (x′, y′) such that u(x′, y′) > u(x , y). Therefore, v = u(x , y) be-
longs to the utility possibility frontier. It has just been shown that
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v = tb, where t = Wb(x , y). Furthermore, t > 0 because by step 4
there exists a feasible allocation (x , y) such that u(x , y) � 0, so that
t = Wb(x , y) ≥ Wb(x , y) > 0. This completes the proof of step 5.

The next step of the proof of theorem 3.46 implies that π−1: �I−1 →
UF is a function.

Step 6 If b belongs to �I−1, there is at most one number t such that
tb is on the utility possibility frontier, UF.

Proof Suppose that both tb and t ′b belong to the utility possibility
frontier, where t > t ′. Since tb > t ′b, t ′b is by definition not on the
utility possibility frontier. Therefore, there can be only one number t

such that tb is on the frontier.

Step 7 The function π−1 is continuous.

Proof Let bn be a sequence in �I−1 converging to a point b in �I−1.
Let t be a positive number and, for each n, let tn be a positive number
such that tb and tnbn, respectively, belong to the utility possibility
frontier. Then, tb = π−1(b) and tnbn = π−1(bn), for all n, so that
in order to prove that π−1 is continuous it is sufficient to show that
limn→∞ tn = 4.

For all n, it is not the case that tnbn > tb, for otherwise the vector tb
would not be on the utility possibility frontier. Therefore, for every n,
either tnbn = tb or tnbn

i
< tbi, for some i. If tnbn = tb, then tn = t and

bn = b. If tnb
n
i
< tbi, then bi > 0 and t > 0. Therefore, either tn = t or

tn < t max
i

{
bi

bn
i

| i is such that bi > 0

}
.

Since limn→∞ bn = b, it follows that

lim
n→∞ max

i

{
bi

bn
i

| i is such that bi > 0

}
= 1.

Therefore, for any positive number ε, there exists a positive integer N

such that tn < t + ε, if n ≥ N .
To demonstrate that limn→∞ tn = t , it remains to be shown that

for any positive number ε, there exists a positive integer N such that
tn > t − ε, if n ≥ N . The proof is by contradiction. If the statement is
false, there exists a positive number ε such that tn ≤ t − ε, for infinitely
many values of n. That is, there is a subsequence tn(k), such that tn(k) ≤
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t − ε, for all nonnegative integers k. Since tn(k) belongs to the com-
pact interval [0, t − ε] for each k, the Bolzano-Weierstrass theorem
implies that there exists a convergent subsequence of the subsequence
tn(k). Call the new subsequence tn(k) again, and let t = limk→∞ tn(k).
Then, 0 ≤ t ≤ t − ε. Since tb < tb, step 3 implies that there is an at-
tainable vector v, such that tb � v. Since limk→∞ tn(k)b

n(k) = tb, it
follows that tn(k)b

n(k) � v, if k is sufficiently large. This last inequality
is impossible, since tn(k)b

n(k) belongs to the utility possibility frontier,
for all k. This contradiction proves that tn > t − ε, for sufficiently large
n, and so proves that limn→∞ tn = t and hence that π−1 is continous.

3.7 Compactness of the Set of Feasible Allocations

A central assumption in the material presented thus far has been that the
set of feasible allocations is compact, and I now state assumptions about
the production possibility sets that imply this compactness property. Such
assumptions make it easy to verify compactness for particular models.
One assumption that is obviously required is that the production possi-
bility sets be closed, for otherwise, as the following example shows, the
feasible allocations may not form a closed set and therefore may not be
compact.

example 3.50 Consider the Robinson Crusoe economy with initial en-
dowment e = (1, 0) and input-output possibility set Y = {(y1, y2) | y1 ≤ 0,
and y2 < −y1}. The set of feasible consumption allocations is

C = {
(x1, x2) | x1 ≥ 0, x2 ≥ 0, x1 + x2 < 1

}
,

which is not closed. These sets are portrayed in figure 3.37. The dotted line
of slope −1 is not part of the sets C or e + Y = {e + y | y ∈ Y }.

Compactness of the feasible allocations also depends on the relation of
production possibility sets to each other. There follows an example with
two production possibility sets in which the set of feasible allocations is
unbounded.

example 3.51 The economy has two commodities, one consumer with
initial endowment e = 0, and production possibility sets Y1 and Y2, where

Y1 = {(y1, y2) | y2 ≤ 0 and y1 ≤ −2y2}
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c

e

e + Y

e + Y

Figure 3.37 A nonclosed input-output possibility set and set of feasible allocations

and
Y2 = {(y1, y2) | y1 ≤ 0 and y2 ≤ −2y1}.

It is feasible for the consumer to consume any nonnegative quantities of
both commodities, so that the set of feasible allocations is unbounded. The
input-output possibility sets are shown in figure 3.38. It should be clear
that any vector in the nonnegative orthant may be obtained as the sum of a
vector from each of the two production possibility sets.

It is possible for the production possibility sets to be closed and for the
set of feasible allocations not to be closed, even though it is bounded. This
possibility is illustrated by the next example.

example 3.52 The economy has two commodities, one consumer with
initial endowment e = 0, and production possibility sets Y1 and Y2, where

Y1 =
{
(y1, y2) | y2 ≤ 0 and y1 ≤ 1 − y2 − 1

1 − y2

}
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Y1

Y2

e = 0

Figure 3.38 Unbounded set of feasible allocations

and

Y2 =
{
(y1, y2) | y2 ≤ 0 and y2 ≤ 1 − y1 − 1

1 − y1

}
.

These sets are clearly closed. The set of feasible consumption allocations is

C = {
(x1, x2) | x1 ≥ 0, x2 ≥ 0, and x1 + x2 < 2

}
,

which is not closed. The sets are pictured in figure 3.39.

The assumptions of the next theorem exclude the above counterexam-
ples. To state the theorem, I need the notion of the sum of sets.

definition 3.53 If A and B are set of N-vectors, then A + B = {a + b |
a ∈ A and b ∈ B}

theorem 3.54 In the economy E = ((ui , ei)
I
i=1, (Yj)

J
j=1), let

Y =∑J
j=1 Yj = Y1 + . . . + YJ . Assume that

1. for all j , Yj is closed, convex, and contains the vector 0,
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Y2

C

Y1

Figure 3.39 A bounded nonclosed set of feasible allocations

2. Y ∩ R
N
+ = {0}, and

3. Y ∩ (−Y ) = {0}.

Then the set of feasible allocations of E is compact and nonempty.

The assumption that 0 belongs to Yj means that firm j can withdraw
from the economy by doing nothing. In particular, the firm is not endowed
with any capital equipment the maintenance of which requires inputs. The
second and third assumptions are plausible. The total input-output pos-
sibility set, Y , is the set of input-output vectors producible or technically
feasible for the economy as a whole, and the second assumption means
that the economy can produce no output without some input. The third
assumption means that the economy’s production is not reversible. If the
vector y belonged to both Y and −Y , then −y would also belong to Y , and
−y is the reverse of y in the sense that the outputs in y are the inputs in −y
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and vice versa; both y and its reverse, −y, would be possible input-output
vectors.

Proof. The set of feasible allocations is nonempty because it contains the
zero allocation such that xi = 0, for all i, and yj = 0, for all j .

In order to see that the set of feasible allocations is closed, let (xn, yn)

be a sequence of feasible allocations that converges to (x , y). I must verify
that (x , y) is a feasible allocation. We know that xi ≥ 0, for all i, because
xn
i

≥ 0, for all i and n, and xn
i

converges to xi, for all i, as n goes to infinity.
Similarly, yj belongs to Yj (because Yj is closed and yn

j
belongs to Yj , for

all j and n) and limn→∞ yn
j

= yj . Therefore, (x , y) is an allocation. Passing

to the limit with n in the inequality
∑I

i=1(xn
i

− ei) ≤∑J
j=1 yn

j
, we see that∑I

i=1(xi − ei) ≤∑J
j=1 yj , so that (x , y) is feasible.

It remains to prove that the set of feasible allocations is bounded. I
assume that (xn, yn) is an unbounded sequence of feasible allocations
and obtain a contradiction. I show that the sequence of vectors yn

j
is un-

bounded, for some j , again by contradiction. If the sequence yn
j

is bounded,

for all j , then the sequence
∑J

j=1 yn
j

is bounded and hence there is a

vector y such that
∑J

j=1 yn
j

≤ y, for all n. Therefore, for all i and n,

0 ≤ xn
i

≤∑I
k=1 xn

k
≤∑I

k=1 ek +∑J
j=1 yn

j
≤∑I

k=1 ek + y, and hence the
sequence xn

i
is bounded, for all i. This proves that at least one of the se-

quences yn
j

is unbounded.
I now work toward another contradiction that will prove that the set of

feasible allocations is bounded. For each n, let j (n) be such that ‖yn
j (n)

‖ =
maxj ‖yn

j
‖. Since the sequence yn

j
is unbounded, for some j , it follows

that for one of the indices j , j (n) = j , for infinitely many values of n.
Without loss of generality, I may assume that this value of j is 1. Let n(k)

be the subsequence of integers n that picks out those values of n for which
j (n) = 1, so that j (n(k)) = 1, for all k. For simplicity of notation, I drop
the k from the subsequence n(k), so that j (n) = 1, for all n. We know
that ‖yn

j
‖ ≤ ‖yn

1 ‖, for all n and j , and that the sequence yn
1 is unbounded.

By passing again to a subsequence and calling it yn
1 again, I may assume

that limn→∞ ‖yn
1 ‖ = ∞. For each j and n, let yn

j
= yn

j

‖yn
1 ‖ . Then, ‖yn

j
‖ ≤

1, for all n and j , and ‖yn
1‖ = 1, for all n. Also, yn

j
belongs to Yj , for

all j , because Yj is convex, 0 and yn
j

belong to Yj , and yn
j

is a convex

combination of 0 and yj . The sequence (yn
1 , yn

2 , . . . , yn
J
) is bounded, so
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that by the Bolzano-Weierstrass theorem it has a convergent subsequence,
which I call (yn

1 , yn
2 , . . . , yn

J
) again. Let (y1, y2, . . . , yJ ) be the limit of

this subsequence, so that limn→∞ yn
j
= yj , for all j . Because the sets Yj

are closed and yn
j

belongs to Yj , it follows that yj belongs to Yj , for all

j . Because ‖yn
j
‖ ≤ 1, for all j and n, it follows that ‖yj‖ ≤ 1, for all j .

Similarly, ‖y1‖ = 1, since ‖yn
1‖ = 1, for all n.

I show that
∑J

j=1 yj ≥ 0. Because the allocation (xn, yn) is feasible,

I∑
i=1

ei +
J∑

j=1

yn
j

≥
I∑

i=1

xn
i

≥ 0,

so that ∑I
i=1 ei

‖yn
1 ‖ +

∑J
j=1 yn

j

‖yn
1 ‖ ≥

∑I
i=1 xn

i

‖yn
1 ‖ ≥ 0.

If we let yn
j
= yn

j

‖yn
1 ‖ , for all j , this inequality becomes

∑I
i=1 ei

‖yn
1 ‖ +

J∑
j=1

yn
j
≥
∑I

i=1 xn
i

‖yn
1 ‖ ≥ 0. (3.12)

Since limn→∞ ‖yn
1 ‖ = ∞, it follows that

lim
n→∞

∑I
i=1 ei

‖yn
1 ‖ = 0. (3.13)

Since limn→∞ yn
j
= yj , for all j , inequality 3.12 and equation 3.13 imply

that

J∑
j=1

yj = lim
n→∞

⎡
⎣∑I

i=1 ei

‖yn
1 ‖ +

J∑
j=1

yn
j

⎤
⎦≥ lim

n→∞ sup

⎡
⎣∑I

i=1 xn
j

‖yn
1 ‖

⎤
⎦≥ 0.

This inequality and the second assumption of the theorem imply that∑J
j=1 yj = 0. Therefore, y1 = − ∑J

j=2 yj . Since ‖y1‖ = 1 it follows

that y1 �= 0 and so
∑J

j=2 yj �= 0. Because 0 belongs to Yj , for all j , it fol-
lows that y1 = y1 + 0 + . . . + 0 belongs to Y and similarly that −y1 =∑J

j=2 yj = 0 +∑J
j=2 yj belongs to Y . Therefore, y1 and −y1 both be-

long to Y , so that by the third assumption of the theorem, y1 = 0, which is
impossible. This contradiction proves that the setof feasible allocations is
bounded.
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Problem Set

1. Consider the Edgeworth box economy where the endowment of
consumer A is (1, 0) and the endowment of consumer B is (0, 1).
For each of the following three cases, find and sketch the set of
Pareto optimal allocations and the utility possibility set and find the
allocations that maximize the sum of the utilities of the two consumers.
By “sketch the set of Pareto optimal allocations,” I mean find the
coordinates of a few points on the utility possibility frontier and fill
in the remaining part of the curve. In maximizing the sum of the
utilities in part (b), use the symmetry of the problem. In order to see
where the sum of the utilities is maximized, it is important to have a
fairly accurate sketch of the utility possibility set.

(a) uA(x1, x2) = √
x1x2 and ub(x1, x2) = √

x1x2.

(b) uA(x1, x2) = x
1/6
1 x

1/3
2 and uB(x1, x2) = x

1/3
1 x

1/6
1 .

(c) uA(x1, x2) = x1x
2
2 and uB(x1, x2) = x2

1x2.

2. Find the optimum allocation and draw the feasible set for each of the
following three Robinson Crusoe economies, where L is the input of
labor, � is the consumption of leisure, x is the consumption of food,
and y is the production of food. Indicate Crusoe’s indifference curves
and the optimum on the drawing. In a commodity vector, the first
component is labor–leisure time and the second is food.

(a) y = f (L) = 2L, e = (1, 0), u(�, x) = �2/3x2/3.
(b) y = f (L) = L, e = (1, 0), u(�, x) = min(�, 2x).
(c) y = f (L) = 3

√
L, e = (1, 0), u(�, x) = � + 2x.

3. For each of the two following Edgeworth box examples, calculate and
draw an accurate picture of the set of

V = {
(uA(xA), uB(xB)) | (xA, xB) = eA + eB

}
and of

U = (vA, vB) | there is a feasible allocation (xA, xB) such that

vA ≤ uA(xA) and vB ≤ uB(xB).

(a) eA = (1, 0), eB = (0, 1), uA(x1, x2) = 3x1 + x2, uB(x1, x2) = x1 +
3x2.

(b) eA = (1, 0), eB = (0, 1), uA(x1, x2) = min(x1, 2x2), uB(x1, x2) =
min(2x1, x2).
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(c) eA = (1, 0), eB = (0, 1), uA(x1, x2) = √
x1x2, uB(x1, x2) = x1 +

3x2.

4. For the Edgeworth box economies listed below (i) find the set of
feasible allocations and the set of Pareto optimal allocations and
show them on a box diagram, (ii) find a Pareto optimal allocation
x = (xA, xB) that gives the consumer equal utility, that is, is such
that uA(xA) = uB(xB), (iii) indicate the endowment allocation e and
the allocation x on the box diagram, (iv) find and draw the utility
possibility set and indicate the utility vectors corresponding to the
endowment allocation and to the allocation x, and (v) find all vectors
of the form a = (aA, aB), such that a > 0 and aAuA(xA) + aBuB(xB) ≥
aAuA(xA) + aBuB(xB), for all feasible allocations x = (xA, xB).

(a) eA = (1, 0), eB = (0, 1), uA(x1, x2) = √
x1x2 = uB(x1, x2).

(b) eA = (0, 1), eB = (1, 0), uA(x1, x2) = 2x1 + x2, uB(x1, x2) = x1 +
2x2.

(c) eA = (2, 0), eB = (0, 1), uA(x1, x2) = x1 + x2 = uB(x1, x2).
(d) eA = (1, 0), eB = (0, 1), uA(x1, x2) = min(2x1, x2), uB(x1, x2) =

min(x1, 2x2).
(e) eA = (1, 0), eB = (0, 2), uA(x1, x2) = min(x1, x2) = uB(x1, x2).

5. For the Edgeworth box economies listed below, find a number a2

such that the Pareto optimal allocation with xA1 = 1/2 maximizes
the welfare function uA(xA2) + aBuB(xB1, xB2) among all feasible
allocations.

(a) eA = (1, 0), eB = (0, 1), uA(x1, x2) = 2
√

x1 + √
x2, uB(x1, x2) =

x1 + 2x2.
(b) eA = (1, 0), eB = (0, 1), uA(x1, x2) = x

1/3
1 x

2/3
2 , uB(x1, x2) = √

x1x2.

6. Let y ∈ R
N . Prove that ‖x − y‖ is a continuous function of x. (Hint:

Use the triangle inequality. That is, use the fact that ‖x + y‖ ≤
‖x‖ + ‖y‖.)

7. Prove that if y ∈ R
N and C is a closed set in R

N , then there is a
point in C that is closest to y, that is, there is a vector z ∈ C such
that ‖y − z‖ ≤ ‖y − x‖, for all x ∈ C.

8. A subset C of R
N is said to be convex if whenever a and b belong to

C, the vector ta + (1 − t)b belongs to C. That is, the line segment
between any two points in C is contained in C. Suppose that C is
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convex and closed. You know from problem 7 that if the vector y in
R

N does not belong to C, then there is a vector z in C which is closest
to y. Let x be a vector in C not equal to z.

(a) Show that d
dt

‖y − [z + t (x − z)]‖2 |t=0≥ 0, where the notation
means that the derivative is evaluated at t = 0.

(b) Use part (a) to show that (y − z).z ≥ (y − z).x, for all x in C.
(c) Use part (b) to show that (y − z).y > (y − z).x, for all x in C.

You have shown that if C is compact and convex and y does
not belong to C, then there exists a nonzero N-vector w such that
w.y > w.x, for all x in C. This is a special case of Minkowski’s
separation theorem.
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Competitive Equilibrium

One of the main accomplishments of general equilibrium theory is sim-
ply the definition of equilibrium. Although this achievement may seem
modest, alternative definitions can be imagined, and the one that has been
settled on has the advantages of being easy to remember and use and of
capturing important aspects of economic life. It gives economists a simple
common domain of discourse. Economic life is so varied and complex that
models can become unmanageable if they include too many facets of reality.

4.1 The Definition of Competitive Equilibrium

In order to define equilibrium, we need a unit of account for evaluating
purchases and sales. Its size is arbitrary. It may be thought of as money,
but it lacks specific properties of actual money. For instance, no one in
the model holds balances of unit of account. The price of commodity n in
terms of the unit of account is denoted by pn, and the vector of N prices is
p = (p1, p2, . . . , pN). When I speak of a price vector, I mean an N-vector
p such that p > 0. That is, every price is nonnegative and at least one is
positive. Given the price pn, the value of xn units of commodity n is pnxn.
The value or cost of a bundle x = (x1, . . . , xN) is the sum of the values
of the quantities of each commodity, namely p1x1 + p2x2 + . . . + pNxN .
This sum may be written in an abbreviated form as p.x =∑N

n=1 pnxn,
where p = (p1, p2, . . . , pN) is the N-vector of prices and p.x is the dot
product of p and x defined in definition 3.24 (in section 3.5). If y is an
input-output possibility vector, then p.y is the profit generated by y at prices
p = (p1, p2, . . . , pN), as may be seen when p.y is decomposed as follows:

p.y
∑

n:yn>0

pnyn +
∑

n:yn≤0

pnyn = total revenues − total costs.
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It is assumed in the general equilibrium model that firms maximize profits.
That is, each firm j solves the problem

max
y∈Yj

p.y .

The maximum profits are denoted by πj(p). That is,

πj(p) = sup
y∈Yj

p.y .

The set of profit-maximizing vectors in Yj is denoted by ηj(p), so that

ηj(p) = {y ∈ Yj | p.y = πj(p)}.

It is assumed that firm j chooses some input-output vector in the set ηj(p),
though we cannot say which point is selected. Figure 4.1 shows the profit-
maximizing point η(p) in an example with two commodities. The line
perpendicular to the price vector p through η(p) is a line of constant profits,
called an isoprofit line. Its intersection with the coordinate axes give profits

measured in commodities 1 and 2, π(p)

p1
and π(p)

p2
, respectively.

Y

η(p)

π(p)
p2

p

π(p)
p1

Figure 4.1 Profit maximization
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Profits must be paid to someone, and I assume that they go to consumers,
according to shares they own of the firms. It is possible to have profits be
earned by one or more governments, but I do not include governments.
The symbol θij denotes the share of consumer i in firm j . The numbers �ij

are nonnegative, and all the shares in a particular firm sum to 1. Formally,

�ij ≥ 0, for all i and j , and for all j ,
I∑

i=1

�ij = 1.

If the price vector is p, then consumer i receives �ijπj(p) in profits from
firm j , and consumer i’s total income from profits from all firms is∑J

j=1 �ijπj(p). The description of an economy includes the parameters
�ij . That is, an economy E consists of the list

E = ((ui , ei)
I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1).

It is assumed that consumers can spend no more than they earn. If ei is
consumer i’s endowment vector, the inner product p.ei is the value of ei in
terms of unit of account. Given a price vector p, the total income or wealth
of consumer i is

wi(p) = p.ei +
J∑

j=1

�ijπj(p),

which is the value of the endowment plus the value of the consumer’s share
of profits from each of the firms. The set of consumption bundles that a
consumer can purchase when prices are p is the budget set, defined as

βi(p) =
{

x ∈ R
N
+ | p.x ≤ wi(p)

}
.

Figure 4.2 shows a budget set for a consumer when there are two commodi-
ties. The distance from A to B is the consumer’s share of the profits of all

firms measured in good 1, namely,

∑J

j=1
θjπj (p)

p1
. The distance from 0 to A

is the value of the consumer’s initial endowment, e, measured in good 1,
p .e
p1

.
In equilibrium, consumers choose a consumption bundle in their budget

sets so as to maximize their utility. That is, each consumer i solves the
problem

max
x∈βi(p)

ui(x).
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0 A B

p

e

Figure 4.2 A consumer’s budget set

The set of utility-maximizing vectors in the budget set is called the con-
sumer’s demand set or Walrasian demand set and is denoted ξi(p).
That is,

ξi(p) = {∈ βi(p) | ui(x) ≥ ui(x), for all x ∈ βi(p)}
Figure 4.3 shows a demand set with more than one point, the interval

from A to B. The number w is the consumer’s wealth or income measured
in unit of account. The curve I is the consumer’s indifference curve through
the set of utility-maximizing points in the budget set.

An equilibrium is a feasible allocation together with a price vector such
that in the allocation every firm maximizes profits at the given prices and
every consumer maximizes utility within his or her budget set. In addition,
commodities cost nothing if their supply exceeds demand. The formal def-
inition is as follows.

definition 4.1 A competitive or Walrasian equilibrium for an economy

E = ((ui , ei)
I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1)

consists of (x , y , p), where
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0

A

B

I

I
Budget set

w
p2

w
p1

Figure 4.3 The demand set for a consumer

1. (x , y) is a feasible allocation

2. p is a price vector (that is, p is an N-vector such that p > 0)

3. for all j , yj ∈ ηj(p)

4. for all i, xj ∈ ξj(p)

5. for all n, pn = 0, if
∑I

i=1 xin < ein +∑J
j=1 yjn

The feasibility of the allocation (x , y) implies that supply is at least as
great as demand in all markets. Condition (5) implies that the price is zero
of any good for which supply exceeds demand. It is in this sense that all
markets clear in equilibrium.

Competitive equilibrium is easy to visualize in the Robinson Crusoe and
Edgeworth box examples. Equilibrium in the Crusoe example is illustrated
in figure 4.4. The price vector is p = (w , pF), where w is the wage and pF

is the price of food. The two straight lines of negative slope in the figure
are perpendicular to p and represent consumption bundles of constant
value in terms of unit of account. The distance 0e from the origin, 0, to
the initial endowment, e, is Robinson’s initial endowment of labor–leisure
time. The distance 0A is the value of the endowment measured in food.
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0

A

B

F

D C

G

I

I

Labor–leisure time

Food

E = e + Y

e + Y

p

e

Figure 4.4 Equilibrium in the Robinson Crusoe example

That is, 0A and 0e have the same value at the prices w and pF. At the
equilibrium allocation, E, Robinson, as a firm, uses De units of labor to
produce DE = 0F units of food. The value of the labor input, De, in terms
of food is DG. Profits, measured in food, equal food sales, DE, minus
the cost of labor, DG. That is, profits measured in food are GE = AB.
Profits measured in labor or leisure are eC, which is sales measured in labor,
DC, minus the labor input, De. At the equilibrium point, E, Robinson
consumes 0D units of leisure and 0F units of food. The value of Robinson’s
total income, measured in labor–leisure time, is 0C, which consists of the
endowment, 0e, plus profits, eC. The value of Robinson’s total income,
measured in food, is 0B, which consists of the value of the endowment,
0A, plus the value of profits, AB. Robinson’s budget set is the triangle 0BC.
His utility-maximizing point in the budget set is E, where an indifference
curve, I , is tangent to the budget frontier, BC. The point E is e plus the
profit-maximizing input-output vector, y, in the possibility set, Y . Because
y maximizes profits, the budget frontier, BC, is tangent to e + Y at the
point E.



4.1 The Definition of Competitive Equilibrium 91

F
E

D

C

G

H

J

0B

0A

Good 2

Good 1

p

e

Figure 4.5 Equilibrium in the Edgeworth box example

Figure 4.5 illustrates equilibrium in the Edgeworth box example. In the
equilibrium, consumer A consumes units of good 1 and 0AF units of
good 2. The point E is the best point in consumer A’s budget set, which
is the triangle 0AJ e. Consumer B consumes EG units of good 1 and EH

units of good 2. This consumption bundle is the best point in consumer
B’s budget set, 0BeC. Notice that the budget set of consumer B contains
infeasible points outside the box, such as the point C. Infeasible bundles
may belong to budget sets, because consumers consider what they can af-
ford, not what is available, when they choose consumption bundles so as to
maximize utility.

The concept of equilibrium may perhaps be grasped more firmly by
considering demand and supply in the above examples at nonequilibrium
prices. Figure 4.6 shows a disequilibrium price vector for the Robinson
Crusoe example. In the figure, the price of labor–leisure time is too high
relative to that of food. The demand point is x and the supply point is
e + y. There is an excess demand EF of food and an excess supply CD

of labor–leisure time. Notice that the vector, x − e − y, from e + y to x
is perpendicular to the price vector p. This vector is termed the excess-
demand vector. The orthogonality of the price and excess-demand vectors
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0

F

E

DC

I

Labor–leisure time

Food

e + Y

e + y
p

x

e

Figure 4.6 Nonequilibrium prices in the Robinson Crusoe example

is termed Walras’ law and will be discussed in the next section. Notice also
that we could arrive at equilibrium in the example by raising the price of
the commodity in excess demand, which is food, relative to the price of the
commodity in excess supply, which is labor–leisure time. That this should
be so makes sense intuitively, since we imagine that prices should rise for
commodities in excess demand and fall for those in excess supply. The
reverse situation is shown in figure 4.7, where supply exceeds demand for
food and is less than demand for labor–leisure time. Notice that the price
of food is too high relative to that of labor–leisure time and that the excess-
demand vector, x − e − y, is again perpendicular to p.

Figure 4.8 shows demands at nonequilibrium prices in the Edgeworth
box example. Consumer A’s demand point is xA, and that of consumer
B is xB. There is an excess demand for good 2 of xA2 + xB2 = eA2 − eB2

and an excess supply of good 1 of eA1 + eB1 − xA1 − xB1, and the price of,
good 2 is too low relative to that of good 1. The excess-demand vector,
xA + xB − (eA + eB) = xA − (eA + eB − xB), is the vector from xB to xA

in the figure since the vector eA + eB − xB is labeled as xB in the figure.
The excess-demand vector is again perpendicular to the price vector p.
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Figure 4.7 Non-equilibrium prices in the Robinson Crusoe example
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Figure 4.8 Nonequilibrium prices in the Edgeworth box example
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Equilibrium may be achieved by raising the price of the good in excess
demand, good 2, relative to that of the good in excess supply, good 1.

4.2 Properties of Market Excess Demand and Equilibrium

The market excess demand set is z(p) =∑I
i=1(ξi(p) − ei) −∑J

j=1 ηj(p),

the difference between the market demand set,
∑I

i=1 ξi(p), and the market

supply set,
∑I

i=1 ei +∑J
j=1 ηj(p). The set z(p) may contain many points,

so that z is not necessarily a function. In this section, I describe useful
properties of market excess demand and equilibrium. First of all, I show
that market excess demand is homogeneous of degree 0, in the sense that
z(tp) = z(p), for all positive numbers t . At the same time, I show that
((x , y), p) is an equilibrium if and only if ((x , y), tp) is one, for all positive
numbers t . Hence, equilibrium depends only on the direction of the price
vector and not on its length. That is, equilibrium depends only on relative
and not on absolute prices. The relative prices at price vector p are the ratios
pn

pk
, for any n and k between 1 and N . These are well defined as long as

pk �= 0. The relative prices at the price vector tp are the same as those at p,
since tpn/tpk = pn/pk.

As a first step toward showing that z(p) is homogeneous of degree
0, I show that if Yj is an input-output possibility set, the set of profit-
maximizing points, ηj(p), is homogeneous of degree 0, in the sense that
ηj(tp) = ηj(p), for all price vectors p and for all positive numbers t . The
vector y belongs to ηj(p), if and only if p.y ≥ p.y ′, for all y′ in Yj . There-
fore, if t > 0, tp.y ≥ tp.y′, for all y′, which is true if and only if y belongs
to ηj(tp). That is, ηj(p) = ηj(tp) and so ηj is homogeneous of degree 0.

It is clear that the profit function π is homogeneous of degree 1, for

π(tp) = sup
y∈Yj

tp.y = t sup
y∈Yj

p.y = tπ(p),

for all nonnegative numbers t and for all price vectors p.
Recall that the income of consumer i is wi(p) = p.ei +∑J

j=1 �ijπj(p).
The function wi is homogeneous of degree 1, because

wi(tp) = tp.ei +
J∑

j=1

�ijπj(tp) = tp.ei +
J∑

j=1

�ij tπj(p)

= t[p.ei +
J∑

j=1

�ijπj(p)]= twi(p).
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The budget set, βi(p), is homogeneous of degree 0 when thought of as
a multiple-valued function of p. Notice that if x belongs to R

N
+ , then it

belongs to βi(p) if and only if p.x ≤ wi(p), which is true if and only if
tp.x ≤ twi(p) = wi(tp), for any t > 0, since wi is homogeneous of degree 1.
Therefore, x belongs to βi(tp). Similarly, x belongs to βi(p) if x belongs to
βi(tp), so that βi(p) = βi(tp) and βi is homogeneous of degree 0, as is to
be shown.

The demand set, ξi(p), is the set of points in the budget set, βi(p),
that maximizes consumer i’s utility function, ui. Because βi(p) = βi(tp),
it follows that ξi(p) is also the set of points that maximizes ui over the set
βi(tp), and so ξi(p) = ξi(tp) and ξi is homogeneous of degree 0.

Because all the summands appearing in the definition of z(p) are ho-
mogeneous of degree 0, z(p) =∑I

i=1(ξi(p) − ei) −∑J
j=1 ηj(p) is homo-

geneous of degree 0. Similarly, it is easy to see that equilibrium depends
only on relative prices. Recall from definition 4.1 that the vector ((x , y), p)

is an equilibrium, if and only if (x , y) is a feasible allocation; p is a price
vector; xi ∈ ξi(p), for all i; yj ∈ ηj(p), for all j ; and for all n, pn = 0, if∑I

i=1 xin <
∑I

i=1 ein +∑J
j=1 yjn. If we replace p by tp, where t > 0, then

xi ∈ ξi(tp), for all i; yj ∈ ηj(tp), for all j ; and all the other conditions ob-
tain that are required for ((x , y), tp) to be an equilibrium.

Because equilibrium depends only on the direction of the price vector,
not its length, we can choose its length arbitrarily. For instance, we can
require that equilibrium prices sum to 1, so that the equilibrium price
vector belongs to the price simplex, which is defined to be

�N−1 = {p ∈ R
N
+ |

N∑
n=1

pn = 1}.

Similarly, we might require that equilibrium price vectors belong to the
N − 1 dimensional sphere of radius 1, so that they belong to the set

SN−1
+ = {p ∈ R

N−1
+ |

N∑
n=1

p2
n
= 1}.

The simplex and unit sphere are shown in figures 4.9 and 4.10, respectively,
for the case of two commodities.

I turn now to Walras’ law, which asserts that the value of market excess
demand is zero at any price vector. More formally, for all price vectors p,

p.z = 0, (4.1)



96 4 Competitive Equilibrium

p2

0 p11

1

Δ1

Figure 4.9 The price simplex
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Figure 4.10 Price on the unit sphere
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for all z in z(p). Walras’ law implies that there cannot be excess demand or
excess supply for all commodities simultaneously. Thus, if z is in z(p) and
if commodity n is in excess supply and has positive price (that is, zn < 0
and pn > 0), then some other commodity m is in excess demand and has
positive price (i.e., zm > 0 and pm > 0). Observe that Walras’ law applies for
all price vectors p, not just for equilibrium price vectors. Clearly, equation
4.1 applies if p is an equilibrium price vector and z is the market excess
demand corresponding to an equilibrium allocation, for in this case zn ≤ 0,
for all n, and pn = 0, if zn < 0. If we think of an economic recession as
corresponding to a state in which all commodities are in excess supply, then
Walras’ law implies that an economy in recession cannot be in equilibrium.

In order to state Walras’ law precisely, I need to define a property of utility
functions called local nonsatiation.

definition 4.2 A utility function u: RN
+ → R is said to be locally nonsa-

tiated if for every x in R
N
+ and every positive number ε, there exists an x′ in

R
N
+ such that ‖x′ − x‖ < ε and u(x′) > u(x).

A utility function is locally nonsatiated if it is increasing, where increas-
ing is defined as in definition 2.8. If x is a nonnegative N-vector and ε is a
positive number, then there is a vector x′ such that x′ � x and ‖x′ − x‖ < ε.
Because u is increasing, u(x′) > u(x). An example of a utility function that
is not locally nonsatiated is u: R2

+ → R defined by u(x1, x2) = −(x1 − 1)2 −
(x2 − 1)2, which reaches a maximum at (x1, x2) = (1, 1) and is therefore sa-
tiated there.

walras’ law theorem 4.3 If ui is locally nonsatiated, for all i, then,
for every price vector, p,

p.

⎛
⎝ I∑

i=1

(xi − ei) −
J∑

j=1

yj

⎞
⎠= 0,

if xi ∈ ξi(p), for all i, and yj ∈ ηj(p), for all j .

Observe that Walras’ law applies at all price vectors, not just equilibrium
price vectors.
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To prove Walras’ Law, I need the following lemma, which says that con-
sumers with locally nonsatiated utility functions spend all their income.

lemma 4.4 If ui is locally nonsatiated, then p.x = wi(p), for all x in ξi(p)

and for all price vectors, p.

Proof. Because x ∈ ξ(p), we know that p.x ≤ wi(p), so that p.x < wi(p),
if p.x �= wi(p). In this case, by the local nonsatiation of ui, there exists an
x′ such that ui(x′) > ui(x) and x′ is so close to x that p.x′ < wi(p). Hence,
there is a point in consumer i’s budget set strictly preferred by consumer i

to x, and this assertion contradicts the assumption that x belongs to ξi(p).

Proof of Walras’ Law. The idea of the proof is as follows. If all consumers
have locally nonsatiated utility functions, then they spend all their income.
Hence, the total value of all consumer demands equals the total of all con-
sumer income. This income equals the income from profits and endow-
ments, and the total value of these is the total value of all supply.

The formal proof of Walras’ law is the string of equations that follows.

p.

⎛
⎝∑

i

(xi − ei) −
∑

j

yj

⎞
⎠=

∑
i

(p.xi − p.ei) −
∑

j

p.yj

=
∑

i

(w(p) − p.ei) −
∑

j

p.yj

=
∑

i

(p.ei +
∑

j

�ijp.yj − p.ei) −
∑

j

p.yj

=
∑

j

∑
i

�ijp.yj −
∑

j

p.yj =
∑

j

p.yj −
∑

j

p.yj = 0,

where the second equation follows from lemma 4.4 and the next-to-last
equation follows from the condition that∑

i

�ij = 1,

for all j .
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Walras’ law has a geometric interpretation, for it implies that an excess-
demand vector z in z(p) is orthogonal to the price vector p. The orthogo-
nality is illustrated for the Robinson Crusoe and Edgeworth box economies
in figures 4.6, 4.7, and 4.8 in section 4.1. This geometric interpretation un-
derlies the standard proof of the existence of general equilibrium. In order
to visualize the idea of the proof, normalize prices so that they are of length
1, that is, so that they belong to SN−1

+ . Because z is orthogonal to p, it is
tangent to this sphere. Imagine moving the price vector in the direction of
z and hence along the surface of the sphere. Such a movement has some in-
tuitive appeal, since it involves raising the prices of commodities in excess
demand (those for which zn > 0) and lowering the prices of commodities
in excess supply (those for which zn < 0). Equilibrium is shown to exist by
proving that this movement has a rest point and that the rest point is an
equilibrium price vector.

The argument may be illustrated diagrammatically when there are two
commodities. Then price vectors lie on a quarter circle of radius 1, S1

+, as
in figure 4.11. Assume that market excess demand is a function, so that
z(p) contains exactly one point. If the price vector moves in the direction
of z(p), then in the figure it moves along the circle toward the northwest.
Equilibrium is reached either at a point where z(p) equals 0 or at the point
(0, 1), which is the northwest endpoint of S1

+. At this endpoint, the excess-
demand vector z(p) must be horizontal and pointing to the left, which
means that there is excess supply of the first commodity (z1(p) < 0) and
no excess supply of or demand for the second commodity (z2(p) = 0). It is
permissible in equilibrium for z1(p) to be negative at the price vector p =
(0, 1), since p1 = 0. Similarly, there could be an equilibrium at the southeast
endpoint of the quarter circle, if the excess-demand vector pointed straight
down at that point. It should make sense intuitively that if there is no
equilibrium at either end of the quarter circle, then there is one somewhere
between the ends, provided z(p) changes continuously as p changes.

Walras’ law implies that excess supply for any commodity is matched by
excess demand for some other commodity. This assertion is contradicted
by common observation of reality, for in recessions or depressions there is
a clear excess supply of almost every commodity, and especially of labor.
The reason that Walras’ law does not apply in such circumstances is that
people cannot always sell all they want to. For instance, people may not be
able to sell their labor at any price. An unstated assumption of the general
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Figure 4.11 A consequence of Walras’ law

equilibrium model is that individual buyers and sellers can buy or sell all
they want at the market price.

4.3 Offer Curves

Offer curves are useful tools for visualizing equilibria in Edgeworth box
models. If there are two commodities, the offer curve of a consumer with
initial endowment vector e and utility function u is {x | x ∈ ξ(p), p is a price
vector}, where ξ(p) is the set of solutions of the problem

max
x:p .x≤p .e

u(x).

The offer curve is the image of the map that carries price vectors to the
consumer’s demand set, ξ(p).

Figure 4.12 shows an offer curve, O, together with two indifference
curves of the utility function u. The offer curve is the solid curve, and the
indifference curves are dashed. Notice that the offer curve everywhere lies
on or to the northeast of the indifference curve through the endowment
point e. This is so because consumers can always buy their endowment
point, so that any demand vector in ξ(p) is at least as desired as the endow-
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Figure 4.12 An offer curve

ment point e. Any point, x, on the offer curve corresponding to price vector
p is a utility-maximizing point in the budget set determined by p and e.

In the Edgeworth box economy, equilibrium allocations occur at points
where the offer curves of the two consumers intersect, when the offer curves
are drawn relative to the origins of the respective consumers. Although the
offer curves intersect at the endowment point, this point is an equilibrium
allocation only if the offer curves are tangent there. The relation between
equilibrium and offer curves is illustrated in figure 4.13. Again, the dashed
curves are indifference curves, and the solid ones, OA and OB, are the offer
curves of consumers A and B, respectively. There is a unique equilibrium
allocation at point E.

In Figure 4.14, offer curves are used to illustrate the possibility that an
economy may have more than one equilibrium relative price vector. The
equilibrium allocations are E1, E2, and E3 with corresponding equilibrium
price vectors p1, p2, and p3.

Figure 4.15 illustrates an economy with a continuum of equilibrium
allocations along the line segment CD.

In the Edgeworth box economy of figure 4.16, the endowment point, e,
is an equilibrium allocation and is the only such allocation.
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Figure 4.14 An economy with three equilibria
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Figure 4.15 An economy with a continuum of equilibria

4.4 Equilibrium with Constant Returns to Scale

An important property of equilibrium is that the profits of a firm are zero
if it has constant returns to scale. A production function f : R

N
+ → [0, ∞)

has constant returns to scale if it is homogeneous of degree 1, that is, if
f (tx) = tf (x), for all t ≥ 0. If an input-output possibility set rather than
a production function describes technology, then constant returns to scale
corresponds to the production possibility set being a cone.

definition 4.5 A subset Y of R
N is a cone if, for any nonnegative num-

ber t , ty belongs to Y , whenever y belongs to Y .

The set Y is a cone if and only if it contains all rays from zero through
any nonzero member of Y . Any cone contains the zero vector 0.

I show that a production function f is homogeneous of degree 1 if and
only if the corresponding input-output possibility set Y = {(−x , y) | x ∈
R

N
+ and y ≤ f (x)} is a cone, so that Y being a cone generalizes the concept

of the constant returns to scale from production functions to input-output
possibility sets. Suppose that f is homogeneous of degree 1, and let t ≥ 0.
Then (−x , y) belongs to Y only if y ≤ f (x), which is true only if ty ≤
tf (x) = f (tx), where the equation follows from the homogeneity of f .
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Figure 4.16 An Edgeworth box economy where the initial endowment point is an
equilibrium allocation

Since ty ≤ f (tx), it follows that t (−x , y) belongs to Y , so that Y is a cone.
Suppose that Y is a cone, and let t be a positive number. Then, for any x in
R

N
+ , (−x , f (x)) belongs to Y , so that (−tx , tf (x)) belongs to Y , since Y is

a cone.
Therefore by the definition of Y , tf (x) ≤ f (tx). Similarly (−tx , f (tx))

belongs to Y , so that (−x , 1
t
f (tx)) belongs to Y and hence 1

t
f (tx). There-

fore, f (tx) ≤ tf (x) and hence tf (x) ≤ f (tx) ≤ tf (x) and so f (tx) =
tf (x). It remains to be shown that f (0) = 0. We know that f (0) ≥ 0, so
that if f (0) �= 0, then f (0) > 0. Suppose that f (0) > 0. By the definition
of Y , (0, f (0)) belongs to Y . Since Y is a cone, t (0, f (0)) = (0, tf (0))

belongs to Y if t > 0. Therefore tf (0) ≤ f (0), for all t > 0, which is impos-
sible. This contradiction proves that f (0) = 0.

Figure 4.17 shows an example of an input-output possibility set that is a
cone and hence exhibits constant returns to scale. If we superimpose price
vectors on this figure, as in figure 4.18, we see that profits are unbounded
or zero, depending on whether the price vector is more vertical than or at
least as vertical as the vector that is normal to the frontier of Y . If the price
vector is more vertical than the normal, as is p′′, then there is no profit-
maximizing input-output vector and profits may be made arbitrarily large
by moving out in the northwest direction along the frontier of Y . If the
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Y

0

Figure 4.17 Constant returns to scale in production

price vector is normal to the frontier, as is p, then any point on the frontier
is profit maximizing, and maximum profits are zero. If the price vector is
less vertical than the normal, as is p′, then 0 is the only profit-maximizing
vector, and maximum profits are zero. The dotted lines in the figure are
isoprofit lines at price vectors p′ and p′′. The next proposition formally links
zero profits to constant returns to scale.

proposition 4.6 If Y ⊂ R
N is a nonempty cone and p is a nonzero N-

vector, then

π(p) = sup
y∈Y

p.y

is either infinity or zero.

Proof. Because Y is a cone, it contains the vector 0, and π(p) ≥ p.0 = 0.
Suppose that π(p) > 0. Then p.y > 0, for some y in Y . Since Y is a cone, ty
belongs to Y , for all t > 0. Therefore, π(p) ≥ p.(ty) = tp.y, for any positive
number t . Letting t go to infinity, we see that π(p) = ∞.

This proposition implies that if input-output possibility sets are cones,
then profits must be zero in equilibrium, since they cannot be infinite. The
idea is illustrated in figure 4.19, which shows a Robinson Crusoe economy
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Figure 4.18 Profits with constant returns to scale

with constant returns to scale in production. Crusoe’s budget line goes
through his endowment point e, because all his income is earned from the
sale of his endowment of labor–leisure time.

When there is only one output and the technology may be expressed by a
differentiable production function, Euler’s equation provides another way
to see that there are zero profits when returns to scale are constant. Let
the production function be y = f (x1, x2, . . . , xN), where y is the quantity
of output and xn is the quantity of input n, and assume that f is differ-
entiable and homogeneous of degree 1. The profit-maximization problem
corresponding to this production function is

max
x1≥0, . . . , xN≥0

[pf (x1, . . . , xN) − (w1x1 + . . . + wNxN)],
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Figure 4.19 A Robinson Crusoe economy with constant returns to scale

where p is the price of the output and wn is the price of the nth input, for all
n. Since f is differentiable, the first-order conditions for this optimization
problem are that, for all n,

wn = p
∂f (x1, . . . , xN)

∂xn

,

provided xn > 0. Therefore,

wnxn = p
∂f (x1, . . . , xn)

∂xn

xn. (4.2)

That is, the total wage payments to each factor of production equals the
value of its marginal product times the amount of the factor used in pro-
duction. If we differentiate the equation tf (x1, . . . , xn) = f (tx1, . . . , txN)

with respect to t at t = 1, we obtain

f (x1, . . . , xN) = ∂f (x1, . . . , xN)

∂x1

x1 + . . . + ∂f (x1, . . . , xN)

∂xN

, (4.3)

an equation known as Euler’s equation. If we substitute equation 4.2, for
each n, into equation 4.3, we obtain

pf (x1, . . . , xN) = w1x1 + . . . + wNxN .
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That is, the revenue from sales of the product equals the sum of all pay-
ments to factors of production, so that maximum profits are zero.

4.5 Computation of Competitive Equilibrium in
Simple Examples

I describe the computation of equilibrium in examples with no production
and with simple forms of homothetic utility functions—the Cobb-Douglas,
Leontief, and linear ones. Some of the computations involve the method of
Lagrange multipliers, which I now review.

Consider the constrained maximization problem

max
x∈R

N
+

f (x)

s.t. g(x) = w ,

where f and g are differentiable functions and w is a number. The function
f is the objective function, the function g is the constraint function, and
the equation g(x) = w is the constraint. If the maximum is attained at x,
where x � 0, then there exists a number λ, called the Lagrange multiplier,
such that

∂f (x)

∂xn

= λ
∂g(x)

∂xn

,

for n = 1, . . . , N . This assertion may be written as Df (x) = λDg(x),
where

Df (x) =
(

∂f (x)

∂x1

, . . . ,
∂f (x)

∂xN

)

and

Dg(x) =
(

∂g(x)

∂x1

, . . . ,
∂g(x)

∂xN

)

are the derivatives or gradients of f and g, respectively, at x. Hence the gra-
dients of f and g lie on the same line, provided λ �= 0. Necessary conditions
for optimality are

g(x1, . . . , xN) = w

and

∂f (x1, . . . , xN)

∂xn

= λ
∂f (x1, . . . , xN)

∂xn

,
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for n = 1, . . . , N . The latter N equations are known as first-order condi-
tions.These equations together with the previous one form N + 1equations
in the N + 1 unknowns x1, . . . , xN and λ. These equations may be sum-
marized using the Lagrangian function

L(x1, . . . , xN , λ) = f (x1, . . . , xN) − λ[g(x1, . . . , xN) − w].

The equations are

∂L

∂xn

= 0,

for n = 1, . . . , N , and

∂L

∂λ
= 0.

If we let

V (w) = max
x≥0

f (x) s.t. g(x) = w ,

then λ = dV (w)
dw

. That is, the Lagrange multiplier is the rate at which the
maximized value of the objective function increases as the right-hand side
of the constraint increases.

I now apply the method of Lagrange multipliers to the problem of max-
imizing a utility function, u(x), subject to a budget constraint, p.x = w.
That is, I consider the problem

max
x1≥0, . . . , xN≥0

u(x1, . . . , xN)

s.t. p1x1 + . . . + pNxN = w.

The Lagrangian is L(x , λ) = u(x) − λp.x. If the optimum occurs at x,
where x � 0, then the necessary conditions for optimality are

∂u(x1, . . . , xN)

∂xn

= λpn,

for n = 1, . . . , N , and

p1x1 = . . . + pNxN = w.

The Lagrange multiplier is the rate at which the constrained maximum
utility increases as the income or wealth w increases. For this reason, the
multiplier is called the marginal utility of income or wealth.
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I apply this method to the utility maximization with a Cobb-Douglas
utility function, which, you may recall, has the form u(x1, . . . , xN) =
x

a1
1 x

a2
2 . . . x

aN

N or v(x1, . . . , xN) = ln(u(x1, . . . , xN)) = a1 ln(x1) + . . . +
aN ln(xN), where an > 0, for all n. In order to calculate the demand func-
tion for a consumer with a Cobb-Douglas utility function, consider the
consumer’s maximization problem

max[a1 ln(x1) + . . . + aN ln(xN)]

s.t.
N∑

n=1

pnxn = w.

The first-order conditions are obtained by forming the Lagrangian,

L = a1 ln(x1) + . . . + aN ln(xN) − λ[p1x1 + . . . + pNxN]

and calculating the equations

∂L

∂xn

= 0,

for all n. These equations are

an

xn

= λpn,

for all n, which are the same as

pnxn = λ−1an, (4.4)

provided λ > 0, which turns out to be the case. By adding these equations
over n, we obtain the equation

w =
N∑

n=1

pnxn = λ−1
N∑

n=1

an,

which is the same as

λ−1 = w∑
n an

. (4.5)

Substituting equation 4.5 into equation 4.4, we obtain

pnxn = an∑N
k=1 ak

w ,



4.5 Computation of Competitive Equilibrium in Simple Examples 111

x1

x2

0

Figure 4.20 Income-expansion line for the Cobb-Douglas case

which is the same as

xn = an∑N
k=1 ak

w

pn

,

provided pn > 0. Notice that the proportion of income spent on commod-
ity n is an∑

k
ak

If there are two goods and if prices are constant, then, as income w

varies, the demand point moves along the ray defined by the equation x2 =
(a2/a1)(p1/p2)x1, as pictured in figure 4.20. The ray is called an income-
expansion line for this utility function. In general, an income-expansion line
is the set of points x = (x1, x2) that solve the problem

max
x∈R

2+
u(x1, x2)

p1x1 + p2x2 = w ,

for some positive number w. If u is homothetic and the indifference curves
of u become flatter and flatter as x1 increases and x2 decreases, then the
income-expansion line is a ray through the origin, as in figure 4.20.

Returning to the Cobb-Douglas case, suppose that the income, w, is
the value of the endowment vector, e, so that w = p.e. Assume that the
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Figure 4.21 Offer curve for Cobb-Douglas utility with endowment only of
commodity 1

consumer’s endowment contains only one of the commodities, say, com-
modity 1. Then, e = (e1, 0, . . . , 0), where e1 > 0, and the demand, x1, for
commodity 1 satisfies the equation

p1x1 = a1

a1 + a2 + . . . + aN

p1e1.

If p1 is positive, I may cancel it from both sides of this equation and obtain

x1 = a1

a1 + a2 + . . . + aN

e1. (4.6)

If N = 2, equation 4.6 defines the part of the offer curve O of the consumer
that is shown in figure 4.21 as the vertical line O over the point A, which

has coordinates
(

a1
a1+a2

e1, 0
)

. The offer curve also includes the nonnegative

part of the horizontal axis, since this is the budget set if the price of good 1
is 0, and the consumer is indifferent among all points in the budget set.

It is easy to calculate an equilibrium allocation for an Edgeworth box
economy in which both of the consumers possess only one commodity
initially. Suppose that the economy is

uA(x1, x2) = xa
1 x1−a

2 , eA = (1, 0),

uB(x1, x2) = xb
1x1−b

2 , and eB = (0, 1),
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Figure 4.22 Equilibrium in Edgeworth box with Cobb-Douglas utilities and each
consumer owning only one commodity initially

where the numbers a and b lie between 0 and 1. If (xA, xB) is the equi-
librium allocation, then xA1 = a, so that xB1 = eA1 + eB1 = 1 − a. Similarly,
xB2 = 1− b, so that xA2 = b. We may compute the equilibrium prices as fol-
lows. Since any equilibrium price vector, p, may be replaced by tp, for any
positive t , we may normalize the equilibrium price vector so that p1 + p2 =
1. The equilibrium allocation satisfies the budget constraint, p.xA = p.eA,
so that p1a + p2b = p1. Substituting p2 = 1 − p1 into this last equation,
we obtain p1a + (1 − p1)b = p1, which implies that p1 = b

1−a+b
and hence

p2 = 1−a
1−a+b

. The equilibrium is pictured in figure 4.22. The equilibrium al-
location is at point E. The budget set of consumer A is the triangle 0AEe,
and that of consumer B is the triangle 0BeC.

It is not hard to calculate equilibrium allocations in Edgeworth box econ-
omies with Cobb-Douglas utility functions, even when consumers possess
some of both commodities initially. Suppose that the utility functions are as
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just stated and that the endowments are eA = (eA1, eA2) and eB = (eB1, eB2).
Then, the demands for commodity 1 are determined by the equations

p1xA1 = a[p1eA1 + (1 − p1)eA2] and

p1xB1 = b[p1eB1 + (1 − p1)eB2].
(4.7)

By adding the previous two equations and substituting the feasibility con-
dition, we see that

p1(eA1 + eB1) = p1(xA1 + xB1) = a[p1eA1 + (1 − p1)eA2]

+ b[p1eB1 + (1 − p1)eB2],
(4.8)

which is a linear equation in p1. Once p1 has been calculated, p2 is known,
since it is assumed that the two prices sum to 1. Given p1 and p2, the
consumer demands xA1 and xB1 may be calculated by substitution into
equations 4.7, and the demands xA2 and xB2 can be obtained from similar
equations.

I now turn to the case of Leontief utility functions. Recall that this func-
tion has the form u(x1, . . . , xN) = min(a1x1, . . . , aNxN), where an > 0,
for all n. Consider the problem

max
x1≥0, x2≥0

min(a1x1, a2x2)

s.t. p1x1 + p2x2 = w ,

where a1 and a2 are positive numbers. The solution is obtained by solving
the two equations given by the budget condition, p1x1 + p2x2 − w, and the
condition, a1x1 = a2x2, satisfied at the optimum. These demands are

x1 = a2w

a2p1 + a1p2

and x2 = a1w

a2p1 + a1p2

.

The solution is pictured in figure 4.23. The demand point is at A, and the
dashed lines are indifference curves. The person’s offer curve is the heavy
angled line that includes the nonnegative half of the horizontal axis, the
part of the line labeled x2 = (a1/a2)x1 from the origin to point B, and the
vertical half of the line going upward from point B. The income-expansion
line is the line defined by the equation x2 = (a1/a2)x1, provided both prices
are positive. If p2 = 0, then what corresponds to the income-expansion line
is the region on and above the line defined by the equation x2 = (a1/a2)x1.
Similarly if p1 = 0, then what corresponds to the income-expansion line is
the region on and below this line.
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Figure 4.23 Offer curve with Leontief utility

Figure 4.24 depicts equilibrium in an Edgeworth box economy where
both consumers have Leontief utility functions. The shaded areas are the
Pareto optimal allocations, and, as before, the dashed lines are indifference
curves. The configuration of the set of Pareto optimal and equilibrium
allocations depends on the particular choices of the two Leontief utility
functions.

Figure 4.25 shows another Edgeworth box example, where the total en-
dowment of commodity 2 exceeds that of commodity 1 and where each
consumer has the Leontief utility function u(x1, x2) = min(x1, x2). The
shaded area again represents the Pareto optimal allocations. The equilib-
rium allocations are the interval along the right-hand side of the box from
point C to 0B, and the equilibrium price vector is p = (1, 0). We may think
of the commodities as left shoes and right shoes, with left shoes on the
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Figure 4.24 Equilibrium in an Edgeworth box economy with Leontief utility
functions

vertical axis. Shoes are wanted only in pairs, and because there are more
left than right shoes, the price of left shoes is zero.

Calculations with linear utility functions are very simple. Recall that a
linear utility function is of the form u(x1, x2) = a1x1 + a2x2, where a1 > 0
and a2 > 0. Maximizing this function subject to the budget constraint
p1x1 + p2x2 = w, we see that x2 = 0 and x1 = w/p1, if p2/p1 > a2/a1 and
x2 = w/p2 and x1 = 0, if p2/p1 < a2/a1. The set of utility-maximizing
points is the entire budget line {(x1, x2) ≥ 0 | p1x1 + p2x2 = w} if p2/p1 <

a2/a1. The case p2/p1 > a2/a1 is illustrated in figure 4.26. The dashed lines
are indifference curves, and demand is at point A. The income-expansion
line is the nonnegative part of the horizontal coordinate axis if p2/p1 >

a2/a1 and is the nonnegative part of the vertical axis if p2/p1 < a2/a1. If
p2/p1 = a2/a1, then what corresponds to the income-expansion line is the
entire nonnegative orthant.
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Figure 4.25 Left-shoe, right-shoe example

Consider the following Edgeworth box economy with linear utility
functions:

uA(x1, x2) = aA1x1 + aA2x2, eA = (1, 0),

uB(x1, x2) = aB1x1 + aB2x2, and eB = (0, 1).

The case aB2/aB1 > aA2/aA1 is illustrated in figure 4.27. The unique equi-
librium allocation is the endowment point, e. Any price vector, p, satisfying
the inequalities aB2/aB1 ≥ p2/p1 ≥ aA2/aA1 is an equilibrium price vector.
One such vector is indicated in the figure. The indifference curves of con-
sumers A and B are labeled IA and IB, respectively.

Figure 4.28 illustrates the case aB2/aB1 < aA2/aA1. The sole equilibrium
allocation is at E. The equilibrium relative-price vector, p, is also unique. At
another relative price vector, such as p, consumers A and B choose distinct
bundles, namely C and D, respectively.
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Figure 4.26 Demand with linear utility
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Figure 4.27 Equilibrium in the Edgeworth box with linear utility functions when
consumer A has a greater relative preference for commodity 1
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Figure 4.28 Equilibrium in the Edgeworth box with linear utility functions when
consumer B has a greater relative preference for commodity 1

4.6 Aggregate Input-Output Possibility Sets

I turn to the study of production processes that operate simultaneously. It
may help the reader’s intuition to visualize two firms that use the same two
inputs to produce single outputs. Suppose that firms A and B use inputs 1
and 2 to produce output according to the production functions fA: R

2
+ →

R and fB: R2
+ → R, respectively. The two firms may be producing the same

or different commodities. Suppose that there are fixed amounts, e1 and e2,
respectively, of inputs 1 and 2 available to be used in production by the
two firms. Then the situation is exactly analogous to the problem of allo-
cating fixed amounts of two consumption goods between two consumers,
A and B, with utility functions, fA and fB, respectively. The production
problem may be represented by an Edgeworth box diagram with horizontal
length e1 and vertical height e2. It is sufficient to relabel the axes as produc-
tion inputs, as in figure 4.29, where xA1, xA2, xB1, and xB2 are the inputs of
commodities 1 and 2 used by firms A and B, respectively. The curves corre-
sponding to consumers’ indifference curves are called isoquants, which are
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Figure 4.29 Efficient allocation of inputs between two firms

curves of constant output. An isoquant is a set of points (x1, x2) that satisfy
the equation fA(x1, x2) = constant or the equation fB(x1, x2) = constant.
Efficient allocations of inputs to the two firms occur at points of tangency
of the isoquants, and the set of tangencies is the efficiency locus, labeled EL

in figure 4.29. It is the set of efficient allocations of the two inputs to the
production of commodities A and B. An allocation is efficient if no other
allocation yields at least as much output from both firms and more from
at least one of them. If both firms maximize profits at the same prices, then
they minimize the costs of producing the outputs they choose to produce. If
a firm chooses inputs so as to minimize costs, then it chooses a point on an
isoquant that has the lowest cost. The input levels for one firm can be repre-
sented as points in the nonnegative orthant, R

2
+, and the points of constant

cost satisfy an equation of the form p1x1 + p2x2 = constant, where p1 and
p2 are the prices of inputs 1 and 2, respectively. These points are a straight
line segment analogous to the budget line of a consumer and termed an
isocost line. The point on an isoquant of lowest cost is tangent to such an
isocost line, just as the indifference curve of a consumer is tangent to the
budget line at the point where he or she maximizes utility. Point x is such a
point of tangency in figure 4.30. If firms A and B face the same input prices
and allocate the inputs between them by choosing quantities that maximize
profits, then they minimize costs and so choose a point, such as x in the box
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Figure 4.30 Cost-minimizing pair of inputs

diagram of figure 4.31, at which their isoquants are tangent to a common
constant cost line and hence are tangent to each other. It follows that the
input allocation is efficient.

The efficiency of this input allocation is a special case of the more gen-
eral assertion that if there are many firms and every one of them maximizes
profits, then the aggregate input-output vector of all firms is efficient, pro-
vided all prices are positive. As a first step toward making this statement
rigorous, I define efficiency.

definition 4.7 The point y in an input-output possibility set Y (or in
an output possibility set Y ) is said to be efficient in Y , if there exists no y in
Y such that y > y.

A key statement is as follows.

proposition 4.8 If p � 0 and if the vector y in the input-output possi-
bility set Y (or in the output possibility set Y ) is such that p.y ≥ p.y, for all
y in Y , then y is efficient in Y .



122 4 Competitive Equilibrium

IA

IB

xB1

xA2

xB2

xA1

x

0B

0A

Figure 4.31 Efficient and profit-maximizing input allocation

Proof. Suppose that y is not efficient, so that there exists y in Y such that
y > y. Since p � 0, p.y > p.y, contrary to the assumption that y maximizes
profits over Y .

Just as the utility possibility frontier corresponds to the set of Pareto op-
timal allocations, as in figure 3.5, an efficiency frontier or output possibility
frontier corresponds to the locus of efficient allocations in figure 4.29. The
efficiency frontier is the northeast boundary of the output possibility set,
which is the set of pairs of outputs from firms A and B, respectively, that are
less than or equal to some pair that can be produced from the given inputs.
The efficiency frontier is labeled EF in figure 4.32, the locus of efficient in-
put allocations is labeled EL, and the output possibility set is labeled OP.
The outputs of commodities A and B are labeled yA and yB, respectively.
The function f from inputs to outputs is defined by the equation

f (xA1, xA2, xB1, xB2) = (fA(xA1, xA2), fB(xB1, xB2)) = (yA, yB).

We know that in the case of two consumers with concave utility func-
tions, for every point, v, on the utility possibility frontier, there is a non-
negative 2-vector, a, such that a.v ≥ a.v, for all v in the utility possibility
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Figure 4.32 The efficiency frontier

set. Similarly, if the production functions fA and fB are concave, then for
every point y = (yA, yB) on the efficiency frontier in figure 4.32, there is a
nonnegative 2-vector, p, such that p.y ≥ p.y, for every vector y in the out-
put possibility set, OP. The vector p may be interpreted as a price vector.
According to this interpretation, the point y is the output vector with the
highest value at the price vector p.

A more general assertion is possible. To state it, I define the total or
aggregate input-output possibility set associated with input-output possi-
bility sets Y1, Y2, . . . , YJ to be the sum Y =∑J

j=1 Yj , where
∑J

j=1 Yj =
{∑J

j=1 yj | yj ∈ Yj , for all j}. The set Y represents the set of input-output
vectors that may be obtained by operating all the technologies simultane-
ously, provided they do not interact or interfere with each other. What I
show next is that if the Yj are convex, then any efficient point in Y maxi-
mizes profits at some price vector p. It is easy to verify that if the sets Yj are
all convex, then the set Y is convex as well, so that the following proposi-
tion applies to an aggregate-production possibility set derived from convex
individual-production possibility sets.

proposition 4.9 If the input-output possibility set Y is convex and y is
an efficient point of Y , then there exists a price vector p such that p > 0 and
p.y ≥ p.y, for all y in Y .
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Proof. The proof of this proposition is just like that of theorem 3.31,
which asserts that every point on the utility possibility frontier maximizes a
weighted average of the consumers’ utilities. Let � = {z ∈ R

N | z ≥ y} and
observe that � is nonempty and convex, has nonempty interior, and in-
tersects Y only at the point y. Therefore, Minkowski’s separation theorem
implies that there exists a nonzero vector p such that p.z ≥ p.y, for all z in
� and y in Y . Because of the form of � , p ≥ 0, and because p �= 0, p > 0.
Because y belongs to � , py ≥ p.y, for all y in Y .

The decentralization theorem asserts that if the point y in an aggregate-
production possibility set maximizes profits, then each of the correspond-
ing input-output vectors of the J firms maximizes the profits of that firm.

decentralization theorem 4.101 The vector y ∈ Y = ∑J
j=1 Yj

solves the problem

max
y∈Y

p.y , (4.9)

if and only if y =∑J
j=1 yj , where, for each j , yj solves the problem

max
y∈Yj

p.y . (4.10)

Proof. Suppose that yj solves problem 4.10, for all j . Let y =∑J
j=1 yj and

suppose that y =∑J
j=1 yj is an arbitrary vector in Y , where yj ∈ Yj , for all

j . Then,

p.y = p.
J∑

j=1

yj =
J∑

j=1

p.yj ≤
J∑

j=1

p.yj = p.
J∑

j=1

yj = p.y ,

where the inequality follows from the assumption that yj solves problem
4.10, for all j . It follows that y solves problem 4.9.

In order to prove the converse, suppose that y solves problem 4.9. By
the definition of Y , y =∑J

j=1 yj , where yj ∈ Yj , for all j . I show that yj

solves problem 4.10, for each j . Without loss of generality, let j = 1. I must
show that if y1 is an arbitrary member of Y1, then p.y1 ≥ p.y1. The vector

1. This theorem is the work of Koopmans (1957, 12).
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y1 + y2 + . . . + yJ belongs to Y , by the definition of Y . Because y solves
problem 4.9, it follows that

p.y1 + p.y2 + . . . + p.yj = p.y

≥ p.(y1 + y2 + . . . + yJ ) = p.y1 + p.y2 + . . . + p.yJ .

Canceling like terms from the extreme sides of this inequality, we see that
p.y1 ≥ p.y1, as is to be proved.

The decentralization theorem and propositions 4.8 and 4.9 come close to
asserting that a vector y in an aggregate production possibility set is efficient
if and only if there is a price vector p such that y is the sum of vectors in the
input-output possibility sets of the individual firms that maximize profits
at the price vector p. The “if” part of this statement applies, however, only
if p � 0.

I now discuss some consequences of constant returns to scale. Recall
from section 4.4 that an input-output possibility set exhibits constant re-
turns to scale if it is a cone and then maximum profits are zero. This asser-
tion implies that if the input-output possibility set Y is a cone and profits
at price vector p are maximized at a nonzero vector y in Y , then p is or-
thogonal to the ray from zero through y, where this ray is {ty | t ≥ 0}. If
an economy is such that every firm’s input-output possibility set is a cone,
then the equilibrium price vector is orthogonal to one such ray for each
firm, and this orthogonality condition restricts the equilibrium price vec-
tor and may even determine it uniquely up to a multiplicative constant. For
instance, the price vector is unique in this sense if every production process
produces only one commodity, every commodity is produced except one,
this nonproduced commodity is used as an input in the production of every
commodity, and it is possible for the economy to provide a positive amount
of every commodity for consumption. The one nonproduced commodity
is a primary input, which may be thought of as labor. I now explain and
prove this assertion, which is known as the nonsubstitution theorem.

This theorem is probably best understood by visualizing the case where
there are two produced commodities, labeled 1 and 2. Assume that, for
n = 1 and 2, the production function for good n, fn: R

2
+ → R, is homo-

geneous of degree 1, concave, and strictly increasing. Assume that the third
commodity is labor, write the input of labor into the production of good n

as Ln, and let ynm denote the input of commodity m into the production
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of good n, where m equals 1 or 2 and n equals 1 or 2 and where Ln ≤ 0
and ynm ≤ 0. Then the output of good 1 is y1 = f1(−y12, −L1), and the
output of good 2 is y2 = f2(−y21, −L2). The output of good 1 net of the
amount used as an input into production is f1(−y12, −L1) + y21, and the
net output of good 2 is f2(−y21, −L2) + y12. Assume that there is one
unit of labor available, so that L1 + L2 = −1, and that the inputs can be
chosen so that a positive amount of each produced good is available for
consumption. The latter assumption means that L1, y12, and y21 can be
chosen so that f1(−y12, −L1) + y21 > 0 and f2(−y21, 1 + L1) + y12 > 0.
We can see how the two production processes create total output by plot-
ting the functions y1 = f1(−y12, 1) and y2 = f2(−y21, 1) on the same graph
with good 1 on the abscissa and good 2 on the ordinate. Since inputs are
negative and outputs are positive, the graph of y1 = f1(−y12, 1) appears
in the fourth quadrant and the graph of y2 = f2(−y21, 1) appears in the
second quadrant, as in figure 4.33. The vector y1 = (y1, y12) is such that

a

b

0

f2

f1

y2

y1

y12

y21

z

y1

y2

Figure 4.33 Nonsubstitution illustrated
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y1 = f1(−y12, 1), and the vector y2 = (y21, y2) is such that y2 = f2(−y21, 1).

The point z is the average of points y1 and y2, and so z =
(

y1+y21
2 , y2+y12

2

)
.

Suppose that a half unit of labor and −y12/2 units of good 2 are devoted
to the production of good 1. Since f1 is homogeneous of degree 1, the
output of good 1 is f1(−y12/2, 1/2) = f1(−y12, 1)/2 = y1/2. Similarly, if
a half unit of labor and −y21/2 units of good 1 are devoted the production
of good 2, then the output of good 2 is y2/2. Therefore the vector of the

two net outputs is
(

y1+y21
2 , y2+y12

2

)
, which is z. That is, z is the vector of

net outputs that results from applying half the amount of inputs to each
commodity as are used at the points y1 and y2, respectively. Similarly, any
point on the straight line between y1 and y2 can be obtained in a similar
fashion as a vector of net outputs resulting from using one unit of labor in
total and using each produced commodity as an input in the production
of the other. Any such point can be represented as αy1 + (1 − α)y2, where
0 ≤ α ≤ 1. This point can be realized as a vector of net outputs by devoting
α units of labor and −αy12 units of good 2 to the production of good 1 and
(1 − α) units of labor and −(1 − α)y21 units of good 1 to the production
of good 2.

To better understand the significance of the straight line from y1 to y2,
add a third axis representing labor to the figure 4.33, with the positive
direction coming out of the page, as in figure 4.34. Since there is one unit
of labor available, the point one unit along the labor axis from the origin is
labeled as the endowment point e. We may associate with the production
of good 1 the input-output possibility set

Y1 = {(y1, y12, L1) | y12 ≤ 0, L1 ≤ 0, and y1 ≤ f1(−y12, −L1)}.

Similarly, we may associate with the production of commodity 2 the input-
output possibility set

Y2 = {(y21, y2, L2) | y21 ≤ 0, L2 ≤ 0, and y2 ≤ f2(−y21, −L2)}.

In figure 4.34, the set e + Y1 is the set of all points on or below the surface
formed by all rays from e through points on the curve f1, which is the
graph of the function y1 = f1(−y12, 1). Similarly, e + Y2 is the set of points
on or below the surface formed by all rays from e through points on the
curve f2, which is the graph of the function y2 = f2(−y21, 1). The curves



128 4 Competitive Equilibrium

S

1

Labor

e

a

b

0

f2

f1

y2

y1

y12

y21

y1

y2

Figure 4.34 Nonsubstitution in three dimensions

f1 and f2 are the intersections of the surfaces of the sets e + Y1 and e + Y2,
respectively, with the plane defined by the equation L = 0. The set e + Y1 +
Y2, which is the aggregate input-output possibility set plus e, is the set of all
points on or below the surfaces formed by all rays from e through points on
f1, f2, and the straight line segment from y1 to y2. Therefore a portion of
the surface of e + Y1 + Y2 is flat, namely the shaded section, S, from the ray
from e through y1 to the ray from e through y2 The line segment from point
a to b in figures 4.33 and 4.34 is, therefore, the output possibility frontier
for the economy endowed with one unit of labor. Points on this segment
are the net outputs available for consumption that can be provided by the
economy.

Suppose now that the economy is in equilibrium with price vector p,
both produced commodities are desirable and are consumed, and no labor
is consumed as leisure. Then nothing will be wasted, and the economy
will produce a point on the production possibility frontier, so that the
aggregate input-output vector plus e will be at a point in the interior of the
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flat surface, S. In the equilibrium, both firms maximize profits, so that by
the decentralization theorem the aggregate input-output vector maximizes
profits over the aggregate input-output possibility set, Y1, Y2. Therefore the
equilibrium price vector must be orthogonal to the surface S, which means
that it is unique up to a multiplicative constant. This is the assertion of the
nonsubstitution theorem.

I now prove a version of this theorem for a model with N commodi-
ties. The main difficulty in proving the result is the demonstration that
the aggregate input-output possibility set has a flat section on its surface
that includes in its interior the points at which an equilibrium would oper-
ate. I make this step using a theorem from linear activity or input-output
analysis, which I now describe briefly. In linear activity analysis, it is as-
sumed that a production process may be described by a single N-vector,
a = (a1, . . . , aN). If the process is operated at unit level, then an units of
commodity n are produced, if an is positive, and −an units of commodity
n are used as an input, if an is negative. In a linear activity model, there are
several linear production processes, and the model is represented by a ma-
trix or table, where the entry anm in the nth row and mth column represents
the nth coefficient of the mth activity or process. That is, if the mth process
is operated at unit level, −anm is the amount of commodity n absorbed if
it is an input and anm is the amount of commodity n produced if it is an
output.

I will consider linear activity models where only one commodity is pro-
duced by a process and there is only one process for producing each com-
modity. If it is assumed that when a process is operated at unit level one
unit of commodity is produced, then the process can be represented by the
vector of inputs, which I may represent as nonnegative. With this approach
in mind, let amn be the nonnegative quantity of commodity m that is used
to produce commodity n and let an = (a1n, a2n, . . . , aNn). Then the ac-
tivity vector describing the process producing commodity n is the vector
en − an, where en is the nth standard unit basis vector defined by enn = 1
and enm = 0, if n �= m. Suppose the nth production process operates at level
xn, for each n, so that the total output of commodity n is xn. Then, the total
usage of commodity m as an input in the production of all commodities is∑N

m=1 xnamn, so that the total output of commodity m net of its use as an

input is xm

∑N
m=1 xnamn. Let A be the N × N matrix with entry amn in row

m and column n, and let x be the N-vector with component n equal to xn.
(The vector x should not be confused with a consumption vector. It is the
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vector of total output levels.) Note that the nth column of A is the vector an,
viewed as a column vector. Then the N-vector of output levels net of inputs
is (I − A)x, where x is thought of as a column vector and I is the N × N

identity matrix.

definition 4.11 The N × N input matrix A is productive if there exists
an N-vector x such that (I − A)x � x.

Clearly if (I − A)x � 0, then x � 0, since the net output of each com-
modity can be positive only if the total output of each is positive.

theorem 4.12 A is productive if and only if the matrix I − A is invert-
ible. In this case, (I − A)−1 =∑∞

k=0 Ak, and this matrix is nonnegative.

Proof. Suppose that A is productive. Then for some N-vector x, (I −
A)x = c, where c � 0. The sequence of sums of matrices, I + A + A2 +
. . . + Ak, is nonnegative and nondecreasing in k, since the kth power of
a nonnegative matrix is nonnegative. Therefore, limk→∞[I + A + A2 +
. . . + Ak]exists, provided the sequence of matrices I + A + A2 + . . . + Ak

is bounded. Because c = (I − A)x, it follows that

(I + A + A2 + . . . + Ak)c = (I + A + A2 + . . . + Ak)(I − A)x

= (I − Ak+1)x ≤ x .

Since c � 0, it follows that the sequence I + A + A2 + . . . + Ak is bounded
and hence limk→∞(I + A + A2 + . . . + Ak) exists, so that limk→∞ Ak = 0
and hence

lim
k→∞(I − A)(I + A + A2 + . . . + Ak) = lim

k→∞(I − Ak+1) = I .

Therefore
∑∞

k=0 Ak = (I − A)−1, which is clearly nonnegative. This proves
the “only if” part of the theorem.

In order to prove the converse, suppose that I − A−1 exists. If the N-
vector c is such that c � 0, then there exists an N-vector x such that (I −
A)x = c, namely, x = (I − A)−1c. Therefore, A is productive and by an
argument already made, (I − A)−1 =∑∞

k=0 Ak.

I now state the nonsubstitution theorem.
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nonsubstitution theorem 4.132 Suppose that the input-output
possibility sets Y1, . . . , YJ satisfy the conditions that follow.

1. Commodities 1, 2, . . . , N are produced, and commodity N + 1 is the
unique nonproduced commodity or primary input. Call this primary
input labor.

2. Each input-output production possibility set, Yj , is devoted to the
production of one produced commodity. That is, for each j , there is
an n such that 1 ≤ n ≤ N and for every y in Yj , ym ≤ 0, if m ≤ n.

3. Production requires labor. That is, for each j , if y belongs to Yj and
yn > 0, for some n ≤ N , then yN+1 < 0.

4. For each j , Yj is a convex cone.

5. There is an efficient point y in Y =∑J
j=1 Yj , such that yn > 0, for

n = 1, . . . , N .

Up to a multiplicative constant, there is one and only one price vector p
such that if y is an efficient point of Y and y

n
> 0, for n = 1, . . . , N , then

p.y ≥ p.y, for all y in Y .

This theorem says that if an economy satisfying the assumptions of the
theorem were in an equilibrium where some of every produced commod-
ity was consumed, then the relative prices of labor and all the produced
commodities would be unique. The theorem can be loosely interpreted
as justifying a labor theory of value. The assumptions of the theorem are
unrealistically restrictive, however. For instance, in reality there are other
primary inputs besides labor (such as land, water, and minerals), there
are many types of labor, and many commodities are produced jointly with
other commodities.

Proof of Theorem 4.13. Let y be as in assumption (5) of the theorem. I
show that I may assume that yN+1 = −1. Since yn > 0, for n = 1, . . . , N ,
assumption (3) of the theorem implies that yN+1 < 0. Since Y is a cone,
the vector z = 1

(−yN+1)
y belongs to Y . Since y is efficient, z is also efficient.

Clearly zn > 0, for n = 1, . . . , N . Since zN+1 = −1, I may assume that
yN+1 = −1.

2. This theorem is the work of Samuelson (1951).
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Since every Yj is convex by assumption (4), Y is convex. Since y is an
efficient point of Y , proposition 4.9 implies that there exists an (N + 1)-
vector p such that p > 0 and p.y ≥ p.y, for every y in Y .

Since every Yj is a cone by assumption (4), Y is a cone. Therefore propo-

sition 4.6 implies that p.y = 0. By the definition of Y , y =∑J
j=1 yj , where

yj ∈ Yj , for every j . By the decentralization theorem 4.10, for every j ,
p.yj ≥ p.y, for every y in Yj . Since Yj is a cone, p.yj = 0.

I show that p � 0. First I show that PN+1 > 0. Since p.y = 0, pN+1

(−yN+1) =∑N
n=1 pnyn. If pN+1 = 0, then

∑N
n=1 pnyn = 0. Since yn > 0,

for n = 1, . . . , N , it would then follow that p1 = . . . = pN = 0, which is
impossible since p > 0. This proves that pN+1 > 0. I next show that pn > 0,

for n = 1, . . . , N . Fix n such that 1 ≤ n ≤ N . Since yn =∑J
j=1 yjn, where

yj ∈ Yj , for all j , it follows that yjn > 0, for some j . By assumption (2) of
the theorem, yjm ≤ 0, if m �= n, and by assumption (3), yj , N+1 < 0. Since
p.yj = 0, pnyjn =∑m�=n pm(−yjm) ≥ pN+1(−yj , N+1) > 0. This inequal-
ity implies that pn > 0.

I now reduce our problem to one for an input-output model. For each
n = 1, . . . , N , let J (n) = {j | yjn > 0}. Since yn > 0, J (n) is not empty, for
every n. Since p � 0 and p.yj = 0, for all j , for any j either yj = 0 or yjn >

0, for some n. Therefore yj = 0, if j does not belong to
⋃N

n=1 J (n). Let yn =∑
j∈J (n) yj . Then

∑N
n=1 yn = y, and for all n, yn

n
> 0, yn

N+1 < 0, yn
m

≤ 0,

if m �= n, and p.yn = 0. For each n, let zn = 1
(−yN+1)

yn. Since the sets Yj

are all cones, it follows that zn ∈∑j∈J (n) Yj , zn
n
> 0, zn

N+1 = −1, yn
m

≤ 0, if

m �= n, and p.zn = 0. Also
∑N

n=1(−yn
N+1)zn =∑N

n=1 yn = y. It is important
to note that since the Yj are cones, each Yj contains the vector 0, so that∑

j∈J (n) Yj is contained in the set
∑J

j=1 Yj = Y , and hence each zn belongs
to Y .

I next choose the units of the commodities 1, . . . , N , so that zn
n
= 1for all

n. This choice of units may be accomplished by dividing the nth component
of each vector in the commodity space R

N+1 by zn
n
, where zn is the vector

defined in the previous paragraph. It remains true after this change of units
that

∑N
n=1(−yn

N+1)zn = y and
∑J

j=1 yjn = yn > 0, for n = 1, . . . , N .
For each m and n such that 1 ≤ m, n ≤ N , let

amn =
{−zn

m
, m �= n,

0, if m = n.

Let A be the N × N matrix with (m, n)th entry amn. Let x be the N-vector
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defined by the equation xn = −yn
N+1, for all n. Then using matrix notation

(I − A)x is the vector of the first N components of
∑N

n=1(−yn
N+1)zn − y,

and these components are all positive by hypothesis. Therefore, the matrix
A is productive and theorem 4.12 implies that the matrix (I − A) is invert-
ible and that (−A)−1 is nonnegative.

I now show that all efficient vectors in Y with positive outputs of all pro-
duced commodities lie in a flat subset of Y that is part of an N-dimensional
hyperplane in R

N+1. Let en be the nth standard basis vector of R
N (the vec-

tor with nth component equal to 1 and all other components equal to 0),
and let xn = (I − A)−1en. Then xn > 0 and (I − A)xn = en. Since xn > 0,

it follows that
∑N

m=1 xn
m

> 0 and so tn =
(∑N

m=1 xn
m

)−1
is well defined.

Let xn = tnxn, so that (1 − A)xn = tnen and
∑N

m=1 xn
m

= 1. Since the mth
column of the matrix (I − A) is the vector of the first N components of
the (N + 1)-vector zn and the last component of zn is −1, it follows that
qn =∑N

m=1 xn
m

zm is the vector whose nth component is the positive num-
ber tn, whose (N + 1)st component is −1, and whose other components are
all 0. Since each vector zm belongs to Y and Y is convex, it follows that every
qn belongs to Y . Since p.zm = 0, for all m, it follows that p.qn = 0, for all n.
Since p � 0 and p.y ≤ 0, for all y in Y , proposition 4.8 implies that every
qn is an efficient point of Y . Observe that pnq

n
n
− pN+1 = p.qn = 0, so that

pN+1 = pnq
n
n
.

I show that if y in R
N+1 is such that yN+1 = −1, yn ≥ 0, if n = 1, . . . , N ,

and p.y = 0, then y is a convex combination of q1, . . . , qN . Since p.y = 0
and yN+1 = −1, it follows that pN+1 =∑N

n=1 pnyn. Let α
pnyn

pN+1
Then, αn ≥

0, for all n, and
∑N

n=1 αn = 1. Because pN+1 = pnq
n
n
, it follows that αn = yn

q
n
n

,

so that
∑N

m=1 αmqm
n

= αnq
n
n
= yn, if n = 1, . . . , N , and

∑N
m=1 αmqm

N+1 =
−∑N

m=1 αm − 1 = yN+1. Therefore
∑N

m=1 αmqm = y.
Since qn ∈ Y , for all n, and Y is convex, the argument of the previ-

ous paragraph implies that y belongs to Y , if yN+1 = −1, yn ≥ 0, if n =
1, . . . , N , and p.y = 0. Any such y is efficient by proposition 4.8, since
p.y = 0 = maxy∈Y and p � 0.

Since Y is a convex cone, the set Z =
{∑N

n=1 rnqn | rn ≥ 0, for all n
}

is

contained in Y , and all points in Z are efficient by proposition 4.8, because
p � 0 and p.z = 0, for all z in Z. It should be clear from what has been said
that

Z = {z ∈ R
n+1 | zN+1 < 0, zn ≥ 0, for n = 1, . . . , N , and p.z = 0}.
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Suppose that y is an efficient vector in Y and is such that yn > 0, if
n = 1, . . . , N . Assumption (3) of the theorem implies that yN+1 < 0. Be-
cause y maximizes profits in Y at the price vector p and p.y = 0, it fol-

lows that p.y ≤ 0. If p.y < 0, then z = y + (p .y)e
p .e belongs to Z, where e =

(1, 1, . . . , 1, 0) ∈ R
N+1. Since Z is a subset of Y and z > y , y is not effi-

cient. This contradiction proves that p.y = 0 and so Z contains all efficient
points y in Y such that yn > 0, if n = 1, . . . , N .

The set Z is a subset of the N-dimensional hyperplane in R
N+1 spanned

by the linearly independent vectors q1, . . . , qN , which is the same as the
hyperplane H defined by the equation p.y = 0. If the vector y in Y is
efficient and is such that yn > 0, for n = 1, . . . , N , then y is in the interior
of the set Z within H . Any price vector p such that p.y ≥ p.y, for all y in
Y , is such that p.y ≥ p.y, for all y in H , since y belongs to the interior of Z

within H . Therefore p is a multiple of p, as is to be proved.

4.7 An Incomplete Theorem on the Existence of Equilibrium

I now explain how ideas presented in section 4.2 may be used to prove the
existence of an equilibrium price vector. In that section, I showed that the
market excess-demand set, z(p), is homogeneous of degree 0 and satisfies
Walras’ law. I prove here that if market excess demand is a continuous func-
tion of prices, then there exists a vector, p, such that, for all n, zn(p) ≤ 0 and
pn = 0, if zn(p) < 0. This vector p is an equilibrium price vector. The re-
sulting theorem on the existence of equilibrium is incomplete, because the
assumptions are about an endogenous object, the excess-demand function,
rather than about the fundamental exogenous objects defining a model,
namely, utility functions, endowments, and input-output possibility sets. It
is easy to make up examples of economic models for which excess demand
does not exist at some prices. For instance, if a consumer has a strictly in-
creasing utility function and a nonnegative income and if the price of one of
the commodities is zero, then his or her demand is unbounded, so that mar-
ket excess demand is not defined. A complete existence theorem is stated in
section 4.8 and proved using the theorem given here. A somewhat better
theorem is stated in section 5.3 and proved using a different approach.

Before going further, some insight can be gained into the significance of
the homogeneity of excess demand and of Walras’ law by counting equa-
tions and unknowns. Suppose that for every price vector p, the demand
sets, ξi(p), and supply sets, ηj(p), are single points, so that ξi and ηj are
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functions, for all i and j . Then, the equilibrium price vector, p, may be
thought of as N unknowns, (p1, p2, . . . , pN), that satisfy the N-equations

I∑
i=1

[
ξi1(p1, . . . , pN) − ei1

]−
J∑

j=1

ηj1(p1, . . . , pN) = 0

I∑
i=1

[
ξi2(p1, . . . , pN) − ei2

]−
J∑

j=1

ηj2(p1, . . . , pN) = 0

...
I∑

i=1

[
ξiN(p1, . . . , pN) − eiN

]−
J∑

j=1

ηjN(p1, . . . , pN) = 0.

(4.11)

Since the functions ξi and ηj are homogeneous of degree 0, if (p1, p2, . . . ,
pN) solves this system so does (tp1, tp2, . . . , tpN), for any positive number
t , and hence the system is underdetermined. We can create an inhomoge-
neous system by adding an equation, such as

N∑
n=1

pn = 1, (4.12)

that normalizes prices. The system of equations 4.11 and 4.12 seems over-
determined, for there are N + 1 equations in N unknowns. Walras’ law,
however, implies that one of the equations in system 4.11 is redundant,
since the law says that if we multiply the nth equation by the nth price
and add the resulting equations, the left-hand sides sum to zero for any
price vector (p1, p2, . . . , pN). For instance, if (p1, p2, . . . , pN) solves all
but the kth equation of system 4.11 and if pk > 0, then the kth equation is
automatically satisfied as well, since

I∑
i=1

[
ξik(p1, . . . , pN) − eik

]−
J∑

j=1

ηjk(p1, . . . , pN) =

− p−1
k

∑
n�=k

pn

⎧⎨
⎩

I∑
i=1

[
ξin(p1, . . . , pN) − ein

]−
J∑

j=1

ηjn(p1, . . . , pN)

⎫⎬
⎭= 0.

Therefore for the N unknowns, there are exactly N independent equations,
namely, equation 4.12 plus N − 1 of the equations 4.11.

The formal statement of the theorem to be proved follows.
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equilirium existence theorem 4.14 Let z: {p ∈ R
N
+ | p > 0} → R

N

be such that

1. p.z(p) = 0, for all p

2. z is a continuous function

Then, there exists an N-vector p such that p > 0, z(p) ≤ 0, and, for all
n, pn = 0, if zn(p) < 0.

The proof uses the Brouwer fixed point theorem, where a fixed point of
a function is defined as follows.

definition 4.15 If f : X → X is a function, a fixed point of f is a point
x ∈ X, such that x = f (x).

brouwer fixed point theorem 4.16 Any continuous function from
a nonempty, compact, and convex subset of R

N to itself has a fixed point.

Let f : X → X be the function to which this theorem applies. I give
examples to show why each of the assumptions of the Brouwer fixed point
theorem are needed. Recall that a compact set is closed and bounded.

example 4.17 (Why X must be closed.) Let X = (0, 1]and f (x) = x/2.
The set X is convex and bounded but not closed, f is continuous, and f

has no fixed point.

example 4.18 (Why X must be bounded.) Let X = [0, ∞) and f (x) =
x + 1. The set X is convex and closed but not bounded, f is continuous,
and f has no fixed point.

example 4.19 (Why X must be convex.) Let X = {x ∈ R
2 | ‖x‖ = 1} and

f (x) = −x. The set X is compact but not convex, f is continuous, and f

has no fixed point.

example 4.20 (Why f must be continuous.) Let X = [0, 1] and

f (x) =
{

1, if 0 ≤ x ≤ 0.5,

0, if 0.5 < x ≤ 1.
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The set X is compact and convex, but f is not continuous and has no
fixed point.

Proof of Theorem 4.14.3 Restrict the price vector p to the set

�N−1 = {p ∈ R
N
+ |

N∑
n=1

pn = 1},

so that z: �N−1 → R
N is such that z is continuous and p.z(p) = 0, for all p.

I show that there exists a p ∈ �N−1 such that z(p) ≤ 0 and, for all n, pn =
0, if zn(p) < 0. By Walras’ law, 0 = p.z(p) =∑N

n=1 pnzn(p). Therefore if
zn(p) ≤ 0, for all n, then, pn = 0, for any n such that zn(p) < 0. Hence, it is
enough to show that z(p) ≤ 0.

Let g: �N−1 → R
N
+ be defined by the equation gn(p) = max(0, pn +

zn(p)), for all n and p. First of all, I show that g(p) > 0, for all p. Since
g(p) ≥ 0, it is sufficient to show that g(p) �= 0. This is so because

p.g(p) ≥ p.(p + z(p)) = p.p + p.z(p) = p.p > 0,

where the first inequality holds because p ≥ 0 and g(p) ≥ p + z(p) and the
last equation follows from Walras’ law.

Let the function f : �N−1 → �N−1 be defined by the equation

f (p) = g(p)∑N
n=1 gn(p)

.

This function is well defined, because g(p) > 0 and so
∑N

n=1 gn(p) > 0.
Since f is continuous and �N−1 is compact, nonempty, and convex, the

function f has a fixed point, p by the Brouwer fixed point theorem. Because
p = f (p), it follows that p = λg(p), for some positive number λ. By the
definition of g,

pn = λ max(0, pn + zn(p)),

for all n. Hence pn = 0, whenever max(0, pn + z(p)) = 0, and so

pn max(0, pn + zn(p)) = pn(pn + zn(p)),

for all n. We thus have the following equations.

3. This proof follows closely the argument in Debreu (1959, 82–83).
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p.g(p) =
N∑

n=1

pn max(0, pn + z(p)) =
N∑

n=1

pn(pn + zn(p))

= p.(p + z(p)) = p.p + p.z(p) = p.p,

where the last equation follows from Walras’ law. Therefore,

p.p = p.(λg(p)) = λp.g(p) = λ(p.p + p.z(p)) = λp.p,

which in turn implies that λ = 1, and hence p = g(p) or

pn = max(0, pn + zn(p)),

for all n. This equation is impossible if zn(p) > 0, for any n. Hence zn(p) ≤
0, for all n, as was to be proved. This completes the proof of the theorem.

The progression from p to p + z(p) to g(p) to f (p) may be seen in
figure 4.35 for two price vectors, p and p.

Theorem 4.14 is used in the next section as a step in the proof of a proper
equilibrium existence result, where assumptions are made only about util-
ity functions, endowments, and input-output possibility sets. The theorem
is not likely, however, to apply to any reasonable economic model, for excess
demand may not be defined for all price vectors. For instance, consumer
demand would not be defined if one of the prices were zero and utility
functions were strictly increasing, for there would be no upper bound on
the amount consumers would wish to consume of the free good.

Before going on, I define conditions under which demand ξi(p) and
supply ηj(p) have at most one value, so that market excess demand is single
valued when it is defined. The key condition for consumer demand is that
utility functions be strictly quasi-concave.

definition 4.21 A utility function u: RN
+ → R is said to be strictly quasi-

concave if for all x and y in R
N
+ and for all α such that 0 < α < 1, u(αx +

(1 − α)y) > min(u(x), u(y)).

If u is strictly quasi-concave and continuous, then for an number v , {x |
u(x) ≥ v} is strictly convex, where the strict convexity of sets is defined in
definition 3.39 (in section 3.5).

proposition 4.22 In any economy

E = ((uiei)
I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1),
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z(p)

p1

p2

z(p)

p + z(p)

0

p

p

p + z(p) = g(p)

f(p)

f(p)g(p)

Figure 4.35 The fixed point mapping

if the utility function of consumer i is strictly quasi-concave, then ξi(p)

contains at most one point, for every price vector p.

Proof. Suppose that ξi(p) contains two distinct vectors, x and x. Since
x and x maximize utility over consumer i’s budget set, βi(p), it follows
that ui(x) = ui(x). Also, x and x both belong to βi(p). Since this bud-
get set is convex, the vector x = 1

2 x + 1
2 x belongs to it as well. Since ui is

strictly quasi-convex, ui(x) > min(ui(x), ui(x)) = ui(x), which is impos-
sible, since x is a utility maximizing point in the budget set.

The corresponding assertion for firms requires the concept of strict con-
vexity.
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proposition 4.23 In any economy

E = ((uiei)
I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1),

if the input-output possibility set Yj is strictly convex, then ηj(p) has at
most one point for every price vector p.

Proof. Suppose that ηj(p) contains two distinct vectors y and y. Since y
and y maximize profits over Yj , p.y = p.y. Since Yj is strictly convex, the

vector y = 1
2 y + 1

2 y belongs to the interior of Yj , so that for a sufficiently
small positive number ε , y + εp belongs to Yj . But then p.(y + εp) =
p.y + εp.p > p.y = 1

2 p.y + 1
2 p.y = p.y, which contradicts the assumption

that y maximizes profits over Yj .

Although the assumptions of propositions 4.22 and 4.23 may not be con-
vincing, they do give conditions on a model that guarantee that demands
and supplies are single valued when they are defined.

4.8 A Complete Theorem on the Existence of Equilibrium

Theorem 4.14 may be applied to prove the following statement.

equilibrium existence theorem 4.24 In the economy

E = ((uiei)
I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1),

let Y =∑J
j=1 Yj and assume that

1. for all j , Yj is closed, strictly convex, and contains 0

2. Y ∩ R
N
+ = {0}

3. Y ∩ (−Y ) = {0}
4. for all i , ui is strictly increasing, strictly quasi-concave, and con-

tinuous

5. for all i , ei � 0

Then there exists an equilibrium (x , y , p).
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Proof.4 The outline of the proof is as follows. By theorem 3.54 (in section
3.7), the set of feasible allocations is compact and nonempty. Because the
set of feasible allocations is bounded, I can place an upper limit on the
amount of any commodity available to any firm or consumer. The resulting
truncated input-output and budget sets are compact, and the supply and
demand vectors defined from them exist for all price vectors. Theorem 4.14
applies to the corresponding truncated, market excess demand function, so
that there exists a price vector at which the truncated excess demand for no
commodity is positive. The last step is to verify that this price vector is an
equilibrium price vector for the economy with no truncation.

Because the set of feasible allocations is bounded, there exists a positive
number B such that if (x , y) is a feasible allocation, then | xin |< B and
| yjn |< B, for all i, j , and n. The truncated input-output possibility sets

are defined to be Y T
j

= {y ∈ Yj | ‖y‖ ≤ B
√

N}, for each j . For each j

and each p ∈ �N−1, let πT
j
(p) = supy∈YT

j
p.y. and let ηT

j
(p) = {y ∈ YT

j
|

p.y = πT
j
(p)}. Since YT

j
is compact and nonempty, ηT

j
(p) is nonempty

and so πT
j
(p) = p.y, for some y ∈ YT

j
. Since YT

j
is strictly convex, ηT

j
(p)

contains a single point by proposition 4.23, so that ηT
j

is a function. Observe

that if p ∈ �N−1 and y ∈ YT
j

, then p.y ≤ p.
(

B
√

N
‖p‖ p

)
= B

√
N‖p‖ ≤ B

√
N .

Therefore,

πT
j
(p) ≤ B

√
N , (4.13)

for p ∈ �N−1.
I now turn to the definition of the truncated consumer budget sets. For

each i and each p ∈ �N−1, the wealth of consumer i in the truncated econ-
omy is wT

i
(p) = p.ei +∑J

j=1 �ijπ
T
j
(p). In order to define an appropri-

ate truncation of the budget set, I need an upper bound on this wealth.
Since (x , y) = (e1, . . . , eI , 0, . . . , 0) is a feasible allocation, it follows that
| ein |< B, for all i and n, and hence p.ei < B, if p ∈ �N−1. Therefore in-
equality 4.13 implies that

wT
i
(p) ≤ p.ei +

J∑
j=1

πT
j
(p) < B + JB

√
N , (4.14)

for all i and for p ∈ �N−1 Since I need Walras’ law to apply to the truncated
consumer demand, there should be points in the truncated commodity

4. This proof is based on that of Debreu (1959), section 7 of chapter 5.



142 4 Competitive Equilibrium

space that cost at least as much as the consumer’s income. For this reason,
consumer i’s truncated budget set at price vector p is defined to be βT

i
(p) =

{x ∈ R
N
+ | xn |≤ B + JB

√
N , for all n, and p.x ≤ wT

i
(p)}. This budget set

is clearly compact and convex. I show that it is nonempty. Because each YT
j

contains the zero vector πT
j
(p) ≥ 0, for all j . Since ei � 0, p.ei > 0, for all

p such that p > 0. Therefore for such p,

wT
i
(p) ≥ p.ei > 0 (4.15)

and so βT
i
(p) is nonempty.

The truncated demand of consumer i is defined to be

ξT
i

(p) = {x ∈ βT
i
(p) | ui(x) ≥ ui(x), for all x ∈ βT

i
(p)}.

Since βT
i
(p) is compact and nonempty and ui is continuous, it follows that

ξT
i

(p) is nonempty. Since ui is strictly quasi-concave and βT
i

is convex, a
slight extension of proposition 4.22 implies that ξT

i
(p) contains a single

point and hence ξT
i

is a function.
I next show that

p.ξT
i

(p) = wT
i
(p), (4.16)

for all i, an assertion needed to prove that Walras’ law applies to the trun-
cated, market excess demand to which theorem 4.14 applies. Since ξT

i
(p) ∈

βT
i
(p), p.ξT

i
(p) ≤ wT

i
(p). Suppose that p.ξT

i
(p) < wT

i
(p). By the definition

of βT
i
(p), ξT

i
(p) ≤ (B + JB

√
N)e, where e is the N-vector (1, 1, . . . , 1).

If p ∈ �N−1, then p.ξT
i

(p) < wT
i
(p) < (B + JB

√
N) = p.(B + JB

√
N)e,

where the second inequality is inequality 4.14. Since p > 0, it follows that
ξT
i

(p) < (B + JB
√

N)e. Therefore for a sufficiently small positive num-
ber α,

p.{ξT
i

(p) + α[(B + JB
√

N)e − ξT
i

(p)]} < wT
i
(p),

so that ξT
i

(p) + α[(B + JB
√

N)e − ξT
i

(p)] belongs to βT
i
(p). Since ui is

strictly increasing,

ui(ξ
T
i

(p) + α[(B + JB
√

N)e − ξT
i

(p)]) > ui(ξ
T
i

(p)),

which is impossible since ξT
i

(p) is the point in βT
i
(p) that maximizes ui.

This completes the proof that p.ξT
i

(p) = wT
i
(p).

To apply theorem 4.14 to the truncated, market excess demand, I need
to show that it is continuous. To this end, I show that ηT

j
is a continu-



4.8 A Complete Theorem on the Existence of Equilibrium 143

ous function, for each j . Let pk be a sequence in �N−1 such that limk→∞
pk = p. I must show that limk→∞ ηT

j
(pk) = ηT

j
(p). If ηT

j
(pk) does not con-

verge to ηT
j
(p), then for some positive number ε , ‖ηT

j
(pk) − ηT

j
(p)‖ > ε,

for infinitely many k, so that there is a subsequence, which I again call
ηT

j
(pk), such that ‖ηT

j
(pk) − ηT

j
(p)‖ > ε, for all k. Since YT

j
is compact,

I may assume, by the Bolzano-Weierstrass theorem, that the sequence
ηT

j
(pk) converges to some vectory ∈ YT

j
. Passing to the limit in the equality

‖ηT
j
(pk) − ηT

j
(p)‖ ≥ ε, we see that ‖y − ηT

j
(p)‖ ≥ ε, so that y �= ηT

j
(p).

Therefore, p.ηT
j
(p) > p.y, since ηT

j
(p) is the unique point in YT

j
that max-

imizes p.y. Since limk→∞ pk .ηT
j
(p) = p.ηT

j
(p) and limk→∞ pk .ηT

j
(pk) =

p.y, it follows that pk .ηT
j
(p) > pk .ηT

j
(pk), for k sufficiently large, which

contradicts the definition of ηT
j
(pk). This contradiction proves that

limk→∞ ηT
j
(pk) = ηT

j
(p) and hence that ηT

j
is continuous.

I next show that ξT
i

is a continuous function for each i. First of all,
because each ηT

j
is continuous, it follows that

wT
i
(p) = p.ei +

J∑
j=1

�ijp.ηT
j
(p)

is a continuous function of p. I must show that if pk is a sequence in �N−1

that converges to p, then ξT
i

(pk) converges to ξT
i

(p). If ξT
i

(pk) does not
converge to ξT

i
(p) then there is a positive number ε such that ‖ξT

i
(pk) −

ξT
i

(p)‖ > ε, for infinitely many k. By passing to a subsequence, I may
assume that this inequality applies for all k. The truncated demands ξT

i
(pk)

belong to the compact set {x ∈ R
N
+ || xn |≤ B + JB

√
N , for all n}. There-

fore, by the Bolzano-Weierstrass theorem, I may assume that the sequence
ξT
i

(pk) converges to some x in this set. Since p.ξT
i

(pk) ≤ wT
i
(pk), for all k,

and wT
i

is a continuous function, it follows that p.x ≤ wT
i
(p) and hence

x ∈ βT
i
(p). Since ‖ξT

i
(pk) − ξT

i
(p)‖ > ε, for all k, it follows by passage to

the limit that ‖x − ξT
i

(p)‖ ≤ ε and hence x �= ξT
i

(p) and so ui(ξ
T
i

(p)) >

ui(x), since ξT
i

(p) is the unique point in βT
i
(p) that maximizes ui. If αis

such that 0 < α < 1 and α is sufficiently close to 1, then ui(αξT
i

(p))>ui(x).
Since p.ξT

i
(p) = wT

i
(p) > 0 by equation 4.16 and inequality 4.15, it follows

that p.(αξT
i

(p)) = αp.ξT
i

(p) < p.wT
i
(p). Hence, if k is sufficiently large,

pk .(αξT
i

(p)) < pk .wT
i
(pk) and so αξT

i
(p) ∈ βT

i
(pk). Similarly for k suffi-

ciently large, ui(αξT
i

(p)) > ui(ξ
T
i

(pk)), since ui is a continuous function
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and limk→∞ ξT
i

(pk) = x. This last inequality contradicts the definition of
ξT
i

(pk), and this contradiction proves that limk→∞ ξT
i

(pk) = ξT
i

(p) and
hence that ξT

i
is a continuous function.

I define the truncated, market excess demand to be

zT (p) =
I∑

i=1

[ξT
i

(p) − ei]−
J∑

j=1

ηT
j
(p).

Since by equation 4.16 p.ξT
i

(p) = wT
i
(p), for all i, it follows that p.zT (p) =

0, for all p > 0. That is, zT satisfies Walras’ law. Since ξT
i

and ηT
j

are con-

tinuous, zT is continuous. Therefore theorem 4.14 implies that there exists
a price vector p such that p > 0, zT (p) ≤ 0, and, for all n, (p)n = 0, if
zT
n
(p) < 0. Let xi = ξT

i
(p), for each i, and let yj = ηT

j
(p), for each j .

I show that (x , y , p) is an equilibrium. First of all,

I∑
i=1

(xi − ei) −
J∑

j=1

yi =
I∑

i=1

[ξT
i

(p) − ei]−
J∑

j=1

ηT
j
(p) = zT (p) ≤ 0,

so that (x , y) is a feasible allocation. Since pn = 0, if zT
n
(p) < 0, for all n, it

follows that, for all n, pn = 0, if
∑I

i=1(xin − ein) −∑J
j=1 yjn < 0. Because

the allocation (x , y) is feasible, | xin |< B and | yjn |< B, for all i , j , and n.
I show that yi = ηi(p), for all j . If yj �= ηj(p), then there exists a y ∈

Yj such that p.y > p.yj . Since | yjn |< B, for all n, if ε is a sufficiently
small positive number, | εyn + (1 − ε)yjn |≤ B, for all n, and so, since

Yj is convex, εy + (1 − ε)yT
j

. However, p.(εy + (1 − ε)yj ) = εp.y + (1 −
ε)p.yj > p.yj , which is impossible, since yj = ηT

j
(p). This contradiction

proves that yj = ηj(p). It follows that πT
j
(p) − p.yj = πj(p) and so

wT
i
(p) = wi(p), (4.17)

for all i.
I next show that xi = ξi(p), for all i. Suppose that xi �= ξi(p). Then for

some x ∈ βi(p), ui(x) > ui(x). Since | xin |< B, for all n, if ε is a sufficiently
small positive number, then | εxn + (1 − ε)xin |≤ B, for all n. Since

p.(εx + (1 − ε)xi) = εp.x + (1 − ε)p.xi ≤ εwi(p) + (1 − ε)wT
i
(p)

= εwT
i
(p) + (1 − ε)wT

i
(p) = wT

i
(p),

where the second equation follows from equation 4.17. Hence εx = (1 −
ε)xi ∈ βT

i
(p). Since ui is strictly quasi-concave, ui(εx + (1 − ε)xi) >
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min(ui(xi), ui(xi)) = ui(xi). This inequality contradicts the assumption
that xi = ξT

i
(p). I have shown that (x , y , p) has all the properties of an

equilibrium.

The theorem just proved has a number drawbacks. The assumptions
that utility functions are strictly quasi-concave and strictly increasing are
unnecessarily restrictive, as is the assumption that input-output possibility
sets are strictly convex and that endowments are strictly positive. There
is a literature proving stronger existence theorems. Section 5.3 contains a
somewhat stronger existence theorem, though the point of that section is
not the strength of the theorem but its method of proof.

4.9 An Example of Discontinuous Behavior of Equilibria

In comparative static analysis, assertions are made about how equilibria
respond to changes in the values of parameters governing an economy’s
description. Unfortunately equilibria may depend so discontinuously on
such parameters that general comparative static statements may be impos-
sible. Equilibrium depends continuously on parameters only under special
assumptions. There follows an example in which equilibrium varies discon-
tinuously with consumers’ endowments.

example 4.25 The example is of an Edgeworth box economy. The pa-
rameter varied is consumer A’s endowment of good 1. Consumer B’s en-
dowment of good 1 is such that the total endowment remains constant;
the endowment of consumer A is eA = (eA1, 0), and that of consumer B
is eB = (10 − eA1, 10), so that the total endowment of each good is 10. The
utility function of consumer B is

uB(x1, x2) = min(x1, x2),

and that of consumer A is

uA(x1, x2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2x1 − 1, if x2 ≥ x1 − 1 and x1 ≥ 3.25,

x1 + x2, if x1 + x2 ≤ 5 or x2 ≤ x1 − 1, and

x1 + x2 − 5

1 + 2(x2 − x1 + 1)
+ 5, if x1 + x2 ≥ 5

and x2 ≥ x1 − 1 and x1 ≤ 3.25.

(4.18)
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Figure 4.36 The Edgeworth box diagram for example 4.25

The southwest part of the Edgeworth box diagram for the example is pic-
tured in figure 4.36. The dashed lines in the figure are indifference curves
for consumer A, and the solid lines are indifference curves for consumer B.
The dotted lines of slope 1 are guide lines used in defining the indifference
curves for the two consumers.

I verify that the uA is consistently defined and hence is continuous. Con-
sider the region C defined by the inequalities

x2 ≥ x1 − 1 and x1 ≥ 3.25,

and the region D defined by the inequality

x2 ≤ x1 − 1 or x1 + x2 ≤ 5.
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These regions meet along the half line L defined by the formulas

x2 = x1 − 1, x1 ≥ 3.25

In region D and along line L,

uA(x1, x2) = x1 + x2 = x1 + x1 − 1 = 2x1 − 1,

which is the value of uA(x1, x2) in region C, so that the uA is consistently
defined over these two regions.

The region E, defined by the inequalities

x1 + x2 ≥ 5, x2 ≥ x1 − 1, and x1 ≤ 3.25,

intersects each of the other two regions. It meets region D along the line
segment M , defined by the formulas

x1 + x2 = 5, 0 ≤ x1 ≤ 3,

and along line segment M ′, defined by the formulas

x2 = x1 − 1 and 3 ≤ x1 ≤ 3.25.

In region D , uA(x1, x2) = x + 1 + x2. This function equals 5 along line
segment M , and along M the function uA as defined in region E also
equals 5, as is evident from formula 4.18. Along line segment M ′, uA =
x1 + x2 in both regions D and E. Region E meets region C along line
segment M ′′ defined by the formulas

x1 = 3.25 and x2 ≥ 2.25.

The function uA of region C equals 5.5 along line segment M ′′, and uA as
defined in region E, equals

x1 − 1.75

1 + 2(x2 − 2.25)
+ 5 = x2 − 1.75

2(x2 − 1.75)
+ 5 = 5.5,

so that uA is defined consistently on the union of regions C and E. The
function uA is continuous, because it is defined by consistent formulas that
are continuous on each of a finite number of closed regions of definition.

It is now possible to describe the equilibria. Prices will be normalized
so that p1 = 1. If 0 ≤ eA1 ≤ 5, then there is an equilibrium with p2 = 1 and
xA = ( eA1

2 , eA1
2

)
, as should be clear from figure 4.36. If eA1 ≥ 3.25, there is an
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equilibrium with p2 = 0 and xA equal to any member of the set {(eA1, x2) |
eA1 − 1 ≤ x2 ≤ eA1}.

There are also equilibria where the allocation to consumer A lies in the
region E. In order to define these equilibria, let uA(x1, x2) = � + 5 in
region E, where

� = x1 + x2 − 5

1 + 2(x2 − x1 + 1)
.

Solving for x2, we find that

x2 = 1 + 2�

1 − 2�
x1 + 5 + 3�

1 − 2�
.

That is, the indifference curve of consumer A for utility level � + 5 is a
straight line segment in region E with slope − 1+2�

1−2� . From figure 4.36, it is
clear that any equilibrium allocation for consumer A in region E is of the
form xA = (x , x). Then,

uA(x , x) = 2x − 5

3
+ 5 = � + 5,

where

� = 2x − 5

3
. (4.19)

If the equilibrium price vector is (p1, p2) = (1, p2), then the equation for
consumer A’s budget line is

x2 = −p−1
1 x1 + p−1

2 eAt ,

and so

−p−1
2 = −1 + 2�

1 − 2�
or

p2 = 1 − 2�

1 + 2�
. (4.20)

If we substitute equation 4.19 into equation 4.20 and solve for x, we obtain

x = 13 + 7p2

4(1 + p2)
. (4.21)

Consumer A’s budget equation for the equilibrium at xA = (x , x) is

(1 + p2)x = eA1. (4.22)
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1

p2

eA11 20 3 4 5

Figure 4.37 Graph of the multivalued equilibrium function for example 4.25

If we substitute equation 4.21 into equation 4.22 and solve for p2, we find
that

p2 = 4eA1 − 13

7
. (4.23)

Equation 4.23 defines an equilibrium price p2, for every value of eA1 from
3.25 to 5. If eA1 = 5, then p2 = 1, and if eA1 = 3.25, then p2 = 0. The relation
between eA1 and p2 is expressed by a multivalued function, the graph of
which is portrayed in figure 4.37. Notice that if eA1 < 3.25, then there is
only one equilibrium price vector, namely (p1, p2) = (1, 1). Similarly, if
eA1 > 5, there is only one equilibrium price vector, (1, 0). If 3.25 < eA1 < 5,

there are three equilibrium price vectors, namely (1, 0),
(

1, 4eA1−13
7

)
, and

(1, 1). If eA1 = 3.25 or eA1 = 5, there are two equilibrium price vectors,
(1, 0) and (1, 1). Imagine that 3.25 < eA1 < 5 and that we decrease eA1 while

keeping the equilibrium price vector at (1, 0) or
(

1, 4eA1−13
7

)
. When eA1

arrives at 3.25, these two price vectors come together at (1, 0), and when
eA1 passes 3.25, the equilibrium at (1, 0) disappears and the equilibrium
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price vector must jump to (1, 1). It is in this sense that the relation between
the parameter eA1 and the price vector is discontinuous.

For purposes of exposition, the example has indifference curves com-
posed of straight line segments. With more work, a similar example can be
created with utility functions that are strictly increasing and strictly con-
cave.

Problem Set

1. Solve

max
x1≥0, x2≥0

(√
x1 + √

x2

)2

s.t. p1x1 + p2x2 = w.

2. Calculate a consumer’s demand for goods 1 and 2 as a function of p1

and p2—the prices of goods 1 and 2, respectively, when the consumer’s
utility function and initial endowment are as below. Draw the offer
curve in each case.

(a) u(x1, x2) = x5
1x

2
2 , e = (10, 0)

(b) u(x1, x2) = min(5x1, 2x2), e = (10, 0)
(c) u(x1, x2) = 5x1 + 2x2, e = (10, 0)
(d) u(x1, x2) = ln(x1) + ln(x2), e = (1, 1)

3. Suppose that the production function for good 3 is

y3

(√
y1 + √

y2

)2
.

Let p = (p1, p2, p3) be the vector of prices of the three goods, where
p � 0.

(a) For what price vectors p is π(p) < ∞ , where π(p) is the supre-
mum of the possible profits?

(b) Find π(p) and η(p), for those price vectors for which they are
defined, where η(p) is the set of profit-maximizing input-output
vectors.

4. In cases (a) and (b) below, find π(p) and η(p) for any vector p of
appropriate dimension and such that p > 0, where π(p) = supy∈Y p.y
and η(p) = {y ∈ Y | p.y = π(p)}.
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(a) Y = {(y1, y2, y3) | y1 ≤ 0, y2 ≤ 0, and 0 ≤ y3 ≤ y
1/4
1 y

1/2
2 }

(b) Y = {(y1, y2, y3, y4) | y1 ≥ 0, y2 ≥ 0, y3 ≤ 0, y4 ≤ 0, and y2
1 + y2

2 ≤√
y3y4}

5. Consider the Robinson Crusoe economy with utility function

u(x1, x2) = ln(x1) + 2 ln(x2),

endowment vector e = (1, 0), and production function

y2 = −2y1,

where x1 and x2 are the consumptions of commodities 1 and 2,
respectively, and (y1, y2) is the input-output vector of Robinson
Crusoe’s firm. Find all equilibria with the price of the first good equal
to 1.

6. Consider the Edgeworth box economy with the following utility
functions:

(a) uA(x1, x2) = 3x1 + x2 and uB(x1, x2) = x1 + 3x2 and endowment
vectors eA = (2, 0) and eB = (0, 2). Find all equilibria with the
price of the first good equal to 1.

(b) uA(x1, x2) = x1 + 3x2 and uA(x1, x2) = 3x1 + x2 and endowment
vectors eA = (2, 0) and eB = (0, 2). Find all equilibria with the
price of the first good equal to 1.

7. Consider the Edgeworth box economy where

eA = (12, 0), eB = (0, 12) and

uA(x1, x2) = uB(x1, x2) = x
1/3
1 x

2/3
2 .

(a) Calculate and draw accurately the offer curves for each consumer.
(b) Find all competitive equilibria with the price of the first good equal

to 1.

8. Consider the following Edgeworth box economy.

uA(x1, x2) = 1

3
ln(x1) + 2

3
ln(x2), eA = (18, 0),

uB(x1, x2) = 1

2
ln(x1) + 1

2
ln(x2), eB = (0, 20).

Find all competitive equilibria with prices that sum to 1.
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9. Consider an Edgeworth box economy with utility functions
uA(x1, x2) = min(3x1, x2) and uB(x1, x2) = min(x1, 3x2).

(a) Find the unique equilibrium with eA = (4, 0) and eB = (0, 4) and
the price of good 1 equal to 1. Compute the utility of person A at
the equilibrium.

(b) Find the unique equilibrium with eA = (6, 0) and eB = (0, 4) and
the price of good 1 equal to 1.

(c) Compute the utility of person A at the equilibrium of part (b)
and compare it with his utility in the equilibrium of part (a). Is
there anything paradoxical about your finding? Can you explain
intuitively why person A’s utility level changes in the way that it
does from part (a) to part (b)?

10. Consider the following Edgeworth box economy.

uA(x1, x2) = (√
x1 + 2

√
x2

)2 = uB(x1, x2),

eA = (4, 1), eB = (1, 4).

(a) Find the set of Pareto optimal allocations and draw it in a box
diagram. Indicate the endowment point.

(b) Find the utility possibility frontier and draw it.
(c) Find a competitive equilibrium with the price of good 1 equal to 1.
(d) Find positive numbers aA and aB such that the competitive

equilibrium allocation maximizes the welfare function aAuA(xA1,
xA2) + aBuB(xB1, xB2) over the set of feasible allocations (xA, xB).

11. Consider the following Edgeworth box economy.

uA(x1, x2) = min(4x1, x2), uB(x1, x2) = 4x1 + x2,

eA = (0, 4), eB = (4, 0).

Do the following for this economy.

(a) Show the set of Pareto optimal allocations in a box diagram.
(b) Make a precise drawing of the utility possibility frontier.
(c) Compute a general equilibrium such that the sum of the prices is 1.

Show the equilibrium allocation in a box diagram. Show the utility
vector corresponding to the equilibrium allocation on a diagram
of the utility possibility frontier.

(d) Compute nonnegative numbers aA and aB such that the equilib-
rium allocation maximizes the welfare function

aAuA(xA1, xA2) + aBuB(xB1, xB2).
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12. Consider the following model with two consumers, A and B, and with
two commodities, 1 and 2.

uA(x1, x2) = x1 + ln(x2), uB(x1, x2) = x1 + 2 ln(x2),

eA = (eA1, eA2), eB = (eB1, eB2).

Assume that eA1 > 10, eB1 > 10, eA2 > 0, eB2 > 0, and |eA2 + eB2| ≤ 1.

(a) Compute an equilibrium where the price of good 1 is 1. The
equilibrium price of good 2 and the equilibrium allocations will
be formulas in terms of the endowments. (Hint: The endowments
of good 1 are so large that each consumer consumes a positive
amount of good 1 in equilibrium.)

(b) Show that the price of good 2 and the consumer’s consumption of
good 2 depends only on eA2 + eB2.

13. Compute an equilibrium for the following economy with labor, two
produced goods, two consumers, A and B, and two firms, 1 and 2.
In commodity vectors, the first component is labor–leisure time, the
second component is the first produced good, and the third is the
second produced good.

eA = (2, 0, 0), uA(�, x1, x2) = � + x1 + x2, �A1 = 1, �A2 = 0,

eB(2, 0, 0), uB(�, x1, x2) = �x2
1x

3
2 , �B1 = 0, �B2 = 1,

y1 = 2
√

L1, y2 = 2
√

L2,

where y1 and y2 are the outputs of produced goods 1 and 2, respectively,
and L1 and L2 are the inputs of labor into the production of goods 1
and 2, respectively. Let the price of labor be 1. (Hint: Use the fact
that person A’s utility function is linear to guess the equilibrium price
vector.)

14. Compute an equilibrium for the following economy.

uA(x1, x2) = x
3/7
1 x

4/7
2 = uB(x1, x2),

eA = eB = 0,

Y1 = {(y1, y2) | y1 ≥ 0, 0 ≤ y2 ≤ 3 − y1},

Y2 =
{
(y1, y2) | y1 ≥ 0, 0 ≤ y2 ≤ 4 − 2y1

5

}
,

�A1 = 1, �A2 = 0, �B1 = 0, �B2 = 1.

(Hint: Compute the total output possibility set. Use the fact that both
consumers have the same Cobb-Douglas utility function.)
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15. Suppose that there is one input, labor (L), and that there are two
outputs, goods 1 and 2. The production function for good 1 is
y1 = f1(L), and the production function for good 2 is y2 = f2(L).
There is one unit of labor available for use in the production of goods
1 or 2. Calculate a formula for the total output possibility set for goods
1 and 2 and draw it when

(a) f1(L) = L and f2(L) = 2L.
(b) f1(L) = √

L and f2(L) = 2
√

L.

16. There are two primary inputs, labor (L) and land (T ), and two
outputs, goods 1 and 2. The production function of good 1 is

y1 = L1/4T 3/4,

and the production function for good 2 is

y2 = L3/4T 1/4.

There is one unit of labor and one unit of land available for the
production of goods 1 and 2.

(a) Sketch in a box diagram and compute a formula for the set of
efficient allocations of land and labor to the production of goods 1
and 2.

(b) Sketch the total production possibility set for goods 1 and 2.
(c) What allocation of labor and land to the production of the two

outputs maximizes the sum of the two outputs, y1 + y2?

17. There is one primary good, labor, and there are two outputs, goods
1 and 2. Good 1 is used as an input in the production of good 2 and
good 2 is used as an input in the production of good 1. The production
function for good 1 is y1 = f1(y12, L), where y12 is the amount of
good 2 used as an input in the production of good 1. The production
function for good 2 is y2 = f2(y21, L), where y21 is the amount of good
1 used in the production of good 2. There is one unit of labor to use in
the production of goods 1 or 2.

(a) Compute a formula for the total output possibility set for goods 1
and 2 and draw it when

f1(y12, L) = min(2y12, L) and

f2(y21, L) = min(3y21, L).
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(b) Suppose that the price of labor is 1. What are the prices of goods 1
and 2 such that when each production process is operated so as to
maximize profits at these prices, the two processes together use up
the one unit of labor available and produce a positive total amount
of each of goods 1 and 2?

18. An economy with two produced commodities and labor has linear
production processes represented by activity vectors (−1, −1, 3) and
(−1, 2, −1), where the first commodity is labor. If the price of labor is
one, what are the prices of the other two commodities in a competitive
equilibrium in which positive amounts of both the second and third
goods are consumed?

19. There are two primary goods, goods 1 and 2, and there are two
produced goods, goods 3 and 4. There is an endowment of one unit of
each of the primary goods. The production functions for goods 3 and
4 are, respectively,

f3(y1, y2) = min(2y1, y2) and f4(y1, y2) = min(y1, 2y2).

(a) In a box diagram, indicate the set of efficient allocations of goods
1 and 2 to the production of goods 3 and 4.

(b) Draw the output possibility set for goods 3 and 4.
(c) Suppose that equal positive quantities of goods 3 and 4 are

produced at a point, z, on the output possibility frontier for goods
3 and 4. If the price of good 4 is 1, what are the possible prices of
goods 1, 2, and 3, such that the point z would be produced if both
production processes were operated so as to maximize profits at
these prices and if no more than the endowments of goods 1 and 2
were used in production?

20. Think of a society with three commodities—food, wood, and labor. It
has four linear activities, described by the following matrix.

Activity 1 Activity 2 Activity 3 Activity 4

Food 5 7 −5 −3

Wood −2 −6 12 10

Labor −1 −1 −1 −1

The society has one unit of labor available.
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(a) Plot the society’s production possibility frontier for food and
wood.

(b) Suppose the society consumes both food and wood and that
all commodities are priced so that activities are operated so as
to maximize profits at those prices. If production is organized
efficiently, what must the prices of food and wood be in terms of
labor?

21. Consider the following linear activity model. There are two produced
goods, food and wood, and two primary inputs, labor and land. One
unit of each of labor and land are available. There are three activities,
with coefficient vectors given in the following table.

Activity 1 Activity 2 Activity 3

Food 6 6 −1

Wood −1 −1 6

Labor −2 −1 −2

Land −1 −2 −1

(a) Find the production possibility frontier between food and wood.
(b) Draw the frontier.
(c) What are the prices of food, wood, and land in terms of labor if

prices are such that profits are maximized and twice as much food
is produced as wood?

22. Suppose that steel (S) is produced from coal (C) and labor (L)

according to the production function S = 2
√

CL, and coal is produced
from steel and labor according to the production function C = √

SL

There is one unit of labor available for coal and steel production. Find
the production possibility frontier for coal and steel.5

23. Two people live on separate islands, Houtt and Coutt. Each person is
endowed with one unit of labor. There are two produced goods, cloth
and food. The utility function of each person is

u(xF, xC) = ln(xF)

4
+ 3 ln(xC)

4
,

5. I owe this problem to a personal communication from Professor Herbert Scarf.



Problem Set 157

where the notation should be obvious. On Houtt Island, the produc-
tion functions for food and cloth are

yF = 20L and yC = 10L,

respectively, where again the notation should be obvious. On Coutt
Island, the production functions for food and cloth are

yF = 10L and yC = 20L.

The two people cannot trade in food, cloth, or labor.

(a) Compute the output possibility frontiers for food and cloth for the
two islands separately, assuming that each island can use only the
labor of the person on that island.

(b) Compute an equilibrium for each island separately with the price
of labor equal to 1 on both islands.

(c) Compute the utility of Houtt and Coutt in the equilibrium. (This
is the maximum each can obtain without trade.)

Now suppose that Houtt and Coutt can trade cloth and food freely
but still cannot trade labor. That is, neither can go work on the other’s
island.

(d) What is the output possibility frontier for food and cloth now?
(e) Compute a competitive equilibrium with free trade. Be sure to

specify the production of Houtt and Coutt of each good. Let the
price of Houtt’s labor be 1. Be sure to specify all prices, including
the price of Coutt’s labor.

(f) What are the utility levels of Houtt and Coutt in the equilibrium
with trade? Compare these utility levels with those from part (c).

24. Robinson Crusoe and Friday live on separate islands and produce two
goods, cloth yC and food yF using two factors of production, land (T )

and labor (L). The utility functions of both Crusoe and Friday are

u(yF, yC) = yFyC.

The production function for cloth is

yC = 4L1/4T 3/4.

The production function for food is

yF = rL3/4T 1/4.
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Crusoe is endowed with two units of labor and one of land. Friday is
endowed with one unit of labor and two of land.

(a) Suppose there is no trade between the islands. Compute separate
equilibria for Crusoe and Friday, letting the labor of each be the
unit of account on his own island.

(b) Suppose there is free trade between the islands in cloth and food
but no trade in labor and land. Compute the equilibrium for the
two islands together with the labor of Crusoe as the unit of account.
(Hint: Use the symmetry of the problem.)

25. Consider an Edgeworth box economy with endowments eA = (1, 0)
and eB = (0, 1) and utility functions uA(x1, x2) and uB(x1, x2), where
uA and uB are continuous and strictly quasi-concave.

(a) Can an equilibrium exist if both utility functions are everywhere
strictly decreasing with respect to x1 and x2?

(b) Does an equilibrium necessarily exist if both uA and uB are
decreasing with respect to x1 and increasing with respect to x2?

(c) Does an equilibrium necessarily exist if uA is decreasing with
respect to x1 and increasing with respect to x2, and uB is increasing
with respect to x1 and decreasing with respect to x2?

26. (a) Which of the functions, z: {x ∈ R
N | x > 0} → R

N , listed below
could be the aggregate or market excess-demand function for an
economy in the sense that they are homogeneous of degree 0 and
satisfy Walras’ Law?

(i) z(p1, p2) = (p1, p2)

‖p‖ .

(ii) z(p1, p2) =
(

p2 − p1

p1

,
p1 − p2

p2

)
.

(iii) z(p1, p2) = (p2, −p1)

p1 + p2

.

(iv) z(p1, p2) = (p2, −p1)

p.p
.

(b) For each of the four functions above that could be the excess
demand function for an economy, find an equilibrium price
vector.

27. Three next-door neighbors put up flagpoles. The flagpole height
chosen by each neighbor depends continuously on the heights chosen
by the other two. (For instance, having too tall a pole compared to the
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neighbors would be ostentatious, whereas having one too short would
look stingy.) A town ordinance imposes an upper limit of 100 feet on
flagpole heights. The choices of flagpole heights are in equilibrium
when no one wishes to change the height of their flagpole. Prove that
there exists an equilibrium.

28. Suppose a stock-market analyst publishes forecasts of the prices of N

stocks one month ahead. He or she knows that the price of the nth
stock, pn, is influenced by the forecast, the influence being expressed
by the continuous functions pn = fn(q , . . . , qN), for n = 1, . . . , N

and where qn is the forecast of the price of the nth stock. Assume that
fn(q1, . . . , qN) > 0, for all q1, . . . qN , and that there is a Q > 0 such
that fn(q1, . . . , qN) < Q, for all q1, . . . , qN . Prove that the market
analyst can make a correct forecast if he or she knows the functions fn.

29. Suppose that the pure exchange economy E = ((ui , ei)
I
i=1) satisfies

the following assumptions: (i) Each utility function depends directly
on the price vector p as well as on the consumption vector xi, so that
consumer i’s utility is ui(xi , p). Hence ui: R

N
+\{0} → R. (ii) For each i,

ui is continuous with respect to both p and xi and is strictly increasing
and strictly concave with respect to xi. (iii) For each i , ei � 0.

(a) Prove that E satisfies Walras’ law.
(b) Prove that E has a competitive equilibrium.
(c) Either prove or give a counter example to the statement that the

allocation of any competitive equilibrium for E is Pareto optimal.
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The Welfare Theorems

The first welfare theorem is probably the assertion that economists are most
proud of. It is the statement that competitive equilibrium allocations are
Pareto optimal. A complementary assertion is the second welfare theorem,
which states that any Pareto optimal allocation can be achieved as the allo-
cation of a competitive equilibrium after an appropriate lump-sum redistri-
bution of wealth among consumers. As was mentioned in chapter 1, these
assertions are best thought of as referring to an ideal world that can perhaps
be approximated in reality by means of suitable government policies. The
assertions are also useful tools in the analysis of equilibrium. In section 5.3,
I use the second welfare theorem to prove the existence of equilibrium, and
in chapters 9 and 10 we will see that the relations between optimality and
equilibrium give insight into the overlapping generations model.

5.1 The First Welfare Theorem

The intuition underlying the first welfare theorem may be seen by consid-
ering equilibria in the Robinson Crusoe and Edgeworth box economies,
illustrated in figures 5.1 and 5.2, respectively. In both figures, sets of points
preferred by a consumer to the equilibrium allocation are shaded. In figure
5.1, we see that the set of points preferred to the equilibrium allocation, E,
does not intersect the feasible set, F, so that no feasible allocation is pre-
ferred to E. In figure 5.2, we see that the set of points preferred by either
consumer to the equilibrium allocation does not intersect the set of points
at least as desired as that allocation by the other consumer. Therefore no
feasible allocation can Pareto dominate E.
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Figure 5.1 Equilibrium and optimality in the Robinson Crusoe economy
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Figure 5.2 Equilibrium and optimality in the Edgeworth box economy
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Some condition is necessary for the validity of the first welfare theorem,
for it is easy to construct a counterexample to the unconditional statement
that equilibrium allocations are Pareto optimal.

example 5.1 (Equilibrium allocations may not be Pareto optimal.) Let
an Edgeworth box economy have utility functions uA(x1, x2) = 0 and
UB(x1, x2) = x1x2 and endowments eA = (2, 0) and eB = (0, 2). Then, the
allocation xA = xB = (1, 1) and the price vector p = (1, 1) form an equi-
librium. Nevertheless, the allocation xA = (0, 0), xB = (2, 2) Pareto dom-
inates the allocation (xA, xB), because consumer A does not mind losing
one unit of each good to consumer B.

The first welfare theorem fails in this example, because consumer A is in-
different between all allocations. Such blanket indifference is impossible if
utility functions have the property of local nonsatiation defined in defini-
tion 4.2 (in section 4.2), and this property turns out to be enough to ensure
that all equilibrium allocations are Pareto optimal.

first welfare theorem 5.2 If the economy E = ((ui , ei)
I
i=1, (Yj)

J
j=1,

(�ij)
I
i=1, J

j=1) is such that ui is locally nonsatiated, for all i, then any equi-
librium allocation is Pareto optimal.

Proof. Let (x , y , p) be an equilibrium, and suppose that (x , y) is not
Pareto optimal. Then, there exists a feasible allocation, (x , y), that Pareto
dominates (x , y), so that ui(xi) ≥ ui(xi), for all i, and ui(xi) > ui(xi), for
some i. If ui(xi) > ui(xi), then p.xi > wi(p), since xi solves the problem

max
x ∈ R

N+
ui(x)

s.t. p.x ≤ wi(p).

I show that if ui(xi) = ui(xi), then p.xi ≥ wi(p). If on the contrary p.xi <

wi(p), then by local nonsatiation there exists a vector x′ in R
N
+ such that

ui(x′) > ui(x) ≥ ui(xi) and such that x′ is so close to xi that p.xi < wi(p).
This assertion contradicts the assumption that xi solves the problem

max
x ∈ R

N+
ui(x)

s.t. p.x ≤ wi(p).
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In summary, p.xiwi(p), for all i, and p.xi > wi(p), for some i. Summing
these inequalities over i, we see that

I∑
i=1

p.xi >

I∑
i=1

wi(p). (5.1)

However,

I∑
i=1

wi(p) =
I∑

i=1

⎛
⎝p.ei +

J∑
j=1

�ijp.yj

⎞
⎠=

I∑
i=1

p.ei +
J∑

j=1

(
I∑

i=1

�ij

)
p.yj

=
I∑

i=1

p.ei +
J∑

j=1

p.yj ≥
I∑

i=1

p.ei +
J∑

j=1

p.yj

= p.

⎛
⎝ I∑

i=1

ei +
J∑

j=1

yj

⎞
⎠ ,

(5.2)

where the third equation follows from the assumption that
∑I

i=1 �ij = 1,
for all j , and the inequality follows from the fact that each yj maximizes
profits over Yj at price vector p. Inequalities 5.1 and 5.2 imply, however,
that

p.
I∑

i=1

xi > p.

⎛
⎝ I∑

i=1

ei +
J∑

j=1

yj

⎞
⎠ ,

and this inequality is impossible since p > 0 and the feasibility of (x , y)

implies that
∑I

i=1 xi ≤∑I
i=1 ei +∑J

j=1 yj . This contradiction proves the
theorem.

An important implicit assumption underlying the first welfare theorem
is that there are no external effects. An external effect is an interaction
among consumers and firms other than the exchange of commodities and
that affects utilities or input-output possibilities. For short, external effects
are called externalities. An example of a negative externality among con-
sumers would be the annoyance caused to a consumer by the smoke from a
neighbor’s backyard barbecue. The pleasure derived from the same neigh-
bor’s flower garden would be a positive externality. Sports or commercial
fishermen can have a negative external effect on the production possibilities
of another commercial fisherman by reducing the number of fish available.
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If two construction companies employ the same carpenters on different
projects or shifts, one company can have a positive external effect on the
other by improving the carpenters’ skills.

In economies with externalities, equilibria may exist but not be Pareto
optimal, as the following examples show.

example 5.3 Consider the Robinson Crusoe economy with utility func-
tion u(�, x) = �x, endowment equal to e = (3/2, 0), and production func-
tion equal to y = f (L, x) = Lx, where � is leisure consumption, L is labor
input, y is food output, and x is food consumption. The variable x appears
in the production function not as an input but as an external effect. Eating
more makes Robinson more productive.

I show that in equilibrium, x = 0. Suppose the price of labor is positive.
We may then normalize it to be 1. If x is positive, then L is positive as well in
equilibrium and Robinson’s firm solves the profit-maximization problem

max
L≥0

(qLx − L),

where q is the price of food. Since L is positive at the maximum, qx = 1, so
that q = 1/x. As a consumer, Robinson solves the problem

max
�≥0, z≥0

�z

s.t. pz + � ≤ 3/2,

where z is a dummy variable that equals x in equilibrium. The solution of
this problem is � = 3

4 and z = 3
4q

= 3
4x. Since z = x, the equation z = 3

4x

can be valid only if z = x = 0. Suppose that the price of labor is 0. Then the
price of output must be positive, and we may normalize it to be 1. If x is
positive, then the firm’s profit-maximization problem,

max
L≥0

Lx ,

has no solution. Therefore x = 0.
We may let the equilibrium price vector be p = (0, 1). Robinson’s budget

set is then the nonnegative part of the horizontal axis. Since he is indifferent
to all points on it, we may assume that he chooses the point (3/2, 0). The
resulting equilibrium allocation � = 3/2, x = y = L = 0 is not Pareto opti-
mal, for it gives Robinson 0 utility and the feasible allocation � = 1/2, y =
x = L = 1 gives Robinson the positive utility 1/2.
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example 5.4 Consider the Edgeworth box economy with eA = (2, 0),
eB = (0, 2), uA(xA1, xA2, xB1) = xA1xA2 − xB1, and uB(xB1, xB2) =
xB1xB2. Consumer B’s consumption of good 1 causes consumer A dis-
comfort. An equilibrium is xA = xB = (1, 1) and p = (1, 1). The equilib-
rium allocation is not Pareto optimal, however, for it is Pareto dominated
by the feasible allocation xA = (

5
4 , 2

3

)
, xB = (

3
4 , 4

3

)
, since uA

(
5
4 , 2

3 , 3
4

) =
5
4

2
3 − 3

4 = 1
12 > 0 = uA(1, 1, 1) and uB

(
3
4 , 4

3

)= 1 = uB(1, 1).

5.2 The Second Welfare Theorem

The second welfare theorem is nearly a converse of the first. It may be visu-
alized in an Edgeworth box, as in figure 5.3. The Pareto optimal allocation
x in the figure is that of an equilibrium, if a lump-sum transfer payment
from person A to person B shifts the budget line from the dashed line go-
ing through the endowment to the solid line tangent to the two indifference
curves through point x. The idea of the theorem is that any Pareto optimal

Transfer
from A to B

p

e

x
IB

IA

0B

0A

Figure 5.3 An equilibrium with transfer payments
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allocation, x, can be achieved as an equilibrium by using a transfer payment
to shift a budget line of the appropriate slope.

Formally, an equilibrium with transfer payments is defined as follows.

definition 5.5 (x , y , p, τ) is a competitive equilibrium with transfer
payments for the economy E = ((ui , ei)

I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1), if

1. (x , y) is a feasible allocation

2. p ∈ R
N
+ and p > 0

3. τ = (τ1, τ2, . . . , τI ) ∈ R
I

4. for all j , p.yj ≥ p.y, for all y in Yj

5. for all i, xi solves the problem

max
x ∈ R

N+
(x)

s.t. p.x ≤ wi(p) − τi ,

where wi(p) = p.ei +∑J
j=1 �ijp.yj

6. for all n, pn = 0, if
∑I

i=1 xin <
∑I

i=1 ein +∑J
j=1 yjn

The quantity τi is a lump-sum transfer payment made by consumer i

to other consumers. An equilibrium with transfer payments is an ordinary
competitive equilibrium in the sense of definition 4.1 if the transfer pay-
ments are all zero, that is, if τ = 0. The next proposition says that if utility
functions are nonsatiated, then in equilibrium, transfer payments sum to
zero, so that they redistribute wealth among consumers. This implies that
in Robinson Crusoe models, there can be no transfer payments in equilib-
ria with transfer payments; Robinson has no other consumer with whom
to make transfers. In such models, equilibria with transfer payments are
ordinary equilibria.

proposition 5.6 If ui is locally nonsatiated, for all i, then
∑I

i=1 τi = 0,
for any equilibrium with transfer payments (x , y , p, τ).

Proof. Because the allocation (x , y) is feasible, condition (6) of definition
5.5 of an equilibrium with transfer payments implies that

p.

⎡
⎣ I∑

i=1

(xi − ei) −
J∑

j=1

yj

⎤
⎦= 0.
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Because ui is locally nonsatiated, lemma 4.4 (in section 4.2) implies that

p.xi = p.ei +
J∑

j=1

�ijp.yj − τi ,

for all i. These equations imply that

0 = p.

⎡
⎣ I∑

i=1

(xi − ei) −
J∑

j=1

yj

⎤
⎦

ij

= p.

⎡
⎣ I∑

i=1

(xi − ei) −
J∑

j=1

I∑
i=1

�ijyj

⎤
⎦

=
I∑

i=1

⎡
⎣p.(xi − ei) −

J∑
j=1

�ijp.yj

⎤
⎦= −

I∑
i=1

τi ,

where the second equation follows from the assumption that
∑I

i=1 �ij = 1,
for all j .

It is easy to check that the proof of the first welfare theorem applies to
equilibria with transfer payments, so that the following proposition is valid.

proposition 5.7 If the utility functions ui is locally nonsatiated, for all
i, then the allocation, (x , y), of an equilibrium with transfer payments,
(x , y , p, τ), is Pareto optimal.

A rigorous version of the second welfare theorem requires several as-
sumptions, and the examples that follow illustrate why the assumptions are
needed.

example 5.8 (Production possibility sets must be convex.) Figure 5.4
represents a Robinson Crusoe economy. Because utility over the budget set
must be maximized at x, equilibrium price vectors must be in the direction
of p. Because Y is not convex, profits are not maximized at x.

example 5.9 (Preferred sets must be convex.) I use the Robinson Crusoe
example portrayed in figure 5.5. Because profits must be maximized at x,
on e + Y , the equilibrium price vector, p, must be in the direction shown.
At such a price vector, x is not the point in the budget set with maximum
utility. Points such as x in the budget set are preferred to x.
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I

0

p

e

e + Y

x

Figure 5.4 Failure of the second welfare theorem with a nonconvex input-output
possibility set

example 5.10 (Utility functions must be continuous.) Let

u(x1, x2) =
{

x1 + x2, if x1 + x2 < 4

x1 + 2x2, if x1 + x2 ≥ 4.

Notice that the set of points preferred to any point is convex, but u is not
continuous on the line segment {(x1, x2) | x1 ≥ 0, x2 ≥ 0 and x1 + x2 = 4},
the dashed line in figure 5.6. Consider the Robinson Crusoe economy with
utility function u, with endowment (3, 0) and with input-output possibil-
ity set

Y = {(y1, y2) | y1 ≤ 0, y2 ≤ 2
√−y1}.

Then, the allocation (x , y) with (x1, x2) = (2, 2) and (y1, y2) = (−1, 2)
is Pareto optimal but is not the allocation of an equilibrium with transfer
payments, as figure 5.6 makes clear. In the figure, indifference curves are
labeled as I . An equilibrium price vector would have to be of the form
p = (a , a), for some positive number a. At such a price vector, the budget
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Figure 5.5 Failure of the second welfare theorem with a nonconvex preferred set
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Figure 5.6 Failure of the second welfare theorem with discontinuous utility
function
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I
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Figure 5.7 Failure of the second welfare theorem with a locally satiated utility
function

line of the consumer, which is the dashed line in the figure, is tangent to
e + Y at the point x, but the point of highest utility on this budget line is
A, not x.

example 5.11 (Utility functions must be locally nonsatiated.) Figure 5.7
describes a Robinson Crusoe economy in which the preferred sets and the
production possibility set are convex. There is, however, an area of points
with the same utility, the thick indifference set shaded by light gray. Thin
indifference curves are labeled I . The point x represents a Pareto optimal
allocation that is on the frontier of the production possibility set but is
inside the thick indifference set. If x is the allocation of an equilibrium with
transfer payments, the price equilibrium vector must be in the direction of
the vector p that is shown, because profit must be maximized at the point
x over the set e + Y . There are points, such as x, preferred to x and in the
budget set defined by this price vector and x.
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0B

0A

p

x

Figure 5.8 Failure of the second welfare theorem with consumption vectors that
are not strictly positive

example 5.12 (Consumption vectors must be strictly positive or the
utility functions must be strictly increasing.) Figure 5.8 portrays an Edge-
worth box economy with a Pareto optimal allocation at x. The indifference
curves of consumer A are dashed curves, and those of consumer B are solid
curves. Vertical price vectors such as p are the only ones that make xB the
best point for person B in the budget set that has a budget line through xB

and is orthogonal to p. Person A’s budget set at this price vector is the non-
negative part of the horizontal coordinate axis through 0A, and person A
has no utility maximizing point in this set. Therefore, the allocation x is
not the allocation of an equilibrium with transfer payments.

To state the second welfare theorem, I need to define a property of utility
functions that guarantees that all preferred sets are convex.

definition 5.13 A utility function u: RN
+ → R is quasi-concave if for all

numbers v, {x ∈ R
N
+ | u(x) ≥ v}, is convex.

Quasi-concavity is weaker than strict quasi-concavity, defined in defini-
tion 4.21 (in section 4.7). If u is quasi-concave, then for every number v,
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the preferred set {x ∈ R
N
+ | u(x) > v} is convex, for suppose that u(x) >

v , u(x) > v, and 0 ≤ α ≤ 1. Because u is quasi-concave,

u(αx + (1 − α)x) ≥ min(u(x), u(x)) > v .

second welfare theorem 5.14 Assume that the economy

E =
(
(ui , ei)

I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1

)
is such that

1. for all i, ui is a continuous, locally nonsatiated, and quasi-concave

2. for all j , Yi is convex

If (x , y) is a Pareto optimal allocation such that xi � 0, for all i, then there
exists a price vector, p, and an I -vector of transfer payments, τ, such that
(x , y , p, τ) is an equilibrium with transfer payments.

The second welfare theorem has a social engineering interpretation. A
government could use lump-sum taxes and subsidies of individuals to guide
competitive equilibrium to any desired Pareto optimal allocation. A gov-
ernment would, of course, have to know a great deal about individuals’
preferences, firms’ technologies, and available resources in order to deter-
mine precisely how large lump-sum payments should be to arrive at a par-
ticular Pareto optimal outcome. Although it is unrealistic to imagine that
governments have so much information, they might have enough informa-
tion to bring economies near the desired Pareto optima.

Proof of Theorem 5.14. The proof is presented in a series of easy steps.

Step 1 I apply Minkowski’s separation theorem. For each i, let Pi =
{x ∈ R

N
+ | ui(x) > ui(xi)}. Because ui is locally nonsatiated, Pi is not

empty. Let P =∑I
i=1(Pi − ei) and let Y =∑J

j=1 Yj − R
N
+. (Y is the

total input-output possibility set for the economy minus all possible
excess supply vectors.) The sets P and Y do not intersect, for suppose
that P and Y have a point in common. Then there exist vectors xi ∈ Pi,
for i = 1, . . . , I , and vectors b ∈ R

N
+ and yj ∈ Yj , for j = 1, . . . , J ,

such that
∑

i(xi − ei) =∑j yj − b. Hence
∑

i(xi − ei) ≤∑j yj , and
so (x , y) is a feasible allocation. Furthermore, (x , y) Pareto dominates
(x , y), because (x , y) is feasible and ui(xi) > ui(xi), for all i. Because
(x , y) is Pareto dominated, it cannot be Pareto optimal, contrary to
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assumption. This proves that P and Y do not intersect. The set Pi

is convex, for all i, because ui is quasi-concave. It follows that P is
convex. Similarly, Y is convex, because each of the sets Yi is convex.
In summary, all the assumptions of Minkowski’s separation theorem
apply to P and Y , so that there exists a nonzero N-vector, p, such that
p.x ≥ p.y, for all x in P and all y in Y .

Step 2 I show that p > 0. It is sufficient to show that p ≥ 0, since
p �= 0. Suppose that it is not the case that p > 0. Then, pn < 0, for some
n, say for n = 1. Because Y =∑J

j=1 Yj − R
N
+, it follows that∑

j

yj − (T , 0, . . . , 0) ∈ Y ,

for any T > 0. Hence, if x is an arbitrary point in P, then

p.x ≥ p.

⎡
⎣∑

j

yj − (T , 0, . . . , 0)

⎤
⎦= p.

∑
j

yj − Tpi .

Since p1 < 0, the right-hand side of the above inequality goes to in-
finity as T goes to infinity. Since the left-hand side is finite, there is a
contradiction. This completes the proof that p > 0.

Step 3 I show that p.
∑

(xi − ei) ≥ p.
∑

j yj , if yj ∈ Yj , for all j .
Because the utility functions ui are locally nonsatiated, there exists,
for each i, a sequence xk

i
, where k = 1, 2, . . . , such that ui(xk

i
) >

ui(xi) for all i and k, and limk→∞ xk
i

= x, for all i. It follows from
the separating property of p that

p.
∑

i

(xk
i
− ei) ≥ p.

∑
j

yi ,

if yj ∈ Yj , for all j . Passing to the limit with respect to k, we see that

p.
∑

i

(xi − ei) ≥ p.
∑

j

yj , (5.3)

as was to be proved.

Step 4 I show that p.
∑

i(xi) − ei) = p.
∑

j yj . Letting yj = yj , for
all j , in inequality 5.3, we see that p.

∑
i(xi − ei) ≥ p.

∑
j yj . Since

(x , y) is a feasible allocation, it follows that
∑

i xi ≤∑i ei +∑
j yj .

Since p ≥ 0, it follows that p.
∑

i(xi − ei) ≥ p.
∑

j yj . Therefore,
p.
∑

i(xi − ei) = p.
∑

j yj .
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Step 5 I show that, for all j , p.yj ≥ p.yj , for all yj ∈ Yj . That is, firm
j ’s profits are maximized at yj , for all j . Without loss of generality, we
may let j = 1. By the results of steps 3 and 4,

p.y1 +
J∑

j=2

p.yj = p.
J∑

j=1

yj = p.
I∑

i=1

(xi − ei) ≥
⎛
⎝y1 +

J∑
j=2

yj

⎞
⎠

= p.y1 +
J∑

j=2

p.yj ,

if y1 ∈ Y1. Canceling like terms from both sides of this inequality, we
see that

p.y1 ≥ p.y1,

so that firm 1 maximizes profits at y1.
To finish the proof of the theorem, I must show that, for all i,

p.xi > p.xi, if ui(xi) > ui(xi). The next step is part of the proof of this
assertion.

Step 6 I show that, for all i, if xi is such that ui(xi) > ui(xi), then
p.xi ≥ p.xi. Without loss of generality, assume that i = 1. For i =
2, . . . , I , let xk

i
, for k = 1, 2, . . . , be a sequence such that ui(xk

i
) >

ui(xi), for all k, and limk→∞ xk
i

= xi. (As in step 3, such sequences
exist because the utility functions are locally nonsatiated.) Then, xk

i
∈

Pi, for all i ≥ 2. By assumption x1 ∈ P1, so that x1 − e1 +∑I
i=2(xk

i
−

ei) ∈ P. Therefore, the separating property of p implies that

p.(x1 − e1) + p.
I∑

i=2

(xk
i
− ei) = p.

(
x1 − e1 +

I∑
i=2

(xk
i
− ei)

)

≥ p.
J∑

j=1

yj .

Passing to the limit with respect to k, we see that

p.(x1 − e1) + p.
I∑

i=2

(xi − ei) ≥ p.
J∑

j=1

yj

= p.(x1 − e1) + p.
I∑

i=2

(xi − ei),
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where the equation follows from step 4. Canceling like terms from both
sides of this inequality, we see that p.x1 ≥ p.x1, as was to be shown.

Step 7 I may now show that, for all i, p.xi > p.xi, if xi is such that
ui(xi) > ui(xi). Without loss of generality, assume that i = 1. By step
6, p.x1 ≥ p.x1. Therefore, if it is not the case that p.x1 > p.x1, then
p.x1 = p.x1. Suppose that p.x1 = p.x1. By an assumption in the state-
ment of the theorem, x1 � 0 and since p > 0, it follows that p.x1 > 0.
Let t be any positive number less than 1. Then, p.(tx1) = tp.x1 < p.x1,
where the inequality is strict because p.x1 > 0. Since ui is continu-
ous and ui(x1) > u1(x1), it follows that if t is close enough to 1, then
ui(tx1) > u1(x1). Since u1(tx1) > u1(x1), step 6 implies that p.(tx1) ≥
p.x1, contrary to the earlier assertion that p.(tx1) ≥ p.x1. This contra-
diction shows that p.x1 ≥ p.x1, as was to be proved.

The argument of step 7 is illustrated by figure 5.9.

x2

x1

tx1

x1

0

p

{x | u1(x) ≥ u1(x)}

x1

Figure 5.9 The use of local nonsatiation to prove that utility is maximized over the
budget set
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Step 8 Let consumer i’s transfer payment be τi = p.ei +∑
j �ij

.

p.yj − p.xi = wi(p) − p.xi, for all i. This definition guarantees that
xi satisfies with equality consumer i’s budget constraint for an equilib-
rium with transfer payment τi. Since step 7 implies that any consump-
tion bundle preferred to xi violates the budget constraint, it must be
that xi solves the problem

max
x ∈ R

N+
u(x)

s.t. p.x ≤ wi(p) − τi .

Step 9 I show that for any n, pn = 0. If
∑

i xin <
∑

i ein +∑
j yjn.

This assertion is true, because
∑

i xin ≤∑i ein +∑j yjn and pn ≥ 0,
for all n, and because

∑
n

pn

∑
i

xin =
∑

n

pn

⎛
⎝∑

i

ein +
∑

j

yjn

⎞
⎠ , (5.4)

by step 4. If there were an n such that
∑

i xin <
∑

i ein +∑
j yjn and

pn > 0, then equation 5.4 could not apply. This completes the proof of
step 9.

Step 9 verifies condition (6) of the definition of an equilibrium with
transfer payments. All the conditions of an equilibrium with transfer
payments have been verified, so that the proof of theorem 5.14 is
complete.

The assumption in theorem 5.14 that xi � 0, for all i, seems unrealistic,
since in actual economic life each individual consumes a positive quan-
tity of only a small fraction of the goods available. This assumption is not
necessary if we assume that utility functions are strictly increasing (defini-
tion 3.36 in section 3.5) and that the economy is productive in that it can
produce a positive amount of every commodity (definition 3.47 in section
3.6). An economy is productive if it has a feasible allocation (x , y) such that∑I

i=1 xi � 0.

theorem 5.15 Assume that the economy

E =
(
(ui , ei)

I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1

)
is such that
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1. for all i, ui is continuous, strictly increasing, and quasi-concave

2. for all j , Yj is convex

3. E is productive

If (x , y) is a Pareto optimal allocation, then there exists a price vector, p, and
an I -vector of transfer payments, τ, such that (x , y , p, τ) is an equilibrium
with transfer payments. Furthermore, the price vector p is strictly positive,
that is, p � 0.

Proof. Because the utility functions are strictly increasing, they are locally
nonsatiated. Therefore, all the steps of the proof of theorem 5.14 except
step 7 apply, since they make use of local nonsatiation but do not use the
assumption that xi � 0, for all i. Because E is productive, there exists a
feasible allocation (x , y) such that

∑I
i=1 ei +∑J

j=1 yj � 0. Let p be the
price vector whose existence is proved in step 1 of the proof of theorem
5.14. By step 5 of that proof, yj maximizes profits in Yj at price vector p,
for all j , so that

p.

⎛
⎝ I∑

i=1

ei +
J∑

j=1

yj

⎞
⎠≥ p.

⎛
⎝ I∑

i=1

ei +
J∑

j=1

yj

⎞
⎠> 0,

where the strict inequality applies because p > 0. Because p.
∑I

i=1 xi =
p.
(∑I

i=1 ei +∑J
j=1 yj

)
by step 4 of the proof of theorem 5.14, it follows

that p.
∑I

i=1 xi > 0. Therefore, p.xi > 0, for some i. Without loss of gen-
erality, I may assume that i = 1, so that p.x1 > 0. In step 7 of the proof of
theorem 5.14, the assumption that xi � 0 was used only to establish that
p.x1 > 0. Since we know that p.x1 > 0, the argument of step 7 applies to
consumer 1 and implies that p.x1 > p.x1, if u1(x1) > u1(x1).

I show that p � 0. If it is not true that p � 0, then pn = 0, for some n.
Without loss of generality, I may assume that p1 = 0. Because u1 is strictly
increasing, u1(x1) > u(x1), where x1 = x1 + (1, 0, 0, . . . , 0). Because p1 =
0, it follows that p.x1 = p.x1, contrary to the assertion of step 7, which I
have just shown applies to consumer 1. This proves that p � 0.

I show that the assertion of step 7 applies to all consumers. That is, for all
i, p.xi > p.xi, if xi is such that ui(xi) > ui(xi). Suppose that xi = 0. Then,
if xi is such that ui(xi) > ui(xi), it must be that xi > 0. Because p � 0, it
follows that p.xi > 0 = p.x1. If xi > 0, then p.xi > 0 and the argument of
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step 7 applies and proves that ui(xi) > ui(xi). This completes the proof of
the theorem.

The argument in the second paragraph of the proof of theorem 5.15
proves the following statement as well.

proposition 5.16 If uj is continuous, strictly increasing, and quasi-
concave, for all i, then any price vector, p, of an equilibrium with transfer
payments, (x , y , p, τ), is such that p � 0.

5.3 Another Complete Theorem on the Existence of Equilibrium

I state and prove an equilibrium existence theorem that generalizes theorem
4.24 (in section 4.8), by replacing strict quasi-concavity of utility by quasi-
concavity and strict convexity of input-output possibility sets by convexity.
In addition, the strict positivity of endowments is replaced by the assump-
tion that the economy is productive. The main reason for presenting this
theorem is as a pretext for introducing two new analytical tools. One is
the Kakutani fixed point theorem, which is a generalization of the Brouwer
fixed point theorem to set-valued functions. The other is an approach to
proving the existence of equilibrium that is a fixed point argument on con-
sumers’ utility levels rather than on price vectors.

Before stating and proving the existence theorem, I give the idea of the
argument by using the Edgeworth box example pictured in figure 5.10.
The set of Pareto optimal allocations is labelled PO, and the line L is a
line of slope 1 through the endowment point e. By the second welfare
theorem, for every Pareto optimal allocation, x, there is a price vector, p,
such that x and p, together with lump-sum transfers, form an equilibrium
with transfer payments. Normalize p so that p1 + p2 = 1, and, for the
moment, assume that there is only one such p. The budget line through
x orthogonal to p intersects the line L at a point, f (x). The difference,
f (x) − e, is a multiple of the vector (1, 1). That is, f (x) − e = t (x)(1, 1).
Since t (x) = t (x)p.(1, 1) = p.t (x)(1, 1) = p.(f (x) − e) = p.f (x) − p.e =
p.xA = p.eA = −τA = τB, the quantity t (x) is just the transfer payment
made by consumer B in the equilibrium with transfer payments. The pair
(x , p) forms an equilibrium if and only if f (x) = e, that is, if and only if
t (x) = 0. If uA(x) ≤ uA(eA), then f (x) is southwest of the point e and t (x)

is nonpositive. If uB(x) ≤ uB(eB), then f (x) is northeast of e and t (x) is
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0B

0A

IB

L

f(x)

IA

px

e

PO

Figure 5.10 The transfer payments mapping

nonnegative, as is shown in figure 5.10. If the function t is continuous, then
t (x) must equal zero for some x, and x is an equilibrium allocation.

Although the argument just given cannot be extended directly to econo-
mies with many consumers and commodities, it can be recast in a way that
does generalize. Assume that the utility functions are normalized, so that
uA(0) = uA(0) = 0. We know from theorem 3.48 (in section 3.6) that under
appropriate assumptions the radial projection, π , is a continuous function
from the utility possibility frontier, UF, onto the simplex �1 and has a con-
tinuous inverse π−1 Given a utility vector v in UF, let X(v) be a Pareto opti-
mal allocation such that uA(XA(v)) = vA and uB(XB(v)) = vB, and assume
that enough assumptions are made so that X(v) is unique. Again, if x is a
Pareto optimal allocation, there are p and τ such that (x , p, τ) is an equilib-
rium with transfer payments, with prices normalized so that p1 + p2 = 1.
Assume that given this normalization, p and τ are unique. Let τ(x) be
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the unique vector of transfer payments associated with x in this way. Since
the transfer payments sum to zero, it follows that τ(x) belongs to the line
H = {(tA, tB) | tA + tB = 0}. Given a vector t = (tA, tB) in H and a vector
b in �1, let g(b, t) be the point in �1 closest to b + t. The composition of
all these functions, h(b) = g(b, τ(X(π−1(b)))), is a function from �1 to
itself, which, by the Brouwer fixed point theorem 4.16 in (section 4.7), has
a fixed point, provided h is continuous. I sketch an argument showing that
if b ∈ �1 is a fixed point of h, then x = X(π−1(b)) is an equilibrium alloca-
tion. It is enough to show that τ(X(π−1(b))) = 0, since x = X(π−1(b)) is
an equilibrium allocation if and only if τ(X(π−1(b))) = 0. If b belongs to
the interior of �1, then b can be a fixed point of h only if τ(X(π−1(b))) = 0.
Suppose that b is one of the two endpoints of �1. Then, bA = 0 or bB = 0,
so that uA(xA) = 0 or uB(xB) = 0. If bA = 0 and uA(xA) = 0, then uA(eA) ≥
uA(xA), so that p.eA ≥ p.xA and hence

τA(X(π−1(b))) = τA(x) = p.eA − p.xA ≥ 0.

Since b is the closest point in �1 to b + τ(X(π−1(b))), it follows that
τA(X(π−1(b))) = 0 and hence τ(X(π−1(b))) = 0. A similar argument ap-
plies if bB = 0, so that τ(X(π−1(b))) = 0, no matter where b lies in �1.

In the discussion above, I have assumed that corresponding to every util-
ity vector in UF, there corresponds a unique Pareto optimal allocation
X(v), such that uA(XA(v)) = vA and uB(XB(v)) = vB, and to every Pareto
optimal allocation x, there corresponds a unique equilibrium with transfer
payments, (x , p, τ), when the price vector is normalized so that prices sum
to 1. These assumptions apply only under very restrictive conditions. Under
more natural assumptions, there may be many Pareto optimal allocations
X(v) and many equilibria with transfer payments, (x , p, τ), correspond-
ing to a Pareto optimal allocation x. The difficulties in generalizing the
argument of the previous paragraph stem from the fact that the function
τ(X(π−1(b))) and hence h may be multiple valued.

Functions with multiple values are called correspondences.

definition 5.17 If X and Y are sets, a correspondence, f : X → Y , asso-
ciates a subset of Y , f (x), with every member x of X.

If f : X → Y is a correspondence, the subset f (x) may be empty, may
equal the entire set Y , or may be any intermediate subset. Just as with
functions, it is sometimes helpful to think of the graph of a correspondence.
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y

0 1

1

x

Figure 5.11 The graph of a correspondence

definition 5.18 The graph of the correspondence, f : X → Y , is

{(x , y) ∈ C × Y | y ∈ f (x)}.

Figure 5.11 shows the graph of the correspondence f : [0, 1]→ [0, 1] de-
fined by the equation f (x) = {y | 1 − x ≤ y ≤ x}. Notice that f (x) may be
empty or may equal the whole interval [0, 1].

The proof of the existence of equilibrium requires a fixed point theorem
for correspondences.

definition 5.19 A fixed point of a correspondence f : X → X is an x in
X such that x belongs to f (x).

A generalization of the Brouwer fixed point theorem to correspondences
should say that if X is compact and convex and f : X → X is continuous,
then f has a fixed point. To state such a theorem, we require a notion of
continuity for correspondences. Since the graph of a continuous function
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is a closed set, it makes sense to think of a correspondence as continuous if
its graph is closed.

definition 5.20 If X is a subset of R
N and Y is a subset of R

K and if
f : X → Y is a correspondence, then f has closed graph if the graph of f is
a closed subset of X × Y .

Notice that the graph of f is closed only within X × Y . It may not
be closed within R

N × R
K, if the sets X and Y are not both closed. The

function f : X → Y has a closed graph if y ∈ f (x).
Whenever a sequence x1, x2, . . . in X that converges to x in X and a

sequence y1, y2, . . . in Y is such that yn ∈ f (xn), for all n, and y1, y2, . . .
converges to y in Y .

A function f : X → Y has closed graph if it is continuous, but the next
example shows that f is not necessarily continuous if its graph is closed.

example 5.21 The function f : [0, ∞) → [0, ∞) by the equation

f (x) =
⎧⎨
⎩

1

x
, if x > 0 and

0, if x = 0

has closed graph but is not continuous at 0.

A function f : X → Y with closed graph is continuous, however, if Y is
compact.

proposition 5.22 Let f : X → Y be a function with closed graph, where
X and Y are subsets of R

N. If Y is compact, then f is continuous.

Proof. It is sufficient to show that limn→∞ f (xn) = f (x), if xn is a se-
quence in X converging to x. Let xn be such a sequence, and suppose to the
contrary that f (xn) does not converge to f (x) as n goes to infinity. Then
there exists a positive number, ε, and a subsequence of xn, call it xn(k), for
k = 1, 2, . . . , such that ‖f (xn(k)) − f (x)‖ ≤ ε, for all k. Because xn(k) is
a subsequence of xn and xn converges to x, it follows that xn(k) does so as
well. Because Y is compact, it follows from the Bolzano-Weierstrass theo-
rem that a subsequence of f (xn(k)), which I again call f (xn(k)), converges
to some point y. Since ‖f (xn(k)) − f (x)‖ ≥ ε, for all k, ‖y − f (x)‖ ≥ ε.
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Since f has closed graph and is a function, y = f (x), which is impossible,
since ε > 0. This contradiction proves the proposition.

For our purposes, having closed graph is not a strong enough notion of
continuity for correspondences. The following example shows that having
closed graph does not guarantee the existence of a fixed point.

example 5.23 (In order to have a fixed point, a correspondence must be
convex valued.) Let f : [0, 1]→ [0, 1] be defined by the equation

f (x) =

⎧⎪⎨
⎪⎩

{1}, if 0 ≤ x < 0.5,

{0, 1}, if x = 0.5, and

{0}, if 0.5 < x ≤ 1.

This correspondence f has no fixed point, as may be seen from its graph
in figure 5.12. The graph of f is indicated with heavy lines and is clearly a
closed set. There is no fixed point, because the graph does not intersect the
dashed diagonal line.

0 1

1

Figure 5.12 A correspondence with closed graph that has no fixed point
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As indicated by the title of the previous example, f (x) must be convex,
for all x, if f is to have a fixed point. In addition, f (x) must be nonempty,
for all x, since f may have no fixed point if f (x) can be empty. The proof
of the existence of an equilibrium uses the following generalization of the
Brouwer fixed point theorem 4.16 in (section 4.7).

kakutani fixed point theorem 5.24 The correspondence f : X

→ X has a fixed point provided

1. X is a compact, convex, and nonempty subset of R
N

2. f has closed graph

3. f (x) is convex and nonempty, for all x

The Kakutani fixed point theorem generalizes the Brouwer theorem. If
f : X → X is a function, a fixed point of f thought of as a correspondence
is also a fixed point of f as a function. If f is continuous, it has closed
graph, and f (x), being a single point, is convex and nonempty, for all x.

The next theorem is a typical equilibrium existence theorem, of which
there are many versions. Recall that an economy is productive if it can
produce a positive amount of every good (definition 3.47 in section 3.6).

equilibrium existence theorem 5.25 The economy

E =
(
(ui , ei)

I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1

)
has an equilibrium, (x , y , p), provided

1. for all i, ui is continuous, strictly increasing, and quasi-concave

2. for all j , Yj is closed, convex, and contains the vector 0

3. Y ∩ R
N
+ = {0}

4. Y ∩ (−Y ) = {0}
5. E is productive

In the proof of this theorem, I will make use of the notion of the Carte-
sian product of sets.

definition 5.26 If A and B are sets, A × B = {(a , b) | a ∈ A and b ∈ B}
is known as the Cartesian product of the sets A and B.
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Proof of Theorem 5.25. Since the economy E satisfies the conditions of
theorem 3.54 (in section 3.7), its feasible allocations form a compact and
nonempty set. We may normalize the utility functions ui so that ui(0) =
0, for all i. With this condition and because the feasible allocations are
compact, E satisfies the assumptions of theorem 3.48 (in section 3.6), so
that the radial projection π : UF → �I−1 has a continuous inverse, π−1,
where UF is the economy’s utility possibility frontier.

Let v belong to UF and let (x , y) be a feasible allocation such that
u(x , y) = v, where u(x , y) = (u1(x1), . . . , uI(xI )). Since v belongs to
UF , (x , y) is Pareto optimal. Because E satisfies the assumptions of theo-
rem 5.14 (in section 5.2), there exists a price vector p and a vector of
transfer payments τ such that (x , y , p, τ) is an equilibrium with transfer
payments.

I now show that no ambiguity is caused by the possibility that more
than one Pareto optimal allocation (x , y) may correspond to an I -vector
v in UF. Let (x , y) and (x , y) be two such allocations, and let p and τ be
such that (x , y , p, τ) is an equilibrium with transfer payments. I show that
(x , y , p, τ) is also an equilibrium with transfer payments and furthermore
that

p.xi = p.ei +
J∑

j=1

�ijp.yj − τi = p.ei +
J∑

j=1

�ijp.y
j
− τi = p.xi , (5.5)

for all i. Because the utility functions ui are strictly increasing and the
allocation (x , y) is Pareto optimal, it follows that

I∑
i=1

xi =
I∑

i=1

ei +
J∑

j=1

yj , (5.6)

for if
∑I

i=1 xi <
∑I

i=1 ei +∑J
j=1 yj , it would be possible to increase the

utility of all consumers by distributing the difference
∑I

i=1 ei +∑J
j=1 yj =∑I

i=1 xi among them. Because (x , y , p, τ) is an equilibrium with transfer
payments and ui(xi) = vi = ui(xi), for all i, it follows that

p.xi ≥ p.xi , (5.7)

for all i. Because ui is strictly increasing, xi satisfies the budget constraint of
the equilibrium (x , y , p, τ) with equality, for otherwise it would be possible
for consumer i to achieve higher utility within the budget set by increasing
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the consumption of some commodity. Therefore,

p.xi = p.ei +
J∑

j=1

�ijp.y
j
− τi , (5.8)

for all i. Because y
j

maximizes profits over Yj at the price vector p, for all

j , it follows that

p.ei +
J∑

j=1

�ijp.yj − τi ≥ p.ei +
J∑

j=1

�ijp.yj − τi , (5.9)

for all i. Inequalities 5.7–5.9 imply that

p.xi ≥ p.xi = p.ei +
J∑

j=1

�ijp.y
j
− τi ≥ p.ei +

J∑
j=1

�ijp.yj − τi , (5.10)

for all i. If we sum the inequalities 5.10 over i and make use of equation 5.6,
we find that

p.

⎛
⎝ I∑

i=1

ei +
J∑

j=1

yj

⎞
⎠= p.

I∑
i=1

xi =
I∑

i=1

p.xi

≥
I∑

i=1

⎛
⎝p.ei +

J∑
j=1

�ijp.yj − τi

⎞
⎠

= p.

⎛
⎝ I∑

i=1

ei +
J∑

j=1

I∑
i=1

�ijyi

⎞
⎠−

I∑
i=1

τi = p.

⎛
⎝ I∑

i=1

i +
J∑

j=1

yj

⎞
⎠ ,

(5.11)

where the last equation follows because
∑I

i=1 �ij = 1 by assumption and

because
∑I

i=1 τi = 0 by proposition 5.6 (in section 5.2). Since the left-
and right-hand sides of inequality 5.11 are equal, we must have equality
throughout, and therefore we must have equality throughout 5.10. These
equations together with equation 5.8 imply equations 5.5.

Since p.xi = p.ei +∑J
j=1 �ijp.yj − τi, for all i, xi satisfies the budget

condition for an equilibrium (x , y , p, τ) with equality. I now show that
(x , y , p, τ) satisfies the other conditions for an equilibrium with transfer
payments. If xi is such that ui(xi) > ui(xi), then ui(xi) > ui(xi), since
ui(xi) = ui(xi). Since (x , y , p, τ) is an equilibrium with transfer payments,
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p.xi > p.ei +
J∑

j=1

�ijp.y
j
− τi .

Inequality 5.9 therefore implies that

p.xi > p.ei +
J∑

j=1

�ijp.yj − τi ,

so that xi maximizes ui over consumer i’s budget set in the possible equi-
librium with transfer payments (x , y , p, τ). The only condition of equilib-
rium that remains to be verified is that yj maximizes profits over Yj at the
price vector p. Summing the central equation of equations 5.5 over i, we
find that

p.
I∑

i=1

ei +
J∑

j=1

I∑
i=1

�ijp.yj = p.
I∑

i=1

ei +
J∑

j=1

I∑
i=1

�ijp.y
j
. (5.12)

Canceling the terms p.
∑I

i=1 ei from both sides of equation 5.12 and mak-

ing use of the equation
∑I

i=1 �ij = 1, we see that

J∑
j=1

p.yj =
J∑

j=1

p.y
j
. (5.13)

Since p.yj ≤ p.y
j
, for all j , by profit maximization in the equilibrium

(x , y , p, τ), equation 5.13 implies that

p.yj = p.y
j

, (5.14)

for all j . Since y
j

maximizes profits at the price vector p, it follows that yj

does so as well. This completes the proof that (x , y , p, τ) is an equilibrium
with transfer payments.

If v belongs to UF, let T (v) be the set of all transfer payment vectors
τ = (τ1, τ2, . . . , τI ) for an equilibrium with transfer payments (x , y , p, τ),
such that u(x) = v. Theorem 5.14 (in section 5.2) implies that T (v) is not
empty. The next step is to show that T (v) is a convex set, for all v. If (x , y) is
a Pareto optimal allocation such that u(x) = v, let P(x , y) be the set of price
vectors p such that

∑N
n=1 pn = 1 and, for some vector of transfer payments,

τ , (x , y , p, τ) is an equilibrium with transfer payments. I have shown that
if (x , y , p, τ) is an equilibrium with transfer payments, then (x , y , p, τ)

is an equilibrium with transfer payments, for any feasible allocation (x , y)
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such that u(x) = v. Therefore, the set P(x , y) depends only on v, and I may
write it as P(v). Since (x , y , p, τ) is an equilibrium with transfer payments,
for each i,

τi = p.(ei − xi) +
J∑

j=1

�ijp.yj . (5.15)

Equations 5.5 and 5.14 imply that the quantities p.xi and p.yj are indepen-
dent of the feasible allocation (x , y) such that u(x) = v. Hence, equation
5.15 implies that the transfer payments τi are also independent of (x , y),
and so I may write

T (v) =
⎧⎨
⎩
⎛
⎝p.

⎡
⎣(e1 − x1) +

J∑
j=1

�1jyj

⎤
⎦ , . . . ,

p.

⎡
⎣(eI − xI ) +

J∑
j=1

�Ijyj

⎤
⎦
⎞
⎠ | p ∈ P(v)

⎫⎬
⎭ ,

(5.16)

where (x , y) is any feasible allocation such that u(x) = v. Hence, in order
to show that T (v) is a convex set, it is sufficient to show that the set P(v) is
convex. Fix a feasible allocation (x , y) such that u(x) = v. The N-vector p

belongs to P(v) if and only if p ∈ �N−1 and, for all i, p.xi > p.xi, whenever
ui(xi) > ui(xi) and, for all j , p.y

j
≥ p.yj , for any yj ∈ Yj . It should be

clear that if p and q are price vectors that satisfy these conditions, then
αp + (1 − α)q satisfies them, for any α such that 0 ≤ α ≤ 1. Therefore,
P(v) and hence T (v) are convex.

It is important that the correspondence T is bounded. That is, there is
a positive number B, such that ‖τ‖ < B, for any vector τ in T (v). For
any v in UF, the boundedness of T is a consequence of equation 5.16, the
boundedness of the set of feasible allocations, and the fact that the price
vectors in equation 5.16 belong to the bounded set �N−1.

The final major task is to verify that the correspondence T has closed
graph. Let vn be a sequence of points in UF converging to a point v in
UF and, for each n, let τn be a member of T (vn) and suppose that the
sequence τn converges to τ. I must show that τ belongs to T (v). Because
τn belongs to T (vn), there exists a price vector pn and a feasible alloca-
tion (xn, yn) such that (xn, yn, pn, τn) is an equilibrium with transfer pay-
ments and pn ∈ �N−1. The sequence (xn, yn, pn, τn) is bounded, because
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the allocations (xn, yn) belong to the compact set of allocations that are
feasible, the price vectors pn belong to the compact set �N−1, and the vec-
tors of transfer payments τn belong to the range of the correspondence T ,
which I showed to be bounded in the previous paragraph. Therefore, by the
Bolzano-Weierstrass theorem, the sequence (xn, yn, pn, τn) has a conver-
gent subsequence, which I again call (xn, yn, pn, τn). Let (xn, yn, pn, τn)

be the limit of this sequence. I prove that (xn, yn, pn, τn) is an equilibrium
with transfer payments.

Because the input-output possibility sets Yj are closed, it is easy to verify
that (x , y) is a feasible allocation.

Because τn
i

= pn.(ei − xn
i
) +∑J

j=1 �ijpn.yn
j

, for all i and n, it follows by
passage to the limit that

τi = p.(ei − xi) +
J∑

j=1

�ijp.y
j

, (5.17)

for all i. Therefore, for each i, the consumption bundle xi satisfies the
budget condition for an equilibrium with transfer payments, (x , y , p, τ).

I verify that for all j , y
j

maximizes profits in Yj at the price vector p. Let

yj belong to Yj . For each n, yn
j

maximizes profits in Yj at the price vector
pn, so that

pn.yn
j

≥ pn.yj . (5.18)

Passing to the limit in inequality 5.18, we see that p.y
j
≥ p.yj and hence y

j

maximizes profits.
I next verify that for all i, xi maximizes ui over the budget set defined by

(y , p, τ). First of all, I show that, for all i, if xi is such that ui(xi) > ui(xi),
then p.xi ≥ p.xi. Because xn

i
converges to xi as n goes to infinity, ui(xi) >

ui(xn
i
),for sufficiently large n. Because (xn, yn, pn, τn) is an equilibrium

with transfer payments,

pn.xi > pn.xn
i

, (5.19)

if n is so large that ui(xi) > ui(xn
i
). Passing to the limit in inequality 5.19,

we see that p.xi ≥ p.xi, as was to be proved.
I have just verified step 6 in the proof of theorem 5.14 (in section 5.2).

Because the utility functions ui are strictly increasing and E is productive,
the arguments in steps 7 and 9 of that proof demonstrate that (x , y , p, τ)

is an equilibrium with transfer payments.
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The allocation (x , y) satisfies the equation u(x , y) = v, because u(xn,
yn) = vn, for all n, and the function u is continuous and limn→∞ vn =
v. Because u(x , y) = v and (x , y , p, τ) is an equilibrium with transfer
payments, it follows that τ belongs to T (v). This completes the proof that
the correspondence T has closed graph.

I am now in a position to use the Kakutani fixed point theorem (theorem
5.24) to complete the proof of the existence of an equilibrium. It has already
been shown that there exists a positive number B, such that ‖τ‖ < B, for
any vector τ in T (v) and for any v in UF. Let K = {τ ∈ R

I |∑I
i=1 τi = 0

and ‖τ‖ ≤ B}. By definition, K is compact and convex. Let M : K → �I−1

be the correspondence defined by the equation

M(τ={b ∈ �I−1 | b.τ ≥ b.τ , for all b ∈ �I−1}.

If b belongs to �I−1 and τ belongs to K , then b.τ is a weighted average of
the components of τ with weights specified by the components of b. The
vector b belongs to M(τ) if and only if its weights are such as to maximize
the weighted average b.τ. Therefore, any vector in M(τ) puts all the weight
on the largest components of τ. In other words, bi > 0 only if i is such
that τi ≥ τk, for k = 1, . . . , I . For any τ in K ,

∑I
i=1 τi = 0, so that some

component of τ is positive if any component is negative. Therefore, the
following statement is true:

If b belongs to M(τ), then τi > 0 implies that bi = 0. (5.20)

In addition, it is easy to verify that the correspondence M has closed graph
and that M(τ) is nonempty and convex, for any τ in K .

Let the correspondence F : �I−1 × K → �I−1 × K be defined by the
equation F(b, τ) = M(τ) × T (π−1(b)). The set �I−1 × K is compact and
convex, because it is the Cartesian product of compact and convex sets,
where the Cartesian product is described in definition 5.26. Similarly, F has
closed graph and F(b, τ) is convex and nonempty for all (b, τ), because
the component correspondences M and T . π−1 have the same properties,
where T ◦ π−1 is the composition of T and π−1. That is, T ◦ π−1(b) =
T (π−1(b)). It is easy to check that T ◦ π−1 has closed graph, because T

has closed graph and π−1 is a continuous function. In summary, F satisfies
the assumptions of the Kakutani fixed point theorem, so that F has a fixed
point. That is, there exists b ∈ �I−1 and τ ∈ K , such that b ∈ M(τ) and



Problem Set 191

τ ∈ T (π−1(b)). Let (x , y , p, τ) be the equilibrium with transfer payments

such that u(x , y) = π−1(b) and p ∈ �N−1.
I show that (x , y , p) is an equilibrium without transfer payments by

proving that τ = 0. Because
∑I

i=1 τi = 0, it is sufficient to prove that τ ≥ 0.
Suppose to the contrary that τi < 0, for some i. Because b ∈ M(τ), state-
ment 5.20 implies that bi = 0, so that component i of π−1(b) is zero, since
π is the radial projection of UF onto �I−1. This ith component is sim-
ply ui(xi), so that ui(xi) = 0. Since ui is strictly increasing, it follows that
xi = 0. Since ei ≥ 0, it follows that p.ei ≥ 0. Since 0 belongs to Yj , for all

j , p.y
i
≥ p.0 = 0, for all j . Therefore, τi = p.ei +∑J

j=1 �ijy
j
− p.xi ≥ 0,

contrary to hypothesis. This contradiction proves that τ = 0 and hence that
(x , y , p) is an equilibrium.

Problem Set

1. Consider the Edgeworth box economy with eA = (1, 0), eB = (0, 1),
uA(x1, x2) = min(4x1, x2), and uB(x1, x2) = x1 + 2x2. Find the equi-
librium with transfer payments, (x , p, τ), that has uB(xB1, xB2) = 1
and p1 = 1.

2. Consider the following economy with three commodities (1, 2, and 3),
two firms (2 and 3), and two consumers (A and B).

uA(x1, x2, x3) = ln(x2) + ln(x3) = uB(x1, x2, x3).

eA = (2, 0, 0).eB = (0, 0, 0).

Firm 2 produces good 2 from good 1 with the production function
y2 = 2(−y21), where y21 ≤ 0 and y21 is firm 2’s input of good 1.
Firm 3 produces good 3 from good 1 with the production function
y3 = −y31, where y31 ≤ 0 and y31 is firm 3’s input of good 1. (Notice
that there are constant returns to scale in production, so that there
are no profits in equilibrium and hence no need to assign ownership
shares to consumers.)

(a) Compute an allocation that maximizes the sum of the utilities of
the two consumers.

(b) Find an equilibrium with transfer payments the allocation of which
is the one calculated in part (a). Let the price of good 1 be 1.
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3. Consider the Edgeworth box economy with eA = (1, 0), eB = (0, 1),

uA(x1, x2) = 3x1/3
1 x

2/3
2 = uB(x1, x2). Calculate the function τ from

�1 = {(vA, vB) ∈ R
2
+ | vA + vB = 1} to H = {(t1, t2) ∈ R

1 | t1 + t2 = 0}
and defined by the equation

τ(v1, v2) = (p.(xA − eA), p.(xB − eB)),

where (xA, xB) is a Pareto optimal allocation such that (uA(xA),
uB(xB)) = λ(vA, vB), for some positive number λ.

4. Suppose that (x , y , p) is acompetitive equilibrium for an economy
((ui , ei)

I
i=1, (Yj)

J
j=1, (�ij)) with locally nonsatiated utility functions.

Let Y0 be another input-output possibility set containing 0 and
satisfying

max
y ∈ =Y0

p.y = 0,

and let (x , y , p) be an equilibrium for the economy ((ui , ei)
I
i=1,

(Yj)
J
j=0, (�ij)), which is the original economy with Y0 adjoined. Is

it possible that (x , y) Pareto dominates the allocation (x , y)? In other
words, is it possible to use a new production process earning zero
profit to make everyone at least as well off and someone better off?
Demonstrate your answer by means of a proof or counter example.1

5. Consider an economy with two consumers, two goods, and no
firms. The endowment vectors of consumers A and B are eA and
eB, respectively, where eA � 0 and eB � 0. Assume that the utility of
each consumer depends on the consumption of the other consumer as
well as on his or her own consumption. That is, each consumer cares
about what the other consumes, out of sympathy, envy, or because
the other’s consumption interferes with or helps his or her own life.
For instance, each neighbor might want the other to paint his or her
house, but dislike smoke from his or her barbecue. Such effects are
known as consumption externalities. More formally, if xA and xB are
the consumption bundles of consumers A and B, respectively, then
their utilities are uA(xA, xB) and uB(xA, xB), respectively. Assume
that uA and uB are continuous and that for i = A and B, ui is strictly
increasing and strictly concave with respect to xi. (That is, uA(xA, xB)

is both strictly increasing and strictly concave with respect to xA but

1. I owe this problem to a personal communication from Professor Herbert Scarf.
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not necessarily so with respect to xB, and the symmetric statement
applies to uB.) In an equilibrium, consumer A chooses xA to solve the
problem.

max
x ∈ R

2+
uA(x , xB)

s.t. p.x ≤ p.eA.

That is, consumer A holds xB fixed when considering how to choose
xA. Similarly, consumer B chooses xB to solve the problem

max
x ∈ R

2+
uB(xA, x)

s.t. p.x ≤ p.eB.

(a) Prove that an equilibrium exists.
(b) Is an equilibrium Pareto optimal? Give a proof or counterexample.

6. Let E = E = ((ui , ei)
I
i=1) be a pure trade economy such that every

utility function, ui, is strictly increasing. Let (x , p) be a competitive
equilibrium for this economy. Now consider dividing the set of
consumers into two disjoint groups, G1 and G2, where the union of
G1 and G2 is the entire set of I consumers of E and each of G1 and G2

contains at least two people. Let (x1, p1) and (x2, p2) be competitive
equilibria for the economies consisting of the people in G1 and G2,
respectively.

(a) Show that (x1, x2) is a feasible allocation for E.
(b) Is it possible for (x1, x2) to Pareto dominate x? Give an example

to show that (x1, x2) may Pareto dominate x or prove that (x1, x2)

cannot Pareto dominate x.

7. Consider an economy with I consumers and L goods, where, for all i,
the endowment vector of consumer i is ei, and the utility function of
each consumer i is of the form

ui(xi ,
I∑

i=1

xn),

where xi is the consumption vector of the ith consumer. Assume that
ui is increasing with respect to the components of xi.

(a) Define a notion of competitive equilibrium.
(b) Is an equilibrium necessarily Pareto optimal? Give an argument.



194 5 The Welfare Theorems

8. There are I consumers and one good, which may be used for public
or private consumption. Each consumer is endowed with one unit
of the good and divides this one unit between public and private
consumption. That is, each consumer i, for i = 1, . . . , I , chooses
xi, where 0 ≤ xi ≤ 1, and the total amount available for public
consumption is g = x1 + x2 + . . . + xI . For all i, the utility function of
consumer n is ui(1 − xi , g), where ui is continuous, strictly increasing,
and strictly concave. In equilibrium, each consumer knows the choice
of xi for all other consumers and chooses his personal consumption
and contribution to public consumption so as to maximize his or her
own utility.

(a) Describe the equilibrium formally.
(b) Prove that an equilibrium exists.
(c) Either prove that the equilibrium is Pareto optimal or show that it

is not by means of a counterexample.



6

The Kuhn-Tucker Approach to General
Equilibrium Theory

We know that under appropriate conditions the allocation of a competitive
equilibrium with or without transfer payments is Pareto optimal and that a
Pareto optimal allocation maximizes a weighted sum of consumers’ utility
functions. It follows that an equilibrium allocation maximizes a welfare
function that is a weighted sum of the consumers’ utility functions. We
can deepen our understanding of this last result by using the Kuhn-Tucker
theorem to interpret it. This approach reveals that the weight given each
consumer’s utility in the welfare function may be set equal to the inverse of
his or her marginal utility of unit of account in the equilibrium. If these are
the welfare weights, then the equilibrium price of each commodity is the
rate at which aggregate welfare increases as the supply of that commodity
increases. Before stating and proving these assertions formally, I explain the
Kuhn-Tucker theorem.

6.1 Kuhn-Tucker Theorem

The Kuhn-Tucker theorem is, roughly speaking, an application of the
method of Lagrange multipliers to maximization problems with a concave
objective function and constraints described by a convex set and convex
functions. Convex functions are like concave ones turned upside down.

definition 6.1 If X is a convex set of N-vectors and f : X → R, then f

is convex if

f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y),

for all x and y in X and for all α such that 0 ≤ α ≤ 1.
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A function f is convex if and only if the function −f is concave, as may
be seen by comparing the definition of convexity with that of concavity
(definition 3.27 in section 3.5). Affine functions are both concave and con-
vex, recalling that an affine function, f , is one of the form f (x) = a.x + b,
where a and b are N-vectors. The theorem characterizes solutions to the
following problem:

max
x∈X

f (x)

s.t. gk(x) ≤ ak , for k =, . . . , K , (6.1)

where X is a convex set of N-vectors, f : X → (−∞, ∞) is concave, and,
for k = 1, . . . , K , gk: X → (−∞, ∞) is convex and ak is a number.

An economic example of such a problem is utility maximization over a
budget set, namely,

max
x ∈ R

N+
u(x)

s.t. p.x ≤ w ,

where u is a concave function. Many applications involve the allocation of
resources among productive activities. In these applications, the quantity,
xn, is the level at which the nth activity operates, f (x) = f (x1, . . . , xN)

is either output or profit from the operation of the activities, gk(x) =
gk(x1, . . . , xN) is the amount of the kth resource absorbed when the
activities operate at levels x1, . . . , xN , and ak is the amount of the kth re-
source available. In discussions of the Kuhn-Tucker theorem, the constraint
gk(x) ≤ ak is often referred to as the kth resource constraint, the quantity
ak is referred to as the amount of the kth resource, and the K-vector a is
called the resource vector.

The statement of the theorem uses the concept of feasibility.

definition 6.2 An N-vector x is said to be feasible for problem 6.1 if x
belongs to X and x satisfies the inequalities

gk(x) ≤ ak ,

for k = 1, . . . , K .

the kuhn-tucker theorem 6.3 Assume that X is a convex set of N-
vectors, f : X → (−∞, ∞) is concave, and, for k = 1, . . . , K , gk: X →
(−∞, ∞) is convex. Suppose that x is feasible for problem 6.1 and that
there exist nonnegative numbers λ1, . . . , λK such that
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1. for all k, λk = 0, if gk(x) < ak

2. x solves the maximization problem

max
x∈X

[
f (x) −

K∑
k=1

λkgk(x)

]

Then, x solves problem 6.1.
Suppose that x solves problem 6.1 and that the following constraint

qualification is satisfied:

3. There exists a vector x ∈ X such that gk(x) < ak, for all k.

Then, there exist nonnegative numbers, λ1, . . . , λK , such that conditions
(1) and (2) above apply.

The conditions in (1) in the Kuhn-Tucker theorem are known as the
complementary slackness conditions. The function

L(x , λ) = f (x) −
K∑

k=1

λkgk(x)

is known as the Lagrangian, and the numbers λk are called Kuhn-Tucker
coefficients. They are analogous to Lagrange multipliers. The Lagrangian is
concave because f is concave, the λk are nonnegative, and the functions gk

are convex. Notice that the only constraint in the problem

max
x∈X

[
f (x) −

K∑
k=1

λkgk(x)

]

is that x belongs to X. The Kuhn-Tucker theorem reduces a constrained
maximization problem to one that is nearly unconstrained or completely
unconstrained if X = R

N
+.

The following is a counterexample to the existence of Kuhn-Tucker coef-
ficients when the constraint qualification is not satisfied.

example 6.4 Consider the problem

max
x ∈ R2

x2

s.t. − x1 + x2
2 ≤ 0

x1 + x2
2 ≤ 0.
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This example does not satisfy the constraint qualification, because x = 0 is
the only feasible vector. Because 0 is the only feasible point, it is also the
optimum. There are no nonnegative numbers λ1 and λ2 such that x = 0
and λ1, and λ2 satisfy condition (2) of theorem 6.3, for suppose there were.
Then, x = 0 would solve the problem

max
x ∈ R2

[
x2 − λ1(−x1 + x2

2) − λ2(x1 + x2
2)
]

,

and the derivative of the objective function of this problem would be zero
at x = 0. Setting the partial derivative with respect to x2 equal to zero at
x2 = 0, we find that 1 − 2(λ1 + λ2)0 = 0, which is impossible.

Figure 6.1 should make clear why the Kuhn-Tucker theorem does not
apply to this example. In labeling this figure, I let f (x) = x2, g1(x) =
−x1 + x2

2, and g2(x) = x1 + x2
2. The region where −x1 + x2

2 ≤ 0 is labeled
as g1(x) ≤ 0, and the region where x1 + x2

2 ≤ 0 is labeled as g2(x) ≤ 0.
The Lagrangian is f (x) − λ1g1(x) − λsg2(x). If condition (2) is satis-
fied, then the derivative of the Lagrangian is 0 at x = 0. That is, Df (0) =

0

x2

Df(0)

Dg2(0)Dg1(0)

g2(x) ≤ 0 g1(x) ≤ 0

x1

Figure 6.1 A constraint set that does not satisfy the constraint qualification
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λ1Dg1(0) + λ2Dg2(0). The derivative Df (0) points straight upward, and
Dg1(0) and Dg2(0) are horizontal. Since a vertical vector cannot be a linear
combination of horizontal vectors, condition (2) cannot be satisfied.

The situation changes when example 6.4 is modified so as to satisfy the
constraint qualification, as in the next example.

example 6.5 Consider the problem

max
x ∈ R2

x2

s.t. − x1 + x2
2 ≤ 1

x1 + x2
2 ≤ 1.

The solution to this problem is x = (0, 1). If λ1 = λ2 = 1
4 , the solution

x = (0, 1) maximizes the Lagrangian x2 − 1
4 (−x1 + x2

2) − 1
4 (x1 + x2

2), and
so the problem satisfies condition (2) of theorem 6.3. The derivative of the
Lagrangian is 0 at (0, 1), because Df (1, 0) = (0, 1) = 1

4 (−1, 2) + 1
4 (1, 2) =

1
4Dg1(0, 1) + 1

4Dg2(0, 1).

The constraints are pictured in figure 6.2. The figure shows vectors point-
ing in the direction of the derivatives Dg1(0, 1) and Dg2(0, 1) of the con-
straint functions at the optimum point (0, 1) as well as a vertical vector
corresponding to the derivative of the objective function, Df (0, 1). The
derivatives Dg1(0, 1) and Dg2(0, 1) are orthogonal at (0, 1) to the bound-
aries of the corresponding constraint sets, {x | g1(x) ≤ 1} and {x | g2(x) ≤
1}. Clearly, Df (0, 1) may be written as a linear combination of Dg1(0, 1)
and Dg2(0, 1) with positive coefficients, as is required by condition (2) of
theorem 6.3.

The next example illustrates another reason for assuming the constraint
qualification.

example 6.6 Consider the problem

max
x ∈[0, ∞)

√
x

s.t. x ≤ 0.

This example clearly does not satisfy the constraint qualification, because
0 is the only feasible point. As the unique feasible point, 0 is necessarily
optimal. However, 0 does not satisfy condition (2) of theorem 6.3, for
suppose there were a positive number λ such that x = 0 maximized the
Lagrangian

√
x − λx among all nonnegative numbers. Then, the derivative
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01 1

Df(0, 1)

Dg2(0, 1)Dg1(0, 1)

g2(x) ≤ 1 g1(x) ≤ 1
1

Figure 6.2 A constraint set that does satisfy the constraint qualification

of the Lagrangian at x = 0 should be no more than 0, but this derivative
equals 1

2
√

x
|x=0 −λ, which is infinity for any value of λ. This contradiction

proves that the example does not satisfy condition (2). The difficulty is that
the objective function has infinite slope at the optimum point.

6.2 Kuhn-Tucker Coefficients

Perhaps the most interesting aspect of the Kuhn-Tucker theorem is the in-
terpretation of the coefficients. Each Kuhn-Tucker coefficient, λk, equals
the rate at which the maximum value of problem 6.1 increases as the
amount of the kth resource, ak, increases. To make sense of this statement,
I need the notion of a value function.

definition 6.7 The value function V : A → R is defined by the equation

V (a1, . . . , ak) = sup
x ∈x

f (x)

s.t. gk(x) ≤ ak , for k = 1, . . . , K ,



6.2 Kuhn-Tucker Coefficients 201

V

Slope equals the Kuhn-Tucker coefficient

aa

Figure 6.3 The Kuhn-Tucker coefficient is the slope of the value function.

where the domain of V is A = {a ∈ R
K | for some x ∈ X , gk(x) ≤ ak, for

k = 1, . . . , K}.

If the value function is differentiable, then the Kuhn-Tucker coefficient
λk is the slope of the value function V with respect to ak,

∂V (a)

∂ak

= λk ,

and we may visualize the relation between the value function and the Kuhn-
Tucker coefficient as in figure 6.3. If the value function is not differentiable,
then the Kuhn-Tucker coefficient is the slope of a line tangent to the graph
of the value function. Figure 6.4 illustrates the case where V has no slope at
a. The slope of a tangent line as in figure 6.4 is termed a subgradient of V .

definition 6.8 If V : A → R, where A is a subset of R
K, then the vector

λ = (λ1, . . . , λK) is a subgradient of V at a in A if

V (a) ≤ V (a) +
K∑

k=1

λk(ak − ak), (6.2)

for all a in A.
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V

Slope equals the Kuhn-Tucker coefficient

aa

Figure 6.4 The Kuhn-Tucker coefficient is the slope of a line tangent to the value
function.

There may be many subgradients of V at a point a, as there are in figure
6.4. If V is differentiable, however, the subgradient is unique and equals the
derivative, as is easy to check.

The next proposition is the assertion, roughly speaking, that the vector
λ = (λ1, . . . , λK) is a vector of Kuhn-Tucker coefficients if and only if it is
a subgradient of the value function.

proposition 6.9 Suppose that x = solves problem 6.1, for all k. Then,
x and λ = (λ1, . . . , λK) satisfy conditions (1) and (2) of the Kuhn-Tucker
theorem 6.3 and λ ≥ 0, if and only if λ is a subgradient of the value function
V at a.

Proof. Suppose that x and λ = (λ1, . . . , λK) satisfy conditions (1) and (2)
of the Kuhn-Tucker theorem and that λ ≥ 0. To show that λ is a subgradient
of V at a, I must show that inequality 6.2 holds for any K-vector a in A.
This inequality may be rewritten as

V (a) −
K∑

k=1

λkak ≥ V (a) −
K∑

k=1

λkak . (6.3)
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Let a be an arbitrary vector in A. Because a belongs to A, there exists a
vector x in X such that gk(x) ≤ ak, for all k. Because x solves problem 6.1
with resource vector a,

V (a) = f (x). (6.4)

I show that λkgk(x) = λkak, for all k. Because x is feasible, gk(x) ≤ ak, for
all k. Furthermore, if k is such that gk(x) < ak, then λ − 0 by the comple-
mentary slackness condition (1) of theorem 6.3 and hence λkgk(x) = 0 =
λkak. Therefore, for all k, λkgk(x) = λkak, whether gk(x) = ak or gi(x) <

ak, as was to be shown. Hence,

K∑
k=1

λkgk(x) =
K∑

k=1

λkak . (6.5)

It now follows that

V (a) −
K∑

k=1

λkak = f (x) −
K∑

k=1

λkgk(x) ≥ f (x)

−
K∑

k=1

λkgk(x) ≥ f (x) −
K∑

k=1

λkak .

(6.6)

The equation in 6.6 follows from equations 6.4 and 6.5. The first inequality
of 6.6 follows from condition (2) of theorem 6.3. The second inequality
holds because the numbers λk are nonnegative and gk(x) ≤ ak, for all k.

By definition, V (a) is the supremum of all the numbers f (x), for vec-
tors x in X satisfying gk(x) ≤ ak, for all k. Therefore, inequality 6.6 implies
inequality 6.3. This completes the proof that λ = (λ1, . . . , λk) is a subgra-
dient of V at a.

I now prove the converse, that if λ = (λ1, . . . , λk) is a subgradient of V at
a, then λ and x satisfy conditions (1) and (2) of theorem 6.3 and λ ≥ 0. To
prove that λ ≥ 0, it is sufficient to show that V is nondecreasing. A vector
x that is feasible for problem 6.1 remains feasible if we increase any of the
components of the K-vector a so that V (a), which is the supremum of f (x)

over all feasible vectors x, cannot decrease when components of a increase.
Therefore, V (a) is nowhere decreasing with respect to a.

I next demonstrate the complementary slackness property, condition
(1) of theorem 6.3. Suppose that gk(x) < ak, for some k. Without loss
of generality, we may assume that k = 1. Let the positive number ε be so
small that g1(x) < a1 − ε, and let a = (a1 − εa2, . . . , ak). Because a < a,
it follows that V (a) ≤ V (a). However, the vector x is feasible with resource
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vector a, so that V (a) ≥ f (x) = V (a). It follows from the two preceding
inequalities that V (a) = V (a). Because λ is a subgradient of V at a, it
follows that

V (a) ≤ V (a) +
K∑

k=1

λk(ak − ak) = V (a) − λ1ε. (6.7)

Since V (a) = V (a) and ε > 0 and λ1 ≥ 0, inequality 6.7 is valid only if λ1 =
0. This completes the proof of the complementary slackness condition (1).

It remains to verify condition (2), which is the statement that

f (x) −
K∑

k=1

λkgk(x) ≥ f (x) −
K∑

k=1

λkgk(x), (6.8)

for any x in X. Fix x in X and let the K-vector a be defined by the equations
ak = gk(x), for all k. We know that f (x) = V (a). By an argument made ear-
lier, the complementary slackness condition implies that

∑K
k=1 λkgk(x) =∑K

k=1 λkak. Therefore,

f (x) −
K∑

k=1

λkgk(x) = V (a) −
K∑

k=1

λkak . (6.9)

We also know that

V (a) −
K∑

k=1

λkak ≥ V (a) −
K∑

k=1

λkak , (6.10)

because λ is a subgradient of V at a. Since V (a) is the supremum of num-
bers f (z), for vectors z that are feasible at the K-vector a, we know that
V (a) ≥ f (x). Because ak = gk(x), for all k, it follows that

V (a) −
K∑

k=1

λkak ≥ f (x) −
K∑

k=1

λkgk(x). (6.11)

Inequalities 6.9, 6.10, and 6.11 together imply inequality 6.8. This com-
pletes the proof that condition (2) is satisfied when λ is a subgradient of
V at a.

In figures 6.3 and 6.4, the value function is drawn as concave. The next
proposition says that this representation is correct.
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proposition 6.10 The value function V : A → R for problem 6.1 is
concave, and the set A is convex.

Proof. Let a = (a1, . . . , aK) and a = (a1, . . . , aK) belong to A, and let α

be such that 0 ≤ α ≤ 1. Let ε be a small positive number. By the definitions
of A and V , there exist x and x in X such that gk(x) ≤ ak and gk(a) ≤ ak, for
all k, f (x) > V (a) − ε, and f (x) > V (a) − ε. Since X is convex, αx + (1−
α)x belongs to X. The constraints with resource vector αa + (1 − α)a are
satisfied by the vector αx + (1 − α)x, since the convexity of the functions
gk implies that

gk(αx + (1 − α)x) ≤ αgk(x) + (1 − α)gk(x) ≤ αak + (1 − α)ak ,

for all k. Therefore, αa + (1 − α)a belongs to A, and so A is convex.
Finally,

V (αa + (1 − α)a) ≥ f (αx + (1 − α)x)

≥ αf (x) + (1 − α)f (x) > αV (a) + (1 − α)V (a) − ε ,

where the second inequality follows from the concavity of f . Since ε is
arbitrarily small,

V (αa + (1 − α)a) ≥ αV (a) + (1 − α)V (a),

as was to be proved.

6.3 The Kuhn-Tucker Interpretation of Competitive Equilibrium

I now use the Kuhn-Tucker theorem to relate equilibrium to welfare max-
imization. I will use the following assumptions about the economy E =
((uiei)

I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1).

assumption 6.11 For all i , ui is concave and strictly increasing.

assumption 6.12 For all j , Yj is closed, convex, and contains the
vector 0.

assumption 6.13 E is productive, where productiveness is defined in
definition 3.47 (section 3.6). (An economy E is productive if it has a feasible
allocation (x , y) such that

∑I
i=1 xi � 0).
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The next proposition is an application of the Kuhn-Tucker theorem to
the consumer’s maximization problem.

proposition 6.14 Suppose that u satisfies assumption 6.11. If w ≥
0, p ∈ R

N , and p � 0, then the N-vector x solves the problem

max
x ∈ R

N
+

u(x)

s.t. p.x ≤ w ,
(6.12)

if there exists a nonnegative number λ, such that λ = 0, if p.x < w, and
such that x solves the problem

max
x ∈ R

N
+

[u(x) − λp.x]. (6.13)

If w > 0 and if x solves problem 6.12, then there exists a positive number
λ, such that p.x = w and x solves problem 6.13.

The Kuhn-Tucker coefficient, λ, appearing in proposition 6.14 is the
rate at which the consumer’s maximized utility increases as the income or
wealth, w, increases. For this reason, λ is called the consumer’s marginal
utility of wealth or sometimes the marginal utility of unit of account or of
money, even when there is no money in the model. The units of λ are utiles
per unit of account, where a utile is a unit of utility.

Proof of Proposition 6.14. The first assertion of the proposition follows
directly from the sufficiency part of the Kuhn-Tucker theorem. If w > 0,
problem 6.12 satisfies the constraint qualification and the Kuhn-Tucker
theorem implies the second assertion of the proposition. I demonstrate that
p.x = w and λ > 0. It is enough to show that λ > 0, for by the Kuhn-Tucker
theorem, λ = 0, if p.x < w. The Kuhn-Tucker theorem implies that λ ≥ 0.
If λ = 0, then problem 6.13 has no solution, since u is strictly increasing.
Therefore λ must be positive.

I now apply the Kuhn-Tucker theorem to the welfare-maximization
problem

max
(x , y) is a feasible

allocation

I∑
i=1

aiui(xi), (6.14)

where ai > 0, for all i.
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theorem 6.15 Suppose that the economy E satisfies assumptions 6.11
and 6.12. If (x , y , p, τ) is an equilibrium with transfer payments such that
p.xi > 0, for all i, then (x , y) solves problem 6.14, where, for all i, a−1

i is
consumer i’s marginal utility of wealth in the equilibrium.

Suppose that in addition E satisfies assumption 6.13. If (x , y) solves
problem 6.14, then there exist a price vector p and a vector τ = (τ1, . . . , τI )

such that (x , y , p, τ) is an equilibrium with transfer payments. In this
equilibrium, a−1

i is consumer i’s marginal utility of wealth, for all i.

Proof. First of all, problem 6.14 may be rewritten as

max
xi∈ R

N
+ , yj∈Yj , for all i , j

I∑
i=1

aiui(xi)

s.t.
I∑

i=1

xin −
J∑

j=1

yjn ≤
I∑

i=1

ein, for n = 1, 2, . . . , N ,

(6.15)

where ai > 0, for all i.
Suppose that (x , y , p, τ) is an equilibrium with transfer payments and

that p.xi > 0, for all i. By the definition of equilibrium, for each i, xi solves
the problem

max
x ∈ R

N
+

ui(x)

s.t. p.x ≤ wi(p) − τi ,

where wi(p) = p.ei +∑J
j=1 �ijp.yj . Therefore, p.ei +∑J

j=1 �ijp.yj ≥
p.xi > 0, for all i. By proposition 6.14, for each i, there exists a positive
number λi such that xi solves the problem

max
x ∈ R

N
+

[ui(x) − λip.x].

Since λi > 0, we may let ai = λ−1
i and write this problem as

max
x ∈ R

N
+

[ui(x) − a−1
i

p.x].

Therefore, xi solves the problem

max
x ∈ R

N
+

[aiui(x) − p.x].
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By the definition of equilibrium, for all j , yj solves the problem

max
y∈Yj

p.y .

The previous two statements imply that (x , y) solves the problem

max
xi∈ R

N
+ , for all i

yi∈Yj , for all j

⎡
⎣ I∑

i=1

aiui(xi) − p.

⎛
⎝ I∑

i=1

xi −
J∑

j=1

yj

⎞
⎠
⎤
⎦ .

That is, the allocation (x , y) maximizes the Lagrangian corresponding to
problem 6.15. One of the conditions of competitive equilibrium is that, for
each n, pn = 0, if

∑I
i=1 x in −∑J

j=1 yjn <
∑I

i=1 ein. Therefore, the num-
bers x in, yjn, and pn satisfy the complementary slackness conditions for
problem 6.15. Hence the Kuhn-Tucker theorem implies that the allocation
(x , y) solves that problem, which is the same as problem 6.14.

I now prove the second part of the theorem. I show that problem 6.15
satisfies the constraint qualification. Because E is productive, there exists a
feasible allocation, (x , y), such that

∑I
i=1 xi � 0. The allocation ( x

2 , y) is

not only feasible but satisfies the strict inequalities
∑I

i=1
xin
2 −∑J

j=1 yjn <∑I
i=1 ein, for all n. Hence, problem 6.15 satisfies the constraint qualifica-

tion.
Suppose that (x , y) solves problem 6.15. Because problem 6.15 satisfies

the constraint qualification, the Kuhn-Tucker theorem applies, with the

convex set X equal to
(∑I

i=1 R
N
+
)

×
(∑J

j=1 Yj

)
. Therefore, there exist

nonnegative numbers pn, for n = 1, . . . , N , such that, for all n, pn = 0,
if
∑I

i=1 x in +∑J
j=1 yjn <

∑I
i=1 ein and (x , y) solves the problem

max
xi∈ R

N
+ , for all i

yi∈Yj , for all j

⎡
⎣ I∑

i=1

aiui(xi) − p.

⎛
⎝ I∑

i=1

xi −
J∑

j=1

yj

⎞
⎠
⎤
⎦ . (6.16)

By focusing on where xi appears in problem 6.16, we see that, for each i,
xi solves the problem maxx ∈ R

N
+

[aiui(x) − p.x], which may be written as

maxx ∈ R
N
+

[ui(x) − a−1
i p.x], since ai > 0. Let τi = p.(ei − xi) +∑J

j=1 �ij

p.yj , so that p.xi = p.ei +∑J
j=1 �ijp.yj − τi. Proposition 6.14 implies

that xi solves the problem
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max
x ∈ R

N
+

ui(x)

s.t. p.x ≤ p.ei +
J∑

j=1

�ijp.yj − τi ,
(6.17)

which is consumer i’s maximization problem in an equilibrium with trans-
fer payments τ = (τ1, . . . , τI ). The number a−1

i is consumer i’s marginal
utility of wealth in problem 6.17.

By focusing on the way yu appears in problem 6.16, we see that, for each
j , yj solves the profit maximization problem

max
y∈Yj

p.y (6.18)

that appears in the definition of an equilibrium with transfer payments.
The allocation (x , y) is feasible because it solves problem 6.15 and so

satisfies its constraints. We know by the Kuhn-Tucker theorem that, for
all n, pn = 0, if

∑I
i=1 x in −∑J

j=1 yjn <
∑I

i=1 ein. Therefore, (x , y , p, τ)

satisfies all the conditions for an equilibrium with transfer payments. This
completes the proof of the first two assertions of the theorem.

If (x , y , p, τ) is an equilibrium with transfer payments such that (x , y)

solves problem 6.14, then we may write the objective function of that prob-
lem as

∑I
i=1 λ−1

i ui(xi), where λi is consumer i’s marginal utility of wealth
in the equilibrium (x , y , p, τ). Since the units of λi are consumer i utiles
per unit of account, the units of λ−1

i ui(xi) and hence of
∑I

i=1 λ−1
i ui(xi)

are the unit of account; welfare is measured in units of account. According
to the interpretation of the Kuhn-Tucker coefficients described in section
6.2, the prices pn are the rate at which welfare increases as the endowment
of commodity n,

∑I
i=1 ein, increases. This interpretation is consistent with

the units; the units of welfare are the same as the units of account, so that
the units of pn as a Kuhn-Tucker coefficient are units of account per unit of
commodity n, which are also the units of pn interpreted as a price.

An economic interpretation of the condition of equilibrium that pn = 0
when

∑I
i=1 x in −∑J

j=1 yjn <
∑I

i=1 ein is that commodities in excess sup-
ply are free. Theorem 6.15 shows that this condition may also be interpreted
as a complementary slackness condition for welfare-maximization problem
6.14.

There is an alternative proof of the part of theorem 6.15 that asserts that
an equilibrium allocation maximizes a weighted average of the consumers’
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utility functions, where the weights are the inverses of the consumers’ mar-
ginal utilities of wealth in the equilibrium. The proof uses what is called
the value loss method, which is similar to the proof of the sufficiency of the
Kuhn-Tucker conditions for optimality. Though this method adds little in
the context of finite dimensional models, it is quite useful when dealing
with infinite dimensional models arising in growth theory and the over-
lapping generations model. In such contexts, it replaces the Kuhn-Tucker
theorem, which does not have an easy extension to infinite dimensional
problems. I introduce the method here, in order to show its meaning in
finite dimensional models.

As in theorem 6.15, let (x , y , p, τ) be an equilibrium and suppose that
p.xi > 0, for all i, and that assumptions 6.11 and 6.12 apply. By proposition
6.14, each consumer i has a marginal utility of wealth, λi, in the equilib-
rium. Because ui is strictly increasing, λi > 0. Since ui is concave, xi solves
the problem

max
x ∈ R

N
+

[ui(x) − λip.x]

and hence solves the problem

max
x ∈ R

N
+

[λ−1
i

ui(x) − p.x],

for all i. Because of profit maximization, yj solves the problem

max
y∈Yj

p.y ,

for all j . For each i, let the value loss of consumer i, Li: R
N
+ → R, be defined

by the equation

Li(x) =
[
λ−1

i
ui(xi) − p.xi

]
−
[
λ−1

i
ui(xi) − p.xi

]
.

Clearly, Li(x) ≥ 0, for all x and i. Similarly, let the value loss for each firm
j , Lj : Yj → R, be defined by the equation

Lj (y) = p.yj − p.y .

Again, Lj (y) ≥ 0, for all y ∈ Yj and for all j .

I show that if (x , y) is a feasible allocation, then
∑I

i=1 λ−1
i [ui(xi) −

ui(xi)]≥ 0, so that (x , y) solves the problem
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max
(x , y) is a feasible

allocation

I∑
i=1

λ−1
i

ui(xi).

Because the value losses are nonnegative, it follows that for any feasible
allocation, (x , y),

0 ≤
I∑

i=1

Li(xi) +
J∑

j=1

Lj (yj )

=
I∑

i=1

{[
λ−1

i
ui(xi) − p.xi

]
−
[
λ−1

i
ui(xi) − p.xi

]}
+

J∑
j=1

(p.yj − p.yj )

=
I∑

i=1

λ−1
i

[
ui(xi) − ui(xi)

]+ p.

⎛
⎝ I∑

i=1

xi −
J∑

j=1

yj

⎞
⎠

− p.

⎛
⎝ I∑

i=1

xi −
J∑

j=1

yj

⎞
⎠

=
I∑

i=1

λ−1
i

[
ui(xi) − ui(xi)

]+ p.

⎛
⎝ I∑

i=1

xi −
I∑

i=1

ei −
J∑

j=1

yj

⎞
⎠

− p.

⎛
⎝ I∑

i=1

xi −
I∑

i=1

ei

J∑
j=1

yj

⎞
⎠

≤
I∑

i=1

λ−1
i

[
ui(xi) − ui(xi)

]
,

where the last inequality is valid for the following two reasons. First, p ≥ 0
and

∑I
i=1 xi −∑I

i=1 ei −∑J
j=1 yj ≤ 0, by the feasibility of the allocation

(x , y). Second, p.
(∑I

i=1 xi −∑I
i=1 ei −∑J

j=1 yj

)
= 0, since the alloca-

tion (x , y) is feasible and the equilibrium price of any commodity in excess
supply is 0. This completes the proof.

It is important to realize that the marginal utilities of wealth a−1
i appear-

ing in theorem 6.15 depend on the equilibrium. It is not possible to prove
the existence of an equilibrium by showing that a welfare function of the
form

∑I
i=1 aiui(xi) has a maximum, for we do not know what the wel-

fare weights ai should be until we know the equilibrium (x , y , p). If an
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economy has more than one equilibrium, each equilibrium allocation may
maximize a different welfare function. (It is possible to prove that an equi-
librium exists by making a fixed point argument on the welfare weights,
(a1, a2, . . . , aI). See Negishi [1960].)

If an equilibrium (x , y , p) maximizes a welfare function of the form∑I
i=1 λ−1

i ui(xi), the equilibrium may be interpreted as that of an economy
with a single consumer who receives all the profit from all the firms and has
initial endowment e =∑I

i=1 ei and utility function

U(x) = max

{
I∑

i=1

λ−1
i

ui(xi) |
I∑

i=1

xi = x

}
.

The budget set of the consumer in this equilibrium is⎧⎨
⎩x ∈ R

N
+ | p.x ≤ p.

I∑
i=1

ei + p.
J∑

j=1

yj

⎫⎬
⎭ .

Theorem 6.15 is what is known as an aggregation theorem because all con-
sumers are aggregated into a single consumer.

The following example illustrates how to compute the welfare weights
corresponding to an equilibrium.

example 6.16 Consider the following Edgeworth box example.

uA(x1, x2) = 1

4
ln(x1) + 3

4
ln(x2),

uB(x1, x2) = 2

3
ln(x1) + 1

3
ln(x2),

eA = (2, 0), and eB = (0, 2).

Proceeding as in section 4.5 and using equation 4.6 from there, I may
calculate that there is a unique equilibrium allocation

xA1 = 1

2
, xA2 = 4

3
,

xB1 = 3

2
, xB2 = 2

3
,

with prices

p1 = 8

17
, and p2 = 9

17
.
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The equation

∂uA(xA)

∂x1

= λAp1

implies that

1

4

1

xA1

= λAp1,

so that

λA = 17

16
,

where λA is consumer A’s marginal utility of wealth in the equilibrium
(xA, xB, p). Similarly, the equation

∂uB(xB)

∂x2

= λBp2

implies that

λB = 17

18
.

Therefore, the equilibrium allocation maximizes the welfare function

λ−1
A uA(xA) + λ−1

B uB(xB) = 16

17
uA(xA) + 18

17
uB(xB).

The prices p1 = 8
17 and p2 = 9

17 measure the rate at which the maximized

welfare, 16
17uA(xA) + 18

17uB(xB), increases as the total endowments of com-
modities 1 and 2, respectively, increase.

The welfare weight vector, a = (λ−1
A , λ−1

B ) = ( 16
17 , 18

17

)
, is perpendicular to

the utility possibility frontier, UF, for the economy at utility vector

U = (uA(xA), uB(xB)) =
(

1

4
ln

1

2
+ 3

4
ln

4

3
,

2

3
ln

3

2
+ 1

3
ln

2

3

)
,

because the inner product a.v = λ−1
A vA + λ−1

B vB is maximized among all
vectors v in the utility possibility set at the utility vector U . The orthogo-
nality of the vector a to the slope of UF at U is portrayed in figure 6.5.

The next example shows why it is necessary to require in theorem 6.15
that p.xi > 0, for all i.

example 6.17 Let there be two consumers (A and B), one commodity,
and no firm. The utility function and initial endowment of each consumer
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U

UF

Utiles of
consumer B

Utiles of consumer A

a

Figure 6.5 The utility possibility frontier and the vector welfare weights

are u(x) = √
x and e = 1, respectively. The allocation xA = 2, xB = 0 is

Pareto optimal, and (xA, xB, p , τA, τB) = (2, 0, 1, −1, 1) is an equilibrium
with transfer payments. The allocation (2, 0), however, does not maximize
a welfare function that gives positive weight to both consumers, for suppose
that aA

√
xA + aB

√
xB were such a welfare function, with aA > 0 and aB > 0.

If we maximize this welfare function subject to the constraint xA + xB ≤ 2,

we find that xB = 2a2
B

a2
A+a2

B

, which is positive, contrary to the hypothesis that

xB = 0.

6.4 The Differentiable Case

If the functions appearing in the Kuhn-Tucker theorem are differentiable, it
may be restated in terms of conditions involving derivatives. The validity of
the restatement follows from the next proposition, which may be familiar
to many readers and has been used implicitly in computing examples.

proposition 6.18 Let F : X → R be a concave and differentiable func-
tion, where X = {x ∈ R

N | xn ≥ 0, if n ≤ M} and where M ≤ N . F is max-
imized at x ∈ X, if and only if, for all n ≤ M ,
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∂F (x)

∂xn

≤ 0, with equality if xn > 0,

and (6.19)

∂F (x)

∂xn

= 0,

for all n > M .

Proof. It is should be well known from calculus that the conditions of 6.19
apply if F attains a maximum at x. I show the converse, that the conditions
of 6.19 imply that F attains a maximum at x. Let x be any vector in X, and
suppose that 0 ≤ α ≤ 1. Then

F(x + α(x − x)) = F(αx + (1 − α)x) ≥ αF(x) + (1 − α)F (x)

= F(x) + α [F(x) − F(x)] ,
(6.20)

where the inequality follows from the concavity of F . Therefore,

0 ≥
N∑

n=1

∂F (x)

∂xn

(xn − xn) = d

dα
F(x + α(x − x))

∣∣∣∣
α=0

= lim
α=0

F(x + α(x − x) − F(x)

α
≥ F(x) − F(x).

(6.21)

The first inequality in 6.21 follows from conditions 6.19, because if ∂F (x)
∂xn

<

0, then n ≤ M and x = 0 and so xn ≥ xn and hence ∂F (x)
∂xn

(xn − xn) ≤ 0.

The second inequality in 6.21 is a consequence of inequality 6.20. Since
F(x) ≤ F(x) and x is an arbitrary vector in X, F achieves its maximum
value at x.

The version of the Kuhn-Tucker theorem involving derivatives is as fol-
lows.

differentiable version of the kuhn-tucker theorem 6.19
Suppose that f : X → (−∞, ∞) is concave and differentiable and gk: X →
(−∞, ∞) is convex and differentiable, for k = 1, . . . , K , where X = {x ∈
R

N | xn ≥ 0, if n ≤ M} and M ≤ N . Then, the vector x ∈ X solves the
problem

max
x∈X

f (x)

s.t. gk(x) ≤ ak , for k = 1, . . . , K ,
(6.22)
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if there exist nonnegative numbers λ1, . . . , λK such that

1. for all k , λk = 0, if gk(x) < ak

2. for all n, ∂f (x)

∂xn
≤∑K

k=1 λk
∂gk(x)

∂xn
, with equality if xn > 0 or n > M

Suppose that there exists an x such that gk(x) < ak, for all k, and that x in
X solves problem 6.22. Then, there exist nonnegative numbers λ1, . . . , λK

such that conditions (1) and (2) above apply.

Proof. Suppose that x in X satisfies conditions (1) and (2) of the theorem.
Condition (1) of theorem 6.19 is the same as condition (1) of theorem 6.3
(in section 6.1). By proposition 6.18, condition (2) of theorem 6.19 implies
that x solves the problem

max
x ∈ X

[
f (x) −

K∑
k=1

λkgk(x)

]
, (6.23)

which is condition (2) of theorem 6.3. Therefore, theorem 6.3 implies that
x solves problem 6.22.

Suppose that there exists an x in X such that gk(x) < ak, for all k, and
that x in X solves problem 6.22. Then by theorem 6.3, there exist non-
negative numbers λ1, . . . , λK such that condition (1) applies and x solves
problem 6.23. Because x solves problem 6.23, proposition 6.18 implies that
condition (2) above applies.

Conditions (1) and (2) of theorem 6.19 are known as first-order condi-
tions. Another way to see the connection between Pareto optimality, welfare
maximization, and equilibrium is to compare the first-order, complemen-
tary slackness, and feasibility conditions corresponding to each. To simplify
matters, I deal only with economies that have no production. In doing so,
I continue to apply assumptions 6.11 and 6.13 (in section 6.3) and add the
following assumption.

assumption 6.20 For each i, the function ui: R
N
+ → R is differentiable.

In proving theorem 6.15, I showed that, under assumptions made here,
the following welfare-maximization problem satisfies the constraint quali-
fication:
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max
x

I∑
i=1

aiui(xi)

s.t.
I∑

i=1

xin ≤
I∑

i=1

ein, for n = 1, . . . , N ,

(6.24)

where ai > 0, for all i. Therefore, theorem 6.19 implies that the allocation
x maximizes the welfare function if and only if there exist Kuhn-Tucker
coefficients p1, . . . , pN , such that these coefficients and the allocation x
satisfy conditions 6.25–6.28 below.

xi ≥ 0, for all i . (6.25)

I∑
i=1

(x in − ein) ≤ 0, for all n. (6.26)

For all n, pn ≥ 0, with pn = 0, if
I∑

i=1

(x in − ein) < 0. (6.27)

For all i and n, ai

∂ui(xi)

∂xn

≤ pn, with equality, if x in > 0. (6.28)

Conditions 6.25 and 6.26 define feasibility of the allocation x. The con-
ditions in 6.27 are the complementary slackness conditions for the Kuhn-
Tucker coefficients, pn. Condition 6.28 is the first-order condition for
maximization of the Lagrangian

I∑
i=1

aiui(xi) −
N∑

n=1

pn

I∑
i=1

xin.

These conditions imply those characterizing an equilibrium with trans-
fer payments. Let λi = a−1

i , so that condition 6.28 becomes

for all i ,
∂ui(xi)

∂xn

≤ λipn, with equality, if x in > 0. (6.29)

If we adjoin the equations defining the transfer payments,

τi = p.(ei − xi), (6.30)

for all i, we see that theorem 6.19 implies that (x , p, τ) is an equilibrium
with transfer payments, provided it and the coefficients λ1, . . . , λI satisfy
conditions 6.25–6.27, 6.29, and 6.30. The coefficients λ1, . . . , λI are the
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Lagrange multipliers or Kuhn-Tucker coefficients for utility maximization
over the budget sets. Once again, conditions 6.25 and 6.26 define feasibility
of the allocation x. Condition 6.27 is the condition in the definition of
equilibrium that says that commodities in excess supply have zero value.
Conditions 6.29 and 6.30 imply that, for each i , xi solves consumer i’s
utility-maximization problem

max
x ∈ R

N
+

ui(x)

s.t. p.x ≤ p.ei − τi .

(Since λi > 0 and by the definition of τi the budget equation is satisfied with
equality, we do not need a complementary slackness condition of the form
λi = 0, if p.xi < p.ei +∑J

j=1 �ijp.yi − τi .)
Conversely, if p.ei − τi > 0, for all i, in the equilibrium with transfer

payments, (x , p, τ), then each consumer’s utility-maximization problem
satisfies the constraint qualification. Thus theorem 6.19 may be applied to
show that for each i, there exists a Kuhn-Tucker coefficient, λi, because
consumer i’s utility-maximization problem and the equilibrium together
with λ1, . . . , λI satisfy conditions 6.25–6.27, 6.29, and 6.30. Because the
utility functions are strictly increasing, the λi are positive, so that inequality
6.29 may be transformed into inequality 6.28 by letting a−1

i = λi. Therefore,
the conditions implied by an equilibrium with transfer payments are those
for a welfare maximum.

In conclusion, an allocation that solves problem 6.24 is an equilibrium
with transfer payments in which the marginal utility of income of each
consumer i is a−1

i . Furthermore, if (x , p, τ) is an equilibrium with transfer
payments such that p.ei − τi > 0, for all i, then x solves problem 6.24 with
ai = λ−1

i , for all i, where λi is consumer i’s marginal utility of income in
the equilibrium.

By using somewhat different reasoning, it is possible to derive a similar
set of conditions implying that a Pareto optimal allocation is the allocation
of an equilibrium with transfer payments. If the allocation x is Pareto opti-
mal, then it maximizes the utility of consumer 1, subject to the constraint
that the utility of each of the other consumers be no lower than the level
achieved in the allocation x. That is, x solves the problem

max
x

u1(x1)

s.t. x is a feasible allocation and
ui(xi) ≥ vi , for i ≥ 2,

(6.31)
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where vi = ui(xi), for all i. Problem 6.31 may be rewritten as

max
xi∈ R

N
+ , for all i ,

u1(x1)

s.t.
I∑

i=1

(xin − ein) ≤ 0, for n = 1, . . . , N , and

− ui(xi) ≤ −vi , for i = 2, . . . , I .

(6.32)

Because the utility functions ui are concave, the function −ui is convex, so
that all the constraint functions are convex.

I show that problem 6.32 satisfies the constraint qualification under the
assumption that x1 > 0.

Let x1 be the allocation defined by the equations

x1
1 = 0 and x1

1 = xi + x1

I − 1
,

for i ≥ 2. The allocation x1 is feasible since it is obtained by redistributing
consumer 1’s consumption in the feasible allocation x to the other con-
sumers. Since the utility functions are assumed to be strictly increasing and
x1 > 0, ui(x1

i
) > ui(xi) = vi, for all i ≥ 2. Since by assumption 6.13, the

economy is productive, there exists an allocation x such that

I∑
i=1

(x in − ein) < 0,

for all n. Let x2 = εx + (1 − ε)x1, where ε is a positive number that is so
small that ui(x2

i
) > vi, for all i ≥ 2. Then,

I∑
i=1

(x2
in − ein) < 0,

for all n, so that problem 6.32 satisfies the constraint qualification.
I now apply theorem 6.19 to problem 6.32. For each n, let pn be the

Kuhn-Tucker coefficient corresponding to the constraint
∑I

i=1(xin − ein) ≤
0. For each i ≥ 2, let ai be the Kuhn-Tucker coefficient corresponding to the
constraint −ui(xi) ≤ −vi. With this notation, the Lagrangian of problem
6.32 is

u1(x1) +
I∑

i=1

aiui(xi) − p.
I∑

i=1

(xi − ei),
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which is the same as the Lagrangian for the welfare-maximization prob-
lem 6.24 with a1 = 1. Therefore, the Pareto optimal allocation satisfies con-
ditions 6.25–6.28, with the understanding that a1 = 1. We may apply the
reasoning used before to pass from these conditions to those for an equilib-
rium with transfer payments, provided ai > 0, for all i ≥ 2.

I verify that, for i ≥ 2, ai > 0, provided xi > 0. Without loss of generality,
let i = 2. In problem 6.32, fix the right-hand sides of all the constraints
except the constraint −u2(x2) ≤ −v2. That is, allow v2 to vary, but fix
vi = u(xi), for i > 2. Let V2(−v2) be the value function of problem 6.32
as a function of v2. The coefficient a2 is a subgradient of V2 at v2 = u2(x2).
Because u2 is strictly increasing and x2 > 0, it follows that u2(x2) > u2(0).
Because V2 is concave,

V2(−u2(0)) ≤ V2(−u2(x2)) + a2

[−u2(0) + u2(x2)
]

,

so that

a2 ≥ V2(−u2(0)) − V2(−u2(x2))

u2(x2) − u2(0)
. (6.33)

We know that

V2(−u2(x2)) = u1(x1). (6.34)

I may obtain a feasible solution for problem 6.32 with v2 = u2(0) by giving
consumer 2’s consumption bundle to consumer 1. That is, I may replace
the allocation x with the allocation x defined by the equations x1 = x1 +
x2, x2 = 0, and xi = xi, for i > 2. Then,

V2(−u2(0)) ≥ u1(x1) = u1(x1 + x2). (6.35)

Because ui is strictly increasing and x2 > 0,

u1(x1 + x2) − u1(x1) > 0. (6.36)

Inequalities and equations 6.33–6.36 imply that

a2 ≥ u1(x1 + x2) − u1(x1)

u2(x2) − u2(0)
> 0.

This completes the proof that ai > 0, for all i ≥ 2 such that xi > 0. It fol-
lows, therefore, that x is the allocation of an equilibrium with transfer pay-
ments, (x , p, τ).
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6.5 Proof of the Kuhn-Tucker Theorem

I repeat the statement of the Kuhn-Tucker theorem for ease of referral when
reading its proof.

the kuhn-tucker theorem Let f : X → (−∞, ∞) be concave, and, for
k = 1, . . . , K , let gk: X → (−∞, ∞) be a convex function, where X is
a convex set of N-vectors. For each k = 1, . . . , K , let ak be a number.
Suppose that x in X is such that gk(x) ≤ ak, for k = 1, . . . , K , and that
there exist nonnegative numbers λ1, . . . , λK such that

1. for all k , λk = 0, if gk(x) < ak

2. x solves the maximization problem

max
x ∈ X

[
f (x) −

K∑
k=1

λkgk(x)

]

Then, x solves the problem

max
x ∈ X

f (x)

s.t. gk(x) ≤ ak , for k = 1, . . . , K .
(6.37)

Suppose that x solves problem 6.37 and assume the following
constraint qualification:

3. There exists an x in X such that gk(x) < ak, for all k.

Then, there exist nonnegative numbers λ1, . . . , λK such that conditions
(1) and (2) above apply.

Proof. Recall from definition 6.2 (in section 6.1) that a vector x in X is said
to be feasible if it satisfies the constraints of problem 6.37.

I first prove that the stated conditions are sufficient for optimality. That
is, if x is feasible and there exist nonnegative numbers λ, . . . , λK that
together with x satisfy conditions (1) and (2), then f (x) ≥ f (x), for any
feasible vector x. The complementary slackness conditions of (1) imply that
λkgk(x) = λkak, for all k, so that

K∑
k=1

λkgk(x) =
K∑

k=1

λkak . (6.38)
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Therefore,

f (x) −
K∑

k=1

λkak = f (x) −
K∑

k=1

λkgk(x)

≥ f (x) −
K∑

k=1

λkgk(x) ≥ f (x) −
K∑

k=1

λkak ,

(6.39)

where the equation in inequality 6.39 follows from equation 6.38, the first
inequality follows from condition (2) of the theorem, and the second in-
equality follows from the nonnegativity of the λk and from the inequalities
gk(x) ≤ ak, for all k. Canceling the sum

∑K
k=1 λkak from the extreme left-

and right-hand sides of inequality 6.39, we see that f (x) ≥ f (x), as was to
be proved.

It remains to be proved that the stated conditions are necessary for op-
timality, if the constraint qualification applies. That is, I must show that if
x solves problem 6.37, then there exist nonnegative numbers λ1, . . . , λK

such that conditions (1) and (2) of the theorem apply. Recall from defini-
tion 6.7 (in section 6.2) that V (a) is the supremum of possible values of the
objective function of problem 6.37, when the right-hand sides of the con-
straints are a = (a1, . . . , aK), and that the function V is defined for a be-
longing to the set A of K-vectors for which the constraints of problem 6.37
have a feasible solution. By proposition 6.9 (in section 6.2), it is sufficient
to prove that the value function, V , has a subgradient λ = (λ1, . . . , λK) at
a. The argument that V has a subgradient is an application of Minkowski’s
separation theorem 3.34 (in section 3.5).

Let Z = {(a , t) | a ∈ A, t ≤ V (a)} and let B = {(a , t) | a ∈ R
K , a ≤ a,

and t ≥ V (a)}. The set Z is the set of all points on or below the graph
of V . This set is convex, because, by proposition 6.10 (in section 6.2),
the function V is concave and the set A is convex. It is clear from the
definition of B that it is convex and has nonempty interior. Because V is
nondecreasing, the set Z does not intersect the interior of B. Figure 6.6
should help you visualize these sets.

It follows from Minkowski’s separation theorem that there exists a
nonzero (K + 1)− vector v = (v1, . . . , vK , s) such that

v .b ≤ v .z , for all b in B and z in Z. (6.40)

I show that vk ≥ 0, for all k. Without loss of generality, I may let k =
1. Let a = a + (1, 0, . . . , 0). Because V is nondecreasing, V (a) ≥ V(a).
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B

Z

V

a a

v

Figure 6.6 The sets to be separated

Therefore, (a , V (a)) belongs to Z, by the definition of Z. Because (a , V (a))

belongs to B, inequality 6.40 implies that

v .(a , V (a)) ≤ v .(a , V (a)).

By the definition of a,

v .(a , V (a)) = v .(a , V (a)) + v1.

Substituting this equation into the previous inequality, we see that

v .(a , V (a)) ≤ v .(a , V (a)) + v1,

which implies that v1 ≥ 0, as was to be proved.
I next show that s ≤ 0. By the definitions of B and Z, (a , V (a) + 1)

belongs to B, and (a , V (a)) belongs to Z. Therefore,

v .(a , V (a) + 1) ≤ v .(a , V (a)),

which implies that

v .(a , V (a)) + s ≤ v .(a , V (a)),

so that s ≤ 0.
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I now show that s < 0. Since s ≤ 0, it follows that s = 0, if s is not less
than 0. Suppose that s = 0. The constraint qualification implies that there
exists an a in A such that a � a. Since

(a , V (a)) ∈ B and (a , V (a)) ∈ Z ,

inequality 6.40 implies that

v .(a , V (a)) ≤ v .(a , V (a))

which, because s = 0, implies that

K∑
k=1

vkak ≤
K∑

k=1

vkak .

Because a � a and v ≥ 0, it follows that vk = 0, for k = 1, . . . , K . Hence,
v = 0, since s = 0. This is impossible, since v �= 0. This contradiction proves
that s < 0.

For each k, let λk = Vk

−s
. Then, λk ≥ 0, for all k, and the vector v may

be replaced, as a separating vector, by the vector (λ1, . . . , λK , −1) = 1
−s

v.
That is,

(λ1, . . . , λK , −1).b ≤ (λ1, . . . , λK , −1).z ,

for all b in B and z in Z. (6.41)

I show that the vector λ = (λ1, . . . , λK) is a subgradient of V at a. That
is, if a is in A, then

V (a) ≤ V (a) +
∑

k

λk(ak − ak) (6.42)

In order to see that this inequality applies, notice that (a , V (a)) ∈ B and
(a , V (a)) ∈ Z, so that by inequality 6.41

(λ1, . . . , λK , −1)/(a , V (a)) ≤ (λ1, . . . , λK , −1).(a , V (a)).

That is, ∑
k

λkak − V (a) ≤
∑

k

λkak − V (a),

which is the same as inequality 6.42.
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Problem Set

1. Compute the marginal utility of wealth, λ, for a consumer with
endowment e = (2, 5) when prices are (p1, p2) = (2, 3) and with the
following utility functions:

(a) u(x1, x2) = x
1/4
1 x

1/2
1

(b) u(x1, x2) = 4x1 + x2

(c) u(x1, x2) = 4x1 + 6x2

(d) u(x1, x2) = min(3x1, x2)
(e) u(x1, x2) =√

min(6x1 + x2, 2x1 + 7x2)

(Hint: If the utility function is not differentiable, compute

V (w) = max
x1≥0, x2≥0

u(x1, x2)

s.t. 2x1 + 3x2 ≤ w.

Then λ = dV (19)
dw

.)

2. Consider the following Edgeworth box example:

eA = (2, 0), uA(x1, x2) = 2
√

x1x2,

eB = (0, 5), uB(x1, x2) = 2 ln(x1) + ln(x2).

(a) Compute a competitive equilibrium with the price of commodity
1 equal to 1.

(b) Compute the marginal utilities of unit of account for each con-
sumer in the equilibrium.

(c) Use these marginal utilities to compute weights aA and aB such
that the equilibrium allocation maximizes the welfare function

aAuA(xA1.xB2) + aBuB(xB1, xB2)

among all feasible allocations.
3. For the economies listed below, do the following:

(a) Compute a competitive equilibrium (xA, xB, p) such that p1 +
p2 = 1.

(b) Find positive numbers aA and aB such that the equilibrium
allocation (xA, xB) solves the problem

max
(xA , xB)≥0

[
aAuA(xA) + aBuB(xB)

]
s.t, xA + xB ≤ eA + eB

and such that, for n = 1 and 2,
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Pn = ∂V (eA1 + eB1, eA2 + eB2)

∂En

,

where

V (E1, E2) = max
(xA , xB)≥0

[
aAuA(xA) + aBuB(xB)

]
s.t. xA + xB ≤ (E1, E2).

(i) uA(x1, x2) = x
1/3
1 x

2/3
2 = uB(x1, x2), eA = (12, 0), and eB =

(0, 12).
(ii) uA(x1, x2) = min(x1x2) = uB(x1, x2), eA = (4, 1), and eB =

(0, 1).
(iii) uA(x1, x2) = x1 + 2x2, uB(x1, x2), = 2x1 + x2, eA = (2, 0),

eB = (0, 1).
(iv) uA(x1, x2) = x

6/7
1 x

1/7
2 , eA = (7, 0), uB(x1, x2) = x

3/7
1 x

1/7
2 ,

eA = (70), and uC(x1, x2) = x
4/5
1 x

1/5
2 eA = (0, 10).

(v) uA(x1, x2) = 1
6 ln(x1) + 1

3 ln(x2), eA = (1, 2),

uB(x1, x2) = 1
3 ln(x1) + 1

6 ln(x2), eB = (2, 1).
(vi) uA(x1, x2) = min(x1 + 2x2, 2x1 + x2), eA = (1, 1),

uB(x1, x2) =√
min(x1 + 8x2, 2x1 + 3x2), eB = (3, 1).

4. Consider a consumer who purchases two goods, 1 and 2. The con-
sumer’s utility function is

u(x1, x2) = √
x1x2.

The consumer’s wealth is w, where w > 0. The price of each good is
1. Suppose that good 1 is rationed, so that the consumer can buy no
more than r units of it, where r ≥ 0.

(a) Describe the consumer’s utility-maximization problem formally
as a constrained maximization problem with two constraints.

(b) What is the optimum quantity of each good purchased as a
function of w and r?

(c) Compute the consumer’s maximized utility, V (w , r), as a function
of w and r .

(d) As a function of w and r , what are the consumer’s marginal utilities
of wealth, λ, and of ration tickets, λ?

(e) Suppose the consumer could buy on the black market more ration
tickets for good 1 at a price of q per ticket. As a function of w and
r , what is the minimum value of q such that the consumer would
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not buy any ration tickets, assuming that the ration tickets could be
sold in arbitrarily small units? (Hint: Consider the units in which
λ, γ , and q are measured.)

(f) Show that if w > 0, then this value of q diverges to infinity as r

converges to zero.

5. Let u(x1, x2, x3) = (x1x2x3)
1/3. Suppose that p1 = p2 = p3 = 1 and that

w = 6 and that good 1 is rationed, so that the consumer can buy no
more than one unit of it.

(a) Compute the demands for goods 1, 2, and 3.
(b) Suppose there is a black market for good 1. For what black market

prices q would the consumer buy no more than the one unit of
good 1 received at price of 1 under rationing?

(c) Suppose there was no black market. For what prices would the
consumer be willing to pay for more ration tickets, assuming that
the tickets could be sold in arbitrarily small units?

6. A firm has two processes for producing a good, X. Each process uses
five chemicals: A, B, C, D, and E. The first process, when operated
at unit level, produces 3 tons of X and uses 5, 4, 3, 2, and 1 tons of
chemicals A, B, C, D, and E, respectively. If the process is operated at
level a, where a > 0, it uses 5a , 4a , 3a , 2a, and a tons of the chemicals,
respectively, and produces 3a tons of X. The second process, when
operated at unit level, produces 4 tons of X and uses 1, 2, 3, 4, and
5 tons, respectively, of chemicals A, B, C, D, and E. If this process is
operated at level a, where a > 0, it uses a , 2a , 3a , 4a, and 5a tons,
respectively, of the chemicals and produces 4a tons of X. The company
has 10 tons of each chemical available. The price of X is $100 per ton.

(a) What is the maximum amount of X the firm can produce? (Hint:
The requirement that no more than 10 units of the nth resource be
used places a linear constraint on the outputs, y1 and y2, produced
by the two processes. Calculate and graph these constraints for
each resource. The answer should then be obvious.)

(b) At this optimum, how much is produced by each process?
(c) What is the maximum price the firm is willing to pay for additional

marginal amounts of each chemical? (Hint: Calculate the Kuhn-
Tucker coefficients corresponding to each resource constraint.)
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7. You are given the following economy with two consumers, two firms,
and three commodities.

YI = {(−t , 2t , t) | t ≥ 0}.

YII = {(−t , t , 3t) | t ≥ 0}.

eA = (2, 0, 0). uA(x1, x2, x3) = ln(x1) + 2 ln(x2) + 2 ln(x3).

eB = (0, 0, 0). uB(x1, x2, x3) = 2 ln(x1) + 2 ln(x2) + ln(x3).

Consider the following value function of a welfare-maximization
problem.

V (e1, e2, e3) = max
xA∈ R

3
+ , xB∈ R

3
+ ,

yI∈YI , yII∈YII

[uA(xA) + uB(xB)]

s.t. xA + xB ≤ yI + yII + (e1, e2, e3).

Find a subgradient for V at the point (e1, e2, e3) = eA + eB = (2, 0, 0).
(Hint: Start by computing equilibrium relative prices. There is no need
to compute an equilibrium. Remember that transfer payments may be
freely adjusted.)

8. I introduce a government into a pure trade or exchange economy,
((ui , ei)

I
i=1). (An economy with no production is said to be a pure

trade economy or an exchange economy.) The government chooses
a consumption bundle g ∈ R

N
+ . An allocation consists of (x , g) =

(x1, . . . , xI , g). It is feasible if g +∑I
i=1 xi ≤∑I

i=1 ei. For each i, ui

depends on xi and g, so that consumer i’s utility is ui(xi , g). Assume
that for each i , ui is differentiable, concave, and strictly increasing.

(a) Define Pareto optimality of a feasible allocation.
(b) Show that if (x , g) is a Pareto optimal allocation, then there exists

an I -vector a such that a > 0 and (x , g) solves the problem

max
(x , y) is a feasible

allocation

I∑
i=1

aiui(xi , g).

(c) Show that if (x , g) is a Pareto optimal allocation such that xi � 0,
for all i, and g � 0, then there exists an N-vector q such that

q � 0, ai
∂ui(xi , g)

∂xn
= qn, for all i and n, and

∑I
i=1 ai

∂(xi , g)

∂gn
= qn,

for all n, where the ai are as in part (b).1

1. This problem is based on the work of Paul Samuelson on public expenditures (1954,

1955).
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Arrow-Debreu Equilibrium

The Arrow-Debreu model incorporates time and uncertainty in general
equilibrium theory in a way that preserves the theory’s main conclusions
but at the cost of making the unrealistic assumption that all trading takes
place at one initial moment, before anything other than trade occurs. Time
and uncertainty are included by collapsing the entire future into a fictitious
present. Despite this drawback, the model enriches the theory and its inter-
pretation, for the extreme restriction on trading may be replaced by more
plausible assumptions.

7.1 The Arrow-Debreu Model

The Arrow-Debreu approach requires a model of uncertainty and the pas-
sage of time. Uncertainty is represented by using a set of states, S, called the
states of the world. I usually assume that S is a finite set, though a valid the-
ory exists with an infinite set S. Each state s in S is a complete description
of everything that is relevant to the situation studied. It should be imag-
ined that only one state, s, actually occurs. What people observe are events,
and these are subsets of S. Not all subsets of S are included as events, but
only those that are considered to be observable. It is assumed that if A and
B are events, then A ∪ B , A ∩ B, and S\A = {s ∈ S | s �∈ A} are events as
well. The set of events may or may not include subsets consisting of a single
state. It is assumed that the whole set, S, and the empty set, ∅, are events.
Probabilities are assigned to events by means of a function p, from the set of
events to the unit interval, [0, 1]. If A is an event, p(A) is, roughly speaking,
the proportion of times that A would occur if the circumstances generat-
ing the observation were repeated a great many times. If p(A) = 1, then A
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would always occur, and if p(A) = 0, A would never occur. It is assumed
that p(S) = 1 and that p(A ∪ B) = p(A) + p(B), if A and B are disjoint
events. These two assumptions imply that p(∅) = 0. If S is a finite set, then
the probability of an event is the sum of the probabilities of the individual
states in the event, provided these states are themselves events. If there are
infinitely many states, it may not be possible to build up the probabilities of
all events from those of individual states. The following examples illustrate
these notions.

example 7.1 You toss a fair coin twice. The set of states is

S = {(H , H), (H , T ), (T , H), (T , T )},

where H represents heads and T represents tails. The state (H , T ) repre-
sents heads on the first toss and tails on the second. Each state, (x , y), may
be thought of as an event {(x , y)}, where x and y can be either H or T .
The probability of each state is 1/4, so that p((H , H)) = 1/4 and so on.
The set of events is the set of all possible subsets of S. The event of heads
on the second toss is {(H , H), (T , H)}, and the probability of this event is
p((H , H)) + p((T , H)) = 1/4 + 1/4 = 1/2.

example 7.2 A coin is tossed twice by an unknown mechanism, and you
are told the number of times heads comes up. The set of states is as in the
previous example, but the observable events are only the empty set, ∅, the
whole set, S, and the sets {(T , T )}, {(H , T ), (T , H)}, and {(H , H)}. It
makes sense to assign probabilities only to these observable sets, since the
mechanism generating the tosses is unknown.

example 7.3 A number is chosen from the interval [0, 1] with uniform
probability. The set of states is [0, 1]. Events are what is known as Lebesgue
measurable subsets of [0, 1]. It includes all intervals, such as [a , b], as well
as many other sets, but does not include all subsets of [0, 1]. The probability
of any single state, {s} is zero, whereas the probability of the interval [a , b]
is b − a, if b ≥ a. If b > a, the probability of [a , b]cannot, therefore, be the
sum of the probabilities of the individual states in [a , b].

In example 7.1, events occur in a temporal sequence; there is a first toss,
and there is a second toss. The set of states is the set of histories of what
occurs. These histories may be described by a tree diagram, as in figure
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(2, {(H, H)})

(1, {(H, H), (H, T)})

(0, {(H, H), (H, T), (T, H), (T, T)})

H T

H T H T

(1, {(T, H), (T, T)})

(2, {(H, T)}) (2, {(T, H)}) (2, {(T, T)})

Figure 7.1 A dated event tree

7.1. The nodes in the figure correspond to what are called dated events. The
dated event (0, {(H , H), (H , T ), (T , H), (T , T )}) is the situation at time
0 before anything has happened. The dated event (1, {(T , H), (T , T )}) is
the situation at time 1 occurring after tails occurred at time 0. The dated
event (2, {(H , T )}) is the situation at time 2 after heads occurred at time 0
and tails at time 1.

I now describe terminology and notation that permits discussion of gen-
eral dated events.

definition 7.4 A partition of a set S is a set, S, of nonempty subsets of
S that are mutually disjoint and whose union is S. That is, A ∩ B = ∅, for
any distinct members, A and B, of S, and ∪A∈SA = S.

definition 7.5 If F and S are partitions of S, F refines S if every A in S

is a union ofsets in F. That is, for every A in S, the sets in F that are subsets
of A form a partition of A.

Partitions can be used to express the revelation of information over time.
Suppose that the information is revealed over periods t = 0, 1, . . . , T and
that S is the set of possible states of the world. The amount of information
available at time t is represented by a partition, S1, of S. If nothing is
forgotten, so that information increases over time, then St+1 refines St , for
all t . The partition St is the set of events that occur up to time t . Suppose
that such a sequence of partitions, St , is given, for t = 0, 1, . . . , T .
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definition 7.6 The set of dated events, �, equals {(t , A) | 0 ≤ t ≤ T ,
A ∈ S, for all t}, where in a pair (t , A) the letter t is the date of occurrence
of the event A.

There are as many dated events for period t as there are events in St . Since
S0 may contain many events, there may be many dated events for period 0.

Imagine that all the agents in an economy observe the same events, and
let the dated event set, �, be as above. Finally, imagine that the same N

commodities are available in each dated event.

definition 7.7 A contingent claim is an agreement to deliver or receive
an amount of a specified commodity in a specified dated event.

The set of all vectors of quantities of commodities in dated events is

R
�×N = {x: � × {1, . . . , N} → R} = {x: � → R

N},

where � × N denotes the Cartesian product of the sets � and {1, 2, . . . , N}.
That is, � × N = {((t , A), n) | (t , A) ∈ � and n = 1, 2, . . . , N}. (The
Cartesian product of sets A and B is A × B = {(a , b) | a ∈ A and b ∈ B}.)
A typical component of a vector x in R

�×N is x(t , A), n, where (t , A) is a
dated event in � and n is one of the N commodities. If S is finite, the sets
� and � × N are finite as well.

Imagine that trade in all the contingent claims occurs at a moment,
time −1, just preceding time 0, that trade is made against a single unit of
account, and that no trade occurs after the initial moment when trade in
contingent claims occurs. In periods 0, 1, . . . , T , deliveries are made and
taken according to the contingent contracts purchased and sold at time −1.
Trade occurs at time −1 for commodities in all dated events of any given
period t , even though only one of those events is actually realized.

Imagine an economy where all trading is in contingent claims. In such
an economy, if you wanted to buy 5 pounds of wild bird food on a certain
winter day (but only if there had been snow on the ground for at least a
week), the purchase would be arranged beforehand on a market for bird
food, at that date and when there had been snow on the ground for at
least a week. An economy where all trades are arranged through forward
contingent trades is said to be Arrow-Debreu or to have complete markets.
To model such an economy, let the input-output possibility set, Yj of the
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j th firm be a subset of R
�×N , for each j , and for each consumer i, let

the utility function be ui: R
�×N
+ → R and the endowment be ei ∈ R

�×N
+ ,

where R
�×N
+ is the set of all vectors in R

�×N with nonnegative components.
An equilibrium in such a model is termed an Arrow-Debreu equilibrium.
It is denoted by (x , y , p), where (x , y) is a feasible allocation and p ∈
R

�×N
+ is a price vector. We know from the first welfare theorem 5.2 (in

section 5.1) that if the utility functions are locally nonsatiated, then any
equilibrium allocation is Pareto optimal. The Pareto optimality of Arrow-
Debreu equilibria explains economists’ interest in them.

The following example should clarify the meaning of the concept.

example 7.8 There are two periods, 0 and 1, two states in the second
period, a and b, and the events are {a} and {b}. The dated events are
(0, {a , b}), (1, {a}), and (1, {b}). Let {a , b} = S. There is one firm, one con-
sumer, and one commodity in each dated event, so that this is a Robinson
Crusoe economy. The consumer is endowed with one unit of the good in
period 0 and none in period 1 in either state. That is, the consumer’s initial
endowment is

e = (e(0, S), e(1, a), e(1, b)) = (1, 0, 0),

where I use (1, a) and (1, b) to stand for (1, {a}) and (1, {b}), respectively.
Each of the two states a and b has probability one-half, the consumer has
utility ln(x) for consumption of x units of the good in any state, and the
consumer’s utility is the sum of the utility from consumption in period 0
and the expected utility from consumption in period 1. That is, the con-
sumer’s utility function is

u(x(0, S), x(1, a), x(1, b)) = ln(x(0, S)) + 1

2
ln(x(1, a)) + 1

2
ln(x(1, b)).

The firm’s output is
√−y(0, S) in dated event (1, a), and −y(0, S) in dated

event (1, b), where −y(0, S) is the firm’s input of the good in period 0.

Since the Arrow-Debreu equilibrium allocation in this example is Pareto
optimal, it is optimal, so that the equilibrium allocation is the optimal one.
That is, in order to calculate the equilibrium allocation, we must solve the
problem
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max
x(0, S) , x(1, a) , x(1, b) , y(0, S)

[
ln(x(0, S)) + 1

2
ln(x(1, a)) + 1

2
ln(x(1, b))

]
s.t. y(0, S) ≤ o,

0 ≤ x(0, S) ≤ 1 + y(0, S),

0 ≤ x(1, a) ≤√−y(0, S), and

0 ≤ x(1, b) ≤ −y(0, S).

Solving this problem, we find that x(0, S) = 4
7 , x(1, a) =

√
3
7 , x(1, b) = 3

7 , and

y(0, S) = − 3
7 . In calculating Arrow-Debreu prices, I normalize them so that

p(0, S) = 1. A first-order condition for the consumer’s utility-maximization
problem over a budget constraint is

∂u(x(0, S), x(1, a), x(1, b))

∂x(0, S)

= λp(0, S),

where λ is the consumer’s marginal utility of unit of account. This equation
implies that

λ = 1

x(0, S)

= 7

4
.

Another first-order condition for the consumer’s maximization problem is

∂u(x(0, S), x(1, a), x(1, b))

∂x(1, a)

= λp(1, a),

which implies that

1

2

1

x(1, a)

= λp(1, a),

and hence

p(1, a) = 2
√

221

21
.

Similarly, the first-order condition

∂u(x(0, S), x(1, a), x(1, b))

∂x(1, b)

= λp(1, b),

implies that

1

2

1

x(1, b)

= ∂p(1, b),
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and hence that

p(1, b) = 2

3
.

There are two important things to notice about this example. First of
all, the prices for the good in the dated events (1, a) and (1, b) are not
proportional to the events’ probabilities, though the consumer maximizes
the expected utility of consumption in period 2. The probabilities of the
two events are equal, yet p(1, a) = 2√

21
< 2

3 = p(1, b). Because more of the

good is available in dated event (1, a) than (1, b), the good is cheaper in
event (1, a). The second thing to notice is that the firm does not need to
know the probabilities of the events in order to maximize its profits. It
need only know the Arrow-Debreu prices. The firm’s profit-maximization
problem is

max
y(0, S)≥0

[
p(0, S)y(0, S) + p(1, a)

√−y(0, S) + p(1, b)(−y(0, S))
]

= max
y(0, S)≥0

[
y(0, S) + 2√

21

√−y(0, S) + 2

3
(−y(0, S))

]
.

The probabilities appear nowhere in this expression. This feature of the
model does not correspond to reality, because executives of actual firms are
preoccupied with trying to predict the future. They cannot, however, buy
their inputs and sell their outputs on markets for contingent claims. If they
could do so, they would, no doubt, care little about the likelihoods of the
various future events.

7.2 Arrow Equilibrium

I now present an idea of Kenneth Arrow (1953) that makes Pareto op-
timality of equilibrium with uncertainty seem somewhat more feasible
than it might otherwise appear. The Arrow-Debreu equilibrium strains our
credulity, for not only does it require that all trading occur at an initial mo-
ment, but people must trade on an enormous number of markets at that
time. Suppose that S0 = {S} and that for every time period t , every member
of the set of events, St , contains two members of the partition St+1. Suppose
also that there are N goods in each dated event and that t = 0, 1, . . . , T .
Then there are N types of contingent claim for period 0, 2N for period
1, 4N for period 2, and 2′N for period t . Since the number of events in
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St is 2t , the total number of contingent claims markets and prices at time
−1 is

N

T∑
t=0

2t ,

which quickly becomes huge as T grows.
We can reduce the number of contingent claims markets that open in the

model by assuming that during every dated event, agents trade in current
goods and services and in one period forward contingent contracts for unit
of account in the dated events of the succeeding period. This arrangement
requires that there be a different unit of account for each dated event. This
scheme reduces the number of markets on which trade actually occurs,
though the number of potential markets is even greater than in the Arrow-
Debreu model. In the above example, trade would occur on N markets for
goods in every period and on two markets for contingent claims in each
of the first T periods, so that the total number of markets on which trade
occurred would be

N(T + 1) + 2T .

If T is large, this number is considerably less than the number, N
∑T

t=0 2t ,
of markets that open in an Arrow-Debreu equilibrium. The number of
markets on which trade potentially could occur in an Arrow equilibrium
is N

∑T
t=0 +2

∑T −1
t=0 . We will see that if the allocation of an Arrow equilib-

rium is to be Pareto optimal, then all traders must know at time 0 not only
current prices but what all prices would be on potential markets if the dated
events of those markets occurred. This foreknowledge is a form of rational
expectations and requires knowledge of N

∑T
t=0 2t + 2

∑T −1
t=0 current and

potential prices. This number exceeds by 2
∑T −1

t=0 the number of prices in
an Arrow-Debreu equilibrium.

Though the realization of Arrow-Debreu and Arrow equilibria requires
different practical arrangements, the equilibria are equivalent in that they
generate the same allocations. I need some new notation in order to ex-
plain the relation between the two concepts of equilibrium and to define
an Arrow equilibrium formally. Let us start with an Arrow-Debreu equi-
librium, (x , y , p). The vector of Arrow prices for commodities bought and
sold in dated event (t , A) is p(t , a), which is a nonnegative N-vector that is
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proportional to the vector p(t , A) = (p(t , A), n)
N
n=1. That is,

p(t , A) = b(t , A)p
′
(t , A)

(7.1)

where b(t , A) > 0. The price p(t , A), n is the price in an Arrow equilibrium
of one unit of commodity n in dated event (t , A) in terms of the unit of
account or money of that dated event. The number b(t , A) is determined
by the choice of unit of account of dated event (t , A) and is arbitrary
unless other restrictions are added to the model. I use the term (t , A)-
dollars to refer to the unit of account of dated event (t , A). I use the term
Arrow-Debreu dollars to refer to the unit of account of period −1 in the
Arrow-Debreu equilibrium. The units of P(t , A) are (t , A)-dollars per unit
of good n. The units of P(t , A), n are Arrow-Debreu dollars per unit of good
n. Equation 7.1 makes it clear that the units of b(t , A) are (t , A)-dollars per
Arrow-Debreu dollar. In what follows, I write a dated event at time t as
(t , A(t)) in order to emphasize that A(t) ∈ St .

I next define the one-period forward contingent prices for unit of ac-
count in the Arrow equilibrium. The price q(0, A(0)) is the price in an Arrow
equilibrium of a (0, A(0))-dollar in terms of an Arrow-Debreu or period
−1 dollar and is defined by the equation

q(0, A(0)) = 1

b(0, A(0))

. (7.2)

For t ≥ 0, let (t + 1, A(t + 1)) be a dated event that immediately follows
dated event (t , A(t)), in the sense that A(t + 1) is a subset of A(t). The
contingent price of a (t + 1, A(t + 1))-dollar in terms of a (t , A(t))-dollar
is q(t , A(t)), (t+1, A(t+1)) and is defined by the equation

q(t , A(t)), (t+1, A(t+1)) = b(t , A(t))

b(t+a , A(t+1))

. (7.3)

A one-period forward contingent contract for unit of account is termed an
Arrow security.

Let (P, q) be the full vector of prices

p(t , A)(t)), n, q(0, A(0)), and q(t−1, A(t−1), (t , A(t))

just defined. An equilibrium, (x , y , q , P), with these prices I term an
Arrow equilibrium. I have derived the Arrow prices from the Arrow-
Debreu prices p(t , A(t))), n. Conversely, it is possible to calculate the
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Arrow-Debreu prices p(t , A(t)), n, from the Arrow prices

P(t , A(t)), n, q(0, A(0)), and q(t−1, A(t−1)), (t , A(t)),

by using equations 7.1–7.3.
Throughout what follows, if x is any vector in R

�×N and (t , A(t)) is any
dated event, then x(t , A(t)) denotes the N-vector (x(t , A(t)), 1, . . . , x(t , A(t)), N),
and the vector P(t , A(t)) = (P(t , A(t)), 1, P(t , A(t)), 2, . . . , P(t , A(t)), N) is the vec-
tor of current Arrow prices in dated event (t , A(t)).

I assume that firms maximize the present value of their profits. In order
to define the present value, let

q(t , A(t)) = 1

b(t , A(t))

= q(0, A(0))q(0, A(0)), (1, A(1))q(1, A(1)), (2, A(2)) . . . q(t−1, A(t−1)), (t , A(t))

(7.4)

be the price at time −1 of a unit of account in dated event (t , A(t)), for
t ≥ 0, where A(t) ∈ St and where A(0) ⊃ A(1) ⊃ . . . ⊃ A(t). The present
value at time −1 of a production plan y ∈ R

�×N
+ is

∞∑
t=0

∑
A(t)∈St

q(t , A(t))P(t , A(t))
. y(t , A(t)). (7.5)

The consumers that own a firm would all agree that it should maximize this
present value. In dated event (t , A(t)), consumer i receives

�ijP(t , A(t))
. yj , (t , A(t))

from firm j , a quantity that could be positive or negative. By using the
Arrow one-period forward markets for unit of account, the consumer can
transfer this wealth to any other dated event at the rates of exchange among
dated events that define the present value.

Before continuing, I collect some useful observations. Because the num-
bers b(t , A(t)) are positive,

q(t , A(t)) > 0, (7.6)

for all t . Equations 7.1–7.4 imply that

p(t , A(t)) = q(0, A(0))q(0, A(0)), (1, A(1))q(1, A(1)), (2, A(2))

. . . q(t−1, A(t−1)), (t , A(t))P(t , A(t))

= q(t , A(t))P(t , A(t)),

(7.7)
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for all (t , A(t)), where A(0) ⊃ A(1) ⊃ . . . ⊃ A(t). Finally, equation 7.4
implies that

q(t , A(t)) = q(t−1, A(t−1))q(t−1, A(t−1)), (t , A(t)), (7.8)

for all (t , A(t)).
Expression 7.5 and equation 7.7 imply that in the Arrow model, total

profits from y equal

T∑
t=0

∑
A(t)∈St

p(t , A)
. y(t , A),

which is the formula used for profits in the Arrow-Debreu model. The
interpretation differs in the two models, however. In the Arrow-Debreu
model, all purchases and sales are made in advance at time −1, before
any economic activity occurs. In the Arrow model, purchases and sales are
made currently as commodities are needed and become available. The firm
calculates the present value in expression 7.5 at time −1, given advance
knowledge of what all the prices q(t , A(t)) and P(t , A(t)), n will be as the dated
events (t , A(t)) occur.

I now describe the budget set of a consumer in an Arrow equilibrium.
To do so, I must specify the intertemporal pattern of profit distribution to
consumers. I make the simple assumption that current expenses or gains
are shared among shareholders. That is, firm j pays

�ijP(t , A(t))
. yj , (t , A(t))

to consumer i in dated event (t , A(t)), where yj ∈ Yj is the equilibrium
production plan of firm j . This quantity may be positive or negative. For
each dated event (t , A(t)), a(t , A(t)) denotes a quantity of (t , A(t))-dollars
purchased in the immediately preceding dated event as a contingent claim.
The vector

a = (a(t , A(t)))t=0, 1, . . . , T , A(t)∈St

is a vector of asset holdings. In an Arrow equilibrium, the budget set of
consumer i is
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βA
i
(P, q) = {(x , a) | x ∈ R

�×N
+ , a ∈ R

� ,
∑

A(0)∈S0

q(0, A(0))a(0, A(0)) ≤ 0,

P(t , A(t)).x(t , A(t)) +
∑

A(t+1)∈St+1 and
A(t+1)⊂A(t)

q(t , A(t)), (t+1, A(t+1))a(t+1, A(t+1))

≤ a(t , A(t)) + P(t , A(t)).ej , (t , A(t)) +
J∑

j=1

�ijP(t , A(t)).yj , (t , A(t)),

for t = 0, 1, . . . , T − 1 and for all A(t) ∈ St , and

P(T , A(T )).x(T , A(T )) ≤ a(T , A(T )) + P(T , A(T )).ej , (T , A(T ))

+
J∑

j=1

�ijP(T , A(T )).yj , (T , A(T )),

for all A(T ) ∈ ST },

(7.9)

where the superscript A on βA
i

stands for Arrow. In the Arrow equilibrium,
each consumer maximizes his or her utility over this budget set, and each
firm maximizes the present value of profits.

definition 7.9 An Arrow equilibrium consists of (x , y , a , P, q) satisfy-
ing the following conditions:

1. (x , y) is a feasible allocation.

2. a = (ai)
I
i=1, where each ai is a vector of asset holdings.

3. (P, q) is a vector of Arrow prices.

4. For each i, (xi , ai) solves the problem

max
(x , a)∈βA

i
(P, q)

ui(x).

5. For each j , yj solves the problem

max
y∈Yj

T∑
t=0

∑
A(t)∈St

q(t , A(t))P(t , A(t)).y(t , A(t)).

6. For each dated event (t , A) and each good n,
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P(t , A), n = 0, if
I∑

i=1

xi , (t , A), n <

I∑
i=1

ei , (t , A), n

+
J∑

j=1

yy , (t , A(t)), n.

(7.10)

The reader may wonder why the definition of Arrow equilibrium does
not include a condition that the markets for Arrow securities clear. Such
a condition is not necessary, since asset markets clear automatically if the
markets for goods clear and all consumers satisfy their budget constraints,
an assertion that is stated as proposition 7.12 below.

As was mentioned earlier in connection with the definition of profit
maximization, Arrow equilibrium requires a form of rational expectations.
Maximization of consumers’ and firms’ objective functions in an Arrow
equilibrium requires knowledge at time −1 of all the prices, P(t , A(t)), n and
q(t , A(t)), (t+1, A(t+1)), for all dated events (t , A(t)) and for all commodities n.
Since inputs bought in one dated event may have repercussions on possible
outputs in all succeeding dated events, a firm needs to know all future prices
in order to choose inputs rationally. Similarly, future prices may affect
the amounts a consumer would want to purchase currently. Knowledge of
future prices in each contingency is a form of rational expectations, because
the prices are for transactions on markets that are not open at time −1. No
such knowledge of the future is needed in an Arrow-Debreu equilibrium,
because the prices of all contingent claims are determined simultaneously
on markets at time −1. Since no mechanism is proposed in the Arrow
model for determining all prices initially, knowledge of the future prices
must be assumed.

The Arrow prices for contingent securities bear some relation to interest
rates and insurance premiums, though the interpretation should not be
pushed too far. The quantity

q(t , A(t)), t+1 =
∑

A(t+1)∈St+1:A(t+1)=A(t)

q(t , A(t)), (t+1, A(t+1)) (7.11)

is the value in dated event (t , A(t)) of an uncontingent unit of account in
period t + 1. We could therefore write

q(t , A(t)), t+1 = 1

1 + r(t , A(t))
, (7.12)
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where r(t , A(t)) is the one-period interest rate in dated event (t , A(t)). The
quantity

α(t , A(t)), (t+1, A(t+1)) = q(t , A(t)), (t+1, A(t+1))

q(t , A(t)), t+1

, (7.13)

where A(t + 1) ⊂ A(t), might be thought of as the pure cost in dated
event (t , A(t)) of insurance on dated event (t + 1, A(t + 1)). The price
α(t , A(t)), (t+1, A(t+1)) is the cost in dated event (t , A(t)) of a unit of account
in dated event (t + 1, A(t + 1)) after compensation for the interest earned
from dated event (t , A(t)) to period t + 1. The prices α(t , A(t)), (t+1, A(t+1))

resemble probabilities in that they are nonnegative and∑
A(t+1)∈St+1:A(t+1)=A(t)

α(t , A(t)), (t+1, A(t+1)) = 1.

However, the numbers α(t , A(t)), (t+1, A(t+1)) bear no necessary relation to
the conditional probabilities Prob[A(t + 1) | A(t)], because the choice of
unit of account in each dated event is arbitrary. If we were to double the
value of the unit of account in dated event (t , A(t + 1)), then we would
double q(t , A(t)), (t+1, A(t+1)) and increase α(t , A(t)), (t+1, A(t+1)), while making
no change in the real variables of the equilibrium. There is no money
in the Arrow model that fixes the value of the units of account. For the
same reason, the interest rates r(t , A(t)) are arbitrary and should not be
identified with actual interest rates.

An example may clarify this discussion.

example 7.10 The set of dated events is the same as that of example 7.8
(in section 7.1). There are two periods, 0 and 1, two states in the second
period, a and b, and the events are {a} and {b}. The dated events are (0, S),
(1, {a}), and (1, {b}), where S = {a , b}. There is no production and there is
one commodity in each dated event, and there are three consumers, A, B,
and C. The initial endowments of the consumers are, respectively,

eA = (eA, (0, S), eA, (1, a), eA, (1, b)) = (0, 4, 0),

eB = (eB, (0, S), eB, (1, a), eB, (1, b)) = (0, 0, 4), and

eC = (eC, (0, S), eC, (1, a), eC, (1, b)) = (0, 4, 0).

All three consumers have the same utility function as the consumer in
example 7.8, which is

u(x) = u(x(0, S), x(1, a), x(1, b)) = ln(x(0, S)) + 1

2
ln(x(1, a)) + 1

2
ln(x(1, b)).
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To calculate an Arrow-Debreu equilibrium in this example, I use equa-
tion 4.6 (in section 4.5) to find that

xA, (1, a) = 1, xB, (1, b) = 1, xC, (0, S) = 2.

Normalize prices so that

p(0, S) = 1.

By the symmetry of the example,

p(t , a) = p(1, b), (7.14)

and

xA, (1, b) = xA, (1, b) = 1 and xB, (1, a) = xB, (1, b) = 1.

The feasibility of the equilibrium allocation now implies that

xC, (1, a) = xC, (1, b) = 2.

The symmetry of the example implies that

xA, (0, S) = xB, (0, S),

so that, by feasibility,

xA, (0, S) = xB, (0, S) = 1.

The budget equation for person C,

p(0, S)x(1, a) + p(1, a)xC , (1, a) + p(1, b)xC , (1, b)

= p(0, S)eC , (0, S) + p(1, a)eC , (1, a) + p(1, b)eC , (1, b),

becomes

2 + 2p(1, a) + 2p(1, b) = 4,

which by equation 7.14 implies that

p(1, a) = p(1, b) = 1

2
.

In summary, the Arrow-Debreu equilibrium is

((xA, xB, xC), p) =
(

(1, 1, 1), (1, 1, 1), (2, 2, 2),

(
1,

1

2
,

1

2

))
.

I now compute an Arrow equilibrium with

P(0, S) = 1, and P(1, a) = P(1, b) = 1.
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By equation 7.1,

b(0, S) = 1, and b(1, a) = b(1, b) = 2.

By equation 7.3, the prices for contingent claims on unit of account in states
(1, a) and (1, b) are, respectively,

q(0, S), (1, a) = b(0, S)

b(1, a)

= 1

2
= q(0, S), (1, b).

The Arrow budget conditions in equation 7.9 imply that consumer A’s asset
holdings are

aA, (1, a) = P(1, a)(xA, (1, b) − eA, (1, a)) = 1 − 4 = −3 and

aA, (1, b) = p(1, b)(xA, (1, b) − eA, (1, b)) = 1 − 0 = 1.

As a check that the overall budget constraint is satisfied by person A, we
calculate that

aA, (0, S) = P(0, S)(xA, (0, S) − eA, (0, S)) + q(0, S), (1, a)aA, (0, S), (1, a)

+ q(0, S), (1, b)aA, (0, S), (1, b)

= 1(1 − 0) + 1

2
(−3) + 1

2
(1) = 0.

Similar calculations show that

aB, (1, a) = 1, aB, (1, b) = −3, aB(0, S) = 0, and

aC, (1, a) = 1 = aC, (1, b), and aC, (0, S) = 0.

As defined by equation 7.11, the uncontingent price of a unit of account in
period 1 is

q(0, S), 1 = q(0, S), (1, a) + q(0, S), (1, b) = 1

2
+ 1

2
= 1,

so that r(0, S), the interest rate from period 0 to period 1 defined by equa-
tion 7.12, is zero. Therefore, the pure insurance prices defined by equation
7.13 are

α(0, S), (1, a) = q(0, S), (1, a) = 1

2
= α(0, S)(1, b).

Something to notice about the Arrow equilibrium that has just been
calculated is that total purchases of Arrow securities for each dated event
are zero. That is,
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aA, (1, a) + aB, (1, a) + aC, (1, a) = −3 + 1 + 2 = 0, and

aA, (1, b) + aB, (1, b) + aC, (1, b) = 1 − 3 + 2 = 0.

These equations imply that the markets for Arrow securities clear, as they
always do in an Arrow equilibrium.

I now compute another Arrow equilibrium under the assumptions that

P(0, S) = 1, P(1, a) = 2, P(1, b) = 1

2
,

so that

b(0, S) = 1, b(1, a) = 4, and b(1, b) = 1.

Then,

q(0, S), (1, a) = b(0, S)

b(1, a)

= 1

4
and q(0, S), (1, b) = b(0, S)

b(1, b)

= 1.

Proceeding as before, I calculate that

aA, (1, a) = P(1, a)(xA, (1, a) − eA, (1, a)) = 2(1 − 4) = −6,

aA, (1, b) = P(1, b)(xA, (1, b) − eA, (1, b)) = 1

2
(1 − 0) = 1

2
, and

aA, (0, S) = 0.

Similarly,

aB, (1, a) = 2, aB, (1, b) = −3

2
, aB, (0, S) = 0,

aC, (1, a) = 4, aC, (1, b) = 1, and aC, (0, S) = 0.

The uncontingent price in period 0 of a unit of account in period 1 is

q(0, A), 1 = q(0, S), (1, a) + q(0, S), (1, b) = 1

4
+ 1 = 5

4
,

and the corresponding interest rate is

r(0, S) = −1

5
,

and the pure insurance prices are

α(0, S), (1, a) = q(0, S), (1, a)

q(0, S), 1

= 1/4

5/4
= 1

5
and

α(0, S), (1, b) = q(0, S), (1, b)

q(0, S), 1

= 1

5/4
= 4

5
.
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We see that if we change the units of account of each dated event, the Arrow
prices may change, though the allocation remains the same.

Example 7.10 illustrates two important functions of markets for Arrow-
Debreu or Arrow contingent claims; they allow consumers to move pur-
chasing power through time and across events. Consumer C finances the
consumption of the other two consumers in period 1 in return for the abil-
ity to consume in period 2. Consumer A finances the consumption of the
others in dated event (1, a), and consumer B does the same in dated event
(1, b). The movement of purchasing power through time is done in reality
by means of lending, borrowing, saving, and dissaving, which are achieved
through what are loosely termed capital markets. The movement among
events is insurance and is achieved in reality not only by means of insur-
ance, but also through capital market transactions. These two functions
of markets for contingent claims can be studied separately by considering
static models with uncertainty intertemporal models with no uncertainty.
In the static models, the set of dated events is {(0, {s}) | s ∈ S}. It may be
written as {s | s ∈ S} and visualized as in the figure 7.2, where there are five
states, 1, 2, 3, 4, and 5, and each state is an event. In an Arrow-Debreu
model with such a set of dated events, the set of traded contracts may be
written as {(s , n) | s ∈ S , n = 1, . . . , N}, and consumers can buy in period
−1 a contingent claim for any of the N commodities in any of the dated
events, (0, s). In an Arrow model, consumers can, at time −1, buy or sell
contingent claims for unit of account in each of the dated events (0, {s}).
They then exchange unit of account for the N goods and services in the
dated event that occurs. In this way, the Arrow equilibrium enables people
to move purchasing power among the states.

In a model with the passage of time and no uncertainty, the set of dated
events is {(t , S , . . . , ) | t = 0, . . . , T } or simply {t | t = 0, 1, . . . , T }. If
there are four periods, the set of dated events is {0, 1, 2, 3} and may be
represented as in figure 7.3. With this set of dated events, the set of traded
contracts in an Arrow-Debreu model is {(t , n) | t = 0, 1, 2, and 3, and
n = 1, 2, . . . , N}. Consumers can buy at time −1 a claim on any of the

(0, {1}) (0, {2}) (0, {3}) (0, {4}) (0, {5})

Figure 7.2 A set of dated events with only one date
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0

1

2

3

Figure 7.3 A set of dated events with no uncertainty

N goods or services in any period. In the Arrow equilibrium with this
set of dated events, consumers can buy or sell in any period t , such that
0 ≤ t ≤ 2, any of the goods or services deliverable in period t and a claim
on unit of account in the succeeding period. In period 3, a consumer can
buy goods and services of that period, using unit of account from the sale of
endowment, net of repayment of loans arranged in period 2. If there were a
market in period −1 for loans to be repaid in period 0, no one would use it,
because a consumer earns nothing and needs nothing in period −1. In an
Arrow equilibrium, each consumer has a budget constraint in each trading
period.

In addition to allowing the shifting of financial resources through time
and across events, Arrow-Debreu and Arrow forward prices make possible
the efficient planning and coordination of production and consumption.
This function is illuminated by the next example.

example 7.11 The set of dated events is as in the previous example. The
dated events are (0, S), (1, {a}), and (1, {b}), and the dated events (1, {a})
and (1, {b}) are equally probable. There is one commodity in each dated
event, and there is one consumer with utility function

u(x(0, S), x(1, a), x(1, b)) = ln(x(0, S)) + 1

2
ln(x(1, a)) + 1

2
ln(x(1, b)).

The consumer’s endowment is

e = (e(0, S), e(1, a), e(1, b)) = (1, 0, 0).

There is one firm with input-output possibility set

Y = {(y(0, S), y(1, a), y(1, b)) | y(0, S) ≤ 0,
√

y2
(1, a)

+ 4y2
(1, b)

≤ −y(0, S)}.
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We may think of the one commodity as a grain, which may be eaten or
planted in period 0. State a corresponds to wet weather, and state b cor-
responds to dry weather. Less is produced when the weather is dry. The
trade-off between crop sizes in wet or dry weather is determined by the
depth of planting. If the firm plants deeply, the seed rots if the weather is
wet but does well if it is dry. If planting is shallow, the seed dries out if the
weather is dry but does well if it is wet. The firm should choose the depth
of planting optimally.

To determine the allocation in an Arrow-Debreu or Arrow equilibrium
in this example, I solve the problem

max
y(0, S) , y(t , A) , y(1, b)

[
ln(1 + y(0, S)) + 1

2
ln(y(1, a)) + 1

2
ln(y(1, b))

]

s.t.
√

y2
(1, a)

+ 42
(1, b)

+ y(0, S) ≤ 0.

Using the method of Lagrange multipliers, we find that

(y(0, S), y(1, a), y(1, b)) =
(

− 1

2
,

1√
8

,
1√
8

)
.

It follows that

(x(0, S), x(1, a), x(1, b)) =
(

− 1

2
,

1√
8

,
1√
8

)
.

Half the grain is planted, and twice as much is produced and consumed in
the wet state as in the dry.

In calculating equilibrium Arrow-Debreu prices, let p(0, S) = 1. Substitu-
tion into the equation

∂u

∂x(0, S)

∂u

∂x(1, a)

=
1

x(0, S)

1

2x(1, a)

= p(0, S)

p(1, a)

reveals that

p(1, a) =
√

2

2
.

By a similar calculation,

p(1, b) = √
2,
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so that the equilibrium Arrow-Debreu price vector is

p =
(

1,

√
2

2
,
√

2

)
.

I next compute the Arrow equilibrium with

P(0, S) = P(1, a) = P(1, b) = 1.

Since P(0, S) = 1, equation 7.1 implies that q(0, S) = 1. Equation 7.7 implies
that

q(0, S), (1, a) = p(1, a) =
√

2

2
and

q(0, S), (1, b) = p(1, b) = √
2.

In this Arrow equilibrium, the firm solves the profit-maximization problem

max{y(0, S) +
√

2

2
y(1, a) + √

2y(1, b) | (y(0, S), y(1, a), y(1, b)) ∈ Y }.

Notice that the firm does not maximize the expected value of profits,
which is

y(0, S) + 1

2
y(1, a) + 1

2
y(1, b),

but the present value of profits evaluated using Arrow contingent-claims
prices. These prices guide the efficient choice of planting depth. The effi-
ciency of planting depth is not achieved through borrowing, lending, or
insurance, none of which are possible in the example because there is only
one consumer.

I now prove the assertion mentioned earlier that the markets for Arrow
securities clear in equilibrium, though the definition of Arrow equilibrium
does not specify that the supply of securities equals the demand.

proposition 7.12 If ui: R
�×N
+ → R is locally nonsatiated, for all i, then

in any Arrow-Debreu equilibrium, (x , y , a , P, q),

I∑
i=1

ai , (t , A(t)) = 0,

for all A(t) ∈ St and all t .
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Proof. Let (x , y , a , P, q) be an Arrow equilibrium. From the definition of
the Arrow budget set, βA

i
(P, q),

P(T , A(T )).
(

xi , (T , A(T )) − ei , (T , A(T ))

)≤ ai , (T , A(T ))

+
J∑

j=1

�ijP(T , A(T )).yj , (T , A(T )),

for all i. Because ui is locally nonsatiated, consumer i does not waste any
spending power in equilibrium and hence

P(T , A(T )).(xi , (T , A(T )) − ei , (T , A(T ))) = ai , (T , A(T ))

+
J∑

j=1

�ijP(T , A(T )).yj , (T , A(T )),

for all i. That is,

ai , (T , A(T )) = P(T , A(T )).
(

xi , (T , A(T )) − ei , (T , A(T ))

)
−

J∑
j=1

�ijP(T , A(T )).yj , (T , A(T )), (7.15)

for all i. Because the allocation (x , y) is feasible and because of equilibrium
condition 7.10,

P(t , A(t)), n

⎛
⎝ I∑

i=1

(xi , (t , A(t)), n − ei , (t , A(t)), n) −
J∑

j=1

yj , (t , A(t)), n

⎞
⎠= 0,

for all t , A(t), and n, so that

P(t , A(t))

⎛
⎝ I∑

i=1

(xi , (t , A(t)) − ei , (t , A(t))) −
J∑

j=1

yj , (t , A(t))

⎞
⎠= 0, (7.16)

for all t and A(t). Summing equation 7.15 over i and using equation 7.16
and the fact that

∑I
i=1 �ij = 1, for all j , we see that

I∑
i=1

ai , (T , A(T )) =
I∑

i=1

P(T , A(T )).(xi , (T , A(T )) − ei , (T , A(T ))) −
J∑

j=1

P(T , A(T ))

.yj , (T , A(T ))P(T , A(T )).

⎛
⎝ I∑

i=1

(xi , (T , A(T )) − ei , (T , A(T ))) −
J∑

j=1

yj , (T , A(T ))

⎞
⎠= 0
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for all A(T ) ∈ ST .
I now proceed by backward induction on t . Suppose that

I∑
i=1

ai , (t+1, A(t+1)) = 0,

for all A(t + 1) ∈ St+1. Because ui is locally nonsatiated,

P(t , A(t)).xi , (t , A(t)) +
∑

A(t+1)∈St+1 and A(t+1)⊂A(t)

q(t , A(t)), (t+1, A(t+1))ai , (t+1, A(t+1))

= ai , (t , A(t)) + P(t , A(t)).ei , (t , A(t)) +
J∑

j=1

�ijP(t , A(t)).yj , (t , A(t)).

(7.17)

If we sum equation 7.17 over i, substitute from equation 7.16, and use the
induction assumption that

∑I
i=1 ai , (t+1, A(t+1)) = 0, for all A(t + 1) ∈ St+1,

we find that
∑I

i=1 ai(t , A(t)) = 0 as was to be proved.

The next proposition asserts that corresponding Arrow-Debreu and Ar-
row equilibria have the same allocations. This assertion implies that the set
of Arrow equilibrium allocations is the same as the set of Arrow-Debreu
equilibrium allocations.

proposition 7.13 The vector (x , y , a , P, q) is an Arrow equilibrium,
if and only if (x , y , p) is an Arrow-Debreu equilibrium, where the Arrow
prices (P, q) are defined from the Arrow-Debreu price vector, p, by equa-
tions 7.1–7.3.

Proof. It is clear from the definitions of the two equilibria that yj max-
imizes profits over Yj in the Arrow-Debreu equilibrium if and only if it
maximizes profits over Yj in the corresponding Arrow equilibrium. It re-
mains to be shown that xi maximizes ui over the Arrow-Debreu budget
set, βAD

i
(p), if and only if (xi , ai) maximizes ui over the Arrow budget set,

βA
i
(P, q), for some ai. To prove this statement, it is sufficient to show that

βAD
i

(p) = {x | (x , a) ∈ βA
i
(P, q), for some a}.

The budget set of the Arrow-Debreu equilibrium is



252 7 Arrow-Debreu Equilibrium

βAD
i

(p) =
⎧⎨
⎩x ∈ R

�×N
+ |

T∑
t=0

∑
A∈St⎛

⎝p(t , A).(x(t , A) − ei , (t , A)) −
J∑

j=1

�ijP(t , A).yj , (t , A)

⎞
⎠≤ 0

⎫⎬
⎭ .

Let (x , a) ∈ βA
i
(P, q). Then,∑

A(0)∈S0

q(0, A(0))a(0, A(0)) ≤ 0,

P(0, A(0)).x(0, A(0)) +
∑

A(1)∈S1 and A(1)⊂A(0)

q(0, A(0)), (1, A(1))a(1, A(1))

≤ a(0, A(0)) + P(0, A(0)).e(0, A(0)) +
J∑

j=1

�ijP(0, A(0)).yj , (0, A(0)),

P(1, A(1)).x(1, A(1)) +
∑

A(2)∈S2 and A(2)⊂A(1)

q(1, A(1)), (2, A(2))a(2, A(2))

≤ a(1, A(1)) + P(1, A(1)).e(i , A(1)) +
J∑

j=1

�ijP(1, A(1)).yj , (1, A(1)),

...
P(T −1, A(T −1)).x(T −1, A(T −1))

+
∑

A(T )∈ST and A(T )⊂A(T −1)

q(T −1, A(T −1)), (T , A(T ))a(T −1, A(T −1))

≤ a(T −1, A(T −1)) + P(T −1, A(T −1)).ei , (T −1, A(T −1))

+
J∑

j=1

�ijP(T −1, A(T −1)).yj , (T −1, A(T −1)),

P(T , A(T )).x(T , A(T )) ≤ a(T , A(T ))

+ P(T , A(T )).ei , (T , A(T )) +
J∑

j=1

�ijP(T , A(T )).yj , (T , A(T )),

(7.18)

for all A(0), A(1), . . . , A(T ), where A(t) ∈ St , for all t , and A(0) ⊃ A(1) ⊃
. . . ⊃ A(T ). If we multiply the (t + 1)st inequality of 7.18 by q(t , A(t)), for
t ≥ 0, and use equations 7.7 and 7.8, we see that the inequalities of 7.18
become
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∑
A(0)∈S0

q(0, A(0))a(0, A(0)) ≤ 0,

P(0, A(0)).x(0, A(0)) +
∑

A(1)∈S1 and A(1)⊂A(0)

q(1, A(1))a(1, A(1))

≤ a(0, A(0))a(0, A(0)) + P(0, A(0)).e(0, A(0)) +
J∑

j=1

�ijP(0, A(0)).yj , (0, A(0)),

P(1, A(1)).x(1, A(1)) +
∑

A(2)∈S2 and A(2)⊂A(1)

q(2, A(2))a(2, A(2))

≤ a(1, A(1))a(1, A(1)) + P(1, A(1)).ei , (1, A(1)) +
J∑

j=1

�ijP(1, A(1)).yj , (1, A(1)),

...

P(T −1, A(T −1)).x(T −1, A(T −1)) +
∑

A(T )∈ST and A(T )⊂A(T −1)

q(T , A(T ))a(T , A(T −1))

≤ q(T −1, A(T −1))a(T −1, A(T −1)) + P(T −1, A(T −1)).ei , (T −1, A(T −1))

+
J∑

j=1

�ijP(T −1, A(T −1)).yj , (T −1, A(T −1)),

P(T , A(T )).x(T , A(T )) ≤ q(T , A(T ))a(T , A(T ))

+ p(T , A(T )).ei(T , A(T )) +
J∑

j=1

�ijp(T , A(T )).yj , (T , A(T )).

(7.19)

Summing these inequalities over all dated events and canceling like terms
on both sides of the resulting equation, we obtain

T∑
t=0

∑
A(t)∈St

p(t , A(t)).x(t , A(t)) ≤
T∑

t=0⎛
⎝ ∑

A(t)∈St

p(t , A(t))ei , (t , A(t)) +
J∑

j=1

�ijp(t , A(t)).yj , (t , A(t))

⎞
⎠ ,

(7.20)

which is the Arrow-Debreu budget condition. Therefore,

{x | (x , a) ∈ βA
i
(P, q), for some a} ⊂ βAD

i
(p).
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To prove the reverse inclusion, suppose that x ∈ βAD
i

(p). Then, inequality
7.20 applies. Use the last T inequalities of 7.19 to define the asset holdings
a(t , A(t)). That is, form the system

P(0, A(0)).x(0, A(0)) +
∑

A(1)∈S1 and A(1)⊂A(0)

q(1, A(1))a(1, A(1))

= q(0, A(0))a(0, A(0)) + p(0, A(0)).ei , (0, A(0)) +
J∑

j=1

�ijp(0, A(0)).yj , (0, A(0)),

p(1, A(1)).x(1, A(1)) +
∑

A(2)∈S2 and A(2)⊂A(1)

q(2, A(2))a(2, A(2))

= q(1, A(1))a(1, A(1)) + p(1, A(1)).ei , (1, A(1)) +
J∑

j=1

�ijp(1, A(1)).yj , (1, A(1)),

...

p(T −1, A(T −1)).x(T −1, A(T −1)) +
∑

A(T )∈ST and A(T )⊂A(T −1)

q(T , A(T ))a(T , A(T −1))

= q(T −1, A(T −1))a(T −1, A(T −1)) + p(T −1, A(T −1)).ei , (T −1, A(T −1))

+
J∑

j=1

�ijp(T −1, A(T −1)).yj , (T −1, A(T −1)),

P(T , A(T )).x(T , A(T )) = q(T , A(T ))a(T , A(T )) + p(T , A(T )).ei(T , A(T ))

+
J∑

j=1

�ijp(T , A(T )).yj , (T , A(T )).

(7.21)

The last or (T + 1)st of equations 7.21 defines a(T , A(T )), for all A(T ) ∈ ST ,
because by inequality 7.6, q(T , A(T )) > 0. I proceed by backward induction
on t . Given a(t+1, A(t+1)) for all A(t + 1) ∈ St+1, the (t + 1)st equation of
system 7.21 defines a(t , A(t)), for all A(t) ∈ St , since q(t , A(t)) > 0, by inequal-
ity 7.6. It remains to verify that the asset holdings a(0, A(0)) satisfy the first
inequality of system 7.19, which is∑

A(0)∈S0

q(0, A(0))a(0, A(0)) ≤ 0.

If we add all the equations of system 7.21 over all dated events and cancel
like terms on opposite sides of the resulting equation and use inequality
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7.20, we find that∑
A(0)∈S0

q(0, A(0))a(0, A(0))

=
T∑

t=0

⎛
⎝ ∑

A(t)∈St

p(t , A(t)).[x(t , A(t)) − ei , (t , A(t))]

−
J∑

j=1

�ijp(t , A(t)).yj , (t , A(t))

⎞
⎠≤ 0.

Therefore, the vector (x , a) satisfies all of the inequalities of system 7.19.
We may divide the (t + 1)st inequality of system 7.19 by q(t , A(t)), for t ≥ 0,
because, by inequality 7.6, q(t , A(t)) > 0. If we do so, we obtain system 7.18,
so that (x , a) ∈ βA

i
(P, q) and therefore

βAD
i

(p) ⊂ {x | (x , a) ∈ βA
i
(P, q), for some a}.

This completes the proof that

βAD
i

(p) = {x | (x , a) ∈ βA
i
(P, q), for some a}.

7.3 Insurance

The main purpose of insurance is to permit people to share or redistribute
financial risk. Although it might seem natural to associate insurance with
the law of large numbers, it is misleading to do so. What a large provider
of automobile insurance earns in premiums each year roughly equals what
it pays out in indemnities plus a margin for administrative expenses and
profits. This is so because the law of large numbers makes the annual aver-
age payment per customer nearly predictable. The law of large numbers so
reduces the insurer’s risk that it can, in a sense, self-insure. The situation is
quite different in the case of damages from large storms or floods, when the
losses greatly exceed the flow of premiums and must be paid out of reserves
accumulated by insurance companies and by investors who have agreed
to bear a share of the risk through reinsurance arrangements. In such cir-
cumstances, significant risks are borne by insurance company shareholders
and other investors. The Arrow-Debreu and Arrow models are used to ana-
lyze the risk-spreading function of insurance rather than its role in making
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risk disappear through averaging. The models are unrealistic in that they
assume that only consumers buy and sell insurance, whereas in reality, firms
are major buyers of insurance as well as its most important providers. I will
describe the possible risky outcomes as dated events like those pictured in
figure 7.2 in section 7.2. I assume that in each dated event there is only one
commodity, which may be thought of loosely as money, and I further sim-
plify the analysis by assuming that consumers maximize the expected value
of the utility gained from consumption of the one good. The expected value
of utility is termed a von Neumann–Morgenstern utility function.

I introduce appropriate terminology in order to define the domain of von
Neumann–Morgenstern utility functions. A function from the set of states
to the real numbers, x: S → R, is called a random variable. In economics,
random variables are sometimes referred to as lotteries, and the numbers,
x(s), are called outcomes. Assume that the set of states, S, is finite, let R

S =
{x: S → R} be the set of all random variables on S, and let R

S
+ = {x: S →

[0, ∞)} denote the set of nonnegative random variables. The expected value
of the random variable x ∈ R

S is

Ex =
∑
s∈S

π(s)x(s),

where π(s) is the probability of state s. The probabilities, π(s), may be the
objective probabilities of the states, s, or they may be subjective probabil-
ities applied by an individual to the states. A von Neumann–Morgenstern
utility function, U : RS

+ → R, is a function of nonnegative random variables,
x, that has the form

U(x) =
∑
s∈S

π(s)u(x(s)),

where u: [0, ∞) → (−∞, ∞) is a utility function for the one good; the
utility of the random variable or lottery is the expected value of the utilities
of the outcomes. The function U is concave if and only if the function u is
concave. By a slight abuse of notation, I will write Eu(x) for the expected
value

∑
s∈S π(s)u(x(s)), so that U(x) = Eu(x).

Von Neumann–Morgenstern utility functions have convenient proper-
ties. Suppose that an individual has such a utility function with a differen-
tiable function, u, of outcomes. The person’s marginal rate of substitution
between lotteries in states a and b at the contingent claim vector x is
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MRSa , b(x) =
∂U(x)

∂x(a)

∂U(x)

∂x(b)

=
π(a)

du(x(a))

dx

π(b)
du(x(b))

dx

,

provided x(a) > 0 and x(b) > 0. If x(a) = x(b), then

du(x(a))

dx
= du(x(b))

dx
,

so that

MRSa , b(x) = π(a)

π(b)
.

If we imagine that there are only two states, a and b, then the utility func-
tion U generates indifference curves in the two dimensional space with
coordinates x(a) and x(b), and the slope of an indifference curve, I , at
the diagonal is −π(a)/π(b), as shown in figure 7.4 for the case of concave
function, u.

The consumer’s attitude toward risk is determined by the shape of u.

x(b)

x(a)

I

(π(a), π(b))

Figure 7.4 An indifference curve of a von Neumann–Morgenstern utility function
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definition 7.14 A consumer with von Neumann–Morgenstern utility
function U(x) = Eu(x) is said to be risk averse if u is concave.

definition 7.15 A consumer with von Neumann–Morgenstern utility
function U(x) = Eu(x) is said to be risk neutral if u is affine, where u is
affine if

u(αx + (1 − α)y) = αu(x) + (1 − α)u(y),

for all x and y in X and for all α such that 0 ≤ α ≤ 1.

definition 7.16 A consumer with von Neumann–Morgenstern utility
function U(x) = Eu(x) is said to be risk loving if u is convex.

Recall that u: [0, ∞) → (−∞, ∞) is concave if and only if u(αx + (1 −
α)y) ≥ αu(x) + (1 − α)u(y), for all numbers x and y and for any number
α such that 0 ≤ α ≤ 1. It follows easily that u is concave if and only if

u

(
K∑

k=1

αkxk

)
≥

K∑
k=1

αku(xk),

for any finite sequences of numbers x1, . . . , xK and α1, . . . , αK , such that
αk ≥ 0, for all k, and

∑K
k=1 αk = 1. Hence, if x: S → R and u is concave,

then

u

(∑
s∈S

π(s)s(s)

)
≥
∑
s∈S

π(s)u(x(s)).

That is, u(Ex) ≥ Eu(x). In other words, we may say that the consumer is
risk averse and u is concave if and only if u(Ex) ≥ Eu(x), for all random
variables x. This assertion means that the consumer finds having for sure
the expected value of x at least as desirable as having the lottery x itself. For
this reason, the consumer is said to be averse to risk.

Similarly, the consumer is risk neutral if and only if u(Ex) = Eu(x), for
all random variables x. That is, the consumer is indifferent between having
the expected value of x for sure and having x. Finally, the consumer is risk
loving if and only if u(Ex) ≤ Eu(x), for all random variables x. That is, the
consumer finds having the random variable at least as desirable as having
the expected value of the random variable for sure.
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x(b)

0 x(a)

I

(π(a), π(b)){x | Ex = c}

c
π(a)

c
π(b)

Figure 7.5 Maximization of the expected utility among all random variables with
expectation equal to a constant c: The risk-averse case

Another way to see the connection between the concavity of u and the
intuitive idea of risk aversion is to consider the problem

max
x ∈ R

S
+

U(x)

s.t. Ex = c,
(7.22)

where c is a nonnegative constant and U is an increasing function. If U , and
hence u, is concave, the solution to this problem is the constant function
defined by the equation x(s) = c, for all s. If we suppose that there are only
two states, a and b, then the solution of the maximization problem 7.22
may be seen in the figure 7.5. The curve in the figure is an indifference
curve, I , of the utility function, U , that is tangent to the straight line
segment {x ∈ R

N
+ | Ex = c} at the random variable x = c.

Figure 7.6 is the corresponding diagram in the risk-neutral case. The
parallel lines are indifference curves for U . Because u is affine, it has the
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x(b)

x(a)0

(π(a), π(b))

c
π(a)

c
π(b)

Figure 7.6 Maximization of the expected utility among all random variables with
expectation equal to a constant c: The risk-neutral case

form u(x) = Ax + B, where A is a positive number and B is a number.
Therefore, U(x) = Eu(x) = AEx + B. An indifference curve for U solves
the equation AEx + B = C, for some constant C. Therefore, the indiffer-
ence curve solves the equation Ex = A−1(C − B) and is parallel to the line
segment defined by the equation Ex = c, which is shown as the thick in-
difference curve in the figure. It may be seen that any nonnegative random
variable x, such that Ex = c, solves maximization problem 7.22.

Figure 7.7 describes the risk-loving case. It can be seen that the tangency
between an indifference curve and the line {x | Ex = c} is not a solution to
problem 7.22. Rather, if π(b) ≤ π(a), then a solution, x, is defined by the
equation

x(s) =
{

0, if s = a , and
c

π(b)
, if s = b.

In the risk-loving case, the solution to problem 7.22 concentrates all of the
gain on the least-probable states.
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x(b)

x(a)0

I

(π(a), π(b))

c
π(a)

c
π(b)

Figure 7.7 Maximization of the expected utility among all random variables with
expectation equal to a constant c: The risk-loving case

In studying the connection between Arrow-Debreu or Arrow equilib-
rium and insurance, I focus on two issues—what insurance does and the
relation between the probability of an event and the price of insurance
on it. We have already seen in example 7.8 (in section 7.1) that Arrow-
Debreu prices need not be proportional to the probabilities of events, and
we have seen in example 7.10 (in section 7.2) that there is no fixed rela-
tion between the probabilities of events and Arrow contingent-claim prices,
because the Arrow prices depend on choice of the unit of account in each
dated event.

Suppose we are given (Ui , ei)
I
i=1, where, for all i , ei ∈ R

�
+ and Ui: R

�
+ →

R is a von Neumann–Morgenstern utility function of the form Ui(x) =∑
s∈S πi(s)ui(xs) and where � = S. That is, I use s to represent the dated

event (0, {s}). An Arrow-Debreu equilibrium for this model consists of
(x , p) such that

1. x = (x1, . . . , x1), where xi ∈ R+�, for all i, and
∑

i xeis, for all s

2. p ∈ R
�
+ and p > 0
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3. for all s , ps = 0, if
∑

j xis <
∑

i eis

4. for all i , xi solves the problem

max
x∈R

�+
Ui(x)

s.t. p.x ≤ p.ei

(7.23)

In the model just described, there is no point in distinguishing an Arrow
from an Arrow-Debreu equilibrium. If (x , p) is an Arrow-Debreu equi-
librium, then we can choose as an Arrow equilibrium (x , a , P, q), where
ais = qis(xis − eis), Ps = 1, and qs = ps, for all s. I discuss only Arrow-
Debreu equilibria, since the Arrow equilibrium is notationally more com-
plex.

An important thing to notice is that if the utility functions Ui are lo-
cally nonsatiated, then Arrow-Debreu equilibria are Pareto optimal, even
if consumers disagree on the assessment of the probabilities of the events
s, that is, even if the probabilities πI(s) change as i varies. Nothing in the
statement of the first welfare theorem 5.2 (in section 5.1) requires that the
consumers agree on probabilities.

The next proposition describes conditions under which the Arrow-
Debreu equilibrium prices are proportional to the probabilities of events.

proposition 7.17 Suppose that, for all i, the functions ui are differen-
tiable and πi(s) = π(s), for all i and s, so that the consumers agree on the
probabilities. Assume that, for all i and x, the first derivative of ui(x) is a
strictly decreasing and positive function x. Assume that

∑I
i=1 eis > 0 and

π(s) > 0, for all s. In an Arrow-Debreu equilibrium (x , p), the consump-
tion allocations, xis, are independent of s, for each i, if and only if

∑I
i=1 eis

is independent of s. Under this condition, p is proportional to π, where
π = (π(s))s∈S.

Proof. Let (x , p) be an Arrow-Debreu equilibrium. Because the utility
functions, ui, are strictly increasing, p � 0 and consumer i’s marginal
utility of wealth, λi, is positive, for all i. In order to see that this is so, observe
that by the first-order conditions for consumer i’s utility-maximization
problem,

0 <
dui(xi(s))

dx
≤ λips ,
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so that both λi and ps are positive. Because all prices are positive, there can
be no excess supply in equilibrium. That is,

I∑
i=1

xis =
I∑

i=1

eis , (7.24)

for all s.
If xis is independent of s, for all i, then equation 7.24 implies that∑I
i=1 eis is independent of s, so that this part of the proposition is correct.

I next show that if
∑I

i=1 eis is independent of s, then xis is indepen-
dent of s, for all i. The first-order conditions of consumer i’s utility-
maximization problem are

π(s)
dui(xis)

dx
≤ λips , (7.25)

for all s, with equality if xis > 0. Since every state is assumed to have positive
probability, we may rewrite inequality 7.25 as

dui(xis)

dx
≤ λi

ps

π(s)
, (7.26)

for all s, with equality if xis > 0. Suppose that xis �= xis, for some i and for
two distinct states s and s. Without loss of generality, I may assume that
xis > xis and that i = 1. The inequality x1s > x1s implies that x1s > 0, so
that

λi

ps

π(s)
= du1(x1, s)

dx
<

du1(x1, s)

dx
≤ λ1

ps

π(s)
,

where the equation and the second inequality follow from inequality 7.26.
The first inequality applies because the second derivative of u1 is negative
and x1s > x1, s. Since λ1 > 0 we see that

ps

π(s)
>

ps

π(s)
. (7.27)

I now show that if i ≥ 2, then xis ≥ xis. Suppose that xis > 0. If xis = 0,
then clearly xis ≥ xis, as was to be proved. If xis > 0, then inequalities 7.26
and 7.27 imply that

dui(xis)

dx
= λi

ps

π(s)
< λi

ps

π(s)
= dui(xis)

dx
(7.28)
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and hence that xis > xis. This completes the proof that xis ≥ xis, when
xis > 0. It remains to be shown that xis = 0, when xis = 0. If xis = 0, then
by inequalities 7.26 and 7.27,

dui(0)

dx
= dui(xis)

dx
≤ λi

ps

π(s)
< λi

ps

π(s)
. (7.29)

If xis > 0, then inequalities 7.26 and 7.29 imply that

dui(0)

dx
< λi

ps

π(s)
= dui(xis)

dx
,

which is impossible since d2ui(x)

dx2 < 0. Therefore, xis = 0, as was to be
proved.

The inequalities xis > xis and xis ≥ xis, for i ≥ 2, and equation 7.24
together imply that

I∑
i=1

eis =
I∑

i=1

xis >

I∑
i=1

xis =
I∑

i=1

eis ,

contrary to hypothesis. This contradiction completes the proof that xis is
independent of s, for all i, if

∑I
i=1 eis is independent of s.

It remains to be proved that p is proportional to π if
∑I

i=1 eie is indepen-

dent of s. Because
∑I

i=1 eis > 0, for all s, and xis is independent of s, for
all i, it follows that, for some i, xis > 0, for all s. For such an i, inequality
7.25 becomes the equation

π(s)
dui(xis)

dx
= λips ,

for all s. Since xis is independent of s, it follows that dui(xis)

dx
is independent

of s and therefore p is proportional to π.

I now try to make the properties of Arrow-Debreu insurance equilibria
more vivid by means of Edgeworth box examples. Let there be two states,
states a and b, and two people, consumers A and B. The endowment of
consumer A is eA = (eAa , eAb) and that of consumer B is eB = (eBa , eBb).
The utility function of consumer A is

UA(x) = πA(a)uA(xa) + πA(b)uA(xb)

and that of consumer B is

UB(x) = πB(a)uB(xa) + πB(b)uB(xb),
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where πi(a) > 0, πi(b) > 0, and πi(a) + πi(b) = 1, for i = A and B.
Assume that uA and uB are differentiable and are strictly concave, so that
the consumers are risk averse.

example 7.18 (πA(a) = πB(a) = π(a) and eAa + eBa = eAb + eBb) This
example illustrates the conclusions of proposition 7.17. The consumers
attach the same probabilities to the two states, and there is no collective risk.
There can be individual risk, however, if eAa �= eAb and hence eBa �= eBb. At
the equilibrium, (x , p), xAa = xAb and xBa = xBb, so that all individual risk
is absorbed by mutual insurance. Also, pa

pb
= π(a)

π(b)
, so that the equilibrium

prices are proportional to the probabilities. Equilibrium is portrayed in
figure 7.8.

example 7.19 (πA(a) = πB(a) = π(a) and eAa + eBa = eAb + eBb) The
consumers attach the same probabilities to the states, but there is collec-
tive or uninsurable risk. In the equilibrium (x , p), p is not proportional

0B

0A

IA

IB

xBb

xAa

xBa

xAb

(pa, pb) = (π(a), π(b))

x

e

Figure 7.8 The case with common probabilities and no collective risk
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0B

0A

IA

IB

xBb

xAa

xBa

xAb
(π(a), π(b))

(pa, pb)

x

Figure 7.9 The case with common probabilities and collective risk

to (π(a), π(b)), and insurance cannot eliminate risk, though it does re-
distribute it between the consumers. It is impossible to eliminate the risk
through trade alone, for if it were eliminated, then xAa would equal xAb

and xBa would equal xBb, which is impossible, since then

eAa + eBa = xAa + xBa = xAb + xBb = eAb + eBb ,

contrary to the assumption that eAa + eBa > eAb + eBb. Figure 7.9 repre-
sents the equilibrium.

If in example 7.19 xis > 0, for i = A or B and s = a or b, then

π(a)
duA(xAa)

dx
= λApa and π(b)

duA(xAb)

dx
= λApb ,

so that

duA(xAa)

dx
duA(xAb)

dx

= pa

pb

π(b)

π(a)
.
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Similarly,

duB(xBa)

dx
duB(xBb)

dx

= pa

pb

π(b)

π(a)
,

so that

duA(xAa)

dx
duA(xAb)

dx

=
duB(xBa)

dx
duB(xBb)

dx

Therefore,

duA(xAa)

dx
<

duA(xAb)

dx
,

if and only if

duB(xBa)

dx
<

duB(xBb)

dx
.

Since uA and uB are concave, their derivatives are nonincreasing functions,
and it follows that xAa > xAb, if and only if xBa > xBb. Since

xAa + xBa = eAa + eBa > eAb + eBb = xAb + xBb ,

it follows that xAa > xAb and xBa > xBb; risk is redistributed evenly to this
extent.

If Aa > 0 and xAb > 0, then

pa

pb

= π(a)

π(b)

duA(xAa)

dx
duA(xAb)

dx

≤ π(a)

π(b)
,

since xAa > xAb and duA(x)

dx
is a nonincreasing function of x. The intuition

for this result is as follows. In equilibrium, the price of a unit of the good
in a state is proportional to the marginal utility of a contingent contract for
the good in that state, which in turn is the probability of the state times
the marginal utility in the state of consumption of the good. Since each
consumer has more of the good in state a than in state b, the marginal
utility of consuming the good is less in state a than in state b. Therefore,
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Figure 7.10 The case with differing probabilities and no collective risk

the price of a unit of the good in each state is the probability of the state
times a number that is smaller in state a than in state b.

example 7.20 (πA(a) = πB(a) and eAaeBa > eAb + eBb) There is no col-
lective risk, but consumer A believes that state a is more probable than does
consumer B. Figure 7.10 depicts the equilibrium, (x , p). It may be seen that
at the equilibrium allocation, xAa > xAb and xBa < xBb. It should also be
clear that

πA(a)

πA(b)
≥ pa

pb

≥ πB(a)

πB(b)
,

so that the ratio of the Arrow-Debreu prices lies between the ratios of the
probabilities for the two consumers. The Arrow-Debreu insurance markets
allow gambling on the state and may create risk, as would be the case if
eAa = eAb and eBa = eBb. The consumers redistribute risk Pareto optimally
by betting on dated events.
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Examples 7.19 and 7.20 illustrate that insurance does not necessarily
equalize consumption across states. What it equalizes are the relative mar-
ginal utilities of consumption.

To be more precise, insurance may not equalize the quantities xis as the
state s varies, where i is the consumer index. However, for each pair of
consumers i and j , insurance does equalize the quantities

πi(s)
dui(xis)

dx

πj(s)
duj(xjs)

dx

across all states s in which xis > 0 and xjs > 0. These ratios are constant,
because in an Arrow-Debreu equilibrium the first-order conditions for a
consumer’s utility-maximization problem imply that

πi(s)
dui(xis)

dx
= λjps ,

if xis < 0, so that the above ratio equals λi/λj , for all s.
Proposition 7.17 extends to models in which there is more than one

commodity in each state. Let N > 1 and R
S×N
+ = {x: S → R

N
+}. Suppose

that there is no production and that ei ∈ R
S×N
+ , for all i. Assume that for

each i, Ui: R
S×N
+ → R has the form

Ui(x) =
∑
s∈S

π(s)ui(xs1xsN),

where ui is concave and the probabilities, π(s),(s), do not depend on i.
Prices may be said to be proportional to probabilities in an Arrow-Debreu
equilibrium, (x , p), if p is such that psn = απ(s)Pn, for all s and n, where
α > 0 and P is an N-vector. Under conditions similar to those of propo-
sition 7.17, this equation is valid, if and only if the N-vector

∑I
i=1 eis is

independent of s. In a corresponding Arrow equilibrium, (x , a , q , P), we
can force q and π to be proportional by choosing a particular normaliza-
tion of the price vectors Ps = (Ps1, . . . , PsN). This proportionality has no
economic meaning, however.

7.4 Incomplete Markets and the Definition of
Profit Maximization

An economy is said to have incomplete markets if it does not have a full set
of Arrow-Debreu markets, Arrow markets, or equivalent markets. Markets
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are, of course, incomplete in actual economies. In this section, I show that if
markets are incomplete, then shareholders of the same firm may not agree
on what its objectives should be. In order to make this point, I define a
model in which there are no forward markets.

I define an intertemporal model with no insurance and in which con-
sumers can save an asset I call “money” that earns no interest. Underlying
the model is a dated event set, �, defined as in definition 7.6 (in section
7.1), with the additional restriction that � is a tree in the sense that the only
dated event in period 0 is (0, S). This dated event is the root of the tree in
that (0, S) precedes all other dated events, (t , A), because S ⊃ A and 0 ≤ t .
Assume that the commodity space for the economy is R

�×N . That is, the
input-output possibility set of each of the J firms is a subset of R

�×N , and
the utility function of each of the I consumers is defined on R

�×N
+ . The

current money price of good n in dated event (t , A) is denoted P(t , A), n,
and P denotes the vector with components P(t , A), n, for 0 ≤ t ≤ T , A ∈ St ,
and n = 1, . . . , N . As in section 7.2, if x is any vector in R

�×N and (t , A) is
any dated event in �, then x(t , A) is the N-vector (x(t , A), 1, . . . , x(t , A), N). As
before, �ij is the ownership share of consumer i in firm j , where �ij ≥ 0,

for all i and j and
∑I

i=1 �ij = 1, for all j . I assume that the profits of each
firm are paid to its owners as they are earned. Thus, if yj ∈ Yj is the input-
output vector of firm j , the payment to consumer i in dated event (t , A)

is �ijP(t , A).yj , (t , A). This quantity may be positive or negative, as in the
Arrow model. The set R

� denotes {M | M : � → R}. The budget set of con-
sumer i, given price vector P, is βi(P) = {x ∈ R

�×N
+ | the following three

conditions are satisfied}, for some Mi ∈ R
�:

1. P(0, x).x(0, S) + Mi , (0, S) = P(0, S).ei , (0, S) +∑J
j=1 �ijP(0, s).yj , (0, S);

2. given M(t−1, A(t−1)), where 1 ≤ t ≤ T and A(t − 1) ∈ St−1,

P(t , A(t)).x(t , A(t)) + M(t , A(t)) = M(t−1, A(t−1))

+ P(t , A(t)).ei , (t , (A)) +
J∑

j=1

�ijP(t , A(t)).yj , (t , A(t)),

for all A(t) ∈ St such that A(t) ⊂ A(t − 1);

3. M(T , A(T )) ≥ 0, for all A(T ) ∈ ST },

where yj is firm j ’s input-output possibility vector, for all j , and where
Mi , (t , A(t)) is the money holdings or credit balance of consumer i at the
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end of dated event (t , A(t)). The consumer is required to have a nonneg-
ative credit balance only at the end of the last period. In previous periods,
he or she could borrow. Notice that all the constraints defining βi(P) are
equations except for the last one. Equations appear because they define the
end of period money balances, M(t , A(t)). The overall budget constraint is
that the money balances at the end of the last period, M(T , A(T )), be non-
negative.

Equilibrium is defined by having consumers maximize their utility over
their budget sets and by having the supply of each commodity be at least
as much as the demand for it in every dated event. What has been left out
is the description of how firms choose their inputoutput vectors. The next
example shows that owners may disagree as to what their firm should do,
so that it is not clear how to define a firm’s objectives in equilibrium unless
each firm has only one owner.

example 7.21 There are two periods and two equally probable states a

and b in the second period. There are three commodities, the first of which
is labor. There are three consumers (a worker, W, and two capitalists, A and
B), and there are two firms (A and B). Goods 2 and 3 are produced from
labor employed in the first period. The production possibility set of both
firms is

Y =
{
(−L, y(1, a), 2, y(1, a), 3, y(1, b), 2, y(1, b), 3) | L ≥ 0, y(1, a), 2 = y2 ≥ 0,

Y(1, a), 3 = y(1, b), 3 = y3 ≥ 0, y2 + y3 ≤ √
L
}

,

where L is the labor input in period 0. Notice that for each of the produced
goods, the same amount is produced in the dated events (1, a) and (1, b).
The worker is endowed with 200 units of labor in period 0 and with nothing
else. Capitalist A is endowed with one unit of good 2 in each of dated events
(1, a) and (1, b) and with nothing else. Capitalist B is endowed with one
unit of good 3 in each of dated events (1, a) and (1, b) and with nothing
else. Capitalist A owns all of firm A, and capitalist B owns all of firm B. The
utility function of each of the three consumers is

1

2
ln(2x(1, a), 2 + x(1, a), 3 + 1

2
ln(x(1, b), 2 + 2x(1, b), 3),

so that consumers agree that the probability of each dated event is one-half.
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I calculate an equilibrium and show that capitalists A and B choose dif-
ferent production plans for their firms. Since the technologies of the two
firms are identical, the capitalists would not agree on production plans if
they owned the firms jointly. It is easy to see intuitively why they disagree.
Because of the nature of the utility function of all three consumers, the price
of good 2 is twice that of good 3 in dated event (1, a) and is half that of
good 3 in dated event (1, b). Since capitalist A has an endowment of good 2
in period 1, he or she is relatively richer in dated event (1, a) than in dated
event (1, b). Since the capitalist is risk averse, he or she shifts wealth from
dated event (1, a) to dated event (1, b) by producing more of good 3 than
good 2, thereby producing more of the good that is relatively more valuable
in dated event (1, b). Similarly, capitalist B has an endowment that makes
him or her relatively richer in dated event (1, b) and so shifts wealth from
dated event (1, b) to dated event (1, a) by producing more of good 2 than
3. In the absence of insurance markets, each capitalist uses its firm to shift
wealth among dated events in order to offset imbalances in income earned
outside the firm.

The equilibrium may be calculated as follows. Normalize prices so that
the price of labor in period 0 is 1. From the symmetry of the example,
we know that P(1, a), 3 = P(1, b), 2 and let this price be p. Then, P(1, a), 2 =
P(1, b), 3 = 2p. The maximization problem of capitalist A is

max
(x(1, a) , 2 , x(1, a) , 3, x(1, b) , 3, L, y2, y3)[

1

2
ln(2x(1, a), 2 + x(1, a), 3) + 1

2
ln(x(1, b), 2 + 2x(1, b), 3)

]
s.t. 2px(1, a), 2 + px(1, a), 3 ≤ 2p(y2 + 1) + py3 − L,

px(1, b), 2 + 2px(1, b), 3 ≤ p(y2 + 1) + 2py3 − L,

y2 + y3 ≤ √
L.

(7.30)

The constraints in problem 7.30 may be rewritten as

2x(1, a), 2 + x(1, a), 3 ≤ 2y2 + 2 + y3 − L

p
,

x(1, b), 2 + 2x(1, b), 3 ≤ y2 + 1 + 2y3 − L

p
, and

y2 + y3 ≤ √
L.
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Because these constraints are satisfied with equality, problem 7.30 may be
rewritten as

max
(y2, y3, L)

[
1

2
ln

(
2y2 + 2 + y3 − L

p

)
+ 1

2
ln

(
y2 + 1 + 2y3 − L

p

)]

s.t. y2 + y3 ≤ √
L.

(7.31)

If we fix L = LA and solve problem 7.31, we find that

yA2 =
√

LA − 1

2
and yA3 =

√
LA + 1

2
. (7.32)

By symmetry,

yB2 =
√

LB + 1

2
and yB3 =

√
LB − 1

2
.

By symmetry again, LA = LB. Since there are 200 units of labor available
and there is no demand for leisure, LA = LB = 100 and therefore

yA2 = 9

2
, yA3 = 11

2
, yB2 = 11

2
, and yB3 = 9

2
.

Therefore, the input-output choice by capitalist A,

(−LA, yA2, yA3) =
(

−100,
9

2
,

11

2

)
,

is not the same as the input-output choice of capitalist B, which is

(−LB, yB2, yB3) =
(

−100,
9

2
,

11

2

)
.

In order to complete the description of the equilibrium, I must find p.
To do so, substitute equations 7.32 into the objective function of problem
7.31, so that the problem becomes

max
LA

ln

(
3

2

(√
LA + 1

)
− LA

p

)
.

Since the natural logarithm function, ln, is increasing, we may find the
optimal value of LA by solving the problem

max
LA

ln

[
3

2

(√
LA + 1

)
− LA

p

]
. (7.33)
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The first-order condition for the solution of problem 7.33 is

p = 4

3

√
LA.

Since L + A = 100, we see that p = 40
3 . That is,

P(1, a), 3 = P(1, b), 2 = 40

3
and P(1, a), 2 = 80

3
.

A similar example can be produced in which the capitalists have the same
endowments but disagree about the probabilities of dated events.

Problem Set

1. (a) Compute an Arrow-Debreu equilibrium for an economy with
two consumers, A and B, and two states, 1 and 2. Each consumer
has a von Neumann–Morgenstern utility function for lotteries of
money, and for each consumer the utility of x units of money is
ln(x). Consumer A believes that state 1 occurs with probability
1/4 and state 2 occurs with probability 3/4. Consumer B believes
that state 1 occurs with probability 3/4 and state 2 occurs with
probability 1/4. Each consumer is endowed with $1 in each state.

(b) In part (a), suppose that each consumer believes that each state
occurs with probability 1/2, that consumer A is endowed with
$2 in state 1 and $0 in state 2, and that consumer B is endowed
with $0 in state 1 and $2 in state 2. Recalculate the Arrow-Debreu
equilibrium.

2. Consider an economy with two consumers, A and B, and two states,
1 and 2. Each consumer has a von Neumann–Morgenstern utility
function for lotteries of money. For each consumer, the utility of x

units of money is
√

x, and each consumer believes that each state
occurs with probability 1/2. Consumer A is endowed with $2 in state 1
and $4 in state 2. Consumer B is endowed with $1 in state 1 and $10 in
state 2. Compute an Arrow-Debreu equilibrium for this example.

3. Consider the following insurance problem. There are two consumers,
A and B, two events, a and b, and one period. The endowment of
consumer A is

eA = (eAa , eAb) = (1, 0).
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The endowment of consumer B is

eB = (eBa , eBb) = (0, 2).

The utility function of consumer A is

uA(xa , xb) = −1

3
e−xa − 2

3
e−xb .

The utility function of consumer B is

uB(xa , xb) = −1

3
xa + 2

3
xb.

Compute an Arrow-Debreu equilibrium in which the sum of the prices
is 1.

4. Consider the following insurance model with two states, a and b, and
three consumers, A, B, and C.

UA(xa , xb) = uB(xa , xb) = uC(xa , xb) = 1

3
ln(xa) + 2

3
ln(xb).

eA = (1, 4), eB = (2, 1), eC = (1, 3).

Compute an Arrow-Debreu equilibrium such that the sum of the prices
is 1. (Hint: The problem can be solved quickly by noticing that the total
endowment is twice as big in state b as in state a and by using the fact
that the utility functions are logarithmic.)

5. Consider the following Arrow-Debreu model with production. There
are two periods, periods 0 and 1. In period 1, there are two states, a

and b, each occurring with probability 1/2. There is one commodity
in period 0, which is labor–leisure time. There is one commodity in
period 2, which is food. With obvious notation, the utility functions
are

uA(�0, xta , x1b) = ln(�0) + 1

2
ln(x1a) = uB(�0, x1a , x1b).

Each consumer is endowed with 15 units of labor–leisure time in
period 0 and with nothing else. The production function, again using
obvious notation, is

y1a = 2
√

L0 and y1b = 20
√

L0,

where L0 is labor input in period 0. Each consumer has a share of 1/2
in the profits of the firm. Find an Arrow-Debreu equilibrium where
the price of labor–leisure time is 1.
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6. I ask you to compute an Arrow-Debreu equilibrium for the following
example. There are two periods, 0 and 1. There are two states, a and
b, in the second period, and one commodity in each period. There are
two consumers, A and B, and two firms, A and B. The input-output
possibility set of firm A, using obvious notation, is

YA = {(y0, y1a , y1b) = (y0, −y0, 0) | y0 ≤ 0}.

The input-output possibility set of firm B is

YB = {(y0, y1a , y1b) = (y0, 0, −2y0) | y0 ≤ 0}.

Because these sets are cones, the firms earn zero profits in equilibrium,
and hence there is no need to assign ownership shares in the firms to
the consumers.

(a) Notice that these input-output possibility sets determine the
Arrow-Debreu prices, p1a and p1a, respectively, in dated events
(1, a) and (1, b). If the Arrow-Debreu price of the commodity in
period 0 is 1, what are p1a and p1b?

The utility function of consumer A is

uA(x0, x1a , x1b) = ln(x0) + ln(x1a) + 2 ln(x1b).

The utility function of consumer B is

uB(x0, x1a , x1b) = ln(x0) + 2 ln(x1a) + ln(x1b).

The endowment of each consumer is

(e0, e1a , e1b) = (1, 0, 0).

(b) Compute an Arrow-Debreu equilibrium,

((xA0, xA1a , xA1b), (xB0, xB1a , xB1b),

(yA0, yA1a , yA1b), (yB0, yB1a , yB1b), (p0, p1a , p1b)),

in which the price of the commodity in period 0 is 1.
7. There are two states, 1 and 2, two consumers, A and B, and one good in

each state. The two states occur with equal probability. The endowment
of consumer A is 2 in state 1 and 0 in state 2. The endowment of
consumer B is 0 in state 1 and 1 in state 2. Both consumers have von
Neumann–Morgenstern utility functions. Let uA and uB be the utility
functions of consumers A and B, respectively, for the one good in either
state. Suppose that uA(x) = ln(x).
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(a) Compute an Arrow-Debreu equilibrium if uB(x) = ln(x).
(b) Compute an Arrow-Debreu equilibrium if uB(x) = x.
(c) Is there an equilibrium if uB(x) = ex? If so, calculate it. If not,

show why there is no equilibrium. A good drawing would suffice
in this case.

8. Compute an Arrow-Debreu equilibrium for the following economy.
There are three consumers, A, B, and C, and one good, money.
The endowment of each consumer is 1 with probability 1/2 and 0
with probability 1/2. The endowments of the three consumers are
independently distributed. Each consumer has a von Neumann–
Morgenstern utility function, where the utility of an amount of money,
x, in any one state is ln(x + 1).

9. (a) Compute an Arrow-Debreu equilibrium for the following econ-
omy. There is no production. There are two consumers (A and
B), two states (1 and 2), one time period, and one consump-
tion good in each state. Each consumer has a von Neumann–
Morgenstern utility function. The probability of each state is
1/2. Each consumer’s utility of consuming x units of the good
in one state is u(x) = log x. The endowment of consumer A
is eA = (eA1, eA2) = (24, 0). The endowment of consumer B is
eB = (eB1, eB2) = (8, 8).

Who bears the risk in this equilibrium?
(b) In the economy of part (a), change the utility function of consumer

B for consumption of the good to be u(x) = x. Leave the utility
function of consumer A as it is in part (a). Compute an Arrow-
Debreu equilibrium for the new economy. Who bears the risk in
the equilibrium? Why?

(c) Imagine that person A is the victim of a flood in the bad state
(state 2) and that the flood may be prevented by constructing a
dam. You might believe that there would be no point in building
the dam if the consumers were insured against flood damage, as
they are in the equilibrium of parts (a) and (b). This problem is
meant to contradict this wrong idea. Suppose that if a dam is built,
the endowment of consumer A is eA = (eA1, eA2) = (20, 20) and
the endowment of consumer B is eB = (eB1, eB2) = (4, 4). That
is, the dam costs each consumer 4 units of consumption in each
state, but prevents the loss of 24 units to consumer A in state 2.
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Suppose that the utility functions are as in part (a). Suppose also
that consumer A gives c units of the good to consumer B in each
state to compensate consumer B for the cost of dam construction.
Assume that 0 ≤ c ≤ 10.
(i) Compute the equilibrium if the dam is built and consumer A

pays c units of the good to consumer B in each state.
(ii) For what values of c, if any, does the equilibrium of part (i)

Pareto dominate the equilibrium of part (a)?

10. There are two farmers, A and B, in a valley. There are two states, flood
and no flood, and each occurs with probability 1/2. Each farmer has
a von Neumann–Morgenstern utility function with the utility of an
amount, x, of the crop in any one state being ln(x). The harvest of
farmer A equals 10 if there is no flood and equals 5 if there is a flood.
The harvest of farmer B equals 10 whether there is a flood or not.

(a) Compute an Arrow-Debreu equilibrium with the price of the crop
being 1 if there is no flood.

Now suppose that a dam can be built that would prevent the flood.
That is, if the dam were built, the crop of each farmer would be 10
in both states. The dam would cost a certain amount, say, t , of crop
payable after the dam was built and after the harvest, in either state.

(b) Suppose there is no insurance and, hence, no Arrow-Debreu
markets, so that each farmer’s consumption equals his or her crop
in either state. How much would each farmer be willing to pay for
the dam, assuming that she or he pays for it alone?

(c) Suppose there is insurance, so that the farmers would consume
their allocation under the Arrow-Debreu equilibrium. How much
would each farmer be willing to pay for the dam, assuming that he
or she pays for it alone? For each farmer, does insurance increase
or decrease willingness to pay for the dam?

11. Texas cotton farmers suffer from hail storms. The federal government
provides hail insurance. An entrepreneur has discovered a way to
seed thunderclouds so as to prevent them from producing hail. The
entrepreneur wishes to sell its invention to the government or to a
cotton-farmers organization. Both argue that because farmers can buy
insurance against hail damage, there is no need to spend money to
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prevent hail storms. Is this argument correct? Make a case for your
answer.

12. Two men agree to insure each other against heart attack, which would
incapacitate but not kill them. For simplicity, treat this as a one-
period problem. The probability that the first man will have a heart
attack is 1/10, as is the probability that the second will have one. For
simplicity again, assume that it is impossible for them to have a heart
attack simultaneously. Only one, or neither, will have one. Each man
earns 100 if healthy and nothing after a heart attack. Each has a von
Neumann–Morgenstern utility function, with the utility for money or
income, x, being ln(x).

(a) Compute the Arrow-Debreu equilibrium and the expected utility
of the men after trading in insurance but before the state is
revealed, that is, before it is known whether either has a heart
attack and if so who does. What is the expected utility of each man
in this equilibrium?

(b) Suppose that a new medical technology makes it possible to
know in advance who will and who will not have a heart attack.
This knowledge is available at the time trading in contingent
claims occurs. Describe an Arrow-Debreu equilibrium in the new
situation. What are the expected utilities of the two men in this
situation, where the expectation is calculated from the point of
view of a moment just before the new technology provides the
information about who is going to have a heart attack? Does the
new medical technology increase their expected utility? Give an
intuitive explanation of why or why not.

13. Consider a world with N consumers, with N equally probable states,
and with one good, money. The consumers all have identical von
Neumann–Morgenstern utility functions, with the utility for $x being
ln(x). In state n, for n = 1, . . . , N , the endowment of consumer n is
$0, whereas the endowment of every other consumer is $1.

(a) Compute the Arrow-Debreu equilibrium.
(b) In the equilibrium, what insurance premium do consumers pay

when they have an endowment of $1? What insurance benefit do
they receive when their endowment is $0?
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Suppose that in this world, a public agency can transfer wealth from
those with money to the person without any. There is leakage, however,
in that if $x is taken from a wealthy consumer, only $x/2 is given to
the needy one. Suppose that the social objective is to maximize the
expected utility of a typical consumer.

(c) If there are complete Arrow-Debreu insurance markets, what is the
socially optimal transfer by the public agency?

(d) If there is no insurance, what is the socially optimal transfer by the
public agency?

Suppose now that it is possible for the government agency to determine
and to announce, before the trade in insurance contracts occurs, who
is going to have an endowment of $0.

(e) What would be the Arrow-Debreu equilibrium if the announce-
ment were made?

(f) Would the expected utility of consumers be improved by the
announcement, where the expectation is calculated from the point
of view of a moment before the announcement was made?

14. Three workers reach a mutual insurance agreement for one period.
They know that exactly one of them will be unemployed in that period
and each is equally likely to be the one that is unemployed. Each worker
earns 10 when employed and nothing when employed. Each worker
consumes exactly what they earn in the period plus benefits or minus
payments from the insurance. There are two commodities, leisure and
income, so that consumption of income is measured in the same units
as is income. Each worker has 3 units of leisure if unemployed and 1
unit of leisure if employed. The workers set up Arrow-Debreu markets
to insure each other against unemployment. The utility function of
each worker has the form

Eu(�(s), x(s)),

where �(s) is the consumption of leisure, x(s) is the consumption of
income, s is the state of the world, and E is the expected value.

For each of the following functions, u, find an Arrow-Debreu
equilibrium and point out whether workers consume more when
employed or unemployed or the same in both cases.

(a) u(�, x) = �1/3x2/3.
(b) u(�, x) = 1

3 ln(�) + 2
3 ln(x).
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(Hint: Make use of symmetry. If you set the problem up with variables
for each worker and each state and a price for each state, you will have
12 equations for 12 variables and will waste time. By using symmetry,
you can reduce the problem to one involving only two variables, the
consumption, xu, of an unemployed worker and the consumption, xe,
of an employed worker.)

15. One hundred workers in the shipping department of a large factory
randomly select one of their members to be their representative to
management during the year. Each worker is equally likely to be
selected. The job of representative is miserable, as it entails abuse
from both management and fellow employees. To induce workers to
accept the job, the company pays the representative an income of 10
during the year, whereas every other worker is paid only 1. To further
compensate the representative for his or her suffering, the workers
consider setting up an Arrow-Debreu insurance market to protect the
worker who is chosen. The utility function of a worker for the year has
the form

Eu(x(s), s),

where x(s) is income, s is the state of the world, and E is expected
value. Suppose that

u(x(s), s) = 2
√

x(s) − 100,

if the worker is selected as representative in state s, and

u(x(s), s) = 2
√

x(s),

if the worker is not selected in state s.

Compute an Arrow-Debreu equilibrium. Would the representative
be better off with the insurance arrangement or without it, or would
it not affect his welfare? Would insurance increase, reduce, or leave
unchanged a worker’s expected utility for the year, calculated before the
selection of a representative? (Hint: Make use of symmetry to reduce
the problem to one involving only two variables, the consumption,
x1, of a worker randomly selected to be a representative and the
consumption, x0, of a worker not selected.)
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Rational Expectations Equilibrium and the
Permanent Income Hypothesis

We have seen that in an ideal world, Arrow-Debreu and Arrow markets
for contingent claims make it possible for consumers to move purchas-
ing power across time and events and provide advance knowledge of future
prices that can be used for planning investment, production, and consump-
tion. Although actual economies do not have a complete set of Arrow-
Debreu markets, their functions are performed to some extent by insur-
ance, borrowing and lending, forward commodity markets, and long-term
contracts. The need for markets for contingent claims is further diminished
by accumulation of assets for self-insurance and by the use of past experi-
ence to predict future prices. I define a notion of rational expectations equi-
librium that represents a world in which self-insurance and predictability of
future prices are carried to extremes. There are no markets for contingent
claims, and goods and services are exchanged only on current markets for
current unit of account. The marginal utility of wealth of each consumer
remains constant, and people know what prices will be in future dated
events and know the probabilities of those events. I apply the term perma-
nent income hypothesis to the assumption that the marginal utility of wealth
or money is constant. This hypothesis is an idealized version of the more
pragmatic permanent income hypothesis introduced by Milton Friedman
(1957). Rational expectations refers to knowledge of the probabilities of
events and of future prices as functions of dated events. The meanings of
the terms permanent income hypothesis and rational expectations, as used
here, are close to those used in the literature on macroeconomics. Both as-
sumptions may be reasonable approximations of reality when applied to
short intervals of time during which no major changes occur.



8.1 The Permanent Income Hypothesis 283

8.1 The Permanent Income Hypothesis

In order to understand the meaning of the permanent income hypothe-
sis, consider an equilibrium model with no production and where con-
sumers can save money but cannot borrow. The dated event set is a tree,
� = {(t , A) | 0 ≤ t ≤ T and A ∈ St , for all t} where S0 = {�}. The tree’s
root is (0, �). There are I consumers and N commodities in each dated
event. The initial endowment and utility function of consumer i are, re-
spectively, ei ∈ R

�×N
+ and UiR

�×N
+ → R, for i = 1, . . . , I . A price vector

is P ∈ R
�×N
+ such that P > 0. Assume that each consumer begins pe-

riod 0 with a nonnegative quantity, mi , −1, of unit of account or money,

where
∑I

i=1 mi , −1 > 0. The budget set of consumer i at price vector P is
βi(P) = {x ∈ R

�×N
+ | there exists M ∈ R

�
+ such that the following three con-

ditions are satisfied:

1. P(0, �).x(0, �) + M(0, �) ≤ mi , −1 + P(0, �).ei , (0, �);

2. for t such that 1 ≤ t ≤ T ,

P(t , A(t)).x(t , A(t)) + M(t , A(t))

≤ M(t−1, A(t−1)) + P(t , A(t)).ei , (t , A(t)),
(8.1)

for all A(t − 1) ∈ St−1 and A(T ) ∈ St such that A(t) ⊂ A(t − 1);

3. M(T , A(T )) ≥ mi , −1, for all A(T ) ∈ ST }.

The quantity Mi , (t , A(t)) is the amount of money consumer i holds at the
end of dated event (t , A(t)). Notice that M(t , A(t)) ≥ 0, for all (t , A(t)), so
that the consumer cannot borrow. The purpose of condition (3) in equa-
tion 8.1 is to give consumers a reason to hold money at the end of period
T . Without such a reason, the model would have no equilibrium.

definition 8.1 A monetary equilibrium consists of (x1, x2, . . . , xI , P)

= (x , P), where xi ∈ R
�×N
+ , for all i, P ∈ R

�×N
+ , and these satisfy the fol-

lowing conditions:

1. P > 0.

2.
∑I

i=1 xi ≤∑I
i=1 ei.

3. For all (t , A(t)), and n, P(t , A(t)), n = 0, if
∑I

i=1 xi , (t , A(t)), n <∑I
i=1 ei , (t , A(t)), n.
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4. For each i , xi solves the problem

max
x∈βi(P )

Ui(x).

To simplify the analysis of monetary equilibria, assume that the utility
functions Ui have the form

Ui(x) =
T∑

t=0

∑
A(t)∈St

π(A(t))ui , (t , A(t))(x(t , A(t))), (8.2)

where π(A(t)) is the probability of event A(t), and ui(t , A(t)): R
N
+ → R

is strictly concave and strictly increasing, for all (t , A(t)) in �. A utility
function of this form is said to be additively separable with respect to time
and uncertainty, because it is the weighted sum of the utilities enjoyed
in each dated event. Observe that all consumers have the same subjective
probabilities, π(A(t)).

In a monetary equilibrium (x , P) for an economy with utility functions
of the form 8.2, each consumption bundle xi , (t , A(t)) solves the problem

max
x ∈ R

N
+

ui , (t , A(t))(x)

s.t. P(t , A(t)).x ≤ wi , (t , A(t)),

where wi , (t , A(t)) = P(t , A(t)).xi , (t , A(t)). Hence, the Kuhn-Tucker theorem
implies that if P(t , A(t)).xi , (t , A(t)) > 0, then there exists a nonnegative num-
ber λi , (t , A(t)) such that xi , (t , A(t)) solves the problem

max
x ∈ R

N
+

[
ui , (t , A(t))(x) − λi , (t , A(t))P(t , A(t)).x

]
. (8.3)

I will call λi , (t , A(t)) the consumer’s marginal utility of money. Since
ui , (t , A(t)) is strictly increasing, λi , (t , A(t)) > 0. The permanent income hy-
pothesis is that the λi , (t , A(t)) do not depend on (t , A(t)). That is, λi , (t , A(t))

= λo > 0, for all (t , A(t)). If the hypothesis is valid, problem 8.3 becomes

max
x ∈ R

N
+

[
ui , (t , A(t))(x) − λiP(t , A(t)).x

]
,

so that xi = (xi , (t , A(t)))
T
t=0, A(t)∈St

solves the problem
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max
x ∈ R

�×N
+

⎡
⎣ T∑

t=0

∑
A(t)∈St

π(A(t))ui , (t , A(t))(x(t , A(t)))

−λi

T∑
t=0

∑
A(t)∈St

π(A(t))P(t , A(t)).x(t , A(t))

⎤
⎦ .

If we let p(t , A(t)) = π(A(t))P(t , A(t)), we may rewrite this problem as

max
x ∈ R

�×N
+

⎡
⎣ T∑

t=0

∑
A(t)∈St

π(A(t))ui , (t , A(t))(x(t , A(t)))

−λi

T∑
t=0

∑
A(t)∈St

p(t , A(t)).x(t , A(t))

⎤
⎦ ,

or in condensed notation as

max
x ∈ R

�×N
+

[
Ui(x) − λip.x

]
. (8.4)

Since xi solves problem 8.4, the Kuhn-Tucker theorem implies that xi solves
the problem

max
x ∈ R

�×N
+

Ui(x)

s.t. p.x ≤ p.ei − τi ,

where τi = p.(ei − xi).
I now show that τi = 0 for all i, so that (x , p) is an Arrow-Debreu equilib-

rium. Condition (3) of the definition 8.1 of a monetary equilibrium implies
that p.

∑I
i=1(xi − ei) = 0, so that

∑I
i=1 τi = 0. I next show that condition

(3) in equation 8.1 implies that p.xi ≤ p.ei, for all i, so that τi ≥ 0, for all i.
Let Mi , (t , A(t)) be the equilibrium money balances that consumer i holds at
the end of dated event (t , A(t)). By the definition of Mi , (t , A(t)),

Mi , (T , A(T )) = mi , −1 +
T −t∑
t=0

P(t , A(t)).(ei , (t , A(t)) − xi , (t , A(t))),

where S = A(0) ⊃ A(1) ⊃ . . . ⊃ A(T − 1) ⊃ A(T ). Since

Mi , (T , A(T )) ≥ mi , −1,
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by condition (3) of equation 8.1, it follows that

T∑
t=0

P(t , A(t)).(ei , (t , A(t)) − xi , (t , A(t))) ≥ 0,

when S = A(0) ⊃ A(1) ⊃ . . . ⊃ A(T − 1) ⊃ A(T ). Therefore,

π(A(T ))

T∑
t=0

p(t , A(t)).(ei , (t , A(t)) − xi , (t , A(t))) ≥ 0,

for every A(T ) ∈ ST . Adding over A(T ), we see that

0 ≤
∑

A(T )∈ST

π(A(T ))

T∑
t=0

p(t , A(t)).(ei , (t , A(t)) − xi , (t , A(t)))

=
T∑

T =0

∑
A(t)∈St

π(A(T ))P(t , A(t)).(ei , (t , A(t)) − xi , (t , A(t)))

=
T∑

T =0

∑
A(t)∈St

.(ei , (t , A(t)) − xi , (t , A(t))) = p.(ei − xi).

That is, τi = p.(ei − xi) ≥ 0, for all i. Since
∑I

i=1 τi = 0, it follows that
τi = 0, for all i, and hence that (x , p) is an Arrow-Debreu equilibrium.
In summary, if the monetary equilibrium (x , P) satisfies the permanent
income hypothesis, then (x , p) is an Arrow-Debreu equilibrium, so that the
allocation x is Pareto optimal. The permanent income hypothesis amounts
to the assumption that consumers are perfectly self-insuring.

I next given an example to show that the allocation of a monetary equi-
librium may not be Pareto optimal if the equilibrium does not satisfy the
permanent income hypothesis

example 8.2 There are two consumers, A and B, one commodity in
each dated event, two periods, one event in period 0, and two events in
period 1. The single dated event of period 0 is (0, �). The two dated events
of period 1 are (1, a) and (1, b), and they each have probability 1/2. The
initial endowments of consumers A and B are

eA = (eA, (0, �), eA(1, a), eB(1, b)) = (1, 2, 1)

and

eB = (eB, (0, �), eB(1, a), eB(1, b)) = (1, 2, 1).
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The utility of each consumer for consuming x units of consumption in any
dated event is ln(x). Assume that each consumer starts period 0 with one
unit of money, so that mA, −1 = mB, −1 = 1.

Let P = (P(0, �), P(1, a), P(1, b)) be the equilibrium price system for this
example. By the symmetry of the model with respect to the two states, I
may assume that P(1, a) = P(1, b) = P1. The equilibrium is such that each
consumer carries one unit of money from period 0 into period 1, so that
neither consumer saves or dissaves in period 0. Since each consumer must
retain at least one unit of money at the end of period 1, neither saves or
dissaves in period 1. Therefore xA = eA, and xB = eB. Since consumers
consume something in every dated event, the marginal utilities of money
of consumer A in dated events (1, a) and (1, b) are

λA, (1, a) = 1

P1

d ln(xA, (1, a))

dx
= 1

2P1

and

λB, (1, b) = 1

P1

d ln(xB, (1, b))

dx
= 1

P1

.

Similarly, consumer A’s marginal utility of money in dated event (0, S) is

λA, (0, �) = 1

P0

d ln(xA, (0, �))

dx
= 1

P0

.

Since consumer A carries a positive amount of money from period 0 to
period 1 and could carry over more by consuming less, his or her marginal
utility of money in period 0 equals the expected value of he marginal utility
of money in period. That is,

1

P0

= λA, (0, �) = 1

2
λA, (1, a) + 1

2
λA, (1, b) = 1

2

1

2P1

+ 1

2

1

P1

= 3

4

1

P1

.

Hence P1 = 3
4P0, and we may choose equilibrium prices to be P0 = 4 and

P1 = 3. Then λA(0, �) = 1
4 , λA, (1, a) = 1

6 , and λA, (1, b) = 1
3 so that the mar-

ginal utility of money is not constant and hence the equilibrium does not
satisfy the permanent income hypothesis. The equilibrium allocation is not
Pareto optimal, since the allocation equals the endowment, which is Pareto
dominated by the allocation xA = xB = (

1, 3
2 , 3

2

)
.
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A question to be examined is whether there are contexts in which it is
reasonable to expect that consumers could insure themselves nearly per-
fectly. You may gain an intuitive understanding of the subject by imagining
that you are, say, a car salesperson paid weekly on a commission basis.
Your income fluctuates widely because in some weeks you do well and in
others you sell nothing. Your weekly expenditures also fluctuate; they are
higher when you make your mortgage payments or throw a party. You off-
set these fluctuations by accumulating enough assets when expenditures
are low, relative to income, to pay for excesses of spending over income at
other times. In doing so, you are able to maintain a nearly constant mar-
ginal utility of money, which is the utility you place on money spent. You
are not able to keep the marginal utility of money exactly constant. You
may increase it after a run of bad weeks that depletes your savings. The
change in the marginal utility of money is sudden when a financial catas-
trophe uses up most of your assets or if a change in circumstances changes
your income or financial needs. For instance, a change in energy prices
that was expected to endure could both reduce your sales of cars and in-
crease your expenditures. Nearly perfect self-insurance is plausible only in
the context of short-term fluctuations, for over long periods consumers’
average incomes and needs may change considerably. Nearly perfect self-
insurance is possible only if the probability distribution of the fluctuations
remains stable, so that periods of deficit and surplus offset each other on
average.

The permanent income hypothesis should make sense in terms of per-
sonal experience. When we go shopping, we usually compare the cost of
possible purchases with a notion of the value of money to us rather than
with the utility of alternative items we would like to buy. Our valuation of
money normally changes slowly, though it may change a great deal over the
course of a lifetime as we become richer or poorer. The value of money to
us is indirect; it derives from the utility of other things we could buy now or
in the future. Normally, the value of money is insensitive to the purchases
we make because the cost of the items we buy at any one time is small rel-
ative to our long-run purchasing power. The value of money may not be
insensitive to major purchases, such as that of a house.

The intuition just discussed can be made rigorous, though the argument
is so complex that I only outline it here. I use a model of a single consumer
rather than that of a whole economy, and I assume that the probability
distribution of prices is stationary. I also ignore interest earned on assets
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because the relevant time period is short. I assume that the utility function
has the form

U(x0, x1, . . . , xT , ω0, . . . , ωT ) = E

[
T∑

t=0

u(x1, (t)t)

]
, (8.5)

where E is the expected value and x1 and ωt are, respectively, the N-vector
of commodity purchases in period t and a random disturbance. The vectors
xt in equation 8.5 may themselves be random. I choose this form of utility
function in order to avoid complications due to links between consumption
in different periods arising directly from the utility function. I do not dis-
count future utility, because I am interested in behavior over brief periods
of time when the effect of discounting is small.

Because I wish to study the intertemporal control of spending, I work
with the indirect utility function for expenditure, not the direct utility
function u for consumption bundles. If the price vector in period t is Pt ,
the indirect utility function in that period is

v(c, Pt , ωt) = max
x ∈ R

N
+

u(x , ωt)

s.t. Pt .x ≤ c,

where c is the amount of money spent on consumption. Assume that
the price vectors, Pt , may fluctuate randomly, and let st = (Pt , ωt), so
that v may be written as v(c, st). Consumption at time t depends on
(s0, s1, . . . , st). The objective function for the consumer is

E

[
T∑

t=0

v(ct(s0, . . . , st), st)

]
.

Let the consumer’s income in period t be y(st). The consumer’s budget set
is

βT (m−1, s0) = {c = (c0(s0), c1(s0, s1), . . . , cT (s0, . . . , sT )) | c ≥ 0 and

there is a finite nonnegative sequence

(M0(s0), M1(s0, s1), . . . , MT (s0, . . . , sT ))

such that c0(s0) + M0(s0) ≤ m−1 + y(s0) and

ct(s0, . . . , st) + Mt(s0, . . . , st) ≤ Mt−1(s0, . . . , st−1) + y(st),

for t such that 1 ≤ t ≤ T , and for all s0, . . . , st},
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where m−1 is the amount of money held at the end of period −1 and
Mt(s0, . . . , st) is the amount of money held at the end of period t , for t ≥ 0.
The consumer’s maximization problem is

max
c∈βT (m−1, s0)

E

[
T∑

t=0

v(ct(s0, . . . , st), st) | s0

]
, (8.6)

where E[. | s0] is the conditional expectation, given s0. The value function
for this maximization problem is

VT (m−1 + y(s0), s0) = max
c∈βT (m−1, s0)

E

[
T∑

t=0

v(ct(s0, . . . , st), st) | s0

]
.

I describe, informally, properties of the solution of problem 8.6 and of
the value function VT . Rigorous statements and proofs for a more general
model may be found in Bewley (1977). Assume that the random variables
st are independently and identically distributed and take values in a finite
set S, so that y: S → [0, ∞) and v: [0, ∞) × S → (−∞, ∞). In addition,

assume that Ey(s) > 0, v is twice differentiable, dv(c , s)
dc

> 0, d2v(c , s)
dc2 < 0,

for all c and s, and that dv(0, s)
dc

< ∞, for all s. It follows that

dv(c, s)

dc
≤ max

s∈S

dv(0, s)

dc
< ∞,

for all c and s. Assume also that limc→∞ dv(c , s)
dc

= 0, for all s.
Given these and other assumptions, problem 8.6 has a solution, and the

function VT is differentiable. Let λT (W , s0) = dVT (W , s0)

dW
be the consumer’s

marginal utility of money in period 0 when the consumer has W units of
money to spend. Let cT t(s0, . . . , st) be the optimal period t consumption
in problem 8.6, and let MT t(s0, . . . , st) be the money balances held at
the end of period t under the optimal consumption plan. The first-order
conditions for problem 8.6 imply that

dv(cT 0(s0), s0)

dc
≤ λT (m−1 + y(s0), s0), (8.7)

with equality if cT 0(s0) > 0.
The consumer’s maximization problem from period t on looks just like

the problem from period 0 on, except that the horizon is T − t rather than
T periods, the initial state is st rather than s0, and the consumer’s money
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balances available for expenditure are MT , t−1(s0, . . . , st−1) + y(s1) rather
than m−1 + y(s0). Therefore,

VT −t (MT , t−1(s0, . . . , st−1) + y(s1), s1) =
[

T∑
s=t

v(cs(s0, . . . , ss) | st

]
,

and the consumer’s marginal utility of money at time t is

λT −t (MT , t−1(s0, . . . , st−1) + y(st), st)

= dVT −t (MT , t−1(s0, . . . , st−1) + y(st), st)

dW
.

The version of condition 8.7 that applies at any time t > 0 is

dv(cT t(s0, . . . , st), st)

dc
≤ λT −t (MT , t−1(s0, . . . , st−1) + y(st), st), (8.8)

with equality if cT t(s0, . . . , st) > 0. That is, the marginal utility of money
and the money holdings at time t determine consumption at any time t .

The marginal utility of money, λT (W , s0), is nondecreasing as a func-
tion of T and λT (W , s0) ≤ maxs∈S

dv(0, s)
dc

, for all W and s0. Therefore,
λ∞(W , s0) = limT →∞ λT (W , s0) exists and is finite, for all W ≥ 0. Since
the function Vt(W , s0) is concave and nondecreasing, its derivative,
λT (W , s0), is a nonnegative and nonincreasing function of W . Similarly,
cT t(s0, . . . , st) is a nonnegative and nonincreasing function of T , and
MT t(s0, . . . , st) is a nondecreasing and bounded function of T , for all
t and s0, . . . , st , so that c∞t (s0, . . . , st) = limT →∞ cT t(s0, . . . , st) and
M∞t (s0, . . . , st) = limT →∞ MT t(s0, . . . , st) exist. Passing to the limit in
inequality 8.8, we have that

dv(c∞t (s0, . . . , st), st)

dc
≤ λ∞(M∞, t−1(s0, . . . , st−1) + y(st), st), (8.9)

for all t , with equality if c∞t (s0, . . . , st) > 0.
I now come to the key findings. Since λT (W , s0), is a nonnegative and

nonincreasing function of W , λ∞(W , s0) = limT →∞ λT (W , s0) is a non-
negative and nonincreasing function of W . Hence, λ∞(s0) = limW→∞ λ∞
(W , s0) exists. One main finding is that λ∞(s0) does not depend on s0 and
so λ∞(s0) = λ, where λ is a constant.

The number λ has a special interpretation. The condition

dv(c, s)

dc
≤ λ, (8.10)
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with equality if c > 0, defines c as a nonincreasing function of λ, for all s.
Call this function c(λ, s). The interpretation of λ is that

Ec(λ, .) = Ey(.), (8.11)

where c(λ, .) and y(.) are the random variables taking on values c(λ, s0)

and y(s0), respectively. Equation 8.11 says that the expected expenditure
per period equals the expected income per period, when the marginal util-
ity of money is set equal to λ. The proof of equation 8.11 is an application
of the law of large numbers. Equation 8.11 implies that

lim
T →∞ T −1

T −1∑
t=0

[
c(λ, st) − y(st) = 0

]
,

with probability 1, so that if the consumer keeps the marginal utility of
money equal to λ, then long-run average expenditure equals long-run av-
erage income.

The other main result is that limt→∞ λ∞(M∞, t−1(s0, . . . , st−1) + y(st),
st)λ with probability 1. Inequality 8.9, therefore, implies that limt→∞
c∞t (s0, . . . , st) = c(λ, st) with probability 1. Because of equation 8.11,
we see that asymptotically the consumer spends an amount that matches
expected expenditure with expected income. If we add the assumption
that c(λ, s0) �= y(s0) with positive probability, then it can be proved that
λ∞(W , s0) > λ, for all W and s0, so that limt→∞[M∞, t−1(s0, . . . , st) +
y(s1)]= ∞ and hence limt→∞ M∞t (s0, . . . , st) = ∞ with probability 1.

In order to interpret these results, recall that limT →∞ cT t(s0, . . . , st) =
c∞t (s0, . . . , st) and limT →∞ MT t(s0, . . . , st) = M∞t (s0, . . . , st). That
is, if the finite horizon, T , is large enough, the consumer’s optimal con-
sumption and money balances are near those of the limit program,
c∞t (s0, . . . , st) and M∞t (s0, . . . , st), respectively. In addition, if the cur-
rent period, t , is so large that the consumer has had time to accumulate
large money balances, then spending, cT t(s0, . . . , st), will be near the level,
c(λ, st), that matches expected expenditure to expected income per period.
That is, if the horizon, T , and the period, t , are sufficiently large, then the
consumer is nearly perfectly self-insuring.

Some examples may make the preceding discussion easier to understand.

example 8.3 The utility from expenditure in one period is
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v(c) =

⎧⎪⎨
⎪⎩

2c, if 0 ≤ c ≤ 1,

c + 1, if 1 ≤ c ≤ 2, and

3, if c ≥ 2.

The income in period t is a random variable, yt , where the yt are inde-
pendently and identically distributed and equal 1 with probability 1/2 and
equal 3 with probability 1/2.

Consider problem 8.6 with the above utility function and income and
with horizon T and suppose that the consumer has W units of money in
some period. If 0 < W < 1, the consumer spends all of W , because he or
she will always have at least that much money in the future. Therefore, the
consumer’s marginal utility of money is λT (W) = 2. Suppose that 1≤ W <

2. The consumer again spends all the money, because in the future he or
she will have at least one unit of money and the marginal utility of money
will be no greater than the marginal utility of spending it in the present,
which is 1. Therefore, λT (W) = 1. Suppose that n < W < n + 1, where n is
a positive integer bigger than 1. The consumer spends two units of money,
for nothing would be gained by spending more and if less were spent, the
marginal utility of additional expenditure would be at least 1, which would
never be exceeded in the future. As long as the consumer spends exactly two
units of money in every period, his or her holdings of money availble for
expenditure, Wt , follows a random walk such that

Wt+1 =
{

Wt + 1, with probability 1/2, and

Wt − 1, with probability 1/2,

until such time as 1 ≤ Wt < 2. At that time, the consumer spends all the
money. Additional money is of use to the consumer only when Wt falls in
the interval [1, 2), and it then has marginal utility 1. Therefore, the marginal
utility of money at time 0, λT (W0), equals the probability, πT (W0), that Wt

reaches the interval [1, 2) within T periods. There is no need to calculate
this probability. We know from common sense or the theory of random
walks that πT (W0) is nonincreasing in W0 and that limT →∞ πT (W0) =
1; the probability of reaching [1, 2) declines as the distance of the initial
position, W0, from the interval increases, and eventually the random walk
will reach the interval [1, 2). In conclusion,
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λT (W) =

⎧⎪⎨
⎪⎩

2, if 0 ≤ W < 1,

1, if 1 ≤ W < 2, and

πT (W), if W ≥ 2,

and limT →∞ λT (W) = λ∞(W), where

λ∞(W) =
{

2, if 0 ≤ W < 1

1, if W ≥ 1.

The limit spending policy, c∞(W), is defined by the equation

c∞(W) =
{

W , if 0 ≤ W ≤ 2

2, if W ≥ 2,

where W is the amount of money available for expenditure. Since the
amount of money available to be spent is at least 1 after period 0, this policy
dictates that expenditure be at least 1 in every period after the first.

Since the permanent income hypothesis describes only asymptotic be-
havior, it can be only approximately accurate. We should not expect that
typical consumers could ever achieve perfect self-insurance, since the mod-
els in which consumers achieve perfect self-insurance have infinite hori-
zons, and in such models perfect self-insurance may require infinite money
balances, as the next example demonstrates.

example 8.4 The utility from expenditure in one period is v(c) =
ln(c + 1). The consumer’s income in period t is a random variable, yt , and
the yt are independently and identically distributed and equal 0 with proba-
bility 1

2 and 2 with probability 1
2 . If the consumer is perfectly self-insuring,

he or she consumes 1 in every period and keeps the marginal utility of
money equal to 1

1+1 = 1
2 . The consumer cannot achieve this result indefi-

nitely by saving and dissaving, for suppose that the consumer starts period
0 with M units of money, where M may be extremely large. Let N be an
integer exceeding M . With probability 1

2N , the consumer has no income in
each of periods 0 through N − 1. It is impossible for the consumer to con-
sume 1 in all of these periods, since doing so would require N > M units
of money. Perfect self-insurance is therefore impossible.

The above example relies on the consumer’s immortality. If the con-
sumer is mortal, another difficulty arises, for he or she may not achieve
perfect self-insurance near the end of life, as the next example illustrates.
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example 8.5 The example is the same as the previous one, except that
the consumer lives only in periods 0, 1, . . . , T − 1. I show that the con-
sumer cannot perfectly self-insure, no matter what the initial money
balance, M , is at the beginning of period 0. If the consumer self-insures
perfectly, consumption equals some constant amount c in every period.
With probability

(
T
n

)
1
2t

1
2T −n , the consumer ends period T − 1 with money

balances of M + 2n − T c, where n is the number of periods, t , on or before
period T − 1 in which yt = 2. If M + 2n − T c < 0, the consumer would
have violated the budget constraint and so could not have maintained a
constant consumption of c. If M + 2n − T c > 0, the consumer would in-
crease her or his utility by spending the extra cash in period T − 1 and
so consume more than c then. She or he would not, however, be perfectly
self-insuring if consumption ever exceeded c.

8.2 Rational Expectations Equilibrium

I now turn to the task of including the permanent income hypothesis in a
general equilibrium model. The rational expectations model I describe here
is designed to be consistent with the one just used to explain the permanent
income hypothesis. All random fluctuations are generated by a sequence
of independently and identically distributed random variables, st , where st
belongs to finite set, S, and where t can be any integer, positive, negative,
or zero. Consumers’ utility functions are additive with respect to time and
uncertainty.

assumption 8.6 For each i, consumer i has a utility function, ui: R
N
+ ×

S → R, and evaluates a random stream of consumption from period 0 to
T according to the utility function

Ui(x) = ui(x(s0), s0) +
T∑

t=1

∑
st∈S

π(st)ui(x(st), st),

where π(st) is the probability of st .

assumption 8.7 The endowment of consumer i is a function ei: S →
R

N
+ , where i = 1, . . . , I .
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For the moment, I assume that all production occurs instantaneously,
as lags in production complicate the description of a rational expectations
equilibrium.

assumption 8.8 For j = 1, . . . , J , firm j has an input-output possibil-
ity set, Yj(s), for each s ∈ S, where Yj(s) is a subset of R

N .

As in the equilibrium models discussed earlier, each consumer i owns a
share �ij of firm j , where �ij ≥ 0 and

∑I
i=1 �ij = 1, for all j .

The constituents of a rational expectations equilibrium are as follows.

definition 8.9 A stationary production plan consists of x: S → R
N
+ .

definition 8.10 A stationary production plan for firm j consists of yj :
S → R

N , such that yj (s) ∈ Yj(s), for all s.

definition 8.11 A stationary allocation is (x , y) = (x1, . . . ,
xI ; y1, . . . , yJ ), where xi is a stationary consumption plan and yj is a sta-
tionary production plan for firm j , for all i and j .

The allocation is called stationary, because it represents an allocation that
fluctuates according to rules that are invariant with respect to time and yet
depend on the random shocks, st . If the allocation, (x , y), is stationary,
then the consumption bundle of person i at time t is xi(st) and the input-
output vector of firm j in period t is yj (st).

definition 8.12 The stationary allocation (x , y) is feasible, if
∑I

i=1 xi ≤∑I
i=1 ei +∑J

j=1 yj , that is, if
∑I

i=1 xi(s) ≤∑I
i=1 ei(s) +∑J

j=1 yj (s), for
all s.

definition 8.13 A stationary price system is a function, P: S → R
N
+ ,

such that P(s) > 0, for all s.

Given the stationary price system, P, the price vector at time t is P(st).

definition 8.14 Given a stationary price system, P, the set of profit-
maximizing production plans for firm j is
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ηj(P) = {y: S → R
N | y(s) ∈, for all s and

∑
s∈S

π(s)P(s).y(s)

≤
∑
s∈S

π(s)P(s).y(s), for all y: S → R
N such that y(s) ∈ Y (s), for all s}.

Hence, each firm maximizes the expected value of profits in a single
period. If prices are determined by the stationary price system P and a
firm adopts a stationary production plan, y: S → R

N , then the expected
profits of the firm in one period are

∑
s∈S π(s)P(s).y(s). By the law of large

numbers, the long-run average profits of the firm, limT →∞ T −1∑T −1
t=0

P(st).y(st), equals
∑

s∈S π(s)P(s).y(s). The profits maximized are the
same as the long-run average flow of income to the firm.

definition 8.15 Given a stationary price system P and a profit maxi-
mizing input-output vector, yj ∈ ηj(P), for each j , the demand set of con-
sumer i is the set, ξi(P), of solutions of the problem

max
x:S→R

N
+

∑
s∈S

π(s)ui(x(s), s)

s.t.
∑
s∈S

π(s)P(s).x(s) ≤
∑
s∈S

π(s)P(s).ei(s) +
J∑

j=1

�ijπ(s)P(s).yj (s).

(8.12)

The budget constraint of the consumer is that expected expenditure in
one period be no greater than expected income. Again by the law of large
numbers, the budget constraint can be interpreted as

lim
T →∞ T−t

T −1∑
t=0

⎡
⎣P(s1).x(st) − P(st).ei(st) −

J∑
j=1

�ijP(st).yj (st)

⎤
⎦≤ 0.

That is, the consumer must make sure that the long-run average flow of
expenditure is no greater than the long-run average flow of income from the
sale of endowment and from profits. Given this constraint, the consumer
maximizes expected utility per period, which by the law of large numbers
is the same as the long-run average flow of utility.

definition 8.16 A rational expectations equilibrium consists of (x , y ,
P), where

1. (x , y) is a feasible stationary allocation

2. P is a stationary price system
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3. for all i , xi ∈ ξi(P)

4. for all j , yj ∈ ηj(P)

5. for all s and n, Pn(s) = 0, if

I∑
i=1

xin(s) <

I∑
i=1

ein(s) +
J∑

j=1

yjn(s)

If the utility functions ui(x , s) are differentiable with respect to x, the
first-order conditions of maximization problem 8.12 are that there exists a
positive number λi, such that

∂ui(xi(s), s)

∂xn

≤ λiPn(s),

for all s and n, with equality if xin(s) > 0. Substituting st for s in this
inequality, we see that

∂ui(xi(st), st)

∂xn

≤ λiPn(st),

for all t , st , and n, with equality if xin(st ) > 0. That is, consumer i’s mar-
ginal utility of unit of account is constant over time and events; consumers
satisfy the permanent income hypothesis. The prices Ptn(st) are spot prices
in terms of current unit of account. They are not forward prices. It should
be imagined that all consumers know the prices Ptn(s) as functions of t , n,
and s. They also know the probability distribution of the random process
st and so correctly anticipate the joint probability distribution of future
prices, Ptn(st). The accuracy of their predictions explains the use of the
term rational expectations. The model is meant to apply to conditions in
which consumers are able to keep their marginal utilities of unit of ac-
count nearly constant and have a good idea of the distribution of future
prices and so behave approximately as if they were in a rational expectations
equilibrium.

A rational expectations equilibrium can be transformed into an Arrow-
Debreu equilibrium with prices pn(s) = π(s)Pn(s), for n = 1, . . . , N and
s ∈ S. It follows from the first welfare theorem 5.2 (in section 5.1), that
if the utility functions ui(x , s) are locally nonsatiated, then the allocation
of a rational expectations equilibrium is Pareto optimal. If we assume that
π(s) > 0, for all s, then we may transform an Arrow-Debreu equilibrium
into a rational expectations equilibrium. Hence, we may prove that a ra-
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tional expectations equilibrium exists by applying theorem 5.25 (in section
5.3) to show that there exists an Arrow-Debreu equilibrium. In order to
apply theorem 5.25, I make the assumptions that follow.

assumption 8.17 For all i and s, ui(x , s) is continuous, strictly increas-
ing, and quasi-concave as a function of x, where quasi-concavity is defined
in definition 5.13 (in section 5.2).

assumption 8.18 For all j and s, Yj(s) is closed, convex, and contains
the vector 0.

assumption 8.19 For all s, Y (s) ∩ R
N
+ = {0}, where Y (s) =∑J

j=1 Yj(s).

assumption 8.20 For all s, Y (s) ∩ (−Y (s)) = {0}.

assumption 8.21 There exists a feasible allocation, (x , y), such that∑I
i=1 xin(s) > 0, for all n and s.

assumption 8.22 For all s ∈ S, π(s) > 0.

The equilibrium existence theorem follows.

theorem 8.23 If the economy

E =
(
(Ui , ei)

I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1

)
satisfies assumptions 8.6–8.8 and 8.17–8.22, then it has a rational expecta-
tions equilibrium (x , y , P).

I now turn to the definition of rational expectations equilibrium when
production occurs with lags. The modeling of lags can be simplified by
introducing intermediate goods so as to reduce lags of any length to one
period. If it takes N periods to manufacture a product, we can introduce
N − 2 intermediate products, where the nth one is the product that results
after n periods of production and the (n + 1)st is produced from the nth.

I introduce a one-period production lag into the rational expectations
equilibrium model as follows. The production possibilities for firm j are
defined by sets Yj(s0, s1) ⊂ R

N
− × R

N , where there is one such set for every
pair of states (s0, s1) ∈ S × S. An input vector at a time t and after a partic-
ular history of exogenous states, (. . . , st−1, st), is a vector y0 ∈ R

N
− , and the
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output vector in the succeeding state, y1(st+1) ∈ R
N , depends on st+1. This

vector is feasible for the firm, if (y0, y1(st+1)) ∈ Yj(st , st+1), for all st+1. The
vector y0 consists of inputs and the vectors y1(st+1) may include inputs as
well as outputs. The introduction of a time lag in production complicates
the description of rational expectations equilibrium by allowing output in
period t to depend on st−1 as well as on st . Therefore, the allocation at time
t does not necessarily depend only on the current state, st , but may depend
on st−1 as well. Because the allocation at time t may depend on the avail-
ability of commodities at time t − 1 and hence in turn may depend on st−2,
it follows that the allocation at time t may depend on st−2. Continuing by
backward induction on time, we see that the allocation at time t may de-
pend on st−k, for all nonnegative integers k. I now describe the notation I
use to express this dependence.

The set of all paths of realizations of the random variable st is S = {(. . . ,
s−1, s0, s1, . . .) | st ∈ S, for all t}, and s denotes a member of S. Consump-
tion, inputs, and output are functions from S to R. I restrict attention to
functions that are measurable, for only such functions have an expected
value. Another advantage of measurability is that it provides a way to ex-
press the idea that a function depends only on sk, for k ≤ t , for some fixed
t . If k is a fixed integer, let Bk be the set of all subsets of S of the form
B = {s ∈ S | sk ∈ A}, where A is a subset of S. If t is an integer, let St be
the smallest set of subsets of S such that St contains Bk, for k ≤ t , and St

has the following two properties:

1. If E belongs to St , then S\E belongs to St , where S\E = {s ∈ S | s �∈
E}.

2. If En belongs to St , for n = 1, 2, . . . , then
⋂∞

n=1 En belongs to St .

It follows from conditions (1) and (2) that if En belongs to St , for n =
1, 2, . . . , then

⋃∞
n=1 En = S\ (⋂∞

n=1(S\En)
)

belongs to St . A set of subsets
satisfying conditions (1) and (2) and containing the whole set S is called a
σ -field, and St is said to be the σ -field generated by Bk, for k ≤ t . A function
x: S → R is said to be St-measurable, if x−1([a , b]) = {s ∈ S | a ≤ x(s) ≤ b}
is a set in St , for all numbers a and b. If x is St-measurable, then x(s) does
not depend on sk, for k > t . That is, x(s) depends only on information
available at time t . The smallest σ -field containing St , for all t , is denoted
S. A function x: S → R is said to be measurable if it is S-measurable. A
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function x: S → R
k is said to be St-measurable, if each of the component

functions xk: S → R is St-measurable, for k = 1, . . . , K .
A useful function is the shift function, σ : S → S, where σ(s) is defined

by the equation σ(s)t = st1
for all t . The sequence σ(s) is the sequence s

shifted one step to the left, so that what happens at time t + 1 in s happens
at time t in σ(s). If x: S → R, then σx is the function defined by the equa-
tion σx(s) = x(σ (s)). If x is St-measurable, then σx is St+1-measurable.
Similarly, σk

x
is St+k-measurable, for any integer k, whether k be positive,

negative, or zero. If f : S → R is St-measurable it is sometimes convenient
to write f (. . . , st−1, st) for f (s) and f (. . . , st , st+1) for σf (s).

Recall that the random variables st are assumed to be independently and
identically distributed, and π(s) is the probability that st takes on the par-
ticular value s in S. These assumptions imply a unique probability measure
on S that I again denote by π . A probability measure has the following
properties: π : S → [0, 1], π(S) = 1, π(∅) = 0, and if B1, B2, . . . is a se-
quence of disjoint sets in S, then π

(⋃∞
n=1 Bn

)=∑∞
n=1 π(Bn). The expected

value of a measurable function x: S → R is Ex = ∫
s x(s)π(ds). If Ex is

defined, x is said to be integrable.Because the st are independently and iden-
tically distributed, they form a stationary stochastic process, which means
that the shift operator, σ , is measure preserving. That is, π(B) = π(σB), for
all B in S, and Ex = Eσx, for all integrable functions x. An event is a set
in S. An event A is said to occur almost surely or for almost every s, if A has
probability 1, that is, if π(A) = 1. For instance, the measurable functions x

and y are said to be equal almost surely if π{s | x(s) = y(s)} = 1. In what
follows, I will treat two functions that are equal almost surely as the same
function. That is, if f : S → R

K and g: S → R
K are S-measurable, I write

f = g, if f (s) = g(s), for almost every s.
I now define stationary allocations.

definition 8.24 A stationary consumption plan consists of a bounded
S0-measurable function x: S → R

N
+ . A stationary production plan for firm j

consists of a bounded S0-measurable function y0: S → R
N and a bounded

S1-measurable function y1: S → R
N such that

(y0(s), y1(s)) ∈ Y (s0, s1),

for almost every s.
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definition 8.25 A stationary allocation consists of (x , y) = (x1, . . . , xI ;
y1, . . . , yJ ), where xi is a stationary consumption plan and yj is a station-
ary production plan for firm j , for all i and j .

As with the stationary allocation defined earlier that depended only
on the current state, st , a stationary allocation that depends on an en-
tire path, s = (. . . , s−1, s0, s1, . . .), fluctuates according to rules that are
invariant with respect to time. When the allocation of the economy is gov-
erned by a stationary allocation (x , y), the consumption bundle of person
i at time t is σ txi(s) and the period t input-output vector of firm j is
(σ tyj0(s), σ tyj1(s)). In the language of probability theory, consumptions
and input-output vectors fluctuate according to a stationary stochastic
process.

definition 8.26 The stationary allocation (x , y) is feasible if

I∑
i=1

xi(s) ≤
I∑

i=1

ei(s) +
J∑

j=1

[
yj0(s) + σ−1yj1(s)

]
,

for almost every history s ∈ S.

In the definition of feasibility, the vector, yj t , is shifted backward through
time by one period, so that the output appears at time 0 rather than at time
1 and the output is from inputs of periods −1 and 0 rather than of periods
0 and 1. The inputs in the vector, yj0, however, contribute to outputs
appearing in period 1. The inputs and outputs in definition 8.26 are those
that would occur at time 0 if the production allocations were determined
by the stationary input-output functions yj = (yj0, yj1), for j = 1, . . . , J .
In more succinct notation, (x , y) is feasible if

I∑
i=1

xi ≤
I∑

i=1

ei +
J∑

j=1

yj0 +
J∑

j=1

σ−1yj1.

I now define the other pieces of a rational expectations equilibrium.

definition 8.27 A stationary price system consists of an integrable and
S0-measurable function, P: S → R

N
+ , such that∫

s

P(s)dπ(s) > 0.
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To define profit maximization and the consumers’ budget constraints,
I must use the expected value of flows of unit of account. For instance, if
x is a stationary consumption plan and P is a stationary price system, the
expected flow of expenditure at time 0 or in any other period is

E[P.x]=
∫

s

P(s).x(s)dπ(s).

definition 8.28 Given a stationary price system P, the set of profit-
maximizing stationary input-output vectors for firm j is

ηj(P) = {y = (y0, y1) | y is a stationary production plan for firm j and

E[P.y0 + P.σ−1y1]≥ E[P.y
0
+ P.σ−1y

1
], for all stationary production

plans, y, for firm j}.

definition 8.29 Given a stationary price system P and profit maximiz-
ing input-output vectors, yj = (yj0, yj1) ∈ ηj(P), for all j , the demand set,
ξ1(P), of consumer i is the set of all solutions, x, of the problem

max
(x) is a stationary
consumption plan

Eui(x)

s.t. E[P.x]≤ E[P.ei]+
J∑

j=1

�ijE[P.yj0 + P.σ−1yj1].

definition 8.30 A rational expectations equilibrium consists of (x , y , P),
where

1. (x , y) is a feasible stationary allocation

2. P is a stationary price system

3. for all i, xj ∈ ξi(P)

4. for all j , yj ∈ ηj(P)

5. for all paths s, Pn(s) = 0, if

I∑
i=1

xin(s) ≤
I∑

i=1

ein(s) +
J∑

j=1

[
yj0(s) + σ−1yj1(s)

]

This definition is exactly the same as definition 8.16, except for a change
in condition (5) made to reflect the one-period lag in production.
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It is possible to state and prove versions of the first welfare theorem and
of an equilibrium existence theorem for the notion of rational expectations
equilibrium just defined and under assumptions much like those of theo-
rem 8.23. The proofs are more difficult than those for the model of theorem
8.23, because there are a continuum of commodities in a model where allo-
cations depend on infinite histories of random shocks. Statements of a first
welfare theorem and an existence theorem and their proofs may be found
in Bewley (1981a).

8.3 Short-Run Equilibrium

In a rational expectations equilibrium, each consumer matches the long-
run flows of expenditures and income and is able, through saving and
dissaving, to satisfy the permanent income hypothesis, that is, to keep the
marginal utility of unit of account nearly constant. Short-run equilibrium
is a snapshot of a rational expectations equilibrium at one moment. Be-
cause consumers satisfy the permanent income hypothesis, there is no need
to assume that consumers satisfy a budget constraint. This constraint is
replaced by the assumption that each consumer’s marginal utility of expen-
diture is constant. The resulting concept of equilibrium is simpler than the
Walrasian equilibrium in definition 4.1 (in section 4.1).

The framework of discussion will be a short-run economy, E = ((ui , λi ,
ei)

I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1), where, for all i, λi is a positive number and
is consumer i’s marginal utility of unit of account. A price vector is an N-
vector P such that P > 0.

definition 8.31 Consumer i’s short-run demand is the set, ξS
i
(P), of

solutions of the problem

max
x ∈ R

N
+

[ui(x) − λiP.x].

The demand, ξS
i
(P), may not be defined for all values of P. If ui is strictly

increasing, ξS
i
(P) is not defined when any of the components of P are zero.

The short-run demand, ξS
i
(P), is the instantaneous demand of a consumer

who satisfies the permanent income hypothesis. In the background lies a
model where consumers have utility functions that are additively separable
with respect to time and uncertainty and where the environment fluctu-
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ates rapidly according to a stationary stochastic process. The consumer is
subject to a budget constraint only in the long run.

Short-run demand functions are used in econometric work, where they
are termed Frisch demand functions, after work of Ragnar Frisch (1959). The
term Frisch demand seems to have been introduced by Browning, Deaton,
and Irish (1985), who used it in the context of a life-cycle model of con-
sumer demand and labor supply. In their model, utility is additively sepa-
rable with respect to time and uncertainty, as it is here, and the marginal
utility of unit of account may evolve over time. The authors use Frisch de-
mand only in discussing consumer demands and supplies at one moment of
time, so that they treat constancy of the marginal utility of unit of account
as applying only in the short run, as I do here.

Brown and Calsamiglia (2003) claim that Alfred Marshall had in mind
short-run demand in the general equilibrium model he defines in his math-
ematical appendix to volume I of Principles of Economics (1890).

Because λi > 0, ξS
i
(P) solves the problem

max
x ∈ R

N
+

[
λ−1

i
ui(x) − P.x

]
. (8.13)

The quantity λ−1
i ui(x) = P.x may be thought of as consumer i’s surplus,

because it represents in terms of unit of account the total benefit to con-
sumer i of consuming bundle x minus the cost of purchasing the bundle
at price vector P. Browning, Deaton, and Irish (1985) call the quantity
maxx∈R

N
+

[λ−1
i ui(x) − P.x] consumer i’s profit, as it is analogous to a firm’s

profit. If we think of consumer i as having utility production possibility set

Xi = {(−x , v) | x ∈ R
N
+ and v ≤ ui(x)},

and if we think of utility as having the value λ−1
I per unit, then the vector

(−ξS
i
(P), ui(ξ

S
i
(P))) solves the problem

max
(−x , v)∈xi

(P, λ−1
i

).(−x , v).

The quantity (P, λ−1
i ).(−x , v) = λ−1

i v − P.x is the profit in unit of account
earned from producing v units of utility from an input consumption bun-
dle x.

In a branch of mathematics called convex analysis, the profit function
πi(P, λ−1

i ) = maxx∈R
N
+

[λ−1
i ui(x) − P.x] is termed the conjugate function of
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the utility function λ−1
i ui. The theory of conjugate functions is explained

in Rockafellar (1970, sec. 12).
A monotone transformation of a utility function may change short-run

demand, though it has no effect on Walrasian demand. For instance, if
N = 1, u(x) = ln(x), and λ = 1, then the associated short-run demand is
ξS(P) = P−1, whereas if u(x) = 2 ln(x) and λ = 1, then ξS(P) = 2P−1.

Before turning to the study of short-run equilibrium, I discuss the prop-
erties of the short-run demand under the following assumption.

assumption 8.32 For each i, ui: R
N
+ → R is continuous, strictly in-

creasing, and strictly concave.

To define one important property of the functions ξS
i

, I require the con-
cept of an open set.

definition 8.33 If X is a subset of R
N , then a subset U of X is said to

be open in X if for every x in U , there is a positive number ε, such that y
belongs to U if y belongs to X and ‖x − y‖ < ε.

For any set X, the empty set and the entire set X are open in X. If U is a
subset of X that is open in X, then U is open in any subset Y of X. A set is
said to be open if it is open in itself. A set is open if and only if it equals its
interior, where the interior is defined in definition 3.28 (in section 3.5).

example 8.34 The open interval, (0, 1) = {t | 0 < t < 1}, is an open set
and is open in the set of the real numbers, R = (−∞, ∞). It is not open
in R

2 if we think of (0, 1) as the set {(t , 0) ∈ R
2 | 0 < t < 1}. The open

unit ball, {x ∈ R
2‖x‖ < 1}, is an open set in R

2. The half open interval
[0, 1) = {t | 0 ≤ t < 1} is open in the closed interval [0, 2]= {t | 0 ≤ t ≤ 2}
but is not open in R.

Before proceeding, I must prove the following lemma.

lemma 8.35 Let B be a nonempty, compact, convex subset of R
N
+ , and,

for each N-vector P such that P > 0, let xi(P, B) be the set of solutions of
the problem

max
x∈B

[ui(x) − λiP.x]. (8.14)

If assumption 8.32 applies, then xi(P, B) is a continuous function of P.
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Proof. Since ui(x) − λiP.x is a continuous function of x and B is com-
pact, problem 8.14 has a solution, for each P. Since ui(x) − λiP.x is strictly
concave as a function of x, the solution to this problem is unique. There-
fore xi(p, B) is a function. I show that it is continuous. Suppose that Pk is a
sequence of nonzero vectors in R

N
+ that converges to P, where P > 0. I must

show that limk→∞ xi(Pk , B) = xi(P, B). If xi(Pk , B) does not converge to
xi(P, B), then for some positive number ε , ‖xi(Pk , B) − xi(P, B)‖ > ε, for
infinitely many k. Therefore there is a subsequence, which I call xi(Pk , B)

again, such that ‖xi(Pk , B) − xi(P, B)‖ > ε, for all k. Since the vectors
xi(Pk , B) all belong to the compact set B, by the Bolzano-Weierstrass
theorem (3.12 in section 3.2), I may assume that the sequence x(Pk , B)

converges to some vector x in B. Passing to the limit in the inequal-
ity ‖xi(Pk , B) − xi(P, B)‖ > ε, we see that ‖x − xi(P, B)‖ ≥ ε, so that
x �= xi(P, B). The definition of (x)i(Pk , B) implies that

ui(xi(Pk , B)) − λiP
k .xi(Pk , B) ≥ ui(xi(P, B)) − λiP

k .xi(P, B).

Passing to the limit in this inequality, we see that

ui(x) − λiP.x ≥ ui(xi(P, B)) − λiP.xi(P, B).

Since x �= xi(P, B) and ui(x) − λP.x is strictly concave in x, it follows that

ui(x) − λiP.x < ui(xi(P, B)) − λiP.xi(P, B).

The contradiction between the last two inequalities implies that xi(Pk , B)

converges to xi(P, B), as was to be proved.

proposition 8.36 Assumption 8.32 implies that {P | ξS
i
(P) �= ∅} is an

open set in R
N contained in the interior of R

N
+ .

Proof. The proposition is clearly true if {P |ξS
i
(P) �= ∅} = ∅. So, suppose

that ξS
i
(P) is not empty, for some P ∈ R

N
+ . Because ui is strictly increasing,

P � 0 and so belongs to the interior of R
N
+ .

Let B = {x ∈ R
N
+ | ‖x‖ ≤ ‖ξS

i
(P)‖ + 2} and let xi(P, B) be the set of

solutions of problem 8.14. Since B is compact, lemma 8.35 implies that
xi(P, B) is continuous as a function of P.

Because ξS
i
(P) solves the problem

max
x ∈ R

N
+

[ui(x) − λiP],
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it follows that

ui(ξ
S
i
(P)) − λiP.ξS

i
(P) ≥ ui(xi(P, B)) − λiP.xi(P, B).

Because ξS
i
(P) belongs to B,

ui(ξ
S
i
(P)) − λiP.ξS

i
(P) ≤ ui(xi(P, B)) − λiP.xi(P, B).

Therefore,

ui(ξ
S
i
(P)) − λiP.ξS

i
(P) = ui(xi(P, B)) − λiP.xi(P, B).

This equation and the strict concavity of ui imply that

ξS
i
(P) = xi(P, B).

Because the function xi(P, B) is continuous as a function of P, there exists
a positive number ε such that

‖xi(P, B) − ξS
i
(P)‖ = ‖xi(P, B) − xi(P, B)‖ < 1, (8.15)

if ‖P − P‖ < ε. It is sufficient to show that ξS
i
(P) = xi(P, B) and hence

that ξS
i
(P) is not empty, if ‖P − P‖ < ε. Suppose that ‖P − P‖ < ε and

ξS
i
(P) �= Pi(P, B). Then, there exists a vector x′ in R

N
+ such that

ui(x′) − λiP.x′ > ui(xi(P, B)) − λiP.xi(P, B). (8.16)

By definition of xi(P, B),

‖x′‖ > ‖ξS
i
(P)‖ + 2.

The triangle inequality and inequality 8.15 imply that

‖xi(P, B)‖ ≤ ‖ξS
i
(P)‖ + ‖xi(P, B) − ξS

i
(P)‖ < ‖ξS

i
(P)‖ + 1.

Therefore, if the positive number α is sufficiently small,

‖αx′]+ (1 − α)xi(P, B)‖ ≤ ‖ξS
i
(P)‖ + 2. (8.17)

We now have that

ui(αx′ + (1 − α)xi(P, B)) − λiP.(αx′ + (1 − α)xi(P, B))

≥ α[ui(x′) − λiP .x′]+ (1 − α)[ui(xi(P, B) − λiP.xi(P, B)]

> ui(xi(P, B)) − λiP.xi(P, B),

(8.18)

where the first inequality above follows from the concavity of ui, and the
second follows from inequality 8.16. Inequalities 8.17 and 8.18 contra-
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dict the definition of xi(P, B), and this contradiction proves that ξS
i
(P) =

xi(P, B) and hence proves the lemma.

proposition 8.37 If assumption 8.32 applies, then the correspondence
ξS
i

is a continuous function defined on a set of strictly positive N-vectors
that is open in R

N .

Proof. Let U = {P ∈ R
N
+ | ξS

i
(P) �= ∅}. In the course of proving proposi-

tion 8.36, it was shown that if P belongs to U , then there is a positive num-
ber ε such that if ‖P − P‖ < ε then P belongs to U and ξS

i
(P) = xi(P, B),

where xi(P, B) is a continuous function of P. It follows that the function
ξS
i

is everywhere continuous.

(Proposition 8.73 at the end of section 8.5 asserts that the domain of
definition of ξS

i
is convex as well as open.)

Before continuing with the analysis of short-run demand, I remark that
statements similar to lemma 8.35 and proposition 8.36 apply to production.
Although these statements will not be used until section 8.5, I state them
here because of the similarity of their proofs to those just given. Recall that
the supply set of firm j at price vector P is the set of solutions, ηj(P), of the
problem

max
y∈Yj

P.y .

lemma 8.38 Assume that Yj is a closed and strictly convex subset of R
N .

Let B be a compact convex subset of R
N that intersects Yj . For each N-

vector P such that P > 0, let yj (P, B) be the set of solutions of the problem

max
y∈Yj∩B

P.y .

Then, yj (P, B) is a continuous funcetion of P.

The proof of this lemma is very similar to that of lemma 8.35.

proposition 8.39 If Yj is a closed and strictly convex subset of R
N , then

the set of N-vectors P such that ηj(P) is not empty is open in R
N
+ .

Proof. The demonstration follows from lemma 8.38 in the same way that
proposition 8.36 follows from lemma 8.35.
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proposition 8.40 If Yj is a closed and strictly convex subset of R
N ,

then the correspondence ηj is a continuous function defined on a set of
nonnegative N-vectors that is open in R

N
+ .

Proof. The proof follows from the full proof of proposition 8.39, just as
the proof of proposition 8.37 follows from the proof of proposition 8.36.

The market short-run demand, which is the sum of the short-run de-
mands of the individual consumers, may be defined as the short-run
demand of a fictitious aggregate consumer. To show that this is so, I
use the fact that ξS

i
(P) solves problem 8.13. Define the welfare function

W : RN
+ → R by the equation

W(x) max
xi∈R

N
+ , . . . , xI∈R

N
+

I∑
i=1

λ−1
i

ui(xi)

s.t.
I∑

i=1

xi = x .

(8.19)

Because the utility functions ui are strictly concave, W is strictly concave as
well, and furthermore the following lemma applies.

lemma 8.41 If assumption 8.32 applies, then for each x ∈ R
N
+ there exists

one and only one vector (x1, . . . , xI ) such that x =∑I
i=1 xi and W(x) =∑I

i=1 λ−1
i ui(xi).

Proof. Because the function
∑I

i=1 λ−1
i ui(xi) is continuous and {(x1, . . . ,

xI ) | xi ∈ R
N
+ , for all i, and

∑I
i=1 xi = x} is compact, proposition 3.14 (in

section 3.2) implies that there exists at least one vector (x1, . . . , xI ), such
that x =∑I

i=1 xi and W(x) =∑I
i=1 λ−1

i ui(xi). The vector (x1, . . . , xI )

is unique, for suppose there are two vectors, (x , . . . , xI ) and (x , . . . , xI ),

where (x1, . . . , xI ) �= (x1, . . . , xI ),
∑I

i=1 xi = x =∑I
i=1 xi, and

∑I
i=1 λ−1

i

ui(xi) = W(x) =∑I
i=1 λ−1

i ui(xi) For each i, let xi = 1
2 xi + 1

2 xi. Then,∑I
i=1 xi = x and because the ui are strictly concave,

∑I
i=1 λ−1

i ui(xi) >∑I
i=1 λ−1

i ui(xi) = W(x), which is impossible. This contradiction proves
that (x1, . . . , xI ) is unique.
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The short-run demand function defined from the welfare function W

turns out to be short-run market demand.

definition 8.42 For any price vector P, let �S(P) be the set of solutions
of the problem

max
x ∈ R

N
+

[W(x) − P.x].

Because W is strictly concave, �(P) is unique, if it exists. The next prop-
osition asserts that �S(P) is the aggregate short-run demand of all the con-
sumers, so that W may be viewed as the utility function of an aggregate
consumer whose short-run demand equals market demand when this con-
sumer’s marginal utility of unit of account is 1.

proposition 8.43 If assumption 8.32 applies, then �S(P) =∑I
i=1

ξS
i
(P), if �S(P) is defined.

Proof. The statement follows from the following equations and from the
fact that, for each i, ξS

i
(P) is the solution of problem 8.13.

max
x∈R

N
+

[W(x) − P.x]

= max
x1∈R

N
+

[(
max

(x1∈R
N
+ , . . . , xI∈R

N
+)

I∑
i=1

λ−1
i

ui(xi) s.t.
I∑

i=1

xi = x

)
− P.x

]

= max
x∈R

N
+

[
max

(x1∈R
N
+ , . . . , xI∈R

N
+)

I∑
i=1

λ−1
i

ui(xi) s.t.
I∑

i=1

xi = x

]

= max
(x1∈R

N
+ , . . . , xI∈R

N
+)

I∑
i=1

λ−1
i

ui(xi) − P.x

=
I∑

i=1

max
xi∈R

N
+

[λ−1
i

ui(xi) − P.x]

The next proposition asserts that the demand curves generated by �S(P)

are nonincreasing. This behavior of short-run demand contrasts with
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that of Walrasian demand, for Walrasian demand curves can slope up-
ward, as example 8.63 at the end of this section shows. Let DS

n
(Pn) be the

short-run demand function for good n defined by the equation DS
n
(Pn) =

�S
n
(P1, . . . , Pn, . . . , PN), where the prices Pk are held fixed for k �= n. The

short-run demand, DS
n
(Pn), depends, of course, on the prices Pk, for k �= n.

proposition 8.44 Suppose that assumption 8.32 applies. If a is a pos-
itive number and �S(P1, . . . , Pn + a , . . . , PN) �= �S(P1, . . . , Pn, . . . ,
PN), then DS

n
(Pn + a) < DS

n
(Pn). Hence DS

n
(Pn + a) ≤ DS

n
(Pn).

Proof. Without loss of generality, let n = 1. Because W is strictly concave,
it follows from the definition of �S(P) that

W(�(P)) − P.�S(P) > W(x) > W(x) − P.x ,

if x �= �S(P). Therefore,

W(x) < W(�S(P)) + P.[x − �S(P)], (8.20)

if bx �= �S(P). Let P′ = P + (a , 0, . . . , 0). The reasoning that implies in-
equality 8.20 also implies that

W(x) < W(�S(P′)) + P′.[x − �S(P′)], (8.21)

if x �= �S(P′). Suppose that �S(P) �= �S(P′). Then, inequality 8.21 implies
that

W(�S(P)) < W(�S(P′)) + P′.[�S(P) − �S(P′)]

= W(�S(P′)) + P.[�S(P) − �S(P′)]+ a[�S
1(P) − �S

1(P′)].
(8.22)

Similarly, inequality 8.20 implies that

W(�S(P′)) < W(�S(P)) + P′.[�S(P′) − �S(P)]

By substituting this inequality into inequality 8.22 and simplifying, we see
that

0 < a
[
�S

1(P) − �S
1(P′)

]
,

which implies that

�S
1(P′) < �S

1(P).

That is,

DS
1 (P1 + a) < DS

1 (P1).
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If the individual utility functions are not differentiable, short-run de-
mand curves may have flat sections, because the welfare function W may
have kinks, as the following example shows.

example 8.45 Let u: [0, ∞) → [0, ∞) be defined by the equation

u(x) =
{

2
√

x , if 0 ≤ x ≤ 1 and

1 + √
x , if x ≥ 1

and let λ = 1. Then, �S(P ) = ξS(P ) solves the problem maxx≥0[u(x) −
Px], so that P is a subgradient of u. Hence,

�S(P ) =

⎧⎪⎪⎨
⎪⎪⎩

1
4P 2 , if P ≥ 1

2 ,

1, if ≤ P ≤ 1, and
1

P 2 , if P ≥ 1.

We see that �S(P ) is flat over the interval 1
2 ≤ P ≤ 1.

The demand DS
n
(Pn) is strictly decreasing if we assume that consumers’

utility functions are twice continuously differentiable.

assumption 8.46 For all i, ui is twice continuously differentiable and,
for all x, Dui(x) � 0 and D2ui(x) is negative definite.

Assumption 8.46 implies assumption 8.32, for ui is strictly increasing if
Dui(x) � 0, for all x, and by lemma 3.38 (in section 3.5) ui is strictly con-
cave if D2ui(x) is negative definite, for all x. To understand the proof that
demand curves are strictly decreasing, assume that P is such that ξS

i
(P) � 0,

for all i. Then, ξS
i
(P) satisfies the equation

Dui(ξ
S
i
(P)) = λiP. (8.23)

The implicit function theorem implies that ξS
i

is differentiable. Differenti-
ating equation 8.23, we see that

DξS
i
(P) = λi(D

2ui(ξ
S
i
(P)))−1,

where (D2ui(ξ
S
i
(P)))−1 is the inverse of the matrix D2ui(ξ

S
i
(P)). Since

D2ui(ξ
S
i
(P)) is negative definite, the matrix (D2ui(ξ

S
i
(P)))−1 is negative

definite as well, and hence DξS
i
(P) is negative definite. It follows that



314 8 Rational Expectations Equilibrium

D�(P) =∑I
i=1 DξS

i
(P) is also negative definite. Since D�(P) is negative

definite,

dDS
n
(Pn)

dPn

= ∂�S
n
(P)

∂Pn

< 0,

for all n.1 The argument depends on the special assumption that ξS
i
(P) � 0,

for all i. If we drop this assumption, DS
n
(Pn) is not necessarily everywhere

differentiable, but it is still possible to prove that it is downward sloping.
The next proposition says that the market demand curve, DS

n
(Pn), is the

sum of individual demand curves, DS
in

(Pn), that are downward sloping in
a certain sense, though they are not necessarily everywhere differentiable.

proposition 8.47 Suppose that ui satisfies assumption 8.46, for all i.
Fix Pk for k �= n, let DS

in
(Pn) = ξS

i
(P1, P2, . . . , Pn, . . . , PN), and let Ui =

{Pn | DS
in

(Pn) < 0}. Then, Ui is an open interval of real numbers and is the
union of finitely many sets, C, that are closed in Ui and are such that, for

each C, the restriction of DS
in

(Pn) to C is differentiable and
dDS

in
(Pn)

dPn
< 0,

for Pn in C.

Proof. Because ui is strictly concave and ξS
i
(P) is the set of solutions of

the problem maxx∈R
N
+

[λ−1
I ui(x) − P.x], ξS

i
(P) is unique, whenever it is

defined. By proposition 8.37, the short-run demand function, ξS
i

, is con-
tinuous and ξS

i
(P) is defined on an open set of strictly positive N-vectors,

P. Therefore, DS
in

(Pn) is a continuous function of Pn and is defined on an
open subset of [0, ∞). By proposition 8.44, DS

in
(Pn) is nonincreasing and

is therefore positive on an open interval of prices. It follows that Ui is an
open interval of [0, ∞).

Fix n and let A be the set of subsets, A, of {1, 2, . . . , N} that contain n.
For A in A, let UiA = {Pn | ξS

ik
(P1, . . . , Pn, . . . , PN) > 0, for k ∈ A, and

ξS
ik

(P1, . . . , Pn, . . . , Pn) = 0, for k �∈ A}. Then, Ui is the union of all the
sets UiA for A in A. For each A in A, let CiA be the closure of UiA in Ui.
That is, CiA equals UiA together with all the limits of sequences in UiA that
converge to points in Ui. (The closure of a set is defined in definition 3.8 in
section 3.2.) Clearly, Ui is contained in the union of the sets CiA as A varies
over A. For each Pn in UiA,

1. The argument just made may be found in Browning, Deaton, and Irish (1985, 509).
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λ−1
i

∂ui(ξ
S
i
(P1, . . . , Pn, . . . , PN))

∂Pk

= Pk , (8.24)

for all k in A. Since the partial derivatives of ui are continuous, equation
8.24 applies to every point in CiA. Let DAui(ξ

S
i
(P1, . . . , Pn, . . . , PN)) =(

∂ui(ξ
S
i
(P1, . . . , Pn , . . . , PN))

∂Pk

)
k∈A

and let PA = (Pk)k∈A. Then, equation 8.24

may be written as

λ−1
i

DAui(ξ
S
i
(P1, . . . , Pn, . . . , PN)) = PA. (8.25)

Differentiating equation 8.25, we obtain

λ−1
i

D2
A
ui(ξ

S
i
(P1, . . . , Pn, . . . , PN))DAξS

i
(P1, . . . , Pn, . . . , PN) = IA,

(8.26)

where D2
A
ui(x) is the square matrix of second partial derivatives with re-

spect to variables xk, for k in A, DAξS
i
(P) is the vector of partial derivatives

of ξS
i

with respect to variables Pk, for k in A, and IA is the identity matrix
with as many rows and columns as there are members of A. Since the matrix
D2ui(x) is negative definite by assumption 8.46, the matrix D2

A
ui(x) is neg-

ative definite as well and so is invertible. Therefore, equation 8.26 implies
that

DAξS
i
(P1, . . . , Pn, . . . , PN) = λi(D

2
A
ui(ξ

S
i
(P1, . . . , Pn, . . . , PN)))−1,

for Pn ∈ CiA. Because n belongs to A by the definition of the sets in A and
because the matrix

λi(D
2
A
ui(ξ

S
i
(P1, . . . , Pn, . . . , PN)))−1

is negative definite, it follows that

∂ξS
in

(P1, . . . , Pn, . . . , PN)

∂Pn

< 0,

for Pn ∈ CiA. This equation is the same as

dDS
in

(Pn)

dPn

< 0,

for Pn ∈ CiA.

The next example shows that the functions DS
in

may not be everywhere
differentiable, even when ui satisfies assumption 8.46.
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example 8.48 Let u(x1, x2) = 3((1 + x1)(x1 + x2))
1/3 and let λ = 1. The

function u satisfies assumption 8.46. The matrix D2u(x) equals⎛
⎜⎝

−2

3

(1 + x2)
1/3

(1 + x1)
5/3

1

3

1

(1 + x1)
2/3(1 + x2)

2/3

1

3

1

(1 + x1)
2/3(1 + x2)

2/3
−2

3

(1 + x2)
1/3

(1 + x1)
5/3

⎞
⎟⎠ .

Since the upper-left-hand entry of this matrix is negative and its deter-
minant,

1

3

1

(1 + x1)
4/3(1 + x2)

4/3

is positive, the matrix D2u(x) is negative definite. In this example, the
equation Du(x1, x2) = λp defining the short-run demand becomes the two
equations

p1 = (1 + x2)
1/3

(1 + x1)
2/3

and

p2 = (1 + x1)
1/3

(1 + x2)
2/3

,

if x1 > 0 and x2 > 0. Solving these equations for x1 and x2, we find that

x1 = 1

p2
1p2

− 1

and

x2 = 1

p1p
2
2

− 1.

It follows that x1 = 0, if p2
1p2 > 1. If x1 = 0, then utility is u(0, x2) = 3(1 +

x2)
1/3, and x2 is determined by the equation

p2 = 1

(1 + x2)
2/3

,

and hence

x2 = p
−3/2
2 − 1.

Therefore,

∂x2

∂p2

= −3

2
p

−5/2
2 . (8.27)
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If x1 > 0, that is, if p2
1p2 < 1, then

∂x2

∂p2

= − 2

p1p
3
2

, (8.28)

so that

∂x2(1, 1)

∂p2−
= −2,

where ∂x2(1, 1)
∂p2− is the left-hand derivative of x2 at (p1, p2) = (1, 1). It is

computed using equation 8.28. Similarly,

∂x2(1, 1)

∂p2+
= −3

2
,

where ∂x2(1, 1)
∂p2+ is the right-hand derivative of x2 at (p1, p2) = (1, 1) and

is computed using equation 8.27. Since the left- and right-hand partial
derivatives of x2(p1, p2) with respect to p2 differ at (1, 1), the function
x2(1, p2) is not differentiable there. Since DS

2 (p1) = x2(1, p2), it follows
that DS

2 (p2) is not differentiable at p2 = 1.

I now discuss short-run equilibrium, which is what you obtain when
you substitute short-run demand for Walrasian demand in the definition
of Walrasian equilibrium. Allocations, feasibility of allocations, and firms’
set of profit maximizing vectors, ηi(P), are defined as before in definitions
2.1 and 2.2 and in section 4.1, respectively.

definition 8.49 A short-run equilibrium for E consists of (x , y , P) such
that

1. (x , y) is a feasible allocation, P ∈ R
N
+ , and P > 0

2. for all j , yj ∈ ηj(P)

3. for all i, xi ∈ ξS
i
(P)

4. for all n, Pn = 0, if
∑I

i=1 xin <
∑I

i=1 ein +∑J
j=1 yjn

I make use of the following assumptions.

assumption 8.50 For each j , Yj is closed, convex, and contains the
vector 0.

Let Y =∑J
j=1 Yj be the total production possibility set for the economy.
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assumption 8.51 Y ∩ R
N
+ = {0}.

assumption 8.52 Y ∩ (−Y ) + {0}.

assumption 8.53 The economy E is productive, where an economy is
productive if it can produce a positive amount of every good (definition
3.47 in section 3.6).

I will show that under these assumptions a short-run equilibrium exists
and is Pareto optimal. In doing so, I make use of the next lemma. The
statement of the lemma is shortened by the following terminology.

definition 8.54 An aggregate allocation for the economy E consists of
(xA, yA), where xA ∈ R

N
+ .

definition 8.55 An aggregate allocation, (xA, yA), is feasible if xA ≤∑I
i=1 ei + yA and yA ∈∑J

j=1 Yj .

The next lemma is the key to the properties of short-run equilibria. The
assertion is that an economy in short-run equilibrium acts as if it were
maximizing the utility of the imaginary aggregate consumer.

lemma 8.56 Assume that assumptions 8.46, 8.50, and 8.53 apply. Then,
(x , y) is the allocation of a short-run equilibrium (x , y , P), if and only if

the aggregate allocation
(∑I

i=1 xi ,
∑J

j=1 yj

)
solves the problem

max
(xA , yA) is a feasible

aggregate allocation

W(xA)

s.t. (xA, yA),

(8.29)

where W is defined by equation 8.19.

Proof. Because assumption 8.50 applies to the sets Yj , for all j , the aggre-

gate production possibility set, Y =∑J
j=1 Yj , is convex. Problem 8.29 may

be written as

max
x ∈ R

N
+ .yA∈Y

W(xA)

s.t. yA −
I∑

i=1

ei − yA ≤ 0.

(8.30)
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Because the economy is productive, problem 8.30 satisfies the constraint
qualification of the Kuhn-Tucker theorem. That theorem implies that the
aggregate allocation (xA, yA) solves problem 8.30 if and only if yA ∈ Y ,

xA −
I∑

i=1

eiy
A ≤ 0, (8.31)

and there exists a nonnegative N-vector P such that

Pn = 0, if xA
n

−
I∑

i=1

einy
A
n

< 0, (8.32)

for all n, and (xA, yA) solves the problem

max
x∈R

N
+ , y∈Y

[
W(x) − P.

(
x −

I∑
i=1

ei − y

)]
. (8.33)

Observe that (xA, yA) solves problem 8.33 if and only if xA solves the
problem

max
x∈R

N
+

[W(x) − P.x] (8.34)

and yA solves the problem

max
y∈Y

P.y . (8.35)

Proposition 8.43 implies that xA solves problem 8.34 if and only if xA =∑I
i=1 xi, where, for each i, xi solves the problem

max
x∈R

N
+

[
λ−1

i
ui(x) − P.x

]
,

so that xi = ξS
i
(P). By the decentralization theorem (4.10 in section 4.6),

yA solves problem 8.35 if and only if yA =∑J
j=1 yj , where, for each j , yj ,

solves the problem

max
y∈Yj

P.y ,

so that yj ∈ ηj(P). Inequality 8.31 now becomes

I∑
i=1

xi −
I∑

i=1

ei −
J∑

j=1

y ≤ 0,
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and condition 8.32 becomes

Pn = 0, if
I∑

i=1

xA
in

−
I∑

i=1

ein −
J∑

j=1

yA
jn

< 0,

for all n. In conclusion, we see that
(∑I

i=1 xi ,
∑J

j=1 yi

)
solves problem

8.29, if and only if (x1, . . . , xI ; y1, . . . , yJ ; P) satisfies all the conditions of
a short-run equilibrium.

It is easy to construct examples of economies with several Walrasian
equilibrium allocations and relative price vectors, as was illustrated by fig-
ure 4.14 (in section 4.3). In contrast, short-run equilibria are unique under
standard assumptions. Not only are the allocations and relative price vec-
tors unique, but the absolute prices are unique as well. The length of a
Walrasian equilibrium price vector is not determined, because individual
and market excess demand functions are homogeneous of degree 0. The
length of a short-run equilibrium price vector is determinate, and short-
run demand functions are not homogeneous of degree 0. In the short-run
case, a proportional increase in all prices has the same effect on consumer
demand as an increase in the marginal utility of unit of account, which de-
creases or at least does not increase the value of consumer demand. It is
easy to see that the value decreases if ξS

i
(P, λi) � 0 and assumption 8.46

applies. In this case, ξS
i
(P, λi) � 0 satisfies the equation

Dxui(ξ
S
i
(P, λi)) = λiP,

where I have made short-run demand, ξS
i

, a function of λi as well as of P.
Differentiating this equation implicitly with respect to λi, we see that

D2
x
ui(ξ

S
i
(P, λi))

∂ξS
i
(P, λi)

∂λi

= P,

where
∂ξS

i
(P, λi)

∂λi
is an N-vector. This equation implies that

∂ξS
i
(P, λi)

∂λi

= (D2
x
ui(ξ

S
i
(P, λi)))

−1P.

Multiplying this last equation on the left by PT , the transpose of P, we see
that

∂P.ξS
i
(P, λi)

∂λi

= P.
∂ξS

i
(P, λi)

∂λi

= PT (D2
x
ui(ξ

S
i
(P, λ)))−1P < 0,
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because the matrix (D2
x
ui(ξ

S
i
(P, λi)))

−1 is negative definite by assumption
8.46.

proposition 8.57 The consumption allocation, x, of a short-run equi-
librium (x , y , P) is the same for all short-run equilibria.

Proof. Suppose there are two short-run equilibria, (x1, y1, P1) and
(x2, y2, P2). First of all, I show that

∑I
i=1 x1

i
=∑I

i=1 x2
i
. By lemma 8.56,

both
(∑I

i=1 x1
j

,
∑J

j=1 y1
j

)
and

(∑I
i=1 x2

i
,
∑J

j=1 y2
j

)
solve the problem

max
(xA .yA) is a feasible
aggregate allocation

W(xA).

Suppose that
∑I

i=1 x1
i
�=∑I

i=1 x2
i

and let

(xA, yA) = 1

2

⎛
⎝ I∑

i=1

x1
i
,

J∑
j=1

y1
i

⎞
⎠+ 1

2

⎛
⎝ I∑

i=1

x2
i
,

J∑
j=1

y2
j

⎞
⎠ .

The aggregate allocation (xA, yA) is feasible, and because W is strictly
concave,

W(xA) >
1

2
W

(
I∑

i=1

x1
i

)
+ 1

2
W

(
I∑

i=1

x2
i

)
,

which is impossible. This contradiction proves that
∑I

i=1 x1
i
=∑I

i=1 x2
i
.

I finish the proof by showing that x1
i
= x2

i
, for all i. Let x =∑I

i=1 x1
i
=∑I

i=1 x2
i
. Then, (x1

1, x1
2, . . . , x1

I
) solves the problem

max
(x1∈ R

N
+ , . . . , xI∈R

N
+)

I∑
i=1

λ−1
i

ui(xi)

s.t.
I∑

i=1

xi = x ,

(8.36)

by the definition of the function W (equation 8.19). According to lemma
8.41, problem 8.36 has a unique solution, so that x1

i
= x2

i
, for all i.

If we add the following assumption, the production allocation of a short-
run equilibrium is unique as well.
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assumption 8.58 For each j , Yj is strictly convex.2

proposition 8.59 If assumptions 8.46, 8.50, 8.53, and 8.58 apply, then
the allocation, (x , y), is the same for all short-run equilibria.

Proof. By lemma 8.56, the allocation, (x , y), of a short-run allocation
maximizes the welfare function

∑I
i=1 λ−1

i ui(xi) among all feasible allo-
cations. Because the functions ui are strictly concave and the sets Yj are
strictly convex, the solution of this maximization problem is unique.

proposition 8.60 If assumptions 8.46, 8.50, 8.53, and 8.58 apply, then
the equilibrium price vector, P, is unique, provided

∑I
i=1 xi � 0, where∑I

i=1 xi is the equilibrium total consumption. Furthermore, P � 0.

Proof. If (x , y , P) is a short-run equilibrium, then x = (x1, x2, . . . , xI )

is unique by the previous proposition. Each consumption vector, xi, solves
the problem

max
x ∈ R

N
+

[
λ−1

i
ui(x) − P.x

]
.

Since by assumption 8.46 the ui are differentiable, the solution of this max-
imization problem satisfies the first-order conditions

λ−1
i

∂ui(xi)

∂xn

≤ Pn,

for all n, with equality if xin > 0. Since
∑I

i=1 xi � 0, it follows that xin > 0,
for some i. Therefore, for each n,

Pn = λ−1
i

∂ui(xi)

∂xn

, (8.37)

for any i such that xin > 0. Since the xin are unique, equation 8.37 defines

the short-run equilibrium price vector, P, uniquely. Because λ−1
i

∂ui(xi)

∂xn
> 0,

for all n by assumption 8.46, Pn > 0, for all n.

I next show that short-run equilibria exist and are Pareto optimal. Recall
that the proof of the existence of Walrasian equilibrium (theorem 4.14 in

2. Strict convexity of sets is defined in definition 3.39 (in section 3.5).
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section 4.7 or theorem 4.24 in section 4.8) relies on Walras’ law. That law
does not apply to short-run market excess demand, zS(P) =∑I

i=1(ξ
S
i
(P) −

ei) −∑J
j=1 ηj(P). Fortunately, an argument much simpler than that apply-

ing to theWalrasian case shows that short-run equilibria exist.

theorem 8.61 If the economy E satisfies assumptions 8.46, 8.50–8.53,
then it has a short-run equilibrium (x , y , P).

Proof. By lemma 8.56, it is sufficient to show that the welfare function

W
(∑I

i=1 xi

)
has a maximum over the set of feasible allocations (x , y). It

does, because W is continuous and the economy E satisfies the assumptions
of theorem 3.54 (in section 3.7), so that the set of feasible allocations is
compact.

theorem 8.62 If the economy E satisfies assumptions 8.46, 8.50, and
8.53, then the allocation of a short-run equilibrium, (x , y , P), is Pareto
optimal.

Proof. By lemma 8.56, the allocation (x , y) maximizes the welfare func-
tion

∑I
i=1 λ−1

i ui(xi) among all feasible allocations, where λi > 0, for all i. It
follows from proposition 3.23 (in section 3.5) that (x , y) is Pareto optimal.

I now give the example promised earlier of a Walrasian demand curve
that slopes upward over part of its range.

example 8.63 (An upward sloping demand curve) There are two com-
modities, and the utility function of the consumer is

u(x1, x2) = min(2x1 + x2, x1 + 10).

The consumer’s initial endowment is e = (5, 0). The indifference curves of
the utility function are pictured as dashed lines in figure 8.1. The kink in the
indifference curves occurs along the line defined by the equation x1 + x2 =
10, which is shown as a solid line in figure 8.1. The relevant Walrasian
demand points are along this line. The utility function u is concave, because
it is the minimum of two affine and hence concave functions.
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0

x2

x1

10

10e

Figure 8.1 Indifference curves for a utility function with an upward sloping
demand curve

Let the price of good 1 be 1, so that the consumer’s Walrasian demand
solves the problem

max
x1, x2

[
min(2x1 + x2, x1 + 10) ≤ 5

]
s.t. x1 + p2x2 ≤ 5.

The Walrasian demand function is

ξ(1, p2) =
⎧⎨
⎩
(

5−10p2
1−p2

, 5
1−p2

)
, if p2 ≤ 1

2 , and(
0, 5

p2

)
, if p2 ≥ 1

2 .

Therefore, if p2 ≤ 1
2 , the demand curve for good 2 is

D2(p2) = ξ2(1, p2) = 5

1 = p2

,

and this curve is upward sloping.
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The utility function in this example is not differentiable. With more
work, it is possible to create an example with a differentiable utility
function.

8.4 Consumer Surplus

The concept of consumer surplus is widely used and convenient, but it is
hard to make sense of it in the context of Walrasian equilibrium. It does,
however, make sense in a short-run equilibrium setting. You may have
seen consumer surplus explained in terms of a supply and demand scissors
diagram, such as figure 8.2. This shows the supply curve, SS, and demand
curve, DD, for a single commodity. The equilibrium price is B. Since the
supply curve shows marginal production costs, the area under the curve is
the variable cost of production. That is, the variable cost of producing A

units is the area of the quadrilateral 0AES. Since the revenue from sales is

0

Consumers’
surplus

Fixed costs
plus profit

Variable
production

costs

A D Q

S

B

D

P

E

S

Figure 8.2 Consumer surplus in a scissors diagram
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the area of the rectangle 0AEB, the area of the triangle SEB is fixed costs
plus total profit from producing A units. The demand curve DD is the
graph of a function P(Q), giving price, P , as a function of the quantity
purchased, Q. If consumers have purchased Q units, the monetary value to
them of consuming a small amount, �Q, more is approximately P(Q)�Q.
Therefore the total value to them of consuming A units is the area under
the demand curve from 0 to A, that is, the area of the quadrilateral 0AED.
Consumers spend money equal to the area of 0AEB to buy A units, so that
the net gain in money terms from purchasing A units is the area of the
triangle BED, a quantity termed consumers’ surplus. Thus, the total gain
to consumers from consuming A units may be divided into the sum of
consumers’ surplus, fixed costs plus profit, and variable production cost,
these being the areas of BED, SEB, and 0AES, respectively. This way of
measuring consumers’ gain and its attribution to surplus, fixed costs plus
profit, and variable costs provides a convenient tool for estimating the
impact of economic policy, public works projects, or any economic change.
Although this use of consumers’ surplus is of questionable value when
demand is Walrasian, it is perfectly reasonable when demand is short run.

The discussion will be in terms of a short-run economy E = ((ui , λi ,
ei)

I
i=1, (Yj)

J
j=1, (�ij)

I
i=1, J

j=1), where the consumers’ marginal utilities of
money, (λ1, . . . , λI), are fixed. The following strengthening of assumption
8.32.

assumption 8.64 For each i, the function ui: R
N
+ → R is continuously

differentiable, strictly increasing, and strictly concave.3

The next assumption is for convenience of presentation.

assumption 8.65 For each i, ui(0) = 0.

Let W : R
N
+ → R be the welfare function over consumption bundles de-

fined by equation 8.19 (in section 8.3). The function W is differentiable,
by proposition 8.68 below. Because the utility functions, ui, are strictly
increasing and concave, the welfare function W is strictly increasing and
concave as well. For each price vector P such that P � 0, let �S(P) be as in

3. The terms strict increasing and strictly concave are defined in definitions 3.36 and 3.37,

respectively, in section 3.5.
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definition 8.42 (in section 8.3). Recall that the market short-run demand
function, �S(P), is the solution to the problem

max
x ∈ R

N
+

[W(x) − P.x].

The first-order conditions for this problem imply that

�S(DW(x)) = x . (8.38)

Let x: [0, 1]→ R
N
+ be a differentiable path in R

N
+ such that x(0) = 0 and

x(1) = x. Then,

dW(x(t))

dt
= DW(x(t)).

dx(t)

dt
,

so that

W(x) − W(0) =
∫ 1

0
DW(x(t)).

dx(t)

dt
. (8.39)

Assumption 8.65 implies that W(0) = 0, so that equation 8.39 may be
written as

W(x) =
∫ 1

0
DW(x(t)).

dx(t)

dt
dt . (8.40)

Equation 8.40 is easier to interpret if we let DW(x(t)) = P(t). Then equa-
tion 8.38 implies that x(t) = �S(P(t)), so that x(t) is the short-run demand
at price vector P(t) and equation 8.40 may be written as

W(x) =
∫ 1

0
P(t).

dx(t)

dt
dt . (8.41)

The quantities P(t). dx(t)
dt

may sometimes be estimated, so that equation
8.41 provides a method for estimating total welfare. It is important that the
measure of total welfare does not depend on the paths x(t) and P(t), as long
as P(t) = DW(x(t)).

Assumption 8.64 implies that both ui(x) and Dui(x) are defined, and
hence finite, for every x in R

N
+ . This assumption does not apply to some

utility functions commonly used in economics, such as the logarithm func-
tion; ln(0) is not defined. The next example illustrates that the total wel-
fare measured by equation 8.40 may be infinite, if ui(0) is not defined, for
some i.
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example 8.66 There is one commodity and one consumer. The utility
function of the consumer is u(x) = ln(x), and the consumer’s marginal
utility of money is λ = 1. If we solve the problem maxx≥0[ln(x) − Px],
where P > 0, we find that x = 1

P
. Let x(t) be the path defined by x(t) = t ,

for 0 ≤ t ≤ 1. Then, P(t) = 1
t

so that welfare at x(1) = 1 equals the integral

W(1) =
∫ 1

0

1

t
dt = ∞.

Thus the integral in equations 8.40 or 8.41 can be meaningless. This
difficulty can be avoided by using the integral in these equations to measure
changes in welfare along a path, x(t), such that x(t) � 0, for all t . Then,
equation 8.41 becomes

W(x) − W(x) =
∫ 1

0
P(t).

dx(t)

dt
dt . (8.42)

Suppose that the path x(t) is such that, for 0 ≤ t ≤ 1,

x1(t) = x1 + t (x1 − x1) and

xn(t) = xn,

for n ≥ 1, where x1 > x1. Then, the increase in total welfare, W(x) − W(x)

given by equation 8.42 is equal to the shaded area under the demand curve
shown in figure 8.3.

Of the total increase in welfare, W(x) − W(x), the part labeled “CS” in
figure 8.4 is enjoyed by consumers as surplus, and the part labeled “Spent”
is the money surrendered by the consumer to buy x1(1) − x1(0) at the price
P1(1). If the quantity purchased, x1(1), of good 1 and its price, P1(1), are
part of a competitive equilibrium, then the rectangle labeled “Spent” in fig-
ure 8.4 may be split between fixed costs plus profit and variable production
cost, as in figure 8.5.

Suppose that total welfare is finite, so that we can measure total welfare
as well as welfare changes. In addition, suppose that P(1) and x = �(P(1))
are the price vector and total consumption allocation of a short-run general
equilibrium, (

(x1, . . . , xI , y1, . . . , yJ ), P(1)
)

,

with x =∑I
i=1 xi. Then W(x) corresponds in spirit though not literally to

the area of 0AED and the total expenditure, corresponds to the area 0AEB



x1(0) x1(1) D0 Q

D

P1

Figure 8.3 Change in total welfare

x1(0) x1(1) D0 Q

CS

Spent

D

P1

P1(1)

Figure 8.4 The split of the welfare change between surplus and expenditure
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x1(0) x1(1) D0 Q

CS

Fixed cost
plus profit

Variable
production

costsS

S

D

P1

P1(1)

Figure 8.5 The split of the welfare change between profit and production cost

in figure 8.2. Since x =∑I
i=1 xi =∑I

i=1 ei +∑J
j=1 yj , it follows that

P(1).x = P(1).
I∑

i=1

ei + P(1).
J∑

j=1

yj .

The quantities P(1).
∑I

i=1 ei and P(1).
∑J

j=1 yj are the variable costs of
production and total profits, respectively, and correspond in spirit to the
areas of 0AES and SEB in figure 8.2. (There are no fixed costs of produc-
tion.) In summary,

W(x) = (W(x) − P.x) + P.
I∑

i=1

ei + P.
J∑

j=1

yj

= consumers’ surplus + value of endowment + profits,

(8.43)

and these terms correspond to the areas of BED, 0AES, and SEB, respec-
tively, in figure 8.2.



8.4 Consumer Surplus 331

I turn to the proof that the function W is differentiable. Recall that

W(x) = max
x1∈ R

N
+ , . . . , xI∈ R

N
+

I∑
i=1

λ−1
i

ui(xi)

s.t.
I∑

i=1

xi = x .

For each x in R
N
+ and for each i = 1, . . . , I , let xi(x) ∈ R

N
+ be such that

x =∑I
i=1 xi(x) and W(x) =∑I

i=1 λ−1
i ui(xi(x)). By lemma 8.41 (in section

8.3), the functions xi(x) are uniquely defined. As a step toward proving the
differentiability of W , I prove the following.

lemma 8.67 If ui satisfies assumption 8.64, for all i, then the functions
xi(x) are continuous.

Proof. Let xn, for n = 1, 2, . . . , be a sequence converging to x in R
N
+ . I

must show that limn→∞ xi(xn) = xi(x), for all i. Suppose that xi(xn) does
not converge to xi(x), for some i. Without loss of generality, I may assume
that i = 1, so that x1(xn) does not converge to x1(x). Therefore, there exists
a positive number ε and a subsequence n(k) such that

‖x1(xn(k)) − x1(x)‖ ≥ ε ,

for all k. Because the sequences xi(xn) are all bounded, for all i, the
Bolzano-Weierstrass theorem (3.12 in section 3.2) implies that there is a
subsequence of the n(k), call it n(k(m)) such that xi(xn(k(m)) converges, for
all i, as m goes to infinity. For each i, let xi = limm→∞ xi(xn(k(m))). Then
by passage to the limit in the above inequality we obtain

‖x1 − x1(x)‖ ≥ ε. (8.44)

For convenience, I denote the sequence xi(xn(k(m))) as xi(xn) again.
I show that (x1, . . . , xI ) solves the problem

max
x1∈R

N
+ , . . . , xI∈ R

N
+

I∑
i=1

λ−1
i

ui(xi)

s.t.
I∑

i=1

xi = x .

(8.45)
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If we pass to the limit with respect to n in the inequality
∑I

i=1 xi(xn) ≤
xn, we find that

∑I
i=1 xi ≤ x. Similarly, xi ∈ R

N
+ , for all i. Therefore,

(x1, . . . , xI ) satisfies the constraints of problem 8.45. Suppose (x1, . . . , xI )

does not solve problem 9.45, so that

I∑
i=1

λ−1
i

ui(xi) <

I∑
i=1

λ−1
i

ui(xi(x)). (8.46)

If x = 0, then xi(x) = 0, for all i, so that inequality 8.46 is impossible. So,
suppose that x > 0. Because the functions ui are continuous,

I∑
i=1

λ−1
i

ui(xi) <

I∑
i=1

λ−1
i

ui((1 − δ)xi(x)), (8.47)

if δ is a sufficiently small positive number. Also,

I∑
i=1

(1 − δ)xi(x) = (1 − δ)

I∑
i=1

xi(x) ≤ (1 − δ)x ≤ xn, (8.48)

if n is sufficiently large, where the last inequality holds because the vec-
tors xn are nonnegative and converge to x as n goes to infinity. Because the
xi(xn) converge to xi as n goes to infinity and the functions ui are continu-
ous, inequality 8.47 implies that

I∑
i=1

λ−1
i

ui(xi(xn)) <

I∑
i=1

λ−1
i

ui((1 − δ)xi(x)), (8.49)

if n is sufficiently large. Inequality 8.48 implies that if n is large, then the
vector (1 − δ)(x1(x), . . . , xI (x)) satisfies the constraints of the problem

max
x1∈ R

N
+ , . . . , xI∈ R

N
+

I∑
i=1

λ−1
i

ui(xi)

s.t.
I∑

i=1

xi = xn.

Inequality 8.49 implies that for large n, the vector (1− δ)(x1(x), . . . , xI (x))

achieves a higher value of the objective function for this problem than does
the optimal vector (x1(xn), . . . , xI (xn)), which is impossible. This con-
tradiction proves that (x1, . . . , xI ) solves problem 8.45. Lemma 8.41 (in
section 8.3) therefore implies that xi = xi(x), for all i, which contradicts in-
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equality 8.44. This last contradiction implies that limn→∞ xi(xn) = xi(x),
for all i, as was to be proved.

proposition 8.68 If ui satisfies assumption 8.64, for all i, then the
function W is differentiable.

Proof. Suppose, first of all, that x � 0. Because
∑I

i=1 xi(x) = x � 0, the
set {1, 2, . . . , N} may be partitioned into finitely many sets N1, N2, . . . ,
NI , such that for each i, xin(x) > 0, if n ∈ Ni. Some of the sets Ni may be
empty. For each i, let R

Ni = {x ∈ R
N | x0 = 0, if n �∈ Ni} and let �i: R

N →
R

Ni be the natural projection defined by the equations

�i(x)n =
{

xn, if n ∈ Ni, and

0, otherwise,

for n = 1, 2, . . . , N , where �i(x)n is the nth component of �i(x). Notice
that if ε ∈ R

N , then

ε =
I∑

i=1

�i(ε). (8.50)

Because (x1(x), . . . , xI (x)) solves problem 8.45, the differentiable Kuhn-
Tucker theorem (6.19 in section 6.4) implies that there exists a nonnegative
N-vector p such that, for all i,

λ−1
i

∂ui(xi(x))

∂xn

= pn, (8.51)

if n ∈ Ni, and

W(x + ε) ≤ W(x) + p.ε, (8.52)

for any ε ∈ R
N such that x + ε ≥ 0, Because ui is differentiable, equation

8.51 implies that

λ−1
i

ui(xi(x) + �i(ε)) = λ−1
i

ui(xi(x)) + p.�i(ε) + o(‖�i(ε)‖), (8.53)

where o(t) is a quantity such that limt→∞ o(t)
t

= 0. Since ‖�i(ε)‖ ≤ ‖ε‖, it
follows that

lim‖ε‖→0

o(�i(ε))

‖ε‖ = 0,

so that equation 8.53 implies that

λ−1
i

ui(xi(x) + �i(ε)) = λ−1
i

ui(xi(x)) + p.�i(ε) + o(‖ε‖). (8.54)



334 8 Rational Expectations Equilibrium

Using all this information, we see that

W(x) + p.ε + o(‖ε‖)

=
I∑

i=1

λ−1
i

ui(xi(x)) + p.ε + o(‖ε‖)

=
I∑

i=1

[
λ−1

i
ui(xi(x)) + p.�i(ε)

]
+ o(‖ε‖)

=
I∑

i=1

λ−1
i

ui(xi(x) + �i(ε))

≤ W(x + ε)

≤ W(x) + p.ε.

(8.55)

The first equation in 8.55 follows from the definition of the functions xi(x).
Equation 8.50 implies the second equation. Equation 8.54 implies the third
equation. The first inequality follows from the definition of W(x + ε) as
a maximum. The last inequality is inequality 8.52. Inequality 8.55 implies
that

o(‖ε‖) ≤ W(x + ε) − W(x) − p.ε ≤ 0.

If we divide these inequalities by ‖ε‖, we obtain

o(‖ε‖)
‖ε‖ ≤ W(x + ε) − W(x) − p.ε

‖ε‖ ≤ 0. (8.56)

Letting ‖ε‖ go to zero in the inequalities in 8.56, we see that

lim‖ε‖→0

| W(x + ε) − W(x) − p.ε |
‖ε‖ = 0, (8.57)

so that W is differentiable at x and DW(x) = p.
I now turn to the case where xn = 0, for some n. It is easy to see that all

the equations and inequalities in 8.55 apply to this case except for the third
equation. I must also show how to define the sets Ni.

For k = 1, 2, . . . , let xk be a sequence of vectors in R
N
+ such that xk � 0,

for all k, and limk→∞ xk = x. For each k and i, let N(i , k) = {n | xin(xk) >

0}. The sets N(i , k) can take only finitely many possible values, so that
we can assume, by passing to a subsequence, that the sets N(i , k) do not
depend on k. Therefore, we can partition the set {1, 2, . . . , N} into sets
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N1, N2, . . . , NI , such that for all i and k, xin(xk) > 0, for all n ∈ Ni. For
each i, define R

Ni and �i: R
N → R

Ni as before.
For each k, let pk be an N-vector of Kuhn-Tucker coefficients for the

problem

W(xk) = max
x1∈ R

N
+ , . . . , xI∈ R

N
+

I∑
i=1

λ−1
i

ui(xi)

s.t.
I∑

i=1

xi = xk .

Then,

W(xk + ε) ≤ W(xk) + pk .ε,

for all ε ∈ R
N , and

λ−1
i

∂ui(xi(xk))

∂xn

= pk
n

,

if n ∈ Ni.
Lemma 8.67 implies that limk→∞ xi(xk) = xi(x), for all i. Since the ui

are continuously differentiable,

lim
k→∞ pk

n
= lim

k→∞ λ−1
i

∂ui(xi(xk))

∂xn

= λ−1
i

∂ui(xi(xk))

∂xn

= pn, (8.58)

if n ∈ Ni and where pn is defined by this equation. Let p be the N-vector
with components pn. Equation 8.58 implies that equation 8.54 applies, and
hence the third equation of the series in 8.55 also applies. Since no new
arguments are needed to verify that all the other equations and inequalities
of 8.55 apply, we can conclude by the argument used earlier that equation
8.57 applies and hence that W is differentiable at x and DW(x) = p.

I now show why consumers’ surplus may mean little when demand is
Walrasian. Assume that demand is the solution of the problem

max
x ∈ R

N
+

u(x)

s.t. p.x ≤ w ,

where w is some positive level of wealth and u is a quasi-concave and
continuous function. The next example illustrates the problems that can
arise when consumers’ surplus is calculated for demands of this form.
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example 8.69 Let there be two commodities, and suppose that the con-
sumer’s utility function is

u(x1, x2) = x2e
x1,

This utility function is quasi-concave, because if we take the monotone
transformation, ln(u), of u, we obtain the function x1 + ln(x2), which is the
sum of concave functions and therefore is concave. If we solve the problem

max
x1≥0, x2≥0

[x1 + ln(x2)]

s.t. p1x1 + p2x2 ≤ w ,
(8.59)

we find that if w ≥ p1, then

x1 = w

p1

− 1,

and

x2 = p1

p2

.

If w < p1, then x1 = 0 and x2 = w
p2

.

If we assume that w ≥ p1 and solve the above equations for p1 and p2,
we find that

p1 = w

1 + x1

and

p2 = w

(1 + x1)x2

.

A first difficulty can be seen by calculating the left- and right-hand sides
of equation 8.42 along the path x(t) = (1, t), for 0 ≤ t ≤ 1, when welfare is
W(x) = u(x). The right-hand side of equation 8.42 is∫ 1

0
p(t).

dx(t)

dt
dt =

∫ 1

0

w

2t
dt = ∞.

The left-hand side is u(1, 1) − u(1, 0) = e − 0 = e < ∞. Therefore, the
integral does not measure the change in the consumer’s welfare along the
path.
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Another difficulty is that the integral in equation 8.42 depends on the
path. Consider the following two paths from consumption bundle (1, 1) to
the bundle (2, 2).

xA(t) =
{

(1 + t , 1), if 0 ≤ t ≤ 1, and

(2, t), if 1 ≤ t ≤ 2.

xB(t) =
{

(1, 1 + t), if 0 ≤ t ≤ 1, and

(t , 2), if 1 ≤ t ≤ 2.

The integral along path xA is∫ 2

0
p(t).

dxA(t)

dt
dt =

∫ 1

0
pA

1 (t)dt +
∫ 2

1
pA

2 (t)dt =
∫ 1

0

w

2 + t
dt +

∫ 2

1

w

3t
dt

= w

[
ln

(
3

2

)
+ 1

3
ln(2)

]
,

where

pA
1 (t) = w

q + xA
1 (t)

and

pA
2 (t) = w

[1 + xA
1 (t)]xA

2 (t)
.

Similarly, the integral along path xB is∫ 2

0
p(t).

dxB(t)

dt
dt =

∫ 1

0
pB

2 (t) +
∫ 2

1
pB

1 (t)dt

=
∫ 1

0

w

2(1 + t)
dt +

∫ 2

1

w

(1 + t)
dt

= w

[
1

2
ln(2) + ln

(
3

2

)]
.

Since the integral differs along the two paths, it cannot represent the change
in the consumer’s welfare between bundles (1, 1) and (2, 2).

The difficulties just encountered arise because the consumer’s marginal
utility of unit of account varies as prices change. The use of short-run
demand avoids this problem, because the marginal utility of unit of account
is assumed to be constant.
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8.5 The Stability of Short-Run Equilibrium

Although it is not at all clear how to model the process by which an
economy finds equilibrium prices, it is natural to assume that prices of
commodities rise if they are in excess demand and fall if they are in ex-
cess supply. A process that reflects this intuition is one governed by the
differential equation

dp(t)

dt
= z(p(t)), (8.60)

where p(t) is the vector price at time t and z(p) =∑I
i=1(ξi(p) − ei) −∑J

j=1 ηj(p) is the market excess demand function. Equation 8.60 has been
much studied by economists. It is interpreted as approximating Walras’
tâtonnement process, according to which an auctioneer leads an iterative
process in which he or she proposes prices, buyers and seller then say what
their demands or supplies would be at those prices, and these reactions
guide the auctioneer in the choice of the next round of prices. This process
continues until it reaches equilibrium prices, and then trading occurs at
these prices. It is well known that if z(p) is obtained from Walrasian de-
mand and supply functions, then the solution of differential equation 8.60
may never converge. I give Scarf ’s (1960) example of nonconvergence at
the end of this section. One might suspect that such instability is possible,
since we have already seen in example 8.63 (in section 8.3) that Walrasian
demand functions may slope upward, and figure 8.6 shows that if a demand
curve, DD, slopes upward less steeply than the supply curve, SS, then an
increase in price increases rather than decreases excess demand. Increasing
the price in the figure from p(1) to p(2) increases excess demand from zero
to AB.

Dynamic system 8.60 is stable, however, if demands and supplies are
short run. Short-run demand is probably more appropriate than Walrasian
demand for the study of price dynamics, since the convergence of prices to
equilibrium levels should occur quickly. It would be inappropriate, how-
ever, to use short-run demand to study the stability of the economy over
time periods as long as, say, the business cycle.

The idea of the proof of stability is quite simple. It starts from the de-
composition, given in equation 8.43 (in section 8.4), of consumer welfare
at equilibrium into consumers’ surplus, profits, and the value of resources
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A B0 Q

S

D

S

D

p(1)

p(2)

p

Figure 8.6 A configuration of demand and supply curves that contributes to price
instability

or endowments. Inspired by this decomposition, I define for any price vec-
tor a total surplus function,

h(P) =
I∑

i=1

(
λ−1

i
ui(ξ

S
i
(P)) − P.ξS

i
(P)
)

+
J∑

j=1

πj(P) + P.
I∑

i=1

ei ,

=
I∑

i=1

λ−1
i

ui

(
ξS
i
(P)
)

+
J∑

j=1

πj(P) − P.

(
I∑

i=1

ξS
i
(P) −

I∑
i=1

ei

)
,

(8.61)
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where, for each j , πj = maxy∈Yj
P.y = P.ηj(P) is the maximum profit of

firm j at price vector P. Notice that although πj(P) is defined in section
4.1 to be the supremum of possible profits, it is here defined to be the max-
imum profits. Hence πj(P) is not necessarily defined for all positive vectors
P. The function h turns out to be convex and to achieve a minimum at the
unique equilibrium price vector, and, furthermore, the market, short-run,
excess demand vector,

zS(P) =
I∑

i=1

(
ξS
i
(P) − ei

)
−

J∑
j=1

ηj(P),

is everywhere the negative of a subgradient of h. (Convexity of functions
is defined in definition 6.1 in section 6.1.) If h is differentiable, then zS(P)

is the negative of the gradient of h, where the gradient of h is its deriva-
tive. That is, zS(P) = −Dh(P). Therefore, the path solving the differential
equation

dP(t)

dt
= zS(P(t)),

in effect, follows the gradient of h backward and downward to the equi-
librium price vector at the unique minimum of h. The intuition for this
argument may be seen in terms of figures similar to figure 8.2 (in section
8.4). We see, by comparing figure 8.2 with figures 8.7 and 8.8, that the sum
of the surpluses, which is h(P), is smallest when the price is at its equilib-
rium level.

A full and satisfying proof of the convergence of solutions of differen-
tial equation 8.60 to the short-run equilibrium requires methods beyond
the level of this text. I can, nevertheless, go quite far with the argument.
Throughout the discussion, I assume that assumptions 8.46, 8.50–8.53, and
8.58 (in section 8.3) apply. Assumption 8.58 is that production possibil-
ity sets are strictly convex. This is not a realistic assumption. In particular,
it implies that input-output possibility sets have nonempty interiors and
hence are N-dimensional, whereas it seems reasonable that each produc-
tion process involves only a small number of the many goods and services
in an economy. This difficulty can be removed by assuming that production
possibility sets are strictly concave only in a lower-dimensional subspace
of R

N . The proofs that follow remain valid under this weaker assumption.
Even if the input-output possibility sets are of low dimension, the assump-
tion of strict convexity within the lower-dimensional subspace implies de-
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Figure 8.7 Surpluses with excess supply

creasing marginal returns to scale. This assumption is perhaps appropriate
in the short-run context appropriate for the theory of price stability, since
in the short run a great many productive inputs, such as capital, are fixed
or nearly fixed. If the context allows adjustments over a very long run, it
would be more appropriate to assume constant returns to scale, that is, that
the production possibility sets are cones. (Cones are defined in definition
4.5 in section 4.4.)

By propositions 8.59 and 8.60 and theorem 8.61 (in section 8.3), assump-
tions 8.46, 8.50–8.53, and 8.58 guarantee that an equilibrium exists and that
the equilibrium is unique provided that some of every commodity is con-
sumed in the equilibrium. Recall that assumption 8.46 is that the utility
functions, ui, are strictly increasing and twice continuously differentiable
and that, for all x , Dui(x) � 0 and D2ui(x) is negative definite. In addi-
tion, I make a similar assumption about production.
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Figure 8.8 Surpluses with excess demand

Before turning to that assumption, I show that profit functions are con-
vex. By proposition 8.73 (at the end of this section), πj(P) is defined on a
convex set of price vectors. Since πj(P) = maxy∈Yj

P.y = P.ηj(P), it follows
that for all P ∗,

πj(P∗) ≥ P∗.ηj(P) = πj(P) + (P∗ − P).ηj(P),

so that ηj(P) is a subgradient of πj(P) at P. That is, every point on or above
the graph of πj lies on or above the half space

H(P) = {(P∗, t) | P∗ ∈ R
N
+ and t ≥ πj(P) + (P∗ − P).ηj(P)}.

The points on or above the graph of πj equal the intersection of all the
sets H(P), each of which is convex. Since the intersection of convex sets is
convex, it follows that all the points on or above the graph of πj are a convex
set and hence that πj is a convex function.

By proposition 8.39 (in section 8.3), πj is defined on an open set in R
N
+ ,

so that the following assumption is applicable.
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assumption 8.70 For each j , the profit function πj is twice continu-
ously differentiable wherever it is defined.

Because πj is a convex function, −πj is a concave function, and it follows
from lemma 3.30 (in section 3.5) that D2πj(P) is positive semidefinite, if
πj is defined at P. Furthermore, since ηj(P) is a subgradient of πj at P and
πj is differentiable, it follows that ηj(P) is the derivative of πj at P. That is,

Dπj(P) = ηj(P), (8.62)

for all P such that πj(P) is defined. Because πj is twice continuously differ-
entiable, ηj is continuously differentiable and

Dηj(P) = D2πj(P), (8.63)

for every P such that πj(P) and ηj(P) are defined.
I now try to give some insight into the proof of stability. To simplify the

presentation, I make the following very unrealistic assumption.

assumption 8.71 For all i, ξS
i
(P) � 0, for all P in the domain of defini-

tion of the function ξS
i

.

By the definition of short-run demand, ξS
i
(P) solves the problem

max{ui(P) − λiP | P ∈ R
N
+},

for each i. Assumption 8.46 implies that ui is strictly concave, so that the so-
lution to this maximization problem is unique, if it exists. Because ξS

i
(P) �

0 by assumption, it follows that ξS
i
(P) satisfies the equation

Dui

(
ξS
i
(P)
)

= λiP, (8.64)

whenever it exists. Using the argument following equaiton 8.23 (in section
8.3), we see from the implicit function theorem that ξS

i
is differentiable and

that

DξS
i
(P) = λi

[
D2ui(ξ

S
i
(P))

]−1
, (8.65)

where [D2ui(ξ
S
i
(P))]−1 is the inverse of the matrix D2ui(ξ

S
i
(P)). The ma-

trix λi[D
2ui(ξ

S
i
(P))]−1 is negative definite, because D2ui(ξ

S
i
(P)) is negative

definite.
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Suppose that the price vector follows a path P(t), governed by the differ-
ential equation

dP(t)

dt
= zS(P(t)) =

I∑
i=1

(
ξS
i
(P) − ei

)
−

J∑
j=1

ηj(P), (8.66)

which is the version of equation 8.60 using short-run demand. From equa-
tions 8.63 and 8.65, we know that the right-hand side of equation 8.66 is
differentiable. By the existence theorem for solutions to ordinary differen-
tial equations (Coddington and Levinson 1955, 6; Hartman 1964, 8), given
P(0) in the interior of the domain of definition of zS, there exists a solution
P(t) of differential equation 8.66 defined at least for small positive values of
t . I will presently verify that the domain of definition of zS is open, so that
this existence theorem may be applied.

Let h(P) be defined by equation 8.61. Differentiating h(P(t)) with re-
spect to t , we find that

dh(P(t))

dt
=

I∑
i=1

λ−1
i

Dui

(
ξS
i
(P(t))

)
DξS

i
(P(t))

dP(t)

dt
+

J∑
j=1

(P(t))
dP(t)

dt

−
(

dP(t)

dt

)T
(

I∑
i=1

ξS
i
(P(t)) −

I∑
i=1

ei

)
− P(t)T

(
I∑

i=1

DξS
i
(P)

)
dP(t)

dt
,

where Dui(ξ
S
i
(P(t)))T is the transpose of the vector Dui(ξ

S
i
(P(t))). If we

now substitute equations 8.62 and 8.64–8.66 into this expression for dh(P(t))
dt

and cancel like terms, we find that

dh(P(t))

dt
= −

(
dP(t)

dt

)T

⎛
⎝ I∑

i=1

ξS
i
(P(t)) −

I∑
i=1

ei −
J∑

j=1

ηj(P(t))

⎞
⎠

= −
⎛
⎝ I∑

i=1

ξS
i
(P(t)) −

I∑
i=1

ei −
J∑

j=1

ηj(P(t))

⎞
⎠

T

⎛
⎝ I∑

i=1

ξS
i
(P(t)) −

I∑
i=1

ei −
J∑

j=1

ηj(P(t))

⎞
⎠

= −zS(P).zS(p) ≤ 0,

(8.67)
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with

dh(P(t))

dt
< 0,

if zS(P) =∑I
i=1 ξS

i
(P(t)) −∑I

i=1 ei −∑J
j=1 ηj(P(t)) �= 0. That is, the

price change determined by differential equation 8.66 tends to decrease
the surplus function, h, unless the process has arrived at a short-run equi-
librium.

In calculating dh(P(t))
dt

, I have at the same time calculated the derivative of
h, which is

Dh(P) = −
⎛
⎝ I∑

i=1

ξS
i
(P) −

I∑
i=1

ei −
J∑

j=1

ηj(P)

⎞
⎠= −zS(P). (8.68)

Therefore, differential equation 8.66 is a negative gradient process; the
right-hand side of equation 8.66 is the negative of the gradient of h. We
may use equations 8.62 and 8.65 to calculate that

D2h(P) = −
I∑

i=1

λi

[
D2ui(ξ

S
i
(P))

]−1 +
J∑

j=1

D2πj(P). (8.69)

The matrices D2ui(ξ
S
i
(P)) are negative definite by assumption 8.46, and

it has been shown that the functions πj are convex, so that the matrices
D2πj(ηj(P)) are positive semidefinite. Therefore, equation 8.69 implies
that D2h(P) is positive definite. Hence by lemma 3.38 (in section 3.5), h

is a strictly convex function, and hence its minimum is unique, if it exists.
We see from equation 8.68 that the derivative of h is zero at a short-run
equilibrium price vector, so that h does have a minimum. In summary,
differential equation 8.66 is a negative gradient process for a strictly convex
function with a unique minimum. Because h is convex, its graph may be
visualized as a bowl, and the negative gradient process takes the steepest
path down the inside of the bowl, just as would a drop of water.

This image, though encouraging, is not a proof. An important step in
the proof is to show that ‖zS(P(t))‖ is decreasing as a function of t as

long as ‖zS(P(t))‖ > 0. (If zS(P(t) = 0, for some t , then
dP(t)

dt
= 0 and so

P(t) = P(t), for t > t and also P(t) is a short-run equilibrium price vector.)
Since

‖zS(P(t))‖ =
√

zS(P(t)).zS(P(t)),
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it is enough to show that

dzS(P(t)).zS(P(t))

dt
< 0, (8.70)

for all t such that zS(P(t)) �= 0. Calculating this derivative, we see that

dzS(P(t)).zS(P(t))

dt
= zS(P(t))T DzS(P(t))zS(P(t))

= zS(P(t))T

⎛
⎝ I∑

i=1

DξS
i
(P(t)) −

J∑
j=1

Dηj(P(t))

⎞
⎠ zS(P(t)),

where zS(P(t))T is the transpose of zS(P(t)). We know from equation 8.65
and assumption 8.46 that DξS

i
(P(t)) is negative definite, for all i, and

we know from equation 8.63 and the convexity of πk that Dηj(P(t)) is

positive semidefinite, for all j . Therefore, the matrix
∑I

i=1 DξS
i
(P(t)) −∑J

j=1 Dηj(P(t)) is negative definite, so that

zS(P(t))T

⎛
⎝ I∑

i=1

DξS
i
(P(t)) −

J∑
j=1

Dηj(P(t))

⎞
⎠ zS(P(t)) < 0,

for all t such that zS(P(t)) �= 0. This completes the proof that inequality
8.70 is valid.

I next show that the domain of definition of the function zS is a non-
empty open subset of R

N , so that it is possible to apply to equation 8.66
the standard existence theorem for the solution of a differential equation.
(According to proposition 8.73 at the end of this section, the domain of
definition of zS is also convex.) We know that the domain of definition of
zS is nonempty, because it contains the short-run equilibrium price vector.
Since the domain of definition of zS is the intersection of the domains of
definition of ξS

i
, for all i, and of ηj , for all j , it is enough to check that

the domain of definition of each of these functions is open in R
N
+ and that

at least one domain does not intersect the boundary of R
N
+ . Because ui is

continuous, strictly increasing, and strictly concave, proposition 8.36 (in
section 8.3) implies that ξS

i
is a function defined on a set of strictly positive

N-vectors that is open in R
N and contained in the interior of R

N
+ . Because

Yj is closed and strictly convex, proposition 8.39 (in section 8.3) implies
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that ηj is a function defined on a set that is open in R
N
+ . Hence, I have

shown that the domain of definition of zS is open in R
N .

The next step in the proof is to check that the solution P(t) of differential
equation 8.66 does not converge to a point that is not in the domain of
definition of the function zS. The key step in this proof is to show that

if zS(P) is not defined and P belongs to the closure of

{P | zS(P) is defined}, then lim
P→P

‖zS(P)‖ = ∞, where
(8.71)

the limit is through any sequence of points P at which zS(P) is defined.

(The closure of a set is defined in definition 3.8 in section 3.2.)
In order to prove statement 8.71, I prove that ‖ξS

i
(P)‖ diverges to infinity

as P converges a point where ξS
i

is not defined and similarly that ‖ηj(P)‖
diverges to infinity as P converges to a point where ηj is not defined. These
assertions are, respectively, statements 8.72 and 8.74 below.

If ξS
i
(P) is not defined and P belongs to the closure of

{P | ξS
i
(P) is defined}, then lim

P−P
‖ξS

i
(P)‖ = ∞, where

the limit is through any sequence of points P at which ξS
i
(P) is defined.

(8.72)

Suppose that statement 8.72 is false. Then, there exists a small positive
number ε and a positive number b, such that ‖ξS

i
(P)‖ ≤ b, if ‖P − P‖ < ε.

The problem

max
x ∈ R

N
+

[
λ−1

i
ui(x) − P.x

]
s.t. ‖x‖ ≤ 2b

(8.73)

has a solution, because the function λ−1
i ui(x) − P.x is continuous, and

the set {x ∈ R
N
+ | ‖x‖ ≤ 2b} is compact. Call this solution x. Let Pk, for

k = 1, 2, . . . , be a sequence of price vectors at which ξS
i
(Pk) is defined and

such that ‖Pk − P‖ < ε and limk→∞ Pk = P. Because ‖ξS
i
(Pk)‖ ≤ b < 2b,

it follows that ξS
i
(Pk) solves the problem.

max
x ∈ R

N
+

[
λ−1

i
ui(x) − Pk .x

]
s.t. ‖x‖ ≤ 2b,
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for all k and i. Because the function λ−1
i ui(x) − P.x is strictly concave with

respect to x, it follows that limk→∞ ξS
i
(Pk) = x. In order to see that this

statement is true, assume that the sequence ξS
i
(Pk) does not converge to

x. Then there exists a positive number ε such that ‖ξS
i
(Pk) − x‖ > ε, for

infinitely many k. Because the vectors ξS
i
(Pk) belong to the compact set

{x | ‖x‖ ≤ b}, there is a convergent subsequence of the ξS
i
(Pk), which I call

ξS
i
(Pk) again. Let x be the limit of this subsequence. Then ‖x‖ ≤ b and

‖x − x‖ ≥ ε. Because x solves problem 8.73 and ‖x‖ ≤ b,

λ−1
i

ui(x) − P.x ≥ λ−1
i

ui(x) − P.x .

By the definition of ξS
i
(Pk),

λ−1
i

ui

(
ξS
i
(Pk)

)
− Pk .ξS

i
(Pk) ≥ λ−1

i
ui(x) − Pk .x .

Passage to the limit in this inequality implies that

λ−1
i

ui(x) − P.x ≥ λ−1
i

ui(x) − P.x .

Hence both x and x solve problem 8.73, which is impossible since x �= x
and λ−1

i ui(x) − P.x is a strictly concave function of x. This contradiction
proves that limk→∞ ξS

i
(Pk) = x. Since ‖ξS

i
(Pk)‖ ≤ b, for all k, it follows

that ‖x‖ ≤ b.
I next show that x = ξS

i
(P). Suppose that x �= ξS

i
(P). Since x solves prob-

lem 8.73, but not the problem

max
x ∈ R

N
+

[
λ−1

i
ui(x) − P.x

]
,

there exists an x in R
N
+ such that ‖x‖ > 2b and λ−1

i ui(x) − P.x >

λ−1
i ui(x) − P.x. Since ‖x‖ < b, it follows that if α is a sufficiently small

positive number, then

‖αx + (1 − α)x‖ ≤ 2b.

Yet

λ−1
i

ui(αx + (1 − α)x) − P.(αx + (1 − α)x)

> α(λ−1
i

uix − P.x) + (1 − α)(λ−1
i

ui(x) − P.x)

> (λ−1
i

ui(x) − P.x),

which contradicts the assumption that x solves problem 8.73. This com-
pletes the proof that x = ξS

i
(P). The fact that ξS

i
(P) exists contradicts the
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assumption that ξS
i
(P) is not defined at P, and this contraption completes

the proof of statement 8.72.
A similar argument proves that

if ηj(P) is not defined and P belongs to the closure of

{P | ηj(P) is defined}, then lim
P→P

‖ηj(P)‖ = ∞, where

the limit is through any sequence of points P at which ηj(P) is defined.

(8.74)

To complete the proof of statement 8.71, recall that assumptions 8.50–
8.52 apply. By theorem 3.54 (in section 3.7), these assumptions guarantee
that the set of feasible allocations is compact and nonempty. If statement
8.71 is false, then there exist a positive number b and a sequence of price
vectors, Pk, for k = 1, 2, . . . , such that zS(Pk) is defined and ‖zS(Pk)‖ ≤ b,
for every k and limk→∞ Pk = P. Because zS(P) is not defined, ξS

i
(P) or

ηj(P) are not defined for some i and j . Let I be the set of consumers i

for which ξS
i
(P) is not defined, and let J be the set of firms j for which

ηj(P) is not defined, where either I or J but not both may be empty.

Statements 8.72 and 8.74 imply that limk→∞ ‖ξS
i
(Pk)‖ = ∞, for i ∈ I , and

limk→∞ ‖ηj(Pk)‖ = ∞, for j ∈ J . For each k, let

Mk = max
i=1, . . . , I and

j=1, . . . , J

(
‖ξS

i
(Pk)‖, ‖ηj(Pk)‖

)
.

Then, limk→∞ Mk = ∞. For each k, Mk = ‖ξS
i
(Pk)‖ or Mk = ‖ηj(Pk)‖,

for some i or j . Since there are only finitely many indices i and j , it follows
that for some i or j , Mk = ‖ξS

i
(Pk)‖ or Mk = ‖ηj(Pk)‖, for infinitely many

values of k. By passing to a subsequence and calling it Mk again, I may
assume that for some i or j , Mk = ‖ξS

i
(Pk)‖ or Mk = ‖ηj(Pk)‖, for every

value of k. For each i ∈ I , let xk
i
= ξS

i
(Pk)

Mk
and, for each j ∈ J , let yk

i
= ηj(Pk)

Mk
.

Because Yj is convex and contains the zero vector, yk
i

∈ Yj , for all j and k.
By assumption, ‖zS(Pk)‖ ≤ b, for all k, so that∥∥∥∥∥∥

I∑
i=1

(
xk
i
− ei

Mk

)
−

J∑
j=1

yk
j

∥∥∥∥∥∥
= ‖∑I

i=1

(
ξS
i
(Pk) − ei

)−∑J
j=1 ηj(Pk)‖

Mk

= ‖zS(Pk)‖
Mk

≤ b

Mk

,
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for all k. Therefore,

lim
k→∞

∥∥∥∥∥∥
I∑

i=1

(
xk
i
− ei

Mk

)
−

J∑
j=1

yk
j

∥∥∥∥∥∥= 0. (8.75)

Clearly, ‖xk
i
‖ ≤ 1 and ‖yk

j
‖ ≤ 1, for all i and j . Therefore, the Bolzano-

Weierstrass theorem (3.12 in section 3.2) implies that there is a subse-
quence, which I index by k again, such that the sequences xk

i
and yk

j

converge as k goes to infinity. For each i, let xi = limk→∞ xk
i

and, for each
j , let yi = limk→∞ yk

j
. Since R

N
+ and Yj are closed, xi ∈ R

N
+ and yj ∈ Yj ,

for all i and j . Since limk→∞
ei

Mk
= 0, equation 8.75 implies that

I∑
i=1

xi −
J∑

j=1

yj = 0. (8.76)

Since for some i or j , Mk = ‖ξS
i
(Pk)‖ or Mk = ‖ηj(Pk)‖, for every value of

k, it follows that for some i or j , ‖xk
i
‖ = 1 or ‖yk

j
‖ = 1, for all k. Therefore,

for some i or j , ‖xi‖ = 1 or ‖yj‖ = 1 and hence (x , y) = (x1, . . . , xI ;
y1, . . . , yJ ) �= 0. Hence, equation 8.76 implies that (x , y) is a nonzero
feasible allocation with zero endowments. It was shown in the proof of
theorem 3.54 (in section 3.7) that there can be no such allocation under
assumptions 8.50–8.52. This contradiction proves statement 8.71.

The theory of ordinary differential equations (Coddington and Levinson
1955, 6, 10, 15; Hartman 1964, 12–15) implies that if P belongs to the
domain of definition of zS then there exists t ∈ (0, ∞] and a differentiable
function P: [0, t) → R

N
+ such that dP(t)

dt
= zS(P(t)), for all t , P(0) = P,

either t = ∞ or t < ∞, and either {zS(P(t)) | 0 ≤ t < t} is unbounded or
limt→t P(t) exists and belongs to the boundary of the domain of definition
of zS. Because ‖zS(P(t))‖ is decreasing as a function of t by inequality 8.70,
it follows that {zS(P(t)) | 0 ≤ t < t} is bounded. If limt→t P(t) exists and
belongs to the boundary of the domain of definition of zS, then statement
8.71 implies that limt→t ‖zS(P(t))‖ = ∞, which is impossible. Therefore,
t = ∞.

Because the function h defined by equation 8.61 is differentiable and
strictly convex, equation 8.68, which asserts that Dh(P) = −zS(P), implies
that h achieves a minimum at any price vector P such that zS(P) = 0.
A short-run equilibrium price vector satisfies this equation, because, by
proposition 8.60 (in section 8.3) and by assumption 8.71, an equilibrium
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price vector is strictly positive, so that no commodity can be in excess
supply. The same proposition implies that the short-run equilibrium price
vector is unique. Call it PE. The objective is to prove that

lim
t→∞ P(t) = PE .

A first step of the proof is to observe that

lim
t→∞ ‖zS(P(t))‖ = 0. (8.77)

Equation 8.77 is valid because

dh(P(t))

dt
= −zS(P(t)).zS(P(t)),

by equation 8.67, so that h(P(t)) decreases with t as long as P(t) does
not equal the equilibrium price vector PE. Furthermore, zS(P(t)).zS(P(t))

decreases with t , by inequality 8.70. Hence, if equation 8.77 is not valid,
then ‖zS(P(t))‖s = zS(P(t)).zS(P(t)) remains bounded away from zero, so
that h(P(t)) diverges to −∞. Since this implication contradicts the fact that
h achieves a finite minimum at PE, equation 8.77 is valid.

The next task is to prove the statement that

for every number r such that r ≥ h(PE), {P | h(P) ≤ r} is bounded. (8.78)

It is sufficient to prove that

for every number r ≥ h(PE), {q ∈ R
N | h(PE + q) ≤ r} is bounded. (8.79)

Suppose that statement 8.79 is false. Then, there exists a sequence qn, for
n = 1, 2, . . . , such that ‖qn‖ diverges to infinity as n goes to infinity, and
h(PE + qn) ≤ r , for all n. Without loss of generality, we may assume that
‖qn‖ > 1, for all n. Then,

PE + ‖qn‖−1qn = (1 − ‖qn‖−1)PE + ‖qn‖−1(PE + qn),

for all n. Because h is a convex function,

h
(

PE + ‖qn‖−1qn
)

= h
(
(1 − ‖qn‖−1)PE + ‖qn‖−1(PE + qn)

)
≤ (1 − ‖qn‖−1)h(PE) + ‖qn‖−1h(PE + qn)

≤ (1 − ‖qn‖−1)h(PE) + ‖qn‖−1r ,

(8.80)

for all n. Because the sequence ‖qn‖−1qn is bounded, it has a convergent
subsequence by the Bolzano-Weierstrass theorem. I index this sequence
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by n again, so that I may assume that the limn→∞ ‖qn‖−1qn = q, where
‖q‖ = 1. If we go to the limit in inequality 8.80 and use the fact that
limn→∞ ‖qn‖ = ∞ and that h is continuous, we see that

h(PE + q) ≤ h(PE).

Since h achieves its minimum at PE, we see that

h(PE + q) = h(PE). (8.81)

Since h is minimized at a unique price vector and q �= 0, equation 8.81
is impossible. This contradiction proves statement 8.79 and hence state-
ment 8.78.

I can now prove that

lim
t→∞ P(t) = PE . (8.82)

Because h(P(t)) is nonincreasing in t , by inequality 8.67, it follows that
h(P(t)) ≤ h(P), for all t , where P = P(0). Hence by statement 8.78, {P(t) |
t ≥ 0} is a bounded set. If equation 8.82 is false, then there exists a pos-
itive number ε and a sequence of times, tk, for k = 1, 2, . . . , such that
limk→∞ = ∞ and ‖P(tk) − PE‖ ≥ ε, for all k. Because the sequence P(tk)

is bounded, it has a convergent subsequence, by the Bolzano-Weierstrass
theorem. I call this sequence P(tk) again. Let q = limk→∞ P(tk). Then,

‖PE − q‖ ≥ ε. (8.83)

By statement 8.77, limk→∞ ‖zS(P(tk))‖ = 0. Since the function zS is con-
tinuous, zS(q) = 0, so that q minimizes the function h and

q = PE , (8.84)

by the uniqueness of the minimizer of h. Since inequality 8.83 contradicts
equation 8.84, equation 8.82 must be valid.

I now state in full the theorem that has been proved.

theorem 8.72 Assume that the economy satisfies assumptions 8.46,
8.50–8.53, 8.58, 8.70, and 8.71. Then, the function zS(P) =∑I

i=1(ξ
S
i
(P) −

ei) −∑J
j=1 ηj(P) has a nonempty domain of definition and if P belongs to

this domain of definition, the differential equation

dP(t)

dt
= zS(P(t))
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with the initial condition P(0) = P has a solution P(t), for all t ≥ 0, such
that

lim
t→∞ P(t) = PE ,

where PE is the unique short-run equilibrium price vector.

The major weakness of this theorem is assumption 8.71, that, for all i,
ξS
i
(P) � 0, for all P in the domain of definition of the function ξS

i
. This

assumption may be eliminated at the cost of complicating the argument.
The argument for this case may be found in Bewley (1980), though there is
no production in that paper.

I now deliver on the promise made earlier to prove that the domain
of definition of zS is convex. The convexity of this domain adds to the
orderliness of the dynamic system defined by equation 8.60.

proposition 8.73 If ui is continuous and strictly concave, for all i, and
Yj is closed and strictly convex, for all j , then the function zS is defined on
a convex subset of R

N
+ .

Proof. Since the domain of definition of zS is the intersection of the do-
mains of definition of the functions ξS

i
and ηj , over i and j , it is suf-

ficient to show that each of these sets is convex. It is sufficient to prove
that the domain of definition of ηj is convex, since ξS

i
can be defined in

the same way as ηj . In order to see that this last statement is correct, let
Xi = {(−x , v) | x ∈ R

N
+ and v ≤ ui(x)}. The set Xi is closed and strictly

convex, since ui is continuous and strictly concave. Then, ξS
i
(P) solves the

problem

min
(−x , v)∈Xk

[λ−1
i

v − P.x].

That is, ξS
i
(P) minimizes the linear function (P, λ−1

i ).(−x , v) over the
closed and strictly convex set Xi, just as ηj(P) maximizes the linear func-
tion P.y over the closed and strictly convex set Yj .

I show that ηj is defined on a convex set of N-vectors. Let U be the
domain of definition of ηj . I must show that if P1 and P2 belong to U , then
so does P = αP1 + (1 − α)P2, for any α such that 0 < α < 1. Let YT

j
= {y ∈

Yj | P.y ≥ P.ηj(P1)}, where the superscript “T” stands for truncation. Since
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ηj(P1) and ηj(P2) both belong to Yj , ηj(P) is the set of solutions of the
problem

max
y∈YT

j

P.y . (8.85)

The set YT
j

is nonempty, because ηj(P1) ∈ YT
j

, if P.ηj(P1) ≥ P.ηj(P2) and

ηj(P2) ∈ YT
j

, if P.ηj(P2) ≥ P.ηj(P1). I show that if y ∈ YT
j

, then

P1.y ≥ P1.ηj(P2). (8.86)

This inequality follows from canceling like terms on the extreme left- and
right-hand sides of the following inequalities:

αP1.y + (1 − α)P2.ηj(P2) ≥ αP1.y + (1 − α)P2.y = P.y

≥ P.ηj(P2) = αP1.ηj(P2) + (1 − α)P2.ηj(P2),

where the first inequality follows from the definition of ηj(P2) and the
second inequality applies because y ∈ YT

j
. A similar argument proves that

if y ∈ YT
j

, then

P2.y ≥ P2.ηj(P1). (8.87)

Let C1 = {y ∈ Yj | P1.y ≥ P1.ηj(P2)} and C2 = {y ∈ YjP2.y ≥ P2.ηj(P1)}.
Inequalities 8.86 and 8.87 imply that YT

j
is contained in C1 ∩ C2. Since

ηj(P), if it exists, is the set of solutions of problem 8.85, it is also the set
of solutions of the problem

max
y∈C1∩C2

P.y (8.88)

Because YT
j

is nonempty, the set C1 ∩ C2 is also nonempty. Because the

set Yj is closed and strictly convex and because ηj(P1) and ηj(P2) exist, an
argument just like that used to prove statement 8.78 proves that both C1

and C2 are compact and hence C1 ∩ C2 is compact. Therefore, proposition
3.14 (in section 3.2) implies that problem 8.88 has a solution and therefore
that ηj(P) is not empty. That is, P belongs to U , as was to be proved.

As was mentioned earlier, solutions to the differential equation 8.60 may
not converge, if market demand is defined using Walrasian rather than
short-run demand. Such instability occurs in the next example from a paper
by Scarf (1960). Before turning to the example, I note that Walras’ law
implies that any solution of differential equation 8.60 remains on a sphere
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of constant radius in the N-space of price vectors. In order to see that this
assertion is true, observe that the length squared of the price vector, p(t), is
p(t).P(t) =∑N

n=1 p2
n
(t). If we take the derivative with respect to t , we find

that

dp(t).p(t)

dt
= 2

N∑
n=1

pn(t)zn(p(t)) = 0,

where the second equation follows from Walras’ law.

example 8.74 (Scarf ’s example of instability) There are three commodi-
ties, three consumers, and no firm. The utilities and endowments of the
three consumers are as follows:

u1(x1, x2, x3) = min(x1, x2), e1 = (1, 0, 0),

u2(x1, x2, x3) = min(x2, x3), e2 = (0, 1, 0),

u3(x1, x2, x3) = min(x1, x3), e3 = (0, 0, 1).

The Walrasian demand function for consumer 1 is

ξ1(p) =
(

p1

p1 + p2

,
p1

p1 + p2

, 0

)
,

so that the consumer’s excess demand function is

ξ1(p) − e1 =
(

− p2

p1 + p2

,
p1

p1 + p2

, 0

)
.

Similarly, the excess demand function for consumer 2 is

ξ2(p) − e2 =
(

0, − p3

p2 + p3

,
p2

p2 + p3

)
,

and the excess demand function of consumer 3 is

ξ3(p) − e3 =
(

p3

p1 + p3

, 0, − p1

p1 + p3

)
.

The market excess demand function is therefore

z(p) =
(

− p2

p1 + p2

+ p3

p1 + p3

,
p1

p1 + p2

− p3

p2 + p3

,

p2

p2 + p3

− p1

p1 + p3

)
.

(8.89)
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It follows immediately that z(1, 1, 1) = 0, so that the (1, 1, 1) is an equilib-
rium price vector. It is also the unique equilibrium vector of length

√
3, be-

cause by elementary algebra the equation z(p) = 0 implies that p1, = p2 =
p3. Let p(t) be the solution to differential equation 8.60 with z(p) as just de-
fined, and suppose that ‖p(0)‖ = √

3. Then, ‖p(t)‖ = √
3, for all t , because

z satisfies Walras’ law. I next verify that p1(t)p2(t)p3(t) = p1(0)p2(0)p3(0),
for all t , so that the solution to equation 8.60 stays on the closed curve
defined by the two equations ‖p‖ = √

3 and p1p2p3 = p1(0)p2(0)p3(0)
and hence cannot converge to the equilibrium p = (1, 1, 1). To show that
p1(t)p2(t)p3(t) = p1(0)p2(0)p3(0), for all t , it is sufficient to check that
dp1(t)p2(t)p3(t)

dt
= 0. If we calculate this derivative, we find by substitution

from equation 8.89 that

dp1p2p3

dt
= p2p3

dp1

dt
+ p1p3

dp2

dt
+ p1p2

dp3

dt

= p2p3z1(p) + p1p3z2(p) + p1p2z3(p)

= p2p3

(
− p2

p1 + p2

+ p3

p1 + p3

)
+ p1p3

(
p1

p1 + p2

− p3

p2 + p3

)

+ p1p2

(
p2

p2 + p3

− p1

p1 + p3

)

= − p2
2p3

p1 + p2

+ p2p
2
3

p1 + p3

+ p2
1p3

p1 + p2

− p1p
2
3

p2 + p3

+ p1p
2
2

p2 + p3

− p2
1p3

p1 + p3

= p3(p
2
1 − p2

2)

p1 + p2

+ p2(p
2
3 − p2

1)

p1 + p3

+ p1(p
2
2 − p2

3)

p2 + p3

= p3(p1 − p2) + p2(p3 − p1) + p1(p2 − p3) = 0,

where for notational convenience I have dropped the variable t from the
price functions, pn(t).

This completes the proof that solutions to differential equation 8.60 do
not converge to the unique equilibrium relative price vector unless they
start at it.

Scarf ’s example has the drawback that the utility functions are not dif-
ferentiable. With more work, it is possible to construct an example of in-
stability with differentiable utility functions. A theorem of Debreu (1974)
implies that an example can be made with strictly concave and continuous
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utility functions. The beauty of Scarf ’s example is the ease with which it
may be understood.

Problem Set

1. For each of the utility functions listed below, compute the short-run
demand function, ξS, as a function of the price vector. That is, compute
the functions x1 = ξS

1 (P1, P2) and x2 = ξS
2 (P1, P2) that satisfy the

equations

∂u(x1, x2)

∂x1

= λp1 and
∂u(x1, x2)

∂x2

= λp2,

where λ is a positive constant.

(a) u(x1, x2) = a ln(x1) + b ln(x2), where a > 0 and b > 0.
(b) u(x1, x2) = Axa

1 xb
2 , where A > 0, a > 0, b > 0, and a + b < 1.

(c) u(x1, x2) = a
√

x1 + b
√

x2, where a > 0, b > 0.
(d) u(x1, x2) = ax1 − bx2

1 + cx2 − dx2
2 + ex1x2, where a > 0, b >

0, c > 0, d > 0, and 4bd − e2 > 0.

2. For each of the utility functions in problem 1, compute the short-
run demand curve for good 1 when λ − P2 = 1. That is, calculate the
function ξS

1 (P1, 1).

3. For each of the utility functions in problem 1, compute the surplus
function

h(P1, P2, λ) = λ−1ui(ξ
S(P1, P2, λ)) − P1

[
ξS

1 (P1, P2, λ) − e
]

− P2

[
ξS

2 (P1, P2, λ) − e1

]
,

where e = (e1, e2) is a positive endowment vector.

4. Verify that in each of the utility functions of problem 1,

∂h(P1, P2, λ)

∂Pk

= ek − ξS
k
(P1, P2, λ),

for k = 1 and k = 2.

5. Consider a consumer with utility function

u(x1, x2) = x1 − x2
1

2
+ 5x2 − x2

2

2
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and with endowment e = (0, 1). Let the price of good 1 be p and the
price of good 2 be 1.

(a) Calculate the consumer’s Walrasian demand, x1(p), for good 1 as
a function of p.

(b) Calculate the price, p, such that x1(p) = 1
2 .

(c) Calculate the consumer’s surplus when the price is p, where the
surplus is defined using the demand function x1(p).

(d) Calculate the consumer’s marginal utility of money, λ, when
p = p.

(e) Calculate the consumer’s short-run demand function, xS
1 (p),

when his or her marginal utility of money is λ.
(f) Calculate the consumer’s surplus when p = p where the surplus is

defined using the demand function xS
1 (p).

6. Let u(x) = ax − b
2x2, be the utility of a single consumer for a single

commodity, where a > 0 and b > 0. Let λ = 1 be the consumer’s
marginal utility of unit of account.

(a) Compute the consumer’s short-run demand function, ξS(P ),
where P is a positive number.

(b) Let e be the consumer’s endowment of the single commodity.
Compute the equilibrium price, P , at which ξS(P ) = e.

(c) Compute the solution of the differential equation dP (t)
dt

=
ξS(P (t)) − e for an arbitrary initial condition, and show that
it converges to P .

7. Let there be two commodities, let the utility function of a consumer be

u(x1, x2) = x1 − x2
1 + x2 − x2

2 + x1x2,

let the endowment of the consumer be

e =
(

1

2
,

1

2

)
,

and let the consumer’s marginal utility of unit of account be λ = 1.

(a) Compute the consumer’s short-run demand function for both
commodities, (

ξS
1 (P1, P2), ξS

2 (P1, P2)
)

.
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(b) Compute the equilibrium price vector (P 1, P 2) that satisfies the
equation (

ξS
1 (P 1, P 2), ξS

2 (P 1, P 2)
)

=
(

1

2
,

1

2

)
.

(c) Compute the solution to the equations

dP1(t)

dt
= ξS

1 (P1(t), P2(t)) − 1

2

and

dP2(t)

dt
= ξS

2 (P1(t), P2(t)) − 1

2

with arbitrary initial conditions, and show that it converges to
(P 1, P 2).
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Samuelson’s Overlapping Generations Model

This and the following chapter treat issues that apply only in the long run,
namely, capital accumulation and the distribution of consumption between
the old and young. In the usual Arrow-Debreu model, there are no births
and deaths; new people never appear, and no one disappears from the
model. This lack of population turnover may indicate that the model was
intended by its creators for the analysis of short time spans. Population
renewal is easy to include, though it changes little in the theory unless
the time horizon is infinite. Although an infinite horizon complicates the
analysis, the unbounded horizon changes the theory fundamentally, and
the extra complexity can be reduced by considering stationary states. In
a finite horizon model with births and deaths, the assertions of standard
equilibrium theory remain valid; equilibria exist and are Pareto optimal.
When time continues forever, however, equilibria may fail to be Pareto
optimal.

The origin of the inefficiency may be visualized with the aid of the fol-
lowing image. Imagine a finite group of people in line, all facing in the same
direction, with a neighbor to the left and another to the right of each. Sup-
pose that each has two chocolate bars. If each hands one bar to the person
on their left, the person on the extreme right ends up with only one bar, the
one on the extreme left ends up with three, and everyone else ends up with
two. This handing off of chocolates results in no Pareto improvement, since
the person on the extreme left gains at the expense of the person on the ex-
treme right. The situation differs if the line goes on forever to the right; after
everyone has handed a chocolate to the left, the person on the extreme left
gains one bar and no one loses.
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To see the connection between this story and the Pareto optimality of
equilibria, imagine a model in which time is discrete and unending, there
is only one commodity, and one person is born in each period and lives
for two periods, so that there is one old and one young person alive at any
moment. Each person is endowed with two units of the one commodity in
youth and none in old age. All consumers have the same increasing util-
ity function of lifetime consumption, and this function is strictly concave
and symmetric with respect to consumption in youth and old age. This is
Samuelson’s (1958) overlapping generations model. The only possible equi-
librium allocation has everyone consume their entire endowment in youth
and nothing in old age, for people can trade only with someone who is alive
at the same time as they are and old people have nothing to give the young
in exchange for some of their endowment. This allocation is not Pareto op-
timal, for everyone would be better off if each young person gave one unit
of consumption to the contemporary old person. If this were done, the old
person in the initial period would have one unit to consume rather than
none, and everyone else would have one unit in youth and one in old age,
which they would prefer to having two units in youth and none in old age
because of the symmetry and strict concavity of the utility function. Giv-
ing one unit to the old corresponds to passing a chocolate bar to the left
in the previous example. Giving one unit to the old would not result in a
Pareto improvement if the time horizon were finite, because the youth in
the last period would give up one unit of consumption and gain nothing in
return.

It is possible to realize equal sharing of endowments as an equilibrium
allocation by having a means of payment or money that people can carry
from one period to the next. The old could use this money to buy con-
sumption, and the young could save their money and spend it when they
were old. In the context of modern societies, it is natural to think of this
money as a government obligation or debt, and there is no reason the gov-
ernment could not use tax revenues to pay interest on its obligations. We
will see that the allocation of any stationary equilibrium with a nonnega-
tive interest rate is Pareto optimal, provided the taxes are lump sum. The
interest rate and taxes may be regarded, respectively, as monetary and fiscal
policy that bring the economy to a desired equilibrium. In the Samuelson
overlapping generations model, these policies affect only the distribution
of welfare between the young and the old; the higher is the interest rate, the
higher is the consumption of the old relative to that of the young.
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Monetary and fiscal policy become more interesting if capital is intro-
duced into the model, for then the interest rate affects both the rate at which
capital is accumulated and the total stock of capital in a stationary equi-
librium. The higher the interest rate, the lower the stock of capital in the
stationary state. The Samuelson model with production and capital is the
model of Diamond (1965) and is the topic of chapter 10. In this chapter,
I focus on the Samuelson model, for it provides an uncluttered context in
which to introduce new concepts associated with overlapping generations
models.1

9.1 Overlapping Generations with a Finite Time Horizon

I introduce birth and death into the Arrow-Debreu model. Recall that un-
derlying the model is a set of dated events, �, which I assume to be finite. A
dated event (t , B) in � is said to follow a dated event (s , A), if t > s and B

is a subset of A. (Recall that A ∈ Ss and B ∈ St , where St refines Ss.)

definition 9.1 The set of dated events, �, is called a tree if there is a
unique dated event (t , A) in � such that every dated event in � follows
(t , A). The dated event (t , A) may be thought of as the root of the tree.

definition 9.2 If � is a set of dated events, a subset, �, of � is said to
be a subtree of � if � is a tree.

example 9.3 The heavily lined part of the tree in figure 9.1 is a subtree
of the overall tree of dated events.

Suppose that every consumer i is alive in a set of dated events, �i that
is a subtree of �. Assume that there are N goods and services in each
dated event and that ei , (t , A), n = 0 if (t , A) does not belong to �i, where
ei ∈ R

�×N = {x: � → R
N} is consumer i’s endowment vector. Assume also

that if x belongs to R
�×N
+ , then ui(x) does not depend on xi , (t , A), n if (t , A)

does not belong to �i. (Another way to say this is that ui(x) = v(πi(x)),

for some function v: R
�i×N
+ → R, where πi is the natural projection from

R
�×N
+ to R

�i×N
+ = {x: �i → R

N}.) If the utility functions ui are locally non-

satiated, then any equilibrium allocation for the economy (ui , ei)
I
i=1 is

1. The point of view toward overlapping generations models presented in this and the

succeeding chapter was developed in Bewley (1981b, 1981c).
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Figure 9.1 Examples of a tree and subtree

Pareto optimal. It is also not hard to show that an equilibrium exists pro-
vided the utility functions are continuous, strictly increasing, and quasi-
concave. This existence theorem may be proved by adapting either the proof
of theorem 4.24 (in section 4.8) or that of theorem 5.25 (in section 5.3).

In the above model, an Arrow-Debreu equilibrium can be interpreted as
an Arrow equilibrium in which no one is required to trade before they are
born. This interpretation as an Arrow equilibrium would be impossible if
the sets �i were not trees, for if a �i had no root, then for the equilibrium
to be Pareto optimal, consumer i might have to buy insurance before being
born on events occurring during his or her initial period of life.

9.2 Inefficiency with an Infinite Horizon

I now describe in detail the example mentioned earlier of an equilibrium
with an allocation that is not Pareto optimal. I begin by completing the
description of Samuelson’s overlapping generations model. It has no uncer-
tainty and infinitely many time periods, t = −1, 0, 1, 2, . . . . One person,
person t , is born in each period t , for t ≥ −1. Person t dies at the end of
period t + 1, so that each person lives for two periods and there are one
old person and one young person alive at any time. There are N commodi-
ties in each period. The consumption vector of person t is xt = (xt0, xt1),
where xt0 and xt1 are the consumption vectors in periods t and t + 1, re-
spectively. Similarly, et = (et0, et1) is person t ’s endowment, where et0 and
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et1 are the endowment vectors in periods t and t + 1, respectively. An allo-
cation is a nonnegative vector, x = (x−1, 1, (x00, x01), (x10, x11), . . .), with
infinitely many components. It is feasible if

xt−1, 1 + xt0 ≤ et−1, 1 + et0,

for all t ≥ 0. The utility function of person t is ut(x0, x1), where x0 and
x1 are the consumption bundles in youth and old age, respectively. The
consumption bundle of the youth born in period −1 is assumed to be fixed
and to equal x−1, 0.

Notice that in each period the Samuelson model is like an Edgeworth
box model with N commodities. There is no production and there are only
two people, the young and old person, alive at that time. In this sense, the
Samuelson model is a sequence of Edgeworth box models strung together
with the only tie between successive models being that one person lives in
both.

Throughout this chapter and the next, I assume that the endowments
and utility functions are independent of t . That is, (et0, et1) = (e0, e1) and
ut(x0, x1) = u(x0, x1), for all t .

definition 9.4 An Arrow-Debreu equilibrium for the Samuelson model
consists of (x , p) that satisfies the conditions

1. x is a feasible allocation

2. p = (p0, p1, . . .) is an infinite sequence of nonnegative N-vectors of
prices, not all of which are 0,

3. for every t ≥ 0, (xt0, xt1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. pt .x0 + pt+1.x1 ≤ pt .e0 + pt+1.e1

4. x−1, 1 solves the problem

max
x1∈R

N
+

u(x−1, 0, x1)

s.t. p0.x1 ≤ p0.e1

5. for all t and n, ptn = 0, if

xt , 0, n + xt−1, 1, n < e0n + e1n
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In an Arrow-Debreu equilibrium (x , p), all trading occurs in period −1
and ptn is the price (in terms of the unit of account of period −1) of
commodity n delivered in period t .

Arrow-Debreu equilibrium is not believable in the context of an over-
lapping generations model, because it requires that consumers born after
period −1 trade on markets for forward claims that are open only at pe-
riod −1. We may avoid this difficulty by using Arrow equilibria.

definition 9.5 An Arrow equilibrium consists of (x , a , P, q) satisfying
the conditions

1. x is a feasible allocation

2. a = (a1, a2, . . .) is an infinite sequence of asset holdings

3. P = (P0, P1, . . .) is a sequence of N-vectors of nonnegative money
prices, not all equal to 0

4. q = (q0, 1, q1, 2, . . .) is a sequence of nonnegative forward prices for
unit of account

5. for each t ≥ 0, (xt0, xt1, at+1), solves the problem

max
x0∈R

N
+ , x1∈R

N
+ , a∈R

u(x0, x1)

s.t. Pt .x0 + qt , t+1a ≤ Pt .e0 and

Pt+1.x1 ≤ a + Pt+1.e1

6. x−1, 1 solves the problem

max
x1∈R

N
+

u(x−1, 0, x1)

s.t. P0.x1 ≤ P0.e1

7. for each t and n, Ptn = 0, if

xt , 0, n + xt−1, 1, n < e0n + e1n

An Arrow equilibrium is simply an interpretation of an Arrow-Debreu
equilibrium. Both equilibria have the same allocations. In an Arrow equi-
librium (x , a , P, q), the component Ptn is the price of commodity n deliv-
ered in period t and in terms of the unit of account of that period, at is the
number of period t units of account purchased in period t − 1by the person
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born in that period, and qt , t+1 is the price of period t + 1 unit of account
in terms of period t unit of account. The unborn must trade in an Arrow
equilibrium, because in each period the young trade forward contracts in
unit of account with the person born in the following period. The unborn
are not required to trade, however, if these forward trades are made with
an institution, such as a bank or government, that can make intertemporal
commitments. A government is incorporated in the model in section 9.3.

I now describe an example, due to Samuelson (1958), of an Arrow-
Debreu equilibrium that is not Pareto optimal.

example 9.6 (An inefficient equilibrium) In Samuelson’s overlapping
generations model, let N = 1 and let

e0 = 1, e1 = 0, and u(x0, x1) = ln(1 + x0) + ln(1 + x1),

for all t . I show that the pair (x , p) is an Arrow-Debreu equilibrium for this
example, where p = (p0, p1, p2, . . .) with pt = 2t , for all t , and

x = (x−1, 1, (x00, x01), (x10, x11), . . .) = (0, (1, 0), (1, 0), . . .).

The allocation x is feasible, since it equals the endowment allocation. To
check that (p, x) is an Arrow-Debreu equilibrium, observe that the old
person of period 0 cannot afford to buy anything, so that x−1, 1 must be
zero. The utility maximization problem for the consumer born in period
t ≥ 0 is

max
x0≥0, x1≥0

[ln(1 + x0) + ln(1 + x1)]

s.t. 2tx0 + 2t+1x1 ≤ 2t .

Because (x10, x11) equals the endowment, it satisfies the budget constraint
of this problem. Its first-order conditions are

1

1 + x0

= λt2
t and

1

1 + x1

= λt2
t+1,

which is true if

1 + x0

1 + x1

= 2.

This equation is valid if x0 = 1and x1 = 0, so that the equilibrium allocation
does maximize each consumer’s utility in his or her budget set.

The equilibrium allocation x is not Pareto optimal, for the allocation x
Pareto dominates it, where x is defined by the equations xt0 = xt−1, 1 = 1/2,
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for all t . Person −1 is clearly better off with allocation x rather than with x
because he or she receives 1/2 in period 0 under x and nothing under x.
People born in periods t ≥ 0 prefer x, because

ln(1 + xt0) + ln(1 + xt1) = ln

(
3

2

)
+ ln

(
3

2

)
= ln

(
9

4

)
> ln 2 = ln(1 + 1) + ln(1 + 0) = ln(1 + xt0) + ln(1 + xt1).

The equilibrium and Pareto dominating allocations just described are
stationary in that no one’s consumption depends on their date of birth.
That is, none of xt0, xt1, xt0, and xt1 depend on t . Because these alloca-
tions are stationary, we may see the relation between them in figure 9.2.
The abscissa represents consumption in youth, xt0, by a person born in any
period t . The ordinate represents consumption in old age by a person born
in periods t − 1 or t . The line segment with slope −1 represents the feasi-
bility condition xt0 + xt−1, 1 = 1. Any feasible stationary allocation must lie
on this line, and the underscored allocation, xt0 = 0.5 and xt1 = 0.5, is at its
midpoint. The equilibrium allocation, xt0 = 1 and xt1 = 0, lies at the right-
hand endpoint of this segment and is labeled e for endowment. The flatter
line segment with slope −0.5 is the equilibrium budget line of a consumer
born in period t , where t ≥ 0, namely,

{(xt0, xt1) ≥ 0 | 2txt0 + 2t+1xt1 = 2t} = {(xt0, xt1) ≥ 0 | xt0 + 2xt1 = 1}.

The maximum point in this budget set is at the lower right-hand end-
point, e. The price vector determining this budget set is proportional to
the vector (1, 2). The allocation x, where (xt0, xt−1, 1) = (0.5, 0.5), for all t ,
clearly gives higher utility than does the endowment allocation x.

The allocation x improves on the equilibrium one by passing some con-
sumption from the young to the old in each period, in effect passing it
backward through generations. As was explained in the previous section,
such a perpetual backward shift could not be achieved if the time horizon
were finite.

The inefficient Arrow-Debreu equilibrium in example 9.6 may be inter-
preted as an Arrow equilibrium as follows. Let the spot price of the good in
every period t , Pt , be the Arrow-Debreu price, pt = 2t . Then, the price of
a (t + 1)-period dollar in terms of a t-period dollar is qt , t+1 = 1, for all t ,
since

2t = pt = q01q12 . . . qt−1, tPt = 1(1) . . . (1)2t .
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Figure 9.2 An inefficient stationary equilibrium in the Samuelson model

Asset holdings may be computed from the equation

Pt+1xt1 = at+1 + Pt+1et1.

Substituting actual values into this equation, we obtain

2t (0) = at+1 + 2t (0),

so that

at+1 = 0,

for all t . No assets are held, because consumers consume their endowments
and do not trade.

The asset prices, qt , t+1, may be interpreted as discount factors deter-
mined by interest rates. If rt is the nominal interst rate on money from
period t to t + 1, then

qt , t+1 = 1

1 + rt
.

Since qt , t+1 = 1, it follows that rt = 0, for all t .
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The Pareto dominating allocation x may be interpreted as the allocation
of an Arrow equilibrium if we modify its definition to allow the old person
of period 0 to be endowed with positive asset holdings a0. Such an Arrow
equilibrium is (x , a , P, q), where a = (a0, a1, . . .) = (0.5, 0.5, . . .), and,
for all t , Pt = 1 = qt , t+1. In this equilibrium, the old person of period 0
uses a half unit of account to buy a half unit of the consumption good
from the young person of that period, leaving a half unit of the good to be
consumed by the young person. The young person in period 0 earns a half
unit of account and saves it for use in period 1, when he or she spends it to
buy a half unit of consumption from the young person of that period. The
equilibrium perpetuates itself in this manner forever, and we may imagine
that the old person of period 0, when young, sold a half unit of endowment
in period −1 and used the proceeds to buy forward a half unit of account
for period 0.

The Arrow equilibrium just described has the difficulty that the young
buy units of account forward to be delivered by people not yet alive. The
equilibrium becomes more credible if we think of the unit of account as
money or government debt that bears no interest. The old person of pe-
riod 0 starts the period with a half unit of money, which is used to buy a
half unit of the good. The young person saves this half unit of money until
old age in period 1, when it is given to the young person of that period in ex-
change for a half unit of consumption. In this interpretation, forward pur-
chases of unit of account are replaced by the saving of money. This concept
of equilibrium is made precise by definition 9.11 of spot price equilibrium
(in section 9.3).

It is important to understand why the proof of the first welfare theorem
fails in example 9.6. Let us try to repeat the proof of that theorem (theo-
rem 5.2 in section 5.1). Let the allocations x and x be as in the example.
Because all consumers prefer x to x and each consumer’s allocation under
x maximizes utility over his or her budget set, it follows that p0x−1, 1 > p0e1

and ptxt0 + pt+1xt1 > pte0 + pt+1e1, for all t ≥ 0. Adding these inequali-
ties over t , we obtain

p0x−1, 1 +
∞∑
t=0

(ptxt0 + pt+1xt1) > p0e1 +
∞∑
t=0

(pte0 + pt+1e1). (9.1)

Changing the order of summation, inequality 9.1 becomes

∞∑
t=0

pt(xt−1, 1 + xt0) >

∞∑
t=0

pt(e1 + e0). (9.2)
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Since the allocation x is exactly feasible,

xt−1, 1 + xt0 = e0 + e1,

for all t , so that inequality 9.2 implies that

∞∑
t=0

pt(e0 + e1) >

∞∑
t=0

pt(e0 + e1). (9.3)

If the numbers on the left- and right-hand sides of inequality 9.3 were finite,
we would have the contradiction that proves the first welfare theorem.
However, in the example, e0 + e1 = 1 and pt = 2t , so that

∞∑
t=0

pt(e0 + e1) =
∞∑
t=0

2t = ∞,

and there is no contradiction; ∞ > ∞ is a valid inequality.

9.3 Pareto Optimal Equilibria

In this section, I present a condition for the Pareto optimality of equilibria
and define spot price equilibrium, which is more credible than Arrow or
Arrow-Debreu equilibrium and yet has the same allocations as both.

Inequality 9.3 in the previous section would lead to a contradiction if

∞∑
t=0

pt < ∞.

This last inequality is, in fact, a sufficient though not necessary condition
for the Pareto optimality of equilibrium in the Samuelson model.

proposition 9.7 The allocation of an Arrow-Debreu equilibrium,
(x , p), for the Samuelson model is Pareto optimal if

∑∞
t=0 pt < ∞ and if

the utility function, u(x0, x1), is locally nonsatiated with respect to x0 and
x1 separately.

Proof. The proof follows the reasoning associated with inequalities 9.1–
9.3 in the previous section. Suppose that x is a feasible allocation that Pareto
dominates x. Then,
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u(x−1, 0, x−1, 1) ≥ u(x−1, 0, x−1, 1)

and

u(xt0, xt1) ≥ u(xt0, xt1),

for all t ≥ 0, with “>” in at least one inequality. Because u is locally nonsa-
tiated with respect to x0 and x1 separately, we may use the argument made
in the proof of the first welfare theorem (theorem 5.2 in section 5.1) to
demonstrate that

p0.x−1, 1 ≥ p0.e1

and

pt .xt0 + pt+1.xt1 ≥ pt .e0 + pt+1.e1,

for all t ≥ 0, with “>” if

u(x−1, 0, x−1, 1) > u(x−1, 0, x−1, 1)

or if

u(xt0, xt1) > u(xt0, xt1).

It follows that

p0.x−1, 1 +
∞∑
t=0

(pt .xt0 + pt+1.xt1) > p0.e1 +
∞∑
t=0

(pt .e0 + pt+1.e1).

Because all the terms on both sides of this inequality are nonnegative, I may
change the order of summation and obtain

∞∑
t=0

pt .(xt−1, 1 + xt0) >

∞∑
t=0

pt .(e0 + e1). (9.4)

Inequality 9.4 is impossible, because pt ≥ 0 and the feasibility of the alloca-
tion x implies that

xt−1, 1 + xt0 ≤ e0 + e1,

for all t , so that

pt .(xt−1, 1 + xt0) ≤ pt .(e0 + e1),

for all t .
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Figure 9.3 A Pareto optimal stationary equilibrium in the Samuelson model

Suppose we change example 9.6 so that consumers have an endowment
in old age rather than in youth. That is, e0 = 0 and e1 = 1, for all t . It is
not hard to check that (x , p) is an Arrow-Debreu equilibrium if xt0 = e0

and xt1 = e1, and pt = 2−t , for all t . Because
∑∞

t=0 pt =∑∞
t=0 2−t = 2 <

∞, proposition 9.7 implies that the equilibrium allocation, x, is Pareto
optimal. This allocation and the budget line are portrayed in figure 9.3.
The equilibrium allocation is at the endowment point e, and the price
vector faced by consumers in their two periods of life is proportional to
the vector p = (2, 1).

The Arrow-Debreu equilibrium (x , p) can be described as an Arrow
equilibrium (x , a , P, q) by letting at = 0, Pt = 1, and qt , t+1 = 1

2 , for all t .

The forward prices qt , t+1 equal 1
1+rt

, where rt is the interest rate from pe-

riod t to t + 1 and rt = 1, for all t . We could just as well think of the equi-
librium as having no forward trade in unit of account but with consumers
able to hold interest-bearing government debt that earns interest at rate 1.
In the equilibrium of figure 9.3, consumers happen to hold no debt.

Let us pursue the idea of holding interest-bearing debt and return to
example 9.6, where the endowment is at the lower right-hand corner of the
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feasibility line. That is, the endowment of any consumer is (e0, e1) = (1, 0).
Imagine a stationary equilibrium with government debt bearing interest at
rate r = 1 and where the price of the one commodity is 1 in every period.
This is a spot price, because it is in terms of the current unit of account,
not the unit of account of period −1. Then the present value of the cost to
a youth of consumption in old age is 1

1+r
= 1

2 , so that the marginal rate of

substitution between consumption in youth and old age is 1 divided by 1
2 ,

which is 2. Then the equilibrium allocation satisfies the equation

∂u(x0, x1)

∂x0

∂u(x0, x1)

∂x1

= 2,

where x0 and x1 are consumption in youth and old age, respectively, in the
equilibrium and where u(x0, x1) = ln(1 + x0) + ln(1 + x1). We also have
the equation for feasibility

x0 + x1 = e0 + e1,

where e0 and e1 are the endowments in youth and old age, respectively.
Substituting the values for u, e0, and e1 from example 9.6, we obtain the
following equations

1 + x1

1 + x0

= 2

and

x0 + x1 = 1.

Solving these equations, we obtain

x0 = 0 and x1 = 1.

The youth spends nothing but saves all of his or her earnings for old age.
Since the price of the one good is 1, the young consumer earns one unit of
account, all of which is invested in government debt, which earns interest at
rate 1. Therefore, an old consumer has two units of government debt, but
there is only one unit of the good available for purchase at price 1. There
can be no equilibrium, unless the consumer pays a tax. Suppose young
consumers pay a tax of a half unit. They then have a half unit of account
to invest and after earning interest have one unit of government debt in



374 9 Samuelson’s Overlapping Generations Model

old age to spend on the one unit of good. The tax of a half unit allows
the economy to reach equilibrium. The tax equals exactly the interest paid
on government debt, so that it serves to keep the government’s budget in
balance; the government’s tax receipts equal the disbursement of interest
on its debt. The equilibrium also requires that the old consumer of period 0
start that period with one unit of government debt with which to buy one
unit of consumption.

A similar stationary equilibrium can be defined for any interest rate r

between 0 and 1. A consumer’s utility maximization problem is

max
x0≥0, x1≥0

[ln(1 + x0) + ln(1 + x1)]

s.t. x0 + (1 + r)−1x1 ≤ 1.

The first-order conditions for this problem imply that

1/(1 + x0)

1/(1 + x1)
= 1 + r .

This equation together with the feasibility condition

x0 + x1 = 1

imply that

x0 = 1 − r

2 + r
and x1 = 1 + 2r

2 + r
.

If we assume that each consumer pays a tax of T when young, then the
budget constraint is

x0 + (1 + r)−1x1 = 1 − T,

so that

T = r(1 + 2r)

(2 + r)(1 + r)
.

A young person’s savings must be held as government debt, G, and these
savings are

1 − x0 − T = 1 − 1 − r

2 + r
− r(1 + 2r)

(2 + r)(1 + r)
= 1 + 2r

(2 + r)(1 + r)
= G.

We see that rG = T, so that the tax pays for the interest on the government
debt. The old person of period 0 must start the period with enough gov-
ernment debt to buy x1. However, x1 = (1 + r)G, which is the amount of
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government debt held by every old consumer before they buy consump-
tion. Figure 9.4 may help you visualize this equilibrium graphically. It is
important to realize that the interest rate, r , is arbitrary, as long as the ap-
propriate tax, T, is chosen together with r . The interest rate and tax are not
determined by the equilibrium but may be thought of as instruments of
monetary and fiscal policy, respectively. Because the equilibrium is station-
ary, r is the real as well as the nominal interest rate.

Let us express this equilibrium as an Arrow-Debreu equilibrium. It is
natural to let the Arrow-Debreu price of the good in period t be the present
value of the spot price of 1 from the point of view of period 0 and when
the interest rate is 1. Then, the Arrow-Debreu price is pt = (1 + r)−t . The
young consumer of period t pays a tax of T, which in present-value terms
is τt = (1 + r)−tT = (1 + r)−tG. In addition, the old consumer of period 0
must have a subsidy of 1 in order to purchase one unit of consumption. Call
this subsidy a tax of τ−1 = −(1 + r)G, the tax being negative because it is
a subsidy. We can think of these taxes, τt , as lump-sum transfer payments.
Furthermore, they add up to zero, because

∞∑
t=−1

τt = −(1 + r) +
∞∑
t=0

(1 + r)−t rG = 0.

It is easy to check that with these transfer payments and with Arrow-Debreu
prices pt , every consumer chooses to buy none of the good in youth and one
unit in old age. We can, therefore, say that (x , p, τ) is an Arrow-Debreu
equilibrium with transfer payments, where x is the allocation defined by
the equations xt0 = 1−r

2+r
and xt1 = 1+2r

2+r
, for all t , and where p = (pt)

∞
t=0

and τ = (τt)
∞
t=0 are as just defined. We see that there is a close connection

between Arrow-Debreu equilibria with transfer payments on the one hand
and, on the other hand, equilibria with no forward trading and with taxes
and interest-bearing government debt.

In order to make these ideas more precise, I define the new concepts
of equilibrium. The next definition differs from definition 9.4 only by the
inclusion of transfer payments.

definition 9.8 An Arrow-Debreu equilibrium with transfer payments for
the Samuelson model consists of (x , p, τ) that satisfies the conditions

1. x is a feasible allocation

2. p = (p0, p1, . . .) is an infinite sequence of nonnegative N-vectors of
prices, not all of which are 0
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3. τ = (τ−1, τ0, τ1, . . .) is a sequence of numbers, where τt is the lump-
sum tax paid by the consumer born in period t

4. for every t ≥ 0, (xt0, xt1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. pt .x0 + pt+1.x1 ≤ pt .e0 + pt+1.e1 − τt

5. x−1, 1 solves the problem

max
x1∈R

N
+

u(x−1, 0, x1)

s.t. p0.x1 ≤ p0.e1 − τt

6. for all t and n, ptn = 0, if

xt , 0, n + xt−1, 1, n < e0n + e1n

A consequence of the summability of prices is that if u is locally non-
satiated, then the taxes, τt , are transfer payments in that they sum to 0.
The taxes are transfers only in a virtual sense, since they are carried out at
time −1 among the person born in that period and the ghosts of the as-yet
unborn.

proposition 9.9 Assume that the utility function u is locally nonsa-
tiated with respect to each of x0 and x1 separately and that

∑∞
t=0 pt < ∞.

Then
∑∞

t=−1 |τt | < ∞ and
∑∞

t=−1 τt = 0, for any Arrow-Debreu equilib-
rium with transfer payments, (x , p, τ).

Proof. Because u is locally nonsatiated with respect to each of x0 and x1

separately,

p0.x−1, 1 = p0.e1 − τ−1,

and

pt .xt0 + pt+1.xt1 = pt .e0 + pt+1.e1 − τt ,

for all t ≥ 0. Therefore,

∞∑
t=−1

τt = p0.(e1 − x−1, 1) +
∞∑
t=0

[pt .(e0 − xt0) + pt+1.(e1 − xt1)]. (9.5)
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Because 0 ≤ xt0 ≤ e0 + e1 and 0 ≤ xt1 ≤ e0 + e1, for all t , the definition of
τt and the condition that

∑∞
t=0 pt < ∞ imply that

∞∑
t=−1

|τt | = |p0.(e1 − x−1, 1)| +
∞∑
t=0

|pt .(e0 − xt0) + pt+1.(e1 − xt1)| < ∞.

Therefore the infinite series on the right-hand side of equation 9.5 con-
verges absolutely,2 so that we may reorder its terms to obtain the equation

∞∑
t=−1

τt =
∞∑
t=0

pt .(e0 + e1 − xt0 − xt−1, 1). (9.6)

The feasibility of the allocation x implies that e0 + e1 − xt0 − xt−1, 1 ≥ 0,
for all t , so that condition (6) of definition 9.8 implies that pt .(e0 + e1 −
xt0 − xt−1, 1) = 0. Therefore equation 9.6 implies that

∞∑
t=−1

τt = 0.

We have the following analogue of proposition 5.7 (in section 5.2).

proposition 9.10 The allocation of an Arrow-Debreu equilibrium with
transfer payments, (x , p, τ), for the Samuelson model is Pareto optimal if∑∞

t=0 pt < ∞ and if u is locally nonsatiated with respect to each of x0 and
x1 separately.

Proof. The proof is much like that of proposition 9.7. If x is not Pareto
optimal, there exists a feasible allocation x such that

u(x−1, 0, x−1, 1) ≥ u(x−1, 0, x−1, 1)

and

u(xt0, xt1) ≥ u(xt0, xt1),

for all t ≥ 0, with “>” in at least one inequality. Because u is locally nonsa-
tiated with respect to x0 and x1 separately, we know that

p0.x−1, 1 ≥ p0.e1 − τ−1

and

pt .xt0 + pt+1.xt1 ≥ pt .e0 + pt+1.e1 − τt ,

2. An infinite series,
∑∞

n=0 zn, is said to converge absolutely if the series
∑∞

n=0 |zn| con-

verges. If an infinite series converges absolutely, its total does not depend on the order in

which its terms are summed.
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for all t ≥ 0, with “>” if

u(x−1, 0, x−1, 1) > u(x−1, 0, x−1, 1)

or if

u(xt0, xt1) > u(xt0, xt1).

Since
∑∞

t=0 pt < ∞ and
∑∞

t=−1 |τt | < ∞, the infinite sums in this inequal-
ity converge absolutely, and the totals do not depend on the order of sum-
mation. Therefore,

∞∑
t=0

pt .(xt−1, 1 + xt0) >

∞∑
t=0

pt .(e0 + e1) −
∞∑

t=−1

τt =
∞∑
t=0

pt .(e0 + e1),

since
∑∞

t=−1 τt = 0 by proposition 9.9. This inequality is impossible since,
for all t , pt ≥ 0, and xt−1, 1 + xt0 ≤ e0 + e1. This contradiction proves the
theorem.

I now define a notion of equilibrium that is much like an Arrow equilib-
rium with lump-sum taxes and subsidies.

definition 9.11 A spot price equilibrium for the Samuelson model con-
sists of (x , P, r , G, T) that satisfies the equations

1. x is a feasible allocation

2. P = (P0, P1, . . .) is an infinite sequence of nonnegative N-vectors of
prices, not all of which are zero

3. r = (r−1, r0, r1, . . .) is an infinite sequence of numbers, where rt is
the nominal interest rate paid in period t + 1 on government debt
held from period t to period t + 1 and rt > −1, for all t

4. T = (T0, T1, . . .) is a sequence of numbers, where T is the lump-sum
tax paid by the young consumer of period t

5. (1 + r−1)G is the amount of government debt held by the old
consumer of period 0 at the beginning of that period

6. for every t ≥ 0, (xt0, xt1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. Pt .x0 + (1 + rt)
−1Pt+1.x1 ≤ Pt .e0 + (1 + rt)

−1Pt+1.e1 − Tt
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7. x−1, 1 solves the problem

max
x1∈R

N
+

u(x−1, 0, x1)

s.t. P0.x1 ≤ P0.e1 + (1 + r−1)G

8. for all t and n, Ptn = 0, if

xt , 0, n + xt−1, 1, n < e0n + e1n

A spot price equilibrium differs from an Arrow equilibrium with lump-
sum taxes and subsidies only in that the definition of a spot price equilib-
rium does not have explicit forward purchases and sales of unit of account.
The form of the consumer’s budget constraint in the spot price equilibrium
implies, however, that such purchases and sales occur; they are equivalent
to saving and borrowing, respectively. The Arrow forward price, qt , t+1, in
period t of a unit of account in period t + 1 becomes (1 + rt)

−1 in a spot
price equilibrium.

In a spot price equilibrium, consumers have perfect foresight in that the
young consumer in period t knows the spot commodity prices Ptn that will
occur in period t + 1. Without this knowledge, the consumer could not
maximize utility over a two-period budget set.

As was mentioned earlier in connection with an example, the taxes and
interest rates in a spot price equilibrium are not determined by equilibrium
forces but are exogenous and may be associated with fiscal and monetary
policy.

In the definition of spot price equilibrium, there is no requirement that
the government satisfy a budget constraint, because it does so automatically
in equilibrium provided the utility function, u(x0, x1), is locally nonsatiated
with respect to each of the variables x0 and x1 separately. The government’s
budget constraint for period t + 1, where t ≥ 0, is

Gt+1 = (1 + rt)Gt − Tt+1, (9.7)

where Gt is the government’s debt at the end of period t . Since this debt
equals the savings of the young person at the end of period t , we have the
equation

Gt = Pt .(e0 − xt0) − Tt , (9.8)
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where Gt is the government’s debt at the end of period t . I will now verify
that the government’s budget constraint, equation 9.7, is satisfied in equi-
librium. This verification will, to some extent, justify the interpretation of
the quantity Gt defined by equation 9.8 as government debt.

To verify equation 9.7, notice that by condition (8) of the definition 9.11
of a spot price equilibrium, the feasibility condition,

xt1 + xt+1, 0 ≤ e0 + e1,

implies that

Pt+1.(xt1 + xt+1, 0) = Pt+1.(e0 + e1),

which in turn implies that

Pt+1.(xt1 − e1) = Pt+1.(e0 − xt+1, 0). (9.9)

Another equation required is the budget constraint for the person born at
time t ,

Pt .xt0 + Pt+1

1 + rt
.xt1 = Pt .e0 + Pt+1

1 + rr
.e1 − Tt ,

which implies that

(1 + rt)[Pt .(e0 − xt0) − Tt]= Pt+1.(xt1 − e1). (9.10)

This budget constraint holds with equality because the utility function is
locally nonsatiated. From these equations, we see that

(1 + rt)Gt = (1 + rt)[Pt .(e0 − xt0) − Tt]= Pt+1.(xt1 − e1)

= Pt+1.(e0 − xt+1, 0) = Gt+1 + Tt+1,
(9.11)

where the first equation is equation 9.8, the second is equation 9.10, the
third is equation 9.9, and the last equation follows from equation 9.8 again.
Equality between the extreme left and right of equations 9.11 is equa-
tion 9.7. The government’s budget equation for period 0 is

G0 = (1 + r−1)G − T0, (9.12)

because (1 + r−1)G is the government’s debt at the beginning of period 0
and G0 is its debt at the end of the period. To see that equation 9.12 is valid,
notice that the budget constraint of the old person of period 0 is

(1 + r−1)G = P0.(x−1, 1 − e1), (9.13)
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where the constraint holds with equality because the utility function is
locally nonsatiated with respect to x1. Using equation 9.13, we see that

(1 + r−1)G = P0.(x−1, 1 − e1) = P0.(e0 − x00) = G0 + T0, (9.14)

where the second equation holds by equation 9.9 and the third equation
follows from equation 9.8. Equality between the extreme left and right of
equations 9.14 is equation 9.12.

Satisfaction of the government’s budget equation does not imply that this
budget is in balance. The government’s budget may said to be balanced in
period t + 1 if Gt+1 = Gt , so that rtGt = Tt+1.

The next proposition asserts that spot price equilibria are really another
form of Arrow-Debreu equilibria.

proposition 9.12 Suppose that (x , P, r , G, T) is a spot price equilib-
rium and let 1+ Rt = (1+ r0)(1+ r1) . . . (1+ rt), for t ≥ 0. Then, (x , p, τ)

is an Arrow-Debreu equilibrium with transfer payments, where

p0 = P0,

τ−1 = −(1 + r−1)G,

τ0 = T0,

pt = Pt

1 + Rt−1

,

and

τt = Tt

1 + Rt−1

,

for t ≥ 1.

I give no proof of this proposition, as it is easy to check that (x , p, τ)

satisfies all the conditions of an Arrow-Debreu equilibrium.
When relating the theory to actual economies, spot price equilibrium is

probably the equilibrium concept of most interest, because it is fairly re-
alistic and contains clear instruments of fiscal and monetary policy. It is
more realistic than Arrow-Debreu equilibrium, because it contains no for-
ward trading. It does, however, have the unrealistic requirement of perfect
foresight about prices one period ahead. Arrow-Debreu equilibrium is of
interest mainly as a tool of analysis. For instance, there is an easy criterion
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for the Pareto optimality of an Arrow-Debreu equilibrium allocation, the
summability of prices. The next corollary says that this criterion carries over
to spot price equilibrium.

corollary 9.13 Suppose that the utility function in the Samuelson
model is locally nonsatiated with respect to each of x0 and x1 separately and
that (x , P, r , G, T) is a spot price equilibrium that satisfies the condition

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞,

where 1 + Rt = (1 + r0)(1 + r1) . . . (1 + rt), for t ≥ 0. Then, the allocation
x is Pareto optimal and

G = T0

1 + r−1

+
∞∑
t=1

Tt

(1 + r−1)(1 + Rt−1)
.

Proof. When (x , P, r , G, T) is converted to an Arrow-Debreu equilib-
rium, (x , p, τ), as in proposition 9.12, then the condition

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞

implies that
∑∞

t=0 pt < ∞, so that x is Pareto optimal by proposition 9.10
and the transfer payments sum to 0 by proposition 9.9. The sum of the
transfer payments is

−(1 + r−1)G + T0 +
∞∑
t=1

Tt

1 + Rt−1

.

If we set this last quantity equal to 0, we obtain the last equation of the
corollary.

The last equation of the corollary means that government debt at the end
of period −1 equals the total present value of all future taxes.

This corollary in turn implies a sufficient condition for the Pareto op-
timality of stationary spot price equilibria. These equilibria are defined as
follows.

definition 9.14 A stationary spot price equilibrium is a spot price equi-
librium, (x , P, r , G, T), such that xt0 = x0, xt1 = x1, Pt = P0, rt = r , and
Tt = T, for all t .
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I denote a stationary spot price equilibrium by (x0, x1, P0, r , G, T),
where, for all t , xt0 = x0, xt1 = x1, Pt = P0, rt = r , and Tt = T. Similarly,
I denote a stationary allocation by (x0, x1). Notice that in a stationary equi-
librium, Gt+1 = Gt = G, for all t , so that the government’s budget always
balances and T = rG.

In a stationary equilibrium, either the interest rate r or the ratio T/P0

may be thought of as exogenous. If the interest rate is fixed exogenously,
then the ratio T/P0 is determined by the requirement that the government’s
budget balance in a stationary equilibrium. Similarly, if T/P0 is fixed ex-
ogenously, there may be only certain interest rates that allow a stationary
equilibrium, or there may be no such interest rate.

corollary 9.15 The allocation of a stationary spot price equilibrium
with a positive interest rate, r , is Pareto optimal, provided u is locally
nonsatiated with respect to each of x0 and x1 separately.

I now characterize stationary spot price equilibria, (x0, x1, P0, r , G, T),
when there is only one commodity in each period and where r > −1.
Assume that the utility function, u, is differentiable, quasi-concave, and in-
creasing. (Quasi-concavity is defined in definition 5.13 in section 5.2.) Let
the endowment of each consumer be (e0, e1). As a price normalization, let
P0 = 1. Because u is increasing, the feasibility constraint holds with equality
in an equilibrium. That is,

x0 + x1 = e0 + e1. (9.15)

For simplicity, assume that x0 > 0 and x1 > 0 in the stationary equilib-
rium. To a youth, the price of consumption in youth is 1 and the price of
consumption in old age is 1

1+r
. Hence, the first-order conditions for utility

maximization subject to a budget constraint imply that

∂u(x0, x1)

∂x0

∂u(x0, x1)

∂x1

= 1
1

1 + r

= 1 + r .

This equation simplifies to

(1 + r)
∂u(x0, x1)

∂x1

= ∂u(x0, x1)

∂x0

. (9.16)
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Since equations 9.15 and 9.16 have two unknowns, they are normally
enough to determine the stationary equilibrium allocation (x0, x1). The
other parameters of the equilibrium are G and T0. Government debt, G, is
determined by equation 9.13, which becomes

(1 + r)G = x1 − e1. (9.17)

The government’s budget constraint, equation 9.7, becomes

rG = T. (9.18)

Equations 9.15–9.18 determine all the parameters of the equilibrium, and
corollary 9.15 implies that the equilibrium allocation is Pareto optimal,
provided r > 0.

Figure 9.4 shows a typical equilibrium with positive interest rate r when
the initial endowment is e = (e0, e1) = (e0, 0). The point x is the stationary
optimal allocation. The line Ae is the set of feasible stationary allocations.
The line HC through x and tangent to the indifference curve through x is
the budget line of a typical consumer. The vector perpendicular to this line,
(1, (1 + r)−1), is the vector of prices of current and next period consump-
tion faced by a young consumer. The tax, T, is equal to the distance from C

to the endowment point, e, along the abscissa. Government debt, G, at the
end of any period equals the distance from x0 to C. The government debt,
(1+ r)G, at the beginning of any period equals x1. This quantity equals the
total assets of an old person at the beginning of any period.

An equilibrium like that just portrayed can be constructed for any sta-
tionary allocation on the interval AB along the feasibility line Ae. The
allocations at points in line segment AB and not including B belong to
stationary equilibria with a positive interest rate and so are Pareto optimal
by corollary 9.15.

The stationary allocation at point B corresponds to a stationary equilib-
rium with interest rate 0 and with government debt equal to the distance
from D to B or from D to e. Because the interest rate is 0, this equilibrium
does not satisfy the summability condition on prices of corollary 9.13. Nev-
ertheless, the stationary allocation at point B is Pareto optimal, as is implied
by corollary 9.45 (in section 9.7).

Stationary allocations along the feasibility line from B to e and not in-
cluding B are not Pareto optimal, though they are the allocations of sta-
tionary spot price equilibria. These equilibria have negative interest rates.
Consider the stationary allocation at the point E in this interval and sup-
pose that the economy switches at time 0 from the allocation at E to that at
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Figure 9.4 A Pareto optimal stationary equilibrium

B and stays at B forever. Every consumer born in period 0 or later would
be better off, because the lifetime utility enjoyed at B exceeds that enjoyed
at E. The old person of period 0 would also be better off, because the con-
sumption of the old at B exceeds that at E. Since no changes occur before
period 0 and the welfare of everybody alive in period 0 or later is increased
by the switch, it leads to a Pareto improvement. The same reasoning was
used to show that the equilibrium of example 9.6 (in section 9.2) was not
Pareto optimal.

You may be curious as to why a similar switch from the allocation x to
that at B does not lead to a Pareto improvement, because the lifetime utility
of every consumer is higher at B than at x. A transition from allocation x
to B is not a Pareto improvement, because it requires that the old person
alive at the time of transition make a sacrifice. He or she would consume
no more in youth and less in old age.
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The Pareto optimality of stationary allocations along the feasibility line
in figure 9.4 does not depend on where the initial endowment point is on
this line. The position of this line and the set of Pareto optimal allocations
depends only on the total endowment e0 + e1. If the individual endowment
of consumer t were (et0, et1) and fluctuated over time, the set of Pareto
optimal stationary allocations would be as described, as long as the total,
et0 + et−1, 1, remained constant.

The position of the endowment point does, however, affect the size of
government debt and taxes. If in figure 9.4 the endowment were at point A

rather than e, then the tax, T, would be negative and −T would equal the
distance from point F to C along the horizontal axis. The tax would be a
subsidy that moved the consumer’s budget line from AF to the line through
x and C. The subsidy would return to consumers the interest earned by
the government on a negative government debt. The negative debt would
be loans to young consumers, analogous to government loans to college
students. Youths would finance consumption through loans from the gov-
ernment that they would pay off with interest when old. In figure 9.4,
−(1 + r)G is the distance from x1 to A, −G is the distance from 0 to x0

minus the distance from F to C, which is the distance from x1 to J .
I now turn to the proposition that characterizes stationary allocations

(such as that at point B in figure 9.4) as the allocations of equilibria. To state
the proposition, I must define a concept of equilibrium with noninterest-
bearing government debt or money.

definition 9.16 A spot price equilibrium with interest rate 0, denoted
(x , P, G), is a spot price equilibrium, (x , P, r , G, T), such that rt = Tt = 0,
for all t .

In a spot price equilibrium with interest rate 0, the quantity of govern-
ment debt remains constant and equals G in all periods, provided the utility
function is locally nonsatiated with respect to each of x0 and x1 separately,
for all t . Because interest rates and taxes are 0, the government budget equa-
tions 9.12 and 9.7, respectively, become

G0 = G and Gt+1 = Gt ,

for all t ≥ 0, and these equations imply that

Gt = G,

for all t ≥ 0.
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definition 9.17 A stationary spot price equilibrium with interest rate 0,
(x , P, G), is a spot price equilibrium with interest rate 0 such that xt0 = x0,
xt1 = x1, and Pt = P0, for all t ≥ 0.

I will denote such an equilibrium by the vector (x0, x1, P0, G), where,
for all t , xt0 = x0, xt1 = x1, and Pt = P0.

The next proposition shows that stationary spot price equilibrium allo-
cations solve the same maximization problem as does the point B in fig-
ure 9.4.

proposition 9.18 If u is continuous, strictly concave, and locally non-
satiated and if e0 + e1 � 0, then there exists a stationary spot price equilib-
rium with interest rate 0, (x0, x1, P0, G). All such equilibria have the same
allocation, and that allocation solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. x0 + x1 ≤ e0 + e1.
(9.19)

Proof. By proposition 3.14 (in section 3.2), problem 9.19 has a solution,
(x0, x1). Because e0 + e1 � 0, this problem satisfies the constraint qualifi-
cation of the Kuhn-Tucker theorem (theorem 6.3 in section 6.1). That theo-
rem implies that there exists a nonnegative N-vector P0 such that (x0, x1)

solves the problem

max
x0∈R

N
+ , x1∈R

N
+

[u(x0, x1) − P0.(x0 + x1)]

and, for all n, P0n = 0, if x0n + x1n < e0n + e1n. Since x0 + x1 ≤ e0 + e1, it
follows that P0.(x0 + x1) = P0.(e0 + e1). Hence, the sufficiency part of the
Kuhn-Tucker theorem (with λ = 1) implies that (x0, x1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. P0.(x0 + x1) ≤ P0.(e0 + e1).
(9.20)

Since x0 + x1 ≤ e0 + e1, it follows that (x0, x1, P0, G) is a stationary spot
price equilibrium with interest rate 0, where G = P0.(x1 − e1). This proves
that stationary equilibria with interest rate 0 exist.

I now show that all such stationary equilibria have the same allocation
and that it solves problem 9.19. Let that (x0, x1, P0, G) be a stationary
spot price equilibrium with interest rate 0. Then by the definition of the
equilibrium, x0 + x1 ≤ e0 + e1, P0n = 0, if x0n + x1n < e0n + e1n, for all n,
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and (x0, x1) solves problem 9.20. Since e0 + e1 � 0, it follows that P0.(e0 +
e1) > 0, and so problem 9.20 satisfies the constraint qualification of the
Kuhn-Tucker theorem and there exists λ ≥ 0, such that λ = 0 if P0.(x0 +
x1) < P0.(e0 + e1) and (x0, x1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

[u(x0, x1) − λP0.(x0 + x1)].

Since u is locally nonsatiated, this problem has no solution if λ = 0, so that
λ > 0. Since λP0n = 0, if x0n + x1n < e0n + e1n, the Kuhn-Tucker theorem
implies that (x0, x1) solves problem 9.19. Since u is strictly concave, this
problem can have only one solution.

Example 9.26 (in section 9.5) shows that the allocation of a stationary
spot price equilibrium with a positive interest rate may not be unique.

9.4 Stationary Discounted Optima and Equilibria

In a general equilibrium model without production and with finitely many
consumers, if utility functions are concave, then any equilibrium allocation
maximizes a weighted sum of the consumers’ utilities and any allocation
that does that is the allocation of an equilibrium with transfer payments.
Similar assertions apply to the Samuelson model and appear in section 9.6.
I introduce these ideas here in the context of stationary equilibria, which
are much simpler than nonstationary ones.

definition 9.19 Let r > 0. A stationary r-discounted optimum, (x0, x1),
is a stationary solution, x = (x1, (x0, x1), (x0, x1), . . .), to the optimization
problem

max xt0∈R
N
+ , xt−1, 1∈R

N
+

for all t

[(1 + r)u(x−1, 0, x−1, 1) +
∞∑
t=0

(1 + r)−tu(xt0, xt1)]

s.t. xt0 + xt−1, 1 ≤ e0 + e1, for t ≥ 0, (9.21)

where x−1, 0 = x0.
If the allocation x = (x−1, 1, (x00, x01), (x10, x11), . . .) solves problem

9.21, then for each nonnegative integer T , (xT 0, xT −1, 1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

[(1 + r)u(xT −1, 0, x1) + u(x0, xT 1)]

s.t. x0 + x1 ≤ e0 + e1.
(9.22)
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To see that this is so, fix xt0 to equal xt0 and fix xt−1, 1 to equal xt−1, 1,
for t �= T in the objection function of problem 9.21. Then that problem
becomes

max
xT 0∈R

N
+ , xT −1, 1∈R

N
+

[
(1 + r)u(x−1, 0, x1, 1) +

T −2∑
t=0

(1 + r)−1u(xt0, xt1)

+(1 + r)−T +1u(xT −1, 0, xT −1, 1) + (1 + r)−T u(xT 0, xT 1)

+
∞∑

t=T +1

(1 + r)−tu(xt0, xt1)

]

s.t. xT 0 + xT −1, 1 ≤ e0 + e1.

If we eliminate constant terms from the objective function of this maxi-
mization problem and multiply that function by (1 + r)T , we obtain prob-
lem 9.22.

If x is stationary, then (xt0, xt−1, 1) = (x0, x1), for all t , so that if x is a
stationary r-discounted optimum, then problem 9.22 becomes

max
x0∈R

N
+ , x1∈R

N
+

[(1 + r)u(x0, x1) + u(x0, x1)]

s.t. x0 + x1 ≤ e0 + e1.
(9.23)

In this maximization problem, the vector (x0, x1) is held fixed, and if it is a
stationary optimum, then the solution to the problem is (x0, x1) again.

I show that stationary prices may be associated with a stationary r-
discounted optimum so as to form stationary spot price equilibrium.

theorem 9.20 Assume that u is differentiable, concave, and strictly
increasing, that e0 + e1 � 0, and that r > 0. If (x0, x1) is a stationary
r-discounted optimum or if it solves problem 9.23, then there exists an
N-vector P0, such that P0 � 0 and (x0, x1, P0, r , G, T) is a stationary spot
price equilibrium, where G = (1 + r)−1P0.(x1 − e1).

Proof. We know that (x0, x1) solves problem 9.23, either by assumption
or because stationary r-discounted optima do so. Because e0 + e1 � 0, that
problem satisfies the constraint qualification of the Kuhn-Tucker theorem
(theorem 6.3 in section 6.1). Because u is strictly increasing, x0 + x1 =
e0 + e1. The Kuhn-Tucker theorem therefore implies that there exists a
nonnegative N-vector, P0, such that (x0, x1) solves the problem
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max
x0∈R

N
+ , x1∈R

N
+

[(1 + r)u(x0, x1) + u(x0, x1) − P0.(x0 + x1)].

Since u is differentiable, it follows from calculus or from proposition 6.18
(in section 6.4) that for all n,

∂u(x0, x1)

∂x0n

≤ P0n,

with equality if x0n > 0, and

(1 + r)
∂u(x0, x1)

∂x1n

≤ P0n, (9.24)

with equality if x1n > 0. I may now apply theorem 6.19 (in section 6.4) with
K = 1 and λ1 = 1 to see that (x0, x1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. P0.x0 + (1 + r)−1P0.x1 ≤ P0.e0 + (1 + r)−1P0.e0 − T,
(9.25)

where

T = P0.(e0 − x0) + (1 + r)−1P0.(e1 − x1).

Let G be defined by the equation

(1 + r)G = P0.(x1 − e1).

Inequality 9.24 and proposition 6.18 (in section 6.4) imply that x1 solves
the problem

max
x1∈R

N
+

u(x0, x1)

s.t. P0.x1 ≤ P0.e1 + (1 + r)G.
(9.26)

Since u is strictly increasing, P0 � 0, for otherwise, neither problem 9.25
nor problem 9.26 has a solution. This completes the verification that
(x0, x1, P0, r , G, T) has all the properties of a stationary spot price equi-
librium.

It is possible to make a counterexample to this theorem if u is not dif-
ferentiable. I do not give one for lack of space. This theorem implies that a
stationary optimum may be realized as the allocation of a stationary spot
price equilibrium. It remains to prove the converse—that the allocation
of a stationary spot price equilibrium with positive interest rate r is an r-
discounted stationary optimum.
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theorem 9.21 Assume that u is continuous, concave, and strictly in-
creasing and that e0 + e1 � 0 and r > 0. If (x0, x1, P0, r , G, T) is a sta-
tionary spot price equilibrium, then (x0, x1) is a stationary r-discounted
optimum.

Proof. By the definition of a stationary spot price equilibrium, (x0, x1)

solves problem 9.25. Because u is strictly increasing, it follows that P0 � 0,
for otherwise, problem 9.25 would not have a solution. Therefore, x0 +
x1 = e0 + e1, by condition (8) of definition 9.11 of a spot price equilibrium.
Since x0 + x1 = e0 + e1 � 0 and P0 � 0, it follows that

P0.x0 + (1 + r)−1P0.x1 > 0,

so that problem 9.25 satisfies the conditions of proposition 6.14 (in sec-
tion 6.3). Therefore, by that proposition there exists a positive number λ

such that (x0, x1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

[
u(x0, x1) − λ

(
P0.x0 + (1 + r)−1P0.x1

)]
.

It follows that x−1, 1 = x1 solves the problem

max
x−1, 1∈R

N
+

[(1 + r)u(x0, x−1, 1) − λP0.x1, 1].

Similarly, (xt0, xt1) = (x0, x1) solves the problem

max
xt0∈R

N
+ , xt1∈R

N
+

{(1 + r)−tu(xt0, xt1) − λ[(1 + r)−tP0.xt0

+ (1 + r)−t−1P0.xt1]},

for any t ≥ 0, and xT 0 = x0 solves the problem

max
xT 0∈R

N
+

[(1 + r)−T u(xT 0, x1) − λ(1 + r)−T P0.xT 0],

for any T > 0. Adding the objective functions of these maximization prob-
lems, we see that (xt0, xt−1, 1)

T
t=0 = (x0, x1)

T
t=0 solves the problem

max
xt0∈R

N
+ , xt−1, 1∈R

N
+

[
(1 + r)u(x0, x−1, 1) +

T −1∑
t=1

(1 + r)−tu(xt0, xt1)

+(1 + r)−T u(xT 0, x1) − λ

T∑
t=0

(1 + r)−tP0.(xt−1, 1 + xt0)

]
.
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The Kuhn-Tucker theorem 6.3 (in section 6.1) implies that the allocation
(xt0, xt−1, 1)

T
t=0 = (x0, x1)

T
t=0 solves the problem

max xt0∈R
N
+ , xt−1, 1∈R

N
+ ,

for t=0, . . . , T

[
(1 + r)u(x0, x−1, 1) +

T −1∑
t=1

(1 + r)−tu(xt0, xt1)

+ (1 + r)−T u(xT 0, x1)
]

s.t. xt−1, 1 + xt0 ≤ e0 + e1, for t = 0, . . . , T .

(9.27)

I now show that the stationary allocation x = (x1, (x0, x1), (x0, x1), . . .)
solves problem 9.21. Suppose that it does not. Then there exists a feasible
allocation (xt−1, 1, xt0)

∞
t=0 such that for some positive number ε,

(1 + r)u(x0, x−1, 1) +
∞∑
t=0

(1 + r)−tu(xt0, xt1)

> (1 + r)u(x0, x1) +
∞∑
t=0

(1 + r)−tu(x0, x1) + ε.

I now derive a contradiction. Since feasible allocations are bounded,
there is a positive number b such that for any feasible allocation (xt−1, 1,
xt0)

∞
t=0, xt0n ≤ b and xt1n ≤ b, for all t and n. Let B = u(b, b, . . . , b).

Choose a positive integer T such that

4B(1 + r)−T

min(1, r)
< ε.

Notice that if (xt−1, 1, xt0)
∞
t=0 is any feasible allocation, then∣∣∣∣∣

∞∑
t=T +1

(1 + r)−tu(xt0, xt1)

∣∣∣∣∣≤
∞∑

t=T +1

(1 + r)−t
∣∣u(xt0, xt1)

∣∣

≤ B

∞∑
t=T +1

(1 + r)−t = B(1 + r)−T

r
<

ε

4
,

and similarly

(1 + r)−T |u(xT 0, xT 1)| ≤ (1 + r)T B <
ε

4
.
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Therefore,

(1 + r)u(x0, x−1, 1) +
T −1∑
t=0

(1 + r)−tu(xt0, xt1) + (1 + r)−T u(xT 0, x1)

+ 2B(1 + r)−T + B(1 + r)−T

r

≥ (1 + r)u(x0, x−1, 1) +
T −1∑
t=0

(1 + r)−tu(xt0, xt1) + (1 + r)−T u(xT 0, x1)

+ (1 + r)−T [u(xT 0, xT 1) − u(xT 0, x1)]+
∞∑

t=T +1

(1 + r)−tu(xt0, xt1)

= (1 + r)u(x0, x−1, 1) +
∞∑
t=0

(1 + r)−tu(xt0, xt1)

> (1 + r)u(x0, x1) +
∞∑
t=0

(1 + r)−tu(x0, x1) + ε

> (1 + r)u(x0, x1) +
T∑

t=0

(1 + r)−tu(x0, x1) + ε − B(1 + r)−T

r
.

Therefore,

(1 + r)u(x0, x−1, 1) +
T −1∑
t=0

(1 + r)−tu(xt0, xt1) + (1 + r)−T u(xT 0, x1)

> (1 + r)u(x0, x1) +
T∑

t=0

(1 + r)−tu(x0, x1) + ε − 2B(1 + r)−T

r

− 2B(1 + r)−T > (1 + r)u(x0, x1) +
T∑

t=0

(1 + r)−tu(x0, x1),

where the last inequality follows from the choice of ε. The strict inequality
between the extreme left- and right-hand sides is impossible, because the
allocation (xt0, xt−1, 1)

T
t=0 = (x0, x1)

T
t=0 solves problem 9.27. This contra-

diction proves that the stationary allocation x = (x1, (x0, x1), (x0, x1), . . .)
solves problem 9.21.

We know that an r-discounted optimum solves problem 9.23. Theo-
rems 9.20 and 9.21 imply that if u is differentiable, concave, and strictly
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increasing and if e0 + e1 � 0 and r > 0, then a solution of problem 9.23 is
an r-discounted optimum, so that a stationary allocation is an r-discounted
optimum if and only if it solves this problem. If in addition there is only one
commodity, so that N = 1, and if x0 > 0 and x1 > 0, then (x0, x1) solves
problem 9.23 if and only if

x0 + x1 = e0 + e1

and

(1 + r)
∂u(x0, x1)

∂x1

= ∂u(x0, x1)

∂x0

,

which are the equations 9.15 and 9.16 (in section 9.3) that characterize the
allocation of a stationary equilibrium.

I now prove that stationary optima exist.

theorem 9.22 Assume that u is differentiable, strictly concave, and
strictly increasing and that e0 + e1 � 0 and r > 0. Then there exists a sta-
tionary allocation (x0, x1) that solves problem 9.23, and this allocation is a
stationary r-discounted optimum.

Proof. By theorem 9.20, any solution (x0, x1) of problem 9.23 is the allo-
cation of a stationary spot price equilibrium (x0, x1, P0, r , G, T). By theo-
rem 9.21, the allocation of such an equilibrium is a stationary r-discounted
optimum. Therefore, it is sufficient to prove that there is an (x0, x1) that
solves problem 9.23.

The objective function, (1 + r)u(x0, x1) + u(x0, x1), of problem 9.23
is continuous and strictly concave with respect to all variables. Further-
more, the maximization is over the nonempty, compact, and convex set,
� = {(x0, x1) ∈ R

N
+ × R

N
+ | x0 + x1 ≤ e0 + e1}. I will show that the maxi-

mizing value, (x0, x1), in problem 9.23, is a well-defined and continuous
function, f (x0, x1), of the variables (x0, x1). Hence, f has a fixed point by
the Brouwer fixed point theorem. That is, there is a vector (x0, x1) ∈ � such
that f (x0, x1) = (x0, x1). Such a fixed point is a stationary r-discounted
optimum by the argument of the previous paragraph.

To prove that f is well defined, observe that since u is continuous and �

is compact and nonempty, it follows from proposition 3.14 (in section 3.2)
that problem 9.23 has at least one solution. Suppose that there are two
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distinct solutions, (x1
0, x1

1) and (x2
0 , x2

1). Then,

(1 + r)u(x0, x1
1) + u(x1

0, x1) = (1 + r)u(x0, x2
1) + u(x2

0 , x1).

Let (x0, x1) = 1
2(x1

0, x1
1) + 1

2(x2
0 , x2

1). Then (x0, x1) ∈ �, and because u is
strictly concave,

(1 + r)u(x0, x1) + u(x0, x1)

>
1

2
[(1 + r)u(x0, x1

1) + u(x1
0, x1)]+ 1

2
[(1 + r)u(x0, x2

1) + u(x2
0 , x1)]

= (1 + r)u(x0, x1
1) + u(x1

0),

which is impossible since (x1
0, x1

1) solves problem 9.23. This proves that f

is a function.
It remains to prove that f is continuous. Let (xk

0, xk
1), for k = 1, 2, . . . ,

be a sequence in � such that (xk
0, xk

1) converges to (x0, x1) in � as k goes

to infinity. I must show that f (xk
0, xk

1) converges to f (x0, x1). If f (xk
0, xk

1)

does not converge to f (x0, x1), then there exists a positive number ε and a

subsequence, (xk(m)
0 , xk(m)

1 ) of (xk
0, xk

1), such that

‖f (xk(m)
0 , xk(m)

1 ) − f (x0, x1)‖ > ε , (9.28)

for all m. Since the f (xk(m)
0 , xk(m)

1 ) belong to the compact set �, the
Bolzano-Weierstrass theorem (3.12 in section 3.2) implies that there is

a subsequence of (xk(m)
0 , xk(m)

1 ), which I call (xk(m)
0 , xk(m)

1 ) again, such

that f (xk(m)
0 , xk(m)

1 ) converges. Let (x0, x1) = limm→∞ f (xk(m)
0 , xk(m)

1 ).
Then (x0, x1) ∈ �, and passage to the limit in inequality 9.28 implies that
‖(x0, x1) − f (x0, x1)‖ ≥ ε, so that (x0, x1) �= f (x0, x1). Let f (x0, x1) =
(x∗

0 , x∗
1). Because (x∗

0 , x∗
1) is the unique solution of problem 9.23, it follows

that

(1 + r)u(x0, x1) + u(x0, x1) < (1 + r)u(x0, x∗
1) + u(x∗

0 , x1). (9.29)

Let (xk(m)
0 , xk(m)

1 ) = f (xk(m)
0 , xk(m)

1 ). Then,

lim
m→∞ f (xk(m)

0 , xk(m)
1 ) = lim

m→∞(xk(m)
0 , xk(m)

1 ) = (x0, x1). (9.30)

By assumption,

lim
m→∞(xk(m)

0 , xk(m)
1 ) = (x0, x1). (9.31)
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Equations 9.30 and 9.31 and the continuity of u imply that

lim
m→∞[(1 + r)u(xk(m)

0 , xk(m)
1 ) + u(xk(m)

0 , xk(m)
1 )]

= (1 + r)u(x0, x1) + u(x0, x1).
(9.32)

Equation 9.31 and the continuity of u imply that

lim
m→∞[(1 + r)u(xk(m)

0 , x∗
1) + u(x∗

0 , xk(m)
1 )]= (1 + r)u(x0, x∗

1) + u(x∗
0 , x1).

(9.33)

Inequality 9.29 and equations 9.32 and 9.33 imply that, for m sufficiently
large,

(1 + r)u(xk(m)
0 , xk(m)

1 ) + u(xk(m)
0 , xk(m)

1 ) < (1 + r)u(xk(m)
0 , x∗

1)

+ u(x∗
0 , xk(m)

1 ),

and this inequality contradicts the definition of the function f and the

fact that (xk(m)
0 , xk(m)

1 ) = f (xk(m)
0 , xk(m)

1 ). This contradiction proves that
limk→∞ f (xk

0, xk
1) = f (x0, x) and hence that f is continuous.

This theorem implies that there exists a stationary spot price equilib-
rium, for it implies that there is a stationary allocation (x0, x1) that solves
problem 9.23, and by theorem 9.20, such solutions are allocations of sta-
tionary spot price equilibria.

How are we to interpret the previous three theorems? We may think of
the interest rate in a stationary spot price equilibrium (x0, x1, P0, r , G, T)

as determined by monetary policy, and we may think of the tax rate, T,
as an instrument of fiscal policy. Loosely speaking, the interest and tax
rate determine the equilibrium. Whether the government is aware of its
influence or not, its policy determines interest rates, price levels, and a
path for the economy that maximizes some welfare function, provided the
economy is such that the model applies. Similarly, the government may act
so as to maximize a given welfare function. This result is proved here only
for stationary equilibria and welfare functions, but we will see (theorem
9.28 in section 9.6) that it applies to nonstationary ones as well.

If u is differentiable, then a stationary spot price equilibrium may be
characterized by conditions 9.34–9.38 below, which correspond to condi-
tions 9.15–9.18 (in section 9.3).

∂u(x0, x1)

∂x0n

≤ P0n, (9.34)
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with equality if x0n > 0, for n = 1, 2, . . . , N .

(1 + r)
∂u(x0, x1)

∂x1n

≤ P0n, (9.35)

with equality if x1n > 0, for n = 1, 2, . . . , N . Because u is strictly increas-
ing, feasibility holds with equality rather than inequality, and so

x0n + x1n = e0n + e1n, (9.36)

for n = 1, 2, . . . , N .

G = (1 + r)−1P0.(x1 − e1), (9.37)

and

T = rG. (9.38)

These make 3N + 2 conditions on the 3N + 2 variables G, T, and (x0n, x1n,
P0n), for n = 1, 2, . . . , N . Notice that the consumer’s marginal utility of
unit of account in this equilibrium equals 1, so that utility is, in a sense, the
unit of account.

When N = 1, stationary spot price equilibria may be visualized as in
figure 9.4 (in section 9.3). This figure helps us to consider the uniqueness of
stationary equilibria and optima. A glance at the figure should indicate that
there is no reason that the indifference curve through x should not have
the same slope at many points x along the feasibility line between A and
B. Example 9.26 (in section 9.5) shows that this possibility is real and that
stationary equilibria and optima may not be unique. The next proposition
points out that no such example can be constructed, however, if the utility
function u is additively separable.

proposition 9.23 If u is strictly concave and additively separable in the
sense that u(x0, x1) = u0(x0) + u1(x1), then there is at most one stationary
solution to welfare maximization problem 9.21.

Proof. We know that x is a stationary solution to welfare maximization
problem 9.21 if and only if (x0, x1) solves problem 9.22. If u is additively
separable, this problem takes the form

max
x0∈R

N
+ , x1∈R

N
+

[(1 + r)[u0(x0) + u1(x1)]+ u0(x0) + u1(x1)]

s.t. x0 + x1 ≤ e0 + e1,
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which has the same solutions as the problem

max
x0∈R

N
+ , x1∈R

N
+

[(1 + r)u1(x1) + u0(x0)]

s.t. x0 + x1 ≤ e0 + e1.
(9.39)

Since u is strictly concave, u0 and u1 are strictly concave, so that (1 +
r)u1(x1) + u0(x0) is strictly concave and the solution to problem 9.39 is
unique.

Another consequence of the additive separability of u is that it eliminates
the need to assume that u is differentiable in theorem 9.20.

proposition 9.24 Assume that e0 + e1 � 0 and that u is strictly
concave, strictly increasing, and is additively separable in the sense that
u(x0, x1) = u0(x0) + u1(x1). If (x0, x1) is a stationary solution to welfare
maximization problem 9.21, then there exists an N-vector, P0, such that
P0 � 0 and (x0, x1, P0, r , G, T) is a stationary spot price equilibrium,
where G = (1 + r)−1P0.(x1 − e1) and T = rG.

Proof. From the proof of the previous proposition, we know that (x0, x1)

solves problem 9.39. Application of the Kuhn-Tucker theorem directly to
this maximization problem yields a price vector P0 such that (x0, x1) solves
the problem

max
x0∈R

N
+ , x1∈R

N
+

[(1 + r)u1(x1) + u0(x0) − P0.(x0 + x1)].

This problem, in turn, decomposes into two problems,

max
x0∈R

N
+

[u0(x0) − P0.x0] (9.40)

and

max
x1∈R

N
+

[(1 + r)u1(x1) − P0.x1].

The latter problem has the same solutions as the problem

max
x1∈R

N
+

[u1(x1) − (1 + r)−1P0.x1]. (9.41)

Problems 9.40 and 9.41 may be consolidated into the single problem

max
x0∈R

N
+ , x1∈R

N
+

[u0(x0) + u1(x1) − P0.x0 + (1 + r)−1P0.x1)].
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Since (x0, x1) solves this last problem, by the Kuhn-Tucker theorem it solves
the problem

max
x0∈R

N
+ , x1∈R

N
+

[u0(x0) + u1(x1)]

s.t. P0.x0 + (1 + r)−1P0.x1 ≤ P0.e0 + (1 + r)−1P0.e1 − T,

where

T = P0.(e0 − x0) + (1 + r)−1P0.(e1 − x1).

This is the problem solved by a consumer in a stationary spot price equilib-
rium. The rest of the proof is just like that of theorem 9.20.

According to the next theorem, additive separability of the utility func-
tion eliminates the influence of the initial consumption x−1, 0 on the solu-
tion of welfare maximization problem 9.21.

proposition 9.25 If the utility function u is additively separable and
strictly concave, then welfare maximization problem 9.21 has a unique
solution and it is stationary.

Proof. Any solution x to problem 9.21 solves the problem

max
x0∈R

N
+ , x1∈R

N
+

[(1 + r)u(xt−1, 0, x1) + u(x0, xt1)]

s.t. x0 + x1 ≤ e0 + e1,

for each t . Since u is additively separable, this problem becomes

max
x0∈R

N
+ , x1∈R

N
+

[(1 + r)(u0(xt−1, 0) + u1(x1)) + u0(x0) + u1(xt1)]

s.t. x0 + x1 ≤ e0 + e1.

After elimination of the constant terms u0(xt−1, 0) and u1(xt , 1) from the
objective function, this problem becomes problem 9.39, which has only one
solution because u is strictly concave. Therefore, problem 9.21 has a unique
solution and it is stationary.

The use of an additive utility function for consumption makes clear how
the discounting of the welfare of future generations influences the distribu-
tion of consumption between young and old consumers. If u is additively
separable, then a solution, x, of problem 9.21 is such that (xt−1, 1, xt0)



400 9 Samuelson’s Overlapping Generations Model

solves problem 9.39, for each t . The objective function of this problem, (1+
r)u1(x1) + u0(x0), clearly gives greater weight to the utility of the old than
that of the young. If u is strictly concave, then the solution of problem 9.39
is unique. Call this solution (x1, x0), so that (xt−1, 1, xt0) = (x1, x0), for
all t . It should be clear that u1(x1) is a nondecreasing function of r and that
u0(x0) is a nonincreasing function of r .

9.5 Nonuniqueness of Equilibrium

In this section, I give two examples of Samuelson models with more than
one equilibrium. The first example shows that stationary equilibrium al-
locations and hence r-discounted optima may not be unique when the
discount rate is positive, even if the utility function is strictly concave.

example 9.26 (Multiple stationary optima and equilibrium allocations)
Consider the stationary Samuelson model with one commodity and where
e0 = 1 and e1 = 0 and the utility function is

u(x0, x1) = min(4x0 + 2x1, 3x0 + x1 + 1) − 1

3(1 + x0)
− 1

3(1 + x1)
.

I claim that any stationary allocation is the allocation of a stationary
equilibrium if the nominal interest rate, r , is such that

27

25
≤ r ≤ 21

16
. (9.42)

An example of such an interest rate is r = 1.2.
The function min(4x0 + 2x1, 3x0 + x1 + 1) is concave and strictly in-

creasing, because it is the minimum of two concave and strictly increasing
functions. The utility function u is strictly concave and strictly increasing,
since the function − 1

3(1+x0)
− 1

3(1+x1)
is strictly concave and strictly increas-

ing and the function min(4x0 + 2x1, 3x0 + x1 − 1) is concave and increas-
ing. This function is not differentiable, however. If we set 4x0 + 2x1 equal
to 3x0 + x1 + 1, we obtain the equation x0 + x1 = 1, and the indifference
curves of u have a kink along this line. I compute the slope of this indiffer-
ence curve on each side of the line. The slope above the line is
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−
∂u(x0, 1 − x0)

∂x0+
∂u(x0, 1 − x0)

∂x1+
= −

3 + 1

3(1 + x0)
2

1 + 1

3(2 + x0)
2

< −
3 + 1

3(4)

1 + 1
3

= −37

16
,

where the inequality holds because 0 ≤ x0 ≤ 1 and for x0 in this interval the
numerator of the fraction

−
3 + 1

3(1 + x0)
2

1 + 1

3(2 + x0)
2

is decreasing in x0 and the denominator is increasing in x0 and hence the
whole fraction is decreasing in x0. The slope below the line is

−
∂u(x0, 1 − x0)

∂x0−
∂u(x0, 1 − x0)

∂x1−
= −

4 + 1

3(1 + x0)
2

2 + 1

3(2 + x0)
2

> −
4 + 1

3

2 + 1

3(4)

= −52

25
,

where the inequality holds for reasons similar to those just given for the
previous inequality. Any feasible allocation along the line x0 + x1 = 1 is that
of a stationary equilibrium with interest rate r if

−37

16
≤ −(1 + r) ≤ −52

25
,

which is the same as inequality 9.42.
The next example, due to Gale (1973), shows that there may be many

spot price equilibria corresponding to one time path of taxes and interest
rates.

example 9.27 (Indeterminacy of spot price equilibrium in the Samuel-
son model) Consider the stationary Samuelson model with N = 1, e0 = 3

4 ,

e1 = 1
4 , and u(x0, x1) = ln(1 + x0) + ln(1 + 2x1).

It is easy to calculate that if P0 = 1, then the offer curve is {( 3
8P1 −

1
8 , 7

8P1
− 1

8) | P1 ≥ 0} and is as pictured in figure 9.5, where the axes are
labeled as in figure 9.2 (in section 9.2). The offer curve goes through
the initial endowment point, e = ( 3

4 , 1
4 ), when P1 = 7

3 . The offer curve
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e

x00

x–1,1

xt00 1
4

3
4

1
4

3
4

Offer curve

Feasibility line

xt1, xt–1,1

Figure 9.5 Multiplicity of equilibria in the Samuelson model

intersects the feasibility line again at the point ( 1
4 , 3

4 ). This point corre-
sponds to a Pareto optimal stationary spot price equilibrium with alloca-
tion (xt0, xt1) = (x0, x1) = ( 1

4 , 3
4 ) and price Pt = 1= P0, for every t . In this

equilibrium, the government debt is G = P0(x1 − e1) = 3
4 − 1

4 = 1
2 . I will

show that there is a distinct equilibrium, (xt−1, 0, xt0, Pt)
∞
t=0, for every ini-

tial price vector P0 such that P0 > 1. The consumption of the old person of
period 0 is

x−1, 1 = G

P0

+ e1 = 1

2P0

+ 1

4
,

so that 1
4 < x−1, 1 < 3

4 , if P0 > 1. Then, the consumption of the young per-

son of period 0 is x00 = e0 + e1 − x−1, 1 = 1 − ( 1
2P0

+ 1
4 ) = 3

4 − 1
2P0

. Since

the point (x00, x01) must be on the offer curve, we know that 3
4 − 1

2P0
=

x00 = 3
8

P1
P0

− 1
8 , so that P1 = 7

3P0 − 4
3 . By the same reasoning, we find that

Pt+1 = 7
3Pt − 4

3 , for all t ≥ 0. Therefore,



9.6 Discounted Optimality and Equilibrium 403

Pt =
(

7

3

)t

P0 −
(

7

3

)t−1 4

3
−
(

7

3

)t−2 4

3
− . . . − 4

3

=
(

7

3

)t

P0 − 4

3

[(
7
3

)t − 1
7
3 − 1

]

=
(

7

3

)t

(P0 − 1) + 1,

for all t ≥ 1, so that Pt diverges to infinity as t goes to infinity, since P0 > 1.
Therefore, xt−1, 1 = e1 + G

Pt+1
= 1

4 + 1
2Pt+1

, converges to 1
4 as t goes to infin-

ity. Similarly, xt0 = e0 + e1 − xt−1, 1 = 1− xt−1, 1, converges to 3
4 as t goes to

infinity. The evolution of xt0 and xt1 is portrayed by the zigzag dotted line in
figure 9.5. The allocation converges to the inefficient stationary allocation
equal to the initial endowment, and the real value of government debt con-
verges to 0 as the price level diverges to infinity. The equilibrium allocation
is itself inefficient, because a jump at any time to the stationary allocation
(x0, x1) = ( 3

4 , 1
4 ) would be a Pareto improvement. The significance of the

example, however, has nothing to do with economic efficiency but is that
the initial price level, P0, is indeterminate.

The possibility of indeterminacy demonstrated by this example calls into
question the assertion made in section 9.4 that monetary and fiscal policy
can control the economy so as to maximize any desired welfare function.

9.6 Discounted Optimality and Equilibrium

You may recall from theorem 3.31 (in section 3.5) that equilibrium alloca-
tions maximize a weighted sum of the consumers’ utility functions, when
utility functions are concave and production possibility sets are convex.
Furthermore, proposition 3.23 (in section 3.5) and the second welfare theo-
rem (5.14 in section 5.2) imply that an allocation that maximizes such a
weighted sum is the allocation of an equilibrium with transfer payments.
The same statements apply to equilibria in the Samuelson model. These
assertions reinforce the view that monetary and fiscal policy influence the
distribution of welfare between the young and the old.

I first show that an Arrow-Debreu equilibrium allocation maximizes a
welfare function.
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theorem 9.28 Assume that u is continuous, concave, and strictly in-
creasing. If (x , p, τ) is an Arrow-Debreu equilibrium with transfer pay-
ments such that x−1, 1 > 0 and xt0 + xt1 > 0, for all t , and

∞∑
t=0

pt < ∞, (9.43)

then the allocation x solves the problem

max
x is a feasible

allocation

[λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1)], (9.44)

where λt is consumer t ’s marginal utility of unit of account in the equilib-
rium, λt > 0, for all t , and

∑∞
t=−1 λ−1

t
< ∞.

Proof. First of all, I show that the λt exist, for all t , and that

∞∑
t=−1

λ−1
t

< ∞.

By definition 9.8 (in section 9.3) of an Arrow-Debreu equilibrium with
transfer payments, (xt0, xt1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. pt .x0 + pt+1.x1 ≤ pt .e0 + pt+1.e1 − τt ,
(9.45)

for all t ≥ 0. Because u is strictly increasing, it follows that pt � 0, for all t ,
for otherwise problem 9.45 would not have a solution. Since xt0 + xt1 > 0
and pt � 0, for all t , it follows that 0 < pt .xt1 + pt+1 ≤ pt .e0 + pt+1.e1 − τt ,
for all t , so that problem 9.45 satisfies the constraint qualification of the
Kuhn-Tucker theorem (6.3 in section 6.1). Therefore, all the assumptions of
proposition 6.14 (in section 6.3) apply, so that (xt0, xt1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

[u(x0, x1) − λt(pt .x0 + pt+1.x1)], (9.46)

where λt ≥ 0.
Because u is strictly increasing, λt > 0, for otherwise problem 9.46 would

not have a solution. I now obtain an upper bound on λ−1
t

. Because (xt0, xt1)

solves problem 9.46, it follows that

u(2e0 + 2e1, 2e0 + 2e1) − λt(pt + pt+1).(2e0 + 2e1)

≤ u(xt0, xt1) − λt(pt .xt0 + pt+1.xt1).
(9.47)
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Because u is nondecreasing, xt0 ≤ e0 + e1, xt1 ≤ e0 + e1, and λt ≥ 0, it
follows that

u(xt0, xt1) − λt(pt .xt0 + pt+1.xt1) ≤ u(e0 + e1, e0 + e1). (9.48)

Inequalities 9.47 and 9.48 together imply that

u(2e0 + 2e1, 2e0 + 2e1) − λt(pt + pt+1).(2e0 + 2e1) ≤ u(e0 + e1, e0 + e1).

(9.49)

Because u is strictly increasing and e0 + e1 > 0, it follows that

u(2e0 + 2e1, 2e0 + 2e1) > u(e0 + e1, e0 + e1),

so that inequality 9.49 implies that

λ−1
t

≤ (pt + pt+1).(2e0 + 2e1)

u(2e0 + 2e1, 2e0 + 2e1) − u(e0 + e1, e0 + e1)
.

Therefore,
∞∑
t−0

λ−1
t

≤ 2[u(2e0 + 2e1, 2e0 + 2e1) − u(e0 + e1, e0 + e1)]−1(e0 + e1)

.
∞∑
t=0

(pt + pt+1) < ∞,

(9.50)

where the last inequality follows from the assumed summability of the
sequence of price vectors pt .

Again, by the definition of Arrow-Debreu equilibrium, x−1, 1 solves the
problem

max
x1∈R

N
+

ut(x−1, 0, x1)

s.t. p0.x1 ≤ p0.e1 − τ−1.

Since p0 � 0 and x−1, 1 > 0, it follows that p0.x−1, 1 > 0. Therefore, all the
assumptions of proposition 6.14 (in section 6.3) apply and x−1, 1 solves the
problem

max
x1∈R

N
+

[u(x−1, 0, x1) − λ−1p0.x1], (9.51)

for some nonnegative number λ−1. Because u is strictly increasing, it now
follows that

λ−1 > 0. (9.52)
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Inequalities 9.50 and 9.52 imply that
∑∞

t=−1 λ−1
t

< ∞, as was to be proved.
I use the value loss method to prove that x solves problem 9.44. For t ≥ 0,

define the value loss function, L−1 : RN
+ × R

N
+ → R, by the equation

L−1(x−1, 1) = [λ−1
−1u(x−1, 0, x−1, 1) − p0.x−1, 1]

− [λ−1
−1u(x−1, 0, x−1, 1) − p0.x−1, 1].

For t ≥ 0, define the value loss function, Lt1 : R
N
+ × R

N
+ → R, by the

equation

Lt (xt0, xt1) =
[
λ−1

t
u(xt0, xt1) − pt .xt0 − pt .xt1

]
−
[
λ−1

t
u(xt0, xt1) − pt .xt0 − pt .xt1

]
.

Because x−1, 1 solves problem 9.51, L−1(x1) ≥ 0, for all x1 ∈ R
N
+ . Similarly,

because (xt0, xt1) solves problem 9.46, Lt (x0, x1) ≥ 0, for all (x0, x1) and
for all t ≥ 0. Let x be any feasible allocation. Then,

0 ≤ L−1(x−1, 1) +
∞∑
t=0

Lt (xt0, xt1)

= λ−1
−1[u(x−1, 0, x−1, 1) − u(x−1, 0, x−1, 1)]

+
∞∑
t=0

λ−1
t

[u(xt0, xt1) − u(xt0, xt1)]

+
∞∑
t=0

pt .(xt0 + xt−1, 1 − xt0 − xt−1, 1)

≤ λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1) − [λ−1
−1u(x−1, 0, x−1, 1)

+
∞∑
t=0

λ−1
t

u(xt0, xt1)].

(9.53)

Because
∑∞

t=−1 λ−1
t

< ∞ and
∑∞

t=0 pt < ∞, the terms in the infinite sum
L−1(x−1, 1) +∑∞

t=0 Lt (xt0, xt1) converge absolutely, so that the infinite
sum does not change when the order of summation is changed. This rea-
soning explains the equation in 9.53. The second inequality is valid, because
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∞∑
t=0

pt .(xt0 + xt−1, 1 − xt0 − xt−1, 1)

=
∞∑
t=0

pt .(xt0 + xt−1, 1 − e0 − e1) +
∞∑
t=0

pt .(e0 + e1 − xt0 − xt−1, 1)

=
∞∑
t=0

pt .(xt0 + xt−1, 1 − e0 − e1) ≤ 0.

The second equation here follows from the feasibility of the allocation x and
condition (6) in definition 9.8 (in section 9.3) of an Arrow-Debreu equilib-
rium with transfer payments. The inequality follows from the feasibility of
the allocation x and from the nonnegativity of the price vectors pt . Inequal-
ity 9.53 proves that allocation x solves problem 9.44.

Any allocation that solves a welfare maximization problem of the form
of 9.44 is Pareto optimal.

The next corollary is the application of the previous theorem to spot
price equilibria.

corollary 9.29 Assume that u is continuous, concave, and strictly
increasing and that (x , P, r , G, T) is a spot price equilibrium such that
x−1, 1 > 0 and xt0 + xt1 > 0, for all t , and

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞,

where 1 + RT = (1 + r0)(1 + r1) . . . (1 + rT ), for t ≥ 0. For each t , let �t

be the marginal utility of unit of account of consumer t in the equilibrium
(x , P, r , G, T), where �−1 is measured from the point of view of period −1.
Then, the allocation x solves the welfare maximization problem

max
x is a feasible

allocation

[
(1 + r−1)�

−1
−1u(x−1, 0, x−1, 1) + �−1

0 u(x00, x01)

+
∞∑
t=1

(1 + Rt−1)
−1�−1

t
u(xt0, xt1)

] (9.54)

and

(1 + r−1)�
−1
−1 + �−1

0 +
∞∑
t=1

(1 + Rt−1)
−1�−1

t
< ∞.
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Proof. By proposition 9.12 (in section 9.3), the equilibrium (x , P, r , G, T)

may be converted to an Arrow-Debreu equilibrium with transfer pay-
ments, (x , p, τ), where p0 = P0 and pt = Pt

1+Rt−1
, for t ≥ 1. It follows

from these equations for the Arrow-Debreu prices that λ0 = �0, and λt =
(1 + Rt−1)�t , for t ≥ 1, where λt is the marginal utility of unit of ac-
count of consumer t in the Arrow-Debreu equilibrium. Notice that λ−1

is the marginal utility of unit of account for person −1 measured from
the point of view of period −1, when prices are p0 = P0. Similarly, �−1 is
the same marginal utility measured from the point of view of period −1,
when the present value of prices for period 0 are (1 + r−1)

−1P0, so that
λ−1 = (1 + r−1)

−1�−1. Theorem 9.28, therefore, implies that the alloca-
tion x solves problem 9.54 and that

(1 + r−1)�
−1
−1 + �−1

0 +
∞∑
t=1

(1 + Rt−1)
−1�−1

t
< ∞,

as was to be proved.

The previous corollary is easier to interpret when prices are normalized
so that every consumer’s marginal utility of unit of account is 1. The next
proposition says that such a normalization is possible and that, in fact,
we may choose any normalization for the price vectors Pt in a spot price
equilibrium.

proposition 9.30 Let (x , P, r , G, T) be a spot price equilibrium and,
for t ≥ −1, let bt be an arbitrary sequence of positive numbers. Let Pt =
btPt , for t ≥ 0. Then, (x , P, r , G, T) is also a spot price equilibrium, where

rt = bt+1
bt

(1 + rt) − 1, G = b−1
1+r−1

G, and Tt = btTt , for all t . If �t is the mar-

ginal utility of unit of account for consumer t in period t in the equilibrium
(x , P, r , G, T), then in the equilibrium (x , P, r , G, T), the marginal utility

of unit of account for consumer t in period t is �t

bt
, for all t ≥ −1. If

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞,

then

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞

as well, where 1 + RT = (1 + r0)(1 + r1) . . . (1 + rt), for t ≥ 0.
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Proof. To see that the equation for rt is correct for t ≥ −1, notice that in
the spot price equilibrium (x , P, r , G, T), person t faces price vector Pt in
youth and, in present-value terms from the point of view of youth, faces

price vector
Pt+1
1+rt

in old age. Let �t be the marginal utility of consumer t in

the equilibrium (x , P, r , G, T). If we are to have �t equal �t

bt
, then we must

have
P

t+1
1+r

t
= btPt+1

1+rt
as well as Pt = btPt . However,

btPt+1
1+rt

= bt+1Pt+1

b−1
t bt+1(1+rt )

=
P

t+1
1+r

t
, so that rt is correct in that it yields the equation �t = �t

bt
.

To see that the price summability condition of corollary 9.29 applies to
the equilibrium (x , P, r , G, T), notice that

(1 + RT −1) = (1 + r0)(1 + r1) . . . (1 + rT −1)

= b1

b0

(1 + r0)
b2

b1

(1 + r1) . . .
bT

bT −1

(1 + rT −1) = bT

b0

(1 + RT −1),

so that

PT

1 + RT −1

= bT PT

b−1
0 bT (1 + RT −1)

= b0PT

(1 + RT −1)
.

Therefore,

P0 +
∞∑
t=1

Pt

1 + Rt−1

= b0

[
P0 +

∞∑
t=1

Pt

1 + Rt−1

]
< ∞.

This proposition makes it possible to express corollary 9.29 as follows.

corollary 9.31 Assume that u is continuous, concave, and strictly in-
creasing and that (x , P, r , G, T) is a spot price equilibrium such that x−1, 1

and xt0 + xt1 > 0, for all t , and

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞,

where 1 + Rt = (1 + r0)(1 + r0)(1 + r1) . . . (1 + rt), for t ≥ 0. Then, the
spot equilibrium price vectors may be normalized to create a spot price
equilibrium (x , P, r , G, T) in which the marginal utility of unit of account
in youth of every consumer is 1 and the allocation x solves the welfare
maximization problem
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max
x is a feasible

allocation

[
(1 + r−1)u(x−1, 0, x−1, 1) + u(x00, x01)

+
∞∑
t=1

(1 + Rt−1)
−1u(xt0, xt1)

] (9.55)

and

(1 + r−1) + 1 +
∞∑
t=1

(1 + Rt−1)
−1 < ∞,

where 1 + Rt = (1 + r0)(1 + r1) . . . (1 + rt), for t ≥ 0.

Proof. For t ≥ −1, let �t be the marginal utility of unit of account of
consumer t in youth in the equilibrium (x , P, r , G, T) and apply propo-
sition 9.30 to (x , P, r , G, T) with bt = �t .

If the equilibrium of corollary 9.31 is stationary, then that corollary im-
plies theorem 9.21 (in section 9.4).

I now turn to a converse of theorem 9.28 that is analogous to the second
welfare theorem.

theorem 9.32 Assume that u is continuous, concave, and strictly in-
creasing and that e0 + e1 � 0. Suppose that the allocation x solves the
problem

max
x is a feasible

allocation

[λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1)], (9.56)

where λt > 0, for all t , and
∑∞

t=−1 λ−1
t

< ∞. Then, x is the allocation of an
Arrow-Debreu equilibrium with transfer payments, (x , p, τ), satisfying the
conditions pt � 0, for all t , and

∑∞
t=0 pt < ∞. For each t , the number λt is

consumer t ’s marginal utility of unit of account in the equilibrium.

Proof. This theorem is a consequence of theorem 9.49 (in section 9.9),
which asserts that xt0 + xt−1, 1 = e0 + e1, for all t , and that there exists a
sequence of N-vectors, pt , for t = 0, 1, . . . , such that pt � 0, for all t , and∑∞

t=0 pt < ∞, and the allocation x solves the problem
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max
x is a bounded

allocation

[λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1)

−
∞∑
t=0

pt .(xt0 + xt−1, 1)].

Hence, for any bounded allocation x,

λ−1
−1u(x−1, 0, x11) +

∞∑
t=0

λ−1
t

u(xt0, x11) −
∞∑
t=0

pt .(xt0 + xt−1, 1)

≥ λ−1
−1u(x−1, 0, x11) +

∞∑
t=0

λ−1
t

u(xt0, x11) −
∞∑
t=0

pt .(xt0 + xt−1, 1).

(9.57)

I show that for t ≥ 0, (xt0, xt1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. pt .x0 + pt+1.x1 ≤ pt .e0 + pt+1.e1 − τt ,
(9.58)

where τt = pt .(e0 − xt0) + pt+1.(e1 − xt1). Let all the unbarred consump-
tion variables in inequality 9.57 equal the corresponding barred values, ex-
cept xt0 and xt1. By canceling like terms on both sides of the inequality, we
see that

λ−1
t

u(xt0, xt1) − pt .xt0 − pt+1.xt1

≥ λ−1
t

u(xt0, xt1) − pt .xt0 − pt+1.xt1.
(9.59)

If (xt0, xt1) > 0, then pt .xt0 + pt+1.xt1 > 0, since pt � 0 and pt+1 � 0.
Therefore, the constraint qualification of proposition 6.14 (in section 6.3)
applies. Since all the other assumptions of that proposition apply, (xt0, xt1)

solves problem 9.58. If (xt0, xt1) = 0, then the budget set of problem 9.58
contains only the zero vector, since pt � 0 and pt+1 � 0, and therefore
(xt0, xt1) = 0 solves that problem.

I next show that x−1, 1 solves the problem

max
x1∈R

N
+

u(x−1, 0, x1)

s.t. p0.x1 ≤ p0.e1 − τ−1,
(9.60)

where τ−1 = p0.(e0 − x−1, 1). Set all the unbarred consumption variables
in inequality 9.57 equal to the corresponding barred values, except x−1, 1.
Then, after canceling like terms on both sides of that inequality, we see that

λ−1
−1u(x−1, 0, x−1, 1) − p0.x−1, 1 ≥ λ−1

−1u(x−1, 0, x−1, 1) − p0.x−1, 1. (9.61)
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Arguing as in the previous paragraph, we see that inequality 9.61 implies
that x−1, 1 solves problem 9.60.

Since x is a feasible allocation, (x , p, τ) satisfies all the conditions of an
Arrow-Debreu equilibrium with transfer payments. Inequalities 9.59 and
9.61 imply that for each t ≥ −1, λt is the marginal utility of unit of account
of consumer t in the Arrow-Debreu equilibrium.

The welfare maximization problem 9.56 has a solution, by theorem 9.50
(in section 9.9). Therefore, theorem 9.32 implies that there exists an Arrow-
Debreu equilibrium with transfer payments in the Samuelson model. I now
turn to converses of corollary 9.31.

corollary 9.33 Assume that u is continuous, concave, and strictly in-
creasing and that e0 + e1 � 0. Suppose that the allocation x solves the
problem

max
x is a feasible

allocation

[
(1 + r−1)u(x−1, 0, x−1, 1) + u(x00, x01)

+
∞∑
t=1

(1 + Rt−1)
−1u(xt0, xt1)

]
,

(9.62)

where

(1 + r−1) + 1 +
∞∑
t=1

(1 + Rt−1)
−1 < ∞, (9.63)

1 + Rt = (1 + r0)(1 + r1) . . . (1 + rt), for t ≥ 1, and rt > −1, for t ≥ −1.
Then, x is the allocation of a spot price equilibrium, (x , P, r , G, T), in
which the marginal utility of unit of account of every consumer is 1 and the
interest rates are r = (r−1, r0, . . .). This equilibrium satisfies the condition

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞.

Proof. Let λ−1 = (1 + r−1)
−1, λ0 = 1, and λt = (1 + Rt). Inequality 9.63

implies that
∑∞

t=−1 λ−1
t

< ∞, so that theorem 9.32 implies that x is the allo-
cation of an Arrow-Debreu equilibrium with transfer payments, (x , p, τ),
such that

∑∞
t=0 Pt < ∞ and, for all t , pt � 0, and λt is the marginal util-

ity of unit of account of consumer t . Define the spot price equilibrium,
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(x , P, r , G, T), by the equations

P0 = p0, Pt = (1 + Rt−1)pt , for t > 0,

T0 = τ0, Tt = (1 + Rt−1)τt , for t > 0, and

G + −(1 + r−1)
−1τ−1.

I begin by showing that prices and interest rates in (x , P, r , G, T) are
such that the marginal utility of every consumer is 1. From the point of view
of each consumer, the Arrow-Debreu equilibrium, (x , p, τ), is the same
as a spot price equilibrium with interest rate always equal to 0, with price
vector pt and tax τt in period t , and with G = −τ−1. The above formulas for
the parameters of the spot price equilibrium (x , P, r , G, T) can be obtained
by applying proposition 9.30 to (x , p, τ) with bt = λt , for t ≥ −1, where λt

is as defined above. Proposition 9.30 implies that the marginal utility of unit
of account of every consumer is 1 in the equilibrium (x , P, r , G, T).

Since the equilibrium (x , p, τ) satisfies the condition
∑∞

t=0 pt < ∞, it
follows that

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞.

If we assume that rt = r > 0, for all t , in corollary 9.33, we obtain the
following assertion.

corollary 9.34 Assume that u is continuous, concave, and strictly in-
creasing and that e0 + e1 � 0. Suppose that the allocation x solves the
problem

max
x is a feasible

allocation

[(1 + r)u(x−1, 0, x−1, 1) +
∞∑
t=0

(1 + r)−tu(xt0, xt1)], (9.64)

where r > 0. Then, x is the allocation of a spot price equilibrium, (x , P, r ,
G, T), in which the marginal utility of unit of account of every consumer
is 1 and where rt = r , for all t . This equilibrium satisfies the condition

∞∑
t=0

(1 + r)−tPt < ∞.

The equilibrium of the corollary may not be stationary. Its allocation is
stationary only if the initial consumption x−1, 0 is chosen correctly. If x is
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stationary, then theorem 9.20 (in section 9.4) implies that x is the allocation
of a stationary spot price equilibrium, provided that u is differentiable.

It is important that this initial consumption is held fixed in optimization
problem 9.64. It is not true that a stationary optimal allocation solves the
problem

max
x is a feasible

stationary allocation

[(1 + r)u(x−1, 0, x−1, 1) +
∞∑
t=0

(1 + r)−tu(xt0, xt1)], (9.65)

for if we restrict choice to feasible stationary allocations, we do not hold
the initial consumption fixed. If (xt0, xt1) = (x0, x1), for all t , then the
discounted welfare function of problem 9.65 becomes

(1 + r)2

r
u(x0, x1),

so that the stationary allocation that maximized this welfare function would
be the one that maximized the welfare of a typical consumer. That is, it
would be the stationary allocation that solved the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. x0 + x1 ≤ e0 + e1.

Although this allocation maximizes the utility of a typical consumer, it does
not maximize the discounted sum of consumer utilities, given a fixed initial
consumption x−1, 0. When the utility of future generations is discounted,
the welfare of a typical consumer is sacrificed to some extent in order to
favor the old over the young at each moment in time.

The welfare maximization problems studied in this section can be un-
derstood better if we focus on the maximization that occurs in one time
period. The maximization at time t in problem 9.62 (in corollary 9.33) is

max
x0∈R

N
+ , x1∈R

N
+

[(1 + Rt−2)
−1u(xt−1, 0, x1) + (1 + Rt−1)

−1u(x0, xt1)]

s.t. x0 + x1 ≤ e0 + e1.

If we multiply the objective function of this problem by 1+ Rt−1, we obtain
the problem

max
x0∈R

N
+ , x1∈R

N
+

[(1 + rt−1)u(xt−1, 0, x1) + u(x0, xt1)]

s.t. x0 + x1 ≤ e0 + e1.

From the objective function of this problem, we see that the greater the
discount rate, rt−1, the greater is the weight given in period t to the utility
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of the old person relative to that of the young person, so that the old person
receives a larger share of the total endowment e0 + e1.

How are we to interpret the results of this section? The theorems that
have to do with Arrow-Debreu equilibrium, 9.28 and 9.32, are useful only
as technical tools. The assertions of economic interest are those having
to do with spot price equilibria, namely, corollaries 9.29, 9.31, 9.33, and
9.34. We may interpret the interest rates, rt , in a spot price equilibrium
(x , P, r , G, T) as determined by monetary policy, and we may think of the
tax rates, Tt , as instruments of fiscal policy. Loosely speaking, these interest
and tax rates determine the equilibrium. In actual economies, monetary
and fiscal policy interact with uncertain market forces to determine interest
rates and the price level. There is the theoretical possibility, demonstrated
by example 9.27 (in section 9.5), that many equilibria may correspond to
any one time path of policy variables, so that policy makers may not be able
to control the economy. In interpreting the results of this section, one must
set aside this difficulty.

Corollaries 9.29 and 9.31 assert that the allocation of any spot price equi-
librium maximizes some welfare function that discounts the utility of fu-
ture generations at a rate that may vary over time. Asymptotic conditions
on the summability of discounted prices must be satisfied by the equilibria,
although these conditions are without practical significance since they ap-
ply only as time goes to infinity. Hence, whether the government is aware of
its influence or not, its policy determines interest rates, price levels, and a
path for the economy that maximizes some welfare function. In the model,
there is no natural rate of interest determined by economic fundamentals,
unless by natural one means the interest rate that applies when government
policy is fixed at some particular level.

Corollaries 9.33 and 9.34 assert that government policy can maximize
any welfare function that discounts the utility of future generations at a
perhaps varying rate. (The proof of this statement is completed by theo-
rem 9.50 [in section 9.9], which asserts that there is an allocation that maxi-
mizes the welfare function.) The results offer hope that policy could achieve
a desired outcome.

The practical significance of these results might be questioned on the
grounds that consumers’ utility functions are improperly formulated in the
model because they do not take account of people’s desire to save in order
to enrich their heirs. Barro (1974) has proposed that people incorporate
the welfare of their heirs into their own utility function. If in the over-
lapping generations model, the young person of each period is the child
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and heir of that period’s old person, then, following Barro, we might let
the utility of the person born in period t be u(xt0, xt1, Ut+1), where Ut =
u(xt0, xt1, Ut+1) is the utility level of consumer t , for all t . If consumers were
modeled in this way and had perfect foresight, then they would, in effect,
behave as if they were immortal, and the government would not be able
to control real interest rates through fiscal and monetary policy. Consumer
saving behavior would offset the effects of government policy, because the
saving would be so elastic with respect to the interest rate that government
policy could not affect it. It is doubtful that this possibility is realistic, since
actual saving seem to be little affected by interest rates. The interest elastic-
ity of saving has been studied extensively, and this literature is surveyed in
Bernheim (2002, sec. 3).

9.7 Undiscounted Optimality and Equilibrium 3

I now introduce an optimality criterion that does not discount the utility
of future generations but treats them all equally. Care must be exercised in
formulating this criterion. Although it might be tempting to use the infinite
sum,

u(x−1, 0, x−1, 1) +
∞∑
t=0

u(xt0, xt1),

as a welfare measure, this sum may not converge. Another possibility is the
long-run average,

lim supT →∞T −1
T −1∑
t=0

u(xt0, xt1),

but this criterion is a blunt tool, because a change in any finite number of
consumption vectors in the allocation (xt0, xt−1, 1)

∞
t=0 does not alter this av-

erage. A more useful device is von Weizäcker’s (1965) catching up criterion.

definition 9.35 Given a fixed initial consumption, x−1, 0, the alloca-
tion (xt0, xt−1, 1)

∞
t=0 catches up to the allocation (xt0, xt−1, 1)

∞
t=0 if for every

positive number ε, there exists a number T (ε) such that

[u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1)]− [u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1)]< ε ,

for T ≥ T (ε).

3. Many of the arguments in this section are inspired by the work of McKenzie (1976).
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definition 9.36 Given a fixed initial consumption, x−1, 0, the feasible
allocation (xt0, xt−1, 1)

∞
t=0 is optimal, according to the catching up criterion,

if it catches up to every other feasible allocation.

The catching up criterion does not provide a complete ordering of al-
locations; only some pairs of programs can be compared. It may be that
neither (xt0, xt−1, 1)

∞
t=0 nor (xt0, xt−1, 1)

∞
t=0 catches up to the other. When

future utility is discounted, a necessary condition for optimality is that the
Arrow-Debreu equilibrium prices be summable. As the catching up crite-
rion treats all generations equally, it is to be expected that an Arrow-Debreu
price system associated with a catching up optimal allocation would have
prices that summed to infinity. An Arrow-Debreu equilibrium may be in-
terpreted as a spot price equilibrium with interest rate 0, and we will see
that an allocation is optimal with respect to the catching up criterion if and
only if it is the allocation of such a spot price equilibrium with interest rate
0 and in which the prices are bounded and all consumers have the same
marginal utility of unit of account.

It is possible to use the catching up criterion to treat generations in-
equitably by multiplying the utility of generation t by λ−1

t
and apply-

ing the catching up criterion to the partial sums λ−1
−1u(x−1, 0, x−1, 1) +∑T

t=0 λ−1
t

u(xt0, xt1). The optima so defined are associated with spot price
equilibria in which the marginal utility of consumer t is λt . If

∑∞
t=0 λ−1

t
<

∞, then a catching up optimal allocation maximizes the welfare function
λ−1

−1u(x−1, 0, x−1, 1) +∑∞
t=0 λ−1

t
u(xt0, xt1), so that catching up optimality

is consistent with the concept of optimality used in section 9.6.
By corollary 9.52 (in section 9.9), there exists an allocation that is optimal

according to the catching up criterion, for any choice of x−1, 0, provided u

is continuous, strictly concave, and strictly increasing.
Allocations that are optimal with respect to the catching up criterion are

also Pareto optimal, just as are allocations that maximize a welfare function
that is a discounted sum of the utilities of all consumers.

theorem 9.37 The feasible allocation x is Pareto optimal, if it is optimal
with respect to the catching up criterion.

Proof. If x is not Pareto optimal, then there exists a feasible allocation x
such that u(x−1, 0, x−1, 1) ≥ u(x−1, 0, x−1, 1) and u(xt , 0, xt , 1) ≥ (xt , 0, xt , 1),
for t ≥ 0, with “>” in at least one of these inequalities. It follows that there
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is a positive number ε such that

u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1) > u(x−1, 0, x−1, 1) +
T∑

t=0

(xt0, xt1) + ε ,

for T that are sufficiently large. Therefore, the allocation x cannot catch up
to the allocation x and hence x is not optimal according to the catching up
criterion, contrary to hypothesis.

The next task is to state conditions under which the allocation of a spot
price equilibrium is optimal according to the catching up criterion.

definition 9.38 A spot price equilibrium with interest rate 0 for the
Samuelson model, denoted (x , P, G, T), is a spot price equilibrium,
(x , P, r , G, T), such that rt = 0, for all t .

If the utility function is locally nonsatiated, the government debt at the
end of period t , Gt , satisfies the equations

Gt = Pt .(e0 − xt0) − Tt = Pt .(xt1 − e1)

and the budget equations

Gt+1 = Gt − Tt+1,

for t ≥ 1. Similarly,

G0 = G − T0.

The validity of the last two equations follows from the government budget
equations 9.7 and 9.12 (in section 9.3) by setting the interest rates rt equal
to 0.

theorem 9.39 Assume that u is continuous, strictly concave, and strictly
increasing and that e0 + e1 � 0. The allocation, x, of a spot price equilib-
rium, (x , P, G, T), with interest rate 0 is optimal according to the catching
up criterion, if in the equilibrium all consumers have same the marginal
utility of unit of account and if x−1, 1 > 0 and (xt0, xt1) > 0, for all t ≥ 0. In
such an equilibrium, the price vectors Pt are bounded.

The assumptions that x−1, 1 > 0 and (xt0, xt1) > 0 are made so that the
Kuhn-Tucker theorem guarantees that all consumers have a marginal utility
of unit of account.
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Proof of Theorem 9.39. If the marginal utility of every consumer equals �,
we may replace every price vector Pt by �Pt and obtain an equilibrium in
which the marginal utility of unit of account of every consumer is 1. So, I
will assume that the marginal utility of unit of account is 1.

Because u is strictly increasing, Pt � 0, for t ≥ 0, for otherwise the
problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. Pt .x0 + Pt+1.x1 ≤ Pt .e0 + Pt+1.e1 − Tt ,
(9.66)

satisfied by (xt0, xt1), would not have a solution.
I next show that the price vectors, Pt , are bounded. Because Pt � 0

and (xt0, xt1) > 0, for all t ≥ 0, it follows that Pt .xt0 + Pt+1.xt1 > 0 and
therefore problem 9.66 satisfies the constraint qualification of the Kuhn-
Tucker theorem, so that consumer t ’s marginal utility of unit of account
is well defined. Because u is concave and the marginal utility of unit of
account is 1, the Kuhn-Tucker theorem (6.3 in section 6.1) implies that
(xt0, xt1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

[u(x0, x1) − Pt .x0 − Pt+1.x1].

Therefore,

u(xt0, xt1) − Pt .xt0 − Pt+1.xt1 ≥ u(0, xt1) − Pt+1.xt1.

Canceling Pt+1.xt1 from both sides of this equation, we see that

Pt .xt0 ≤ u(xt0, xt1) − u(0, xt1) ≥ u(e0 + e1, e0 + e1) − u(0, 0), (9.67)

for all t ≥ 0, where the second inequality is valid because u is increasing and
xt0 ≤ xt0 + xt−1, 1 ≤ e0 + e1 and similarly xt1 ≤ e0 + e1. A similar argument
using the assumption that x−1, 1 > 0 implies that

Pt .xt−1, 1 ≤ u(e0 + e1, e0 + e1) − u(0, 0), (9.68)

for all t ≥ 0. Adding inequalities 9.67 and 9.68, we find that

Pt .(xt0 + xt−1, 1) ≤ 2[u(e0 + e1, e0 + e1) − u(0, 0)],

for all t ≥ 0. Since u is strictly increasing, xt0 + xt−1, 1 = e0 + e1, so that the
previous inequality implies that

Pt .(e0 + e1) ≤ 2[u(e0 + e1, e0 + e1) − u(0, 0)].



420 9 Samuelson’s Overlapping Generations Model

Since e0 + e1 � 0, it follows that e0n + e1n > 0, for all n, and hence

Ptn ≤ (e0n + e1n)
−12[u(e0 + e1, e0 + e1) − u(0, 0)]< ∞,

for all t and n. This proves that the vectors Ptn are bounded.
Suppose that (xt0, xt−1, 1)

∞
t=0 is not optimal. Then, there is a feasible

allocation (xt0, xt−1, 1)
∞
t=0 and a positive number ε such that for infinitely

many values of T ,

u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1) − [u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1)]≥ ε.

In order to arrive at a contradiction, I make use of the value loss, used
earlier in the proof of theorem 9.28 (in section 9.6). For t ≥ 0, let the value
loss of person t be

Lt (x0, x1) = u(xt0, xt1) − Pt .xt0 − Pt+1.xt1 − u(x0, x1) − Pt .x0 − Pt+1.x1.

Similarly, for t = −1, let

L−t (x0, x1) = u(x−1, 0, x−1, 1) − P0.x−1, 1 − u(x−1, 0, x1) − P0.x1.

Because (xt0, xt1) solves problem 9.66, it follows that L(x0, x1) ≥ 0, for all
(x0, x1) and for all t ≥ 0. Because u is strictly concave, Lt is strictly convex
and Lt (x0, x1) > 0, if (x0, x1) �= (xt0, xt1), for t ≥ 0. Similar arguments
imply that L−1(x1) ≥ 0, for all x1, and L−1(x1) > 0, if x1 �= x−1, 1.

The argument now hinges on the following string of equations and in-
equalities:

0 ≤ L−1(x−1, 1) +
T∑

t=0

Lt (xt0, xt1)

= [u(x−1, 0, x−1, 1) − u(x−1, 0, x−1, 1)]+
T∑

t=0

[u(xt , 0, xt1) − u(xt0, xt1)]

−
T∑

t=0

Pt .(xt−1, 1 + xt0 − xt−1, 1 − xt0) − PT .(xT 1 − xT 1)

= [u(x−1, 0, x−1, 1) − u(x−1, 0, x−1, 1)]+
T∑

t=0

[u(xt , 0, xt1) − u(xt0, xt1)]

(9.69)
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−
T∑

t=0

Pt .(xt−1, 1 + xt0 − e0 − e1)

−
T∑

t=0

Pt .(et−1, 1 + et0 − xt−1, 1 − xt0) − PT .(xT 1 − xT 1)

≤ [u(x−1, 0, x−1, 1) − u(x−1, 0, x−1, 1)]

+
T∑

t=0

[u(xt0, xt1) − u(xt0, xt1)]− PT .(xT 1 − xT 1),

for all T . The first inequality above is a consequence of the nonnegativ-
ity of the value losses. The first equation is obtained by substituting the
formulas for the value losses and rearranging terms. The second equation
follows from the fact that Pt (xt0 + xt−1, 1 − e0 − e1) = 0, for all t . The last
inequality follows from the fact that xt0 + xt−1, 1 ≤ e0 + e1, for all t , and the
nonnegativity of the vectors Pt . Because

u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1) − u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1) ≤ −ε ,

for infinitely many values of T , it follows from inequalities 9.69 that

0 ≤ −ε − PT .(xT 1 − xT 1),

for infinitely many values of T . Replacing T by t , we see that

Pt .(xt1 − xt1) ≥ ε , (9.70)

for infinitely many values of t .
I now show that inequality 9.70 implies that xt1 and xt1 must differ by

at least a certain amount. Since the price vectors Pt are bounded, there is a
positive number b such that ‖Pt‖ ≤ b, for all t . Then,

‖xt1 − xt1‖ ≥ ε

b
,

if Pt .(xt1 − xt1) ≥ ε. This last inequality holds, because

ε ≤ Pt .(xt1 − xt1) ≤ ‖Pt‖‖xt1 − xt1‖ ≤ b‖xt1 − xt1‖.

In summary, inequality 9.70 implies that

‖xt1 − xt1‖ ≥ ε

b
, (9.71)

for infinitely many values of t .
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I next show that there exists a positive number δ such that, for any t ,
Lt (xt0, xt1) ≥ δ, if ‖xt1 − xt1‖ ≥ ε

b
. Suppose that this assertion is false.

Then, there is a sequence t (k), for k = 1, 2, . . . , such that limk→∞ Lt (k)

(xt (k), 0, xt (k), 1) = 0 and ‖xt (k), 1 − xt (k), 1‖ ≥ ε
b

, for all k. Since the se-
quences xt (k), 0, xt (k), 1, xt (k), 0, xt (k), 1, Pt (k), and Pt (k)+1 are all bounded,
the Bolzano-Weierstrass theorem (3.12 in section 3.2) implies that there is
a subsequence, call it t (k) again, such that all six of the sequences xt (k), 0,
xt (k), 1, xt (k), 0, xt (k), 1, Pt (k), and Pt (k)+1 converge. Let their limits be x0,

x1, x0, x1, P0, and P1, respectively. Then, ‖x1 − x1‖ ≥ ε
b

, so that x1 �= x1.
Because Lt (k)(x0, x1) ≥ 0, for all k and for all x0 and x1, we have that

u(xt (k), 0, xt (k), 1) − Pt (k).x1(k), 0 − Pt (k)+1.xt (k), 1

≥ u(x0, x1) − Pt (k).x0 − Pt (k)+1.x1,

for all k. Passing to the limit in this inequality, we obtain that

u(x0, x1) − P.x0 − P.x1

≥ u(x0, x1) − P.x0 − P.x1.
(9.72)

Putting all this information together and using the continuity of the func-
tion u, we have that

0 = lim
k→∞ Lt (k)(xt (k), 0, xt (k), 1)

= lim
k→∞

[
u(xt (k), 0, xt (k), 1) − Pt (k).xt (k), 0 − pt (k)+1.xt (k), 1

−u(xt (k), 0, xt (k), 1) − Pt (k).xt (k), 0 − pt (k)+1.xt (k), 1

]
= u(x0, x1) − P.x0 − P.x1 − u(x0, x1) − P.x0 − P.x1.

This equation is impossible, because the function

L(x0, x1) = u(x0, x1) − P.x0 − P.x1 − u(x0, x1) − P.x0 − P.x1

is strictly convex and inequality 9.72 implies that L(x0, x1) has a minimum
of zero at (x0, x1) = (x0, x1). Because L is strictly convex, the minimum is
unique, yet we know that x1 �= x1. This completes the proof that there exists
a δ > 0 such that, for any t , Lt (xt0, xt1) ≥ δ, if ‖xt1 − xt1‖ ≥ ε

b
.

I now finish the argument. Since, by inequality 9.71, ‖xt1 − xt1‖ ≥ ε
b

, for
infinitely many values of t , it follows from what has just been shown that
there exists a positive number δ such that Lt (xt0, xt1) ≥ δ > 0, for infinitely
many values of t . Since Lt (xt0, xt1) ≥ 0, for all values of t , we see that
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lim
T →∞[L−1(x−1, 0, x−1, 1) +

T∑
t=0

Lt (xt0, xt1)]= ∞.

By inequality 9.69,

L−1(x−1, 1) +
T∑

t=0

Lt (xt0, xt1)

≤ [u(x−1, 0, x−1, 1) − u(x−1, 0, x−1, 1)]

+
T∑

t=0

[u(xt , 0, xt1) − u(xt0, xt1)]+ PT .(xT 1 − xT 1).

Since [u(x−1, 0, x−1, 1) − u(x−1, 0, x−1, 1)]+∑T
t=0[u(xt , 0, xt1) − u(xt0, xt1)]

≤ −ε, for infinitely many values of T , we have that

PT .(xT 1 − xT 1) ≥ ε + L−1(x−1, 0, x−1, 1) +
T∑

t=0

Lt (xt0, xt1),

for infinitely many values of T . Therefore,

lim sup
T →∞

PT .(xT 1 − xT 1) = ∞.

However,

PT .(xT 1 − xT 1) < PT .(e0 + e1) < ‖PT ‖‖e0 + e1‖ ≤ b‖e0 + e1‖ < ∞,

for all t . The contradiction between the last two inequalities proves that
(xt0, xt1)

∞
t=0 catches up to (xt0, xt−1, 1)

∞
t=0 and hence that (xt0, xt1)

∞
t=0 is

optimal.

The following example shows that it is necessary to assume in theo-
rem 9.39 that all consumers have the same the marginal utility of unit of
account.

example 9.40 The utility function is u(x0, x1) = ln(x0) + ln(x1), and
the endowment is (e0, e1) = (

1
3 , 2

3

)
.

The endowment is itself the allocation of a spot price equilibrium with
interest rate equal to 1, as may be seen as follows. The first-order conditions
for maximization of utility over the budget set imply that

(1 + r)
1

x1

= 1

x0

,
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where r is the interest rate. Feasibility implies that

x0 + x1 = 1.

These two equations together imply that

x0 = 1

2 + r
and x1 = 1 + r

2 + r
.

If r = 1, then

x0 = 1

3
and x1 = 2

3
.

Since the endowment equals the consumption allocation, there is no gov-
ernment debt and there are no taxes in this equilibrium. Therefore, the
endowment is also the allocation for a spot price equilibrium with inter-
est rate 0 and with price Pt = 1

2t , for all t . In this deflationary equilibrium,
the marginal utility of unit of account of the consumer born in period t

is 3(2t ) and so is not constant. The endowment allocation is clearly not
optimal according to the catching up criterion, for consider the allocation
(xt0, xt−1, 1)

∞
t=0 = ( 1

2 , 1
2

)∞
t=0 and assume that the consumption is x−1, 0 = 1

3 .
The utility of the consumers −1 to T under the endowment allocation
(xt0, xt−1, 1)

∞
t=0 = (

1
3 , 2

3

)∞
t=0

is

ln

(
1

3

)
+ ln

(
2

3

)
+ (T + 1)

[
ln

(
1

3

)
+ ln

(
2

3

)]
= ln

(
2

9

)

+ (T + 1) ln

(
8

36

)
.

The utility of the consumers −1 to T under the allocation (xt0, xt−1, 1)
∞
t=0 =(

1
2 , 1

2

)∞
t=0 is

ln

(
1

3

)
+ ln

(
1

2

)
+ (T + 1)

[
ln

(
1

2

)
+ ln

(
1

2

)]
= ln

(
1

6

)

+ (T + 1) ln

(
9

36

)
.

Since

lim
T →∞

[
ln

(
1

6

)
+ (T + 1) ln

(
9

36

)
− ln

(
2

9

)
− (T + 1) ln

(
8

36

)]
= ∞,

the endowment allocation (xt0, xt−1, 1)
∞
t=0 = (

1
3 , 2

3

)∞
t=0

cannot catch up to

the allocation (xt0, xt−1, 1)
∞
t=0 = (

1
2 , 1

2

)∞
t=0.



9.7 Undiscounted Optimality and Equilibrium 425

The next task is to prove that if (xt0, xt−1, 1)
∞
t=0 is optimal according to

the catching up criterion, then it is the allocation of a spot price equilibrium
with bounded prices and in which the interest rate is 0 and all consumers
have the same marginal utility of unit of account.

lemma 9.41 If the allocation (xt0, xt−1, 1)
∞
t=0 is optimal according to the

catching criterion, then for each T ≥ 0, (xt0, xt−1, 1)
∞
t=0 solves the problem

max
xt0∈R

N
+ , xt−1, 1∈R

N
+

for all t

[u(x−1, 0, x−1, 1) +
T −1∑
t=0

u(xt0, xt1) + u(xT 0, xT 1)]

s.t. xt−1, 1 + xt0 ≤ e0 + e1, for t = 0, . . . , T .

(9.73)

Proof. Suppose that for some T , (xt0, xt−1, 1)
T
t=0 does not solve prob-

lem 9.73. Then there exists a positive number ε and an allocation (xt0,

xt−1, 1)
T
t=0 such that

[u(x−1, 0, x−1, 1) +
T −1∑
t=0

u(xt0, xt1) + u(x
T 0, x

T 1)]

− [u(x−1, 0, x−1, 1) +
T −1∑
t=0

u(xt0, xt1) + u(x
T 0, x

T 1)]> ε.

Let (xt0, xt−1, 1)
∞
t=0 be the allocation defined by (xt0, xt−1, 1) = (xt0, xt−1, 1),

if 0 ≤ t ≤ T , and (xt0, xt−1, 1) = (xt0, xt−1, 1), if t > T . Then, if T > T ,

[u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1)]− [u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1)]> ε ,

so that (xt0, xt−1, 1)
∞
t=0 cannot catch up to (xt0, xt−1, 1)

∞
t=0. This is impossi-

ble, since (xt0, xt−1, 1)
∞
t=0 is optimal according to the catching up criterion.

The contradiction proves that (xt0, xt−1, 1)
T
t=0 solves problem 9.73, for all T .

This lemma implies that an allocation that is optimal with respect to the
catching up criterion solves the analogue of problem 9.22

max
x0∈R

N
+ , x1∈R

N
+

[(1 + r)u(xt−1, 0, x1) + u(x0, xt1)]

s.t. x0 + x1 ≤ e0 + e1

discussed at the beginning of section 9.4.
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corollary 9.42 If (xt0, xt−1, 1)
∞
t=0 is optimal according to the catching

up criterion, then, for each t ≥ 0, (xt0, xt−1, 1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

[u(xt−1, 0, x1) + u(x0, xt1)]

s.t. x0 + x1 ≤ e0 + e1.

I now state and prove a converse to theorem 9.39.

theorem 9.43 Assume that u is continuous, concave, and strictly in-
creasing and that e0 + e1 � 0. If the feasible allocation x is optimal accord-
ing to the catching up criterion, then x is the allocation of a spot price
equilibrium with interest rate 0, (x , P, G, T), such that every consumer’s
marginal utility of unit of account is 1 and prices are bounded.

Proof. By lemma 9.41, for each T ≥ 0, (xt0, xt−1, 1)
T
t=0 solves problem 9.73.

Since e0 + e1 � 0, this problem satisfies the constraint qualification of the
Kuhn-Tucker theorem. Since u is concave, that theorem implies that there
exist N-vectors, PT

t
, for t = 0, 1, . . . , T , such that (xt0, xt−1, 1)

T
t=0 solves

the problem

max
xt0∈R

N
+ , xt−1, 1∈R

N
+

for all t=0, . . . , T

[
u(x−1, 0, x−1, 1) +

T −1∑
t=0

u(xt0, xt1) + u(xT 0, xT 1)

−
T∑

t=0

PT
t

.(xt−1, 1 + xt0)

]
.

(9.74)

I prove that the vectors PT
t

are uniformly bounded. Because (xt0,
xt−1, 1)

T
t=0 solves problem 9.74, it follows that, for t such that 0 ≤ t ≤ T ,

u(xt0, xt−1, 1) + u(xt0, xt1) − PT
t

.(xt−1, 1 + xt0)

≥ u(xt−1, 0, x1) + u(x0, xt1) − PT
t

.(x1 + x0),

for any x0 and x1 in R
N
+ . If we set x0 = x1 = 0 in this inequality, we find that

u(xt0, xt−1, 1) + u(xt0, xt1) − PT
t

.(xt−1, 1 + xt0)

≥ u(xt−1, 0, 0) + u(0, xt1),

so that

PT
t

.(xt−1, 1, xt0) ≤ u(xt0, xt−1, 1) + u(xt0, xt1) − u(xt−1, 0, 0) − u(0, xt1)

≤ 2[u(e0 + e1, e0 + e1) − u(0, 0)].
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Since u is strictly increasing, xt−1, 1 + xt0 = e0 + e1, so that the previous
inequality implies that

PT
t

.(e0 + e1) ≤ 2[u(e0 + e1, e0 + e1) − u(0, 0)].

Since e0 + e1 � 0, there exists a positive number ε such that e0n + e1n ≥ ε,
for all n. Therefore, the previous inequality implies that

0 ≤ P T
tn

≤ 2ε−1[u(e0 + e1, e0 + e1) − u(0, 0)],

for all t and n.
Since the sequence PT

0 is bounded, the Bolzano-Weierstrass theorem im-

plies that it has a convergent subsequence, call it PT1(k)

0 , for k = 1, 2, . . . .

Since the sequence PT1(k)
t is bounded, it also has a convergent subsequence,

call it PT2(k)

1 . Since a subsequence of a convergent sequence converges, the

sequence PT2(k)

0 also converges. Continuing by induction on m, suppose that

there is a sequence Tm(k) such that P
Tm(k)
t converges as k goes to infinity, for

t = 0, 1, . . . , m. Since the sequence P
Tm(k)

m+1 is bounded, it has a convergent

subsequence, call it P
Tm+1(k)

m+1 . Then, P
Tm+1(k)

t converges for t = 0, 1, . . . , m

as well. This inductive argument proves that for every positive integer m,

there exists a subsequence of T , call it Tm(k), such that P
Tm(k)
t converges

for t = 0, 1, . . . , m. Let T (k) be the subsequence defined by the formula

T (k) = Tk(k). Since P
Tt(k)
t converges as k goes to infinity and the sequence

T (k) is a subsequence of the sequence Tt(k), it follows that PT (k)
t is de-

fined for t such that 0 ≤ t ≤ T (k) and that PT (k)
t converges, for all t . Let

Pt = limk→∞ PT (k)
t , for all t . Since

Ptn ≤ 2ε−1[u(e0 + e1, e0 + e1) − u(0, 0)],

for all t and n, the sequence Pt is bounded. Let G = P0.(x−1, 1 − e1) and,
for all t , let Tt = Pt .(e0 − xt0) + Pt1

.(e1 − xt1). I claim that (x , P, G, T) is
a spot price equilibrium with interest rate 0, where P = (P0, P1, . . .) and
T = (T0, T1, . . .).

It is sufficient to show that every consumer solves his or her utility max-
imization problem at the allocation x when the prices and lump-sum taxes
are P and T, respectively. Because (xt0, xt−1, 1)

T
t=0 solves problem 9.74, it

follows that, for t such that 0 ≤ t ≤ T − 1, (xt0, xt1) satisfies

u(xt0, xt1) − PT
t

.xt0 − PT
t+1.xt1 ≥ u(x0, x1) − PT

t
.x0 − PT

t+1.x1,
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for all x0 and x1 in R
N
+ . Hence, if k is such that T (k) ≥ t , then

u(xt0, xt1) − PT (k)
t

.xt0 − PT (k)
t+1 .xt1 ≥ u(x0, x1) − PT (k)

t
.x0 − PT (k)

t+1 .x1,

Passing to the limit in this inequality, we find that

u(xt0, xt1) − Pt .xt0 − Pt+1.xt1 ≥ u(x0, x1) − Pt .x0 − Pt+1.x1, (9.75)

for all t ≥ 0. The sufficiency part of the Kuhn-Tucker theorem now implies
that for each t ≥ 0, (xt0, xt1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. Pt .x0 + Pt+1.x1 ≤ Pt .e0 + Pt+1.e1 − Tt ,

where Tt = Pt .(e0 − xt0) + Pt+1.(e1 − xt1). Inequality 9.75 implies that
consumer t ’s marginal utility of unit of account is 1.

A similar argument shows that x−1, 1 solves the problem

max
x1∈R

N
+

u(x−1, 0, x1)

s.t. P0.x1 ≤ P0.e1 + G,

where G = P0.(x−1, 1 − e1), and also shows that consumer −1’s marginal
utility of unit of account is 1.

The core of the above proof is the argument extracting the sequence T (k)

from a sequence of sequences, Tm(k). This argument is an example of a
Cantor diagonal argument, which is often used to prove the existence of
a sequence of vectors with certain properties. The argument will be used
again in section 9.9.

The next corollary deals with the obvious candidate for a stationary
allocation that is optimal with respect to the catching up criterion. This
candidate is the stationary allocation that maximizes the utility of a typical
consumer.

corollary 9.44 Assume that u is continuous, strictly concave, and
strictly increasing and that e0 + e1 � 0. Then, the unique stationary al-
location, (x0, x1), that solves the problem

max
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. x0 + x1 ≤ e0 + e1
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is optimal with respect to the catching up criterion. Furthermore, (x0, x1)

is the allocation of a stationary spot price equilibrium, (x0, x1, P0, G), with
interest rate 0.

Proof. By proposition 9.18 (in section 9.3), (x0, x1) is the allocation of
a stationary spot price equilibrium with interest rate 0, (x0, x1, P0, G). I
apply theorem 9.39 to this equilibrium. Since the equilibrium is stationary,
all consumers have the same marginal utility of unit of account in the
equilibrium, if they have one. Since e0 + e1 � 0 and u is strictly increasing,
x0 + x1 = e0 + e1 � 0, so that all consumers have positive income in the
stationary equilibrium and therefore have a well-defined marginal utility
of unit of account. In theorem 9.39, it is assumed that x−1, 1 > 0 in order
to guarantee that consumer −1 has a marginal utility of unit of account.
Because the equilibrium (x0, x1, P0, G) is stationary, it is not necessary
to make that assumption. Theorem 9.39, therefore, implies that (x0, x1) is
optimal according to the catching up criterion.

The next corollary together with corollary 9.15 (in section 9.3) show,
with the qualification that e0 + e1 � 0, that the stationary spot price equi-
libria that are Pareto optimal are those with nonnegative interest rates.

corollary 9.45 If u is continuous, strictly concave, and strictly increas-
ing and if e0 + e1 � 0, then the allocation, (x0, x1), of any stationary spot
price equilibrium, (x0, x1, P0, G), with interest rate 0 is Pareto optimal.

Proof. By theorem 9.18, the allocation (x0, x1) solves problem 9.19 (both
in section 9.3), so that corollary 9.44 implies that it is optimal according to
the catching up criterion and hence by theorem 9.37 is Pareto optimal.

Corollary 9.44 implies that if x−1, 0 is chosen correctly, then the unique
allocation with this initial consumption that is optimal, with respect to the
catching up criterion, is stationary. The reader may wonder whether any
allocation that is optimal with respect to the catching up criterion converges
over time to the unique stationary optimal allocation, no matter what the
choice of initial consumption may be. The answer is that it does so if u

is strictly concave and increasing and if e0 + e1 � 0. This assertion is an
example of a turnpike theorem, where the origin of the term turnpike is
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explained in section 10.12. Although I do not prove such a theorem for the
N-commodity Samuelson model, it is true.

9.8 Uniqueness of Optimal Allocations

I show that optimal allocations are unique in both the discounted and
undiscounted models, provided the utility function is strictly concave. The
statement for the discounted case is as follows.

proposition 9.46 If u is strictly concave and λt > 0, for all t ≥ −1, and∑∞
t=−1 λ−1

t
< ∞, then there is at most one solution to the problem

max
x is a feasible

allocation

[λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1)] (9.76)

for any choice of x−1, 0 in R
N
+ .

Proof. Suppose that problem 9.76 has two distinct solutions, (xt−1, 1,
xt0)

∞
t=0 and (xt−1, 1, xt0)

∞
t=0. Then,

λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1)

= λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1).

(9.77)

Let

(xt−1, 1, xt0)
∞
t=0 = 1

2
(xt−1, 1, xt0)

∞
t=0 + 1

2
(xt−1, 1, xt0)

∞
t=0.

Then (xt−1, 1, xt0)
∞
t=0 is feasible, because

xt−1, 1 + xt0 = 1

2
(xt−1, 1 + xt0) + 1

2
(xt−1, 1 + xt0)

≤ 1

2
(e1 + e0) + 1

2
(e1 + e0) = e1 + e0,

for all t . Because u is strictly concave and (xt−1, 1, xt0)
∞
t=0 �= (xt−1, 1, xt0)

∞
t=0,

it follows that
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λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1) >
1

2
[λ−1

−1u(x−1, 0, x−1, 1)

+
∞∑
t=0

λ−1
t

u(xt0, xt1)]

+ 1

2
[λ−1

−1u(x−1, 0, x−1, 1) +
∞∑
t=0

λ−1
t

u(xt0, xt1)]

= λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1),

where the equation follows from equation 9.77. This inequality contradicts
the optimality of (xt−1, 1, xt0)

∞
t=0. This contradiction completes the proof.

The corresponding assertion for the undiscounted case follows.

proposition 9.47 If u is strictly concave, then there is at most one
allocation that is optimal according to the catching up criterion for any
choice of x−1, 0.

Proof. Suppose that there are two distinct allocations, (xt−1, 1, xt0)
∞
t=0 and

(xt−1, 1, xt0)
∞
t=0, that are optimal with respect to the catching up criterion,

and let (xt−1, 1, xt0)
∞
t=0 = 1

2(xt−1, 1, xt0)
∞
t=0 + 1

2(xt−1, 1, xt0)
∞
t=0. By the ar-

gument given in the proof of proposition 9.46, (xt−1, 1, xt0)
∞
t=0 is feasible.

Since (xt−1, 1, xt0)
∞
t=0 and (xt−1, 1, xt0)

∞
t=0 are distinct, (xt−1, 1, xt0)

T
t=0 �=

(xt−1, 1, xt0)
T
t=0, if T is sufficiently large. Because u is strictly concave, it fol-

lows that there is a positive number ε such that

u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1) − ε >
1

2
[u(x−1, 0, x−1, 1)

+
T∑

t=0

u(xt0, xt1)]+ 1

2
[u(x−1, 0, x−1, 1) +

T∑
t=0

u(xt0, xt1)]

≥ min

[
u(x−1, 0, x−1, 1) +

T∑
t=0

u(xt0, xt1), u(x−1, 0, x−1, 1)

+
T∑

t=0

u(xt0, xt1)

]
,

(9.78)
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for any T such that T ≥ T , where T is so large that (xt−1, 1, xt0)
T
t=0 �=

(xt−1, 1, xt0)
T
t=0. One of u(x−1, 0, x−1, 1) +∑T

t=0 u(xt0, xt1) or u(x−1, 0,

x−1, 1) +∑T
t=0 u(xt0, xt1) equals the minimum of these two numbers for

infinitely many values of T . Say that u(x−1, 0, x−1, 1) +∑T
t=0 u(xt0, xt1)

equals the minimum infinitely often, and let T (k), for k = 1, 2, . . . , be an
increasing sequence of numbers all greater than T , such that

u(x−1, 0, x−1, 1) +
T (k)∑
t=0

u(xt0, xt1) ≤ u(x−1, 0, x−1, 1) +
T (k)∑
t=0

u(xt0, xt1)

for every k. Then, inequality 9.78 implies that

u(x−1, 0, x−1, 1) +
T (k)∑
t=0

u(xt0, xt1) − ε > u(x−1, 0, x−1, 1) +
T (k)∑
t=0

u(xt0, xt1),

for every k. It follows that the allocation (xt−1, 1, xt0)
∞
t=0 cannot catch

up to the allocation (xt−1, 1, xt0)
∞
t=0, which contradicts the optimality of

(xt−1, 1, xt0)
∞
t=0.

9.9 Existence of Optimal Allocations

This section contains statements and proofs of theorems applying to the
Samuelson model and already familiar from finite dimensional contexts,
namely, the Kuhn-Tucker theorem and assertions on the existence of wel-
fare optima. The demonstrations rely on the Cantor diagonal argument,
used earlier when proving theorem 9.43 (in section 9.7).

definition 9.48 The allocation x = (xt0, xt−1, 1)
∞
t=0 is bounded, if there

is a positive number b such that ‖xt0‖ ≤ b and ‖xt−1, 1‖ ≤ b, for all t ≥ 0.

Clearly, an allocation x is bounded, if it is feasible, because then 0 ≤
xt0 + xt−1, 1 ≤ e0 + e1, for all t .

kuhn-tucker theorem for the samuelson model theorem 9.49
Assume that u is continuous, concave, and strictly increasing and that
e0 + e1 � 0. Let λt , for t = −1, 0, 1, . . . , be positive numbers such that∑∞

t=−1 λ−t
t

< ∞. Then, the allocation (xt0, xt−1, 1)
∞
t=0 solves the problem
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max
x is a feasible

allocation

[λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1)], (9.79)

if and only if (xt0, xt−1, 1)
∞
t=0 is feasible and

1. for all t , xt0 + xt−1, 1 = e0 + e1, there exist N-vectors, pt , for t ≥ 0,
such that p � 0

2. (xt0, xt−1, 1)
∞
t=0 solves the problem

max
x is a bounded

allocation

[λ−1
−1u(x−1, 0, x−1, 1)

+
∞∑
t=0

λ−1
t

u(xt0, xt1) −
∞∑
t=0

pt .(xt0 + xt−1, 1)]

3.
∑∞

t=0 pt < ∞

Proof. I begin by proving that a feasible allocation, x, is optimal if it
and the sequence of nonnegative Kuhn-Tucker coefficient vectors, pt , for
t = 0, 1, 2, . . . , satisfy conditions (1)–(3) of the theorem. I must show that
if x is any other feasible allocation, then

λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
−1u(xt0, xt1)

≥ λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
−1u(xt0, xt1).

(9.80)

Because x is feasible, it is bounded. It follows that since x solves the maxi-
mization problem in condition (2),

λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
−1u(xt0, xt1) −

∞∑
t=0

pt .(xt0 + xt−1, 1)

≥ λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
−1u(xt0, xt1) −

∞∑
t=0

pt .(xt0 + xt−1, 1).

(9.81)

All the infinite sums in inequality 9.81 converge, because
∑∞

t=0 pt < ∞ and∑∞
t=−1 λ−1

t
< ∞ and the allocations x and x are bounded. (The allocation

x is bounded because it is feasible.) Inequality 9.81 may be rewritten as
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λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
−1u(xt0, xt1)

≥ λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
−1u(xt0, xt1)

+
∞∑
t=0

pt .(xt0 + xt−1, 1) −
∞∑
t=0

pt .(xt0 + xt−1, 1).

(9.82)

Condition (1) implies that

∞∑
t=0

pt .(xt0 + xt−1, 1) =
∞∑
t=0

pt .(e0 + e1). (9.83)

Since the allocation x is feasible and the Kuhn-Tucker coefficient vectors pt

are nonnegative, it follows that

∞∑
t=0

pt .(xt0 + xt−1, 1) ≤
∞∑
t=0

pt .(e0 + e1). (9.84)

Inequalities 9.83 and 9.84 imply that

∞∑
t=0

pt .(xt0, xt−1, 1) −
∞∑
t=0

pt .(xt0 + xt−1, 1) ≥ 0.

This inequality and inequality 9.82 imply inequality 9.80. This completes
the proof that conditions (1)–(3) are sufficient for optimality.

I now prove that if x solves problem 9.79, then there exist Kuhn-Tucker
coefficient vectors pt such that x and the pt satisfy conditions (1)–(3).
First of all, I may assume that u(0, 0) = 0, for all (x0, x1), for the solution
to maximization problem 9.79 remains unchanged if I replace u by the
function u − u(0, 0).

Because x solves problem 9.79, it follows that, for each T ≥ 0, (xt0,
xt−1, 1)

T
t=0 solves the problem

max
(xt0, xt−1, 1)

T
t=0

[λ−1
−1u(x−1, 0, x−1, 1) +

T −1∑
t=0

λ−1
t

u(xt0, xt1) + λ−1
T

u(xT 0, xt1)]

s.t. xt0 + xt−1, 1 ≤ e0 + e1, for t such that 0 ≤ t ≤ T .

Since e0 + e1 � 0, this problem satisfies the constraint qualification of the
Kuhn-Tucker theorem. Since u is concave, all the assumptions of that theo-
rem are satisfied, and it implies that there exist nonnegative N-vectors, pT

t
,
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for t = 1, 2, . . . , T , such that

T∑
t=−1

λ−1
t

u(xt0, xt1) −
T∑

t=0

pT
t

.(xt0 + xt−1, 1)

≤ λ−1
−1u(x−1, 0, x−1, 1) +

T −1∑
t=0

λ−1
t

u(xt0 + xt1)

+ λ−1
T

u(xT 0, xT 1) −
T∑

t=0

pT
t

.(xt0 + xt−1, 1), (9.85)

for any nonnegative (xt0, xt−1, 1)
T
t=0. Let S be an integer such that 0 ≤ S <

T . In inequality 9.85, let (xt0, xt1) = (xt0, xt1), for t > S, and cancel like
terms on the right and left sides. We then obtain

S∑
t=−1

λ−1
t

u(xt0, xt1) −
S∑

t=0

pT
t

.(xt0 + xt−1, 1)

≤ λ−1
−1u(x−1, 0, x−1, 1) +

S∑
t=0

λ−1
t

u(xt0 + xt1)

−
S∑

t=0

pT
t

.(xt0 + xt−1, 1) + pT
S+1.(xS1 − xS1), (9.86)

for any nonnegative (xt0, xt−1, 1)
S
t=0 and xS1.

I next obtain a bound on the vectors pT
t

, for t = 0, 1, . . . , T . Let s =
0, 1, . . . , or T . In inequality 9.85, set xt0 = xt0 and xt−1, 1 = xt−1, 1, for all
variables except xs−1, 1, and cancel like terms on both sides of the inequality.
We then find that

λ−1
s−1u(xs−1, 0, xs−1, 1) − pT

s
.xs−1, 1 ≥ λ−1

s−1u(xs−1, 0, xs−1, 1) − pT
s

.xs−1, 1.

If we set xs−1, 1 = 0 in this inequality, we see that

pT
s

.xs−1, 1 ≤ λ−1
s−1[u(xs−1, 0, xs−1, 0) − u(xs−1, 0, 0)]

≤ λ−1
s−1[u(e0 + e1, e0 + e1) − u(0, 0)]= λ−1

s−1u(e0 + e1, e0 + e1),
(9.87)

where the second inequality is valid because u is strictly increasing and the
allocation x is feasible. Similarly, inequality 9.85 implies that

λ−1
s

u(xs0, xs1) − pT
s

.xs0 ≥ λ−1
s

u(xs0, xs1) − pT
s

.xs0,
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so that

pT
s

.xs0 ≤ λ−1
s

[u(xs0, xs1) − u(0, xs1)]

≤ λ−1
s

u(e0 + e1, e0 + e1).
(9.88)

By adding inequalities 9.87 and 9.88, we obtain

pT
s

.(xs0 + xs−1, 1) ≤ (λ−1
s−1 + λ−1

s
)u(e0 + e1, e0 + e1). (9.89)

The complementary slackness condition of the Kuhn-Tucker theorem im-
plies that

pT
s

.(xs0 + xs−1, 1) = pT
s

.(e0 + e1),

for all s, so that inequality 9.89 implies that

pT
s

.(e0 + e1) ≤ (λ−1
s−1 + λ−1

s
)u(e0 + e1, e0 + e1). (9.90)

Since e0 + e1 � 0, ε = minn(e0n + e1n) > 0. Therefore, inequality 9.90 im-
plies that

pT
sn

≤ ε−1(λ−1
s−1 + λ−1

s
)u(e0 + e1, e0 + e1), (9.91)

for all s and n.
I now pass to the limit using the Cantor diagonal argument. Because

the sequence pT
0 , for T = 1, 2, . . . , is bounded, it has a convergent sub-

sequence, for k = 0, 1, . . . , by the Bolzano-Weierstrass theorem. The se-

quence is also bounded and hence has a convergent subsequence, p
T0(k)

0 , for
k = 0, 1, . . . . Because a subsequence of a convergent sequence converges,

it follows that the sequence pT1(k)

1 , converges as k goes to infinity. I proceed
by induction on t . Suppose we have found a subsequence of T , call it Tt(k),

such that pTt(k)
s

converges for s = 0, 1, . . . , t . Because p
Tt(k)

t+1 is bounded,

there is a subsequence of Tt(k), call it Tt+1(k), such that p
Tt+1(k)
s converges

for s = 1, 2, . . . , t + 1, as k goes to infinity. Let T (k) be the subsequence of
T defined by T (k) = Tk(k). For k ≥ t , the sequence T (k) is a subsequence

of Tt(k), so that the sequence pT (k)
t converges. That is, limk→∞ pT (k)

t exists,

for all t ≥ 0. Let pt = limk→∞ pT (k)
t , for every t .

Since inequality 9.86 applies for each S < T (k), we find (by passage to the
limit with respect to k in that inequality) that for any nonnegative integer S,
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S∑
t=−1

λ−1
1 u(xt0, xt1) −

S∑
t=0

pt .(xt0 + xt−1, 1)

≥ λ−1
−1u(x−1, 0, x−1, 1) +

S∑
t=0

λ−1
t

u(xt0, xt1)

−
S∑

t=0

pt .(xt0 + xt−1, 1) + pS+1.(xS1 − xS1),

(9.92)

for any nonnegative (xt0, xt−1, 1)
S
t=0 and xS1. I use this inequality to prove

that the allocation x and the price vector pt satisfy condition (2). That is, I
show that if x is a bounded but not necessarily feasible allocation, then

∞∑
t=−1

λ−1
1 u(xt0, xt1) −

∞∑
t=0

pt .(xt0 + xt−1, 1)

≥ λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1) −
∞∑
t=0

pt .(xt0 + xt−1, 1).

(9.93)

This inequality follows immediately from inequality 9.92 if the infinite
sums in inequality 9.93 converge and if

lim
S→∞ pS+1.(xS1 − xS1) = 0. (9.94)

To complete the argument, I develop some bounds. Because the allo-
cation x is bounded, there exists an N-vector B such that xt0 ≤ B and
xt−1, 1 ≤ B, for all t . I may assume that B is so large that e0 + e1 ≤ B and
x−1, 0 ≤ B. Because u is increasing, we know that 0 ≤ u(xt0, xt1) ≤ u(e0 +
e1, e0 + e1) ≤ u(B, B) and 0 ≤ u(xt0, xt1) ≤ u(B, B), for all t , and also 0 ≤
u(x−1, 0, x−1, 1) ≤ u(B, B). Since

∑∞
t=−1 λ−1

t
< ∞ by assumption, it follows

that

0 ≤
∞∑

t=−1

λ−1
t

u(xt0, xt1) ≤ u(B, B)

∞∑
t=−1

λ−1
t

< ∞ (9.95)

and

0 ≤ λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1) ≤ u(B, B)

∞∑
t=−1

λ−1
t

< ∞.

(9.96)
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Turning to the terms involving price vectors, by inequality 9.91,

pT (k)
sn

≤ ε−1(λ−1
s−1 + λ−1

s
)u(e0 + e1, e0 + e1),

for all k. Passage to the limit with respect to k in this inequality implies that

ptn ≤ ε−1(λ−1
t−1 + λ−1

t
)u(e0 + e1, e0 + e1),

for all n, so that
∞∑
t−0

ptn ≤ ε−1u(e0 + e1, e0 + e1)

∞∑
t−0

(λ−1
t−1 + λ−1

t
) < ∞. (9.97)

Since the vectors xt0 + xt−1, 1 and xt0 + xt−1, 1 are bounded above by the
vector 2B, for all t , it follows that

∞∑
t−0

pt .(xt0 + xt−1, 1) < ∞ (9.98)

and
∞∑
t−0

pt .(xt0 + xt−1, 1) < ∞, (9.99)

for all t .
Inequality 9.97 implies that

lim
t→∞ pt = 0.

This equation in turn implies equation 9.94, since the vectors xS1 − xS1 are
bounded. Equation 9.94 and inequalities 9.95, 9.96, 9.98, and 9.99 imply
that inequality 9.93 follows from inequality 9.92 and hence that x and
p = (p0, p1, . . .) satisfy condition (2) of the theorem.

Inequality 9.97 implies that
∑∞

t−0 pt < ∞, which is condition (3) of the
theorem. Condition (1) is an immediate consequence of the optimality of
x and of the assumption that u is strictly increasing. It remains to prove
that pt � 0, for all t . Since pt ≥ 0, for all t , it is sufficient to show that
no component of pt can be zero, for any t . If some component of pt were
zero, for some t , then because u is strictly increasing, p = (p0, p1, . . .) and
x could not satisfy condition (2), which is false.

I now show that there exists an allocation that maximizes an infinite
weighted sum of the consumers’ utility functions, where the weights are
positive and summable.
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theorem 9.50 (Existence of a welfare optimum) Assume that u is con-
tinuous and let λt , for t = −1, 0, 1, . . . , be positive numbers such that∑∞

t=−1 λ−1
t

< ∞. Then, for every initial condition x−1, 0, there exists a so-
lution, x, to the problem

max
x is a feasible

allocation

[λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1)]. (9.100)

Proof. I first show that I may assume that u(x0, x1) ≥ 0, if (x0, x1) is such
that 0 ≤ x0 ≤ e0 + e1 + x−1, 0 and 0 ≤ x0 ≤ e0 + e1. Since u is continuous,

min
x0∈R

N
+ , x1∈R

N
+

u(x0, x1)

s.t. 0 ≤ x0 ≤ e0 + e1 + x−1, 0

and 0 ≤ x1 ≤ e0 + e1,

exists and is finite by proposition 3.14 (in section 3.2). Let this minimum
be m. The solution of problem 9.100 remains unchanged if we replace u by
u − m, and this function clearly has the assumed property.

If (xt0, xt−1, 1)
∞
t=0 is a feasible allocation, then 0 ≤ xt0 ≤ e0 + e1 and

0 ≤ xt1 ≤ e0 + e1, for all t ≥ 0, and clearly 0 ≤ x−1, 0 ≤ e0 + e1 + x−1, 0,
so that under the assumption just made about u, u(x−1, 0, x−1, 1) ≥ 0 and
u(xt0, xt1) ≥ 0, for all t ≥ 0.

For each positive integer T , let (xT
−1, 1, (xT

t0, xT
t1)

T
t=0) solve the problem

max
(x−1, 1.(xt0, xt1)

T
t=0)≥0

[λ−1u(x−1, 0, x−1, 1) +
T∑

t=0

λ−1
t

u(xt0, xt1)]

s.t. xt0 + xt−1, 1 ≤ e0 + e1, for t such that 0 ≤ t ≤ T ,

and xT 1 ≤ e0 + e1,

(9.101)

and let M(T ) = λ−1
−1u(x−1, 0, xT

−1, 1) +∑T
t=0 λ−1

t
u(xT

t0, xT
t1) be the maxi-

mum value of this problem.
I show that for each positive integer S, M(S + 1) ≥ M(S). Let (xt0,

xt−1, 1)
S+1
t=0 be defined by the equations x−1, 1 = xS

−1, 1, (xt0, xt1) = (xS
t0, xS

t1),

for 0 ≤ t ≤ S, and (xS+1, 0, xS+1, 1) = (0, e0 + e1). Since (xt0, xt−1, 1)
S+1
t=0 is a

feasible allocation for problem 9.101 with T = S + 1,



440 9 Samuelson’s Overlapping Generations Model

M(S + 1) ≥ λ−1
−1u(x−1, 0, x−1, 1) +

S+1∑
t=0

λ−1
t

u(xt0, xt1)

≥ λ−1
−1u(x−1, 0, x−1, 1) +

S∑
t=0

λ−1
t

u(xt0, xt1) = M(S),

where the second inequality is valid because u(xS+1, 0, xS+1, 1) = u(0, e0 +
e1) ≥ 0.

I next show that the sequence M(T ) converges as T goes to infinity. Since
this sequence is nondecreasing, it is sufficient to show that it is bounded
from above. By proposition 3.14 (in section 3.2),

U = max
(x0, x1)≥0

u(x0, x1)

s.t. 0 ≤ x0 ≤ e0 + e1 + x−1, 0

and 0 ≤ x1 ≤ e0 + e1

exists and is finite. Clearly,

M(T ) ≤ U

∞∑
t=−1

λ−1
t

,

for all T . Let M = limT →∞ M(T ).
I next show that if x = (xt0, xt−1, 1)

∞
t=0 is a feasible allocation, then

λ−1
−1u(x−1, 0, x−1, 1) +

∞∑
t=0

λ−1
t

u(xt0, xt1) ≤ M . (9.102)

Suppose that λ−1
−1u(x−1, 0, x−1, 1) +∑∞

t=0 λ−1
t

u(xt0, xt1) − M = ε > 0, for

some feasible allocation x = (xt0, xt−1, 1)
∞
t=0. Let T be such that U

∑∞
t=T +1

λ−1
t

< ε. Then,
∑∞

t=T +1 λ−1
t

u(xt0, xt1) < ε, so that

0 < λ−1
−1u(x−1, 0, x−1, 1) +

T∑
t=0

λ−1
t

u(xt0, xt1) − M

≤ λ−1
−1u(x−1, 0, x−1, 1) +

T∑
t=0

λ−1
t

u(xt0, xt1) − M(T ).

Since (x−1, 1, (xt0, xt1)
T
t=0) is a feasible allocation for problem 9.101, we

know that
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M(T ) ≥ λ−1
−1u(x−1, 0, x−1, 1) +

T∑
t=0

λ−1
t

u(xt0, xt1).

The contradiction between the previous two inequalities establishes in-
equality 9.102.

I next apply a Cantor diagonal argument to the allocations (xT
−1, 1, (xT

t0,

xT
t1)

T
t=0) in order to define an allocation x = (xt0, xt−1, 1)

∞
t=0 such that

λ−1
−1u(x−1, 0, x−1, 1) +

T∑
t=0

λ−1
t

u(xt0, xt1) = M . (9.103)

All the components of (xT
−1, 1, (xT

t0, xT
t1)

T
t=0) are bounded below by zero and

above by the components of e0 + e1. Therefore, I may use a Cantor diagonal
argument to show that there exists a subsequence, T (k), of T such that

(xT (k)
t−1, 1, xT (k)

t0 ) converges, for all t , as k goes to infinity. Let (xt−1, 1, xt0) =
limk→∞(xT (k)

t−1, 1, xT (k)
t0 ), for t ≥ 0.

I now show that the allocation x = (xt0, xt−1, 1)
∞
t=0 satisfies equation

9.103. Inequality 9.102 will then imply that x solves problem 9.100. Since

xT (k)
t0 + xT (k)

t−1, 1 ≤ e0 + e1, for all t , it follows by passage to the limit that
xt0 + xt−1, 1 ≤ e0 + e1, for all t , so that x is feasible. Therefore, inequal-
ity 9.102 implies that

∞∑
t=−1

λ−1
t

u(xt0, xt1) ≤ M .

Hence, it is sufficient to show that for every positive number ε,

∞∑
t=−1

λ−1
t

u(xt0, xt1) > M − ε. (9.104)

Let T be so large that U
∑∞

t=T +1 λ−1
i < ε

3 and M − M(T ) < ε
3 . Let k be so

large that T (k) ≥ T and∣∣∣∣∣
T∑

t=−1

λ−1
t

u(xt0, xt1)

−
[
λ−1

−1u(x−1, 0, xT (k)
−1, 1) +

T∑
t=0

λ−1
t

u(xT (k)
t0 , xT (k)

t1 )

]∣∣∣∣∣< ε

3
.

(9.105)

It follows that
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T∑
t=−1

λ−1
t

u(xt0, xt1)

≥ λ−1
−1u(x−1, 0, x−1, 1) +

T∑
t=0

λ−1
t

u(xt0, xt1)

> λ−1
−1u(x−1, 0, xT (k)

−1, 1) +
T∑

t=0

λ−1
t

u(xT (k)
t0 , xT (k)

t1 ) − ε

3

> λ−1
−1u(x−1, 0, xT (k)

−1, 1) +
T (k)∑
t=0

λ−1
t

u(xT (k)
t0 , xT (k)

t1 ) − 2ε

3

= M(T (k)) − 2ε

3
> M − ε ,

where the second inequality follows from inequality 9.105, the third in-
equality follows from the fact that U

∑∞
t=T +1 λ−1

i < ε
3 , and the fourth in-

equality follows from the facts that M − M(T ) < ε
3 , that T (k) ≥ T , and

that M(T ) is nondecreasing in T . This completes the proof of inequal-
ity 9.104 and hence of the assertion that the allocation x = (xt0, xt−1, 1)

∞
t=0

is optimal.

The last assertion to be proved is that there exists an allocation that is op-
timal according to the catching up criterion. I will establish this statement
by proving that there exists a spot price equilibrium with interest rate 0 in
which all consumers have the same marginal utility of unit of account. It
will then follow from theorem 9.39 (in section 9.7) that the allocation of
this equilibrium is optimal according to the catching up criterion.

theorem 9.51 Assume that u is continuous, concave, and strictly in-
creasing and that e0 + e1 � 0. Then, for every initial consumption x−1, 0,
there exists a spot price equilibrium with interest rate 0 in which the mar-
ginal utility of unit of account of every consumer equals 1.

Proof. For each positive integer T , let (xT
−1, 1, (xT

t0, xT
t−1, 1)

T
t=0) solve the

problem

max
(x−1, 1, (xt0, xt1)

T
t=0)≥0

[u(x−1, 0, x−1, 1) +
T∑

t=0

u(xt0, xt1)]

s.t. xt0 + xt−1, 1 ≤ e0 + e1, for t such that 0 ≤ t ≤ T , and

xT 1 ≤ e0 + e1.

(9.106)



9.9 Existence of Optimal Allocations 443

Since e0 + e1 � 0, problem 9.106 satisfies the constraint qualification of the
Kuhn-Tucker theorem, and that theorem implies that there exist N-vectors,
PT

0 , PT
1 , . . . , PT

T +1, such that (xT
−1, 1, (xT

t0, xT
t−1, 1)

T
t=0) solves the problem

max
(x−1, 1, (xt0, xt1)

T
t=0)

[
u(x−1, 0, x−1, 1) +

T∑
t=0

u(xt0, xt1)

−
T∑

t=0

PT
t

.(xt0 + xt−1, 1) − PT
T +1.xT 1

]
.

(9.107)

Because u is strictly increasing, PT
t

� 0, for all t , for otherwise prob-
lem 9.107 would not have a solution. By varying only xt0 and xt1 in this
problem, we see that (xT

t0, xT
t1) solves the problem

max
x0∈R

N
+ , x1∈R

N
+

[u(x0, x1) − PT
t

.x0 − PT
t+1.x1], (9.108)

for t such that 0 ≤ t ≤ T . Similarly, xT
−1, 1 solves the problem

max
x1∈R

N
+

[u(x−1, 0, x1) − PT
0 .x1]. (9.109)

By an argument used at the beginning of the proof of theorem 9.43 (in
section 9.7),

0 ≤ P T
tn

≤ 2ε−1[u(e0 + e1, e0 + e1) − u(0, 0)],

for all T , t , and n, where ε is a positive number such that e0n + e1n ≥ ε,
for all n. Since the price vectors PT

t
and the allocation vectors (xT

t0, xT
t1) are

uniformly bounded, I can apply a Cantor diagonal argument to them to

show that there exists a subsequence, T (k), of T such that PT (k)
t , xT (k)

t0 , and

xT (k)
t1 converge, for all t , as k goes to infinity. Let Pt , xt0, and xt1 be the

respective limits of these sequences.
Because (xT

t0, xT
t1) solves problem 9.108, for all T > t , it follows that

u(xT (k)
t0 , xT (k)

t1 ) − PT (k)
t

.xT (k)
t0 − PT (k)

t+1 .xT (k)
t1

≥ u(x0, x1) − PT (k)
t

.x0 − PT (k)
t+1 .x1,

for all x0 and x1, if k > t , so that T (k) > t . Passing to the limit with respect
to k in this inequality, we see that

u(xt0, xt1) − Pt .xt0 − Pt+1.xt1 ≥ u(x0, x1) − Pt .x0 − Pt+1.x1, (9.110)
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for all x0 and x1. Similarly, because xT
−1, 1 solves problem 9.109, for all T , it

follows that

u(x−1, 0, x−1, 1) − P0.x−1, 1 ≥ u(x−1, 0, x1) − P0x1, (9.111)

for all x1. By proposition 6.14 (in section 6.3), inequality 9.110 implies that
(xt0, xt1) solves the problem

max
x0, x1∈R

N
+

u(x0, x1)

s.t. Pt .x0 + Pt+1.x1 ≤ Pt .e0 + Pt+1.e1 − Tt ,

for some lump-sum tax Tt . Similarly, inequality 9.111 implies that x−1, 1

solves the problem

max
x1∈R

N
+

u(x−1, 0, x1)

s.t. P0.x1 ≤ P0.e0 + G,

for some government debt G. Because the allocations (xT (k)
−1, 1, (xT (k)

t0 ,

xT (k)
t1 )

T (k)
t=0 ) are feasible, it follows that the allocation x = (xt0, xt−1, 1)

∞
t=0 is

feasible by passage to the limit in the inequalities defining feasibility. There-
fore, (x , P, G, T) satisfies all the conditions of a spot price equilibrium with
interest rate 0, where x = (xt0, xt−1, 1)

∞
t=0, P = (P0, P1, . . .), G is the gov-

ernment debt already defined, and T = (T0, T1, . . .). Inequalities 9.110 and
9.111 imply that the marginal utility of unit of account of every consumer
is 1 in this equilibrium.

corollary 9.52 If in addition to the assumptions of theorem 9.51, it
is assumed that u is strictly concave, then for every initial consumption,
x−1, 0, there exists an allocation that is optimal with respect to the catching
up criterion.

Proof. By theorem 9.51, there exists a spot price equilibrium, (x , P, G, T),
with interest rate 0 in which the marginal utility of account of every con-
sumer is 1. Theorem 9.39 (in section 9.7) implies that the allocation x is
optimal according to the catching up criterion.

Problem Set

1. Consider the Samuelson model with one good and no production and
in which consumers are endowed with one unit of good in youth and
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none in old age and where their utility functions are

u(x0, x1) = log x0 + (0.5) log x1.

(a) Compute formulas for a stationary spot price equilibrium,
(x0, x1, P , r , G, T), with nonnegative interest rate r and with
P = 1.

(b) Show on a diagram all feasible stationary allocations and those
allocations that are Pareto optimal. Show in similar diagrams the
allocations and budget sets for the equilibria with interest rates
r = 0 and r = 1. Indicate the tax payments on the diagrams for
each of these equilibria.

2. Consider a Samuelson model with one commodity in each period and
where the endowment of every consumer is e = (1, 0). Let the utility
function of every consumer be

u(x0, x1) = x0 + 2x1.

(a) Draw a diagram that shows the set of feasible stationary allocations,
the endowment, and sample indifference curves.

(b) Indicate on a second copy of the diagram which of the feasible
stationary allocations are Pareto optimal.

(c) Compute a stationary spot price equilibrium, (x0, x1, P , r , G, T),
for this economy with positive interest rate r and with P = 1.

(d) State a social welfare maximization problem that is solved by the
allocation of the stationary spot price equilibrium that you just
found.

3. Consider a Samuelson model with one commodity in each period and
where each consumer is endowed with one unit of the commodity in
youth and none in old age. The utility function of each consumer is

u(x0, x1) = 2
√

x0 + 2
√

x1.

(a) Compute a stationary spot price equilibrium, (x0, x1, P , r , G, T),
with r = P = 1. Check that tax payments equal the interest on the
government debt.

(b) Compute a stationary spot price equilibrium, (x0, x1, P , r , G, T),
with P = 1 and r = 0.

(c) Show that the allocation of the equilibrium of part (a) is Pareto
optimal.
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(d) Compute the utility of a typical consumer in each of the equilibria
of parts (a) and (b).

(e) Why is the allocation of the equilibrium of part (a) not Pareto
dominated by that of part (b)?

(f) Show the equilibrium allocations of parts (a) and (b) in a two-
dimensional diagram.

4. Consider a Samuelson model with one commodity in each period and
where each consumer has utility function

u(x0, x1) = 2
√

x0x1

and endowment

e = (10, 0).

(a) Show the set of feasible stationary allocations in a diagram.
(b) Indicate which of these are Pareto optimal.
(c) Find a stationary spot price equilibrium, (x0, x1, P , r , G, T), the

allocation of which maximizes the social welfare function

(1.1)u(x−1, 0, x−1, 1) +
∞∑
t=0

(1.1)−tu(xt0, xt1)

among feasible allocations and with x−1, 0 given. Notice that you
have to choose x−1, 0, so that the equilibrium is stationary.

(d) Is the allocation of this equilibrium Pareto optimal? Why or why
not?

5. Consider the Samuelson overlapping generations model with one
commodity and with

u(x0, x1) = 4x
1/3
0 + x

1/3
1 and (e0, e1) = (1, 8).

(a) Draw a diagram showing the set of feasible stationary allocations
and indicate on the diagram which of these are Pareto optimal.
In addition, give a precise formula for the set of Pareto optimal
stationary allocations.

(b) Define a stationary spot price equilibrium, (x0, x1, P , r , G, T),
such that P = 1 and the endowment allocation, (x0, x1) =
(e0, e1) = (1, 8), is the equilibrium allocation. Be sure to state
the equilibrium interest rate.

6. Consider the following one-commodity Samuelson model.

e = (1, 1), u(x0, x1) = min(3x0 + x1, 2x0 + 5x1).
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(a) Show the set of feasible stationary allocations in a diagram. Show
indifference curves in the diagram.

(b) Show in a separate copy of the same diagram which of the feasible
stationary allocations is Pareto optimal.

(c) Find a stationary spot price equilibrium, (x0, x1, P , r , G, T), in
which P = 1, where the endowment is the equilibrium allocation.

(d) Find a stationary spot price equilibrium, (x0, x1, P , r , G, T),
such that P = 1 and the stationary allocation (x0, x1) = (0, 2) is
the equilibrium allocation.

(e) What social welfare function is maximized by the endowment
allocation?

7. Consider a Samuelson model with one commodity in each period,
where each consumer is endowed with one unit of the commodity in
youth and none in old age and has utility function

u(x0, x1) = min(2x0 + x1, x0 + 2x1).

Compute all the stationary spot price equilibria, (x0, x1, P , r , G, T),
in which P = r = 1.

8. Consider a Samuelson model with two commodities, 1 and 2, respec-
tively, in each period. Each consumer is endowed with one unit of each
commodity in youth and none in old age. The utility function of each
consumer is

u(x01, x02, x11, x12) = 2 ln(x01) + ln(x02) + ln(x11) + 2 ln(x12).

(a) Compute a stationary spot price equilibrium, (x0, x1, P(r), r ,
G, T), with nonnegative interest rate r and with P1(r) + P2(r) = 1.

(b) Does the ratio P1(r)/P2(r) increase, decrease, or remain constant
as r increases? Give an intuitive explanation for what occurs.

9. The allocation of a stationary spot price equilibrium in the Samuelson
model is Pareto optimal if the sum of its sequence of equilibrium prices
is summable when discounted to period 0 at market interest rates. This
fact might lead you to suspect that stationary equilibrium allocations
would be Pareto optimal if there were some asset present that yielded a
fixed positive return indefinitely, for then the price of the asset would
be finite and equal to the discounted present value of its future returns.
The following problem tests this idea.

Consider a Samuelson model with one commodity in every period
and where each consumer has endowment (e0, e1) ∈ R

2
+ and utility
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function u : R
2
+ → R. Suppose that there is an asset that yields i

units of the single commodity in every period. This problem concerns
stationary equilibria, (x0, x1, P , r , G, T), for this model, where P = 1
and G = T = 0. The feasibility equation for the model is

x0 + x1 = e0 + e1 + i . (9.112)

The budget equation is

x0 + x1

1 + r
= e0 + e1

1 + r
, (9.113)

assuming that P = 1 and G = T = 0. The savings of young consumers
must be held as the income-earning asset, which the young buy from
the old. The price of the asset in the stationary equilibrium must be
i/r , which is the present value of future returns. Since the savings of
the young must equal this number, we have the additional equilibrium
equation

e0 − x0 = i

r
. (9.114)

(a) Show that if a stationary equilibrium with no taxes exists, then its
interest rate is positive, so that its allocation is Pareto optimal.

(b) Show that equations 9.112 and 9.113 imply equation 9.114.
(c) Calculate a stationary spot price equilibrium with no taxes when

u(x0, x1) = ln(x0) + ln(x1), e0 = 1, and e1 = 0.

(d) Make a drawing showing the set of feasible stationary allocations
and the budget set of a typical consumer in a stationary equilib-
rium with no taxes and when the endowment is (e0, e1) = (1, 0).

(e) Assume that u is continuously differentiable, strictly concave, and
such that

∂u(x0, x1)

∂x0

> 0 and
∂u(x0, x1)

∂x1

> 0,

for all x0 and x1. Prove that a stationary spot price equilibrium
exists with no taxes, provided e0 > 0. Prove that this equilibrium
has a positive interest rate. Prove that no stationary spot price
equilibrium exists if e0 = 0.
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The One-Sector Growth and Diamond
Overlapping Generations Models

The Diamond model is obtained from the Samuelson overlapping genera-
tions model by including production and capital and requiring that there
be only one produced good and one primary input. This model provides a
natural setting for the study of economic growth and social security. Many
of the results proved in this chapter are extensions of corresponding ones
proved in chapter 9. For instance, I show that equilibrium allocations max-
imize a welfare function that is a discounted sum of the consumers’ utility
functions, and any allocation that maximizes such a welfare function is the
allocation of an equilibrium with government debt and lump-sum taxes.

10.1 The One-Sector Diamond and Optimal Growth Models

In the Diamond model, there are two commodities, a produced good and
labor. One person is born in each period and lives two periods, and each
person is endowed with one unit of labor in youth, no labor in old age, and
with none of the produced good in either period of life. People consume
only the produced good, so that there is no disutility of labor. The utility
function of a typical consumer is u(x0, x1) = u0(x0) + u1(x1), where x0 and
x1 are consumption of the produced good in youth and old age, respectively.
Output in period t + 1 is produced from labor in that period and capital
absorbed in the previous period, where capital is the produced good used as
an input into production. If Kt and Lt+1 are the capital used in period t and
the labor input in period t + 1, respectively, then the output in period t + 1
is yt+1 = f (Kt , Lt+1), where f : R

2
+ → [0, ∞) is a production function.

The assumptions listed below apply to f and the utility functions, and
I follow the convention used in economics that a function g : [0, ∞) →
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(−∞, ∞) may be said to be differentiable at 0 if its derivative there is
infinite.

assumption 10.1 f is homogeneous of degree 1.

assumption 10.2 There exists a positive number K such that f (K , 1) −
K > 0.

assumption 10.3 f (K , 0) = 0 = f (0, L), for all K ≥ 0 and L ≥ 0.

assumption 10.4 f is continuous and is continuously differentiable at
every point (K , L) such that (K , L) �= 0, and it is twice differentiable at
points (K , L) such that K > 0 and L > 0. At all such points, D2f (K , L)

is negative semidefinite, ∂2f (K , L)

∂K2 < 0, and ∂2f (K , L)

∂L2 < 0. If L > 0, then
∂f (K , L)

∂K
> 0, for all K ≥ 0. If K > 0, then ∂f (K , L)

∂L
> 0, for all L ≥ 0.

assumption 10.5 The utility functions u0 : [0, ∞) → [0, ∞) and u1 :
[0, ∞) → [0, ∞) are differentiable and strictly concave. Their first deriva-
tives are everywhere positive and u0(0) = 0 = u1(0).

Assumption 10.1 guarantees that there are constant returns to scale in
production, so that equilibrium profits are 0. This assumption is made in
order to avoid having to specify the distribution of profits to consumers. As-
sumption 10.2 guarantees that the economy is productive. Assumption 10.3
means that both capital and labor are necessary for production. Assump-
tion 10.4 guarantees that the production function is increasing and con-
cave. I assume it is differentiable solely to simplify the exposition. It is
possible for all these assumptions to be satisfied, as is illustrated by the func-
tions f (K , L) = √

KL and f (K , L) = L ln(KL−1 + 1). More generally,
the following is true.

proposition 10.6 Assume that F : [0, ∞) → [0, ∞) is continuously
differentiable and on (0, ∞) is twice differentiable. Assume, in addition,

that F(0) = 0, dF(0)
dk

> 1, dF(k)
dk

> 0, for all nonnegative k, that d2F(k)

dk2 < 0,

for all positive k, and that limk→∞ dF(k)
dk

= 0. Let

f (K , L) =
{

LF(KL−1), if L > 0, and

0, if L = 0.

Then f satisfies assumptions 10.1–10.4.
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Proof. Since it is obvious that f satisfies assumptions 10.1–10.3, I show
only that f satisfies assumption 10.4. First, I show that f is continuous. It is
clearly continuous at points (K , L), where L > 0. To show that it is contin-
uous at points (K , 0), for K ≥ 0, suppose that (Kn, Ln) is a sequence such
that limn→∞(Kn, Ln) = (K , 0). I must show that limn→∞ f (Kn, Ln) = 0.
Let ε be an arbitrarily small positive number and let k be a positive number

that is so large that
dF(k)

dk
< ε

2(K+1) . Since F is concave and differentiable,

F(k) ≤ F(k) + dF(k)

dk
(k − k).

Therefore, if Ln > 0,

0 ≤ f (Kn, Ln) = LnF(KnL
−1
n

) ≤ LnF(k) + Ln

dF(k)

dk
(KnL

−1
n

− k)

= Ln

(
F(k) − dF(k)

dk
k

)
+ Kn

dF(k)

dk
≤ ε

2
+ (K + 1)

ε

2(K + 1)
= ε ,

if n is sufficiently large. If Ln = 0, then f (Kn, Ln) = 0. In conclusion,
limn→∞ f (Kn, Ln) = 0.

The first and second derivatives of f when L > 0 are

∂f (K , L)

∂K
= dF

dk
(KL−1),

∂f (K , L)

∂L
= F(KL−1) − KL−1dF

dk
(KL−1),

∂2f (K , L)

∂K2
= L−1d

2F

dk2
(KL−1),

∂2f (K , L)

∂L∂K
= −KL2 d2F

dk2
(KL−1)

= ∂2f (K , L)

∂K∂L
, and

∂2f (K , L)

∂L2
= K2L−3d2F

dk2
(KL−1).

Because dF
dk

(KL−1) > 0, it follows that ∂f (K , L)

∂K
> 0. Because F(0) = 0 and

F is strictly concave, ∂f (K , L)

∂L
> 0, if K > 0. Because d2F

dk2 (KL−1) < 0, it

follows that ∂2f (K , L)

∂K2 < 0 and ∂2f (K , L)

∂L2 < 0. The second derivative matrix
of f is

d2F

dk2
(KL−1)

(
L−1 −KL−2

−KL−2 K2L−3

)
.

The upper-left entry of this matrix is negative, and its determinant is zero
because the second column is −KL−1 times the first column. Therefore the
matrix is negative semidefinite.

I show that f is continuously differentiable at every point (K , L) such
that (K , L) �= 0. It is clear from the formulas for the first derivatives that
they are continuous on {(K , L) | L > 0}. Since f (K , 0) = 0, for all K , it
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follows that ∂f (K , 0)
∂K

= 0. If limn→∞(Kn, Ln) = (K , 0), where K > 0 and

Ln > 0, for all n, then limn→∞ KnL
−1
n

= ∞, so that limn→∞
∂f (Kn , Ln)

∂K
=

limn→∞ dF
dK

(KnL
−1
n

) = 0. Therefore ∂f (K , L)

∂K
is continuous at every (K , L)

such that (K , L) �= 0.
To show that ∂f (K , L)

∂L
is continuous at every (K , L) �= 0, observe that

because f is continuous and ∂2f (K , L)

∂L2 < 0 when K > 0 and L > 0, it fol-
lows that f (K , L) is a concave function of L for K > 0. Since in addition
f (K , 0) = 0, it follows that

f (K , �L) − f (K , 0)

�L

is a nonincreasing function of �L, so that

lim
�L→0

f (K , �L) − f (K , 0)

�L

exists, though it may be infinite. Call this limit ∂f (K , 0)
∂L

. Furthermore the
mean value theorem implies that

∂f (K , 0)

∂L
= lim

�L→0

∂f (K , �L)

∂L
=

lim
L→0

[
F(KL−1) − KL−1dF

dk
(KL−1)

]
= lim

k→∞

[
F(k) − k

dF (k)

dk

]
.

If limn→∞(Kn, Ln) = (K , 0), where K > 0, and Ln > 0, for all n, then

lim
n→∞

∂f (Kn, Ln)

∂L
= lim

n→∞

[
F(KnL

−1
n

) − KnL
−1
n

dF

dk
(KnL

−1
n

)

]
=

lim
k→∞

[
F(k) − k

dF (k)

dk

]
= ∂f (K , 0)

∂L
,

so that ∂f (K , L)

∂L
is continuous at every (K , L) such that (K , L) �= 0.

Assumption 10.4 implies that f is concave, for suppose that (K , L) ≥ 0
and (K , L) ≥ 0 and that 0 ≤ α ≤ 1. Then, there are sequences (Kn, Ln)

and (Kn, Ln) such that (Kn, Ln) � 0 and (Kn, Ln) � 0, for all n, limn→∞
(Kn, Ln) = (K , L), and limn→∞(Kn, Ln) = (K , L). Because D2f (K , L)

is negative semidefinite on the set of (K , L) such that (K , L) � 0, it follows
that f is concave there, so that
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f (αKn + (1 − α)Kn, αLn + (1 − α)Ln) ≥ αf (Kn, Ln)

+ (1 − α)f (Kn, Ln).

Passing to the limit in this inequality, we see that because f is continuous,

f (αK + (1 − α)K , αL + (1 − α)L) ≥ αf (K , L) + (1 − α)f (K , L),

so that f is everywhere concave.
The production function can be interpreted as including depreciation on

capital, for suppose that the input of K units of capital and L units of labor
results in δK units of capital and h(K , L) units of output in the following
period, where 0 < δ < 1. Then, we can let f (K , L) = δK + h(K , L).

The assumption that u0(0) = 0 = u1(0) is simply a normalization. If this
assumption does not apply, the utility functions u0 and u1 may be replaced
by u0 − u0(0) and u1 − u1(0), respectively, without changing the properties
of any equilibrium or allocation.

Assumption 10.5 excludes the utility function ln(x), because it is not
defined at zero. It is possible to modify the assumption to include ln(x),
but at a considerable cost in the complexity of proofs. I will, nevertheless,
use this function in examples.

An allocation consists of (x , K , L) = (xt0, xt−1, 1, Kt , Lt)
∞
t=0, where xt0

and xt−1, 1 are the consumptions of the produced good in period t by the
young and old person, respectively, and Kt and Lt are, respectively, the
input of capital and input of labor in period t . All the components of
(x , K , L) are nonnegative. The allocation (x , K , L) is feasible, given an
initial input of capital, K−1, if

Lt ≤ 1 and

xt0 + xt−1, 1 + Kt ≤ f (Kt−1, Lt),

for all t ≥ 0, where K−1 = K−1.
It is quite easy to see that under the above assumptions, feasible alloca-

tions are bounded.

definition 10.7 The allocation (x , K , L) = (xt0, xt−1, 1, Kt , Lt)
∞
t=0 is

bounded, if there is a positive number b such that every component of
(x , K , L) is less than or equal to b. A set of allocations, A, is uniformly
bounded if the bound b applies to every component of every allocation in A.
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proposition 10.8 If assumptions 10.1–10.4 apply, then the allocations
that are feasible, given the initial capital K−1, are uniformly bounded.

Proof. Because f is homogeneous of degree 1,

f (K , 1) − K = K[f (1, K−1) − 1]. (10.1)

Since f is continuous,

lim
K→∞ f (1, K−1) = f (1, 0) = 0,

where the second equation follows from assumption 10.3. Therefore, equa-
tion 10.1 implies that f (K , 1) − K < 0, if K is sufficiently large, so that
the graph of the function f (K , 1) is below the diagonal line, y = K , for
K large, as in figure 10.1. By assumption 10.2, f (K , 1) − K > 0, for some
positive capital K . Since f is continuous, the intermediate value theorem
implies that there exists a positive number K̂ , such that f (K̂ , 1) = K̂ . By
assumption 10.4, the function f (K , 1) is strictly concave, so that there is
only one value, K̂ , satisfying this equation, as in the figure.

The figure makes it easy to see why feasible allocations are bounded. If
the initial capital equals K∗, where K∗ ≤ K̂ , then even if no output is ever
consumed and all of it is invested, the economy cannot accumulate more
than K̂ units of capital. If no output is consumed, the capital stock and
output follow the dotted path to the left of K̂ in figure 10.1. Similarly if the
economy starts with an initial capital K∗∗, where K∗∗ > K̂ , then the capital
stock shrinks toward K̂ , even if no output is ever consumed. In this case,
output and capital follow the dotted path to the right of K̂ . Therefore, the
amounts of output and capital in any period t ≥ 0 in any feasible allocation
are bounded by the maximum of K̂ and f (K−1, 1), where K−1 is the initial
capital stock. Since consumptions are bounded above by outputs, they too
cannot ever exceed max(K , f (K−1, 1)).

I now turn to the definition of an Arrow-Debreu equilibrium. An Arrow-
Debreu price system consists of sequences of nonnegative numbers, p =
(p0, p1, . . .) and w = (w0, w1, . . .), where pt is the price of the produced
good and wt is the wage of labor in period t and not all of these are 0. Both
of these prices are forward prices from the point of view of period −1. Given
a price system (p , w) and an allocation (x , K , L), the lifetime expenditure
of consumer t is ptxt0 + pt+1xt1 and the profits from production from
period t to period t + 1 are pt+1f (Kt , Lt+1) − ptKt − wt+1Lt+1.
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Figure 10.1 Boundedness of output

definition 10.9 An Arrow-Debreu equilibrium with transfer payments
consists of (x , K , L , p, w , τ) such that

1. (x , K , L) is a feasible allocation, given initial capital K−1

2. (p, w) is a price system

3. τ = (τ−1, τ0, τ1, . . .) is a sequence of numbers, where τt is the lump-
sum tax paid by the consumer born in period t

4. L0 solves the problem

max
L0≥0

[p0f (K−1, L0) − w0L0]

5. For all t ≥ 0, (Kt , Lt+1) solves the problem

max
Kt≥0, Lt+1≥0

[pt+1f (Kt , Lt+1) − ptKt − wt+1Lt+1]



456 10 The One-Sector Growth and Diamond Models

6. x−1, 1 solves the problem

max
x1≥0

u1(x1)

s.t. p0x1 ≤ p0f (K−1, L0) − w0L0 − τ−1

7. For all t ≥ 0, (xt0, xt1) solves the problem

max
x0≥0, x1≥0

[u0(x0) + u1(x1)]

s.t. ptx0 + pt+1x1 ≤ wt − τt

8. For all t , pt = 0, if

xt0 + xt−1, 1 < f (Kt−1, Lt) − Kt

and wt = 0, if Lt < 1

An explanation is required for the budget constraint appearing in condi-
tion (6). Production occurring in period 0 earns positive profits, because
the capital used to produce the output has already been paid for in pe-
riod −1. This profit must be assigned to someone, and I assign it to the
old person of period 0. There are no profits to assign in any period other
than period 0, for since f is homogeneous of degree 1, equilibrium profits
are 0 for output appearing in every period after period 0. That is,

pt+1f (Kt , Lt+1) − ptKt − wtLt+1 = 0,

for all t ≥ 0. The value of net output in period 0, p0f (K−1, L0) − w0L0, is
not offset by a quantity p−1K−1, because period −1is not in the model. The
value p−1K−1 must be owned by somebody, and it makes sense to assign
it to the old person of period 0 if we imagine that the young consumer in
each period t provides the firm with funds equal to ptKt for the purchase of
capital in exchange for receiving in old age the value, pt+1f (Kt , 1, Lt+1) −
wt+1Lt+1, of output net of labor cost. This discussion of the provision of
funds will make more sense in the context of a spot price model, where fi-
nancial transfers occur when goods and services are delivered. In an Arrow-
Debreu model, of course, all transfers of unit of account occur at time −1.

The transfer payments in an Arrow-Debreu equilibrium sum to 0, pro-
vided the prices are summable. In order to prove this assertion, I need the
following lemma.
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lemma 10.10 If assumptions 10.1–10.5 apply and
∑∞

t=0 pt < ∞, then∑∞
t=0 wt < ∞.

Proof. Because u0 and u1 are strictly increasing, pt > 0, for all t , for if
pt = 0, for some t , then the maximization problem in condition (7) of
definition 10.9 of an Arrow-Debreu equilibrium has no solution.

Suppose that Kt−1 > 0. Then assumption 10.4 implies that
∂f (Kt−1, L)

∂L
>

0, for all L ≥ 0. Therefore wt > 0, for if wt = 0, then, since pt > 0, the profit
maximization problem in condition (5) of definition 10.9 of an Arrow-
Debreu equilibrium has no solution. Since wt > 0, it follows from condi-
tion (8) of definition 10.9 that Lt = 1. Because profits are maximized at
Lt = 1, it follows that

wt = pt

∂f (Kt , 1)

∂L
.

Let b be an upper bound on the components of a feasible allocation. By
assumption 10.4, ∂f (K , 1)

∂L
is a continuous function of K , so that by prop-

osition 3.14 (in section 3.2), there exists a positive number B such that∣∣∣ ∂f (K , 1)
∂L

∣∣∣≤ B, for all K such that 0 ≤ K ≤ b. The previous inequality now

implies that wt ≤ Bpt .
Suppose that Kt−1 = 0. Then by assumption 10.3, no output can be pro-

duced in period t . It follows that wt = 0, for if wt > 0, then the profit max-
imizing level of labor input in period t is Lt = 0. In this case, condition (8)
of definition 10.9 of an Arrow-Debreu equilibrium implies that wt = 0, a
contradiction that proves wt = 0.

It now follows that
∑∞

t=0 wt ≤ B
∑∞

t=0 pt < ∞.

The next proposition is completely analogous to proposition 9.9 (in sec-
tion 9.3) and has the same interpretation.

proposition 10.11 Suppose that assumptions 10.1–10.5 apply and that∑∞
t=0 pt < ∞. Then in any Arrow-Debreu equilibrium, (x , K , L , p, w , τ),

with transfer payments,
∑∞

t=−1 |τt | < ∞ and
∑∞

t=−1 τt = 0.

Proof. Because u0 and u1 are increasing, they are locally nonsatiated and
so consumers spend all their wealth. Hence

p0x−1, 1 = p0f (K−1, L0) − w0L0 − τ−1 (10.2)
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and

ptxt0 + pt+1xt1 − wt − τt ,

for t ≥ 0. Since equilibrium profits are 0,

0 = pt+1f (Kt , Lt+1) − ptKt − wt+1Lt+1,

for all t ≥ 0. If we add the previous two equations, we obtain

ptxt0 + pt+1xt1 − wt − ptKt − wt+1Lt+1 + pt+1f (Kt , Lt+1) − τt . (10.3)

Equations 10.2 and 10.3 may be rewritten as

τ−1 = −w0L0 + p0[f (K−1, L0) − x−1, 1]

and

τ1 = wt = wt+1Lt+1 − pt(xt0 + Kt) + pt+1[f (Kt , Lt+1) − xt1],

for t ≥ 0. By assumption, Lt ≤ 1, for all t , and
∑∞

t=0 pt < ∞. By lemma
10.10,

∑∞
t=0 wt < ∞, and by proposition 10.8, the sequences xt0, xt1, and

Kt are bounded. Therefore
∞∑

t=−1

|τt | =
∣∣∣−w0L0 + p0[f (K−1, L0) − x−1, 1]

∣∣∣
+

∞∑
t=0

∣∣∣{wt − wt+1Lt+1 − pt .(xt0 + Kt) + pt+1[f (Kt , Lt+1) − xt1]}
∣∣∣< ∞.

Since the infinite series below converge absolutely, we may change the order
of summation in order to obtain the second equation.

∞∑
t=−1

τt = −w0L0 + p0[f (K−1, L0) − x−1, 1]

+
∞∑
t=0

{wt − wt+1Lt+1 − pt(xt0 + Kt) + pt+1[f (Kt , Lt+1) − xt1]}

=
∞∑
t=0

wt(1 − Lt) +
∞∑
t=0

pt[f (Kt−1, Lt) − Kt − xt0 − xt−1, 1]= 0.

(10.4)

The third equation follows from condition (8) of definition 10.9 of an
Arrow-Debreu equilibrium.

The most realistic equilibrium concept is that of a spot price equilibrium.
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definition 10.12 A spot price equilibrium consists of (x , K , L , P, W , r,
G, T) that satisfies the conditions

1. (x , K , L) is a feasible allocation, given initial capital K−1

2. P = (P0, P1, . . .) and W = (W0, W1, . . .) are infinite sequences of
nonnegative spot prices and not all of the Pt and Wt are zero

3. r = (r−1, r0, r1, . . .) is an infinite sequence of numbers, where
rt > −1, for all t , and rt is the nominal interest rate paid in period t + 1
on government debt held from period t to period t + 1

4. T = (T0, T1, . . .) is a sequence of numbers, where Tt is the lump-sum
tax paid by the young consumer of period t

5. G is a number such that (1 + r−1)G is the amount of government
debt held by the old consumer of period 0 at the beginning of that
period

6. L0 solves the problem

max
L0≥0

[P0f (K−1, L0) − W0L0]

7. For all t ≥ 0, (Kt , Lt+1) solves the problem

max
Kt≥0, Lt+1≥0

{(1 + rt)
−1[Pt+1f (Kt , Lt+1) − Wt+1Lt+1]− PtKt}

8. x−1, 1 solves the problem

max
x1≥0

u1(x1)

s.t. P0x1 ≤ P0f (K−1, L0) − W0L0 + (1 + r−1)G

9. For every t ≥ 0, (xt0, xt1) solves the problem

max
x0≥0, x1≥0

[u0(x0) + u1(x1)]

s.t. Ptx0 + (1 + rt)
−1Pt+1x1 ≤ Wt − Tt

10. For all t , Pt = 0, if

xt0 + xt−1, 1 < f (Kt−1, Lt) − Kt

and Wt = 0, if Lt < 1.
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The budget constraint in condition (8) has an explanation similar to that
of the same constraint in condition (6) of definition 10.9 of an Arrow-
Debreu equilibrium. It is assumed that young consumers invest their sav-
ings in government debt and in loans to the firm that finance purchases of
capital. Since the firm earns no profits, the lender in period t has a claim to
the entire value of the input-output vector of the succeeding period made
possible by the input of capital in period t . Therefore, if consumer −1 in
youth finances the purchase of the capital stock K−1 in period −1, he or
she in effect owns the entire net value of output, P0f (K−1, L0) − W0L0,
of period 0. Consumer −1 also holds government debt, G, purchased in
period −1 and earns interest on it. Therefore, the purchasing power of con-
sumer −1 in period 0 is P0f (K−1, L0) − W0L0 + (1 + r−1)G.

It is easy to verify that in the Diamond model any spot price equilibrium
can be converted to an Arrow-Debreu equilibrium, using formulas similar
to those of proposition 9.12 (in section 9.3). If (x , K , L , P, W , r , G, T) is a
spot price equilibrium, then (x , K , L , p, w , τ) is an Arrow-Debreu equilib-
rium where p0 = P0, w0 = W0, τ−1 = −(1 + r−1)G, τ0 = T0, pt = Pt

1+Rt−1
,

wt = Wt

1+Rt−1
, and τt = Tt

1+Rt−1
, for t ≥ 1, where 1+ Rt = (1+ r0)(1+ r1) . . .

(1 + rt), for t ≥ 0.
Transfer payments sum to 0 just as they do in Arrow-Debreu equilibria.

corollary 10.13 Suppose that assumptions 10.1–10.5 apply and that

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞,

where 1 + Rt = (1 + r0)(1 + r1) . . . (1 + rt), for t ≥ 0. Then,

|T0| +
∞∑
t=1

|Tt |
1 + Rt−1

< ∞

and

G = T0

1 + r−1

+
∞∑
t=1

Tt

(1 + r−1)(1 + Rt−1)
.

Proof. This corollary is proved by applying proposition 10.11 to the spot
price equilibrium after it has been converted to an Arrow-Debreu equilib-
rium by the formulas given above.
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Since the utility functions u0 and u1 are locally nonsatiated, the govern-
ment meets a budget constraint in spot price equilibria, just as in the case
of the Samuelson model. We must, however, be careful how we define gov-
ernment debt. The total savings of consumers at the end of period t is that
of the young person, which is

Wt − Ptxt0 − Tt .

This wealth may be held as government debt, Gt , or as loans to business to
finance the purchase of capital in period t . The loans equal PtKt . Therefore,
Gt + PtKt = Wt − Ptxt0 − Tt , so that

Gt = Wt − Pt(xt0 + Kt) − Tt , (10.5)

for t ≥ 0.
I now verify that the government budget equation

Gt+1 = (1 + rt)Gt − Tt1
, (10.6)

applies. As in the case of the Samuelson model, this equation lends force
to the interpretation of Gt as government debt. Because the allocation
(x , K , L) is feasible,

xt−1, 1 + xt0 ≤ f (Kt−1, Lt) − Kt ,

for all t ≥ 0. Condition (10) of definition 10.12 of spot price equilibrium
implies that

Pt(xt−1, 1 + xt0) = Pt[f (Kt−1, Lt) − Kt] (10.7)

and

WtLt = Wt , (10.8)

for all t ≥ 0. Equation 10.7 may be rewritten as

Pt[xt−1, 1 − f (Kt−1, Lt)]= −Pt(xt0 + Kt), (10.9)

for all t ≥ 0. Because u0 and u1 are locally nonsatiated, each consumer
satisfies his or her budget condition with equality, so that

Ptxt0 + Pt+1

1 + rt
xt1 = Wt − Tt ,

for t ≥ 0. This equation implies that

(1 + rt)(Wt − Ptxt0 − Tt ) = Pt+1xt1, (10.10)
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for t ≥ 0. Finally because firms earn zero profits in equilibrium,

PtKt = (1 + rt)
−1[Pt+1f (Kt , Lt+1) − Wt+1Lt+1], (10.11)

for all t ≥ 0. All these equations together imply that

(1 + rt)Gt = (1 + rt)[Wt − Pt .(xt0 + Kt) − Tt]

= (1 + rt)(Wt − Ptxt0 − Tt ) − Pt+1f (Kt , Lt+1) + Wt+1Lt+1

= Pt+1[xt1 − f (Kt , Lt+1)]+ Wt+1Lt+1

= Wt+1 − Pt+1(xt+1, 0 + Kt+1)

= Gt+1 + Tt+1,

where the first equation follows from equation 10.5, the second from equa-
tion 10.11, the third from equation 10.10, the fourth from equations 10.8
and 10.9, and the last equation follows from equation 10.5 again. This com-
pletes the verification of equation 10.6.

The government budget equation for period 0 is

G0 = (1 + r−t )G − T0. (10.12)

Because u1 is locally nonsatiated and x−1, 1 solves the utility maximization
problem of condition (8) of definition 10.12 of spot price equilibrium, it
follows that

P0x−1, 1 = P0f (K−1, L0) − W0L0 + (1 + r−1)G. (10.13)

Therefore,

(1 + r−1)G = P0[x−1, 1 − f (K−1, L0)]+ W0L0

= W0 = P0.(x00 + K0) = G0 + T0

where the first equation follows from equation 10.13, the second from
equations 10.8 and 10.9, and the third from equation 10.5. This completes
the verification of equation 10.12.

As the transactions in a spot price equilibrium may be confusing, I de-
scribe them during one period T . Imagine that in each period t a firm t

invests capital in period t and that in the succeeding period it uses labor to
produce output. In period T , the young consumer earns WT LT in wages
from firm T − 1 and pays the same firm PT xT 0 for consumption and pays
the government a lump-sum tax of TT . The young consumer invests the
residual, WT LT − PT xT 0 − TT , in GT units of government debt and in a
loan to firm T of PT KT . The old consumer receives the value of his or her
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investments in the previous period plus interest, which is (1 + rT −1)GT −1,
from the government and (1 + rT −1)PT −1KT −1 from firm T − 1. The old
consumer pays PT xT −1, 1 to firm T − 1 for consumption. Firm T − 1 re-

ceives PT (xT 0 + xT −1, 1) in revenues from sales to consumers and PT KT

in sales of capital to firm T . Firm T − 1 pays the young consumer WT LT

in wages and pays the old consumer (1 + rT −1)PT −1KT −1 for its loan plus
interest. Firm T pays firm T − 1 the amount PT KT for capital goods and
borrows the same amount from the young consumer. The government re-
ceives TT as a lump-sum tax paid by the young consumer and borrows GT

from the young consumer. The government pays (1+ rT −1)GT −1 to the old
consumer for its loan plus interest. These payments must be thought of as
all happening simultaneously, as in a 1-period general equilibrium model.
It is impossible for the transactions to occur sequentially, for no one can
be the first to pay. For instance, firm T − 1 cannot pay wages and repay its
debt plus interest before it sells its output, and consumers cannot buy the
firm’s output before they receive payment for wages and loans.

I state a few other definitions that should be familiar from the Samuelson
model.

definition 10.14 A spot price equilibrium with interest rate 0, (x , K ,
L , P, W , G, T), for the Diamond model, is a spot price equilibrium,
(x , K , L , P, W , r , G, T), such that rt = 0, for all t .

If we set rt = 0 in equations 10.6 and 10.12, we obtain the following
government budget equations:

Gt+1 = Gt − Tt+1,

for t ≥ 0, and

G0 = G − T0.

definition 10.15 A stationary spot price equilibrium for the Diamond
model is a spot price equilibrium, (x , K , L , P, W , r , G, T), such that none
of the variables depends on the time index t .

Similarly a stationary allocation is an allocation, (x , K , L), such that
none of the variables depends on t . A stationary spot price equilibrium
is denoted by (x0, x1, K , L, P , W , r , G, T), where, for all t , (xt0, xt1) =
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(x0, x1), Kt = K , Lt = L, Pt = P , Wt = W , rt = r , and Tt = T. A station-
ary spot price equilibrium with interest rate 0 is denoted by (x0, x1, K ,
L, P , W , G), since r = T = 0 in such an equilibrium. A stationary allo-
cation is denoted by (x0, x1, K , L).

I now show how to transform the Diamond overlapping generations
model into a one-sector optimal growth model. A growth model is a simpli-
fication of the Diamond model that makes it possible to focus on the trade-
off between current and future consumption, undistracted by consumer
budgets and taxes or intergenerational transfer payments. Let the utility
function of a consumer be u(x0, x1), as in chapter 9. If we discount future
utility at a constant positive rate, r , and translate into the Diamond frame-
work the welfare optimization problem already studied in the Samuelson
model, we obtain the problem

max
(xt0, xt−1, 1, Kt , Lt)

∞
t=0≥0

[(1 + r)u(x−1, 0, x−1, 1) +
∞∑
t=0

(1 + r)−tu(xt0, xt1)]

s.t. xt0 + xt−1, 1 + Kt ≤ f (Kt−1, Lt) and

Lt ≤ 1, for t ≥ 0, and K−1 = K−1,

(10.14)

where x−1, 0 and K−1 are fixed and r > 0. If we substitute the utility
function u(x0, x1) = u0(x0) + u1(x1) into the objective function of prob-
lem 10.14, change the order of summation, and drop the constant term
(1 + r)u0(x−1, 0), we obtain the problem

max
(xt0, xt−1, 1, Kt , Lt)

∞
t=0≥0

∞∑
t=0

(1 + r)−t[u0(xt0) + (1 + r)u1(xt−1, 1)]

s.t. xt0 + xt−1, 1 + Kt ≤ f (Kt−1, Lt) and

Lt ≤ 1, for t ≥ 0, and K−1 = K−1,

(10.15)

where K−1 is fixed. It is permissible to change the order of summation in
the objective function when going from problem 10.14 to problem 10.15,
because the utilities appearing in the infinite sum are nonnegative. Define
the utility function v by the equation

v(C) = max
x0:0≤x0≤C

[u0(x0) + (1 + r)u1(C − x0)]. (10.16)

Since f , u0, and u1 are nondecreasing by assumptions 10.4 and 10.5, it
follows that Lt = 1, for all t , if (x , K , L) is an optimal allocation for prob-
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lem 10.15 with Kt > 0, for all t . It therefore makes sense to suppress the
labor variable and to replace f by the function F(K) = f (K , 1). I may use
the functions v and F to rewrite problem 10.15 as

max
(Ct , kt)

∞
t=0>0

∞∑
t=0

(1 + r)−tv(Ct)

s.t. Ct + Kt ≤ F(Kt−1), for t ≥ 0,

and K−1 = K−1,

(10.17)

and K−1 is fixed. Problem 10.17 is the central problem of the one-sector
growth model in optimal growth theory.1 I will always use the letter “C”
to indicate consumption in a growth model in order to distinguish it from
the consumptions, x0 and x1, in the overlapping generations model. The
quantity v(Ct) is the maximum welfare that can be generated in period t

by making Ct units of output available to the old and young persons. The
pair of functions (v , F) that has just been defined will be said to correspond
to the triple (u0, u1, f ) at interest rate r .

The allocations of overlapping generations models are called programs
in growth models. A program consists of (C, K) = (Ct , Kt)

∞
t=0, where each

of the components, Ct and Kt , is a nonnegative number. The program is
feasible, given the initial capital stock K−1, if

Ct + Kt ≤ F(Kt−1),

for all t ≥ 0, where it is understood that K−1 = K−1. A feasible program is
optimal if it solves problem 10.17. The program (C, K) and the allocation
(x , K , L) are said to correspond to each other at interest rate r if v(Ct) =
u0(xt0) + (1 + r)u1(xt−1, 1) and Lt = 1, for all t . The next proposition says
that a program is optimal if and only if the corresponding allocation is
optimal. I give no formal proof of this assertion as it is almost self-evident.

proposition 10.16 If the allocation (x , K , L) and the program (C, K)

correspond at the positive interest rate r , then (x , K , L) solves prob-
lem 10.15 if and only if (C, K) solves problem 10.17, where, in these
problems, (F , v) corresponds to (f , u0, u1) at interest rate r .

1. This growth model is known as the Ramsey model or the Ramsey-Solow growth model,

as it was introduced in Ramsey (1928) and again in Solow (1956).
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The next lemma aids in the passage back and forth between Diamond
models and growth models.

lemma 10.17 If assumption 10.5 applies and r ≥ 0, then the equation

v(C) = max
x0:0≤x0≤C

[u0(x0) + (1 + r)u1(C − x0)]

defines x0 and x1 = C − x0 as continuous functions of C.

Proof. It is sufficient to prove the lemma for x0. First of all, I prove that x0

is a function of C. Suppose that

u0(x0) + (1 + r)u1(C − x0) = v(C) = u0(x0) + (1 + r)u1(C − x0),

where x0 �= x0. Then, because u0 and u1 are strictly concave,

u0

(
1
2x0 + 1

2x0

)+ (1 + r)u1

(
1
2(C − x0) + 1

2(C − x0)
)

> 1
2u0(x0) + 1

2u0(x0) + 1
2(1 + r)u1(C − x0) + 1

2(1 + r)u1(C − x0)

= 1
2 [u0(x0) + (1 + r)u1(C − x0)]+ 1

2 [u0(x0) + (1 + r)u1(C − x0)]

= 1
2v(C) + 1

2v(C) = v(C),

which contradicts the definition of v(C). Therefore, we may write x0 =
x0(C) and x1 = x1(C) = C − x0(C).

I now show that the function x0(C) is continuous. Suppose that the se-
quence Cn converges to C, where n = 1, 2, . . . . I must show that x0(Cn)

converges to x0(C). I may assume that C > 0, for if C = 0, then clearly
x0(Cn) converges to zero, since 0 ≤ x0(Cn) ≤ Cn, for all n. Suppose that
x0(Cn) does not converge to x0(C). Then, there exists a positive num-
ber ε and a subsequence n(k) such that |x0(Cn(K)) − x0(C)| ≥ ε, for all
k. By the Bolzano-Weierstrass theorem, we may assume that the subse-
quence x0(Cn(k)) converges to some number x0, as k goes to infinity. By
passage to the limit in the inequality |x0(Cn(k)) − x0(C)| ≥ ε, we see that
|x0 − x0(C)| ≥ ε. Because x0(C) is the unique value of x0 that solves prob-
lem 10.16, it follows, that for some positive number δ,

u0(x0(C)) + (1 + r)u1(C − x0(C)) >

u0(x0) + (1 + r)u1(C − x0) + 2δ.
(10.18)

Because C > 0 and u0 and u1 are continuous, there exists a number α such
that α < 1 and α is so close to 1 that

u0(αx0(C)) + (1 + r)u1(αC − αx0(C)) >

u0(x0(C)) + (1 + r)u1(C − x0(C)) − δ.
(10.19)
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If k is so large that Cn(k) > αC, then

u0(x0(Cn(k))) + (1 + r)u1(Cn(k) − x0(Cn(k))) = v(Cn(k))

≥ u0(x0(αC)) + (1 + r)u1(Cn(k) − x0(αC))

> u0(x0(αC)) + (1 + r)u1(αC − x0(αC)) = v(αC)

≥ u0(αx0(C)) + (1 + r)u1(αC − αx0(C))

> u0(x0(C)) + (1 + r)u1(C − x0(C)) − δ

> u0(x0) + (1 + r)u1(C − x0) + δ ,

(10.20)

where the first inequality is true because of the definition of v. The second
inequality is true because the function u1 is increasing. The third inequality
is a consequence of the definition of the function v. The fourth inequality is
inequality 10.19, and the last inequality follows from inequality 10.18. Be-
cause the sequences Cn(k) and x0(Cn(k)) converge to C and x0, respectively,
it follows that for k that is large enough,

u0(x0(Cn(k))) + (1 + r)u1(Cn(k) − x0(Cn(k)))

< u0(x0) + (1 + r)u0(C − x0) + δ.
(10.21)

The contradiction between inequalities 10.20 and 10.21 proves that x0(Cn)

converges to x0(C), as n goes to infinity.

I make the following assumptions about the optimal growth model.

assumption 10.18 F(0) = 0, and there exists a positive number K such
that F(K) − K > 0.

assumption 10.19 F is continuously differentiable on [0, ∞), twice

differentiable on (0, ∞), dF(K)
dK

> 0, for K ≥ 0, and d2F(K)

dK2 < 0, for K > 0.

assumption 10.20 limK→∞ K−1F(K) = limK→∞ dF(K)
dK

= 0.

assumption 10.21 The utility function v is differentiable and strictly
concave, and its derivative is everywhere positive.

It is easy to see that assumptions 10.18 and 10.19 are implied by as-
sumptions 10.1–10.4 and the definition of F . I show that these assumptions
imply assumption 10.20. Because f is homogeneous of degree 1,

F(K)

K
= K−1f (K , 1) = f (1, K−1),
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and f (1, K−1) converges to f (1, 0) = 0, as K goes to infinity. Because
F(0) = 0 and F is concave and increasing,

0 ≤ dF(K)

dK
≤ F(K)

K
.

Since F(K)
K

converges to 0 as Kgoes to infinity, dF(K)
dK

must do so as well.
It is easy to see that assumptions 10.18–10.20 imply that feasible pro-

grams are bounded. I now prove that assumption 10.21 is implied by as-
sumption 10.5 and the definition of v. To do so, I need the following lemma.

lemma 10.22 If v : [0, ∞) → (−∞, ∞) is an increasing and concave
function, then v has a positive subgradient at every positive member of its
domain.

Proof. This statement was already proved in the course of proving the
Kuhn-Tucker theorem (in section 6.5). Let C be greater than 0. I must show
that there is a positive number p such that for all nonnegative numbers C

v(C) ≤ v(C) + p(C − C). (10.22)

I apply the Minkowski separation theorem to the sets

B = {(C , t) | C ≤ C and t ≥ v(C)}
and

Z = {(C , t) | C ≥ 0 and t ≤ v(C)}.

The set B is clearly convex, and the concavity of v implies that Z is convex.
The sets are portrayed in figure 10.2.

Because v is strictly increasing, B and Z intersect solely at the point
(C , v(C)). Since both sets have nonempty interiors, we may apply the
Minkowski separation theorem to prove that there is a nonzero vector (r , s)

such that

(r , s).(C , t) ≥ (r , s).(C , t), (10.23)

for all (C , t) in B and (C , t) in Z. The nature of the set B implies that r ≤ 0
and s ≥ 0. I show that s > 0. Suppose that s = 0. Since (r , s) �= 0, it follows
that r < 0. Since (C , v(C)) ∈ B, inequality 10.23 implies that rC ≥ rC,
for all C ≥ 0, so that C ≤ C, for all C ≥ 0. Since C > 0, this inequality is
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C C

Z

vB

Figure 10.2 The sets to be separated

impossible. Hence s > 0. Let p = −r/s. If we divide inequality 10.23 by s,
it becomes

(−p , 1).(C , t) ≥ (−p , 1).(C , t),

for all (C , t) in B and (C , t) in Z. Since (C , v(C)) belongs to B and
(C , v(C)) belongs to Z, for all C ≥ 0, we have that

(−p , 1).(C , v(C)) ≥ (−p , 1).(C , v(C)),

for all C ≥ 0. When expanded and rearranged, this inequality becomes
inequality 10.22.

It remains to be shown that p > 0. If we substitute C + 1 for C in in-
equality 10.22, we find that

p ≥ v(C + 1) − v(C).

Since v is strictly increasing, v(C + 1) − v(C) > 0 and therefore p > 0.

lemma 10.23 If u0 and u1 are strictly concave and differentiable and have
positive derivatives, then the function v defined by equation 10.16 has the
same properties and

dv(C)

dC
= du0(x0(C))

dx
, (10.24)
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if x0(C) > 0. Similarly,

dv(C)

dC
= (1 + r)

du1(x1(C))

dx
, (10.25)

if x1(C) > 0.2 Finally,

dv(0)

dc
= max

(
du0(0)

dx
, (1 + r)

du1(0)

dx

)
. (10.26)

Proof. It should be obvious that v is strictly increasing because u0 and u1

are strictly increasing. I next show that v is concave. Let x and x be such
that 0 ≤ x < x, and suppose that 0 < α < 1. Let x0 be such that 0 ≤ x0 ≤ x

and v(x) = u0(x0) + u1(x − x0). Similarly, let x0 be such that 0 ≤ x0 ≤ x

and v(x) = u0(x0) + u1(x − x0). Then, by the definition of v and because
u0 and u1 are strictly concave

v(αx + (1 − α)x) ≥ u0(αx0

+ (1 − α)x0) + (1 + r)u1((αx + (1 − α)x) − (αx0 + (1 − α)x0))

= u0(αx0 + (1 − α)x0) + (1 + r)u1(α(x − x0) + (1 − α)(x − x0))

> αu0(x0) + (1 − α)u0(x0) + α(1 + r)u1(x − x0)

+ (1 − α)(1 + r)u1(x − x0)

= αv(x) + (1 − α)v(x),

so that v is strictly concave.
I now show that v is differentiable and that its derivative satisfies equa-

tions 10.24–10.26. Suppose, first of all, that C > 0 and x0(C) > 0. Because
v is concave and increasing, lemma 10.22 implies that v has a positive sub-
gradient, p, at C. If �C is a small change in C, then

v(C + �C) ≤ v(C) + p�C ,

so that

p�C ≥ v(C + �C) − v(C)

≥ u0(x0(C) + �C) + (1 + r)u1(C + �C − x0(C) − �C)

− u0(x0(C)) − (1 + r)u1(C − x0(C))

= u0(x0(C) + �C) − u0(x0(C)).

(10.27)

2. Equations 10.24 and 10.25 are implied by what is known in mathematical economics as

the envelope theorem. See Varian (1992, 490–1).
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Therefore, if �C > 0, then

p ≥ v(C + �C) − v(C)

�C
≥ u0(x0(C) + �C) − u0(x0(C))

�C
. (10.28)

The right-hand side of inequality 10.28 converges to du0(x0(C))

dx
as �C con-

verges to zero, so that

p ≥ du0(x0(C))

dx
.

Inequality 10.27 implies that if �C < 0, then

p ≤ v(C + �C) − v(C)

�C
≤ u0(x0(C) + �C) − u0(x0(C))

�C
, (10.29)

so that

p ≤ du0(x0(C))

dx
.

We may conclude, therefore, that

p = du0(x0(C))

dx
. (10.30)

Inequalities 10.28 and 10.29 and equation 10.30 imply that

lim
�C−0

v(C + �C) − v(C)

�C
= p = du0(x0(C))

dx
,

so that

dv(C)

dC
= du0(x0(C))

dx
.

A similar argument proves that

dv(C)

dC
= (1 + r)

du1(x1(C))

dx
,

if x1(C) > 0. This proof of the differentiability of v is illustrated in fig-
ure 10.3.

Suppose now that C = 0. Because C = 0, �C ≥ 0, and because v is
concave, the ratio

v(�C) − v(0)

�C
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C C

v

Utiles
Slope = p

u0 or (1 + r)u1

Figure 10.3 Proving the differentiability of v by trapping its graph between those
of two differentiable functions

is nonincreasing in �C for �C ≥ 0. Therefore,

lim
�C→∞

v(�C) − v(0)

�C

exists, though it may be infinite. I call this limit dv(0)
dC

. (This argument was
already used in proving proposition 10.6.) By the definition of v,

v(�C) − v(0)

�C
≥ u0(�C) + (1 + r)u1(0) − [u0(0) + (1 + r)u1(0)]

�C

= u0(�C) − u0(0)

�C
,

so that

dv(0)

dC
≥ du0(0)

dC
.
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A similar argument implies that

dv(0)

dC
≥ (1 + r)

du1(0)

dC
.

These last two inequalities imply equation 10.26 if either du0(0)
dx

= ∞ or
du1(0)

dx
= ∞. Suppose that du0(0)

dx
< ∞ and du1(0)

dx
< ∞. The definition of v

implies that

v(�C) − v(0)

�C

= u0(x0(�C)) + (1 + r)u1(x1(�C)) − [u0(0) + (1 + r)u1(0)]

�C

= u0(x0(�C)) − u0(0)

�C
+ (1 + r)

u1(x1(�C)) − u1(0)

�C

= x0(�C)

�C

du0(0)

dx
+ o(x0(�C)) + x1(�C)

�C
(1 + r)

du0(0)

dx
+ o(x1(�C)),

where the symbol “o(y)” means a quantity such that

lim
y→0

o(y)

y
= 0.

Because 0 ≤ x0(�C) ≤ �C and 0 ≤ x1(�C) ≤ �C and x0(�C)+
x1(�C) = �C, it follows that for small �C, v(�C)−v(0)

�C
is, to within

an asymptotically vanishing error, a weighted average of du0(0)
dx

and

(1 + r)
du1(0)

dx
. By the definition of v, the weights are chosen so as to maxi-

mize the average, so that if these two derivatives differ, all the weight is put
on the larger one. This completes the proof of equation 10.26.

Given functions v and F that satisfy assumptions 10.18–10.21, there ex-
ist functions u0, u1, and f that satisfy assumptions 10.1–10.5 and such that
v and F correspond to u0, u1, and f in the manner that has been described.
The functions u0 and u1 are defined by the equations u0(x) = 1

2v(2x) and

u1(x) = 1
2(1+r)

v(2x), respectively. The function f is defined by the equa-

tions f (K , L) = LF
(

K
L

)
, if L > 0 and f (K , 0) = 0. Proposition 10.6 im-

plies that f satisfies assumptions 10.1–10.4.
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10.2 Inefficiency

We have seen in section 9.2 that Arrow-Debreu equilibria in the Samuelson
model can allocate consumption inefficiently between young and old con-
sumers by giving too much to the young. An additional form of inefficiency
occurs in the Diamond model if the real rate of interest is persistently nega-
tive, for then the economy acquires so much capital that reducing it would
make it possible for all consumers from some time onward to consume
more. In such a case, the economy is said to have overaccumulated capital. I
give an example of an economy that has a spot price and an Arrow-Debreu
equilibrium that exhibit this inefficiency as well as the excessive favoring of
the young discussed in section 9.2.

Instead of describing the example as if it came from nowhere, I show
how to arrive at it. I seek a stationary spot price equilibrium in which the
stationary interest rate is negative and there are no taxes, so that the cor-
responding Arrow-Debreu equilibrium has no transfer payments. Trans-
fer payments would make the Arrow-Debreu equilibrium seem dubious,
since they would grow exponentially along with prices and so would not be
summable.

Euler’s equation for homogeneous functions (equation 4.3 in section 4.4)
implies that

f (K , 1) = K
∂f (K , 1)

∂K
+ ∂f (K , 1)

∂L
, (10.31)

where K and 1 are the stationary equilibrium levels of the capital and la-
bor inputs, respectively. In the stationary spot price equilibrium let P , W ,
and r be the price of the produced good, the wage, and the interest rate, re-
spectively, and suppose that prices are normalized so that P = 1. The profit
to be maximized in equilibrium is (1 + r)−1[f (K , L) − WL]− K . Since
L = 1 in equilibrium, the first order conditions for profit maximization are

∂f (K , 1)

∂K
= 1 + r (10.32)

and

∂f (K , 1)

∂L
= W , (10.33)

assuming that K > 0. Substituting these two equations into equation 10.31,
we find that

f (K , 1) = K(1 + r) + W . (10.34)
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If x0 and x1 are the stationary equilibrium levels of consumption in youth
and old age,respectively, then feasibility implies that

x0 + x1 = f (K , 1) − K . (10.35)

Since there are no taxes in the equilibrium, a typical consumer’s budget
equation is

x0 + x1

1 + r
= W . (10.36)

Substituting equations 10.35 and 10.36 into equation 10.34 and simplify-
ing, we find that

x1 = (1 + r)K .

If we substitute this equation into the budget equation 10.36, we find that

x0 = W − K .

Therefore, in order to construct an example, we need a production function
such that W > K , for some r between −1 and 0. One such production
function is

f (K , L) = 4K1/4L3/4,

for if r = −1/2, then equations 10.32 and 10.33 imply that W = 3(21/3) >

2(21/3) = K . Let x0 = 21/3 = x1. We can check that the allocation (x0, x1, K)

= (21/3, 21/3, 2(21/3)) is feasible, for f (K , 1) = 4(21/3) = 21/3 + 21/3+
2(21/3) = x0 + x1 + K . In order to finish the example, all that remains to be
done is to find a utility function such that a consumer chooses x0 = 21/3 =
x1 when the interest rate is −1/2 and the total expenditure is W = 3(21/3).
One possibility is the Cobb-Douglas utility function u0(x0) + u1(x1) =
1
3 ln(x0) + 2

3 ln(x1). In conclusion, we have the following.

example 10.24 (Inefficient equilibrium) Let f (K , L) = 4K1/4L3/4,
u0(x0) = 1

3 ln(x0), and u1(x1) = 2
3 ln(x1). Then the following defines a sta-

tionary spot price equilibrium that has no taxes: K = 2(21/3), x0 = 21/3 =
x1, P = 1, W = 3(21/3), and r = −1/2. This equilibrium may be expressed
as an Arrow-Debreu equilibrium with no transfer payments by letting
pt = 2t and wt = 3(21/3)2t , for all t .

I show that the equilibrium allocation of this example is not Pareto op-
timal. Call the spot price equilibrium just calculated the old situation, and
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imagine that at time 0 the economy switches to a new regime by reducing
the capital stock from 2(21/3) to 1 and keeping it there forever. Because of
this change, the amount of output available for consumption in period 0
is f (2(21/3), 1) − 1 = 4(21/3) − 1. Suppose that the young person of pe-
riod 0, consumes one unit of this output, so that the old person of that
period consumes 4(21/3) − 2, which exceeds the amount 21/3 consumed in
the old situation. Hence he or she is better off in the new situation. Sup-
pose that the level of capital in the new regime equals 1 from period 0
onward, so that from that period onward, total output is f (1, 1) = 4 and
output net of capital input is f (1, 1) − 1 = 3. Let the young consume one
unit of output from period 0 onward and the old consume two units from
period 1 onward. This consumption pattern is feasible, since the total con-
sumption in each period (3) equals output net of capital input. In the new
situation, the lifetime utility of a consumer born in period 0 or thereafter is
1
3 ln(1) + 2

3 ln(2) = 2
3 ln(2), which exceeds the lifetime utility,

1

3
ln(21/3) + 2

3
ln(21/3) = 1

9
ln(2) + 2

9
ln(2) = 1

3
ln(2),

of consumers in the old situation. Since everyone gains by the shift to
the new allocation, the equilibrium allocation of the old situation was not
Pareto optimal.

There are two causes of inefficiency. One cause is the overaccumulation
of capital in the old situation. The capital stock in that allocation, 2(21/3),
was so large that the output left over for consumption after providing for
capital, 4(21/3) − 2(21/3) = 2(21/3), was less than the stationary level of 3
that can be maintained with the lower capital stock of 3.

Not only was there a deficient quantity of output available for consump-
tion in the old situation, but the allocation of that output between the
young and old was inefficient, for suppose that no change is made in cap-
ital inputs, so that only 2(21/3) units of output can be consumed in every
period. Then, just as in the Samuelson model, a Pareto improvement can
be obtained by switching to a regime in which the old consume (4/3)(21/3)

and the young consume (2/3)(21/3) units of the produced good in every
period. In the old situation, the old consumed too little relative to the
young.

The inefficiencies are illustrated in figure 10.4, which shows the alloca-
tion of consumption between typical old and young consumers. Given the
stationary equilibrium investment in capital, the feasibility line for the sta-
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xt00 f c b

f
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B

C

xt1, xt–1,1

Figure 10.4 Inefficiencies in the equilibrium

tionary allocation of consumption between young and old is the line f f .
The equilibrium allocation is at point A on the line f f where the indiffer-
ence curve of a typical consumer is tangent to the budget line, bb. The best
feasible allocation of consumption along f f is at point B, which is preferred
to the equilibrium point A. The superiority of B to A results from the mis-
allocation of consumption between the young and the old. If the investment
in capital is reduced, the feasible consumption line moves out to cc, and the
best allocation of consumption on this line is at point C, which is preferred
to both B and A. The superiority of C over B results from the overaccu-
mulation of capital at B. Such overaccumulation is the form of inefficiency
typically studied in growth theory and occurs as an equilibrium when the
real interest rate is eventually negative and remains so indefinitely, as in the
above example.

Overaccumulation may be visualized with the help of figure 10.5. The
figure shows the graph of the production function y = f (K , 1) and the
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K(r1) K(0) K(r2)

K(r2)

f(K(r2), 1)

K0

Slope > 1

Slope = 1

y = K

y = f(K, 1)

Slope < 1

y

Figure 10.5 Output, net output, and capital input

graph of the line y = K . The difference between these two graphs is the
amount of produced good available for consumption in a stationary alloca-
tion, namely, f (K , 1) − K , for in a stationary equilibrium with allocation
(x , K , L) and where L = 1, feasibility implies that x0 + x1 ≤ f (K , 1) − K .
Let K(r) be the capital input that solves the equation

∂f (K(r), 1)

∂K
= 1 + r .

The difference f (K(r), 1) − K(r) is maximized when r = 0, as is shown in
the figure. The difference is less than the maximum when r < 0, as at r2, or
when r > 0, as at r1. If the stationary interest rate, r , is negative, then

∂f (K , 1)

∂K
= 1 + r < 1,
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when K = K(r), so that

∂

∂K
[f (K , 1) − K]< 0,

at K = K(r), and there would be more output net of capital input left over
for consumption if the stationary capital stock were reduced. If the reduc-
tion were made at time 0, the consumers of that period could consume the
extra amount of produced good thereby made available, and in every period
thereafter there would be more output net of capital available for consump-
tion. The reduction in capital input would lead to a Pareto improvement,
so that it is not efficient to have the large capital stock generated by an equi-
librium with a negative interest rate. If r > 0, then

∂f (K , 1)

∂K
= 1 + r > 1,

when K = K(r), so that

∂

∂K
[f (K , 1) − K]> 0,

at K = K(r), and more output net of capital input would be available for
consumption if the capital input were increased. This change would not
necessarily lead to a Pareto improvement, because it could not take place
without reducing consumption at the time the increase was initiated. It
will be shown in section 10.3 that the allocations of stationary spot price
equilibria with positive interest rates are Pareto optimal.

The capital stock K(0) is known as the golden rule capital stock, for the
stationary allocation with that capital stock maximizes the net output,
f (K , 1) − K , available for consumption.

10.3 Pareto Optimal Equilibria

The theory of Pareto optimal equilibria is nearly the same in the Diamond
and Samuelson models.

proposition 10.25 If assumptions 10.1–10.5 apply, then the allocation,
(x , K , L), of an Arrow-Debreu equilibrium, (x , K , L , p, w , τ), with trans-
fer payments is Pareto optimal if

∞∑
t=0

pt < ∞.
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Proof. If (x , K , L) is not Pareto optimal, it is Pareto dominated by an al-
location (x , K , L) that is feasible with the same initial capital K−1. Because
(x , K , L) Pareto dominates (x , K , L) and u0 and u1 are locally nonsatiated,
it follows from arguments used in the proof of the first welfare theorem 5.2
(in section 5.1) that

p0x−1, 1 ≥ p0f (K−1, 1, L0) − w0L0 − τ−1

and

ptxt0 + pt+1xt1 ≥ wt − τt ,

for t ≥ 0, with strict inequality for those people who prefer (x , K , L) to
(x , K , L). The right-hand sides of these inequalities are the income of the
consumers in the equilibrium. Adding these inequalities, we find that

p0x−1, 1 +
∞∑
t=0

(ptxt0 + pt+1xt1) >

∞∑
t=0

(wt − τt) + p0f (K−1, L0) − w0L0 − τ−1.

(10.37)

By lemma 10.10 (in section 10.1),
∑∞

t=0 wt < ∞, and by proposition 10.11
in the same section,

∑∞
t=−1 τt = 0 and

∑∞
t=0 |τt | < ∞. Hence the infi-

nite series in inequality 10.37 all converge absolutely, so that the values
of the left- and right-hand sides are not changed by reordering the terms.
Therefore

∞∑
t=0

pt(xt0 + xt−1, 1) >

∞∑
t=0

wt −
∞∑

t=−1

τt + p0f (K−1, L0) − w0L0 =
∞∑
t=0

wt + p0f (K−1, L0) − w0L0 ≥
∞∑
t=0

wtLt + p0f (K−1, L0) − w0L0,

(10.38)

where the last inequality follows from the fact that Lt ≤ 1, for all t . Profit
maximization implies that

p0f (K−1, L0) − w0L0 ≤ p0f (K−1, L0) − w0L0 (10.39)
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and

ptf (Kt−1, Lt) − wtLt − pt−1Kt−1 ≤
ptf (Kt−1, Lt) − wtLt − pt−1Kt−1 = 0,

(10.40)

for t ≥ 1, where the equation follows from the fact that f is homogeneous
of degree 1. Inequality 10.40 implies that

wtLt ≥ ptf (Kt−1, Lt) − pt−1Kt−1, (10.41)

for t ≥ 1. Substituting inequalities 10.39 and then 10.41 into inequal-
ity 10.38, we see that

∞∑
t=0

pt(xt0 + xt−1, 1) >

∞∑
t=0

wtLt + p0f (K−1, L0) − w0L0

=
∞∑
t=1

wtLt + p0f (K−1, L0)

≥
∞∑
t=1

[ptf (Kt−1, Lt) − pt−1Kt−1]+ p0f (K−1, L0),

so that
∞∑
t=0

pt(Kt + xt0 + xt−1, 1) > p0f (K−1, L0) +
∞∑
t=1

ptf (Kt−1, Lt).

This inequality is impossible, since pt ≥ 0, for all t ≥ 0, and the feasibility
of (x , K , L) implies that K0 + x00 + x−1, 1 ≤ f (K−1, L0) and Kt + xt0 +
xt−1, 1 ≤ f (Kt−1, Lt), for all t ≥ 1. This contradiction proves the propo-
sition.

Because a spot price equilibrium may be converted to an Arrow-Debreu
equilibrium with transfer payments, we have the following two corollaries.

corollary 10.26 Assume that assumptions 10.1–10.5 apply. If the spot
price equilibrium, (x , K , L , P, W , r , G, T), satisfies the condition

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞,

where 1+ Rt = (1+ r0)(1+ r1) . . . (1+ rt), for t ≥ 0, then the equilibrium
allocation, (x , K , L), is Pareto optimal.
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Proof. When (x , K , L , P, W , r , G, T) is converted to an Arrow-Debreu
equilibrium, (x , K , L , p, w , τ), with transfer payments, then the condition

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞

implies that
∑∞

t=0 pt < ∞, so that the allocation (x , K , L) is Pareto optimal
by proposition 10.25.

The next corollary is an immediate consequence of the previous one.

corollary 10.27 If assumptions 10.1–10.5 apply, then the allocation of
a stationary spot price equilibrium with a positive interest rate is Pareto
optimal.

I now describe the set of stationary spot price equilibria, (x0, x1, K , L,
P , W , r , G, T) when r > −1. Assume that assumptions 10.1–10.5 apply.
Because f , u0, and u1 are nondecreasing, we may assume that

L = 1. (10.42)

Because u0 and u1 are strictly increasing, we know that

x0 + x1 + K = f (K , 1) (10.43)

and P > 0. I normalize P to be 1. Assume that x0 > 0 and x1 > 0, so that by
the first order conditions for utility maximization over a typical consumer’s
budget set

(1 + r)
du1(x1)

dx1

= du0(x0)

dx0

. (10.44)

Since profit from one period’s production is (1 + r)−1[f (K , L) − WL]−
K , the first order conditions for profit maximization are

∂f (K , 1)

∂K
= 1 + r (10.45)

and

∂f (K , 1)

∂L
= W . (10.46)

The budget equation for the typical consumer is

x0 + (1 + r)−1x1 = W − T. (10.47)
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Government debt is defined by the equation

G = W − x0 − T − K . (10.48)

Equations 10.42–10.45 determine the real variables, (x0, x1, K , L). Equa-
tions 10.46–10.48 determine the monetary variables W , G, and T. The in-
terest rate, r , is fixed in advance. It may be checked that G and T satisfy the
government budget constraint

rG = T. (10.49)

The stationary equilibrium has no output and no consumption if r >
∂f (0, 1)

∂K
− 1, and there exists no stationary equilibrium if r <

∂f (K̂ , 1)
∂K

− 1,

where K̂ is the unique positive solution of the equation f (K̂ , 1) = K̂ .
Because of the concavity properties of the functions f , u0, and u1, equa-

tions 10.43–10.45 determine x0, x1, and K uniquely, and we may write the
stationary equilibrium allocation as (x0(r), x1(r), K(r)). This allocation is
unique because u is additively separable with respect to time. By imitating
example 9.26 (in section 9.5), it is not hard to make up one for the Dia-
mond model with a nonseparably additive utility function and with more
than one stationary equilibrium allocation.

To visualize this equilibrium graphically, recall from equations 10.34 and
10.35 (in section 10.2) that

x0 + x1 = f (K , 1) − K = rK + W .

This equation determines the feasibility line from W + rK to W + rK

in figures 10.6 and 10.7, and equation 10.47 determines the budget line
through x and C in the same figures. The tax, T, equals the distance from
C to W in figure 10.6. It is not possible to see the amount of government
debt in the figure, because G = W − x0 − T − K and there is no easy way
to represent the capital stock, K . The tax may be negative, as in figure 10.7
where −T equals the distance from W to C.

It is easy to make up examples in which the tax may be either positive
or negative. For instance, suppose that the utility function is u(x0, x1) =
ln(x0) + ln(x1). Then, equation 10.44 implies that x1 = (1 + r)x0, where
r is the interest rate. Since x0 + x1 = W + rK , it follows that x0 = (2 +
r)−1(W + rK) and x1 = (1 + r)(2 + r)−1(W + rK). If we substitute these
formulas for x0 and x1 into the consumer’s budget equation, x0 + (1 +
r)−1x1 = W − T, we see that 2(2 + r)−1(W + rK) = W − T. Solving this
equation for T, we find that T = r(2 + r)−1(W − 2K), which is positive if
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Figure 10.6 Stationary equilibrium in the Diamond model with a positive tax
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Figure 10.7 Stationary equilibrium in the Diamond model with a negative tax
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Figure 10.8 Stationary equilibrium in the Diamond model with interest rate 0

and only if W > 2K . If we let f (K , L) = α−1KαL1−α, where 0 < α < 1,

then the equation ∂f (K , 1)
∂K

= 1 + r implies that K = (1 + r)−
1

1−α and hence

W = ∂f (K , 1)
∂L

= α−1(1 − α)(1 + r)−
α

1−α . Substituting these equations into

the inequality W > 2K , we find that T > 0, if and only if 1−α
α

> 2
1+r

. It

follows that if r = 1, then T > 0, = 0, or < 0 if α < 1
2 , α = 1

2 , or α > 1
2 ,

respectively.
If r = 0, then the term rK disappears from the equation x0 + x1 = W +

rK and the picture of a stationary equilibrium is as in figure 10.8. This is
the stationary equilibrium that maximizes the utility of a typical consumer.
Since W = f (K , 1) − K , when r = 0, this stationary allocation solves the
problem

max
(x0, x1, K , L)≥0

[u0(x0) + u1(x1)]

s.t. x0 + x1 + K ≤ f (K , L) and

L ≤ 1.

Corollary 10.68 (in section 10.13) implies that this allocation is Pareto
optimal.
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10.4 Stationary Discounted Optima and Equilibria

This section is similar to section 9.4 on the Samuelson model. I consider
stationary allocations that are optimal with respect to a welfare function
that discounts the utility of future generations at a constant rate. I show
that these allocations are optimal if and only if they are the allocations of a
stationary spot price equilibrium.

definition 10.28 Let r > 0. A stationary r-discounted optimum, (x0, x1,
K , L), is a stationary solution to the optimization problem

max
xt0≥0, xt−1, 1≥0,

Kt≥0, Lt≥0, for t=0, 1, . . .{
(1 + r)u1(x−1, 1) +

∞∑
t=0

(1 + r)−t[u0(xt0) + u1(xt1)]

}

s.t. x00 + x−1, 1 + K0 ≤ f (K−1, L0),

xt0 + xt−1, 1 + Kt ≤ f (Kt−1, Lt), for t > 0,

L − t ≤ 1, for t ≥ 0,

(10.50)

such that x0 + x1 > 0, where K−1 is given and where a solution, (xt0,
xt−1, 1, Kt , Lt)

∞
t=0, is stationary if, for all t , (xt0, xt−1, 1, Kt , Lt) = (x0, x1,

K , L), for some (x0, x1, K , L), and if K−1 = K .

theorem 10.29 Suppose that assumptions 10.1–10.5 apply. Then any
stationary r-discounted optimum is the allocation of a stationary spot price
equilibrium with interest rate r .

Proof. Let (x0, x1, K , L) be the stationary r-discounted optimum. By
the definition of an optimum, x0 + x1 > 0. Because x0 + x1 > 0, it fol-
lows that K > 0 and L > 0, for otherwise, by assumption 10.3, nothing

could be produced and so x0 + x1 would be 0. Therefore ∂f (K , L)

∂K
> 0 and

∂f (K , L)

∂L
> 0, by assumption 10.4. By assumption 10.5, u0, and u1 are in-

creasing. Therefore (x0, x1, K , L) could not solve problem 10.50 unless
L = 1 and x0 + x1 + K = f (K , 1).

Assume that x0 > 0. An argument similar to what follows applies if x0 =
0 and x1 > 0.

In problem 10.50, hold all variables fixed at their values in the optimum,
except x00, K0, and x10. Then problem 10.50 reduces to
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max
x00

[u0(x00) + (1 + r)−1u0(f (K + x0 − x00, 1) − x1 − K)].

Since this problem is solved by x00 = x0 and x0 > 0 and K > 0, it follows
that

du0(x0)

dx
= (1 + r)−1du0(x0)

dx

∂f (K , 1)

∂K
,

where I have used the fact that f (K , 1) − x1 − K = x0. Since du0(x0)

dx
> 0,

it follows that ∂f (K , 1)
∂K

= 1 + r .
Now hold all variables fixed in problem 10.50 except x00 and x−1, 1. Then

the problem reduces to

max
x00≥0,
x−1, 1≥0

[u0(x00) + (1 + r)u1(x−1, 1)]

s.t. x00 + x−1, 1 ≤ f (K , 1) − K .

Since this problem is solved by (x00, x−1, 1) = (x0, x1) and x0 > 0 and u0

and u1 are concave, the first order conditions for its solution are that for
some positive number λ,

du0(x0)

dx
= λ and

du1(x1)

dx
≤ λ

1 + r
,

with equality if x1 > 0. Theorem 6.19 (in section 6.4) implies that (x0, x1)

solves the problem

max
x0≥0, x1≥0

[u0(x0) + u1(x1)]

s.t. x0 + x1

1 + r
≤ W − T,

where W = ∂f (K , 1)
∂K

and T = W − x0 − x1
1+r

. Let G = r−1T.

I have shown that (x0, x1, K , L, P , W , r , G, T) satisfies all the condi-
tions of a stationary spot price equilibrium, where L = 1 and P = 1. In
particular, (K , L) = (K , 1) solves the profit maximization problem

max
K≥0, L≥0

[(1 + r)−1(f (K , L) − WL) − K].

Next I show that the allocations of stationary spot price equilibria are
r-discounted optima, provided the interest rate is positive.



488 10 The One-Sector Growth and Diamond Models

theorem 10.30 Assume that assumptions 10.1–10.5 apply. If a station-
ary spot price equilibrium, (x0, x1, K , L, P , W , r , G, T), is such that
r > 0 and x0 + x1 > 0, then (x0, x1, K , L) is a stationary r-discounted
optimum.

Proof. First of all, the assumption that x0 + x1 > 0 implies that K > 0 and
L > 0, since x0 + x1 = f (K , L) − K and, by assumption 10.3, f (K , L) =
0, if K = 0 or L = 0.

I next show that P > 0 and W > 0. By the definition of a spot price equi-
librium, (P , W) > 0 and (K , L) solves the profit maximization problem

max
K≥0, L≥0

{(1 + r)−1[Pf (K , L) − WL]− PK}. (10.51)

If P = 0, then W > 0 and (K , L) can solve this problem only if L = 0,
in which case L < 1, so that W = 0. This contradiction proves that P >

0. It now follows that W > 0, for if W = 0, then problem 10.51 has no

solution, since K > 0 and therefore ∂f (K , L)

∂L
> 0, for any nonnegative L,

by assumption 10.4.
By the definition of a spot price equilibrium, (x0, x1) solves the problem

max
x0≥0, x1≥0

[u0(x0) + u1(x1)]

s.t. Px0 + (1 + r)−1Px1 ≤ W − T.

Since x0 + x1 > 0, it follows that 0 < Px0 + (1 + r)−1Px1 ≤ W − T, so
that this problem satisfies the positive income condition of proposition 6.14
(in section 6.3). Therefore, that proposition implies that for some positive
number λ, (x0, x1) solves the problem

max
x0≥0, x1≥0

[u0(x0) + u1(x1) − λPx0 − (1 + r)−1λPx1].

Hence (x0, x1) solves

max
x0≥0, x1≥0

[λ−1u0(x0) + λ−1u1(x1) − Px0 − (1 + r)−1Px1]. (10.52)

Similarly x1 solves

max
x1≥0

[λ−1(1 + r)u1(x1) − Px1]. (10.53)

Adding the objectives of problems 10.51 and 10.52, we find that (x0, x1,
K , L) = (x0, x1, K , 1) solves the problem
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max
x0≥0, x1≥0,
K≥0, L≥0

{λ−1u0(x0) + λ−1u1(x1) − Px0 − (1 + r)−1Px1

+ (1 + r)−1[Pf (K , L) − WL]− PK}.

(10.54)

Similarly (x1, L) = (x1, 1) solves the problem

max
x0≥0, L≥0

[λ−1(1 + r)u1(x1) − Px1 + Pf (K , L) − WL]. (10.55)

Let (xt0, xt−1, 1, Kt , Lt)
∞
t=0 be an allocation that is feasible given initial

capital K−1. I use the value loss method first introduced in proving theorem
9.28 (in section 9.6) to show that

(1 + r)u1(x1) +
∞∑
t=0

(1 + r)−t[u0(x0) + u1(x1)]

≥ (1 + r)u1(x−1, 1) +
∞∑
t=0

(1 + r)−t[u0(xt0) + u1(xt1)].

(10.56)

Let

L−1(x−1, 1, L0) = [(1 + r)λ−1u1(x1) − Px1 + Pf (K , 1) − W ]

− [(1 + r)λ−1u1(x−1, 1) − Px−1, 1 + Pf (K , L0) − WL0].

Similarly, let

L(xt0, xt1, Kt , Lt+1)

= {λ−1[u0(x0) + u1(x1)]− Px0 − (1 + r)−1Px1

+ (1 + r)−1[Pf (K , 1) − W ]− PK}
− {λ−1[u0(xt0) + u1(xt1)]− Pxt0 − (1 + r)−1Pxt1

+ (1 + r)−1[Pf (Kt , Lt+1) − WLt+1]− PKt}.

Because (x1, L) = (x1, 1) solves problem 10.55, it follows that

L−1(x−1, 1, L0) ≥ L−1(x1, 1) = 0. (10.57)

Similarly, because (x0, x1, K , 1) solves problem 10.54, it follows that

L(xt0, xt1, Kt , Lt+1) ≥ L(x0, x1, K , 1) = 0. (10.58)
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Adding inequality 10.57 and 10.58, for all t , we find that

0 ≤ L−1(x−1, 1, L0) +
∞∑
t=0

(1 + r)−tL(xt0, xt1, Kt , Lt+1)

= {(1 + r)λ−1u1(x1) +
∞∑
t=0

(1 + r)−tλ−1[u0(x0) + u1(x1)]}

− {(1 + r)λ−1u1(x−1, 1) +
∞∑
t=0

(1 + r)−tλ−1[u0(xt0) + u1(xt1)]}

+ P [x00 + x−1, 1 + K0 − f (K , L0)]

− P [x0 + x1 + K − f (K , 1)]

+
∞∑
t=1

(1 + r)−tP [xt0 + xt−1, 1 + Kt − f (Kt−1, Lt)]

−
∞∑
t=1

(1 + r)−tP [x0 + x1 + K − f (K , 1)]

+
∞∑
t=0

(1 + r)−tW(Lt − 1)

≤ {(1 + r)λ−1u1(x1) +
∞∑
t=0

(1 + r)−tλ−1[u0(x0) + u1(x1)]}

− {(1 + r)λ−1u1(x−1, 1) +
∞∑
t=0

(1 + r)−tλ−1[u0(xt0) + u1(xt1)]},

(10.59)

where the equation follows because the allocations are bounded, so that all
the series converge absolutely and their sums do not depend on the order
of summation. The second inequality follows in part from the feasibility of
the allocation (xt0, xt−1, 1, Kt , Lt)

∞
t=0, so that

P [x00 + x−1, 1 + K0 − f (K , L0)]≤ 0,
∞∑
t=1

(1 + r)−tP [xt0 + xt−1, 1 + Kt − f (Kt−1, Lt) ≤ 0,

and
∞∑
t=0

(1 + r)−tW(Lt − 1) ≤ 0.
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Also condition (10) of the definition of a spot price equilibrium (defini-
tion 10.12 in section 10.1) implies that

P [x0 + x1 + K − f (K , 1)]= 0

and
∞∑
t=0

(1 + r)−tP [x0 + x1 + K − f (K , 1)]= 0.

If we multiply the extreme left- and right-hand sides of inequality 10.59
by λ, we obtain inequality 10.56, and the verification of that inequality
completes the proof of the theorem.

It is easy to see that stationary spot price equilibria exist for interest rates
in a certain interval.

theorem 10.31 There exist r and r , where −1 < r < 0 < r ≤ ∞, and
there exists a unique stationary spot price equilibrium (x0, x1, K , L, P , W,
r , G, T) with P = 1 and x0 + x1 > 0, for any r such that r < r < r . No such
equilibrium exists if r ≤ r or r ≥ r .

Proof. From the proof of proposition 10.8 (in section 10.1), we know that
there exists a positive number K̂ such that f (K̂ , 1) = K̂ and f (K , 1) > K ,
if 0 < K < K̂ . Let r = ∂f (0, 1)

∂K
− 1. Since f (K , 1) is concave by assump-

tion 10.4 and f (K , 1) > K , for some K , it follows that r > 0. Let r =
∂f (K̂ , 1)

∂K
− 1, and let K(0) be the value of K that solves the problem

max
K≥0

[f (K , 1) − K].

By assumption 10.2, f (K(0), 1) − K(0) > 0, so that K(0) < K̂ . Since
f (K , 1) is a strictly concave function and ∂f (K(0), 1)

∂K
− 1 = 0, it follows that

r < 0. If r > −1, let K(r) be the unique capital stock such that ∂f (K(r), 1)
∂K

≤
1 + r , with equality if K(r) > 0. Then 0 < K(r) < K̂ , if and only if r <

r < r .
If r < r < r , let K = K(r) and let (x0, x1) solve the problem

max
x0≥0, x1≥0

[u0(x0) + (1 + r)u1(x1)]

s.t. x0 + x1 = f (K , 1) − K .
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Since u0 and u1 are continuous and strictly concave, (x0, x1) exists and is
unique. Since f (K , 1) − K > 0, it follows that x0 + x1 > 0. Let

W = ∂f (K , 1)

∂L
,

and let T = W − x0 − (1 + r)−1x1. If r �= 0, let G = r−1T. If r = 0, let
G = W − x0 − T. Then (x0, x1, K , L, P , W , r , G, T) is a stationary spot
price equilibrium with P = 1 and where L = 1. It is not hard to see that all
variables are uniquely defined, given the choice of P .

If r ≤ r or r ≥ r , then f (K(r), 1) − K(r) ≤ 0, so that it is not possible
to define a stationary spot price equilibrium with such an interest rate such
that x0 + x1 > 0.

An immediate consequence of the previous two theorems is that there
exists a unique stationary r-discounted optimal allocation, (x0, x1, K , L),
with x0 + x1 > 0, provided r < r < r .

10.5 Social Security

Social security may be included in the Diamond model by introducing
lump-sum payments that are made or received by both young and old
consumers. A spot market equilibrium with social security and a constant
positive interest rate, r , is (x , K , L , P, W , r , G, T), where

T = (T−1, 1, (T0 + T00, T01), (T1 + T10, T11), . . .),

the budget set of consumer −1 is

{x1 ≥ 0 | P0x1 ≤ P1f (K−1, L0) − W0L0 + (1r)G − T−1, 1},

and the budget set of consumer t , for t ≥ 0, is

{(x0, x1) ≥ 0 | Ptx0 + (1 + r)−1Pt+1x1 ≤ Wt − Tt − Tt0 − (1 + r)−1Tt1}.

Consumer t pays, when young, a regular lump-sum tax of Tt and a social
security lump-sum contribution of Tt0 and receives, when old, a lump-sum
social security benefit of −Tt1.

You might assume that social security discourages saving, investment,
and economic growth because it reduces the need for young people to pro-
vide for their old age, a point of view advanced by Feldstein (1974). We will
see that theoretically this intuition is not necessarily valid. I test the idea
by comparing stationary equilibria with and without social security. If the
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introduction of social security increases the steady state interest rate, it de-
creases the steady state capital stock and has the contrary effect if it increases
the interest rate. I could consider the impact of social security on nonsta-
tionary growth paths, but conclusions would be harder to derive and more
ambiguous. Stationary equilibria are, to some extent, made more relevant
by the turnpike theorem introduced in section 10.12, for this theorem sug-
gests that a modern economy may be close to an optimal steady state.

Before considering social security directly, I show that the interest rate in
a stationary spot price equilibrium may be thought of as depending on total
tax collections. Let (x0(r), x1(r), K(r), W(r), r , G, T(r)) be a stationary
spot price equilibrium of the Diamond model in which the price of the
produced good is normalized to be 1 and there is no social security. Since
the price level is fixed to be 1, W(r) is the real wage, r is the real interest rate,
and T(r) is the tax rate in real terms. The budget equation of a consumer
may be written as

T(r) = W(r) − x0(r) − (1 + r)−1x1(r).

I treat T(r) as the function W(r) − x0(r) − (1 + r)−1x1(r). If we assume
that the tax is fixed and equals T , then r satisfies the equation

T(r) = T .

Think of T as the level of the regular lump-sum tax before the introduc-
tion of social security. Although the equation T(r) = T may have multiple
solutions for one value of T , we can imagine that it implicitly defines r as
a function of T , for T near some particular value. Suppose that the func-
tion T(r) is continuously differentiable and that for a particular value of r ,
say, r ,

dT(r)

dr
�= 0.

Let T = T(r) and assume that if T is changed a little bit from its initial
value, T , then the value of r in the new stationary equilibrium will equal
the differential function r(T ) = T−1(T ), for values of T close to T = T(r).
Since

dr(T )

dT
=
(

dT(r)

dr

)−1

,

it follows that dr(T )
dT

and dT(r)
dr

have the same sign.
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Suppose that a social security program is introduced that obliges young
consumers to pay an additional lump-sum tax of T0 and pays old con-
sumers a lump-sum benefit of −T1, where T0 > 0 and T1 < 0. Suppose that
before the introduction of social security, the interest rate is r and the reg-
ular lump-sum tax paid by young consumers is T = T(r). Assume that this
tax is held fixed at T after social security is instituted. In the resulting new
stationary equilibrium with consumption vector (x0, x1) and interest rate
r , a consumer’s budget equation is

x0 + (1 + r)−1x1 = W − T − T0 − (1 + r)−1T1

= W − [T + T0 + (1 + r)−1T1].

It can be seen from this equation that social security has the same impact
on the budget constraint as increasing the regular tax, T , by the amount
T0 + (1 + r)−1T1. That is,

W(r) − x0(r) − (1 + r)−1x1(r) = T(r) = T + T0 + (1 + r)−1T1.

Social security may be said to be a fair investment or fully funded if

T0 + (1 + r)−1T1 = 0.

For social security satisfying this condition, it is as if the social security
contribution, T0, paid by the young was invested at the going interest rate,
r , and the revenue plus interest were returned to the payers in their old
age. Such social security has no impact on the steady state interest rate and
allocation because it has no impact on consumer budgets. Fully funded
social security does, however, affect government debt. The government
debt without social security, G, satisfies the equation

rG = T ,

so that

G = r−1T ,

where T is the level of the regular tax in the stationary equilibrium with-
out social security. Government debt with social security, GS, satisfies the
equation

rGS = T + T0 + T1 = T + T0 − (1 + r)T0 = T = rT0,
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so that

GS = r−1T − T0 = G − T0,

where the second equation is valid because fully funded social security does
not change the interest rate. Fully funded social security replaces govern-
ment debt on a dollar for dollar basis, because every dollar paid as a social
security tax in youth reduces by a dollar the youth’s need to save and buy
government debt.

We can imagine that the transition in period 0 from an equilibrium
with no social security to one with fully funded social security occurs as
follows. In period 0, no benefit is paid to the old person of that period,
as he or she paid no social security tax when young. However, a tax of T0

is collected from the young person in that period, who receives a benefit
of −T1 in period 1 when old. There is no change in either consumer’s
spending or in the interest rate. The payment of T0 by the young person of
period 0 reduces the government debt by T0 in period 0, and this reduction
in the government debt is permanent. The reduction in government debt
by T0 decreases government expenditures by rT0 in every period, exactly
offsetting the increase in government net expenditures resulting directly
from social security. This increase is T0 + T1 = rT0 and occurs in period 1
and in every period thereafter.

Social security is said to be pay-as-you-go if

T0 + T1 = 0.

If social security is pay as you go, then

T0 + 1

1 + r
T1 = r

1 + r
T0 > 0.

Hence, pay-as-you-go social security has the same effect as an increase in
the regular lump-sum tax paid in youth. To calculate the impact of pay-as-
you-go social security on the interest rate, hold the regular tax fixed at the
level T . Then

T(r) = T + T0 + T1

1 + r
= T + r

1 + r
T0,

so that

T (r) − r

1 + r
T0 = T . (10.60)
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Suppose we start with T0 = 0. To calculate the impact of a small increase
in T0 on the stationary equilibrium interest rate r , I differentiate equa-
tion 10.60 implicitly with respect to T0, obtaining

dT(r)

dr

dr

dT0

− 1

(1 + r)2
T0

dr

dT0

− r

1 + r
= 0.

Because T0 = 0, this equation implies that

dr

dT0

=
(

dT(r)

dr

)−1
r

1 + r
,

so that dT(r)
dr

and dr
dT0

have the same sign, provided r is positive.3

With pay-as-you-go social security, government debt with social security,
GS, satisfies the equation

GS = r−1(T + T0 + T1) = r−1T + r−1(T0 + T1) = r−1T .

Therefore, GS varies inversely with r , so that dGS

dT0
and dr

dT0
have opposite

signs, provided r is positive.
Three important things to notice about social security are as follows:

1. Although social security can influence the interest rate, the direction
of the influence is ambiguous.

2. No matter what this influence may be, the stationary equilibrium that
occurs with social security is Pareto optimal as long as the equilibrium
interest rate is nonnegative; the new equilibrium is Pareto optimal
even if social security increases the interest rate and hence reduces
investment and the capital stock.

3. The regular tax, T , can be changed so as to offset any impact that
social security might have on the interest rate. That is, if the interest
rate is r and the regular tax, T , is changed from the level T to

T = T −
[
T0 + T1

1 + r

]

3. Blanchard and Fischer (1989) discuss the effects of a fully funded and pay-as-you-go

social security on pages 110–114. They do their analysis in the context of an overlapping

generations model with population growth and also for a model with a bequest motive.

Another interesting paper on the topic is Diamond and Geanakoplos (2003).
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at the same time that social security is introduced, then social security
has no effect on the interest rate.

There will, however, be an impact on the steady state level of government
debt. The government debt before social security is

G = r−1T .

After the introduction of social security and adjustment of the lump-sum
tax to equal T , the government debt in a stationary equilibrium becomes
G, where

rG = T + T0 + T1 = T − T0 − T1

1 + r
+ T0 + T1 = T + r

1 + r
T1,

so that

G = r−1T + T1

1 + r
= G + T1

1 + r
.

Because T1 < 0, the above equation implies that the introduction of social

security reduces government debt by − T1
1+r

. It does so because it reduces
the need for personal saving by this amount.

An example may clarify the analysis.

example 10.32 Consider the Diamond model in which

f (K , L) = 2
√

KL

and

u(x0, x1) = ln(x0) + ln(x1).

I calculate a stationary equilibrium with a positive interest rate r with no
social security and with a fixed lump-sum tax paid by youth. The equation
∂f (K(r), 1)

∂K
= 1 + r implies that

K(r) = 1

(1 + r)2
.

Using equations 10.43, 10.44, and 10.46–10.48 (in section 10.3), it is easy
to calculate that
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x0(r) = 1 + 2r

(2 + r)(1 + r)2
and x1(r) = 1 + 2r

(2 + r)(1 + r)
,

W(r) = 1

1 + r
,

G(r) = −1 + r

(2 + r)(1 + r)2
,

and

T (r) = −r + r2

(2 + r)(1 + r)2
.

From the last formula above, it follows that

dT(r)

dr
= −2 + 6r + 3r2 − r3

(2 + r)2(1 + r)3
.

If r = 0.25, then

x0 = 0.42666, x1 = 0.5333, K = 0.64, W = 4/5, G = −0.21333,

T = −0.05333,

and

dT(0.25)

dr
= −0.033185.

Notice that equation T(r) = T has multiple solutions for some values of T ,
since the function T(r) is decreasing for small values of r and increasing for
larger values.

If we start from the steady state equilibrium with r = 1/4 and T =
−12/225, and introduce pay-as-you-go social security with T0 = 0.1 =
−T1, then equation 10.60 becomes

−r + r2

(2 + r)(1 + r)2
− r

1 + r

1

10
= − 12

225
,

which reduces to the cubic equation

48 − 420r + 411r2 − 21r3 = 0.

A solution of this equation is r = 0.131, which is less than 0.25, the interest
rate before social security. The fact that pay-as-you-go social security could
reduce the interest rate is consistent with the fact that

dT(0.25)

dr
= −0.033185 < 0.
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10.6 Population Growth

There has been increased public awareness in recent years of the impact
of population growth on the ease of paying for social security pension
benefits. Reduced population growth in wealthy countries has increased
the proportion of the population receiving benefits and so has increased
the social security tax burden on the working population. The overlapping
generations model provides a convenient framework for considering the
impact of population growth on the burden of social security as well as
on social welfare. I briefly discuss the impact of population growth on
social security in a stationary equilibrium and then turn to the impact on
welfare. In both cases, I consider only stationary equilibrium allocations
that maximize per capita utility among all stationary allocations. In the
model, the maximum can be achieved with or without social security by
appropriate fiscal and monetary policy.

Consider a Diamond model that satisfies assumptions 10.1–10.4 (in sec-
tion 10.1) and assume that population grows at rate g, where g > −1.
That is, if there are N identical young people in one generation, there are
(1 + g)N identical young people in the succeeding one. Let K be the sta-
tionary amount of capital input in one period per young person of that
period, and let x0 and x1 be the stationary consumption of a young and an
old person, respectively. By a stationary allocation, I mean one in which
these quantities do not depend on time. Because of population growth,
if K units of capital per current young person are invested in production
in each period, then K

1+g
units of capital per period t young person are

used in production in period t − 1. Therefore the amount of production in
the current period per current young person is f (K/(1 + g), 1). Similarly
the consumption by the old per young person in any period is x1/(1 + g).
Therefore, the feasibility condition for a stationary allocation is

x0 + x1

1 + g
+ K = f

(
K

1 + g
, 1

)
.

The stationary allocation that maximizes the utility of a typical consumer
solves the problem

max
x0≥0, x1≥0, K≥0

u0(x0, x1)

s.t. x0 + x1

1 + g
+ K ≤ f

(
K

1 + g
, 1

)
,

(10.61)
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where u(x0, x1) is the lifetime utility of a consumer. The solution to this
problem can be thought of as the golden rule allocation with constant
population growth. Assume that u is twice continuously differentiable and
everywhere has positive linear derivatives and a negative definite second
derivative.

You can see by inspecting problem 10.61 that the maximizing allocation
is realized by the allocation, (x0, x1, K , L) = (x0, x1, K , 1), of a stationary
equilibrium with interest rate g. I show that there is no lump-sum tax in
this golden rule equilibrium. Profit maximization implies that

∂f
(

K
1+g

, 1
)

∂L
= W ,

where W is the wage, and

∂f
(

K
1+g

, 1
)

∂k
= 1 + g ,

where k represents the first variable in the function f (k , L). Because f is
homogeneous of degree 1 by assumption 10.1, Euler’s equation implies that

f

(
K

1 + g
, 1

)
=
⎛
⎜⎝∂f

(
K

1+g
, 1
)

∂k

⎞
⎟⎠ ( K

1 + g

)
+

∂f
(

K
1+g

, 1
)

∂L
= K + W ,

so that feasibility implies that

x0 + x1

1 + g
= f

(
K

1 + g
, 1

)
− K = W . (10.62)

This last equation implies that when the lump-sum tax is 0, a consumer
satisfies his or her budget constraint in the stationary equilibrium.

Suppose that there is social security in the above equilibrium and that the
social security taxes are T0 and T1 in youth and old age, respectively. Since
there are 1+ g times more youths than old people in each period, the social
security is pay as you go if

T0 + T1

1 + g
= 0. (10.63)

The budget constraint for a consumer in a stationary equilibrium with
interest rate g and this social security system is



10.6 Population Growth 501

x0 + x1

1 + g
≤ W −

(
T0 + T1

1 + g

)
. (10.64)

Equations 10.62 and 10.63 imply that equation 10.64 is satisfied in the
equilibrium with interest rate g as long as social security is pay as you go.

Imagine that the economy is in a stationary equilibrium with interest
rate and population growth rate equal to g and with lump-sum social
security taxes T0 and T1. Suppose that the population growth rate declines
to g, where g < g and that after this decline the economy reaches a new
stationary equilibrium with interest rate g. If the government wishes to

maintain pay-as-you-go social security with a benefit level of −T1, then it
will have to increase the level of social security contributions from T0 =
− T1

1+g
to T0 = − T1

1+g
. The decrease in population growth increases the tax

burden on the young, though pay-as-you-go social security itself has no
effect on economic welfare in the stationary golden rule equilibrium.

I now turn to the impact of population growth on the maximum per
capita welfare achievable by a stationary allocation. The effect is easiest
to see in the Samuelson model with only one good. Suppose that each
young person is endowed with one unit of the good and each old person
is endowed with none. In order to maximize the utility of a typical person
in a stationary allocation with population growing at rate g, society must
solve the problem

max
x0≥0, x1≥0

u(x0, x1)

s.t. x0 + x1

1 + g
≤ 1.

(10.65)

The form of this problem is the same as that of utility maximization by
a consumer who has an income of one unit and buys two goods with
prices 1 and (1 + g)−1, respectively. An increase in g reduces the price of
the second good and therefore increases the maximum utility. The utility
maximization problem may be visualized in figure 10.9, which shows the
effect of an increase in the growth rate from g to g. Clearly, an increase
in the rate of population growth increases the lifetime utility of a typical
consumer.

This conclusion may not be valid when there is capital. Consider the
one-sector Diamond model in which each consumer’s sole endowment is
one unit of labor in youth and a consumer’s lifetime utility is u(x0, x1). If
population grows at the rate g, the stationary allocation that maximizes
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0 1 x0

x1

1 + g

1 + g

A

B

Figure 10.9 The impact of population growth on welfare in the Samuelson model

the utility of a typical consumer is the solution of problem 10.61. This
problem may be decomposed into two problems, one involving the choice
of capital and the other involving the choice of consumption. The capital
choice problem is

max
K≥0

[
f

(
K

1 + g
, 1

)
− K

]
. (10.66)

Let K(g) be the optimal value of K in this problem and let

C(g) = f

(
K(g)

1 + g
, 1

)
− K(g)

be the optimal level of output available per young person in a period for
consumption by young and old. The consumption choice problem is

max
x0≥0, x1≥0

u(x0, x1)

s.t. x0 + x1

1 + g
≤ C(g),

(10.67)
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which resembles the utility maximization problem 9.25 (in section 9.4) for
the Samuelson model. The capital choice problem may be simplified by
letting

k = K

1 + g

and letting F(k) = f (k , 1). Problem 10.66 then becomes

max
K≥0

[F(k) − (1 + g)k]. (10.68)

Let k(g) be the optimal value of k in this problem, so that C(g) = F(k(g))

−(1 + g)k(g). The task, therefore, is to study the impact of changes in g on
the solution of problems 10.67 and 10.68.

To simplify the analysis, assume that u is twice differentiable, that
Du(x0, x1) � 0, and that D2u(x0, x1) is negative definite, for all (x0, x1).
Assume also that F is twice differentiable and that the first derivative is
everywhere positive and that the second is everywhere negative. Suppose
that k(g) > 0 in the relevant range of g. The first order condition for the
solution of problem 10.68 is

dF(k(g))

dk
= 1 + g . (10.69)

Under the stated assumptions, k(g) is a differentiable function of g and

dC(g)

dg
= dF(k(g))

dk

dk(g)

dg
− (1 + g)

dk(g)

dg
− k(g)

= −k(g) = −K(g)

1 + g
,

(10.70)

where the second equation follows from equation 10.69 (or from the en-
velope theorem). Therefore, the total amount of output per young person
available for consumption decreases as population growth increases. This
decrease occurs, because greater population growth dilutes the amount of
capital per person inherited from the past or increases the amount that
must be invested to maintain a given level of capital per person. That the
function C(g) is decreasing may be seen in figure 10.10, where the variable
y is output per young person. When the population growth rate increases
from g to g, the amount of output available for consumption per youth
decreases from the distance AB to the distance CD.
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Slope = 1 + g

Slope = 1 + g

F
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D

y = (1 + g)k

y = (1 + g)k

Figure 10.10 The impact of an increase in population growth on total consump-
tion per young person

I use the Slutsky equation to calculate a formula for the total impact on
lifetime utility in the stationary golden rule allocation of a change in the
rate of population growth. I write the solution of the problem

max
(x0, x1)≥0

u(x0, x1)

s.t. x0 + p1x1 ≤ w

as (x0(p1, w), x1(p1, w)), where p1 is the price of consumption in old age.
If we substitute C(g) for w, then the Slutsky equation implies that

dxi(g)

dg
=
⎡
⎣ ∂xi

∂p1

∣∣∣∣∣
u(x0, x1)=u

−x1(g)
∂xi

∂w

⎤
⎦ dp1

dg
+ ∂xi

∂w

dC(g)

dg
(10.71)

for i = 0 or 1, where u equals u(x0(g), x1(g)) at the level of g where the
derivative is taken. The first term inside the brackets in equation 10.71 is
the substitution effect, and the second term is the income effect. Using this
equation, I obtain
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du(x0(g), x1(g))

dg
= ∂u(x0(g), x1(g))

∂x0

dx0(g)

dg
+ ∂u(x0(g), x1(g))

∂x1

dx1(g)

dg

=
[

∂u

∂x0

∂x0

∂p1

∣∣∣∣
u=u

+ ∂u

∂x1

∂x1

∂p1

∣∣∣∣
u=u

] (
dp1

dg

)

− x1(g)

(
∂u

∂x0

∂x0

∂w
+ ∂u

∂x1

∂x1

∂w

) (
dp1

dg

)

+
(

∂u

∂x0

∂x0

∂w
+ ∂u

∂x1

∂x1

∂w

)
dC(g)

dg
.

(10.72)

Since the substitution effects are calculated while keeping utility constant,
it follows that

∂u

∂x0

∂x0

∂p1

∣∣∣∣
u=u

+ ∂u

∂x1

∂x1

∂p1

∣∣∣∣
u=u

= 0. (10.73)

If we let p1 = 1
1+g

, we see that

dp1

dg
= − 1

(1 + g)2
. (10.74)

In addition,

∂u

∂x0

∂x0

∂w
+ ∂u

∂x1

∂x1

∂w
= du(x0, x1)

dw
. (10.75)

By substituting equations 10.70 and 10.73–10.75 into equation 10.72, we
see that

du(x0(g), x1(g))

dg
= du(x0, x1)

dw

(
x1(g)

(1 + g)2
− K(g)

1 + g

)

= 1

(1 + g)2

du(x0, x1)

dw
[x1(g) − (1 + g)K(g)].

Since

du(x0, x1)

dw
> 0,

the utility of a typical consumer in the golden rule allocation increases with
increased population growth if and only if

x1(g) − (1 + g)K(g) > 0.

The term x1(g) stems from the positive effect of population growth on
utility that was seen in the Samuelson model. The term −(1 + g)K(g)
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stems from the negative effect of population growth on C(g), which is the
output that is available for consumption per young person.

The optimum rate of population growth is discussed in Samuelson
(1975, 1976) and Deardorff (1976).4

10.7 Discounted Optimal and Equilibrium Allocations

The welfare optimization problem analogous to problem 9.44 (studied in
section 9.6) is

max
(x , y) is a feasible

allocation with initial capital K−1

{λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]}, (10.76)

where λt > 0, for all t ,
∑∞

t=−1 λ−1
t

< ∞, and K−1 is fixed. From the analy-

sis of problem 9.44, we expect a theorem saying that if (x , K , L , p, w , τ) is
an Arrow-Debreu equilibrium with transfer payments such that

∑∞
t=0 pt <

∞, then its allocation solves problem 10.76, where λt is consumer t ’s mar-
ginal utility of unit of account in the equilibrium and

∑∞
t=−1 λ−1

t
< ∞.

We also expect that if (x , K , L) solves problem 10.76, then (x , K , L) is the
allocation of an Arrow-Debreu equilibrium, (x , K , L , p, w , τ), such that∑∞

t=0 pt < ∞. The second statement is much harder to demonstrate than
the first one. The difficulty has to do with the behavior of consumption. The
proof of the corresponding statement in theorem 9.32 (in section 9.6) de-
pends on the fact that total consumption equals the total endowment and
so is bounded away from 0. Because consumption is bounded away from
0, it is possible to prove that

∑∞
t=0 pt < ∞ if

∑∞
t=−1 λ−1

t
< ∞. In a model

with capital, we must prove that optimal consumption is bounded away
from 0. The next theorem is the assertion that (x , K , L) is the allocation
of an Arrow-Debreu equilibrium; it says nothing about the summability of
prices.

theorem 10.33 Assume that assumptions 10.1–10.5 (in section 10.1)
apply. If the allocation (x , K , L) solves problem 10.76 and K−1 > 0, then
(x , K , L) is the allocation of an Arrow-Debreu equilibrium with transfer
payments, (x , K , L , p, w , τ), where, for each t , the number λ1 is con-
sumer t ’s marginal utility of unit of account in the equilibrium.

4. I owe these references to Daniel Mulino, a graduate student at Yale University.
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Proof. Because (x , K , L) solves problem 10.76, the finite horizon alloca-
tion (xt0, xt−1, 1, Kt , Lt)

T
t=0 solves the problem

max
xt0≥0, xt−1, 1≥0, Kt≥0, Lt≥0,

for t=0, 1, . . . , T

T∑
t=0

[λ−1
t

u0(xt0) + λ−1
t−1u1(xt−1, 1)]

s.t. Lt ≤ 1 and

xt0 + xt−1, 1 + Kt ≤ f (Kt−1, Lt), for t = 0, . . . , T ,

where K−1 = K−1, and KT ≥ KT ,

(10.77)

for each T . I must verify that this problem satisfies the constraint qualifi-
cation of the Kuhn-Tucker theorem, if T is sufficiently large. By assump-
tion 10.3, if Kt = 0, for any t , then there is no output in any period after
period t , so that xs0, xs−1, 1, and Ks are all 0 for s > t . If Kt = 0, for some

t , let T ≥ t . Then, KT = 0 and it is easy to show that the assumption that
K−1 > 0 and assumptions 10.2 and 10.4 guarantee that there is an alloca-
tion (xt0, xt−1, 1, Kt , Lt)

T
t=0 such that Kt > 0, Lt < 1, and xt0 + xt−1, 1 +

Kt < f (Kt−1, Lt), for t = 0, . . . , T . Hence, problem 10.77 satisfies the
constraint qualification. Suppose that Kt > 0, for all t . Then, xt0 + xt−1, 1 >

0, for some t , for suppose that xt0 + xt−1, 1 = 0, for all t . Then, the objective
function of problem 10.77 could be increased by consuming all the capital

stock, K0, in period 0 and letting x00 = x−1, 1 = f (K−1, 1)
2 . If T is so large that

xt0 + xt−1, 1 > 0, for some t ≤ T , then by reducing this consumption, it is
possible to meet the constraints of problem 10.77 and waste a little labor
and a little of the produced good in every period, s, such that 0 ≤ s ≤ T .
Therefore, the problem satisfies the constraint qualification in this case as
well.

Because problem 10.77 satisfies the constraint qualification, the Kuhn-
Tucker theorem implies that there exist nonnegative prices (pt , wt)

T
t=0 and

qT that are not all 0 and are such that (xt0, xt−1, 1, Kt , Lt)
T
t=0 solves the

problem

max
xt0≥0, xt−1, 1≥0, Kt≥0, Lt≥0,

for t=0, . . . , T

T∑
t=0

[
λ−1

t
u0(xt0) + λ−1

t−1u1(xt−1, 1) − wtLt

−ptxt0 − ptxt−1, 1 − ptKt + ptf (Kt−1, Lt)
]+ qT KT ,



508 10 The One-Sector Growth and Diamond Models

where K−1 = K−1. Also,

pt = 0, if xt0 + xt−1, 1 < f (Kt−1, Lt) (10.78)

wt = 0, if Lt < 1. (10.79)

It follows that

du0(xt0)

dx
≤ λtpt , (10.80)

with equality if xt0 > 0,

du1(xt−1, 1)

dx
≤ λt−1pt , (10.81)

with equality if xt−1, 1 > 0,

pt

∂f (Kt−1, Lt)

∂L
≤ wt , (10.82)

with equality if Lt > 0, for t = 0, 1, . . . , T , and

pt

∂f (Kt−1, Lt)

∂K
≤ pt−1, (10.83)

with equality if Kt−1 > 0, for t = 1, . . . , T .
If Kt = 0, for some t , and T ≥ t in problem 10.77, then, since there

is no production or consumption after period T , it is trivial to specify
equilibrium wages and prices for these periods. If we define the transfers
to be

τt = wt − ptxt0 − pt+1xt1, (10.84)

then, conditions 10.78–10.84 guarantee that (xt0, xt−1, 1, Kt , Lt , pt , wt ,
τt)

T
t=0 forms an Arrow-Debreu equilibrium for the economy with T + 1

periods.

Suppose that Kt > 0, for all t . Since
∂f (Kt−1, L)

∂L
> 0, for all L ≥ 0, by as-

sumption 10.4, it follows that Lt = 1, for all t . In addition, xt0 + xt−1, 1 > 0,
for infinitely many t , for otherwise there exists a positive integer S such
that xt0 + xt−1, 1 = 0, for all t ≥ S. Then, the objective function of prob-

lem 10.77 could be increased by consuming all the capital stock KS in
period S and producing nothing thereafter. Let T be so large that xt0 +
xt−1, 1 > 0, for some t such that t ≤ T , and let t (T ) be the largest t such
that t ≤ T and xt0 + xt−1, 1 > 0. I show that pt and wt do not depend on
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T , for t ≤ t (T ). Either xt(T ), 0 > 0 or xt(T )−1, 1 > 0. If xt(T ), 0 > 0, then

pt(T ) = λ−1
t (T )

du0(xt(T ), 0)

dx
,

and if xt(T )−1, 1 > 0, then

pt(T ) = λ−1
t (T )

du1(xt(T )−1, 1)

dx
,

so that pt(T ) does not depend on T . I show by backward induction on t that
pt is determined independently of T , for t ≤ t (T ). We know that pt(T ) is so
determined. Suppose by induction that pt is determined, where t ≤ t (T ).
Because Kt−1 > 0,

pt−1 = pt

∂f (Kt−1, 1)

∂K
,

so that pt−1 is determined. Hence, pt is determined independently of T , for
all t ≤ t (T ). The wages, wt , are also determined, for t ≤ t (T ), since

wt = pt

∂f (Kt−1, 1)

∂L
,

for t ≤ t (T ).
It now follows that pt , wt , and hence τt , are defined for any nonnegative

t , for let t ≥ 0. Then, there exists a t such that t ≥ t and xt0 + xt−1, 1 > 0.
Let T be such that T ≥ t . Then application of the Kuhn-Tucker theorem
to problem 10.77 with this value of T determines pt and wt independently
of T . The entire sequence (pt , wt , τt)

∞
t=0 satisfies conditions 10.78–10.84,

where the τt are defined by equation 10.84. These conditions are enough
to guarantee that (xt0, xt−1, 1, Kt , Lt , pt , wt , τt)

T
t=0 is an Arrow-Debreu

equilibrium.

The next theorem includes a condition that guarantees that the prices
are summable in the equilibrium of theorem 10.33. The condition is that
total consumption be bounded away from 0 in periods t , for t sufficiently
large. I will later use the turnpike theorem to guarantee that this condition
applies in the case where the λ−1

t
= (1 + r)−t , for all t , and where r > 0.

(See theorem 10.54 in section 10.12.)

theorem 10.34 Assume that assumptions 10.1–10.5 apply and that the
allocation (x , K , L) solves problem 10.76, where

∑∞
t=−1 λ−1

t
< ∞. Suppose
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that there is a positive number ε such that

xt0 + xt−1, 1 ≥ ε ,

for t sufficiently large. Then (x , K , L) is the allocation of an Arrow-Debreu
equilibrium with transfer payments, (x , K , L , p, w , τ), where, for each t ,
the number λt is consumer t ’s marginal utility of unit of account in the
equilibrium and where

∑∞
t=0 pt < ∞ and

∑∞
t=0 wt < ∞.

Proof. Because xt0 + xt−1, 1 ≥ ε for large t , it must be that K−1 > 0, for

if K−1 were 0, then no output could ever be produced. Therefore theo-
rem 10.33 implies that (x , K , L) is the allocation of an Arrow-Debreu equi-
librium with transfer payments (x , K , L , p, w , τ), where, for each t , the
number λt is consumer t ’s marginal utility of unit of account in the equi-
librium. It remains to be shown that

∑∞
t=0 pt < ∞ and

∑∞
t=0 wt < ∞.

Let T be such that xt0 + xt−1, 1 ≥ ε, if t ≥ T . Then, xt0 ≥ ε/2 or xt−1, 1 ≥
ε/2 if t ≥ T , so that

pt = λ−1
t

du0(xt0)

dx
≤ λ−1

t

du0(ε/2)

dx

or

pt = λ−1
t−1

du1(xt−1, 1)

dx
≤ λ−1

t−1

du1(ε/2)

dx
.

Let

b = max

(
du0(ε/2)

dx
,
du1(ε/2)

dx

)
.

Then, pt ≤ b(λ−1
t−1 + λ−1

t
), for t ≥ T . Since

∑∞
t=−1 λ−1

t
, it follows that∑∞

t=0 pt < ∞.
Lemma 10.10 (in section 10.1) implies that

∑∞
t=0 wt < ∞.

No lower bound on consumption is required to prove a converse to the
previous theorem.

theorem 10.35 Suppose that assumptions 10.1–10.5 apply and let
(x , K , L , p, w , τ) be an Arrow-Debreu equilibrium with transfer payments
such that

∑∞
t=0 pt < ∞ and K−1 > 0. Then, the equilibrium allocation

(x , K , L) solves the problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

{λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]}
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where, for all t , λt is consumer t ’s marginal utility of unit of account in the
equilibrium and λt is a positive number or is infinite and is less than infinity
if the equilibrium consumption of consumer t is not 0. Furthermore, 0 <∑∞

t=−1 λ−1
t

< ∞.

Proof. By lemma 10.10 (in section 10.1),
∑∞

t=0 wt < ∞. By assumption
10.5, the utility functions are strictly increasing, so that pt > 0, for all t . If
x−1, 1 > 0, then by the Kuhn-Tucker theorem, there exists a unique positive
number, λ−1, such that x−1, 1 solves the problem

max
x1≥0

[u1(x1) − λ−1p0x1].

Similarly, if, for t ≥ 0, (xt0, xt1) > 0, then there exists a unique positive
number, λt , such that (xt0, xt1) solves the problem

max
x0≥0, x1≥0

[u0(x0) + u1(x1) − λt(ptx0 − pt+1x1)].

If x−1, 1 = 0, let λ−1 = ∞, and if (xt0, xt1) = 0, let λt = +∞. It follows from
these definitions that

λ−1 ≥ p−1
0

du1(x−1, 1)

dx
, (10.85)

with equality if x−1, 1 > 0, and, for all t ≥ 0,

λt ≥ p−1
t

du0(xt0)

dx
, (10.86)

with equality if xt0 > 0, and

λt ≥ p−1
t+1

du1(xt1)

dx
, (10.87)

with equality if xt1 > 0. The definition of the λt also implies that x−1, 1

solves the problem

max
x1≥0

[λ−1
−1u1(x1) − p0x1], (10.88)

and that, for t ≥ 0, (xt0, xt1) solves the problem

max
x0≥0, x1≥0

[λ−1
t

(u0(x0) + u1(x1)) − ptx0 − pt+1x1], (10.89)

for t ≥ 0, where λ−1
t

= 0, if λt = ∞.
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Because profits are maximized in equilibrium, (Kt , Lt+1) solves the
problem

max
K≥0, L≥0

[pt+1f (K , L) − ptK − wt+1L], (10.90)

for all t ≥ 0, and L0 solves the problem

max
L≥0

[p0f (K−1, L) − w0L]. (10.91)

I show that
∑∞

t=−1 λ−1
t

< ∞. Because feasible allocations are bounded by
proposition 10.8 (in section 10.1), there is a positive number B such that
xt0 ≤ B and xt1 ≤ B, for all t . Inequalities 10.86 and 10.87 imply that

λ−1
t

≤ min

[
pt

(
du0(xt0)

dx

)−1

, pt+1

(
du1(xt1)

dx

)−1
]

≤ b−1(pt + pt+1),

for t ≥ 0, where

b = min

(
du0(B)

dx
,
du1(B)

dx

)
.

By assumption 10.5, b > 0. Similarly, inequality 10.85 implies that

λ−1
−1 ≤ b−1p0.

Therefore,

∞∑
t=−1

λ−1
t

< b−1

[
p0 +

∞∑
t=0

(pt + pt+1)

]
< ∞.

Let (x , K , L) be a feasible allocation. I will use the value loss method to
show that

λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]

≥ λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)].

(10.92)

Let

L−1(x−1, 1, L0) = [λ−1
−1u1(x−1, 1) − p0x−1, 1 + p0f (K−1, L0) − w0L0]

− [λ−1
−1u1(x−1, 1) − p0x−1, 1 + p0f (K−1, L0) − w0L0].
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Similarly, let

Lt (xt0, xt1, Kt , Lt+1)

= {λ−1
t

[u0(xt0) + u1(xt1)]− ptxt0 − pt+1xt1 + pt+1f (Kt , Lt+1)

− ptKt − wt+1Lt+1}
− {λ−1

t
[u0(xt0) + u1(xt1)]− ptxt0 − pt+1xt1 + pt+1f (Kt , Lt+1)

− ptKt − wt+1Lt+1},

for t ≥ 0. Because x−1, 1 solves problem 10.88 and L0 solves problem 10.91,

it follows that L−1(x−1, 1, L0) ≥ 0 = L−1(x−1, 1, L0). Similarly because

(xt0, xt1) solves problem 10.89 and (Kt , Lt+1) solves problem 10.90, it
follows that Lt (xt0, xt1, Kt , Lt+1) ≥ 0 = Lt (xt0, xt1, Kt , Lt+1), for all t .
Therefore,

0 ≤ L−1(x−1, 1, L0) +
∞∑
t=0

Lt (xt0, xt1, Kt , Lt+1)

= {λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]}

− {λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]}

+ p0[x00 + x−1, 1 + K0 − f (K−1, L0)]

− p0[x00 + x−1, 1 + K0 − f (K−1, L0)]

+
∞∑
t=1

pt[xt0 + xt−1, 1 + Kt − f (Kt−1, Lt)]

−
∞∑
t=1

pt[xt0 + xt−1, 1 + Kt − f (Kt−1, Lt)]

+
∞∑
t=0

wt(Lt − 1) −
∞∑
t=0

wt(Lt − 1)

≤ {λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]}

− {λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]},
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where the equation follows because the allocations are bounded and
∑∞

t=0
pt < ∞,

∑∞
t=0 wt < ∞, and

∑∞
t=−1 λ−1

t
< ∞, so that the infinite series

converge absolutely and hence their sums do not depend on the order of
summation. The second inequality follows from the nonnegativity of prices
and wages, the feasibility of the allocations (x , K , L) and (x , K , L), and
condition (8) of definition 10.9 (in section 10.1) of an Arrow-Debreu equi-
librium with transfer payments. This completes the verification of inequal-
ity 10.92.

It remains to be shown that
∑∞

t=0 λ−1
t

> 0. If
∑∞

t=0 λ−1
t

= 0, then λt =
∞, for all t , so that no consumer consumes anything in the equilibrium.
Since K−1 > 0 by assumption, there is a feasible allocation that gives the
consumer born in period −1 a positive consumption in period 0, and this
allocation would Pareto dominate the equilibrium allocation. This impli-
cation contradicts the assertion of proposition 10.25 (in section 10.3) that
the equilibrium allocation is Pareto optimal. Hence

∑∞
t=0 λ−1

t
> 0.

The next three corollaries are obtained by applying theorems 10.34 and
10.35 to spot price equilibria.

corollary 10.36 Suppose that assumptions 10.1–10.5 apply and that
(x , K , L , P, W , r , G, T) is a spot price equilibrium such that

P0 +
∞∑
t=1

Pt

1 + Rt−1 < ∞
where 1 + Rt = (1 + r0)(1 + r1) . . . (1 + rt), for t ≥ 0. Let �t be the mar-
ginal utility of unit of account of consumer t in the equilibrium if he or
she consumes something. Otherwise, let �t be infinite. Assume that �−1

is measured from the point of view of period −1. Then, the allocation
(x , K , L) solves the welfare maximization problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

{
(1 + r−1)�

−1
−1u1(x−1, 1) + �−1

0 (u0(x00) + u1(x01))

+
∞∑
t=1

(1 + Rt−1)
−1�−1

t
[u0(xt0) + u1(xt1)]

}
,

(10.93)

and furthermore

(1 + r−1)�
−1
−1 + �−1

0 +
∞∑
t=1

(1 + Rt−1)
−1�−1

t
< ∞.
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Proof. The equilibrium (x , K , L , P, W , r , G, T) may be converted to
an Arrow-Debreu equilibrium with transfer payments, (x , K , L , p, w , τ)

where p0 = P0 and pt = Pt

1+Rt−1
, for t ≥ 1. It follows from these equations

for the Arrow-Debreu prices that λ0 = �0, and λt = (1 + Rt−1)�t , for
t ≥ 1, where λt is the marginal utility of unit of account of consumer t

in the Arrow-Debreu equilibrium. Arguing as in the proof of corollary 9.29
(in section 9.6), we see that λ−1 = (1 + r−1)

−1�−1. Theorem 10.35 implies
that the allocation x solves problem 10.93 and that

(1 + r−1)�
−1
−1 + �−1

0 +
∞∑
t=1

(1 + Rt−1)
−1�−1

t
< ∞,

as was to be proved.

corollary 10.37 Suppose that assumptions 10.1–10.5 apply and that
(x , K , L , P, W , r , G, T) is a spot price equilibrium such that x−1, 1 > 0 and
xt0 + xt1 > 0, for all t , and

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞,

where 1+ Rt = (1+ r0)(1+ r1) . . . (1+ rt), for t ≥ 0. New units of account
can be chosen so as to obtain a new spot price equilibrium, (x , K , L , P, W ,
r , G, T), in which the marginal utility of unit of account in youth of every
consumer is 1 and the allocation (x , K , L) solves the welfare maximization
problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

{
(1 + r−1)u1(x−1, 1) + u0(x00) + u1(x01)

+
∞∑
t=1

(1 + Rt−1)
−1[u0(xt0) + u1(xt1)]

}

and

(1 + r−1) + 1 +
∞∑
t=1

(1 + Rt−1)
−1 < ∞,

where

1 + RT = (1 + r0)(1 + r1) . . . (1 + rT ), for T ≥ 0.
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Proof. The assumption that all consumers consume something guarantees
that every consumer t ’s marginal utility of unit of account in the equilib-
rium, �t , is finite. The corollary is proved just as was corollary 9.31 (in
section 9.6) by replacing Pt by P t = �tPt , for all t , and making correspond-
ing adjustments in the other nominal variables and interest rates.

If we require that the interest rates be constant in the previous corollary,
it becomes the following.

corollary 10.38 Suppose that assumptions 10.1–10.5 apply and that
(x , K , L , P, W , r , G, T) is a spot price equilibrium such that every con-
sumer’s marginal utility of unit of account equals the same positive number
and rt = r > 0, for all t . Suppose also that

∞∑
t=0

(1 + r)−tPt < ∞.

Then, the allocation (x , K , L) solves the welfare maximization problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

{(1 + r)u1(x−1, 1) +
∞∑
t=0

(1 + r)−t[u0(xt0) + u1(xt1)]}.

Notice that in this corollary, I do not require that x−1, 1 > 0 and xt0 +
xt1 > 0, for all t , but assume that the marginal utilities of unit of account
are all 1.

The following two corollaries are consequences of theorem 10.34.

corollary 10.39 Suppose that assumptions 10.1–10.5 apply and that
the allocation (x , K , L) solves the problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

{
(1 + r−1)u1(x−1, 1) + u0(x00) + u1(x01)

+
∞∑
t=1

(1 + Rt−1)
−1[u0(xt0) + u1(xt1)]

}
,

where

(1 + r−1) + 1 +
∞∑
t=1

(1 + Rt−1)
−1 < ∞,
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1 + Rt = (1 + r0)(1 + r1) . . . (1 + rt), for t ≥ 0, and rt > −1, for t ≥ −1.
Suppose that there is a positive number ε such that

xt0 + xt−1, 1 ≥ ε ,

for sufficiently large t . Then, (x , K , L) is the allocation of a spot price
equilibrium, (x , K , L , P, W , r , G, T), in which the marginal utility of unit
of account of every consumer is 1 and r = (r−1, r0, . . .). This equilibrium
satisfies the condition

P0 +
∞∑
t=1

Pt

1 + Rt−1

< ∞.

Proof. This corollary follows from theorem 10.34 in the same way that
corollary 9.33 follows from theorem 9.32 (in section 9.6).

If we let rt = r > 0, for all t , in this corollary, it becomes the following.

corollary 10.40 Suppose that assumptions 10.1–10.5 apply and that
the allocation (x , K , L) solves the problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

{(1 + r)u1(x−1, 1) +
∞∑
t=0

(1 + r)−t[u0(xt0) + u1(xt1)]}

(10.94)

where r > 0. Suppose that there is a positive number ε such that

xt0 + xt−1, 1 ≥ ε ,

for sufficiently large t . Then, (x , K , L) is the allocation of a spot price equi-
librium, (x , K , L , P, W , r , G, T), in which the marginal utility of unit of
account of every consumer is 1 and where rt = r , for all t . This equilibrium
satisfies the condition

∞∑
t=0

(1 + r)−tPt < ∞.

This corollary extends theorem 10.30 (in section 10.4) to nonstationary
allocations and equilibria.

The economic significance of the above corollaries, as with similar ones
in section 9.6, is that manipulation of fiscal and monetary policy can max-
imize any welfare function that is a weighted sum of the utilities of the
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different generations, and any fiscal and monetary policy using lump-sum
taxes maximizes such a welfare function, provided the equilibrium satisfies
the asymptotic condition that

∑∞
t=−1 λ−1

t
< ∞. Of course, there is no way

of knowing in practice whether this condition is satisfied since the future
can be only vaguely foreseen. These results imply that the model has no
truly natural rate of interest. They are more significant than those in sec-
tion 9.6, for in the Diamond model, fiscal and monetary policy determines
the accumulation of capital as well as the distribution of consumption be-
tween young and old. If the government wished to do so, it could drive
output down to zero or up to a high level.

10.8 Discounted Optimal and Equilibrium Programs

I now turn to the study of optimal economic growth, which is also known
as Ramsey growth theory. The terminology of this subject was introduced in
section 10.1, where I defined programs and the feasibility and optimality of
programs. The first task is to obtain a criterion for optimality based on an
equilibrium concept analogous to Arrow-Debreu equilibrium.

definition 10.41 A program equilibrium consists of (C, K , r , p), where

1. (C, K) is a feasible program

2. p = (p0, p1, . . .) is a sequence of nonnegative prices, not all of which
are 0

3. r is a number exceeding −1

4. for each t ≥ 0, Ct solves the problem

max
C≥0

[(1 + r)−tv(C) − ptC]

5. for each t , Kt solves the problem

max
K≥0

[pt+1F(K) − ptK]

6. for each t , pt = 0, if

Ct + Kt < F(Kt−1)
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Condition (4) implies that the marginal utility of unit of account at
time t of a virtual consumer is (1+ r)t , for each t . It also implies that pt > 0,
for all t , for otherwise the problem

max
C≥0

[(1 + r)−tv(C) − ptC]

would have no solution. In a model with only one consumption good, the
sole function of condition (4) is to provide a normalization for prices.

There is a natural correspondence between program equilibria and spot
price equilibria with interest rate r and marginal utility of money equal to 1.

theorem 10.42 Suppose that assumptions 10.1–10.5 apply to the Di-
amond model (u0, u1, f ) and let (x , K , L , P, W , r , G, T) be a spot price
equilibrium for this model in which rt = r , for all t , where r > −1. Suppose
that the marginal utility of unit of account for every consumer equals 1.
Then (C, K , r , p) is a program equilibrium for the growth model corre-
sponding to (u0, u1, f ), where pt = (1+ r)−tPt , for all t , and where (C, K)

is the program corresponding to the allocation (x , K , L).

Suppose that assumptions 10.18–10.21 (in section 10.1) apply to the
growth model (v , F), and let (C, K , r , p) be a program equilibrium for this
model. Then, there is a spot price equilibrium, (x , K , L , P, W , r , G, T),
for a corresponding Diamond model, (u0, u1, f ), that satisfies assump-
tions 10.1–10.5 (in section 10.1). The spot price equilibrium is such that
(x , K , L) corresponds to (C, K), Pt = (1+ r)tpt , for all t , and the marginal
utility of unit of account of each consumer is 1.

Proof. Let (x , K , L , P, W , r , G, T) be a spot price equilibrium for the
Diamond model with the marginal utility of unit of account of every con-
sumer equal to 1. Because this marginal utility equals 1, it follows that, for
each t , (xt0, xt1) solves the problem

max
(x0, x1)≥0

[u0(x0) + u1(x1) − Ptx0 − (1 + r)−1Pt+1x1].

Hence, Pt > 0, for all t , for otherwise this problem would have no solution.
For each t , Lt solves the problem

max
L≥0

[Ptf (Kt−1, L) − WtL].
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Since Pt > 0, it follows that Wt > 0, for otherwise this problem would have
no solution. Therefore, Lt = 1, by condition (10) of definition 10.12 (in
section 10.1) of a spot price equilibrium. Therefore, for every t ≥ 0, Kt

solves the problem

max
K≥0

[(1 + r)−1Pt+1f (Kt , 1) − PtK],

which implies that Kt solves the problem

max
K≥0

[pt+1f (K , 1) − ptK],

where pt = (1 + r)−tPt , for all t . Since, for all t ≥ 0, xt−1, 1 solves the
problem

max
x1≥0

[u1(x1) − (1 + r)−1Ptx1],

xt1 solves the problem

max
x1≥0

[(1 + r)u1(x1) − Ptx1].

Similarly, xt0 solves the problem

max
x0≥0

[u0(x0) − Ptx0],

for all t ≥ 0. Suppose that C ≥ 0 and C = x0 + x1, where v(C) = u0(x0) +
(1 + r)u1(x1). Then

(1 + r)−1v(Ct) − ptCt

= (1 + r)−1[u0(xt0) + (1 + r)u1(xt−1, 1) − Ptxt0 − Ptxt−1, 1]

≥ (1 + r)−1[u0(x0) + (1 + r)u1(x) − Ptx0 − Ptx1]

= (1 + r)−1v(C) − ptC .

Since the allocation (C, K) is feasible, (C, K , r , p) satisfies all the condi-
tions of a program equilibrium.

Suppose that (C, K , r , p) is a program equilibrium for the growth model
(v , F). Let u0(x) = 1

2v(2x), u1(x) = 1
2(1+r)

v(2x), and let f be defined by

the equations f (K , L) = LF
(

K
L

)
, if L > 0, and f (K , 0) = 0. Proposi-

tion 10.6 (in section 10.1) implies that f satisfies assumptions 10.1–10.4,
and it is clear that u0 and u1 satisfy assumption 10.5. For each t , let Pt =
(1 + r)tpt and Wt = Pt

∂f (Kt−1, 1)
∂L

. Because f is concave and differentiable,
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Kt solves the problem

max
K≥0

[pt+1F(K) − ptK],

and it follows that (Kt , 1) solves the problem

max
(K , L)≥0

[(1 + r)−1Pt+1f (K , L) − PtK − Wt+1L].

Similarly, L = 1 solves the problem

max
L≥0

[P0f (K−1, L) − W0L].

Since Ct solves the problem

max
C≥0

[(1 + r)−1v(C) − ptC],

for all t , it follows that if C is such that C = x0 + x1 and v(C) = u0(x0) +
(1 + r)u1(x1), then

u0(xt0) + (1 + r)u1(xt−1, 1) − Pt(xt0 + xt−1, 1)

= v(Ct) − (1 + r)tptCt

≥ v(C) − (1 + r)tptC

= u0(x0) + (1 + r)u1(x1) − Pt(x0 + x1).

Letting x0 = xt−1, 1 in this inequality, we see that, for all t ≥ 0,

u0(xt0) − Ptxt0 ≥ u0(x0) − Ptx0,

for all x0 ≥ 0. Letting x0 = xt0, we see that, for all t ≥ 0,

u1(xt−1, 1) − (1 + r)−1Ptxt−1, 1 ≥ u1(x1) − (1 + r)−1Ptx1,

for xt ≥ 0. Therefore,

u0(xt0) + u1(xt1) − Ptxt0 − (1 + r)−1Pt+1xt1

≥ u0(x0) + u1(x1) − Ptx0 − (1 + r)−1Pt+1x1.

Therefore, for t ≥ 0, (xt0, xt1) solves the problem

max
(x0, x1)≥0

[u0(x0) + u1(x1)]

s.t. Ptx0 + (1 + r)−1Pt+1x1 ≤ Wt − Tt ,
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for a suitable choice of Tt . Similarly, x−1, 1 solves the problem

max
x1≥0

u1(x)

s.t. P0x1 ≤ P0f (K−1, 1) − W0 + (1 + r)G,

for a suitable choice of G. Since (x , K , L) is a feasible allocation, where
Lt = 1, for all t , it follows that (x , K , L , P, W , r , G, T) is a spot price
equilibrium for a suitable choice of G and T.

Theorem 10.42 can be used to derive assertions about program equilibria
from corresponding assertions about equilibria for the Diamond model.
For instance, we have the following.

theorem 10.43 Suppose that assumptions 10.18–10.21 (in section 10.1)
apply to a growth model and that (C, K , r , p) is a program equilibrium
such that

∑∞
t=0 pt < ∞. Then the program (C, K) solves the problem

max
(C , K) is a feasible program

with initial capital K−1

∞∑
t=0

(1 + r)−tv(Ct). (10.95)

Proof. By theorem 10.42, there is a spot price equilibrium, (x , K , L , P, W ,
r , G, T), for a corresponding Diamond model, (u0, u1, f ), that satisfies
assumptions 10.1–10.5 and where (x , K , L) corresponds to (C, K) and
Pt = (1+ r)tpt , for all t , and the marginal utility of unit of account of every
consumer is 1. Therefore,

∞∑
t=0

(1 + r)−tPt =
∞∑
t=0

pt < ∞.

By corollary 10.38 (in section 10.7), (x , K , L) solves the problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

{(1 + r)u1(x−1, 1) +
∞∑
t=0

(1 + r)−t[u0(xt0) + u1(xt1)]}.

By proposition 10.16 (in section 10.1), it follows that (C, K) solves prob-
lem 10.95.

The converse of this theorem requires that consumption be eventually
bounded away from 0, as in the analogous theorem for the Diamond model,
theorem 10.34 (in section 10.7).
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theorem 10.44 Assume that assumptions 10.18–10.21 (in section 10.1)
apply and that the program (C , K) solves problem 10.95. Suppose that
there is a positive number ε such that Ct ≥ ε, for t sufficiently large. Then,
there exists a sequence of prices, p = (p0, p1, . . .), such that (C, K , r , p) is
a program equilibrium and

∞∑
t=0

pt < ∞.

Proof. Let (u0, u1, f ) be the Diamond model corresponding to the growth
model (v , F), where u0(x) = 1

2v(2x), u1(x) = 1
2(1+r)

v(2x), f (K , L) =
LF

(
K
L

)
, if L > 0, and f (K , 0) = 0. Let (x , K , L) be the allocation for

this model that corresponds to the program (C, K). By proposition 10.16
(in section 10.1), (x , K , L) solves the problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

{(1 + r)u1(x−1, 1) +
∞∑
t=0

(1 + r)−t[u0(xt0) + u1(xt1)]}.

Because xt0 + xt−1, 1 ≥ ε, for sufficiently large t , corollary 10.40 (in sec-
tion 10.7) implies that (x , K , L) is the allocation of a spot price equilibrium,
(x , K , L , P, W , r , G, T), in which the marginal utility of unit of account of
every consumer is 1 and rt = r , for all t , and

∞∑
t=0

(1 + r)−tPt < ∞.

Theorem 10.42 implies that (C, K , r , p) is a program equilibrium for the
growth model with pt = (1 + r)−1Pt , for all t . Therefore,

∞∑
t=0

pt =
∞∑
t=0

(1 + r)−tPt < ∞.

A program (C, K) is stationary if Ct = C and Kt = K , for all t . It is
natural to say that a program equilibrium (C, K , p) is stationary if (C, K)

is stationary and the ratios of successive price, pt

pt+1
, do not depend on t .

If we let pt

pt+1
= 1 + r , we can write a stationary program equilibrium as
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(C , K , r), where r > −1. A stationary program equilibrium satisfies the
conditions

dF(K)

dK
= 1 + r

and

C + K = F(K).

I let C(r) and K(r) denote the values for C and K that satisfy these
two equations. If assumption 10.19 applies, so that F is strictly concave,
then K(r) and hence C(r) are uniquely defined and (C(r), K(r), r) de-
fines a unique stationary program equilibrium, where the price of the good
at time t is pt = (1 + r)−t , for all t . If r > 0 and C(r) > 0, then theo-
rem 10.43 implies that the stationary allocation (C(r), K(r)) is optimal
in that it solves problem 10.95. It will be shown (in section 10.13) that
the program (C(0), K(0)) is optimal with respect to the catching up cri-
terion. If r < 0, the program (C(r), K(r)) is not optimal according to any
reasonable criterion, because it is possible to have more consumption in
every period by decreasing the amount of capital invested in period 0. This
point is illustrated in figure 10.5 (in section 10.2). The steady state quan-
tity of consumption, F(K) − K , is maximized when K = K(0). If r < 0,
K(r) > K(0), and a decrease in capital invested in period 0 makes avail-
able K(r) − K(0) units of output for consumption at that time. If r > 0,
K(r) < K(0), and it would require a sacrifice of current consumption to
build up capital to the level K(0). For this reason, (C(r), K(r)) can be
optimal, even though it provides less than the maximum amount of con-
sumption per period. The stationary program (C(0), K(0)) is called the
golden rule program. If r > 0, the stationary program (C(r), K(r)) is called
the modified golden rule program. The modified golden rule and golden rule
programs correspond to the Pareto optimal stationary equilibria discussed
at the end of section 10.3. A specific example may clarify these concepts.

example 10.45 Let F(K) = 3K1/3. The equation dF(K(r))
dK

= 1 + r im-
plies that

K(r) =
(

1

1 + r

)3/2

= 1

1 + r

√
1

1 + r
,

C(r) = F(K(r)) − K(r) =
(

3 − 1

1 + r

)√
1

1 + r
.
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The golden rule stationary program is

(C(0), K(0)) = (2, 1).

An example of a modified golden rule is

(C(1), K(1)) =
(

5

2

√
1

2
,

1

2

√
1

2

)
=
(

5
√

2

4
,

√
2

4

)
.

An example of a nonoptimal stationary program is

(C(−1/2), K(−1/2)) = (
√

2, 2
√

2).

The triple (C(r), K(r), r) = (C(0), K(0), 0) defines a program equilib-
rium where the price in every period is 1. The triple (C(1), K(1), 1) de-
fines a program equilibrium where the price in period t is 2−t . The triple
(C(−1/2), K(−1/2), −1/2) defines a program equilibrium where the price
in period t is 2t ; prices grow forever.

The stationary program (C(r), K(r)) corresponds to the stationary al-
location (x0(r), x1(r), K(r)) in the Diamond model. Both are unique for
any nonnegative value of r . If r > 0, then both optimize an infinite sum of
utilities discounted at rate r . If r = 0, then both are optimal according to the
catching up criterion, as will be proved in corollary 10.68 (in section 10.13).
I call the stationary allocation (x0(0), x1(0), K(0)) the golden rule allocation
for the Diamond model, and if r > 0, I call (x0(r), x1(r), K(r)) a modified
golden rule allocation.

10.9 Program Efficiency and the Hahn Problem

Efficiency is the concept in growth theory that corresponds to Pareto
optimality in the general equilibrium theory of overlapping generations
models.

definition 10.46 A feasible program (C, K) is efficient if there exists no
other feasible program (C, K) such that Ct ≥ Ct , for all t , and Ct > Ct , for
some t .

The definition of efficiency does not involve the utility for consumption,
though it does so when there is more than one produced good. When there
is only one commodity, the utility function is relevant only to the choice
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between current and future consumption, and this choice does not bear on
efficiency.

A program (C, K) is automatically efficient if Ct + Kt = F(Kt−1), for
all t , and Ct = 0 and Kt = 0, for t ≥ T , where T is some positive integer.
When the program is confined within a finite horizon, more consumption
can be had in one period only by giving up consumption in some other
period. Efficiency when there is only one commodity has to do with the
behavior of Ct and Kt as t goes to infinity.

It should be clear that a program is efficient if it is optimal in the sense
that it solves a problem of the form

max
(C , K) is a feasible program

with initial capital K−1

∞∑
t=0

(1 + r)−tv(Ct)

where r > 0 and the utility function v is strictly increasing. Therefore, theo-
rem 10.43 (in section 10.8) implies that the feasible program, (C, K), is effi-
cient if there is a sequence of prices, p = (p0, pt , . . .), such that

∑∞
t=0 pt <

∞ and (C, K , p) is a program equilibrium. The condition that
∑∞

t=0 pt <

∞ is stronger than is needed to guarantee efficiency. Malinvaud (1953) has
provided the following weaker criterion for efficiency.

proposition 10.47 Suppose that assumptions 10.18–10.20 (in section
10.1) apply. If (C, K , r , p) is a program equilibrium, then (C, K) is efficient
if inf t ptKt = 0.

Proof. It is sufficient to show that if (C, K) is not efficient, then ptKt is
bounded away from 0. If KT = 0, for some T , then Kt = 0 and Ct = 0, for
t > T , and the program (C, K) is efficient. So, we may suppose that Kt > 0,
for all t .

It follows from profit maximization that pt > 0, for all t , for we know
from definition 10.41 (in section 10.8) of a program equilibrium that pT >

0, for some T . If pT +1 = 0, then profit maximization implies that KT = 0,
contrary to hypothesis. Therefore, pT +1 > 0, and, continuing by induction
on t , we see that pt > 0, for all t > T . If pT −1 = 0, then the problem
maxK≥0[pT F(K) − pT −1K] has no solution, contrary to the definition of
a program equilibrium. Therefore, pT −1 > 0, and continuing by backward
induction on t , we see that pt > 0, for all t < T .
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By the definition of a program equilibrium, the positiveness of the prices
pt implies that Ct = F(Kt−1) − Kt , for all t .

If (C, K) is not efficient, it is dominated by some feasible program
(C, K). Therefore, for every t ,

F(Kt) − Kt+1 ≥ Ct+1 ≥ Ct+1 = F(Kt) − Kt+1,

with strict inequality, for some t . Hence

Kt+1 − Kt+1 ≥ F(Kt) − F(Kt) ≥ (Kt − Kt)
dF (Kt)

dK
= (Kt − Kt)

pt

pt+1

,

where the second inequality follows from the concavity of F , and the equa-
tion follows from profit maximization and from the assumption that Kt >

0, for all t . It follows that

pt+1(Kt+1 − Kt+1) ≥ pt(Kt − Kt),

for all t . Let T be the smallest value of t such that Kt �= Kt . Since the initial
capital, K−1, is fixed T > −1. Since Ct > Ct , for some t , it follows that
Kt �= Kt , for some t , and hence, T < ∞. Then KT −1 = KT −1, and, because
(C, K) dominates (C, K),

F(KT −1) − KT = F(KT −1) − KT = CT ≥ CT = F(KT −1) − KT .

Therefore, KT − KT ≥ 0. Since KT �= KT , it follows that KT − KT > 0.
Therefore,

0 < pT (KT − KT ) ≤ pt(Kt − Kt) ≤ ptKt ,

for all t > T . Since ptKt > 0, for t ≤ T , it follows that ptKt is bounded
away from 0.

The Malinvaud condition is sufficient but not necessary for efficiency. A
golden rule stationary program equilibrium, (C(0), K(0), 0), with K(0) >

0 is an example that violates the condition inf t ptKt = 0 and yet has an ef-
ficient stationary program, (C(0), K(0)). The price, p, in this equilibrium
is constant and positive, so that ptKt = pK(0) is bounded away from 0 as
t varies. By corollary 10.68 (in section 10.13), this golden rule program is
optimal with respect to the catching up criterion and hence is efficient.

An example of a program that violates the Malinvaud condition and
is inefficient is the program of the stationary program equilibrium
(C(r), K(r), r), where −1 < r < 0 and provided K(r) > 0. In this case,
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ptK(r) = (1 + r)−1K(r), which diverges to +∞ as t goes to infinity. The
inefficiency of program equilibria is attributable to an overaccumulation of
capital. Hahn (1966) was the first to point out that equilibrium programs
need not be efficient. This finding surprised many economists, because pro-
gram equilibria resemble Arrow-Debreu equilibria. The puzzle posed by
the existence of inefficient program equilibria is known in the literature as
the Hahn problem. Inefficient program equilibria are similar to non-Pareto
optimal Arrow-Debreu equilibria in the Diamond overlapping generations
model.

10.10 Euler’s Equation

Euler’s equation is a necessary condition for optimality in the growth
problem

max
Ct≥0, Kt≥0,

for t≥0

∞∑
t=0

(1 + r)−1v(Ct)

s.t. Ct + Kt ≤ F(Kt−1), for t ≥ 0,

and K−1 = K−1,

(10.96)

where K−1 is fixed and positive and r > 0. Euler’s equation is useful for
calculating optima and deriving their properties. To derive the equation, I
assume that assumptions 10.18–10.21 (in section 10.1) apply.

Euler’s equation may be derived as follows. Let (C, K) be a program that
solves the above problem. Assume in addition that Ct > 0 and Kt > 0, for
all t . Fix all the variables in the problem (except for Ct , Kt , and Ct+1) at
their values in this optimal program, and multiply the objective function
by (1 + r)t . When constant terms are removed from the objective function,
the problem becomes

max
Ct≥0, Kt≥0, Ct+1≥0

[v(Ct) + (1 + r)−1v(Ct+1)]

s.t. Ct + Kt ≤ F(Kt−1), and

Ct+1 + Kt+1 ≤ F(Kt).

(10.97)

Because Ct > 0 and Kt > 0, the constraint qualification of the Kuhn-
Tucker theorem applies to this problem. Because both F and v are strictly
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increasing, the feasibility constraints hold with equality at an optimum.
That is,

Ct + Kt = F(Kt−1),

for all t , so that the complementary slackness conditions hold automatically
for problem 10.97. The Kuhn-Tucker theorem implies that there exist non-
negative numbers Pt and Pt+1 such that (Ct , Kt , Ct+1) solves the problem

max
Ct≥0, Kt≥0, Ct+1≥0

{
v(Ct) + (1 + r)−1v(Ct+1) − Pt(Ct + Kt)

−(1 + r)−1Pt+1[Ct+1 − F(Kt)]
}

.

(The Kuhn-Tucker coefficients Pt and Pt+1 have been chosen so as to cor-
respond to spot prices.) Since (Ct , Kt , Ct+1) � 0 by assumption, the first
order conditions of this problem are

Pt = dv(Ct)

dC
,

Pt+1 = dv(Ct+1)

dC
,

and

Pt = (1 + r)−1Pt+1
dF(Kt)

dK
.

Upon substitution, these equations give rise to the single equation

dv(Ct)

dC
= 1

1 + r

dv(Ct+1)

dC

dF(Kt)

dK
, (10.98)

which is Euler’s equation.
The equation determines the entire path of an optimal program once a

single initial condition is fixed. To see why this is so, notice that K−1 is fixed
by assumption, so that F(K−1) is known. Fix C0 as an initial condition.
Then we know that K0 = F(K−1) − C0 and hence we know F(K0). The
Euler equation then determines the derivative of v at C1 by the equation

dv(C1)

dC
= (1 + r)

dv(C0)

dC

(
dF(K0)

dK

)−1

.

Since v is strictly concave, its derivative is a strictly decreasing function, and
therefore this equation determines C1. Suppose by induction on t that we
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have determined Cs, for s ≤ t , and Ks, for s ≤ t − 1. Then by the same steps
we can determine Ct+1 and Kt . This process can be continued indefinitely
or until in some period t , Kt < 0, which is infeasible. If the process can
be continued indefinitely, it is not certain that the resulting program is
optimal; there may be many programs that can be generated in this way.
I give an example to illustrate the use of Euler’s equation and the existence
of nonoptimal programs that satisfy it.

example 10.48 Let F(K) = 2
√

K , v(C) = log C, and r > 0.

Euler’s equation for this example is

1

Ct

= 1

1 + r

1

Ct+1

1√
Kt

,

which is the same as

Ct+1 = 1

1 + r

Ct√
Kt

. (10.99)

To solve this problem, assume that

Kt = sF (Kt−1) = s2
√

Kt−1, (10.100)

for all t ≥ 0, where 0 < s < 1 and s is independent of t . Then, for all t ≥ 0

Ct = (1 − s)2
√

Kt−1,

since Ct + K + t = 2
√

Kt−1. By substituting this last equation into the
Euler equation 10.99 and simplifying, we obtain the equation

Kt = 1

1 + r

√
Kt−1. (10.101)

This equation gives us the value of the constant savings rate, s, appearing
in equation 10.100, namely,

s = 1

2(1 + r)
. (10.102)

The difference equation 10.101 converges, and the limit is (1 + r)−2.
That is, if Kt evolves according to equation 10.101 then

lim
t→∞ Kt = 1

(1 + r)2
.
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0 (1 + r)–2K0 Kt–1

Kt = Kt–1

sF(Kt)

Kt

Figure 10.11 Convergence of the optimal capital stock to the optimal steady state

The convergence may be seen in figure 10.11. The straight line in the dia-
gram is the diagonal Kt = Kt−1. The curve, labeled sF (Kt), is the graph
of the function 1

1+r

√
Kt−1. Because the sequence Kt converges, so does the

sequence Ct , and its limit is a positive number, namely, 1+2r
(1+r)2 .

There is another way to see that the sequence Kt converges that is more
closely related to the proof of the turnpike theorem, to be explained in
section 10.12. Let

yt = 2
√

Kt−1 (10.103)

be total output in period t . Then, according to equations 10.100 and 10.102,

Kt = syt = 1

2(1 + r)
yt . (10.104)

The function syt appearing in this equation is called a policy function.
Equations 10.103 and 10.104 define the evolution of yt and Kt . The graphs
of these two functions are shown in figure 10.12, and the dotted line indi-
cates how yt and Kt evolve. In the diagram, the straight line labeled Policy
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0 (1 + r)–2K0 K

Policy function

Production function

y0

y

y1

Figure 10.12 Convergence seen via policy and production functions

function represents equation 10.104, where the independent variable for the
policy function is on the vertical, not the horizontal, axis. The curve labeled
Production function represents equation 10.103.

I now explore what happens in the example if we start with the wrong
initial condition. Define the number at by the equation

Ct = at2
√

Kt−1.

For the consumption Ct to be feasible, we must have that 0 ≤ at ≤ 1. If we
substitute this equation for consumption into the Euler equation 10.99 and
simplify, we obtain

at+1Kt = (1 + r)−1at

√
Kt−1. (10.105)

If we substitute (1 − at)2
√

Kt−1 for Kt in equation 10.105 and simplify, we
obtain the difference equation

at+1 = f (at) = 1

2(1 + r)

at

1 − at

.
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a at

at+1

at+1 = f(at)

at = at+1

0 1

Figure 10.13 Solutions that do not converge to the optimum

Figure 10.13 indicates that this difference equation has an unstable steady
state at a = 1+2r

2(1+r)
. If the initial value of at exceeds a, that is, if initial con-

sumption exceeds the optimal value, then Euler’s equation and feasibility
force consumption to evolve in such a way that the program becomes in-
feasible. If the initial value of at is less than a, then Euler’s equation and
feasibility force consumption to converge to 0 while remaining forever pos-
itive.

The case just described of a path where consumption converges to 0 is an-
other instance of the Hahn problem mentioned in section 10.9. In this case,
the overaccumulation of capital is so exaggerated that consumption asymp-
totically disappears. Such a program is clearly inefficient as well as subopti-
mal, because more consumption could be had from some time onward by
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stopping the decline in consumption and keeping capital at a constant level
from that point on.

Although it has been assumed throughout the discussion of the use of
Euler’s equation that all the components of the program, (C, K), generated
by the equation are positive, the same idea can be applied even if some com-
ponents are 0. The Kuhn-Tucker theorem can be applied to problem 10.97
as long as capital input remains positive and hence the constraint qualifica-
tion applies. The first-order conditions generated by that theorem are

dv(Ct)

dC
≤ Pt ,

with equality if Ct > 0,

dv(Ct+1)

dC
≤ Pt+1,

with equality if Ct+1 > 0, and

(1 + r)−1Pt+1
dF(Kt)

dK
≤ Pt ,

with equality if Kt > 0. Assume that K−1 > 0. The appropriate initial con-

dition is P0, and suppose that some value for P0 has been chosen. If dv(0)
dC

≤
P0, let C0 = 0. Otherwise let C0 be the unique solution of the equation
dv(C0)

dC
= P0 and let K0 = F(K−1) − C0. If K0 < 0, then the choice of P0

is incorrect, because the program generated from it is infeasible. If K0 = 0,

let P1 = (1 + r)
(

dF(0)
dK

)−1
P0, if dF(0)

dK
< ∞ and let P1 = 0, if dF(0)

dK
= ∞. If

dv(0)
dC

≤ P1, let Ct = 0 and Kt = 0, for t ≥ 1. In this case, the continuation
stops, and the program solves problem 10.96 by the Kuhn-Tucker theorem.

If dv(0)
dC

> P1, let C1 be the unique solution of the equation dv(C1)

dC
= P1.

Since C1 > 0 = F(K0), the program is infeasible and the choice of P0 was
incorrect. Similarly, the choice of P0 was incorrect if dF(0)

dK
= ∞, so that

P1 = 0 and hence C1 = ∞.

If K0 > 0, let P1 =
(

dF(K0)

dK

)−1

P0 and let C1 be the unique solution of

the relation dv(C1)

dC
≤ P1, with equality if C1 > 0. If C1 > F(K0), the choice

of P0 was incorrect, because the program generated is infeasible in period 1.
Otherwise, the process may be continued. The same construction may be
continued in each successive period until it is found that the program is
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infeasible or it is found that Kt = Ct = 0 in some period t . If Kt = Ct = 0
for some t , the program is optimal by the Kuhn-Tucker theorem. If the
construction can be continued indefinitely, then (C, K , p) is a program
equilibrium, where the price sequence p = (p0, p1, . . .) is defined by the
equations pt = (1 + r)−tPt , for all t , and theorem 10.43 (in section 10.8)
implies that the program (C, K) is optimal if

∑∞
t=0 pt < ∞, that is, if∑∞

t=0(1 + r)−tPt < ∞.
Optimal allocations for the Diamond model may be generated by the

same process if we substitute u0(xt0) + (1 + r)u1(xt−1, 1) for v(Ct), where
xt0 and xt−1, 1 solve the problem

max
x0≥0, xt≥0

[u0(x0) + (1 + r)u1(x1)]

s.t. x0 + x1 ≤ Ct ,

and if we substitute f (K , 1) for F(K). In this case, if we assume that as-
sumptions 10.1–10.5 (in section 10.1) apply, the construction described in
the previous paragraph generates a sequence of capital stocks Kt , consump-
tions xt0 and xt−1, 1, and spot prices Pt , for t = 0, 1, . . . . The prices Pt are
such that

du0(xt0)

dx
≤ Pt ,

with equality if xt0 > 0, and

(1 + r)
du1(xt−1, 1)

dx
≤ Pt ,

with equality if xt−1, 1 > 0, for all t . Spot wages, Wt , are defined by the

equation Wt = Pt
∂f (Kt−1, 1)

∂L
, for all t . Recall that u0 and u1 are strictly in-

creasing and that f (K , L) is increasing in L if K > 0. We may, there-
fore, assume that the entire stock of labor is used and Lt = 1, for all t

such that Kt > 0. Lump-sum taxes, Tt , are defined by the equation Tt =
Wt − Ptxt0 − Pt+1xt1, for all t . The initial government debt, G, is defined
by the equation G = (1 + r)−1[P0f (K−1, 1) − W0 − P0x−1, 1]. If the con-
struction can be continued indefinitely and if

∑∞
t=0(1 + r)−tPt < ∞, then

corollary 10.38 (in section 10.7) implies that the allocation, (x , K , L), of the
spot price equilibrium, (x , K , L , P, W , r , G, T), is optimal in that it solves
the problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

∞∑
t=0

(1 + r)−t[u0(xt0) + (1 + r)u1(xt−1, 1)].
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10.11 Policy Functions and the Value Function

I now develop tools to be used in proving the turnpike theorem in sec-
tion 10.12. A first important result is that optimal programs are unique and
hence are functions of the initial capital.

proposition 10.49 If assumptions 10.18–10.21 (in section 10.1) apply,
then there is at most one solution to the optimal growth problem

max
Ct≥0, Kt≥0

∞∑
t=0

(1 + r)−tv(Ct)

s.t. Ct + Kt ≤ F(Kt−1), for t ≥ 0,

and K−1 = K−1.

(10.106)

Proof. The proof is by contradiction. Suppose that there are two distinct
solutions (C, K) and (C, K). Because the programs are optimal and v is
strictly increasing,

Ct + Kt = F(Kt−1) and Ct + Kt = F(Kt−1), (10.107)

for all t ≥ 0. Because the programs (C, K) and (C, K) are distinct, it follows
that Ct �= Ct or Kt �= Kt , for some t . Because the programs (C, K) and
(C, K) satisfy equation 10.107 and start with the same initial capital stock,
K−1, it follows that if Ct = Ct , for all t , then Kt = Kt , for all t . Therefore,
Ct �= Ct , for some t . The program (C , K) defined by the equation

(Ct , Kt) = 1

2
(Ct , Kt) + 1

2
(Ct , Kt),

for all t , is feasible, since

Ct + Kt = 1

2
Ct + 1

2
Ct + 1

2
Kt + 1

2
Kt

= 1

2
(Ct + Kt) + 1

2
(Ct + Kt)

= 1

2
F(Kt−1) + 1

2
F(Kt−1) ≤ F

(
1

2
Kt−1 + 1

2
Kt−1

)
= F(Kt−1),

where the inequality follows from the concavity of F . Since (C, K) and
(C, K) both have initial capital K−1, (C, K) is feasible with the same initial
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capital. By the definition of (C, K),

∞∑
t=0

(1 + r)−tv(Ct) =
∞∑
t=0

(1 + r)−tv

(
1

2
Ct + 1

2
Ct

)
.

Because v is strictly concave and Ct �= Ct , for some t , it follows that

∞∑
t=0

(1 + r)−tv

(
1

2
Ct + 1

2
Ct

)

>
1

2

∞∑
t=0

(1 + r)−tv(Ct) + 1

2

∞∑
t=0

(1 + r)−tv(Ct)

=
∞∑
t=0

(1 + r)−tv(Ct),

(10.108)

where the equation holds because

∞∑
t=0

(1 + r)−tv(Ct) =
∞∑
t=0

(1 + r)−tv(Ct),

since (C, K) and (C, K) are both optimal. Since inequality 10.108 contra-
dicts the optimality of (C, K), there is only one optimal program.

By theorem 10.84 (in section 10.14), optimal programs exist under as-
sumptions 10.18–10.21. Since optimal programs are also unique, they are
functions of the initial capital K−1. It is more convenient to think of the ini-
tial condition as y0 = F(K−1), so that the optimal program is a function of
y0. Specifically, C0 = c(y0), and K0 = k(y0), where the optimal program is
(C, K). Because the optimization problem from any time t onward is just
like that from time 0 onward, it follows that Ct = c(yt), and Kt = k(yt),
for any t , where yt = F(Kt−1). The functions c and k are called policy func-
tions, and they can be used to define any optimal program iteratively.

To derive properties of the policy functions, I use the value function, V ,
which gives the optimal value, V (y), of the objective function in prob-
lem 10.106, given that F(K−1) = y. That is,
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V (y) = max
Ct≥0, Kt≥0,
for t=0, 1, . . .

∞∑
t=0

(1 + r)−tv(Ct)

s.t. C0 + K0 ≤ y , and

Ct+1 + Kt+1 ≤ F(Kt), for t ≥ 0.

The value function is useful in large part because of the Bellman equa-
tion, which I now derive. Suppose that in this maximization problem we
optimize first with respect to Ct and Kt , for t ≥ 1, and then maximize with
respect to C0 and K0. We then see that the maximization problem may be
rewritten as

max
C0≥0, K0≥0:
C0+K0≤y

[v(C0) + max
Ct≥0, Kt≥0:

Ct+Kt≤F(Kt−1)
for t=1, 2, . . .

∞∑
t=1

(1 + r)−tv(Ct)],

which is the same as

max
C0≥0, K0≥0:
C0+K0≤y

{v(C0) + (1 + r)−1[ max
Ct≥0, Kt≥0:

Ct+Kt≤F(Kt−1)
for t=1, 2, . . .

∞∑
t=0

(1 + r)−tv(Ct+1)]}.

Since the second maximum in this problem is V (F(K0)), this last problem
is seen to be the same as

max
C0≥0, K0≥0

[v(C0) + (1 + r)−1V (F(K0))]

s.t. C0 + K0 ≤ y ,

so that

V (y) = max
C0≥0, K0≥0

[v(C0) + (1 + r)−1V (F(K0))]

s.t. C0 + K0 ≤ y .

Equations of this type are known as Bellman equations in the literature on
dynamic programming. The idea of the equation is that the optimization
problem from time 1 on is the same as the optimization problem from
time 0 on with the initial stock of goods equal to F(K(y)) rather than y.

Useful properties of the value function are that it is concave, increasing,
and differentiable.

proposition 10.50 If assumptions 10.18–10.21 apply, then the value
function, V , is concave.

Proof. Let y and y be initial stocks and let 0 < α < 1. I show that
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V (αy + (1 − α)y) ≥ αV (y) + (1 − α)V (y).

Let (C, K) and (C, K) be optimal programs beginning with initial stocks y

and y, respectively. That is,

V (y) =
∞∑
t=0

v(Ct) and V (y) =
∞∑
t=0

v(Ct).

Let (C, K) be the program defined by the equations

Ct = αCt + (1 − α)Ct and

Kt = αKt + (1 − α)Kt .

This program is feasible if the initial stock of goods equals αy + (1 − α)y,
since

C0 + K0 = αC0 + (1 − α)C0 + αK0 + (1 − α)K0

= α(C0 + K0) + (1 − α)(C0 + K0)

≤ αy + (1 − α)y ,

and, for t ≥ 1,

Ct + Kt = αCt + (1 − α)Ct + αKt + (1 − α)Kt

= α(Ct + Kt) + (1 − α)(Ct + Kt)

≤ αF(Kt−1) + (1 − α)F (Kt−1) ≤ F(αKt−1 + (1 − α)Kt−1)

= F(Kt−1),

where the last inequality follows from the concavity of F .
The proof of the concavity of V is completed by observing that

αV (y) + (1 − α)V (y) = α

∞∑
t=0

v(Ct) + (1 − α)

∞∑
t=0

v(Ct)

≤
∞∑
t=0

v(αCt + (1 − α)Ct)

=
∞∑
t=0

v(Ct) ≤ V (αy + (1 − α)y),

where the next to last inequality follows from the concavity of v and the last
inequality follows from the definition of V (αy + (1 − α)y).
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proposition 10.51 If assumptions 10.18–10.21 apply, then the value
function, V , is strictly increasing.

Proof. Because any increase in the initial stock can be consumed in pe-
riod 0, it follows that if �y > 0, then

V (y + �y) ≥ V (y) + v(c(y) + �y) − v(c(y)) > V (y),

where the last inequality is valid because v is strictly increasing.

proposition 10.52 If assumptions 10.18–10.21 apply, then the value
function, V , is differentiable and

dV (y)

dy
= dv(c(y))

dC
, (10.109)

if c(y) > 0.

Proof. The proof is very much like the proof of lemma 10.23 (in sec-
tion 10.1), which is the statement that v is differentiable. If c(y) > 0, I prove
that V is differentiable by trapping it between two differentiable functions.
If c(y) > 0, a small enough increase or decrease in y can be absorbed in a
change in C0 with no change in any other variable. Therefore

v(c(y) + �y) − v(c(y)) + V (y) ≤ V (y + �y), (10.110)

for �y so small that y + �y ≥ 0 and c(y) + �y ≥ 0. Inequality 10.110 may
be rewritten as

v(c(y) + �y) − v(c(y)) ≤ V (y + �y) − V (y). (10.111)

Because c(y) > 0, it follows that y > 0. Therefore, by lemma 10.22 (in
section 10.1), there is a positive number b such that

V (y + �y) ≤ V (y) + b�y .

This inequality may be rewritten as

V (y + �y) − V (y) ≤ b�y . (10.112)

Inequalities 10.111 and 10.112 assert that V (y + �y) − V (y) lies between
two differentiable functions of �y, that are both equal to 0 when �y = 0,
namely, the functions b�y, and v(c(y) + �y) − v(c(y)). It follows, as in
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the proof of lemma 10.23, that V is differentiable at y and that

dV (y)

dy
= dv(c(y))

dC
.

Suppose now that y > 0 but that c(y) = 0. Since all of y may be con-
sumed in period 0, we know that V (y) > 0. Therefore, Ct(y) > 0, for some
t > 0, where (C(y), K(y)) is the optimal program with the stock of out-
put in period 0 equal to y. Let T be the smallest value of t such that
Ct(y) > 0. Since CT (y) > 0, V is differentiable at F(KT −1(y)), which is
the stock of output available for consumption or investment in period T .
Since Ct(y) = 0, for t = 0, 1, . . . , T − 1,

F(KT −1(y)) = FT −1(K0(y)),

where FT −1 is F composed with itself T − 1 times. Since C0(y) = 0, it
follows that K0(y) = y. Since F is differentiable by assumption 10.19, it
follows that

dV (y)

dy
= dF(y)

dK

dF(K1(y))

dK
. . .

dF(KT −1(y))

dK

dV (F (KT −1))

dz
,

where z represents the dependent variable of the function V . Since Ct(y) >

0,
dV (F (KT −1))

dz
exists by the argument of the previous paragraph. Therefore,

V is differentiable at y.
Because V is concave, it is differentiable at 0, though the derivative may

be infinite. This argument was explained in the proof of lemma 10.23.

Euler’s equation may be rewritten using the value function and the Bell-
man equation. Recall that Euler’s equation is

dv(Ct)

dC
= 1

1 + r

∂F (Kt)

∂K

dv(Ct+1)

dC
,

where (C, K) is an optimal program. Using policy functions, Euler’s equa-
tion may be rewritten as

dv(c(y))

dC
= 1

1 + r

dF (k(y))

dK

dv(c(F (k(y))))

dC
.

A useful form, obtained by substitution from equation 10.109, is

dV (y)

dy
= 1

1 + r

dF (k(y))

dK

dV (F (k(y)))

dy
. (10.113)

I now prove properties of the policy functions, c and k, that will be used
in proving the turnpike theorem.
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proposition 10.53 The functions c(y) and k(y) are continuous and
nondecreasing functions of the initial stock, y.

Proof. Because V is concave, dV (y)

dy
is a nonincreasing function of y.

Therefore, equation 10.109 implies that if y increases, dv(c(y))

dy
does not

increase. Because dv(C)
dC

is a strictly decreasing function of y by assump-
tion 10.21, it follows that c(y) does not decrease when y increases.

I next show that the function k(y) is nondecreasing. Suppose that the
function k is decreasing at some point y and that y increases. Because V

is concave, dV (y)

dy
does not increase. The number k(y) decreases, and so

F(k(y)) decreases, since the function F is increasing by assumption 10.19.
Therefore, dV (F (k(y)))

dy
does not decrease. Similarly, dF(k(y))

dK
increases, be-

cause dF(K)
dK

is a decreasing function of K by assumption 10.19. Therefore,
if k(y) decreases when y increases, the right-hand side of equation 10.113
increases whereas the left-hand side does not increase. This contradiction
proves that k(y) cannot decrease.

Because c(y) + k(y) = y and both c(y) and k(y) are nondecreasing, it
follows that for any positive number ε,

c(y) ≤ c(y + ε) ≤ c(y) + ε and

k(y) ≤ k(y + ε) ≤ k(y) + ε ,

and so both of the functions c and k are continuous.

10.12 The Turnpike Theorem

The term turnpike theorem arose early in work on optimal growth theory.
We may visualize the turnpike in a model in which the initial and terminal
capital stocks are held fixed. Suppose that the initial and terminal periods
are −1 and T , respectively, so that K−1 and KT are the initial and terminal
capital stocks. Radner (1961) showed that if T was large, then the optimal
path of capital approaches a unique optimal stationary level, stays close to it
for a large fraction of the T + 2 periods, and veers away toward the terminal
stock only in the final periods. The picture is like that in figure 10.14,
where time is on the horizontal axis. The image resembles a map of an
interstate highway or turnpike with entrance and exit ramps. In other work,
researchers assume that the horizon is infinite, so that there is only an
entrance ramp, and the theorem says that optimal paths asymptotically
approach the unique stationary optimal path. The term turnpike theorem
refers to any such assertion. Turnpike theorems give structure to optimal
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Time
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Figure 10.14 The turnpike

paths and focus attention on the stationary optimal one. Since convergence
to the unique optimal stationary path is quite rapid in most fully specified
examples, we are encouraged to think of modern economies as always near
the stationary optimal state.5

It is easy to prove a turnpike theorem for the one-sector growth model
using the results of the previous section.

turnpike theorem 10.54 Suppose that assumptions 10.18–10.21 ap-
ply. Let (C, K) be the optimal program that solves the problem

max
Ct≥0, Kt≥0,
for t=0, 1, . . .

∞∑
t=0

(1 + r)−tv(Ct)

s.t. Ct + Kt ≤ F(Kt−1), for t ≥ 0,

and K−1 = K−1, (10.114)

5. The analogy just described with a turnpike highway was, according to McKenzie (1976,

841), first made by Dorfman, Samuelson, and Solow (1958, 331).
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where K−1 is fixed, K−1 > 0, and where r > 0. Let (C(r), K(r)) be the
modified golden rule program with interest rate r . Then, limt→∞(Ct , Kt)

= (C(r), K(r)).

A disappointing feature of growth theory is that this turnpike theorem
does not generalize fully to models with many commodities or with un-
certainty. The turnpike theorem with a positive discount rate, r , seems to
require special assumptions in these interesting settings, and the general-
izations are true only when r is sufficiently small. The turnpike theorems
with r = 0, theorems 10.79 and 10.80 (in section 10.13), do generalize to
models with many commodities and with uncertainty. For this reason, they
probably should be thought of as the true turnpike theorems.

Proof.6 Let K(y) be the optimal policy function defined in section 10.11.
Because the stationary program (C(r), K(r)) is optimal if the initial stock
of produced good is y(r) = F(K(r)), it follows that

k(F (K(r))) = K(r). (10.115)

Consider figures 10.15 and 10.16 showing the functions y = F(K) and
K = k(y), where the production function F is read from the horizontal to
the vertical axis and the policy function, k, is read from the vertical to the
horizontal axis. Equation 10.115 implies that the graphs of the two func-
tions intersect at the point (K(r), y(r)). In the figures, the evolution of
the capital stock, Kt , and total output, yt , follow the dotted paths. That is,
K0 = k(y0), y1 = F(K0), K1 = k(y1), y2 = F(K1), and so on. We see that if
the curves k and F are as in the diagrams, then Kt converges to K(r) as t

goes to infinity. I have already shown that the function k is continuous and
nondecreasing. The function F is continuous and increasing by assump-
tion 10.19. I must show that the graph of k lies to the right of the graph of
F for values of y less than y(r) and that the graph of k lies to the left of the
graph of F for values of y exceeding y(r).

First of all, the graphs of k and F intersect only at the origin and at the
point (K(r), y(r)). If y is the output coordinate of an intersection point
and y is positive, then y = F(k(y)), and by Euler’s equation 10.113 (in sec-
tion 10.11), dF(k(y))

dK
= 1 + r , and hence k(y) = K(r), and y = F(k(y)) =

F(K(r)) = y(r). I next show that if 0 < y < y(r), then k(y) > F−1(y). Let

6. The following proof is based on section 2 of Brock and Mirman (1972).
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Figure 10.15 The policy and production functions

y < y(r) and suppose that k(y) ≤ F−1(y). I derive a contradiction. Because
k(y) ≤ F−1(y) and F is increasing, F(k(y)) ≤ y. Because V is concave, the
function dV (y)

dy
is nonincreasing in y, so that

dV (F (k(y)))

dy
≥ dV (y)

dy
.

This inequality and Euler’s equation 10.113 (in section 10.11) imply that

1

1 + r

dF (k(y))

dK
≤ 1,

which is the same as

dF(k(y))

dK
≤ 1 + r .

Because dF(K)
dK

is a decreasing function of K and dF(K(r))
dK

= 1+ r , it follows
that

k(y) ≥ K(r). (10.116)
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Figure 10.16 The policy and production functions

Recall that k(y) ≤ F−1(y) and y < y(r), by hypothesis. Since F−1(y) is an
increasing function of y, it follows that

k(y) ≤ F−1(y) < F−1(y(r)) = K(r). (10.117)

The contradiction between inequalities 10.116 and 10.117 implies that
k(y) > F−1(y) when 0 < y < y(r).

A similar argument implies that k(y) < F−1(y) when y > y(r).

theorem 10.55 Suppose that the Diamond model presented in sec-
tion 10.1 satisfies assumptions 10.1–10.5 and that the allocation (x , K , L)

solves the problem

max
(x , K , L) is a feasible

allocation with initial capital K−1

∞∑
t=0

(1 + r)−t[u0(xt0) + (1 + r)u1(xt−1, 1)] (10.118)

where K−1 is fixed, K−1 > 0, and r > 0. Then,

lim
t→∞(xt0, xt1, Kt) = (x0(r), x1(r), K(r)),

where (x0(r), x1(r), K(r), L(r)) is the modified golden rule allocation.
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Proof. For all t , let Lt = max(1, Lt). Because f is nondecreasing, the al-
location (x , K , L) is feasible and therefore optimal. That is, it solves prob-
lem 10.118.

Let (F , v) correspond to (f , u0, u1) at interest rate r in the manner that
was described after defi nition 10.15 (in section 10.1). Let Ct = xt0 + xt−1, 1,
for all t . By proposition 10.16 (in section 10.1), the optimality of (x , K , L)

implies that the program (C, K) solves problem 10.114. Therefore, the
turnpike theorem 10.54 implies that limt→∞(Ct , Kt) = (C(r), K(r)). By
lemma 10.17 (in section 10.1), we can write xt0 = x0(Ct) and xt = x1(Ct),
for all t , where the functions x0 and x1 are continuous. Similarly, x0(r) =
x0(C(r)), and x1(r) = x1(C(r)). It follows that

lim
t→∞(xt0, xt1) = lim

t→∞(x0(Ct), x1(Ct)) = (x0(C(r)), x1(C(r))

= (x0(r), x1(r)).

The turnpike theorem makes it possible to eliminate the special condi-
tion in corollary 10.40 (in section 10.7). This condition is that when t is
large enough, total consumption in period t is bounded away from 0.

theorem 10.56 Suppose that the Diamond model presented in sec-
tion 10.1 satisfies assumptions 10.1–10.5. Suppose also that r is positive
and so small that K(r) > 0. Then the feasible allocation (x , K , L) solves
problem 10.118 if and only if there exist sequences of spot prices and wages,
P = (P0, P1, . . .) and W = (W0, W1, . . .), a sequence of lump-sum taxes,
T = (T0, T1, . . .), and an initial quantity of government debt, G, such that
(x , K , L , P, W , r , G, T) is a spot price equilibrium in which rt = r , for
all t , and

P0 +
∞∑
t=1

(1 + r)−tPt < ∞,

and the marginal utility of unit of account of every consumer is 1.

Theorem 10.56 implies that the modified golden rule allocation is opti-
mal in that it solves problem 10.118. The turnpike theorem 10.55 implies
that the modified golden rule is the unique stationary allocation with pos-
itive capital that is optimal when utility is discounted at a positive interest
rate, since any other stationary allocation with positive capital converges
to the modified golden rule, and one stationary allocation can converge to
another only if they are equal.

In proving theorem 10.56, I use the following lemma.
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lemma 10.57 Suppose that the Diamond model satisfies assumptions
10.1–10.5 and that r > 0. If (x0(r), x1(r), K(r), L(r)) is the optimal sta-
tionary allocation that solves problem 10.118 with K−1 = K(r), and if
K(r) > 0, then x0(r) + x1(r) > 0.

Similarly, if (C(r), K(r)) is the optimal stationary program that solves
problem 10.114 with K−1 = K(r) and K(r) > 0, then C(r) > 0.

Proof. I prove the lemma only for the Diamond model, since the proof for
the growth model is similar. Since x0(r) + x1(r) = f (K(r), 1) − K(r), it
is sufficient to show that f (K(r), 1) − K(r) > 0. Assumption 10.3 implies
that f (0, 1) − 0 = 0. Since, in addition,

∂[f (K , 1) − K]

∂K
= ∂f (K , 1)

∂K
− 1 > 0,

if K < K(0), it follows that f (K , 1) − K > 0, if 0 < K < K(0). Since 0 <

K(r) < K(0), it follows that f (K(r), 1) − K(r) > 0.

Proof of Theorem 10.56. First of all, K(r) > 0, if r is sufficiently small and
positive, since K(r) satisfies the relation

∂f (K(r), 1)

∂K
≤ 1 + r ,

with equality if K > 0, and because assumptions 10.2–10.4 imply that
∂f (0, 1)

∂K
> 0.

Suppose that (x , K , L) solves problem 10.118. By theorem 10.55,

lim
t→∞(xt0, xt1, Kt) = (x0(r), x1(r), K(r)).

Since x0(r) + x1(r) > 0 by lemma 10.57 and since limt→∞(xt0, xt1) =
(x0(r), x1(r)), it follows that there exists a positive number ε such that if
t is sufficiently large, then x0(r) + x1(r) ≥ ε. Therefore, corollary 10.40
(in section 10.7) implies that (x , K , L) is the allocation of a spot price
equilibrium, (x , K , L , P, W , r , G, T), in which the marginal utility of unit
of account of every consumer is 1 and where rt = r , for all t , and

∞∑
t=0

(1 + r)−tPt < ∞.
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Suppose that (x , K , L , P, W , r , G, T) is a spot equilibrium in which the
marginal utility of unit of account of every consumer is 1 and rt = r , for
all t , and

P0 +
∞∑
t=1

(1 + r)−tPt < ∞.

Then, by corollary 10.38 (in section 10.7), the allocation (x , K , L) solves
problem 10.118.

The analogue of theorem 10.56 applies to the growth model.

corollary 10.58 Suppose that the one-sector growth model satisfies
assumptions 10.18–10.21, that r > 0 and r is so small that K(r) > 0, where
K(r) satisfies the equation

∂f (K(r), 1)

∂K
= 1 + r .

Then, the program (C, K) solves problem 10.114 if and only if there is a
sequence of p = (p0, p1, . . .) such that

∑∞
t=0 pt < ∞ and (C, K , r , p) is a

program equilibrium.

Proof. This assertion is an immediate consequence of theorem 10.56,
theorem 10.42 (in section 10.8), and proposition 10.16 (in section 10.1).

Corollary 10.58 implies that the modified golden rule program is opti-
mal in that it solves problem 10.114, and the turnpike theorem 10.54 im-
plies that the modified golden rule is the unique stationary program with
positive capital that is optimal when utility is discounted, since any other
stationary optimal program with positive capital converges to the modified
golden rule.

Recall that at the end of section 10.10 I explained how to generate an
entire feasible program, (C, K), and equilibrium prices for it, (1 + r)−tPt ,
from the initial condition, P0. It is now possible to show that this process
has one and only one correct initial condition.

corollary 10.59 Suppose that the one-sector growth model satisfies
assumptions 10.18–10.21 and that r > 0 and r is so small that K(r) > 0.
If K−1 > 0, then there exists one and only initial choice of P0 such that a
program equilibrium, (C, K , r , p), can be constructed iteratively from this
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choice, where, for all t , the price at time t is pt = (1 + r)−tPt , Ct solves

the relation dv(Ct)

dC
≤ Pt , with equality if Ct > 0, and the sequence Pt is

bounded and bounded away from 0. The program so obtained, (C, K), is
the unique program that solves the problem

max
(C , K) is a feasible program

with initial capital K−1

∞∑
t=0

(1 + r)−tv(Ct).

Proof. Theorem 10.85 (in section 10.14) implies that there exists an opti-
mal program, (C, K), starting from K−1. The turnpike theorem 10.54 im-
plies that limt→∞(Ct , Kt) = (C(r), K(r)). By lemma 10.57, C(r) > 0, so

that Ct > 0, for t sufficiently large. If Ct > 0, then Pt = dv(Ct)

dC
, by the con-

struction of the spot prices Pt . Therefore, limt→∞ Pt = dv(C(r))
dC

, so that the
sequence Pt is bounded and bounded away from 0. By proposition 10.49
(in section 10.11), the optimal allocation, (C, K), is unique, so that the spot
prices, Pt , are uniquely defined if t is so large that Ct > 0. Let T be so large

that CT > 0. Then, Kt > 0, for t < T , so that Pt = (1 + r)−1Pt+1
dF(Kt)

dK
,

for t < T , and hence Pt is uniquely defined for all t < T , by backward in-
duction on t . Let pt = (1 + r)−tPt , for all t . Then (C, K , r , p) is a program
equilibrium, and it has been shown that it is the only one with the stated
properties.

It remains to be shown that if a program equilibrium, (C, K , r , p), has
the stated properties, then the program (C, K) is optimal. If the sequence Pt

is bounded, then
∑∞

t=0 pt =∑∞
t=0(1 + r)−tPt < ∞ and so theorem 10.43

(in section 10.8) implies that (C, K) is optimal.

A similar result for the Diamond model follows from the previous corol-
lary because of the equivalence between optimal programs for the growth
model and optimal allocations for the Diamond model. This equivalence is
stated as proposition 10.16 (in section 10.1).

corollary 10.60 Suppose that the Diamond model satisfies assump-
tions 10.1–10.5, that r > 0, and r is so small that K(r) > 0. If K−1 > 0,
then there exists one and only one initial choice of P0 such that a spot price
equilibrium, (x , K , L , P, W , r , G, T), can be constructed iteratively from
this choice, where the sequence Pt is bounded and bounded away from 0
and, for all t , xt0 and xt1 solve the relations
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du0(xt0)

dx
≤ Pt ,

with equality if xt0 > 0, and

du1(xt−1, 1)

dx
≤ Pt ,

with equality if xt−1, 1 > 0. The allocation so obtained, (x , K , L), is the
unique allocation that solves the problem

max
(x , K , L) is a feasible

allocation with initial capital K−1

∞∑
t=0

(1 + r)−t[u0(xt0) + (1 + r)u1(xt−1, 1)].

10.13 Equilibrium, Optimality, and the Turnpike Theorem
in the Undiscounted Case

Although the theory of optimal allocations and programs becomes more
difficult when utility is not discounted, the theory does become more ro-
bust. For instance, the turnpike theorem does not apply fully when there
is more than one commodity and future utility is discounted, but it does
apply when there are multiple commodities and there is no discounting.7

Since the total utility over an infinite horizon may be infinite, it is com-
mon practice to use von Weizäcker’s (1965) catching up criterion to define
optimality when there is no discounting, as was done with the Samuelson
model in section 9.7. The main goal of this section is to prove that an al-
location or program is optimal if and only if it belongs to an equilibrium
with bounded prices. The proof uses the turnpike theorem. The main argu-
ments rely on the value loss method and are based on the work of McKenzie
(1976).

Optimality according to the catching up criterion is defined for the Dia-
mond and optimal growth models just as it was defined for the Samuelson
model. An allocation (x , K , L) catches up to an allocation (x , K , L) if for
any positive number ε there exists a number T (ε) such that

[u1(x−1, 1) − u1(x−1, 1)]+
T∑

t=0

[u0(xt0) + u1(xt1) − u0(xt0) − u1(xt1)]< ε ,

7. Because of space limitations, I do not prove these assertions about the theory with

multiple commodities.
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for T ≥ T (ε). A program (C, K) catches up to a program (C, K) if for any
positive number ε there exists a number T (ε) such that

T∑
t=0

[v(Ct) − v(Ct)]< ε ,

for T ≥ T (ε). A feasible program or allocation is optimal if it catches up
to any feasible program or allocation, respectively, with the same initial
capital. Throughout this section, I assume that assumptions 10.1–10.5 (in
section 10.1) apply to the Diamond model and assumptions 10.18–10.21
apply to the optimal growth model.

For many of the arguments, it is important that allocations waste no
labor or produced good.

definition 10.61 The allocation (x , K , L) is strongly feasible if Lt =
1 and xt0 + xt−1, 1 + Kt = f (Kt−1, 1, 1), for all t . The program (C, K) is
strongly feasible if Ct + Kt = F(Kt−1), for all t .

The following lemma will prove useful.

lemma 10.62 If K−1 > 0 and the allocation (x , K , L) is optimal accord-
ing to the catching up criterion, then Kt > 0, for all t , and (x , K , L) is
strongly feasible. If the program (C, K) is optimal according to the catching
up criterion, then Kt > 0, for all t , and (C, K) is strongly feasible.

Proof. I present the proof only for the case of an optimal allocation,
(x , K , L). I begin by showing that Kt > 0, for all t . If Ks = 0, for some s,
then assumption 10.3 implies that f (Ks , Ls+1) = 0, so that xs+1, 0 = xs1 =
Ks+1 = 0. Proceeding by induction on t , we see that xt0 = xt−1, 1 = Kt = 0,
for all t > s. Hence, there exists a finite positive number B such that

u1(x−1, 1) +
T∑

t=0

[u0(xt0) + u1(xt1)]< B , (10.119)

for all T . I now show that this inequality implies that (x , K , L) is not
optimal.

By assumption 10.2, there exists a positive number K such that
f (K , 1) − K > 0. Let K = min(K , K−1), so that f (K , 1) − K > 0. Let
x0 = f (K , 1) − K and x1 = 0. The stationary allocation (x0, x1, K , 1) is
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feasible given initial capital K−1. By assumption 10.5, u0(0) = u1(0) = 0
and u0 and u1 are strictly increasing. Since x0 > 0, it follows that u0(x0) +
u1(x1) > 0, and so

lim
t→∞

{
u1(x1) +

T∑
t=0

[u0(x0) + u1(x1)]

}
= ∞. (10.120)

Inequalities 10.119 and 10.120 imply that (x , K , L) cannot catch up to the
stationary allocation (x0, x1, K , 1) and hence that (x , K , L) is not optimal.
This completes the proof that Kt > 0, for all t .

Since Kt > 0, assumption 10.4 implies that f (Kt , L) is strictly increas-
ing in L, for all t . Since u0 and u1 are strictly increasing, it now follows
easily from the optimality of (x , K , L) that Lt = 1 and xt0 + xt−1, 1 + Kt =
f (Kt−1, 1), for all t , so that (x , K , L) is strongly feasible.

Optimal allocations and programs are unique and are Pareto optimal or
efficient just as they are for the Samuelson model.

proposition 10.63 Suppose that K−1 > 0. Then there is at most one
allocation, (x , K , L), in the Diamond model that is optimal according to
the catching up criterion and there is at most one program, (C, K), in
the optimal growth model that is optimal according to the catching up
criterion.

Proof. I make the argument only for the case of the Diamond model.
By lemma 10.62, Lt = 1, for all t . Since u0 and u1 are strictly concave
and f (K , 1) is strictly concave in K , an argument used in the proof of
proposition 9.47 (in section 9.8) shows that there can be only one optimal
allocation with initial capital K−1.

theorem 10.64 If the allocation (x , K , L) is optimal according to the
catching up criterion, it is Pareto optimal, and if the program (C, K) is
optimal according to the catching up criterion, it is efficient.

The proof of this theorem is nearly identical to that of theorem 9.37 (in
section 9.7) and so will not be given. Similarly, the proof of the following
lemma is similar to that of lemma 9.41 (in the same section).
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lemma 10.65 If the allocation (x , K , L) is optimal according to the
catching up criterion, then for each T ≥ 0, (xt0, xt−1, 1, Kt , Lt)

T
t=0 solves

the problem

max
xt0≥0, xt−1, 1≥0, Kt≥0, Lt≥0,

for t=0, 1, . . . , T

T∑
t=0

[u0(xt0) + u1(xt−1, 1)]

s.t. xt−1, 1 + xt0 + Kt ≤ f (Kt−1, Lt), and

Lt ≤ 1, for t = 0, . . . , T ,

K−1 = K−1 and KT ≥ KT .

If the program (C, K) is optimal according to the catching up criterion,
then for each T ≥ 0, (Ct , Kt)

T
t=0 solves the problem

max
Ct≥0, Kt≥0,

for t=0, 1, . . . , T

T∑
t=0

v(Ct)

s.t. Ct + Kt ≤ F(Kt−1), for t = 0, . . . , T ,

KT ≥ KT , and K−1 = K−1.

Lemmas 10.62 and 10.65 allow us to construct candidate programs or
allocations that may be optimal according to the catching up criterion.
The construction process is exactly the same as that described at the end
of section 10.10 in connection with programs that maximize a discounted
sum of utilities; it is sufficient to set r equal to 0 in the formulas given
there. When applied to the growth model, this process generates a sequence
(Ct , Kt , Pt), for t = 0, 1, 2, . . . , which either terminates at some time T or
continues indefinitely. I show at the end of this section that for the correct
choice of P0, the process may be continued indefinitely and that for only
one such choice does the sequence, Pt , remain bounded, and in this case
the corresponding program (C, K) is optimal according to the catching up
criterion. A similar process may be used to generate optimal allocations for
the Diamond model.

theorem 10.66 Suppose that K−1 > 0 and that (x , K , L , P, W , r , G, T)

is a spot price equilibrium with interest rate 0 such that the prices Pt are
bounded and every consumer has the same positive and finite marginal
utility of unit of account. Then the allocation (x , K , L) is optimal according
to the catching up criterion.
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In proving this theorem, I use the next lemma. To state the lemma, I need
new notation. Let

M =
{
(x0, x1, K , P0, P1) ∈ R

5
+
∣∣u0(x0) + u1(x1) − P0x0 − P1x1

≥ u0(x0) + u1(x1) − P0x0 − P1x1, for all (x0, x1) ∈ R
2
+, and

P1f (K , 1) − P0K ≥ P1f (K , 1) − P0K , for all K ≥ 0
}

.

For (x0, x1, K , P0, P1) ∈ M and (x0, x1, K) ∈ R
3
+, let

L(x0, x1, K , P0, P1; x0, x1, K)

= [u0(x0) + u1(x1) − P0x0 − P1x1 + P1f (K , 1) − P0K]

− [u0(x0) + u1(x1) − P0x0 − P1x1 + P1f (K , 1) − P0K].

lemma 10.67 Let b be any positive number. For every positive num-
ber ε, there exists a positive number δ such that if (x0, x1, K , P0, P1) ∈
M , (x0, x1, K) ∈ R

3
+, and all the components of (x0, x1, K , P0, P1) and

(x0, x1, K) are less than or equal to b and P1 ≥ b−1, then ‖(x0, x1, K) −
(x0, x1, K)‖ < ε, if L(x0, x1, K , P0, P1; x0, x1, K) < δ.

Proof. If the lemma is false, then there exists a positive number ε and
a sequence (xn

0 , xn
1 , K

n
, P n

0 , P n
1 , xn

0 , xn
1 , Kn) in R

8
+, all the components

of which are bounded above by b and are such that, for all n, P n
1 ≥ b−1,

(xn
0 , xn

1 , K
n

, P n
0 , P n

1 ) ∈ M , L(xn
0 , xn

1 , K
n

, P n
0 , P n

1 ; xn
0 , xn

1 , Kn) < 1
n

, and

‖(xn
0 , xn

1 , K
n
) − (xn

0 , xn
1 , Kn)‖ ≥ ε. Because the components of the se-

quence (xn
0 , xn

1 , K
n

, P n
0 , P n

1 , xn
0 , xn

1 , Kn) are bounded, we may, by the
Bolzano-Weierstrass theorem (3.12 in section 3.2), assume that this se-
quence converges. Let

(x0, x1, K , P0, P1, x0, x1, K) = lim
n→∞(xn

0 , xn
1 , K

n
, P n

0 , P n
1 ; xn

0 , xn
1 , Kn).

Then P1 ≥ b−1 > 0. Since

u0(x
n
0) + u1(x

n
1) − P n

0 xn
0 − P n

1 xn
1 ≥ u0(x0) + u1(x1) − P n

0 x0 − P n
1 x1,

for all n and for all (x0, x1) ∈ R
2
+, it follows by passage to the limit that

u0(x0) + u1(x1) − P0x0 − P1x1 ≥ u0(x0) + u1(x1) − P0x0 − P1x1,
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for all (x0, x1) ∈ R
2
+. Similarly, since

P n
1 f (K

n
, 1) − P n

0 K
n ≥ P n

1 f (K , 1) − P n
0 K ,

for all K ≥ 0, it follows that

P1f (K , 1) − P0K ≥ P1f (K , 1) − P0K ,

for all K ≥ 0. Therefore,

L(x0, x1, K , P0, P1; x0, x1, K) ≥ 0,

for all (x0, x1, K) ∈ R
3
+, and

L(x0, x1, K , P0, P1; x0, x1, K) = 0.

Because u0 and u1 are strictly concave and P1f (K , 1) is a strictly con-
cave function of K , it follows that L(x0, x1, K , P0, P1; x0, x1, K) is a
strictly convex function of (x0, x1, K) and hence that L(x0, x1, K , P0, P1;
x0, x1, K) > 0, if (x0, x1, K) �= (x0, x1, K). Since L is a continuous func-
tion and L(x0, x1, K , P0, P1; x0, x1, K) is the limit of the sequence

(xn
0 , xn

1 , K
n

, P n
0 , P n

1 , xn
0 , xn

1 , Kn), it follows that

lim
n→∞ L(xn

0 , xn
1 , K

n
, P n

0 , P n
1 ; xn

0 , xn
1 , Kn)

= L(x0, x1, K , P0, P1; x0, x1, K).

Since 0 ≤ L(xn
0 , xn

1 , K
n

, P n
0 , P n

1 ; xn
0 , xn

1 , Kn) < 1
n

, for all n, it follows that

L(x0, x1, K , P0, P1; x0, x1, K) = 0.

This equation is impossible, however, because passage to the limit in the
inequality

‖(xn
0 , xn

1 , K
n
) − (xn

0 , xn
1 , Kn)‖ ≥ ε

implies that

‖(x0, x1, K) − (x0, x1, K)‖ ≥ ε

and hence that

L(x0, x1, K , P0, P1; x0, x1, K) > 0.

Proof of Theorem 10.66. I may assume that the marginal utility of unit of
account of every consumer is 1, because if it equals the positive number λ,
it becomes 1 if P, G, and T are replaced by λP, λG, and λT, respectively.
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I begin by showing that Kt > 0, for all t . Suppose that Kt = 0, for some t .
Then, Ks = 0 = xs0 = xs−1, 1 for s > t , by an argument made in the proof
of lemma 10.62. Since the firm produces no output in any period after t ,
it earns no profits in those periods. Because the marginal utility of unit of
account of every consumer is 1,

Ps = du0(xs0)

dx
= du0(0)

dx
= Q,

for s > t , where Q is defined by this equation and Q must be finite by
the definition of a spot price equilibrium. Therefore profit maximization
implies that Ks solves the problem

max
K≥0

[Qf (K , Ls) − QK],

for s > t . By assumption 10.3, f (0, Ls) = 0, and by assumption 10.2,
f (K , Ls) − K > 0, for some K > 0, if Ls > 0. Since f (K , Ls) is concave
as a function of K by assumption 10.4, it follows that

∂f (0, Ls)

∂K
> 1.

It now follows that if s > t and Ls+1 > 0, then Ks must be positive, which
is impossible. Therefore, Ls+1 = 0, which implies by condition (10) of
definition 10.12 of a spot price equilibrium (in section 10.1) that Ws+1 = 0.
In this case, it is clearly possible for the firm to earn positive profits from
period s to s + 1 by using one unit of labor and K units of capital, where
K is as in assumption 10.2. Since this assertion contradicts the hypothesis
that Ks = 0, it must be that Kt > 0, for all t .

Because the functions u0 and u1 are strictly increasing, Pt > 0, for all t ,
for otherwise (xt0, xt1) would not maximize consumer t ’s utility over his
or her budget set. It follows that Lt = 1, for all t , for if L1 < 1, then Wt = 0.

Since Kt−1 > 0, it follows that Pt
∂f (Kt−1, L)

∂K
> 0, for any L, and so the firm’s

profit maximization problem has no solution, contrary to the definition
of a spot price equilibrium. This contradiction proves that L1 = 1. Profit
maximization now implies that Ks solves the problem

Wt = Pt

∂f (Kt−1, 1)

∂L
, (10.121)

for all t . Since the allocation (x , K , L) is feasible, it is bounded by prop-
osition 10.8 (in section 10.1). Since by assumption 10.4 the function f is
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continuously differentiable except at 0, the partial derivatives,
∂f (Kt−1, 1)

∂L
,

are bounded by proposition 3.14 (in section 3.2). Because the spot prices,
Pt , are bounded, it follows from equation 10.121 that the spot wages, Wt ,
are bounded.

Since every consumer’s marginal utility of unit of account is 1,

Pt ≥ du0(xt0)

dx
≥ du0(b)

dx
> 0, (10.122)

for all t , where b is an upper bound on the components of the allocation
(x , K , L).

The proof of optimality is by contradiction. If (x , K , L) is not optimal,
then there exists a feasible allocation (x , K , L) with the same initial capital
K−1 such that (x , K , L) does not catch up to (x , K , L). We may assume
that Lt = 1, for all t , for if Lt < 1, for some t , we can, by increasing Lt

to 1, create a new program that would be even harder to catch up to than
(x , K , L). Define value losses as follows. Let

L−1[u1(x−1, 1) − P0x−1, 1]− [u1(x−1, 1) − P0x−1, 1].

For t ≥ 0, let

Lt = [u0(xt0) + u1(xt1) − Ptxt0 − Pt+1xt1 + Pt+1f (Kt , 1) − PtKt]

− [u0(xt0) + u1(xt1) − Ptxt0 − Pt+1xt1 + Pt+1f (Kt , 1) − PtKt].

Because every consumer’s marginal utility of unit is 1 in the equilibrium,
x−1, 1, solves the problem maxx1≥0[u1(x1) − P0x1] and, for t ≥ 0, (xt0, xt1)

solves the problem maxx0≥0, x1≥0[u0(x0) + u1(x1) − Ptx0 − Pt+1x1]. By

profit maximization, K = Kt solves the problem maxK≥0[Pt+1f (K , 1) −
PtK], for t ≥ 0. It follows that Lt ≥ 0, for all t . I may now apply lemma
10.67, because the allocations (x , K , L) and (x , K , L) and the sequences
Pt and Wt are bounded and the prices Pt are bounded away from 0 by in-
equality 10.121. Hence, for every positive number ε, there exists a positive
number δ such that

‖(xt0, xt1, Kt) − (xt0, xt1, Kt)‖ < ε , if Lt < δ , (10.123)

for t ≥ 0.
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By algebraic rearrangement,

0 ≤
T∑

t=−1

Lt = [u1(x−1, 1) − u1(x−1, 1)]

+
T∑

t=0

{u0(xt0) + u1(xt1) − [u0(xt0) + u1(xt1)]}

+
T∑

t=0

{Pt[xt0 + xt−1, 1 + Kt − f (Kt−1, 1)]− Pt[xt0 + xt−1, 1

+ Kt − f (Kt−1, 1)]}
+ PT +1[f (KT , 1) − f (KT , 1)]+ PT +1(xT 1 − xT 1)

≤ [u1(x−1, 1) − u1(x−1, 1)]+
T∑

t=0

[u0(xt0) + u1(xt1) − (u0(xt0) + u1(xt1))]

+ PT +1[f (KT , 1) − f (KT , 1)]+ PT +1(xT 1 − xT 1),

(10.124)

for all T ≥ 0, where the second inequality follows, because 1) Pt ≥ 0, for
all t ; 2) the feasibility of the allocation (x , K , L) implies that

xt0 + xt−1, 1 + Kt − f (Kt−1, 1) ≤ 0,

for all t ; and 3) condition (10) of definition 10.12 of a spot price equilib-
rium (in section 10.1) implies that

Pt[xt0 + xt−1, 1 + Kt − f (Kt−1, 1)]= 0,

for all t .
Since (x , K , L) does not catch up to (x , K , L), there exists a positive

number ε such that

[u1(x−1, 1) − u1(x−1, 1)]+
T∑

t=0

{u0(xt0) + u1(xt1) − [u0(xt0) + u1(xt1)]} ≥ ε ,

for infinitely many values of T , so that

[u1(x−1, 1) − u1(x−1, 1)]

+
T∑

t=0

{u0(xt0) + u1(xt1) − [u0(xt0) + u1(xt1)]} ≤ −ε ,
(10.125)

for infinitely many values of T . Since Lt ≥ 0, for all t , and the sequences
PT +1[f (KT , 1) − f (KT , 1)] and PT +1(xT 1 − xT 1) are bounded, for all t ,
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inequalities 10.124 and 10.125 imply that the infinite sum
∑∞

t=−1 Lt exists
and is finite, so that limt→∞ Lt = 0. Therefore, statement 10.123 implies
that limt→∞ |Kt − Kt | = 0 and limt→∞ |xt1 − xt1| = 0. Hence, inequal-
ity 10.124 implies that

[u1(x−1, 1) − u1(x−1, 1)]

+
T∑

t=0

[u0(xt0) + u1(xt1) − (u0(xt0) + u1(xt1))]> −ε ,

if T is sufficiently large. This contradiction of inequality 10.125 establishes
that (x , K , L) is optimal according to the catching up criterion.

These theorems imply that any stationary spot price equilibrium alloca-
tion with interest rate 0 is optimal according to the catching up criterion.

corollary 10.68 The unique stationary allocation, (x0, x1, K , L), that
solves the problem

max
x0≥0, x1≥0, K≥0, L≥0

[u0(x0) + u1(x1)]

s.t. x0 + x1 + K ≤ f (K , L) and

L ≤ 1

(10.126)

is optimal according to the catching up criterion and hence is Pareto opti-
mal. All stationary spot price equilibria with interest rate 0 have the same
allocation, and it solves problem 10.126. Furthermore, in any such station-
ary equilibrium (x0, x1, K , L, P , W , G), P > 0 and W > 0.

Proof. I begin by showing that K > 0 and L = 1. If K = 0, then x0 = x1 =
0. By assumption 10.2, there exists a stationary allocation (x0, x1, K , 1)
such that x0 + x1 > 0. Since u0 and u1 are strictly increasing and (x0, x1, K ,
L) solves problem 10.126, it must be that K > 0. Hence assumption 10.4
implies that f (K , L) is increasing in L, so that L = 1.

Because u0(x0), u1(x1), and f (K , 1) are strictly concave functions, the
solution to problem 10.126 is unique. Assumption 10.2 implies that prob-
lem 10.126 satisfies the constraint qualification of the Kuhn-Tucker theo-
rem. Therefore, this theorem implies that there exists a positive 2-vector
(P , W) such that (x0, x1, K , L) solves the problem

max
x0≥0, x1≥0, K≥0, L≥0

{u0(x0) + u1(x1) − P [x0 + x1 + K − f (K , L)]− WL}.
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Let G = W − P(x0 + K). Then, (x0, x1, K , L, P , W , G) is a stationary
spot price equilibrium with interest rate 0. Theorem 10.66 implies that the
stationary allocation (x0, x1, K , L) is optimal according to the catching up
criterion. Hence, (x0, x1, K , L) is Pareto optimal, by theorem 10.64.

Let (x0, x1, K , L, P , W , G) be a stationary spot price equilibrium with
interest rate 0. Because (x0, x1) solves the problem

max
x0≥0, x1≥0

[u0(x0) + u1(x1)]

s.t. Px0 + Px1 ≤ W ,
(10.127)

and u0 and u1 are strictly increasing, P > 0, for, otherwise, problem 10.127
would have no solution.

I show that W > 0 and L = 1. By profit maximization, (K , L) solves the
problem

max
K≥0, L≥0

[Pf (K , L) − PK − WL}. (10.128)

Assumption 10.2 implies that there is a positive number K such that
Pf (K , 1) − PK > 0. Since K > 0, f (K , L) is an increasing function of L,
so that if W = 0, then problem 10.128 has no solution, which is false. This
contradiction implies that W > 0 and hence that L = 1 by condition (10)
of definition 10.12 of a spot price equilibrium (in section 10.1).

I show that problem 10.127 satisfies the constraint qualification of the
Kuhn-Tucker theorem. Because (K , 1) solves problem 10.128, it follows
that

Pf (K , 1) − PK ≥ Pf (K , 1) − PK > 0.

Therefore,

x0 + x1 = f (K , 1) − K > 0,

and hence problem 10.127 satisfies the constraint qualification. Because
(x0, x1) solves this problem, the Kuhn-Tucker theorem implies that there
exists a nonnegative number λ such that (x0, x1) solves the problem

max
x0≥0, x1≥0

[u0(x0) + u1(x1) − λP (x0 + x1)].

Then, λ > 0, for if λ = 0, this problem has no solution since u0 and u1

are strictly increasing. Since (K , 1) solves problem 10.128, it follows that
(x0, x1, K , 1) solves the problem
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max
x0≥0, x1≥0, K≥0, L≥0

{u0(x0) + u1(x1) − λP [x0 + x1 + K − f (K , L)]

− λWL}.

The sufficiency part of the Kuhn-Tucker theorem implies that (x0, x1, K , 1)
solves problem 10.126.

The stationary allocation (x0, x1, K , L) defined in the previous corollary
is the golden rule allocation discussed previously at the end of section 10.8.
The stationary spot price equilibrium, (x0, x1, K , L, P , W , G), with in-
terest rate 0 is unique provided that every consumer’s marginal utility of
unit of account is 1, and I call this equilibrium the golden rule equilibrium.

I now develop a condition for optimality according to the catching up
criterion that will enable me to prove that an allocation for the Diamond
model is optimal if and only if the corresponding program for the growth
model is optimal. The condition is inspired by Brock’s (1970) proof of
the existence of an optimal growth program. Let (x0, x1, K , L, P , W , G)

be the golden rule equilibrium, and let L−1 : [0, ∞) → (−∞, ∞) be the
function

L−1(x) = [u1(x1) − Px1]− [u1(x) − Px].

Similarly, let

L(x0, x1, K) = [u0(x0) + u1(x1) − P(x0 + x1) + Pf (K , 1) − PK]

− [u0(x0) + u1(x1) − P(x0 + x1) + Pf (K , 1) − PK].

Because profits are maximized and the marginal utility of every consumer
is 1, in the golden rule equilibrium,

L−1(x) ≥ 0

and

L(x0, x1, K) ≥ 0,

for all x0, x1, and K . It follows that

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt)

is defined for any allocation (x , K , L), though the sum may be infinite.
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theorem 10.69 The feasible allocation, (x , K , L), with positive initial
capital K−1 is optimal according to the catching up criterion if and only if
(x , K , L) solves the problem

max
(x , K , L) is a strongly feasible

allocation with initial

capital K−1

[L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt)], (10.129)

and this limit is finite.

This theorem provides an alternative proof of the assertion of corol-
lary 10.68 that the golden rule allocation is optimal according to the catch-
ing up criterion, for the sum

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt)

equals 0 if (xt0, xt−1, 1, Kt , Lt) = (x0, x1, K , L), for all t , where (x0, x1,

K , L) is the golden rule allocation.
I need the next two lemmas in order to prove theorem 10.69.

lemma 10.70 If K−1 > 0, then there exists a strongly feasible allocation,
(x , K , L), with initial capital K−1 and such that

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) < ∞. (10.130)

Proof. Let (x0, x1, K , L) be the golden rule allocation. If K−1 ≥ K , let

x00 = x−1, 1 = f (K−1, 1) − K

2
,

and let K0 = K . For t > 0, let xt0 = x0, xt−1, 1 = x1, and let Kt = K . If

K−1 < K , let δ = f (K−1, 1) − K−1 and let K0 = f (K−1, 1) and x00 =
x−1, 1 = 0. Since f is concave and f (0, 1) = 0 and

f (K , 1) − K = max
K≥0

[f (K , 1) − K]> 0,

it follows that δ > 0. Observe that K0 − K−1 = f (K−1, 1) − K−1 = δ > 0.
Continue by induction on t . If Kt < K , let Kt = f (Kt−1, 1) and let xt0 =
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xt−1, 1 = 0. Then, Kt − Kt−1 = f (Kt−1, 1) − Kt−1 > f (K−1, 1) − K−1 =
δ > 0, where the first inequality applies because Kt−1 < K and ∂f (K , 1)

∂K
> 1,

if K < K . Because Ks+1 − Ks > δ, for each s, there is a smallest t such that

Kt ≥ K . Let T be this value of t . Let KT +1 = K , and let

xT +1, 0 = xT 1 = f (KT , 1) − K

2
.

For t > T + 1, let Kt = K , xt0 = x0, and xt−1, 1 = x1. The allocation
(x , K , L) is strongly feasible by definition. It satisfies inequality 10.130,
because it equals the stationary allocation (x0, x1, K , L) from some time
onward.

lemma 10.71 Let b be a positive number. For every positive number ε,
there exists a positive number δ such that ‖(x0, x1, K) − (x0, x1, K)‖ < ε,
if L(x0, x1, K) < δ and all the components of (x0, x1, K) are less than or
equal to b.

Proof. This lemma is an immediate consequence of lemma 10.67, since the
price P of a golden rule equilibrium is positive.

Proof of Theorem 10.69. I first prove that if the allocation (x , K , L) solves
problem 10.129, then it is optimal. I must show that if (x , K , L) is a feasible
allocation with initial capital K−1, then (x , K , L) catches up to (x , K , L).
I may assume that (x , K , L) is strongly feasible, for if it were not, I could
define a new allocation with more consumption in some periods and no
less in any period and the new allocation would be harder to catch up to
than (x , K , L).

By lemma 10.70,

max
(x , K , L) is a strongly feasible

allocation with initial

capital K−1

[L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt)]< ∞,

so that

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt0, Kt) < ∞.

By algebraic manipulation, we see that
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[L−1(x−1, 1) − L−1(x−1, 1)]+
T∑

t=0

[L(xt0, xt1, Kt) − L(xt0, xt1, Kt)]

= {[u1(x1) − Px1]− [u1(x−1, 1) − Px−1, 1]}
− {[u1(x1) − Px1]− [u1(x−1, 1) − Px−1, 1]}

+
T∑

t=0

{
[u0(x0) + u1(x1) − P(x0 + x1) + Pf (K , 1) − PK]

−[u0(xt0) + u1(xt1) − P(xt0 + xt1) + Pf (Kt , 1) − PKt]

−[u0(x0) + u1(x1) − P(x0 + x1) + Pf (K , 1) − PK]

+[u0(xt0) + u1(xt1) − P(xt0 + xt1) + Pf (Kt , 1) − PKt]
}

= [u1(x−1, 1) − u1(x−1, 1)]+
T∑

t=0

{[u0(xt0) + u1(xt1)]− [u0(xt0) + u1(xt1)]}

− P [x00 + x−1, 1 + K0 − f (K−1, 1)]−
T∑

t=1

P [xt0 + xt−1, 1 + Kt − f (Kt−1, 1)]

+ P [x00 + x−1, 1 + K0 − f (K−1, 1)]+
T∑

t=1

P [xt0 + xt−1, 1 + Kt − f (Kt−1, 1)]

+ P [f (KT , 1) − f (KT , 1)]+ P(xT 1 − xT 1)

= [u1(x−1, 1) − u1(x−1, 1)]+
T∑

t=0

[u0(xt0) + u1(xt1) − u0(xt0) + u1(xt1)]

+ P [f (KT , 1) − f (KT , 1)]+ P(xT 1 − xT 1), (10.131)

where the last equation follows, because

P [x00 + x−1, 1 + K0 − f (K−1, 1)]+
T∑

t=1

P [xt0 + xt−1, 1

+ Kt − f (Kt−1, 1)]= 0,

by the strong feasibility of the allocation (x , K , L), and

P [x00 + x−1, 1 + K0 − f (K−1, 1)]+
T∑

t=1

P [xt0

+ xt−1, 1 + Kt − f (Kt−1, 1)]= 0,
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by the strong feasibility of the allocation (x , K , L). Since feasible allo-
cations are bounded by proposition 10.8 (in section 10.1), the sequence
P [f (KT , 1) − f (KT , 1)]+ P(xT 1 − xT 1) is bounded.

The sum L−1(x−1, 1) +∑∞
t=0 L(xt0, xt1, Kt) is either finite or infinite.

Suppose that it is infinite. Then,

[L−1(x−1, 1) − L−1(x−1, 1)]+
T∑

t=0

[L(xt0, xt1, Kt) − L(xt0, xt1, Kt)]

diverges to infinity as T goes to infinity. Therefore, equation 10.131 and the
boundedness of the sequence P [f (KT , 1) − f (KT , 1)]+ P(xT 1 − xT 1)

imply that the sum

[u1(x−1, 1) − u1(x−1, 1)]+
T∑

t=0

[u0(xt0) + u1(xt1) − u0(xt0) − u1(xt1)]

diverges to infinity so that (x , K , L) catches up to (x , K , L). Suppose that
L−1(x−1, 1) +∑∞

t=0 L(xt0, xt1, Kt) < ∞. Then,

lim
t→∞ L(xt0, xt1, Kt) = 0.

Since the allocation (x , K , L) is bounded, lemma 10.71 implies that

lim
t→∞(xt0, xt1, K) = (x0, x1, K).

Similarly, since L−1(x−1, 1) +∑∞
t=0 L(xt0, xt1, Kt) < ∞, it follows that

lim
t→∞ L(xt0, xt1, Kt) = 0

and therefore

lim
t→∞(xt0, xt1, Kt) = (x0, x1, K),

so that

lim
T →∞{P [f (KT , 1) − f (KT , 1)]+ P(xT 1 − xT 1)} = 0. (10.132)

Since (x , K , L) solves problem 10.129, it follows that

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) ≤ L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt),
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so that

lim
T →∞{[L−1(x−1, 1) − L−1(x−1, 1)]+

T∑
t=0

[L(xt0, xt1, Kt)

− L(xt0, xt1, Kt)]} ≥ 0.

Therefore, equations 10.131 and 10.132 imply that

lim
T →∞{[u1(x−1, 1) − u1(x−1, 1)]+

T∑
t=−1

[u0(xt0) + u1(xt1)

− u0(xt0) − u1(xt1)]} ≥ 0.

It follows that (x , K , L) catches up to (x , K , L). This completes the proof
that an allocation is optimal if it solves problem 10.129. I now prove the
converse.

Let (x , K , L) be an optimal allocation with initial capital K−1. I must
show that (x , K , L) solves problem 10.129. By lemma 10.62, (x , K , L) is
strongly feasible, so that it is a candidate for a solution of problem 10.129.
Suppose it does not solve this problem. Then there is another strongly
feasible allocation (x , K , L) such that

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) > L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt).

By lemma 10.70, I may assume that

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) < ∞.

Equation 10.131 applies to the allocations (x , K , L) and (x , K , L) and be-
cause these allocations are feasible, the sequence P [f (KT , 1) − f (KT , 1)]
+P(xT 1 − xT 1) is bounded. If

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) = ∞,

then equation 10.131 implies that

[u1(x−1, 1) − u1(x−1, 1)]+
T∑

t=−1

[u0(xt0) + u1(xt1) − u0(xt0) − u1(xt1)]
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diverges to negative infinity, so that (x , K , L) cannot catch up to (x , K , L).
This implication contradicts the optimality of (x , K , L). If

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) < ∞,

then equation 10.132 applies and

lim
T →∞{[L−1(x−1, 1) − L−1(x−1, 1)]+

T∑
t=0

[L(xt0, xt1, Kt)

− L(xt0, xt1, Kt)]} < 0.

Therefore, equation 10.131 implies that

lim
T →∞{[u1(x−1, 1) − u1(x−1, 1)]+

T∑
t=−1

[u0(xt0) + u1(xt1)

− u0(xt0) − u1(xt1)]} < 0

and hence (x , K , L) cannot catch up to (x , K , L). Since we have again
contradicted the optimality of (x , K , L), it must be that (x , K , L) solves
problem 10.129.

Theorem 10.69 implies the following.

corollary 10.72 The feasible allocation, (x , K , L), with positive initial
capital K−1 is optimal according to the catching up criterion if and only if
(x , K , L) solves the problem

min
(x , K , L) is a strongly feasible

allocation with initial

capital K−1

∞∑
t=0

L(xt0, xt−1, 1, Kt).

Proof. By theorem 10.69, (x , K , L) is optimal according to the catching up
criterion if and only if it solves the problem

min
(x , K , L) is a strongly feasible

allocation with initial

capital K−1

[L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt)].

Lemma 10.70 implies that this minimum is finite, if it exists. Therefore, if
(x , K , L) is optimal or achieves the minimum, then it is strongly feasible
and
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L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) < ∞.

It follows that

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt)

= {[u1(x1) − Px1]− [u1(x−1, 1) − Px−1, 1]}

+
∞∑
t=0

{
[u0(x0) + u1(x1) − P(x0 + x1) + Pf (K , 1) − PK]

−[u0(xt0) + u1(xt1) − P(xt0 + xt1) + Pf (Kt , 1) − PKt]
}

= {[u1(x1) − Px1]− [u1(x−1, 1) − Px−1, 1]}

+
∞∑
t=0

{[
[u0(x0) − Px0]− [u0(xt0) − Px0]

]
+ [

[u1(x1) − Px1]− [u1(xt1) − Pxt1]
]

+
[

[Pf (K , 1) − PK]− [Pf (Kt , 1) − PKt]
]}

=
∞∑
t=0

{[
[u0(x0) − Px0]− [u0(xt0) − Pxt0]

]
+
[

[u1(x1) − Px1]− [u1(xt−1, 1) − Pxt−1, 1]
]

+
[

[Pf (K , 1) − PK]− [Pf (Kt , 1) − PKt]
]}

=
∞∑
t=0

{
u0(x0) + u1(x1) − P(x0 + x1) + Pf (K , 1) − PK

−u0(xt0) − u1(xt−1, 1) + P(xt0 + xt−1, 1) − Pf (Kt , 1) + PKt]
}

=
∞∑
t=0

L(xt0, xt−1, 1, Kt).

The third equation above is valid, because all the terms in the large square
brackets in the sum on the left-hand side of this equation are nonnegative,
so that the order of summation of these terms does not affect the total.
We obtain the fourth equation by adding the three terms in large brackets
on the left-hand side that refer to the same time period. The last equation
follows from the definition of L(xt0, xt−1, 1, Kt).
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The same reasoning applies to any strongly feasible allocation, (x , K , L),
such that

∑∞
t=0 L(xt0, xt−1, 1, Kt) < ∞, so that for any such allocation

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) =
∞∑
t=0

L(xt0, xt−1, 1, Kt).

Therefore, (x , K , L) minimizes the sum L−1(x−1, 1) +∑∞
t=0 L(xt0, xt1, Kt)

if and only if it minimizes the sum
∑∞

t=0 L(xt0, xt−1, 1, Kt) and hence
theorem 10.69 implies that (x , K , L) is optimal according to the catching
up criterion if and only if it minimizes the sum

∑∞
t=0 L(xt0, xt−1, 1, Kt).

To discuss the equivalence of optimality in the Diamond and growth
models, I describe how to make a correspondence between the two types
of models. If a Diamond model has utility functions u0 and u1 and a pro-
duction function f , the corresponding growth model has a utility function
v and a production function F , where

v(C) = max
x0:0≤x0≤C

[u0(x0) + u1(C − x0)]

and F(K) = f (K , 1). If an optimal growth model is defined by functions
v and F , a corresponding Diamond model may be defined with functions
u0, u1, and f , where

u0(x) = u1(x) = v(2x)

2

and

f (K , L) =
{

LF(KL−1), if L > 0,

and 0, if L = 0.

The original functions v and F then correspond to these functions u0,
u1, and f . An allocation, (x , K , L), and a program, (C, K), correspond if
Lt = 1, xt0 + xt−1, 1 = Ct , and v(Ct) = u0(xt0) + u1(xt−1, 1), for all t .

A version of theorem 10.69 applies to the optimal growth model. In order
to state this version, I introduce appropriate terminology. Let (C , K) be the
golden rule program described at the end of section 10.8. The capital stock
K solves the problem maxK≥0[F(K) − K], and C = F(K) − K . Then

(C , K) is the allocation of a stationary program equilibrium with interest
rate 0, and we may let the constant price level in this equilibrium be P =
dv(C)
dC

, so that C solves the problem maxC≥0[v(C) − PC]. Of course, K



10.13 The Undiscounted Case 571

solves the problem maxK≥0[PF(K) − PK]. The appropriate value loss is

L(C , K) = [v(C) − PC + PF(K) − PK]

− [v(C) − PC + PF(K) − PK].

theorem 10.73 The program (C, K) is optimal, according to the catch-
ing up criterion, if and only if (C, K) solves the problem

min
(C , K) is a strongly feasible

program with initial

capital K−1

∞∑
t=0

L(Ct , Kt).

The proof of this theorem requires the following analogues of lem-
mas 10.70 and 10.71.

lemma 10.74 There exists a strongly feasible program (C, K), such that

∞∑
t=0

L(Ct , Kt) < ∞.

Proof. By lemma 10.70, there exists a strongly feasible allocation,
(x , K , L), for a Diamond model corresponding to the given growth model
such that

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) < ∞.

Let (C, K) be the program corresponding to the allocation (x , K , L). Since

Ct + Kt = xt0 + xt−1, 1 + Kt = f (Kt−1, 1) = F(Kt−1),

it follows that (C, K) is strongly feasible. By an argument given in the proof
of corollary 10.72,

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) =
∞∑
t=0

L(xt0, xt−1, 1, Kt).

When x0 + x1 = C and u0(x0) + u1(x1) = v(C), the value loss functions for
the corresponding Diamond and growth models are equal in that

L(x0, x1, K) = [u0(x0) + u1(x1) − P(x0 + x1) + Pf (K , 1) − PK]

− [u0(x0) + u1(x1) − P(x0 + x1) + Pf (K , 1) − PK]

= [v(C) − PC + PF(K) − PK]− [v(C)

− PC + PF(K) − PK]= L(C , K).



572 10 The One-Sector Growth and Diamond Models

Therefore,

∞∑
t=0

L(Ct , Kt) =
∞∑
t=0

L(xt0, xt−1, 1, Kt) < ∞.

lemma 10.75 For every positive number ε, there exists a positive number
δ such that ‖(C , K) − (C , K)‖ < ε, if L(C , K) < δ.

Proof. If the lemma is false, then there exists a positive number ε and a
sequence (Cn, Kn) such that, for all n, L(Cn, Kn < 1

n
and ‖(Cn, Kn) −

(C , K)‖ ≥ ε. I may assume that ‖(Cn, Kn) − (C , K)‖ = ε, for all n, for
suppose that ‖(Cn, Kn) − (C , K)‖ > ε, for some n. Let

α = ε

‖(Cn, Kn) − (C , K)‖ ,

so that 0 < α < 1, and let

(Cn, Kn) = α(Cn, Kn) + (1 − α)(C , K).

Then

‖(Cn, Kn) − (C , K)‖ = α‖(Cn, Kn) − (C , K)‖ = ε ,

and, because the function L is convex,

L(Cn, Kn) ≤ αL(Cn, Kn) + (1 − α)L(C , K)

= αL(Cn, Kn) < α
1

n
<

1

n
.

Since ‖(Cn, Kn) − C , K)‖ = ε, for all n, the sequence (Cn, Kn) is
bounded and so I may, by the Bolzano-Weierstrass theorem (3.12 in sec-
tion 3.2), assume that it converges. Let

(C , K) = lim
n→∞(Cn, Kn).

Because the function L is continuous and L(Cn, Kn) < 1
n

, for all n, it

follows that L(C , K) = 0. Therefore, (C , K) = (C , K), because L is a
strictly convex function. This equation contradicts the equation

‖(C , K) − (C , K)‖ = ε ,

obtained by passing to the limit in the equation ‖(Cn, Kn) − (C , K)‖ = ε,
for all n.
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Proof of Theorem 10.73. The proof is very similar to that of theorem 10.69.
The central part of that proof is equation 10.131, and the corresponding
equation here is

T∑
t=0

[L(Ct , Kt) − L(Ct , Kt)]

=
T∑

t=0

{
[v(C) − PC − PF(K) − PK]

− [v(Ct) − PCt + PF(Kt) − PKt]

− [v(C) − PC − PF(K) − PK]

+ [v(Ct) − PCt + PF(Kt) − PKt]
}

=
T∑

t=0

[v(Ct) − v(Ct)]

− P [C0 + K0 − F(K−1)]−
T∑

t=1

P [Ct + Kt − F(Kt−1)]

+ P [C0 + K0 − F(K−1)]+
T∑

t=1

P [Ct + Kt − F(Kt−1)]

+ P [F(KT ) − F(KT )]

=
T∑

t=0

[v(Ct) − v(Ct)]+ P [F(KT ) − F(KT )].

The rest of the proof of theorem 10.69 applies with hardly any changes.
Lemma 10.74 replaces lemma 10.70 and lemma 10.75 replaces lemma 10.71
in the argument.

theorem 10.76 An allocation (x , K , L) is optimal with respect to the
catching up criterion if and only if the corresponding program (C, K) is
optimal with respect to the catching up criterion in the corresponding
growth model.

Proof. By theorem 10.69, (x , K , L) is optimal if and only if it solves the
problem

min
(x , K , L) is a strongly feasible

allocation with initial

capital K−1

[L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt)].
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By corollary 10.72, (x , K , L) solves this problem if and only if it solves the
problem

min
(x , K , L) is a strongly feasible

allocation with initial

capital K−1

∞∑
t=0

L(xt0, xt−1, 1, Kt). (10.133)

The golden rule stationary allocation (x0, x1, K , 1) and the golden rule
stationary program (C , K) correspond in that they have the same station-
ary capital stock, C = x0 + x1, and v(C) = u0(x0) + u1(x1). We know from
the proof of lemma 10.74 that when x0 + x1 = C and u0(x0) + u1(x1) =
v(C), then the value loss functions for the corresponding Diamond and
growth models are equal. Therefore, (x , K , L) solves problem 10.133 if and
only if (C, K) solves the problem

min
(C , K) is a strongly feasible

program with initial

capital K−1

∞∑
t=0

L(Ct , Kt).

Hence, theorem 10.73 implies that (x , K , L) is optimal if and only if (C, K)

is optimal.

I define a program equilibrium with interest rate 0, (C, K , p), to be a
program equilibrium, (C, K , r , p), as in definition 10.41 (in section 10.8),
but with r = 0. Theorem 10.76 implies that the conclusion of theorem 10.66
applies to growth models as well as Diamond models.

theorem 10.77 If (C, K , p) is a program equilibrium with interest rate
0 such that the prices pt are bounded and, for every t , Ct solves the problem
maxC≥0[v(C) − ptC], then the program (C, K) is optimal according to the
catching up criterion.

Proof. Let (x , K , L) be the allocation that corresponds to the program
(C, K) and is an allocation for the Diamond model, (u0, u1, f ), corre-
sponding at interest rate 0 to the growth model (v , F). By theorem 10.42
(in section 10.8), there is a spot price equilibrium with interest rate 0 and
transfer payments, (x , K , L , P, W , G, T), where, for all t ,

Pt = pt ,

Wt = Pt

∂f (Kt−1, 1)

∂L
,

Tt = Wt − Ptxt0 − Pt+1xt1,
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and

G = P0[x−1, 1 − f (K−1, 1)]+ W0L0.

Because the prices Pt are bounded and every consumer’s marginal utility of
unit of account is 1, theorem 10.66 implies that the allocation (x , K , L)

is optimal according to the catching up criterion. Hence, theorem 10.76
implies that the program (C, K) is optimal according to the catching up
criterion.

corollary 10.78 The golden rule stationary program, (C , K), is opti-
mal according to the catching up criterion and is therefore efficient. It is the
unique program of a stationary program equilibrium with interest rate 0.

Proof. Let p = dv(C)
dC

. Then, the stationary program equilibrium (C , K , p)

with interest rate 0 satisfies the conditions of theorem 10.77, so that the sta-
tionary allocation (C , K) is optimal according to the catching up criterion.
If (C , K , p) is any stationary program equilibrium with interest rate 0,
then because the equilibrium is stationary,

dF(K)

dK
= 1,

so that the K solves the problem

max
K≥0

[F(K) − K].

Since F is strictly concave, this problem has a unique solution. Since C =
F(K) − K , it follows that C is uniquely defined as well.

I now turn to the turnpike theorem for allocations or programs that are
optimal with respect to the catching up criterion.

theorem 10.79 (Turnpike theorem) If the allocation (x , K , L) is opti-
mal according to the catching up criterion and if the initial capital, K−1,
is positive, then limt→∞(xt0, xt1, Kt , Lt) = (x0, x1, K , L), where (x0, x1,
K , L) is the golden rule stationary optimal allocation that solves the
problem

max
x0≥0, x1≥0, K≥0, L≥0

[u0(x0) + u1(x1)]

s.t. x0 + x1 + K ≤ f (K , L) and

L ≤ 1.
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Proof. By lemma 10.62, Lt = 1 = L, for all t , so that it is only necessary to
show that limt→∞(xt0, xt1, Kt) = (x0, x1, K).

Because the allocation (x , K , L) is feasible, there is a positive number b

such that all the components of (x , K , L) are less than or equal to b. I may
assume that this bound applies to the components of (x0, x1, K) as well.
The bound enables me to apply lemma 10.71.

By lemma 10.70, there exists a strongly feasible allocation (x , K , L), such
that

L−1(x−1, 1) +
∞∑
t=0

L(xt0, xt1, Kt) < ∞.

I show that if limt→∞(xt0, xt1, Kt) �= (x0, xt , K), then the allocation
(x , K , L) cannot catch up to (x , K , L), which contradicts the optimality
of (x , K , L). If (xt0, xt1, Kt) does not converge to (x0, xt , K), then because
the components of (x , K , L) are bounded above by b, lemma 10.71 implies
that L(xt0, xt1, Kt) does not converge to 0, so that

∑∞
t=0 L(xt0, xt1, Kt) =

∞. Since
∑∞

t=0 L(xt0, xt1, Kt) < ∞, it follows that

[L−1(x−1, 1) − L−1(x−1, 1)]+
T∑

t=0

[L(xt0, xt1, Kt) − L(xt0, xt1, Kt)]

diverges to infinity as T goes to infinity. Equation 10.131 applies, so that

[L−1(x−1, 1) − L−1(x−1, 1)]+
T∑

t=0

[L(xt0, xt1, Kt) − L(xt0, xt1, Kt)]

= [u1(x−1, 1) − u1(x−1, 1)]+
T∑

t=0

[u0(xt0) + u1(xt1) − u0(xt0) − u1(xt1)]

+ P [f (KT , 1) − f (KT , 1)]+ P(xT 1 − xT 1).

Since the sequence P [f (KT , 1) − f (KT , 1)]+ P(xT 1 − xT 1) is bounded,
the fact that

[L−1(x−1, 1) − L−1(x−1, 1)]+
T∑

t=0

[L(xt0, xt1, Kt) − L(xt0, xt1, Kt)]

diverges to infinity implies that [u1(x−1, 1) − u1(x−1, 1)] +∑T
t=0[u0(xt0) +

u1(xt1) − u0(xt0) − u1(xt1)] also diverges to +∞, as T goes to infinity.
Therefore, (x , K , L) cannot catch up to (x , K , L).

A similar theorem applies to optimal programs in the growth model.
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theorem 10.80 If the feasible program, (C, K), for the optimal growth
model has positive initial capital K−1 and is optimal according to the catch-
ing up criterion, then limt→∞(Ct , Kt) = (C , K), where (C , K) is the
golden rule program.

Proof. Let (x , K , L) be the allocation that corresponds to (C, K) in the
corresponding Diamond model. Theorem 10.76 implies that (x , K , L)

is optimal according to the catching up criterion and by theorem 10.79,
limt→∞(xt0, xt1, Kt) = (x0, x1, K), where (x0, x1, K) is the stationary
golden rule allocation. Since Ct = xt0 + xt−1, 1 and C = x0 + x1, it follows

that limt→∞(Ct , Kt) = (C , K).

The two previous theorems imply that the golden rule allocation or pro-
gram is the unique stationary allocation or program with positive capital
that is optimal with respect to the catching up criterion, since any other
stationary optimal allocation or program with positive capital converges to
the golden rule.

As was explained in section 10.12, turnpike theorems 10.79 and 10.80
rather than theorem 10.54 probably ought to be thought of as the true
turnpike theorems in that they generalize directly to models with many
produced goods or with uncertainty.

The turnpike theorem for the Diamond model makes it possible to prove
a converse to theorem 10.66 that allocations are optimal if they belong to
spot price equilibria with interest rate 0 and constant marginal utility of
unit of account.

theorem 10.81 If the allocation (x , K , L) is optimal according to the
catching up criterion and if the initial capital, K−1, is positive, then
(x , K , L) is the allocation of a spot price equilibrium with interest rate
0, (x , K , L , P, W , G, T), where the prices Pt are bounded and every con-
sumer’s marginal utility of unit of account is 1.

Proof. By lemma 10.62, (x , K , L) is strongly feasible and Kt > 0, for all t .
By the turnpike theorem 10.79, limt→∞(xt0, xt1, Kt , Lt) = (x0, x1, K , 1),

where (x0, x1, K , 1) is the golden rule allocation. Assumption 10.2 implies
that f (K , 1) − K > 0, so that x0 + x1 > 0. Therefore, there is a positive in-
teger T such that xt0 + xt−1, 1 > 0, for t ≥ T . That is, xt0 > 0 or xt−1, 1 > 0,

for t ≥ T . For t ≥ T , let Pt = du0(xt0)

dx
, if xt0 > 0, and let Pt = du1(xt−1, 1)

dx
,

if xt−1, 1 > 0. Lemma 10.65 implies that
du0(xt0)

dx
= du0(xt+1, 0)

dx

∂f (K
t
, 1)

∂K
, if



578 10 The One-Sector Growth and Diamond Models

xt0 > 0 and xt+1, 0 > 0, and similar equations apply if xt−1, 1 > 0 and
xt1 > 0, or if xt−1, 1 > 0 and xt+1, 0 > 0, or if xt0 > 0 and xt1 > 0. Therefore,

Pt = Pt+1
∂f (K

t
, 1)

∂K
, for t ≥ T . Let Wt = Pt

∂f (K
t−1, 1)

∂K
, for t ≥ T . By lemma

10.65, the allocation (xt0, xt−1, 1, Kt , Lt)
T
t=0 solves the problem

max
xt0 , ≥0, xt−1, 1≥0, Kt≥0, Lt≥0,

for t=0, 1, . . . , T

T∑
t=0

[u0(xt0) + u1(xt−1, 1)]

s.t. xt−1, 1 + xt0 + Kt ≤ f (Kt−1, Lt) and

Lt ≤ 1, for t = 0, . . . , T ,

K−1 = K−1, and KT ≥ KT ,

where KT is given. Because K−1 > 0, this problem satisfies the constraint
qualification of the Kuhn-Tucker theorem, so that there exist prices
P0, . . . , PT and wages W0, . . . , WT and a nonnegative number Q such
that (xt0, xt−1, 1, Kt , Lt)

T
t=0 solves the problem

max
xt0 , ≥0, xt−1, 1≥0, Kt≥0, Lt≥0,

for t=0, 1, . . . , T

{
[u0(x0) + u1(x−1, 1) − Pt(x00 + x−1, 1

+ K0 − f (K−1, L0)) − W0L0]

T −1∑
t=1

[u0(xt0) + u1(xt−1, 1) − Pt(xt0 + xt−1, 1 + Kt − f (Kt−1, Lt)) − WtLt]

[u0(xT 0) + u1(xT −1, 1) − PT (xT 0 + xT −1, 1

+ KT − f (KT −1, LT )) − WT LT + QKT ]
}

.

It follows that for t < T ,
du0(xt0)

dx
≤ Pt , with equality if xt0 > 0, and

du1(xt−1, 1)

dx
≤ Pt , with equality if xt−1, 1 > 0. Since Kt > 0, for all t < T ,

Pt = Pt+1
∂f (K

t , 1)

∂K
, for t < T . Similarly, Wt = Pt

∂f (K
t−1, 1)

∂K
, for t < T .

Let G = P0x−1, 1 − [P0f (K−1, 1) − W0]and Tt = Wt − Ptxt0 − Pt+1xt1,
for all t . Then, (x , K , L , P, W , G, T) satisfies all the conditions of a spot
price equilibrium with interest rate 0.

I now show that the sequence Pt is bounded. Since x0 + x1 > 0, it follows
that x0 > 0 or x1 > 0. Suppose that x0 > 0. (A similar argument applies if
x0 = 0 and x1 > 0.) Since limt→∞ xt0 = x0, there exists a positive integer T

such that xt0 ≥ x0
2 > 0, if t ≥ T . Therefore,

Pt = du0(xt0)

dx
≤ du0(x0/2)

dx
,
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if t ≥ T . This completes the proof that the sequence Pt is bounded and
hence the proof of the theorem.

A similar statement applies to optimal programs.

theorem 10.82 If the feasible program (C, K) is optimal according to
the catching up criterion and if the initial capital, K−1, is positive, then
there is a price sequence p = (p0, p1, . . .) such that (C, K , p) is a program
equilibrium with interest rate 0, where the prices pt are bounded.

Proof. Let (x , K , L) be the allocation corresponding to the program
(C, K). By theorem 10.76, (x , K , L) is optimal with respect to the catch-
ing up criterion. By theorem 10.81, (x , K , L) is the allocation of a spot
price equilibrium with interest rate 0, (x , K , L , p, W , G, T) and such that
every consumer’s marginal utility of unit of account is 1. By theorem 10.42
(in section 10.8), (C, K , p) is a program equilibrium with interest rate 0.

It is now possible to show that the construction process mentioned after
lemma 10.65 may be continued indefinitely for one and only one initial
condition and generates an optimal program or allocation. Consider the
Diamond model. Let the initial capital K−1 be given and positive, and
choose a positive initial price P0. Let x00 be the unique solution of the

conditions du0(x0)

dx
≤ P0, with equality if x0 > 0, and similarly let x−1, 1 be

the unique solution of the conditions du1(x1)

dx
≤ P0, with equality if x0 > 0.

Let

W0 = P0
∂f (K−1, 1)

∂L
,

G = P0x−1, 1 − [P0f (K−1, 1) − W0],

K0 = f (K−1, 1) − x00 − x−1, 1,

and let

P1 =
(

∂f (K−1, 1)

∂K

)−1

P0.

Given P1, we can define x10 and x01 from P1 just as x00 and x−1, 1 were
defined from P0. Let

T0 = W0 − P0x00 − P1x01.
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Continuing by induction on t , we can construct Pt , Wt , Tt , xt0, xt−1, 1, and

Kt , for all t or until the allocation becomes infeasible.
I now show that there is a unique choice of P0 such that the construction

process just described can be continued indefinitely and yields a bounded
sequence of prices. This construction, therefore, defines an optimal allo-
cation. By theorem 10.85 (in section 10.14), there exists a feasible alloca-
tion (x , K , L) that has initial capital K−1 and is optimal with respect to
the catching up criterion. By theorem 10.81, (x , K , L) is the allocation of
a spot price equilibrium with interest rate 0, (x , K , L , P, W , G, T), such
that every consumer’s marginal utility of unit of account is 1 and the se-
quence of prices, Pt , is bounded. By proposition 10.63, (x , K , L) is the only
optimal allocation with initial capital K−1. There is at most one price se-
quence P = (P0, P1, . . .) for this allocation that makes every consumer’s
marginal utility of unit of account equal to 1. By theorem 10.66, a feasi-
ble allocation is optimal if it is the allocation of a spot price equilibrium
with interest rate 0 such that the prices are bounded and every consumer’s
marginal utility of unit of account is 1. In conclusion, the equilibrium
(x , K , L , P, W , G, T) can be obtained by the continuation process, and
any other equilibrium so obtained equals this one, if it has bounded prices
and its marginal utilities of unit of account equal 1. An exactly parallel and
simpler argument applies to optimal growth programs.

10.14 Existence of Optimal Allocations and Programs

I now prove that there exist allocations and programs that maximize a
discounted sum of consumer utilities or are optimal with respect to the
catching up criterion.

theorem 10.83 If assumptions 10.1–10.5 (in section 10.1) apply to the
Diamond model, then the problem

max
(x , K , L) is a feasible allocation

with initial capital K−1

{λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]}

has a solution, where K−1 is given and λt > 0, for all t , and
∑∞

t=−1

λ−1
t

< ∞.
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Proof. There exists at least one feasible allocation with initial capital K−1.
An example is the zero allocation, (x , K , L), where xt0 = xt−1, 1 = Kt =
Lt = 0, for all t ≥ 0.

Because feasible allocations are bounded by proposition 10.8 (in sec-
tion 10.1), there is a positive number B such that if (x , K , L) is any feasible
allocation, then xt0 ≤ B and xt1 ≤ B, for all t . Because u0 and u1 are in-
creasing by assumption 10.5, it follows that

λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]

≤ λ−1
−1u1(B) +

∞∑
t=0

λ−1
t

[u0(B) + u1(B)]< ∞.

(10.134)

Let

A = sup
(x , K , L) is a feasible allocation

with initial capital K−1

{λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]}.

Inequality 10.134 implies that A < ∞. Because there exists at least one
feasible allocation and u0 and u1 are nonnegative functions, it follows that
A ≥ 0.

For each positive integer N , let (xN , KN , LN) be a feasible allocation
with initial capital K−1 such that

λ−1
−1u1(x

N
−1, 1) +

∞∑
t=0

λ−1
t

(u0(x
N
t0) + u1(x

N
t1)) > A − 1

N
. (10.135)

By the Cantor diagonal argument first used in proving theorem 9.43 (in
section 9.7), there exists a subsequence (xN(k), KN(k), LN(k)), for k =
1, 2, . . . , such that (x

N(k)
t0 , x

N(k)
t−1, 1, K

N(k)
t , L

N(k)
t ) converges, for every t , as

k goes to infinity. Let

(xt0, xt−1, 1, Kt , Lt) = lim
t→∞(x

N(k)
t0 , x

N(k)
t−1, 1, KN(k)

t
, LN(k)

t
),

for all t ≥ 0. By passage to the limit, the allocation (x , K , L) is feasible with
initial capital K−1.

I show that

λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1) = A.
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Since

λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1) ≤ A

by the definition of A, it is sufficient to show that for every positive num-
ber ε,

λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]> A − ε.

Let T be a positive integer so large that

∞∑
t=T +1

λ−1
t

[u0(B) + u1(B)]<
ε

3
. (10.136)

Let k be a positive integer so large that

N(k) >
3

ε
(10.137)

and, for all t = 0, 1, . . . , T ,

λ−1
t

|u0(x
N(k)
t0 ) − u0(xt0)| ≤ ε

6(T + 1) + 3
(10.138)

and

λ−1
t

|u0(x
N(k)
t−1, 1) − u1(xt−1, 1)| ≤ ε

6(T + 1) + 3
. (10.139)

Then,

λ−1
−1u1(x−1, 1) +

∞∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]

≥ λ−1
−1u1(x−1, 1) +

T∑
t=0

λ−1
t

[u0(xt0) + u1(xt1)]

≥ λ−1
−1u1(x

N(k)
−1, 1) +

T∑
t=0

λ−1
t

[u0(x
N(k)
t0 ) + u1(x

N(k)
t1 )]− ε

3

≥ λ−1
−1u1(x

N(k)
−1, 1) +

∞∑
t=0

λ−1
t

[u0(x
N(k)
t0 ) + u1(x

N(k)
t1 )]− 2ε

3

> A − 1

N(k)
− 2ε

3
> A − ε ,
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where the first inequality holds because u0 and u1 are nonnegative func-
tions, the second inequality holds by inequalities 10.138 and 10.139, the
third holds by inequality 10.136, the fourth holds by inequality 10.135, and
the last holds by inequality 10.137.

A similar argument proves the corresponding theorem for optimal
growth programs.

theorem 10.84 If assumptions 10.18–10.21 (in section 10.1) apply to
the optimal growth model, then

max
(C , K) is a feasible program

with initial capital K−1

∞∑
t=0

λ−1
t

v(Ct)

has a solution, where K−1 is fixed, λt > 0, for all t , and
∑∞

t=−1 λ−1
t

< ∞.

I now prove that there exist an allocation and a program that are optimal
with respect to the catching up criterion.

theorem 10.85 If assumptions 10.1–10.5 apply to the Diamond model
and assumptions 10.18–10.21 apply to the optimal growth model, then
there exist a feasible allocation, (x , K , L), for the Diamond model and
a feasible program, (C, K), for the growth model that are optimal with
respect to the catching up criterion.

Proof.8 If the initial capital, K−1, is 0, then the only feasible allocation or
program is the one that has zero output and consumption in every period,
so that this allocation or program is optimal according to the catching up
criterion. So assume that K−1 > 0.

By theorem 10.76 (in section 10.13), it is sufficient to show that there
exists an optimal program, (C, K). By theorem 10.73 (in the same section),
there exists an optimal program if the following problem has a solution:

max
(C , K) is a strongly feasible

program with initial capital K−1

∞∑
t=0

L(Ct , Kt).

8. This proof is based on an argument of Brock (1970).
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Let

A = inf
(C , K) is a strongly feasible

program with initial capital K−1

∞∑
t=0

L(Ct , Kt).

I show that there exists a strongly feasible program (C, K) such that
∑∞

t=0
L(Ct , Kt) = A. By lemma 10.74 (in section 10.13), there exists a strongly
feasible program (C, K) such that

∑∞
t=0 L(Ct , Kt) < ∞, so that A < ∞.

For each positive integer N , let (CN , KN) be a strongly feasible program
with initial capital K−1 such that

∞∑
t=0

L(CN
t0 , KN

t
) < A + 1

N
.

Since feasible programs are bounded by proposition 10.8 (in section 10.1),
I may use the Cantor diagonal argument to prove that there exists a subse-

quence (CN(k), KN(k)), for k = 1, 2, . . . , such that, for all t , (CN(k)
t , K

N(k)
t )

converges as k goes to infinity. Let (Ct , Kt) = limk→∞(C
N(k)
t , K

N(k)
t ), for

all t . Because each of the programs (CN(k), KN(k)) is strongly feasible, the
limit program (C, K) is so as well. I prove that

∑∞
t=0 L(Ct , Kt) = A.

Since L(Ct , Kt) ≥ 0, for all t , the infinite sum
∑∞

t=0 L(Ct , Kt) exists.
Since

∑∞
t=0 L(Ct , Kt) ≥ A by the definition of A, it is sufficient to show

that for every positive number ε,
∑∞

t=0 L(Ct , Kt) < A + ε. To show that∑∞
t=0 L(Ct , Kt) < A + ε, it is sufficient to show that for every positive in-

teger T ,
∑T

t=0 L(Ct , Kt) < A + ε. So fix the positive integer T and the

positive number ε. Because (Ct , Kt) = limk→∞(C
N(k)
t , K

N(k)
t ), for all t ,

there exists a positive integer k such that

|L(CN(k)
t

, KN(k)
t

) − L(Ct , Kt)| <
ε

2(T + 1)
,

for t = 0, . . . , T . I may assume that k is so large that N(k) > 2
ε

. Therefore,

T∑
t=0

L(Ct , Kt) ≤
T∑

t=0

L(CN(k)
t

, KN(k)
t

) + ε

2
≤

∞∑
t=0

L(CN(k)
t

, KN(k)
t

) + ε

2

< A + 1

N(k)
+ ε

2
< A + ε.

This completes the proof that

∞∑
t=0

L(Ct , Kt) = A = inf
(C , K) is a strongly feasible

program with initial capital K−1

∞∑
t=0

L(Ct , Kt).
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Problem Set

1. Consider the Diamond model with utility function

u(x0, x1) = log(1 + x0) + log(1 + x1)

and with production function

f (Kt , Lt+1) =√
LtKt−1,

for all time periods t .

(a) What is the set of feasible stationary allocations?
(b) Which of these are Pareto optimal?
(c) Find a stationary spot price equilibrium, (x0, x1, K , L, P , W , r ,

G, T), with T = 0.
(d) Is the allocation of this equilibrium Pareto optimal?
(e) Find the stationary spot price equilibrium, (x0, x1, K , L, P , W , r ,

G, T), with P = 1 and such that its allocation maximizes the social
welfare function

(1.1)u(x−1, 0, x−1, 1) +
∞∑
t=0

(1.1)−tu(xt0, xt1)

among feasible allocations, where x−1, 0 and K−1 are given. Notice
that you have to choose x−1, 0 and K−1, so that the equilibrium is
stationary. Is this equilibrium Pareto optimal?

(f) Answer part (e) with the social welfare function equal to

2u(x−1, 0, x−1, 1) +
∞∑
t=0

2−tu(xt0, xt1).

(g) Compare the capital stocks in parts (e) and (f). Which is bigger?

2. Consider a Diamond model with the price of the produced good equal
to 1, when the production function is

f (K , L) = 2
√

KL

and the utility function of each consumer is

u(x0, x1) = 2 ln(x0) + ln(x1).

Remember that the only endowment consumers have is one unit of
labor in youth.



586 10 The One-Sector Growth and Diamond Models

(a) Compute a stationary spot price equilibrium

(x0(r), x1(r), K(r), L(r), P , W(r), r , G(r), T(r)),

where P = 1 and r > −1.
(b) Graph the function T(r).
(c) How many values of r satisfy the equation

T(r) = − 1

32
?

(d) Over what range of values of r is the utility of a typical consumer
increasing in r , and over what range is the utility of a typical
consumer decreasing in r?

(e) For what values of r is the equilibrium allocation Pareto optimal?
(f) Suppose that the lump-sum tax is maintained at level T(r) and

that an infinitesimal amount of pay-as-you-go social security is
introduced. Social security changes the equilibrium interest rate
to r . Will r exceed r or be less than r , when
(i) r = 0?
(ii) r = 2?

3. Consider the Diamond model with utility function

u(x0, x1) = log x0 + log x1

and with production function

f (K , L) = 4K1/4L3/4.

(a) Compute a spot price equilibrium,

(x0(r), x1(r), K(r), L(r), P , W(r), r , G(r), T(r)),

when r ≥ 0 and P = 1.
(b) What is the stationary equilibrium interest rate when the lump-

sum tax on youth, T, equals 0.15? What are the levels of capital and
of consumption in youth and old age?

(c) Suppose that a social security program is introduced that taxes
youth 0.1 and pays a benefit of 0.1 to the old. The lump-sum
tax of 0.15 on youth is continued after the social security is
introduced, so that youths pay 0.25 in total taxes. What is the
stationary equilibrium interest rate? What are the levels of capital
and consumption in youth and old age?
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(d) Suppose that when the social security program of part (c) is
introduced, the lump-sum tax of 0.15 paid by youth is changed
to a new level, T, so that the introduction of social security does
not change the interest rate. What is this new level of the lump-sum
tax?

4. Consider the Diamond model with

u(x0, x1) = ln(x0) + ln(x1)

and f (K , L) = 4KL
K+L

.

(a) Compute the stationary spot price equilibrium,

(x0(r), x1(r), K(r), L(r), P , W(r), r , G(r), T(r)),

with P = 1 and for those nonnegative interest rates, r , for which
the stationary capital stock is positive. For which interest rates is
the stationary equilibrium capital stock positive?

(b) Compute the equilibrium for r = 1.
(c) Suppose the economy is in a stationary spot price equilibrium with

a nonnegative interest rate for which the capital stock is positive
and that a small amount of pay-as-you-go social security, (T0, T1),
is introduced. Will the new stationary capital stock be higher or
lower? Does the answer depend on the interest rate? If so, how?

5. One might imagine that if the government fixed the lump-sum tax
to be equal to T , then the economy would eventually settle into a
stationary equilibrium,

(x0(r), x1(r), K(r), L(r), P , W(r), r , G(r), T(r)),

with an interest rate, r , determined by the equation T(r) = T . In this
statement, I am assuming that the price of the produced good is 1, so
that T is the real value of the tax. The following problem is meant to
show that we cannot necessarily assume that the stationary equilibrium
interest rate is a function, r(T ), of the tax, T .

Let production function f (K , L) satisfy assumptions 10.1–10.5 (in
section 10.1), and let the utility function u(x0, x1) satisfy assump-
tion 10.5. Let

(x0(r), x1(r), K(r), L(r), P , W(r), r , G(r), T(r))
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be a stationary spot price equilibrium for the Diamond model with
production function f and utility function u and where r > 0 and
P = 1.

(a) Show that f (K(r), 1) = (1 + r)K(r) + W(r).
(Hint for parts (b)–(e): Use the equation of part (a) as well as

the equations

T(r) = W(r) − x0(r) − x1(r)

1 + r
and

x0(r) + x1(r) = f (K(r), 1) − K(r).)

(b) Show that T (0) = 0.
(c) Show that limr→∞(1 + r)K(r) = 0, limr→∞ f (K(r), 1) = 0, and

limr→∞ W(r) = 0.
(d) Show that limr→∞ T(r) = 0.
(e) Show that T(r) is a continuous function of r .
(f) Show that if from some positive number r , T(r) �= 0, then for some

value of T , the equation T(r) = T has more than one positive
solution.

6. Let (Ct , Kt)
∞
t=0 be a solution of the problem

max
Ct≥0, Kt≥0,
for t=0, 1, . . .

∞∑
t=0

βtγ −1vCγ
t

Ct + Kt = α−1Kα
t−1,

where K−1 is a given positive number and where 0 < α < 1, 0 < β < 1,
and 0 < γ < 1.

(a) Show that limt→∞ Kt and limt→∞ Ct exist.
(b) Calculate limt→∞ Kt and limt→∞ Ct in terms of α, β, and γ .

7. In an optimal growth model, let the production function be

yt+1 = 20
√

Kt

and let the one-period utility function be

u(Ct) = 3C1/3
t

,

for all t .

(a) Find the golden rule allocation for this model.
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(b) Let (Ct , Kt)
∞
t=0 be a program that has initial capital K−1 = 1 and

is optimal with respect to the catching up criterion. What is the
first period t such that |Kt − K| ≤ 10, where K is the golden rule
capital stock?

8. Consider the growth model with

u(Ct) = ln(Ct)

and

F(Kt) = min((1 + a)Kt , b),

where a > 0 and b > 0. Find a program that is optimal with respect
to the overtaking criterion given an arbitrary, positive, initial capital
stock K−1.

(Hint: The answer depends on whether

(1 + a)K−1 ≥ b

or

(1 + a)K−1 < b.)

The harder case is where (1 + a)K−1 < b. For this case, you may use
Euler’s equation, feasibility, the production function, and backward
induction on time to calculate an optimal program with initial capital
equal to any one of an infinite decreasing sequence of stocks, where the
sequence starts with (1+ a)−1b and converges asymptotically to 0. The
capital of an optimal program starting at one of these points reaches
(1 + a)−1b, after finitely many periods, and then stays at this level
forever. If the initial capital is between two points in this sequence,
then relative to the smaller of these two points, there is an extra
amount of output to be consumed and invested over finitely many
periods until the capital stock reaches (1 + a)−1b. Again use Euler’s
equation, feasibility, and the production function to see how this extra
consumption and capital should evolve. Verify that the program that
you calculate in this manner is optimal by showing that it is part of a
program equilibrium with interest rate 0.



11

A Critical Assessment

I now evaluate the practical significance of what has been presented in this
book. The main results are the two welfare theorems applied to static and
intertemporal contexts. In a static model, the interpretation of the first wel-
fare theorem is fairly straightforward: an equilibrium allocation is econom-
ically efficient provided that preferences are locally nonsatiated and there
are no external effects. The first of these conditions seems reasonable, and
the second surely does not apply strictly, since external effects are there to
be seen by all. The pertinence of this theorem therefore depends on our
judgment as to the importance of external effects. The second welfare theo-
rem is more problematic because its application requires special knowledge
that no government is likely to have. Although the theorem’s assertion may
seem innocuous—that any Pareto optimal allocation can be achieved as
the allocation of an equilibrium with transfer payments—no government
could make a reasonable selection of a Pareto optimal allocation without
knowing consumer preferences and having a way to compare different in-
dividuals’ welfare. The government would also need to know a great deal
about demand and supply functions of both firms and consumers in order
to calculate the appropriate lump-sum transfers.

The infinite horizon of the overlapping generations model makes the in-
terpretation of both welfare theorems more dubious. In order to be sure
that an equilibrium is Pareto optimal, the prices should be summable or
at least bounded after being normalized, so that all consumers have the
same marginal utility of unit of account. These requirements could never be
verified, because they require knowledge of prices indefinitely far in the fu-
ture. Another difficulty is that prices can be normalized so that the marginal
utility of unit of account is constant only if individual utility functions are
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known and there is some way to select units of utility for different people.
We can imagine that this problem might be met by some standardized pro-
cedure for approximating consumers’ utility functions, so that consumers’
marginal utility of unit of account could be held roughly constant. A further
difficulty is that consumers must anticipate correctly the prices that will ob-
tain later in their lives. This is an especially demanding requirement in the
context of a nonstationary equilibrium, such as one for a growing econ-
omy. Still another complication is that some mechanism might be needed
to avoid inefficient perfect foresight equilibria such as those occurring in
Gale’s example (example 9.27 in section 9.5). This example shows that mar-
ket clearance and perfect foresight may not determine the price level. Per-
haps some means of economic control is required to avoid such perverse
equilibria, or perhaps actual expectations are formed in such a way that the
perverse equilibria never occur. Very little is known, however, about how
economic agents form expectations of future prices.

Despite these reservations, it would be a mistake to throw up one’s hands
and say, “All this rigorous formalism is useless.” The theory indicates what
we need to know in order to have more useful models, and rigor helps the
theory serve this function. If the theory were vague and informal, we might
not know whether it was loose thinking or lack of empirical knowledge that
caused our confusion or, worse, we might fool ourselves by believing we
understood what we do not understand.
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