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This graduate level text on economic growth surveys neoclassical and more recent growth theories, stressing
their empirical implications and the relation of theory to data and evidence. The authors have undertaken a
major revision for the long-awaited second edition of this widely used text, the first modern textbook devoted
to growth theory. The book has been expanded in many areas and incorporates the latest research.

After an introductory discussion of economic growth, the book examines neoclassical growth theories, from
Solow–Swan in the 1950s and Cass–Koopmans in the 1960s to more recent refinements; this is followed by a
discussion of extensions to the model, with expanded treatment in this edition of heterogeneity of households.
The book then turns to endogenous growth theory, discussing, among other topics, models of endogenous tech-
nological progress (with an expanded discussion in this edition of the role of outside competition in the growth
process), technological diffusion, and an endogenous determination of labor supply and population. The authors
then explain the essentials of growth accounting and apply this framework to endogenous growth models. The
final chapters cover empirical analysis of regions and empirical evidence on economic growth for a broad panel
of countries from 1960 to 2000. The updated treatment of cross-country growth regressions for this edition uses
the new Summers–Heston data set on world income distribution compiled through 2000. 

Robert J. Barro is Robert C. Waggoner Professor of Economics at Harvard University and senior fellow of
the Hoover Institution at Stanford University. He is the author of Nothing Is Sacred: Economic Ideas for the New
Millennium (MIT Press, 2002), Getting It Right (MIT Press, 1997), and Determinants of Economic Growth (MIT
Press, 1998). Xavier Sala-i-Martin is Professor of Economics at Columbia University and visiting professor at the
University of Pompeu Fabra, Barcelona.

Barro and Sala-i-Martin’s valuable and readable book brings the student quickly to the frontiers of modern
growth theory.” —Robert E. Lucas, Jr., John Dewey Distinguished Service Professor, The University of Chicago,
1995 Nobel Laureate in Economic Sciences

Barro and Sala-i-Martin provide an outstanding and comprehensive treatment of growth theory and empir-
ics—an instant classic! I learn something new every time I pull my copy from the shelf.” —Charles I. Jones,
Department of Economics, University of California, Berkeley

This is an invaluable book for a first graduate course in economic growth. The exposition is clear and easy to
follow, but also rigorous. It is an excellent stepping stone for research in the field.” —K. Daron Acemoglu,
Professor of Economics, MIT

Barro and Sala-i-Martin have done a superb job of synthesizing much of the existing theoretical and empir-
ical research on the mechanisms and determinants of economic growth and convergence. Though it incor-
porates much new material, this updated version is fully accessible to a third year undergraduate student,
while remaining of invaluable use to any research scholar seriously interested in growth and development
economics.” —Phillipe Aghion, Department of Economics, Harvard University
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Preface

Is there some action a government of India could take that would lead the Indian economy to grow like
Indonesia’s or Egypt’s? If so, what, exactly? If not, what is it about the “nature of India” that makes
it so? The consequences for human welfare involved in questions like these are simply staggering:
Once one starts to think about them, it is hard to think about anything else.1

—Robert E. Lucas, Jr. (1988)

Economists have, in some sense, always known that growth is important. Yet, at the core
of the discipline, the study of economic growth languished after the late 1960s. Then, after
a lapse of two decades, this research became vigorous again in the late 1980s. The new
research began with models of the determination of long-run growth, an area that is now
called endogenous growth theory. Other recent research extended the older, neoclassical
growth model, especially to bring out the empirical implications for convergence across
economies. This book combines new results with expositions of the main research that
appeared from the 1950s through the beginning of the 2000s. The discussion stresses the
empirical implications of the theories and the relation of these hypotheses to data and
evidence. This combination of theory and empirical work is the most exciting aspect of
ongoing research on economic growth.

The introduction motivates the study, brings out some key empirical regularities in the
growth process, and provides a brief history of modern growth theory. Chapters 1 and 2 deal
with the neoclassical growth model, from Solow–Swan in the 1950s, to Cass–Koopmans
(and recollections of Ramsey) in the 1960s, to recent refinements of the model. Chapter 3
deals with extensions to incorporate a government sector and to allow for adjustment costs
in investment, as well as with the open economy and finite-horizon models of households.
Chapters 4 and 5 cover the versions of endogenous growth theory that rely on forms of
constant returns to reproducible factors. Chapters 6, 7, and 8 explore recent models of
technological change and R&D, including expansions in the variety and quality of products
and the diffusion of knowledge. Chapter 9 allows for an endogenous determination of labor
supply and population, including models of migration, fertility, and labor/leisure choice.
Chapter 10 works out the essentials of growth accounting and applies this framework to the
endogenous growth models. Chapter 11 covers empirical analysis of regions of countries,
including the U.S. states and regions of Europe and Japan. Chapter 12 deals with empirical
evidence on economic growth for a broad panel of countries from 1960 to 2000.

1. These inspirational words from Lucas have probably become the most frequently quoted passage in the growth
literature. Thus it is ironic (and rarely mentioned) that, even while Lucas was writing his ideas, India had already
begun to grow faster than Indonesia and Egypt. The growth rates of GDP per person from 1960 to 1980 were
3.2% per year in Egypt, 3.9% in Indonesia, and 1.5% in India. In contrast, from 1980 to 2000, the growth rates of
GDP per person were 1.8% per year in Egypt, 3.5% in Indonesia, and 3.6% in India. Thus, the Indian government
seems to have met Lucas’s challenge, whereas Egypt was faltering.



xvi Preface

The material is written as a text at the level of first-year graduate students in economics.
The widely used first edition has proven successful for graduate courses in macroeconomics,
economic growth, and economic development. Most of the chapters include problems that
guide the students from routine exercises through suggestive extensions of the models. The
level of mathematics includes differential equations and dynamic optimization, topics that
are discussed in the mathematical appendix at the end of the book. For undergraduates who
are comfortable with this level of mathematics, the book works well for advanced, elective
courses. The first edition has been used at this level throughout the world.

We have benefited from comments by Daron Acemoglu, Philippe Aghion, Minna
S. Andersen, Marios Angeletos, Elsa V. Artadi, Abhijit Banerjee, Paulo Barelli, Gary
Becker, Olivier Blanchard, Juan Braun, Francesco Caselli, Paul Cashin, Daniel Cohen,
Irwin Collier, Diego Comin, Michael Connolly, Michelle Connolly, Ana Corbacho, Vivek
Dehejia, Marcelo Delajara, Gernot Doppelhoffer, Paul Evans, Rosa Fernandez, Monica
Fuentes-Neira, Xavier Gabaix, Oded Galor, Victor Gomes Silva, Zvi Griliches, Gene
Grossman, Christian Groth, Laila Haider, Elhanan Helpman, Toshi Ichida, Dale Jorgenson,
Ken Judd, Jinill Kim, Michael Kremer, Phil Lane, Stephen Lin, Norman Loayza, Greg
Mankiw, Kiminori Matsuyama, Sanket Mohapatra, Casey Mulligan, Kevin M. Murphy,
Marco Neuhaus, Renger van Nieuwkoop, Sylvia Noin-McDavid, Joan O’Connell, Salvador
Ortigueira, Lluis Parera, Pietro Peretto, Torsten Persson, Danny Quah, Climent Quintana,
Rodney Ramchandran, Jordan Rappaport, Sergio Rebelo, Joan Ribas, Paul Romer, Joan
Rossello, Michael Sarel, Etsuro Shioji, Chris Sims, B. Anna Sjögren, Nancy Stokey, Gustavo
Suarez, Robert Tamura, Silvana Tenreyro, Merritt Tilney, Aaron Tornell, Nuri Ucar, Jaume
Ventura, Martin Weitzman, Arthur Woll, and Alwyn Young.
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Introduction

I.1 The Importance of Growth

To think about the importance of economic growth, we begin by assessing the long-term
performance of the U.S. economy. The real per capita gross domestic product (GDP) in the
United States grew by a factor of 10 from $3340 in 1870 to $33,330 in 2000, all measured
in 1996 dollars. This increase in per capita GDP corresponds to a growth rate of 1.8 percent
per year. This performance gave the United States the second-highest level of per capita
GDP in the world in 2000 (after Luxembourg, a country with a population of only about
400,000).1

To appreciate the consequences of apparently small differentials in growth rates when
compounded over long periods of time, we can calculate where the United States would have
been in 2000 if it had grown since 1870 at 0.8 percent per year, one percentage point per year
below its actual rate. A growth rate of 0.8 percent per year is close to the rate experienced in
the long run—from 1900 to 1987—by India (0.64 percent per year), Pakistan (0.88 percent
per year), and the Philippines (0.86 percent per year). If the United States had begun in
1870 at a real per capita GDP of $3340 and had then grown at 0.8 percent per year over the
next 130 years, its per capita GDP in 2000 would have been $9450, only 2.8 times the value
in 1870 and 28 percent of the actual value in 2000 of $33,330. Then, instead of ranking
second in the world in 2000, the United States would have ranked 45th out of 150 countries
with data. To put it another way, if the growth rate had been lower by just 1 percentage
point per year, the U.S. per capita GDP in 2000 would have been close to that in Mexico
and Poland.

Suppose, alternatively, that the U.S. real per capita GDP had grown since 1870 at
2.8 percent per year, 1 percentage point per year greater than the actual value. This higher
growth rate is close to those experienced in the long run by Japan (2.95 percent per year from
1890 to 1990) and Taiwan (2.75 percent per year from 1900 to 1987). If the United States
had still begun in 1870 at a per capita GDP of $3340 and had then grown at 2.8 percent
per year over the next 130 years, its per capita GDP in 2000 would have been $127,000—
38 times the value in 1870 and 3.8 times the actual value in 2000 of $33,330. A per capita
GDP of $127,000 is well outside the historical experience of any country and may, in
fact, be infeasible (although people in 1870 probably would have thought the same about
$33,330). We can say, however, that a continuation of the long-term U.S. growth rate of
1.8 percent per year implies that the United States will not attain a per capita GDP of
$127,000 until 2074.

1. The long-term data on GDP come from Maddison (1991) and are discussed in chapter 12. Recent data are from
Heston, Summers, and Aten (2002) and are also discussed in chapter 12.
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Figure I.1
Histogram for per capita GDP in 1960. The data, for 113 countries, are the purchasing-power-parity (PPP)
adjusted values from Penn World Tables version 6.1, as described in Summers and Heston (1991) and Heston,
Summers, and Aten (2002). Representative countries are labeled within each group.

The comparison of levels of real per capita GDP over a century involves multiples as
high as 20; for example, Japan’s per capita GDP in 1990 was about 20 times that in 1890.
Comparisons of levels of per capita GDP across countries at a point in time exhibit even
greater multiples. Figure I.1 shows a histogram for the log of real per capita GDP for
113 countries (those with the available data) in 1960. The mean value corresponds to a
per capita GDP of $3390 (1996 U.S. dollars). The standard deviation of the log of real per
capita GDP—a measure of the proportionate dispersion of real per capita GDP—was 0.89.
This number means that a 1-standard-deviation band around the mean encompassed a range
from 0.41 of the mean to 2.4 times the mean. The highest per capita GDP of $14,980 for
Switzerland was 39 times the lowest value of $381 for Tanzania. The United States was
second with a value of $12,270. The figure shows representative countries for each range
of per capita GDP. The broad picture is that the richest countries included the OECD and
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Figure I.2
Histogram for per capita GDP in 2000. The data, for 150 countries, are from the sources noted for figure I.1.
Representative countries are labeled within each group.

a few places in Latin America, such as Argentina and Venezuela. Most of Latin America
was in a middle range of per capita GDP. The poorer countries were a mixture of African
and Asian countries, but some Asian countries were in a middle range of per capita GDP.

Figure I.2 shows a comparable histogram for 150 countries in 2000. The mean here cor-
responds to a per capita GDP of $8490, 2.5 times the value in 1960. The standard deviation
of the log of per capita GDP in 2000 was 1.12, implying that a 1-standard-deviation band
ranged from 0.33 of the mean to 3.1 times the mean. Hence, the proportionate dispersion
of per capita GDP increased from 1960 to 2000. The highest value in 2000, $43,990 for
Luxembourg, was 91 times the lowest value—$482 for Tanzania. (The Democratic Re-
public of Congo would be poorer, but the data are unavailable for 2000.) If we ignore
Luxembourg because of its small size and compare Tanzania’s per capita GDP with the
second-highest value, $33,330 for the United States, the multiple is 69. Figure I.2 again
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marks out representative countries within each range of per capita GDP. The OECD coun-
tries still dominated the top group, joined by some East Asian countries. Most other Asian
countries were in the middle range of per capita GDP, as were most Latin American coun-
tries. The lower range in 2000 was dominated by sub-Saharan Africa.

To appreciate the spreads in per capita GDP that prevailed in 2000, consider the situation
of Tanzania, the poorest country shown in figure I.2. If Tanzania were to grow at the long-
term U.S. rate of 1.8 percent per year, it would take 235 years to reach the 2000 level of U.S.
per capita GDP. The required interval would still be 154 years if Tanzania were to grow at
the long-term Japanese rate of 2.75 percent per year.

For 112 countries with the necessary data, the average growth rate of real per capita GDP
between 1960 and 2000 was 1.8 percent per year—coincidentally the same as the long-term
U.S. rate—with a standard deviation of 1.7.2 Figure I.3 has a histogram of these growth
rates; the range is from −3.2 percent per year for the Democratic Republic of Congo (the
former Zaire) to 6.4 percent per year for Taiwan. (If not for missing data, the lowest-growing
country would probably be Iraq.) Forty-year differences in growth rates of this magnitude
have enormous consequences for standards of living. Taiwan raised its real per capita GDP
by a factor of 13 from $1430 in 1960 (rank 76 out of 113 countries) to $18,730 in 2000
(rank 24 of 150), while the Democratic Republic of Congo lowered its real per capita GDP
by a factor of 0.3 from $980 in 1960 (rank 93 of 113) to $320 in 1995—if not for missing
data, this country would have the lowest per capita GDP in 2000.

A few other countries had growth rates from 1960 to 2000 that were nearly as high as
Taiwan’s; those with rates above 5 percent per year were Singapore with 6.2 percent, South
Korea with 5.9 percent, Hong Kong with 5.4 percent, and Botswana with 5.1 percent. These
countries increased their levels of per capita GDP by a multiple of at least 7 over 40 years.
Just below came Thailand and Cyprus at 4.6 percent growth, China at 4.3 percent, Japan at
4.2 percent (with rapid growth mainly into the 1970s), and Ireland at 4.1 percent. Figure I.3
shows that a number of other OECD countries came in the next-highest growth groups,
along with a few countries in Latin America (including Brazil and Chile) and more in Asia
(including Indonesia, India, Pakistan, and Turkey). The United States ranked 40th in growth
with a rate of 2.5 percent.

At the low end of growth, 16 countries aside from the Democratic Republic of Congo
had negative growth rates of real per capita GDP from 1960 to 2000. The list (which
would be substantially larger if not for missing data), starting from the bottom, is Central
African Republic, Niger, Angola, Nicaragua, Mozambique, Madagascar, Nigeria, Zambia,

2. These statistics include the Democratic Republic of Congo (the former Zaire), for which the data are for 1960
to 1995.



Introduction 5

�0.025 0.000

25

0.025
Growth rate of per capita GDP, 1960–2000

N
um

be
r 

of
 c

ou
nt

ri
es

0.050

20

15

10

5

0

Argentina, Ghana,
Kenya, South Africa,

Switzerland

Bolivia, Ethiopia,
Ivory Coast,

Peru, Tanzania

Mozambique
Nigeria
Zambia

Australia, Iran,
Mexico, Sweden,
United Kingdom

Brazil, Canada, Chile,
Egypt, France, India,
Israel, Italy, Pakistan,
Turkey, United States

Hong Kong

Taiwan
Singapore

South Korea

Mali
Rwanda
Senegal

Venezuela

Dem. Rep. of Congo

Angola
Niger

Nicaragua

Greece
Indonesia
Romania

Spain

China
Japan

Ireland
Portugal

Botswana
Cyprus

Thailand

Figure I.3
Histogram for growth rate of per capita GDP from 1960 to 2000. The growth rates are computed for 112
countries from the values of per capita GDP shown for 1960 and 2000 in figures I.1 and I.2. For Democratic
Republic of Congo (former Zaire), the growth rate is for 1960 to 1995. West Germany is the only country included
in figure I.1 (for 1960) but excluded from figure I.3 (because of data problems caused by the reunification of
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Chad, Comoros, Venezuela, Senegal, Rwanda, Togo, Burundi, and Mali. Thus, except for
Nicaragua and Venezuela, this group comprises only sub-Saharan African countries. For
the 38 sub-Saharan African countries with data, the mean growth rate from 1960 to 2000
was only 0.6 percent per year. Hence, the typical country in sub-Saharan Africa increased
its per capita GDP by a factor of only 1.3 over 40 years. Just above the African growth
rates came a few slow-growing countries in Latin America, including Bolivia, Peru, and
Argentina.

As a rough generalization for regional growth experiences, we can say that sub-Saharan
Africa started relatively poor in 1960 and grew at the lowest rate, so it ended up by far the
poorest area in 2000. Asia started only slightly above Africa in many cases but grew rapidly
and ended up mostly in the middle. Latin America started in the mid to high range, grew
somewhat below average, and therefore ended up mostly in the middle along with Asia.
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Finally, the OECD countries started highest in 1960, grew in a middle range or better, and
therefore ended up still the richest.

If we want to understand why countries differ dramatically in standards of living (fig-
ures I.1 and I.2), we have to understand why countries experience such sharp divergences
in long-term growth rates (figure I.3). Even small differences in these growth rates, when
cumulated over 40 years or more, have much greater consequences for standards of living
than the kinds of short-term business fluctuations that have typically occupied most of the
attention of macroeconomists. To put it another way, if we can learn about government pol-
icy options that have even small effects on long-term growth rates, we can contribute much
more to improvements in standards of living than has been provided by the entire history of
macroeconomic analysis of countercyclical policy and fine-tuning. Economic growth—the
subject matter of this book—is the part of macroeconomics that really matters.

I.2 The World Income Distribution

Although we focus in this book on the theoretical and empirical determinants of aggregate
economic growth, we should keep in mind that growth has important implications for the
welfare of individuals. In fact, aggregate growth is probably the single most important factor
affecting individual levels of income. Hence, understanding the determinants of aggregate
economic growth is the key to understanding how to increase the standards of living of
individuals in the world and, thereby, to lessen world poverty.

Figure I.4 shows the evolution of the world’s per capita GDP from 1970 to 2000.3 It
is clear that the average person on the planet has been getting richer over time. But the
positive average growth rate over the last three decades does not mean that the income of all
citizens has increased. In particular, it does not mean that the incomes of the poorest people
have grown nor that the number of people whose incomes are below a certain poverty line
(say one dollar a day, as defined by the World Bank) has declined.4 Indeed, if inequality

3. The “world” is approximated by the 126 countries (139 countries after the breakup of the Soviet Union in
1989) in Sala-i-Martin (2003a, 2003b). The individuals in these 126 countries made up about 95 percent of the
world’s population. World GDP per capita is estimated by adding up the data for individual countries from Heston,
Summers, and Aten (2002) and then dividing by the world’s population.

4. The quest for a “true” poverty line has a long tradition, but the current “one-dollar-a-day” line can be traced
back to World Bank (1990). The World Bank originally defined the poverty line as one dollar a day in 1985 prices.
Although the World Bank’s own definition later changed to 1.08 dollars a day in 1993 dollars (notice that one
1985 dollar does not correspond to 1.08 1993 dollars), we use the original definition of one dollar a day in 1985
prices. One dollar a day (or 365 dollars a year) in 1985 prices becomes 495 dollars per year in 1996 prices, which
is the base year of the Heston, Summers, and Aten (2002) data used to construct the world income distributions.
Following Bhalla (2002), Sala-i-Martin (2003a) adjusts this poverty line upward by 15 percent to correct for the
bias generated by the underreporting of the rich. This adjustment means that our “one-dollar-a-day” poverty line
represents 570 dollars a year (or 1.5 dollars a day) in 1996 dollars.
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World per capita GDP, 1970–2000. World per capita GDP is the sum of the GDPs for 126 countries (139 countries
after the collapse of the Soviet Union) divided by population. The sample of 126 countries is the one used in
Sala-i-Martin (2003a) and accounts for 95 percent of the world’s population.

increased along with economic growth, it is possible for the world to have witnessed both
positive per capita GDP growth and an increasing number of people below the poverty
line. To assess how aggregate growth affects poverty, Sala-i-Martin (2003a) estimates the
world distribution of individual income. To do so, he combines microeconomic survey
and aggregate GDP data for each country, for every year between 1970 and 2000.5 The
result for 1970 is displayed in figure I.5. The horizontal axis plots the level of income
(on a logarithmic scale), and the vertical axis has the number of people. The thin lines
correspond to the income distributions of individual countries. Notice, for example, that
China (the most populated country in the world) has a substantial fraction of the distribution
below the $1/day line. The same is true for India and a large number of smaller countries.
This pattern contrasts with the position of countries such as the United States, Japan,
or even the USSR, which have very little of their distributions below the $1/day line.
The thick line in figure I.5 is the integral of all the individual distributions. Therefore,

5. Sala-i-Martin (2003b) constructs an analogous distribution from which he estimates the number of people
whose personal consumption expenditure is less than one dollar a day. The use of consumption, rather than
income, accords better with the concept of “extreme poverty” used by international institutions such as the World
Bank and the United Nations. However, personal consumption has the drawbacks of giving no credit to public
services and saving.
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Figure I.5
The world distribution of income in 1970. The level of income is on the horizontal axis (on a logarithmic
scale), and the number of people is on the vertical axis. The thin curves correspond to the income distributions
of individual countries. The thick curve is the integral of individual country distributions and corresponds to the
world distribution of income. The vertical line marks the poverty line (which corresponds to one dollar a day in
1985 prices). Source: Sala-i-Martin (2003a).

this line corresponds to the world distribution of income in 1970. Again, a substantial
fraction of the world’s citizens were poor (that is, had an income of less than $1/day)
in 1970.

Figure I.6 displays the corresponding distributions for 2000. If one compares the 1970
with the 2000 distribution, one sees a number of interesting things. First, the world distri-
bution of income has shifted to the right. This shift corresponds to the cumulated growth of
per capita GDP. Second, we see that, underlying the evolution of worldwide income, there
is a positive evolution of incomes in most countries in the world. Most countries increased
their per capita GDP and, therefore, shifted to the right. Third, we see that the dispersion
of the distributions for some countries, notably China, has increased over this period. In
other words, income inequality rose within some large countries. Fourth, the increases in
inequality within some countries have not been nearly enough to offset aggregate per capita
growth, so that the fraction of the world’s people whose incomes lie below the poverty line
has declined dramatically.
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The exact fraction of the world’s citizens that live below the poverty line can be computed
from the distributions estimated by Sala-i-Martin (2003a).6 These poverty rates, reported
in figure I.7, have been cut by a factor of 3: whereas 20 percent of the world’s citizens
were poor in 1970, only 7 percent were poor in 2000.7 Between 1970 and 1978, population
growth more than offset the reduction in poverty rates. Indeed, Sala-i-Martin (2003a) shows
that, during that period, the overall number of poor increased by 20 million people. But,
since 1978, the total number of people with income below the $1/day threshold declined by
more than 300 million. This achievement is all the more remarkable if we take into acount
that overall population increased by more than 1.6 billion people during this period.

6. The World Bank, the United Nations, and many individual researchers define poverty in terms of consumption,
rather than income. Sala-i-Martin (2003b) estimates poverty rates and head counts using consumption. The evolu-
tion of consumption poverty is similar to the one reported here for income although, obviously, the poverty rates
are higher if one uses consumption instead of income and still uses the same poverty line.

7. Sala-i-Martin (2003a) reports cumulative distribution functions (CDFs) for 1970, 1980, 1990, and 2000. Using
these CDFs, one can easily see that poverty rates have fallen dramatically over the last thirty years regardless of
what poverty line one adopts. Thus, the conclusion that aggregate growth has reduced poverty is quite robust.
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World poverty rates. The graphs show the fraction of overall population with income below the poverty line.
Source: Sala-i-Martin (2003a).

The clear conclusion is that economic growth led to substantial reductions in the world’s
poverty rates and head counts over the last thirty years. As mentioned earlier, this outcome
was not inevitable: if aggregate growth had been accompanied by substantial increases in
income inequality, it would have been possible for the mean of the income distribution
to increase but also for the fraction of the distribution below a specified poverty threshold
to also increase. Sala-i-Martin (2003a) shows that, even though this result is theoretically
possible, the world did not behave this way over the last thirty years. Moreover, he also
shows that world income inequality actually declined slightly between 1980 and 2000. This
conclusion holds whether inequality is measured by the Gini coefficient, the Theil Index,
the mean logarithmic deviation, various Atkinson indexes, the variance of log-income, or
the coefficient of variation.

Sala-i-Martin (2003a) decomposes the world into regions and notes that poverty erradica-
tion has been most pronounced in the regions where growth has been the largest. Figure I.8
reports poverty rates for the poorest regions of the world: East Asia, South Asia, Latin
America, Africa, the Middle East and North Africa (MENA), and Eastern Europe and
Central Asia. In 1970, three of these regions had poverty rates close to or above 30 percent.
Two of them (East Asia and South Asia) have experienced substantial reductions in poverty
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Figure I.8
Regional poverty rates. The graphs show the fraction of each region’s population with income below the poverty
line. The regions are the ones defined by the World Bank: East Asia, South Asia, Latin America, Africa, the Middle
East and North Africa (MENA), and Eastern Europe and Central Asia. Source: Sala-i-Martin (2003a).

rates. These are the regions that also experienced large positive aggregate growth rates. The
other region (Africa) has witnessed a dramatic increase in poverty rates over the last thirty
years. We also know that per capita growth rates have been negative or close to zero for most
countries in Africa. Figure I.8 also shows that two regions had poverty rates near 10 percent
in 1970: Latin America and MENA. Both have experienced reductions in poverty rates.
Latin America witnessed dramatic gains in the 1970s, when growth rates were substantial,
but suffered a setback during the 1980s (the “lost decade,” which featured negative growth
rates). Poverty rates in Latin America stabilized during the 1990s. Poverty rates in MENA
declined slightly between 1970 and 1975. The decline was very large during the high-growth
decade that followed the oil shocks and then stabilized when aggregate growth stopped.

Finally, Eastern Europe and Central Asia (a region that includes the former Soviet
Union) started off with very small poverty rates. The rates multiplied by a factor of 10
between 1989 and 2000. There are two reasons for the explosion of poverty rates in Eastern
Europe and Central Asia. One is the huge increase in inequality that followed the collapse
of the communist system. The second factor is the dismal aggregate growth performance
of these countries. Notice, however, that the average levels of income for these countries
remain far above the levels of Africa or even Asia. Therefore, even after the deterioration
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in mean income and the rise of income dispersion, poverty rates remain relatively low in
Eastern Europe and Central Asia.

I.3 Empirical Regularities about Economic Growth

Kaldor (1963) listed a number of stylized facts that he thought typified the process of
economic growth:

1. Per capita output grows over time, and its growth rate does not tend to diminish.

2. Physical capital per worker grows over time.

3. The rate of return to capital is nearly constant.

4. The ratio of physical capital to output is nearly constant.

5. The shares of labor and physical capital in national income are nearly constant.

6. The growth rate of output per worker differs substantially across countries.8

Fact 6 accords with the cross-country data that we have already discussed. Facts 1,
2, 4, and 5 seem to fit reasonably well with the long-term data for currently developed
countries. For discussions of the stability of the long-run ratio of physical capital to GDP
in Japan, Germany, Italy, the United Kingdom, and the United States, see Maddison (1982,
chapter 3). For indications of the long-term stability of factor shares in the United States, see
Denison (1974, appendix J) and Jorgenson, Gollop, and Fraumeni (1987, table 9.3). Young
(1995) reports that factor shares were reasonably stable in four East Asian countries—
Hong Kong, Singapore, South Korea, and Taiwan—from the early or middle 1960s through
1990. Studies of seven developed countries—Canada, France, Germany, Italy, Japan, the
Netherlands, and the United Kingdom—indicate that factor shares are similar to those in
the United States (Christensen, Cummings, and Jorgenson, 1980, and Dougherty, 1991).
In some Latin-American countries considered by Elias (1990), the capital shares tend,
however, to be higher than those in the United States.

Kaldor’s claimed fact 3 on the stability of real rates of return appears to be heavily
influenced by the experience of the United Kingdom; in this case, the real interest rate seems

8. Kuznets (1973, 1981) brings out other characteristics of modern economic growth. He notes the rapid rate of
structural transformation, which includes shifts from agriculture to industry to services. This process involves
urbanization, shifts from home work to employee status, and an increasing role for formal education. He also
argues that modern growth involves an increased role for foreign commerce and that technological progress
implies reduced reliance on natural resources. Finally, he discusses the growing importance of government: “The
spread of modern economic growth placed greater emphasis on the importance and need for organization in
national sovereign units. . . . The sovereign state unit was of critical importance as the formulator of the rules under
which economic activity was to be carried on; as a referee . . . ; and as provider of infrastructure” (1981, p. 59).
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to have no long-run trend (see Barro, 1987, figures 4 and 7). For the United States, however,
the long-term data suggest a moderate decline of real interest rates (Barro, 1997, table 11.1).
Real rates of return in some fast-growing countries, such as South Korea and Singapore,
are much higher than those in the United States but have declined over time (Young, 1995).
Thus it seems likely that Kaldor’s hypothesis of a roughly stable real rate of return should
be replaced by a tendency for returns to fall over some range as an economy develops.

We can use the data presented in chapter 12 to assess the long-run tendencies of the growth
rate of real per capita GDP. Tables 12.10 and 12.11 contain figures from Angus Maddison
for 31 countries over periods of roughly a century. These numbers basically exhaust the
available information about growth over very long time intervals.

Table 12.10 applies to 16 currently developed countries, the major countries in Europe
plus the United States, Canada, and Australia. These data show an average per capita
growth rate of 1.9 percent per year over roughly a century, with a breakdown by 20-year
periods as shown in table I.1. These numbers are consistent with Kaldor’s proposition that
the growth rate of real per capita GDP has no secular tendency to decline; in fact, the
periods following World War II show growth rates well above the long-run average. The
reduction in the growth rate from 3.7 percent per year in 1950–70 to 2.2 percent per year
in 1970–90 corresponds to the often-discussed productivity slowdown. It is apparent from
the table, however, that the growth rate for 1970–90 is high in relation to the long-term
history.

Table 12.11 contains figures for 15 currently less-developed countries in Asia and Latin
America. In this case, the average long-run growth rate from 1900 to 1987 is 1.4 percent
per year, and the breakdown into four subperiods is as shown in table I.2. Again, the
post–World War II period (here, 1950–87) shows growth rates well above the long-term
average.

Table I.1
Long-Term Growth Rates for Currently Developed Countries

Period Growth Rate (percent per year) Number of Countries

1830–50 0.9 10
1850–70 1.2 11
1870–90 1.2 13
1890–10 1.5 14
1910–30 1.3 16
1930–50 1.4 16
1950–70 3.7 16
1970–90 2.2 16

Source: Table 12.10.
Note: The growth rates are simple averages for the countries with data.
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Table I.2
Long-Term Growth Rates for Currently Less-Developed Countries

Period Growth Rate (percent per year) Number of Countries

1900–13 1.2 15
1913–50 0.4 15
1950–73 2.6 15
1973–87 2.4 15

Source: Table 12.11 in chapter 12.
Note: The growth rates are simple averages for the countries with data.

The information depicted in figures I.1–I.3 applies to the behavior of real per capita GDP
for over 100 countries from 1960 to 2000. We can use these data to extend the set of stylized
facts that was provided by Kaldor. One pattern in the cross-country data is that the growth
rate of per capita GDP from 1960 to 2000 is essentially uncorrelated with the level of per
capita GDP in 1960 (see chapter 12). In the terminology developed in chapter 1, we shall
refer to a tendency for the poor to grow faster than the rich as β convergence. Thus the
simple relationship between growth and the starting position for a broad cross section of
countries does not reveal β convergence. This kind of convergence does appear if we limit
attention to more homogeneous groups of economies, such as the U.S. states, regions of
several European countries, and prefectures of Japan (see Barro and Sala-i-Martin, 1991,
1992a, and 1992b, and chapter 11). In these cases, the poorer places tend to grow faster
than the richer ones. This behavior also appears in the cross-country data if we limit the
sample to a relatively homogeneous collection of currently prosperous places, such as the
OECD countries (see Baumol, 1986; DeLong, 1988).

We say in chapter 1 that conditional β convergence applies if the growth rate of per capita
GDP is negatively related to the starting level of per capita GDP after holding fixed some
other variables, such as initial levels of human capital, measures of government policies, the
propensities to save and have children, and so on. The broad cross-country sample—that
is, the data set that does not show β convergence in an absolute sense—clearly reveals β

convergence in this conditional context (see Barro, 1991; Barro and Sala-i-Martin, 1992a;
and Mankiw, Romer, and Weil, 1992). The rate of convergence is, however, only about 2
percent per year. Thus, it takes about 35 years for an economy to eliminate one-half of the
gap between its initial per capita GDP and its long-run or target level of per capita GDP.
(The target tends to grow over time.)

The results in chapter 12 show that a number of variables are significantly related to the
growth rate of per capita GDP, once the starting level of per capita GDP is held constant.
For example, growth depends positively on the initial quantity of human capital in the form
of educational attainment and health, positively on maintenance of the rule of law and the
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Table I.3
Ratios to GDP of Gross Domestic Investment and Gross National Saving (percent)

Period Australia Canada France India Japan Korea United Kingdom United States

1. Gross Domestic Investment

1870–89 16.5 16.0 12.8 — — — 9.3 19.8
1890–09 13.7 17.2 14.0 — 14.0 — 9.4 17.9
1910–29 17.4 19.8 — 6.4 16.6 5.1a 6.7 17.2
1930–49 13.3 13.1 — 8.4 20.5 — 8.1 12.7
1950–69 26.3 23.8 22.6 14.0 31.8 16.3b 17.2 18.9
1970–89 24.9 22.8 23.2 20.2 31.9 29.1 18.2 18.7

2. Gross National Saving

1870–89 11.2 9.1 12.8 — — — 13.9 19.1
1890–09 12.2 11.5 14.9 — 12.0 — 13.1 18.4
1910–29 13.6 16.0 — 6.4 17.1 2.38 9.6 18.9
1930–49 13.0 15.6 — 7.7 19.8 — 4.8 14.1
1950–69 24.0 22.3 22.8 12.2 32.1 5.9b 17.7 19.6
1970–89 22.9 22.1 23.4 19.4 33.7 26.2 19.4 18.5

Source: Maddison (1992).
a1911–29
b1951–69

ratio of investment to GDP, and negatively on fertility rates and the ratio of government
consumption spending to GDP.

We can assess regularities in investment and saving ratios by using the long-term data
in Maddison (1992). He provides long-term information for a few countries on the ratios
of gross domestic investment to GDP and of gross national saving (the sum of domestic
and net foreign investment) to GDP. Averages of the investment and saving ratios over
20-year intervals for the eight countries that have enough data for a long-period analysis
are shown in table I.3. For an individual country, the table indicates that the time paths of
domestic investment and national saving are usually similar. Domestic investment was,
however, substantially higher than national saving (that is, borrowing from abroad was
large) for Australia and Canada from 1870 to 1929, for Japan from 1890 to 1909, for the
United Kingdom from 1930 to 1949, and for Korea from 1950 to 1969 (in fact, through the
early 1980s). National saving was much higher than domestic investment (lending abroad
was substantial) for the United Kingdom from 1870 to 1929 and for the United States from
1930 to 1949.

For the United States, the striking observation from the table is the stability over time of
the ratios for domestic investment and national saving. The only exception is the relatively
low values from 1930 to 1949, the period of the Great Depression and World War II. The
United States is, however, an outlier with respect to the stability of its investment and saving
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ratios; the data for the other seven countries show a clear increase in these ratios over time.
In particular, the ratios for 1950–89 are, in all cases, substantially greater than those from
before World War II. The long-term data therefore suggest that the ratios to GDP of gross
domestic investment and gross national saving tend to rise as an economy develops, at
least over some range. The assumption of a constant gross saving ratio, which appears in
chapter 1 in the Solow–Swan model, misses this regularity in the data.

The cross-country data also reveal some regularities with respect to fertility rates and,
hence, rates of population growth. For most countries, the fertility rate tends to decline
with increases in per capita GDP. For the poorest countries, however, the fertility rate
may rise with per capita GDP, as Malthus (1798) predicted. Even stronger relations exist
between educational attainment and fertility. Except for the most advanced countries, female
schooling is negatively related with the fertility rate, whereas male schooling is positively
related with the fertility rate. The net effect of these forces is that the fertility rate—and
the rate of population growth—tend to fall over some range as an economy develops. The
assumption of an exogenous, constant rate of population growth—another element of the
Solow–Swan model—conflicts with this empirical pattern.

I.4 A Brief History of Modern Growth Theory

Classical economists, such as Adam Smith (1776), David Ricardo (1817), and Thomas
Malthus (1798), and, much later, Frank Ramsey (1928), Allyn Young (1928), Frank Knight
(1944), and Joseph Schumpeter (1934), provided many of the basic ingredients that appear
in modern theories of economic growth. These ideas include the basic approaches of com-
petitive behavior and equilibrium dynamics, the role of diminishing returns and its relation
to the accumulation of physical and human capital, the interplay between per capita income
and the growth rate of population, the effects of technological progress in the forms of
increased specialization of labor and discoveries of new goods and methods of production,
and the role of monopoly power as an incentive for technological advance.

Our main study begins with these building blocks already in place and focuses on the
contributions in the neoclassical tradition since the late 1950s. We use the neoclassical
methodology and language and rely on concepts such as aggregate capital stocks, aggregate
production functions, and utility functions for representative consumers (who often have
infinite horizons). We also use modern mathematical methods of dynamic optimization and
differential equations. These tools, which are described in the appendix at the end of this
book, are familiar today to most first-year graduate students in economics.

From a chronological viewpoint, the starting point for modern growth theory is the clas-
sic article of Ramsey (1928), a work that was several decades ahead of its time. Ramsey’s
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treatment of household optimization over time goes far beyond its application to growth the-
ory; it is hard now to discuss consumption theory, asset pricing, or even business-cycle theory
without invoking the optimality conditions that Ramsey (and Fisher, 1930) introduced to
economists. Ramsey’s intertemporally separable utility function is as widely used today as
the Cobb–Douglas production function. The economics profession did not, however, accept
or widely use Ramsey’s approach until the 1960s.

Between Ramsey and the late 1950s, Harrod (1939) and Domar (1946) attempted to
integrate Keynesian analysis with elements of economic growth. They used production
functions with little substitutability among the inputs to argue that the capitalist system is
inherently unstable. Since they wrote during or immediately after the Great Depression,
these arguments were received sympathetically by many economists. Although these con-
tributions triggered a good deal of research at the time, very little of this analysis plays a
role in today’s thinking.

The next and more important contributions were those of Solow (1956) and Swan (1956).
The key aspect of the Solow–Swan model is the neoclassical form of the production function,
a specification that assumes constant returns to scale, diminishing returns to each input, and
some positive and smooth elasticity of substitution between the inputs. This production
function is combined with a constant-saving-rate rule to generate an extremely simple
general-equilibrium model of the economy.

One prediction from these models, which has been exploited seriously as an empirical
hypothesis only in recent years, is conditional convergence. The lower the starting level of
per capita GDP, relative to the long-run or steady-state position, the faster the growth rate.
This property derives from the assumption of diminishing returns to capital; economies
that have less capital per worker (relative to their long-run capital per worker) tend to have
higher rates of return and higher growth rates. The convergence is conditional because the
steady-state levels of capital and output per worker depend, in the Solow–Swan model, on
the saving rate, the growth rate of population, and the position of the production function—
characteristics that might vary across economies. Recent empirical studies indicate that
we should include additional sources of cross-country variation, especially differences in
government policies and in initial stocks of human capital. The key point, however, is that
the concept of conditional convergence—a basic property of the Solow–Swan model—has
considerable explanatory power for economic growth across countries and regions.

Another prediction of the Solow–Swan model is that, in the absence of continuing im-
provements in technology, per capita growth must eventually cease. This prediction, which
resembles those of Malthus and Ricardo, also comes from the assumption of diminishing re-
turns to capital. We have already observed, however, that positive rates of per capita growth
can persist over a century or more and that these growth rates have no clear tendency to
decline.
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The neoclassical growth theorists of the late 1950s and 1960s recognized this modeling
deficiency and usually patched it up by assuming that technological progress occurred
in an exogenous manner. This device can reconcile the theory with a positive, possibly
constant per capita growth rate in the long run, while retaining the prediction of conditional
convergence. The obvious shortcoming, however, is that the long-run per capita growth rate
is determined entirely by an element—the rate of technological progress—that is outside
of the model. (The long-run growth rate of the level of output also depends on the growth
rate of population, another element that is exogenous in the standard theory.) Thus we
end up with a model of growth that explains everything but long-run growth, an obviously
unsatisfactory situation.

Cass (1965) and Koopmans (1965) brought Ramsey’s analysis of consumer optimization
back into the neoclassical growth model and thereby provided for an endogenous determi-
nation of the saving rate. This extension allows for richer transitional dynamics but tends to
preserve the hypothesis of conditional convergence. The endogeneity of saving also does not
eliminate the dependence of the long-run per capita growth rate on exogenous technological
progress.

The equilibrium of the Cass–Koopmans version of the neoclassical growth model can be
supported by a decentralized, competitive framework in which the productive factors, labor
and capital, are paid their marginal products. Total income then exhausts the total product
because of the assumption that the production function features constant returns to scale.
Moreover, the decentralized outcomes are Pareto optimal.

The inclusion of a theory of technological change in the neoclassical framework is dif-
ficult, because the standard competitive assumptions cannot be maintained. Technological
advance involves the creation of new ideas, which are partially nonrival and therefore have
aspects of public goods. For a given technology—that is, for a given state of knowledge—it
is reasonable to assume constant returns to scale in the standard, rival factors of production,
such as labor, capital, and land. In other words, given the level of knowledge on how to
produce, one would think that it is possible to replicate a firm with the same amount of
labor, capital, and land and obtain twice as much output. But then, the returns to scale tend
to be increasing if the nonrival ideas are included as factors of production. These increasing
returns conflict with perfect competition. In particular, the compensation of nonrival old
ideas in accordance with their current marginal cost of production—zero—will not provide
the appropriate reward for the research effort that underlies the creation of new ideas.

Arrow (1962) and Sheshinski (1967) constructed models in which ideas were unintended
by-products of production or investment, a mechanism described as learning by doing. In
these models, each person’s discoveries immediately spill over to the entire economy, an
instantaneous diffusion process that might be technically feasible because knowledge is
nonrival. Romer (1986) showed later that the competitive framework can be retained in this
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case to determine an equilibrium rate of technological advance, but the resulting growth
rate would typically not be Pareto optimal. More generally, the competitive framework
breaks down if discoveries depend in part on purposive R&D effort and if an individual’s
innovations spread only gradually to other producers. In this realistic setting, a decentralized
theory of technological progress requires basic changes in the neoclassical growth model
to incorporate an analysis of imperfect competition.9 These additions to the theory did not
come until Romer’s (1987, 1990) research in the late 1980s.

The work of Cass (1965) and Koopmans (1965) completed the basic neoclassical growth
model.10 Thereafter, growth theory became excessively technical and steadily lost contact
with empirical applications. In contrast, development economists, who are required to give
advice to sick countries, retained an applied perspective and tended to use models that were
technically unsophisticated but empirically useful. The fields of economic development and
economic growth drifted apart, and the two areas became almost completely separated.

Probably because of its lack of empirical relevance, growth theory effectively died as an
active research field by the early 1970s, on the eve of the rational-expectations revolution
and the oil shocks. For about 15 years, macroeconomic research focused on short-term
fluctuations. Major contributions included the incorporation of rational expectations into
business-cycle models, improved approaches to policy evaluation, and the application of
general-equilibrium methods to real business-cycle theory.

After the mid-1980s, research on economic growth experienced a boom, beginning with
the work of Romer (1986) and Lucas (1988). The motivation for this research was the
observation (or recollection) that the determinants of long-run economic growth are crucial
issues, far more important than the mechanics of business cycles or the countercyclical
effects of monetary and fiscal policies. But a recognition of the significance of long-run
growth was only a first step; to go further, one had to escape the straitjacket of the neoclassical
growth model, in which the long-term per capita growth rate was pegged by the rate of
exogenous technological progress. Thus, in one way or another, the recent contributions
determine the long-run growth rate within the model; hence, the designation endogenous-
growth models.

The initial wave of the new research—Romer (1986), Lucas (1988), Rebelo (1991)—
built on the work of Arrow (1962), Sheshinski (1967), and Uzawa (1965) and did not really
introduce a theory of technological change. In these models, growth may go on indefinitely
because the returns to investment in a broad class of capital goods—which includes human

9. Another approach is to assume that all of the nonrival research—a classic public good—is financed by the
government through involuntary taxes; see Shell (1967).

10. However, recent research has shown how to extend the neoclassical growth model to allow for heterogeneity
among households (Caselli and Ventura, 2000) and to incorporate time-inconsistent preferences (Barro, 1999).
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capital—do not necessarily diminish as economies develop. (This idea goes back to Knight,
1944.) Spillovers of knowledge across producers and external benefits from human capital
are parts of this process, but only because they help to avoid the tendency for diminishing
returns to the accumulation of capital.

The incorporation of R&D theories and imperfect competition into the growth framework
began with Romer (1987, 1990) and included significant contributions by Aghion and
Howitt (1992) and Grossman and Helpman (1991, chapters 3 and 4). In these models,
technological advance results from purposive R&D activity, and this activity is rewarded
by some form of ex post monopoly power. If there is no tendency for the economy to run
out of ideas, the growth rate can remain positive in the long run. The rate of growth and
the underlying amount of inventive activity tend, however, not to be Pareto optimal because
of distortions related to the creation of the new goods and methods of production. In these
frameworks, the long-term growth rate depends on governmental actions, such as taxation,
maintenance of law and order, provision of infrastructure services, protection of intellectual
property rights, and regulations of international trade, financial markets, and other aspects
of the economy. The government therefore has great potential for good or ill through its
influence on the long-term rate of growth. This research program remained active through
the 1990s and has been applied, for example, to understanding scale effects in the growth
process (Jones, 1999), analyzing whether technological progress will be labor or capital
augmenting (Acemoglu, 2002), and assessing the role of competition in the growth process
(Aghion et al., 2001, 2002).

The new research also includes models of the diffusion of technology. Whereas the
analysis of discovery relates to the rate of technological progress in leading-edge economies,
the study of diffusion pertains to the manner in which follower economies share by imitation
in these advances. Since imitation tends to be cheaper than innovation, the diffusion models
predict a form of conditional convergence that resembles the predictions of the neoclassical
growth model. Some recent empirical work has verified the importance of technological
diffusion in the convergence process.

Another key exogenous parameter in the neoclassical growth model is the growth rate
of population. A higher rate of population growth lowers the steady-state level of capital
and output per worker and tends thereby to reduce the per capita growth rate for a given
initial level of per capita output. The standard model does not, however, consider the effects
of per capita income and wage rates on population growth—the kinds of effects stressed
by Malthus—and also does not take account of the resources used up in the process of
child rearing. Another line of recent research makes population growth endogenous by
incorporating an analysis of fertility choice into the neoclassical model. The results are
consistent, for example, with the empirical regularity that fertility rates tend to fall with
per capita income over the main range of experience but may rise with per capita income
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for the poorest countries. Additional work related to the endogeneity of labor supply in a
growth context concerns migration and labor/leisure choice.

The clearest distinction between the growth theory of the 1960s and that of the 1990s is
that the recent research pays close attention to empirical implications and to the relation
between theory and data. However, much of this applied perspective involved applications
of empirical hypotheses from the older theory, notably the neoclassical growth model’s
prediction of conditional convergence. The cross-country regressions motivated by the
neoclassical model surely became a fixture of research in the 1990s. An interesting recent
development in this area, which we explore in chapter 12, involves assessment of the
robustness of these kinds of estimates. Other empirical analyses apply more directly to
the recent theories of endogenous growth, including the roles of increasing returns, R&D
activity, human capital, and the diffusion of technology.

I.5 Some Highlights of the Second Edition

This second edition of Economic Growth includes changes throughout the book. We mention
here a few of the highlights. In this introduction we already described new estimates of the
distribution of income of individuals throughout the world from 1970 to 2000.

Chapter 1 has been made easier and more accessible. We added a section on markets in
the Solow–Swan model. We also discussed the nature of the theoretical dissatisfaction with
neoclassical theory that led to the emergence of endogenous growth models with imperfect
competition.

Chapter 2 expands the treatment of the basic neoclassical growth model to allow for
heterogeneity of households. There is an improved approach to ruling out “undersaving”
paths and for deriving and using transversality conditions. We also include an analysis of
models with nonconstant time-preference rates.

Chapter 3 has various extensions to the basic neoclassical growth model, including an
expanded treatment of the government sector. The framework allows for various forms of
tax rates and allows for a clear distinction between taxes on capital income and taxes on
labor or consumption.

Chapters 6 and 7 discuss models of endogenous technological progress. The new mate-
rial includes an analysis of the role and source of scale effects in these models. We refer
in chapter 6 to Thomas Jefferson’s mostly negative views on patents as a mechanism for
motivating inventions. Chapter 7 has an improved analysis of models where technologi-
cal advances take the form of quality improvements. We have particularly improved the
treatment of the interplay between industry leaders and outsiders and, hence, of the role of
outside competition in the growth process.
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Chapter 8 has a model of technological diffusion. The basic model is improved, and the
theoretical results are related to recent empirical findings.

Chapter 9 has an extended treatment of endogenous population growth. Chapter 10 has an
improved analysis of growth accounting, including its relation to theories of endogenous
technological progress. Chapter 11, which deals with regional data sets, extends the analysis
of U.S. states through 2000.

In chapter 12 we include an updated treatment of cross-country growth regressions, using
the new Summers–Heston data set, Penn World Tables version 6.1, which has data through
2000 (see Heston, Summers, and Aten, 2002). We also discuss in this chapter various issues
about the reliability of estimates from cross-country regressions, including ways to assess
the robustness of the results.



1Growth Models with Exogenous Saving Rates (the Solow–Swan Model)

1.1 The Basic Structure

The first question we ask in this chapter is whether it is possible for an economy to enjoy
positive growth rates forever by simply saving and investing in its capital stock. A look at
the cross-country data from 1960 to 2000 shows that the average annual growth rate of real
per capita GDP for 112 countries was 1.8 percent, and the average ratio of gross investment
to GDP was 16 percent.1 However, for 38 sub-Saharan African countries, the average
growth rate was only 0.6 percent, and the average investment ratio was only 10 percent.
At the other end, for nine East Asian “miracle” economies, the average growth rate was
4.9 percent, and the average investment ratio was 25 percent. These observations suggest
that growth and investment rates are positively related. However, before we get too excited
with this relationship, we might note that, for 23 OECD countries, the average growth
rate was 2.7 percent—lower than that for the East Asian miracles—whereas the average
investment ratio was 24 percent—about the same as that for East Asia. Thus, although
investment propensities cannot be the whole story, it makes sense as a starting point to try
to relate the growth rate of an economy to its willingness to save and invest. To this end, it
will be useful to begin with a simple model in which the only possible source of per capita
growth is the accumulation of physical capital.

Most of the growth models that we discuss in this book have the same basic general-
equilibrium structure. First, households (or families) own the inputs and assets of the
economy, including ownership rights in firms, and choose the fractions of their income to
consume and save. Each household determines how many children to have, whether to join
the labor force, and how much to work. Second, firms hire inputs, such as capital and labor,
and use them to produce goods that they sell to households or other firms. Firms have access
to a technology that allows them to transform inputs into output. Third, markets exist on
which firms sell goods to households or other firms and on which households sell the inputs
to firms. The quantities demanded and supplied determine the relative prices of the inputs
and the produced goods.

Although this general structure applies to most growth models, it is convenient to start
our analysis by using a simplified setup that excludes markets and firms. We can think
of a composite unit—a household/producer like Robinson Crusoe—who owns the inputs
and also manages the technology that transforms inputs into outputs. In the real world,
production takes place using many different inputs to production. We summarize all of
them into just three: physical capital K (t), labor L(t), and knowledge T (t). The production

1. These data—from Penn World Tables version 6.1—are described in Summers and Heston (1991) and Heston,
Summers, and Aten (2002). We discuss these data in chapter 12.
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function takes the form

Y (t) = F[K (t), L(t), T (t)] (1.1)

where Y (t) is the flow of output produced at time t .
Capital, K (t), represents the durable physical inputs, such as machines, buildings, pencils,

and so on. These goods were produced sometime in the past by a production function of the
form of equation (1.1). It is important to notice that these inputs cannot be used by multiple
producers simultaneously. This last characteristic is known as rivalry—a good is rival if it
cannot be used by several users at the same time.

The second input to the production function is labor, L(t), and it represents the inputs
associated with the human body. This input includes the number of workers and the amount
of time they work, as well as their physical strength, skills, and health. Labor is also a rival
input, because a worker cannot work on one activity without reducing the time available
for other activities.

The third input is the level of knowledge or technology, T (t). Workers and machines
cannot produce anything without a formula or blueprint that shows them how to do it. This
blueprint is what we call knowledge or technology. Technology can improve over time—for
example, the same amount of capital and labor yields a larger quantity of output in 2000
than in 1900 because the technology employed in 2000 is superior. Technology can also
differ across countries—for example, the same amount of capital and labor yields a larger
quantity of output in Japan than in Zambia because the technology available in Japan is
better. The important distinctive characteristic of knowledge is that it is a nonrival good: two
or more producers can use the same formula at the same time.2 Hence, two producers that
each want to produce Y units of output will each have to use a different set of machines and
workers, but they can use the same formula. This property of nonrivalry turns out to have
important implications for the interactions between technology and economic growth.3

2. The concepts of nonrivalry and public good are often confused in the literature. Public goods are nonrival (they
can be used by many people simultaneously) and also nonexcludable (it is technologically or legally impossible
to prevent people from using such goods). The key characteristic of knowledge is nonrivalry. Some formulas or
blueprints are nonexcludable (for example, calculus formulas on which there are no property rights), whereas
others are excludable (for example, the formulas used to produce pharmaceutical products while they are pro-
tected by patents). These properties of ideas were well understood by Thomas Jefferson, who said in a letter
of August 13, 1813, to Isaac McPherson: “If nature has made any one thing less susceptible than all others of
exclusive property, it is the actions of the thinking power called an idea, which an individual may exclusively
possess as long as he keeps it to himself; but the moment it is divulged, it forces itself into the possession of
everyone, and the receiver cannot dispossess himself of it. Its peculiar character, too, is that no one possesses the
less, because every other possesses the whole of it. He who receives an idea from me, receives instruction himself
without lessening mine” (available on the Internet from the Thomas Jefferson Papers at the Library of Congress,
lcweb2.loc.gov/ammem/mtjhtml/mtjhome.html).

3. Government policies, which depend on laws and institutions, would also affect the output of an economy. Since
basic public institutions are nonrival, we can include these factors in T (t) in the production function.
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We assume a one-sector production technology in which output is a homogeneous good
that can be consumed, C(t), or invested, I (t). Investment is used to create new units of
physical capital, K (t), or to replace old, depreciated capital. One way to think about the
one-sector technology is to draw an analogy with farm animals, which can be eaten or used
as inputs to produce more farm animals. The literature on economic growth has used more
inventive examples—with such terms as shmoos, putty, or ectoplasm—to reflect the easy
transmutation of capital goods into consumables, and vice versa.

In this chapter we imagine that the economy is closed: households cannot buy foreign
goods or assets and cannot sell home goods or assets abroad. (Chapter 3 allows for an open
economy.) We also start with the assumption that there are no government purchases of
goods and services. (Chapter 4 deals with government purchases.) In a closed economy
with no public spending, all output is devoted to consumption or gross investment,4 so
Y (t) = C(t) + I (t). By subtracting C(t) from both sides and realizing that output equals
income, we get that, in this simple economy, the amount saved, S(t) ≡ Y (t)− C(t), equals
the amount invested, I (t).

Let s(·) be the fraction of output that is saved—that is, the saving rate—so that 1 − s(·)
is the fraction of output that is consumed. Rational households choose the saving rate by
comparing the costs and benefits of consuming today rather than tomorrow; this comparison
involves preference parameters and variables that describe the state of the economy, such
as the level of wealth and the interest rate. In chapter 2, where we model this decision
explicitly, we find that s(·) is a complicated function of the state of the economy, a function
for which there are typically no closed-form solutions. To facilitate the analysis in this initial
chapter, we assume that s(·) is given exogenously. The simplest function, the one assumed
by Solow (1956) and Swan (1956) in their classic articles, is a constant, 0 ≤ s(·) = s ≤ 1.
We use this constant-saving-rate specification in this chapter because it brings out a large
number of results in a clear way. Given that saving must equal investment, S(t) = I (t), it
follows that the saving rate equals the investment rate. In other words, the saving rate of a
closed economy represents the fraction of GDP that an economy devotes to investment.

We assume that capital is a homogeneous good that depreciates at the constant rate δ > 0;
that is, at each point in time, a constant fraction of the capital stock wears out and, hence,
can no longer be used for production. Before evaporating, however, all units of capital are
assumed to be equally productive, regardless of when they were originally produced.

4. In an open economy with government spending, the condition is

Y (t) − r · D(t) = C(t) + I (t) + G(t) + N X (t)

where D(t) is international debt, r is the international real interest rate, G(t) is public spending, and N X (t) is
net exports. In this chapter we assume that there is no public spending, so that G(t) = 0, and that the economy is
closed, so that D(t) = N X (t) = 0.
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The net increase in the stock of physical capital at a point in time equals gross investment
less depreciation:

K̇ (t) = I (t) − δK (t) = s · F[K (t), L(t), T (t)] − δK (t) (1.2)

where a dot over a variable, such as K̇ (t), denotes differentiation with respect to time, K̇ (t) ≡
∂K (t)/∂t (a convention that we use throughout the book) and 0 ≤ s ≤ 1. Equation (1.2)
determines the dynamics of K for a given technology and labor.

The labor input, L , varies over time because of population growth, changes in participation
rates, shifts in the amount of time worked by the typical worker, and improvements in the
skills and quality of workers. In this chapter, we simplify by assuming that everybody
works the same amount of time and that everyone has the same constant skill, which we
normalize to one. Thus we identify the labor input with the total population. We analyze
the accumulation of skills or human capital in chapter 5 and the choice between labor and
leisure in chapter 9.

The growth of population reflects the behavior of fertility, mortality, and migration, which
we study in chapter 9. In this chapter, we simplify by assuming that population grows at
a constant, exogenous rate, L̇/L = n ≥ 0, without using any resources. If we normalize
the number of people at time 0 to 1 and the work intensity per person also to 1, then the
population and labor force at time t are equal to

L(t) = ent (1.3)

To highlight the role of capital accumulation, we start with the assumption that the level
of technology, T (t), is a constant. This assumption will be relaxed later.

If L(t) is given from equation (1.3) and technological progress is absent, then equa-
tion (1.2) determines the time paths of capital, K (t), and output, Y (t). Once we know how
capital or GDP changes over time, the growth rates of these variables are also determined.
In the next sections, we show that this behavior depends crucially on the properties of the
production function, F(·).

1.2 The Neoclassical Model of Solow and Swan

1.2.1 The Neoclassical Production Function

The process of economic growth depends on the shape of the production function. We
initially consider the neoclassical production function. We say that a production function,
F(K , L , T ), is neoclassical if the following properties are satisfied:5

5. We ignore time subscripts to simplify notation.
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1. Constant returns to scale. The function F(·) exhibits constant returns to scale. That
is, if we multiply capital and labor by the same positive constant, λ, we get λ the amount
of output:

F(λK , λL , T ) = λ · F(K , L , T ) for all λ > 0 (1.4)

This property is also known as homogeneity of degree one in K and L. It is important to
note that the definition of scale includes only the two rival inputs, capital and labor. In other
words, we did not define constant returns to scale as F(λK , λL , λT ) = λ · F(K , L , T ).

To get some intuition on why our assumption makes economic sense, we can use the
following replication argument. Imagine that plant 1 produces Y units of output using the
production function F and combining K and L units of capital and labor, respectively, and
using formula T . It makes sense to assume that if we create an identical plant somewhere
else (that is, if we replicate the plant), we should be able to produce the same amount of
output. In order to replicate the plant, however, we need a new set of machines and workers,
but we can use the same formula in both plants. The reason is that, while capital and labor are
rival goods, the formula is a nonrival good and can be used in both plants at the same time.
Hence, because technology is a nonrival input, our definition of returns to scale makes sense.

2. Positive and diminishing returns to private inputs. For all K > 0 and L > 0, F(·)
exhibits positive and diminishing marginal products with respect to each input:

∂ F

∂K
> 0,

∂2 F

∂K 2
< 0

∂ F

∂L
> 0,

∂2 F

∂L2
< 0

(1.5)

Thus, the neoclassical technology assumes that, holding constant the levels of technology
and labor, each additional unit of capital delivers positive additions to output, but these
additions decrease as the number of machines rises. The same property is assumed for labor.

3. Inada conditions. The third defining characteristic of the neoclassical production
function is that the marginal product of capital (or labor) approaches infinity as capital
(or labor) goes to 0 and approaches 0 as capital (or labor) goes to infinity:
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(1.6)

These last properties are called Inada conditions, following Inada (1963).
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4. Essentiality. Some economists add the assumption of essentiality to the definition of a
neoclassical production function. An input is essential if a strictly positive amount is needed
to produce a positive amount of output. We show in the appendix that the three neoclassical
properties in equations (1.4)–(1.6) imply that each input is essential for production, that is,
F(0, L) = F(K , 0) = 0. The three properties of the neoclassical production function also
imply that output goes to infinity as either input goes to infinity, another property that is
proven in the appendix.

Per Capita Variables When we say that a country is rich or poor, we tend to think in
terms of output or consumption per person. In other words, we do not think that India is
richer than the Netherlands, even though India produces a lot more GDP, because, once we
divide by the number of citizens, the amount of income each person gets on average is a lot
smaller in India than in the Netherlands. To capture this property, we construct the model
in per capita terms and study primarily the dynamic behavior of the per capita quantities of
GDP, consumption, and capital.

Since the definition of constant returns to scale applies to all values of λ, it also applies
to λ = 1/L . Hence, output can be written as

Y = F(K , L , T ) = L · F(K/L , 1, T ) = L · f (k) (1.7)

where k ≡ K/L is capital per worker, y ≡ Y/L is output per worker, and the function f (k) is
defined to equal F(k, 1, T ).6 This result means that the production function can be expressed
in intensive form (that is, in per worker or per capita form) as

y = f (k) (1.8)

In other words, the production function exhibits no “scale effects”: production per person is
determined by the amount of physical capital each person has access to and, holding constant
k, having more or fewer workers does not affect total output per person. Consequently, very
large economies, such as China or India, can have less output or income per person than
very small economies, such as Switzerland or the Netherlands.

We can differentiate this condition Y = L · f (k) with respect to K , for fixed L , and then
with respect to L , for fixed K , to verify that the marginal products of the factor inputs are
given by

∂Y/∂K = f ′(k) (1.9)

∂Y/∂L = f (k) − k · f ′(k) (1.10)

6. Since T is assumed to be constant, it is one of the parameters implicit in the definition of f (k).
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Figure 1.1
The Solow–Swan model. The curve for gross investment, s · f (k), is proportional to the production function, f (k).
Consumption per person equals the vertical distance between f (k) and s · f (k). Effective depreciation (for k) is
given by (n + δ) · k, a straight line from the origin. The change in k is given by the vertical distance between
s · f (k) and (n + δ) · k. The steady-state level of capital, k∗, is determined at the intersection of the s · f (k) curve
with the (n + δ) · k line.

The Inada conditions imply limk→0[ f ′(k)] = ∞ and limk→∞[ f ′(k)] = 0. Figure 1.1 shows
the neoclassical production in per capita terms: it goes through zero; it is vertical at zero,
upward sloping, and concave; and its slope asymptotes to zero as k goes to infinity.

A Cobb–Douglas Example One simple production function that is often thought to pro-
vide a reasonable description of actual economies is the Cobb–Douglas function,7

Y = AK α L1−α (1.11)

where A > 0 is the level of the technology and α is a constant with 0 < α < 1. The
Cobb–Douglas function can be written in intensive form as

y = Akα (1.12)

7. Douglas is Paul H. Douglas, who was a labor economist at the University of Chicago and later a U.S. Senator
from Illinois. Cobb is Charles W. Cobb, who was a mathematician at Amherst. Douglas (1972, pp. 46–47) says that
he consulted with Cobb in 1927 on how to come up with a production function that fit his empirical equations for
production, employment, and capital stock in U.S. manufacturing. Interestingly, Douglas says that the functional
form was developed earlier by Philip Wicksteed, thus providing another example of Stigler’s Law (whereby nothing
is named after the person who invented it).
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Note that f ′(k) = Aαkα−1 > 0, f ′′(k) = −Aα(1 − α)kα−2 < 0, limk→∞ f ′(k) = 0, and
limk→0 f ′(k) = ∞. Thus, the Cobb–Douglas form satisfies the properties of a neoclassical
production function.

The key property of the Cobb–Douglas production function is the behavior of factor
income shares. In a competitive economy, as discussed in section 1.2.3, capital and labor
are each paid their marginal products; that is, the marginal product of capital equals the
rental price R, and the marginal product of labor equals the wage rate w. Hence, each unit of
capital is paid R = f ′(k) = αAkα−1, and each unit of labor is paid w = f (k) − k · f ′(k) =
(1 − α) · Akα . The capital share of income is then Rk/ f (k) = α, and the labor share is
w/ f (k) = 1 − a. Thus, in a competitive setting, the factor income shares are constant—
independent of k—when the production function is Cobb–Douglas.

1.2.2 The Fundamental Equation of the Solow–Swan Model

We now analyze the dynamic behavior of the economy described by the neoclassical pro-
duction function. The resulting growth model is called the Solow–Swan model, after the
important contributions of Solow (1956) and Swan (1956).

The change in the capital stock over time is given by equation (1.2). If we divide both
sides of this equation by L , we get

K̇/L = s · f (k) − δk

The right-hand side contains per capita variables only, but the left-hand side does not. Hence,
it is not an ordinary differential equation that can be easily solved. In order to transform it
into a differential equation in terms of k, we can take the derivative of k ≡ K/L with respect
to time to get

k̇ ≡ d(K/L)

dt
= K̇/L − nk

where n = L̇/L . If we substitute this result into the expression for K̇/L , we can rearrange
terms to get

k̇ = s · f (k) − (n + δ) · k (1.13)

Equation (1.13) is the fundamental differential equation of the Solow–Swan model. This
nonlinear equation depends only on k.

The term n +δ on the right-hand side of equation (1.13) can be thought of as the effective
depreciation rate for the capital-labor ratio, k ≡ K/L . If the saving rate, s, were 0, capital
per person would decline partly due to depreciation of capital at the rate δ and partly due
to the increase in the number of persons at the rate n.
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Figure 1.1 shows the workings of equation (1.13). The upper curve is the production func-
tion, f (k). The term (n + δ) · k, which appears in equation (1.13), is drawn in figure 1.1 as a
straight line from the origin with the positive slope n + δ. The term s · f (k) in equation (1.13)
looks like the production function except for the multiplication by the positive fraction s.
Note from the figure that the s · f (k) curve starts from the origin [because f (0) = 0], has
a positive slope [because f ′(k) > 0], and gets flatter as k rises [because f ′′(k) < 0]. The
Inada conditions imply that the s · f (k) curve is vertical at k = 0 and becomes flat as k goes
to infinity. These properties imply that, other than the origin, the curve s · f (k) and the line
(n + δ) · k cross once and only once.

Consider an economy with the initial capital stock per person k(0) > 0. Figure 1.1 shows
that gross investment per person equals the height of the s · f (k) curve at this point. Con-
sumption per person equals the vertical difference at this point between the f (k) and s · f (k)

curves.

1.2.3 Markets

In this section we show that the fundamental equation of the Solow–Swan model can be
derived in a framework that explicitly incorporates markets. Instead of owning the tech-
nology and keeping the output produced with it, we assume that households own financial
assets and labor. Assets deliver a rate of return r(t), and labor is paid the wage rate w(t).
The total income received by households is, therefore, the sum of asset and labor income,
r(t) · (assets) + w(t) · L(t). Households use the income that they do not consume to accu-
mulate more assets

d(assets)/dt = [r · (assets) + w · L] − C (1.14)

where, again, time subscripts have been omitted to simplify notation. Divide both sides of
equation (1.14) by L , define assets per person as a, and take the derivative of a with respect
to time, ȧ = (1/L) · d(assets)/dt −na, to get that the change in assets per person is given by

ȧ = (r · a + w) − c − na (1.15)

Firms hire labor and capital and use these two inputs with the production technology in
equation (1.1) to produce output, which they sell at unit price. We think of firms as renting
the services of capital from the households that own it. (None of the results would change
if the firms owned the capital, and the households owned shares of stock in the firms.)
Hence, the firms’ costs of capital are the rental payments, which are proportional to K . This
specification assumes that capital services can be increased or decreased without incurring
any additional expenses, such as costs for installing machines.
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Let R be the rental price for a unit of capital services, and assume again that capital stocks
depreciate at the constant rate δ ≥ 0. The net rate of return to a household that owns a unit
of capital is then R − δ. Households also receive the interest rate r on funds lent to other
households. In the absence of uncertainty, capital and loans are perfect substitutes as stores
of value and, as a result, they must deliver the same return, so r = R − δ or, equivalently,
R = r + δ.

The representative firm’s flow of net receipts or profit at any point in time is given by

π = F(K , L , T ) − (r + δ) · K − wL (1.16)

that is, gross receipts from the sale of output, F(K , L , T ), less the factor payments, which
are rentals to capital, (r + δ) · K , and wages to workers, wL . Technology is assumed to
be available for free, so no payment is needed to rent the formula used in the process
of production. We assume that the firm seeks to maximize the present value of profits.
Because the firm rents capital and labor services and has no adjustment costs, there are
no intertemporal elements in the firm’s maximization problem.8 (The problem becomes
intertemporal when we introduce adjustment costs for capital in chapter 3.)

Consider a firm of arbitrary scale, say with level of labor input L . Because the produc-
tion function exhibits constant returns to scale, the profit for this firm, which is given by
equation (1.16), can be written as

π = L · [ f (k) − (r + δ) · k − w] (1.17)

A competitive firm, which takes r and w as given, maximizes profit for given L by setting

f ′(k) = r + δ (1.18)

That is, the firm chooses the ratio of capital to labor to equate the marginal product of capital
to the rental price.

The resulting level of profit is positive, zero, or negative depending on the value of w.
If profit is positive, the firm could attain infinite profits by choosing an infinite scale. If
profit is negative, the firm would contract its scale to zero. Therefore, in a full market
equilibrium, w must be such that profit equals zero; that is, the total of the factor payments,
(r + δ) · K + wL , equals the gross receipts in equation (1.17). In this case, the firm is
indifferent about its scale.

8. In chapter 2 we show that dynamic firms would maximize the present discounted value of all future profits,
which is given if r is constant by

∫ ∞
0

L · [ f (k) − (r + δ) · k − w] · e−r t dt . Because the problem does not involve
any dynamic constraint, the firm maximizes static profits at all points in time. In fact, this dynamic problem is
nothing but a sequence of static problems.



Growth Models with Exogenous Saving Rates 33

For profit to be zero, the wage rate has to equal the marginal product of labor correspond-
ing to the value of k that satisfies equation (1.18):

[ f (k) − k · f ′(k)] = w (1.19)

It can be readily verified from substitution of equations (1.18) and (1.19) into equation (1.17)
that the resulting level of profit equals zero for any value of L . Equivalently, if the factor
prices equal the respective marginal products, the factor payments just exhaust the total
output (a result that corresponds in mathematics to Euler’s theorem).9

The model does not determine the scale of an individual, competitive firm that operates
with a constant-returns-to-scale production function. The model will, however, determine
the capital/labor ratio k, as well as the aggregate level of production, because the aggregate
labor force is determined by equation (1.3).

The next step is to define the equilibrium of the economy. In a closed economy, the only
asset in positive net supply is capital, because all the borrowing and lending must cancel
within the economy. Hence, equilibrium in the asset market requires a = k. If we substitute
this equality, as well as r = f ′(k) − δ and w = f (k) − k · f ′(k), into equation (1.15), we get

k̇ = f (k) − c − (n + δ) · k

Finally, if we follow Solow–Swan in making the assumption that households consume a
constant fraction of their gross income, c = (1 − s) · f (k), we get

k̇ = s · f (k) − (n + δ) · k

which is the same fundamental equation of the Solow–Swan model that we got in equa-
tion (1.13). Hence, introducing competitive markets into the Solow–Swan model does not
change any of the main results.10

1.2.4 The Steady State

We now have the necessary tools to analyze the behavior of the model over time. We first
consider the long run or steady state, and then we describe the short run or transitional
dynamics. We define a steady state as a situation in which the various quantities grow at

9. Euler’s theorem says that if a function F(K , L) is homogeneous of degree one in K and L , then F(K , L) =
FK · K + FL · L . This result can be proven using the equations F(K , L) = L · f (k), FK = f ′(k), and FL = f (k)−
k · f ′(k).

10. Note that, in the previous section and here, we assumed that each person saved a constant fraction of his or her
gross income. We could have assumed instead that each person saved a constant fraction of his or her net income,
f (k) − δk, which in the market setup equals ra + w. In this case, the fundamental equation of the Solow–Swan
model would be k̇ = s · f (k) − (sδ + n) · k. Again, the same equation applies to the household-producer and
market setups.
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constant (perhaps zero) rates.11 In the Solow–Swan model, the steady state corresponds to
k̇ = 0 in equation (1.13),12 that is, to an intersection of the s · f (k) curve with the (n +δ) · k
line in figure 1.1.13 The corresponding value of k is denoted k∗. (We focus here on the
intersection at k > 0 and neglect the one at k = 0.) Algebraically, k∗ satisfies the condition

s · f (k∗) = (n + δ) · k∗ (1.20)

Since k is constant in the steady state, y and c are also constant at the values y∗ = f (k∗)
and c∗ = (1 − s) · f (k∗), respectively. Hence, in the neoclassical model, the per capita
quantities k, y, and c do not grow in the steady state. The constancy of the per capita
magnitudes means that the levels of variables—K , Y , and C—grow in the steady state at
the rate of population growth, n.

Once-and-for-all changes in the level of the technology will be represented by shifts of
the production function, f ( · ). Shifts in the production function, in the saving rate s, in the
rate of population growth n, and in the depreciation rate δ, all have effects on the per capita
levels of the various quantities in the steady state. In figure 1.1, for example, a proportional
upward shift of the production function or an increase in s shifts the s · f (k) curve upward
and leads thereby to an increase in k∗. An increase in n or δ moves the (n + δ) · k line
upward and leads to a decrease in k∗.

It is important to note that a one-time change in the level of technology, the saving rate,
the rate of population growth, and the depreciation rate do not affect the steady-state growth
rates of per capita output, capital, and consumption, which are all still equal to zero. For this
reason, the model as presently specified will not provide explanations of the determinants
of long-run per capita growth.

1.2.5 The Golden Rule of Capital Accumulation and Dynamic Inefficiency

For a given level of A and given values of n and δ, there is a unique steady-state value k∗ > 0
for each value of the saving rate s. Denote this relation by k∗(s), with dk∗(s)/ds > 0. The
steady-state level of per capita consumption is c∗ = (1 − s) · f [k∗(s)]. We know from

11. Some economists use the expression balanced growth path to describe the state in which all variables grow at
a constant rate and use steady state to describe the particular case when the growth rate is zero.

12. We can show that k must be constant in the steady state. Divide both sides of equation (1.13) by k to get
k̇/k = s · f (k)/k − (n + δ). The left-hand side is constant, by definition, in the steady state. Since s, n, and δ are
all constants, it follows that f (k)/k must be constant in the steady state. The time derivative of f (k)/k equals
−{[ f (k) − k f ′(k)]/k} · (k̇/k). The expression f (k) − k f ′(k) equals the marginal product of labor (as shown by
equation [1.19]) and is positive. Therefore, as long as k is finite, k̇/k must equal 0 in the steady state.

13. The intersection in the range of positive k exists and is unique because f (0) = 0, n + δ < limk→0[s · f ′(k)] =
∞, n + δ > limk→∞[s · f ′(k)] = 0, and f ′′(k) < 0.
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Figure 1.2
The golden rule of capital accumulation. The vertical axis shows the steady-state level of consumption per
person that corresponds to each saving rate. The saving rate that maximizes steady-state consumption per person
is called the golden-rule saving rate and is denoted by sGold.

equation (1.20) that s · f (k∗) = (n + δ) · k∗; hence, we can write an expression for c∗ as

c∗(s) = f [k∗(s)] − (n + δ) · k∗(s) (1.21)

Figure 1.2 shows the relation between c∗ and s that is implied by equation (1.21). The
quantity c∗ is increasing in s for low levels of s and decreasing in s for high values of s.
The quantity c∗ attains its maximum when the derivative vanishes, that is, when [ f ′(k∗) −
(n + δ)] · dk∗/ds = 0. Since dk∗/ds > 0, the term in brackets must equal 0. If we denote
the value of k∗ that corresponds to the maximum of c∗ by kgold, then the condition that
determines kgold is

f ′(kgold) = n + δ (1.22)

The corresponding saving rate can be denoted as sgold, and the associated level of steady-state
per capita consumption is given by cgold = f (kgold) − (n + δ) · kgold.

The condition in equation (1.22) is called the golden rule of capital accumulation (see
Phelps, 1966). The source of this name is the biblical Golden Rule, which states, “Do unto
others as you would have others do unto you.” In economic terms, the golden-rule result
can be interpreted as “If we provide the same amount of consumption to members of each
current and future generation—that is, if we do not provide less to future generations than
to ourselves—then the maximum amount of per capita consumption is cgold.”

Figure 1.3 illustrates the workings of the golden rule. The figure considers three possible
saving rates, s1, sgold, and s2, where s1 < sgold < s2. Consumption per person, c, in each
case equals the vertical distance between the production function, f (k), and the appropriate
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Figure 1.3
The golden rule and dynamic inefficiency. If the saving rate is above the golden rule (s2 > sgold in the figure),
a reduction in s increases steady-state consumption per person and also raises consumption per person along the
transition. Since c increases at all points in time, a saving rate above the golden rule is dynamically inefficient. If the
saving rate is below the golden rule (s1 < sgold in the figure), an increase in s increases steady-state consumption
per person but lowers consumption per person along the transition. The desirability of such a change depends on
how households trade off current consumption against future consumption.

s · f (k) curve. For each s, the steady-state value k∗ corresponds to the intersection between
the s · f (k) curve and the (n + δ) · k line. The steady-state per capita consumption, c∗, is
maximized when k∗ = kgold because the tangent to the production function at this point
parallels the (n + δ) · k line. The saving rate that yields k∗ = kgold is the one that makes the
s · f (k) curve cross the (n + δ) · k line at the value kgold. Since s1 < sgold < s2, we also see
in the figure that k∗

1 < kgold < k∗
2 .

An important question is whether some saving rates are better than others. We will be
unable to select the best saving rate (or, indeed, to determine whether a constant saving rate
is desirable) until we specify a detailed objective function, as we do in the next chapter.
We can, however, argue in the present context that a saving rate that exceeds sgold forever
is inefficient because higher quantities of per capita consumption could be obtained at all
points in time by reducing the saving rate.

Consider an economy, such as the one described by the saving rate s2 in figure 1.3, for
which s2 > sgold, so that k∗

2 > k∗
gold and c∗

2 < cgold. Imagine that, starting from the steady
state, the saving rate is reduced permanently to sgold. Figure 1.3 shows that per capita
consumption, c—given by the vertical distance between the f (k) and sgold · f (k) curves—
initially increases by a discrete amount. Then the level of c falls monotonically during the
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transition14 toward its new steady-state value, cgold. Since c∗
2 < cgold, we conclude that c

exceeds its previous value, c∗
2, at all transitional dates, as well as in the new steady state.

Hence, when s > sgold, the economy is oversaving in the sense that per capita consumption
at all points in time could be raised by lowering the saving rate. An economy that oversaves
is said to be dynamically inefficient, because the path of per capita consumption lies below
feasible alternative paths at all points in time.

If s < sgold—as in the case of the saving rate s1 in figure 1.3—then the steady-state amount
of per capita consumption can be increased by raising the saving rate. This rise in the saving
rate would, however, reduce c currently and during part of the transition period. The outcome
will therefore be viewed as good or bad depending on how households weigh today’s
consumption against the path of future consumption. We cannot judge the desirability of an
increase in the saving rate in this situation until we make specific assumptions about how
agents discount the future. We proceed along these lines in the next chapter.

1.2.6 Transitional Dynamics

The long-run growth rates in the Solow–Swan model are determined entirely by exoge-
nous elements—in the steady state, the per capita quantities k, y, and c do not grow and
the aggregate variables K , Y , and C grow at the exogenous rate of population growth n.
Hence, the main substantive conclusions about the long run are that steady-state growth
rates are independent of the saving rate or the level of technology. The model does, however,
have more interesting implications about transitional dynamics. This transition shows how
an economy’s per capita income converges toward its own steady-state value and to the per
capita incomes of other economies.

Division of both sides of equation (1.13) by k implies that the growth rate of k is given by

γk ≡ k̇/k = s · f (k)/k − (n + δ) (1.23)

where we have used the notation γz to represent the growth rate of variable z, notation that
we will use throughout the book. Note that, at all points in time, the growth rate of the level
of a variable equals the per capita growth rate plus the exogenous rate of population growth
n, for example,

K̇/K = k̇/k + n

For subsequent purposes, we shall find it convenient to focus on the growth rate of k, as
given in equation (1.23).

14. In the next subsection we analyze the transitional dynamics of the model.
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Figure 1.4
Dynamics of the Solow–Swan model. The growth rate of k is given by the vertical distance between the saving
curve, s · f (k)/k, and the effective depreciation line, n + δ. If k < k∗, the growth rate of k is positive, and k
increases toward k∗. If k > k∗, the growth rate is negative, and k falls toward k∗. Thus, the steady-state capital
per person, k∗, is stable. Note that, along a transition from an initially low capital per person, the growth rate of k
declines monotonically toward zero. The arrows on the horizontal axis indicate the direction of movement of k
over time.

Equation (1.23) says that k̇/k equals the difference between two terms. The first term,
s · f (k)/k, we call the saving curve and the second term, (n + δ), the depreciation curve.
We plot the two curves versus k in figure 1.4. The saving curve is downward sloping;15 it
asymptotes to infinity at k = 0 and approaches 0 as k tends to infinity.16 The depreciation
curve is a horizontal line at n + δ. The vertical distance between the saving curve and
the depreciation line equals the growth rate of capital per person (from equation [1.23]),
and the crossing point corresponds to the steady state. Since n + δ > 0 and s · f (k)/k falls
monotonically from infinity to 0, the saving curve and the depreciation line intersect once
and only once. Hence, the steady-state capital-labor ratio k∗ > 0 exists and is unique.

Figure 1.4 shows that, to the left of the steady state, the s · f (k)/k curve lies above n + δ.
Hence, the growth rate of k is positive, and k rises over time. As k increases, k̇/k declines
and approaches 0 as k approaches k∗. (The saving curve gets closer to the depreciation

15. The derivative of f (k)/k with respect to k equals −[ f (k)/k − f ′(k)]/k. The expression in brackets equals
the marginal product of labor, which is positive. Hence, the derivative is negative.

16. Note that limk→0[s · f (k)/k] = 0/0. We can apply l’Hôpital’s rule to get limk→0[s · f (k)/k] =
limk→0[s · f ′(k)] = ∞, from the Inada condition. Similarly, the Inada condition limk→∞[ f ′(k)] = 0 implies
limk→∞[s · f (k)/k] = 0.
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line as k gets closer to k∗; hence, k̇/k falls.) The economy tends asymptotically toward the
steady state in which k—and, hence, y and c—do not change.

The reason behind the declining growth rates along the transition is the existence of di-
minishing returns to capital: when k is relatively low, the average product of capital, f (k)/k,
is relatively high. By assumption, households save and invest a constant fraction, s, of this
product. Hence, when k is relatively low, the gross investment per unit of capital, s · f (k)/k,
is relatively high. Capital per worker, k, effectively depreciates at the constant rate n + δ.
Consequently, the growth rate, k̇/k, is also relatively high.

An analogous argument demonstrates that if the economy starts above the steady state,
k(0) > k∗, then the growth rate of k is negative, and k falls over time. (Note from figure 1.4
that, for k > k∗, the n + δ line lies above the s · f (k)/k curve, and, hence, k̇/k < 0.) The
growth rate increases and approaches 0 as k approaches k∗. Thus, the system is globally
stable: for any initial value, k(0) > 0, the economy converges to its unique steady state,
k∗ > 0.

We can also study the behavior of output along the transition. The growth rate of output
per capita is given by

ẏ/y = f ′(k) · k̇/ f (k) = [k · f ′(k)/ f (k)] · (k̇/k) (1.24)

The expression in brackets on the far right is the capital share, that is, the share of the rental
income on capital in total income.17

Equation (1.24) shows that the relation between ẏ/y and k̇/k depends on the behavior
of the capital share. In the Cobb–Douglas case (equation [1.11]), the capital share is the
constant α, and ẏ/y is the fraction α of k̇/k. Hence, the behavior of ẏ/y mimics that of k̇/k.

More generally, we can substitute for k̇/k from equation (1.23) into equation (1.24) to
get

ẏ/y = s · f ′(k) − (n + δ) · Sh(k) (1.25)

where Sh(k) ≡ k · f ′(k)/ f (k) is the capital share. If we differentiate with respect to k and
combine terms, we get

∂(ẏ/y)/∂k =
[

f ′′(k) · k

f (k)

]
· (k̇/k) − (n + δ) f ′(k)

f (k)
· [1 − Sh(k)]

Since 0 < Sh(k) < 1, the last term on the right-hand side is negative. If k̇/k ≥ 0, the first term

17. We showed before that, in a competitive market equilibrium, each unit of capital receives a rental equal to its
marginal product, f ′(k). Hence, k · f ′(k) is the income per person earned by owners of capital, and k · f ′(k)/ f (k)—
the term in brackets—is the share of this income in total income per person.
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on the right-hand side is nonpositive, and, hence, ∂(ẏ/y)/∂k < 0. Thus, ẏ/y necessarily
falls as k rises (and therefore as y rises) in the region in which k̇/k ≥ 0, that is, if k ≤ k∗. If
k̇/k < 0 (k > k∗), the sign of ∂(ẏ/y)/∂k is ambiguous for a general form of the production
function, f (k). However, if the economy is close to its steady state, the magnitude of k̇/k
will be small, and ∂(ẏ/y)/∂k < 0 will surely hold even if k > k∗.

In the Solow–Swan model, which assumes a constant saving rate, the level of consumption
per person is given by c = (1 − s) · y. Hence, the growth rates of consumption and income
per capita are identical at all points in time, ċ/c = ẏ/y. Consumption, therefore, exhibits
the same dynamics as output.

1.2.7 Behavior of Input Prices During the Transition

We showed before that the Solow–Swan framework is consistent with a competitive market
economy in which firms maximize profits and households choose to save a constant fraction
of gross income. It is interesting to study the behavior of wages and interest rates along
the transition as the capital stock increases toward the steady state. We showed that the
interest rate equals the marginal product of capital minus the constant depreciation rate,
r = f ′(k) − δ. Since the interest rate depends on the marginal product of capital, which
depends on the capital stock per person, the interest rate moves during the transition as
capital changes. The neoclassical production function exhibits diminishing returns to capital,
f ′′(k) < 0, so the marginal product of capital declines as capital grows. It follows that the
interest rate declines monotonically toward its steady-state value, given by r∗ = f ′(k∗)−δ.

We also showed that the competitive wage rate was given by w = f (k)−k · f ′(k). Again,
the wage rate moves as capital increases. To see the behavior of the wage rate, we can take
the derivative of w with respect to k to get

∂w

∂k
= f ′(k) − f ′(k) − k · f ′′(k) = −k · f ′′(k) > 0

The wage rate, therefore, increases monotonically as the capital stock grows. In the steady
state, the wage rate is given by w∗ = f (k∗) − k∗ · f ′(k∗).

The behavior of wages and interest rates can be seen graphically in figure 1.5. The curve
shown in the figure is again the production function, f (k). The income per worker received
by individual households is given by

y = w + Rk (1.26)

where R = r + δ is the rental price of capital. Once the interest rate and the wage rate are
determined, y is a linear function of k, with intercept w and slope R.
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Figure 1.5
Input prices during the transition. At k0, the straight line that is tangent to the production function has a slope
that equals the rental price R0 and an intercept that equals the wage rate w0. As k rises toward k1, the rental price
falls toward R1, and the wage rate rises toward w1.

Of course, R depends on k through the marginal productivity condition, f ′(k) = R = r + δ.
Therefore, R, the slope of the income function in equation (1.26), must equal the slope of
f (k) at the specified value of k. The figure shows two values, k0 and k1. The income func-
tions at these two values are given by straight lines that are tangent to f (k) at k0 and k1,
respectively. As k rises during the transition, the figure shows that the slope of the tangent
straight line declines from R0 to R1. The figure also shows that the intercept—which equals
w—rises from w0 to w1.

1.2.8 Policy Experiments

Suppose that the economy is initially in a steady-state position with the capital per person
equal to k∗

1 . Imagine that the saving rate rises permanently from s1 to a higher value s2,
possibly because households change their behavior or the government introduces some
policy that raises the saving rate. Figure 1.6 shows that the s · f (k)/k schedule shifts to
the right. Hence, the intersection with the n + δ line also shifts to the right, and the new
steady-state capital stock, k∗

2 , exceeds k∗
1 .

How does the economy adjust from k∗
1 to k∗

2? At k = k∗
1 , the gap between the s1 · f (k)/k

curve and the n + δ line is positive; that is, saving is more than enough to generate an
increase in k. As k increases, its growth rate falls and approaches 0 as k approaches k∗

2 .
The result, therefore, is that a permanent increase in the saving rate generates temporarily
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n � �
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s1 � f (k)�k
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Figure 1.6
Effects from an increase in the saving rate. Starting from the steady-state capital per person k∗

1 , an increase
in s from s1 to s2 shifts the s · f (k)/k curve to the right. At the old steady state, investment exceeds effective
depreciation, and the growth rate of k becomes positive. Capital per person rises until the economy approaches its
new steady state at k∗

2 > k∗
1 .

positive per capita growth rates. In the long run, the levels of k and y are permanently higher,
but the per capita growth rates return to zero.

The positive transitional growth rates may suggest that the economy could grow forever
by raising the saving rate over and over again. One problem with this line of reasoning
is that the saving rate is a fraction, a number between zero and one. Since people cannot
save more than everything, the saving rate is bounded by one. Notice that, even if people
could save all their income, the saving curve would still cross the depreciation line and,
as a result, long-run per capita growth would stop.18 The reason is that the workings of
diminishing returns to capital eventually bring the economy back to the zero-growth steady
state. Therefore, we can now answer the question that motivated the beginning of this
chapter: “Can income per capita grow forever by simply saving and investing physical
capital?” If the production function is neoclassical, the answer is “no.”

We can also assess permanent changes in the growth rate of population, n. These changes
could reflect shifts of household behavior or changes in government policies that influence
fertility. A decrease in n shifts the depreciation line downward, so that the steady-state level
of capital per worker would be larger. However, the long-run growth rate of capital per
person would remain at zero.

18. Before reaching s = 1, the economy would reach sgold, so that further increases in saving rates would put the
economy in the dynamically inefficient region.
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A permanent, once-and-for-all improvement in the level of the technology has similar,
temporary effects on the per capita growth rates. If the production function f (k) shifts
upward in a proportional manner, then the saving curve shifts upward, just as in figure 1.6.
Hence, k̇/k again becomes positive temporarily. In the long run, the permanent improvement
in technology generates higher levels of k and y but no changes in the per capita growth
rates. The key difference between improvements in knowledge and increases in the saving
rate is that improvements in knowledge are not bounded. That is, the production function
can shift over and over again because, in principle, there are no limits to human knowledge.
The saving rate, however, is physically bounded by one. It follows that, if we want to
generate growth in long-run per capita income and consumption within the neoclassical
framework, growth must come from technological progress rather than from physical capital
accumulation.

We observed before (note 3) that differences in government policies and institutions can
amount to variations in the level of the technology. For example, high tax rates on capital
income, failures to protect property rights, and distorting government regulations can be
economically equivalent to a poorer level of technology. However, it is probably infeasible
to achieve perpetual growth through an unending sequence of improvements in government
policies and institutions. Therefore, in the long run, sustained growth would still depend on
technological progress.

1.2.9 An Example: Cobb–Douglas Technology

We can illustrate the results for the case of a Cobb–Douglas production function (equa-
tion [1.11]). The steady-state capital-labor ratio is determined from equation (1.20) as

k∗ = [s A/(n + δ)]1/(1−α) (1.27)

Note that, as we saw graphically for a more general production function f (k), k∗ rises with
the saving rate s and the level of technology A, and falls with the rate of population growth
n and the depreciation rate δ. The steady-state level of output per capita is given by

y∗ = A1/(1−α) · [s/(n + δ)]α/(1−α)

Thus y∗ is a positive function of s and A, and a negative function of n and δ.
Along the transition, the growth rate of k is given from equation (1.23) by

k̇/k = s Ak−(1−α) − (n + δ) (1.28)

If k(0) < k∗, then k̇/k in equation (1.28) is positive. This growth rate declines as k rises
and approaches 0 as k approaches k∗. Since equation (1.24) implies ẏ/y = α · (k̇/k), the
behavior of ẏ/y mimics that of k̇/k. In particular, the lower y(0), the higher ẏ/y.
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A Closed-Form Solution It is interesting to notice that, when the production function is
Cobb–Douglas and the saving rate is constant, it is possible to get a closed-form solution
for the exact time path of k. Equation (1.28) can be written as

k̇ · k−α + (n + δ) · k1−α = s A

If we define v ≡ k1−α , we can transform the equation to(
1

1 − α

)
· v̇ + (n + δ) · v = s A

which is a first-order, linear differential equation in v. The solution to this equation is

v ≡ k1−α = s A

(n + δ)
+

{
[k(0)]1−α − s A

(n + δ)

}
· e−(1−α) · (n+δ) · t

The last term is an exponential function with exponent equal to −(1 − α) · (n + δ). Hence,
the gap between k1−α and its steady-state value, s A/(n+δ), vanishes exactly at the constant
rate (1 − α) · (n + δ).

1.2.10 Absolute and Conditional Convergence

The fundamental equation of the Solow–Swan model (equation [1.23]) implies that the
derivative of k̇/k with respect to k is negative:

∂(k̇/k)/∂k = s · [ f ′(k) − f (k)/k]/k < 0

Other things equal, smaller values of k are associated with larger values of k̇/k. An important
question arises: does this result mean that economies with lower capital per person tend to
grow faster in per capita terms? In other words, does there tend to be convergence across
economies?

To answer these questions, consider a group of closed economies (say, isolated regions or
countries) that are structurally similar in the sense that they have the same values of the pa-
rameters s, n, and δ and also have the same production function f ( · ). Thus, the economies
have the same steady-state values k∗ and y∗. Imagine that the only difference among the
economies is the initial quantity of capital per person k(0). These differences in starting val-
ues could reflect past disturbances, such as wars or transitory shocks to production functions.
The model then implies that the less-advanced economies—with lower values of k(0) and
y(0)—have higher growth rates of k and, in the typical case, also higher growth rates of y.19

19. This conclusion is unambiguous if the production function is Cobb–Douglas, if k ≤ k∗, or if k is only a small
amount above k∗.
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Figure 1.4 distinguished two economies, one with the low initial value, k(0)poor, and the
other with the high initial value, k(0)rich. Since each economy has the same underlying
parameters, the dynamics of k are determined in each case by the same s · f (k)/k and n + δ

curves. Hence, the growth rate k̇/k is unambiguously higher for the economy with the lower
initial value, k(0)poor. This result implies a form of convergence: regions or countries with
lower starting values of the capital-labor ratio have higher per capita growth rates k̇/k, and
tend thereby to catch up or converge to those with higher capital-labor ratios.

The hypothesis that poor economies tend to grow faster per capita than rich ones—
without conditioning on any other characteristics of economies—is referred to as absolute
convergence. This hypothesis receives only mixed reviews when confronted with data on
groups of economies. We can look, for example, at the growth experience of a broad cross
section of countries over the period 1960 to 2000. Figure 1.7 plots the average annual growth
rate of real per capita GDP against the log of real per capita GDP at the start of the period,
1960, for 114 countries. The growth rates are actually positively correlated with the initial
position; that is, there is some tendency for the initially richer countries to grow faster in
per capita terms. Thus, this sample rejects the hypothesis of absolute convergence.

�.04

�.02

.00

.02

.04

.06

.08

5 6 7 8 9 10

G
ro

w
th

 r
at

e 
of

 p
er

 c
ap

ita
 G

D
P,

 1
96

0–
20

00

Log of per capita GDP in 1960

Figure 1.7
Convergence of GDP across countries: Growth rate versus initial level of real per capita GDP for 114 coun-
tries. For a sample of 114 countries, the average growth rate of GDP per capita from 1960 to 2000 (shown on
the vertical axis) has little relation with the 1960 level of real per capita GDP (shown on the horizontal axis).
The relation is actually slightly positive. Hence, absolute convergence does not apply for a broad cross section of
countries.
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Convergence of GDP across OECD countries: Growth rate versus initial level of real per capita GDP for
18 OECD countries. If the sample is limited to 18 original OECD countries (from 1961), the average growth rate
of real per capita GDP from 1960 to 2000 is negatively related to the 1960 level of real per capita GDP. Hence,
absolute convergence applies for these OECD countries.

The hypothesis fares better if we examine a more homogeneous group of economies.
Figure 1.8 shows the results if we limit consideration to 18 relatively advanced countries that
were members of the Organization for Economic Cooperation and Development (OECD)
from the start of the organization in 1961.20 In this case, the initially poorer countries did
experience significantly higher per capita growth rates.

This type of result becomes more evident if we consider an even more homogeneous
group, the continental U.S. states, each viewed as a separate economy. Figure 1.9 plots the
growth rate of per capita personal income for each state from 1880 to 2000 against the log
of per capita personal income in 1880.21 Absolute convergence—the initially poorer states
growing faster in per capita terms—holds clearly in this diagram.

We can accommodate the theory to the empirical observations on convergence if we
allow for heterogeneity across economies, in particular, if we drop the assumption that all
economies have the same parameters, and therefore, the same steady-state positions. If the

20. Germany is omitted because of missing data, and Turkey is omitted because it was not an advanced economy
in 1960.

21. There are 47 observations on U.S. states or territories. Oklahoma is omitted because 1880 preceded the
Oklahoma land rush, and the data are consequently unavailable.
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Figure 1.9
Convergence of personal income across U.S. states: 1880 personal income and income growth from 1880
to 2000. The relation between the growth rate of per capita personal income from 1880 to 2000 (shown on the
vertical axis) is negatively related to the level of per capita income in 1880 (shown on the horizontal axis). Thus
absolute convergence holds for the states of the United States.

steady states differ, we have to modify the analysis to consider a concept of conditional
convergence. The main idea is that an economy grows faster the further it is from its own
steady-state value.

We illustrate the concept of conditional convergence in figure 1.10 by considering two
economies that differ in only two respects: first, they have different initial stocks of capital
per person, k(0)poor < k(0)rich, and second, they have different saving rates, spoor �= srich. Our
previous analysis implies that differences in saving rates generate differences in the same
direction in the steady-state values of capital per person, that is, k∗

poor �= k∗
rich. [In figure 1.10,

these steady-state values are determined by the intersection of the si · f (k)/k curves with
the common n + δ line.] We consider the case in which spoor < srich and, hence, k∗

poor < k∗
rich

because these differences likely explain why k(0)poor < k(0)rich applies at the initial date.
(It is also true empirically, as discussed in the introduction, that countries with higher levels
of real per capita GDP tend to have higher saving rates.)
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n � �
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Figure 1.10
Conditional convergence. If a rich economy has a higher saving rate than a poor economy, the rich economy
may be proportionately further from its steady-state position. In this case, the rich economy would be predicted
to grow faster per capita than the poor economy; that is, absolute convergence would not hold.

The question is, Does the model predict that the poor economy will grow faster than the
rich one? If they have the same saving rate, then the per capita growth rate—the distance
between the s · f (k)/k curve and the n+δ line—would be higher for the poor economy, and
(k̇/k)poor > (k̇/k)rich would apply. However, if the rich economy has a higher saving rate, as
in figure 1.10, then (k̇/k)poor < (k̇/k)rich might hold, so that the rich economy grows faster.
The intuition is that the low saving rate of the poor economy offsets its higher average
product of capital as a determinant of economic growth. Hence, the poor economy may
grow at a slower rate than the rich one.

The neoclassical model does predict that each economy converges to its own steady state
and that the speed of this convergence relates inversely to the distance from the steady state.
In other words, the model predicts conditional convergence in the sense that a lower starting
value of real per capita income tends to generate a higher per capita growth rate, once we
control for the determinants of the steady state.

Recall that the steady-state value, k∗, depends on the saving rate, s, and the level of the
production function, f ( · ). We have also mentioned that government policies and institutions
can be viewed as additional elements that effectively shift the position of the production
function. The findings on conditional convergence suggest that we should hold constant
these determinants of k∗ to isolate the predicted inverse relationship between growth rates
and initial positions.
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Algebraically, we can illustrate the concept of conditional convergence by returning to
the formula for k̇/k in equation (1.23). One of the determinants of k̇/k is the saving rate s.
We can use the steady-state condition from equation (1.20) to express s as follows:

s = (n + δ) · k∗/ f (k∗)

If we replace s by this expression in equation (1.23), then k̇/k can be expressed as

k̇/k = (n + δ) ·
[

f (k)/k

f (k∗)/k∗ − 1

]
(1.29)

Equation (1.29) is consistent with k̇/k = 0 when k = k∗. For given k∗, the formula implies
that a reduction in k, which raises the average product of capital, f (k)/k, increases k̇/k. But
a lower k matches up with a higher k̇/k only if the reduction is relative to the steady-state
value, k∗. In particular, f (k)/k must be high relative to the steady-state value, f (k∗)/k∗.
Thus a poor country would not be expected to grow rapidly if its steady-state value, k∗, is
as low as its current value, k.

In the case of a Cobb–Douglas technology, the saving rate can be written as

s = (n + δ)

A
· k∗(1−α)

which we can substitute into equation (1.23) to get

k̇/k = (n + δ) ·
[(

k

k∗

)α−1

− 1

]
(1.30)

We see that the growth rate of capital, k, depends on the ratio k/k∗; that is, it depends on
the distance between the current and steady-state capital-labor ratio.

The result in equation (1.29) suggests that we should look empirically at the relation
between the per capita growth rate, ẏ/y, and the starting position, y(0), after holding
fixed variables that account for differences in the steady-state position, y∗. For a relatively
homogeneous group of economies, such as the U.S. states, the differences in steady-state
positions may be minor, and we would still observe the convergence pattern shown in
figure 1.9. For a broad cross section of 114 countries, however, as shown in figure 1.7, the
differences in steady-state positions are likely to be substantial. Moreover, the countries
with low starting levels, y(0), are likely to be in this position precisely because they have
low steady-state values, y∗, perhaps because of chronically low saving rates or persistently
bad government policies that effectively lower the level of the production function. In other
words, the per capita growth rate may have little correlation with log[y(0)], as in figure 1.7,
because log[y(0)] is itself uncorrelated with the gap from the steady state, log[y(0)/y∗]. The
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perspective of conditional convergence indicates that this gap is the variable that matters
for the subsequent per capita growth rate.

We show in chapter 12 that the inclusion of variables that proxy for differences in steady-
state positions makes a major difference in the results for the broad cross section of countries.
When these additional variables are held constant, the relation between the per capita growth
rate and the log of initial real per capita GDP becomes significantly negative, as predicted
by the neoclassical model. In other words, the cross-country data support the hypothesis of
conditional convergence.

1.2.11 Convergence and the Dispersion of Per Capita Income

The concept of convergence considered thus far is that economies with lower levels of per
capita income (expressed relative to their steady-state levels of per capita income) tend to
grow faster in per capita terms. This behavior is often confused with an alternative meaning
of convergence, that the dispersion of real per capita income across a group of economies
or individuals tends to fall over time.22 We show now that, even if absolute convergence
holds in our sense, the dispersion of per capita income need not decline over time.

Suppose that absolute convergence holds for a group of economies i = 1, . . . , N , where
N is a large number. In discrete time, corresponding for example to annual data, the real
per capita income for economy i can then be approximated by the process

log(yit ) = a + (1 − b) · log(yi,t−1) + uit (1.31)

where a and b are constants, with 0 < b < 1, and uit is a disturbance term. The condition b > 0
implies absolute convergence because the annual growth rate, log(yit/yi,t−1), is inversely
related to log(yi,t−1). A higher coefficient b corresponds to a greater tendency toward
convergence.23 The disturbance term picks up temporary shocks to the production function,
the saving rate, and so on. We assume that uit has zero mean, the same variance σ 2

u for all
economies, and is independent over time and across economies.

One measure of the dispersion or inequality of per capita income is the sample variance
of the log(yit ):

Dt ≡ 1

N
·

N∑
i=1

[log(yit ) − µt ]
2

22. See Sala-i-Martin (1990) and Barro and Sala-i-Martin (1992a) for further discussion of the two concepts of
convergence.

23. The condition b < 1 rules out a leapfrogging or overshooting effect, whereby an economy that starts out behind
another economy would be predicted systematically to get ahead of the other economy at some future date. This
leapfrogging effect cannot occur in the neoclassical model but can arise in some models of technological adaptation
that we discuss in chapter 8.
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where µt is the sample mean of the log(yit ). If there are a large number N of observations,
the sample variance is close to the population variance, and we can use equation (1.31) to
derive the evolution of Dt over time:

Dt ≈ (1 − b)2 · Dt−1 + σ 2
u

This first-order difference equation for dispersion has a steady state given by

D∗ = σ 2
u /[1 − (1 − b)2]

Hence, the steady-state dispersion falls with b (the strength of the convergence effect) but
rises with the variance σ 2

u of the disturbance term. In particular, D∗ > 0 even if b > 0, as
long as σ 2

u > 0.

The evolution of Dt can be expressed as

Dt = D∗ + (1 − b)2 · (Dt−1 − D∗) = D∗ + (1 − b)2t · (D0 − D∗) (1.32)

where D0 is the dispersion at time 0. Since 0 < b < 1, Dt monotonically approaches its
steady-state value, D∗, over time. Equation (1.32) implies that Dt rises or falls over time
depending on whether D0 begins below or above the steady-state value.24 Note especially
that a rising dispersion is consistent with absolute convergence (b > 0).

These results about convergence and dispersion are analogous to Galton’s fallacy about
the distribution of heights in a population (see Quah, 1993, and Hart, 1995, for discussions).
The observation that heights in a family tend to regress toward the mean across generations
(a property analogous to our convergence concept for per capita income) does not imply that
the dispersion of heights across the full population (a measure that parallels the dispersion
of per capita income across economies) tends to narrow over time.

1.2.12 Technological Progress

Classification of Inventions We have assumed thus far that the level of technology is
constant over time. As a result, we found that all per capita variables were constant in the
long run. This feature of the model is clearly unrealistic; in the United States, for example,
the average per capita growth rate has been positive for over two centuries. In the absence of
technological progress, diminishing returns would have made it impossible to maintain per
capita growth for so long just by accumulating more capital per worker. The neoclassical
economists of the 1950s and 1960s recognized this problem and amended the basic model

24. We could extend the model by allowing for temporary shocks to σ 2
u or for major disturbances like wars or oil

shocks that affect large subgroups of economies in a common way. In this extended model, the dispersion could
depart from the deterministic path that we derived; for example, Dt could rise in some periods even if D0 began
above its steady-state value.
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to allow the technology to improve over time. These improvements provided an escape from
diminishing returns and thus enabled the economy to grow in per capita terms in the long
run. We now explore how the model works when we allow for such technological advances.

Although some discoveries are serendipitous, most technological improvements reflect
purposeful activity, such as research and development (R&D) carried out in universities
and corporate or government laboratories. This research is sometimes financed by private
institutions and sometimes by governmental agencies, such as the National Science Foun-
dation. Since the amount of resources devoted to R&D depends on economic conditions,
the evolution of the technology also depends on these conditions. This relation will be the
subject of our analysis in chapters 6–8. At present, we consider only the simpler case in
which the technology improves exogenously.

The first issue is how to introduce exogenous technological progress into the model.
This progress can take various forms. Inventions may allow producers to generate the same
amount of output with either relatively less capital input or relatively less labor input, cases
referred to as capital-saving or labor-saving technological progress, respectively. Inventions
that do not save relatively more of either input are called neutral or unbiased.

The definition of neutral technological progress depends on the precise meaning of capital
saving and labor saving. Three popular definitions are due to Hicks (1932), Harrod (1942),
and Solow (1969).

Hicks says that a technological innovation is neutral (Hicks neutral) if the ratio of marginal
products remains unchanged for a given capital-labor ratio. This property corresponds to a
renumbering of the isoquants, so that Hicks-neutral production functions can be written as

Y = T (t) · F(K , L) (1.33)

where T (t) is the index of the state of the technology, and Ṫ (t) ≥ 0.

Harrod defines an innovation as neutral (Harrod neutral) if the relative input shares,
(K · FK )/(L · FL), remain unchanged for a given capital-output ratio. Robinson (1938) and
Uzawa (1961) showed that this definition implied that the production function took the form

Y = F[K , L · T (t)] (1.34)

where T (t) is the index of the technology, and Ṫ (t) ≥ 0. This form is called labor-augmenting
technological progress because it raises output in the same way as an increase in the stock
of labor. (Notice that the technology factor, T (t), appears in the production function as a
multiple of L .)

Finally, Solow defines an innovation as neutral (Solow neutral) if the relative input shares,
(L · FL)/(K · FK ), remain unchanged for a given labor/output ratio. This definition can be
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shown to imply a production function of the form

Y = F[K · T (t), L] (1.35)

where T (t) is the index of the technology, and Ṫ (t) ≥ 0. Production functions of this form
are called capital augmenting because a technological improvement increases production
in the same way as an increase in the stock of capital.

The Necessity for Technological Progress to Be Labor Augmenting Suppose that we
consider only constant rates of technological progress. Then, in the neoclassical growth
model with a constant rate of population growth, only labor-augmenting technological
change turns out to be consistent with the existence of a steady state, that is, with constant
growth rates of the various quantities in the long run. This result is proved in the appendix
to this chapter (section 1.5).

If we want to consider models that possess a steady state, we have to assume that tech-
nological progress takes the labor-augmenting form. Another approach, which would be
substantially more complicated, would be to deal with models that lack steady states, that is,
in which the various growth rates do not approach constants in the long run. However, one
reason to stick with the simpler framework that possesses a steady state is that the long-term
experiences of the United States and some other developed countries indicate that per capita
growth rates can be positive and trendless over long periods of time (see chapter 12). This
empirical phenomenon suggests that a useful theory would predict that per capita growth
rates approach constants in the long run; that is, the model would possess a steady state.

If the production function is Cobb–Douglas, Y = AK α L1−α in equation (1.11), then
it is clear from inspection that the form of technological progress—augmenting A, K ,
or L—will not matter for the results (see the appendix for discussion). Thus, in the
Cobb–Douglas case, we will be safe in assuming that technological progress is labor aug-
menting. Recall that the key property of the Cobb–Douglas function is that, in a competitive
setting, the factor-income shares are constant. Thus, if factor-income shares are reasonably
stable—as seems to be true for the U.S. economy but not for some others—we may be
okay in regarding the production function as approximately Cobb–Douglas and, hence, in
assuming that technogical progress is labor augmenting.

Another approach, when the production function is not Cobb–Douglas, is to derive the
form of technological progress from a theory of technological change. Acemoglu (2002)
takes this approach, using a variant of the model of endogenous technological change that
we develop in chapter 6. He finds that, under some conditions, the form of technological
progress would be asymptotically labor augmenting.
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The Solow–Swan Model with Labor-Augmenting Technological Progress We assume
now that the production function includes labor-augmenting technological progress, as
shown in equation (1.34), and that the technology term, T (t), grows at the constant rate x .
The condition for the change in the capital stock is

K̇ = s · F[K , L · T (t)] − δK

If we divide both sides of this equation by L , we can derive an expression for the change in
k over time:

k̇ = s · F[k, T (t)] − (n + δ) · k (1.36)

The only difference from equation (1.13) is that output per person now depends on the level
of the technology, T (t).

Divide both sides of equation (1.36) by k to compute the growth rate:

k̇/k = s · F[k, T (t)]/k − (n + δ) (1.37)

As in equation (1.23), k̇/k equals the difference between two terms, where the first term is
the product of s and the average product of capital, and the second term is n + δ. The only
difference is that now, for given k, the average product of capital, F[k, T (t)]/k, increases
over time because of the growth in T (t) at the rate x . In terms of figure 1.4, the downward-
sloping curve, s · F( · )/k, shifts continually to the right, and, hence, the level of k that
corresponds to the intersection between this curve and the n + δ line also shifts continually
to the right. We now compute the growth rate of k in the steady state.

By definition, the steady-state growth rate, (k̇/k)∗, is constant. Since s, n, and δ are
also constants, equation (1.37) implies that the average product of capital, F[k, T (t)]/k,
is constant in the steady state. Because of constant returns to scale, the expression for the
average product equals F[1, T (t)/k] and is therefore constant only if k and T (t) grow at
the same rate, that is, (k̇/k)∗ = x .

Output per capita is given by

y = F[k, T (t)] = k · F[1, T (t)/k]

Since k and T (t) grow in the steady state at the rate x , the steady-state growth rate of y
equals x . Moreover, since c = (1 − s) · y, the steady-state growth rate of c also equals x .

To analyze the transitional dynamics of the model with technological progress, it will be
convenient to rewrite the system in terms of variables that remain constant in the steady
state. Since k and T (t) grow in the steady state at the same rate, we can work with the ratio
k̂ ≡ k/T (t)= K/[L · T (t)]. The variable L · T (t) ≡ L̂ is often called the effective amount of
labor—the physical quantity of labor, L , multiplied by its efficiency, T (t). (The terminology
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effective labor is appropriate because the economy operates as if its labor input were L̂ .)
The variable k̂ is then the quantity of capital per unit of effective labor.

The quantity of output per unit of effective labor, ŷ ≡ Y/[L · T (t)], is given by

ŷ = F(k̂, 1) ≡ f (k̂) (1.38)

Hence, we can again write the production function in intensive form if we replace y and k
by ŷ and k̂, respectively. If we proceed as we did before to get equations (1.13) and (1.23),
but now use the condition that A(t) grows at the rate x , we can derive the dynamic equation
for k̂:

˙̂k/k̂ = s · f (k̂)/k̂ − (x + n + δ) (1.39)

The only difference between equations (1.39) and (1.23), aside from the hats (ˆ), is that
the last term on the right-hand side includes the parameter x . The term x + n + δ is now the
effective depreciation rate for k̂ ≡ K/L̂ . If the saving rate, s, were zero, k̂ would decline
partly due to depreciation of K at the rate δ and partly due to growth of L̂ at the rate x + n.

Following an argument similar to that of section 1.2.4, we can show that the steady-state
growth rate of k̂ is zero. The steady-state value k̂∗ satisfies the condition

s · f (k̂∗) = (x + n + δ) · k̂∗ (1.40)

The transitional dynamics of k̂ are qualitatively similar to those of k in the previous model.
In particular, we can construct a picture like figure 1.4 in which the horizontal axis involves
k̂, the downward-sloping curve is now s · f (k̂)/k̂, and the horizontal line is at the level
x + n + δ, rather than n + δ. The new construction is shown in figure 1.11. We can use this
figure, as we used figure 1.4 before, to assess the relation between the initial value, k̂(0),
and the growth rate, ˙̂k/k̂.

In the steady state, the variables with hats—k̂, ŷ, ĉ—are now constant. Therefore, the per
capita variables—k, y, c—now grow in the steady state at the exogenous rate of technological
progress, x .25 The level variables—K , Y , C—grow accordingly in the steady state at the
rate n + x , that is, the sum of population growth and technological change. Note that, as in
the prior analysis that neglected technological progress, shifts to the saving rate or the level
of the production function affect long-run levels—k̂∗, ŷ∗, ĉ∗—but not steady-state growth
rates. As before, these kinds of disturbances influence growth rates during the transition
from an initial position, represented by k̂(0), to the steady-state value, k̂∗.

25. We always have the condition (1/k̂) · (dk̂/dt) = k̇/k − x . Therefore, (1/k̂) · (dk̂/dt) = 0 implies k̇/k = x ,
and similarly for ẏ/y and ċ/c.
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x � n � �

s � f (k̂)�k̂

k̂*
k̂

Figure 1.11
The Solow–Swan model with technological progress. The growth rate of capital per effective worker (k̂ ≡
K/LT ) is given by the vertical distance between the s · f (k̂)/k̂ curve and the effective depreciation line, x +n +δ.
The economy is at a steady state when k̂ is constant. Since T grows at the constant rate x , the steady-state growth
rate of capital per person, k, also equals x .

1.2.13 A Quantitative Measure of the Speed of Convergence

It is important to know the speed of the transitional dynamics. If convergence is rapid, we
can focus on steady-state behavior, because most economies would typically be close to
their steady states. Conversely, if convergence is slow, economies would typically be far
from their steady states, and, hence, their growth experiences would be dominated by the
transitional dynamics.

We now provide a quantitative assessment of how fast the economy approaches its steady
state for the case of a Cobb–Douglas production function, shown in equation (1.11). (We
generalize later to a broader class of production functions.) We can use equation (1.39),
with L replaced by L̂ , to determine the growth rate of k̂ in the Cobb–Douglas case as

˙̂k/k̂ = s A · (k̂)−(1−α) − (x + n + δ) (1.41)

The speed of convergence, β, is measured by how much the growth rate declines as the
capital stock increases in a proportional sense, that is,

β ≡ −∂( ˙̂k/k̂)

∂ log k̂
(1.42)
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Notice that we define β with a negative sign because the derivative is negative, so that β is
positive.

To compute β, we have to rewrite the growth rate in equation (1.41) as a function of
log(k̂):

˙̂k/k̂ = s A · e−(1−α) · log(k̂) − (x + n + δ) (1.43)

We can take the derivative of equation (1.43) with respect to log(k̂) to get an expression
for β:

β = (1 − α) · s A · (k̂)−(1−α) (1.44)

Notice that the speed of convergence is not constant but, rather, declines monotonically as
the capital stock increases toward its steady-state value. At the steady state, s A · (k̂)−(1−α) =
(x + n + δ) holds. Therefore, in the neighborhood of the steady state, the speed of conver-
gence equals

β∗ = (1 − α) · (x + n + δ) (1.45)

During the transition to the steady state, the convergence rate, β, exceeds β∗ but declines
over time.

Another way to get the formula for β∗ is to consider a log-linear approximation of
equation (1.41) in the neighborhood of the steady state:

˙̂k/k̂ ∼= −β∗ · [log(k̂/k̂∗)] (1.46)

where the coefficient β∗ comes from a log-linearization of equation (1.41) around the steady
state. The resulting coefficient can be shown to equal the right-hand side of equation (1.45).
See the appendix at the end of this chapter (section 1.5) for the method of derivation of this
log-linearization.

Before we consider further the implications of equation (1.45), we will show that it
applies also to the growth rate of ŷ. For a Cobb–Douglas production function, shown in
equation (1.11), we have

˙̂y/ŷ = α · ( ˙̂k/k̂)

log(ŷ/ŷ∗) = α · log(k̂/k̂∗)

If we substitute these formulas into equation (1.46), we get

˙̂y/ŷ ≈ −β∗ · [log(ŷ/ŷ∗)] (1.47)

Hence, the convergence coefficient for ŷ is the same as that for k̂.
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The termβ∗ = (1−α) · (x + n + δ) in equation (1.45) indicates how rapidly an economy’s
output per effective worker, ŷ, approaches its steady-state value, ŷ∗, in the neighborhood
of the steady state. For example, if β∗ = 0.05 per year, 5 percent of the gap between ŷ
and ŷ∗ vanishes in one year. The half-life of convergence—the time that it takes for half
the initial gap to be eliminated—is thus about 14 years.26 It would take about 28 years for
three-quarters of the gap to vanish.

Consider what the theory implies quantitatively about the convergence coefficient, β∗ =
(1 − α) · (x + n + δ), in equation (1.45). One property is that the saving rate, s, does not
affect β∗. This result reflects two offsetting forces that exactly cancel in the Cobb–Douglas
case. First, given k̂, a higher saving rate leads to greater investment and, therefore, to a
faster speed of convergence. Second, a higher saving rate raises the steady-state capital
intensity, k̂∗, and thereby lowers the average product of capital in the vicinity of the steady
state. This effect reduces the speed of convergence. The coefficient β∗ is also independent
of the overall level of efficiency of the economy, A. Differences in A, like differences in s,
have two offsetting effects on the convergence speed, and these effects exactly cancel in the
Cobb–Douglas case.

To see the quantitative implications of the parameters that enter into equation (1.45),
consider the benchmark values x = 0.02 per year, n = 0.01 per year, and δ = 0.05 per year.
These values appear reasonable, for example, for the U.S. economy. The long-term growth
rate of real GDP, which is about 2 percent per year, corresponds in the theory to the
parameter x . The rate of population growth in recent decades is about 1 percent per year,
and the measured depreciation rate for the overall stock of structures and equipment is
around 5 percent per year.

For given values of the parameters x , n, and δ, the coefficient β∗ in equation (1.45) is
determined by the capital-share parameter, α. A conventional share for the gross income
accruing to a narrow concept of physical capital (structures and equipment) is about 1

3
(see Denison, 1962; Maddison, 1982; and Jorgenson, Gollop, and Fraumeni, 1987). If we
use α = 1

3 , equation (1.45) implies β∗ = 5.6 percent per year, which implies a half-life of
12.5 years. In other words, if the capital share is 1

3 , the neoclassical model predicts relatively
short transitions.

26. Equation (1.47) is a differential equation in log[ŷ(t)] with the solution

log[ŷ(t)] = (1 − e−β∗t ) · log(ŷ∗) + e−β∗t · log[ŷ(0)]

The time t for which log[ŷ(t)] is halfway between log[ŷ(0)] and log(ŷ∗) satisfies the condition e−β∗t = 1/2. The
half-life is therefore log(2)/β∗ = 0.69/β∗. Hence, if β∗ = 0.05 per year, the half-life is 14 years.
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In chapters 11 and 12 we argue that this predicted speed of convergence is much too
high to accord with the empirical evidence. A convergence coefficient, β, in the range of
1.5 percent to 3.0 percent per year appears to fit better with the data. If β∗ = 2.0 percent
per year, the half-life is about 35 years, and the time needed to eliminate three-quarters of
an initial gap from the steady-state position is about 70 years. In other words, convergence
speeds that are consistent with the empirical evidence imply that the time required for
substantial convergence is typically on the order of several generations.

To accord with an observed rate of convergence of about 2 percent per year, the neoclassi-
cal model requires a much higher capital-share coefficient. For example, the value α = 0.75,
together with the benchmark values for the other parameters, implies β∗ = 2.0 percent
per year. Although a capital share of 0.75 is too high for a narrow concept of physi-
cal capital, this share is reasonable for an expanded measure that also includes human
capital.

An Extended Solow–Swan Model with Physical and Human Capital One way to
increase the capital share is to add human capital to the model. Consider a Cobb–Douglas
production function that uses physical capital, K , human capital, H ,27 and raw labor, L:

Y = AK α Hη[T (t) · L]1−α−η (1.48)

where T (t) again grows at the exogenous rate x . Divide the production function by T (t) · L
to get output per unit of effective labor:

ŷ = Ak̂α ĥη (1.49)

Output can be used on a one-to-one basis for consumption or investment in either type
of capital. Following Solow and Swan, we still assume that people consume a constant
fraction, 1 − s, of their gross income, so the accumulation is given by

˙̂k + ˙̂h = s Ak̂α ĥη − (δ + n + x) · (k̂ + ĥ) (1.50)

where we have assumed that the two capital goods depreciate at the same constant rate.
The key question is how overall savings will be allocated between physical and human

capital. It is reasonable to think that households will invest in the capital good that delivers
the higher return, so that the two rates of return—and, hence, the two marginal products of
capital—will have to be equated if both forms of investment are taking place. Therefore,

27. Chapters 4 and 5 discuss human capital in more detail.
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we have the condition28

α · ŷ

k̂
− δ = η · ŷ

ĥ
− δ (1.51)

The equality between marginal products implies a one-to-one relationship between phys-
ical and human capital:

ĥ = η

α
· k̂ (1.52)

We can use this relation to eliminate ĥ from equation (1.50) to get

˙̂k = s Ãk̂α+η − (δ + n + x) · k̂ (1.53)

where Ã ≡ (
ηηα(1−η)

α+η
) · A is a constant. Notice that this accumulation equation is the same as

equation (1.41), except that the exponent on the capital stock per worker is now the sum of
the physical and human capital shares, α + η, instead of α. Using a derivation analogous to
that of the previous section, we therefore get an expression for the convergence coefficient
in the steady state:

β∗ = (1 − α − η) · (δ + n + x) (1.54)

Jorgenson, Gollop, and Fraumeni (1987) estimate a human-capital share of between 0.4 and
0.5. With η = 0.4 and with the benchmark parameters of the previous section, including
α = 1

3 , the predicted speed of convergence would be β∗ = 0.021. Thus, with a broad concept
of capital that includes human capital, the Solow–Swan model can generate the rates of
convergence that have been observed empirically.

Mankiw, Romer, and Weil (1992) use a production function analogous to equation (1.48).
However, instead of making the Solow–Swan assumption that the overall gross saving rate
is constant and exogenous, they assume that the investment rates in the two forms of capital
are each constant and exogenous. For physical capital, the growth rate is therefore

˙̂k = sk Ãk̂α−1ĥη − (δ + n + x) = sk Ã · e−(1−α) ln k̂ · eη ln ĥ − (δ + n + x) (1.55)

28. In a market setup, profit would be π = AK α
t Hη

t (Tt Lt )
1−α−η − Rk K − Rh H − wL , where Rk and Rh are

the rental rates of physical and human capital, respectively. The first-order conditions for the firm require that
the marginal products of each of the capital goods be equalized to the rental rates, Rk = α

ŷ
k̂

and Rh = η
ŷ
ĥ

. In
an environment without uncertainty, like the one we are considering, physical capital, human capital, and loans
are perfect substitutes as stores of value and, as a result, their net returns must be the same. In other words,
r = Rk − δ = Rh − δ. Optimizing firms will, therefore, rent physical and human capital up to the point where
their marginal products are equal.
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where sk is an exogenous constant. Similarly, for human capital, the growth rate is

˙̂h = sh Ãk̂α ĥη−1 − (δ + n + x) = sh Ã · eα ln k̂ · e−(1−η) ln ĥ − (δ + n + x) (1.56)

where sh is another exogenous constant. A shortcoming of this approach is that the rates of
return to physical and human capital are not equated.

The growth rate of ŷ is a weighted average of the growth rates of the two inputs:

˙̂y/ŷ = α · ( ˙̂k/k̂) + η · ( ˙̂h/ĥ)

If we use equations (1.55) and (1.56) and take a two-dimensional first-order Taylor-series
expansion, we get

˙̂y/ŷ = [
αsk Ã · e−(1−α) ln k̂∗ · eη ln ĥ∗ · [−(1 − α)]

+ ηsh Ã · eα ln k̂∗ · e−(1−η) ln ĥ∗ · α]· (ln k̂ − ln k̂∗)

+ [
αsk Ã · e−(1−α) ln k∗ · eη̂ ln h∗ · η

+ ηsh Ã · eα ln k̂ · e−(1−η) ln ĥ∗ · [−(1 − η)]
]· (ln ĥ − ln ĥ∗)

The steady-state conditions derived from equations (1.55) and (1.56) can be used to get

˙̂y/ŷ = −(1 − α − η) · (δ + n + x) · [α · (ln k̂ − ln k̂∗) + η · (ln ĥ − ln ĥ∗)]
= −β∗ · (ln ŷ − ln ŷ∗) (1.57)

Therefore, in the neighborhood of the steady state, the convergence coefficient is β∗ =
(1 − α − η) · (δ + n + x), just as in equation (1.54).

1.3 Models of Endogenous Growth

1.3.1 Theoretical Dissatisfaction with Neoclassical Theory

In the mid-1980s it became increasingly clear that the standard neoclassical growth model
was theoretically unsatisfactory as a tool to explore the determinants of long-run growth.
We have seen that the model without technological change predicts that the economy will
eventually converge to a steady state with zero per capita growth. The fundamental reason is
the diminishing returns to capital. One way out of this problem was to broaden the concept
of capital, notably to include human components, and then assume that diminishing returns
did not apply to this broader class of capital. This approach is the one outlined in the
next section and explored in detail in chapters 4 and 5. However, another view was that
technological progress in the form of the generation of new ideas was the only way that an
economy could escape from diminishing returns in the long run. Thus it became a priority to
go beyond the treatment of technological progress as exogenous and, instead, to explain this
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progress within the model of growth. However, endogenous approaches to technological
change encountered basic problems within the neoclassical model—the essential reason is
the nonrival nature of the ideas that underlie technology.

Remember that a key characteristic of the state of technology, T , is that it is a nonrival
input to the production process. Hence, the replication argument that we used before to
justify the assumption of constant returns to scale suggests that the correct measure of scale
is the two rival inputs, capital and labor. Hence, the concept of constant returns to scale that
we used is homogeneity of degree one in K and L:

F(λK , λL , T ) = λ · F(K , L , T )

Recall also that Euler’s theorem implies that a function that is homogeneous of degree one
can be decomposed as

F(K , L , T ) = FK · K + FL · L (1.58)

In our analysis up to this point, we have been assuming that the same technology, T , is
freely available to all firms. This availability is technically feasible because T is nonrival.
However, it may be that T is at least partly excludable—for example, patent protection,
secrecy, and experience might allow some producers to have access to technologies that
are superior to those available to others. For the moment, we maintain the assumption that
technology is nonexcludable, so that all producers have the same access. This assumption
also means that a technological advance is immediately available to all producers.

We know from our previous analysis that perfectly competitive firms that take the input
prices, R and w, as given end up equating the marginal products to the respective input
prices, that is, FK = R and FL = w. It follows from equation (1.58) that the factor payments
exhaust the output, so that each firm’s profit equals zero at every point in time.

Suppose that a firm has the option to pay a fixed cost, κ , to improve the technology from
T to T ′. Since the new technology would, by assumption, be freely available to all other
producers, we know that the equilibrium values of R and w would again entail a zero flow of
profit for each firm. Therefore, the firm that paid the fixed cost, κ , will end up losing money
overall, because the fixed cost would not be recouped by positive profits at any future dates.
It follows that the competitive, neoclassical model cannot sustain purposeful investment in
technical change if technology is nonexcludable (as well as nonrival).

The obvious next step is to allow the technology to be at least partly excludable. To
bring out the problems with this extension, consider the polar case of full excludability,
that is, where each firm’s technology is completely private. Assume, however, that there are
infinitely many ways in which firms can improve knowledge from T to T ′ by paying the fixed
cost κ—in other words, there is free entry into the business of creating formulas. Suppose
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that all firms begin with the technology T . Would an individual firm then have the incentive
to pay κ to improve the technology to T ′? In fact, the incentive appears to be enormous.
At the existing input prices, R and w, a neoclassical firm with a superior technology would
make a pure profit on each unit produced. Because of the assumed constant returns to scale,
the firm would be motivated to hire all the capital and labor available in the economy. In
this case, the firm would have lots of monopoly power and would likely no longer act as a
perfect competitor in the goods and factor markets. So, the assumptions of the competitive
model would break down.

A more basic problem with this result is that other firms would have perceived the same
profit opportunity and would also have paid the cost κ to acquire the better technology, T ′.
However, when many firms improve their technology by the same amount, the competition
pushes up the factor prices, R and w, so that the flow of profit is again zero. In this case,
none of the firms can cover their fixed cost, κ , just as in the model in which technology
was nonexcludable. Therefore, it is not an equilibrium for technological advance to occur
(because all innovators make losses) and it is also not an equilibrium for this advance not
to occur (because the potential profit to a single innovator is enormous).

These conceptual difficulties motivated researchers to introduce some aspects of imper-
fect competition to construct satisfactory models in which the level of the technology can be
advanced by purposeful activity, such as R&D expenditures. This potential for endogenous
technological progress and, hence, endogenous growth, may allow an escape from dimin-
ishing returns at the aggregate level. Models of this type were pioneered by Romer (1990)
and Aghion and Howitt (1992); we consider them in chapters 6–8. For now, we deal only
with models in which technology is either fixed or varying in an exogenous manner.

1.3.2 The AK Model

The key property of this class of endogenous-growth models is the absence of diminishing
returns to capital. The simplest version of a production function without diminishing returns
is the AK function:29

Y = AK (1.59)

where A is a positive constant that reflects the level of the technology. The global absence
of diminishing returns may seem unrealistic, but the idea becomes more plausible if we
think of K in a broad sense to include human capital.30 Output per capita is y = Ak, and
the average and marginal products of capital are constant at the level A > 0.

29. We think that the first economist to use a production function of the AK type was von Neumann (1937).

30. Knight (1944) stressed the idea that diminishing returns might not apply to a broad concept of capital.
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If we substitute f (k)/k = A in equation (1.13), we get

k̇/k = s A − (n + δ)

We return here to the case of zero technological progress, x = 0, because we want to show
that per capita growth can now occur in the long run even without exogenous technological
change. For a graphical presentation, the main difference is that the downward-sloping
saving curve, s · f (k)/k, in figure 1.4 is replaced in figure 1.12 by the horizontal line at
the level s A. The depreciation curve is still the same horizontal line at n + δ. Hence,
k̇/k is the vertical distance between the two lines, s A and n + δ. We depict the case in
which s A > (n + δ), so that k̇/k > 0. Since the two lines are parallel, k̇/k is constant;
in particular, it is independent of k. Therefore, k always grows at the steady-state rate,
(k̇/k)∗ = s A − (n + δ).

Since y = Ak, ẏ/y = k̇/k at every point in time. In addition, since c = (1−s) · y, ċ/c =
k̇/k also applies. Hence, all the per capita variables in the model always grow at the same,
constant rate, given by

γ ∗ = s A − (n + δ) (1.60)

Note that an economy described by the AK technology can display positive long-run
per capita growth without any technological progress. Moreover, the per capita growth rate

n � �

k

sA

�k � 0 for all k

Figure 1.12
The AK Model. If the technology is AK , the saving curve, s · f (k)/k, is a horizontal line at the level s A. If
s A > n + δ, perpetual growth of k occurs, even without technological progress.
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shown in equation (1.60) depends on the behavioral parameters of the model, including s,
A, and n. For example, unlike the neoclassical model, a higher saving rate, s, leads to a
higher rate of long-run per capita growth, γ ∗.31 Similarly if the level of the technology,
A, improves once and for all (or if the elimination of a governmental distortion effectively
raises A), then the long-run growth rate is higher. Changes in the rates of depreciation, δ,
and population growth, n, also have permanent effects on the per capita growth rate.

Unlike the neoclassical model, the AK formulation does not predict absolute or condi-
tional convergence, that is, ∂(ẏ/y)/∂y = 0 applies for all levels of y. Consider a group of
economies that are structurally similar in that the parameters s, A, n, and δ are the same. The
economies differ only in terms of their initial capital stocks per person, k(0), and, hence,
in y(0) and c(0). Since the model says that each economy grows at the same per capita
rate, γ ∗, regardless of its initial position, the prediction is that all the economies grow at the
same per capita rate. This conclusion reflects the absence of diminishing returns. Another
way to see this result is to observe that the AK model is just a Cobb–Douglas model with
a unit capital share, α = 1. The analysis of convergence in the previous section showed
that the speed of convergence was given in equation (1.45) by β∗ = (1 − α) · (x + n + δ);
hence, α = 1 implies β∗ = 0. This prediction is a substantial failing of the model, because
conditional convergence appears to be an empirical regularity. See chapters 11 and 12 for
a detailed discussion.

We mentioned that one way to think about the absence of diminishing returns to capital
in the AK production function is to consider a broad concept of capital that encompassed
physical and human components. In chapters 4 and 5 we consider in more detail models
that allow for these two types of capital.

Other approaches have been used to eliminate the tendency for diminishing returns in
the neoclassical model. We study in chapter 4 the notion of learning by doing, which was
introduced by Arrow (1962) and used by Romer (1986). In these models, the experience with
production or investment contributes to productivity. Moreover, the learning by one producer
may raise the productivity of others through a process of spillovers of knowledge from one
producer to another. Therefore, a larger economy-wide capital stock (or a greater cumulation
of the aggregate of past production) improves the level of the technology for each producer.
Consequently, diminishing returns to capital may not apply in the aggregate, and increasing
returns are even possible. In a situation of increasing returns, each producer’s average

31. With the AK production function, we can never get the kind of inefficient oversaving that is possible in the
neoclassical model. A shift at some point in time to a permanently higher s means a lower level of c at that point
but a permanently higher per capita growth rate, γ ∗, and, hence, higher levels of c after some future date. This
change cannot be described as inefficient because it may be desirable or undesirable depending on how households
discount future levels of consumption.
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product of capital, f (k)/k, tends to rise with the economy-wide value of k. Consequently,
the s · f (k)/k curve in figure 1.4 tends to be upward sloping, at least over some range,
and the growth rate, k̇/k, rises with k in this range. Thus these kinds of models predict at
least some intervals of per capita income in which economies tend to diverge. It is unclear,
however, whether these divergence intervals are present in the data.

1.3.3 Endogenous Growth with Transitional Dynamics

The AK model delivers endogenous growth by avoiding diminishing returns to capital in
the long run. This particular production function also implies, however, that the marginal
and average products of capital are always constant and, hence, that growth rates do not
exhibit the convergence property. It is possible to retain the feature of constant returns to
capital in the long run, while restoring the convergence property—an idea brought out by
Jones and Manuelli (1990).32

Consider again the expression for the growth rate of k from equation (1.13):

k̇/k = s · f (k)/k − (n + δ) (1.61)

If a steady state exists, the associated growth rate, (k̇/k)∗, is constant by definition. A positive
(k̇/k)∗ means that k grows without bound. Equation (1.13) implies that it is necessary and
sufficient for (k̇/k)∗ to be positive to have the average product of capital, f (k)/k, remain
above (n + δ)/s as k approaches infinity. In other words, if the average product approaches
some limit, then limk→∞[ f (k)/k] > (n + δ)/s is necessary and sufficient for endogenous,
steady-state growth.

If f (k) → ∞ as k → ∞, then an application of l’Hôpital’s rule shows that the limits
as k approaches infinity of the average product, f (k)/k, and the marginal product, f ′(k),
are the same. (We assume here that limk→∞[ f ′(k)] exists.) Hence, the key condition for
endogenous, steady-state growth is that f ′(k) be bounded sufficiently far above 0:

lim
k→∞

[ f (k)/k] = lim
k→∞

[ f ′(k)] > (n + δ)/s > 0

This inequality violates one of the standard Inada conditions in the neoclassical model,
limk→∞[ f ′(k)] = 0. Economically, the violation of this condition means that the tendency
for diminishing returns to capital tends to disappear. In other words, the production function
can exhibit diminishing or increasing returns to k when k is low, but the marginal product
of capital must be bounded from below as k becomes large. A simple example, in which
the production function converges asymptotically to the AK form, is

Y = F(K , L) = AK + BK α L1−α (1.62)

32. See Kurz (1968) for a related discussion.
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where A > 0, B > 0, and 0 < α < 1. Note that this production function is a combination of
the AK and Cobb–Douglas functions. It exhibits constant returns to scale and positive and
diminishing returns to labor and capital. However, one of the Inada conditions is violated
because limK→∞(FK ) = A > 0.

We can write the function in per capita terms as

y = f (k) = Ak + Bkα

The average product of capital is given by

f (k)/k = A + Bk−(1−α)

which is decreasing in k but approaches A as k tends to infinity.
The dynamics of this model can be analyzed with the usual expression from equa-

tion (1.13):

k̇/k = s · [A + Bk−(1−α)
] − (n + δ) (1.63)

Figure 1.13 shows that the saving curve is downward sloping, and the line n + δ is horizontal.
The difference from figure 1.4 is that, as k goes to infinity, the saving curve in figure 1.13
approaches the positive quantity s A, rather than 0. If s A > n + δ, as assumed in the figure,
the steady-state growth rate, (k̇/k)∗, is positive.

n � �

k
k(0)

�k

s � f (k)�k
sA

Figure 1.13
Endogenous growth with transitional dynamics. If the technology is F(K , L) = AK + BK α L1−α , the growth
rate of k is diminishing for all k. If s A > n + δ, the growth rate of k asymptotically approaches a positive constant,
given by s A − n − δ. Hence, endogenous growth coexists with a transition in which the growth rate diminishes
as the economy develops.
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This model yields endogenous, steady-state growth but also predicts conditional conver-
gence, as in the neoclassical model. The reason is that the convergence property derives
from the inverse relation between f (k)/k and k, a relation that still holds in the model.
Figure 1.13 shows that if two economies differ only in terms of their initial values, k(0),
the one with the smaller capital stock per person will grow faster in per capita terms.

1.3.4 Constant-Elasticity-of-Substitution Production Functions

Consider as another example the production function (due to Arrow et al., 1961) that has a
constant elasticity of substitution (CES) between labor and capital:

Y = F(K , L) = A · {a · (bK )ψ + (1 − a) · [(1 − b) · L]ψ }1/ψ (1.64)

where 0 < a < 1, 0 < b < 1,33 and ψ < 1. Note that the production function exhibits con-
stant returns to scale for all values of ψ . The elasticity of substitution between capital
and labor is 1/(1 − ψ) (see the appendix, section 1.5.4). As ψ → − ∞, the produc-
tion function approaches a fixed-proportions technology (discussed in the next section),
Y = min[bK , (1 − b)L], where the elasticity of substitution is 0. As ψ → 0, the production
function approaches the Cobb–Douglas form, Y = (constant) · K a L1−a , and the elasticity
of substitution is 1 (see the appendix, section 1.5.4). For ψ = 1, the production function is
linear, Y = A · [abK + (1 − a) · (1 − b) · L], so that K and L are perfect substitutes (infinite
elasticity of substitution).

Divide both sides of equation (1.64) by L to get an expression for output per capita:

y = f (k) = A · [a · (bk)ψ + (1 − a) · (1 − b)ψ ]1/ψ

The marginal and average products of capital are given, respectively, by

f ′(k) = Aabψ [abψ + (1 − a) · (1 − b)ψ · k−ψ ](1−ψ)/ψ

f (k)/k = A[abψ + (1 − a) · (1 − b)ψ · k−ψ ]1/ψ

Thus, f ′(k) and f (k)/k are each positive and diminishing in k for all values of ψ .
We can study the dynamic behavior of a CES economy by returning to the expression

from equation (1.13):

k̇/k = s · f (k)/k − (n + δ) (1.65)

33. The standard formulation does not include the terms b and 1 − b. The implication then is that the shares of K
and L in total product each approach one-half as ψ → −∞. In our formulation, the shares of K and L approach
b and 1 − b, respectively, as ψ → −∞.
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If we graph versus k, then s · f (k)/k is a downward-sloping curve, n + δ is a horizontal
line, and k̇/k is still represented by the vertical distance between the curve and the line. The
behavior of the growth rate now depends, however, on the parameter ψ , which governs the
elasticity of substitution between L and K .

Consider first the case 0 < ψ < 1, that is, a high degree of substitution between L and K .
The limits of the marginal and average products of capital in this case are

lim
k→∞

[ f ′(k)] = lim
k→∞

[ f (k)/k] = Aba1/ψ > 0

lim
k→0

[ f ′(k)] = lim
k→0

[ f (k)/k] = ∞
Hence, the marginal and average products approach a positive constant, rather than 0, as k
goes to infinity. In this sense, the CES production function with high substitution between
the factors (0 < ψ < 1) looks like the example in equation (1.62) in which diminishing
returns vanished asymptotically. We therefore anticipate that this CES model can generate
endogenous, steady-state growth.

Figure 1.14 shows the results graphically. The s · f (k)/k curve is downward sloping, and
it asymptotes to the positive constant s Ab · a1/ψ . If the saving rate is high enough, so that
s Ab · a1/ψ > n + δ—as assumed in the figure—then the s · f (k)/k curve always lies above
the n + δ line. In this case, the per capita growth rate is always positive, and the model

n � �

k
k(0)

�k � 0

s � f (k)�k

sAba(1��)

Figure 1.14
The CES model with 0 < ψ < 1 and s Ab · a1/ψ > n + δ. If the CES technology exhibits a high elasticity of
substitution (0 < ψ < 1), endogenous growth arises if the parameters satisfy the inequality s Ab · a1/ψ > n + δ.
Along the transition, the growth rate of k diminishes.
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n � �

k

�k � 0

sAba(1��)

s � f (k)�k

Figure 1.15
The CES model withψ < 0 and s Ab · a1/ψ < n + δ. If the CES technology exhibits a low elasticity of substitution
(ψ < 0), the growth rate of k would be negative for all levels of k if s Ab · a1/ψ < n + δ.

generates endogenous, steady-state growth at the rate

γ ∗ = s Ab · a1/ψ − (n + δ)

The dynamics of this model are similar to those described in figure 1.13.34

Assume now ψ < 0, that is, a low degree of substitution between L and K . The limits
of the marginal and average products of capital in this case are

lim
k→∞

[ f ′(k)] = lim
k→∞

[ f (k)/k] = 0

lim
k→0

[ f ′(k)] = lim
k→0

[ f (k)/k] = Ab · a1/ψ < ∞
Since the marginal and average products approach 0 as k approaches infinity, the key
Inada condition is satisfied, and the model does not generate endogenous growth. In this
case, however, the violation of the Inada condition as k approaches 0 may cause problems.
Suppose that the saving rate is low enough so that s Ab · a1/ψ < n + δ. In this case, the
s · f (k)/k curve starts at a point below n + δ, and it converges to 0 as k approaches infinity.
Figure 1.15 shows, accordingly, that the curve never crosses the n + δ line, and, hence, no
steady state exists with a positive value of k. Since the growth rate k̇/k is always negative,
the economy shrinks over time, and k, y, and c all approach 0.35

34. If 0 < ψ < 1 and s Ab · a1/ψ < n + δ, then the s · f (k)/k curve crosses n + δ at the steady-state value k∗, as
in the standard neoclassical model of figure 1.4. Endogenous growth does not apply in this case.

35. If ψ < 0 and s Ab · a1/ψ > n + δ, then the s · f (k)/k curve again intersects the n + δ line at the steady-state
value k∗.
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Since the average product of capital, f (k)/k, is a negative function of k for all values
of ψ , the growth rate k̇/k is also a negative function of k. The CES model therefore
always exhibits the convergence property: for two economies with identical parameters and
different initial values, k(0), the one with the lower value of k(0) has the higher value of k̇/k.
When the parameters differ across economies, the model predicts conditional convergence,
as described before.

We can use the method developed earlier for the case of a Cobb–Douglas production
function to derive a formula for the convergence coefficient in the neighborhood of the
steady state. The result for a CES production function, which extends equation (1.45), is36

β∗ = −(x + n + δ) ·
[

1 − a ·
(

bs A

x + n + δ

)ψ
]

(1.66)

For the Cobb–Douglas case, where ψ = 0 and a = α, equation (1.66) reduces to equa-
tion (1.45). For ψ �= 0, a new result is that β∗ in equation (1.66) depends on s and A. If ψ > 0
(high substitutability between L and K ), then β∗ falls with s A, and vice versa if ψ < 0. The
coefficient β∗ is independent of s and A only in the Cobb–Douglas case, where ψ = 0.

1.4 Other Production Functions . . . Other Growth Theories

1.4.1 The Leontief Production Function and the Harrod–Domar Controversy

A production function that was used prior to the neoclassical one is the Leontief (1941), or
fixed-proportions, function,

Y = F(K , L) = min(AK , BL) (1.67)

where A > 0 and B > 0 are constants. This specification, which corresponds to ψ → −∞
in the CES form in equation (1.64), was used by Harrod (1939) and Domar (1946). With
fixed proportions, if the available capital stock and labor force happen to be such that
AK = BL , then all workers and machines are fully employed. If K and L are such that
AK > BL , then only the quantity of capital (B/A) · L is used, and the remainder remains
idle. Conversely, if AK < BL , then only the amount of labor (A/B) · K is used, and the
remainder is unemployed. The assumption of no substitution between capital and labor led
Harrod and Domar to predict that capitalist economies would have undesirable outcomes
in the form of perpetual increases in unemployed workers or machines. We provide here a
brief analysis of the Harrod–Domar model using the tools developed earlier in this chapter.

36. See Chua (1993) for additional discussion. The formula for β in equation (1.66) applies only for cases in
which the steady-state level k∗ exists. If 0 < ψ < 1, it applies for bs A · a1/ψ < x + n + δ. If ψ < 0, it applies
for bs A · a1/ψ > x + n + δ.
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k

B f (k)
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Slope � A
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Figure 1.16
The Leontief production function in per capita terms. In per capita terms, the Leontief production function
can be written as y = min(Ak, B). For k < B/A, output per capita is given by y = Ak. For k > B/A, output per
capita is given by y = B.

Divide both sides of equation (1.67) by L to get output per capita:

y = min(Ak, B)

For k < B/A, capital is fully employed, and y = Ak. Hence, figure 1.16 shows that the
production function in this range is a straight line from the origin with slope A. For k > B/A,
the quantity of capital used is constant, and Y is the constant multiple B of labor, L . Hence,
output per worker, y, equals the constant B, as shown by the horizontal part of f (k) in the
figure. Note that, as k approaches infinity, the marginal product of capital, f ′(k), is zero.
Hence, the key Inada condition is satisfied, and we do not expect this production function
to yield endogenous steady-state growth.

We can use the expression from equation (1.13) to get

k̇/k = s · [min(Ak, B)]/k − (n + δ) (1.68)

Figures 1.17a and 1.17b show that the first term, s · [min(Ak, B)]/k, is a horizontal line
at s A for k ≤ B/A. For k > B/A, this term is a downward-sloping curve that approaches
zero as k goes to infinity. The second term in equation (1.68) is the usual horizontal line at
n + δ.

Assume first that the saving rate is low enough so that s A < n + δ, as depicted in
figure 1.17. The saving curve, s · f (k)/k, then never crosses the n + δ line, so there is no
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Figure 1.17
The Harrod–Domar model. In panel a, which assumes s A < n + δ, the growth rate of k is negative for all k.
Therefore, the economy approaches k = 0. In panel b, which assumes s A > n + δ, the growth rate of k is positive
for k < k∗ and negative for k > k∗, where k∗ is the stable steady-state value. Since k∗ exceeds B/A, a part of the
capital stock always remains idle. Moreover, the quantity of idle capital grows steadily (along with K and L).

positive steady-state value, k∗. Moreover, the growth rate of capital, k̇/k, is always negative,
so the economy shrinks in per capita terms, and k, y, and c all approach 0. The economy
therefore ends up to the left of B/A and has permanent and increasing unemployment.

Suppose now that the saving rate is high enough so that s A > n + δ, as shown in
figure 1.17b. Since the s · f (k)/k curve approaches 0 as k tends to infinity, this curve
eventually crosses the n + δ line at the point k∗ > B/A. Therefore, if the economy begins
at k(0) < k∗, k̇/k equals the constant s A − n − δ > 0 until k attains the value B/A. At
that point, k̇/k falls until it reaches 0 at k = k∗. If the economy starts at k(0) > k∗, k̇/k is
initially negative and approaches 0 as k approaches k∗.

Since k∗ > B/A, the steady state features idle machines but no unemployed workers.
Since k is constant in the steady state, the quantity K grows along with L at the rate n. Since
the fraction of machines that are employed remains constant, the quantity of idle machines
also grows at the rate n (yet households are nevertheless assumed to keep saving at the
rate s).

The only way to reach a steady state in which all capital and labor are employed is for the
parameters of the model to satisfy the condition s A = n + δ. Since the four parameters that
appear in this condition are all exogenous, there is no reason for the equality to hold. Hence,
the conclusion from Harrod and Domar was that an economy would, in all probability, reach
one of two undesirable outcomes: perpetual growth of unemployment or perpetual growth
of idle machinery.
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We know now that there are several implausible assumptions in the arguments of Harrod
and Domar. First, the Solow–Swan model showed that Harrod and Domar’s parameter A—
the average product of capital—would typically depend on k, and k would adjust to satisfy
the equality s · f (k)/k = n + δ in the steady state. Second, the saving rate could adjust to
satisfy this condition. In particular, if agents maximize utility (as we assume in the next
chapter), they would not find it optimal to continue to save at the constant rate s when the
marginal product of capital was zero. This adjustment of the saving rate would rule out an
equilibrium with permanently idle machinery.

1.4.2 Growth Models with Poverty Traps

One theme in the literature of economic development concerns poverty traps.37 We can think
of a poverty trap as a stable steady state with low levels of per capita output and capital
stock. This outcome is a trap because, if agents attempt to break out of it, the economy has
a tendency to return to the low-level, stable steady state.

We observed that the average product of capital, f (k)/k, declines with k in the neoclas-
sical model. We also noted, however, that this average product may rise with k in some
models that feature increasing returns, for example, in formulations that involve learning
by doing and spillovers. One way for a poverty trap to arise is for the economy to have
an interval of diminishing average product of capital followed by a range of rising average
product. (Poverty traps also arise in some models with nonconstant saving rates; see Galor
and Ryder, 1989.)

We can get a range of increasing returns by imagining that a country has access to a
traditional, as well as a modern, technology.38 Imagine that producers can use a primitive
production function, which takes the usual Cobb–Douglas form,

YA = AK α L1−α (1.69)

The country also has access to a modern, higher productivity technology,39

YB = BK α L1−α (1.70)

where B > A. However, in order to exploit this better technology, the country as a whole
is assumed to have to pay a setup cost at every moment in time, perhaps to cover the
necessary public infrastructure or legal system. We assume that this cost is proportional to

37. See especially the big-push model of Lewis (1954). A more modern formulation of this idea appears in Murphy,
Shleifer, and Vishny (1989).

38. This section is an adaptation of Galor and Zeira (1993), who use two technologies in the context of education.

39. More generally, the capital intensity for the advanced technology would differ from that for the primitive
technology. However, this extension complicates the algebra without making any substantive differences.
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the labor force and given by bL , where b > 0. We assume further that this cost is borne by
the government and financed by a tax at rate b on each worker. The results are the same
whether the tax is paid by producers or workers (who are, in any event, the same persons
an economy with household-producers).

In per worker terms, the first production function is

yA = Akα (1.71)

The second production function, when considered net of the setup cost and in per worker
terms, is

yB = Bkα − b (1.72)

The two production functions are drawn in figure 1.18.
If the government has decided to pay the setup cost, which equals b per worker, all

producers will use the modern technology (because the tax b for each worker must be paid
in any case). If the government has not paid the setup cost, all producers must use the
primitive technology. A sensible government would pay the setup cost if the shift to the
modern technology leads to an increase in output per worker at the existing value of k and
when measured net of the setup cost. In the present setting, the shift is warranted if k exceeds
a critical level, given by k̃ = [b/(B − A)]1/α . Thus, the critical value of k rises with the
setup cost parameter, b, and falls with the difference in the productivity parameters, B − A.
We assume that the government pays the setup cost if k ≥ k̃ and does not pay it if k < k̃.

M T2T1

�F

y � R �k � w

y B

A

Figure 1.18
Traditional and modern production functions. The traditional production function has relatively low produc-
tivity. The modern production function exhibits higher productivity but is assumed to require a fixed cost to
operate.
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The growth rate of capital per worker is still given by the fundamental equation of the
Solow–Swan model, equation (1.23), as

k̇/k = s · f (k)/k − (δ + n)

where f (k) = Akα if k < k̃ and f (k) = Bkα − b if k ≥ k̃. The average product of capital,
f (k)/k, can be measured graphically in figure 1.18 by the slope of the cord that goes from
the origin to the effective production function. We can see that there is a range of k ≥ k̃ where
the average product is increasing. The saving curve therefore looks like the one depicted in
figure 1.19: it has the familiar negative slope at low levels of k, is then followed by a range
with a positive slope, and again has a negative slope at very high levels of k.

Figure 1.19 shows that the s · f (k)/k curve first crosses the n + δ line at the low steady-
state value, k∗

low, where we assume here that k∗
low < k̃. This steady state has the properties

that are familiar from the neoclassical model. In particular, k̇/k > 0 for k < k∗
low, and k̇/k < 0

at least in an interval of k > k∗
low. Hence, k∗

low is a stable steady state: it is a poverty trap in
the sense described before.

The tendency for increasing returns in the middle range of k is assumed to be strong
enough so that the s · f (k)/k curve eventually rises to cross the n + δ line again at the

n � �

s � f (k)�k

k
k*

high
(stable)

k*
middle

(unstable)
k*

low
(stable)

Figure 1.19
A poverty trap. The production function is assumed to exhibit diminishing returns to k when k is low, increasing
returns for a middle range of k, and either constant or diminishing returns when k is high. The curve s · f (k)/k
is therefore downward sloping for low values of k, upward sloping for an intermediate range of k, and downward
sloping or horizontal for high values of k. The steady-state value k∗

low is stable and therefore constitutes a poverty
trap for countries that begin with k between 0 and k∗

middle. If a country begins with k > k∗
middle, it converges to k∗

high
if diminishing returns to k ultimately set in. If the returns to capital are constant at high values of k, as depicted
by the dashed portion of the curve, the country converges to a positive long-run growth rate of k.
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steady-state value k∗
middle. This steady state is, however, unstable, because k̇/k < 0 applies to

the left, and k̇/k > 0 holds to the right. Thus, if the economy begins with k∗
low < k(0) < k∗

middle,
its natural tendency is to return to the development trap at k∗

low, whereas if it manages some-
how to get to k(0) > k∗

middle, it tends to grow further to reach still higher levels of k.
In the range where k > k∗

middle, the economy’s tendency toward diminishing returns even-
tually brings s · f (k)/k down enough to equal n + δ at the steady-state value k∗

high. This
steady state, corresponding to a high level of per capita income but to zero long-term per
capita growth, is familiar from our study of the neoclassical model. The key problem for a
less-developed economy at the trap level k∗

low is to get over the hump and thereby attain a
high long-run level of per capita income.

One empirical implication of the model described by figure 1.19 is that there would exist a
middle range of values of k—around k∗

middle—for which the growth rate, k̇/k, is increasing
in k and, hence, in y. That is, a divergence pattern should hold over this range of per
capita incomes. Our reading of the evidence across countries, discussed in chapter 12, does
not support this hypothesis. These results are, however, controversial—see, for example,
Quah (1996).

1.5 Appendix: Proofs of Various Propositions

1.5.1 Proof That Each Input Is Essential for Production
with a Neoclassical Production Function

We noted in the main body of this chapter that the neoclassical properties of the production
function imply that the two inputs, K and L , are each essential for production. To verify
this proposition, note first that if Y → ∞ as K → ∞, then

lim
K→∞

Y

K
= lim

K→∞
∂Y

∂K
= 0

where the first equality comes from l’Hôpital’s rule and the second from the Inada condition.
If Y remains bounded as K tends to infinity, then

lim
K→∞

(Y/K ) = 0

follows immediately. We also know from constant returns to scale that, for any finite L ,

lim
K→∞

(Y/K ) = lim
K→∞

[F(1, L/K )] = F(1, 0)

so that F(1, 0) = 0. The condition of constant returns to scale then implies

F(K , 0) = K · F(1, 0) = 0



78 Chapter 1

for any finite K . We can show from an analogous argument that F(0, L) = 0 for any finite L .
These results verify that each input is essential for production.

To demonstrate that output goes to infinity when either input goes to infinity, note that

F(K , L) = L · f (k) = K · [ f (k)/k]

Therefore, for any finite K ,

lim
L→∞

[F(K , L)] = K · lim
k→0

[ f (k)/k] = K · lim
k→0

[ f ′(k)] = ∞
where the last equalities follow from l’Hôpital’s rule (because essentiality implies f [0] = 0)
and the Inada condition. We can show from an analogous argument that limK→∞
[F(K , L)] = ∞. Therefore, output goes to infinity when either input goes to infinity.

1.5.2 Properties of the Convergence Coefficient in the Solow–Swan Model

Equation (1.46) is a log-linearization of equation (1.41) around the steady-state position.
To obtain equation (1.46), we have to rewrite equation (1.41) in terms of log(k̂). Note that
˙̂k/k̂ is the time derivative of log(k̂), and (k̂)−(1−α) can be written as e−(1−α) · log(k̂). The
steady-state value of s A(k̂)−(1−α) equals x + n + δ. We can now take a first-order Taylor
expansion of log(k̂) around log(k̂∗) to get equation (1.46). See the appendix on mathematics
at the end of the book for additional discussion. This result appears in Sala-i-Martin (1990)
and Mankiw, Romer, and Weil (1992).

The true speed of convergence for k̂ or ŷ is not constant; it depends on the distance from
the steady state. The growth rate of ŷ can be written as

˙̂y/ŷ = α · [s · A1/α · (ŷ)−(1−α)/α − (x + n + δ)
]

If we use the condition ŷ∗ = A · [s A/(x + n + δ)]α/(1−α), we can express the growth rate as

˙̂y/ŷ = α · (x + n + δ) · [(ŷ/ŷ∗)−(1−α)/α − 1
]

The convergence coefficient is

β = −d( ˙̂y/ŷ)]/d[log(ŷ)] = (1 − α) · (x + n + δ) · (ŷ/ŷ∗)−(1−α)/α

At the steady state, ŷ = ŷ∗ and β = (1 − α) · (x + n + δ), as in equation (1.45). More
generally, β declines as ŷ/ŷ∗ rises.

1.5.3 Proof That Technological Progress Must Be Labor Augmenting

We mentioned in the text that technological progress must take the labor-augmenting form
shown in equation (1.34) in order for the model to have a steady state with constant
growth rates. To prove this result, we start by assuming a production function that includes
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labor-augmenting and capital-augmenting technological progress:

Y = F[K · B(t), L · A(t)] (1.73)

where B(t) = A(t) implies that the technological progress is Hicks neutral.
We assume that A(t) = ext and B(t) = ezt , where x ≥ 0 and z ≥ 0 are constants. If we

divide both sides of equation (1.73) by K , we can express output per unit of capital as

Y/K = ezt ·
{

F

[
1,

L · A(t)

K · B(t)

]}
= ezt · ϕ[

(L/K ) · e(x−z) · t
]

where ϕ( · ) ≡ F[1, L · A(t)
K · B(t) ]. The population, L , grows at the constant rate n. If γ ∗

K is the
constant growth rate of K in the steady state, the expression for Y/K can be written as

Y/K = ezt · ϕ[
e(n+x−z−γ ∗

K ) · t
]

(1.74)

Recall that the growth rate of K is given by

K̇/K = s · (Y/K ) − δ

In the steady state, K̇/K equals the constant γ ∗
K , and, hence, Y/K must be constant. There

are two ways to get the right-hand side of equation (1.74) to be constant. First, z = 0 and
γ ∗

K = n + x ; that is, technological progress is solely labor augmenting, and the steady-state
growth rate of capital equals n + x . In this case, the production function can be written in
the form of equation (1.34).

The second way to get the right-hand side of equation (1.74) to be constant is with z �= 0
and for the term ϕ[e(n+x−z−γ ∗

K )t ] exactly to offset the term ezt . For this case to apply, the
derivative of Y/K (in the proposed steady state) with respect to time must be identically
zero. If we take the derivative of equation (1.74), set it to zero, and rearrange terms, we get

ϕ′(χ) · χ/ϕ(χ) = −z/(n + x − z − γ ∗
K )

where χ ≡ e(n+x−z−γ ∗
K ) · t , and the right-hand side is a constant. If we integrate out, we can

write the solution as

ϕ(χ) = (constant) · χ1−α

where α is a constant. This result implies that the production function can be written as

Y = (constant) · (K ezt )α · (Lext )1−α = (constant) · K α · (Leνt )1−α

where ν = [zα + x · (1 − α)]/(1 − α). In other words, if the rate of capital-augmenting
technological progress, z, is nonzero and a steady state exists, the production function
must take the Cobb–Douglas form. Moreover, if the production function is Cobb–Douglas,
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we can always express technological change as purely labor augmenting (at the rate ν).
The conclusion, therefore, is that the existence of a steady state implies that technological
progress can be written in the labor-augmenting form.

Another approach to technological progress assumes that capital goods produced later—
that is, in a more recent vintage—are of higher quality for a given cost. If quality improves
in accordance with T (t), the equation for capital accumulation in this vintage model is

K̇ = s · T (t) · F(K , L) − δK (1.75)

where K is measured in units of constant quality. This equation corresponds to Hicks-neutral
technological progress given by T (t) in the production function. The only difference from
the standard specification is that output is Y = F(K , L)—not T (t) · F(K , L).

If we want to use a model that possesses a steady state, we would still have to assume that
F(K , L) was Cobb–Douglas. In that case, the main properties of the vintage model turn
out to be indistinguishable from those of the model that we consider in the text in which
technological progress is labor augmenting (see Phelps, 1962, and Solow, 1969, for further
discussion). One difference in the vintage model is that, although K and Y grow at constant
rates in the steady state, the growth rate of K (in units of constant quality) exceeds that of
Y . Hence, K/Y is predicted to rise steadily in the long run.

1.5.4 Properties of the CES Production Function

The elasticity of substitution is a measure of the curvature of the isoquants. The slope of an
isoquant is

d L

d K isoquant
= −∂ F( · )/∂K

∂ F( · )/∂L

The elasticity is given by[
∂(Slope)

∂(L/K )
· L/K

Slope

]−1

For the CES production function shown in equation (1.64), the slope of the isoquant is

−(L/K )1−ψ · a · bψ/[(1 − a) · (1 − b)ψ ]

and the elasticity is 1/(1 − ψ), a constant.
To compute the limit of the production function as ψ approaches 0, use equation (1.64)

to get limψ→0[log(Y )] = log(A) + 0/0, which involves an indeterminate form. Apply
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l’Hôpital’s rule to get

lim
ψ→0

[log(Y )]

= log(A) +
[

a(bK )ψ · log(bK ) + (1 − a) · [(1 − b) · L]ψ · log[(1 − b) · L]

a · (bK )ψ + (1 − a) · [(1 − b) · L]ψ

]
ψ=0

= log(A) + a · log(bK ) + (1 − a) · log[(1 − b) · L]

It follows that Y = ÃK a L1−a , where Ã = Aba · (1 − b)1−a . That is, the CES production
function approaches the Cobb–Douglas form as ψ tends to zero.

1.6 Problems

1.1 Convergence.

a. Explain the differences among absolute convergence, conditional convergence, and a
reduction in the dispersion of real per capita income across groups.

b. Under what circumstances does absolute convergence imply a decline in the dispersion
of per capita income?

1.2 Forms of technological progress. Assume that the rate of exogenous technological
progress is constant.

a. Show that a steady state can coexist with technological progress only if this progress
takes a labor-augmenting form. What is the intuition for this result?

b. Assume that the production function is Y = F[B(T ) · K , A(t) · L], where B(t) = ezt and
A(T ) = ext , with z ≥ 0 and x ≥ 0. Show that if z > 0 and a steady state exists, the production
function must take the Cobb–Douglas form.

1.3 Dependence of the saving rate, population growth rate, and depreciation rate
on the capital intensity. Assume that the production function satisfies the neoclassical
properties.

a. Why would the saving rate, s, generally depend on k? (Provide some intuition; the precise
answer will be given in chapter 2.)

b. How does the speed of convergence change if s(k) is an increasing function of k? What
if s(k) is a decreasing function of k?

Consider now an AK technology.

c. Why would the saving rate, s, depend on k in this context?

d. How does the growth rate of k change over time depending on whether s(k) is an
increasing or decreasing function of k?
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e. Suppose that the rate of population growth, n, depends on k. For an AK technology,
what would the relation between n and k have to be in order for the model to predict
convergence? Can you think of reasons why n would relate to k in this manner? (We
analyze the determination of n in chapter 9.)

f. Repeat part e in terms of the depreciation rate, δ. Why might δ depend on k?

1.4 Effects of a higher saving rate. Consider this statement: “Devoting a larger share
of national output to investment would help to restore rapid productivity growth and rising
living standards.” Under what conditions is the statement accurate?

1.5 Factor shares. For a neoclassical production function, show that each factor of pro-
duction earns its marginal product. Show that if owners of capital save all their income
and workers consume all their income, the economy reaches the golden rule of capital
accumulation. Explain the results.

1.6 Distortions in the Solow–Swan model (based on Easterly, 1993). Assume that
output is produced by the CES production function,

Y = [(
aF K η

F + aI K η
I

)ψ/η + aG K ψ
G

]1/ψ

where Y is output; KF is formal capital, which is subject to taxation; K I is informal capital,
which evades taxation; KG is public capital, provided by government and used freely by all
producers; aF , aI , aG > 0; η < 1; and ψ < 1. Installed formal and informal capital differ in
their location and form of ownership and, therefore, in their productivity.

Output can be used on a one-for-one basis for consumption or gross investment in the three
types of capital. All three types of capital depreciate at the rate δ. Population is constant,
and technological progress is nil.

Formal capital is subject to tax at the rate τ at the moment of its installation. Thus, the
price of formal capital (in units of output) is 1 + τ . The price of a unit of informal capital is
one. Gross investment in public capital is the fixed fraction sG of tax revenues. Any unused
tax receipts are rebated to households in a lump-sum manner. The sum of investment in the
two forms of private capital is the fraction s of income net of taxes and transfers. Existing
private capital can be converted on a one-to-one basis in either direction between formal
and informal capital.

a. Derive the ratio of informal to formal capital used by profit-maximizing producers.

b. In the steady state, the three forms of capital grow at the same rate. What is the ratio of
output to formal capital in the steady state?

c. What is the steady-state growth rate of the economy?

d. Numerical simulations show that, for reasonable parameter values, the graph of the
growth rate against the tax rate, τ , initially increases rapidly, then reaches a peak, and
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finally decreases steadily. Explain this nonmonotonic relation between the growth rate and
the tax rate.

1.7 A linear production function. Consider the production function Y = AK + BL ,
where A and B are positive constants.

a. Is this production function neoclassical? Which of the neoclassical conditions does it
satisfy and which ones does it not?

b. Write output per person as a function of capital per person. What is the marginal product
of k? What is the average product of k?

In what follows, we assume that population grows at the constant rate n and that capital
depreciates at the constant rate δ.

c. Write down the fundamental equation of the Solow–Swan model.

d. Under what conditions does this model have a steady state with no growth of per capita
capital, and under what conditions does the model display endogenous growth?

e. In the case of endogenous growth, how does the growth rate of the capital stock behave
over time (that is, does it increase or decrease)? What about the growth rates of output and
consumption per capita?

f. If s = 0.4, A = 1, B = 2, δ = 0.08, and n = 0.02, what is the long-run growth rate of
this economy? What if B = 5? Explain the differences.

1.8 Forms of technological progress and steady-state growth. Consider an economy
with a CES production function:

Y = D(t) · {[B(t) · K ]ψ + [A(t) · L]ψ }1/ψ

where ψ is a constant parameter different from zero. The terms D(t), B(t), and A(t)
represent different forms of technological progress. The growth rates of these three terms
are constant, and we denote them by xD , xB , and xA, respectively. Assume that population
is constant, with L = 1, and normalize the initial levels of the three technologies to one, so
that D(0) = B(0) = A(0) = 1. In this economy, capital accumulates according to the usual
equation:

K̇ = Y − C − δK

a. Show that, in a steady state (defined as a situation in which all the variables grow at
constant, perhaps different, rates), the growth rates of Y , K , and C are the same.

b. Imagine first that xB = xA = 0 and that xD > 0. Show that the steady state must have
γK = 0 (and, therefore, γY = γC = 0). (Hint: Show first that γY = xD + [K0eγk t ]ψ

1+[K0eγk t ]ψ · γK .)
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c. Using the results in parts a and b, what is the only growth rate of D(t) that is consistent
with a steady state? What, therefore, is the only possible steady-state growth rate of Y ?

d. Imagine now that xD = xA = 0 and that xB > 0. Show that, in the steady state, γK = −xB

(Hint: Show first that γY = (xB + γK ) · [Kt · Bt ]ψ

1+[Kt · Bt ]ψ
.)

e. Using the results in parts a and d, show that the only growth rate of B consistent with a
steady state is xB = 0.

f. Finally, assume that xD = xB = 0 and that xA > 0. Show that, in a steady state, the growth

rates must satisfy γK = γY = γC = xD . (Hint: Show first that γY = K ψ
t · γK +Aψ

t · xA

K ψ
t +Aψ

t
.)

g. What would be the steady-state growth rate in part f if population is not constant but,
instead, grows at the rate n > 0?



2 Growth Models with Consumer Optimization (the Ramsey Model)

One shortcoming of the models that we analyzed in chapter 1 is that the saving rate—and,
hence, the ratio of consumption to income—are exogenous and constant. By not allowing
consumers to behave optimally, the analysis did not allow us to discuss how incentives
affect the behavior of the economy. In particular, we could not think about how the economy
reacted to changes in interest rates, tax rates, or other variables. In chapter 1 we showed
that allowing for firms to behave optimally did not change any of the basic results of the
Solow–Swan model. The main reason was that the overall amount of investment in the
economy was still given by the saving of families, and that saving remained exogenous.

To paint a more complete picture of the process of economic growth, we need to allow
for the path of consumption and, hence, the saving rate to be determined by optimizing
households and firms that interact on competitive markets. We deal here with infinitely
lived households that choose consumption and saving to maximize their dynastic utility,
subject to an intertemporal budget constraint. This specification of consumer behavior is a
key element in the Ramsey growth model, as constructed by Ramsey (1928) and refined by
Cass (1965) and Koopmans (1965).

One finding will be that the saving rate is not constant in general but is instead a function
of the per capita capital stock, k. Thus we modify the Solow–Swan model in two respects:
first, we pin down the average level of the saving rate, and, second, we determine whether
the saving rate rises or falls as the economy develops. We also learn how saving rates depend
on interest rates and wealth and, in a later chapter, on tax rates and subsidies.

The average level of the saving rate is especially important for the determination of the
levels of variables in the steady state. In particular, the optimizing conditions in the Ramsey
model preclude the kind of inefficient oversaving that was possible in the Solow–Swan
model.

The tendency for saving rates to rise or fall with economic development affects the
transitional dynamics, for example, the speed of convergence to the steady state. If the
saving rate rises with k, then the convergence speed is slower than that in the Solow–
Swan model, and vice versa. We find, however, that even if the saving rate is rising, the
convergence property still holds under fairly general conditions in the Ramsey model. That
is, an economy still tends to grow faster in per capita terms when it is further from its own
steady-state position.

We show that the Solow–Swan model with a constant saving rate is a special case of the
Ramsey model; moreover, this case corresponds to reasonable parameter values. Thus, it
was worthwhile to begin with the Solow–Swan model as a tractable approximation to the
optimizing framework. We also note, however, that the empirical evidence suggests that
saving rates typically rise with per capita income during the transition to the steady state.
The Ramsey model is consistent with this pattern, and the model allows us to assess the
implications of this saving behavior for the transitional dynamics. Moreover, the optimizing
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framework will be essential in later chapters when we extend the Ramsey model in various
respects and consider the possible roles for government policies. Such policies will, in
general, affect the incentives to save.

2.1 Households

2.1.1 Setup of the Model

The households provide labor services in exchange for wages, receive interest income on
assets, purchase goods for consumption, and save by accumulating assets. The basic model
assumes identical households—each has the same preference parameters, faces the same
wage rate (because all workers are equally productive), begins with the same assets per
person, and has the same rate of population growth. Given these assumptions, the analysis
can use the usual representative-agent framework, in which the equilibrium derives from
the choices of a single household. We discuss later how the results generalize when various
dimensions of household heterogeneity are introduced.

Each household contains one or more adult, working members of the current generation.
In making plans, these adults take account of the welfare and resources of their prospective
descendants. We model this intergenerational interaction by imagining that the current
generation maximizes utility and incorporates a budget constraint over an infinite horizon.
That is, although individuals have finite lives, we consider an immortal extended family. This
setting is appropriate if altruistic parents provide transfers to their children, who give in turn
to their children, and so on. The immortal family corresponds to finite-lived individuals who
are connected through a pattern of operative intergenerational transfers based on altruism.1

The current adults expect the size of their extended family to grow at the rate n because of
the net influences of fertility and mortality. In chapter 9 we study how rational agents choose
their fertility by weighing the costs and benefits of rearing children. But, at this point, we
continue to simplify by treating n as exogenous and constant. We also neglect migration of
persons, another topic explored in chapter 9. If we normalize the number of adults at time
0 to unity, the family size at time t—which corresponds to the adult population—is

L(t) = ent

If C(t) is total consumption at time t , then c(t) ≡ C(t)/L(t) is consumption per adult
person.

1. See Barro (1974). We abstract from marriage, which generates interactions across family lines. See Bernheim
and Bagwell (1988) for a discussion.
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Each household wishes to maximize overall utility, U , as given by

U =
∫ ∞

0
u[c(t)] · ent · e−ρt dt (2.1)

This formulation assumes that the household’s utility at time 0 is a weighted sum of all
future flows of utility, u(c). The function u(c)—often called the felicity function—relates
the flow of utility per person to the quantity of consumption per person, c. We assume
that u(c) is increasing in c and concave—u′(c) > 0, u′′(c) < 0.2 The concavity assumption
generates a desire to smooth consumption over time: households prefer a relatively uni-
form pattern to one in which c is very low in some periods and very high in others. This
desire to smooth consumption drives the household’s saving behavior because they will
tend to borrow when income is relatively low and save when income is relatively high.
We also assume that u(c) satisfies Inada conditions: u′(c) → ∞ as c → 0, and u′(c) → 0
as c → ∞.

The multiplication of u(c) in equation (2.1) by family size, L = ent , represents the adding
up of utils for all family members alive at time t . The other multiplier, e−ρt , involves the
rate of time preference, ρ > 0. A positive value of ρ means that utils are valued less the later
they are received.3 We assume ρ > n, which implies that U in equation (2.1) is bounded if
c is constant over time.

One reason for ρ to be positive is that utils far in the future correspond to consumption of
later generations. Suppose that, starting from a point at which the levels of consumption per
person in each generation are the same, parents prefer a unit of their own consumption
to a unit of their children’s consumption. This parental “selfishness” corresponds to ρ > 0
in equation (2.1). In a fuller specification, we would also distinguish the rate at which
individuals discount their own flow of utility at different points in time (for which ρ = 0
might apply) from the rate that applies across generations. Equation (2.1) assumes, only for
reasons of tractability, that the discount rate within a person’s lifetime is the same as that
across generations.

It is also plausible that parents would have diminishing marginal utility with respect to
the number of children. We could model this effect by allowing the rate of time preference,

2. The results will be invariant with positive linear transformations of the utility function but not with arbitrary
positive, monotonic transformations. Thus, the analysis depends on a limited form of cardinal utility. See Koopmans
(1965) for a discussion.

3. Ramsey (1928) preferred to assume ρ = 0. He then interpreted the optimizing agent as a social planner, rather than
a competitive household, who chose consumption and saving for today’s generation as well as for future generations.
The discounting of utility for future generations (ρ > 0) was, according to Ramsey, “ethically indefensible.” We
work out an example with ρ = 0 in the mathematics chapter.
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ρ, to increase with the population growth rate, n.4 Because we treat n as exogenous, this
dependence of ρ on n would not materially change the analysis in this chapter. We shall,
however, consider this effect in chapter 9, which allows for an endogenous determination
of population growth.

Households hold assets in the form of ownership claims on capital (to be introduced
later) or as loans. Negative loans represent debts. We continue to assume a closed economy,
so that no assets can be traded internationally. Households can lend to and borrow from
other households, but the representative household will end up holding zero net loans in
equilibrium. Because the two forms of assets, capital and loans, are assumed to be perfect
substitutes as stores of value, they must pay the same real rate of return, r(t). We denote
the household’s net assets per person by a(t), where a(t) is measured in real terms, that is,
in units of consumables.

Households are competitive in that each takes as given the interest rate, r(t), and the wage
rate, w(t), paid per unit of labor services. We assume that each adult supplies inelastically
one unit of labor services per unit of time. (Chapter 9 considers a labor/leisure choice.)
In equilibrium, the labor market clears, and the household obtains the desired quantity of
employment. That is, the model abstracts from “involuntary unemployment.”

Since each person works one unit of labor services per unit of time, the wage income
per adult person equals w(t). The total income received by the aggregate of households is,
therefore, the sum of labor income, w(t)·L(t), and asset income, r(t)·(Assets). Households
use the income that they do not consume to accumulate more assets:

d(Assets)

dt
= r · (Assets) + wL − C (2.2)

where we omit time subscripts whenever no ambiguity results. Since a is per capita assets,
we have

ȧ =
(

1

L

)
·
[

d(Assets)

dt

]
− na

Therefore, if we divide equation (2.2) by L , we get the budget constraint in per capita terms:

ȧ = w + ra − c − na (2.3)

4. One case common in the growth literature assumes that ρ rises one to one with n; that is, ρ = ρ∗ + n, where
ρ∗ is the positive rate of time preference that applies under zero population growth. In this case, utility at time t
enters into equation (2.1) as u(c)e−ρ∗t , which depends on per capita utility, but not on the size of the family at
time t . This specification is used, for example, by Sidrauski (1967) and Blanchard and Fischer (1989, chapter 2).
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If each household can borrow an unlimited amount at the going interest rate, r(t), it has
an incentive to pursue a form of chain letter or Ponzi game. The household can borrow to
finance current consumption and then use future borrowings to roll over the principal and
pay all the interest. In this case, the household’s debt grows forever at the rate of interest,
r(t). Since no principal ever gets repaid, today’s added consumption is effectively free.
Thus a household that can borrow in this manner would be able to finance an arbitrarily
high level of consumption in perpetuity.

To rule out chain-letter possibilities, we assume that the credit market imposes a constraint
on the amount of borrowing. The appropriate restriction turns out to be that the present value
of assets must be asymptotically nonnegative, that is,

lim
t→∞

{
a(t) · exp

[
−

∫ t

0
[r(v) − n] dv

]}
≥ 0 (2.4)

This constraint means that, in the long run, a household’s debt per person (negative values
of a[t]) cannot grow as fast as r(t) − n, so that the level of debt cannot grow as fast as r(t).
This restriction rules out the type of chain-letter finance that we have described. We show
later how the credit-market constraint expressed in equation (2.4) emerges naturally from
the market equilibrium.

The household’s optimization problem is to maximize U in equation (2.1), subject to the
budget constraint in equation (2.3), the stock of initial assets, a(0), and the limitation on bor-
rowing in equation (2.3). The inequality restrictions, c(t) ≥ 0, also apply. However, as c(t)
approaches 0, the Inada condition implies that the marginal utility of consumption becomes
infinite. The inequality restrictions will therefore never bind, and we can safely ignore them.

2.1.2 First-Order Conditions

The mathematical methods for this type of dynamic optimization problem are discussed
in the appendix on mathematics at the end of the book. We use these results here without
further derivation. Begin with the present-value Hamiltonian,

J = u[c(t)] · e−(ρ−n)t + ν(t) · {w(t) + [r(t) − n] · a(t) − c(t)} (2.5)

where the expression in braces equals ȧ from equation (2.3). The variable ν(t) is the present-
value shadow price of income. It represents the value of an increment of income received at
time t in units of utils at time 0.5 Notice that this shadow price depends on time because there

5. We could deal alternatively with the shadow price νe(ρ−n)t . This shadow price measures the value of an increment
of income at time t in units of utils at time t . (See the discussion in the appendix on mathematics at the end of the
book.)
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is one of them for each “constraint,” and the household faces a continuum of constraints,
one for each instant. The first-order conditions for a maximum of U are

∂ J

∂c
= 0 �⇒ ν = u′(c)e−(ρ−n)t (2.6)

ν̇ = −∂ J/∂a �⇒ ν̇ = −(r − n) · ν (2.7)

The transversality condition is

lim
t→∞[ν(t) · a(t)] = 0 (2.8)

The Euler Equation If we differentiate equation (2.6) with respect to time and substitute
for ν from this equation and for ν̇ from equation (2.7), we get the basic condition for
choosing consumption over time:

r = ρ −
(

du′/dt

u′

)
= ρ −

[
u′′(c) · c

u′(c)

]
· (ċ/c) (2.9)

This equation says that households choose consumption so as to equate the rate of return,
r , to the rate of time preference, ρ, plus the rate of decrease of the marginal utility of
consumption, u′, due to growing per capita consumption, c.

The interest rate, r , on the left-hand side of equation (2.9) is the rate of return to saving.
The far right-hand side of the equation can be viewed as the rate of return to consump-
tion. Agents prefer to consume today rather than tomorrow for two reasons. First, because
households discount future utility at rate ρ, this rate is part of the rate of return to con-
sumption today. Second, if ċ/c > 0, c is low today relative to tomorrow. Since agents like to
smooth consumption over time—because u′′(c) < 0—they would like to even out the flow
by bringing some future consumption forward to the present. The second term on the far
right picks up this effect. If agents are optimizing, equation (2.9) says that they have equated
the two rates of return and are therefore indifferent at the margin between consuming and
saving.

Another way to view equation (2.9) is that households would select a flat consumption
profile, with ċ/c = 0, if r = ρ. Households would be willing to depart from this flat pattern
and sacrifice some consumption today for more consumption tomorrow—that is, tolerate
ċ/c > 0—only if they are compensated by an interest rate, r , that is sufficiently above ρ.
The term [−u′′(c)·c

u′(c) ] · (ċ/c) on the right-hand side of equation (2.9) gives the required amount
of compensation. Note that the term in brackets is the magnitude of the elasticity of u′(c)
with respect to c. This elasticity, a measure of the concavity of u(c), determines the amount
by which r must exceed ρ. If the elasticity is larger in magnitude, the required premium of
r over ρ is greater for a given value of ċ/c.
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The magnitude of the elasticity of marginal utility, {[−u′′(c) · c]/[u′(c)]}, is sometimes
called the reciprocal of the elasticity of intertemporal substitution.6 Equation (2.9) shows
that to find a steady state in which r and ċ/c are constant, this elasticity must be constant
asymptotically. We therefore follow the common practice of assuming the functional form

u(c) = c(1−θ) − 1

(1 − θ)
(2.10)

where θ > 0, so that the elasticity of marginal utility equals the constant −θ .7 The elasticity
of substitution for this utility function is the constant σ = 1/θ . Hence, this form is called
the constant intertemporal elasticity of substitution (CIES) utility function. The higher is θ ,
the more rapid is the proportionate decline in u′(c) in response to increases in c and,
hence, the less willing households are to accept deviations from a uniform pattern of c over
time. As θ approaches 0, the utility function approaches a linear form in c; the linearity
means that households are indifferent to the timing of consumption if r = ρ applies.

The form of u(c) in equation (2.10) implies that the optimality condition from equa-
tion (2.9) simplifies to

ċ/c = (1/θ) · (r − ρ) (2.11)

Therefore, the relation between r and ρ determines whether households choose a pattern of
per capita consumption that rises over time, stays constant, or falls over time. A lower will-
ingness to substitute intertemporally (a higher value of θ ) implies a smaller responsiveness
of ċ/c to the gap between r and ρ.

The Transversality Condition The transversality condition in equation (2.8) says that
the value of the household’s per capita assets—the quantity a(t) times the shadow price

6. The elasticity of intertemporal substitution between consumption at times t1 and t2 is given by the reciprocal
of the proportionate change in the magnitude of the slope of an indifference curve in response to a proportionate
change in the ratio c(t1)/c(t2). If we denote this elasticity by σ , we get

σ =
[

c(t1)/c(t2)

−u′[c(t1)]/u′[c(t2)]
· d{u′[c(t1)]/u′[c(t2)]}

d[c(t1)/c(t2)]

]−1

where −u′[c(t1)]/u′[c(t2)] is the magnitude of the slope of the indifference curve. If we let t2 approach t1, we get
the instantaneous elasticity,

σ = −u′(c)/[c · u′′(c)]

which is the inverse of the magnitude of the elasticity of marginal utility.

7. The inclusion of the −1 in the formula is convenient because it implies that u(c) approaches log(c) as θ → 1.
(This result can be proven using l’Hôpital’s rule.) The term −1/(1−θ) can, however, be omitted without affecting
the subsequent results, because the household’s choices are invariant with respect to linear transformations of the
utility function (see footnote 2).
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ν(t)—must approach 0 as time approaches infinity. If we think of infinity loosely as the end of
the planning horizon, the intuition is that optimizing agents do not want to have any valuable
assets left over at the end.8 Utility would increase if the assets, which are effectively being
wasted, were used instead to raise consumption at some dates in finite time.

The shadow price ν evolves over time in accordance with equation (2.7). Integration of
this equation with respect to time yields

ν(t) = ν(0) · exp

{
−

∫ t

0
[r(v) − n] dv

}

The term ν(0) equals u′[c(0)], which is positive because c(0) is finite (if U is finite), and
u′(c) is assumed to be positive as long as c is finite.

If we substitute the result for ν(t) into equation (2.8), the transversality condition becomes

lim
t→∞

{
a(t) · exp

[
−

∫ t

0
[r(v) − n] dv

]}
= 0 (2.12)

This equation implies that the quantity of assets per person, a, does not grow asymptotically
at a rate as high as r − n or, equivalently, that the level of assets does not grow at a rate as
high as r . It would be suboptimal for households to accumulate positive assets forever at
the rate r or higher, because utility would increase if these assets were instead consumed
in finite time.

In the case of borrowing, where a(t) is negative, infinite-lived households would like to
violate equation (2.12) by borrowing and never making payments for principal or interest.
However, equation (2.4) rules out this chain-letter finance, that is, schemes in which a
household’s debt grows forever at the rate r or higher. In order to borrow on this perpetual
basis, households would have to find willing lenders; that is, other households that were
willing to hold positive assets that grew at the rate r or higher. But we already know from
the transversality condition that these other households will be unwilling to absorb assets
asymptotically at such a high rate. Therefore, in equilibrium, each household will be unable
to borrow in a chain-letter fashion. In other words, the inequality restriction shown in
equation (2.4) is not arbitrary and would, in fact, be imposed in equilibrium by the credit
market. Faced by this constraint, the best thing that optimizing households can do is to
satisfy the condition shown in equation (2.12). That is, this equality holds whether a(t) is
positive or negative.

8. The interpretation of the transversality condition in the infinite-horizon problem as the limit of the corresponding
condition for a finite-horizon problem is not always correct. See the appendix on mathematics at the end of the
book.
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The Consumption Function The term exp[− ∫ t
0 r(v) dv], which appears in equa-

tion (2.12), is a present-value factor that converts a unit of income at time t to an equivalent
unit of income at time 0. If r(v) equaled the constant r , the present-value factor would
simplify to e−r t . More generally we can think of an average interest rate between times 0
and t , defined by

r̄(t) = (1/t) ·
∫ t

0
r(v) dv (2.13)

The present-value factor equals e−r̄(t)·t .
Equation (2.11) determines the growth rate of c. To determine the level of c—that is, the

consumption function—we have to use the flow budget constraint, equation (2.3), to derive
the household’s intertemporal budget constraint. We can solve equation (2.3) as a first-order
linear differential equation in a to get an intertemporal budget constraint that holds for any
time T ≥ 0:9

a(T ) · e−[r̄(T )−n]T +
∫ T

0
c(t)e−[r̄(t)−n]t dt = a(0) +

∫ T

0
w(t)e−[r̄(t)−n]t dt

where we used the definition of r̄(t) from equation (2.13). This intertemporal budget con-
straint says that the present discounted value of all income between 0 and T plus the initial
available wealth have to equal the present discounted value of all future consumption plus
the present value of the assets left at T . If we take the limit as T → ∞, the term on the far
left vanishes (from the transversality condition in equation [2.12]), and the intertemporal
budget constraint becomes

∫ ∞

0
c(t)e−[r̄(t)−n]t dt = a(0) +

∫ ∞

0
w(t)e−[r̄(t)−n]t dt = a(0) + w̃(0) (2.14)

Hence, the present value of consumption equals lifetime wealth, defined as the sum of initial
assets, a(0), and the present value of wage income, denoted by w̃(0).

If we integrate equation (2.11) between times 0 and t and use the definition of r̄(t) from
equation (2.13), we find that consumption is given by

c(t) = c(0) · e(1/θ)·[r̄(t)−ρ]t

9. The methods for solving first-order linear differential equations with variable coefficients are discussed in the
appendix on mathematics at the end of the book.
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Substitution of this result for c(t) into the intertemporal budget constraint in equation (2.14)
leads to the consumption function at time 0:

c(0) = µ(0) · [a(0) + w̃(0)] (2.15)

where µ(0), the propensity to consume out of wealth, is determined from

[1/µ(0)] =
∫ ∞

0
e[r̄(t)·(1−θ)/θ−ρ/θ+n]t dt (2.16)

An increase in average interest rates, r̄(t), for given wealth, has two effects on the marginal
propensity to consume in equation (2.16). First, higher interest rates increase the cost of
current consumption relative to future consumption, an intertemporal-substitution effect
that motivates households to shift consumption from the present to the future. Second,
higher interest rates have an income effect that tends to raise consumption at all dates. The
net effect of an increase in r̄(t) on µ(0) depends on which of the two forces dominates.

If θ < 1, µ(0) declines with r̄(t) because the substitution effect dominates. The intuition
is that, when θ is low, households care relatively little about consumption smoothing, and the
intertemporal-substitution effect is large. Conversely, if θ > 1, µ(0) rises with r̄(t) because
the substitution effect is relatively weak. Finally, if θ = 1 (log utility), the two effects exactly
cancel, and µ(0) simplifies to ρ − n, which is independent of r̄(t). Recall that we assumed
ρ − n > 0.

The effects of r̄(t) on µ(0) carry over to effects on c(0) if we hold constant the wealth
term, a(0)+ w̃(0). In fact, however, w̃(0) falls with r̄(t) for a given path of w(t). This third
effect reinforces the substitution effect that we mentioned before.

2.2 Firms

Firms produce goods, pay wages for labor input, and make rental payments for capital input.
Each firm has access to the production technology,

Y (t) = F[K (t), L(t), T (t)]

where Y is the flow of output, K is capital input (in units of commodities), L is labor input
(in person-hours per year), and T (t) is the level of the technology, which is assumed to
grow at the constant rate x ≥ 0. Hence, T (t) = ext , where we normalize the initial level
of technology, T (0), to 1. The function F(·) satisfies the neoclassical properties discussed
in chapter 1. In particular, Y exhibits constant returns to scale in K and L , and each input
exhibits positive and diminishing marginal product.
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We showed in chapter 1 that a steady state coexists with technological progress at a
constant rate only if this progress takes the labor-augmenting form

Y (t) = F[K (t), L(t) · T (t)]

If we again define “effective labor” as the product of raw labor and the level of technology,
L̂ ≡ L · T (t), the production function can be written as

Y = F(K , L̂) (2.17)

We shall find it convenient to work with variables that are constant in the steady state. In
chapter 1, we showed that the steady state of the model with exogenous technical progress
was such that the per capita variables grew at the rate of technological progress, x . This
property will still hold in the present model. Hence, we will deal again with quantities per
unit of effective labor:

ŷ ≡ Y/L̂ and k̂ ≡ K/L̂

The production function can then be rewritten in intensive form, as in equation (1.38),

ŷ = f (k̂) (2.18)

where f (0) = 0. It can be readily verified that the marginal products of the factors are given
by10

∂Y/∂K = f ′(k̂)

∂Y/∂L = [ f (k̂) − k̂ · f ′(k̂)] · ext (2.19)

The Inada conditions, discussed in chapter 1, imply f ′(k̂) → ∞ as k̂ → 0 and f ′(k̂) → 0
as k̂ → ∞.

We think of firms as renting the services of capital from the households that own the
capital. (None of the results would change if the firms owned the capital, and the households
owned shares of stock in the firms.) If we let R(t) be the rental rate of a unit of capital, a
firm’s total cost for capital is RK , which is proportional to K . We assume that capital services
can be increased or decreased without incurring any additional expenses, such as costs for
installing machines or making other changes. We consider these kinds of adjustment costs
in chapter 3.

We assume, as in chapter 1, a one-sector production model in which one unit of output
can be used to generate one unit of household consumption, C , or one unit of additional

10. We can write Y = L̂ · f (k̂). Differentiation of Y with respect to K , holding fixed L and t , leads to ∂Y/∂K =
f ′(k̂). Differentiation of Y with respect to L , holding fixed K and t , leads to ∂Y/∂L = [ f (k̂) − k̂ · f ′(k̂)]ext .
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capital, K . Therefore, as long as the economy is not at a corner solution in which all current
output goes into consumption or new capital, the price of K in terms of C will be fixed
at unity. Because C will be nonzero in equilibrium, we have to be concerned only with
the possibility that none of the output goes into new capital; in other words, that gross
investment is 0. Even in this situation, the price of K in terms of C would remain at unity
if capital were reversible in the sense that the existing stocks could be consumed on a
one-for-one basis. With reversible capital, the economy’s gross investment can be negative,
and the price of K in units of C stays at unity. Although this situation may apply to farm
animals, economists usually assume that investment is irreversible. In this case, the price
of K in units of C is one only if the constraint of nonnegative aggregate gross investment
is nonbinding in equilibrium. We maintain this assumption in the following analysis, and
we deal with irreversible investment in appendix 2B (section 2.9).

Since capital stocks depreciate at the constant rate δ ≥ 0, the net rate of return to a
household that owns a unit of capital is R − δ.11 Recall that households can also receive
the interest rate r on funds lent to other households. Since capital and loans are perfect
substitutes as stores of value, we must have r = R − δ or, equivalently, R = r + δ.

The representative firm’s flow of net receipts or profit at any point in time is given by

π = F(K , L̂) − (r + δ) · K − wL (2.20)

As in chapter 1, the problem of maximizing the present value of profit reduces here to
a problem of maximizing profit in each period without regard to the outcomes in other
periods. Profit can be written as

π = L̂ · [ f (k̂) − (r + δ) · k̂ − we−xt ] (2.21)

A competitive firm, which takes r and w as given, maximizes profit for given L̂ by setting

f ′(k̂) = r + δ (2.22)

Also as before, in a full-market equilibrium, w equals the marginal product of labor corre-
sponding to the value of k̂ that satisfies equation (2.22):

[ f (k̂) − k̂ · f ′(k̂)]ext = w (2.23)

This condition ensures that profit equals zero for any value of L̂ .

11. More generally, if the price of capital can change over time, the real rate of return for owners of capital equals
R/φ − δ + φ̇/φ, where φ is the price of capital in units of consumables. In the present case, where φ = 1, the
capital-gain term, φ̇/φ, vanishes, and the rate of return simplifies to R − δ.
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2.3 Equilibrium

We began with the behavior of competitive households that faced a given interest rate, r ,
and wage rate, w. We then introduced competitive firms that also faced given values of r
and w. We can now combine the behavior of households and firms to analyze the structure
of a competitive market equilibrium.

Since the economy is closed, all debts within the economy must cancel. Hence, the assets
per adult person, a, equal the capital per worker, k. The equality between k and a follows
because all of the capital stock must be owned by someone in the economy; in particular, in
this closed-economy model, all of the domestic capital stock must be owned by the domestic
residents. If the economy were open to international capital markets, the gap between k and
a would correspond to the home country’s net debt to foreigners. Chapter 3 considers an
open economy, in which the net foreign debt can be nonzero.

The household’s flow budget constraint in equation (2.3) determines ȧ. Use a = k, k̂ =
ke−xt , and the conditions for r and w in equations (2.22) and (2.23) to get

˙̂k = f (k̂) − ĉ − (x + n + δ) · k̂ (2.24)

where ĉ ≡ C/L̂ = ce−xt , and k̂(0) is given. Equation (2.24) is the resource constraint for
the overall economy: the change in the capital stock equals output less consumption and
depreciation, and the change in k̂ ≡ K/L̂ also takes account of the growth in L̂ at the rate
x + n.

The differential equation (2.24) is the key relation that determines the evolution of k̂ and,
hence, ŷ = f (k̂) over time. The missing element, however, is the determination of ĉ. If we
knew the relation of ĉ to k̂ (or ŷ), or if we had another differential equation that determined
the evolution of ĉ, we could study the full dynamics of the economy.

In the Solow–Swan model of chapter 1, the missing relation was provided by the assump-
tion of a constant saving rate. This assumption implied the linear consumption function,
ĉ = (1− s) · f (k̂). In the present setting, the behavior of the saving rate is not so simple, but
we do know from household optimization that c grows in accordance with equation (2.11).
If we use the conditions r = f ′(k̂) − δ and ĉ = ce−xt , we get

˙̂c/ĉ = ċ

c
− x = 1

θ
· [ f ′(k̂) − δ − ρ − θx] (2.25)

This equation, together with equation (2.24), forms a system of two differential equations
in ĉ and k̂. This system, together with the initial condition, k̂(0), and the transversality
condition, determines the time paths of ĉ and k̂.
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We can write the transversality condition in terms of k̂ by substituting a = k and k̂ = ke−xt

into equation (2.12) to get

lim
t→∞

{
k̂ · exp

(
−

∫ t

0
[ f ′(k̂) − δ − x − n] dv

)}
= 0 (2.26)

We can interpret this result if we jump ahead to use the result that k̂ tends asymptotically
to a constant steady-state value, k̂∗, just as in the Solow–Swan model. The transversality
condition in equation (2.26) therefore requires f ′(k̂∗)− δ, the steady-state rate of return, to
exceed x + n, the steady-state growth rate of K .

2.4 Alternative Environments

The analysis applies thus far to a decentralized economy with competitive households and
firms. We can see from the setup of the model, however, that the same equations—and, hence,
the same results—would emerge under some alternative environments. First, households
could perform the functions of firms by employing adult family members as workers in
accordance with the production process, f (k̂).12 The resource constraint in equation (2.24)
follows directly (total output must be allocated to consumption or gross investment, which
equals net investment plus depreciation). If the households maximize the utility function in
equations (2.1) and (2.10), subject to equation (2.24), then equations (2.25) and (2.26) still
represent the first-order conditions. Thus, the separation of functions between households
and firms is not central to the analysis.

We could also pretend that the economy was run by a benevolent social planner, who
dictates the choices of consumption over time and who seeks to maximize the utility of
the representative family. The device of the benevolent social planner will be useful in
many circumstances for finding the economy’s first-best outcomes. The planner is assumed
to have the same form of preferences as those assumed before—in particular, the same
rate of time preference, ρ, and the same utility function, u(c). The planner is also con-
strained by the aggregate resource constraint in equation (2.24). The solution for the plan-
ner will therefore be the same as that for the decentralized economy.13 Since a benevolent

12. This setup was considered in chapter 1.

13. The planner’s problem is to choose the path of c to maximize U in equation (2.1), subject to the economy’s
budget constraint in equation (2.24), the initial value k̂(0), and the inequalities c ≥ 0 and k̂ ≥ 0. The Hamiltonian
for this problem is

J = u(c)e−ρt + ν · [ f (k̂) − ce−xt − (x + n + δ) · k̂]

The usual first-order conditions lead to equation (2.25), and the transversality condition leads to equation (2.26).



Growth Models with Consumer Optimization 99

social planner with dictatorial powers will attain a Pareto optimum, the results for the
decentralized economy—which coincide with those of the planner—must also be Pareto
optimal.

2.5 The Steady State

We now consider whether the equilibrium conditions, equations (2.24), (2.25), and (2.26),
are consistent with a steady state, that is, a situation in which the various quantities grow
at constant (possibly zero) rates. We show first that the steady-state growth rates of k̂ and ĉ
must be zero, just as in the Solow–Swan model of chapter 1.

Let (γk̂)
∗ be the steady-state growth rate of k̂ and (γĉ)

∗ the steady-state growth rate of ĉ.
In the steady state, equation (2.25) implies

ĉ = f (k̂) − (x + n + δ) · k̂ − k̂ · (γk̂)
∗ (2.27)

If we differentiate this condition with respect to time, we find that

˙̂c = ˙̂k · { f ′(k̂) − [x + n + δ + (γk̂)
∗]} (2.28)

must hold in the steady state. The expression in the large braces is positive from the transver-
sality condition shown in equation (2.26). Therefore, (γk̂)

∗ and (γĉ)
∗ must have the same

sign.
If (γk̂)

∗ > 0, k̂ → ∞ and f ′(k̂) → 0. Equation (2.25) then implies (γĉ) < 0, an outcome
that contradicts the result that (γk̂)

∗ and (γĉ)
∗ are of the same sign. If (γk̂)

∗ < 0, k̂ → 0 and
f ′(k̂) → ∞. Equation (2.25) then implies (γĉ)

∗ > 0, an outcome that again contradicts the
result that (γk̂)

∗ and (γĉ)
∗ are of the same sign. Therefore, the only remaining possibility

is (γk̂)
∗ = (γĉ)

∗ = 0. The result (γk̂)
∗ = 0 implies (γŷ)

∗ = 0. Thus the variables per unit of
effective labor, k̂, ĉ, and ŷ, are constant in the steady state. This behavior implies that the per
capita variables, k, c, and y, grow in the steady state at the rate x , and the level variables, K ,
C , and Y , grow in the steady state at the rate x + n. These results on steady-state growth rates
are the same as those in the Solow–Swan model, in which the saving rate was exogenous
and constant.

The steady-state values for ĉ and k̂ are determined by setting the expressions in equa-
tions (2.24) and (2.25) to zero. The solid curve in figure 2.1, which corresponds to ĉ =
f (k̂) − (x + n + δ) · k̂, shows pairs of (k̂, ĉ) that satisfy ˙̂k = 0 in equation (2.24). Note that
the peak in the curve occurs when f ′(k̂) = δ + x + n, so that the interest rate, f ′(k̂) − δ,
equals the steady-state growth rate of output, x + n. This equality between the interest rate
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Figure 2.1
The phase diagram of the Ramsey model. The figure shows the transitional dynamics of the Ramsey model. The
˙̂c/ĉ = 0 and ˙̂k = 0 loci divide the space into four regions, and the arrows show the directions of motion in each
region. The model exhibits saddle-path stability. The stable arm is an upward-sloping curve that goes through the
origin and the steady state. Starting from a low level of k̂, the optimal initial ĉ is low. Along the transition, ĉ and
k̂ increase toward their steady-state values.

and the growth rate corresponds to the golden-rule level of k̂ (as described in chapter 1),14

because it leads to a maximum of ĉ in the steady state. We denote by k̂gold the value of k̂
that corresponds to the golden rule.

Equation (2.25) and the condition ˙̂c = 0 imply

f ′(k̂∗) = δ + ρ + θx (2.29)

This equation says that the steady-state interest rate, f ′(k̂)−δ, equals the effective discount
rate, ρ + θx .15 The vertical line at k̂∗ in figure 2.1 corresponds to this condition; note that
˙̂c/ĉ = 0 holds at this value of k̂ independently of the value of ĉ.16 The key to the determi-
nation of k̂∗ in equation (2.29) is the diminishing returns to capital, which make f ′(k̂∗) a

14. In chapter 1 we defined the golden-rule level of k as the capital stock per person that maximizes steady-state
consumption per capita. It was shown that this level of capital was such that f ′(kgold) = δ+n; see equation (1.22).
When exogenous technological progress exists, the golden-rule level of k̂ is defined as the level that maximizes
steady-state consumption per effective unit of labor, ĉ = f (k̂) − (x + n + δ) · k̂. Notice that the maximum is
achieved when f ′(k̂gold) = (x + n + δ).

15. The θx part of the effective discount rate picks up the effect from diminishing marginal utility of consumption
due to growth of c at the rate x . See equation (2.9).

16. Equation (2.25) indicates that ˙̂c/ĉ = 0 is also satisfied if ĉ = 0, that is, along the horizontal axis in figure 2.1.
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monotonically decreasing function of k̂∗. Moreover, the Inada conditions— f ′(0) = ∞ and
f ′(∞) = 0—ensure that equation (2.29) holds at a unique positive value of k̂∗.

Figure 2.1 shows the determination of the steady-state values, (k̂∗, ĉ∗), at the intersection
of the vertical line with the solid curve. In particular, with k̂∗ determined from equation
(2.29), the value for ĉ∗ follows from setting the expression in equation (2.24) to 0 as

ĉ∗ = f (k̂∗) − (x + n + δ) · k̂∗ (2.30)

Note that ŷ∗ = f (k̂∗) is the steady-state value of ŷ.
Consider the transversality condition in equation (2.26). Since k̂ is constant in the steady

state, this condition holds if the steady-state rate of return, r∗ = f ′(k̂∗) − δ, exceeds the
steady-state growth rate, x +n. Equation (2.29) implies that this condition can be written as

ρ > n + (1 − θ)x (2.31)

If ρ is not high enough to satisfy equation (2.31), the household’s optimization problem is
not well posed because infinite utility would be attained if c grew at the rate x .17 We assume
henceforth that the parameters satisfy equation (2.31).

In figure 2.1, the steady-state value, k̂∗, was drawn to the left of k̂gold. This relation
always holds if the transversality condition, equation (2.31), is satisfied. The steady-state
value is determined from f ′(k̂∗) = δ +ρ +θx ,18 whereas the golden-rule value comes from
f ′(k̂gold) = δ + x + n. The inequality in equation (2.31) implies ρ + θx > x + n and, hence,
f ′(k̂∗) > f ′(k̂gold). The result k̂∗ < k̂gold follows from f ′′(k̂) < 0.

The implication is that inefficient oversaving cannot occur in the optimizing framework,
although it could arise in the Solow–Swan model with an arbitrary, constant saving rate. If
the infinitely lived household were oversaving, it would realize that it was not optimizing—
because it was not satisfying the transversality condition—and would therefore shift to a
path that entailed less saving. Note that the optimizing household does not save enough to
attain the golden-rule value, k̂gold. The reason is that the impatience reflected in the effective
discount rate, ρ + θx , makes it not worthwhile to sacrifice more of current consumption to
reach the maximum of ĉ (the golden-rule value, ĉgold) in the steady state.

The steady-state growth rates do not depend on parameters that describe the production
function, f (·), or on the preference parameters, ρ and θ , that characterize households’
attitudes about consumption and saving. These parameters do have long-run effects on
levels of variables.

17. The appendix on mathematics at the end of the book considers some cases in which infinite utility can be
handled.

18. This condition is sometimes called the modified golden rule.
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In figure 2.1, an increased willingness to save—represented by a reduction in ρ or θ—
shifts the ˙̂c/ĉ = 0 schedule to the right and leaves the ˙̂k = 0 schedule unchanged. These
shifts lead accordingly to higher values of ĉ∗ and k̂∗ and, hence, to a higher value of
ŷ∗. Similarly, a proportional upward shift of the production function or a reduction of the
depreciation rate, δ, moves the ˙̂k = 0 curve up and the ˙̂c/ĉ = 0 curve to the right. These shifts
generate increases in ĉ∗, k̂∗, and ŷ∗. An increase in x raises the effective time-preference
term, ρ + θx , in equation (2.29) and also lowers the value of ĉ∗ that corresponds to a given
k̂∗ in equation (2.30). In figure 2.1, these changes shift the ˙̂k = 0 schedule downward and
the ˙̂c/ĉ = 0 schedule leftward and thereby reduce ĉ∗, k̂∗, and ŷ∗. (Although ĉ falls, utility
rises because the increase in x raises the growth rate of c relative to that of ĉ.) Finally, the
effect of n on k̂∗ and ŷ∗ is nil if we hold fixed ρ. Equation (2.30) implies that ĉ∗ declines.
If a higher n leads to a higher rate of time preference (for reasons discussed before), then
an increase in n would reduce k̂∗ and ŷ∗.

2.6 Transitional Dynamics

2.6.1 The Phase Diagram

The Ramsey model, like the Solow–Swan model, is most interesting for its predictions
about the behavior of growth rates and other variables along the transition path from an
initial factor ratio, k̂(0), to the steady-state ratio, k̂∗. Equations (2.24), (2.25), and (2.26)
determine the path of k̂ and ĉ for a given value of k̂(0). The phase diagram in figure 2.1
shows the nature of the dynamics.19

We first display the ˙̂c = 0 locus. Since ˙̂c = ĉ · (1/θ) · [ f ′(k̂)− δ −ρ − θx], there are two
ways for ˙̂c to be zero: ĉ = 0, which corresponds to the horizontal axis in figure 2.1, and
f ′(k̂) = δ +ρ + θx , which is a vertical line at k̂∗, the capital-labor ratio defined in equation
(2.29). We note that ĉ is rising for k̂ < k̂∗ (so the arrows point upward in this region) and
falling for k̂ > k̂∗ (where the arrows point downward).

Recall that the solid curve in figure 2.1 shows combinations of k̂ and ĉ that satisfy ˙̂k = 0
in equation (2.24). This equation also implies that k̂ is falling for values of ĉ above the solid
curve (so the arrows point leftward in this region) and rising for values of ĉ below the curve
(where the arrows point rightward).

Since the ˙̂c = 0 and the ˙̂k = 0 loci cross three times, there are three steady states: the
first one is the origin (ĉ = k̂ = 0), the second steady state corresponds to k̂∗ and ĉ∗, and

19. See the appendix on mathematics for a discussion of phase diagrams.
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the third one involves a positive capital stock, k̂∗∗ > 0, but zero consumption. We neglect
the solution at the origin because it is uninteresting.

The second steady state is saddle-path stable. Note, in particular, that the pattern of arrows
in figure 2.1 is such that the economy can converge to this steady state if it starts in two of
the four quadrants in which the two schedules divide the space. The saddle-path property
can also be verified by linearizing the system of dynamic equations around the steady state
and noting that the determinant of the characteristic matrix is negative (see appendix 2A,
section 2.8, for details). This sign for the determinant implies that the two eigenvalues have
opposite signs, an indication that the system is locally saddle-path stable.

The dynamic equilibrium follows the stable saddle path shown by the solid locus with
arrows. Suppose, for example, that the initial factor ratio satisfies k̂(0) < k̂∗, as shown in
figure 2.1. If the initial consumption ratio is ĉ(0), as shown, the economy follows the stable
path toward the steady-state pair, (k̂∗, ĉ∗). This path satisfies all the first-order conditions,
including the transversality condition, as shown in the previous section.

The two other possibilities are that the initial consumption ratio exceeds or falls short of
ĉ(0). If the ratio exceeds ĉ(0), the initial saving rate is too low for the economy to remain
on the stable path. The trajectory eventually crosses the ˙̂k = 0 locus. After that crossing,
ĉ continues to rise, k̂ starts to decline, and the path hits the vertical axis in finite time, at
which point k̂ = 0.20 The condition f (0) = 0 implies ŷ = 0; therefore, ĉ must jump down-
ward to 0 at this point. Because this jump violates the first-order condition that underlies
equation (2.25), these paths—in which the initial consumption ratio exceeds ĉ(0)—are not
equilibria.21

The final possibility is that the initial consumption ratio is below ĉ(0). In this case, the
initial saving rate is too high to remain on the saddle path, and the economy eventually
crosses the ˙̂c = 0 locus. After that crossing, ĉ declines and k̂ continues to rise. The economy
converges to the point at which the ˙̂k = 0 schedule intersects the horizontal axis, a point
which we labeled k̂∗∗. Note, in particular, that k̂ rises above the golden-rule value, k̂gold,
and asymptotically approaches a higher value of k̂. Therefore, f ′(k̂) − δ falls below x + n
asymptotically, and the path violates the transversality condition given in equation (2.26).
This violation of the transversality condition means that households are oversaving: utility

20. We can verify from equation (2.24) that ˙̂k becomes more and more negative in this region. Therefore, k̂ must
reach 0 in finite time.

21. This analysis applies if investment is reversible. If investment is irreversible, the constraint ĉ ≤ f (k̂) becomes
binding before the trajectory hits the vertical axis. That is, the paths that start from points such as ĉ′

0 in figure 2.1
would eventually hit the production function, ĉ = f (k̂), which lies above the locus for ˙̂k = 0. Thereafter, the path
would follow the production function downward toward the origin. Appendix 2B (section 2.9) shows that such
paths are not equilibria.
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would increase if consumption were raised at earlier dates. Accordingly, paths in which
the initial consumption ratio is below ĉ(0) are not equilibria. This result leaves the stable
saddle path leading to the positive steady state, k̂∗, as the only possibility.22

2.6.2 The Importance of the Transversality Condition

It is important to emphasize the role of the transversality condition in the determination of
the unique equilibrium. To make this point, we consider an unrealistic variant of the Ramsey
model in which everyone knows that the world will end at some known date T > 0. The
utility function in equation (2.1) then becomes

U =
∫ T

0
u[c(t)] · ent · e−ρt dt

and the non-Ponzi condition is

a(T ) · exp

[
−

∫ T

0
[r(v) − n] dv

]
≥ 0

The budget constraint is still given by equation (2.3). Since the only difference between
this problem and that of the previous sections is the terminal date, the only optimization
condition that changes is the transversality condition, which is now

a(T ) · exp

[
−

∫ T

0
[r(v) − n] dv

]
= 0

Since the exponential term cannot be zero in finite time, this condition implies that the
assets left at the end of the planning horizon equal zero:

a(T ) = 0 (2.32)

In other words, since the shadow value of assets at time T is positive, households will
optimally choose to leave no assets when they “die.”

The behavior of firms is the same as before, and equilibrium in the asset markets again
requires a(t) = k(t). Therefore, the general-equilibrium conditions are still given by equa-
tions (2.24) and (2.25), and the loci for ˙̂k = 0 and ˙̂c = 0 are the same as those shown

22. Similar results apply if the economy begins with k̂(0) > k̂∗ in figure 2.1. The only complication here is that, if
investment is irreversible, the constraint ĉ ≤ f (k̂) may be binding in this region. See the discussion in appendix 2B
(section 2.9).
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in figure 2.1. The arrows representing the dynamics of the system are also the same as
before.

Since a(t) = k(t), the transversality condition from equation (2.32) can be written as

k̂(T ) = 0 (2.33)

From the perspective of figure 2.1, this new transversality condition requires the initial
choice of ĉ(0) to be such that the capital stock equals zero at time T . In other words,
optimality now requires the economy to land on the vertical axis at exactly time T . The
implication is that the stable arm is no longer the equilibrium, because it is does not lead
the economy toward zero capital at time T . The same is true for any initial choice of
consumption below the stable arm. The new equilibrium, therefore, features an initial value
ĉ(0) that lies above the stable arm.

It is possible that ĉ and k̂ would both rise for awhile. In fact, if T is large, the transition
path would initially be close to, but slightly above, the stable arm shown in figure 2.1.
However, the economy eventually crosses the ˙̂k = 0 schedule. Thereafter, ĉ and k̂ fall, and
the economy ends up with zero capital at time T . We see, therefore, that the same system
of differential equations involves one equilibrium (the stable arm) or another (the path that
ends up on the vertical axis at T ) depending solely on the transversality condition.

2.6.3 The Shape of the Stable Arm

The stable arm shown in figure 2.1 expresses the equilibrium ĉ as a function of k̂.23 This
relation is known in dynamic programming as a policy function: it relates the optimal value
of a control variable, ĉ, to the state variable, k̂. This policy function is an upward-sloping
curve that goes through the origin and the steady-state position. Its exact shape depends on
the parameters of the model.

Consider, as an example, the effect of the parameter θ on the shape of the stable arm.
Suppose that the economy begins with k̂(0) < k̂∗, so that future values of ĉ will exceed
ĉ(0). High values of θ imply that households have a strong preference for smoothing
consumption over time; hence, they will try hard to shift consumption from the future to
the present. Therefore, when θ is high, the stable arm will lie close to the ˙̂k = 0 schedule, as
shown in figure 2.2. The correspondingly low rate of investment implies that the transition
would take a long time.

Conversely, if θ is low, households are more willing to postpone consumption in response
to high rates of return. The stable arm in this case is flat and close to the horizontal axis for

23. The corresponding relation in the Solow–Swan model, ĉ = (1 − s) · f (k̂), was provided by the assumption of
a constant saving rate.
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Figure 2.2
The slope of the saddle path. When θ is low, consumers do not mind large swings in consumption over time.
Hence, they choose to consume relatively little when the capital stock is low (and the interest rate is high). The
investment rate is high initially in this situation, and the economy approaches its steady state rapidly. In contrast,
when θ is high, consumers are strongly motivated to smooth consumption over time. Hence, they initially devote
most of their resources to consumption (the stable arm is close to the ˙̂k = 0 schedule) and little to investment. In
this case, the economy approaches its steady state slowly.

low values of k̂ (see figure 2.2). The high levels of investment imply that the transition is
relatively quick, and as k̂ approaches k̂∗, households increase ĉ sharply. It is clear from the
diagram that linear approximations around the steady state will not capture these dynamics
accurately.

We show in appendix 2C (section 2.10) for the case of a Cobb–Douglas technology,
ŷ = Ak̂α , that ĉ/k̂ is rising, constant, or falling in the transition from k̂(0) < k̂∗ depending
on whether the parameter θ is smaller than, equal to, or larger than the capital share, α. It
follows that the stable arm is convex, linear, or concave depending on whether θ is smaller
than, equal to, or larger than α. (We argue later that θ > α is the plausible case.) If θ = α,
so that ĉ/k̂ is constant during the transition, the policy function has the closed-form solution
ĉ = (constant) · k̂, where the constant turns out to be (δ + ρ)/θ − (δ + n).

2.6.4 Behavior of the Saving Rate

The gross saving rate, s, equals 1 − ĉ/ f (k̂). The Solow–Swan model, discussed in chapter 1,
assumed that s was constant at an arbitrary level. In the Ramsey model with optimizing
consumers, s can follow a complicated path that includes rising and falling segments as the
economy develops and approaches the steady state.
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Heuristically, the behavior of the saving rate is ambiguous because it involves the offset-
ting impacts from a substitution effect and an income effect. As k̂ rises, the decline in f ′(k̂)

lowers the rate of return, r , on saving. The reduced incentive to save—an intertemporal-
substitution effect—tends to lower the saving rate as the economy develops. Second, the
income per effective worker in a poor economy, f (k̂), is far below the long-run or permanent
income of this economy. Since households desire to smooth consumption, they would like
to consume a lot in relation to income when they are poor; that is, the saving rate would be
low when k̂ is low. As k̂ rises, the gap between current and permanent income diminishes;
hence, consumption tends to fall in relation to current income, and the saving rate tends to
rise. This force—an income effect—tends to raise the saving rate as the economy develops.

The transitional behavior of the saving rate depends on whether the substitution or income
effect is more important. The net effect is ambiguous in general, and the path of the saving
rate during the transition can be complicated. The results simplify, however, for a Cobb–
Douglas production function. Appendix 2C shows for this case that, depending on parameter
values, the saving rate falls monotonically, stays constant, or rises monotonically as k̂ rises.

We show in Appendix 2C for the Cobb–Douglas case that the steady-state saving rate,
s∗, is given by

s∗ = α · (x + n + δ)/(δ + ρ + θx) (2.34)

Note that the transversality condition, which led to equation (2.31), implies s∗ < α in equa-
tion (2.34); that is, the steady-state gross saving rate is less than the gross capital share.

We can use a phase diagram to analyze the transitional behavior of the saving rate for
the case of a Cobb–Douglas production function. The methodology is interesting more
generally because it provides a way to study the behavior of variables of interest, such as
the saving rate, that do not enter directly into the first-order conditions of the model. The
method involves transformations of the variables that appear in the first-order conditions.
The dynamic relations that we used before were written in terms of the variables ĉ and k̂.
To study the transitional behavior of the saving rate, s = 1 − ĉ/ŷ, we want to rewrite these
relations in terms of the variables ĉ/ŷ and k̂. Then we will be able to construct a phase
diagram in terms of ĉ/ŷ and k̂. The stable arm of such a phase diagram will show how
ĉ/ŷ—and, hence, s = 1 − ĉ/ŷ—move as k̂ increases.

We start by noticing that the growth rate of ĉ/ŷ is given by the growth rate of ĉ minus
the growth rate of ŷ. If the production function is Cobb–Douglas, the growth rate of ŷ is
proportional to the growth rate of k̂, that is,

1

ĉ/ŷ
· d(ĉ/ŷ)

dt
= ( ˙̂c/ĉ) − ( ˙̂y/ŷ) = ( ˙̂c/ĉ) − α · ( ˙̂k/k̂)
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We can now use the equilibrium conditions shown in equations (2.24) and (2.25) to get

1

ĉ/ŷ
· d(ĉ/ŷ)

dt
= [(1/θ) · (αAk̂α−1 − δ − ρ − θx)]

− α · [Ak̂α−1 − (ĉ/ŷ) · Ak̂α−1 − (x + n + δ)] (2.35)

where we used the equality ĉ/k̂ = (ĉ/ŷ) · Ak̂α−1. The growth rate of k̂ is

˙̂k/k̂ = [Ak̂α−1 − (ĉ/ŷ) · Ak̂α−1 − (x + n + δ)] (2.36)

Notice that equations (2.35) and (2.36) represent a system of differential equations in
the variables ĉ/ŷ and k̂. Therefore, a conventional phase diagram can be drawn in terms of
these two variables.

We start by setting equation (2.35) to zero to get the d(ĉ/ŷ)

dt = 0 locus:

ĉ/ŷ =
(

1 − 1

θ

)
+ ψ · k̂1−α

αA
(2.37)

where ψ ≡ [(δ + ρ + θx)/θ − α · (x + n + δ)] is a constant. This locus is upward sloping,
downward sloping, or horizontal depending on whether ψ is positive, negative, or zero. The
three possibilities are depicted in figure 2.3.

Independently of the value of ψ , the arrows above the d(ĉ/ŷ)

dt = 0 locus point north, and
the arrows below the schedule point south.

We can find the ˙̂k = 0 locus by setting equation (2.35) to zero to get

ĉ/ŷ = 1 − (x + n + δ)

A
· k̂1−α (2.38)

which is unambiguously downward sloping.24 Arrows point west above the schedule and
east below the schedule.

The three panels of figure 2.3 show that the steady state is saddle-path stable regardless of
the value of ψ . The stable arm, however, is upward-sloping when ψ > 0, downward-sloping
when ψ < 0, and horizontal when ψ = 0. Following the reasoning of previous sections,
we know that an infinite-horizon economy always finds itself on the stable arm. Thus,
depending on parameter values, the consumption ratio falls monotonically, stays constant,
or rises monotonically as k̂ rises. The saving rate, therefore, behaves exactly the opposite.
A high value of θ—which corresponds to a low willingness to substitute consumption
intertemporally—makes it more likely that ψ < 0 will hold, in which case the saving rate

24. When ψ < 0, the dk̂
dt = 0 locus is also steeper than the d(ĉ/ŷ)

dt = 0 schedule.
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Figure 2.3
Phase diagram for the behavior of the saving rate (in the Cobb–Douglas case). In the Cobb–Douglas case, the
savings rate behaves monotonically. Panel a shows the phase diagram for ĉ/ŷ and k̂ when the parameters are such
that (δ + ρ + θx)/θ > α · (x + n + δ). Since the stable arm is upward sloping, the consumption ratio increases as
the economy grows toward the steady state. Hence, in this case, the saving rate (one minus the consumption rate)
declines monotonically during the transition. Panel b considers the case in which (δ + ρ + θx)/θ < α ·(x +n +δ).
The stable arm is now downward sloping and, therefore, the saving rate increases monotonically during the
transition. Panel c considers the case (δ + ρ + θx)/θ + α · (x + n + δ). The stable arm is now horizonal, which
means that the saving rate is constant during the transition.

is more likely to rise during the transition. This result follows because a higher θ weakens
the substitution effect from the interest rate.

In the particular case where ψ = 0, the saving rate is constant at its steady-state value,
s∗ = 1/θ , during the transition. For this combination of parameters, it turns out that the
wealth and substitution effects cancel out, so that the saving rate remains constant as the
capital stock grows toward its steady state. Thus, the constant saving rate in the Solow–
Swan model is a special case of the Ramsey model. However, even in this case, there is
an important difference from the Solow–Swan model. The level of s in the Ramsey model
is dictated by the underlying parameters and cannot be chosen arbitrarily. In particular, an
arbitrary choice of s in the Solow–Swan model may generate results that are dynamically
inefficient if s leads the economy to a steady-state capital stock that is larger than the golden
rule. This outcome is impossible in the Ramsey model.

In a later discussion, we use the baseline values ρ = 0.02 per year, δ = 0.05 per year,
n = 0.01 per year, and x = 0.02 per year. If we also assume a conventional capital share of
α = 0.3, the value of θ that generates a constant saving rate is 17; that is, s∗ < 1/θ applies
and the saving rate falls—counterfactually—as the economy develops unless θ exceeds this
high value.
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We noted for the Solow–Swan model that the theory cannot fit the evidence about speeds
of convergence unless the capital-share coefficient, α, is much larger than 0.3. Values in the
neighborhood of 0.75 accord better with the empirical evidence, and these high values of
α are reasonable if we take a broad view of capital to include the human components. We
show in the following section that the findings about α still apply in the Ramsey growth
model, which allows the saving rate to vary over time. If we assume α = 0.75, along with
the benchmark values of the other parameters, the value of θ that generates a constant saving
rate is 1.75. That is, the gross saving rate rises (or falls) as the economy develops if θ is
greater (or less) than 1.75. If θ = 1.75, the gross saving rate is constant at the value 0.57.
We have to interpret this high value for the gross saving rate by including in gross saving
the various expenditures that expand or maintain human capital; aside from expenses for
education and training, this gross saving would include portions of the outlays for food,
health, and so on.

Our reading of empirical evidence across countries is that the saving rate tends to rise to
a moderate extent with per capita income during the transition. The Ramsey model can fit
this pattern, as well as the observed speeds of convergence, if we combine the benchmark
parameters with a value of α of around 0.75 and a value of θ somewhat above 2. The
value of θ cannot be too much above 2 because then the steady-state saving rate, s∗, shown
in equation (2.34), becomes too low. For example, the value θ = 10 implies s∗ = 0.22,
which is too low for a broad concept that includes gross saving in the form of human
capital.

2.6.5 The Paths of the Capital Stock and Output

The stable arm shown in figure 2.1 shows that, if k̂(0) < k̂∗, k̂ and ĉ rise monotonically as
they approach their steady-state values. The rising path of k̂ implies that the rate of return,
r , declines monotonically from its initial position, f ′[k̂(0)] − δ, to its steady-state value,
ρ + θx . Equation (2.25) and the path of decreasing r imply that the growth rate of per capita
consumption, ċ/c, falls monotonically. That is, the lower k̂(0) and, hence, ŷ(0), the higher
the initial value of ċ/c.

We would also like to relate the initial per capita growth rates of capital and output, γk

and γy , to the starting ratio, k̂(0). In chapter 1 we referred to the negative relations between
k̇/k and k̂(0) and between ẏ/y and ŷ(0) as convergence effects. We show in appendix 2D
(section 2.11), using the consumption function from equations (2.15) and (2.16), that k̇/k
declines monotonically as the economy develops and approaches the steady state. In other
words, although the saving rate may rise during the transition, it cannot rise enough to
eliminate the inverse relation between k̇/k and k̂. Thus, the endogenous determination of
the saving rate does not eliminate the convergence property for k̂.
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We can take logs and derivatives of the production function in equation (2.18) to derive
the growth rate of output per effective worker:

˙̂y/ŷ =
[

k̂ · f ′(k̂)

f (k̂)

]
· ( ˙̂k/k̂) (2.39)

that is, the growth rate of k̂ is multiplied by the share of gross capital income in gross
product. For a Cobb–Douglas production function, the share of capital income equals
the constant α. Therefore, the properties of k̇/k carry over immediately to those of ẏ/y.
This result applies more generally than in the Cobb–Douglas case unless the share of
capital income rises fast enough as an economy develops to more than offset the fall
in k̇/k.

2.6.6 Speeds of Convergence

Log-Linear Approximations Around the Steady State We want now to provide a quan-
titative assessment of the speed of convergence in the Ramsey model. We begin with a
log-linearized version of the dynamic system for k̂ and ĉ, equations (2.24) and (2.25). This
approach is an extension of the method that we used in chapter 1 for the Solow–Swan
model; the only difference here is that we have to deal with a two-variable system instead
of a one-variable system. The advantage of the log-linearization method is that it provides
a closed-form solution for the convergence coefficient. The disadvantage is that it applies
only as an approximation in the neighborhood of the steady state.

Appendix 2A examines a log-linearized version of equations (2.24) and (2.25) when
expanded around the steady-state position. The results can be written as

log[ŷ(t)] = e−βt · log[ŷ(0)] + (1 − e−βt ) · log(ŷ∗) (2.40)

where β > 0. Thus, for any t ≥ 0, log[ŷ(t)] is a weighted average of the initial and steady-
state values, log[ŷ(0)] and log(ŷ∗), with the weight on the initial value declining ex-
ponentially at the rate β. The speed of convergence, β, depends on the parameters of
technology and preferences. For the case of a Cobb–Douglas technology, the formula for
the convergence coefficient (which comes from the log-linearization around the steady-state
position) is

2β =
{
ζ 2 + 4 ·

(
1 − α

θ

)
· (ρ + δ + θx) ·

[
ρ + δ + θx

α
− (n + x + δ)

]}1/2

− ζ (2.41)

where ζ = ρ − n − (1 − θ) · x > 0. We discuss below the way that the various parameters
enter into this formula.
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Equation (2.40) implies that the average growth rate of per capita output, y, over an
interval from an initial time 0 to any future time T ≥ 0 is given by

(1/T ) · log[y(T )/y(0)] = x + (1 − e−βT )

T
· log[ŷ∗/ŷ(0)] (2.42)

Hold fixed, for the moment, the steady-state growth rate x , the convergence speed β, and
the averaging interval T . Then equation (2.42) says that the average per capita growth rate
of output depends negatively on the ratio of ŷ(0) to ŷ∗. Thus, as in the Solow–Swan model,
the effect of the initial position, ŷ(0), is conditioned on the steady-state position, ŷ∗. In other
words, the Ramsey model also predicts conditional, rather than absolute, convergence.

The coefficient that relates the growth rate of y to log[ŷ∗/ŷ(0)] in equation (2.42),
(1 − e−βT )/T , declines with T for given β. If ŷ(0) < ŷ∗, so that growth rates decline over
time, an increase in T means that more of the lower future growth rates are averaged with
the higher near-term growth rates. Therefore, the average growth rate, which enters into
equation (2.42), falls as T rises. As T → ∞, the steady-state growth rate, x , dominates the
average; hence, the coefficient (1 − e−βT )/T approaches 0, and the average growth rate of
y in equation (2.42) tends to x .

For a given T , a higher β implies a higher coefficient (1 − e−βT )/T . (As T → 0, the
coefficient approaches β.) Equation (2.41) expresses the dependence of β on the underlying
parameters. Consider first the case of the Solow–Swan model in which the saving rate is
constant. As noted before, this situation applies if the steady-state saving rate, s∗, shown in
equation (2.34) equals 1/θ or, equivalently, if the combination of parameters α · (δ + n) −
(δ + ρ)/θ − x · (1 − α) equals 0.

Suppose that the parameters take on the baseline values that we used in chapter 1:
δ = 0.05 per year, n = 0.01 per year, and x = 0.02 per year. We also assume ρ = 0.02
per year to get a reasonable value for the steady-state interest rate, ρ + θx . As mentioned
in a previous section, for these benchmark parameter values, the saving rate is constant if
α = 0.3 when θ = 17 and if α = 0.75 when θ = 1.75.

With a constant saving rate, the formula for the convergence speed, β, simplifies from
equation (2.41) to the result that applied in equation (1.45) for the Solow–Swan model:

β∗ = (1 − α) · (x + n + δ)

We noted in chapter 1 that a match with the empirical estimate for β of roughly 0.02 per
year requires a value for α around 0.75, that is, in the range in which the broad nature of
capital implies that diminishing returns to capital set in slowly. Lower values of x + n + δ

reduce the required value of α, but plausible values leave α well above the value of around
0.3, which would apply to a narrow concept of physical capital.
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In the case of a variable saving rate, equation (2.41) determines the full effects of the
various parameters on the convergence speed. The new element concerns the tilt of the
time path of the saving rate during the transition. If the saving rate falls with k̂, the conver-
gence speed would be higher than otherwise, and vice versa. For example, we found before
that a higher value of the intertemporal-substitution parameter, θ , makes it more likely that
the saving rate would rise with k̂. Through this mechanism, a higher θ reduces the speed of
convergence, β, in equation (2.41).

If the rate of time preference, ρ, increases, the level of the saving rate tends to fall (see
equation [2.34]). The effect on the convergence speed depends, however, not on the level of
the saving rate but on the tendency for the saving rate to rise or fall as the economy develops.
A higher ρ tends to tilt downward the path of the saving rate. The effective time-preference
rate is ρ + θ · ċ/c. Because ċ/c is inversely related to k̂, the impact of ρ on the effective
time-preference rate is proportionately less the lower is k̂. Therefore, the saving rate tends
to decrease less the lower k̂, and, hence, the time path of the saving rate tilts downward. A
higher ρ tends accordingly to raise the magnitude of β in equation (2.41).

It turns out with a variable saving rate that the parameters δ and x tend to raise β, just
as they did in the Solow–Swan model. The overall effect from the parameter n becomes
ambiguous but tends to be small in the relevant range.25

The basic result, which holds with a variable or constant saving rate, is that, for plausible
values of the other parameters, the model requires a high value of α—in the neighborhood
of 0.75—to match empirical estimates of the speed of convergence, β. We can reduce the
required value of α to 0.5–0.6 if we assume very high values of θ (in excess of 10) along
with a value of δ close to 0. We argued before, however, that very high values of θ make
the steady-state saving rate too low, and values of δ near 0 are unrealistic. In addition,
as we show later, values of α that are much below 0.75 generate counterfactual predictions
about the transitional behavior of the interest rate and the capital-output ratio. We discuss
in chapter 3 how adjustment costs for investment can slow down the rate of convergence,
but this extension does not change the main conclusions.

Numerical Solutions of the Nonlinear System We now assess the convergence properties
of the model with a second approach, which uses numerical methods to solve the nonlinear
system of differential equations. This approach avoids the approximation errors inherent
in linearization of the model and provides accurate results for a given specification of the
underlying parameters. The disadvantage is the absence of a closed-form solution. We have
to generate a new set of answers for each specification of parameter values.

25. Equation (2.41) implies that the effects on β are unambiguously negative for α and positive for δ. Our numerical
computations indicate that the effects of the other parameters are in the directions that we mentioned as long as
the other parameters are restricted to a reasonable range.
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We can use numerical methods to obtain a global solution for the nonlinear system of
differential equations. In the case of a Cobb–Douglas production function, the growth rates
of k̂ and ĉ are given from equations (2.24) and (2.25) as

γk̂ ≡ ˙̂k/k̂ = A · (k̂)α−1 − (ĉ/k̂) − (x + n + δ) (2.43)

γĉ ≡ ˙̂c/ĉ = (1/θ) · [αA · (k̂)α−1 − (δ + ρ + θx)] (2.44)

If we specified the values of the parameters (A, α, x , n, δ, ρ, θ ) and knew the relation between
ĉ and k̂ along the path—that is, if we knew the policy function ĉ(k̂)—then standard numerical
methods for solving differential equations would allow us to solve out for the entire time
paths of k̂ and ĉ. The appendix on mathematics shows how to use a procedure called the
time-elimination method to derive the policy function numerically. (See also Mulligan and
Sala-i-Martin, 1991). We assume now that we have already solved this part of the problem.

Once we know the policy function, we can determine the paths of all the variables that
we care about, including the convergence coefficient, defined by β = − d(γk̂)/d[log(k̂)].
(In the Cobb–Douglas case, the convergence coefficient for ŷ is still the same as that for k̂.)
Figure 2.4 shows the relation between β and k̂/k̂∗ when we use our benchmark parameter
values (δ = 0.05, x = 0.02, n = 0.01, ρ = 0.02), θ = 3, and α = 0.3 or 0.75.26 For either
setting of α, β is a decreasing function of k̂/k̂∗; that is, the speed of convergence slows
down as the economy approaches the steady state.27 At the steady state, where k̂/k̂∗ = 1, the
values of β—0.082 if α = 0.3 and 0.015 if α = 0.75—are those implied by equation (2.41)
for the log-linearization around the steady state.

If k̂/k̂∗ < 1, figure 2.4 indicates that β exceeds the values implied by equation (2.41).
For example, if k̂/k̂∗ = 0.5, β = 0.141 if α = 0.3 and 0.018 if α = 0.75. If k̂/k̂∗ = 0.1,
β = 0.474 if α = 0.3 and 0.026 if α = 0.75. Thus, if we use our preferred high value for
the capital-share coefficient, α = 0.75, the convergence coefficient, β, remains between
1.5 percent and 3 percent for a broad range of k̂/k̂∗. This behavior accords with the empirical
evidence discussed in chapters 11 and 12; we find there that convergence coefficients do
not seem to exceed this range even for economies that are very far from their steady states.
In contrast, if we assume α = 0.3, the model incorrectly predicts extremely high rates of
convergence when k̂ is far below k̂∗.

Since the convergence speeds rise with the distance from the steady state, the durations of
the transition are shorter than those implied by the linearized model. We can use the results
on the time path of k̂ to compute the exact time that it takes to close a specified percentage

26. For a given value of k̂/k̂∗, the parameter A does not affect β in the Cobb–Douglas case.

27. This relation does not hold in general. In particular, β can rise with k̂/k̂∗ if θ is very small and α is very large,
for example, if θ = 0.5 and α = 0.95.
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Figure 2.4
Numerical estimates of the speed of convergence in the Ramsey model. The exact speed of convergence
(displayed on the vertical axis) is a decreasing function of the distance from the steady state, k̂/k̂∗ (shown on the
horizontal axis). The analysis assumes a Cobb–Douglas production function, with results reported for two values
of the capital share, α = 0.30 and α = 0.75. The change in the convergence speed during the transition is more
pronounced for the smaller capital share. The value of the convergence speed, β, at the steady state (k̂/k̂∗ = 1) is
the value that we found analytically with a log-linear approximation around the steady state (equation [2.41]).
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of the initial gap from k̂∗. Panel a of figure 2.5 shows how the gap between k̂ and k̂∗ is
eliminated over time if the economy begins with k̂/k̂∗ = 0.1 and if α = 0.3 or 0.75. As
an example, if α = 0.75, it takes 38 years to close 50 percent of the gap, compared with
45 years from the linear approximation.

Panel b in figure 2.5 displays the level of consumption, expressed as ĉ/ĉ∗; panel c the
level of output, ŷ/ŷ∗; and panel d the level of gross investment, ı̂/ı̂∗. Note that for α = 0.75,
the paths of ĉ/ĉ∗ and ŷ/ŷ∗ are similar, because the gross saving rate and, hence, ĉ/ŷ change
only by small amounts in this case (discussed later).

Panel e shows γ ŷ , the growth rate of ŷ. For α = 0.3, the model has the counterfactual
implication that the initial value of γŷ (corresponding to k̂/k̂∗ = 0.1) is implausibly large,
about 15 percent per year, which means that γy is about 17 percent per year. This kind
of result led King and Rebelo (1993) to dismiss the transitional behavior of the Ramsey
model as a reasonable approximation to actual growth experiences. We see, however, that
for α = 0.75, the model predicts more reasonably that γŷ would begin at about 3.5 percent
per year, so that γy would be about 5.5 percent per year.

Panel f shows the gross saving rate, s(t). We know from our previous analytical results
for the Cobb–Douglas case, given the assumed values of the other parameters, that s(t)
falls monotonically when α = 0.3 and rises monotonically when α = 0.75. For α = 0.3, the
results are counterfactual in that the model predicts a fall in s(t) from 0.28 at k̂/k̂∗ = 0.1 to
0.22 at k̂/k̂∗ = 0.5 and 0.18 at k̂/k̂∗ = 1. The predicted levels of the saving rate are also
unrealistically low for a broad concept of capital. In contrast, for α = 0.75, the moderate
rise in the saving rate as the economy develops fits well with the data. The saving rate rises
in this case from 0.41 at k̂/k̂∗ = 0.1 to 0.44 at k̂/k̂∗ = 0.5 and 0.46 at k̂/k̂∗ = 1. The predicted
level of the saving rate is also reasonable if we take a broad view of capital.

Panel g displays the behavior of the interest rate, r . Note that the steady-state interest rate is
r∗ = ρ + θx = 0.08, and the corresponding marginal product is f ′(k̂∗) = r∗ + δ = 0.13. If
we consider the initial position k̂(0)/k̂∗ = 0.1, as in figure 2.5, the Cobb–Douglas production
function implies

f ′[k̂(0)]/ f ′(k̂∗) = [k̂(0)/k̂∗]α−1 = (10)1−α

Hence, for α = 0.3, we get f ′[k̂(0)] = 5 · f ′(k̂∗) = 0.55. In other words, with a capital-
share coefficient of around 0.3, the initial interest rate (at k̂[0]/k̂∗ = 0.1) would take on the
unrealistically high value of 60 percent. This counterfactual prediction about interest rates
was another consideration that led King and Rebelo (1993) to reject the transitional dynamics
of the Ramsey model. However, if we assume our preferred capital-share coefficient, α =
0.75, we get f ′[k̂(0)] = 1.8 · f ′(k̂∗) = 0.23, so that r(0) takes on the more reasonable
value of 18 percent.
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Figure 2.5
Numerical estimates of the dynamic paths in the Ramsey model. The eight panels display the exact dynamic
paths of eight key variables: the values per unit of effective labor of the capital stock, consumption, output, and
investment, the growth rate of output per effective worker, the saving rate, the interest rate, and the capital-output
ratio. The first four variables and the last one are expressed as ratios to their steady-state values; hence, each
variable approaches 1 asymptotically. The analysis assumes a Cobb–Douglas production technology, where the
dotted line in each panel corresponds to α = 0.30 and the solid line to α = 0.75. The other parameters are reported
in the text. The initial capital per effective worker is assumed in each case to be one-tenth of its steady-state value.
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The final panel in figure 2.5 shows the behavior of the capital-output ratio, (k̂/ŷ),
expressed in relation to (k̂∗/ŷ∗). Kaldor (1963) argued that this ratio changed relatively
little during the course of economic development, and Maddison (1982, chapter 3) sup-
ported this view. These observations pertain, however, to a narrow concept of physical
capital, whereas our model takes a broad perspective to include human capital. The cross-
country data show that places with higher real per capita GDP tend to have higher ratios of
human capital in the form of educational attainment to physical capital (see Judson, 1998).
This observation suggests that the ratio of human to physical capital would tend to rise
during the transition to higher levels of real per capita GDP (see chapter 5 for a theoretical
discussion of this behavior). If the ratio of physical capital to output remains relatively
stable, the capital-output ratio for a broad measure of capital would increase during the
transition.

With a Cobb–Douglas production function, the capital-output ratio is k̂/ŷ = (1/A) ·
(k̂)(1−α). If α = 0.3, an increase in k̂ by a factor of 10 would raise k̂/ŷ by a factor of 5,
a shift that departs significantly from the observed variations in k̂/ŷ over long periods of
economic development. In contrast, if α = 0.75, an increase in k̂ by a factor of 10 would
raise k̂/ŷ by a factor of only 1.8. For a broad concept of capital, this behavior appears
reasonable.

The main lesson from the study of the time paths in figure 2.5 is that the transitional
dynamics of the Ramsey model with a conventional capital-share coefficient, α, of around
0.3 does not provide a good description of various aspects of economic development. For
an economy that starts far below its steady-state position, the inaccurate predictions include
an excessive speed of convergence, unrealistically high growth and interest rates, a rapidly
declining gross saving rate, and large increases over time in the capital-output ratio. All
of these shortcomings are eliminated if we take a broad view of capital and assume a
correspondingly high capital-share coefficient, α, of around 0.75. This value of α, together
with plausible values of the model’s other parameters, generate predictions that accord well
with the growth experiences that we study in chapters 11 and 12.

2.6.7 Household Heterogeneity

Our analysis thus far has considered a single household as representing the entire economy.
The consumption and saving decisions of the representative agent are supposed to capture
the behavior of the average agent in a complex economy with many families. The important
question is whether the behavior of this “representative” or “average” household is really
equivalent to what we would get if we averaged the behavior of many heterogeneous
families.
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Caselli and Ventura (2000) have extended the Ramsey model to allow for various forms of
household heterogeneity.28 Following their analysis, we assume that the economy contains
J equal-sized households, each of which is an infinitely lived dynasty. The population of
each household—and, therefore, the overall population—grow at the constant rate n. Pref-
erences of each household are still given by equations (2.1) and (2.10), with the preference
parameters ρ and θ the same for each household. In this case, it is straightforward to allow
for differences across households in initial assets and labor productivity.

Let a j (t) and π j represent, respectively, the per capita assets and productivity level of the
j th household. The wage rate paid to the j th household is π jw, where w is the economy-
wide average wage, π j is constant over time, and we have normalized so that the mean
value of π j equals 1.

The flow budget constraint for each household takes the same form as equation (2.3):

ȧ j = π j · w + ra j − c j − na j (2.45)

In this representation, each household could have a different value of initial assets, a j (0).
The optimal growth rate of each household’s per capita consumption satisfies the usual
first-order condition from equation (2.9):

ċ j/c j = (1/θ) · (r − ρ) (2.46)

The household’s level of per capita consumption can be found, as in the analysis of the first
section of this chapter, by solving out the differential equation for c j and using the transver-
sality condition (of the form of equation [2.12]). The result, analogous to equation (2.15), is

c j = µ · (a j + π j w̃) (2.47)

where µ is the propensity to consume out of assets (given by equation [2.16]) and w̃ is the
present value of the economy-wide average wage.

The economy-wide value of per capita assets is a = ( 1
J ) ·∑J

1 a j , and the economy-wide
value of per capita consumption is c = ( 1

J ) ·∑J
1 c j . Since the population growth rate is the

same for all households, aggregation is straightforward: sum equation (2.45) over the J
households and divide by J to compute the economy-wide budget constraint:

ȧ = w + ra − c − na (2.48)

This budget constraint is the same as equation (2.3).

28. Stiglitz (1969) worked out a model with household heterogeneity under a variety of nonoptimizing saving
functions.
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We can also aggregate the consumption function, equation (2.47), across households to
get the economy-wide value of consumption per person:

c = µ · (a + w̃) (2.49)

This relation is the same as equation (2.15).
Finally, we can use equations (2.48) and (2.49) to get

ċ/c = (1/θ) · (r − ρ) (2.50)

which is the standard economy-wide condition for consumption growth. When combined
with the usual analysis of competitive firms, this description of aggregate household
behavior—equations (2.48) and (2.50)—delivers the standard Ramsey model. Hence, the
model with the assumed forms of heterogeneity in initial assets and worker productivity has
the same macroeconomic implications as the usual, representative-agent model. In other
words, if the households in the economy differ in their level of wealth or productivity,
and if their preferences are CIES with identical parameters and discount rates, the average
consumption, assets, income, and capital for these families behave exactly as the ones of a
single representative household. Hence, the representative-agent model provides the correct
description of the average variables of an economy populated with the assumed forms of
heterogenous agents.

Aside from supporting the use of the representative-agent framework, the extension to
include heterogeneity also allows for a study of the dynamics of inequality. Equation (2.46)
implies that each household chooses the same growth rate for consumption. Therefore,
relative consumption, c j/c, does not vary over time.

The model does imply a dynamics for relative assets, a j/a. Equations (2.45), (2.47),
(2.48), and (2.49) imply that relative assets change in accordance with

d

dt

(
a j

a

)
= (w − µw̃)

a
·
(

π j − a j

a

)
(2.51)

We can show that, in the steady state (where w grows at the rate x and r = ρ + θx), the
relation w = µw̃ holds. Therefore, relative asset positions stay constant in the steady state.
Outside of the steady state, equation (2.51) implies that the relative asset position does not
change over time for a household whose relative labor productivity, π j , is as high as its
relative asset position, a j/a. For other households, the behavior depends on the sign of
w − µw̃. Imagine that w > µw̃. Roughly speaking, this condition says that the propensity
to save out of (permanent) wage income is positive. In this case, equation (2.51) implies
that a j/a would rise or fall over time depending on whether relative labor productivity
exceeded or fell short of the relative asset position—π j >(or <) a j/a. Thus a convergence
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pattern would hold, whereby relative assets moved toward relative productivity. However,
the opposite pattern applies if w < µw̃. Outside of the steady state, the sign of w −µw̃

depends on the relation of interest rates to growth rates of wages and is ambiguous. Hence,
the model does not have clear predictions about the way in which a j/a will move along the
transition.

Caselli and Ventura (2000) also allowed for a form of heterogeneity in household pref-
erences. They assumed that preferences involved the felicity function u(c + β j g), where
they interpret g as a publicly provided service. The parameter β j > 0 indicates the value
that household j attaches to the public service. The variable g could also represent the ser-
vices that households get freely from the environment, for example, from staring at the
sky. The main result from this extension is that the aggregation of individual behavior still
corresponds to a representative-agent model, in the sense that the economy-wide average
variables, a and c, evolve as they would with a single agent who had average values of
initial assets, labor productivity, and preferences. In this sense, the results from the Ramsey
model are robust to this extension to admit heterogeneous preferences.

2.7 Nonconstant Time-Preference Rates

Many of the basic frameworks in macroeconomics, including the neoclassical growth model
that we have been analyzing, rely on the assumption that households have a constant rate
of time preference, ρ. However, the rationale for this assumption is unclear.29 Perhaps
it is unclear because the reason for individuals to have positive time preference is itself
unclear.

Ramsey (1928, p. 543) preferred to use a zero rate of time preference. He justified
this approach in a normative context by saying “we do not discount later enjoyments
in comparison with earlier ones, a practice which is ethically indefensible.” Similarly,
Fisher (1930, chapter 4) argued that time preference—or impatience, as he preferred
to call it—reflects mainly a person’s lack of foresight and self-control. One reason that
economists have not embraced a zero rate of time preference is that it causes difficulties
for the long-run equilibrium—in particular, the transversality condition in the model that
we have analyzed requires the inequality ρ > x · (1 − θ) + n, which is positive if θ < 1 +
(n/x). Thus most analyses have assumed that the rate of time preference is positive but
constant.

29. See Koopmans (1960) and Fishburn and Rubinstein (1982) for axiomatic derivations of a constant rate of time
preference.
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As has been known since Strotz (1956) and the elaborations of Pollak (1968) and
Goldman (1980)—and understood much earlier by Ramsey (1928)30—nonconstancy of
the rate of time preference can create a time-consistency problem. This problem arises
because the relative valuation of utility flows at different dates changes as the planning
date evolves. In this context, committed choices of consumption typically differ from those
chosen sequentially, taking account of the way that future consumption will be determined.
Therefore, the commitment technology matters for the outcomes.

Laibson (1997a, 1997b), motivated partly by introspection and partly by experimental
findings, has made compelling observations about ways in which rates of time preference
vary.31 He argues that individuals are highly impatient about consuming between today
and tomorrow but are much more patient about choices advanced further in the future, for
example, between 365 and 366 days from now. Hence, rates of time preference would be
very high in the short run but much lower in the long run, as viewed from today’s perspective.
Given these insights and evidence, it is important to know whether economists can continue
to rely on the standard version of the neoclassical growth model—the model analyzed in
this chapter—as their workhorse framework for dynamic macroeconomics.

To assess this issue, we follow the treatment in Barro (1999) and modify the utility
function from equation (2.1) to

U (τ ) =
∫ ∞

τ

u[c(t)] · e−[ρ·(t−τ)+φ(t−τ)] dt (2.52)

where τ now represents the current date and φ(t − τ) is a function that brings in the aspects
of time preference that cannot be described by the standard exponential factor, e−ρ·(t−τ).
For convenience, we begin with a case of zero population growth, n = 0, so that the term
en·(t−τ) does not appear in equation (2.52). We assume that the felicity function takes the
usual form given in equation (2.10):

u(c) = c(1−θ) − 1

(1 − θ)

30. In the part of his analysis that allows for time preference, Ramsey (1928, p. 439) says, “In assuming the
rate of discount constant, I [mean that] the present value of an enjoyment at any future date is to be obtained by
discounting it at the rate ρ. . . . This is the only assumption we can make, without contradicting our fundamental
hypothesis that successive generations are activated by the same system of preferences. For, if we had a varying
rate of discount—say a higher one for the first fifty years—our preference for enjoyments in 2000 A.D. over those
in 2050 A.D. would be calculated at the lower rate, but that of the people alive in 2000 A.D. would be at the higher.”

31. For discussions of the experimental evidence, see Thaler (1981), Ainslie (1992), and Loewenstein and Prelec
(1992).
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The new time-preference term, φ(t − τ), is assumed, as in the case of the conventional
time-preference factor, to depend only on the distance in time, t − τ .32 We can normalize
to have φ(0) = 0. We also assume that the function φ(·) is continuous and twice differ-
entiable. The expression ρ + φ

′
(v) gives the instantaneous rate of time preference at the

time distance v = t − τ ≥ 0. The assumed properties, which follow Laibson (1997a), are
φ

′
(v) ≥ 0, φ′′(v) ≤ 0, and φ

′
(v) approaches zero as v tends to infinity. These properties

imply that the rate of time preference, given by ρ + φ′(t − τ), is high in the near term
but roughly constant at the lower value ρ in the distant future. Consumers with these pref-
erences are impatient about consuming right now, but they need not be shortsighted in
the sense of failing to take account of long-term consequences. The analysis assumes no
decision-making failures of this sort.

Except for the modification of the time-preference rate, the model is the same as be-
fore, including the specification of the production function and the behavior of firms. For
convenience, we begin with the case of zero technological change, x = 0.

2.7.1 Results under Commitment

The first-order optimization conditions for the household’s path of consumption, c(t), would
be straightforward if the full path of current and future consumption could be chosen in a
committed manner at the present time, τ . In particular, the formula for the growth rate of
consumption would be modified from equation (2.11) to

ċ/c = (1/θ) · [r(t) − ρ − φ′(t − τ)] (2.53)

for t > τ . The new element is the addition of the term φ′(t − τ) to ρ. Equation (2.53) can
be viewed as coming from usual perturbation arguments, whereby consumption is lowered
at some point in time and raised at another point in time—perhaps the next instant in
time—with all other values of consumption held constant.

Given the assumed properties for φ(·), ρ + φ′(t − τ) would start at a high value and
then decline toward ρ as t − τ tended toward infinity. Thus the steady-state rate of time
preference would be ρ, and the steady state of the model would coincide with the analysis
from before. The new results would involve the transition, during which time-preference
rates were greater than ρ but falling over time.

One problem with this solution is that the current time, τ , is arbitrary, and, in the typical
situation, the potential to commit did not suddenly arise at this time. Rather, if perpetual
commitments on consumption were feasible, these commitments would likely have existed

32. The utility expression can be extended without affecting the basic results to include the chronological date, t ,
and a household’s age and other life-cycle characteristics.
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in the past, perhaps in the infinite past. In this last situation, current and all future values of
consumption would have been determined earlier, and τ would be effectively minus infinity,
so that φ′(t − τ) would be zero for all t ≥ 0. Hence, the rate of time preference would equal
ρ for all t ≥ 0, and the standard Ramsey results would apply throughout, not just in the
steady state.

The more basic problem is that commitment on future choices of c(t) is problematic. The
next section therefore works out the solution in the absence of any commitment technology
for future consumption. In this setting, the household can determine at time τ only the
instantaneous flow of consumption, c(τ ).

2.7.2 Results without Commitment under Log Utility

The first-order condition in equation (2.53) will not generally hold without commitment,
because it is infeasible for the household to carry out the perturbations that underlie the con-
dition. Specifically, the household cannot commit to lowering c(τ ) at time τ and increasing
c(t) at some future date, while holding fixed consumption at all other dates. Instead, the
household has to figure out how its setting of c(τ ) at time τ will alter its stock of assets and
how this change in assets will influence the choices of consumption at later dates.

The full solution without commitment is worked out first for log utility, where θ = 1.
The steady-state results for general θ are discussed in a later section. Transitional results
for general θ are more complicated, but some results are sketched later.

Think of choosing c(t) at time τ as the constant flow c(τ ) over the short discrete interval
[τ, τ + ε]. The length of the interval, ε, will eventually approach zero and thereby generate
results for continuous time. The full integral of utility flows from equation (2.52) can be
broken up into two pieces:

U (τ ) =
∫ τ+ε

τ

log[c(t)] · e−[ρ·(t−τ)+φ(t−τ)] dt +
∫ ∞

τ+ε

log[c(t)] · e−[ρ·(t−τ)+φ(t−τ)] dt

≈ ε · log[c(τ )] +
∫ ∞

τ+ε

log[c(t)] · e−[ρ·(t−τ)+φ(t−τ)] dt (2.54)

where the approximation comes from taking e−[ρ·(t−τ)+φ(t−τ)] as equal to unity over the
interval [τ, τ + ε]. This approximation will become exact in the equilibrium as ε tends to
zero. Note that log utility has been assumed.33

The consumer can pick c(τ ) and thereby the choice of saving at time τ . This selection
influences c(t) for t ≥ τ + ε by affecting the stock of assets, k(τ + ε), available at time

33. Pollak (1968, section 2) works out results under log utility with a finite horizon and a zero interest rate.
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τ + ε. (Solely for convenience, we already assume the equality between per capita assets,
a[t], and the per capita capital stock, k[t].) To determine the optimal c(τ ), the household
has to know, first, the relation between c(τ ) and k(τ + ε) and, second, the relation between
k(τ + ε) and the choices of c(t) for t ≥ τ + ε.

The first part of the problem is straightforward. The household’s budget constraint is

k̇(t) = r(t) · k(t) + w(t) − c(t) (2.55)

For a given starting stock of assets, k(τ ), the stock at time τ + ε is determined by

k(τ + ε) ≈ k(τ ) · [1 + ε · r(τ )] + ε · w(τ) − ε · c(τ ) (2.56)

The approximation comes from neglecting compounding over the interval (τ, τ + ε)—that
is, from ignoring terms of the order of ε2—and from treating the variables r(t) and w(t) as
constants over this interval. These assumptions will be satisfactory in the equilibrium when
ε approaches zero. The important result from equation (2.56) is that

d[k(τ + ε)]/d[c(τ )] ≈ −ε (2.57)

Hence, more consumption today means less assets at the next moment in time.
The difficult calculation involves the link between k(τ + ε) and c(t) for t ≥ τ + ε, that

is, the propensities to consume out of assets. In the standard model with log utility, we
know from equations (2.15) and (2.16) that—because of the cancellation of income and
substitution effects related to the path of interest rates—consumption is a constant fraction
of wealth:

c(t) = ρ · [k(t) + w̃(t)]

where w̃(t) is the present value of wages. Given this background, it is reasonable to conjec-
ture that the income and substitution effects associated with interest rates would still cancel
under log utility, even though the rate of time preference is variable and commitment is
absent. However, the constant of proportionality, denoted by λ, need not equal ρ. Thus, the
conjecture—which turns out to be correct—is that consumption is given by

c(t) = λ · [k(t) + w̃(t)] (2.58)

for t ≥ τ + ε for some constant λ > 0.34

34. Phelps and Pollak (1968, section 4) use an analogous conjecture to work out a Cournot–Nash equilibrium for
their problem. They assume isoelastic utility and a linear technology, so that the rate of return is constant. The last
property is critical, because consumption is not a constant fraction of wealth (except when θ = 1) if the rate of
return varies over time. The linear technology also eliminates any transitional dynamics, so that the economy is
always in a position of steady-state growth.
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Under the assumed conjecture, it can be verified that c(t) grows at the rate r(t) − λ for
t ≥ τ + ε. Hence, for any t ≥ τ + ε, consumption is determined from

log[c(t)] = log[c(τ + ε)] +
∫ t

τ+ε

r(v) dv − λ · (t − τ − ε)

The expression for utility from equation (2.54) can therefore be written as

U (τ ) ≈ ε · log[c(τ )] + log[c(τ + ε)] ·
∫ ∞

τ+ε

e−[ρ·(t−τ)+φ(t−τ)] dt

+ terms that are independent of c(t) path (2.59)

Define the integral

�(ε) ≡
∫ ∞

ε

e−[ρv+φ(v)] dv (2.60)

The marginal effect of c(τ ) on U (τ ) can then be calculated as

d[U (τ )]

d[c(τ )]
≈ ε

c(τ )
+ �(ε)

c(τ + ε)
· d[c(τ + ε)]

d[k(τ + ε)]
· d[k(τ + ε)]

dc(τ )

The final derivative equals −ε, from equation (2.57), and the next-to-last derivative equals λ,
according to the conjectured solution in equation (2.58). Therefore, setting d[U (τ )]/d[c(τ )]
to zero implies

c(τ ) = c(τ + ε)

λ · �(ε)

If the conjectured solution is correct, c(τ + ε) must approach c(τ ) as ε tends to zero.
Otherwise, c(t) would exhibit jumps at all points in time, and the conjectured answer would
be wrong. The unique value of λ that delivers this correspondence follows immediately as

λ = 1/� = 1∫ ∞
0 e−[ρv+φ(v)] dv

(2.61)

where we use the notation � ≡ �(0).
To summarize, the solution for the household’s consumption problem under log util-

ity is that c(t) be set as the fraction λ of wealth at each date, where λ is the constant
shown in equation (2.61). The solution is time consistent because, if c(t) is chosen in this
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manner at all future dates, it will be optimal for consumption to be set this way at the
current date.35

Inspection of equation (2.61) reveals that λ = ρ in the standard Ramsey case in which
φ(v) = 0 for all v. To assess the general implications of φ(v) for λ, it is convenient to rewrite
equation (2.62) as

λ =
∫ ∞

0 e−[ρv+φ(v)] · [ρ + φ′(v)] dv∫ ∞
0 e−[ρv+φ(v)] dv

(2.62)

Since the numerator of equation (2.62) equals unity,36 this result corresponds to equa-
tion (2.61).

The form of equation (2.62) is useful because it shows that λ is a time-invariant weighted
average of the instantaneous rates of time preference,ρ + φ′(v). Sinceφ′(v) ≥ 0,φ′′(v) ≤ 0,
and φ′(v) → 0 as v → ∞, it follows that

ρ ≤ λ ≤ ρ + φ′(0) (2.63)

That is, λ is intermediate between the long-run rate of time preference, ρ, and the short-run,
instantaneous rate, ρ + φ′(0).

The determination of the effective rate of time preference can be quantified by specifying
the form of φ(v). Laibson (1997a) proposes a “quasi-hyperbola” in discrete time, whereby
φ(v) = 0 in the current period and e−φ(v) = β in each subsequent period, where 0 < β ≤ 1.
(Phelps and Pollak, 1968, also use this form.) In this specification, the discount factor
between today and tomorrow includes the factor β ≤ 1. This factor does not enter between
any two adjacent future periods. Laibson argues that β would be substantially less than one
on an annual basis, perhaps between one-half and two-thirds.

This quasi-hyperbolic case can be applied to a continuous-time setting by specifying

φ(v) = 0 for 0 ≤ v ≤ V , e−φ(v) = β for v > V (2.64)

35. This approach derives equation (2.61) as a Cournot–Nash equilibrium but does not show that the equilibrium is
unique. Uniqueness is easy to demonstrate in the associated discrete-time model with a finite horizon, as considered
by Laibson (1996). In the final period, the household consumes all of its assets, and the unique solution for each
earlier period can be found by working backward sequentially from the end point. This result holds as long as
u(c) is concave, not just for isoelastic utility. The uniqueness result also holds if the length of a period approaches
zero (to get continuous time) and if the length of the horizon becomes arbitrarily large. However, Laibson (1994)
uses an explicitly game-theoretic approach to demonstrate the possibility of nonuniqueness of equilibrium in the
infinite-horizon case. The existence of multiple equilibria depends on punishments that sanction past departures
of consumption choices from designated values, and these kinds of equilibria unravel if the horizon is finite. Our
analysis of the infinite-horizon case does not consider these kinds of equilibria.

36. Use the change of variable z = e−[ρv+φ(v)].
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for some V > 0, where 0 < β ≤ 1. [In this specification, φ′(v) is infinite at v = V and equals
zero otherwise.] Laibson’s suggestion is that V is small, so that the condition ρV � 1 would
hold.

Substitution from equation (2.64) into the definition of � in equation (2.60) leads (when
ε = 0) to

� = (1/ρ) · [1 − (1 − β) · e−ρV ]

As V approaches infinity, � goes to 1/ρ, which corresponds to the Ramsey case. The
condition ρV � 1 implies that the expression for � simplifies, as an approximation, to
β/ρ, so that

λ ≈ ρ/β (2.65)

If β is between one-half and two-thirds, λ is between 1.5ρ and 2ρ. Hence, if ρ is 0.02 per
year, the heavy near-term discounting of future utility converts the Ramsey model into one
in which the effective rate of time preference, λ, is 0.03–0.04 per year.

The specification in equation (2.64) yields simple closed-form results, but the functional
form implies an odd discrete jump in e−φ(v) at the time V in the future. More generally, the
notion from the literature on short-term impatience is that ρ +φ′(v) is high when v is small
and declines, say toward ρ, as v becomes large. A simple functional form that captures this
property in a smooth fashion is

φ′(v) = be−γ v (2.66)

where b = φ′(0) ≥ 0 and γ > 0. The parameter γ determines the constant rate at which
φ′(v) declines from φ′(0) to zero.

Integration of the expression in equation (2.66), together with the boundary condition
φ(0) = 0, leads to an expression for φ(v):37

φ(v) = (b/γ ) · (1 − e−γ v) (2.67)

This result can be substituted into the formula in equation (2.60) to get an expression for �:

� = e−(b/γ ) ·
∫ ∞

0
e[−ρv+(b/γ )·e−γ v ] dv

The integral cannot be solved in closed form but can be evaluated numerically if values are
specified for the parameters ρ, b, and γ .

37. The expression in equation (2.67) is similar to the “generalized hyperbola” proposed by Loewenstein and
Prelec (1992, p. 580). Their expression can be written as φ(v) = (b/γ ) · log(1 + γ v).
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To accord with Laibson’s (1997a) observations, the parameter b = φ′(0) must be around
0.50 per year, and the parameter γ must be at least 0.50 per year, so that φ′(v) gets close to
zero a few years in the future. With ρ = 0.02, b = 0.50, and γ = 0.50, � turns out to be 19.3,
so that λ = 1/� = 0.052. If b = 0.25 and the other parameters are the same, � = 31.0 and
λ = 0.032. Thus, the more appealing functional form in equation (2.67) has implications
that are similar to those of equation (2.64).

The introduction of the φ(·) term in the utility function of equation (2.52) and the con-
sequent shift to a time-inconsistent setting amount, under log utility, to an increase in the
rate of time preference above ρ. Since the effective rate of time preference, λ, is constant,
the dynamics and steady state of the model take exactly the same form as in the standard
Ramsey framework that we analyzed before. The higher rate of time preference corresponds
to a higher steady-state interest rate,

r∗ = λ (2.68)

and, thereby, to a lower steady-state capital intensity, k∗, which is determined from the
condition

f
′
(k∗) = λ + δ

Since the effective rate of time preference, λ, is constant, the model with log utility and no
commitment is observationally equivalent to the conventional neoclassical growth model.
That is, the equilibrium coincides with that in the standard model for a suitable choice of ρ.
Since the parameter ρ cannot be observed directly, there is a problem in inferring from data
whether the instantaneous rate of time preference includes the nonconstant term, φ′(v).

2.7.3 Population Growth and Technological Progress

It is straightforward to incorporate population growth in the manner of equation (2.1). The
solution under log utility is similar to that from before, except that the integral � is now
defined by

� ≡
∫ ∞

0
e−[(ρ−n)·v+φ(v)] dv (2.69)

The relation between the propensity to consume out of wealth, λ, and the modified � term
is given by

λ = n + (1/�) (2.70)

and the steady-state interest rate is again r∗ = λ. We leave the derivations of these results
as exercises.
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In the Ramsey case, where φ(v) = 0 for all v, � = 1/(ρ − n) in equation (2.69) and
λ = ρ in equation (2.70). For Laibson’s quasi-hyperbolic preferences in equation (2.64), the
result is

� ≈ β/(ρ − n), λ ≈ (ρ/β) − n · (1 − β)/β (2.71)

If 0 < β < 1, an increase in n lowers λ and, therefore, reduces the steady-state interest rate,
r∗ = λ.

It is also straightforward to introduce exogenous, labor-augmenting technological
progress at the rate x ≥ 0. The solution for λ is still that shown in equations (2.69) and
(2.70). However, since consumption per person grows in the steady state at the rate x , the
condition for the steady-state interest rate is

r∗ = λ + x

Hence, as is usual with log utility, r∗ responds one-to-one to the rate of technological
progress, x .

2.7.4 Results under Isoelastic Utility

In the standard analysis, where φ(t −τ) = 0 for all t , consumption is not a constant fraction
of wealth unless θ = 1. However, we know, for any value of θ , that the first-order condition
for consumption growth at time τ is given from equation (2.11) by

ċ

c
(τ ) = (1/θ) · [r(τ ) − ρ] (2.72)

A reasonable conjecture is that the form of equation (2.72) would still hold when φ(t −τ) �=
0 but that the constant ρ would be replaced by some other constant that represented the
effective rate of time preference. This conjecture is incorrect. The reason is that the effective
rate of time preference at time τ involves an interaction of the path of the future values of
φ′(t − τ) with future interest rates and turns out not to be constant when interest rates are
changing except when θ = 1.

Although the transitional dynamics is complicated, it is straightforward to work out the
characteristics of the steady state. The key point is that, in a steady state, an increase in
household assets would be used to raise consumption uniformly in future periods. This
property makes it easy to compute propensities to consume for future periods with respect
to current assets and, therefore, makes it easy to find the first-order optimization condition
for current consumption. Only the results are presented here.

In the steady state, the interest rate is given by

r∗ = x + n + 1/� (2.73)
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where the integral � is now defined by

� ≡
∫ ∞

0
e−{[ρ−x ·(1−θ)−n]·v+φ(v)} dv (2.74)

Thus, if φ(v) = 0, we get the standard result

r∗ = ρ + θx

For the case of Laibson’s quasi-hyperbolic utility function in equation (2.64), the result
turns out to be

r∗ ≈ ρ

β
− n · (1 − β)

β
+ x · (β + θ − 1)

β
(2.75)

where recall that 0 < β < 1. Thus, for the case considered before of log utility (θ = 1), the
effect of x on r∗ is one-to-one. More generally, the effect of x on r∗ is more or less than
one-to-one depending on whether θ is greater or less than 1.

For the transitional dynamics, Barro (1999) shows that consumption growth at any date
τ satisfies the condition

ċ

c
(τ ) = (1/θ) · [r(τ ) − λ(τ)] (2.76)

The term λ(τ) is the effective rate of time preference and is given by

λ(τ) =
∫ ∞

τ
ω(t, τ ) · [ρ + φ′(t − τ)] dt∫ ∞

τ
ω(t, τ ) dt

(2.77)

where ω(t, τ ) > 0. Thus, λ(τ) is again a weighted average of future instantaneous rates of
time preference, ρ + φ′(t − τ). The difference from equation (2.62) is that the weighting
factor, ω(t, τ ), is time varying unless θ = 1.

Barro (1999) shows that, if θ > 1, ω(t, τ ) declines with the average of interest rates
between dates τ and t . If the economy begins with a capital intensity below its steady-state
value, r(τ ) starts high and then falls toward its steady-state value. The weights ω(t, τ ) are
then particularly low for dates t far in the future. Since these dates are also the ones with
relatively low values of ρ + φ′(t − τ), λ(τ) is high initially. However, as interest rates fall,
the weights, ω(t, τ ), become more even, and λ(τ) declines. This descending path of λ(τ)

means that households effectively become more patient over time. However, the effects
are all reversed if θ < 1. The case θ = 1, which we worked out before, is the intermediate
one in which the weights stay constant during the transition. Hence, in this case, the effective
rate of time preference does not change during the transition.
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2.7.5 The Degree of Commitment

The analysis thus far considered a case of full commitment, as in equation (2.53), and ones
of zero commitment, as in equation (2.76). Barro (1999) also considers intermediate cases in
which commitment is possible over an interval of length T , where 0 ≤ T ≤ ∞. Increases
in the extent of commitment—that is, higher T —lead in the long run to a lower effective
rate of time preference and, hence, to lower interest rates and higher capital intensity.
However, changes in T also imply transitional effects—initially an increase in T tends to
make households less patient because they suddenly get the ability to constrain their “future
selves” to save more. Thus the analysis implies that a rise in T initially lowers the saving
rate but tends, in the longer run, to raise the willingness to save.

If the parameter T can be identified with observable variables—such as the nature of legal
and financial institutions or cultural characteristics that influence the extent of individual
discipline—the new theoretical results might eventually have empirical application. In fact,
from an empirical standpoint, the main new insights from the extended model concern
the connection between the degree of commitment and variables such as interest rates and
saving rates. For a given degree of commitment, the main result is that a nonconstant rate
of time preference leaves intact the main implications of the neoclassical growth model.

2.8 Appendix 2A: Log-Linearization of the Ramsey Model

The system of differential equations that characterizes the Ramsey model is given from
equations (2.24) and (2.25) by

˙̂k = f (k̂) − ĉ − (x + n + δ) · k̂

˙̂c/ĉ = ċ/c − x = (1/θ) · [ f ′(k̂) − δ − ρ − θx] (2.78)

We now log-linearize this system for the case in which the production function is Cobb–
Douglas, f (k̂) = A · k̂α .

Start by rewriting the system from equation (2.78) in terms of the logs of ĉ and k̂:

d[log(k̂)]/dt = A · e−(1−α)·log(k̂) − elog(ĉ/k̂) − (x + n + δ)

d[log(ĉ)]/dt = (1/θ) · [αA · e−(1−α)·log(k̂) − (ρ + θx + δ)]
(2.79)

In the steady state, where d[log(k̂)]/dt = d[log(ĉ)]/dt = 0, we have

A · e−(1−α)·log(k̂∗) − elog(ĉ∗/k̂∗) = (x + n + δ)

αA · e−(1−α)·log(k̂∗) = (ρ + θx + δ) (2.80)
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We take a first-order Taylor expansion of equation (2.79) around the steady-state values
determined by equation (2.80):

[
d[log(k̂)]/dt
d[log(ĉ)]/dt

]
=


 ζ x + n + δ − (ρ + θx + δ)

α

−(1 − α) · (ρ + θx + δ)

θ
0




·
[

log(k̂/k̂∗)
log(ĉ/ĉ∗)

]
(2.81)

where ζ ≡ ρ − n − (1 − θ) · x . The determinant of the characteristic matrix equals

−[(ρ + θx + δ)/α − (x + n + δ)] · (ρ + θx + δ) · (1 − α)/θ

Since ρ + θx > x + n (from the transversality condition in equation [2.31]) and α < 1,
the determinant is negative. This condition implies that the two eigenvalues of the system
have opposite signs, a result that implies saddle-path stability. (See the discussion in the
mathematics appendix at the end of the book.)

To compute the eigenvalues, denoted by ε, we use the condition

det


 ζ − ε x + n + δ − (ρ + θx + δ)

α

−(1 − α) · (ρ + θx + δ)

θ
−ε


 = 0 (2.82)

This condition corresponds to a quadratic equation in ε :

ε2 − ζ · ε − [(ρ + θx + δ)/α − (x + n + δ)] · [(ρ + θx + δ) · (1 − α)/θ ] = 0 (2.83)

This equation has two solutions:

2ε = ζ ±
[
ζ 2 + 4 ·

(
1 − α

θ

)
· (ρ + θx + δ) · [(ρ + θx + δ)/α − (x + n + δ)]

]1/2

(2.84)

where ε1, the root with the positive sign, is positive, and ε2, the root with the negative sign,
is negative. Note that ε2 corresponds to −β in equation (2.41).

The log-linearized solution for log(k̂) takes the form

log[k̂(t)] = log(k̂∗) + ψ1 · eε1t + ψ2 · eε2t (2.85)

where ψ1 and ψ2 are arbitrary constants of integration. Since ε1 > 0, ψ1 = 0 must hold for
log[k̂(t)] to tend asymptotically to log(k̂∗). (ψ1 > 0 violates the transversality condition,
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and ψ1 < 0 leads to k̂ → 0, which corresponds to cases in which the system hits the vertical
axis in figure 2.1.) The other constant, ψ2, is determined from the initial condition:

ψ2 = log[k̂(0)] − log(k̂∗) (2.86)

If we substitute ψ1 = 0, the value of ψ2 from equation (2.86), and ε2 = −β into equation
(2.85), we get the time path for log[k̂(t)]:

log[k̂(t)] = (1 − e−βt ) · log(k̂∗) + e−βt · log[k̂(0)] (2.87)

Since log[ŷ(t)] = log(A) + α · log[k̂(t)], the time path for log[ŷ(t)] is given by

log[ŷ(t)] = (1 − e−βt ) · log(ŷ∗) + e−βt · log[ŷ(0)] (2.88)

which corresponds to equation (2.40).

2.9 Appendix 2B: Irreversible Investment

Suppose that investment is irreversible, so that ĉ ≤ f (k̂) applies. Reconsider in this case the
dynamic paths that start with k̂ < k̂∗ at a position such as ĉ

′
0 in figure 2.1. These paths would

eventually hit the production function, ĉ = f (k̂), after which the constraint from irreversible
investment would become binding. Thereafter, the paths would move downward along
the production function, so that ĉ = f (k̂) would apply. Hence, the capital intensity would
decline in accordance with ˙̂k = −(x +n + δ) · k̂. Therefore, k̂ (and ĉ) would asymptotically
approach zero but would not reach zero in finite time. We now argue that such paths cannot
be equilibria.

When the constraint ĉ ≤ f (k̂) is binding, so that all output goes to consumption and none
to gross investment, the price of capital, denoted by φ, can fall below 1. The rate of return
to holders of capital then satisfies (see note 11)

r = R/φ − δ + φ̇/φ (2.89)

Profit maximization for competitive firms still implies the condition R = f ′(k̂), which can
be substituted into the formula for r .

Consumer optimization entails, as usual,

ċ/c = (1/θ) · (r − ρ)

Therefore, substitution for r from equation (2.89) yields the formula for the growth rate
of ĉ:

˙̂c/ĉ =
(

1

θφ

)
· [ f ′(k̂) + φ̇ − φ · (δ + ρ + θx)] (2.90)
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The condition ĉ = f (k̂), together with ˙̂k = −(x + n + δ) · k̂, implies another condition
for the growth rate of ĉ:

˙̂c/ĉ = −α(k̂) · (x + n + δ) (2.91)

where α(k̂) ≡ k̂ · f ′(k̂)/ f (k̂) is the capital share of income (which is a constant in the case
of a Cobb–Douglas production function). Therefore, equations (2.90) and (2.91) imply a
condition for φ̇:

φ̇ = − f ′(k̂) + φ · [δ + ρ + θx − α(k̂) · θ · (x + n + δ)] (2.92)

Suppose that the constraint ĉ ≤ f (k̂) first becomes binding at some date T , where k̂(T ) <

k̂∗ applies. At this point, f ′(k̂) − δ > ρ + θx . Therefore, when φ = 1 (just at time T ),
equation (2.92) implies that φ̇ < 0. Over time, the rise in R and the fall in φ tend to raise r
in accordance with equation (2.81). Nevertheless, households are satisfied with a negative
growth rate of ĉ (equation [2.91]) because the rate of capital loss, φ̇/φ, rises sufficiently
in magnitude to maintain a low rate of return, r . However, equation (2.92) implies, as k̂
decreases and f ′(k̂) rises, that φ̇ eventually rises in magnitude toward infinity (regardless
of what happens to α[k̂] in the range between 0 and 1). Therefore, φ would reach zero in
finite time and then become negative. This condition violates free disposal with respect to
claims on capital. Hence, paths in which the irreversibility constraint, ĉ ≤ f (k̂), is binding
cannot exist in the region where k̂ < k̂∗.

The constraint ĉ ≤ f (k̂) can be binding in the region where k̂ > k̂∗. This possibility was
noted and discussed by Arrow and Kurz (1970).

2.10 Appendix 2C: Behavior of the Saving Rate

This section provides an algebraic treatment of the transitional behavior of the saving rate.
We deal here with the transition in which k̂ and ĉ are rising over time, and we assume a
Cobb–Douglas production function, so that f (k̂) = Ak̂α .

The gross saving rate, s, equals 1 − ĉ/ f (k̂). In the steady state, ˙̂k from equation (2.24)
and ˙̂c/ĉ from equation (2.25) are each equal to 0. If we use these conditions, together with
f (k̂)/k̂ = f ′(k̂)/α, which holds in the Cobb–Douglas case, we find that the steady-state
saving rate is

s∗ = α · (x + n + δ)/(ρ + θx + δ) (2.93)

The transversality condition in equation (2.31) implies ρ+θx > x+n and, therefore, s∗ < α.
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Since s = 1− ĉ/ f (k̂), s moves in the direction opposite to the consumption ratio, ĉ/ f (k̂).
Define z ≡ ĉ/ f (k̂) and differentiate the ratio to get

γz ≡ ż/z = ˙̂c/ĉ − f ′(k̂) · ˙̂k
f (k̂)

= ˙̂c/ĉ − α · ( ˙̂k/k̂) (2.94)

where the last term on the right follows in the Cobb–Douglas case. Substitution from
equations (2.24) and (2.25) into equation (2.94) leads to

γz = f ′(k̂) · [z(t) − (θ − 1)/θ ] + (δ + ρ + θx) · (s∗ − 1/θ) (2.95)

where we used the condition f (k̂)/k̂ = f ′(k̂)/α, which holds in the Cobb–Douglas case.
The behavior of z depends on whether s∗ is greater than, equal to, or less than 1/θ . Suppose

first that s∗ = 1/θ . Then z(t) = (θ − 1)/θ is consistent with γz = 0 in equation (2.95). In
contrast, z(t) > (θ −1)/θ for some t would imply γz > 0 for all t , a result that is inconsistent
with z approaching its steady-state value. Similarly, z(t) < (θ−1)/θ can be ruled out because
it implies γz < 0 for all t . Therefore, if s∗ = 1/θ , z is constant at the value (θ − 1)/θ , and,
hence, the saving rate, s, equals the constant 1/θ . By analogous reasoning, we find that
s∗ > 1/θ implies z(t) < (θ − 1)/θ for all t , whereas s∗ < 1/θ implies z(t) > (θ − 1)/θ for
all t.

Differentiation of equation (2.95) with respect to time implies

γ̇z = f ′′(k̂) · ( ˙̂k) · [z(t) − (θ − 1)/θ ] + f ′(k̂) · γz · z(t) (2.96)

Suppose now that s∗ > 1/θ , so that z(t) < (θ − 1)/θ holds for all t . Then γz > 0 for some t
would imply γ̇z > 0 in equation (2.96) (because f ′′(k̂) < 0, f ′(k̂) > 0, and ˙̂k > 0). Therefore,
γz > 0 would apply for all t , a result that is inconsistent with the economy’s approaching a
steady state. It follows if s∗ > 1/θ that γz < 0, and, hence, ṡ > 0. By an analogous argument,
γz > 0 and ṡ < 0 must hold if s∗ < 1/θ .

The results can be summarized as follows:

s∗ = 1/θ implies s(t) = 1/θ , a constant

s∗ > 1/θ implies s(t) > 1/θ and ṡ(t) > 0

s∗ < 1/θ implies s(t) < 1/θ and ṡ(t) < 0

These results are consistent with the graphical presentation in figure 2.3.
If we use the formula for s∗ from equation (2.93), we find that s∗ ≥ 1/θ requires θ ≥

(ρ + θx + δ)/[α · (x + n + δ)] > 1/α. Therefore, if θ ≤ 1/α, the parameters must be in
the range in which ṡ < 0 applies throughout. In other words, if θ ≤ 1/α, the intertemporal-
substitution effect is strong enough to ensure that the saving rate falls during the transition.
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However, for our preferred value of α in the neighborhood of 0.75, this inequality requires
θ ≤ 1.33 and is unlikely to hold.

We can analyze the behavior of the consumption/capital ratio, ĉ/k̂, in a similar way. The
results are as follows:

θ = α implies ĉ/k̂ = (δ + ρ)/θ − (δ + n), a constant

θ < α implies ĉ/k̂ < (δ + ρ)/θ − (δ + n) and ĉ/k̂ rising over time

θ > α implies ĉ/k̂ > (δ + ρ)/θ − (δ + n) and ĉ/k̂ falling over time

2.11 Appendix 2D: Proof That γk̂ Declines Monotonically
If the Economy Starts from k̂(0) < k̂∗

We need first to prove the following: ĉ(0) declines if r(v) increases over some interval for
any v ≥ 0.38 Equations (2.15) and (2.16) imply

ĉ(0) = k̂(0) + ∫ ∞
0 ŵ(t)e−[r̄(t)−n−x]t dt∫ ∞

0 e[r̄(t)·(1−θ)/θ−ρ/θ+n]t dt
(2.97)

where r̄(t) is the average interest rate between times 0 and t , as defined in equation (2.13).
Higher values of r(v) for any 0 ≤ v ≤ t raise r̄(t) and thereby reduce the numerator in
equation (2.97). Higher values of r(v) raise the denominator if θ ≤ 1; therefore, the result
follows at once if θ ≤ 1. Assume now that θ > 1, so that the denominator decreases with an
increase in r(v). We know that r(v) ·(1−θ)/θ −ρ/θ +n < 0 if θ > 1 because r(v) exceeds
ρ + θx , the steady-state interest rate, which exceeds x +n from the transversality condition.
Therefore, the denominator in equation (2.97) becomes proportionately more sensitive to
r(v) (in the negative direction) the larger the value of θ . Accordingly, if we prove the result
for θ → ∞, the result holds for all θ > 0. Using θ → ∞, equation (2.97) simplifies to

ĉ(0) = k̂(0) + ∫ ∞
0 ŵ(t)e−[r̄(t)−x−n]t dt∫ ∞
0 e−[r̄(t)−n]t dt

(2.98)

Equation (2.98) can be rewritten as

ĉ(0) =
∫ ∞

0 ψ(t)e−[r̄(t)−n−x]t dt∫ ∞
0 φ(t)e−[r̄(t)−n−x]t dt

(2.99)

38. We are grateful to Olivier Blanchard for his help with this part of the proof.
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where ψ(t) = k̂(0) · [r(t) − n − x] + ŵ(t) and φ(t) = e−xt . The result φ̇ < 0 follows
immediately, and ψ̇ > 0 can be shown using the conditions r(t) = f ′[k̂(t)] − δ, ŵ(t) =
f [k̂(t)]−k̂(t)· f ′[k̂(t)], k̂(t) > k̂(0), and ˙̂k > 0. Therefore, an increase in r(v) for 0 ≤ v ≤ t ,
which raises r̄(t), has a proportionately larger negative effect on the numerator of equation
(2.99) than on the denominator. It follows that the net effect of an increase in r(v) on ĉ(0)

is negative, the result that we need.
We can use this result to get a lower bound for ĉ(0). Since r(0) > r̄(t), if we substitute

r(0) for r̄(t) and ŵ(0) for ŵ(t) in equation (2.97), then ĉ(0) must go down. Therefore,39

ĉ(0)/k̂(0) > [r(0) · (1 − θ)/θ + ρ/θ − n] ·
[

1 + ŵ(0)

k̂ · [r(0) − n − x]

]
(2.100)

We shall use this inequality later.
The growth rate of k̂ is given from equation (2.24) as

γk̂ = f (k̂)/k̂ − ĉ/k̂ − (x + n + δ) (2.101)

where we now omit the time subscripts. Differentiation of equation (2.101) with respect to
time yields

γ̇k̂ = −(ŵ/k̂) · γk̂ − d(ĉ/k̂)/dt

where we used the condition ŵ = f (k̂) − k̂ · f ′(k̂). We want to show that γ̇k̂ < 0 holds in
the transition during which k̂ and ĉ are rising. The formulas for ˙̂c/ĉ in equation (2.25) and
˙̂k in equation (2.24) can be used to get

γ̇k̂ = −(ŵ/k̂) · γk̂ + (ĉ/k̂) · [ŵ/k̂ + [ f ′(k̂) − δ] · (θ − 1)/θ + ρ/θ − n − ĉ/k̂] (2.102)

Hence, if ĉ/k̂ ≥ ŵ/k̂ + [ f ′(k̂)− δ] · (θ − 1)/θ +ρ/θ − n, then γ̇k̂ < 0 follows from γk̂ > 0,
Q.E.D. Accordingly, we now assume

ĉ/k̂ < ŵ/k̂ + [ f ′(k̂) − δ] · (θ − 1)/θ + ρ/θ − n (2.103)

If we replace ĉ/k̂ to the left of the brackets in equation (2.102) by the right-hand side of
the inequality in equation (2.103), use the formula for γk̂ from equation (2.101), and replace
f (k̂)/k̂ by ŵ/k̂ + f ′(k̂), then we eventually get

γ̇k̂ < −(ŵ/k̂) · [ f ′(k̂) − δ − ρ − θx]/θ + [ρ/θ − n + [ f ′(k̂) − δ] · (θ − 1)/θ ]2

+ [ρ/θ − n + [ f ′(k̂) − δ] · (θ − 1)/θ ] · (ŵ − ĉ)/k̂ (2.104)

39. The result follows from integration of the right-hand side of equation (2.97) if [r(0) ·(1−θ)/θ +ρ/θ −n] > 0.
If this expression is nonpositive, the inequality in equation (2.100) holds trivially.
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If ρ/θ − n + [ f ′(k̂) − δ] · (θ − 1)/θ ≤ 0, we can use the inequality in equation (2.103) to
show γ̇k̂ < 0, Q.E.D. Therefore, we now assume

ρ/θ − n + [ f ′(k̂) − δ] · (θ − 1)/θ > 0 (2.105)

Given the inequality in equation (2.105), we can use the lower bound for ĉ/k̂ from
equation (2.100) in equation (2.104) to get, after some manipulation,

γ̇k̂ < − (ŵ/k̂) · [ f ′(k̂) − δ − ρ − θx]2

[ f ′(k̂) − δ − n − x] · θ2
< 0 (2.106)

where we used the condition r = f ′(k̂) − δ. The expressions in parentheses in equa-
tion (2.106) are each positive because f ′(k̂)−δ exceeds ρ + θx , the steady-state interest rate,
which exceeds n + x from the transversality condition. Therefore, γ̇k̂ < 0 follows, Q.E.D.

2.12 Problems

2.1 Preclusion of borrowing in the Ramsey model. Consider the household optimiza-
tion problem in the Ramsey model. How do the results change if consumers are not allowed
to borrow, only to save?

2.2 Irreversibility of investment in the Ramsey model. Suppose that the economy
begins with k̂(0) > k̂∗. How does the transition path differ depending on whether capital is
reversible (convertible back into consumables on a one-to-one basis) or irreversible?

2.3 Exponential utility. Assume that infinite-horizon households maximize a utility
function of the form of equation (2.1), where u(c) is now given by the exponential form,

u(c) = −(1/θ) · e−θc

where θ > 0. The behavior of firms is the same as in the Ramsey model, with zero techno-
logical progress.

a. Relate θ to the concavity of the utility function and to the desire to smooth consumption
over time. Compute the intertemporal elasticity of substitution. How does it relate to the
level of per capita consumption, c?

b. Find the first-order conditions for a representative household with preferences given by
this form of u(c).

c. Combine the first-order conditions for the representative household with those of firms
to describe the behavior of ĉ and k̂ over time. [Assume that k̂(0) is below its steady-state
value.]
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d. How does the transition depend on the parameter θ? Compare this result with the one in
the model discussed in the text.

2.4 Stone–Geary preferences. Assume that the usual conditions of the Ramsey model
hold, except that the representative household’s instantaneous utility function is modified
from equation (2.10) to the Stone–Geary form:

u(c) = (c − c̄)1−θ − 1

1 − θ

where c̄ ≥ 0 represents the subsistence level of per capita consumption.

a. What is the intertemporal elasticity of substitution for the new form of the utility function?
If c̄ > 0, how does the elasticity change as c rises?

b. How does the revised formulation for utility alter the expression for consumption growth
in equation (2.9)? Provide some intuition on the new result.

c. How does the modification of utility affect the steady-state values k̂∗ and ĉ∗?

d. What kinds of changes are likely to arise for the transitional dynamics of k̂ and ĉ and,
hence, for the rate of convergence? (This revised system requires numerical methods to
generate exact results.)

2.5 End-of-the-world model. Suppose that everyone knows that the world will end de-
terministically at time T > 0. We worked out this problem in the text when we discussed
the importance of the transversality condition. Go through the analysis here in the following
steps:

a. How does this modification affect the transition equations for k̂ and ĉ in equations (2.24)
and (2.25)?

b. How does the modification affect the transversality condition?

c. Use figure 2.1 to describe the new transition path for the economy.

d. As T gets larger, how does the new transition path relate to the one shown in figure 2.1?
What happens as T approaches infinity?

2.6 Land in the Ramsey model. Suppose that production involves labor, L , capital, K ,
and land, �, in the form of a constant-returns, CES function:

Y = A · [a · (K α L1−α)ψ + (1 − a) · �ψ ]1/ψ

where A > 0, a > 0, 0 < α < 1, and ψ < 1. Technological progress is absent, and L grows
at the constant rate n > 0. The quantity of land, �, is fixed. Depreciation is 0. Income now
includes rent on land, as well as the payments to capital and labor.
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a. Show that the competitive payments to factors again exhaust the total output.

b. Under what conditions on ψ is the level of per capita output, y, constant in the steady
state? Under what conditions does y decline steadily in the long run? What do the results
suggest about the role of a fixed factor like land in the growth process?

2.7 Alternative institutional environments. We worked out the Ramsey model in detail
for an environment of competitive households and firms.

a. Show that the results are the same if households carry out the production directly and
use family members as workers.

b. Assume that a social planner’s preferences are the same as those of the representative
household in the model that we worked out. Show that if the planner can dictate the choices
of consumption over time, the results are the same as those in the model with competi-
tive households and firms. What does this result imply about the Pareto optimality of the
decentralized outcomes?

2.8 Money and inflation in the Ramsey model (based on Sidrauski, 1967; Brock, 1975;
and Fischer, 1979). Assume that the government issues fiat money. The stock of money,
M , is denoted in dollars and grows at the rate µ, which may vary over time. New money
arrives as lump-sum transfers to households. Households may now hold assets in the form of
claims on capital, money, and internal loans. Household utility is still given by equation (2.1),
except that u(c) is replaced by u(c, m), where m ≡ M/P L is real cash balances per person
and P is the price level (dollars per unit of goods). The partial derivatives of the utility
function are uc > 0 and um > 0. The inflation rate is denoted by π ≡ Ṗ/P . Population
grows at the rate n. The production side of the economy is the same as in the standard
Ramsey model, with no technological progress.

a. What is the representative household’s budget constraint?

b. What are the first-order conditions associated with the choices of c and m?

c. Suppose that µ is constant in the long run and that m is constant in the steady state. How
does a change in the long-run value of µ affect the steady-state values of c, k, and y? How
does this change affect the steady-state values of π and m? How does it affect the attained
utility, u(c, m), in the steady state? What long-run value of µ would be optimally chosen
in this model?

d. Assume now that u(c, m) is a separable function of c and m. In this case, how does the
path of µ affect the transition path of c, k, and y?

2.9 Fiscal policy in the Ramsey model (based on Barro, 1974, and McCallum, 1984).
Consider the standard Ramsey model with infinite-horizon households, preferences given by
equations (2.1) and (2.10), population growth at rate n, a neoclassical production function,
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and technological progress at rate x . The government now purchases goods and services
in the quantity G, imposes lump-sum taxes in the amount T , and has outstanding the
quantity B of government bonds. The quantities G, T , and B—which can vary over time—
are all measured in units of goods, and B starts at a given value, B(0). Bonds are of
infinitesimal maturity, pay the interest rate r , and are viewed by individual households as
perfect substitutes for claims on capital or internal loans. (Assume that the government
never defaults on its debts.) The government may provide public services that relate to the
path of G, but the path of G is held fixed in this problem.

a. What is the government’s budget constraint?

b. What is the representative household’s budget constraint?

c. Does the household still adhere to the first-order optimization condition for the growth
rate of c, as described in equation (2.9)?

d. What is the transversality condition and how does it relate to the behavior of B in the
long run? What does this condition mean?

e. How do differences in B(0) or in the path of B and T affect the transitional dynamics
and steady-state values of the variables c, k, y, and r? (If there are no effects, the model
exhibits Ricardian equivalence.)



3 Extensions of the Ramsey Growth Model

In this chapter we extend the Ramsey model in a number of directions. We first introduce
government spending and various types of taxes. Second, we introduce installation costs
in the process of physical capital investment. Third, we open up the economy to allow for
international borrowing and lending. Finally, we study the effects of finite lifetimes.

3.1 Government

3.1.1 Modifications of the Ramsey Framework

The Ramsey model can be modified in a straightforward way to incorporate functions of
government. Suppose that the government purchases goods and services in the aggregate
quantity G. We imagine, for now, that these purchases do not influence households’ utility
or firms’ production. We allow later for these kinds of effects. The government also makes
transfer payments to households in the real aggregate amount V . These transfers are lump
sum, in the sense that the amount received by an individual household does not depend on
the household’s income or other characteristics.

The government is assumed to run a balanced budget in which it finances its total outlays,
G + V , with various taxes. The taxes considered here are proportional levies on wage
income, τw, private asset income, τa , consumption, τc, and firms’ earnings, τ f . Thus the
government’s budget constraint is

G + V = τwwL + τar · (assets) + τcC + τ f · (firms’ earnings) (3.1)

As before, w is the wage rate and r is the rate of return on assets. The variables L and C
are the aggregates of labor and consumption, respectively. We consider later the definition
of firms’ earnings. The tax rate on asset returns, τa , is the same irrespective of whether the
returns come from internal loans or payments from ownership of capital. We also assume
that the tax rates are constant over time.

The presence of the taxes and transfers modifies the representative household’s budget
constraint from equation (2.2) to

ȧ = (1 − τw) · w + (1 − τa) · ra − (1 + τc) · c − na + v (3.2)

where a, c, and v are the per capita amounts of assets, consumption, and transfers, respec-
tively. We still assume that each household works a fixed amount, set at one unit per unit
of time, and n is the growth rate of population and the labor force.

We can derive the household’s first-order condition for consumption choice as in chapter 2.
For the case of a constant intertemporal elasticity of substitution utility function, as assumed
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in equation (2.9),

u(c) = c1−θ − 1

1 − θ

the result for the growth rate of per capita consumption is modified from equation (2.10) to1

ċ/c = (1/θ) · [(1 − τa) · r − ρ] (3.3)

Thus the household’s decision to defer consumption depends on the after-tax rate of return,
(1 − τa) · r . The tax rate on consumption, τc, does not appear in the first-order condition
because it is constant over time. If this tax rate varied over time, it would affect the choice
of when to consume and would enter accordingly into equation (3.3). The after-tax rate of
return, (1 − τa) · r , also appears in the transversality condition, which is modified from
equation (2.11) to

lim
t→∞

{
a(t) · exp

[
−

∫ t

0
[(1 − τa) · r(v) − n] dv

]}
= 0 (3.4)

Firms still have the production function given in equation (2.16),

Y = F(K , L̂)

where K is capital input and L̂ = Lext is effective labor input. Firms again pay the wage rate
w for each unit of labor services, L , and the rental price R = r + δ for each unit of capital
services, K , where δ is the depreciation rate on capital. We assume that the government
defines firms’ taxable earnings to equal output less wage payments and depreciation:2

taxable earnings = F(K , L̂) − wL − δK (3.5)

Firms’ profit after taxes can therefore be written as

after-tax profit = (1 − τ f ) · [F(K , L̂) − wL − δK ] − r K (3.6)

1. To find the Euler equation, set up the Hamiltonian, J = e−(ρ−n)t · c1−θ −1
1−θ

+ ν · [(1 − τw) · w + (1 − τa) · ra −
(1 + τc) · c − na + v]. The first-order conditions with respect to c and a are

(i) e−(ρ−n)t · c−θ = ν · (1 + τc)

(ii) −ν̇ = ν · [(1 − τa) · r − n]

Take logarithms and time derivatives of (i) and substitute into (ii) to get ċ
c = 1

θ
[(1 − τa) · r − τ̇c

1+τc
− ρ]. If the

tax rate on consumption is constant over time, τ̇c equals zero, and the Euler equation becomes equation (3.3).

2. Note that, although depreciation is tax deductible, the real interest rate, r , part of the rental payments are not
tax deductible. The situation would be different for debt finance if the interest payments were, as is customary, tax
deductible for the firm.
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The firm’s first-order condition for choosing k̂ ≡ K/L̂ to maximize after-tax profit is a
modification of equation (2.21):

f ′(k̂) = r

1 − τ f
+ δ (3.7)

Thus, a higher τ f raises the required marginal product of capital, f ′(k̂), for a given r .
This result follows because the rental payments on capital (aside from depreciation) are
not deductible from the tax base defined in equation (3.5). It can also be verified, along the
lines followed in chapter 2, that the representative firm ends up with zero after-tax profit in
equation (3.6). Correspondingly, the firm equates the marginal product of labor to the wage
rate:

w = ext · [ f (k̂) − k̂ · f ′(k̂)] (3.8)

If we use the condition for equilibrium in the asset market, â = k̂, along with the first-
order conditions from equations (3.7) and (3.8) and the government’s budget constraint from
equation (3.1), then the condition for the evolution of k̂ corresponding to equation (2.23)
becomes

˙̂k = f (k̂) − ĉ − (x + n + δ) · k̂ − ĝ (3.9)

where ĝ ≡ G/L̂ . This equation still represents the resource constraint for the economy: the
change in the capital stock equals output less consumption less depreciation of capital stocks
less government purchases of goods and services. Notice that neither taxes nor transfers
enter directly into this economy-wide resource constraint.

Equations (3.3) and (3.7) imply that the condition for the evolution of ĉ is modified from
equation (2.24) to

˙̂c/ĉ = 1

θ
· {(1 − τa) · (1 − τ f ) · [ f ′(k̂) − δ] − ρ − θx} (3.10)

Thus the net marginal product of capital, f ′(k̂) − δ, is attenuated for the combined effect
of taxes on asset returns, τa , and firms’ earnings, τ f . In the model, the income on capital is
effectively “double taxed”—once at the firm level at the rate τ f when the earnings accrue to
the firm and a second time at the household level at the rate τa when the income is received
as rental payments.

The transversality condition from equation (2.25) is similarly modified to incorporate the
effects of taxation:

lim
t→∞

{
k̂ · exp

(
−

∫ t

0
[(1 − τa) · (1 − τ f ) · [ f ′(k̂) − δ] − x − n] dv

)}
= 0 (3.11)



146 Chapter 3

Therefore, in the steady state, where k̂ = k̂∗, the net marginal product of capital, f ′(k̂∗)−δ,
must exceed (x + n)/[(1 − τa) · (1 − τ f )].

3.1.2 Effects of Tax Rates

Taxes on Wages and Consumption The tax rate on wage income, τw, does not enter into
any of the equilibrium conditions. This result follows because we assumed that households
worked a fixed amount. In this case, a wage tax amounts to a lump-sum, nondistorting tax.
With a labor-leisure choice, as considered in chapter 9, τw would no longer be equivalent
to a lump-sum tax and would affect the equilibrium.

We noted before that the consumption tax rate, τc, does not affect the choice of con-
sumption over time—and therefore equation (3.10)—because τc is constant. Otherwise,
prospective changes in τc would affect equation (3.10) currently and in the future. For
example, if the tax rate on consumption is expected to increase in the future (τ̇c > 0),
individuals would want to consume more now and less in the future, so consumption growth
would be reduced. The opposite would be true if the tax rate on consumption were expected
to decline in the future.

With a labor-leisure choice, even a constant τc would affect the equilibrium by influencing
labor supply. However, this effect does not operate in the present setting because households
are assumed to work a fixed amount. Therefore, τc does not affect the equilibrium and works
like a lump-sum tax.

If we assume ĝ = τa = τ f = 0, the phase diagram in (k̂, ĉ) space would be exactly as
shown in figure 2.1. If we assume instead that ĝ is a positive constant, then ˙̂k is displaced
downward in accordance with equation (3.9). The implied level of government purchases,
G, would be financed by some combination of τw and τc, taking account of the time path
of transfers, V . The precise combination of τw, τc, and V does not matter because these
variables amount to lump-sum taxes or transfers in the model. The phase diagram for the
model then corresponds to the solid lines shown in figure 3.1.

Taxes on Asset Income and Firms’ Earnings Suppose that we continue to treat ĝ as a
positive constant but now allow for τa > 0 or τ f > 0. By holding fixed ĝ, we are assuming
that the government’s budget constraint in equation (3.1) remains satisfied in each period
by adjusting τw, τc, and V in some manner. Again, the precise combination of adjustments
does not matter for the equilibrium.

Positive values of τa and τ f affect the model only through the expression for ˙̂c in equa-
tion (3.10). Specifically, an increase in τa or τ f shifts the ˙̂c = 0 locus to the left, as shown
by the dashed line labeled ( ˙̂c = 0)′ in figure 3.1. Given ĝ, an increase in τa or τ f has no
effect on the locus for ˙̂k = 0 (see equation [3.9]).
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ĉ*

ĉ
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Figure 3.1
Taxes on the income from capital. The solid lines correspond to τa = τ f = 0. If τa > 0 or τ f > 0, the locus for
˙̂c = 0 is shifted to the left to the dashed line denoted ( ˙̂c = 0)′. The locus for ˙̂k = 0 is the same in both cases.
Hence, k̂∗ and ĉ∗ are lower.

As the diagram shows, the imposition of taxes on the income from capital leads to
reductions in k̂∗ and ĉ∗ in the long run. These effects arise because the taxes reduce the
incentive to save. The transversality condition ensures that, after the initial increase in the
tax rate at time zero, the economy will find itself on the new stable arm. Since the level of
capital cannot jump at time zero, the initial level of consumption has to increase. The reason
is that, initially, the increase in taxes reduces the after-tax rate of return, thereby motivating
people to substitute consumption toward the present.

3.1.3 Effects of Government Purchases

Consider now the effects of a permanent and unanticipated increase in government pur-
chases. Figure 3.2 assesses the effects by comparing a case in which ĝ > 0 with one in
which ĝ = 0. The distortionary tax rates τa and τ f are assumed to be the same in the two
cases—that is, we are assuming that the government’s purchases are financed by wage
or consumption taxes or by reductions in lump-sum transfers. We are therefore consider-
ing the effects from higher government purchases that are financed by the equivalent of a
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Figure 3.2
Effects of government purchases. The solid locus for ˙̂k = 0 corresponds to ĝ > 0, and the higher, dashed locus
corresponds to ĝ = 0. The locus for ˙̂c = 0 is the same in both cases. Hence, the higher value for ĝ corresponds to
a lower value for ĉ∗.

lump-sum tax. To study the effects for government purchases financed by a distorting tax,
we can combine the present discussion with the one from the previous section.

Given our assumption on financing, the locus for ˙̂c = 0 is the same for the two values
of ĝ. However, the locus for ˙̂k = 0 is lower for the case in which ĝ > 0 than for the one in
which ĝ = 0. The steady-state capital intensity, k̂∗, is the same in the two cases, but ĉ∗ is
lower when ĝ > 0. Government purchases therefore crowd out consumption one-to-one in
the long run. There is no long-term effect on capital because the financing by the equivalent
of a lump-sum tax means that no distortions arise. In addition, we have assumed that public
expenditures have no direct effect on production.

The dynamic effects from higher government purchases are simpler if, instead of having
a constant ĝ, we assume that the ratio λ ≡ G/C is constant. The equation for ˙̂k is then
modified from equation (3.9) to

˙̂k = f (k̂) − (1 + λ) · ĉ − (x + n + δ) · k̂ (3.12)
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In this case, it is clear from inspection of equations (3.10) and (3.12) that the full time paths
of the variables (1 + λ) · ĉ and k̂ are invariant with the value of λ. Thus a higher value of
λ leads to no change in the entire path of k̂. The higher value of λ leads accordingly to a
one-to-one substitution of G for C along the entire path.

Government Purchases in the Utility Function We assumed, thus far, that households
received no utility from the government’s services. Suppose instead that the utility of the
representative household takes the form u(c, g̃). The specification for g̃ depends on the
way in which public services affect households. If the government’s purchases are used to
provide the equivalent of private goods (such as free school lunches), then g̃ = g would
apply. If the government’s purchases are used to provide nonrival public goods, perhaps the
Washington Monument, then g̃ = G would hold. Probably the most important example of
nonrival goods would be basic ideas and knowledge generated by research and experience.

As another example, if the government’s purchases are used to provide nonexcludible
public goods that are subject to congestion, the services to households might take the form

g̃ = g · �(G/C) (3.13)

where �(·) > 0, � ′(·) > 0, �(0) = 0, and �(∞) = 1. The idea is that �(G/C) captures
the degree of congestion of the public services. For given G/C , the services provided to each
household, g̃, are proportional to g. However, as G falls relative to C , congestion increases,
and each household receives fewer effective services for each unit of g provided. This speci-
fication might work well for services provided by highways, parks, and so on. In other cases,
congestion might relate more to output, Y , or the stock of private capital, K , rather than C .

The representative household’s first-order condition for c can be determined in the usual
way, assuming now that g̃ follows an exogenous time path and that u(c, g̃) is the expression
for household utility. The resulting first-order condition can then be derived in the usual
way as

r · (1 − τa) = ρ −
(

uccc

uc

)
·
(

ċ

c

)
−

(
ucg̃ g̃

uc

)
·
(

dg̃/dt

g̃

)
(3.14)

Thus the standard condition for ċ/c arises when ( uccc
uc

) = −θ and (
ucg̃ g̃
uc

) = 0. In the present
case, the standard condition would be modified, taking account of how g̃ evolves over time
and the nature of the interaction term, (

ucg̃ g̃
uc

).
Suppose that the utility function takes a form that generalizes our previous specification

in which the intertemporal elasticity of substitution was constant:

u(c, g̃) = {[h(c, g̃)]1−θ − 1}
1 − θ

(3.15)
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where the felicity function h(c, g̃) satisfies hc > 0 and hg̃ > 0 and is homogeneous of degree
one with respect to c and g̃. In this case, we can show from equation (3.14) that the standard
first-order condition for ċ/c, as shown in equation (3.3), applies as long as the ratio of
c to g̃ stays constant over time. For example, if g̃ = g (publicly provided private goods),
then if the ratio λ = g/c remains fixed over time, the dynamics of the system are given by
equations (3.3) and (3.12). It follows that we get the same results as before when λ was
constant—that is, a higher λ leaves the path of k̂ unchanged, and the higher g crowds out c
one-to-one at each point in time. The same results apply if λ is constant, and the publicly
provided goods are subject to congestion in the sense of equation (3.13).

If g̃ = G (pure public goods), the condition for ċ/c shown in equation (3.3) applies if
the ratio G/c is constant, which implies that λ = g/c declines in accordance with e−nt . In
equation (3.12), the decline in λ over time continually shifts upward the locus for ˙̂k = 0. This
shifting results because the increase in population at the rate n means that the provision of
a given amount of public services per person, g̃, becomes cheaper over time. In the steady
state, the public services are effectively free (because population is infinite), and the locus
for ˙̂k = 0 corresponds to the solid curve shown in figure 3.2. However, these results apply
only if public services are entirely nonrival. Probably there are few goods that actually fall
into this category.

The Social Planner’s Solution We can use the social planner’s approach to assess the
optimal provision of public services in the various cases. The social planner maximizes
the utility function

∫ ∞
0 e−(ρ−n)t · u(c, g̃) · dt , subject to the resource constraint (3.9). The

Hamiltonian expression for the planner is, therefore,

J = u(c, g̃) · e−(ρ−n)t + υ · [ f (k̂) − ĉ − (x + n + δ) · k̂ − ĝ] (3.16)

One first-order condition for this problem is

f ′(k̂) − δ = ρ −
(

uccc

uc

)
·
(

ċ

c

)
−

(
ucg̃ g̃

uc

)
·
(

dg̃/dt

g̃

)
(3.17)

The decentralized solution from equation (3.14), together with the condition for firms
from equation (3.7), yields equation (3.17) if τa = τ f = 0, so that saving decisions are not
distorted.

The other first-order condition for the social planner depends on the specification of g̃.
If g̃ = g, the condition is

uc/ug̃ = 1 (3.18)

The utility rate of substitution between g̃ and c is one because these two goods are equally
costly for society to provide.
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If g̃ = G, the first-order condition for the social planner becomes

uc/ug̃ = ent (3.19)

In this case, the growth of population at the rate n makes public goods effectively cheaper
over time. Therefore, the utility rate of substitution between g̃ and c rises over time at the
rate n. Asymptotically, the implications are odd, because the idea of entirely nonrival public
services is implausible.

If public services are subject to congestion in the form of equation (3.13), the social
planner’s first-order condition is

uc/ug̃ = �(g/c) + (g/c) · � ′(g/c) (3.20)

This result would correspond to equation (3.18) if �(g/c) = 1 and � ′(g/c) = 0. Other-
wise, the first-order condition takes account of the facts that public services are congested
(�[g/c] < 1) and that an increase in g/c relaxes the congestion (� ′[g/c] > 0).

Government Purchases in the Production Function Some public services can be mod-
eled more naturally by including them in the production function:

ŷ = f (k̂, g̃) (3.21)

The flow of public services, g̃, might again be modeled as publicly provided private goods,
so that g̃ = g, or as nonrival public goods, so that g̃ = G. We might also model the services
as nonexcludible public goods that are subject to congestion, perhaps in the form

g̃ = g · �(G/Y )

if we think of the congestion for G as being in relation to total output, Y . The results in these
cases are similar to those in which public services entered directly into household utility
functions. In the latter case, public services affect utility directly, whereas, in the former,
public services affect output and then influence utility indirectly.

One result for publicly provided private goods or pure public goods is that the social
planner would choose the level of public outlay to satisfy the condition ∂Y/∂G = 1. This
condition means that the output attained at the margin from an extra unit of public services
just equals the cost, which equals unity. For the case of publicly provided private goods, the
production function is given in the Cobb–Douglas case by

ŷ = Ak̂α ĝβ (3.22)

where 0 < β < 1. The condition ∂Y/∂G = 1 can then be shown to imply G/Y = β. That
is, public services would constitute a constant fraction of output along the entire dynamic
path.
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For public goods, the production function for the Cobb–Douglas case is

ŷ = Ak̂αGβ (3.23)

The social planner’s condition G/Y = β can be shown still to apply for this case.
Another important possibility is that public services, such as enactment and maintenance

of property rights and law and order, increase the probability that individual households or
firms will be able to maintain possession of the assets (capital) that they have accumulated.
For households, an improvement in property rights effectively raises the rate of return
on assets. In this sense, better rights work like reductions in the tax rates, τa and τ f , in
equation (3.10). Better property rights would, therefore, encourage capital formation.

3.2 Adjustment Costs for Investment

We mentioned in chapter 2 that the speed of convergence in the strict version of the neo-
classical growth model is higher than the speed found in the data. We mentioned that one
way to slow down the speed in the model was to introduce adjustment costs for investment.
Adjustment costs are the costs associated with the installation of capital. This section
analyzes the neoclassical growth model augmented with adjustment costs.

3.2.1 The Behavior of Firms

We assume as in chapter 2 that the production function is neoclassical:

Y = F(K , L̂) (3.24)

where F(·) satisfies the neoclassical properties (equations 1.4–1.6) and L̂ = Lext is the
effective amount of labor input. Each firm i has access to the technology shown in equa-
tion (3.24); for convenience, we omit the subscript i .

We now find it convenient to think of the firm as owning its stock of capital, K , rather
than renting it from households. The households will instead have a claim on the firm’s net
cash flows.

The change in the firm’s capital stock is given by

K̇ = I − δK (3.25)

where I is gross investment. We assume that the cost in units of output for each unit of
investment is 1 plus an adjustment cost, which is an increasing function of I in relation to
K , that is,

Cost of investment = I · [1 + φ(I/K )] (3.26)
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where φ(0) = 0, φ′ > 0, and φ′′ ≥ 0. The assumption is that adjustment costs depend on
gross investment, I , rather than net investment, I − δK .

Firms again pay the wage rate, w, for each unit of labor, L , and we neglect any adjustment
costs associated with changes in L . The firm’s net cash flow is given accordingly by

Net cash flow = F(K , L̂) − wL − I · [1 + φ(I/K )] (3.27)

The firm has a fixed number of equity shares outstanding, and the value of these shares at
time 0 is determined on a stock market to be the amount V (0). (If we normalize the number
of shares to unity, then V (0) is the price per share at time 0.) We assume that the net cash
flow given in equation (3.27) is paid out as dividends to the shareowners.3 Hence, V (0)

equals the present value of the net cash flows between times 0 and infinity, discounted in
accordance with the market rate of return, r(t). [The rate of return to holders of shares will
then turn out to be r(t) at each date.] The firm makes decisions to further the interests of
the shareowners and seeks therefore to maximize V (0).

We again define r(t) as the average interest rate between times 0 and t , as in
equation (2.12):

r(t) ≡ (1/t) ·
∫ t

0
r(v) dv

The firm’s objective is to choose L and I at each date to maximize

V (0) =
∫ ∞

0
e−r(t)·t · {F(K , L̂) − wL − I · [1 + φ(I/K )]} · dt (3.28)

subject to equation (3.25) and an initial value K (0).
We can analyze this optimization problem by setting up the Hamiltonian

J = e−r(t)·t · {F(K , L̂) − wL − I · [1 + φ(I/K )] + q · (I − δK )} (3.29)

where q is the shadow price associated with K̇ = I − δK . We set up the current-value
Hamiltonian so that q has the units of goods per unit of capital at time t ; that is, q represents
the current-value shadow price of installed capital in units of contemporaneous output. The

3. This setup is satisfactory if we allow for negative dividends—proportionate levies on shareowners—to finance
negative net cash flows. We could instead allow firms to borrow at the interest rate, r(t). The results would be the
same as in the text if we introduced a borrowing constraint that ruled out chain-letter debt finance. (This constraint
is the same as the one already imposed on households.) We could also allow firms to fund negative net cash flows
by issuing new equity shares. The results would again be the same if we expressed the firm’s objective as the
maximization of the price per share of the outstanding shares.
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present-value shadow price is then

ν = q · e−r(t)·t

The maximization entails the standard first-order conditions,

∂ J/∂L = ∂ J/∂ I = 0 and ν̇ = −∂ J/∂K

and the transversality condition,

lim
t→∞(νK ) = 0

The first-order conditions can be expressed as

[ f (k̂) − k̂ · f ′(k̂)] · ext = w (3.30)

q = 1 + φ(ı̂/k̂) + (ı̂/k̂) · φ′(ı̂/k̂) (3.31)

q̇ = (r + δ) · q − [ f ′(k̂) + (ı̂/k̂)2 · φ′(ı̂/k̂)] (3.32)

where we have used the intensive form of the production function, f (·), and written capital
and gross investment as quantities per unit of effective labor, k̂ and ı̂ , respectively.4

Equation (3.32) is the usual equation of the marginal product of labor to the wage rate,
a result that holds because no adjustment costs are attached to changes in labor input.
Equation (3.31) indicates that the shadow value of installed capital, q, exceeds unity if ı̂ > 0
because of the adjustment costs. The relation between q and ı̂/k̂ is monotonically increasing
because φ′(ı̂/k̂) > 0 and φ′′(ı̂/k̂) ≥ 0.5

Equation (3.32) can be rewritten as

r = (1/q) · [ f ′(k̂) + (ı̂/k̂)2 · φ′(ı̂/k̂)] − δ + q̇/q

This equation says that the market rate of return, r , is equated to the total rate of return from
paying q to hold a unit of capital. This return on capital equals the marginal product, f ′(k̂),
plus the marginal reduction in adjustment costs (when K rises for given I ), all deflated
by the cost of capital, q; less the depreciation of installed capital at rate δ; plus the rate of
capital gain, q̇/q . If adjustment costs were absent, so that φ(ı̂/k̂) = φ′(ı̂/k̂) = 0 and q = 1,
equation (3.32) would reduce to the conventional result, r = f ′(k̂) − δ.

4. For given w, r , q, and q̇, equations (3.30)–(3.32) ensure that all firms have the same values of k̂ and ı̂ . The
relative size of each firm, L̂i (t)/L̂(t), is pinned down by its initial value, L̂ i (0)/L̂(0); in particular, changes in
relative size do not occur over time because of the adjustment costs for installing capital (if we assume that these
costs must be paid even when a firm sells and buys used capital).

5. This result requires only the weaker condition 2 · φ′(ı̂/k̂) + (ı̂/k̂) · φ′′(ı̂/k̂) > 0.
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The transversality condition can be expressed as

lim
t→∞

[
qk̂ · e−[r(t)−n−x]·t] = 0 (3.33)

Thus, if q and k̂ asymptotically approach constants (as they do), the steady-state interest
rate, r∗, must, as usual, exceed the steady-state growth rate, n + x .

Since the relation between q and ı̂/k̂ implied by equation (3.31) is monotonically increas-
ing, we can invert this relation to express ı̂/k̂ as a monotonically increasing function of q:

ı̂/k̂ = ψ(q) (3.34)

where ψ ′(q) > 0. Relations of the form of equation (3.34) have frequently been estimated
empirically.6 These empirical studies follow the suggestion of Brainard and Tobin (1968)
to use the ratio of firms’ market value to the capital stock, V/K , as a proxy for q. The ratio
V/K is now called average q, whereas the shadow price of installed capital that appears in
our theoretical analysis is called marginal q . The two concepts of q coincide, however, in
our model.

To demonstrate the correspondence between marginal and average q, use equations (3.32),
(3.31), and (3.25) to get (after some manipulation)

d(q K )/dt = q̇ K + q K̇ = rq K − L̂ · { f (k̂) − we−xt − ı̂ · [1 + φ(ı̂/k̂)]}
This relation is a first-order, linear differential equation in q K and can be solved using
e−r(t)·t as an integrating factor. If we use the transversality condition from equation (3.33)
and the definition of V from equation (3.28), we get

q K = V

so that V/K (or average q) equals q (or marginal q). Hayashi (1982) shows that this result
applies as long as the production function exhibits constant returns to scale and the stock
market is efficient.7

3.2.2 Equilibrium with a Given Interest Rate

We now analyze the steady state and transitional dynamics when the interest rate, r(t),
is given exogenously. This setting applies to a single firm that takes as given the

6. See, for example, von Furstenberg (1977), Summers (1981), and Blanchard, Rhee, and Summers (1993). Barro
(1990a) estimates in first-difference form, so that the change in the investment ratio relates to the change in firms’
market value. This change in market value was then approximated by the rate of return on the stock market.

7. Two other requirements are needed for the Hayashi theorem to hold: capital goods need to be homogeneous
(which we have been assuming all along) and total adjustment costs need to be homogeneous of degree one in I
and K (which we are assuming since total costs are given by I · [1 + φ(I/K )]).
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economy-wide interest rate or to a small open economy that takes as given the world interest
rate. This last context corresponds to an extension of the Ramsey model that we consider
later in this chapter. In that extension—which neglects adjustment costs for investment—the
convergence of k̂ and ŷ to their steady-state values turns out to be instantaneous. However,
we now show that adjustment costs imply finite convergence speeds even in the presence
of perfect world credit markets.

We simplify by assuming that the interest rate, r , is constant, where r > x + n. We also
specialize to the case in which the adjustment cost is proportional to ı̂/k̂; that is,

φ(ı̂/k̂) = (b/2) · (ı̂/k̂) (3.35)

so that φ′(ı̂/k̂) = (b/2) > 0. The parameter b expresses the sensitivity of the adjustment
costs to the total amount invested. Higher values of b imply more adjustment costs per
unit of ı̂/k̂. This linear specification for φ(·) is not necessary for the main results but does
simplify the exposition. If we substitute this form for φ(·) into equation (3.31), we get a
linear relation between ı̂/k̂ and q:

ı̂/k̂ = ψ(q) = (q − 1)/b (3.36)

Equations (3.25) and (3.36) imply that the change in k̂ can be expressed as a function
of q:

˙̂k = ı̂ − (x + n + δ) · k̂ = [(q − 1)/b − (x + n + δ)] · k̂ (3.37)

If we substitute for ı̂/k̂ from equations (3.35) and (3.36) into equation (3.32), we can relate
q̇ to q and k̂:

q̇ = (r + δ) · q − [ f ′(k̂) + (q − 1)2/2b] (3.38)

Equations (3.37) and (3.38) form a two-dimensional system of differential equations in
the state variable, k̂, and the shadow price, q. We can use a phase diagram to analyze the
steady state and transitional dynamics of this system. The phase diagram is drawn in (k̂, q)

space in figure 3.3.
The condition ˙̂k = 0 implies from equation (3.37) (if k̂ �= 0)

q = q∗ = 1 + b · (x + n + δ) (3.39)

The steady-state value of q exceeds 1 because adjustment costs are borne in the steady state
for the gross investment that replaces the capital that wears out at the rate δ. There is further
depreciation of capital in efficiency units because L̂ grows at the rate x +n. Equation (3.39)
appears as the horizontal line q = q∗ in figure 3.3. Equation (3.37) implies ˙̂k > 0 for q > q∗

and ˙̂k < 0 for q < q∗, as shown by the arrows.
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Figure 3.3
The phase diagram for the model with adjustment costs (assuming a fixed interest rate). The phase diagram is
shown here in (q, k̂) space, where q is the market value per unit of installed capital. The ˙̂k = 0 locus is a horizontal
line at q∗. The q̇ = 0 locus is downward sloping around the steady state. As q rises, the schedule becomes steeper,
and the slope becomes positive when q > 1 + b · (r + δ) > q. The stable arm is downward sloping throughout.
Hence, for low values of k̂, q > q∗ applies. In this case, the transition exhibits monotonic increases in k̂ and
monotonic decreases in q.

The condition q̇ = 0 leads from equation (3.38) to the condition

(q − 1)2 − 2b · (r + δ) · q + 2b · f ′(k̂) = 0 (3.40)

If we substitute q = q∗ from equation (3.39), then the steady-state value k̂∗ must satisfy
the condition

f ′(k̂∗) = r + δ + b · (x + n + δ) · [r + δ − (1/2) · (x + n + δ)] (3.41)

Since r > x + n, equation (3.41) shows that the presence of adjustment costs, b > 0, raises
f ′(k̂∗) above the value, r + δ, that would otherwise apply. Consequently, k̂∗ is reduced by
adjustment costs.

The slope of the relation between q and k̂ along the q̇ = 0 locus is given from equa-
tion (3.40) by

dq

dk̂
= −b · f ′′(k̂)

(q − 1) − b · (r + δ)

The numerator is positive, and the denominator is negative if q < 1 + b · (r + δ). This
inequality must hold at the steady-state value, q∗, because r > x + n (see equation [3.39]).



158 Chapter 3

Therefore, the q̇ = 0 locus is downward sloping, as shown in figure 3.3, for q ≤ q∗.8 The
slope is positive if q > 1 + b · (r + δ) > q∗. Equation (3.39) implies q̇ > 0 for values of k̂ to
the left of the q̇ = 0 locus and q̇ > 0 for values to the right of the locus. The arrows in the
figure show these movements of q .

The system described in figure 3.3 exhibits saddle-path stability. The stable arm is down-
ward sloping, as shown by the solid line with arrows. Thus, if the economy begins at
k̂(0) < k̂∗, then q(0) > q∗. The high market value of installed capital stimulates a great
deal (but not an infinite amount) of investment; that is, ı̂/k̂ is high when q is high in ac-
cordance with equation (3.36). The increase in k̂ over time leads to decreases in q and,
hence, to reductions in ı̂/k̂. Eventually, q approaches q∗, ı̂/k̂ approaches x + n + δ, and k̂
approaches k̂∗.

The theory predicts that a poor economy [with k̂(0) well below k̂∗] with access to world
credit markets will have a high value of installed capital, q, and a high growth rate of the
capital stock. We now quantify the implications about the speed of convergence for capital
and output.

We can approximate equations (3.37) and (3.38) as a linear system in log(k̂) and q in
the vicinity of the steady state. We assume that the production function is Cobb–Douglas,
f (k̂) = Ak̂α , and we use familiar parameter values: α = 0.75, x = 0.02/year, n = 0.01/year,
and δ = 0.05/year. We also assume that the world interest rate is r = 0.06/year, although the
results are virtually the same if r is somewhat higher, say, r = 0.08/year.

Given these choices for the other parameters, the convergence coefficient, β, for k̂ and
ŷ depends on the parameter b in the adjustment-cost function in equation (3.35). To think
about reasonable values of this parameter, note that at the steady state, where (ı̂/k̂)∗ =
x + n + δ = 0.08/year, the cost of a unit of capital is 1 + 0.04 · b. Also, equation (3.39)
implies q∗ = 1+0.08 ·b. Thus, b = 1 implies that q∗ = 1.08 and that the charge at the steady
state for an incremental unit of capital is 1.04, whereas b = 10 implies that q∗ = 1.80 and
that the charge for extra capital is 1.40. The value q∗ = 1.80 is high relative to the estimates
of q reported by Blanchard, Rhee, and Summers (1993); their values never exceed 1.5. Thus,
for physical capital, values of b as high as 10 imply unreasonably high costs of adjustment
and tend thereby to generate counterfactually high values of q∗. In fact, since q > q∗ applies
when k̂ < k̂∗, the model would require b to be much less than 10 to ensure that q > 1.5 does
not arise during the transition to the steady state.

The problem is that values of b much less than 10 imply an unrealistically high conver-
gence coefficient, β. For the parameter values mentioned before, β falls from ∞ at b = 0
to 0.16 when b = 1, 0.11 when b = 2, and 0.09 when b = 3. The coefficient β does not fall

8. This property can be shown to hold for any adjustment-cost function φ(·) that satisfies 2 · φ′(ı̂/k̂) + (ı̂/k̂) ·
φ′′(ı̂/k̂) > 0.
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to 0.05 until b exceeds 6 and does not fall to 0.03 until b equals 12.9 In order to get β to fall
to 0.03 at a lower value of b, we have to assume a capital-share coefficient, α, that is even
greater than 0.75. For example, if α = 0.90, β falls to 0.03 when b equals 6.

We see two possible ways out of this difficulty. One is to argue that capital includes
human capital and that the adjustment costs associated with human capital are so great
that b values of 10 or more—and the correspondingly high q values—are reasonable.10 We
do not know how to check this hypothesis from currently available information about the
returns to human capital. The second possibility is to drop the assumption that the economy
can finance all of its investment at a fixed interest rate, r . One way to do so is to return to
the closed-economy frameworks of chapters 1 and 2, where r varies to equate investment
demand to desired national saving. A second possibility is to allow for an open economy
but to have some restrictions on the extent to which a single economy can borrow on world
credit markets. We work out results in the next section for the case in which adjustment
costs for investment are added to the closed-economy version of the neoclassical growth
model. In a later section, we consider adjustment costs in an open economy.

3.2.3 Equilibrium for a Closed Economy with a Fixed Saving Rate

Gross investment outlays, including adjustment costs, per effective worker are

ı̂ · [1 + φ(ı̂/k̂)]

In a closed economy, this expenditure equals gross saving per effective worker. If we assume
that this saving is the constant fraction s of gross output per worker, f (k̂), then we have

s · f (k̂)/k̂ = (ı̂/k̂) · [1 + φ(ı̂/k̂)]

If we use the linear form for φ(ı̂/k̂) from equation (3.35) and the corresponding expression
for ı̂/k̂ from equation (3.36), this result simplifies to

s · f (k̂)/k̂ =
(

1

2b

)
· (q2 − 1) (3.42)

If we use the Cobb–Douglas form of the production function, f (k̂) = Ak̂α , solve out for
q in terms of k̂ from equation (3.42), and substitute the result into the expression for ˙̂k in

9. As b tends to infinity, β approaches 0.025; that is, the convergence speed does not tend to zero as the adjustment-
cost parameter becomes arbitrarily large. However, as b tends to infinity, the economy is approaching a steady-state
value k̂∗ that is tending to zero.

10. Kremer and Thomson (1998) use an overlapping-generations framework in which young workers benefit from
interactions with old, experienced workers in an apprentice-mentor context. Their framework effectively implies
high adjustment costs for rapid increases in human capital.
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equation (3.37), we get a differential equation in k̂:

˙̂k/k̂ = (1/b) · {[1 + 2bs A · k̂α−1]1/2 − 1} − (x + n + δ) (3.43)

This result generalizes the formula from equation (1.30) for the Solow–Swan model to
allow for adjustment costs. The Solow–Swan result applies if b = 0.11

We can, as usual, compute the convergence coefficient β by log-linearizing equation
(3.43) around the steady state. The resulting formula for β is

β = (1 − α) · (x + n + δ) ·
[

1 + (1/2) · b · (x + n + δ)

1 + b · (x + n + δ)

]
(3.44)

Hence, if adjustment costs are absent (b = 0), the formula for β reduces to that from the
Solow–Swan model, (1 − α) · (x + n + δ) (see equation [1.31]). If b > 0, equation (3.44)
shows that β in the adjustment-cost model is less than that in the Solow–Swan model and
is a decreasing function of b. As b tends to infinity, β tends to (1/2) · (1 − α) · (x + n + δ),
that is, to one-half the value prescribed by the Solow–Swan model.

If we use the same parameter values as before (α = 0.75, x = 0.02, n = 0.01, δ = 0.05)
and consider values of the adjustment-cost coefficient, b, that are much less than 10, then
the major result is that adjustment costs do not have a large impact on the speed of con-
vergence. For example, if b = 0 (the Solow–Swan case), then β = 0.020/year. For b = 2,
we get β = 0.019, and for b = 10, we get β = 0.016. Thus, although the presence of ad-
justment costs slows down convergence, the magnitude of the effect tends to be small. As
we mentioned before, to get more significant effects, we have to assume adjustment-cost
coefficients that are so large that the implied value of q∗—and, moreover, of transitional
values of q—exceeds empirically observed values (at least for physical capital).

We can proceed in an analogous manner to allow for adjustment costs in the Ramsey
model.12 Instead of assuming a constant gross saving rate, we use the familiar condition
for household optimization, ċ/c = (1/θ) · (r − ρ). This analysis is straightforward but
cumbersome and turns out to lead to few new insights. In particular, we find that the
presence of adjustment costs reduces the speed of convergence relative to that implied
by the Ramsey model (equation [2.34]). But, as in the case of the Solow–Swan model,
the quantitative effects are small if we assume an adjustment-cost coefficient, b, that is
consistent with “reasonable” behavior of the shadow price q.

11. We can use l’Hôpital’s rule to show that, as b approaches zero, the formula in equation (3.43) reduces to that
shown in equation (1.30).

12. See Abel and Blanchard (1983) and problem 3.5 for analyses of this model.
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3.3 An Open-Economy Ramsey Model

In the closed-economy models of chapters 1 and 2, domestic residents owned the entire
stock of capital. Hence, for country i , the capital per worker, ki , equaled the households’
assets per person, ai . We now extend the model to allow the economy to be open. We
begin by modifying the Ramsey model to allow for mobility of goods across national bor-
ders and for international borrowing and lending. We find that the modification to allow
for an open economy leads to some paradoxical conclusions. We then consider whether
further extensions—imperfections of world credit markets, nonconstant preference param-
eters, finite horizons, and adjustment costs for investment—can generate more reasonable
answers.

3.3.1 Setup of the Model

There are many countries in the world. For convenience, we think of one of these countries,
country i , as domestic and view the others as foreign. Within any of the countries, the
households and firms have the same forms of objectives and constraints as in the Ramsey
model of chapter 2.

Domestic and foreign claims on capital are assumed to be perfect substitutes as stores of
value; hence, each must pay the same rate of return, r . Since loans and claims on capital in
any country are still assumed to be perfect substitutes as stores of value, the variable r will
be the single world interest rate.

Suppose that the domestic country has assets per person ai and capital per person ki . If
ki exceeds ai , the difference, ki − ai , must correspond to net claims by foreigners on the
domestic economy. Conversely, if ai exceeds ki , ai − ki represents net claims by domestic
residents on foreign economies. If we define di to be the domestic country’s net debt
to foreigners (foreign claims on the domestic country net of domestic claims on foreign
countries), then

di = ki − ai (3.45)

Equivalently, domestic assets equal domestic capital less the foreign debt: ai = ki − di .
The current-account balance is the negative of the change in the aggregate foreign debt,

Di = Li di , where Li is country i’s population and labor force. Therefore, if Li grows at
the rate ni , the per capita current-account balance for country i equals −(ḋi + ni di ).13

The model still contains only one physical kind of good, but foreigners can buy domestic
output, and domestic residents can buy foreign output. The only function of international

13. Since Di is the country’s total foreign debt, the current-account balance equals −Ḋi . The definition di ≡ Di /Li
and the condition L̇i /Li = ni imply −Ḋi /Li = −(ḋi + ni di ).
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trade in this model is to allow domestic production to diverge from domestic expenditure
on consumption and investment. In other words, we consider the intertemporal aspects of
international trade but neglect the implications for patterns of specialization in production.

We continue to assume that labor is immobile; that is, domestic residents cannot work
abroad (or emigrate) and foreigners cannot work in the domestic country (or immigrate).
Chapter 9 allows for migration.

The budget constraint for the representative household in country i is the same as that
given in equation (2.2):

ȧi = wi + (r − ni ) · ai − ci (3.46)

The only new element is that r is the world interest rate.
We assume the same form of households’ preferences as in chapter 2 (equations [2.1]

and [2.9]) and we allow for each country to have its own discount rate ρi and elasticity of
intertemporal substitution, θi . Since the objective and constraints are the same as in chapter 2,
the first-order condition for consumption is still the one shown in equation (2.10):

ċi/ci = (1/θi ) · (r − ρi )

or, when expressed in terms of consumption per effective worker,

(1/ĉi ) · (dĉi/dt) = (1/θi ) · (r − ρi − θi xi ) (3.47)

The transversality condition again requires ai (t) to grow asymptotically at a rate less than
r − ni , as in equation (2.11).

The optimization conditions for firms again entail equality between the marginal products
and the factor prices (equations [2.21] and [2.22]):

f ′(k̂i ) = r + δi (3.48)

[ f (k̂i ) − k̂i · f ′(k̂i )] · exi t = wi (3.49)

If we substitute for wi from equation (3.49) into equation (3.46) and use equation (3.48),
the change in assets per effective worker can be determined as

dâi/dt = f (k̂i ) − (r + δi ) · (k̂i − âi ) − (xi + ni + δi ) · âi − ĉi (3.50)

Note from equation (3.45) that (k̂i − âi ) = d̂ i , which equals 0 for a closed economy.
Equation (3.50) extends equation (2.23) to the case in which d̂ i �= 0.

3.3.2 Behavior of a Small Economy’s Capital Stock and Output

If country i’s economy is small in relation to the world economy, the country’s accumulation
of assets and capital stocks has a negligible impact on the path of the world interest rate,
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r(t). Therefore, we can treat the path of r(t) as exogenous for country i . Given this path,
equations (3.48) and (3.49) determine the paths of k̂i (t) and wi (t), without regard to the
choices of consumption and saving by the domestic households. Given the time path for
wi (t), equations (3.47) and (3.50) and the transversality condition determine the paths of
ĉi (t) and âi (t). Finally, the paths of k̂i (t) and âi (t) prescribe the behavior of the net foreign
debt, d̂ i (t), from equation (3.45).

For simplicity, we now assume that the world interest rate equals a constant r . In effect,
the world economy is in the kind of steady state that we considered before for a single
closed economy. If country i were a closed economy, its steady-state interest rate would be
ρi + θi xi (as in chapter 2). We assume that r ≤ ρi + θi xi applies, because if r > ρi + θi xi ,
the domestic economy would eventually accumulate enough assets to violate the small-
country assumption that we made. We also assume r > xi + ni , that is, the world interest
rate exceeds the steady-state growth rate that would apply in country i if the economy were
closed. Otherwise, the present value of wages will turn out to be infinite and, hence, the
attainable utility will be unbounded.

If r is constant, equation (3.48) implies that k̂i (t) equals a constant, denoted (k̂∗
i )open,

which satisfies the condition f ′[(k̂∗
i )open] = r + δi . In other words, the speed of convergence

from any initial value, k̂i (0), to (k̂∗
i )open is infinite. An excess of (k̂∗

i )open over k̂i (0) causes
capital to flow in from the rest of the world so fast (at an infinite rate) that the gap disappears
at once. Similarly, an excess of k̂i (0) over (k̂∗

i )open induces a massive outflow of capital. This
counterfactual prediction of an infinite speed of convergence for k̂i is one of the problematic
implications of the open-economy version of the Ramsey model.

Recall that k̂∗
i , the steady-state value for the closed-economy model of chapter 2, satisfies

the condition f ′(k̂∗
i ) − δ = ρi + θi xi . The condition r ≤ ρi + θi xi implies (k̂∗

i )open ≥ k̂∗
i ;

that is, the steady-state capital intensity in the open economy is at least as high as in the
closed economy.

Since k̂i (t) is constant, ŷi (t) is constant—that is, the speed of convergence from ŷi (0)

to (ŷ∗
i )open is infinite—and yi (t) grows at the constant rate xi . Equation (3.49) implies

that wi (t) also grows at the rate xi . Therefore, the wage rate per unit of effective labor,
ŵi (t) = wi (t) · e−xi t , equals a constant, denoted (ŵ∗

i )open.

3.3.3 Behavior of a Small Economy’s Consumption and Assets

Equation (3.47) implies that consumption per effective worker, ĉi (t), grows at the constant
rate (r − ρi − θi xi )/θi ≤ 0. If we use the form of the consumption function that we derived
in chapter 2 (equations [2.14] and [2.15]), then ĉi (t) can be written as

ĉi = (1/θi ) · [ρi − r · (1 − θi ) − niθi ] ·
[

âi (0) + (ŵ∗
i )open

r − xi − ni

]
· e[(r−ρi −θi xi )/θi ]·t (3.51)
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The term in the first brackets on the right-hand side is positive from the conditionsρi + θi xi ≥
r and r > xi + ni .

If r = ρi + θi xi , then ĉi (t) is constant. Otherwise—that is, if r < ρi + θi xi —ĉi (t) asymp-
totically approaches 0. The domestic country borrows to enjoy a high level of consumption
early on—because it is impatient in the sense that ρi + θi xi > r—but it pays the price later
in the form of low consumption growth. Recall as a contrast that ĉi (t) in a closed economy is
constant asymptotically. The result that ĉi tends to 0 if r < ρi + θi xi is another problematic
feature of the open-economy Ramsey model.

Equation (3.50) is a first-order linear differential equation in âi (t). This equation, along
with the formula for ĉi (t) in equation (3.51) and the given initial value of assets, âi (0),
determines the time path of âi (t) as

âi (t) =
[

âi (0) + (ŵ∗
i )open

r − xi − ni

]
· e[(r−ρi −θi xi )/θi ]·t − (ŵ∗

i )open

r − xi − ni
(3.52)

The final term on the right-hand side is the present value of wage income (per efficiency
unit of labor), where (r − xi − ni ) > 0 follows from the condition r > xi + ni .

If r = ρi + θi xi , âi (t) is constant. Otherwise—that is, if r < ρi + θi xi —the exponen-
tial term in equation (3.52), e[(r−ρi −θi xi )/θi ]·t , diminishes over time toward 0. Therefore, if
âi (0) > 0, then âi (t) eventually falls to 0, so that d̂ i (t) from equation (3.45) equals (k̂∗

i )open.
Subsequently, âi (t) becomes negative; that is, the domestic country becomes a debtor not
only in the sense of not owning its capital stock but also of borrowing against the present
value of its wage income as collateral. Asymptotically, âi (t) approaches the final term in
equation (3.52), −[(ŵ∗

i )open/(r − xi − ni )], so that d̂ i (t) approaches the positive constant
(k̂∗

i )open + [(ŵ∗
i )open/(r − xi − ni )]. In other words, an impatient country asymptotically

mortgages all its capital and all its labor income. This counterfactual behavior of assets is
yet another difficulty with the model.

3.3.4 The World Equilibrium

Suppose now that the world consists of a set of countries numbered i = 1, . . . , M . We
assume here that population growth, ni , and the rate of technological progress, xi , equal the
same values, n and x , for all countries. In this case, the shares of each country’s output, Yi ,
in world output do not change over time.

Assume that the countries are ordered in terms of their effective rates of time preference,
ρi + θi x , with country 1 having the lowest value. We already showed that ĉi (t) approaches
0 and âi (t) approaches a negative number if ρi + θi x > r . In contrast, if ρi + θi x < r , ĉi (t)
and âi (t) would rise forever, and country i’s consumption would eventually exceed world
output. Before this happened, the world interest rate would adjust downward; in particular,
ρi + θi x ≥ r must hold in the steady state for all countries. The only way to satisfy this
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condition and also have the world capital stock owned by someone (so that the world capital
stock equals world assets) is for r to equal ρ1 + θ1x , the term for the most patient country.
Asymptotically, country 1 owns all the wealth in the sense of the claims on capital and the
present value of wage income in all countries. All other countries own a negligible amount
(per unit of effective labor) in the long run.

Country 1’s consumption grows asymptotically at the rate n + x , the same as the growth
rate of world output. The ratio of country 1’s consumption to world output approaches a
positive constant, whereas the ratio for all other countries approaches 0.14

To summarize, the open-economy version of the Ramsey model generates several coun-
terfactual results. The variables k̂i , ŷi , and ŵi converge instantaneously to their steady-state
values. In addition, for all but the most patient economy, ĉi tends to 0, and âi eventu-
ally becomes negative. The counterpart of these results is that net foreign claims and the
current-account balance for the impatient economies become negative and large in magni-
tude in relation to GDP. Equivalently, the path of domestic expenditures on consumption
and investment tends to evolve very differently from that of domestic production.

One way to think of some of the problematic results is in terms of the relation between the
time-preference term, ρi + θi x , and the interest rate, ri , that country i faces. In the closed-
economy framework of chapter 2, ri adjusts to equal ρi + θi x in the steady state, whereas
in the open-economy model, ri is pegged at the world interest rate, r . If ri < ρi + θi x , the
ratio of consumption to output asymptotically approaches 0. If ri > ρi + θi x , the ratio of
consumption to output would approach infinity, but before this happens the country ends
up owning all the world’s wealth, and the world interest rate adjusts to equal ρi + θi x . This
outcome applies to the most patient country, but all other countries end up eventually in the
situation in which ri < ρi + θi x , so that the ratio of consumption to output approaches 0.
To avoid this result, we need some mechanism to eliminate the gap between ri and ρi + θi x
for all countries, not just for the most patient country. That is, either ri has to differ from
r , or else the effective rate of time preference, ρi + θi x , has to be variable. We begin by
considering a model in which ri diverges from r.

3.4 The World Economy with a Constraint on International Credit

Our first attempt to improve the predictions of the open-economy growth model involves
the introduction of a constraint on international borrowing. In the previous section, we

14. We would get similar results for a single country that comprises M family dynasties with differing values of
the time-preference term, ρi + θi x . Again, the most patient family ends up owning everything asymptotically.
For families, this result would be tempered by imperfect inheritability of preference parameters and by marriage
across dynasties. Similar considerations arise across countries, especially if we allow for migration of persons.
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described an equilibrium in which an open economy eventually mortgages all its capital
and labor income, and the ratio of consumption to GDP approaches zero. Cohen and Sachs
(1986) observe that the economy’s residents would eventually default on their debts in this
kind of equilibrium. As long as the penalty for default is limited to some fraction of domestic
output or of the domestic capital stock, the residents (or their government) would, at some
point, prefer default to remaining on the path in which the ratio of consumption to GDP
approached zero.

Since the inevitable default would presumably be foreseen by lenders, the path described
before is not an equilibrium even before the time of default. In particular, the domestic resi-
dents in an impatient country would eventually reach a point at which they could not borrow
the desired amount, d̂ i (t), at the world interest rate, r . We therefore want to reconsider the
choices made by residents of an open economy when some constraints are imposed on their
ability to borrow.

3.4.1 Setup of a Model with Physical and Human Capital

One tractable way to proceed is to distinguish two types of capital, one that serves well as
collateral on foreign loans and another that does not serve as collateral. We can assume,
for example, that human capital provides unacceptable security on loans, whereas at least
some forms of physical capital are acceptable because the creditor can take possession of
the object in the event of default.

We assume now that the production function involves the two kinds of capital:

ŷ = f (k̂, ĥ) = Ak̂α ĥη (3.53)

where k̂ is physical capital per unit of effective labor and ĥ is human capital per unit of
effective labor.15 We use a Cobb–Douglas form of the production function, where α is
the share of physical capital, η is the share of human capital, and 0 < α < 1, 0 < η < 1, and
0 < α + η < 1. The condition 0 < α + η < 1 ensures diminishing returns in the accumulation
of broad capital, that is, for proportional changes in physical and human capital.

We maintain the assumption of a one-sector production technology in that units of output
can now go on a one-to-one basis to consumption, additions to physical capital, or additions
to human capital. (Chapter 4 deals further with this model, and chapter 5 introduces a
separate education sector that produces new human capital.) The budget constraint, an

15. This analysis follows Barro, Mankiw, and Sala-i-Martin (1995). An alternative model, suggested by Cohen
and Sachs (1986), sticks with one type of capital, k, but assumes that only a fraction ν, where 0 ≤ ν ≤ 1, of this
capital serves as collateral on foreign loans. The results from this alternative framework are similar to those from
the two-capital model, except that the two-capital model turns out to be simpler.
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extension of equation (3.50), is

dâ/dt = dk̂/dt + dĥ/dt − dd̂/dt
= Ak̂α ĥη − (r + δ) · (k̂ + ĥ − â) − (x + n + δ) · â − ĉ (3.54)

where â = k̂ + ĥ − d̂ , and we have dropped the country subscript i for convenience. We
also assume that the depreciation rate, δ, is the same for both kinds of capital.

3.4.2 The Closed Economy

If we return for the moment to a closed economy, then d = 0 and a = k + h. The results on
the growth process are then the same as those worked out in chapter 2, except that we now
explicitly take a broad view of capital to include physical and human components. Investors
equate the marginal product of each type of capital to r + δ, where r is the domestic interest
rate. Given the Cobb–Douglas production function in equation (3.53), this condition implies
that the ratio k/h is fixed at α/η.16 In the steady state, the quantities of the two types of
capital per unit of effective labor are constant at the values k̂∗ and ĥ∗, respectively, where
k̂∗/ĥ∗ = α/η. If we start with k̂(0) < k̂∗ and ĥ(0) < ĥ∗, the transition involves growth of k̂,
ĥ, and ŷ. As in our previous analysis, the growth rates fall during the transition.

In the Ramsey model of chapter 2, the speed of convergence to the steady state depended
on the capital share. That share equaled α in the Cobb–Douglas version of the model with
one type of capital but now equals α + η in the model with two kinds of capital. Except
for the substitution of α + η for α, the results are identical to those from the model that we
worked out in chapter 2. In particular, the formula from equation (2.34) for the convergence
coefficient, β, in the log-linearized model still applies if we replace α by α + η:

2β =
{

ζ 2 + 4 ·
(

1 − α − η

θ

)
· (ρ + δ + θx) ·

[
ρ + δ + θx

α + η
− (n + x + δ)

]}1/2

− ζ

(3.55)

where ζ = ρ −n − (1−θ) · x > 0. If we assume, for example, that α = 0.30 and η = 0.45,
then the findings about the speed of convergence coincide with those from chapter 2 for the
case in which the capital share was 0.75. If we take our usual benchmark values for the other
parameters—n = 0.01 per year, x = 0.02 per year, δ = 0.05 per year, and ρ = 0.02 per
year—and use θ = 3, the convergence coefficient is β = 0.015 per year.

16. The economy jumps from an arbitrary starting ratio, k(0)/h(0), to α/η if we allow both kinds of investment to
be reversible so that units of k can be immediately converted into units of h and vice versa. If we constrain gross
investment in each kind of capital to be nonnegative, the transitional dynamics are more complicated. We explore
these kinds of effects in chapter 5.
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3.4.3 The Open Economy

The distinction between the two kinds of capital becomes more interesting when we allow
for an open economy and introduce the credit-market constraint. We now assume that the
amount of foreign debt, d , can be positive but cannot exceed the quantity of physical capital,
k. Physical capital can be used as collateral on foreign loans, but human capital and raw
labor cannot.

We are assuming implicitly that domestic residents own the physical capital stock but
may obtain part or all of the financing for this stock by issuing bonds to foreigners. The
results would be the same if we allowed for direct foreign investment, in which case the
foreigners would own part of the physical capital stock rather than bonds. The important
assumption is that domestic residents cannot borrow with human capital or raw labor as
collateral and that foreigners cannot own domestic human capital or raw labor.

There are various ways to motivate the borrowing constraint. Physical capital is more
easily repossessed than human capital and is therefore more readily financed with debt.
Physical capital is also more amenable to direct foreign investment: a person can own
a factory but not someone else’s stream of labor income. Finally, one can abandon the
terms “physical capital” and “human capital” and recognize that not all investments can be
financed through perfect capital markets. The key distinction between k and h in the present
context is not the physical nature of the capital but whether the cumulated goods serve as
collateral for borrowing on world markets.

We still assume that the world interest rate, r , is constant. We now assume also that
r = ρ + θx , the steady-state interest rate that would apply if the domestic economy were
closed. That is, the home economy is neither more nor less impatient than the world as a
whole. (It is straightforward to extend to the case in which r < ρ + θx .)

The initial quantity of assets per effective worker is k̂(0) + ĥ(0) − d̂(0), and the key
consideration is whether this quantity is greater or less than the steady-state amount of
human capital, ĥ∗. If k̂(0) + ĥ(0)− d̂(0) ≥ ĥ∗, the borrowing constraint is not binding, and
the economy jumps to the steady state. In contrast, if k̂(0) + ĥ(0) − d̂(0) < ĥ∗, the constraint
is binding—that is, d = k applies—and we obtain some new results. We therefore focus on
this situation.17

Since physical capital serves as collateral, the net return on this capital, fk − δ, where
fk is the marginal product of capital, equals the world interest rate, r , at all points in time.
The formula for fk implied by the Cobb–Douglas production function in equation (3.53)

17. If r < ρ + θx , the domestic economy must eventually become constrained on the world credit market. Hence,
our analysis of a debt-constrained economy applies at some time in the future even if not at the initial date. If
r > ρ + θx , the assumption of a small economy is violated eventually, and r would have to change.
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therefore implies

k̂ = α ŷ/(r + δ) (3.56)

Equation (3.56) ensures that the ratio of physical capital to GDP, k/y, will be constant
throughout the transition to the steady state. In contrast, k/y would rise steadily during the
transition for a closed economy. The rough constancy over time of k/y is one of Kaldor’s
(1963) stylized facts about economic development; see the discussion in the introductory
chapter. The consistency of the credit-constrained open-economy model with this “fact” is
therefore notable.18

The result for k̂ from equation (3.56) can be combined with the production function from
equation (3.53) to express ŷ as a function of ĥ:

ŷ = Ãĥε (3.57)

where Ã ≡ A1/(1−α) · [α/(r + δ)]α/(1−α) and ε ≡ η/(1 − α). The condition 0 < α + η < 1
implies 0 < ε < α + η < 1. Thus the reduced-form production function in equation (3.57)
expresses ŷ as a function of ĥ with positive and diminishing marginal product. The conver-
gence implications of this model are therefore similar to those of the closed economy—both
models involve the accumulation of a capital stock under conditions of diminishing returns.

The budget constraint from equation (3.54) can be combined with the reduced-form
production function from equation (3.57), the borrowing constraint d = k (which implies
a = h), and the condition (r + δ) · k̂ = α ŷ from equation (3.56) to get the revised budget
constraint:

dĥ/dt = (1 − α) · Ãĥε − (δ + n + x) · ĥ − ĉ (3.58)

Note that α Ãĥε , which subtracts from Ãĥε in the equation, corresponds to the flow of
rental payments on physical capital, (r + δ)k̂ (see equation [3.56]). Since d = k, this term
corresponds to the net factor payments to foreigners and therefore equals the difference
(per unit of effective labor) between GNP and GDP. The GDP exceeds the GNP because
the country is constrained on the international credit market and therefore has the positive
foreign debt d = k.

If we use the setting in which households produce goods directly, they maximize utility
(given in equations [2.1] and [2.9]), subject to the budget constraint in equation (3.58) and
a given initial stock of human capital, ĥ(0) > 0. [The value ĥ(0) equals the given amount

18. The precise constancy of k/y in the model depends on the fixity of the world interest rate, r , and on the
assumption that the production function is Cobb–Douglas. This production function implies that the average
product of capital, y/k, is proportional to the marginal product. Since the marginal product of capital, net of
depreciation, equals the fixed world interest rate, r , the average product, y/k, must be constant.
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of initial assets, which was assumed to be less than ĥ∗.] The optimizing condition for
consumption over time is

˙̂c/ĉ = (1/θ) · [(1 − α) · Ãεĥε−1 − (δ + ρ + θx)] (3.59)

where (1 − α) · Ãεĥε−1 = Ãηĥε−1 = fh , the marginal product of human capital. Equa-
tion (3.59) corresponds to the usual formula in equation (3.47) if we think of r in that
formula as the domestic rate of return, which equals fh −δ. Equations (3.58) and (3.59) and
the usual transversality condition fully describe the transitional dynamics of this model.

Because we assumed r = ρ + θx , the steady state is the same as that for the closed
economy that has physical and human capital. Hence, the opportunity to borrow on the
world credit market does not influence the steady state but will turn out to affect the speed
of convergence.19

The system described by equations (3.58) and (3.59) and the transversality condition has
the usual transitional dynamics. We can compare the results with those from the closed-
economy model with capital goods k and h in which the total broad capital stock per worker
is k +h and the capital share is α +η. The only differences are that equation (3.58) contains
(1−α) · Ã as a proportional constant in the production function, the capital-stock variable is
h rather than k + h, and the exponent on the capital stock is ε ≡ η/(1−α) rather than α+η.
Since ε and α + η are positive and less than 1—that is, both models feature diminishing
returns—the dynamics of the models are essentially the same.

The formula for the convergence coefficient, β, coincides with that for the closed economy
in equation (3.55), except that the capital-share parameter, α + η, has to be replaced by
ε ≡ η/(1 − α). (Recall that the level of the production technology does not influence the
rate of convergence.) Hence, the convergence coefficient for the credit-constrained open
economy is given by

2β =
{

ζ 2 + 4 ·
(

1 − ε

θ

)
· (δ + ρ + θx) ·

[
δ + ρ + θx

ε
− (δ + n + x)

]}1/2

− ζ (3.60)

where ζ = ρ − n − (1 − θ) · x > 0. The coefficient determined from equation (3.60) is
the same value that would arise in a closed economy that had the broad capital share ε,
rather than α + η. Since ε ≡ η/(1 − α), it follows that ε < α + η (using the condition
α + η < 1). The credit-constrained open economy therefore behaves like a closed economy
with a broad capital share that is less than α + η. Recall that the rate of convergence depends
inversely on the capital share (because a smaller capital share means that diminishing returns

19. If we had assumed r < ρ + θx—so that the home economy is more impatient than those of the rest of the
world (see note 17)—then the availability of foreign borrowing would also affect the steady-state position. The
open economy would have higher steady-state capital intensities, ĥ∗ and k̂∗, than the closed economy.
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set in more rapidly). The credit-constrained open economy therefore has a higher rate of
convergence than the closed economy. Note, however, that (α + η) → 1 implies ε → 1 and,
therefore, β → 0 in equation (3.60). Thus, if diminishing returns to broad capital do not
apply (α + η = 1), the model still does not exhibit the convergence property.20

We can understand why the partially open economy converges faster than the closed
economy by thinking about the tendency for diminishing returns to set in as human capital,
ĥ, is accumulated. For given exponents of the production function, α and η, the key issue is
the transitional behavior of the ratio k/h. In the closed economy, k/h stays constant (at the
value α/η), whereas in the open economy, k/h falls during the transition (see below). That
is, k̂ is relatively high at the outset in an open economy because the availability of foreign
financing makes it easy to acquire physical capital quickly. The fall in k/h over time causes
diminishing returns to ĥ to set in faster than otherwise; hence, the speed of convergence is
greater in the open economy than in the closed economy.

Although the credit-constrained open economy converges faster than the closed economy,
the speed of convergence is finite for the open economy. If we use the values α = 0.30
and η = 0.45, along with the benchmark values mentioned before for the other parameters,
the convergence coefficient implied by equation (3.60) is 0.025, compared with 0.015 for the
closed economy. The value 0.025 conforms well with empirical estimates of convergence
coefficients.

Recall that an open economy with perfect capital mobility converges at an infinite rate.
Therefore, our finding is that an open economy with partial capital mobility looks much
more like a closed economy than a fully open economy. Although we derived this result so
far only for a particular set of values for α and η, the basic finding is much more general. If
we raise α/η for given α + η, we increase the degree of capital mobility and thereby raise
the convergence coefficient, β. For the benchmark values of the other parameters (including
α + η = 0.75), β rises from 0.015 at α/η = 0 to 0.030 at α/η = 1, 0.042 at α/η = 2,
and 0.053 at α/η = 3. Therefore, if we use the benchmark values for the other parameters
and assume that no more than half the total capital stock constitutes collateral for foreign
borrowing (α/η ≤ 1), the predicted convergence coefficient falls within the range 0.015 to
0.030 per year. This range accords well with empirical estimates.21

20. If α = 0, so that no capital constitutes collateral, then ε = η and β from equation (3.60) corresponds to the
value from equation (3.55) for a closed economy (with capital share equal to η). If η = 0, so that all capital serves
as collateral, then ε = 0 and β from equation (3.60) becomes infinite, as in the open economy with perfect capital
mobility.

21. Barro, Mankiw, and Sala-i-Martin (1995) generalize the production function in equation (3.53) from a Cobb–
Douglas form to a constant-elasticity-of-substitution (CES) specification. The degree of substitutability affects β—
it turns out that β is higher if k̂ and ĥ are poorer substitutes in production. The main conclusion, however, is that β is
confined to the narrow interval (0.014, 0.035) for the usual benchmark parameters if α/η ≤ 1. Thus the theoretical
predictions accord well with the empirical estimates of β even in this more general case.
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The transition to the steady state involves a monotonic increase in human capital per
effective worker, ĥ, from its initial value, ĥ(0), to its steady-state value, ĥ∗. Equation (3.57)
implies that the growth rate of ŷ is ε times the growth rate of ĥ, where ε is between 0
and 1. The ratio h/y therefore rises steadily during the transition. Recall, however, that
equation (3.56) implies that the ratio k/y is constant. Therefore, k̂ grows at the same rate as
ŷ, and the ratio of human to physical capital, h/k, increases during the transition. Note that,
although physical capital serves fully as collateral, k̂ nevertheless rises gradually toward its
steady-state value, k̂∗. The reason is the constraint of domestic saving on the accumulation
of human capital and the complementarity between ĥ and k̂ in the production function.
When ĥ is low, the schedule for the marginal product of physical capital is low; hence,
k̂ < k̂∗ follows even though domestic producers can finance all acquisitions of physical
capital with foreign borrowing. The gradual increase of human capital impacts positively
on the marginal product of physical capital and leads thereby to an expansion of k̂.

Foreign borrowing occurs only on loans secured by physical capital, and the interest rate
on these loans is pegged at the world rate, r . We can also allow for a domestic credit market,
although the setting with a representative domestic agent ensures that, in equilibrium, each
person will not borrow. For loans that are secured by physical capital, the shadow interest
rate on the domestic market must also be r . If we assume that human capital and raw labor
do not serve domestically as collateral, the shadow interest rate on the domestic market
with these forms of security is infinity (or at least high enough to drive desired borrowing
to zero), just as it is on the world market.

We might assume instead that human capital and raw labor serve as collateral for do-
mestic borrowing but not for foreign borrowing. This situation would apply if the legal
system enforces loan contracts based on labor income when the creditor is domestic, but
not when the creditor is foreign. In this case, the shadow interest rate on domestic lending,
collateralized by labor income, equals the net marginal product of human capital. This net
marginal product begins at a relatively high value (corresponding to the low starting stock,
ĥ[0]) and then falls gradually toward the steady-state value, r . Thus the transition features
a decrease in the spread between this kind of domestic interest rate and the world rate, r .
An example would be the curb market for informal lending in South Korea (see Collins and
Park, 1989, p. 353). The spread between curb-market interest rates and world interest rates
was 30 to 40 percentage points in the 1960s and 1970s but fell by the mid-1980s to about
15 percentage points.

Another implication of the model is that, despite the existence of international borrowing
and lending, the convergence properties of gross national product and gross domestic prod-
uct are the same. As noted before, the net factor income from abroad (per unit of effective
labor) is −(r + δ) · k̂ = −α ŷ. Therefore,

GNP (per unit of effective labor) = ŷ − α ŷ = ŷ · (1 − α) (3.61)
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Since GNP is proportional to GDP, which corresponds to ŷ, the convergence rates for GNP
and GDP are the same. This result suggests that data sets that involve GDP are likely to
generate similar rates of convergence as those that involve GNP or measures of national
income. Some confirmation of this prediction comes from the study of the U.S. states by
Barro and Sala-i-Martin (1991): the rates of convergence are similar for gross state product
per capita and state personal income per capita.

The model implies that the gap between GDP and GNP would be large for a credit-
constrained open economy: roughly 20–25 percent of GDP for the parameter values as-
sumed before. The current-account deficit, which equals the change in physical capital,
is correspondingly large. It is unusual to find developing countries that have values this
high for the GDP-GNP gap and the current-account deficit.22 We can reconcile the the-
ory with this observation by noting, first, that many developing countries are insufficiently
productive to be credit constrained and, second, that the collateral for international debt
may be substantially narrower than physical capital. If the coefficient α were less than
0.3, the predicted ratios for the GDP-GNP gap and the current-account deficit would be
correspondingly smaller.

The introduction of a credit constraint removes some of the counterfactual predictions
from the open-economy model with perfect capital mobility; in particular, the speeds of
convergence for the capital stock and output are no longer infinite. Consider, however, what
happens if countries differ in their degree of impatience, as represented by the combination
of preference parameters ρi + θi x . With perfect capital markets, we found before that all
but the most patient country followed a path in which ĉ approached 0. In the model with a
credit constraint, the prediction is instead that all but the most patient country will eventually
reach a situation in which the residents are effectively constrained on the international credit
market. This credit constraint implies that ĉ approaches a positive constant, a more appealing
asymptote than 0. The disturbing result, however, is that all countries except the most patient
one must eventually be credit constrained. To avoid this result we have to consider models
in which the effective rate of time preference, ρi +θi x , is variable. A later section considers
models of this type.

Adjustment Costs in the Accumulation of Human Capital One potential problem with
the model outlined in this section is that the speed of convergence for the economies that
are not constrained in the international credit markets should be infinite. Duczynski (2000)
computes net external assets for 113 countries and 50 U.S. states and finds that 21 countries
and roughly half of the U.S. states have positive values, so it is hard to argue that they

22. One counterexample is Singapore: its current-account deficit was between 10 and 20 percent of GDP throughout
the 1970s (International Monetary Fund, 1991).
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are borrowing constrained. The speed of convergence of these economies, however, is not
infinity. This evidence suggests that the credit-constraint mechanism outlined in the previous
section is not sufficient to explain the slow convergence found in the data.

A potential alternative or complementary solution is the existence of adjustment costs,
which we discussed before for a closed economy. If we again distinguish between physical
and human capital, we anticipate that adjustment costs would be especially important for
increases in human capital through the process of education. The learning experience fun-
damentally takes time, and attempts to accelerate the educational process are likely to
encounter rapidly diminishing rates of return. To capture these effects, we now construct a
model with perfect international capital mobility in which adjustment costs affect only the
accumulation of human capital.

Firms and individuals have perfect access to world financial markets, and the interest rate
equals the constant r . Consumption growth is still given by

ċ/c = (1/θ) · (r − ρ)

Imagine that the production function is Cobb–Douglas in physical and human capital:

Y = AK α Hη L̂1−α−η (3.62)

Assume that physical capital can be invested without installation costs and that, for every
unit of human-capital investment, firms have to pay φ(Ih/H) units of output. Following the
assumptions of section 3.2, φ(0) = 0, φ′(·) > 0, and 2φ′(·)+ Ih

H ·φ′′(·) > 0. Firms maximize
the present discounted value of future net cash flows:

max
∫ ∞

0
e−r̄(t)·t ·

{
AK α Hη L̂1−α−η − wL − Ik − Ih ·

[
1 + φ

(
Ih

H

)]}
· dt (3.63)

subject to the two accumulation constraints

K̇ = Ik − δK (3.64)

and

Ḣ = Ih − δH (3.65)

The Hamiltonian for this program is

J = e−r̄(t)t ·
{

AK α Hη L̂1−α−η − wL − Ik − Ih ·
[

1 + φ

(
Ih

H

)]}
+ υk · (Ik − δK ) + υh · (Ih − δH) (3.66)
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where υk is the shadow price associated with physical capital and υh is the shadow
price associated with human capital. Following the analysis of section 2.3, we can define
current-value shadow prices, qk = ert · υk and qh = ert · υh . After finding the first-order
conditions23 and using the current-value shadow prices, we find that qk = 1 at all points in
time, which implies

α · (ŷ/k̂) = r + δ (3.67)

In other words, the marginal product of physical capital (which is the capital good that is not
subject to adjustment costs) equals the interest rate plus depreciation. This equality implies
a one-to-one relation between k̂ and ĥ, given by

k̂ = (ĥ)η/(1−α) ·
(

αA

r + δ

)1/(1−α)

(3.68)

The first-order condition with respect to Ih implies

qh = 1 + φ

(
ı̂h

ĥ

)
+ ı̂h

ĥ
· φ′

(
ı̂h

ĥ

)
(3.69)

where ı̂h = Ih/L̂ is investment in human capital per effective unit of labor. This expression
can be inverted to express the human-capital investment rate as a monotonic function of the
shadow price of human capital, qh :

ı̂h

ĥ
= ψ(qh) (3.70)

with ψ ′(·) > 0. We can substitute this result into the constraint for the accumulation of
human capital to get

dĥ

dt
= ı̂h − (δ + n + x) · ĥ = ψ(qh) · ĥ − (δ + n + x) · ĥ (3.71)

23. The first-order conditions with respect to Ik , K , Ih , and H are, respectively,

(i) νk = e−r̄(t)t

(ii) −ν̇k = e−r̄(t)t · α · (ŷ/k̂) − νkδ

(iii) e−r̄(t)t ·
(

1 + φ(·) + ı̂h

ĥ
· φ′(·)

)
= νh

(iv) −ν̇h = e−r̄(t)t · η · (ŷ/ĥ) − νh · δ

Notice that (i) implies qk = 1 and, therefore, q̇k = 0. Use this result and (ii) to get α · (y/k) = r + δ.
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The first-order condition with respect to ĥ provides a dynamic equation for qh :

q̇h = (r + δ) · qh − η · (ŷ/ĥ) − [ψ(qh)]
2 · φ′[ψ(qh)] (3.72)

Use equation (3.68) to get

q̇h = (r + δ) · qh − Ã · h− 1−α−η

1−α − [ψ(qh)]
2 · φ′[ψ(qh)] (3.73)

where Ã is a function of constants.
Equations (3.71) and (3.73) form a system of two ordinary differential equations. The

phase diagram is displayed in figure 3.4. Notice that the dĥ
dt = 0 locus is a horizontal line at

q∗
h = 1+φ(δ + n + x) + (δ + n + x) ·φ′(δ + n + x). The arrows above this locus point east,

and arrows below it point west. The q̇h locus is upward sloping for high values of qh but is
downward sloping when it crosses the dĥ

dt = 0 line. The arrows to the left of this schedule
point north. The system is saddle-path stable, and the stable arm is downward sloping. If
the economy starts with too little human capital (that is, to the left of the steady state), the
system does not instantaneously jump to the steady state; that is, the speed of convergence is
not infinity. Instead, the economy follows the slow process of convergence along the stable
arm. The reason is that a jump to the steady state would entail infinite investment in human
capital in one instant. The corresponding adjustment cost would be extraordinarily large

q̇h � 0

ḣ̂ � 0

qh

q*
h

ĥ*
ĥ

Figure 3.4
Phase Diagram for a model with physical and human capital, with adjustment costs in human capital
accumulation. The phase diagram is shown in (qh , h) space. The ḣ = 0 locus is a horizontal line at q∗

h =
1 + φ(δ + n + x) + (δ + n + x) · φ′(δ + n + x). The q̇h = 0 locus is downward sloping around the steady state.
The system is saddle-path stable and the stable arm is downward sloping.
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and would therefore not be optimal. Hence, the accumulation of human capital is gradual,
and the economy converges slowly to the steady state. As h increases, the stock of physical
capital grows according to equation (3.68). It follows that the level of GDP also converges
slowly.

Kremer and Thomson (1998) analyze an analogous model in which the production func-
tion depends on the human capital of the young and the old. They argue that these two
human-capital factors are complements (think of a football team, where the human capital
of the “old,” the coach, is a complement to the human capital of the “young,” the players).
In this context, if the human capital of the first generation is small, then, even if capital is
perfectly mobile, young persons will not borrow to increase their stock of human capital
to the steady-state level, because the young’s productivity will not be very high if the old
have little human capital. Hence, the process of human-capital accumulation is gradual. The
mechanism proposed by Kremer and Thompson (1998) amounts to introducing adjustment
costs in the accumulation of human capital.

3.5 Variations in Preference Parameters

We now consider whether some of the disturbing implications from the open-economy
Ramsey model can be eliminated if we allow the preference parameters, ρi and θi , to vary.
The idea, which comes from Uzawa (1968), is that the rate of time preference and the
willingness to substitute consumption over time may depend on the level of a household’s
wealth or consumption and may therefore change as ai and ci change.

Return now to the open-economy model without credit restraints. A key property of
this model is that countries with high values of the time-preference term, ρi + θi x > r ,
follow a path in which âi (t) becomes negative and ĉi (t) declines toward zero. One way to
avoid this unappealing result is to assume that ρi + θi x declines as âi (t) and ĉi (t) fall. In
other words, countries or individuals would have to become more patient as they become
poorer.

Uzawa (1968) obtains the desired result by assuming that ρi is a positive function of
ci (t). This mechanism is unappealing, however, because it is counterintuitive that people
would raise their rates of time preference as their levels of consumption rise.24

We could also get the desired result by assuming that people become less willing to
substitute intertemporally—that is, θi increases—as the level of consumption rises. The
usual assumption is, however, the opposite. We showed in equation (2.8) that the effective

24. Mulligan (1993) argues that if the degree of altruism depends on the amount of time parents spend with their
children, then people with high wages will be less altruistic because the opportunity cost of spending time with
their children is high. It follows that rich people will have high discount rates.
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time-preference term involves the negative of the elasticity of marginal utility, −u′′(c) ·
c/u′(c). In the specification that we have used thus far, the magnitude of this elasticity is
constant and equal to θi . The form of the utility function is sometimes modified, however,
to exhibit a variable elasticity by allowing for a subsistence level of consumption:

u(ci ) = (ci − ci )
(1−θi ) − 1

(1 − θi )
(3.74)

where ci > 0 is the constant subsistence level. (This form is referred to as Stone–Geary,
after Stone, 1954, and Geary, 1950–51.) Equation (3.74) implies that the magnitude of
the elasticity of marginal utility is θi ci/(ci − ci ), which equals θi when ci = 0 but is de-
creasing in ci when ci > 0. This revised formulation of utility implies, accordingly, that
the effective time-preference term declines with ci (t); that is, the term moves in the
wrong direction from the perspective of resolving the difficulties in the open-economy
model.

More appealing results emerge from models that assume constant parameters ρi and
θi for each country (or family) but that allow for effects from finite horizons. The first
models of this type, due to Samuelson (1958) and Diamond (1965), assumed that people
lived a fixed number of discrete periods, such as childhood and adulthood. The period
of adulthood for one generation overlapped with the period of childhood for the next;
hence, the customary designation overlapping-generations (OLG) model. Individuals in
these models have finite horizons—because they live for only two periods and do not, by
assumption, care about the welfare of their descendants—but the economy lasts forever.
Although the OLG framework captures the effects of finite horizons, one shortcoming of
this framework is that the equilibrium conditions turn out to be too cumbersome to permit
analytical solutions of many of the comparative-statics exercises that we would like to
consider.

Blanchard (1985) retained the essence of the finite-horizon idea in a more tractable
framework by assuming that people die off randomly in accordance with a Poisson process.
For present purposes, the key finding in his model is that aggregate consumption behaves
as if each individual’s time-preference term were positively related to ai (t). The results
come, however, from the aggregation over individuals who are heterogeneous with respect
to age (and, hence, with respect to assets and consumption) and not from variations in
preference parameters for individuals. To get these results, we first set up Blanchard’s
framework, then apply it to a closed economy, and finally use it to extend our analysis
of an open economy. The appendix (section 3.8) contains an analysis of related OLG
models.
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3.6 Economic Growth in a Model with Finite Horizons

3.6.1 Choices in a Model with Finite Horizons

In the previous analysis, we assumed that family dynasties lasted forever so that households
planned with an infinite horizon. We now want to allow for the possibility that the dynasty
would terminate in finite time. This termination could reflect the death of adults who leave
no descendants and therefore do not care about matters beyond their death. Alternatively,
it could reflect the chance that finite-lived parents reach a position in which they are not
connected to their children through a pattern of operative intergenerational transfers.

We think of “death” as the termination of a family dynasty, although this death need not
correspond to anyone’s literally dying. Let p be the probability of death per unit of time, so
that a person (or household) born at time j is alive at time t ≥ j with probability e−p·(t− j).
A key assumption, which makes the aggregation tractable, is that p is invariant with age.
This assumption is unrealistic if we think of the literal death of an individual but may be
less troublesome in the context of the termination of a dynasty.

The probability of being dead at time t equals 1−e−p·(t− j), so that the probability density
for death at time t is the derivative of this expression, pe−p·(t− j). The expected lifetime can
be calculated from this probability density as 1/p. Thus a higher p lowers the expected
lifetime and makes the finite-horizon effect more important.

We assume, as before, that population grows at the constant rate n, so that L(t) = ent is
the total population. The size of a cohort born at time t must then be (p + n) · ent ; that is,
enough new people or households are born to replace those who die, pent , and to provide
for net growth, nent .

The riskless interest rate on assets is again r(t). We have to consider the disposition of
assets for people or households who die. In the infinite-life model, these assets implicitly go
to descendants in the form of intergenerational transfers. These transfers are motivated by
altruistic linkages that are strong enough to keep people away from the corner solution of
zero transfers. But the whole idea of “dying” in the finite-horizon model is that these linkages
are not operative. We could assume that the assets go as unintended bequests to children
or as unintended transfers to society as a whole. But if people are really unconcerned with
events that occur after their deaths—which is the central idea in finite-horizon models—
then they could do better by using markets for annuities. Also, if we allow people to die in
debt without descendants to assume the debt, then lenders would require a rate of interest
above r to cover the possibility that the borrower will die.

We follow Yaari (1965) and Blanchard (1985) by assuming that all loans are secured by
life insurance. If a person lives, he or she pays the interest rate r plus the life insurance
premium on the loan. If the person dies in debt, the life insurance pays off the loan. Because
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the probability of death per unit of time is p, the necessary premium is p. That is, the
total rate paid on loans is r + p if someone lives. From the perspective of a life-insurance
company, the premium at rate p just covers the expected payouts on policies for borrowers
who die. Similarly, lenders can hold annuities that pay r + p if the person lives and zero
if the person dies. From the standpoint of an annuity company, the extra payout at rate p
just balances the expected proceeds from the people who die. From the perspective of
individuals with finite horizons, the rate of return on annuities (conditional on survival) of
r + p is more attractive than the riskless rate of return, r . Therefore, all assets would be
held in the form of annuities.25

Since life insurance and annuity markets are fully exploited by a large population, the
total of assets released by people who die, p ·a(t), coincides with the extra return (above the
riskless rate r ) for the people who live. Insurance and annuity companies therefore break
even, and we have accounted fully for the disposition of assets at death. It also follows
that the relevant rate of return for surviving individuals—whether lenders or borrowers—is
r + p, rather than r .

Let c( j, v) be the consumption and a( j, v) the assets at time v for a person born at time
j ≤ v. We assume that productivity is independent of age, so that the wage rate, w(v), is
the same for all j ≤ v. Starting from the current time t , the household maximizes expected
utility, given by

EtU = Et

[∫ ∞

t
log[c( j, v)] · e−ρ(v−t) dv

]
(3.75)

where we have assumed u(c) = log(c), which corresponds to θ = 1 in equation (2.9).
Although log utility is convenient, we can readily generalize the steady-state results to
cases in which θ �= 1. (The transitional analysis is feasible, but cumbersome, if θ �= 1.)

The formulation in equation (3.75) differs from that in equation (2.1) of the Ramsey
model by the omission of the population term, ent , as a multiple on per capita utility. The
assumption in this finite-horizon model is that people give no weight to their descendants in
the utility function or in the budget constraint, which we will consider in the next paragraph.
Since e−p(v−t) is the probability of being alive at time v, conditioned on being alive at the

25. Economists sometimes dismiss this possibility by arguing that annuities are quantitatively not important in the
real world, although private pensions and government pensions through social security are common. The limited
use of annuities may, in any case, be an indication that the infinite-horizon model, which assumes altruistic linkages
across generations, is a satisfactory framework. In this model, the demand for annuities is small, and the observed
quantity of annuities would also be small.
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earlier time t , the expected utility becomes

EtU =
∫ ∞

t
log[c( j, v)] · e−(ρ+p)·(v−t) dv (3.76)

Thus ρ + p is the effective rate of time preference in the context of an uncertain lifetime.
The flow budget constraint for the household is now

da( j, v)/dv = [r(v) + p] · a( j, v) + w(v) − c( j, v) (3.77)

Each household maximizes expected utility in equation (3.76), subject to equation (3.77)
and to the amount of initial assets, a( j, j). The first-order condition for consumption is the
same as that found before (equation [2.10] with θ = 1):

dc( j, t)/dt

c( j, t)
= r − ρ (3.78)

Note that the probability of death, p, cancels out because it impacts equally on the effective
time-preference rate, ρ + p, and the rate of return, r + p.

The transversality condition is now

lim
v→∞

[
e−[ r(t,v)+p]·(v−t) · a( j, v)

] = 0 (3.79)

where r(t, v) is the “average” interest rate between times t and v (see equation [2.12], which
refers to the period between 0 and t). Equations (3.77) and (3.79) imply that the household’s
lifetime budget constraint is

∫ ∞

t
c( j, v) · e−[ r(t,v)+p]·(v−t) dv = a( j, t) + w̃(t) (3.80)

where w̃(t) = ∫ ∞
t w(v) · e−[ r(t,v)+p]·(v−t) dv is the present value of wage income. Equa-

tion (3.80) corresponds to equation (2.13) in the infinite-horizon model.
We can also use equations (3.78) and (3.80) to determine consumption as a function of

“wealth”:

c( j, t) = (ρ + p) · [a( j, t) + w̃(t)] (3.81)

which corresponds to equations (2.14) and (2.15) (with θ = 1) in the infinite-horizon model.
The simplification from log utility is that the marginal propensity to consume out of wealth
is the constant ρ + p.

The aggregate variables, C(t), A(t), and W̃ (t), come from addition across the cohorts,
indexed by the time of birth, j ≤ t . Each cohort is weighted by its size, which equals the
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initial size, (p + n) · enj , multiplied by the fraction, e−p·(t− j), who remain alive at time
t ≥ j .26 Therefore, aggregate consumption and assets are given by

C(t) =
∫ t

−∞
c( j, t) · (p + n) · enj e−p(t− j) d j (3.82)

A(t) =
∫ t

−∞
a( j, t) · (p + n) · enj e−p(t− j) d j (3.83)

Since wage rates are independent of age, the aggregate of the present value of wage income is

W̃ (t) = w̃(t) · ent = ent ·
∫ ∞

t
w(v) · e−[r(t,v)+p]·(v−t) dv (3.84)

Since the propensity to consume out of wealth in equation (3.81) is ρ + p, which is
independent of age, j , the aggregate relationship is the same as the individual one:

C(t) = (ρ + p) · [A(t) + W̃ (t)] (3.85)

We want to use equation (3.82) to compute the aggregate analogue to equation (3.78), which
determines the change over time in individual consumption. The change over time in aggre-
gate consumption, Ċ , depends on the change over time in aggregate wealth, Ȧ + dW̃/dt .

We can calculate Ȧ by differentiating equation (3.83) with respect to t . The result is

Ȧ = r(t) · A(t) + w(t) · ent − C(t) (3.86)

where w(t) · ent is aggregate wages paid at time t . The derivation of equation (3.86) uses
the individual budget constraint in equation (3.77) and the condition a( j, j) = 0, that is,
individuals are born with zero assets. Note that the aggregate equation corresponds to the
individual one in equation (3.77), except that the rate of return on total assets is r , whereas
that on individual assets (for someone who survives) is r + p.

We can also compute the change in W̃ by differentiating equation (3.84) with respect
to t . The result is

dW̃/dt = [r(t) + p + n] · W̃ (t) − w(t) · ent (3.87)

The term on the far right equals aggregate wages, which are effectively the dividend paid
on the asset stock W̃ (t). The first term on the right reflects the discounting of individual

26. We are assuming that the age structure of the population is always at its steady-state distribution. However, in
the present context, the age structure does not matter because the probability of dying, p, and the wage rate, w,
are independent of age.



Extensions of the Ramsey Growth Model 183

wages at the rate r(t) + p (because wages vanish when a person dies) and the growth of
population at the rate n.

We can use equations (3.81)–(3.87) to determine the change over time in aggregate
consumption, Ċ . The result, expressed in terms of the growth rate of per capita consumption,
is27

ċ/c = r(t) − ρ − (p + n) · (ρ + p) · a(t)/c(t) (3.88)

Note that c(t) refers to aggregate consumption divided by aggregate population and not
to the consumption of a surviving individual. The evolution of a surviving individual’s
consumption, c( j, t), is given by equation (3.78).

The key new element in equation (3.88) is the term on the far right, (p + n) · (ρ + p) ·
a(t)/c(t). Since ρ + p is the propensity to consume out of wealth, (ρ + p) · a(t) is the
consumption per person associated with a(t). New people enter the economy at the rate
p + n. Because these new people arrive with zero assets, the inflow of these people lowers
the average consumption per person by the amount (p + n) · (ρ + p) · a(t). Finally, the
division by c(t) gives the contribution of this term to the reduction in the growth rate of
consumption per person, ċ/c.

Note from the discussion that the crucial feature is the arrival of new persons (with
zero assets) and not the departure of old persons. Thus, as Weil (1989) points out, the
main results go through with infinite lifetimes (p = 0) if new people are born (n > 0). It
is, however, crucial that the old people not care about the new ones in the manner of the
altruistic linkages assumed in the infinite-horizon framework of chapter 2. Thus, we can
think of the new persons as unloved children and immigrants (as in Weil, 1989). We deal
explicitly with immigrants in chapter 9.

3.6.2 The Finite-Horizon Model of a Closed Economy

We consider again the model with one type of capital, k. For a closed economy, â = k̂,
f ′(k̂) = r + δ, and ŵ = f (k̂) − k̂ · f ′(k̂). The formula that determines ˙̂k is then the same
as that in the infinite-horizon model (equation [2.23]):

˙̂k = f (k̂) − ĉ − (x + n + δ) · k̂ (3.89)

Equation (3.88) and the conditions â = k̂ and r = f ′(k̂) − δ imply

˙̂c/ĉ = f ′(k̂) − (δ + ρ + x) − (p + n) · (ρ + p) · k̂/ĉ (3.90)

27. For θ �= 1, this result turns out to generalize when r(t) equals the constant r to

ċ/c = (1/θ) · (r − ρ) − (1/θ) · [ρ + θp − (1 − θ) · r ] · (p + n) · a(t)/c(t)
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Figure 3.5
Dynamics in a finite-horizon closed economy. The ˙̂k = 0 locus displays the usual inverse U shape. The ˙̂c = 0
locus goes through the origin, slopes upward, and asymptotes vertically at k̂ = k̂∗. The shape of the stable arm
and, therefore, the transitional dynamics of the model are similar to those of the Ramsey model.

Figure 3.5 shows the phase diagram for k̂ and ĉ. The concave solid curve, which cor-
responds to ˙̂k = 0, is the same as the curve for the infinite-horizon model in figure 2.1.
The solid vertical line at k̂∗, where f ′(k̂∗) = δ + ρ + x , is the steady-state value in the
infinite-horizon model (if θ = 1). The term that involves k̂/ĉ in equation (3.90) effectively
adds to the time-preference rate, ρ, if p + n > 0. The dashed curve in figure 3.5, which
shows the locus for ˙̂c = 0, therefore lies everywhere to the left of the vertical line. As the
ratio of ĉ to k̂ rises along the dashed curve, the size of the term that involves k̂/ĉ diminishes
toward 0; therefore, the dashed curve asymptotically approaches the vertical line.

The steady-state values for the finite-horizon model of a closed economy, determined
at the intersection of the solid and dashed curves, are denoted k̂∗

fin and ĉ∗
fin in figure 3.5.

The important observation is that the higher effective rate of time preference leads to a
higher marginal product of capital and therefore to a lower ratio of capital to effective
labor, that is, k̂∗

fin < k̂∗. Correspondingly, the steady-state interest rate is higher than that for
the infinite-horizon economy, r∗

fin > r∗ = ρ + x ,28 and consumption per effective worker is
lower, ĉ∗

fin < ĉ∗.

28. We can use the formula in note 27 to show that this result still holds if θ �= 1, in which case r∗ = ρ + θx . It
is also possible to show that r∗

fin < ρ + θx + p + n.
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The transition from an initial ratio, k̂(0), to k̂∗
fin is similar to that in the infinite-horizon

model. If k̂(0) < k̂∗
fin, k̂ rises monotonically along the solid curve marked by the arrows in

figure 3.5. The dynamics of the other variables—ĉ, r , and the growth rates of k̂, ŷ, and ĉ—is
also similar to that in the infinite-horizon model.

Since k̂∗
fin < k̂∗, it follows that k̂∗

fin < k̂gold—see figure 3.5.29 Hence, the asymptotic be-
havior of k̂ in the finite-horizon model of a closed economy does not exhibit the kind of
inefficient oversaving that can arise in the Solow–Swan model with an arbitrary saving rate.
Diamond (1965) showed that oversaving can arise in a two-period overlapping-generations
model of a closed economy. As our results (based on Blanchard, 1985) have shown, the
feature of the Diamond model that generates the possibility of oversaving is not the fi-
nite horizons of individuals. Rather, the key difference from the model that we have just
analyzed is the assumed life-cycle pattern of wage incomes. In the Diamond version of
the OLG model, wages are positive in the first (working) period and zero in the second
(retirement) period. Thus the model assumes that wage income declines sharply over the
life cycle, whereas the finite-horizon model that we have been considering assumes that
wage income is invariant with age. A declining pattern of wage income with respect to age
motivates additional saving; inefficient oversaving can emerge if this effect is very strong.

We can extend the finite-horizon model that we analyzed before to allow for a decline in
labor productivity over the life cycle. (See Blanchard, 1985, for an analysis of this situation.)
If labor productivity and, hence, wage rates decline with age at the rate ω, equation (3.90)
is modified to30

˙̂c/ĉ = f ′(k̂) − (δ + ρ + x − ω) − (p + n + ω) · (ρ + p) · k̂(t)/ĉ(t) (3.91)

The direct effect of ω in equation (3.91) subtracts from ρ and thereby effectively lowers
the rate of time preference. Because of this encouragement to saving, k̂∗

fin > k̂∗ applies if ω

is high enough. Moreover, for a still higher value of ω, the steady state exhibits inefficient
oversaving: k̂∗

fin > k̂gold.

Although inefficient oversaving is possible in the finite-horizon economy if wage income
declines over the life cycle—that is, for sufficiently high ω—it is unclear in practice that we
should even treat ω as positive. If we begin at the time of an individual’s first job—say, age
18 or 21—then wage income rises substantially with age (and experience) for about 25 years

29. We used the condition ρ > n to ensure k̂∗ < k̂gold in the infinite-horizon model. We are still assuming that
ρ > n holds in the finite-horizon case.

30. We are again assuming that the age structure of the population corresponds to its steady-state distribution. In
the present context, changes in the age distribution would matter because they would affect the distribution of
labor productivities and wage rates. For a given distribution of ages and, hence, labor productivities, the aggregate
quantity of effective labor input will be proportional to e(n+x)t , just as in our other models. Thus, k̂ can be measured
as K e−(n+x)t .
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and is relatively flat for the next 20–25 years (see Murphy and Welch, 1990, p. 207). Wage
income then declines dramatically for the roughly 10–15-year span of retirement. Thus, the
two-period overlapping-generations model ignores the interval of rising wage incomes and
also errs in assuming that the retirement period is as long as the working span. Each of the
errors works in the direction of overstating the life-cycle incentive to save.

To get a complete picture, we also have to decide how to treat the first 18–21 years of life
that correspond to childhood and schooling. If we treat children as independent households,
these 18–21 years feature wage incomes that are sharply below the lifetime average. The
shortfall of current from expected future wage income impacts negatively on the aggregate
desire to save; presumably, this effect would show up as children borrowing from their
parents to finance consumption.

We can reasonably argue that minor children should not be treated as separate house-
holds.31 But then the period of low wage income for children up to age 18 or 21 translates,
for given parental wage income, into low per capita wage income of the family when
the family contains dependent children. Therefore, the low level of children’s wage in-
come motivates parents to save less than otherwise during an interval of parental ages that
corresponds typically to middle age. Thus this effect combines with the influence of rising
wage income of adults during much of their working span to offset the positive effect on
saving from the existence of the retirement period.

The upshot of this discussion is that ω ≈ 0—a flat profile of the family’s per capita wage
income—may not be a bad first approximation for the purpose of analyzing the aggregate
willingness to save. In that case, the analysis rules out the possibility of oversaving in
the finite-horizon model of a closed economy.

3.6.3 The Finite-Horizon Model of an Open Economy

Consider now the finite-horizon model of an open economy with one type of capital, k,
and no constraint on borrowing. We omit the country subscript i for convenience. If the
world interest rate, r(t), equals the constant r , then the ratio of capital to effective labor in
the domestic country equals the constant (k̂∗)open, where f ′[(k̂∗)open] = r + δ. Hence, this
model still implies an infinite speed of convergence for k̂ and ŷ. The behavior of ĉ and â
will, however, be more reasonable than before.

Equation (3.50) gives the change in assets:

˙̂a = f [(k̂∗)open] − (r + δ) · [(k̂∗)open − â] − (x + n + δ) · â − ĉ
= (ŵ∗)open + (r − x − n) · â − ĉ (3.92)

31. This argument is, however, more compelling in the infinite-horizon model in which parents’ altruistic motives
lead them to provide for their children’s consumption. In the finite-horizon model, in which parents apparently do
not care about their children, the rationale for parental support of minor children is harder to understand.
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ĉ̇ � 0
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Figure 3.6
The phase diagram for a finite-horizon open economy (for a fixed interest rate). The diagram considers a
small open economy that faces a fixed interest rate, given on world capital markets. The two loci are straight
lines in this case, and the model exhibits saddle-path stability. If the economy starts with a low level of assets per
effective person, the transition features monotonically increasing levels of consumption and assets per effective
person.

where we used the condition f [(k̂∗)open] = (ŵ∗)open + (r + δ) · (k̂∗)open. The behavior of
household consumption from equation (3.88) implies

˙̂c/ĉ = r − ρ − x − (p + n) · (ρ + p) · â/ĉ (3.93)

Figure 3.6 shows the phase diagram for (â, ĉ) that is implied by equations (3.92) and
(3.93). Note that this diagram applies for a constant r ; that is, we consider the dynamics for
a small open economy when the world economy is in a steady state. The line for ˙̂a = 0, from
equation (3.92), has a positive intercept (equal to [ŵ∗]open) and a positive slope of r − x −n.
The line for ˙̂c = 0, from equation (3.93), goes through the origin, and the sign of the slope
equals the sign of r −ρ − x . This last term is positive in the finite-horizon model of a closed
economy that we considered in the previous section. Now this term will be positive for any
country that ends up holding positive assets in the steady state. Figure 3.6 shows the ˙̂c = 0
line with a positive slope that exceeds the slope of the ˙̂a = 0 line.32

Figure 3.6 shows the steady-state values for ĉ and â in the finite-horizon open economy.
In contrast with the infinite-horizon model, these steady-state values are positive and finite.

32. If the slope of the dĉ/dt = 0 locus is positive, but not greater than the slope of the dâ/dt = 0 locus, we can
show that ĉ rises forever. This outcome is inconsistent with the fixed world interest rate, r .
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This outcome is consistent with ˙̂c = 0 in equation (3.93) because the ratio â/ĉ adjusts so
that the overall time-preference term, ρ + x + (p + n) · (ρ + p) · â/ĉ, equals r . In other
words, the key property is that the effective time-preference rate is an increasing function
of â/ĉ.

A higher value of ρ steepens the slope of the ˙̂c = 0 locus in figure 3.6 (see equation [3.93]).
That is, the locus pivots around the origin in a counterclockwise manner. The figure then
implies that less-patient countries—with higher values of ρ—have lower steady-state values
of â and ĉ. We can also verify from the figure that the steady-state values of â and ĉ decline
with increases in x , p, and n. (They also decline with θ if θ �= 1 is allowed.)

The steady-state value of â is positive for a range of parameter values; that is, the debt,
d̂, remains below the capital stock, k̂. However, a sufficiently high value of ρ (or of x
or θ ) makes the slope of the ˙̂c = 0 locus negative, so that the steady-state value for â
becomes negative. In other words, d̂ > k̂ applies for sufficiently impatient economies. In
these situations, borrowers use a part of the present value of wage income as collateral.

For a given r and a given array of parameter values for countries i = 1, . . . , M , we can
determine the corresponding array of âi from figure 3.6. We can also determine the array of
k̂i from the condition f ′(k̂i ) = r + δi . In a full steady-state equilibrium, the world interest
rate, r , is the value that equates the sum of the âi (weighted by each country’s effective
labor force) to the sum of the k̂i (similarly weighted).

The finite-horizon framework is attractive because economies with different underlying
parameters can share a common capital market without the implication that ĉi tends to zero
for all but the most patient country. The model implies, however, that convergence rates of
k̂i and ŷi would be infinite. To avoid this conclusion, we can combine the finite-horizon
model with the analysis of credit constraints that we considered in a previous section. The
results follow readily if we identify k̂i with broad capital, k̂i + ĥi , in the model with a credit
constraint.

For given (k̂∗
i )open, the countries that have high steady-state values of âi in figure 3.6 end

up unconstrained on the credit market, whereas those with low values (and surely those with
negative values) of âi end up constrained. Thus the countries with relatively high values of
ρi , xi , pi , ni , and θi tend to be credit constrained. In addition to the impatient countries—
with high values of ρi and θi —the candidates for credit constraints therefore include those
that grow rapidly in the steady state (high xi and ni ) and those with high mortality rates
(high pi ).

The finite-horizon model of an open economy with credit constraints implies that ĉi and
âi remain positive in all countries. Also, only some of the countries are credit constrained
in the steady state. For these constrained countries, the convergence speeds for k̂i and ŷi

in the neighborhood of the steady state are finite, as shown in the previous section. For the
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unconstrained countries, however, the convergence speeds for k̂i and ŷi are still infinite. To
avoid this result, we can reintroduce the adjustment costs for investment that we considered
before.

3.7 Some Conclusions

We began with an extension of the Ramsey model to incorporate taxation and public ex-
penditure. Taxation of capital income tended to depress capital formation, and government
purchases of goods and services tended to drive out private consumption.

We then introduced adjustment costs for investment, costs that we thought would be
especially important for the accumulation of human capital. These costs imply finite speeds
of convergence for capital and output even if world capital markets are perfect and horizons
are infinite. We argue, however, that adjustment costs cannot by themselves explain the slow
speeds of convergence that are observed empirically, because the implied values of Brainard
and Tobin’s q would be counterfactually high. Moreover, the adjustment-cost model does
not eliminate the puzzling behavior of consumption and assets that arises in open-economy
settings.

We then began the seemingly straightforward task of extending the Ramsey model to
an open economy by allowing for international borrowing and lending. This extension led,
however, to some counterfactual results: convergence speeds for capital stock and output
were infinite and, except for the most patient country, consumption (per unit of effective
labor) tended to zero and assets became negative. The most patient country asymptotically
owned everything and consumed nearly all of the world’s output.

We considered several modifications of the Ramsey model to eliminate these paradoxical
findings. With imperfect international credit markets, the infinite speeds of convergence for
capital and output would not apply to countries that were effectively constrained in their
ability to borrow. Moreover, assets remained positive, and consumption per unit of effective
labor did not tend to zero in these countries. The particular model that we considered
had, however, the counterfactual implication that all but the most patient country would
eventually become credit constrained.

We continued our analysis with a model where individuals had finite horizons and where
new individuals came into the economy. The accumulation of assets effectively raised a
country’s rate of time preference. (Preference parameters were constant for individuals;
the result derived from the aggregation over persons who differed with respect to levels of
assets and consumption.) Therefore, even without credit-market constraints, the variation
in the effective rate of time preference motivated the most patient country not to accumulate
all the world’s wealth. Similarly, the relatively impatient countries did not tend to zero
consumption per effective worker.
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When we combined the finite-horizon framework with the model of imperfect credit
markets, we found that the long-run equilibrium featured a range of countries that were
not effectively constrained in their ability to borrow and another range of countries that
were effectively constrained. The results are attractive in that many countries—with dif-
ferent preference parameters—were not constrained on the international credit market.
In addition, the constrained countries exhibited finite speeds of convergence for capi-
tal stocks and output. One remaining problem, however, is that these speeds of conver-
gence were still infinite for the unconstrained countries. This last, counterfactual prediction
can be eliminated if we reintroduce adjustment costs for investment, especially in human
capital.

We cannot argue at this stage that economists have settled on a fully satisfactory way
to apply the Ramsey model to an open economy. The various pieces of analysis that we
have gone through in this chapter do, however, get us closer to such a model. In particular,
the combination of these pieces can account simultaneously for the observed slow conver-
gence of capital stocks and output, while avoiding counterfactual implications about the
behavior of consumption and assets.

3.8 Appendix: Overlapping-Generations Models

In the main text of this chapter we considered the model of finite-horizon households
that was developed by Blanchard (1985). His model is basically a tractable version of
overlapping-generations (OLG) models, which were originated by Samuelson (1958) and
Diamond (1965). This appendix describes the structure of OLG models and works out some
implications of these models.

3.8.1 Households

The most popular OLG framework assumes that each person lives for only two periods.
People work in the first period, when they are young, retire in the second period, when
they are old, and then die off. To relate this setup to the real world, we have to think
of a period as representing a generation, say, 30 years. Since people consume in both
periods of life, they have to pay for consumption in the second period by saving in the first
period (if we do not allow for transfers from the government or from members of other
generations).

We shall refer to the cohort that is born at time t as generation t . Members of this
generation are young in period t and old in period t + 1. Therefore, during period t , the
young of generation t overlap with the old of generation t − 1. At each point in time,
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members of only two generations are alive. The main justification for considering only two
periods is that it simplifies the aggregation of consumption and other variables.33

Each person maximizes lifetime utility, which depends on consumption in the two periods
of life. We make the crucial assumption that people do not care about events after their death;
specifically, they are not altruistic toward their children and, therefore, do not provide
bequests or other transfers to members of the next generation. We assume that the form of
the lifetime utility function is a discrete-time analogue to the one assumed in the Ramsey
model:

Ut = c1−θ
1t − 1

1 − θ
+

(
1

1 + ρ

)
·
(

c1−θ
2t+1 − 1

1 − θ

)
(3.94)

where θ > 0, ρ > 0, c1t is consumption of generation t when young (that is, in period t),
and c2t+1 is consumption of generation t when old (that is, in period t + 1).

Consider the lifetime of an individual born at time t . Since members of previous gener-
ations do not care about this person, we assume that he is born with no assets. He supplies
one unit of labor inelastically while young and receives the wage income wt . He does
not work when old. If st denotes the amount saved in period t , the budget constraint for
period t is

c1t + st = wt (3.95)

In period t + 1, the individual consumes the previous savings plus the accrued interest:

c2t+1 = (1 + rt+1) · st (3.96)

where rt+1 is the interest rate on one-period loans between periods t and t + 1. Equa-
tion (3.96) incorporates the notion that, because individuals do not care about their descen-
dants, they choose to end up with zero assets when they die. If we allow for borrowing,
st < 0, we have to assume that the credit market imposes the constraint that people cannot
die in debt.

Each individual treats wt and rt+1 as given and chooses c1t and st (and, hence, c2t+1)
to maximize utility from equation (3.94), subject to equations (3.95) and (3.96). We can
use equations (3.95) and (3.96) to substitute out for c1t and c2t+1 in the utility function in

33. In the Blanchard (1985) model, discussed in the text, the aggregate consumption function is simple because
individuals of all ages have the same propensity to consume out of wealth. Aggregate consumption is therefore a
simple function of aggregate wealth. In the OLG model, individuals of different generations have different propen-
sities to consume and different levels of wealth. Aggregation is simple, however, because only two generations
are alive at each point in time.
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equation (3.94) and then compute the first-order condition with respect to s, ∂U/∂st = 0,
to get

(st )
−θ · (1 + rt+1)

1−θ = (1 + ρ) · (wt − st )
−θ (3.97)

If we use equations (3.95) and (3.96), equation (3.97) implies

c2t+1/c1t = [(1 + rt+1)/(1 + ρ)]1/θ (3.98)

This expression is the discrete-time counterpart of the usual relation from the Ramsey
model, (1/c) · (dc/dt) = (1/θ) · (r − ρ) from equation (2.24).

Equation (3.97) implies that the saving rate can be written as

st = wt/ψt+1 (3.99)

where ψt+1 ≡ [1 + (1 + ρ)1/θ · (1 + rt+1)
−(1−θ)/θ ] > 1. The dependence of st on wt and

rt+1 can be described by

sw ≡ ∂st/∂wt = 1/ψt+1

sr ≡ ∂st/∂rt+1 =
(

1 − θ

θ

)
·
[

1 + ρ

1 + rt+1

]1/θ

· st/ψt+1

Note that 0 < sw < 1, and sr > 0 if θ < 1, sr < 0 if θ > 1, and sr = 0 if θ = 1.

3.8.2 Firms

Firms have the usual neoclassical production function,

yt = f (kt ) (3.100)

where yt ≡ Yt/Lt and kt ≡ Kt/Lt are output and capital per worker. (We simplify by ne-
glecting technological progress—that is, x = 0—because it does not affect the main points
of this analysis.) Since each young person works one unit of time, the variable Lt is the
total number of young people in the economy. Note that we assume that the capital stock in
period t is productive in the same period; that is, there is no lag in the production and use
of capital. The standard maximization of profit by competitive firms leads, as in chapter 2,
to the equation of net marginal products to factor prices:

wt = f (kt ) − kt · f ′(kt ) (3.101)

rt = f ′(kt ) − δ (3.102)

where δ is the depreciation rate.
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3.8.3 Equilibrium

We assume a closed economy, so that households’ assets—all owned at the start of a period
by members of the old generation—equal the capital stock. Aggregate net investment equals
total income minus total consumption:

Kt+1 − Kt = wt Lt + rt Kt − c1t Lt − c2t Lt−1 (3.103)

where Lt−1 is the number of people born at time t − 1, all of whom are old at time t . If we
substitute for wt and rt from equations (3.101) and (3.102) into equation (3.103), we get
the economy’s resource constraint:

Kt+1 − Kt = F(Kt , Lt ) − Ct − δKt (3.104)

where Ct = c1t Lt + c2t Lt−1 is aggregate consumption, that is, the sum of consumption by
the young, c1t Lt , and the old, c2t Lt−1.

If we substitute out for c1t and c2t in equation (3.103) from equations (3.95) and (3.96),
we get34

Kt+1 = st Lt (3.105)

that is, the savings of the young equal the next period’s capital stock. This result holds
because the old want to end up with no assets when they die (because they do not care
about their descendants); hence, they sell all their capital stock to the young of the next
generation. All of the capital owned by the old plus any net increase in capital must therefore
be purchased by the young with their savings.

Note that the savings of period t become capital in period t + 1. If we think of a period
as 30 years, equation (3.105) says that the output that is not consumed becomes productive
30 years later. This unrealistic lag structure is an unfortunate by-product of overlapping-
generations models with only two periods of life. The structure also means that we have to
interpret the various rates—such as rt and δ—as quantities per generation. For example, an
interest rate of 6 percent per year corresponds to a value for rt of 5.0, and a depreciation
rate of 5 percent per year corresponds to a value for δ of 0.78.

34. Substitution from equations (3.95) and (3.96) into equation (3.103) yields the difference equation

Kt+1 = st Lt + (1 + rt ) · (Kt − st−1 Lt−1)

We have to get the economy started off somehow, for example, with an initial capital stock, K1, that is owned
by the L0 persons who are old in period 1. These old people consume the amount c21 L0 = (1 + r1) · K1. This
condition, in conjunction with equations (3.95) and (3.103), implies K2 = s1 L1. The difference equation shown
then implies Kt+1 = st Lt for all t ≥ 2.
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Assume a constant rate of population growth, so that Lt+1/Lt = 1 + n. (A population
growth rate of 1 percent per year corresponds to a value for n of 0.35.) We can express
equation (3.105) in per capita terms as

kt+1 ≡ Kt+1/Lt+1 = st/(1 + n)

Substitution for st from equation (3.99) into this result implies

kt+1 · (1 + n) = wt/ψt+1 (3.106)

If we replace ψt+1 by the expression that appears below equation (3.99), we get

kt+1 · (1 + n) · {
1 + (1 + ρ)1/θ · [1 + r(kt+1)]

(θ−1)/θ
} = w(kt ) (3.107)

where r(kt+1) is given in equation (3.102), and w(kt ) is given in equation (3.101).
Equation (3.107) is a nonlinear difference equation in kt ; for every value of kt , the equation

implicitly determines the equilibrium value of kt+1.35 Therefore, for a given initial value of
kt , equation (3.107) will prescribe the future path of capital stocks.

Equation (3.107) can be solved in closed form only for special cases of the production
and utility functions. For example, if utility is logarithmic (θ = 1), the expression in braces
on the left-hand side of equation (3.107) becomes 2 + ρ. The difference equation then
simplifies to

kt+1 = [ f (kt ) − kt · f ′(kt )]/[(1 + n) · (2 + ρ)] (3.108)

The Steady State To compute the steady-state capital intensity, let kt+1 = kt = k∗ in equa-
tion (3.107) to get

(1 + n) · {
1 + (1 + ρ)1/θ · [1 + f ′(k∗) − δ](θ−1)/θ

} = f (k∗)/k∗ − f ′(k∗) (3.109)

We can see the nature of the determination of k∗ by specializing to a Cobb–Douglas pro-
duction function, f (kt ) = Akα

t . Equation (3.109) simplifies in this case to

(1 + n) · {
1 + (1 + ρ)1/θ · [1 + αA · (k∗)α−1 − δ](θ−1)/θ

} = (1 − α) · A · (k∗)α−1

(3.110)

If we define z∗ to be the gross average product of capital—that is, z∗ ≡ A · (k∗)α−1—then
equation (3.110) can be rewritten as

(1 + n) · {
1 + (1 + ρ)1/θ · [1 + αz∗ − δ](θ−1)/θ

} = (1 − α) · z∗ (3.111)

35. This equilibrium value may or may not be unique; see the next subsection.
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Figure 3.7
Determination of the steady state in the OLG model. Equation (3.111) determines the steady-state gross average
product of capital, z∗, in the overlapping-generations model with a Cobb–Douglas technology. In the figure, the
straight line from the origin shows the right-hand side of the equation. The three panels plot the left-hand side of
the equation for θ = 1, θ < 1, and θ > 1. In each case, the steady state exists and is unique.

We determine z∗ graphically in figure 3.7 by plotting the two sides of equation (3.111)
as functions of z∗. The right-hand side (RHS) of the equation is a straight line through the
origin with slope 1 − α. The shape of the left-hand side (LHS) depends on whether θ is
equal to, less than, or greater than 1. These three cases are depicted in the three panels of
the figure.

If utility is logarithmic, so that θ = 1, the left-hand side of equation (3.111) is a horizontal
line at (1 + n)·(2 + ρ) > 0, as shown in panel a of figure 3.7. This line crosses the (1 − α)·z∗

line at a positive z∗, given by (1 + n) · (2 + ρ)/(1 − α); hence, the steady-state capital stock
exists and is unique. The solution for the steady-state capital intensity in this case is

k∗ =
[

A · (1 − α)

(1 + n) · (2 + ρ)

]1/(1−α)

(3.112)

Panel b of figure 3.7 applies when θ < 1. The left-hand side of equation (3.111) is an
inverse function of z∗. This function has a positive intercept, and it asymptotes to 1+n as z∗

goes to infinity. The intersection with the right-hand side, the straight line (1 − α) · z∗, there-
fore occurs at a unique, positive z∗. Hence, the steady-state capital stock exists and is unique.

Panel c of figure 3.7 applies if θ > 1. The left-hand side of equation (3.111) is an increasing
function of z∗. The intercept is positive, and the slope diminishes monotonically toward 0 as
z∗ approaches infinity. The intersection with the right-hand side, the straight line (1−α) ·z∗,
therefore again occurs at a unique, positive z∗.
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The Golden Rule and Dynamic Efficiency Consider now whether the overlapping-
generations economy can generate the type of oversaving that may appear in the Solow–
Swan model of chapter 1. Recall that oversaving could arise in the Solow–Swan model only
because it assumes an arbitrary saving rate; oversaving cannot arise in the Ramsey model of
chapter 2, in which infinite-lived households choose saving optimally. The surprising result
in the OLG model is that oversaving can occur even though households choose saving
optimally. This possibility exists because households have a finite horizon, corresponding
to the two-period length of life, whereas the economy goes on forever.

To assess the possibility of oversaving, we first compute the capital intensity that yields a
maximum of steady-state consumption per capita. At a point in time, aggregate consumption
is Ct ≡ c1t · Lt + c2t · Lt−1. Since total population equals Lt + Lt−1, consumption per capita
equals Ct/(Lt + Lt−1). Since Lt−1 = Lt/(1 + n), this expression for consumption per
capita is the multiple (1 + n)/(2 + n) of consumption per worker, ct ≡ Ct/Lt . Hence,
maximization of consumption per capita is equivalent to maximization of consumption per
worker.

To find the steady-state level of consumption per worker, we can divide both sides of
equation (3.111) by Lt to get

kt+1 · (1 + n) − kt = f (kt ) − ct − δkt (3.113)

In a steady state, kt+1 = kt = k∗, and the steady-state consumption per worker, c∗, is given by

c∗ = f (k∗) − (n + δ) · k∗ (3.114)

The maximization of c∗ therefore occurs at the value k∗ = kg that satisfies f ′(kg) = n + δ,
that is, at the golden-rule value described in chapter 1. It is easy to show that, even for simple
functional forms for utility and production, the economy’s steady-state value k∗ may end
up in the dynamically inefficient region where k∗ > kg .

Consider the case of log utility (θ = 1) and Cobb–Douglas technology. Equation (3.112)
implies that the steady-state capital intensity is given in this case by k∗ = [{A · (1 − α)}/
{(1 + n) · (2 +ρ)}]1/(1−α). In contrast, the golden-rule value is kgold = [αA/(n + δ)]1/(1−α).
The condition for the steady-state capital intensity to exceed the golden-rule value (and,
hence, for the economy to be in the dynamically inefficient region) is therefore

1 − α

(1 + n) · (2 + ρ)
>

α

n + δ
(3.115)

Thus oversaving is more likely to occur if the rates of time preference, ρ, and population
growth, n, are small; if the depreciation rate, δ, is large; and if the capital share, α, is small.
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Oversaving cannot occur if α is close to 1 (because wages are then close to 0, and young
people have little capacity to save).

If we consider conventional parameter values, such as n = 0.35, ρ = 0.82, and δ = 0.78
(which correspond to respective annual rates of 0.01, 0.02, and 0.05), then the condition
in equation (3.115) becomes α < 0.32. That is, inefficient oversaving occurs only if the
capital share is one-third or less. We have argued before that a much higher capital share
is reasonable if human capital is included. For example, if α = 0.75, oversaving does not
arise with reasonable parameter values in this OLG framework.

Dynamics The dynamics of the OLG economy come from equation (3.107). Consider
first the case of log utility (θ = 1), as shown in equation (3.108). If we also assume a
Cobb–Douglas production function, f (k) = Akα , equation (3.108) becomes

kt+1 = (1 − α) · Akα
t /[(1 + n) · (2 + ρ)] ≡ �(kt ) (3.116)

Figure 3.8 shows the relation between kt+1 and kt , which we denote by �(kt ). The slope of
�(kt ) is infinite at kt = 0 and diminishes toward 0 as kt approaches infinity. The function
�(kt ) crosses the 45-degree line at the steady-state value, k∗. In this case, the capital stock
monotonically approaches its unique steady-state value as time evolves. In other words, the

kt�1

kt

k3

k2

k1

k0

kt�1 � �(kt)

45°

k1 k2 k3 k*

Figure 3.8
Dynamics in the OLG model. Equation (3.116) prescribes the dynamics in the overlapping-generations model
for the case of logarithmic utility and Cobb–Douglas technology. The function �(kt ), given in equation (3.116)
and shown in the figure, determines the value of kt+1 that corresponds to each value of kt . If the economy begins
at k0, it follows the sequence k1, k2, . . . shown in the figure.
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steady state is stable. The reason is that the curve �(kt ) is always upward sloping, and it
crosses the 45-degree line from above.

For general production and utility functions, the dynamics of the OLG economy can
be complicated. It is possible to generate examples in which the �(kt ) curve is downward
sloping when it crosses the 45-degree line. In these cases, the economy may display cycles.36

The stability of the steady state is also not guaranteed.

Altruism, Bequests, and Infinite Horizons The key assumption in the OLG model is that
individuals have finite horizons in the sense that they do not care about their descendants.
We now assume instead that people value their children’s happiness (see Barro, 1974). If the
altruistic linkage from parents to children is strong enough to generate intergenerational
transfers—that is, if the typical person does not end up at a corner solution in which these
transfers are zero—the finite-horizon effect turns out to vanish. In particular, if intergener-
ational altruism is strong, we return effectively to the Ramsey model of chapter 2, in which
horizons are infinite.

One way to allow for altruistic linkages across generations is to assume that a person born
at time t derives utility from lifetime consumption and also from the prospective utility of
children. For example, we could have

Ut = c1−θ
1t − 1

1 − θ
+

(
1

1 + ρ

)
·
(

c1−θ
2t+1 − 1

1 − θ

)
+

(
1 + n

(1 + ρ) · (1 + φ)

)
· Ut+1 (3.117)

The first two terms on the right-hand side coincide with those from equation (3.94) and
represent the utility derived from consumption over the two periods of life. The term on
the far right-hand side involves the prospective utility, Ut+1, of each immediate descendant.
This utility will depend on the descendant’s consumption in two periods of life and on the
utility of descendants in the subsequent generation.

The term Ut+1 in equation (3.117) is multiplied by the number of descendants, 1+n, and
is discounted by two terms. The first discount, 1+ρ, applies because the prospective utility
arises one generation later and is, in this respect, comparable to own consumption when
old, c2t+1. The second discount, 1 +φ, arises because people may not count the anticipated
utility of their children—derived in part from their children’s prospective consumption—in
the same way as their own consumption. Specifically, if φ > 0, parents are selfish in the

36. The potential for cycles depends, however, on the discrete-time setup. For an individual family, this discreteness
may be reasonable because it represents the length of a generation. At the aggregate level, however, the discreteness
would be smoothed out by the adding up across families who differ in their positions in the life cycle. If the
aggregated model involves a single state variable—such as the aggregate capital stock—cycles would no longer
materialize.
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sense that, if parent’s consumption when old equals a child’s consumption when young, the
parent prefers an additional unit of own old-age consumption to an added unit of a child’s
young-period consumption.

If we use equation (3.117) repeatedly to substitute out for Ut+1, Ut+2, and so on, utility
can be written as a forward, weighted sum of each generation’s consumption when young
and old

Ut =
∞∑

i=0

(
1 + n

(1 + ρ) · (1 + φ)

)i

·
[

c1−θ
1t+i − 1

1 − θ
+

(
1

1 + ρ

)
·
(

c1−θ
2t+1+i − 1

1 − θ

)]
(3.118)

In order for utility to be bounded when c1t+i and c2t+i are constant over time, we have to
impose the condition 1 + n < (1 + ρ) · (1 + φ).

Let bt be the intergenerational transfer received by each descendant born at time t . The
amount transferred by each old person in period t is then (1+n) ·bt . The budget constraints
for the two periods of life are revised accordingly from equations (3.95) and (3.96) to

c1t + st = wt + bt (3.119)

c2t+1 + (1 + n) · bt+1 = (1 + rt+1) · st (3.120)

Note that we have set up the transfers so that they occur while the older generation is
still alive and are therefore available to fund the young-period consumption of the next
generation. One new element is that people have two sources of income when young: wage
income and the transfers provided by their parents (if bt > 0). People also have two ways
to spend their resources when old: consumption and transfers to children.

A young person of generation t maximizes utility in equation (3.118), subject to a given
transfer bt and to the constraints imposed by equations (3.119) and (3.120) on each gener-
ation. We assume that the constraint bt+i ≥ 0 applies for all i ≥ 0; that is, parents cannot
require their children to provide transfers. If the restriction bt+i ≥ 0 is not binding for all
i ≥ 0, the problem is straightforward; we deal here only with this case. (See Weil, 1987, and
Kimball, 1987, for discussions of these restrictions and for an analysis of reverse transfers
from children to parents.)

The specification of the utility function in equation (3.118) implies that the form of the
optimum problem does not change as old generations die and new ones are born. That is, the
relative weighting on consumption in various periods does not change as new generations
arrive. We can therefore pretend that the members of generation t can commit at time t to
the choices that will be made by their descendants.

An easy way to get the first-order conditions is to use equations (3.119) and (3.120) to
substitute out for c1t , c2t+1, c1t+1, and so on, in equation (3.118) and then maximize over st
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and bt+1. The resulting conditions can be expressed as

c2t+1

c1t
=

(
1 + rt+1

1 + ρ

)1/θ

(3.121)

c2t

c1t
= (1 + φ)1/θ (3.122)

Equation (3.121) prescribes the allocation of consumption over a person’s lifetime and has
the same form as equation (3.98). Equation (3.122) relates parental consumption at time t
to children’s consumption at time t . These consumption levels differ only if the selfishness
parameter, φ, is nonzero. In particular, if φ > 0, children consume less when they are young
than parents consume when they are old.

Equations (3.121) and (3.122) can be combined to compute the evolution over time of
consumption per worker, ct :37

ct+1

ct
= c1t+1

c1t
= c2t+1

c2t
=

(
1 + rt+1

(1 + φ) · (1 + ρ)

)1/θ

(3.123)

This result is the discrete-time counterpart to the standard solution for the change in ct

over time in the Ramsey model. The only difference is that the discount factor combines
pure time preference, ρ, and the selfishness parameter, φ. The pure time effect can now
be 0—that is, ρ = 0 is satisfactory—and the discount then reflects only the selfishness of
parents (φ > 0).

Equation (3.123) can be combined with the economy’s budget constraint in equa-
tion (3.113) to determine the dynamics of kt and ct . An inspection of this system shows,
however, that it is the discrete-time analogue of the Ramsey model. Since the dynamic equa-
tions for kt and ct are the same as those in the Ramsey model—except for the shift to discrete
time—the results are also the same. In particular, the steady state and dynamics are well
behaved, and the equilibrium cannot be dynamically inefficient. Thus, if altruism is strong
enough to ensure an interior solution for intergenerational transfers, the OLG structure and
finite lifetimes do not provide new insights about the evolution of the economy.

3.9 Problems

3.1 Time-varying consumption tax rates. Start with a situation in which the government
does not tax capital income or purchase goods and services—τa = τ f = G = 0—and the

37. The results for c1t and c2t in equation (3.123) follow from equations (3.121) and (3.122). The result for ct
holds because ct = [(1 + n)c1t + c2t ]/(1 + n), and the ratio of c2t to c1t is the constant shown in equation (3.129).
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consumption tax rate, τc, is constant. Suppose that the government switches to a rising path
of τc, while maintaining τa = τ f = G = 0. How does this change affect the households’
first-order condition for consumption growth? How does it affect the equilibrium for the
economy? Is the shift to a time-varying consumption tax rate a good idea?

3.2 Public services in the production function. Suppose that the production function is

ŷ = f (k̂, g̃)

where g̃ is the flow of public services. Analyze the effects of the path of g̃ on the economy
for the following cases:

a. g̃ = ĝ and G/Y is constant over time.

b. g̃ = G and G/Y is constant over time.

3.3 International specialization and diversification (based on Ventura, 1997). Each
small economy can produce two intermediate goods, X1 and X2, and a final good, Y , which
can be used for consumption and investment. The production functions are

X1 = (K1)
α1(L1)

1−α1 (1)

X2 = (K2)
α2(L2)

1−α2 (2)

Y = (X1)
α3(X2)

1−α3 (3)

where α1, α2, α3 > 0; K1 and L1 are the quantities of domestic capital and labor employed
in the sector that produces X1; K2 and L2 are the quantities employed in the sector that
produces X2; K1 + K2 = K ; and L1 + L2 = L . The final output Y can be used, as usual,
for C or for expansion of K . Total labor, L , is constant. Intermediate goods are tradable on
world markets at the constant price p (in units of X1 per unit of X2). Final goods, Y , and
units of C and K are not tradable internationally. There is no world credit market, so each
country’s sale or purchase of X1 must equal its purchase or sale of X2. In equation (3), the
quantities of X1 and X2 used to produce Y are the amounts produced domestically (from
equations [1] and [2]) plus the net quantity bought from abroad.

a. For what range of k ≡ K/L will the domestic economy be in the “diversification range”
in which it produces both types of intermediate goods? Derive expressions for the rental
rate on capital, R, and the wage rate, w, when k is in the diversification range. (Note that,
in the absence of factor mobility, factor-price equalization is achieved through the mobility
of goods.)

b. Assume that k increases but not by enough to move the economy outside of the diversifi-
cation range. Why does the increase in k not lead to diminishing returns? (Note: the results
are an application of the Rybczinski, 1955, theorem.)
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c. Suppose that infinite-horizon consumers solve the usual Ramsey optimization problem.
Derive the laws of motion for c and k, assuming that p is constant.

d. Suppose that the world consists of a large number of small countries, identical except for
their values of k(0). Furthermore, assume that all countries fall in the diversification range.
Derive the world equilibrium path for p and obtain the laws of motion for the world’s c
and k. How do the results relate to those from part (c)?

3.4 International credit constraints (based on Cohen and Sachs, 1986). Imagine that
the domestic country, country i , can borrow on world credit markets at the constant real
interest rate, r . The country can, however, borrow only up to a fraction λ ≥ 0 of its capital
stock, so that

di ≤ λki (1)

Since di = ki − ai (equation [3.1]), equation (1) implies

ai ≥ (1 − λ) · ki (2)

Assume that the domestic economy has the usual infinite-horizon consumers with
ρi + θi xi > r . The country also starts with sufficient assets, ai (0), so that equation (2) is not
binding initially.

a. What are the first-order optimization conditions if equation (2) is not binding? Relate
these conditions to those discussed in section 3.4.3.

b. Argue that equation (2) becomes binding in finite time. Then use equation (3.50) to find
an expression for ˙̂k when equation (2) is binding. What is the expression for ˙̂c/ĉ when
equation (2) is binding? Provide economic intuition for this result for situations in which
λ = 1, λ = 0, and 0 < λ < 1.

c. What is the steady-state value of k̂, and how does this value depend on λ and r?

d. How does the parameter λ affect the transitional dynamics?

3.5 Adjustment costs in the Ramsey model (based on Abel and Blanchard, 1983).
Consider the model of adjustment costs worked out in this chapter. Assume that consumers
have the usual Ramsey preferences. But, instead of assuming a constant interest rate, con-
sider the equilibrium for a closed economy.

a. Find an expression for q̇ as a function of q, i/k, ċ/c, and k.

b. Use a phase diagram to work out the dynamics of i/k and k. (Note: It is easier to work
with i/k than with q .)

3.6 End-of-the-world model II. Suppose that the Ramsey model is the same as the one
described in chapter 2, except that utility is logarithmic (θ = 1) and everyone thinks that the
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world will end with probability p ≥ 0 per unit of time. That is, if the world exists at time t ,
the probability that it will still exist at the future date T is e−p·(T −t).

a. What are the transition equations for k̂ and ĉ? How do these equations relate to equa-
tions (2.23) and (2.24) from chapter 2 and to equations (3.89) and (3.90) from the Blanchard
(1985) model?

b. Use a modification of figure 2.1 to describe the transition path for the economy.

c. As p gets smaller, how does the transition path relate to the one shown in figure 2.1?
What happens as p approaches 0?

3.7 Fiscal policy in a finite-horizon model. Reconsider problem 2.9 in the context of
the Blanchard (1985) model of a closed economy, as described in this chapter. Assume that
n = x = G = 0, and begin with the case in which B is constant at the value B(0).

a. How do differences in B(0) affect the economy’s transition path and steady state?

b. Suppose that B follows some path but eventually approaches a constant. How does the
path of B affect the economy’s transition path and steady state?





4 One-Sector Models of Endogenous Growth

In the Ramsey model, as in the Solow–Swan model, the steady-state per capita growth
rate equals the rate of technological progress, x , which is assumed to be exogenous. Thus,
although these models provide interesting frameworks for studying transitional dynamics,
they are not helpful for understanding the sources of long-term growth of income per capita.

We mentioned in chapter 1 that one way to construct a theory of endogenous growth is to
eliminate the long-run tendency for capital to experience diminishing returns. We discussed
as a simple example the AK model, in which the returns to capital are always constant, and
we considered technologies in which the returns to capital diminished but asymptotically
approached a positive constant.

We begin our analysis in this chapter by combining the AK technology with optimizing
behavior of households and firms. This framework generates endogenous growth, and the
outcomes are Pareto optimal as in the Ramsey model. One difficulty, however, is that this
kind of model is inconsistent with the empirical evidence on convergence.

One interpretation of the AK model is that capital should be viewed broadly to include
physical and human capital. In section 4.2 we work out a simple model with human capital
that makes this interpretation explicit.

We noted in chapter 1 that a constant-returns production function at the aggregate level
can reflect learning by doing and spillovers of knowledge. This kind of technology may
support endogenous growth, but the outcomes tend not to be Pareto optimal because the
spillovers constitute a form of externality. Hence, these models may have implications for
desirable government policy. We also examine models with governmentally provided public
goods and show that they have analogous implications for growth and government policy.

At the end of the chapter, we analyze transitional dynamics in models with optimizing
agents when the technology features returns to capital that diminish but asymptotically
approach a positive constant. These models can combine the endogenous-growth features
of AK models with the convergence behavior found in the Ramsey model. Thus the empirical
evidence on convergence may be consistent with these kinds of endogenous-growth models.

4.1 The AK Model

4.1.1 Behavior of Households

We use the setup from chapter 2 in which infinite-lived households maximize utility, as
given by

U =
∫ ∞

0
e−(ρ−n)t ·

[
c(1−θ) − 1

(1 − θ)

]
dt (4.1)
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subject to the constraint

ȧ = (r − n) · a + w − c (4.2)

where a is assets per person, r is the interest rate, w is the wage rate, and n is the growth
rate of population. We again impose the constraint that rules out chain-letter debt finance:

lim
t→∞

{
a(t) · exp

[
−

∫ t

0
[r(v) − n] dv

]}
≥ 0 (4.3)

The conditions for optimization are again

ċ/c = (1/θ) · (r − ρ) (4.4)

and the transversality condition,

lim
t→∞

{
a(t) · exp

[
−

∫ t

0
[r(v) − n] dv

]}
= 0 (4.5)

4.1.2 Behavior of Firms

The only departure from chapter 2 is that firms have the linear production function,

y = f (k) = Ak (4.6)

where A > 0. Equation (4.6) differs from the neoclassical production function in that the
marginal product of capital is not diminishing ( f ′′ = 0), and the Inada conditions are vio-
lated, in particular, f ′(k) = A as k goes to zero or infinity. The chapter appendix (section 4.7)
shows more generally that the violation of the Inada condition limk→∞[ f ′(k)] = 0 is the
key element that underlies endogenous growth.

We noted in chapter 1 that the global absence of diminishing returns to capital in equa-
tion (4.6) may seem unrealistic, but the idea becomes more plausible if we construe capital,
K , broadly to encompass human capital, knowledge, public infrastructure, and so on.
Subsequent sections of this chapter explore these interpretations in more detail.

The conditions for profit maximization again require the marginal product of capital to
equal the rental price, R = r + δ. The only difference here is that the marginal product of
capital is the constant A; hence,

r = A − δ (4.7)

Since the marginal product of labor is zero, the wage rate, w, is zero. (We can think of this
zero wage rate as applying to raw labor, which has not been augmented by human capital.)
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4.1.3 Equilibrium

We assume, as in chapter 2, that the economy is closed, so that a = k holds. If we substitute
a = k, r = A − δ, and w = 0 into equations (4.2), (4.4), and (4.5), we get

k̇ = (A − δ − n) · k − c (4.8)

ċ/c = (1/θ) · (A − δ − ρ) (4.9)

lim
t→∞

{
k(t) · e−(A−δ−n)·t} = 0 (4.10)

The striking aspect of equation (4.9) is that consumption growth does not depend on the
stock of capital per person, k. In other words, if the level of consumption per capita at time
0 is c(0), consumption per capita at time t is given by

c(t) = c(0) · e(1/θ)·(A−δ−ρ)·t (4.11)

where the initial level of consumption, c(0), remains to be determined.
We assume that the production function is sufficiently productive to ensure growth in c,

but not so productive as to yield unbounded utility:

A > ρ + δ > (A − δ) · (1 − θ) + θn + δ (4.12)

The first part of this condition implies ċ/c > 0. The second part, which is analogous to
ρ + θx > x + n in the model of chapter 2, ensures that the attainable utility is bounded1

and that the transversality condition holds.
To compute the growth rate of capital and output per worker, divide equation (4.8) by k

to get

c/k = (A − δ − n) − k̇/k

In the steady state (where, by definition, all variables grow at constant rates), the growth
rate of capital per person is constant. Therefore, the right-hand side of the expression for
c/k is constant. Consequently, c/k is constant, and the growth rate of capital per person
(and, hence, the growth rate of output per person, y) equals the growth rate of consumption

1. To verify this result, substitute for c(t) from equation (4.11) into the utility function to get

U = [1/(1 − θ)] ·
∫ ∞

0

e−(ρ−n)·t ·
[

c(0)1−θ · e[(1−θ)/θ ]·(A−δ−ρ)·t − 1
]

dt

This integral converges to infinity unless ρ − n > [(1 − θ)/θ ] · (A − δ − ρ). Add δ to both sides and rearrange
this expression to get the second inequality in equation (4.12). An alternative way to write this expression is
(A − δ − n) > γ , where γ is the growth rate of per capita consumption, given by equation (4.9). The appendix on
mathematics considers some cases in which unbounded utility can be handled.
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per capita, which is given by equation (4.9). Note that this argument works only at the steady
state: in principle, the growth rate of capital outside the steady state might not be constant.
If that were the case, the ratio c/k would not be constant. Having said this, however, we
now show that, in fact, consumption and capital (and, therefore, output) grow at the same
rate at all times. In other words, the model has no transitional dynamics.

4.1.4 Transitional Dynamics

To compute the growth rate of capital outside of the steady state, we start by substituting
for c(t) from equation (4.11) into equation (4.8) to get

k̇ = (A − δ − n) · k − c(0) · e(1/θ)·(A−δ−ρ)·t

which is a first-order, linear differential equation in k. The general solution of this equa-
tion is2

k(t) = (constant) · e(A−δ−n)·t + [c(0)/ϕ] · e(1/θ)·(A−δ−ρ)·t (4.13)

where

ϕ ≡ (A − δ) · (θ − 1)/θ + ρ/θ − n (4.14)

Note that an alternative way to write this combination of parameters is ϕ ≡ (A−δ−n)−γ ,
where γ is the constant growth rate of per capita consumption, given by equation (4.9).
Condition (4.12) implies ϕ > 0.

If we substitute for k(t) from equation (4.13) into the transversality condition in equa-
tion (4.10), we get

lim
t→∞{constant + [c(0)/ϕ] · e−ϕt } = 0

Since c(0) is finite and ϕ > 0, the second term inside the square brackets converges toward
zero. Hence, the transversality condition requires the constant to be zero. Equations (4.11)
and (4.13) therefore imply3

c(t) = ϕ · k(t) (4.15)

k̇/k = ċ/c = (1/θ) · (A − δ − ρ) (4.16)

Since y = Ak, it also follows that ẏ/y = k̇/k = ċ/c. Thus the model has no transitional
dynamics: the variables k(t), c(t), and y(t) begin at the values k(0), c(0) = ϕ · k(0), and

2. See the appendix on mathematics for a discussion of this kind of first-order, linear differential equation.

3. Note that this model yields a closed-form policy function for c.
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y(0) = A · k(0), respectively, and all three variables then grow at the constant rate (1/θ) ·
(A − δ − ρ).

In the AK model, changes in the underlying parameters can affect levels and growth rates
of variables. For example, a permanent increase in the rate of population growth, n, does
not affect the per capita growth rates shown in equation (4.16), but it reduces the level of
per capita consumption (see equations [4.14] and [4.15]). Changes in A, ρ, and θ affect the
levels and growth rates of c and k.

The gross saving rate is given by

s = (K̇ + δK )/Y = (1/A) · (k̇/k + n + δ) =
[

A − ρ + θn + (θ − 1) · δ

θ A

]
(4.17)

where k̇/k = (1/θ) · (A − δ − ρ). Thus the gross saving rate is constant and, aside from n,
depends on the same parameters that influence the per capita growth rate.

4.1.5 The Phase Diagram

We can analyze the dynamic behavior of the economy by constructing a phase diagram in k
and c. Note that, because A > ρ + δ, consumption growth is always positive—therefore, a
ċ = 0 schedule does not exist. Thus the arrows in the phase diagram displayed in figure 4.1
point north. We can use equation (4.8) to find that the k̇ = 0 schedule is a straight line

k̇ � 0,
c � (A � � � n)k

k

c

“Saddle Path,”
c � (A � � � n � �)k

Figure 4.1
Phase diagram for the AK model. The k̇ = 0 schedule is a straight line through the origin with slope
A − δ − n > 0. The arrows to the right of this line point east, and the opposite is true to the left. Because
A > ρ + δ, consumption growth is always positive, so the ċ = 0 schedule does not exist and arrows always point
north. Equation (4.15) suggests that the saddle path is another straight line with slope ϕ = (A − δ −n)−γ , which
is smaller than the slope of the k̇ = 0 schedule. The transversality condition and the Euler equation ensure that
the economy is always on the saddle path so that the ratio of consumption to capital is always constant.
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through the origin with slope A − δ − n. The arrows to the right of this line point east, and
the opposite holds to the left. Equation (4.15) suggests that the path that the economy takes
(the “saddle path”) is another straight line with slope ϕ. Notice that, since ϕ = (A − δ − n)

−γ , the slope of the stable arm is smaller than the slope of the k̇ = 0 schedule. Given k(0), if
initial consumption is chosen above the saddle path, the economy will crash into the vertical
axis. This outcome violates the Euler equation (an analogous argument was discussed in
chapter 2 for the neoclassical model). If the initial consumption is chosen below the saddle
path, c and k grow without bound. Along this path, the capital stock k grows faster than
c, and the transversality condition is violated. The only choice that satisfies all first-order
conditions (including transversality) is the saddle path, which entails a constant value of c/k.

4.1.6 Determinants of the Growth Rate

A striking difference between the AK model and the neoclassical growth model of chapter 2
concerns the determination of the long-run per capita growth rate. In the AK model, the
long-run growth rate (which equals the short-run growth rate) depends in equation (4.16)
on the parameters that determine the willingness to save and the productivity of capital.
Lower values of ρ and θ , which raise the willingness to save, imply a higher per capita
growth rate in equation (4.16) and a higher saving rate in equation (4.17). An improvement
in the level of technology, A, which raises the marginal and average products of capital,
also raises the growth rate and alters the saving rate. In a later section of this chapter, we
show that changes in various kinds of government policies amount to shifts in A; that is,
we can generalize the interpretation of the parameter A to go beyond literal differences in
the level of the production function.

In contrast to the effects on long-run growth in the AK model, the Ramsey model of
chapter 2 implies that the long-run per capita growth rate is pegged at the value x , the
exogenous rate of technological change. A greater willingness to save or an improvement
in the level of technology shows up in the long run as higher levels of capital and output
per effective worker but in no change in the per capita growth rate.

The different results reflect the workings of diminishing returns to capital in the neoclas-
sical model, and the absence of these diminishing returns in the AK model. Quantitatively,
the extent of the difference depends on how rapidly diminishing returns set in, a character-
istic that determines how quickly economies converge to the steady state in the neoclassical
model. If diminishing returns set in slowly, the convergence period is long. In this case,
shifts in the willingness to save or the level of technology affect the growth rate for a long
time in the neoclassical model, even if not forever. Thus, the distinction between the neo-
classical and AK models is substantial if convergence is rapid, but becomes less serious
if—as seems to be the case—convergence occurs slowly. If convergence is extremely slow,
the growth effects that appear in the AK model provide a satisfactory approximation to the
effects on the growth rate over a long interval in the neoclassical model.
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We showed in chapter 2 that the outcomes in the Ramsey model were Pareto optimal.
We demonstrated this result by showing that the outcomes coincided with those that would
be generated by a hypothetical social planner who had the same form of objective func-
tion as the representative household. It is straightforward to follow the same procedure
here to prove that the equilibrium in the AK model is Pareto optimal.4 This result makes
sense because the elimination of diminishing returns in the production function—that is,
the replacement of the neoclassical production function by the AK form—does not introduce
any sources of market failure into the model.

4.2 A One-Sector Model with Physical and Human Capital

We mentioned before that one interpretation of the AK model is that capital should be
viewed broadly to include physical and human components. We now work out a simple
model with human capital that makes this interpretation explicit.

Assume that the inputs to the production function are physical and human capital, K
and H :

Y = F(K , H) (4.18)

where F(·) exhibits the standard neoclassical properties, including constant returns to scale
in K and H . This production function is similar to one used in chapter 3, except that we
previously assumed a Cobb–Douglas form with diminishing returns to scale in K and H .
We can use the condition of constant returns to scale to write the production function in an
intensive form:

Y = K · f (H/K ) (4.19)

where f ′(H/K ) > 0.
Output can be used on a one-for-one basis for consumption, for investment in physical

capital, or for investment in human capital. Hence, we assume that the one-sector technol-
ogy applies to the production of human capital—that is, to education—as well as to the
production of consumables and physical capital. (We introduce a separate education sector
in chapter 5.) The stocks of physical and human capital depreciate at the rates δK and δH ,
respectively. We assume that population, L , is constant, so that changes in H reflect only
the net investment in human capital.

Let RK and RH be the rental prices paid by competitive firms for the use of the two
types of capital. In the absence of barriers to entry, competition among firms will drive

4. The planner chooses the path of c to maximize U in equation (4.1), subject to equation (4.8), c(t) ≥ 0, and the
given initial value k(0).
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profits down to zero. Profit maximization and this zero-profit condition then imply (as in
the discussion of chapter 2) that the marginal product of each input equals its rental price:

∂Y/∂K = f (H/K ) − (H/K ) · f ′(H/K ) = RK (4.20)

∂Y/∂ H = f ′(H/K ) = RH

Since the two types of capital are perfectly substitutable with each other and with consum-
ables on the production side, the price of each type of capital would be fixed at unity.5 Hence,
the rates of return to owners of capital are RK − δK and RH − δH , respectively, and each
rate of return must be equal in equilibrium to the interest rate, r . If we use equation (4.20)
and rearrange terms, this equalization of rates of return implies

f (H/K ) − f ′(H/K ) · (1 + H/K ) = δK − δH (4.21)

This condition determines a unique, constant value of H/K .6

If we define A ≡ f (H/K ), a constant, then equation (4.19) implies Y = AK . Thus this
model with two types of capital is essentially the same as the AK model that we analyzed in
the previous section. We know from that analysis that the equilibrium features constant and
equal growth rates of C, K , and Y . (These growth rates equal the per capita growth rates
because L is constant.) Since H/K is fixed, H grows at the same rate as the other variables.

The main conclusion from this simple case is that we can think of K as a proxy for a
composite of capital goods that includes physical and human components. If we regard
constant returns to the two kinds of capital as plausible, then the AK model may be a
satisfactory representation of this broader model. We consider in chapter 5 some additional
effects that arise when we drop the assumptions of the one-sector model and assume instead
that the production function for education differs from that for goods.

4.3 Models with Learning by Doing and Knowledge Spillovers

4.3.1 Technology

The key to endogenous growth in the AK model is the absence of diminishing returns
to the factors that can be accumulated. A number of authors—including Frankel (1962),

5. This result applies if the constraint of nonnegative gross investment in each type of capital is nonbinding or if
units of old capital can, unrealistically, be consumed or converted into the other type of capital. We take explicit
account of these kinds of constraints in chapter 5.

6. The expression on the left-hand side of equation (4.21) can be shown readily to be monotonically increasing in
H/K . Moreover, this expression ranges from −∞ to +∞ as H/K goes from 0 to ∞. It follows that the solution
for H/K exists and is unique.
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Griliches (1979), Romer (1986), and Lucas (1988)—have constructed models of endoge-
nous growth in which spillover effects play a central role. For reasons probably related
to timing, the Romer analysis has exerted the greatest influence.7 He used Arrow’s (1962)
setup to eliminate the tendency for diminishing returns to capital accumulation by assuming
that knowledge creation was a side product of investment. A firm that increases its phys-
ical capital learns simultaneously how to produce more efficiently. This positive effect of
experience on productivity is called learning by doing or, in this case, learning by investing.

We can illustrate the possibilities by considering a neoclassical production function with
labor-augmenting technology for firm i ,

Yi = F(Ki , Ai Li ) (4.22)

where Li and Ki are the conventional inputs, and Ai is the index of knowledge available
to the firm. The function F(·) satisfies the neoclassical properties that we detailed in chap-
ter 1 (equations [1.5a]–[1.5c]): positive and diminishing marginal products of each input,
constant returns to scale, and the Inada conditions. Technology is assumed to be labor aug-
menting so that a steady state exists when Ai grows at a constant rate. Unlike chapter 2,
however, we do not assume here that Ai grows exogenously at the rate x . Furthermore, for
reasons that will become apparent later, we assume that the aggregate labor force, L , is
constant.

We follow Arrow (1962), Sheshinski (1967), and Romer (1986) and make two assump-
tions about productivity growth. First, learning by doing works through each firm’s net
investment. Specifically, an increase in a firm’s capital stock leads to a parallel increase
in its stock of knowledge, Ai . This process reflects Arrow’s idea that knowledge and pro-
ductivity gains come from investment and production, a formulation that was inspired by
the empirical observation of large positive effects of experience on productivity in airframe
manufacturing, shipbuilding, and other areas (see Wright, 1936; Searle, 1946; Asher, 1956;
and Rapping, 1965). This idea is supported more broadly by Schmookler’s (1966) evidence
that patents—a proxy for learning—closely follow investment in physical capital.

The second key assumption is that each firm’s knowledge is a public good that any other
firm can access at zero cost. In other words, once discovered, a piece of knowledge spills
over instantly across the whole economy. This assumption implies that the change in each
firm’s technology term, Ȧi , corresponds to the economy’s overall learning and is therefore
proportional to the change in the aggregate capital stock, K̇ .

7. Cannon (2000) says in this respect: “Frankel (1962) anticipates ideas in use in the modern literature and
deserves wider recognition. Why the paper was ignored at the time remains a bit of a puzzle and perhaps serves
as a demonstration of the role of chance in the research and growth processes.”
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If we combine the assumptions of learning by doing and knowledge spillovers, we can
replace Ai by K in equation (4.22) and write the production function for firm i as8

Yi = F(Ki , K Li ) (4.23)

If K and Li are constant, each firm faces diminishing returns to Ki as in the neoclassical
model of chapter 2. However, if each producer expands Ki , then K rises accordingly and
provides a spillover benefit that raises the productivity of all firms. Moreover, equation (4.23)
is homogeneous of degree one in Ki and K for given Li ; that is, there are constant returns
to capital at the social level—when Ki and K expand together for fixed L . This constancy
of the social returns to capital will yield endogenous growth.

The essence of the Romer analysis leading up to equation (4.23) appeared in the Frankel
(1962) paper, which assumed that an economy-wide productivity factor (which he called
the “development modifier”) equaled the sum of the capital stocks employed by each firm.
However, Frankel did not detail the nature of the spillover process; in particular, he did not
focus on the role of knowledge.

In the Griliches (1979) version of equation (4.23), Ki represents firm i’s specific knowl-
edge capital, whereas K (modeled again as the sum of the Ki ) is the aggregate level of knowl-
edge in an industry. The only substantive difference from Romer (1986) is that Griliches
focused on R&D investments as relevant to the expansion of knowledge, whereas Romer
looked at overall net investment.

In the Lucas (1988) story, knowledge is thought to be created and transmitted through
human capital. Therefore, Ki refers to a firm’s employment of human capital and K to the
aggregate level of human capital in an industry or country. In this case, the spillover effects
involve interactions with smart people. One important issue, discussed later, is whether the
spillovers involve the total or average level of human capital.

On one level, the spillover assumption is natural because knowledge has a nonrival char-
acter: if one firm uses an idea, it does not prevent others from using it. On another level,
firms have incentives to maintain secrecy over their discoveries as well as formal patent
protection for inventions. Knowledge about productivity improvements would therefore
leak out only gradually, and innovators would retain competitive advantages for some time.
In fact, in a decentralized setup, this individual advantage is essential to motivate invest-
ments, such as Griliches’s (1979) outlays on R&D, that are specifically directed at making
discoveries. The type of interaction among firms that arises in this setup cannot, however,
be adequately described by standard models of perfect competition, and we postpone a
consideration of alternative approaches until chapters 6 and 7. In this section, we make the
extreme assumption that all discoveries are unintended by-products of investment and that

8. We neglect any baseline knowledge that producers have when no capital has ever been produced.
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these discoveries immediately become common knowledge. This specification allows us to
retain the framework of perfect competition, although the outcomes will turn out not to be
Pareto optimal.

The assumption here is that the spillovers of knowledge operate at the level of the overall
economy. Alternative assumptions are that the spillovers apply to an industry, to a limited
geographical area, within a particular political jurisdiction, and so on. The extent to which
these spillovers apply will be crucial for the model’s empirical implementation.

A firm’s profit can be written as

Li · [F(ki , K ) − (r + δ) · ki − w] (4.24)

where r + δ is the rental price of capital and w is the wage rate. We assume, as usual, that
each competitive firm takes these factor prices as given. We now also make the parallel
assumption that each firm is small enough to neglect its own contribution to the aggregate
capital stock and, therefore, treats K as given. Profit maximization and the zero-profit
condition (as detailed in chapter 2) then imply

∂yi/∂ki = F1(ki , K ) = r + δ (4.25)

∂Yi/∂Li = F(ki , K ) − ki · F1(ki , K ) = w

where F1(·)—the partial derivative of F(ki , K ) with respect to its first argument, ki —is
the private marginal product of capital. In particular, this marginal product neglects the
contribution of ki to K and, hence, to aggregate knowledge.

In equilibrium, all firms make the same choices, so that ki = k and K = kL apply. Since
F(ki , K ) is homogeneous of degree one in ki and K , we can write the average product of
capital as

F(ki , K )/ki = f (K/ki ) = f (L) (4.26)

where f (L)—the function for the average product of capital—satisfies f ′(L) > 0 and
f ′′(L) < 0. Note that this average product is invariant with k, because the learning-by-doing
and spillover effects eliminate the tendency for diminishing returns. The average product
is, however, increasing in the size of the labor force, L . This last property is unusual and
leads to scale effects that we discuss later.

The private marginal product of capital can be expressed from equation (4.26) as

F1(ki , K ) = f (L) − L · f ′(L) (4.27)

Hence, the private marginal product of capital is less than the average product, f (L), and
is invariant with k. Equation (4.27) implies also that the private marginal product of capital
is increasing in L (because f ′′(L) < 0).
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4.3.2 Equilibrium

We still assume a closed economy in which infinite-lived households maximize utility in the
usual way. Therefore, the budget constraint is given by equation (4.2), the growth rate of per
capita consumption by equation (4.4), and the transversality condition by equation (4.5).
If we use the condition r = F1(ki , K ) − δ and the form for the private marginal product of
capital from equation (4.27), then equation (4.4) can be rewritten as

ċ/c = (1/θ) · [ f (L) − L · f ′(L) − δ − ρ] (4.28)

As in the AK model, this growth rate is constant (as long as L is constant). We assume that
the parameters are such that the growth rate is positive but not large enough to yield infinite
utility:

f (L) − L · f ′(L) > ρ + δ > (1 − θ) · [ f (L) − L · f ′(L) − δ − ρ]/θ + δ (4.29)

This condition corresponds to equation (4.12) in the AK model.
If we substitute a = k and the first-order conditions from equation (4.25) into the budget

constraint of equation (4.2), we get the accumulation equation for k:

k̇ = f (L) · k − c − δk (4.30)

If we use this equation along with the transversality condition, we can show that the model
has no transitional dynamics: the variables k and y always grow at the rate shown for ċ/c
in equation (4.28). Since the analysis is essentially the same as that for the AK model, we
leave this demonstration as an exercise.

4.3.3 Pareto Nonoptimality and Policy Implications

To see whether the outcomes are Pareto optimal, we can follow our usual practice of
comparing the decentralized solution with the results from the social planner’s problem.
The planner maximizes the utility shown in equation (4.1) (with n assumed here to be zero),
subject to the accumulation constraint in equation (4.30). The key aspect of this optimization
is that, unlike an individual producer, the planner recognizes that each firm’s increase in its
capital stock adds to the aggregate capital stock and, hence, contributes to the productivity of
all other firms in the economy. In other words, the social planner internalizes the spillovers
of knowledge across the firms.

To find the optimal choices of c and k, set up the Hamiltonian,

J = e−ρt · (c1−θ − 1)/(1 − θ) + ν · [ f (L) · k − c − δk]

The optimization involves the standard first-order conditions, Jc = 0 and ν̇ = −Jk , and the
transversality condition, limt→∞ νk = 0. We can manipulate the first-order conditions in
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the usual way to derive the condition for the growth rate of c:

ċ/c (planner) = (1/θ) · [ f (L) − δ − ρ] (4.31)

The social planner sets the growth rate of consumption in accordance with the average
product of capital, f (L), whereas the decentralized solution shown in equation (4.28)
relates the growth rate to the private marginal product of capital, f (L) − L · f ′(L). Since
this private marginal product falls short of the average product, growth is too low in the
decentralized equilibrium.

In the present model, the learning-by-doing and spillover effects exactly offset the di-
minishing returns that face an individual producer. Hence, the returns are constant at the
social level, and the social marginal product of capital equals the average product, f (L).
Since the social planner internalizes the spillovers, this social marginal product appears as
a determinant of the growth rate in equation (4.31). The decentralized solution in equa-
tion (4.28) dictates a lower growth rate because the individual producers do not internalize
the spillovers; that is, they base decisions on the private marginal product, f (L)− L · f ′(L),
which falls short of the social marginal product.

The social optimum can be attained in a decentralized economy by subsidizing purchases
of capital goods (an investment-tax credit). Alternatively, the government can generate the
optimum by subsidizing production. These subsidies work in the model because they raise
the private rate of return to investment and thereby tend to eliminate the excess of social over
private returns. Of course, to avoid other distortions, the subsidies on capital or production
would have to be financed with a lump-sum tax. These kinds of taxes are normally difficult
to find, but in the current model—which contains no labor/leisure choice—a consumption
tax at a constant rate would amount to a lump-sum tax. This kind of tax was explored in
chapter 3.

4.3.4 A Cobb–Douglas Example

If the production function in equation (4.23) takes the Cobb–Douglas form, output for firm
i is given by

Yi = A · (Ki )
α · (K Li )

1−α (4.32)

where 0 < α < 1. If we substitute yi = Yi/Li , ki = Ki/Li , and k = K/L , and then set yi = y
and ki = k, the average product of capital is

y/k = f (L) = AL1−α (4.33)

which is a special case of equation (4.26). Note that equation (4.33) satisfies the general
properties that y/k is invariant with k and increasing in L .
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We can determine the private marginal product of capital by differentiating equation (4.32)
with respect to Ki , while holding fixed K and L . If we then substitute ki = k, the result is

∂Yi/∂Ki = AαL1−α (4.34)

a special case of equation (4.27). In accordance with the general properties discussed before,
the private marginal product of capital in equation (4.34) is invariant with k, increasing in
L , and less than the average product shown in equation (4.33) (because 0 < α < 1).

If we substitute from equation (4.34) into equation (4.28), we find that the decentralized
growth rate is given by9

ċ/c = (1/θ) · (AαL1−α − δ − ρ) (4.35)

Substitution from equation (4.33) into equation (4.31) gives the social planner’s growth
rate as

ċ/c (planner) = (1/θ) · (AL1−α − δ − ρ) (4.36)

Since α < 1, the decentralized growth rate is lower than the planner’s growth rate.
The social optimum can be attained in the decentralized economy by introducing an

investment-tax credit at the rate 1 − α and financing it with a lump-sum tax. If buyers
of capital pay only the fraction α of the cost, the private return on capital corresponds
to the social return. We can then show that the decentralized choices coincide with those
of the social planner. Alternatively, the government could generate the same outcome by
subsidizing production at the rate (1 − α)/α.

4.3.5 Scale Effects

The model implies a scale effect in that an expansion of the aggregate labor force, L , raises
the per capita growth rate for the decentralized economy in equation (4.28) and for the
social planner in equation (4.31). These results reflect, respectively, the positive effect of L
on the private marginal product of capital, f (L) − L · f ′(L), in equation (4.27) and on the
average product, f (L), in equation (4.26). Moreover, if the labor force grows over time,
the per capita growth rates would increase over time.10

9. We assume that the parameters allow for positive growth and bounded utility; hence,

AαL1−α > ρ + δ > (1 − θ) · (AαL1−α − δ − ρ)/θ + δ

a result that specializes equation (8.23).

10. This result follows at once for ċ/c, but k̇/k and ẏ/y would not correspond to ċ/c in an environment of
growing L . Also, if L rises enough, the condition for bounded utility in equation (8.23) must eventually be
violated if θ < 1.
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If we can identify L with the aggregate labor force of a country, the prediction is that
countries with more workers tend to grow faster in per capita terms. The empirical results
discussed in chapter 12 for a large number of countries in the post–World War II period
indicate that the growth rate of per capita GDP bears little relation to the country’s level
of population. (These results apply when the initial level of per capita GDP, the average
person’s education, and some other variables are held constant.) Thus these findings do not
support a scale effect in country size.

It is possible that the scale variable for spillovers, L , does not relate closely to aggregates
measured at the country level. The relevant scale can, for example, be larger than the
size of the domestic economy if producers benefit from knowledge accumulated in other
countries. Kremer (1993) argues that the correct scale variable might be world population,
and he provides some evidence from the long-run history that world population is positively
correlated with productivity growth. Alternatively, if the free transmission of ideas is limited
to close neighbors (either geographically or in terms of industry), the appropriate scale may
be smaller than the home economy. These caveats blur the empirical implications of the
spillovers model and make difficult the testing of this model with macroeconomic data.

We derived the scale effect from a model that assumed learning by doing and spillovers
of knowledge. These elements generate a scale effect on growth rates because they imply
constant returns to K and increasing returns to K and L at the social level. A similar scale
effect would result if this pattern of factor returns prevailed for other reasons. The learning-
by-doing/spillovers model is special, however, in that it also implies constant returns to
scale in the factors, Ki and Li , that are chosen by an individual firm. If increasing returns
applied at the level of a firm, the model would be inconsistent with perfect competition,
because firms would have an incentive to grow arbitrarily large in order to benefit from the
scale economy. We avoided this outcome by assuming that a firm’s technology depended
on the aggregate capital stock, K , and that each firm neglected its own contribution to this
aggregate. This specification allows us to maintain the assumption of perfect competition,
but it also implies that the competitive equilibrium is not Pareto optimal.

One way to eliminate the scale effect is to argue that the term Ai in equation (4.22)
depends on the economy’s average capital per worker, K/L , rather than the aggregate capital
stock, K . This alternative specification was used by Frankel (1962) in his main analysis
but without much discussion. Lucas (1988) also uses this specification, because he assumes
that the learning and spillovers involve human capital and that each producer benefits from
the average level of human capital in the economy, rather than the aggregate. Thus, instead
of thinking about the accumulated knowledge or experience of other producers, we have
to think here about the benefit from interacting (freely) with the average person, who
possesses the average level of skills and knowledge. The Lucas formulation might arise if
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we thought that the presence of stupid people makes it difficult to identify and use the good
ideas provided by smart people.

To analyze this model, we can let Ai = K/L in equation (4.22) and then proceed as
before. The only difference in the results is that the average product of capital and the
private marginal product of capital no longer depend on L . For example, in the Cobb–
Douglas case, the average product in equation (4.33) becomes A rather than AL1−α , and
the private marginal product in equation (4.34) becomes Aα rather than AαL1−α . Since the
formal analysis is the same as before, we leave the proof of these results as an exercise.

4.4 Public Services and Endogenous Growth

In the AK model, anything that changes the level of the baseline technology, A, affects
the long-run per capita growth rate. In the model with learning by doing and knowledge
spillovers, the nonrivalry of ideas could eliminate the tendency for diminishing returns to
capital accumulation and, thereby, generate the AK form. We show in this section that the
government’s public services are another possible source of the AK form. In this case,
the government’s choices about public services determine the coefficient A and thereby
affect the economy’s long-run growth rate.

4.4.1 A Public-Goods Model

We extend here the model from chapter 3 in which the government’s purchases of goods
and services, G, enter into the production function as pure public goods. If the production
function takes the Cobb–Douglas form, the specification for firm i is (following Barro,
1990b)

Yi = AL1−α
i · K α

i · G1−α (4.37)

where 0 < α < 1. This equation implies that production for each firm exhibits constant
returns to scale in the private inputs, Li and Ki . We assume that the aggregate labor force,
L , is constant. For fixed G, the economy will face diminishing returns to the accumulation of
aggregate capital, K , as in the Ramsey model of chapter 2. If, however, G rises along with K ,
equation (4.37) implies that diminishing returns will not arise; that is, the production function
specifies constant returns in Ki and G for fixed Li . For this reason, the economy is capable
of endogenous growth, as in the AK model studied earlier in this chapter. Note also that the
form of the production function implies that the public services are complementary with
the private inputs in the sense that an increase in G raises the marginal products of Li and Ki .

If the exponent on G in equation (4.37) were less than 1 − α, diminishing returns to
Ki and G would apply, and these diminishing returns would rule out endogenous growth.
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Conversely, if the exponent were greater than 1 − α, growth rates would tend to rise over
time. We are therefore focusing on the special case in which the exponent on G exactly
equals 1 − α, so that the constant returns to Ki and G imply that the economy is capable
of endogenous growth. This setting parallels the production function for the learning-by-
doing/spillovers model in equation (4.23), except that the aggregate capital stock, K , has
been replaced by the quantity of public goods, G.

Suppose that the government finances its purchases of goods and services with lump-sum
taxes (which, in the absence of a labor-leisure choice, could be tax rates on consumption or
labor income as discussed in chapter 3). For given G, each profit-maximizing firm equates
the marginal product of capital to the rental price, r + δ. Hence, equation (4.37) implies

αA · k−(1−α)
i · G1−α = r + δ (4.38)

Therefore, each firm chooses the same capital-labor ratio, ki = k. The production function
from equation (4.37) can therefore be aggregated to get

Y = ALkαG1−α (4.39)

Equation (4.39) implies

G = (G/Y )1/α(AL)1/α · k (4.40)

We assume now that the government chooses a constant ratio of its purchases to GDP, G/Y .
If we use equation (4.40) to substitute for G in equation (4.38), we get

r + δ = αA1/α · (G/Y )(1−α)/α · L(1−α)/α (4.41)

If G/Y and L are constant, the marginal product of capital is invariant with k and, hence,
constant over time. The level of the marginal product is increasing in L , so the model
predicts scale effects. These results parallel the findings from the model with learning by
doing and spillovers (see equation [4.27]).

The constant marginal product of capital in equation (4.41) plays the same role in the
growth process that the constant A played in the AK model. There are no transitional
dynamics, and the growth rates of c, k, and y all equal the same constant. We can determine
this common growth rate from the expression for consumption growth in equation (4.4):11

ċ/c = (1/θ) · [αA1/α · (G/Y )(1−α)/α · L(1−α)/α − δ − ρ] (4.42)

11. As in the AK and spillover models, we require some inequality conditions for the growth rate to be positive and
for utility to be bounded. The former condition is ∂Yi /∂Ki − δ > ρ, and the latter condition—which corresponds
to the transversality condition—is [(θ − 1)/θ ] · (∂Yi /∂Ki − δ) + ρ/θ > 0. The value for ∂Yi /∂Ki is given by the
right-hand side of equation (4.41).
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The growth rate is increasing in G/Y because we assumed that public outlays, G, were
financed by a nondistorting tax.

We could have assumed instead that G was financed partly by a distorting tax—in the
present model, these could be the taxes on capital income, τa and τ f , that we considered
in chapter 3. In this case, the expression for the net marginal product of capital in equa-
tion (4.42), αA1/α · (G/Y )(1−α)/α · L(1−α)/α − δ, would be multiplied by (1 − τa) · (1 − τ f )

to get the after-tax marginal product of capital. Then, if τa and τ f tended to rise with G/Y ,
the direct positive effect of G/Y on the growth rate in equation (4.42) would be offset by
a negative effect from the higher tax rates. The relation between the growth rate and G/Y
is then likely to be nonmonotonic—first rising and subsequently falling when the tax-rate
effect became dominant. The detailed results depend on the way in which τa and τ f relate
to G/Y . We leave this analysis as an exercise.

We now return to the case of lump-sum taxes, as assumed in equation (4.42). We can,
as usual, determine the optimal outcomes in the model by figuring out the choices of a
benevolent social planner who seeks to maximize the utility attained by the representative
household. The maximization entails the natural efficiency condition ∂Y/∂G = 1.12 The
particular functional form of the production function [equation (4.39)] implies that this
condition corresponds to

G/Y = 1 − α (4.43)

Therefore, the optimal ratio of government purchases to GDP is, in fact, constant in this
model.

If G/Y is determined from equation (4.43), the decentralized growth-rate solution from
equation (4.42) is also the one that a social planner would choose.13 This optimality of the
decentralized result applies because of the assumption that G is financed by lump-sum taxes.
Substitution from equation (4.43) into the condition for the growth rate in equation (4.42)
therefore yields

ċ/c (Social planner) = (1/θ) · [
αA1/α · (1 − α)(1−α)/α · L(1−α)/α − δ − ρ

]
(4.44)

12. The planner would choose c, k, and G so as to maximize
∫ ∞

0
e−ρt · c1−θ −1

1 − θ
·dt , subject to k̇ = AkαG1−α −c−

δk − G/L . The Hamiltonian is J = e−ρt · c1−θ −1
1 − θ

+ ν · (AkαG1−α − c − δk − G/L). The first-order conditions are

(i) e−ρt · c−θ = ν

(ii) A · (1 − α) · kαG−α = 1/L

(iii) −ν̇ = ν · (Aαkα−1G1−α − δ)

plus the usual transversality condition. Notice that (ii) is equivalent to ∂Y/∂G = 1.

13. Take logarithms and derivatives of the first-order condition (i) from the previous note, substitute the result
into (iii), and use (ii) to get equation (4.44).
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An increase in scale, represented by L , raises the marginal product of capital in equa-
tion (4.41) and raises the growth rate correspondingly in equation (4.44). Therefore, the
public-goods model predicts scale effects that resemble those in the model with learning by
doing and spillovers (see equations [4.35] and [4.36]). In the present context, the economy
benefits from a greater scale because the governmental services are assumed to be nonrival
and can therefore be spread costlessly over additional users. A continuing expansion of L ,
resulting from population growth, would imply rising per capita growth rates. Thus, as in
the learning-by-doing/spillovers model, we had to assume zero population growth to study
steady states.

As mentioned before, the cross-country data indicate that the growth rate of per capita
GDP bears little relation to country size, as measured by population. (Countries are a natural
unit of observation here if we think that the benefits from the government’s public goods ex-
tend only over the government’s political jurisdiction.) The failure to detect more important
scale effects likely means that most of the government’s services do not have the nonrival
character that is assumed in the model. We therefore now consider an alternative setting in
which the government’s services are subject to congestion. We shall show that this model
has very different implications for scale effects and for desirable public finance.

4.4.2 A Congestion Model

As mentioned in chapter 3, many governmental activities, such as highways, water systems,
police and fire services, and courts, are subject to congestion. For a given quantity of
aggregate services, G, the quantity available to an individual declines as other users congest
the facilities. For governmental activities that serve as an input to private production, we
model this congestion (as in Barro and Sala-i-Martin, 1992c) by writing the production
function for the i th producer as

Yi = AKi · f (G/Y ) (4.45)

where f ′ > 0 and f ′′ < 0. The production process is AK modified by the term that involves
public services: an increase in G relative to aggregate output, Y , expands Yi for given Ki .
Because of congestion, an increase in Y for given G lowers the public services available
to each producer and therefore reduces Yi . The formulation assumes that G has to rise in
relation to total output, Y , in order to expand the public services available to each user. We
could have assumed alternatively that G had to rise in relation to aggregate private capital,
K , in order to raise the quantity of services. The results would be essentially the same under
this specification.

For given G and Y, a firm’s production exhibits constant returns with respect to the private
input Ki . If G grows at the same rate as Y , G/Y remains fixed, and the constant returns in
Ki imply that the economy will generate endogenous growth, as in the AK model.
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The condition for the marginal product of capital is modified from equation (4.41) to

r + δ = A · f (G/Y ) (4.46)

Note that, unlike the public-goods model, the marginal product and, hence, the rate of return,
do not depend on the scale variable, L . The growth rates of c, k, and y all equal the same
constant, given from equation (4.4) by

ċ/c = (1/θ) · [A · f (G/Y ) − δ − ρ] (4.47)

This growth rate is increasing in G/Y and independent of L . The independence from L
means that the puzzling scale effects do not appear in this model.

We can again work through the social planner’s problem to assess the Pareto optimality of
the decentralized outcomes. The planner would maximize the usual utility function, subject
to the resource constraint (expressed in per capita terms),

k̇ = Ak · f (G/Y ) − c − δk − G/L (4.48)

where we assume that the rate of population growth is zero. The Hamiltonian for this
program is

J = e−ρt · c1−θ − 1

1 − θ
+ υ · [Ak · f (G/Y ) − c − δk − G/L] (4.49)

Before we take derivatives with respect to c, k, and G, notice that the derivative of
the production function with respect to k and G is a bit complicated. The reason is that
aggregate output appears inside the expression for aggregate output. Hence, when we take
the derivative of y with respect to k, we need to take into account that Y depends on Y
through the term f (G/Y ). One way to solve the problem is to write the derivative with
respect to k as

∂y

∂k
= A · f (G/Y ) + Ak · f ′(G/Y ) ·

(−G/L

y2

)
· ∂y

∂k
(4.50)

and then factor out ∂y
∂k to get, after rearranging terms,

∂y

∂k
= A · f (G/Y )

1 + (G/Y ) · f ′(G/Y )

f (G/Y )

(4.51)

Similarly, the derivative of y with respect to G is

∂y

∂G
= L ·

f ′(G/Y )

f (G/Y )

1 + (G/Y ) · f ′(G/Y )

f (G/Y )

(4.52)



One-Sector Models of Endogenous Growth 225

We are now ready to compute the first-order conditions for the planner. The FOC with
respect to consumption delivers the usual consumption growth equation ċ

c = 1
θ
(− υ̇

υ
−ρ). The

FOC with respect to G requires that ∂Y/∂G = 1. It is not surprising that the social planner
satisfies this last condition: efficiency entails using G as an input up to the point where its
marginal product equals its marginal unit, which is fixed at unity. Using equation (4.52),
the efficiency condition can be written as

f ′(G/Y )

f (G/Y )
= 1

1 − (G/Y )
(4.53)

Let (G/Y )∗ represent the ratio that satisfies this condition. The FOC with respect to capital
requires

−υ̇ = υ ·
(

∂y

∂k
− δ

)
(4.54)

Substituting equations (4.54), (4.51), and (4.52) into the consumption growth equation, we
find that the social planner’s growth rate is given by

ċ/c (Social planner) = (1/θ) · {[1 − (G/Y )∗] · A · f [(G/Y )∗] − δ − ρ} (4.55)

Thus a new result is that the social planner’s growth rate would not correspond to
the decentralized growth rate, given from equation (4.47), even when G/Y = (G/Y )∗.
The reason is that the decentralized result reflects lump-sum taxation, and lump-sum taxes
are inappropriate when the public services are subject to congestion. The intuition for
equation (4.55) is as follows. An individual producer’s decision to expand capital, Ki , and
hence, output, Yi , contributes to total output, Y , and thereby increases congestion for a
given aggregate of public services, G. With a lump-sum tax, the individual producer ne-
glects these adverse external effects and therefore has too great an incentive to expand
Ki and Yi . To internalize the distortion, a producer who raises Yi has to provide enough
additional resources to maintain the public services available to others, that is, to keep
G/Y constant. The required compensation is G/Y times the addition to Y . That is why
the term [1 − (G/Y )∗] multiplies the gross marginal product of capital, A · f [(G/Y )∗],
in equation (4.55). Interestingly, the decentralized solution would correspond to the social
planner’s result if output were taxed proportionately at the rate (G/Y )∗. This tax rate—
effectively a user fee for the publicly provided services—would lower the after-tax marginal
product of capital to [1 − (G/Y )∗] · A · f [(G/Y )∗], which is the expression that appears
in equation (4.55).
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4.5 Transitional Dynamics, Endogenous Growth

The models considered thus far in this chapter lack any transitional dynamics. In particular,
the prediction is that per capita growth rates would be independent of the initial levels of k
and y. Thus these models are inconsistent with the empirical evidence on convergence, as
discussed in chapters 11 and 12.

We showed in chapter 1, in models that assume a constant saving rate, that it is possible
to construct an endogenous growth model that exhibits transitional dynamics in which the
convergence property holds. These results follow if we modify the technology to reintroduce
diminishing returns to capital but also assume that capital’s marginal product is bounded
from below as the capital stock tends to infinity (so that the Inada condition at infinity is
violated). We show in this section how this kind of technology can be combined with the
type of household optimization that applies in the Ramsey model.

The technologies that we consider here take the form considered by Jones and
Manuelli (1990),

Y = F(K , L) = AK + �(K , L) (4.56)

where �(K , L) satisfies the properties of a neoclassical production function: positive and
diminishing marginal products, constant returns to scale, and the Inada conditions (equa-
tions [1.5a]– [1.5c]). Production functions of the form of equation (4.56) are not neoclassical
only because they violate one of the Inada conditions, limK→∞[∂Y/∂K ] = A > 0. The AK
part of the production function will deliver endogenous growth, whereas the �(K , L) part
will generate the convergence behavior. To keep the dynamic analysis manageable, we limit
the discussion to some specific functional forms for �(K , L).

4.5.1 A Cobb–Douglas Example

We begin with the production function that we considered in chapter 1 (equation [1.35]):

Y = F(K , L) = AK + BK α L1−α

where A > 0, B > 0, and 0 < α < 1.14 We can rewrite this function in per capita terms as

y = f (k) = Ak + Bkα (4.57)

Note that limk→∞[ f ′(k)] = A > 0.

14. All the results that we discuss in this section go through if L is replaced by L̂ , where L̂ = Lext . That is, we can
allow for exogenous technological progress in the part of the production function that is subject to diminishing
returns. If the parameter A grew steadily over time, the model would not have a steady state.
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The dynamic equations for k and c are the usual ones derived for the Ramsey model in
chapter 2 (equations [2.23] and [2.24] with x = 0):

k̇/k = f (k)/k − c/k − (n + δ) = A + B · kα−1 − c/k − (n + δ) (4.58)

ċ/c = (1/θ) · [ f ′(k) − δ − ρ] = (1/θ) · [A + Bα · kα−1 − δ − ρ] (4.59)

If the model generates endogenous growth—that is, (k̇/k)∗ > 0—then k → ∞ as t → ∞,
and the terms involving kα−1 asymptotically become negligible. Therefore, the steady state
looks exactly like the AK model, and the steady-state growth rates of c, k, and y are all
given (from equation [4.16]) by

γ ∗ = (1/θ) · (A − δ − ρ) (4.60)

We assume A > δ + ρ, so that γ ∗ > 0.15 (If A ≤ δ + ρ, then γ ∗ = 0, just as in the standard
Ramsey model discussed in chapter 2.)

We could try to follow the approach from figure 2.1 by constructing a phase diagram in
(k, c) space. This method does not work, however, because k and c grow forever if γ ∗ > 0.
A procedure that does work involves a transformation to variables that are constant in the
steady state. We choose to study the evolution of the average product of capital, denoted by
z ≡ f (k)/k, and the ratio of consumption to the capital stock, denoted by χ ≡ c/k. Note
that z is a statelike variable in that, like k, its value at a point in time is dictated by past
investments and the evolution of L . Thus, if investment is finite and L has no jumps, z and k
cannot jump at a point in time. In contrast, χ is a controllike variable in that, like c, its value
can jump at a point in time. (Such jumps will, however, not be optimal in the equilibria that
we focus on.) Unlike k and c, the two new variables, z and χ , approach constants in the
steady state.

We can use equations (4.58) and (4.59) to derive a dynamic system in terms of the
transformed variables, z and χ . The results can be written, after a fair amount of algebra,
in the form

ż = −(1 − α) · (z − A) · (z − χ − n − δ) (4.61)

χ̇ = χ ·
[
(χ − ϕ) − (θ − α)

θ
· (z − A)

]
(4.62)

where ϕ ≡ (A − δ) · (θ − 1)/θ + ρ/θ − n. We require ϕ > 0 to satisfy the transversality
condition. This condition also ensures that utility is finite when c grows at the rate γ ∗ shown

15. We also continue to assume ρ > n, so that A > δ + ρ implies A > δ + n. If the last inequality did not hold,
utility would be unbounded if c were constant over time.
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Figure 4.2
Transitional dynamics in an endogenous growth model (when F[K, L] = AK + B KαL1−α). The phase
diagram is shown in (z, χ) space, where z ≡ f (k)/k is the gross average product of capital and χ ≡ c/k. The
χ̇ = 0 locus is a line with a slope that is less than one and is positive, as shown, if θ > α. There are two conditions
that satisfy ż = 0. One is a vertical line at z = A, and the other is an upward-sloping line with unit slope. This
line must cross the vertical line at A at a value of χ that exceeds χ∗. Since z ≡ f (k)/k = A + Bkα−1 > A, the
only steady state is the point at which the χ̇ = 0 schedule intersects the vertical line z = A. Since z > z∗ applies
initially, z and χ decline monotonically during the transition. (Note that the result on the path of χ depends on the
assumption θ > α.)

in equation (4.60). It is clear from equations (4.61) and (4.62) that ż = χ̇ = 0 is consistent
with z = A and χ = ϕ, which turn out to be the steady-state values of z and χ . (Note that
z = A means that, asymptotically, the AK part of the production function dominates the
BK α L1−α part.)

Figure 4.2 shows the phase diagram in (z, χ) space. Equation (4.62) implies that the
χ̇ = 0 locus is (aside from χ = 0) the straight line χ = ϕ − A · (θ − α)/θ + z · (θ − α)/θ .
The slope is less than 1 and is positive, as shown, if θ > α. If θ < α, the line would have a
negative slope. This case requires an unrealistically high degree of intertemporal substitution
in that θ would have to be significantly below unity.

Equation (4.61) implies that ż = 0 if z = A or if χ = z − n − δ. The former condition
corresponds to the vertical line at A in figure 4.2. The latter condition is shown by the
straight line with slope 1 and negative intercept. Note that the slope of this ż = 0 line must
be steeper than that of the χ̇ = 0 line, which has slope less than 1. (The inequality A > ρ+δ

implies that the ż = 0 line intersects the vertical line at A at a value of χ that exceeds ϕ, as
shown in the figure.)

Because z = A + B · kα−1 > A, the portions of figure 4.2 in which z < A are irrelevant.
We can therefore confine the analysis to the region in which z ≥ A. Note from the figure
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that the ż = 0 and χ̇ = 0 lines intersect in this region only at z∗ = A and χ∗ = ϕ, which are
the steady-state values.

We now consider the transitional dynamics, starting from an initial position z(0) > A.
The figure shows the stable arm that corresponds to the appropriately chosen initial value
χ(0). Along this arm, the average product of capital, z, and the ratio of consumption to
capital, χ , each decline monotonically.16 The monotonic decline in z corresponds to the
monotonic increase in k. The monotonic fall in χdepends on the assumption θ > α.17 If we
had assumed θ < α, then χ would have risen monotonically during the transition. (If θ = α,
then χ = ϕ, the steady-state value, throughout the transition.)

Capital’s share of product is given by

k · f ′(k)/ f (k) = (Ak + αBkα)/(Ak + Bkα)

which equals α if A = 0 and equals 1 if B = 0. If A > 0 and B > 0, capital’s share rises toward
one and labor’s share falls toward zero as k increases without bound. This implication of
the model would conflict with the data if we interpreted capital in the narrow sense of plant
and equipment but is more reasonable if we add human capital. In this case, the implication
is that the share of raw labor in total product falls toward zero as the economy develops.

The most important aspect of the extended model is that it restores a transitional dynamics
during which the average and marginal products of capital decline gradually toward the
steady-state value, A. The falling productivity of capital tends to generate a decline over
time in per capita growth rates; that is, the model again exhibits the convergence property
that applies in the Ramsey model.

Appendix 2C showed that the growth rate of capital per person, k̇/k, declines monoton-
ically during the transition of the Ramsey model.18 The proof relied on the diminishing
marginal product of capital, f ′′(k) < 0, but not on the Inada condition, limk→∞[ f ′(k)] = 0.
Therefore, the convergence property of declining growth rates of capital per person ap-
plies immediately to the present model in which the production function is given by equa-
tion (4.57) or, more generally, by equation (4.56). This framework features the long-run
growth properties of the AK model, together with the convergence behavior exhibited by
the Ramsey model.

16. We can rule out the unstable paths from the usual arguments. The paths that approach χ = 0 and z = A violate
the transversality condition. Those that involve χ → ∞ and z → ∞ entail running out of capital in finite time
and therefore lead eventually to a discrete downward jump to zero consumption.

17. Appendix 2B noted that c/k fell monotonically in the Ramsey model with a Cobb–Douglas technology if
θ > α. This result still holds if the production function is modified to f (k) = Ak + Bkα , the case presently being
considered.

18. This result applies in the Ramsey model if the economy begins at k(0) < k∗. In the present case, k∗ is effectively
infinite, so that this inequality is never a constraint.
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4.5.2 A CES Example

We now demonstrate that we can get similar results for endogenous growth and transitional
dynamics if the production function takes a constant-elasticity-of-substitution (CES) form.
We showed in chapter 1 that endogenous growth is feasible with a CES production function
if the elasticity of substitution between the factors K and L is high. Specifically, we now
assume that the technology is

Y = F(K , L) = B · {a · (bK )ψ + (1 − a) · [(1 − b) · L]ψ }1/ψ (4.63)

where 0 < a < 1, 0 < b < 1, and 0 < ψ < 1, so that the elasticity of substitution,
1/(1 − ψ), is greater than 1.

The production function can be written in terms of per capita quantities as

y = f (k) = B · [a · (bk)ψ + (1 − a) · (1 − b)ψ ]1/ψ (4.64)

We showed in chapter 1 that the marginal and average products of capital are positive and
diminishing and have the following limits:

lim
k→∞

[ f ′(k)] = lim
k→∞

[ f (k)/k] = Bba1/ψ

lim
k→0

[ f ′(k)] = lim
k→0

[ f (k)/k] = ∞
In particular, since f ′(k) approaches a positive constant as k goes to infinity, the key Inada
condition is violated, and the model may generate endogenous growth.

To make the analysis parallel with that in the previous section, we define the parame-
ter A as

A ≡ Bba1/ψ (4.65)

With this definition, the CES production function (with 0 < ψ < 1) is a special case of
equation (4.56). If we define �(K , L) ≡ F(K , L) − AK , where F(K , L) is the CES func-
tion in equation (4.63) and A is given by equation (4.65), then the function �(K , L)

satisfies all of the neoclassical properties (equations [1.5a]–[1.5c]), including the Inada
conditions.

Since A is the limiting value of f ′(k), the previous analysis suggests that, to generate
endogenous growth, the parameters of the model have to satisfy the condition A > δ + ρ.
This inequality will tend to hold when the level of technology, B, is high, when the elasticity
of substitution (reflected in ψ) is high, and when the parameters a and b are large (the larger
the values of a and b are, the more important capital is in the production process).
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The dynamic equations for k and c are again the ones derived for the Ramsey model in
chapter 2 (equations [2.23] and [2.24] with x = 0):

k̇/k = f (k)/k − c/k − (n + δ)

ċ/c = (1/θ) · [ f ′(k) − δ − ρ]

If we define z ≡ f (k)/k and χ ≡ c/k, as in the previous section, the dynamic equations for
z and χ can be shown to be

ż/z = [(z/A)−ψ − 1] · (z − χ − n − δ)

(4.66)
χ̇/χ = (A/θ) · [(z/A)−ψ − 1] − (z − A) + (χ − ϕ)

where ϕ ≡ (A − δ) · (θ − 1)/θ + ρ/θ − n > 0, as before. The analysis again applies in the
region in which z ≥ A, because f (k)/k can never fall below A. The steady-state position
is again at z∗ = A and χ∗ = ϕ.

To analyze the dynamics of the model, we construct a phase diagram in (z, χ) space in
figure 4.3. There are two lines (other than z = 0) that make ż = 0: a vertical line at z = A
and an upward-sloping line with unit slope and intercept −(n + δ). The two lines cross at
z = A and χ = A − δ − n.
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ż � 0

z(0)
z
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Figure 4.3
Transitional dynamics in an endogenous growth model when the production function is CES (with
0<ψ < 1). The phase diagram is shown in (z, χ) space, as in figure 4.2. We assume θ > 1 − ψ . The χ̇ = 0
locus then displays a U shape with a minimum to the left of A. The two ż = 0 loci cross at χ = A − δ − n. The
χ̇ = 0 locus intersects the z = A line below A − δ − n. The steady state is given accordingly by the intersection
of the χ̇ = 0 locus with the vertical line z = A. Since the economy begins with z > z∗, the transition features
monotonically decreasing values of z and χ . (Note: The result on the path of χ depends on the assumption
θ > 1 − ψ .)



232 Chapter 4

The χ̇ = 0 schedule is given (other than by χ = 0) by the curve χ = ϕ+ (z − A)− (A/θ) ·
[(z/A)1−ψ −1]. This curve is downward sloping for low values of z and reaches a minimum
at z = A · [(1 − ψ)/θ ]1/ψ . This minimum occurs to the left of A, as shown, if θ > 1 − ψ .
Since 0 < ψ < 1, this condition must hold if θ ≥ 1. (We leave the case in which θ ≤ 1 − ψ

as an exercise.) As z goes to infinity, the slope of the χ̇ = 0 schedule approaches 1. This
curve crosses the vertical line z = A below the point A − δ − n (if A > ρ + δ > n + δ, as
we assume).

Figure 4.3 shows the stable saddle path beginning from a value z(0) > A. The variables
z and χ decline monotonically during the transition, just as in the model discussed in the
previous section. This transition again exhibits the convergence property, whereby k̇/k
declines as k rises (and z approaches A).

4.6 Concluding Observations

This chapter shows that endogenous growth may arise if the returns to capital do not
fall in the long run below some positive, baseline value. The long-run growth rate then
depends on the level of the technology and the willingness to save. In some models, the
effects from the level of technology can be generalized to include the extent of spillovers
across producers, scale effects, and the influences of public services.

The simplest kinds of endogenous-growth models—which look like the AK model—are
inconsistent with empirical observations on convergence. However, extended versions of
endogenous-growth models combine the convergence behavior of the neoclassical growth
model with the long-run growth properties of the AK model. These theories accord better
with the empirical evidence on convergence.

4.7 Appendix: Endogenous Growth in the One-Sector Model

In this chapter, we studied several models that could generate endogenous growth. The
key property of these examples was that diminishing returns were not present, at least
asymptotically, in the sense that the average and marginal products of capital had positive
lower bounds. In particular, the Inada condition limk→∞[ f ′(k)] = 0 was violated. We now
discuss more generally the role of this condition in one-sector models of endogenous growth.

Consider a model without exogenous technological progress in which the dynamic equa-
tions are those from the Ramsey model of chapter 2 (equations [2.23] and [2.24]):

γk ≡ k̇/k = f (k)/k − c/k − (n + δ) (4.67)

γc ≡ ċ/c = (1/θ) · [ f ′(k) − δ − ρ] (4.68)
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If f ′(k) and γk asymptotically approach finite limits, the transversality condition from
equation (2.25) can be expressed as

lim
t→∞[ f ′(k) − δ] > lim

t→∞(γk + n) (4.69)

that is, the asymptotic rate of return on capital, given on the left-hand side, exceeds the
asymptotic growth rate of the capital stock, given on the right-hand side.

We define a steady state, as usual, as a situation in which the growth rates of the various
quantities, K , Y , and C , are constant. In the steady states that we studied in chapter 2, the
growth rates of the quantities per unit of effective labor, such as γk̂ and γĉ, were 0, so that
the per capita growth rates, γk and γc, equaled x , and the growth rates of levels, γK and γC ,
equaled n + x . Since we now assume x = 0, the per capita growth rates would be 0 in the
steady states considered in chapter 2. Hence, we want to consider what modifications of
the technology will allow for steady states in which the per capita growth rates are positive
constants, rather than 0, when x = 0.

Imagine that the steady-state per capita growth is positive, so that

lim
t→∞(γk) ≡ γ ∗

k > 0

Since k then grows in the long run at a positive rate, limt→∞(k) = ∞; that is, k rises without
bound. The transversality condition in equation (4.69) then requires

lim
k→∞

[ f ′(k)] > γ ∗
k + n + δ > n + δ > 0 (4.70)

Note that the limit on the left-hand side of expression (4.70) refers to k → ∞, a situation
that applies as t → ∞ if k grows in the long run at a constant, positive rate.

The standard Inada condition, limk→∞[ f ′(k)] = 0, rules out the inequality in expres-
sion (4.70): it is for that reason that endogenous growth does not apply with a neoclassi-
cal production function. The model may, however, be able to generate positive long-term
growth of k if capital’s marginal product has a positive lower bound. We denote this
asymptotic marginal product by A > 0, that is, we now assume

lim
k→∞

[ f ′(k)] = A > 0 (4.71)

The inequality in expression (4.70) implies that A > 0 is not a sufficient condition to
generate growth of k in the steady state. A necessary condition for γ ∗

k to be positive is

A > n + δ (4.72)

Hence, the asymptotic rate of return to capital, A − δ, must exceed the growth rate, n, of
the capital stock that would obtain if k were constant in the steady state (as in the Ramsey
model with x = 0).
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If γ ∗
k > 0, so that limt→∞(k) = ∞ and, hence, limt→∞[ f ′(k)] = A, equation (4.68)

implies

(γc)
∗ = (1/θ) · (A − δ − ρ) (4.73)

Therefore, γ ∗
c > 0 requires

A > δ + ρ (4.74)

We showed in chapter 2 that, when x = 0, the transversality condition required ρ > n.
If this last inequality still holds—as we assume—then the inequality in expression (4.74)
implies the inequality in expression (4.72). If the inequality in expression (4.74) fails to hold,
the analysis of chapter 2 still goes through—including the result γ ∗

k = 0—even though the
technology could physically support perpetual growth of k. The asymptotic rate of return
on capital, A − δ, is too low in this case for γ ∗

k > 0 to be optimal. We assume, henceforth,
that the inequality in expression (4.74) is satisfied.

We now want to show that γ ∗
k = γ ∗

c . Equation (4.67) implies

γ ∗
k = lim

k→∞
[ f (k)/k] − lim

k→∞
(c/k) − (n + δ)

We know from l’Hôpital’s rule (if f [k] tends to infinity as k tends to infinity) that
limk→∞[ f (k)/k] = limk→∞[ f ′(k)] = A. Therefore,

γ ∗
k = A − n − δ − lim

k→∞
(c/k) (4.75)

If γ ∗
c > γ ∗

k , then limk→∞(c/k) = ∞, which is obviously inconsistent with γ ∗
k > 0 in

equation (4.75). If γ ∗
c < γ ∗

k , then limk→∞(c/k) = 0, which implies γ ∗
k = A − n − δ. This

result implies A−δ = γ ∗
k +n, a violation of the transversality condition given in expression

(4.69). We can therefore rule out γ ∗
c < γ ∗

k .
The only remaining possibility is

γ ∗
k = γ ∗

c = (1/θ) · (A − δ − ρ) (4.76)

where we used the formula for γ ∗
c from equation (4.73). This solution works if it satisfies

the transversality condition shown in expression (4.69), that is, if A − δ exceeds γ ∗
k + n.

The formula for γ ∗
k in equation (4.76) implies that the transversality condition can be

written as

ϕ ≡ (A − δ) · (θ − 1)/θ + ρ/θ − n > 0 (4.77)

This condition corresponds to expression (4.12). Equations (4.75)–(4.77) then imply

lim
k→∞

(c/k) = ϕ > 0 (4.78)
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If we interpret A as the asymptotic value of f ′(k), then the conditions derived in this
appendix are satisfied by all the models that we discussed in this chapter. In particular, the
steady-state per capita growth rate is given in equation (4.76), and the steady-state level of
c/k is given in equation (4.78).

4.8 Problems

4.1 The AK model as the limit of the neoclassical model. Consider the neoclassical
growth model discussed in chapter 2. Imagine that the production function is Cobb–Douglas,
ŷ = Ak̂α .

a. How does an increase in α affect the transition equations for k̂ and ĉ in equations (2.23)
and (2.24)? How, therefore, does the increase in α affect the loci for ˙̂c = 0 and ˙̂k = 0 in
figure 2.1? How does it affect the steady-state values, k̂∗ and ĉ∗?

b. What happens, for example, to k̂∗ as α approaches 1? How does this result relate to the
AK model that was discussed in this chapter?

4.2 Oversaving in the AK model (based on Saint-Paul, 1992). We know from chapter 1
that an economy oversaves if it approaches a steady state in which the rate of return, r , is
smaller than the growth rate. Suppose that the technology is Y = AK , and the ratio c/k
approaches the constant (c/k)∗ in the steady state.

a. Use equation (4.8) to determine the steady-state growth rate of K (and, hence, of Y
and C). Can this steady-state growth rate exceed the interest rate, r , given in equation (4.7)?
Is it possible to get oversaving if the economy approaches a steady state and the technology
is Y = AK ?

b. Suppose that we combine the AK technology with the model of finite-horizon consumers
of Blanchard (1985), as described in section 3.7. Is it possible to get oversaving in this
model? What if we combine the AK technology with an overlapping-generations model, as
described in the appendix to chapter 3?

4.3 Transitional dynamics. Show that in the model of learning by doing with knowledge
spillovers presented in section 4.3 there is no transitional dynamics. That is, output and
capital always grow at the constant consumption growth rate given in equation (4.28).

4.4 Spillovers from average capital per worker. In the model presented in section 4.3,
assume that the firm’s productivity parameter, Ai , depends on the economy’s average capital
per worker, K/L , rather than on the aggregate capital stock, K . The production function is
assumed to be Cobb–Douglas:

Yi = A · (Ki )
α · [(K/L) · Li ]

1−α
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Derive the growth rates for the decentralized economy and for the social planner. Comment
on how the scale effect discussed in section 4.3 does not appear with this new specification.

4.5 Distorting taxes in the public-goods model. Suppose, in the model of section 4.4.1,
that public expenditures, G, are financed by a tax on household asset income at the rate τa .
How does this change affect the relation between the growth rate and G/Y , that is, how
does equation (4.42) change?

4.6 Congestion of public services (based on Barro and Sala-i-Martin, 1992c). In the
congestion model discussed in section 4.4.2, suppose that output for firm i is given by

Yi = AKi · f (G/K )

that is, the congestion of public services involves G in relation to K , rather than Y . How
do the results change under this revised specification of congestion? Consider, in partic-
ular, the growth rates that arise in the decentralized economy and in the social planner’s
solution.

4.7 Adjustment costs with an AK technology (based on Barro and Sala-i-Martin,
1992c). Imagine that firms face an AK technology, but that investment requires adjustment
costs as described in section 3.3. The unit adjustment-cost function is φ(i/k) = (b/2)·(i/k),
so that the total cost of purchasing and investment for 1 unit of capital is 1 + (b/2) · (i/k).
Producers maximize the present value of cash flows,

∫ ∞

0
{AK − I · [1 + (b/2) · (I/K )]} · e−r t · dt

where r = A − δ. The maximization is subject to the constraint K̇ = I − δK .

a. Set up the Hamiltonian and work out the first-order conditions for the representative firm.
Find the relation between the interest rate and the growth rate of capital. Is this relation
monotonic? Explain.

b. Assume that consumers solve the usual infinite-horizon Ramsey problem, so that the
growth rate of consumption relates positively to the interest rate. Suppose that the growth
rate of consumption equals the growth rate of the capital stock. Does this condition pin
down the growth rate? If not, can one of the solutions be ruled out from the transversality
condition?

c. Show that the growth rate of consumption equals the growth rate of the capital stock.
What does this finding imply about the model’s transitional dynamics? Explain.
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4.8 Growth in a model with spillovers (based on Romer, 1986). Assume that the pro-
duction function for firm i is

Yi = AK α
i · L1−α

i · K λ

where 0 < α < 1, 0 < λ < 1, and K is the aggregate stock of capital.

a. Show that if λ < 1 − α and L is constant, the model has transitional dynamics similar
to those of the Ramsey model. What is the steady-state growth rate of Y , K , and C in this
case?

b. If λ < 1 − α and L grows at the rate n > 0, what is the steady-state growth rate of Y , K ,
and C?

c. Show that if λ = 1 − α and L is constant, the steady state and transitional dynamics are
like those of the AK model.

d. What happens if λ = 1 − α and L grows at the rate n > 0?





5 Two-Sector Models of Endogenous Growth (with Special Attention
to the Role of Human Capital)

Long-term per capita growth without exogenous technological progress can be achieved if
the returns to capital are constant asymptotically. This was one of the lessons we learned in
chapter 4. In that chapter we argued that this absence of diminishing returns might apply if
we took a broad view of capital to include human, as well as physical, components. This
chapter deals explicitly with models that distinguish between physical and human capital.
More generally, the structure can be applied to various types of capital, including the kinds
of accumulated knowledge that we shall study in chapters 6 and 7.

We begin with a framework, similar to the one that we used to study an open economy
in chapter 3, in which physical and human capital are produced by identical production
functions. In this setting, the output from the usual one-sector technology can be used on a
one-for-one basis for consumption, investment in physical capital, and investment in human
capital. New results arise, however, when we allow for the constraint that gross investment
in physical and human capital must each be nonnegative. This constraint introduces effects
on the growth process due to imbalances between the levels of physical and human capital:
the growth rate of output is higher the larger the magnitude of the gap between the ratio of
physical to human capital and the steady-state value of this ratio.

We next allow for the possibility that physical and human capital are produced by different
technologies. Specifically, we focus on the empirically relevant case in which education—
the production of new human capital—is relatively intensive in human capital as an input.
This property holds, for example, in the model developed by Uzawa (1965) and used by
Lucas (1988), in which existing human capital is the only input in the education sector. This
modification of the production structure creates an asymmetry in the effect from imbalances
between physical and human capital on the growth rate. The source of the asymmetry derives
from the positive effect of the ratio of physical to human capital on the real wage rate (per
unit of human capital) and, hence, on the opportunity cost of human capital devoted to
education. In this setting, the growth rate for a broad concept of output still increases with
the magnitude of the imbalance between physical and human capital if human capital is
relatively abundant but tends to fall with the magnitude of the imbalance if human capital
is relatively scarce.

The presence of human capital may relax the constraint of diminishing returns to a broad
concept of capital and can lead thereby to long-term per capita growth in the absence
of exogenous technological progress. Hence, the production of human capital may be an
alternative to improvements in technology as a mechanism to generate long-term growth.
We should emphasize, however, some respects in which the accumulation of human capital
differs from the creation of knowledge in the form of technological progress. If we think
of human capital as the skills embodied in a worker, then the use of these skills in one
activity precludes their use in another activity; hence, human capital is a rival good. Since
people have property rights in their own skills, as well as in their raw labor, human capital



240 Chapter 5

is also an excludable good. In contrast, ideas or knowledge may be nonrival—in that they
can be spread freely over activities of arbitrary scale—and may in some circumstances be
nonexcludable. This distinction means that theories of technological progress—the subject
of chapters 6–8—differ in fundamental respects from the models of the accumulation of
human capital that we consider in this chapter.

5.1 A One-Sector Model with Physical and Human Capital

5.1.1 The Basic Setup

We start with a Cobb–Douglas production function that exhibits constant returns to physical
and human capital, K and H :

Y = AK α H 1−α (5.1)

where 0 ≤ α ≤ 1. We can think of human capital, H , as the number of workers, L , multiplied
by the human capital of the typical worker, h. The assumption here is that the quantity of
workers, L , and the quality of workers, h, are perfect substitutes in production in the sense
that only the combination Lh matters for output. This specification means that a fixed
number of bodies, L , will not be a source of diminishing returns because a doubling of K
and h, for fixed L , leads to a doubling of Y . We assume, only for convenience, that the total
labor force, L , is fixed and, hence, that H grows only because of improvements in the average
quality, h. We also omit any technological progress (that is, we assume that A is constant).

Output can be used for consumption or investment in physical or human capital. We
assume that the stocks of physical and human capital depreciate at the same rate, δ. The
depreciation of human capital includes losses from skill deterioration and mortality, net
of benefits from experience. (Different depreciation rates for physical and human capital
can be introduced, but this generalization complicates the algebra without providing much
additional insight.)

The economy’s resource constraint is

Y = AK α H 1−α = C + IK + IH (5.2)

where IK and IH are gross investment in physical and human capital, respectively. The
changes in the two capital stocks are given by

K̇ = IK − δK , Ḣ = IH − δH (5.3)

We showed in chapter 2 that we could deal equivalently with a model of distinct house-
holds and firms or with a setup in which households carry out production directly. This
equivalence also holds in the present setup. We use here the formulation in which the
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households are the producers of goods. If we neglect population growth, households max-
imize the usual utility function

U =
∫ ∞

0
u[c(t)] · e−ρt dt (5.4)

subject to the two constraints in equation (5.3) and subject to the economy-wide resource
constraint equation (5.2). The Hamiltonian expression is

J = u(C) · e−ρt + ν · (IK − δK ) + µ · (IH − δH) + ω · (AK α H 1−α − C − IK − IH )

(5.5)

where ν and µ are shadow prices associated with K̇ and Ḣ , respectively, and ω is the
Lagrange multiplier associated with equation (5.2).1 We use the usual utility function,

u(C) = (C1−θ − 1)/(1 − θ)

The first-order conditions can be obtained in the usual manner by setting the derivatives
of J with respect to C , IK , and IH to 0, equating ν̇ and µ̇ to ∂ J/∂K and ∂ J/∂ H , respectively,
and allowing for the budget constraint in equation (5.2).2 If we simplify these conditions,
we obtain the familiar result for the growth rate of consumption:

Ċ/C = (1/θ) · [Aα · (K/H)−(1−α) − δ − ρ] (5.6)

where Aα · (K/H)−(1−α) − δ is the net marginal product of physical capital.
The second condition is that the net marginal product of physical capital equal the net

marginal product of human capital:

Aα · (K/H)−(1−α) − δ = A · (1 − α) · (K/H)α − δ

This condition implies that the ratio of the two capital stocks is given by3

K/H = α/(1 − α) (5.7)

1. We could equivalently write the Hamiltonian as

J = u(C)e−ρt + ν · (AK α H1−α − C − δK − IH ) + µ · (IH − δH)

This formulation implicitly imposes the condition

IK = AK α H1−α − C − IH

which involves the Lagrange multiplier ω in equation (5.5).

2. We neglect, for the moment, the inequality restrictions IK ≥ 0 and IH ≥ 0.

3. The equality between net marginal products still holds if the depreciation rates on the two kinds of capital differ.
This condition again determines K/H , but the solution cannot be written, in general, as a closed-form expression
in terms of the underlying parameters.
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This result for K/H implies that the net rate of return to physical and human capital is
given by4

r∗ = Aαα · (1 − α)(1−α) − δ (5.8)

This rate of return is constant because the production function in equation (5.1) exhibits
constant returns with respect to broad capital, K and H . Therefore, diminishing returns do
not apply when K/H stays constant (equation [5.7]), that is, when K and H grow at the
same rate.

If K/H is constant, equation (5.6) implies that Ċ/C is constant and equal to

γ ∗ = (1/θ) · [
Aαα · (1 − α)(1−α) − δ − ρ

]
(5.9)

where we substituted for K/H from equation (5.7). We assume that the parameters are such
that γ ∗ > 0.

To see how this model relates to some previous analysis, we can substitute from equa-
tion (5.7) into the production function from equation (5.1) to get

Y = AK ·
(

1 − α

α

)(1−α)

Thus the model is equivalent to the AK model that we studied in chapter 4. We can use the
method of analysis from that chapter to show that, if the transversality condition holds, the
growth rates of Y, K , and H must equal the growth rate of C .5 That is, all quantities grow
at the constant rate γ ∗ shown in equation (5.9).

The results for r∗ and γ ∗ in equations (5.8) and (5.9) are essentially the same as those
obtained from the AK model developed in chapter 4. That is, we have thus far made no
meaningful distinction between a model with two types of capital, K and H , and a model
with a single form of broad capital.

5.1.2 The Constraint of Nonnegative Gross Investment

Suppose that the economy begins with the two capital stocks K (0) and H(0). If the ratio
K (0)/H(0) deviates from the value α/(1−α) prescribed by equation (5.7), the solution that
we just found dictates discrete adjustments in the two stocks to attain the value α/(1 − α)

instantaneously. This adjustment features an increase in one stock and a corresponding
decrease in the other stock, so that the sum, K + H , does not change instantaneously.

4. The rate of return, r , would apply on a competitive credit market if we introduced such a market into the model.

5. The transversality condition is r∗ > γ ∗. Equations (5.8) and (5.9) imply that this condition can be expressed as
ρ > (1 − θ) · [Aαα · (1 − α)(1−α) − δ].
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The difficulty with this solution is that it depends on the possibility of an infinite positive
rate of investment in one form of capital and an infinite negative rate of investment in
the other form. We must, in other words, assume that investments are reversible, so that
old units of physical capital can be converted into human capital and vice versa. This
assumption is not very realistic. One would imagine that, even though investors can decide,
ex ante, whether to invest in human or physical capital, once the decision is made, it
is irreversible. Mathematically, these irreversibility constraints would take the form of
inequality restrictions: IK ≥ 0 and IH ≥ 0. In other words, one cannot disinvest human
or physical capital. One can choose not to invest at all in each form of capital; that is, one
can set IK = 0, which would entail a continuous decline in K at the rate K̇/K = −δ, but
one cannot actually disinvest K . Notice that, in the previous solution, if K (0)/H(0) differs
from α/(1−α), the discrete shift in the composition of capital at time zero requires negative
gross investment (at an infinite rate) in one of the stocks so that one of the irreversibility
constraints is necessarily violated. We therefore now reconsider the solution to the model in
the presence of these inequality restrictions. The discussion in the text omits some details,
which appear in appendix 5A, section 5.5.

If K (0)/H(0) < α/(1−α)—that is, if H is initially abundant relative to K —the previous
solution dictates a decrease in H and an increase in K at time zero. The desire to lower H
by a discrete amount implies that the inequality IH ≥ 0 will be binding at time zero (and for
a finite interval thereafter). When this restriction is binding, the household chooses IH = 0;
hence, the growth rate of H is given by Ḣ/H = −δ, and H follows the path

H(t) = H(0) · e−δt , for t = 0, . . . (5.10)

The agents realize that they have too much H in relation to K , but since it is infeasible to have
negative gross investment in H , they allow H to depreciate at the exogenously given rate δ.

If IH = 0, the household’s optimization problem can be written in terms of the simplified
Hamiltonian expression,

J = u(C) · e−ρt + ν · (AK α H 1−α − C − δK ) (5.11)

where ν multiplies the expression for K̇ (when IH = 0).6 This setup is equivalent to the stan-
dard neoclassical growth model in which households choose consumption and investment
in a single form of capital, K , subject to exogenous technological progress that augments
the quantity of the other input, here H . In the standard model, the other input, effective

6. We could equivalently write the Hamiltonian expression in a form that sets IH = 0 in the last term on the
right-hand side of equation (5.5):

J = u(C) · e−ρt + ν · (IK − δK ) + ω · (AK α H1−α − C − IK )

Equation (5.11) has already imposed the condition IK = AK α H1−α − C .
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labor, grows at the rate x (with zero population growth), whereas in the present setting, the
other input, H , grows at the rate −δ.

The crucial difference from the standard neoclassical growth model is that K/H rises over
time and reaches the value α/(1−α) shown in equation (5.7) in finite time. At this point, the
net marginal products of physical and human capital are equal, and, hence, the constraint
of nonnegative gross investment in human capital becomes nonbinding. The two capital
stocks then grow forever at the common rate γ ∗ shown in equation (5.9). We have already
assumed that the parameters are such that γ ∗ > 0. Hence, the dynamics of the neoclassical
growth model apply during the transition, but the long-run growth rate is positive (even
without exogenous technological progress), because of the absence of diminishing returns
to broad capital.

Some details of the transitional dynamics are contained in the appendix. We provide here
a heuristic treatment. We know that the growth rates of K , H , and Y equal γ ∗ > 0 in the
steady state, where K/H = α/(1 − α). Prior to that time, K/H < α/(1 − α), and IH = 0.
We have shown in this situation that the dynamics of K and Y accord with the usual pattern
from the neoclassical growth model (with a Cobb–Douglas technology). Hence, the analysis
from chapter 2 implies that the solution exhibits the convergence property in the sense that
the growth rates, γK ≡ K̇/K and γY ≡ Ẏ/Y , decline monotonically over time. Since the
two growth rates fall monotonically toward γ ∗ > 0, they must be positive, but declining,
during the transition. Thus, K/H rises monotonically over time, partly because H is falling
(at the rate δ) and partly because K is rising (at a rate that decreases toward γ ∗). The increase
in K/H implies that the net marginal product of physical capital—and, hence, the rate of
return—declines monotonically.7 This declining path of the rate of return corresponds in
the usual way to a falling path of γC .

The results imply that the growth rate of output, γY , is inversely related to the ratio K/H
as long as this ratio is below its steady-state value, α/(1 − α). The relation between γY

and K/H can be described as an imbalance effect. The greater the imbalance—that is, the
further K/H is below its steady-state value—the higher the growth rate.

One reason for K/H to be low would be a war that destroyed a great deal of physical
capital but left human capital relatively intact. The situations of Japan and Germany after
World War II are examples. The theory predicts that output would grow at a high rate—well
above the steady-state value, γ ∗—in this situation.

7. The increase in K/H implies that the net marginal product of H rises over time. This net marginal product
is, however, below that for physical capital. Hence, gross investment in H remains at its minimal value, 0. If we
could observe a market price for existing units of H , we would find that this price is below the replacement cost, 1,
but rises toward 1 as K/H approaches α/(1 − α). The total rate of return from holding H—from capital gains
and “dividends”—would then equal the net marginal product of K at each point in time. Thus the net marginal
product of K equals the single rate of return that would be observed on a credit market.
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Figure 5.1
The imbalance effect in the one-sector model. The growth rate of output depends on the ratio of the two capital
stocks, K/H . The minimal growth rate corresponds to the steady-state ratio, (K/H)∗ = α/(1−α). On either side
of the steady state, the growth rate rises symmetrically with the magnitude of the gap between K/H and (K/H)∗.

The results are analogous if the economy begins instead with a relative abundance of
physical capital, K (0)/H(0) > α/(1 − α). This situation could arise from an epidemic,
such as the Black Death in medieval Europe, that killed people but did not destroy physical
capital. In this case, the constraint IK ≥ 0 is binding. Hence, IK = 0, and K grows at the
rate −δ. The choices of C and H are then governed by the conditions from the usual
neoclassical growth model, except that the investment to be chosen involves H , rather than
K . In particular, γH and γY decline monotonically toward the steady-state value, γ ∗. The
decline in K (at rate δ) and the rise in H (at a rate that diminishes toward γ ∗) imply that
K/H falls over time. The decrease in K/H lowers the net marginal product of H and
thereby reduces the rate of return and the growth rate of consumption.8

The results imply that K/H and γY are positively related in the region in which K/H >

α/(1 −α). Thus there is again an imbalance effect—the greater the imbalance, in the sense
of the excess of K/H from its steady-state value, the higher the growth rate.

Figure 5.1 plots the growth rate, γY , against K/H . The minimal growth rate, γ ∗, corre-
sponds to the steady-state ratio, α/(1 − α). On either side of the steady state, γY rises with
the magnitude of the gap between K/H and its steady-state value.

8. The behavior of rates of return is analogous to the case in which H is relatively abundant. The decrease in K/H
implies that the net marginal product of K rises. This net marginal product is, however, below that for human
capital, and gross investment in K remains at its minimal value, 0. The market price for existing units of K is
below the replacement cost, 1, but rises toward 1 as K/H approaches α/(1 − α). The total rate of return from
holding K —from capital gains and dividends—equals the net marginal product of H at each point in time. Thus
this net marginal product equals the single rate of return that would be observed on a credit market.
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Figure 5.2
The imbalance effect with adjustment costs for human capital. We assume here that the adjustment costs for
changing human capital are greater than those for changing physical capital. In this case, the sensitivity of the
growth rate to K/H is larger in magnitude in the region in which K/H < (K/H)∗ (physical capital is relatively
scarce) than in the region in which K/H > (K/H)∗ (human capital is relatively scarce).

In the theory, a shortfall of physical capital—the situation in which K but not H is
destroyed during a war—need not have a larger effect on the growth rate than a corresponding
shortfall of human capital—caused, for example, by an epidemic that eliminated H but not
K . There is little empirical evidence about the effects on growth from a sudden decline
in human capital, but Hirshleifer’s (1987, chapters 1 and 2) discussion of the Black Death
suggests that growth was not rapid in this situation. Thus it may be that empirically an
increase in K/H above its steady-state value has only a small positive effect, or possibly
even a negative effect, on the growth rate.

One extension of the theory that would lead to asymmetric effects from K/H below or
above its steady-state value is the type of adjustment cost for capital accumulation that we
explored in chapter 3. It is plausible that these adjustment costs would be much greater for
H than for K ; presumably, the educational process cannot be greatly accelerated without
encountering a significant falloff in the rate of return from investment. In this case, a
relative abundance of H would lead to substantial investment in K and, accordingly, to
a high growth rate of output. However, a corresponding relative abundance of K would
have a much smaller effect on investment in H and, hence, on the growth rate of output.
Figure 5.2 shows a case in which the minimal growth rate still occurs when K/H equals
its steady-state value, α/(1 −α),9 but the slope in the region in which K/H < α/(1 −α) is
much steeper in magnitude than that in the region in which K/H > α/(1 − α). This model

9. Some specifications of adjustment costs would affect the steady-state ratio of K to H , whereas others would
not. See the discussion in chapter 3.
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predicts that an economy would recover much faster from a war that destroyed mainly K
than from an epidemic that destroyed mainly H .

Another implication of adjustment costs for investment is that positive gross investment
in both types of capital can occur when K/H deviates from its steady-state value, α/(1−α).
This outcome applies if the rates of return from each type of investment are high at low
rates of investment and low at high rates of investment. The potential for positive gross
investment outside of the steady state in both kinds of capital also arises in models in which
the technology for producing goods, C and K̇ , differs from the technology for education, Ḣ .
We explore this idea in the next section.

5.2 Different Technologies for Production and Education

5.2.1 The Model with Two Sectors of Production

We have assumed, thus far, that physical goods and education are generated by the same
production functions. This specification neglects a key aspect of education; it relies heavily
on educated people as an input. We should, therefore, modify the model to reflect the
property that the production of human capital is relatively intensive in human capital. This
change in specification modifies some of the conclusions about the effects on growth from
imbalances between physical and human capital.

We follow Rebelo (1991) and use a setup with two Cobb–Douglas production functions:10

Y = C + K̇ + δK = A · (vK )α · (u H)1−α (5.12)

Ḣ + δH = B · [(1 − v) · K ]η · [(1 − u) · H ]1−η (5.13)

where Y is the output of goods (consumables and gross investment in physical capital);
A, B > 0 are technological parameters; α (0 ≤ α ≤ 1) and η (0 ≤ η ≤ 1) are the shares of
physical capital in the outputs of each sector; and v (0 ≤ v ≤ 1) and u (0 ≤ u ≤ 1) are the
fractions of physical and human capital, respectively, used in production. The corresponding
fractions of physical and human capital used in education—that is, to generate human
capital—are 1 − v and 1 − u.

Equation (5.12) indicates that consumables, C , and investment in physical capital, IK =
K̇ + δK , are still perfect substitutes on the supply side. In other words, C and IK come

10. Bond, Wang, and Yip (1996) and Mino (1996) analyze this model with general forms of neoclassical production
functions.
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from a single output stream for goods.11 If η �= α, equation (5.13) implies that human
capital is generated from a technology that differs from that for goods. (If η = α, the model
is equivalent to the one-sector production setup that we considered in the previous section;
see note 13, below.) As already mentioned, we consider the empirically relevant case to be
the one in which η < α, that is, the education sector is relatively intensive in human capital,
and the goods sector is relatively intensive in physical capital.12 In fact, it is this feature of
the model that may make it reasonable to identify “H” with human capital in the real world.

The forms of equations (5.12) and (5.13) imply that the two production activities each
exhibit constant returns to scale in the quantities of the two capital inputs. For this reason,
the model will display endogenous steady-state growth of the type that we found in chapter 4
in a one-sector model. In the steady state, v and u are constant, and C, K , H , and Y grow
at the common rate γ ∗.

Measured output can be broadened to include gross investment in human capital, Ḣ +δH ,
multiplied by an appropriate shadow price of human capital. (We discuss this shadow price
later.) This broader measure of output will also grow at the rate γ ∗ in the steady state. Gross
output as defined in the standard national accounts falls somewhere between the narrow and
broad concepts, because this measured output includes a fraction of the gross investment in
human capital. For example, gross product includes teacher salaries but neglects the value
of time forgone by students and also omits part of the value of time expended in on-the-job
training. Kendrick (1976, tables A-1 and B-2) made a rough estimate for the United States
that one-half of gross investment in human capital was included in measured output.

We can embed the technologies shown in equations (5.12) and (5.13) into the standard
model of household optimization that we considered before. The Hamiltonian expression
can be written as13

J = u(C) · e−ρt + ν · [A · (vK )α · (u H)1−α − δK − C]
+ µ · {B · [(1 − v) · K ]η · [(1 − u) · H ]1−η − δH} (5.14)

where ν multiplies the expression for K̇ , and µ multiplies the expression for Ḣ . If the
inequality restrictions of nonnegative gross investment are not binding, the solution satisfies

11. We could go further to allow for different factor intensities in the production of consumables and capital goods
(the two-sector model used by Uzawa, 1964, and Srinivasan, 1964) or in the production of different types of final
products (Ventura, 1997).

12. We can interpret K and H more generally as two different types of capital goods, not necessarily physical
and human capital. The assumption that the production of H is relatively intensive in H is more or less plausible
depending on how H is interpreted.

13. We can equivalently have ν multiply IK − δK and µ multiply IH − δH and then introduce two Lagrange
multipliers to correspond to the two equality constraints, A · (vK )α · (u H)1−α = C + IK and B · [(1 − v) · K ]η ·
[(1 − u) · H ]1−η = IH . The formulation in equation (5.14) already imposes these equality constraints.
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the usual first-order conditions, which come from setting the derivatives of J with respect
to C , v, and u to 0 and from the conditions ν̇ = −∂ J/∂K and µ̇ = −∂ J/∂ H .

If we manipulate the first-order conditions, we get a familiar-looking expression for the
growth rate of consumption:

Ċ/C = (1/θ) · [
Aα · (vK/u H)−(1−α) − δ − ρ

]
(5.15)

The term Aα · (vK/u H)−(1−α) − δ, the net marginal product of physical capital in the
production of goods, equals the rate of return, r , in this model.

Physical capital must receive the same rate of return when allocated to either sector of
production, and the same condition holds for human capital. These conditions lead to the
following relation between v and u:(

η

1 − η

)
·
(

v

1 − v

)
=

(
α

1 − α

)
·
(

u

1 − u

)
(5.16)

Equation (5.16) implies that v and u are positively related, with v = 1 when u = 1, and
v = 0 when u = 0.14 In other words, for given values of α and η, an expansion of goods
production occurs via a simultaneous increase in the fraction of the two inputs, K and H ,
allocated to the goods sector.

Let p ≡ µ/ν be the shadow price of human capital in units of goods. Equation (5.16) and
the condition that the rates of return to K and H be equalized leads to a formula for p:15

p ≡ µ/ν = (A/B) · (α/η)η · [(1 − α)/(1 − η)]1−η · (vK/u H)α−η (5.17)

14. If α = η, equation (5.16) implies v = u. If we substitute this result into equations (5.12) and (5.13), the
production functions become

Y = AuK α H1−α

Ḣ + δH = B · (1 − u) · K α H1−α

Broad output, Q, can be defined as

Q = Y + (A/B) · (Ḣ + δH) = AK α H1−α

where A/B is the constant price of H in units of Y ; we can, in fact, define the units of H so that A/B = 1. With
this definition, the economy’s budget constraint is

Q = C + K̇ + δK + Ḣ + δH

The model is then equivalent to the one-sector version analyzed earlier in this chapter.

15. Although p is the appropriate shadow price, it is not the unique market equilibrium price if we allow for
a market for human capital in the model. The reason is that, in this model, human capital and goods cannot be
transformed into each other, so the equilibrium is a corner solution. Quah (2002) shows that the equilibrium price
range turns out to be (0, µ/ν]. We thank Danny Quah for pointing this fact out to us.
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The shadow price p equals the ratio of the marginal product of H in the goods sector (the
wage rate) to its marginal product in the education sector. Equation (5.17) shows that this
price depends only on the ratio of K employed in the goods sector, vK , to H employed in
the goods sector, u H .

The formula for p enables us to calculate the broader concept of gross output that we
mentioned before:

Q = Y + pB · [(1 − v) · K ]η · [(1 − u) · H ]1−η (5.18)

Note that broad output, Q, is the sum of narrow output, Y , and the value in units of goods
of the gross investment in human capital, pB · [(1 − v) · K ]η · [(1 − u) · H ]1−η.

We can use equation (5.17) along with the first-order conditions for µ̇ and ν̇ to derive an
expression for the growth rate of p. The result, after a significant amount of algebra, is

ṗ/p = Aφα/(η−α) · [
αφ1/(α−η) · p(1−α)/(η−α) − (1 − α) · pη/(α−η)

]
(5.19)

where φ ≡ (A/B) · (α/η)η · [(1 − α)/(1 − η)]1−η. The key finding here is that the growth
rate of p depends only on p and not on any other variables.

If α �= η, equation (5.17) determines a one-to-one relation between p and vK/u H . Equa-
tion (5.19), therefore, implies that the growth rate of the ratio vK/u H depends only on the
value of the ratio and not on any other variables.

The equation for the growth rate of vK/u H (derived from equations [5.17] and [5.19]),
the condition for Ċ/C in equation (5.15), the relation between u and v from equation (5.16),
and the conditions for K̇ and Ḣ from the budget constraints determine the behavior over
time of u, v, C, K , and H . The variable v can be eliminated using equation (5.16). Since the
production functions in equations (5.1) and (5.13) exhibit constant returns to scale, the
absolute levels of K , H , and C will not influence the dynamics, and the system can be written
in terms of ratios of these variables. Thus it is possible to express the model in terms of the
variables u, C/K , and K/H . The steady state of this system involves constant values of
u, C/K , and K/H . Hence, the growth rates of C, K , and H—as well as of Y and Q—are
equal in the steady state.

The form of equation (5.17) has immediate implications for the nature of the dynamics.
This relation is a differential equation in the single variable p. The equation can be readily
shown to be stable (∂[ ṗ/p]/∂[p] < 0) if α > η and unstable (∂[ ṗ/p]/∂[p] > 0) if α < η. (If
α = η, the model is equivalent to the one-sector setup; see note 13.) Thus, if α > η—the case
that we regard as empirically relevant—p converges monotonically to its steady-state value.

Since equation (5.17) relates p one-to-one to vK/u H , the monotonic convergence of p
when α > η implies that vK/u H also converges monotonically to its steady-state value.
The ratio vK/u H determines the marginal product of physical capital in the production of
goods. Therefore, r—equal to the net marginal product of physical capital in the production
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of goods—and Ċ/C—determined in equation (5.15)—also converge monotonically to their
steady-state values.

The rest of the model turns out to be difficult to analyze for the general situation in which
α > η ≥ 0. Therefore, we begin with the special case in which η = 0, because it allows for a
complete analytical description of the transitional dynamics. We then provide some results
for the more general case, where α > η > 0. Finally, we address the case α < η, although
we regard this configuration of parameters as implausible.

5.2.2 The Uzawa–Lucas Model

The Basic Framework We now specialize to the model studied by Uzawa (1965) and
Lucas (1988) in which the production of human capital involves no physical capital; that is,
η = 0 in equation (5.13). This setting is the extreme case in which the education sector is
relatively intensive in human capital (η ≤ α). Thus, by comparing the Uzawa–Lucas model
with the one-sector framework—in which the relative intensities of physical and human
capital are the same in each sector—we can bring out the main implications from the as-
sumption about relative factor intensities. Appendix 5B (section 5.6) contains the details of
the Uzawa–Lucas model. We provide here a sketch of the results, starting with the case in
which the nonnegativity constraints on gross investment in K and H are not binding.

The specification η = 0 implies v = 1; that is, since K is not productive in the education
sector, all of it is used in the goods sector. The production functions from equations (5.1)
and (5.13), therefore, simplify to16

Y = C + K̇ + δK = AK α · (u H)1−α (5.20)

Ḣ + δH = B · (1 − u) · H (5.21)

We shall find it useful, as in chapter 4, to express the system in terms of variables that
will be constant in the steady state. A specification that facilitates the dynamic analysis uses
the ratios ω ≡ K/H and χ ≡ C/K . If we use these definitions along with equations (5.20)
and (5.21), we get expressions for the growth rates of K and H :

K̇/K = A · u(1−α)ω−(1−α) − χ − δ (5.22)

Ḣ/H = B · (1 − u) − δ (5.23)

Hence, the growth rate of ω is given by

ω̇/ω = K̇/K − Ḣ/H = A · u(1−α)ω−(1−α) − B · (1 − u) − χ (5.24)

16. Arnold (1997) generalizes the model by replacing equation (5.20) with a general form of neoclassical production
function.
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The first-order conditions can be used to show that the growth rate of consumption is given
by the familiar formula, Ċ/C = (1/θ) · (r − ρ), where r equals the net marginal product
of physical capital in the production of goods, αAu1−αω−(1−α) − δ. Therefore, the growth
rate of consumption is given by

Ċ/C = 1

θ
· [

αAu1−αω−(1−α) − δ − ρ
]

(5.25)

The growth rate of χ follows from equations (5.25) and (5.22) as

χ̇/χ = Ċ/C − K̇/K =
(

α − θ

θ

)
· Au1−αω−(1−α) + χ − 1

θ
· [δ · (1 − θ) + ρ] (5.26)

Finally, appendix 5B shows that equations (5.19) and (5.17) imply that the growth rate of
u is given by

u̇/u = B · (1 − α)

α
+ Bu − χ (5.27)

Steady-State Analysis Appendix 5B shows that the variables u, ω, and χ are constant in
a steady state. If we define the combination of parameters

ϕ ≡ ρ + δ · (1 − θ)

Bθ
(5.28)

then the steady-state values, which correspond to u̇ = ω̇ = χ̇ = 0, are given by

ω∗ = (αA/B)1/(1−α) ·
[
ϕ + θ − 1

θ

]

χ∗ = B ·
(

ϕ + 1/α − 1

θ

)
(5.29)

u∗ = ϕ + θ − 1

θ

The rate of return and the common growth rate of C, K , H, Y , and Q are given in this steady
state by

r∗ = B − δ (5.30)

γ ∗ =
(

1

θ

)
· (B − δ − ρ) (5.31)
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The usual transversality condition, r∗ > γ ∗, ensures that the values of ω∗, χ∗, and u∗ shown
in equation (5.29) are all positive. The condition u∗ < 1 holds if γ ∗ > 0 in equation (5.30).

Transitional Dynamics The dynamic system for ω, χ , and u consists of equations (5.24),
(5.26), and (5.27). We shall find it convenient to work with a transformed system that replaces
ω by the gross average product of physical capital in the production of goods, denoted by z:17

z ≡ Au1−αω−(1−α) (5.32)

The gross marginal product of physical capital equals αz, and the rate of return is r = αz−δ.
Although the variable z is a combination of a state variable, ω, and a control variable, u,
we show later that, in the equilibrium, z relates in a simple way to ω. In particular, we can
determine the initial value z(0) from the initial value ω(0).

The system given by equations (5.24), (5.26), and (5.27) can be rewritten in terms of
z, χ , and u as

ż/z = −(1 − α) · (z − z∗) (5.33)

χ̇/χ =
(

α − θ

θ

)
· (z − z∗) + (χ − χ∗) (5.34)

u̇/u = B · (u − u∗) − (χ − χ∗) (5.35)

where z∗ is the steady-state value of z. Equation (5.29) and the definition of z in equa-
tion (5.32) imply that this steady-state value is given by

z∗ = B/α (5.36)

Dynamics of the average product of physical capital, the rate of return, and the wage rate.
Equation (5.33) is a one-variable differential equation, which determines the time path of z,
the gross average product of physical capital. This equation can be solved in closed form
to get(

z − z∗

z

)
=

[
z(0) − z∗

z(0)

]
· e−(1−α)·z∗t (5.37)

where z(0) is the initial value of z. This equation shows that z adjusts monotonically from its
initial value, z(0), to its steady-state value, z∗. Figure 5.3 provides a graphical representation
of this stability property.

17. We could also work with the ratio vK/u H , which equals (Aα/z)1/(1−α).
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Figure 5.3
Stability of z, the gross average product of capital. Equation (5.33) from the Uzawa–Lucas model is a linear
differential equation in z. When z < z∗, the growth rate of z is positive, and z increases toward its steady-state
value. The opposite pattern applies when z > z∗. Hence, the steady-state value, z∗, is stable.

Since the rate of return is r = αz − δ, the behavior of z determines the behavior of r . In
particular, if z(0) < z∗, r(0) < r∗, and r rises monotonically over time toward its steady-state
value. These properties are all reversed if z(0) > z∗.

The wage rate, w, equals the marginal product of the human capital, u H , employed in
the production of goods. The production function from equation (5.20) and the definition
of z in equation (5.32) imply that this marginal product can be written as

w = A · (1 − α) · u−αωα = A1/(1−α) · (1 − α) · z−α/(1−α) (5.38)

Hence, if z(0) < z∗, w(0) > w∗, and w falls monotonically over time toward its steady-state
value. These properties are reversed if z(0) > z∗.

Dynamics of χ ≡ C/K . The evolution of χ depends on the combination of parameters
α − θ , which appears as a determinant of χ̇/χ in equation (5.34). Since α ≤ 1 and we
usually assume θ > 1, the inequality α < θ is likely to hold in practice. Thus we assume
α < θ in the main analysis.

We can treat equations (5.33) and (5.34) as a two-dimensional system in z and χ and
construct the usual type of phase diagram in (z, χ) space. (Note that the variable u does not
appear in these equations.) The vertical line at z∗ on the right side of figure 5.4 corresponds
to ż = 0 in equation (5.33). This equation also implies that z declines when z > z∗ and rises
when z < z∗. Thus, the ż = 0 locus is stable, as shown in the figure.
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Figure 5.4
Dynamics of z, χ , and u in the Uzawa–Lucas model (when α < θ). The right side uses (z, χ) space to show
the ż = 0 locus, the χ̇ = 0 locus, and the dynamics of z and χ . The stable arm, χ(z), is upward sloping. The left
side uses (u, χ) space to show the u̇ = 0 locus and the dynamics of u and χ . (Movements to the left correspond
to higher values of u in this panel.) The stable arm, u(χ), is upward sloping. If z(0) > z∗, then χ(0) > χ∗ (from
the right side) and u(0) > u∗ (from the left side). During the transition, z, χ , and u fall monotonically. (Note: the
results on χ and u depend on the assumption α < θ .)

Equation (5.34) implies that the χ̇ = 0 locus satisfies the condition

χ = χ∗ +
(

θ − α

θ

)
· (z − z∗) (5.39)

Since θ > α, this locus is linear and positively sloped, as shown on the right side of figure 5.4.
Moreover, the slope is less than 1, a property that we shall use later. Equation (5.34) implies
that χ rises for points that lie above the χ̇ = 0 locus and falls otherwise. That is, this locus
is unstable, as shown in the figure.

The configuration of the two loci in the right side of figure 5.4 implies that the stable,
saddle path, denoted byχ(z), is upward sloping as shown. Thus, if z(0) > z∗, thenχ(0) > χ∗,
and z and χ decline monotonically over time toward their steady-state values. Conversely, if
z(0) < z∗, then χ(0) < χ∗, and z and χ rise monotonically toward their steady-state values.

Dynamics of u, the fraction of human capital used in production. To ascertain the dynamics
of u, use equation (5.35) to determine the u̇ = 0 locus as

u = u∗ + (χ − χ∗)/B (5.40)
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This locus is linear and upward sloping in (u, χ) space, as shown on the left side of figure 5.4.
(Movements to the left correspond to higher values of u.) The stable, saddle path for u is
denoted by u(χ) in the figure. Note that, if z(0) > z∗, so that χ(0) > χ∗, then u(0) > u∗. (It
can be verified from the figure that u(0) ≤ u∗ or u(0) lying to the left of the u̇ = 0 locus
would cause u to diverge over time from u∗.)

To sum up, we have shown that, if α < θ , then z(0) > z∗ implies χ(0) > χ∗ and u(0) > u∗,
with z, χ , and u all decreasing monotonically toward their steady-state values. Conversely,
if z(0) < z∗, then χ(0) < χ∗ and u(0) < u∗, with z, χ , and u all increasing monotonically
toward their steady-state values.

Dynamics when α ≥ θ . We can use the same approach to deal with cases in which α ≥ θ .
Since we do not regard these cases as empirically relevant, we just indicate the results and
leave the derivations as exercises. If α > θ , the results for χ and u are the reverse of those
found before. For example, if z(0) > z∗, then χ(0) < χ∗ and u(0) < u∗. The monotonic fall
in z over time is then associated with monotonic increases in χ and u.

If α = θ , then χ(0) = χ∗ and u(0) = u∗. That is, in this knife-edge case, the variables
χ and u remain fixed at their steady-state values throughout the transition from z(0) to z∗.

The relation between z, the gross average product of physical capital, and the state vari-
able ω ≡ K/H. Return now to the case in which α < θ . To finish the dynamic analysis,
we have to relate the behavior of z—and, hence, of χ and u—to the behavior of the
state variable ω. In particular, we want to make use of the initial condition that ω begins
at ω(0).

Appendix 5B shows that z(0) and ω(0) are inversely related, with z(0)>
<

z∗ as ω(0) <
>

ω∗.
In other words, the gross average product of physical capital, z, is high initially if ω, the
ratio of K to H , is low initially, and vice versa.

As an example, if ω starts above its steady-state value—a situation in which human capital
is scarce relative to physical capital—then z, the average product of physical capital, and r ,
the rate of return, start at low values and then rise monotonically toward their steady-state
positions. We also know in this situation that the wage rate, w, starts above its steady-state
value and then declines, whereas χ and u start below their steady-state values and then
increase. The behavior of u means that relatively little human capital is allocated initially
to the production of goods and relatively more is allocated to education. Over time, the
allocation shifts toward production and away from education. These results are all reversed
if ω begins below its steady-state value.

Policy functions for χ and u. We can summarize the results for χ and u in terms of policy
functions. Figure 5.5 shows that the choices of χ and u are each downward-sloping functions
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Figure 5.5
Policy functions for u andχ (whenα < θ ). The policy functions relate the optimal values of the control variables,
u and χ ≡ C/K , to the state variable, ω ≡ K/H . When α < θ , the policy functions are each downward sloping.
(The figure shows one curve only for convenience.) If α = θ , the policy functions would be flat, and if α > θ , the
functions would be upward sloping.

of ω.18 (We draw a single curve here for both variables only for convenience.) Thus, if we
think again of a country that starts with a relative scarcity of human capital—ω > ω∗—then
ω falls over time, while χ and u rise. Thus the country initially allocates relatively little
of its resources to consumption (χ ≡ C/K is low), but it spends a lot of time on education
(1 − u is high).

Transitional behavior of growth rates. We consider now how the dynamics of ω, z, χ , and
u relate to the transitional behavior of growth rates. We consider, in particular, whether
imbalances between K and H—that is, excesses or shortfalls of ω from ω∗—lead to higher
or lower growth rates of the various quantities in the model.

The growth rate of consumption. If the economy begins with relatively low physical
capital, ω < ω∗, the interest rate, r , declines monotonically toward its steady-state value,
B − δ. This fall in r implies a decline in Ċ/C . Conversely, if ω > ω∗, then r and Ċ/C rise
steadily during the transition. If we graph Ċ/C versus ω, we determine a downward-sloping
curve, as shown in the upper panel of figure 5.6.

Recall that, in the one-sector model with inequality constraints on gross investment,
the relation between Ċ/C and ω was described by a U-shaped curve of the form shown
in figure 5.1. Imbalances between K and H in either direction led, therefore, to a higher
growth rate of consumption. In contrast, in the range of the Uzawa–Lucas model in which

18. Figure 5.5 applies if α < θ . The policy functions are positively sloped if α > θ and flat if α = θ .
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Figure 5.6
Patterns for growth rates in the Uzawa–Lucas model. The figure shows the behavior of the growth rates of
consumption, human capital, physical capital, goods output (Y ), the fraction of capital devoted to goods production
(u), and broad output (Q). These variables are all related to ω ≡ K/H . (Note: the minimal value of Ẏ/Y can
occur to the right or left of the steady-state value, ω∗.)

inequality constraints on gross investment in K and H are not binding, an imbalance that
involves a shortfall of K (ω < ω∗) implies a higher value of Ċ/C , whereas an imbalance
that involves a shortfall of H (ω > ω∗) implies a lower value of Ċ/C .

The growth rates of human and physical capital. The transitional behavior of the growth
rates of other variables is more complicated. Appendix 5B demonstrates that we can ma-
nipulate the formulas for ż/z, χ̇/χ , and u̇/u from equations (5.33)–(5.35) and use the
condition for Ċ/C from equation (5.25) to get expressions for the growth rates of H
and K :

Ḣ/H = γ ∗ − B · (u − u∗) (5.41)

K̇/K = γ ∗ + (z − z∗) − (χ − χ∗) (5.42)

where γ ∗ is the steady-state growth rate, (1/θ) · (B − δ − ρ), given in equation (5.30).
If α < θ , as we have been assuming, figure 5.5 shows that u − u∗ is monotonically

declining in ω. Hence, equation (5.41) implies that Ḣ/H is monotonically increasing in ω.
A rise in the relative quantity of physical capital increases the growth rate of human capital.
This property is shown in the second panel of figure 5.6.
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Figure 5.7
Determination of the growth rate of physical capital. In the vicinity of the steady state, the isogrowth lines are
steeper than the saddle path, χ(z). The isogrowth lines that lie farther to the right correspond to higher values of
K̇/K . Therefore, K̇/K is positively related to z in the vicinity of the steady state. The inverse relation between z
and ω implies that K̇/K is inversely related to ω.

Recall that z − z∗—the deviation of the average product of capital from its steady-state
value—is monotonically decreasing in ω. This effect tends to make K̇/K fall with ω in
accordance with equation (5.42). Figure 5.5 shows, however, that χ − χ∗ is monotonically
decreasing in ω, and this effect offsets the tendency for K̇/K to decline.19

Figure 5.7 provides a graphical approach to the determination of K̇/K . We begin by
reproducing the saddle path, denoted χ(z), from the right side of figure 5.4. Note that this
curve is positively sloped but flatter than the χ̇ = 0 locus, at least in the neighborhood
of the steady state. Recall also from equation (5.39) that the slope of the χ̇ = 0 locus is
positive but less than 1. Therefore, the slope of the χ(z) curve must also be less than 1 in
the neighborhood of the steady state.

We can use equation (5.42) to construct isogrowth lines, that is, loci for z and χ that
correspond to constant values of K̇/K . The equation implies that these loci are linear with
slope 1. Figure 5.7 shows several isogrowth lines, where those further to the right—with
higher values of z—correspond to higher values of K̇/K . We know also that the slope of
these lines exceeds the slope of the χ(z) curve, at least in the neighborhood of the steady
state [because, in this region, the χ(z) curve has slope less than 1].

19. If α ≥ θ , χ − χ∗ is either monotonically increasing in z or constant. It follows unambiguously in this case
that K̇/K is monotonically decreasing in ω.
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Figure 5.7 shows that K̇/K is positively related to z in the vicinity of the steady state.
Hence, K̇/K is negatively related to ω in this region. In other words, if ω(0) < ω∗, then,
as ω rises over time, the fall in z − z∗ dominates the fall in χ − χ∗ in terms of the effects
on K̇/K in equation (5.42).

We have found through numerical simulations that the inverse relation between K̇/K
and ω holds for a broad range of ω around its steady-state position (see Mulligan and
Sala-i-Martin, 1993). That is, the fall in z − z∗ dominates the fall in χ −χ∗ for a wide array
of parameter values that we have considered.20 Thus the model implies that a higher ratio
of physical to human capital, ω, is associated with a lower growth rate of physical capital,
K̇/K . We show this property in the third panel of figure 5.6.

The growth rate of Y , the output of goods. The quantity of goods produced (in the form of
consumables and physical capital) is given from equation (5.20) by Y = AK α · (u H)1−α .
We can, therefore, use the expressions for Ḣ/H and K̇/K from equations (5.41) and
(5.42), along with the formula for u̇/u from equation (5.35), to determine the growth
rate of Y :

Ẏ/Y = γ ∗ + α · (z − z∗) − (χ − χ∗) (5.43)

We can analyze Ẏ/Y by a procedure that parallels our treatment of K̇/K . Equation (5.43)
implies that isogrowth lines for Ẏ/Y in (z, χ) space are linear with slope α < 1. Several
of these lines appear in figure 5.8; note that lines further to the right are associated with
higher growth rates. The difference from the previous case is that the isogrowth lines are
not necessarily steeper than the χ(z) curve in the neighborhood of the steady state. Thus
the relation of Ẏ/Y to z is ambiguous in the vicinity of the steady state. We conclude that
Ẏ/Y may either rise or fall with ω.21

Our numerical results verify these findings and show that the relation between Ẏ/Y and
ω tends to be U-shaped, as depicted by the fourth panel of figure 5.6. The minimum of Ẏ/Y
can occur either to the left or right of the steady state; that is, Ẏ/Y can be either rising or
falling with ω in the neighborhood of the steady state.

Suppose, for example, that we fix α at 0.5, use our standard values for some parameters
that we have considered before (ρ = 0.02, n = 0.01, δ = 0.05), and set B = 0.11 to get a
steady-state rate of return, B − δ, of 0.06. (The steady-state growth rate, [1/θ ] · [B − δ −ρ],
then equals 0.02 if θ = 2.) For this specification of parameters, the minimum of Ẏ/Y occurs

20. We find numerically that the inverse relation between K̇/K and ω may reverse at very high values of ω.
However, for very high (or very low) values of ω, the inequality constraints on gross investment become binding
(see section 2.2.4). If we examine only the range of ω for which these constraints are not operative, our numerical
results indicate that K̇/K is decreasing in ω for all parameter values that we have considered.

21. If α ≥ θ , χ − χ∗ is either increasing in ω or constant. Hence, Ẏ/Y is then unambiguously decreasing in ω.
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Figure 5.8
Determination of the growth rate of goods output. In the vicinity of the steady state, the isogrowth lines could
be steeper or flatter than the saddle path, χ(z). The growth rate Ẏ/Y is therefore ambiguously related to z and ω.
Note that the χ(z) curve comes from the right side of figure 5.4 and applies when α < θ .

at the steady-state value of ω if θ = 3.5, to the left of the steady state if θ > 3.5, and to the
right of the steady state if θ < 3.5. (Note that, if the minimum of Ẏ/Y occurs to the left of
the steady state, Ẏ/Y is increasing with z in the vicinity of the steady state, and vice versa.)
Thus the imbalance effect can be symmetric, with higher growth rates of output emerging if
either K or H is in relatively short supply, or asymmetric, with growth rates rising with one
type of imbalance and falling with the other type in the neighborhood of the steady state.

The growth rate of broad output, Q. Broad output, Q, is defined in equation (5.18)
(recall that η = 0 now applies). If we use the formula for µ/ν from equation (5.17) and
the expressions for Ẏ/Y from equation (5.43), Ḣ/H from equation (5.41), and u̇/u from
equation (5.35), the growth rate of Q can be computed as

Q̇/Q = Ẏ/Y − (u̇/u) ·
(

1 − α

1 − α + αu

)
(5.44)

We have already discussed the determination of Ẏ/Y . Therefore, to analyze Q̇/Q, we have
to study the behavior of u̇/u.

Equation (5.35) implies that isogrowth lines for u̇/u are linear with slope equal to that
of the u̇ = 0 locus, which appears on the left side of figure 5.4. Figure 5.9 shows several of
these isogrowth lines; those farther to the left (for higher values of u) correspond to higher
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Figure 5.9
Determination of u̇/u. In the vicinity of the steady state, the isogrowth lines are flatter than the saddle path,
χ(u). The isogrowth lines that lie farther to the upper right correspond to lower values of u̇/u. Therefore, u̇/u is
negatively related to χ—and, hence, to z—around the steady state. The inverse relation between z and ω implies
that u̇/u is positively related to ω.

values of u̇/u. If z(0) > z∗, corresponding to ω(0) < ω∗, then u(0) > u∗ and χ(0) > χ∗.
The economy, therefore, moves downward along the u(χ) curve shown in figure 5.9 toward
lower values of u and χ . The figure also shows that u̇/u goes up; that is, as z increases, u̇/u
rises from a negative value toward its steady-state value of 0. We show this behavior in the
fifth panel of figure 5.6.

Return now to the formula for Q̇/Q in equation (5.44). As ω rises, u̇/u increases (as we
just showed) and u declines. Therefore, the term on the far right of the equation tends to
generate an inverse relation between Q̇/Q and ω.

The formula for Q̇/Q also contains Ẏ/Y , which tends to be U-shaped versus ω (see
figure 5.6), with the minimum occurring to the left or the right of the steady state. Our
numerical results show, however, that Q̇/Q is downward sloping versus ω for a broad
range of ω.22 That is, the new term on the far right of equation (5.44) is strong enough to
eliminate the U shape for the parameter values that we have considered. The bottom panel
of figure 5.6, therefore, shows Q̇/Q as a monotonically decreasing function of ω.

22. As mentioned in note 20, very low or very high values of ω cause the inequality constraints on gross investment
to become operative. If we examine only the range of ω for which these constraints are not binding, our numerical
results indicate that Q̇/Q, like K̇/K , is decreasing in ω for all parameter values that we have considered.
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Summary of dynamics in the Uzawa–Lucas model. The Uzawa–Lucas model provides
a perspective on the effects of imbalances between K and H that differs from that in
the one-sector model. In the one-sector model, larger imbalances between K and H in
either direction raised the growth rates of output and consumption. Note that, in the one-
sector model, output includes consumables plus both forms of capital. Therefore, we should
compare the growth rate of output in the one-sector context with the growth rate of broad
output in the Uzawa–Lucas model.

In the Uzawa–Lucas model, Ċ/C is always inversely related to ω, and Q̇/Q tends to
be inversely related to ω (see figure 5.6). Hence, these growth rates tend to rise with the
amount of the imbalance between human and physical capital if human capital is abundant
relative to physical capital (ω < ω∗), but they tend to fall with the amount of the imbalance
if human capital is relatively scarce (ω > ω∗). The model predicts, accordingly, that an
economy would recover faster in response to a war that destroyed mainly physical capital
than to an epidemic that destroyed mainly human capital.

The underlying source of the new results is the assumption that the education sector
is relatively intensive in human capital. If ω > ω∗, for example, the marginal product of
human capital in the goods sector is high, and growth would be expected to occur mainly
because of the high growth rate of human capital. The high level of ω implies, however,
a high wage rate and therefore a high cost of operation for the sector, education, that is
relatively intensive in human capital. In other words, this effect motivates people to allocate
human capital to production of goods, rather than to education, the sector that produces the
relatively scarce factor, H . This effect tends accordingly to retard the economy’s growth
rate when ω rises above ω∗.

Behavior of the saving rate. We discussed in chapter 2 the behavior of the gross saving
rate in the one-sector Ramsey model. If the production function was Cobb–Douglas, the
saving rate fell monotonically, stayed constant, or rose monotonically during the transition
depending on whether a particular combination of parameters was positive, zero, or negative
(see appendix 2B). We also noted that, if we assumed a high capital share of approximately
0.75, corresponding to a broad notion of capital, then reasonable parameter values were
consistent with a roughly constant gross saving rate.

A similar analysis can be applied to the Uzawa–Lucas model with a Cobb–Douglas
form of the production function for goods. Suppose that we define gross saving to be the
portion of the output of goods, Y , that is not consumed. That is, we take narrow definitions
that exclude the production of human capital from output and saving. We can then show
(following a procedure analogous to that in appendix 2B) that the transitional behavior of
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the saving rate is determined as follows:

� = −B · (1 − α)/α + δ − (ρ + δ)/θ > 0 �⇒ ds/dω > 0 (5.45)

� = −B · (1 − α)/α + δ − (ρ + δ)/θ = 0 �⇒ s = 1 − α · (θ − 1)/θ

� = −B · (1 − α)/α + δ − (ρ + δ)/θ < 0 �⇒ ds/dω < 0

The condition for a constant saving rate, � = 0, is now difficult to satisfy. First,
equation (5.45) implies that αδ > B · (1 − α) must hold to get � = 0. For the parame-
ter values that we assumed before, δ = 0.05 and B = 0.11, this condition implies α > 0.69.
Since α is supposed to refer now only to physical capital, this inequality is unlikely to be
satisfied. Second, the transversality condition for the model—the steady-state rate of return,
B − δ, exceeds the steady-state growth rate, (1/θ) · (B − δ − ρ)—can be used to show that
� can equal 0 only if (1/θ) + (1/α) < 2. This condition requires, in particular, θ > 1/α.
Thus, if a low value of α worked in the first inequality, then a constant saving rate would
require a high value of θ .

If the saving rate were constant during the transition, then its value, s = 1 −α(θ − 1)/θ ,
would be very high unless α is close to 1 and θ is high. For example, if α = 0.5 and θ = 2,
then s = 0.75. Since saving corresponds here only to the part of goods output that goes into
physical capital—and does not include investment in human capital—this high value of s
is unrealistic.

Reasonable values of the parameters, including a value of α well below 1, correspond to
� < 0 and, hence, ds/dω < 0 in equation (5.45). Consider a less-developed country that
starts with a relative scarcity of human capital, so that ω > ω∗. The model predicts that this
country’s gross saving rate (defined as the fraction of goods output that is not consumed)
would start out low and then rise as the economy approaches its steady state.

Inequality Restrictions on Gross Investment In the one-sector model that we analyzed
in the first part of this chapter, one of the inequality constraints for nonnegative gross
investment was binding if the initial value of ω ≡ K/H departed from its steady-state
value. In particular, ω < ω∗ implied that gross investment in human capital was set to zero,
whereas ω > ω∗ implied that gross investment in physical capital was set to zero. In the
Uzawa–Lucas model, the inequality constraints are not binding for a range of ω around
its steady-state value, and the dynamics that we have considered thus far applies in this
range. However, if ω starts sufficiently below or above its steady-state value, an inequality
restriction on gross investment becomes operative.

If α < θ , as we assume, then u and ω are inversely related, as shown in figure 5.5. If ω is
far enough below ω∗, the restriction u ≤ 1 binds; that is, if K is sufficiently in short supply
relative to H , gross investment in H is set to zero. In this case, H grows at the constant rate
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−δ, and the situation parallels the usual one-sector growth model in which output can be
used for either C or K . We know that the growth rates of C, K , and Y are inversely related
to ω in this range. Hence, in figure 5.6, the downward-sloping curves for Ċ/C and K̇/K
and the downward-sloping portion of the curve for Ẏ/Y apply even when ω is low enough
for the restriction u ≤ 1 to bind.

We can determine numerically how far ω has to fall below ω∗ for the inequality constraint
u ≤ 1, and, hence, Ḣ + δH ≥ 0, to become operative. For the parameter values mentioned
before, including α = 0.5 and θ = 2, ω has to decline to 5 percent of ω∗ to make the
restriction bind. Similar conclusions apply if we allow the parameters to depart somewhat
from our preferred values.23 Thus the results indicate that we can satisfactorily neglect the
restriction u ≤ 1 for a wide range of ω below ω∗.

A sufficient increase in ω above ω∗ causes the restriction K̇ + δK ≥ 0 to bind. That is, if
K is sufficiently abundant relative to H , gross investment in K is set to zero.24 In this case, K
grows at the constant rate −δ, and all of the output is used for consumption. The household’s
only decision here is the allocation of H between production (u) and education (1 − u).
This framework amounts to a two-sector model in which consumables are produced by one
technology and capital (H ) with another technology. The only difference from standard
two-sector models of this type (such as Uzawa, 1964, and Srinivasan, 1964) is that the
consumables sector involves diminishing returns, whereas the capital-goods (H ) sector
features constant returns.

Appendix 5B shows that the growth rates of C and Y are constant in the Uzawa–Lucas
model when the restriction K̇ + δK ≥ 0 is operative. That is, if ω is high enough for the
constraint of nonnegative physical investment to bind, then Ċ/C and Ẏ/Y , as well as K̇/K ,
are invariant with ω. In figure 5.6, the graphs of Ċ/C , Ẏ/Y , and K̇/K , therefore, become
horizontal for high enough ω.

The behavior of the other growth rates depends on the dynamics of u. In particular, even
if α < θ , the policy function for u need not be downward sloping versus ω (as it was in
figure 5.5) when the restriction K̇ + δK ≥ 0 is operative. If u were inversely related to ω in
the restricted range, Ḣ/H and Q̇/Q would rise with ω in this range. In contrast, if u were
positively related to ω, Ḣ/H and Q̇/Q would fall with ω. This last outcome turns out to
hold unambiguously if θ ≤ 1, but either result can apply if θ > 1.

We have found numerically how high ω has to be for the constraint of nonnegative
physical investment to bind. For the parameter values mentioned before, ω has to be almost

23. If α ≥ θ , the constraint u ≤ 1 never binds.

24. If α < θ , u declines with ω as shown in figure 5.5. A sufficient increase in ω would cause the inequality u ≥ 0
to bind. However, the restriction C ≥ 0 never binds because u′(c) → ∞ as c → 0. Therefore, as ω increases, the
inequality K̇ +δK ≥ 0 becomes operative before the inequality u ≥ 0. We also find numerically that the restriction
K̇ + δK ≥ 0 becomes binding for high enough ω even if α ≥ θ .
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five times ω∗ for the constraint to become operative. Similar conclusions apply if we allow
the parameters to differ somewhat from our preferred values. Hence, the results indicate that
we can satisfactorily neglect the restriction K̇ + δK ≥ 0 for a wide range of ω above ω∗.

For reasonable parameter values, the range of ω over which the inequality constraints do
not bind—from 5 percent of ω∗ to 5 times ω∗ for our favored parameter values—appears
to be wide relative to the ranges of the K/H ratio that are likely to prevail empirically.
Therefore, it seems reasonable to focus on the empirical implications that derive from
interior solutions to the model, that is, from the graphs shown in figures 5.5 and 5.6.

5.2.3 The Generalized Uzawa–Lucas Model

The generalized form of the Uzawa–Lucas model maintains the assumption that education
is relatively intensive in human capital, η < α, but allows for the presence of physical capital
in the education sector, η > 0. We already observed from equations (5.17) and (5.19) for the
case η < α that vK/u H—the ratio of physical capital employed in production to human
capital employed in production—converges monotonically to its steady-state value. This
result implies that the rate of return, r , and the growth rate of consumption, Ċ/C , converge
monotonically to their steady-state values. Thus these results are the same as those for the
Uzawa-Lucas case, where η = 0.

The difference from before is that we cannot simplify the dynamic system to a two-
dimensional setup and, therefore, cannot construct phase diagrams of the form presented
in figure 5.4. Moreover, we cannot demonstrate, in general, that the policy functions for χ

and u are monotonically related to ω25 or that the growth rates of K , H , Y , and Q behave
qualitatively as they did before.26

We have carried out simulations in which α is set at 0.4 and the parameter η is varied
between 0 and 0.4. We assume familiar values for the other parameters; a representative case
is δ = 0.05, ρ = 0.02, n = 0.01, and θ = 3. For η = 0, we set B = 0.13, so that the steady-
state interest rate is 0.08 and the steady-state per capita growth rate is 0.02. The patterns
for the various growth rates when η = 0 then correspond to those shown in figure 5.6. As
we raise η, we adjust B so as to maintain the steady-state interest and growth rates.27

As η approaches α, the simulations show that the policy functions for u and χ continue
to be monotonically and inversely related to ω, as shown in figure 5.5 for the case in which

25. We have found from simulations that u can be nonmonotonically related to ω ≡ K/H but only for strange
values of the underlying parameters. We have also found cases with odd parameter values in which the policy
function for χ can slope in the direction opposite to that for u—a result that cannot hold when η = 0.

26. Bond, Wang, and Yip (1996) and Mino (1996) demonstrate local stability for the more general case in which
the production functions satisfy the neoclassical properties.

27. We normalize to set A = 1 throughout.
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η = 0 (see, however, note 25). We find also that the qualitative behavior of the various growth
rates remains as shown in figure 5.6, except that higher values of η tend to make the Ẏ/Y
curve slope upward in the vicinity of the steady state. Thus these numerical results suggest
that, if we assume “reasonable” values of the underlying parameters, the main qualitative
conclusions from the Uzawa–Lucas model are likely to be preserved when we drop the
unrealistic assumption that the education sector has no inputs of physical capital (η = 0).
In particular, our previous discussion of the effects from imbalances between K and H is
likely to remain valid.

Another difference in the generalized model is that the range in which the inequality
restrictions u ≤ 1 and K̇ + δK ≥ 0 are not binding narrows as η rises toward α. This result
makes sense because we know from our previous analysis of the one-sector model that this
range compresses to zero when η = α. If we make the reasonable assumption that η is much
less than α—even if η is now positive—then we still find that there exists a broad range of
values of ω around the steady state for which the inequality constraints are not binding.

5.2.4 The Model with Reversed Factor Intensities

We have dealt, thus far, with environments in which the education sector is relatively
intensive in human capital, that is, α > η ≥ 0. This section considers briefly the implications
of reversed factor intensities, α < η. We spend little time on this case because the assumption
that education is relatively intensive in physical capital is implausible. (If we were to interpret
K and H not as physical and human capital, but in some alternative way, then the reversed
factor intensities might apply.)

We observed before that the condition α < η implies that equation (5.19) is an unstable
differential equation in the variable p ≡ µ/ν. (This equation applies as long as inequality
restrictions on gross investment are not operative.) Hence, any departure of p from its
steady-state value would be magnified over time. This unstable behavior would then be
transmitted to the ratio vK/u H (from equation [5.17]). Recall that this ratio determines the
marginal product of physical capital in the production of goods and, therefore, determines
r and Ċ/C . The unstable behavior of vK/u H would be transmitted, accordingly, to r and
Ċ/C . Since these explosive outcomes will conflict with household optimization, we focus
on the case in which p equals its steady-state value at all points in time.28

The constancy of p implies that the ratio vK/u H is constant (from equation [5.17]).
Hence, r and Ċ/C are also constant throughout the transition to the steady state.

28. Bond, Wang, and Yip (1996) and Mino (1996) provide analogous results for the more general case in which
the production functions satisfy the usual neoclassical properties.
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Appendix 5C (section 5.7) shows that the growth rate of broad output, Q̇/Q, is also
constant and equal to Ċ/C . Thus we get the surprising result that the growth rates of C
and Q do not vary as the state variable ω ≡ K/H changes (in the range in which inequality
restrictions are not binding). In other words, the imbalance effect does not operate on these
growth rates when the factor intensities are reversed.

The constancy of vK/u H , Ċ/C , and Q̇/Q makes it easy to assess the dynamics of the
variables u, χ, Ḣ/H , and K̇/K . Appendix 5C shows that each of these variables adjusts
monotonically toward its steady-state value as the state variable, ω, adjusts toward its steady-
state value. The slopes of the variables in relation to ω are all unambiguous and are negative
for u and χ , positive for Ḣ/H , and negative for K̇/K .

5.3 Conditions for Endogenous Growth

We have worked, thus far, with models in which constant returns to scale apply in the
sectors for goods and education; that is, we assumed production functions of the forms of
equations (5.1) and (5.13). (The Uzawa–Lucas model, expressed in equations [5.20] and
[5.21], is the special case in which the education sector uses only human capital as an
input, that is, η = 0.) These production functions imply that diminishing returns do not
arise when physical and human capital grow at the same rate. Thus, in the steady state,
rates of return remain constant, and the economy can grow at a constant rate. Following
Mulligan and Sala-i-Martin (1993), we now consider whether more general specifications
of the production functions are consistent with positive growth in the steady state, that is,
with endogenous growth.

We modify equations (5.1) and (5.13) to

Y = C + K̇ + δK = A · (vK )α1 · (u H)α2 (5.46)

Ḣ + δH = B · [(1 − v) · K ]η1 · [(1 − u) · H ]η2 (5.47)

Thus we retain Cobb–Douglas forms of the production functions, but we allow the sums
α1 + α2 and η1 + η2 to depart from unity, so that constant returns to scale need not apply.

If a sector exhibits diminishing returns, say α1 + α2 < 1, we can remain within the usual
competitive framework if we add to the production function a factor such as raw labor or
land that is in fixed aggregate supply. If this factor has an exponent of 1 −α1 −α2, constant
returns again apply at the level of an individual producer. The important consideration is
that diminishing returns, α1 + α2 < 1, apply to the factors that can be accumulated.

The model can also have increasing returns, say α1 + α2 > 1, within a competitive setup
if we introduce the types of spillover effects that we considered in chapter 4. For example,
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for the production of Y , an individual firm’s inputs of K and H could have exponents α1 and
1 − α1, respectively, so that constant returns apply for an individual firm. The economy’s
aggregate of H could then appear as an additional input in the production function (as in
Lucas, 1988) with an exponent of α1 + α2 − 1, where α2 > 1 − α1. The key consideration
here is that increasing returns, α1 + α2 > 1, apply to the factors that can be accumulated by
the overall economy.29

Suppose that we look for a steady state in which u and v are constant, and C , Y , K , and
H grow at constant, but not necessarily equal, rates. (Unless u or v approaches 0, we cannot
allow u and v to grow at constant rates because of the constraints 0 ≤ v ≤ 1 and 0 ≤ u ≤ 1.)
If we divide equation (5.47) by H and then take logs and derivatives with respect to time,
we get

η1γ
∗
K + (η2 − 1) · γ ∗

H = 0 (5.48)

where γ ∗ denotes the steady-state growth rate of the variable indicated by the subscript.
If we divide equation (5.46) by K and then take logs and derivatives, we get(

C/K

C/K + γ ∗
K + δ

)
· (γ ∗

C − γ ∗
K ) = (α1 − 1) · γ ∗

K + α2γ
∗
H (5.49)

We can show that γ ∗
C = γ ∗

K from the arguments that we used in chapter 4. (If γ ∗
C > γ ∗

K ,
then γ ∗

K , as computed from equation [5.46], tends to −∞. If γ ∗
C < γ ∗

K , then γ ∗
K = r , the net

marginal product of K in the goods sector. This equality violates the transversality
condition.) Equation (5.49) then simplifies to

(α1 − 1) · γ ∗
K + α2γ

∗
H = 0 (5.50)

We can use the condition γ ∗
Y = α1γ

∗
K + α2γ

∗
H implied by equation (5.46), along with equa-

tion (5.50), to show that γ ∗
Y = γ ∗

K . Thus, the variables C , K , and Y must all grow at the
same rate in the steady state.

29. We observed in chapter 4 that the presence of these kinds of spillovers implies that the competitive outcomes
will generally not be Pareto optimal. Thus these models tend to have roles for government intervention, basically
to subsidize the activities with positive spillovers. In extreme situations, in which the spillovers are very large,
multiple equilibria are possible, and the equilibria can typically be ranked by the Pareto criterion. Suppose, as
an example, that an individual’s return to education depends positively on the average education level of the
population. Then, in one kind of equilibrium, everyone gets education, because when most people are educated,
the remaining people find it advantageous also to be educated. In another kind of equilibrium, no one receives
education, because when most people are not educated, the remaining people find it desirable not to be educated.
We have not explored the class of models with multiple equilibria because the amount of spillovers required to
generate this multiplicity seems to be unrealistically large. Moreover, from a positive standpoint, models that do
not select among the possible equilibria are incomplete. For analyses of these types of models—and for more
favorable appraisals of them—see Krugman (1991), Matsuyama (1991), Benhabib and Farmer (1996), Boldrin
and Rustichini (1994), Chamley (1992), and Xie (1992).
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Equations (5.48) and (5.50) form a system of two linear homogeneous equations with
two unknowns, γ ∗

K and γ ∗
H . This system has a solution other than γ ∗

K = γ ∗
H = 0 only if the

determinant of the characteristic matrix of the coefficients is zero. This condition requires
the parameters to satisfy

α2η1 = (1 − η2) · (1 − α1) (5.51)

Equation (5.51) is the key condition that must hold if the model is to deliver endogenous
growth at positive, constant rates.

One example that satisfies equation (5.51) is the case that we have already considered of
constant returns in each sector: α1 +α2 = 1 and η1 +η2 = 1. In this situation, γ ∗

H = γ ∗
K , so

that the ratio K/H is constant in the steady state. Equation (5.51) can, however, be satisfied
in other ways.

If η1 = 0 and η2 = 1—the case assumed by Uzawa (1965) and Lucas (1988)—
equation (5.51) holds for any values of α1 and α2. Thus, if education is linear in H , all
variables can grow in the steady state even if the production of goods involves diminishing
returns to scale, α1 + α2 < 1. Lucas highlighted a spillover benefit from aggregate human
capital that led to the condition α1 + α2 > 1. Our results show that this condition is con-
sistent with, but not essential for, endogenous growth. If η1 = 0 and η2 = 1, as Lucas also
assumed, this model can generate endogenous growth even if no human-capital spillovers are
present.

Equation (5.50) implies, if α1 �= 1,

γ ∗
K =

(
α2

1 − α1

)
· γ ∗

H

Hence, γ ∗
K

<
>

γ ∗
H as α1 +α2

<
>

1. Thus, although all quantities can grow at constant rates when
η1 = 0 and η2 = 1, the ratios K/H , Y/H , and C/H do not approach constant values unless
α1 + α2 = 1.

For another example, assume that αi , ηi > 0 for i = 1, 2. If α1 + α2 < 1, then equa-
tion (5.51) can be satisfied if η1 + η2 > 1. Analogously, α1 + α2 > 1 can be paired with
η1 + η2 < 1. In other words, diminishing returns to scale in one sector can be offset by the
appropriate degree of increasing returns in the other sector. If α1 + α2 < 1, then γ ∗

K < γ ∗
H ,

and vice versa.
Finally, equation (5.51) is also satisfied if α1 = 1 and α2 = 0. This specification corre-

sponds to the AK model studied in chapter 4. In this specification, human capital serves no
purpose; it does not help to produce goods and also does not appear in the utility function.
Hence, optimizing agents would not accumulate any H , and all of K would be allocated to
the production of goods (v = 1 in equations [5.46] and [5.47]).
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If we want endogenous growth and also want K and H to grow at the same rate in the
steady state, equation (5.51) can be satisfied only if each sector exhibits constant returns to
scale, α1 + α2 = 1 and η1 + η2 = 1, that is, the specification in equations (5.1) and (5.13).
Since the alternative in which K/H rises or falls forever seems implausible, we assumed
in the main discussion in this chapter that constant returns held in each sector.

5.4 Summary Observations

We extended the AK model from chapter 4 to allow for two sectors, one that produced
consumables, C , and physical capital, K , and another that created human capital, H . If the
sectors have the same factor intensities, the main new results about growth come from the
restriction that gross investment in each type of capital good must be nonnegative. This
restriction generates an imbalance effect, whereby the growth rate of output rises with the
magnitude of the gap between the ratio K/H and its steady-state value.

The assumption of equal factor intensities neglects a key aspect of education; it relies
heavily on educated people as an input. Therefore, we modified the structure to specify
that the production of human capital is relatively intensive in human capital. This change
in specification alters the conclusions about the imbalance effect. The growth rate of out-
put (defined broadly to include the production of new human capital) tends to rise with
the extent of the imbalance if human capital is relatively abundant but to decline with
the extent of the imbalance if human capital is relatively scarce. These results imply that
an economy would recover rapidly in reaction to a war that destroyed primarily physical
capital but would rebound only slowly from an epidemic that eliminated mainly human
capital.

5.5 Appendix 5A: Transitional Dynamics with Inequality Restrictions
on Gross Investment in the One-Sector Model

Suppose that K (0)/H(0) > α/(1 − α). Recall that, in this case, the household wants to
reduce K and raise H by discrete amounts, so that the inequality restriction IK ≥ 0 will be
binding. Hence, IK = 0 and K̇/K = −δ. In this situation, the household’s problem amounts
to maximizing utility, subject to this path for K and to the constraint Ḣ = Y − C − δH .
The Hamiltonian for this problem is

J = u(C) · e−ρt + ν · [AK α H 1−α − δH − C] (5.52)

where u(C) = (C1−θ−1)/(1−θ). The first-order conditions, ∂ J/∂C = 0 and ν̇ = −∂ J/∂ H ,
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lead in the usual way to the condition for the growth rate of consumption:

Ċ/C = (1/θ) · [A · (1 − α) · (K/H)α − δ − ρ] (5.53)

where A · (1 − α) · (K/H)α − δ is the net marginal product of H . This condition and the
budget constraint,

Ḣ = AK α H 1−α − δH − C

along with K (t) = K (0) · e−δt , determine the paths of C , H , and K .
We can proceed, as in chapter 4, by defining two variables, ω ≡ K/H and χ ≡ C/K ,

that will be constant in the steady state. The conditions for Ċ and Ḣ can be used to get the
transition equations for ω and χ :

ω̇/ω = −Aωα + χω (5.54)

χ̇/χ = (1/θ) · [A · (1 − α) · ωα − ρ] + δ · (θ − 1)/θ (5.55)

Figure 5.10 shows the phase diagram in (ω, χ) space. The condition ω̇ = 0 implies
χ = Aω−(1−α), the downward-sloping curve in the figure. A value of χ above (below) the
curve corresponds to ω̇ > 0 (ω̇ < 0). These directions of motion are shown by the arrows in
the figure.
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Figure 5.10
Phase diagram for the one-sector model when ω>ω∗. The dynamics shown in this figure applies when ω ≡
K/H > ω∗ = α/(1 − α). When ω > ω∗, the economy moves along a path where χ ≡ C/K rises monotonically
and ω falls monotonically. The economy reaches ω∗ in finite time (before it reaches ω̃), just when χ attains the
value χ∗. At this point the inequality constraint that gross investment in K cannot be negative is no longer binding.
The variables K and H then grow together at a constant, positive rate.
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The condition χ̇ = 0 requires

ω =
[
ρ + δ · (1 − θ)

A · (1 − α)

]1/α

≡ ω̃ (5.56)

We assume ρ + δ · (1− θ) ≥ 0, so that ω̃ is well defined and nonnegative, but this condition
is not required for the analysis. A value of ω above (below) ω̃ corresponds to χ̇ > 0 (χ̇ < 0),
as shown by the arrows in the figure. [If ρ + δ ·(1−θ) < 0, then χ̇ > 0 applies for all χ ≥ 0.])

The figure shows ω̃ < ω∗ = α/(1 −α), the ratio of K to H that applies in equation (5.7)
in the absence of effective inequality constraints on both types of gross investment. The
formula for ω̃ implies that the condition ω̃ < ω∗ corresponds to ρ + δ < Aαα · (1 − α)1−α ,
a result that holds from the assumption γ ∗ > 0 in equation (5.9). The figure also shows the
value χ∗, which applies to the model without effective inequality constraints. The value for
χ∗ in this model turns out to be

χ∗ =
(

θ − 1

θ

)
·
[

A ·
(

1 − α

α

)1−α

− δ

α

]
+ ρ

θα
(5.57)

The dynamics shown in figure 5.10 is relevant for ω > ω∗, the condition that causes IK ≥ 0
to be a binding constraint. The figure shows that, in this region, χ rises monotonically and ω

falls monotonically. Eventually, ω attains the value ω∗, and the constraint IK ≥ 0 no longer
binds. From that point on, ω remains at ω∗, and K and H grow together at the rate γ ∗ shown
in equation (5.9). This rate applies to the model in which the inequality constraints on both
types of investment are not binding. The position of the dynamic path is determined so
that χ attains the value χ∗ shown in equation (5.57) just when ω reaches ω∗. Thereby, the
level of consumption does not jump when the constraint of nonnegative gross investment
in physical capital becomes nonbinding.30

The results are analogous if K (0)/H(0) < α/(1 − α). The condition IH ≥ 0 is then
binding, and Ḣ/H = −δ. The transition equations for ω and χ are

ω̇/ω = Aω−(1−α) − χ (5.58)

χ̇/χ = −A ·
(

θ − α

θ

)
· ω−(1−α) + χ + δ · (θ − 1)/θ − ρ/θ (5.59)

Figure 5.11 shows the phase diagram for the case in which α < θ . The condition ω̇ = 0
corresponds to χ = ω−(1−α). The condition χ̇ = 0 corresponds to

χ = A ·
(

θ − α

θ

)
· ω−(1−α) − δ · (θ − 1)/θ + ρ/θ (5.60)

30. We are grateful to Kiminori Matsuyama for providing this solution.
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Figure 5.11
Phase diagram for the one-sector model when ω<ω∗. The dynamics shown in this figure applies when ω ≡
K/H < ω∗ = α/(1 − α). When ω < ω∗, the economy moves along a path where χ ≡ C/K falls monotonically
(if α < θ , as assumed for this case) and ω rises monotonically. The economy reaches ω∗ in finite time (before it
reaches ω̂), just when χ attains the value χ∗. At this point, the inequality constraint that gross investment in H
cannot be negative is no longer binding. The variables K and H then grow together at a constant, positive rate.

The χ̇ = 0 locus slopes downward, as shown, if α < θ . This locus must be less negatively
sloped than the ω̇ = 0 locus (but the χ̇ = 0 locus would be positively sloped if α > θ). The
ω̇ = 0 and χ̇ = 0 loci intersect at the value ω̂, which can be shown (from the condition
γ ∗ > 0) to exceed ω∗ = α/(1 − α).

The dynamics shown in figure 5.11 applies if ω < ω∗. The figure shows that, in this region,
χ declines monotonically and ω rises monotonically. (If α > θ , χ rises monotonically, and,
if α = θ , χ remains constant.) The position of the dynamic path is again determined so that
χ attains the value χ∗ shown in equation (5.57) just when ω reaches ω∗.

5.6 Appendix 5B: Solution of the Uzawa–Lucas Model

The Hamiltonian expression for this model is given by

J = u(C) · e−ρt + ν · [AK α · (u H)1−α − C − δK ] + µ · [B · (1 − u) · H − δH ] (5.61)

The term in the first set of brackets equals K̇ , and the term in the second set of brack-
ets equals Ḣ . If we define ω ≡ K/H and χ ≡ C/K , the growth rates of K and H are
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given by

K̇/K = Au1−αω−(1−α) − χ − δ (5.62)

Ḣ/H = B · (1 − u) − δ (5.63)

The growth rate of ω is, therefore, given by

ω̇/ω = K̇/K − Ḣ/H = Au1−αω−(1−α) − χ − B · (1 − u) (5.64)

The first-order conditions, ∂ J/∂C = 0 and ∂ J/∂u = 0, lead respectively to

u′(C) = νeρt (5.65)

µ/ν = (A/B) · (1 − α) · u−αωα (5.66)

The condition ν̇ = −∂ J/∂K implies

ν̇/ν = −Aαu1−αω−(1−α) + δ (5.67)

The condition µ̇ = −∂ J/∂ H implies

µ̇/µ = −(ν/µ) · A · (1 − α) · u1−αωα − B · (1 − u) + δ

If we substitute for ν/µ from equation (5.66) and simplify, the result is

µ̇/µ = −B + δ (5.68)

We can differentiate equation (5.65) with respect to time and use u(C) = (C1−θ − 1)/

(1−θ) and the expression for ν̇/ν in equation (5.67) to get the usual equation for consump-
tion growth:

Ċ/C = (1/θ) · [
Aαu1−αω−(1−α) − δ − ρ

]
(5.69)

This result corresponds to equation (5.25). The growth rate of χ can then be determined
from equations (5.69) and (5.62) to get the formula given in equation (5.26):

χ̇/χ = Ċ/C − K̇/K =
(

α − θ

θ

)
· Au1−αω−(1−α) + χ − (1/θ) · [δ · (1 − θ) + ρ]

(5.70)

If we differentiate equation (5.66) with respect to time and use the formulas for ν̇/ν from
equation (5.67), µ̇/µ from equation (5.68), and ω̇/ω from equation (5.64), we get, after
simplifying,

u̇/u = B · (1 − α)/α + Bu − χ (5.71)
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This result appears in equation (5.27). Equations (5.64), (5.70), and (5.71) form a system of
three differential equations in the variables ω, χ , and u, where the state variable ω begins
at some value ω(0).

The steady state of this system can be found readily by setting the three time derivatives
to zero. If we define the combination of parameters as in the text,

ϕ ≡ ρ + δ · (1 − θ)

Bθ

the results are

ω∗ = (αA/B)1/(1−α) · [ϕ + (θ − 1)/θ ]

χ∗ = B · (ϕ + 1/α − 1/θ) (5.72)

u∗ = ϕ + (θ − 1)/θ

These values are given in equation (5.29). The steady-state rate of return, which equals the
net marginal product of K in the goods sector and the net marginal product of H in the
education sector, is

r∗ = B − δ

The corresponding steady-state growth rate of Y , C , K , and H is

γ ∗ = (1/θ) · (B − δ − ρ)

The values for r∗ and γ ∗ are shown in equation (5.30).
Define z to be the gross average product of physical capital:

z ≡ Au1−αω−(1−α)

The steady-state value of z can be determined from equation (5.72) to be z∗ = B/α. The
system of three differential equations, as expressed in equations (5.64), (5.70), and (5.71),
can then be rewritten as

ω̇/ω = (z − z∗) − (χ − χ∗) + B · (u − u∗) (5.73)

χ̇/χ =
(

α − θ

θ

)
· (z − z∗) + (χ − χ∗) (5.74)

u̇/u = B · (u − u∗) − (χ − χ∗) (5.75)
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The definition of z implies

ż/z = (1 − α) · (u̇/u − ω̇/ω) = −(1 − α) · (z − z∗) (5.76)

The results for ż/z, χ̇/χ , and u̇/u are in equations (5.33)–(5.35).
Equation (5.76) can be integrated to get equation (5.37):

z − z∗

z
=

[
z(0) − z∗

z(0)

]
· e−(1−α)·z∗t

where z(0) is the initial value of z. This equation can be rewritten to solve for z as

z = z∗ · z(0)/
{

z∗ · e−(1−α)·z∗t + z(0) · [
1 − e−(1−α)·z∗t

]}
(5.77)

Equation (5.77) implies z → z∗ as t → ∞. If z(0) > z∗, then ż < 0 and z > z∗ for all t ,
whereas if z(0) < z∗, then ż > 0 and z < z∗ for all t .

We now look for the characteristics of the stable path of χ and u, that is, the path along
which χ approaches χ∗ and u approaches u∗. Assume z(0) > z∗, so that z − z∗ declines
monotonically over time. Equation (5.74) can then be written as

χ̇/χ = (χ − χ∗) +
(

α − θ

θ

)
· �(t) (5.78)

where �(t) = z − z∗ is a monotonically decreasing function of time. If α < θ , the term
on the right of equation (5.78) is negative but declining in magnitude over time. If χ ≤ χ∗

for some finite t , the equation implies χ̇ < 0 for all subsequent t . Since the magnitude of χ̇

asymptotically exceeds some finite lower bound, χ would diverge from χ∗ and reach zero
in finite time. The stable path, therefore, features χ > χ∗ for all t . If χ̇ ≥ 0 for some t , then
equation (5.78) implies χ̇ > 0 for all subsequent t (because the negative term on the right
decreases in size over time). Hence, χ would diverge from χ∗ and approach infinity. The
stable path, therefore, involves χ̇ < 0 for all t .

The conclusions are analogous if we assume α > θ or begin with z(0) < z∗. The columns
for χ − χ∗ and χ̇ in table 5.1 summarize the results.

Equation (5.75) determines the behavior of u, given the behavior of χ . Suppose, for
example, that z(0) > z∗ and α < θ , so that χ > χ∗ and χ̇ < 0. If u ≤ u∗ for some t , then
equation (5.75) implies u̇ < 0 for all subsequent t . Therefore, u diverges from u∗ and
approaches 0. The stable path, therefore, features u > u∗ for all t . If u̇ ≥ 0 for some t , then
u̇ > 0 for all subsequent t , because the term −(χ − χ∗) in equation (5.75) is negative and
decreasing in size over time. Therefore, u̇ < 0 holds for all t . The behavior of u − u∗ and u̇
are shown for the various sign combinations of z(0) − z∗ and α − θ in table 5.1.
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Table 5.1
Transitional Behavior of χ and u

z(0) − z∗ α − θ χ − χ∗ χ u − u∗ u

>0 <0 >0 <0 >0 <0
>0 >0 <0 >0 <0 >0
=0 — =0 =0 =0 =0
<0 <0 <0 >0 <0 >0
— =0 =0 =0 =0 =0

We want to show now how the starting value z(0) − z∗ relates to the starting value of the
state variable, ω. If we use equation (5.74) to substitute for χ − χ∗ in the formula for ω̇/ω

in equation (5.73), we get

ω̇/ω = (α/θ) · (z − z∗) − γχ + B · (u − u∗) (5.79)

Suppose α ≤ θ and z(0) > z∗. In this case, the conditions z − z∗ > 0, χ̇ ≤ 0, and u − u∗ ≥ 0
imply ω̇/ω > 0 in equation (5.79). Hence, the system can be on the stable path only if
ω(0) < ω∗. Moreover, ω then rises monotonically from ω(0) toward ω∗ (because ω̇/ω > 0).
Hence, the monotonic decline in z corresponds to a monotonic rise in ω. This result im-
plies that a lower starting value of the state variable, ω(0), is associated with a higher initial
value z(0). By similar reasoning, z(0) < z∗ corresponds to ω(0) > ω∗, and z(0) = z∗ to
ω(0) = ω∗.

To deal with the case in which α > θ , substitute for u − u∗ from equation (5.75) into
equation (5.73) to get

ω̇/ω = (z − z∗) + u̇/u (5.80)

We can use this equation when α > θ to show that z(0) > z∗ (z[0] < z∗) corresponds to
ω(0) < ω∗ (ω[0] > ω∗).

We conclude that z(0)>
<

z∗ corresponds to ω(0)<
>

ω∗ for all configurations of α and θ .
Moreover, a smaller ω(0) matches up with a higher z(0). Thus z is high or low initially
depending only on whether physical capital is scarce or abundant relative to human capital.
We can use this result along with the findings in table 5.1 to draw policy functions for χ

and u as functions of ω. These results appear in figure 5.5.
The rate of return, r , equals the net marginal product of physical capital in the production

of goods, which equals αz − δ. Therefore, r moves together with z and inversely with ω.
Equation (5.69) implies that the growth rate of C is given by

Ċ/C = (1/θ) · (αz − δ − ρ) (5.81)

Since Ċ/C moves directly with z, it moves inversely with ω.
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The growth rate of K is given by

K̇/K = Ċ/C − χ̇/χ = (1/θ) · (αz − δ − ρ) − χ̇/χ

where we substituted for Ċ/C from equation (5.81). If we substitute for χ̇/χ from
equation (5.79) and use the formulas z∗ = B/α and γ ∗ = (1/θ) · (B − δ − ρ), we get

K̇/K = γ ∗ + (z − z∗) − (χ − χ∗) (5.82)

the formula that appears in equation (5.42).
The growth rate of H is given by

Ḣ/H = K̇/K − ω̇/ω

If we substitute for K̇/K from equation (5.82) and for ω̇/ω from equation (5.80) and use
equation (5.75) to substitute for u̇/u, we can simplify to get

Ḣ/H = γ ∗ − B · (u − u∗) (5.83)

the formula that appears in equation (5.41).
Since Y = AK α · (u H)1−α , the growth rate of output is given by

Ẏ/Y = α · K̇/K + (1 − α) · (u̇/u + Ḣ/H)

If we substitute for K̇/K from equation (5.82), for u̇/u from equation (5.75), and for Ḣ/H
from equation (5.83), we get

Ẏ/Y = γ ∗ + α · (z − z∗) − (χ − χ∗) (5.84)

the formula that appears in equation (5.43).
Broad output is given by

Q = Y + (µ/ν) · B · (1 − u) · H = AK α · (u H)1−α + (µ/ν) · B · (1 − u) · H

where µ/ν, the shadow price of human capital in units of goods, is given in equation (5.66).
If we substitute out for µ/ν, we get

Q = Y · (1 − α + αu)/u

Hence, the growth rate of broad output is given by

Q̇/Q = Ẏ/Y − u̇/u · (1 − α)/(1 − α + αu) (5.85)

the formula given in equation (5.44).
For alternative treatments of the Uzawa–Lucas model, see Faig (1995) and Caballe and

Santos (1993).
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5.7 Appendix 5C: The Model with Reversed Factor Intensities

We consider here the production structure from equations (5.1) and (5.13) with the condition
α < η. Let p ≡ µ/ν be the value of H in units of goods. We noted in the text that equa-
tion (5.19) is an unstable differential equation in p and that p always equals its steady-state
value, which is given by

p = p∗ = ψ1/(α−η) ·
(

α

1 − α

)(α−η)/(1−α+η)

(5.86)

where

ψ ≡
(

A

B

)
·
(

α

η

)η

·
(

1 − α

1 − η

)1−η

Equation (5.17) implies, accordingly, that vK/u H always equals its steady-state value,

vK

u H
=

(
vK

u H

)∗
=

[
ψ ·

(
α

1 − α

)]1/(1−α+η)

(5.87)

The rate of return and the growth rate of consumption are then constants, given by

r = r∗ = αA ·
[(

vK

u H

)∗]α−1

− δ (5.88)

Ċ/C = γ ∗ = (1/θ) · (r∗ − ρ) (5.89)

We now show that full wealth, K + pH , and full output, Q ≡ Y + p · (Ḣ + δH), always
grow at the rate γ ∗, that is, at the same rate as C . The analysis of consumer optimization
from chapter 2 applies if we think of households as earning the rate of return r on their
full wealth, K + pH . (The wage rate on raw labor is zero in this setting.) Equations (2.14)
and (2.15) showed that consumption is a multiple of full wealth; moreover, the multiple is
constant here because r is constant. Consequently, K + pH grows at the same rate, γ ∗,
as C .

The Hamiltonian expression from equation (5.14) can be written as

J = u(C) · e−ρt + ν · (Q − C) − νδ · (K + pH) (5.90)

where

u(C) = C1−θ − 1

1 − θ
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We can verify from the first-order conditions for optimization that J̇ = −ρ · u(C) · e−ρt . If
we differentiate the right-hand side of equation (5.90) with respect to time, use the first-order
condition ν = C−θe−ρt , and simplify, we get

(ν̇/ν − δ) · [C + δ · (K + pH)] + δQ = (ν̇/ν) · Q + Q̇

If we use ν̇/ν = −(ρ + θ · Ċ/C) and rearrange terms, we get a formula for the growth rate
of Q:

Q̇/Q = (δ + ρ + θγC) ·
{

1 −
(

1

Q

)
· [C + δ · (K + pH)]

}
(5.91)

Since Ċ/C is constant and K + pH is a constant, positive multiple of C , equation (5.91)
expresses Q̇/Q as a negative, linear function of C/Q.

One solution to equation (5.91) is Q̇/Q = Ċ/C = γ ∗, so that C/Q is the constant (C/Q)∗.
Alternatively, if C/Q < (C/Q)∗, then equation (5.91) implies Q̇/Q > γ ∗ and C/Q → 0,
whereas C/Q > (C/Q)∗ implies Q̇/Q < γ ∗ and C/Q → ∞. Therefore, the stable path
features Q̇/Q = γ ∗ at all times.

If we use the relation between u and v from equation (5.16), then equation (5.87) allows
us to write u as a function of ω ≡ K/H :

u = η · (1 − α)

(η − α)
−

[
α · (1 − η)

(vK/u H)∗ · (η − α)

]
· ω (5.92)

Hence, the policy function for u is a closed-form, linear, negative function of ω. Since the
intercept exceeds 1, equation (5.92) determines a range of ω for which the indicated value
of u is in the interior, u ∈ (0, 1). The form of the equation implies that the width of this
range diminishes to 0 as β − α approaches 0.

We can use the relation v = (vK/u H)∗ · (u/ω) along with equation (5.92) to derive a
formula for v:

v = −α · (1 − β)

β − α
+

[
β · (1 − α)

β − α

]
·
[(

vK

u H

)∗]
·
(

1

ω

)
(5.93)

Hence, v is a positive, linear function of 1/ω and, therefore, a decreasing function of ω. We
can also verify that the solution for v is in the interior; that is, v ∈ (0, 1), when u ∈ (0, 1).
(This result follows readily from equation [5.16].)

Equations (5.13) and (5.16) imply that the growth rate of H is given by

Ḣ/H = B ·
[
η · (1 − α)

α · (1 − η)

]η

·
[(

vK

u H

)∗]η

· (1 − u) − δ



282 Chapter 5

If we substitute for u from equation (5.92), we get

Ḣ/H = −a1 + a2 · ω (5.94)

where a1 > 0, a2 > 0 are constants. Thus Ḣ/H is a positive, linear function of ω.
Since full wealth, K + pH , grows at the constant rate γ ∗, we have

γ ∗ =
(

ω

ω + p

)
· (K̇/K ) +

(
p

ω + p

)
· (Ḣ/H)

Hence, the growth rate of K is given by

K̇/K = γ ∗ + (γ ∗ − γH ) · (p/ω)

If we substitute for Ḣ/H from equation (5.94), we get

K̇/K = γ ∗ − a2 · p + p · (γ ∗ + a1)/ω (5.95)

Thus K̇/K is a positive, linear function of 1/ω and, therefore, an inverse function of ω. We
can also use equation (5.95) to determine a range of ω for which the inequality restriction
K̇/K + δ ≥ 0 is not binding.

To ascertain the dynamics of χ ≡ C/K , note that the condition Y = C + K̇ +δK implies

χ = Av ·
[(

vK

u H

)∗]α−1

− δ − K̇/K

If we substitute for v from equation (5.93) and for K̇/K from equation (5.95), we get

χ = constant +
{

A ·
[
η · (1 − α)

η − α

]
·
[(

vK

u H

)∗]α

− p · (γ ∗ + a1)

}
·
(

1

ω

)
(5.96)

where −a1 is the constant term in the expression for Ḣ/H in equation (5.94). If we substitute
for a1 and use the expression for p from equation (5.86), we can use the transversality
condition—r∗ > γ ∗ in equations (5.88) and (5.89)—to show that the term in the braces in
equation (5.96) is positive. Hence, χ is a positive, linear function of 1/ω and, therefore, a
negative function of ω.

5.8 Problems

5.1 A CES production function with physical and human capital. Consider the CES
production function in terms of physical capital, K , and human capital, H :

Y = A · {a · (bK )ψ + (1 − a) · [(1 − b) · H ]ψ }1/ψ
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where 0 < a < 1, 0 < b < 1, ψ < 1. Output can be used on a one-for-one basis for consump-
tion and for investment in K and H . The depreciation rate for each type of capital is δ.
Households have the usual infinite-horizon preferences, as in the Ramsey model. Assume
initially that there are no irreversibility constraints on K and H , so that gross investment in
either form of capital can be negative.

a. Set up the Hamiltonian and find the first-order conditions.

b. What is the optimal relation between K and H? Substitute this relation into the given
production function to get a relation between Y and K . What does this “reduced-form”
production function look like?

c. What is the steady-state value of the ratio of physical to human capital, (K/H)∗?

d. Describe the behavior of the economy over time if the initial condition is such that
K (0)/H(0) < (K/H)∗. What are the instantaneous rates of investment in each type of
capital at time 0?

e. Suppose that the inequality restrictions IK ≥ 0 and IH ≥ 0 apply. How do these constraints
affect the dynamics if the economy begins with K (0)/H(0) < (K/H)∗?

5.2 Adjustment costs for human and physical capital. Consider the model from sec-
tion 5.1 in which consumables and physical and human capital are produced by the same
technology. Imagine, however, that there are adjustment costs for changes in the two types
of capital. The unit adjustment costs, analogous to the formulation discussed in section 3.3,
are (bK /2) · (IK /K ) for K and (bH/2) · (IH/H) for H . Assume that the depreciation rates
for each types of capital are 0.

a. Discuss the parameters bK and bH . Which one would likely be larger?

b. Suppose that bK = bH . Discuss the short-run dynamics if the economy begins with
K (0)/H(0) < (K/H)∗. What if K (0)/H(0) > (K/H)∗?

c. Suppose now that bK < bH . Redo part b, and comment on the main differences in the
results.

5.3 Externalities in human capital (based on Lucas, 1988). The production function
for the i th producer of goods is

Yi = A · (Ki )
α · (Hi )

λ · H ε

where 0 < α < 1, 0 < λ < 1, 0 ≤ ε < 1. The variables Ki and Hi are the inputs of physical
and human capital used by firm i to produce goods, Yi . The variable H is the economy’s
average level of human capital; the parameter ε represents the strength of the external effect
from average human capital to each firm’s productivity. Output from the goods sector can
be used as consumables, C , or as gross investment in physical capital, IK . Physical capital
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depreciates at the rate δ. The production function for human capital is

(IH ) j = B Hj

where Hj is the human capital employed by the j th producer of human capital. Human
capital also depreciates at the rate δ. Households have the usual infinite-horizon preferences,
as in the Ramsey model, with rate of time preference ρ and intertemporal-substitution
parameter θ . Consider, first, a competitive equilibrium in which producers of Y and H act
as perfect competitors.

a. What is the steady-state growth rate of C , Y , and K ? How does the answer depend on
the size of the human-capital externality, that is, the parameter ε?

b. What is the steady-state growth rate of H? Under what circumstances does H grow at
the same rate as K in the steady state?

c. How would the social planner’s solution differ from the competitive one?



6 Technological Change: Models with an Expanding Variety of Products

In chapters 4 and 5 we studied models of endogenous growth in which diminishing re-
turns to a broad concept of capital did not apply, at least asymptotically. This absence of
diminishing returns meant that long-term per capita growth was feasible in the absence of
technological progress. A different view is that the mere accumulation of capital—even a
broad concept that includes human capital—cannot sustain growth in the long run, because
this accumulation must eventually encounter a significant decline in the rate of return. This
view implies that we have to look to technological progress—continuing advances in meth-
ods of production and types and qualities of products—to escape from diminishing returns
in the long run.

The exogenous rate of technological progress, x , determined the steady-state per capita
growth rate in the Solow–Swan and Ramsey models in chapters 1 and 2. In this and the next
chapter, we describe recent theoretical advances that endogenize this process of technolog-
ical improvement; that is, these models effectively explain the origin of the parameter x .
These theories therefore determine how government policies and other factors influence an
economy’s long-term per capita growth rate.

This chapter considers models in which technological progress shows up as an expansion
of the number of varieties of products. We think of a change in this number as a basic innova-
tion, akin to opening up a new industry. Of course, the identification of the state of technology
with the number of varieties of products should be viewed as a metaphor; it selects one aspect
of technical advance and thereby provides a tractable framework to study long-term growth.

The next chapter uses another metaphor in which progress shows up as quality improve-
ments for an array of existing kinds of products. These quality enhancements represent the
more or less continuous process of upgrading that occurs within an established industry.
Thus the approach in the next chapter should be viewed as complementary with the analysis
of variety in this chapter.

6.1 A Baseline Model with a Variety of Products

There are three types of agents in this model. First, producers of final output hire labor
and intermediate inputs and combine them to produce final output, which is sold at unit
price. Second, R&D firms devote resources to invent new products. Once a product has
been invented, the innovating R&D firm obtains a perpetual patent, which allows the firm to
sell the good at whatever price it chooses. This price is chosen to maximize profits. Third,
households maximize utility, subject to the usual budget constraint.

6.1.1 The Producers of Final Output

The producers of final output have access to a production technology that combines labor
with a number of intermediate inputs to produce final goods, which are then sold in the
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market at unit price. We follow Spence (1976), Dixit and Stiglitz (1977), Ethier (1982), and
Romer (1987, 1990) by writing the production function for firm i as

Yi = AL1−α
i ·

N∑
j=1

(Xij)
α (6.1)

where 0 < α < 1, Yi is output, Li is labor input, Xij is the employment of the j th type of
specialized intermediate good, and N is the number of varieties of intermediates.1 The
parameter A is an overall measure of productivity or efficiency. This formulation considers
the variety of intermediate goods as an element of the production function. We could, as
an alternative, model utility as a function of a variety of consumer goods. This alternative,
pursued by Grossman and Helpman (1991, chapter 4), yields similar results.

The production function in equation (6.1) specifies diminishing marginal productivity of
each input, Li and Xij, and constant returns to scale in all inputs together. The additively
separable form for the (Xij)

α means that the marginal product of intermediate good j is
independent of the quantity employed of intermediate good j ′.2 In this sense, a new type
of product is neither a direct substitute for nor a direct complement with the types that
already exist. We think that this specification is reasonable on average for breakthrough
innovations, the kinds of changes that we wish to model in this chapter. In a particular case,
a new product j may substitute for an existing good j ′ (that is, reduce the marginal product
of X j ′ ) or complement the good (raise the marginal product of X j ′ ). But the independence
of marginal products may hold in the average situation. This assumption of independence is
important because it implies that discoveries of new types of goods do not tend to make any
existing types obsolete.

In contrast, for the quality improvements studied in the next chapter, a reasonable spec-
ification is that a good of superior quality is a close substitute for a good of lesser quality.
This assumption means that the goods of lesser quality tend to become obsolete when the
new and better kinds are introduced.

1. The basic approach to the benefits from variety comes from Spence (1976), although he dealt with consumer
preferences and wrote utility as an integral over the various types (his equation [45]), rather than a sum. Dixit and
Stiglitz (1977) refined Spence’s analysis and used a form analogous to equation (6.1) to express consumer prefer-
ences over a variety of goods. Ethier (1982) applied this representation to inputs of production. Romer (1987, 1990)
used Ethier’s model with a variety of productive inputs in the context of technological change and economic growth.

2. An alternative to equation (6.1) is

Yi = AL1−α
i ·

[
N∑

j=1

(Xij)
σ

]α/σ

where o < σ < 1. In this case, the parameter σ , which can differ from α, governs the monopoly power possessed
by the owner of the rights to intermediate j . The case considered in the text corresponds to α = σ .
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Equation (6.1) implies that the marginal product of each intermediate good, ∂Yi/∂ Xij,
is infinite at Xij = 0 and then diminishes as Xij rises. If N types of goods are available at
finite prices at the current time, the firm will be motivated to use all N types.

It is important to notice that technological progress takes the form of expansions in N ,
the number of specialized intermediate goods available, rather than increases in A, the pro-
ductivity parameter. To see the effect from an increase in N , suppose that the intermediate
goods can be measured in a common physical unit and that all are employed in the same
quantity, Xij = Xi (which turns out to hold in equilibrium). The quantity of output is then
given from equation (6.1) by

Yi = AL1−α
i NXα

i = AL1−α
i · (NXi )

α · N 1−α (6.2)

For given N , equation (6.2) implies that production exhibits constant returns to scale in Li

and NXi , the total quantity of intermediate inputs. For given quantities of Li and NXi , Yi

increases with N in accordance with the term N 1−α . This effect, which captures a form of
technological progress, reflects the benefit from spreading a given total of intermediates,
NXi , over a wider range, N . The benefit arises because of the diminishing returns to each
of the Xij individually.

For fixed Li , equation (6.2) implies that an expansion of intermediates, NXi , encounters
diminishing returns if it occurs through an increase in Xi (that is, in all of the Xij) for given
N . Diminishing returns do not arise, however, if the increase in NXi takes the form of a
rise in N for given Xi . Thus technological change in the form of continuing increases in
N avoids the tendency for diminishing returns. This property of the production function
provides the basis for endogenous growth.

We shall find it convenient to think of the number of varieties, N , as continuous rather
than discrete. This assumption is unrealistic if we view N as literally the number of kinds
of intermediate goods employed, although the error would be small if N is large. More
generally, N should be viewed as a tractable proxy for the technological complexity of the
typical firm’s production process or, alternatively, for the average degree of specialization
of the factors employed by the typical firm. This broader notion of N would be continuous
rather than discrete.3

3. We could justify the continuous nature of N formally by shifting from the sum over a discrete number of types
in equation (6.1) to an integral over a continuum of types:

Yi = AL1−α
i ·

∫ N

0

[Xi ( j)]αd j

where j is the continuous index of type, and N is the range of types available. We would get essentially the same
results if we used this formulation instead of equation (6.1).
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The final goods, Yi , produced by all firms are physically identical. The aggregate of
the outputs of all firms, which we call Y , can be used in a perfectly substitutable manner
for various purposes. Specifically, this output can be used for consumption, production
of intermediates, X j , and later for the R&D needed to invent new types of intermedi-
ates (that is, to expand N ). All prices are measured in units of the homogeneous flow of
goods, Y .

We could model the Xij as service flows from durable goods. Firms would then rent
the underlying capital goods, Kij; and the total quantity of capital rented by firm i , Ki =∑N

j=1 Kij, would look like the capital input in our previous models.4 If we took this approach,
we would end up with a model with two state variables: the aggregate quantity of capital,
K , and the number of varieties of goods, N . The model would then be formally similar to
those studied in chapter 5.

We shall find it more convenient to assume that the Xij represent purchases of nondurable
goods and services. This model and the one with durable intermediates turn out to yield
similar insights about the determinants of technological change and long-run economic
growth. The model with nondurable inputs is simpler, because it involves only a single state
variable, the number of products, N .

The profit for a producer of final goods is

Yi − wLi −
N∑

j=1

Pj Xij

where w is the wage rate, and Pj is the price of intermediate j . These producers are
competitive and therefore take w and the prices Pj as given. Hence, we get the usual
equations between factor prices and marginal products, and the resulting profit is zero.

The production function in equation (6.1) implies that the marginal product of the j th
intermediate good is given by

∂Yi/∂ Xij = AαL1−α
i Xα−1

ij (6.3)

The equation of this marginal product to Pj therefore implies

Xij = Li · (Aα/Pj )
1/(1−α) (6.4)

This result determines the quantity of the j th input demanded, Xij, as a function of the price,
Pj . The price elasticity of demand for each type of intermediate is the constant −1/(1−α).

4. Acemoglu (2002) extends the varieties framework by assuming that one set of intermediates augments labor, L ,
and another set augments capital, K . Researchers can then choose whether to devote their R&D efforts to labor-
augmenting or capital-augmenting innovations. He shows that technological progress may be asymptotically labor
augmenting if the elasticity of substitution between labor and capital is less than one.
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Figure 6.1
The demand for intermediate inputs. The demand for intermediate inputs is a constant-elasticity downward-
sloping function. When price equals marginal cost, firms demand the quantity X∗∗. For prices above marginal
cost, the quantity demanded is less than X∗∗.

The demand function is depicted in figure 6.1. The equality between w and the marginal
product of labor implies

w = (1 − α) · (Yi/Li ) (6.5)

6.1.2 Research Firms

At a point in time, the technology exists to produce N varieties of intermediate goods. An
expansion of the number N requires a technological advance in the sense of an invention
that permits the production of the new kind of intermediate good. We assume that this
advance requires purposive effort in the form of R&D.

R&D firms face a two-stage decision process. First, they decide whether to devote
resources to invent a new design. Firms expend these resources if the net present value
of future expected profits is at least as large as the R&D expenditures, which are paid up
front. In the second stage, the inventors determine the optimal price at which to sell their
newly invented goods to the producers of final output. This price determines the flow of
profit at each date and, thereby, the present value of profit that was considered in the first
stage.

We proceed by solving the model backward. First, we derive the optimal price, assuming
that a new design has already been invented. Second, we calculate the present value of
profits and compare it with the R&D cost. If the present value is as large as the R&D cost,
the firm will undertake the R&D expenditures. Finally, we look at the equilibrium when
there is free entry into the R&D business.
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Stage 2: Optimal Price, Once the Good Has Been Invented In order to motivate re-
search, successful innovators have to be compensated in some manner. The basic problem
is that the creation of a new idea or design, say for intermediate good j , is costly but could
then be used in a nonrival way by all potential producers of good j . That is, one producer’s
use of the design would not affect the output that could be generated for given inputs by
other producers who use the design. It would be efficient, ex post, to make the existing
discoveries freely available to all producers, but this practice fails to provide the ex ante
incentives for further inventions. A trade-off arises, as in the usual analysis of patents, be-
tween restrictions on the use of existing ideas—that is, some kind of excludability—and
the rewards to inventive activity.

Remarkably, these issues about rivalry and excludability were well understood almost
200 years ago by Thomas Jefferson, the third U.S. president and author of the Declaration
of Independence, who also served for a time on the U.S. patent board. Jefferson said in his
letter of August 13, 1813, to Isaac McPherson:5

If nature has made any one thing less susceptible than all others of exclusive property, it is the actions
of the thinking power called an idea, which an individual may exclusively possess as long as he keeps
it to himself; but the moment it is divulged, it forces itself into the possession of everyone, and the
receiver cannot dispossess himself of it. Its peculiar character, too, is that no one possesses the less,
because every other possesses the whole of it. He who receives an idea from me, receives instruction
himself without lessening mine . . . inventions that cannot in nature be a subject of property, society
may give an exclusive right to the profits arising from them as an encouragement to man to pursue ideas
which may produce utility, but this may or may not be done, according to the will and convenience of
the society, without claim or complaint from anybody. Accordingly, it is a fact, as far as I am informed,
that England was, until we copied her, the only country on earth which ever, in a general law, gave
a legal right to the exclusive use of an idea. In some other countries, it is sometimes done, in a great
case, and by a special and personal act, but generally speaking other nations have thought that these
monopolies produce more embarrassment than advantage to society. And it may be observed that the
nations which refuse monopolies of inventions are as fruitful as England in new and useful devices.

Thus, although Jefferson understood the possible gains from patents as spurs to inventions,
he came down in the end against a regime that tried to maintain these monopoly rights in
ideas.

Notwithstanding Jefferson’s viewpoint, we consider an institutional setup in which the
inventor of good j retains a perpetual monopoly right over the production and sale of
the good, X j , that uses his or her design.6 The flow of monopoly rentals will then provide

5. The letter is available on the Internet from the Thomas Jefferson Papers at the Library of Congress
(lcweb2.loc.gov/ammem/mtjhtml/mtjhome.html).

6. We assume for convenience that the inventor of the j th design is also the producer of the j th intermediate good.
We would get the same results if we assumed instead that the inventor charged a royalty for the use of the design
by competitive producers of goods.
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the incentive for invention. The monopoly rights could be enforced through explicit patent
protection or through secrecy. It would, in either case, be realistic to assume that the in-
ventor’s monopoly position lasted only for a finite time or eroded gradually over time. We
consider this extension later in this chapter.

The present value of the returns from discovering the j th intermediate good is given by

V (t) =
∫ ∞

t
π j (v) · e−r̄(t,v)·(v−t) dv (6.6)

where π j (v) is the profit flow at date v, and r̄(t, v) ≡ [1/(v− t)] ·∫ v

t r(ω) dω is the average
interest rate between times t and v. If the interest rate equals a constant, r—which turns out
to be true in the equilibrium—then the present-value factor simplifies to e−r ·(v−t).

The producer’s revenue at each date equals the price, Pj (v), times the amount of goods
sold. The flow of profit equals revenue less production costs. We assume that, once invented,
an intermediate good of type j costs one unit of Y to produce. In effect, the inventor of good
j sticks a distinctive label on the homogenous flow of final product and, thereby, converts
this product into the j th type of intermediate good. Formally, we are assuming that the
marginal and average cost of production is a constant, normalized to 1. Hence, the profit
flow is given by

π j (v) = [Pj (v) − 1] · X j (v) (6.7)

where

X j (v) =
∑

i

Xij(v) = [Aα/Pj (v)]1/(1−α) ·
∑

i

Li = L · [Aα/Pj (v)]1/(1−α) (6.8)

is the aggregate of the quantity demanded over the producers i from equation (6.4). The
quantity L is the aggregate of labor input and is assumed to be constant.

Since there are no state variables on the production side and no intertemporal elements
in the demand function, the producer of X j selects Pj at each date to maximize the flow
of monopoly profit at that date.7 The maximization problem follows from equations (6.7)
and (6.8) as

max
Pj (v)

π j (v) = [Pj (v) − 1] · L · [Aα/Pj (v)]1/(1−α) (6.9)

7. We could derive this result from our familiar dynamic analysis by setting up the Hamiltonian and finding the
usual first-order condition with respect to P . Since P is a control variable, the FOC would dictate setting the
derivative of the profit to zero, just as if the model were static.
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The solution for the monopoly price is8

Pj (v) = P = 1/α > 1 (6.10)

Hence, the price Pj is constant over time and the same for all intermediate goods j . The
monopoly price is the markup 1/α on the marginal cost of production, 1. The price is the
same for all goods j because the cost of production is the same for all goods, and each good
enters symmetrically into the production function in equation (6.1).

If we substitute for Pj from equation (6.10) into equation (6.4), we can determine the
aggregate quantity produced of each intermediate good:

X j = A1/(1−α)α2/(1−α)L (6.11)

which is also constant over time and across j . It is important to notice that, because price
exceeds marginal cost, the quantity X j is smaller than it would be if intermediates were
priced at marginal cost (see figure 6.1). The quantity X j is the same for all goods and at all
points in time (if L is constant). The aggregate quantity of intermediates, denoted by X , is
given by

X = NX j = A1/(1−α)α2/(1−α)L N (6.12)

The level of aggregate output is determined from equations (6.2) and (6.12) as

Y = AL1−α Xα N 1−α = A1/(1−α)α2α/(1−α)L N (6.13)

If we substitute for Pj and X j from equations (6.10) and (6.11) into equation (6.9), we get
a formula for the profit flow:

π j (v) = π = L A1/(1−α) ·
(

1 − α

α

)
· α2/(1−α) (6.14)

which is, again, constant over time and across goods. Finally, we can substitute the optimal
values of Pj and X j into equation (6.6) to get that the inventor’s net present value of profit
at time t is given by

V (t) = L A1/(1−α) ·
(

1 − α

α

)
· α2/(1−α) ·

∫ ∞

t
e−r̄(t,v)·(v−t) dv (6.15)

Stage 1: The Decision to Enter the R&D Business We now know that, once a good
has been invented, the institutional setup will allow the inventor to collect the present value

8. This result implies that the factor share for intermediate inputs, which is α, equals the reciprocal of the markup
ratio. However, this restriction no longer applies if one assumes the generalized form of production function given
in note 2. In that case, the monopoly price turns out to be Pj = P = 1/σ .
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V (t) shown in equation (6.15). A researcher will find R&D investment attractive if this
present value is at least as large as the R&D cost. Hence, the R&D investment depends on
the nature of the R&D costs. A realistic description of the research process would include
uncertainty about the quantity of resources required to generate an invention and about the
success of the invention. We simplify the analysis, however, by assuming that it takes a
deterministic amount of effort to generate a successful new product. (Chapter 7 considers
a model in which the research process is subject to uncertainty.)

The deterministic framework for the invention of new products ultimately generates a
smooth path for aggregate economic growth. Randomness in the discovery of new products
would eliminate the smoothness at the aggregate level and thereby induces variations of the
growth rate around a long-term trend. These variations would look like the fluctuations that
occur in real business-cycle models. (See, for example, Kydland and Prescott, 1982, and
McCallum, 1989.) Since we are primarily interested here in the determinants of the long-
term growth trend, we assume a deterministic R&D process in which the cyclical elements
are absent.

We assume in this first model that the cost to create a new type of product is η units of
Y . This specification means that we are applying the assumptions of the usual one-sector
production model to the use of output for R&D.9 In general, one would imagine that the
cost of creating a new variety depends on the number of varieties previously invented, as
described by the function η(N ). The tendency to run out of new ideas suggests that the cost
would rise with N , so that η′(N ) > 0. But if the concepts already discovered make it easier
to come up with new ideas, the cost could fall with N , so that η′(N ) < 0 would apply.10

We assume here that these effects cancel, so that the cost of inventing a new good does not
change over time; that is,

R&D cost = η, a constant (6.16)

This specification turns out to be consistent with a constant growth rate of aggregate output.
However, the specification does create some puzzles with regard to scale effects, which we
discuss later. A firm decides to devote resources to R&D if V (t) ≥ η.

The Free-Entry Condition We assume that there is free entry into the business of being
an inventor, so that anyone can pay the R&D cost η to secure the net present value, V (t),
shown in equation (6.15). If V (t) > η, an infinite amount of resources would be channeled

9. Rivera-Batiz and Romer (1991) use this specification in the framework that they describe as the lab-equipment
model of R&D.

10. The assumption that the cost of inventing a new product declines is equivalent to the assumption that the cost
is constant but that new products are more productive per unit than the old ones. Chapter 7 considers a model in
which the new goods are more productive than the old goods.
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into R&D at time t ;11 hence, V (t) > η cannot hold in equilibrium. If V (t) < η, no resources
would be devoted at time t to R&D, and, therefore, the number of goods, N , would not
change over time.12 We focus the main discussion on equilibria with positive R&D and,
hence, growing N at all points in time. In these cases,

V (t) = η (6.17)

holds for all t .
If we differentiate the free-entry condition in equation (6.17) with respect to time, using

the formula for V (t) from equation (6.15) and taking account of the condition r̄(t, v) ≡
[1/(v − t)] · ∫ v

t r(ω) dω,13 we get

r(t) = π

V (t)
+ V̇ (t)

V (t)
(6.18)

where π is the constant profit flow given by equation (6.9). Equation (6.18) says that the rate
of return to bonds, r(t), equals the rate of return to investing in R&D. The R&D rate of return
equals the profit rate, π/V (t), plus the rate of capital gain or loss derived from the change
in the value of the research firm, V̇ (t)/V (t). Since η is constant, the free-entry condition
in equation (6.17) implies V̇ (t) = 0. It follows from equation (6.18) that the interest rate is
constant and equal to r(t) = r = π/η. Substituting for π from equation (6.9), we get

r = (L/η) · A1/(1−α) ·
(

1 − α

α

)
· α2/(1−α) (6.19)

The underlying technology and market structure peg the rate of return at the value shown
in equation (6.19) (assuming that the underlying growth rate of N is positive). The situation
therefore parallels the one in the AK model of chapter 4, in which the technology and
incentives to invest pegged the rate of return at the value A − δ.

The intermediate good that is about to be discovered generates a present value of
monopoly profits that just covers the R&D cost, η. That is, V (t) = η in equation (6.15).
Since old and new products receive the same flow of monopoly profits, the present value
of the profits for each existing intermediate good must also equal η. Hence, η is the market

11. The investment would be infinite if there are no limitations on borrowing at the interest rate r(t), where this
debt could be collateralized by the value of the investment.

12. The number of inventions, N , is not reversible. That is, it is impossible to forget some of the existing designs
and thereby get a rebate on the R&D expenditures that went into the discovery of those designs. If N were reversible
in this sense, V (t) = η would have to hold at all points in time.

13. We use here Leibniz’s rule for differentiation of a definite integral. See the discussion in the mathematical
appendix.
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value of a firm that possesses the blueprint to produce one of the intermediate goods, and
the aggregate market value of firms is ηN . (Recall that firms own no capital, because there
are no durable goods in the model.)

6.1.3 Households

Households still maximize utility over an infinite horizon:

U =
∫ ∞

0

(
c1−θ − 1

1 − θ

)
· e−ρt dt (6.20)

where the rate of population growth, n, is 0 in the present model. Households earn the rate
of return r on assets and receive the wage rate w on the fixed aggregate quantity L of labor.
The households’ aggregate budget constraint is, as usual,

d(assets)/dt = wL + r · (assets) − C (6.21)

Households satisfy the familiar Euler equation,14

Ċ/C = (1/θ) · (r − ρ) (6.22)

The usual transversality condition implies that r must exceed the long-run growth rate of
output, Y .

6.1.4 General Equilibrium

In a closed economy, the total of households’ assets equals the market value of firms,

assets = ηN

Since η is constant, the change in assets must be

d(assets)/dt = ηṄ

The wage rate is given from equation (6.5) by

w = (1 − α) · (Y/L)

After some manipulation, the interest rate, given by equation (6.19), can be written as

r = 1

η
· (1 − α) · α · (Y/N )

14. Since population, L , is constant, the growth rate of consumption equals the growth rate of per capita
consumption.
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Hence, aggregate income, wL + r · assets, equals Y − α2Y . It follows that the households’
budget constraint in equation (6.21) becomes

ηṄ = Y − C − X (6.23)

where we used the condition X = α2Y from equations (6.12) and (6.13). Equation (6.23)
is the economy-wide resource constraint. This condition states that, at every point in time,
GDP, Y , must be allocated to consumption, C , the production of intermediates, X , and the
creation of Ṅ new goods, each of which costs η.

Substitution for r from equation (6.19) into equation (6.22) leads to the growth rate:

γ = (1/θ) ·
[
(L/η) · A1/(1−α) ·

(
1 − α

α

)
· α2/(1−α) − ρ

]
(6.24)

This growth rate applies to the number of designs, N , and output, Y , as well as consumption,
C . The present model, like the AK model, exhibits no transitional dynamics, and the three
variables grow at the same, constant rate.15

Equation (6.24) is valid only if the underlying parameters lead to γ ≥ 0 in the equation.
If γ < 0 were indicated, potential inventors would have insufficient incentive to expend
resources on R&D and, hence, N would stay constant over time. The growth rate, γ , would
then equal zero. We assume, henceforth, that γ ≥ 0 applies in equation (6.24).

The number of varieties of goods, N , starts at some value N (0) and then grows at the
constant rate γ shown in equation (6.24). The solution for output in equation (6.13) indicates
that, for fixed L , Y is proportional to N . It follows that Y and N grow at the same constant rate.

The level of consumption, C , must satisfy the economy’s budget constraint in equa-
tion (6.23), which can be rewritten as

C = Y − ηγ N − X

where ηγ N = ηṄ is the amount of resources devoted to R&D. If we substitute for Y from
equation (6.13), γ from equation (6.24), and X from equation (6.12), we can simplify to get

C = (N/θ) · {
L A1/(1−α) · (1 − α) · α2α/(1−α) · [θ − α · (1 − θ)] + ηρ

}
(6.25)

Equation (6.25) verifies that, for fixed L , C and N grow at the same rate, γ , shown in
equation (6.24).16

15. We demonstrate here that an equilibrium exists with no transitional dynamics. A proof that no other equilibria
are possible can be constructed along the lines followed in chapter 4. We leave this proof as an exercise.

16. The transversality condition is r > γ . (Recall that population growth, n, equals zero.) Since γ = (1/θ)·(r −ρ),
the transversality condition can be written as r · (1 − θ) < ρ. Substitution for r from equation (6.19) leads to the
inequality LA1/(1−α) · (1 − α) · α2α/(1−α)α · (1 − θ) < ηρ. This condition guarantees that the expression for the
level of C in equation (6.25) is positive.
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6.1.5 Determinants of the Growth Rate

Consider the determinants of the growth rate, γ , shown in equation (6.24). The households’
preference parameters, ρ and θ , and the level of the production technology, A, enter essen-
tially in the same way as they did in the AK model, which we considered in chapter 4. A
greater willingness to save—lower ρ and θ—and a better technology—higher A—raise the
growth rate.

A new effect involves the cost of inventing a new product, η. A decrease in η raises the
rate of return, r , in equation (6.19) and therefore raises the growth rate, γ , in equation (6.24).

The model contains a scale effect in that a larger labor endowment, L , raises the growth
rate, γ , in equation (6.24). This effect is similar to those that arose in chapter 4 in the model
of learning by doing with spillovers and in the model of public goods. As in these earlier
models, the economy would not tend toward a steady state with a constant per capita growth
rate if we allowed for growth in population, L , at a positive rate. The present model has
a scale effect because a new product, which costs η to invent, can be used in a nonrival
manner across the entire economy. The larger the economy—represented by L—the lower
the cost of an invention per unit of L (or Y ). Therefore, as with a decrease in η, an increase
in L raises γ .

We already observed in chapter 4 that scale effects are not supported empirically if we
identify scale with the size of a country’s population or economic activity. Countries may,
however, not be the proper unit for measuring scale in the present context. The scale that
matters in the model has two aspects: first, it involves the total of production over which a new
idea can be used in a nonrival manner, and, second, it measures the scope of the inventor’s
property rights. If ideas flow readily across borders, countries would not define the proper
units in the first context. (We consider the diffusion of technology in chapter 8.) Countries
may also be inappropriate in the second context if patent protection applies internationally
or if a monopoly position can be sustained at least partially in foreign countries by secrecy.

If the world operated as a single unit with respect to the flow of ideas and the maintenance
of property rights, L would be identified with world population or an aggregate of world
economic activity. The model would then predict a positive relation between world per
capita growth and the levels of world population or the aggregate of world output. Kremer
(1993) argues that this hypothesis may be correct over very long periods of time. However,
the usual view is that the predicted scale effect is counterfactual; therefore, many economists
have sought to modify the framework to eliminate this prediction. For a summary of this
literature, see Jones (1999).

6.1.6 Pareto Optimality

The Social Planner’s Problem We now demonstrate that the outcomes in the decen-
tralized economy are not Pareto optimal. We can, as usual, assess Pareto optimality by
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comparing the previous results—specifically, the growth rate γ shown in equation (6.24)—
with the results from the parallel problem for a hypothetical social planner.

The social planner seeks to maximize the utility of the representative household, as given
in equation (6.20). The planner is constrained only by the economy’s budget constraint:

Y = AL1−α N 1−α Xα = C + ηṄ + X (6.26)

We have used the same production function as in equation (6.1), but we have already imposed
the condition that the quantity of intermediates is the same for all firms i and intermediate
products j . We can readily show by optimizing with respect to each of the Xij that the planner
satisfies these conditions for efficient production. The right-hand side of equation (6.26)
comprises the three possible uses of output: consumption, R&D, and intermediate goods.

The Hamiltonian expression for the social planner’s problem can be written as

J = u(c) · e−ρt + ν · (1/η) · (AL1−α N 1−α Xα − Lc − X) (6.27)

where the shadow price ν applies to Ṅ , and we substituted the condition C = Lc. The
control variables are c and X , and the state variable is N .

The contrast with the decentralized solution involves the determination of X , the quantity
of intermediates, and γ , the growth rate of N . The usual optimization conditions for the
social planner lead to the formulas for X and γ :

X (social planner) = A1/(1−α)α1/(1−α)L N (6.28)

γ (social planner) = (1/θ) ·
[
(L/η) · A1/(1−α) ·

(
1 − α

α

)
· α1/(1−α) − ρ

]
(6.29)

The choice of X in equation (6.28) implies that the level of output is

Y (social planner) = A1/(1−α)αα/(1−α)L N (6.30)

In comparison with the social planner’s choice in equation (6.28), the decentralized
solution for X in equation (6.11) is multiplied by α1/(1−α) < 1. Hence, the decentralized
economy allocates fewer resources than the social planner to intermediates and, therefore,
ends up with a lower level of output (equation [6.13] versus equation [6.30]).

In figure 6.1, the quantity of intermediates that the planner would like produced is X∗∗,
which is the amount that would be demanded if price were equated to marginal cost. In
the decentralized economy, where intermediates are priced at the monopoly value, 1/α, the
quantity demanded is the smaller amount X∗, also shown in the figure. The gap between
X∗∗ and X∗ generates a static efficiency loss from monopoly.

In the decentralized solution for the growth rate, equation (6.24), the first term inside the
large brackets is the multiple α1/(1−α) < 1 of the corresponding term for the social planner
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in equation (6.29). Recall that this term in equation (6.24) corresponded to the private rate
of return, r , as given in equation (6.19). Thus the decentralized economy has a lower growth
rate than the planned economy, and the lower growth rate corresponds to a shortfall of the
private rate of return from the rate of return implicitly used by the social planner. This social
rate of return is the first term inside the brackets in equation (6.29):

r (social planner) = (L/η) · A1/(1−α) ·
(

1 − α

α

)
· α1/(1−α) (6.31)

In the model of learning by doing with spillovers in chapter 4, the private rate of return fell
short of the social rate of return because of the uncompensated benefits that one producer
conveyed to others. The model with inventions of new products and monopoly rights in these
inventions generates a gap between social and private returns from a different source. The
underlying distortion is the monopoly pricing of intermediates: the price P in equation (6.10)
is the multiple 1/α of the marginal cost of production, 1. The government could induce
the private sector to attain the social optimum in a decentralized setting if it could engineer
a tax-subsidy policy—a form of “industrial policy”—that induced marginal-cost pricing
without eliminating the appropriate incentive for inventors to create new types of products.
We now consider some of these possibilities.

Subsidies to Purchases of Intermediate Goods Suppose that the economy is decentral-
ized, but the government uses a lump-sum tax to finance a subsidy on the purchase of all
varieties of intermediate goods. If the subsidy is at the rate 1 − α, the producers of Y would
pay only αP for each unit of X . The demand, Xij in equation (6.4), rises accordingly by the
factor (1/α)1/(1−α). The equilibrium price P is still the multiple 1/α of marginal cost, 1, but
the equilibrium quantity, X in equation (6.11), is multiplied by the factor (1/α)1/(1−α) and
thereby coincides with the social planner’s choice in equation (6.28). This result follows
because the user price of X , net of the public subsidy, equals 1.

The expansion of the quantity of intermediates, X , provides a static and a dynamic gain in
efficiency. In a static context, with fixed N , the monopoly pricing implies that the marginal
product of X exceeds its cost of production, 1, and, therefore, that the economy fails to
maximize the goods available for consumption. If more output were allocated to X , the
expansion of Y on a more than one-for-one basis means that consumption could rise. The
government’s subsidy to purchases of X allows the economy to secure this static gain.

The higher level of X also has a dynamic effect that involves the incentive to expand N
over time. The increase in the quantity of intermediates raises the flow of monopoly profit
in equation (6.6) by the factor (1/α)1/(1−α). This increase in profit raises the rate of return,
r , in equation (6.19) by the same factor; hence, the private rate of return coincides with the
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social rate of return, given in equation (6.31).17 It follows that the decentralized growth rate
equals the social planner’s growth rate, shown in equation (6.29). Thus the public subsidy
provides a dynamic gain in that N now grows at the efficient rate. In more general models
a first-best solution cannot be attained just with a subsidy on the purchases of intermediate
goods. For example, in a model considered later in which the inventor’s monopoly position
is temporary, a subsidy to research would also be required.

Subsidies to Final Product The government could also induce the private economy to
attain the social optimum if it stimulated the demand for intermediates by subsidizing
production. The required subsidy rate on output, Yi , is (1 − α)/α, so that producers receive
1/α units of revenue for each unit of goods produced.

Subsidies to Research One policy that seems natural but that fails to achieve the social
optimum in this model is a subsidy to research and development. If the government absorbs
part of the cost of R&D, a potential inventor lowers the net cost of research, η, accordingly
in equation (6.19). This change can raise the privately chosen values of r and γ to equal
the social planner’s values. The problem is that the quantity of intermediates, X in equa-
tion (6.11), is still wrong from a social perspective because of monopoly pricing. Thus,
although the economy grows at the “right” rate, it fails to achieve static efficiency, because
it allocates insufficient resources to intermediates for given N .

Although various governmental tax-subsidy policies can work in the model to improve
allocations, the successful execution of any of these industrial policies would be difficult.
The government not only has to subsidize the right things—basically the demands for the
goods that are monopoly priced—but then has to finance the scheme with a nondistorting
tax. If the tax were levied on output, the scheme would be self-defeating. Moreover, in a
more realistic model, the required subsidy would have to vary across factors of production or
final products; in other words, the government would have to pick winners in an omniscient
and benevolent manner. Section 6.2 illustrates this problem by allowing for a distinction
between monopolized and competitive goods.

6.1.7 Scale Effects and the Cost of R&D

One way to alter the predictions about scale effects is to change the specification for the
cost of R&D. The key assumption was that the invention of a new variety required a fixed
amount η of output, Y . This assumption means that Ṅ is the constant multiple 1/η of R&D

17. The exact coincidence depends on the constant price elasticity of the demand for intermediates. This property
stemmed from the form of the production function in equation (6.1).
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outlays. Hence, the growth rate of N is given by

Ṅ/N = (1/η) ·
(

R&D

N

)
(6.32)

Equation (6.13) implies that Y/L is proportional to N . Hence, equation (6.32) implies a
positive relation between the rate of productivity growth, Ṅ/N , and the ratio of R&D to
Y/L . It follows that a common secular trend in the variables R&D, Y , and L would generate a
corresponding trend in productivity growth. This implication has been criticized empirically
by Jones (1995, 1999), based on time-series behavior in the most advanced countries,
because the rate of productivity growth has been relatively stable despite upward trends in
the levels of R&D, Y , and L .

An alternative specification that fits the data better is for Ṅ/N to be positively related to the
ratio of R&D to Y . Then the absence of a trend in productivity growth would correspond
to the lack of a trend in the ratio of R&D outlays to GDP. The R&D ratio has, in fact,
changed little in the United States since 1970—the ratio went from 2.6 percent in 1970 to
2.5 percent in 1996. In the United Kingdom, the share fell slightly from 2.0 percent in 1972 to
1.8 percent in 1997. Other major OECD countries experienced a moderate increase in the
R&D ratio over some periods—the share in Japan went from 1.7 percent in 1970 to 2.8
percent in 1997; in Germany, from 2.1 percent in 1970 to 2.3 percent in 1998; in France
from 1.9 percent in 1970 to 2.2 percent in 1997; in Italy from 0.8 percent in 1970 to 1.4
percent in 1996; and in Canada, from 1.2 percent in 1970 to 1.7 percent in 1998.18

The data refer to expenditures on formal R&D, but the concept of research that matters
in the theory is much broader. If the fraction of true outlays on R&D in the measured data
tends to rise as countries develop, as seems plausible, then the true ratios may not have
risen in some of the OECD countries. Thus the stability of ratios of R&D to GDP may be
a reasonable approximation to the behavior in advanced countries. It would then also be
satisfactory as a first-order approximation to assume that productivity growth, Ṅ/N , had a
fixed positive relation with the ratio of R&D to GDP.

In the theoretical model, the corresponding assumption is that the cost of inventing a new
variety of intermediate is proportional to the extra output that would be created by the new
variety. Since output, Y , is proportional to N in equation (6.13), an equivalent assumption
is that the R&D cost is proportional to Y/N . Since equation (6.13) implies

Y/N = A1/(1−α)α2α/(1−α)L

18. These data are from World Bank, World Development Indicators 2002, and the National Science Foundation
at http://www.nsf.gov.
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the new specification amounts to replacing η in the original model by the term
ηA1/(1−α)α2α/(1−α)L . Since the new term is still constant, the form of the results from
before goes through immediately. Hence, the rate of return and the growth rate simplify
from equations (6.19) and (6.24) to

r = α · (1 − α)

η
(6.33)

and

γ = (1/θ) ·
[
α · (1 − α)

η
− ρ

]
(6.34)

The main new element is that the rate of return and the growth rate no longer rise with L
or A. Hence, the economy is still capable of endogenous growth, but scale effects are no
longer present.

The revised specification also admits growth in population without predicting rising
growth rates for output. If L(t) grows at the constant rate n, the present value of the
monopoly rights over a variety of intermediates is modified from equation (6.15) to

V (t) = A1/(1−α) ·
(

1 − α

α

)
· α2/(1−α) · L(t) ·

(
1

r − n

)

where we assumed, as turns out to be correct, that r is constant over time. The new feature
is that V (t) increases with n, because a higher n implies higher levels of future demands
for intermediate goods.

The free-entry condition is now

ηA1/(1−α)α2α/(1−α)L(t) = A1/(1−α) ·
(

1 − α

α

)
· α2/(1−α) · L(t) ·

(
1

r − n

)

where the left-hand side is the cost of innovation (which is proportional to L[t]), and the
right-hand side is V (t). Simplification of the free-entry condition leads to an expression for
the equilibrium rate of return:

r = n + α · (1 − α)

η
(6.35)

The growth rate is, as usual, γ = (1/θ) · (r − ρ). Therefore, r and γ would be invariant
with the level of L but increasing in n.
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6.1.8 A Rising Cost of R&D

We consider now a case in which the cost of R&D is an increasing function of the number
of ideas previously invented, that is, η = η(N ), where η′(N ) > 0. This case is plausible if
we think of the main effect from a rising N as the using up of the given total number of
potential ideas. We consider a simple functional form with a constant elasticity:

η(N ) = φN σ (6.36)

where σ > 0 and φ > 0 are exogenous constants.
Note first that the pricing strategy followed once a good has been invented is independent

of the shape of the R&D cost. Therefore, the optimal price is still the monopoly value,
P = 1/α, the quantity of each intermediate is again given by equation (6.11), and the profit
flow is still given by equation (6.14). As before, the free-entry condition entails

V (t) = η(N )

The key difference from before is that, as N increases and, hence, η(N ) rises, the present
value, V (t), must rise correspondingly. Since V̇ (t) is no longer zero, equation (6.18) implies
that the interest rate is not constant. Instead, we have

r(t) = π

φN σ
+ σ ·

(
Ṅ

N

)
(6.37)

The last term, which depends on Ṅ/N , represents the growth rate of the value of a firm
that possesses the monopoly rights over the use of an existing intermediate good. This
value is rising over time because the cost of innovation is rising and because the existing
intermediate goods are just as good as the new ones.19

If we substitute for r(t) from equation (6.37) into equation (6.22), we get

Ċ

C
= 1

θ
·
(

π

φN σ
+ σ · Ṅ

N
− ρ

)
(6.38)

Hence, the growth rate of consumption is no longer constant but rather tends to decline with
N and to increase with Ṅ/N . To solve the model, we need an expression for Ṅ/N . If we
substitute the formula for the R&D cost from equation (6.36) into the resource constraint,

19. The result applies when the free-entry condition always holds with equality. In this case, new innovations
continue to be made even though the cost of innovation is rising.
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which is still given by equation (6.23), we get

Ṅ

N
= ψ1

φ
· N−σ − C

φ
· N−(1+σ) (6.39)

where ψ1 ≡ (1 − α2) · A1/(1−α)α2α/(1−α)L > 0 is a constant for a fixed L .
We can solve the model graphically by constructing a phase diagram in (C, N ) space. The

Ṅ = 0 schedule is a straight line from the origin, C = ψ1 N . To the north of this schedule,
arrows point west, as shown in figure 6.2.

We can substitute from equation (6.39) into equation (6.38) to get an expression for Ċ/C
as a function of N and C :

Ċ

C
= 1

θ
·
{(

π

φ

)
· N−σ + σ ·

[(
ψ1

φ

)
· N−σ − C

φ
· N−(1+σ)

]
− ρ

}
(6.40)

C

N � 0
.

C � 0
.

N
N*

Figure 6.2
Phase diagram for the model with increasing R&D costs. The Ṅ = 0 schedule is a straight line from the origin,
C = ψ1 N . To the north of this schedule, arrows point west. The Ċ = 0 schedule is given by

C =
(

π

σ
+ ψ1

)
· N − ρφ

σ
· N (1+σ)

which is a hump-shaped curve with a maximum at

N max =
(

π + σψ1

ρφ · (1 + σ)

)1/σ

Arrows above this curve point south, and the opposite is true below the curve. Notice that N∗ < N max, so that the
the steady state is to the left of the maximum of the Ċ = 0 schedule. The steady state displays saddle-path stability,
and the economy converges along an upward-sloping path, which entails growing consumption and numbers of
varieties.
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The corresponding Ċ = 0 schedule is given by

C =
(

π

σ
+ ψ1

)
· N − ρφ

σ
· N (1+σ) (6.41)

This equation defines a hump-shaped curve with a maximum at

N max =
(

π + σψ1

ρφ · (1 + σ)

)1/σ

Arrows to the north of this curve point south, as displayed in figure 6.2. The steady-state
value of N , which is determined in the figure by the intersection of the two loci, is given by

N ∗ =
(

π

ρφ

)1/σ

=
(

L A1/(1−α) · (
1−α
α

) · α2/(1−α)

ρφ

)1/σ

(6.42)

Notice that N ∗ < N max, so that the steady state is to the left of the maximum of the Ċ = 0
schedule.

The steady state displays saddle-path stability, and the economy converges along an
upward-sloping path, which entails growing consumption and numbers of varieties.20 In
the long run, however, the number of ideas is constant, as long as L is constant. If L grows
at the constant rate n, N will also grow at this rate in the steady state. Hence, the model has
no scale effects on the steady-state growth rate. (The model does have a scale effect in the
sense that a higher level of L corresponds to a higher level of N and, therefore, higher levels
of y and c.) Note that the long-run growth rate is also invariant with saving parameters, ρ

and θ , and the cost parameter for R&D, η. The only element that influences the steady-state
growth rate is n, the rate of population growth.21

6.2 Erosion of Monopoly Power, Competition

We have been assuming that the inventor of an intermediate good retains a perpetual
monopoly over its use. More realistically, this position would erode over time as competitors

20. We rule out paths that lie above the stable arm in a similar way that we ruled out such paths in the model with
irreversible investment in chapter 2. (The irreversibility arises here because it is impossible to forget ideas that
have been invented, so that Ṅ ≥ 0 must apply.) Along these paths, the price of a patent would become negative in
finite time, and this outcome would violate the free-disposal assumption. See appendix 2B in chapter 2 for a more
detailed discussion.

21. In some other models in this literature, a nonzero long-term growth rate of per capita output depends on a
nonzero growth rate of population, but the two growth rates are not necessarily equal. See Jones (1995), Segerstrom
(1998), and Peretto (1998).
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learned about the new product (or new technique) and imitated it or created close substi-
tutes. Monopoly power might also diminish over time because patent protection was only
temporary.

A tractable way to model the gradual erosion of monopoly power is to assume that
goods transform from monopolized to competitive with a probability that is generated from
a Poisson process.22 That is, if intermediate good j is currently monopolized, this good
becomes competitive in the next instant dT with probability p · dT , where p ≥ 0. Thus,
if a good is invented at time t and is initially monopolized, the probability of it still being
monopolized at the future date v ≥ t is e−p·(v−t). (The parameter p works like the death
probability that we used in the finite-horizon model of chapter 3.)

A monopolized intermediate good sells as before at the monopoly price 1/α. The quan-
tity demanded of each monopolized intermediate, now denoted by Xm , is still given by
equation (6.11):

Xm = L A1/(1−α)α2/(1−α) (6.43)

In a monopolized state, the flow of profit is

πm =
(

1 − α

α

)
· Xm (6.44)

whereas, in a competitive state, the flow of profit is 0. The expected present value from the
discovery of an (initially monopolized) intermediate good at time t is therefore a modifica-
tion of equation (6.6) to include the probability term e−p·(v−t):

E[V (t)] =
∫ ∞

t
πm · e−[p+r̄(t,v)]·(v−t) dv (6.45)

We assume that potential inventors care only about this expectation.23

If we take the derivative of equation (6.45) with respect to time, we get an expression
analogous to equation (6.18):

r(t) = πm

E[V (t)]
+ dE[V (t)]/dt

E[V (t)]
− p (6.46)

The first term on the right-hand side is the profit rate, πm/E[V (t)]. The second term is
the rate of capital gain, assuming that the monopoly position remains in place. The last

22. See Judd (1985) for a discussion of an analogous model.

23. This result is consistent with individual risk aversion because the risks are purely idiosyncratic, and the
ownership of firms would be diversified.
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term, −p, accounts for the probability per unit of time of losing the monopoly position.
When this loss occurs, the amount of the loss is E[V (t)], the full value of the firm, because
the loss of the monopoly position implies that the present value of all future profits drops
to zero. Since the loss occurs with probability p per unit of time, the effect on the rate of
return is given by −p · E[V (t)]/E[V (t)] = −p.

We return now to the environment in which the R&D cost is the constant η. The free-entry
condition with positive R&D entails E[V (t)] = η, so that dE[V (t)]/dt = 0. Substitution
of these results into equation (6.46) yields

r(t) = πm

η
− p

Since the right-hand side of this expression is constant, it follows that r(t) equals the
constant r . Substitution for πm from equation (6.46) leads to

r = (L/η) · A1/(1−α) ·
(

1 − α

α

)
· α2/(1−α) − p (6.47)

The result in equation (6.47) modifies equation (6.19) only by the subtraction of the
parameter p on the right-hand side. Therefore, the temporary nature of the monopoly
position lowers r from its previous value by the amount p. Recall also that the rate of return
shown in equation (6.19) was already below the social rate of return given in equation (6.31).
Consequently, the temporary nature of an innovator’s monopoly position creates an even
larger gap between the social and private rates of return. The reason is that, from a social
perspective, the gain from a discovery is permanent, whereas, from a private standpoint, the
reward is now temporary.

The constant rate of return determined in equation (6.47) implies, as usual, a constant
growth rate of consumption:24

ċ/c = (1/θ) ·
[
(L/η) · A1/(1−α) ·

(
1 − α

α

)
· α2/(1−α) − p − ρ

]
(6.48)

The growth rate of the number of intermediates, N , and the level of output, Y , no longer
generally equal ċ/c. To study these other growth rates, we have to analyze the breakdown
of N into monopolized and competitive parts.

Let N c be the number of intermediates that have become competitive, so that N − N c is the
number that remain monopolized. The quantity produced of each monopolized intermediate
is the amount Xm shown in equation (6.43). For each competitive good, which is priced at

24. If equation (6.48) indicates ċ/c < 0, then a corner solution applies with ċ/c = Ṅ/N = ẏ/y = 0.
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marginal cost, 1, the quantity produced follows from equation (6.4) as

Xc = L A1/(1−α)α1/(1−α) > Xm (6.49)

The level of aggregate output can be computed from equations (6.1), (6.43), and (6.49) as

Y = A1/(1−α)α2α/(1−α)L N · [
1 + (N c/N ) · (

α−α/(1−α) − 1
)]

(6.50)

Hence, for given N , Y exceeds the quantity shown in equation (6.13) if N c > 0 (because
0 < α < 1). Moreover, Y rises with N c/N for given N ; this effect represents the static gain
from shifting from monopoly to competition in the provision of the existing intermediate
goods.

Since each monopolized good becomes competitive with probability p per unit of time,
the change in N c over time can be approximated if N − N c is large by

Ṅ c ≈ p · (N − N c) (6.51)

Finally, the model is closed by using the economy’s budget constraint to determine the level
of C :

C = Y − ηṄ − N c Xc − (N − N c) · Xm (6.52)

That is, consumption equals output, Y , less R&D spending, ηṄ , less production of compet-
itive intermediates, N c Xc, less production of monopolized intermediates, (N − N c) · Xm .

The model contains two state variables, N and N c, and features a transitional dynamics in
which the ratio N c/N approaches its steady-state value, (N c/N )∗. In this respect, the model
resembles the two-sector framework discussed in chapter 5 in which the ratio of the two
types of capital goods, K/H , adjusted gradually toward (K/H)∗. In the present context,
the transitional analysis is cumbersome, and we limit attention to the characteristics of the
steady state.

In the steady state, N , N c, Y , and C all grow at the rate shown in equation (6.48), which
we now denote by γ ∗. Equation (6.51) implies accordingly

(N c/N )∗ = p

γ ∗ + p
(6.53)

Thus the competitive fraction rises with the rate, p, at which goods become competitive
and falls with the rate, γ ∗, at which new (monopolized) intermediates are discovered.

If we substitute for N c/N from equation (6.53) into equation (6.50), we can determine
a formula for output that applies along the steady-state path:

Y ∗ = A1/(1−α)α2α/(1−α)L N ·
[

1 +
(

p

γ ∗ + p

)
· (

α−α/(1−α) − 1
)]

(6.54)
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(Note that Y ∗ grows at the same rate as N .) If p = 0, so that (N c/N )∗ = 0 (see equa-
tion [6.53]), the expression for Y ∗ is the same as that shown in equation (6.13) for the pure
monopoly model. If p → ∞—so that intermediate goods become competitive instantly
and, hence, (N c/N )∗ = 1—the formula for Y ∗ approaches the social planner’s expression
in equation (6.30). The difficulty, however, is that p → ∞ also implies γ ∗ = 0.25 In other
words, if p had always been infinite, nothing would ever have been invented, and N would
equal the endowed value, N (0), which predates any purposive R&D activity.

In the pure monopoly model, we showed that the social optimum can be attained if the
government uses a lump-sum tax to finance a subsidy at the rate 1 − α on purchases of
intermediate goods. In the present context, this subsidy has to be limited to purchases of
the monopolized intermediates. The selection of which goods to subsidize is feasible in the
model—because goods can be observed to be either completely monopolized or completely
competitive—but would be a challenge in practice.

In any event, a subsidy at the rate 1 − α on the monopolized intermediates does not
attain the social optimum because the term p still leaves a gap between the social rate of
return (equation [6.31]) and the private rate of return (equation [6.47] with α2/(1−α) replaced
by α1/(1−α)). To reach the social optimum, the government would also have to subsidize
research spending to raise the private rate of return on R&D by the amount p. In other words,
two policy instruments are now required—one to encourage production of the monopolized
intermediates and another to stimulate R&D.

The government can also affect the parameter p directly by attempting to curb monopoly
power, for example, through antitrust enforcement or limitations on patent protection. An
increase in p involves the usual trade-off that appears in models of optimal patent policy—
the static gain from increased competition versus the dynamic loss from too low a rate of
growth of new products (see, for example, Reinganum, 1989).26 This analysis is difficult
because it encounters time-consistency problems: the government would like to eliminate
all existing monopoly power—make the N existing products available at a competitive
price—but then promise protection of property rights over future inventions. Such promises
tend, of course, not to be credible. One possible way to proceed is to assume that the
government commits itself not to change the probability p for existing products but can
choose this probability for goods that are yet to be invented.

25. A large value of p implies r < 0 in equation (6.47) and ċ/c < 0 in equation (6.48). The equilibrium is then the
corner solution in which inventors spend zero on R&D (because they cannot spend a negative amount), so that N
stays constant and γ ∗ = 0.

26. In the present setting, a reduced rate of innovation constitutes a social loss. In other contexts, such as the model
considered in chapter 7, a reduced rate of innovation may be desirable.
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6.3 Romer’s Model of Technological Change

Romer’s (1990) paper provided the first formal application of the varieties structure to the
modeling of endogenous growth. His specification is that the discovery of a new type of good
requires η units of labor, rather than final product.27 Therefore, an increase in N—which
raises output and the marginal product of labor—raises the real wage rate and, therefore,
increases the goods cost of R&D. From this perspective, the Romer model is similar to the
one explored in section 6.1.8 in which the R&D cost rose with N . We already know for
this model that, if L is constant, as Romer assumed, growth would eventually cease, and N
would be constant in the steady state. Hence, per capita output, Y/L , would also be constant
in the long run.

Romer’s (1990) model generates endogenous growth because of another difference in
specification. He assumes that the cost of inventing a new product declines as society
accumulates more ideas, represented by the number of products, N .28 More specifically,
suppose that the fraction λ of labor is used in production, and the fraction 1 − λ is used in
R&D. Then Romer’s assumption is that the change in N depends on the amount of R&D
labor, (1 − λ) · L , divided by η/N , so that

Ṅ/N = (1 − λ) · L/η (6.55)

Jones (1995, 1999) has criticized this type of specification because it implies a positive
relation between the rate of technological change, Ṅ/N , and the absolute quantity of labor
engaged in R&D, (1−λ) · L . Jones argues that data for the United States and other advanced
countries conflict with this setup, because the number of scientists and engineers engaged
in R&D has increased substantially over time, whereas the rate of productivity growth has
not risen secularly. For example, in the United States, the number of R&D scientists and
engineers rose from 544,000 in 1970 to 960,000 in 1991. Even larger proportionate increases
applied to other major OECD countries—the number in Japan increased from 172,000 in
1970 to 511,000 in 1992, in Germany from 82,000 in 1970 to 176,000 in 1989, in France
from 58,000 in 1970 to 129,000 in 1991, and in the United Kingdom from 77,000 in 1972
to 123,000 in 1992.29 We already noted that this type of criticism does not apply to models
that assume a fixed positive relation between productivity growth and the share of GDP
devoted to R&D.

27. Romer (1990) treated the intermediate goods as infinite-lived durables, rather than nondurables, but this
difference does not affect the main results.

28. Grossman and Helpman (1991, chapter 3) make an analogous assumption.

29. These data are from the National Science Foundation at www.nsf.gov.
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If we proceed with Romer’s specification of the innovation process from equation (6.55),
despite Jones’s reasonable objections, the implication is that the cost of invention is pro-
portional to w/N . Since w is proportional to N (from equations [6.5] and [6.13]), the end
result is that the cost of inventing a new product remains constant over time in units of
goods. Thus this specification will be consistent with a constant steady-state growth rate of
N and Y/L .

Although the growth rate is constant in equilibrium, the determination of this growth rate
in a decentralized economy involves a new type of externality: an individual’s decision to
conduct R&D and, hence, to expand N reduces the required amount of labor needed for sub-
sequent inventions. Current research, therefore, has a positive spillover on the productivity
of future research. The failure of the decentralized economy to compensate researchers for
this spillover benefit constitutes another form of distortion. Consequently, a policymaker
who seeks to guide the decentralized economy to a Pareto optimal solution has to worry
about this spillover effect in addition to the monopoly pricing of intermediate goods.

The free-entry condition is modified in the Romer model to

r = αλL/η (6.56)

Hence, equation (6.55) and the usual first-order condition, ċ/c = (1/θ) · (r − ρ), imply

(1 − λ) · L/η = (1/θ) · (αλL/η − ρ) (6.57)

We can use this condition to solve for λ and, hence, for r and γ , the growth rate of N :

λ = (θ L + ηρ)

L · (θ + α)

r = α · (θ L + ηρ)

η · (θ + α)

γ = (αL − ηρ)

η · (θ + α)

(6.58)

The result for the growth rate, γ , is in many respects similar to that obtained in
equation (6.24) for the decentralized economy when the R&D cost was fixed in terms
of goods, rather than labor. The similarities are, first, γ is higher if households are more
willing to save (lower ρ or θ); second, γ is higher if η, the cost of R&D, is lower; and,
third, there is a scale effect in that γ is higher if L is higher.

One difference in the results is that γ in equation (6.58) is independent of the productivity
parameter, A, that appears in the production function for goods (equation [6.1]). This result
follows from the assumption that the research sector uses no intermediate goods as inputs.
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If intermediates entered as productive inputs in this sector (even if less intensively than in
the goods sector), an increase in A would raise γ .

To clarify the distortions in the Romer model, we can consider the social planner’s
problem. The social planner seeks to maximize the representative household’s utility, subject
to the constraints

Y = A · (λL)(1−α)N 1−α Xα = C + X

Ṅ/N = (1 − λ) · L/η

The control variables are C , X , and λ, and the state variable is N . If we invoke the usual
optimization conditions, we find that the solutions are

γ (social planner) = (1/θ) · (L/η − ρ)

λ (social planner) = (1/θ) · (L − ρη)/L
(6.59)

The choice of γ in equation (6.59) corresponds to an implicit social rate of return of L/η.
The social planner’s growth rate in equation (6.59) exceeds the decentralized growth rate

in equation (6.58). The gap between the growth rates reflects the excess of the social plan-
ner’s choice of labor devoted to research, (1 − λ) · L , over the privately determined value.
The improper allocation of labor between production and research reflects the underlying
distortions: monopoly pricing and research spillovers. To clarify the nature of these dis-
tortions, we can consider policies that would cause the decentralized outcomes to coincide
with the Pareto-optimal choices made by the social planner.

A policymaker can again neutralize the direct effect of monopoly pricing by using a lump-
sum tax to subsidize the purchase of intermediate goods at the rate 1−α. This subsidy raises
the decentralized values of the rate of return and the growth rate above the values shown in
equation (6.58). However, the growth rate remains below the social planner’s value, because
the research spillovers have yet to be internalized.

The elimination of the remaining distortion requires another form of subsidy, one that
applies directly to research. The required rate of subsidy on R&D spending turns out
to be (1/θ) · [1 − (ρη/L)]. This subsidy provides a sufficient incentive for research so
that the decentralized growth rate coincides with the social planner’s choice shown in
equation (6.59). Equivalently, the private rate of return becomes r = L/η, which is the rate
implicitly used by the social planner in the determination of γ .

The call for a subsidy to research because of positive spillovers is analogous to the ar-
gument for a subsidy on purchases of capital goods or output in the model with positive
spillovers in production in chapter 4. A successful subsidy policy is again difficult to imple-
ment in practice because it requires the government to identify promising areas of research
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that have substantial spillover benefits, and it assumes that the necessary public finance
will not have distorting influences that outweigh the benefits from the internalization of the
spillovers. The next chapter brings out another potential drawback from research subsidies:
the private benefit from innovation can be too high because it includes the transfer of rents
from an existing monopolist to the innovator. This kind of effect can also arise in models in
which competitive researchers race to discover a new product or process (see Reinganum,
1989, for a survey).

6.4 Concluding Observations

We modeled technological progress as an expansion of the variety of intermediate goods
used by producers. Researchers are motivated by the prospect of monopoly profits to expend
resources to discover new types of goods. In the main setting that we considered—production
exhibits constant returns to the number of types of goods, and the cost structure entails a
fixed outlay of goods for each invention—the economy is capable of generating endogenous
growth. The rate of growth depends on various characteristics of preferences and technology,
including the willingness to save, the level of the production function, the cost of R&D, and
the scale of the economy (measured by the quantity of a fixed factor, such as raw labor or
human capital). Some alternative specifications of the R&D technology can preserve most
of the growth implications while eliminating the apparently counterfactual scale effects.

The resulting growth rate—and the related choices about the quantities of intermediate
goods to use in production—are generally not Pareto optimal. We discussed possibilities for
improving on outcomes by means of tax and subsidy schemes. Although these possibilities
exist in the model, these kinds of industrial policies would be difficult to implement in more
realistic situations.

The equilibrium growth rate in the model corresponds to the exogenous rate of techno-
logical change, x , in the Solow–Swan and Ramsey models of chapters 1 and 2. Thus, the
analysis endogenizes the parameter x and, therefore, fills a significant gap in the theories. For
example, if the diffusion of ideas from one country to another is rapid, the model explains
why the technology in all countries would improve over time. Therefore, the model can
explain why the long-term growth rate of the world’s real per capita GDP would be positive.

6.5 Problems

6.1 Transitional dynamics in the varieties model. We showed in the model of sec-
tion 6.1 that an equilibrium exists in which N , Y , and C grow at the same constant rate, and
the rate of return, r , is constant.
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a. Show that there are no other equilibria; that is, the model has no transitional dynamics.
(Hint: consider the analysis of a related situation in chapter 4.)

b. Suppose that the growth rate shown in equation (6.24) is negative. What is the equilibrium
in this case? What condition on the underlying parameters leads to this situation?

6.2 An alternative production function with varieties. Suppose that, instead of equa-
tion (6.1), the production function is

Yi = AL1−α
i ·


 N∑

j=1

(Xij)
σ




α/σ

where 0 < σ < 1. The parameter σ , rather than α, will now determine the elasticity of
demand for each type of intermediate.

a. How are monopolized intermediates priced, and what is the quantity of each intermediate,
X j ?

b. What is the free-entry condition for R&D, and how is the rate of return determined?

c. What are the growth rates of N , X j , and total output, Y , in the steady state?

6.3 Policy implications of the varieties model. Consider the first model of varieties
of producer intermediates, for which the economy’s equilibrium growth rate is given in
equation (6.24).

a. Show that the government can ensure a first-best equilibrium if it uses a lump-sum tax to
finance the appropriate subsidy of the intermediate goods. What rate of subsidy is required?
In a richer model, why would it be difficult to carry out the required form of policy?

b. Can the government ensure a first-best solution if it relies solely on a subsidy to R&D
(financed again by a lump-sum tax)? Explain the answer. What modifications to the model
would make it important for the government to subsidize research?

6.4 Intermediate inputs as durables (based on Barro and Sala-i-Martin, 1992).
Suppose that the intermediate inputs, Xij, are infinite-lived durable goods. New units of
these durables can be formed from one unit of final output. The inventor of the j th type of
intermediate good charges the rental price R j , and the competitive producers of final goods
treat R j as given.

a. How is R j determined?

b. In the steady state, what is the quantity, X j , of each type of intermediate good?

c. What is the steady-state growth rate of the economy? How does this answer differ from
the one discussed in the text for the case in which the intermediate inputs were perishable
goods?
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d. If the intermediate goods are durables, what kinds of dynamic effects arise in the tran-
sition to the steady state?

6.5 The duration of monopoly positions. Consider the model of section 6.2, in which
the monopolized intermediate goods became competitive with the probability p per unit of
time.

a. How do differences in p affect the steady-state properties of the model?

b. What kinds of policy interventions by the government would lead to a first-best outcome
in this model? In particular, is it possible to reach the first best solely by subsidizing
purchases of the monopolized intermediate goods?

c. If the government can influence p through various instruments (such as antitrust enforce-
ment and patent protection), what are the model’s implications about desirable policies?

6.6 Scale effects

a. Why does the varieties model of technological change from section 6.1 exhibit a scale
effect in the sense that the growth rate rises with the aggregate quantity of labor, L? Is it
reasonable to identify L empirically with a country’s population?

b. What happens in this model if population, L , grows at a constant positive rate?

c. What types of modifications to the model would eliminate the scale effects?





7 Technological Change: Schumpeterian Models of Quality Ladders

The last chapter modeled technological progress as an increase in the number of types
of products, N . In this chapter, we allow for improvements in the quality or productivity
of each type. This approach has come to be known as the Schumpeterian approach to
endogenous growth. We can think of increases in N as basic innovations that amount
to dramatically new kinds of goods or methods of production. In contrast, increases in the
quality of the existing products involve a continuing series of improvements and refinements
of goods and techniques. Thus the analysis of this chapter complements the discussion in
chapter 6.

Figure 7.1 shows the basic setup. Intermediate goods come in N varieties, arrayed along
the horizontal axis. In chapter 6, N could increase over time, but now we treat it as fixed.
The leading-edge quality of each type of intermediate good is currently at the level shown
on the vertical axis. We specify later the precise meaning of the ladder numbers indicated
on this axis. Since the process of quality improvement turns out to occur at different rates
(and in a random manner), the figure shows that the levels currently attained vary in an
irregular way across the sectors.

For the analysis of basic innovation in chapter 6, we assumed that the new types of
intermediate inputs did not interact directly with the old ones. (We used the Spence, 1976/
Dixit–Stiglitz, 1977, functional form in which these inputs entered in an additively separable
manner.) Therefore, the introduction of a new kind of good did not make any old goods
obsolete.

An important aspect of the Schumpeterian model is that, when a product or technique
is improved, the new good or method tends to displace the old one. Thus it is natural to
model different quality grades for a good of a given type as close substitutes. We make the
extreme assumption that the different qualities of a particular type of intermediate input are
perfect substitutes; hence, the discovery of a higher grade turns out to drive out the lower
grades completely. For this reason, successful researchers along the quality dimension tend
to eliminate or “destroy” the monopoly rentals of their predecessors, a process labeled
as “creative destruction” by Schumpeter (1934) and Aghion and Howitt (1992). On the
normative side, the process of creative destruction implies a “business-stealing” effect that
leads firms to perform more research than is socially optimal. Consequently, the growth
rate in a decentralized economy may be too high.

7.1 Sketch of the Model

Before we get into the technical details, we provide a sketch of the structure of the model
that we shall develop to analyze improvements in quality. There are three sectors in this
economy: producers of final output, R&D firms, and consumers. Producers of final output
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Figure 7.1
Quality ladders and product varieties. The horizontal axis shows the number of types of products, and the
vertical axis shows the quality rung currently attained in each sector.

demand intermediates from research firms, and they, again, use N varieties of intermediate
inputs, but N is now constant. Each type of intermediate good has a quality ladder along
which improvements can occur. At each point in time, the knowledge exists to produce
an array of qualities of each type of intermediate good. We consider, however, a type of
equilibrium in which only the leading-edge quality is actually produced in each sector and
used by final-goods producers to generate output.

Researchers invest resources to improve the quality of existing intermediate inputs. A
successful researcher retains exclusive rights over the use of his improved intermediate
good so he can sell the intermediates at the monopoly price to the producers of final output.
The researcher who has a monopoly over the use of the latest technology receives a flow of
profit. We begin with a model in which the latest innovator is a different person from the
previous innovator, so that a research success terminates the predecessor’s flow of profit.
Therefore, in considering how many resources to devote to research, entrepreneurs consider
the size of the profit flow and its likely duration. This duration is random, because it depends
on the uncertain outcomes from the research efforts of competitors.

The temporary nature of an inventor’s monopoly position brings in two considerations
that differentiate the present model from the one with perpetual monopoly rights in chap-
ter 6. First, the shorter the expected duration of the monopoly, the smaller the anticipated
payoff from R&D; this is a distortion because the advances are permanent from a social
perspective. (This force also appears in chapter 6 for the model in which the intermediate
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goods became competitive over time.) Second, part of the reward from successful research
is the creative-destruction or business-stealing effect that involves the transfer of profits
from the incumbent innovator to the newcomer. Since this transfer has no social value, this
second force constitutes an excessive incentive for R&D. We show that the second element
is larger than the first, because the two effects are basically the same, except that the second
element comes earlier in time so it is not discounted so heavily. Hence, the net effect is an
increase in the private return from research relative to the social return.

In a later section we assume that the industry leader has a first-mover advantage in R&D,
as well as lower costs of carrying out research. In this case, the leader tends to carry out all
the research. However, if the cost advantage is small, the probability of research success
is determined by the threat of potential entry, basically in the same way as in the initial
model. If the cost advantage is larger, the industry leader can ignore the outsiders and act
as a monopolistic researcher.

7.2 The Model

7.2.1 The Producers of Final Output: Levels of Quality
in the Production Technology

We modify the production function for firm i from equation (6.1) to

Yi = AL1−α
i ·

N∑
j=1

(X̃ i j )
α (7.1)

where, as before, Li is labor input and 0 < α < 1. The new element is that X̃ i j is the quality-
adjusted amount employed of the j th type of intermediate good.

The potential grades of each intermediate good are arrayed along a quality ladder with
rungs spaced proportionately at interval q > 1.1 We normalize so that each good begins—
when first invented—at quality 1. The subsequent rungs are at the levels q, q2, and so on.
Thus, if κ j improvements in quality have occurred in sector j , the available grades in the
sector are 1, q, q2, . . . , (q)κ j . Increases in the quality of goods available in a sector—that is,
rises in κ j —result from the successful application of research effort, to be described later.
These improvements must occur sequentially, one rung at a time.

Figure 7.2 shows a possible path for the evolution of the leading-edge quality in sector j .
The best quality available equals 1 at time t0, rises to q (rung 1) at time t1, to q2 (rung 2)
at time t2, to qk (rung k) at time tk , and so on. Thus tk+1 − tk is the interval over which the

1. This setup follows the models of Aghion and Howitt (1992) and Grossman and Helpman (1991, chapter 4).
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Figure 7.2
A quality ladder in a single sector. Over time, the quality-ladder position in a single sector either stays constant
or jumps discretely to the next rung. The timing of the jumps is stochastic because it depends on the uncertain
outcomes from research effort.

best quality is qk . The figure shows intervals of differing length for each k; these lengths are
random and depend on the successes that researchers have in coming up with new ideas.

The intermediate good is nondurable and entails a unit marginal cost of production (in
terms of output, Y ). That is, the cost of production is the same for all qualities qk , where
k = 0, . . . , κ j . Thus the latest innovator has an efficiency advantage over the prior innovators
in the sector but will eventually be at a disadvantage relative to future innovators. We assume
here that each innovator is a different person.

The researcher responsible for each quality improvement in sector j retains a monopoly
right to produce the j th intermediate good at that quality level. In particular, if the quality
rungs k = 1, . . . , κ j have been reached, the kth innovator is the sole source of intermediate
goods with the quality level qk .2

We assume in the main analysis that only the highest grade of intermediates that is
currently available in each sector will actually be produced and used.3 Hence, in sector j ,

2. Since this model does not consider the initial discovery of a type of product, we have to assume that goods of
quality 1 (rung 0) can be produced by anyone. The treatment of these lowest quality goods will not be an issue if
substantial quality improvements have already occurred in each sector.

3. This assumption turns out to amount to the condition αq ≥ 1. The general nature of the results would be the
same if αq < 1, in which case we could analyze an equilibrium with limit pricing, rather than monopoly pricing.
The appendix (section 7.6) considers this issue in detail.
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the intermediate good will be of quality qκ j . If Xi j is the physical quantity of this intermediate
employed by firm i , the quality-adjusted amount of this input is given by

X̃ i j = qκ j Xi j (7.2)

Hence, the production function from equation (7.1) becomes

Yi = AL1−α
i ·

N∑
j=1

(qκ j Xi j )
α (7.3)

In chapter 6, quality improvements were not considered, and κ j = 0 applied in each
sector. Therefore, technological advances arose in equation (7.3) only from increases in N .
Since N is now fixed, we are assuming implicitly that all the existing types of intermediate
goods were discovered sometime in the (distant) past. But we allow κ j to evolve over time
in each sector in response to the R&D effort aimed at quality improvement in that sector.

Equation (7.3) implies that the marginal product of intermediate j is

∂Yi/∂ Xi j = AαL1−α
i qακ j Xα−1

i j (7.4)

Each firm seeks to maximize profit,

Yi − w · Li −
N∑

j=1

Pj Xi j (7.5)

where Pj is the price of good j . The first-order conditions require the equations of marginal
products to prices, so that

AαL1−α
i qακ j Xα−1

i j = Pj

Rearrangement of this expression and summation across all firms i yields the aggregate
demand function for good j :

X j = L · [Aαqακ j /Pj ]
1/(1−α) (7.6)

This demand function corresponds to those derived in chapter 6 if κ j = 0 (see, for example,
equation [6.4]). In particular, the demand elasticity is still the constant −1/(1 − α). As in
chapter 6, we assume that the aggregate labor force, L , is constant.

7.2.2 The Research Sector

R&D firms face the same kind of two-stage decision process faced by the research firms dis-
cussed in chapter 6. First, they must decide whether to engage in research and, if so, they must
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decide how much to invest in R&D. In the second stage, the successful researchers determine
the price at which to sell their previously invented goods to the producers of final output.
We again proceed by solving the model backward; that is, we start by deriving the optimal
price for a good that has already been invented. Subsequently, we discuss the first stage.

Stage 2: Pricing, Profits, and Production after a Good Has Been Invented Innovation
in a sector takes the form of an improvement in quality by the multiple q. The κ j th innovator
in sector j raises the quality from qκ j −1 to qκ j . This innovator will obtain a flow of monopoly
profit given by

π(κ j ) = (Pj − 1) · X j (7.7)

where X j is given by equation (7.6) and 1 is the marginal cost of production. Firms choose
prices to maximize the present discounted value of all future profits. Since there are no
dynamic constraints, this problem is equivalent to maximizing profit period by period. The
optimal price Pj is given by the same markup formula as in equation (6.7):

Pj = 1/α (7.8)

Hence, the monopoly price is again constant over time and across sectors.4

The aggregate quantity produced of intermediate good j can be determined from equa-
tions (7.6) and (7.8) as

X j = L A1/(1−α)α2/(1−α) · qκ j α/(1−α) (7.9)

Since κ j = 0 in the model of chapter 6, this quantity was constant over time and across sectors
(see equation [6.8]). The evolution of κ j over time in each sector and the divergences of the
κ j across the sectors will lead now to variations in X j over time and across sectors.

Since the innovator will be able to price in accordance with equation (7.8) and sell the
quantity of intermediate goods given by equation (7.9), the flow of profit is given from
substitution into equation (7.7) by

π(κ j ) = π̄ · qκ j α/(1−α) (7.10)

where

π̄ ≡ A1/(1−α) ·
(

1 − α

α

)
· α2/(1−α)L (7.11)

4. The monopoly price applies because the demand function in equation (7.6) assumes that lower grades of
intermediates of type j do not provide any effective competition for the leading-edge type. See the appendix
(section 7.6). Aghion, Harris, Howitt, and Vickers (2001) consider a setting in which goods of different quality
are imperfect substitutes and, therefore, can coexist in the market.
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is constant over time as long as population, L , is constant. We think of π̄ as the basic
profit flow, which corresponds to κ j = 0. The profit π̄ is the same as the profit in chapter 6
(equation [6.13]), because the quality level did not change in that setting. For given π̄ ,
π(κ j ) shown in equation (7.10) is an increasing function of κ j . Thus the profit received by
inventors of higher quality products will be larger. Moreover, since, in equilibrium, qκ j will
increase over time, profits will also increase over time.

One of the key differences between this model and the one in chapter 6 is that, although
the monopoly right over an invention is perpetual, the value of this right will fall to zero
when a new quality improvement is made by a competitor. (Recall that the innovators are
assumed to be different persons.) In other words, if we let tκ j be the moment when the κ j th
quality improvement is made and tκ j +1 the time of the next improvement by a competitor, the
flow of profit shown in equation (7.10) applies only from time tκ j to tκ j +1. It is important to
note that tκ j +1 is determined by the research effort chosen by competitors and is, therefore,
endogenous. The interval over which the κ j th innovation is in the forefront is

T (κ j ) = tκ j +1 − tκ j

The present value of all the profits that the inventor of rung κ j will get, evaluated at time
tκ j , is given by

V (κ j ) =
∫ tκ j +1

tκ j

π(κ j ) · e−r̄(v,tκ j )·(v−tκ j ) dv (7.12)

where, as usual, r̄(v, tκ j ) ≡ [1/(v − tκ j )] · ∫ v

tκ j
r(ω) dω is the average interest rate between

times tk j and v. Notice that, if the interest rate, r , is constant over time, as will be true in
equilibrium, this present value simplifies to

V (κ j ) = π(κ j ) · [
1 − e−r ·T (κ j )

]
/r (7.13)

This present value, which represents the prize for the κ j th innovation, depends positively on
the profit flow, π(κ j ), and the duration of the monopoly for the inventor of rung j , T (κ j ).
Since we know π(κ j ), we have to determine the duration, T (κ j ), to determine V (κ j ).

If we substitute Li for L in equation (7.9), we determine the quantity Xi j of intermediate
j used by firm i . If we then use equation (7.3) and aggregate over the firms i , we get an
expression for aggregate output:

Y = A1/(1−α)α2α/(1−α)L ·
N∑

j=1

qκ j α/(1−α) (7.14)



324 Chapter 7

Since L and N are constants, the key to growth of aggregate output in this model is expan-
sions of the quality-ladder positions, κ j , in the various sectors.

We can define an aggregate quality index,

Q ≡
N∑

j=1

qκ j α/(1−α) (7.15)

so that

Y = A1/(1−α)α2α/(1−α)L Q (7.16)

The index Q is a combination of the various κ j ’s, and increases in the κ j ’s affect aggregate
output to the extent that they raise Q. We also note from aggregation of equation (7.9) across
the sectors that the total quantity of intermediates produced, denoted by X , is proportional
to Q:

X = A1/(1−α)α2/(1−α)L Q (7.17)

The randomness of innovations implies that progress will occur unevenly in an individual
sector; usually nothing happens, but on rare occasions productivity jumps by a discrete
amount. We assume, however, that individual sectors are small and that the probabilities of
research success across sectors are independent. The law of large numbers then implies that
the jumpiness in microeconomic outcomes will not be transmitted to the macroeconomic
variables: the adding up across a large number, N , of independent sectors will lead to a
smooth path for the aggregate quality index, Q, shown in equation (7.15), and, therefore,
for aggregate economic growth. Thus, as in chapter 6, the analysis abstracts from the
aggregate fluctuations that are the focus of real business-cycle models. We now consider
the determinants of changes in the κ j ’s.

Stage 1: Innovation

The duration of monopoly profit. Denote by p(κ j ) the probability per unit of time of
a successful innovation in sector j when the top-of-the-line quality is κ j . In other words,
p(κ j ) is the probability per unit of time that an outside researcher will raise the quality
in sector j from κ j to κ j + 1. This probability depends on research efforts, as detailed
subsequently. For the moment, however, we take p(κ j ) to be a given number so that the
probability of the incumbent losing his monopoly position is generated from a Poisson
process, analogous to the model in chapter 6 in which an innovator’s monopoly position
was temporary.

The incumbent’s present value of profits, V (κ j ) in equation (7.13), is a random vari-
able because the terminal date, tκ j +1, arrives with probability p(κ j ) per unit of time. The
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expectation of V (κ j ) is given by

E[V (κ j )] = π(κ j )/[r + p(κ j )] (7.18)

The derivation of equation (7.18) is in the appendix (section 7.6.2), but its interpretation is
intuitive.5 If we rewrite equation (7.18) as

r = π(κ j ) − p(κ j ) · E[V (κ j )]

E[V (κ j )]

then the equation says that the market rate of return equals the rate of return to R&D.
The key point is that the return to R&D on the right-hand side includes the incumbent’s
expected capital loss, p(κ j ) · E[V (κ j )], generated by the possibility of the next innovation
in sector j . Equation (7.18) indicates that the probability of losing one’s monopoly position,
p(κ j ), combines with r to get an effective discount rate, r + p(κ j ). Note that an increase in
p(κ j ) reduces E[V (κ j )]. Substitution for π(κ j ) from equation (7.10) into equation (7.18)
leads to

E[V (κ j )] = π̄ · qκ j α/(1−α)/[r + p(κ j )] (7.19)

where π̄ is defined in equation (7.11).

The R&D technology. We now have to consider how the probability p(κ j ) depends on
R&D effort in sector j . Let Z(κ j ) be the aggregate flow of resources expended by potential
innovators in sector j when the highest rung available is κ j . We assume that p(κ j ) depends
only on the total R&D expenditure, Z(κ j ), and not on the distribution of this expenditure
across researchers. We also assume that a larger outlay, Z(κ j ), leads to a larger probability of
success, p(κ j ). A plausible assumption is that the marginal effect of Z(κ j ) on p(κ j ) would
diminish with Z(κ j ). That is, R&D investment would encounter diminishing returns at a
point in time. However, because it substantially simplifies the analysis and also preserves
most of the conclusions, we assume in the main analysis that the probability of success is
proportional to the R&D outlays, Z(κ j ).6

The probability of innovation likely depends, for given Z(κ j ), also on κ j . If innovations
become increasingly difficult, the probability of success would depend negatively on κ j . In
contrast, if earlier innovations make subsequent inventions easier, the probability of success

5. The result also corresponds to equation (6.18) in chapter 6.

6. The linearity in Z(κ j ) means that the marginal contribution of R&D effort to the probability of success equals
the average contribution. That is, the research process is not being modeled as a congestible resource, like a fishing
pond, in which an individual’s likelihood of success declines with the aggregate level of investment. The model,
therefore, will not have the property of some patent-race formulations in which—for congestion reasons—the
overall level of research tends to be too high from a social perspective (see Reinganum, 1989, for a survey of these
models).
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would depend positively on κ j . In any event, we assume that the probability of research
success is given by the relation

p(κ j ) = Z(κ j ) · φ(κ j ) (7.20)

where the function φ(κ j ) captures the effect of the current technology position, κ j .
Equation (7.19) shows the expected reward from making the κ j th innovation. Note that

the uncertainty that underlies E[V (κ j )] involves the duration of the monopoly position,
that is, the randomness of the time of success of the (κ j + 1)th innovator. We have yet to
consider the additional uncertainty that innovators face, ex ante, because of the randomness
of the success of their own research efforts.

Determination of R&D Effort: The Free Entry Condition In sector j , the total R&D
expenditure of Z(κ j ) results in the success probability per unit of time p(κ j ), given by
equation (7.20). If a firm succeeds, it obtains the equivalent of a patent with the expected
value given by equation (7.19). We assume that potential innovators care only about this
expected value and not about the randomness of the return. This assumption can be satis-
factory even if individuals are risk averse because each R&D project is small and has purely
idiosyncratic uncertainty.7

R&D investments will be attractive, so that Z(κ j ) > 0, only if the expected return per
unit of time, p(κ j ) · E[V (κ j + 1)], is at least as large as the cost, Z(κ j ). Moreover, if there
is free entry into the research business, as we assume, the net expected return per unit of
time must be zero, that is,

p(κ j ) · E[V (κ j + 1)] − Z(κ j ) = 0 (7.21)

If we substitute for p(κ j ) from equation (7.20), the condition becomes

Z(κ j ) · {φ(κ j ) · E[V (κ j + 1)] − 1} = 0 (7.22)

Since we are considering a sector in which R&D outlays are positive, Z(κ j ) > 0, the term
inside the large brackets in equation (7.22) must be zero:

φ(κ j ) · E[V (κ j + 1)] − 1 = 0 (7.23)

Hence, after substitution for E[V (κ j + 1)] from equation (7.19), the free-entry condition
becomes

r + p(κ j + 1) = φ(κ j ) · π̄ · q(κ j +1)·α/(1−α) (7.24)

7. We have to assume that research projects are carried out by syndicates that are large enough to diversify the
risk. The syndicates cannot be so large, however, that they would internalize the distortions that are present in the
model.
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The rest of the analysis depends on the form of the function φ(κ j ), that is, on how the
probability of success in equation (7.20) varies with the quality-ladder position.

The simplest specification for φ(κ j ) is one in which successes become more difficult
exactly in relation to the output that would be produced at the newly attained ladder position,
κ j + 1. That is,

φ(κ j ) = (1/ζ ) · q−(κ j +1)·α/(1−α) (7.25)

where ζ > 0 is a parameter that represents the cost of doing research. Equation (7.25) implies
that the cost of R&D rises in proportion (and, hence, the probability of success falls in
proportion) to the prospective output level, which is proportional to the term q(κ j +1)·α/(1−α).
If we substitute for φ(κ j ) from equation (7.25) into equation (7.24), we get

r + p(κ j + 1) = π̄

ζ
(7.26)

Equation (7.26) implies that the probability of research success per unit of time is the same
in each sector, independent of the quality-ladder position, and is given by

p = π̄

ζ
− r (7.27)

If r is constant over time, p is also constant.
The amount of resources devoted to R&D in sector j follows from equations (7.20),

(7.25), and (7.27) as

Z(κ j ) = q(κ j +1)·α/(1−α) · (π̄ − rζ ) (7.28)

Hence, more advanced sectors—with higher κ j —have more R&D effort devoted to them.
The probability of success is, however, the same for all sectors, because equations (7.20)
and (7.25) imply that p(κ j ) depends on Z(κ j ) divided by q(κ j +1)·α/(1−α).

The aggregate of R&D spending, denoted by Z , is given from equation (7.28) by

Z ≡
N∑

j=1

Z(κ j ) = qα/(1−α) Q · (π̄ − rζ ) (7.29)

where Q is the aggregate quality index, as defined in equation (7.15). Hence, Z is propor-
tional to Q for given r .

The results are different if we change equation (7.25) to make a different assumption about
how φ(κ j ) relates to κ j . One possibility is that, instead of falling with κ j as q−(κ j +1)·α/(1−α),
φ(κ j ) is less sensitive to κ j . This case can be illustrated by assuming that φ(κ j ) = 1/ζ , a
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constant. The free-entry condition in equation (7.24) then implies (for any sector in which
Z [κ j ] > 0) that p(κ j + 1) is an increasing function of κ j . In this case, more advanced
sectors will have higher expected growth rates than less advanced sectors. This result will
ultimately determine a rising growth rate for the overall economy.

Alternatively, we might have assumed that φ(κ j ) was more negatively related to κ j than
the function q−(κ j +1)·α/(1−α). In this case, the free-entry condition in equation (7.24) implies
(for any sector in which Z [κ j ] > 0) that p(κ j +1) is a decreasing function of κ j . This result
will lead to a falling growth rate for the overall economy.

The case that we have focused on, where φ(κ j ) is given by equation (7.25), is, therefore,
the specification that corresponds to the AK formulations that we have used in chapter 6 and
elsewhere. With this specification, the expected growth rate of each sector will be the same,
and the growth rate of the overall economy will end up being constant. Our subsequent
analysis focuses on this case.

7.2.3 Consumers

To close the model, we include the consumption-smoothing households that we have used
throughout the book (as described in chapter 2). The key equation is for consumption
growth:

Ċ/C = (1/θ) · (r − ρ) (7.30)

where C is aggregate consumption. (This equation holds because L is constant.)
The resource constraint for the economy says that aggregate output equals aggregate

consumption, C , plus total resources expended on intermediates, X , plus total expenditure
on R&D, Z , that is,

Y = C + X + Z (7.31)

Equations (7.16), (7.17), and (7.29), imply that Y , X , and Z are linear functions of Q. It
follows that C , too, is a linear function of Q. Therefore, the growth rates of all of these
quantities will equal the growth rate of Q:

Ċ/C = Ẋ/X = Ż/Z = Ẏ/Y = Q̇/Q = γ

We could substitute the interest rate from equation (7.27) into the formula for the growth
rate of consumption from equation (7.30) to find that the growth rate is given by

γ = Ċ/C = (1/θ) ·
(

π̄

ζ
− p − ρ

)



Schumpeterian Models of Quality Ladders 329

However, this expression does not provide the final solution to the model because the
probability of R&D success, p, is endogenous. To get the final solution for growth, we have
to explain the behavior of the quality index, Q.

7.2.4 Behavior of the Aggregate Quality Index and Endogenous Growth

Recall the definition of Q from equation (7.15):

Q ≡
N∑

j=1

qκ j α/(1−α)

In sector j , the term qκ j α/(1−α) does not change if no innovation occurs but rises to
q(κ j +1)·α/(1−α) in the case of a research success. The probability per unit of time of a success
is the value p shown in equation (7.27). Since p is the same for all sectors, the expected
change in Q per unit of time is given by

E(�Q) =
N∑

j=1

p · [
q(κ j +1)·α/(1−α) − qκ j α/(1−α)

]

= p · [
qα/(1−α) − 1

] ·
N∑

j=1

qκ j α/(1−α) = p · [
qα/(1−α) − 1

] · Q (7.32)

The expected proportionate change in Q per unit of time is, therefore, given by

E

(
�Q

Q

)
= p · [

qα/(1−α) − 1
]

(7.33)

If the number of sectors, N , is large, the law of large numbers implies that the average
growth rate of Q measured over any finite interval of time will be close to the expression
shown on the right-hand side of equation (7.33). We assume, in particular, that N is large
enough to treat Q as differentiable, with Q̇/Q nonstochastic and equal to the right-hand
side of equation (7.33). If we substitute for p from equation (7.27), we get the growth rate
of Q:

Q̇/Q =
(

π̄

ζ
− r

)
· [

qα/(1−α) − 1
]

(7.34)

Equation (7.34) shows that the growth rate of Q is a negative function of the interest rate, r .
The intercept is (π̄/ζ ) · [qα/(1−α) − 1], and the slope is −[qα/(1−α) − 1]. This function is
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Figure 7.3
Determination of the interest and growth rates. The interest rate and the growth rate of the model are determined
by the intersection of the Q̇/Q and Ċ/C schedules. Equation (7.34) shows that the growth rate of Q is a negative
function of the interest rate, r . The intercept is (π̄/ζ ) · [qα/(1−α) − 1], and the slope is −[qα/(1−α) − 1]. The
formula for consumption growth in equation (7.30) provides a positive relation between the growth rate and r .

displayed in figure 7.3. As mentioned before, C and Q grow at the same, constant rate,
which we denoted by γ . The formula for consumption growth in equation (7.30) therefore
provides another relation between the growth rate and r . The intersection of these two lines
defines the equilibrium where Q̇/Q = Ċ/C .

Equation (7.11) shows that the basic profit flow, π̄ , rises if the production function
parameter A rises or the size of the population, L , increases. These changes shift the
Q̇/Q line upward in a parallel fashion. Therefore, the growth rate of the economy rises. A
reduction in ζ , which is the parameter that governs the cost of R&D, has the same kind of
effect. An increase in q (the step size between innovations) has two effects: the intercept
of the Q̇/Q schedule increases, but the slope becomes more negative. However, it is clear
from equation (7.34) that a rise in q raises the growth rate for a given value of r , as long
as ( π̄

ζ
− r) > 0, which must hold in an equilibrium with positive growth. Therefore, the net

effect from an increase in q is to raise the growth rate.
Algebraically, we can substitute from equation (7.30) into equation (7.34) to get

r = ρ + θ · [
qα/(1−α) − 1

] · (π̄/ζ )

1 + θ · [
qα/(1−α) − 1

] (7.35)

γ =
[
qα/(1−α) − 1

] · [(π̄/ζ ) − ρ]

1 + θ · [
qα/(1−α) − 1

] (7.36)

where π̄ = A1/(1−α) · (
1−α
α

) · α2/(1−α)L . We assume that the parameters are such that γ is
positive (so that the free-entry condition in equation [7.26] holds with equality), and r > γ
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applies (to satisfy the transversality condition).8 Equation (7.33) implies that the equilibrium
value of p is the expression for γ in equation (7.36) divided by [qα/(1−α) − 1]:

p = (π̄/ζ ) − ρ

1 + θ · [
qα/(1−α) − 1

] (7.37)

The results are like those from the varieties model of chapter 6 in that no transitional
dynamics exists.9 The single state variable is now the aggregate quality index, Q. Given an
initial value, Q(0), the variables Q, Y , X , Z , and C all grow at the constant rate γ shown
in equation (7.36). The interest rate, r , is the constant value shown in equation (7.35).

The realized growth in each sector depends on the random outcomes of research efforts.
In particular, the relative quality positions of the sectors and, hence, the relative amounts
spent on intermediate goods and R&D evolve in a random fashion. At a point in time, the
realized quality positions across the sectors will, therefore, exhibit an irregular pattern, as
suggested by figure 7.2.

Notice that, as we showed graphically, the algebra implies that the growth rate is a
decreasing function of the parameters of the utility function (ρ and θ ) and of the cost of
research, represented by the parameter ζ . The growth rate is an increasing function of π̄

and q .10

7.2.5 Scale Effects Again

The growth rate increases with the size of the population, L , because the basic profit flow,
π̄ , rises with L in equation (7.11). A similar scale effect emerged in chapter 6, and we
discussed there how this effect could be eliminated if the economy’s scale also affected the
cost of R&D in a particular way.

In the present model, the key relation is the one for the probability of research success in
equation (7.20):

p(κ j ) = Z(κ j ) · φ(κ j )

We focused on a specification for φ(κ j ) in equation (7.25) in which successes became
more difficult in relation to the output that would be produced at the newly attained ladder

8. Equations (7.35) and (7.36) imply that the condition for r > γ is ρ > (1 − θ) · [1 − q−α/(1−α)] · (π̄/ζ ). The
condition for γ > 0 in equation (7.36) is ρ < π̄/ζ .

9. We have shown here and in the appendix only that an equilibrium exists with no transitional dynamics. A proof
that no other equilibria are possible can be constructed from the transversality condition, along the lines followed
in chapter 4.

10. If the cost of research is specified as an increasing function of q, we can use the model to determine q.
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position, κ j + 1, that is,

φ(κ j ) = (1/ζ ) · q−(κ j +1)·α/(1−α)

This specification means that research successes are more difficult in more advanced sectors,
where the innovations contribute more to output. However, changes in the economy-wide
scale of output were assumed not to affect φ(κ j ) and, hence, p(κ j ).

An alternative assumption is that φ(κ j ) varies inversely with the absolute level of output
attributable to intermediate j when the next quality level, κ j + 1, is attained. This output
level is given from equation (7.14) by

Y (κ j + 1) = A1/(1−α)α2α/(1−α)L · q(κ j +1)·α/(1−α)

Hence, instead of equation (7.25), we could assume

φ(κ j ) = 1

ζ · Y (κ j + 1)
= 1

ζ A1/(1−α)α2α/(1−α)L · q(κ j +1)·α/(1−α)
(7.38)

where ζ > 0 is again a parameter that measures the cost of research. The new element, rela-
tive to equation (7.25), is the inverse relation betweenφ(κ j ) and the term A1/(1−α)α2α/(1−α)L .

If we follow the same steps as before to solve the model, we end up with a new expression
for the growth rate:

γ =
[
qα/(1−α) − 1

] · {[α · (1 − α)/ζ ] − ρ}
1 + θ · [

qα/(1−α) − 1
] (7.39)

This expression is independent of scale, as represented by L . The quantity L does not
influence growth because the probability of research success, p(κ j ), depends through equa-
tions (7.20) and (7.38) on R&D expenditure in sector j , Z(κ j ), expressed relative to the
size of the sector, as measured by its prospective contribution to output, Y (κ j + 1). Since
L ends up affecting Z(κ j ) and Y (κ j + 1) in the same proportion, the probability p ends up
independent of L . Since the growth rate is determined by p in equation (7.33), the solution
for γ in equation (7.39) does not involve L . By similar reasoning, γ is independent of the
level of the production technology, as represented by the parameter A in equation (7.1).

These results are similar to those in section 6.1.7 for the case in which the cost of invent-
ing a new variety of product rose with the ratio of output to the number of intermediates,
Y/N . Some models in the literature, including Young (1998), Aghion and Howitt (1998,
chapter 12), and Dinopoulos and Thompson (1998), eliminate scale effects in basically sim-
ilar ways. These models assume, in one way or another, that an increase in scale effectively
dilutes the effect of research outlays, Z(κ j ), on the probability of success, p(κ j ).
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7.3 Innovation by the Leader

7.3.1 Interactions Between the Leader and the Outsiders

Thus far we have assumed that all R&D effort is carried out by outsiders. Suppose now that
we also allow for R&D by the sector leader. Let Zo(κ j ) be the total R&D expenditure by
outsiders and Z �(κ j ) the amount expended by the leader, so that Z(κ j ) = Zo(κ j )+ Z �(κ j ).
If the outsiders and the leader are equally good at conducting research (which we assume,
for now), the probabilities of R&D success per unit of time for the outsiders and the leader
are given, respectively, by

po(κ j ) = Zo(κ j ) · φ(κ j )

p�(κ j ) = Z �(κ j ) · φ(κ j )
(7.40)

The total probability of an R&D success per unit of time is p(κ j ) = po(κ j ) + p�(κ j ).
The net return from R&D for outsiders is

po(κ j ) · E[V (κ j + 1)] − Zo(κ j ) = Zo(κ j ) · {φ(κ j ) · E[V (κ j + 1)] − 1} (7.41)

The net return for the leader is

p�(κ j ) · E[V (κ j + 1)] − Z �(κ j )− p(κ j ) · E[V (κ j )]

= Z �(κ j ) · {φ(κ j ) · E[V (κ j + 1)] − 1} − Z(κ j ) · φ(κ j ) · E[V (κ j )] (7.42)

Note that an R&D success by the outsiders or the leader results in the leader’s loss of the
existing present value, EV (κ j ).

If outsiders are carrying out any research, so that Zo(κ j ) > 0, the free-entry condition
from equation (7.23) must hold. This condition implies that the net return from R&D for
outsiders shown in equation (7.41) must be zero. But this condition implies that the first
term in the expression for the leader’s net return in equation (7.42) is also zero. Hence,
the leader’s net return associated with R&D is negative if Z(κ j ) > 0. More importantly, if
the leader takes the outsiders’ R&D outlays, Zo(κ j ), as given, an increase in the leader’s
R&D effort, Z �(κ j ), raises the total R&D effort, Z(κ j ), and, therefore, lowers the leader’s
net return from R&D. Hence, if the outsiders are undertaking a given, positive amount of
R&D, the leader’s best response is to set Z �(κ j ) = 0. This result shows that the equilibrium
worked out before—where the leader was assumed to do no research—is a Cournot–Nash
equilibrium.11

11. See Aghion and Howitt (1992) for this argument.



334 Chapter 7

These results predict a continual leapfrogging of leadership positions within an industry.
The incumbent is replaced at the time of the next quality improvement by an outside
competitor, who is subsequently replaced by another outsider, and so on. These predictions
conflict with patterns in the real world, where most improvements in the quality of existing
products seem to be made by industry leaders. Therefore, it is important to see whether
modifications of the model can make the model more realistic in this respect.

In a Cournot–Nash equilibrium, the leader takes as given the research effort of outsiders,
Zo(κ j ), and each outsider takes as given the research efforts of other outsiders and of the
leader, Z �(κ j ) (which happened to be nil in equilibrium). Since the leader is entrenched in
production and can make various types of visible investments, it may not be reasonable to
maintain the Cournot–Nash assumption, whereby the leader takes as given the actions of the
outsiders. Rather, it may be more reasonable to make the Stackelberg assumption, whereby
the leader can move first and effectively commit to a specified level of R&D outlay, Z �(κ j ).
In this case, outsiders would choose Zo(κ j ) for given Z �(κ j ), but the leader would select
Z �(κ j ) taking account of the implied reaction function for Zo(κ j ).

The determination of Zo(κ j ) for given Z �(κ j ) is equivalent to the analysis that we al-
ready carried out. The free-entry condition has to hold (if Zo(κ j ) > 0), so that the net return
from outsiders’ R&D in equation (7.41) is zero. Moreover, the overall probability of re-
search success, p(κ j ), and the corresponding total of R&D outlay, Z(κ j ), are determined
as before.12 Therefore, when choosing Z �(κ j ) to maximize the net return shown in equa-
tion (7.42), the leader takes as given the term farthest to the right (because Z [κ j ] is given).
The free-entry condition for outsiders also implies that the first term on the right-hand side
of equation (7.42) is zero. Therefore, as long as Zo(κ j ) > 0, the leader is now indifferent
about his choice of Z �(κ j ). Hence, there is an indeterminacy about how the total of re-
search is divided between the leader and the outsiders. However, a sufficiently high value of
Z �(κ j ) would cause Zo(κ j ) to fall to zero. Beyond that point, the leader’s net return would
fall with further increases in Z �(κ j ). Hence, the leader would not go beyond this value
of Z �(κ j ). Note that, in this solution, the leader does all the research, but the equilibrium
values of Z(κ j ) and p(κ j ) are determined just as they were in the previous model. That is,
the potential for outsider R&D defines the equilibrium.

The indeterminacy of the research allocation disappears if we modify the model to allow
the industry leader to have a cost advantage in research. This modification seems reasonable
because the leader would typically have the best information about the current technology

12. This conclusion follows readily from the first-order conditions for outsiders’ choices of Zo(κ j ) if p(κ j ) is a
concave, rather than linear, function of Z(κ j ).
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and may also possess other advantages that lower the cost of R&D.13 Moreover, if agents
have different costs of carrying out research, the one with the lowest cost will tend to become
the industry leader.

To analyze this situation, replace the term φ(κ j ) in the two probability functions of
equation (7.40) by φo(κ j ) and φ�(κ j ), respectively, where φo(κ j ) < φ�(κ j ). If outsiders
are still conducting research, so that Zo(κ j ) > 0, the free-entry condition follows from a
modification of equation (7.41) as14

Zo(κ j ) · {φo(κ j ) · E[V (κ j + 1)] − 1} = 0 (7.43)

The leader’s net return is now given from a modification of equation (7.42) by

Z �(κ j ) · {φ�(κ j ) · E[V (κ j + 1)] − 1} − p(κ j ) · E[V (κ j )] (7.44)

The behavior of outsiders will still fix the value of p(κ j ) on the right-hand side. However,
the free-entry condition in equation (7.43), together with the condition φo(κ j ) < φ�(κ j ),
implies that the term multiplying Z �(κ j ) is positive, rather than zero. Therefore, the leader
is now motivated to raise Z �(κ j ) at least until outsiders are driven out of the research
business. That is, it is now unambiguous that the leader would carry out all the research.15

Suppose now that the leader chooses the level of Z �(κ j ) that is just high enough to deter
research by the outsiders. At that point, a further increase in Z �(κ j ) would raise Z(κ j ) one-
for-one and, thereby, raise p(κ j ) on the right-hand side of equation (7.44). If the leader’s
cost advantage is small, the net effect on the leader’s return would still be negative. Hence,
the leader would not be motivated to select a higher value of Z �(κ j ). Thus, although the
leader unambiguously carries out all the research, the probability of research success, p(κ j ),
is still determined by the potential for the outside competition.

If the leader’s cost advantage in research is large enough, he would want to expand Z �(κ j )

beyond the point at which outsiders were driven out of the research business. In this case,
the leader effectively acts as an R&D monopolist and determines the probability of research

13. Current technological leaders—companies or countries—are less likely to have a cost advantage for the
discovery of entirely new products, as considered in chapter 6. See Brezis, Krugman, and Tsiddon (1993) for this
argument.

14. The assumption here is that, once an outsider obtains an R&D success, he becomes just like the previous
insider with respect to the costs of doing R&D. Therefore, E[V (κ j+1)] is the same for everyone.

15. We could get an equilibrium in which multiple agents carry out research if we drop the assumption that the
probability of research success depends only on the aggregate of R&D outlays, Z(κ j ). If individual probabilities
of success, pi (κ j ), depend through a concave function on individual R&D spending, Zi (κ j ), outsiders and the
leader would tend to participate simultaneously in the research business.
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success without regard to the potential outside competition.16 The next section considers
this case.

7.3.2 The Leader as a Monopoly Researcher

We assume now that the leader’s cost advantage in research is sufficient for him to ignore
the potential competition from outsiders. Suppose that the probability of research success
is again determined by the forms of equations (7.20) and (7.25):

p(κ j ) = Z(κ j )

ζ� · q(κ j +1)·α/(1−α)
(7.45)

where ζ� is the R&D cost parameter for the leader. For convenience, we omit the � super-
scripts for p and Z . We now have to compute the leader’s expected present value of net
revenues, E[V (κ j )].

The flow of monopoly profit when the leading-edge position is κ j is still given by
equation (7.10):

π(κ j ) = π̄ · qκ j α/(1−α) (7.46)

where π̄ = A1/(1−α) · ( 1−α
α

) · α2/(1−α)L . The calculation of E[V (κ j )] can be broken down
into two parts. The first part is the present value of net earnings, π(κ j ) − Z(κ j ), up to the
time of the next quality improvement. These earnings accrue, as before, over an interval
of random length, T (κ j ). The expected present value of this flow has the same form as
equation (7.18):

E[V (κ j )] (first part) = [π(κ j ) − Z(κ j )]/[r + p(κ j )]

The second part of the expectation covers the period after the time of the next quality
improvement, T (κ j ). The expected present value starting from that date is E[V (κ j + 1)],
discounted by the factor exp[−r · T (κ j )]. The appendix (section 7.6.4) shows that the

16. The critical value of the differential in research parameters can be found by setting the derivative of equa-
tion (7.44) with respect to Z�(κ j ) to zero. In this computation, Zo(κ j ) = 0 and dp(κ j )/d Z�(κ j ) = φ�(κ j ) apply.
The values of E[V (κ j + 1)] and E[V (κ j )] are the ones determined by the free-entry condition for outsiders and
are given by E[V (κ j + 1)] = 1/φo(κ j ) and E[V (κ j )] = q−α/(1−α)/φo(κ j ). Putting these elements together, we
find that the critical value of φ�(κ j ) is given by

φ�(κ j ) = φo(κ j )

1 − q−α/(1−α)

If φ�(κ j ) is at least as large as this value, the leader ignores the competition and acts as a monopolist in the
determination of R&D effort.
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expectation of this second part is

E[V (κ j )] (second part) = p(κ j ) · E[V (κ j + 1)]/[r + p(κ j )]

If we combine the two parts, we get

E[V (κ j )] = π(κ j ) − Z(κ j ) + p(κ j ) · E[V (κ j + 1)]

r + p(κ j )
(7.47)

The expression E[V (κ j )] will be the market value of a firm that is currently at quality level
κ j and has monopoly power over future innovative activity in sector j .

We can gain economic intuition for the last expression by rewriting it as

r = π(κ j ) − Z(κ j ) + p(κ j ) · {E[V (κ j + 1)] − E[V (κ j )]}
E[V (κ j )]

(7.48)

Equation (7.48) is a familiar arbitrage condition. It says that the rate of return on bonds, r ,
equals the rate of return to ownership of the sector leading firm. The first part of the return
to firm ownership is the profit net of R&D spending, π(κ j ) − Z(κ j ). The second part is
the product of the success probability, p(κ j ), and the capital gain that results from success,
E[V (κ j + 1)] − E[V (κ j )]. The rate of return to firm ownership is the sum of these two
parts divided by the current value of the firm, E[V (κ j )].

We can use equation (7.45) to substitute out for Z(κ j ) in equation (7.47). The result is

E[V (κ j )] = π(κ j ) − p(κ j ) · ζ� · q(κ j +1)·α/(1−α) + p(κ j ) · E[V (κ j + 1)]

r + p(κ j )

Thus E[V (κ j )] depends on p(κ j ) and some other terms, including E[V (κ j + 1)], that are
independent of p(κ j ). Since there is no “entry” in this model, we cannot use the free-entry
condition as we did before. In a way, however, the monopolist decides his own “entry”
optimally by choosing p(κ j ) (by selecting the R&D effort, Z [κ j ]) to maximize E[V (κ j )].
If we set the derivative of E[V (κ j )] with respect to p(κ j ) to zero to get the first-order
condition, the result can be written as

E[V (κ j + 1)] − E[V (κ j )] = ζ� · q(κ j +1)·α/(1−α)

= Z(κ j )/p(κ j ) (7.49)

where the last equality uses equation (7.45).
The result in equation (7.49) differs from the one in equation (7.21) in two respects. First,

Z(κ j )/p(κ j ) is now equated to the increment in present value, E[V (κ j + 1)] − E[V (κ j )],
rather than to the full present value, E[V (κ j + 1)], because the leader does not value
the expropriation of his own monopoly profit. Second, the term E[V (κ j )] is calculated
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differently from before because it considers the leadership position to be permanent, rather
than temporary.

To see this last property, substitute E[V (κ j + 1)] = E[V (κ j )] + Z(κ j )/p(κ j ) from
equation (7.49) into equation (7.47) to get

E[V (κ j )] = π(κ j )/r (7.50)

The term on the right-hand side is the present value yielded by a (hypothetical) permanent
stream of profit of size π(κ j ). Since the stream is permanent, the discount rate is r , rather
than r + p(κ j ).

If we substitute from equation (7.50) into equation (7.49) and use equation (7.46) to
substitute out for π(κ j ), we get a condition for r . The resulting value, denoted r�, is the
equilibrium rate of return for an environment in which research in each sector is carried out
by the industry leader:17

r� = π̄

ζ�

· [
1 − q−α/(1−α)

]
(7.51)

The corresponding growth rate of Q and the other quantities is given, as usual, from

γ� = 1

θ
· (r� − ρ) (7.52)

Recall that the rate of return in the previous model satisfies the condition (from
equation [7.27])

r = π̄

ζ
− p (7.53)

where ζ is the R&D cost parameter for outsiders. This expression includes p on the right-
hand side, although we could substitute the equilibrium value for p from equation (7.37).
The result for r� in equation (7.51) differs from the solution for r in equation (7.53) in three
ways. First, ζ� < ζ tends to make r� > r . Second, r falls with p in equation (7.53), because
the private return to an innovation is temporary. This force tends to make r� > r . Finally,
equation (7.51) includes the term [1 − q−α/(1−α)] < 1, because the leader weighs only the
increment in present value from a research success. This term tends to make r� < r .

17. If r < r�, where r� is given in equation (7.51), the derivative of E[V (κ j )] with respect to p(κ j ) is positive, so
that the leader would like to carry out an infinite amount of research. If r > r�, the derivative is negative, so that no
research is carried out, and the economy does not grow. Therefore, an equilibrium with positive growth requires
r = r�.
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7.4 Pareto Optimality

We can assess the Pareto optimality of the decentralized equilibria by comparing them with
the solution to the social planner’s problem. The social planner seeks to maximize the usual
expression for the representative household’s utility,

U =
∫ ∞

0

(
c1−θ − 1

1 − θ

)
· e−ρt dt

subject to the economy’s resource constraint,

Y = AL1−α ·
N∑

j=1

(qκ j X j )
α = C +

N∑
j=1

[X j + Z(κ j )] = C + X + Z (7.54)

The first part of the equation says that total output depends on the quality levels, κ j , and
the quantities employed, X j , of the leading-edge intermediates in each sector. The next part
of the equation indicates that output can be used for consumption C , intermediates X , and
R&D effort Z .

The planner’s problem is also constrained by the R&D technology. The probability p(κ j )

is assumed again to be given from equation (7.45) by

p(κ j ) = Z(κ j )

ζ� · q(κ j +1)α/(1−α)

We enter the leader’s research cost, ζ�, which we assume is no larger than the cost for
outsiders, because the social planner would assign the research activity to the lowest-cost
researcher.

It is convenient first to work out the planner’s choice of intermediate quantities (a static
problem) and then use the result to write out a simplified Hamiltonian expression. It is
straightforward to show that the first-order condition for maximizing U with respect to the
choice of X j implies

X j (social planner) = L A1/(1−α)α1/(1−α)qκ j α/(1−α) (7.55)

Recall from equation (7.9) that the choice in a decentralized economy is

X j = L A1/(1−α)α2/(1−α)qκ j α/(1−α)

The social planner’s choice of X j relates to the decentralized choice in the usual manner:
monopoly pricing implies that the privately chosen quantity is smaller than the socially
chosen amount (by the multiple α1/(1−α) < 1).
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Substitution for X j from equation (7.55) into equation (7.54) gives an expression for
aggregate output:

Y (social planner) = A1/(1−α)αα/(1−α)L Q (7.56)

where Q = ∑N
j=1 qκ j α/(1−α) is the same aggregate quality index that we defined in equa-

tion (7.15) for the decentralized economy. In contrast, the level of output for a decentralized
economy is given from equation (7.16) by

Y = A1/(1−α)α2 α/(1−α)L Q

Therefore, for given Q, the social planner’s level of output exceeds the decentralized value.
This result reflects the decentralized economy’s failure to achieve static efficiency by choos-
ing a high enough quantity of intermediate goods, X j , in each sector.

Equation (7.56) implies that the social planner’s growth rate of Y equals the growth rate
of Q. The expected change in Q per unit of time is given by

E(�Q) =
N∑

j=1

p(κ j ) · [
q(κ j +1)· α/(1−α) − qκ j α/(1−α)

]

Substitution for p(κ j ) from equation (7.45) leads to

E(�Q) = Z · [
1 − q−α/(1−α)

]
ζ�

(7.57)

Thus the expected change in Q—and, hence, in Y —depends only on aggregate R&D
spending, Z , and not on the manner in which this spending is spread across the sectors.
(This result reflects the assumption that the sectoral returns to R&D do not diminish with
the current flow of R&D investment.) We again assume that the number of sectors is large
enough so that we can treat Q as differentiable; hence, we use equation (7.57) to represent
the actual change, Q̇, in the quality index.

We can use the results to write the social planner’s Hamiltonian expression as

J =
(

c1−θ − 1

1 − θ

)
· e−ρt + ν ·

[
L A1/(1−α) ·

(
1 − α

α

)
· α1/(1−α) Q − Z − cL

]

+ µ · Z · [
1 − q−α/(1−α)

]
ζ�

(7.58)

The Lagrange multiplier ν applies to the resource constraint, Y = C + X + Z . This con-
straint comes from equation (7.54) after substitution for Y from equation (7.56) and X from
equation (7.55). The shadow price µ attaches to the expression for Q̇ from equation (7.57).
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We can now use our familiar methods to derive the dynamic-optimization conditions
for the choices of c and Z in equation (7.58). The first-order conditions and the transition
equation for Q lead to the social planner’s growth rate:

γ (social planner) = (1/θ) ·
{

1

ζ�

· L A1/(1−α) ·
(

1 − α

α

)
· α1/(1−α) · [

1 − q−α/(1−α)
] − ρ

}
(7.59)

The implicit social rate of return, which corresponds to the expression in the square brackets
that precedes the term −ρ, is, therefore,

r (social planner) = 1

ζ�

· L A1/(1−α) ·
(

1 − α

α

)
· α1/(1−α) · [

1 − q−α/(1−α)
]

(7.60)

The social planner’s growth rate and rate of return in equations (7.59) and (7.60) exceed
the values γ� and r� for the monopolist in equations (7.52) and (7.51). This distortion reflects,
as usual, the impact of the monopoly pricing of the intermediate goods. The appropriate
subsidy on the purchases of intermediate goods could eliminate this distortion in the manner
familiar from chapter 6.

The rate of return r� prevails in the decentralized economy if industry leaders have
a sufficient cost advantage in research (see note 16). Otherwise, the threat of potential
competition determines the rate of return to equal the value r shown in equation (7.35).
The relation of r to the social rate of return in equation (7.60) is ambiguous. Monopoly
pricing tends, as already noted, to make the private rate of return fall short of the social
planner’s value.18 The other forces reflect the incompleteness of property rights over research
successes under competition. First, r in equation (7.35) is too high from a social perspective
because it includes the expropriation of the predecessor’s monopoly profit. But, second, r
is too low in a social context because it views the benefits from an innovation as temporary.
The net effect of these two forces is unambiguous because they are essentially the same,
except that they differ in sign and one comes earlier than the other. The extraction of the
monopoly profit is the amount taken from one’s predecessor. The treatment of an innovation
as temporary is equivalent to ignoring the rents that will be taken by one’s followers. The
terms are the same in magnitude, except for two considerations: the latter term is higher
because of growth of the economy at the rate γ , but it is smaller in present value because
of discounting at the rate r . The relation r > γ —the transversality condition—implies that
the first term dominates. Hence, the net effect from incomplete property rights is to make r

18. Another effect is that r depends on the outsiders’ R&D cost parameter, ζ . If ζ > ζ�, r also falls below the
social rate of return on this account.
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excessive. Thus it is possible, with the threat of competition, that the rate of return and growth
rate in the decentralized economy would exceed the socially optimal values. Moreover, it is
clear in this case that the competitively driven rate of return and growth rate would exceed
the values determined by a monopolistic industry leader (that is, r > r� must hold because
r� is always less than the social rate of return). Thus, competition can spur R&D and growth
and may do so in an excessive manner.19

The distortions associated with research competition could be eliminated if a scheme
were implemented—in the spirit of Coase (1960)—effectively to endow industry leaders
with property rights over their monopoly profits. This scheme would require innovators to
compensate their immediate predecessor for the loss of rental income. An innovator in sector
j then raises the cost of innovation to include the required compensation to the current leader
but also raises the prospective reward to include the anticipated compensation from the next
innovator. The first part of the scheme causes the innovator to count only the net change in
the flow of monopoly rentals as a contribution; that is, the incentive to seek the existing rents
is eliminated. The second part motivates the innovator to view his or her contribution as
lasting forever, rather than just until the next innovation. As usual, however, the successful
implementation of this kind of policy becomes problematic in a richer model—for example,
in contexts where quality improvements are hard for a policymaker to evaluate.

The internalization just described occurs automatically in the model where leaders have
a monopoly position in research. It is for that reason that the monopoly setting generates
the social optimum if a subsidy policy is implemented to eliminate the static distortion from
monopoly pricing.

7.5 Summary Observations about Growth

The quality improvements studied in this chapter represent ongoing refinements of prod-
ucts and techniques, whereas the expansions of variety considered in the previous chapter
describe basic innovations. From a modeling standpoint, one distinction between the two
kinds of technological progress is that goods of higher quality are close substitutes for
those of lesser quality, so that quality enhancements tend to make the old goods obsolete.
In contrast, we assumed that the new varieties were not direct substitutes or complements

19. Aghion et al. (2002) consider the relation between competition and growth in the framework of Aghion,
Harris, Howitt, and Vickers (2001). In that setting, multiple firms with different productivity levels can produce
simultaneously at a point in time because their outputs are imperfect substitutes. Then R&D investment involves
partly an effort to escape competition and partly an effort to catch up. The result is an inverse U-shape relation,
where R&D and growth first rise and later decline with the extent of competition.



Schumpeterian Models of Quality Ladders 343

for the existing types; therefore, innovation did not tend to drive out the old varieties in
chapter 6. One consequence of this distinction is that, in a decentralized economy, the R&D
effort aimed at quality improvements may be too high because of the incentive to seek the
monopoly rents of incumbents.

Another difference in specification is that the costs of quality improvements for industry
leaders tend to be smaller than those for outsiders. Hence, we argued that the leaders would
tend, in equilibrium, to carry out most or all of the research that underlies the regular
process of product refinement. In contrast, insiders are unlikely to have a cost advantage in
breakthrough research, basically because there are no insiders for this activity. Therefore,
dramatically new innovations are less likely to come from existing industry leaders.

7.6 Appendix

7.6.1 Intermediates of Various Quality Grades

In the text, we assumed that only the best available quality grade, κ j , of intermediate j would
be produced and used. We also assumed that this grade would be priced at the monopoly
level. We now reexamine these assumptions.

Suppose that the quality grades available for intermediate j are numbered from k = 0, . . . ,

κ j . Let Xi jk be the quantity used by the i th firm of the j th type of intermediate good of
quality rung k. The rung k corresponds to quality qk , so that k = 0 refers to quality 1, k = 1
to quality q , and so on. Thus the total quality-adjusted input of type j used by firm i is
given by

X̃ i j =
κ j∑

k=0

(qk Xi jk) (7.61)

The assumption in equation (7.61) is that the quality grades within a sector are perfect
substitutes as inputs to production. The overall input from a sector, X̃ i j , is therefore the
quality-weighted sum of the amounts used of each grade, qk Xi jk .

The researcher responsible for each quality improvement in sector j retains a monopoly
right to produce the j th intermediate good at that quality level. In particular, if the quality
rungs k = 1, . . . , κ j have been reached, the kth innovator is the sole source of intermediate
goods with the quality level qk . We know from the text that, if only the leading-edge quality
is produced and if the potential providers of the lower quality grades can be ignored, then
the intermediate would be priced at the monopoly level, P = 1/α.
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Suppose now that goods from quality rungs below κ j are also available for production in
sector j . Consider, in particular, the next lowest grade, κ j − 1. If the leading-edge producer
charges the monopoly price, 1/α, and if this price is high enough, then the producer of the
next lowest grade will be able to make positive profits by producing.

Recall from equation (7.61) that the different quality grades are perfect substitutes but are
weighted by their respective grades. Thus each unit of the leading-edge good is equivalent
to q > 1 units of the next best good. It follows that if the highest grade is priced at P , a
good of the next lowest grade could be sold, at most, at the price (1/q) · P . A good that
is one grade lower could be sold, at most, at the price (1/q2) · P , and so on. If (1/q) · P
is less than the unit marginal cost of production, the next best grade (and, moreover, all of
the lower quality grades) cannot survive. Thus, if the leading-edge producer prices at the
monopoly level, 1/α, then the next best producer could price at most at 1/(αq), the one
below that at 1/(αq2), and so on. If 1/(αq) is less than one, the next best producer (and all
lower quality producers) cannot compete against the leader’s monopoly price. Therefore,
the condition αq > 1 implies that monopoly pricing will prevail. This inequality will hold
if q, the spacing between quality improvements, is large enough; the lower grades are then
immediately driven out of the market even though the leading good is priced at the monopoly
level. In this case, the results that we derived in the text are valid.

If αq ≤ 1, we can follow Grossman and Helpman (1991, chapter 4) by assuming that the
providers of intermediate goods of a given type engage in Bertrand price competition. In
this case, the quality leader employs a limit-pricing strategy; that is, the leader sets a price
that is sufficiently below the monopoly price so as to make it just barely unprofitable for the
next best quality to be produced.20 This limit price is given by

Limit pricing ⇒ P = q (7.62)

If the leader prices at q − ε, where ε is an arbitrarily small positive amount, the pro-
ducer of the next best quality can charge, at most, 1 − ε/q, a price that results in negative
profit. The lower quality goods are therefore again driven out of the market. If αq ≤ 1—the
condition for limit pricing to prevail—the limit price, q, is no larger than the monopoly
price, 1/α.

The total quantity produced (of the highest quality) when limit pricing applies is given
from equation (7.6) by

Limit pricing ⇒ X j = L A1/(1−α) · (α/q)1/(1−α) · (q)κ j α/(1−α) (7.63)

20. Grossman and Helpman (1991, chapter 4) effectively assume α = 0, so that the magnitude of the elasticity
of demand is 1, and the monopoly price, 1/α, would be infinite. Since the inequality αq ≤ 1 must hold in this
situation, monopoly pricing cannot apply in their model.
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A comparison with equation (7.9) shows that, if αq ≤ 1, the quantity produced under limit
pricing is at least as large as the amount that would have been produced under monopoly.

The monopoly formulas in equations (7.8) and (7.9) apply if αq ≥ 1, and the limit-pricing
formulas in equations (7.62) and (7.63) hold if αq ≤ 1. Either way, price is a fixed markup
on the marginal cost of production, and only the best available quality of each type of
intermediate good is actually produced in each sector and used by final-goods producers.
We implicitly assumed in the main discussion that αq ≥ 1, so that the monopoly formulas
in equations (7.8) and (7.9) applied. However, the general nature of the results would be the
same if αq < 1, so that limit pricing prevailed.21

7.6.2 The Duration of a Monopoly Position

To work out a researcher’s prize for success, E[V (κ j )], we needed the probability density
function for the duration, T (κ j ), of the monopoly position. Define G(τ ) to be the cumulative
probability density function for T (κ j ), that is, the probability that T (κ j ) ≤ τ . The change
in G(τ ) with respect to τ represents the probability per unit of time that the monopoly
position ends because of the occurrence of the next innovation at time τ . In order for an
innovation to happen at τ , it must not have occurred earlier, an outcome that has probability
1 − G(τ ). Then, conditional on a discovery not having happened yet, the probability of one
occurring is p(κ j ) per unit of time. Hence, the derivative of G(τ ) with respect to τ is

G ′(τ ) = [1 − G(τ )] · p(κ j ) (7.64)

Since p(κ j ) is constant over time, we can readily solve the differential equation (7.64).
If we use the boundary condition G(0) = 0, the result is

G(τ ) = 1 − exp[−p(κ j ) · τ ]

The probability density function can then be found from differentiation of the cumulative
density:

g(τ ) = G ′(τ ) = p(κ j ) · exp[−p(κ j ) · τ ] (7.65)

Equation (7.13) shows the present value of profit, V (κ j ), as a function of the duration,
T (κ j ):

V (κ j ) = π(κ j ) · {1 − exp[−r · T (κ j )]}/r

21. Limit pricing applies, in any case, only if successive innovators are different persons. In the analysis where
the industry leader does all the innovating, the limit-pricing results would not be relevant.



346 Chapter 7

where π(κ j ) is the flow of monopoly profit. Equation (7.65) gives the probability density
for T (κ j ). The expected present value of profit is, therefore,

E[V (κ j )] = [π(κ j )/r ] · p(κ j ) ·
∫ ∞

0
(1 − e−rτ ) · exp[−p(κ j ) · τ ] · dτ

The integral can be evaluated to get

E[V (κ j )] = π(κ j )/[r + p(κ j )] (7.66)

which is the expression given in equation (7.18).

7.6.3 The Market Value of Firms

Wealth in this model corresponds, as in chapter 6, to the market value of firms. Since goods
below leading-edge quality are not produced, the only firm with market value in each sector
is the one that possesses the rights over the latest (κ j th) innovation. The market value of
this innovation, E[V (κ j )], is given from equation (7.19) by

E[V (κ j )] = π̄ · qκ j α/(1−α)/[r + p(κ j )]

If we substitute for r + p from equation (7.26), the formula becomes

E[V (κ j )] = ζ · qκ j α/(1−α) (7.67)

Note that the more advanced a sector—the higher κ j —the greater the market value of the
leading-edge firm.

The aggregate market value of firms, denoted by V , is the sum of equation (7.67) over
the N sectors:

V = ζ ·
N∑

j=1

qκ j α/(1−α) = ζ Q (7.68)

The total market value of firms is, therefore, a constant multiple of Q.

7.6.4 Research by the Industry Leader

Up to date T (κ j ), the industry leader receives the net revenue of π(κ j )− Z(κ j ). The proba-
bility density function for T (κ j ) is again given by equation (7.65). Therefore, the expected
present value of the net revenue flow up to date T (κ j ) corresponds to equation (7.66) with
π(κ j ) replaced by π(κ j ) − Z(κ j ). Hence, as in the text,

E[V (κ j )] (first part) = [π(κ j ) − Z(κ j )]/[r + p(κ j )] (7.69)
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The present value of net revenues from date T (κ j ) onward is exp[−r · T (κ j )] · E[V (κ j +
1)]. Using the density function for T (κ j ) from equation (7.65), we get

E[V (κ j )] (second part) = E[V (κ j + 1)] · p(κ j ) ·
∫ ∞

0
exp{−[r + p(κ j )] · τ } · dτ

Evaluation of the integral yields the expression in the text:

E[V (κ j )] (second part) = p(κ j ) · E[V (κ j + 1)]/[r + p(κ j )] (7.70)

7.7 Problems

7.1 The step size between innovations. Suppose that the cost of research is a function,
Z(q), of the step size, q , between innovations. (We continue to assume that q is known with
certainty.) Assume that the function Z(·) satisfies Z ′ > 0 and Z ′′ > 0.

a. What value of q will be determined in equilibrium—say, in the model in which the
leader’s cost advantage in R&D is sufficiently great to neglect the potential research of
outsiders?

b. Under what conditions is the previous answer consistent with the assumption that the
leader can neglect the potential research by outsiders?

7.2 Monopoly rights in research. Suppose that the government maintains the monopoly
position of industry leaders by precluding research by outsiders. Under what conditions will
such a policy be welfare enhancing? What problems would arise in practice in the pursuit
of this kind of policy?

7.3 The industry leader as the exclusive researcher. Assume that the industry leader’s
cost parameter for research in quality improvements, ζ�, is less than that for outsiders, ζ .

a. Under what conditions will the leader carry out all of the research on quality improve-
ments in equilibrium? Would the results be different for breakthrough research, rather than
quality refinements?

b. Under what conditions will the equilibrium research intensity on quality improvements
be independent of the outsiders’ potential to carry out research? Describe the nature of the
interaction for the case in which the outsiders’ potential research matters for the equilibrium.
Is there a sense in which more competition raises the economy’s growth rate?

7.4 Alternative relations between the probability of research success and the research
intensity. Suppose that the dependence of the probability of research success, p(κ j ), on
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the total R&D effort in sector j, Z(κ j ), is modified from equation (7.20) to

p(κ j ) = [Z(κ j ) · φ(κ j )]
ε

where 0 < ε < 1. Each researcher’s probability of success per unit of time is p(κ j ) multiplied
by the researcher’s share of the total R&D effort in sector j .

a. What is the free-entry condition for R&D in sector j? How does the condition differ
from the one obtained before when ε = 1?

b. What new kind of distortion arises if ε < 1? (Hint: Consider the analogy of a fishing
pond that has free entry and is subject to congestion.)

c. What happens if ε > 1?

d. Discuss how equilibrium research intensities in each sector are determined for a setting
in which 0 < ε < 1.



8 The Diffusion of Technology

In the Solow–Swan model of chapter 1, the tendency for convergence across economies
derived from the diminishing returns to capital. The higher rate of return on capital in
poor economies—or at least in economies that were further below their own steady-state
positions—generated a faster rate of per capita growth. We showed in the Ramsey model
of chapter 2 how this tendency would be modified by the behavior of the saving rate. The
convergence rate was faster or slower depending on whether poor economies tended to save
a higher or lower fraction of their incomes. Then we found in chapter 3 that the international
mobility of capital among open economies tended to speed up the process of convergence.

In the models developed in chapters 4 and 5, economies could sustain positive per capita
growth in the steady state if the returns to a broad concept of capital, which includes
human capital, were constant. If the returns to broad capital diminish for awhile, but are
roughly constant asymptotically, economies exhibit convergence behavior but also feature
endogenous growth in the long run. (We discussed in chapter 1 some specifications that
had this character.) We also examined in chapter 5 how imbalances between physical and
human capital affected the transitional dynamics. Economies that began with a high ratio of
human to physical capital would grow especially fast. Thus the endogenous growth theories
that rely on constant long-run returns to broad capital are consistent with a rich transitional
dynamics, which can include convergence-type behavior.

In the models of chapters 6 and 7, long-term growth arose if R&D investments—the
source of technological progress in these models—exhibited constant returns. We have
not yet discussed whether these theories are consistent with the empirical evidence on
convergence. In a multieconomy setting, the key issue is how rapidly the discoveries made
in leading economies diffuse to follower economies. We shall find in this chapter that the
diffusion of technology gives us another reason to predict a pattern of convergence across
economies.

In this chapter we study technological diffusion in the context of the model of variety
of intermediate products from chapter 6.1 We would, however, get similar results if we
examined the type of quality improvements that we introduced in chapter 7.2 The main idea is
that follower countries tend to catch up to the leaders because imitation and implementation
of discoveries are cheaper than innovation. This mechanism tends to generate convergence
even if diminishing returns to capital or to R&D do not apply.

We begin with the spread of technology from a leading economy, called country 1, to a
follower economy, called country 2. We use the setup from chapter 6 in which the level of

1. The previous theoretical research on technological diffusion that we build on includes Nelson and Phelps (1966),
Krugman (1979), Jovanovic and Lach (1991), Grossman and Helpman (1991, chapters 11 and 12), and Segerstrom
(1991).

2. For a development along this line, see Connolly (1999).
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technology corresponds to the number of varieties of intermediate products that have been
discovered by the technological leader. Researchers in country 1 expend effort to invent
these products, and they are initially used to produce final goods in country 1. The inventor
of a new variety of product in country 1 is the monopolistic provider of this good for use in
country 1.

Country 2 does not invent intermediate goods but instead imitates or adapts the products
that have been discovered in country 1. The use of one of these products in country 2 requires
some effort for adaptation to a different environment. We think of this effort as a cost of
imitation. This cost is similar to the R&D outlay considered in chapter 6, except that the
cost of imitation is typically less than the cost of invention. The agent who incurs the cost
of imitation is assumed to become the monopoly provider of the intermediate good for use
in country 2. We assume that imitators pay no fees to foreign inventors; hence, agents in
country 1 do not receive any compensation for the use of their innovations in country 2.
A later section considers a different setup in which the adaptation of a technology to country 2
involves foreign investment by an agent from country 1.

Final goods produced in the two countries are identical and tradable across borders.
However, final-goods producers in country 2 can use a particular variety of intermediate
good only if someone has first expended resources to adapt the good to this environment.
We assume that there is no global capital market; hence, trade is balanced between the two
countries at every point in time. Thus, in effect, the economies are closed except for the
transfer of technology through imitation.

Some success stories of economic development involve the absorption of technological
expertise from abroad in ways that correspond roughly to our theoretical setup. Young (1989,
chapter 6) argues that many entrepreneurs in Hong Kong learned businesses as production
workers, serving effectively as apprentices to foreign managers. The locals subsequently
used this knowledge to establish their own enterprises. In Singapore entry into several
leading-edge industries, such as electronics and financial services, depended on substantial
foreign investment and expertise. This foreign involvement was actively encouraged by the
Singaporean government (Young, 1992). Foreign investments in China from Hong Kong and
in Mexico from the United States have been important in facilitating the flow of knowledge
about advanced manufacturing techniques (Romer, 1993). In Mauritius the dramatic growth
of garment manufacturing entailed the importation of foreign entrepreneurs, who trained
and supervised the local workers. These foreigners, principally from Hong Kong, were
attracted by an export processing zone that featured a number of favorable government
policies, including low taxes and guaranteed low wages (see Gulhati and Nallari, 1990;
Bowman, 1991; and Romer, 1992).
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8.1 Behavior of Innovators in the Leading Country

The discussion presented in this section follows Barro and Sala-i-Martin (1997). The model
for the innovator in country 1 is the same as that worked out in the first part of chapter 6. We
provide a quick summary of the model here. If N1 intermediate goods have been discovered,
the quantity Y1 of final goods produced by firms in country 1 is given by

Y1 = A1L1−α
1 ·

N1∑
j=1

(X1 j )
α (8.1)

where 0 < α < 1, A1 is a productivity parameter, L1 is the quantity of labor input, and
X1 j is the quantity of nondurable input of type j . We assume that population and, hence,
the aggregate labor input, L1, are constant. The parameter A1 represents the level of the
technology in country 1, but it can also represent various aspects of government policy—
such as taxation, provision of public services, and maintenance of property rights—that
influence productivity in country 1.

The cost of production of each intermediate input, X1 j , is unity, and each good is sold,
as in chapter 6, at the monopoly price, P = 1/α > 1. The equation of the marginal product
of X1 j to the price determines the quantity of each type used in country 1:

X1 j = X1 = (A1)
1/(1−α)α2/(1−α)L1 (8.2)

Substitution from equation (8.2) into equation (8.1) implies that the level of output per
worker in country 1 is

y1 ≡ Y1/L1 = (A1)
1/(1−α)α2α/(1−α)N1 (8.3)

Hence, output per worker, y1, increases with the productivity parameter, A1, and the number
of products, N1. The wage rate, w1, equals a firm’s marginal product of labor and is the
multiple 1 − α of y1.

Equation (8.2) implies that the flow of monopoly profit from sales of the j th intermediate
good in country 1 is

π1 j = π1 =
(

1 − α

α

)
· (A1)

1/(1−α)α2/(1−α)L1 (8.4)

The present discounted value of all future profits is the value of the R&D firm, V1. The
nonarbitrage condition requires that the rate of return to purchasing an R&D firm be the
same as the rate of return to bonds. The instantaneous rate of return from buying the firm
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is the profit rate plus the capital gains that accrue from changes in the value of the firm:

r1 = π1 + V̇1

V1
(8.5)

Equation (8.5) corresponds to equation (6.18) in chapter 6. The cost of inventing a new
product in country 1 is a fixed amount of goods, which we denote by η1. We assume that
a positive amount of innovation occurs in the equilibrium in country 1 and, hence, that
the equilibrium growth rate is positive. In this case, the free-entry condition equates the
value of the firm, V1, to η1. Since η1 is a constant, the value of the firm must be constant
over time. Hence, V̇1 = 0 and r1 = π1/η1, so the interest rate in country 1 is constant in
equilibrium. Equation (8.4) implies that this interest rate is given by

r1 = π1/η1 = (L1/η1) ·
(

1 − α

α

)
· (A1)

1/(1−α)α2/(1−α) (8.6)

The usual consumer-optimization condition implies that the growth rate of consumption,
C1, is given by

γ1 = Ċ1/C1 = (1/θ) · (r1 − ρ) (8.7)

The preference parameters, ρ and θ , are assumed to be the same in all countries. If we
substitute for r1 from equation (8.6), the growth rate is

γ1 = (1/θ) ·
[
(L1/η1) ·

(
1 − α

α

)
· (A1)

1/(1−α) · α2/(1−α) − ρ

]
(8.8)

As in chapter 6, country 1 is always in a steady state with the quantities N1, Y1, and C1 all
growing at the constant rate γ1.

8.2 Behavior of Imitators in the Follower Country

8.2.1 Producers of Final Output

The form of the production function, equation (8.1), is the same in country 2 as in country 1:

Y2 = A2L1−α
2 ·

N2∑
j=1

(X2 j )
α (8.9)

where N2 is the number of intermediate products available for use in country 2. Since we
think of country 1 as the technological leader and country 2 as the follower, we assume
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N2(0) < N1(0). We further assume that the N2 products available in country 2 are a subset
of the N1 goods known in country 1.3 In the initial setting, country 2 will also not make any
new discoveries and will just imitate the intermediate goods known by country 1.

The productivity parameter, A2, and the aggregate labor input, L2, may differ from the
corresponding parameters for country 1. Differences between A2 and A1 could, as already
mentioned, reflect differences in government policies. The total labor input represents the
scale over which an intermediate good can be utilized in production. Thus the gap between
L2 and L1 reflects the differences in scale of the two economies. The producers of final
output in country 2 choose labor and intermediate inputs so as to maximize profits, taking
prices as given. The first-order conditions deliver the usual input demand function for
intermediate j as a decreasing function of the price P2 j :

X2 j = L2 · (A2 · α)1/(1−α) · (P2 j )
−α/(1−α) (8.10)

8.2.2 Imitating Firms

The Cost of Imitation Following the analysis of chapter 6, we assume that the cost of
innovation in country 2, η2, is a constant (which need not equal η1). This assumption means
that discoveries of new types of products do not encounter diminishing returns in either
country. As mentioned in chapter 6, this assumption can be rationalized from the idea that
the number of potential inventions is unbounded.

The copying and adaptation of one of country 1’s intermediates for use in country 2 is
assumed to entail a lump-sum outlay, denoted by ν2(t). Imitation differs from innovation
in that the number of goods that can be copied at a point in time is limited to the finite
number that have been discovered elsewhere. Specifically, in the present model, country 2
can select for imitation only from the uncopied subset of the N1 goods that are known in
country 1. As N2 increases relative to N1, the cost of imitation is likely to rise. This property
would hold, for example, if the products known in country 1 varied in terms of how costly
they were to adapt to the environment of country 2. The goods that were easier to imitate
would then be copied first, and the cost ν2 that applied at the margin would increase with the
number already imitated. We capture this property here by assuming that ν2 is an increasing
function of N2/N1:

ν2 = ν2(N2/N1) (8.11)

3. We do not explain how country 2 learned to produce its first type of good. The problem is that equation (8.9)
implies that country 2 produces nothing if it lacks access to any type of intermediate product. The same difficulty
arises for country 1’s initial innovation and for the discoveries of products in the model of chapter 6. Given the
form of the production function, we have to assume that people always knew how to produce at least one type of
intermediate good.
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Figure 8.1
Cost of technological change in country 2. The cost of imitation in country 2, ν2, is an increasing function of
N2/N1 and is assumed to approach the cost of innovation, η2, as N2/N1 approaches 1. The steady-state value of
the imitation cost, ν∗

2 , is assumed to be less than η2.

where ν ′
2 > 0. We also assume ν2[N2(0)/N1(0)] < η2, so that imitation is initially cheaper

than innovation for country 2.
If N2/N1 < 1, that is, if not all the intermediates of country 1 have been copied by

country 2, the imitation cost, ν2, tends to be less than η2 because copying is typically
cheaper than discovery. But ν2 can exceed η2 when N2/N1 < 1 if the remaining pool of
uncopied inventions comprises goods that are difficult to adapt to country 2. In other words,
it would be cheaper in some circumstances for a technological follower to start from scratch
and invent something new rather than adapt one of the leader’s goods. Figure 8.1 shows,
however, a simpler case in which ν2(N2/N1) < η2 applies when N2/N1 < 1. The main results
hold if ν2(N2/N1) > η2 applies for a range of values where N2/N1 < 1. The figure also
shows ν2(N2/N1) approaching η2 as N2/N1 approaches 1. We modify this assumption in a
later section.

A crucial assumption in the model is that the costs of imitation are nontrivial; that is,
innovations cannot be transferred to other locations at negligible cost. Mansfield, Schwartz,
and Wagner (1981, pp. 908–909) studied the cost of imitation in the United States for
48 product innovations that were made in the chemical, drug, electronics, and machinery
industries. They found that the cost of imitation averaged 65 percent of the cost of innovation.
The ratio of costs varied substantially, however, across the products; only half of the ratios
were between 40 percent and 90 percent.

Griliches (1957) found in U.S. regional data that the time at which hybrid corn was
introduced and the rate at which this innovation spread depended on measures of the cost
of absorption and the eventual profitability of the new technology. The date of introduction
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tended to be sooner the more similar an area’s preferred hybrids were to those developed
initially in the corn belt (the location to which most of the early research on hybrid corn
was directed). The rate of absorption was faster the greater the market size and the larger
the potential improvement in crop yields.

Teece (1977) examined the cost of technology transfer across countries for multinational
firms. For 26 cases in chemicals, petroleum refining, and machinery, he found that the
cost averaged 19 percent of total project expenditures. He also found that the transfer cost
declined with measures of experience with the technology being transferred but did not
depend on the level of economic development in the recipient country. In contrast, Nelson
and Phelps (1966) conjectured that the cost ν2 would be lower the more abundant human
capital was in the receiving location. In any case, one clear conclusion from the results
of Mansfield, Schwartz, and Wagner (1981) and Teece (1977) is that the transfer cost, ν2,
would typically be significant.

Optimal Pricing, Once the Good Has Been Copied If an agent in country 2 pays ν2(t)
at time t to imitate the j th variety of intermediate good from country 1, we assume that this
agent obtains a perpetual monopoly over the use of intermediate j in country 2.4 Hence,
the treatment of imitation in country 2 parallels the setup for innovation in country 1.
The imitator of intermediate good j chooses the price P2 j to maximize profit subject to
the demand function given by equation (8.10). The marginal cost of producing an inter-
mediate input is assumed to be 1, the same as in country 1. The monopoly price of each
intermediate in country 2 is a constant markup over marginal cost, P2 j = P2 = 1/α > 1,
which is the same as that in country 1 and is independent of j . Substitution of the monopoly
price into the demand function of equation (8.10) leads to the quantity of intermediates
sold:

X2 j = X2 = (A2)
1/(1−α)α2/(1−α)L2 (8.12)

Once the amount of each input is known, we can get the formulas for output per worker,
y2, and flow of profit, π2 j :

y2 ≡ Y2/L2 = (A2)
1/(1−α)α2α/(1−α)N2 (8.13)

π2 j = π2 =
(

1 − α

α

)
· (A2)

1/(1−α)α2/(1−α)L2 (8.14)

4. Producers in country 2 are assumed to be unable to circumvent the local monopoly by importing intermediate
j from country 1. Even if this good could be purchased from abroad at a price below the monopoly level, the idea
is that producers must make the lump-sum outlay ν2 to learn how to use the good effectively in the context of
country 2.
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Note that these formulas parallel the expressions for country 1 in equations (8.2)–(8.4). The
wage rate, w2, is the multiple 1 − α of y2.

Equations (8.13) and (8.3) imply that the ratio of the per-worker products for the two
countries is given by

y2/y1 = (A2/A1)
1/(1−α) · (N2/N1) (8.15)

Thus the ratio depends positively on the relative values of the productivity parameters,
A2/A1, and on the relative value of the number of known varieties of intermediates, N2/N1.

The ratio for the profit flows is given by

π2/π1 = (A2/A1)
1/(1−α) · (L2/L1) (8.16)

This ratio also increases with A2/A1. The positive effect from L2/L1 is a scale benefit. The
relevant scale variable is the total of complementary factor input, Li , that the intermediates
work with in country i .

The Free-Entry Condition The present value of profits from imitation of intermediate j
in country 2 is

V2(t) = π2 ·
∫ ∞

t
e−

∫ s

t
r2(v)·dv · ds (8.17)

where r2(v) is the rate of return in country 2 at time t . A gap in rates of return between the
two countries, r2(v) �= r1, is possible because international lending is ruled out.5 If there is
free entry into the imitation business in country 2 and the equilibrium amount of resources
devoted to imitation is nonzero at each point in time, V2(t) must equal the cost of imitation,
ν(t), at each point in time:

V2(t) = ν2(N2/N1) (8.18)

Substitution of the formula for V2(t) from equation (8.17) and differentiation of both
sides of equation (8.18) with respect to t yields the familiar nonarbitrage condition:

r2 = π2 + ν̇2

ν2
(8.19)

Hence, if ν2 were constant, r2 would be constant and equal to π2/ν2, the ratio of the profit
flow to the lump-sum cost of obtaining this profit. This result would parallel the one for r1 in

5. If international lending were permitted, all current investment would flow to the R&D activity that offered the
highest rate of return. Investments in more than one kind of R&D could coexist if the model were modified to
include an inverse relation between the rate of return and the quantity of each type of R&D investment.
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equation (8.6). However, if ν2 varies over time, r2 includes the capital-gain term, ν̇2/ν2. With
free entry, the monopoly right over an intermediate good must equal the cost of obtaining it,
ν2. If ν2 is rising (because N2/N1 is increasing in equation [8.18]), the expanding value of
the monopoly right implies a capital gain at the rate ν̇2/ν2. This gain adds to the “dividend”
term, π2/ν2, to get the full rate of return in equation (8.19). This result is analogous to the
one in section 6.8, where we allowed the cost of R&D to be a function of the number of
goods previously discovered.

8.2.3 Consumers

The model can be closed with the usual Ramsey consumers. Their Euler equation implies
that the rate of return, r2, determines the growth rate of consumption in country 2 in the
usual way:

Ċ2/C2 = (1/θ) · (r2 − ρ) (8.20)

Note the assumption that the preference parameters, ρ and θ , are the same in country 2 as
in country 1.

8.2.4 Steady-State Growth

In the steady state, N2 grows at the same rate, γ1, as N1. The ratio N2/N1 therefore equals
a constant, denoted (N2/N1)

∗. The formula for the imitation cost in equation (8.11) then
implies that ν2 is also constant in the steady state. Assume, for now, that the parameters
are such that the follower never catches up completely, so that 0 < (N2/N1)

∗ < 1. The
subsequent analysis relates this inequality to the parameters Ai , Li , and ηi .

In the steady state, the growth rates of Y2 and C2 equal the growth rate of N2, which
equals γ1. Therefore, the steady-state growth rate of all quantities in country 2, denoted by
γ ∗

2 , equals γ1.
Since C2 and C1 grow in the long run at the same rate, γ1, and since the preference

parameters, ρ and θ , are the same in the two countries, equations (8.6), (8.7), and (8.20)
imply that the rates of return in the two countries are the same:

r∗
2 = r1 = π1/η1 (8.21)

where π1 is given in equation (8.4). The adjustment of N2/N1 to the value (N2/N1)
∗—

which ensures γ ∗
2 = γ1—implies r∗

2 = r1. Thus, in the long run, the process of technological
diffusion equalizes the rates of return, even though the two countries do not share a common
capital market.

Since r∗
2 = r1, equations (8.19) and (8.5) imply

π2/ν
∗
2 = π1/η1
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where ν∗
2 is the steady-state value of ν2. (Note that, in the steady state, the capital-gain

term, ν̇2/ν2, equals zero because ν∗
2 is constant.) The formula for the ratio of profit flows in

equation (8.16) therefore implies

ν∗
2 = η1 · (π2/π1) = η1 · (A2/A1)

1/(1−α) · L2/L1 (8.22)

The assumption, thus far, is that country 2 never chooses to innovate. This behavior is
optimal for agents in country 2 if ν2(t) < η2 applies along the entire path. Since ν2 is an
increasing function of N2/N1, the required condition (if N2/N1 starts below its steady-state
value) is ν∗

2 < η2, which implies from equation (8.22)

(A2/A1)
1/(1−α) · (L2/L1) · (η1/η2) < 1 (8.23)

In other words, country 2 has to be intrinsically inferior to country 1 in terms of the indicated
combination of productivity parameters, A2/A1, labor endowments, L2/L1,6 and costs of
innovating, η1/η2. If the inequality in equation (8.23) holds, country 2 never has an incentive
to innovate (because ν2[t] < η2 applies throughout). Moreover, country 1 can never imitate,
because there never exists a pool of foreign goods to copy. Thus the equilibrium is the one
already described in which country 1 is the perpetual leader and country 2 is the perpetual
follower. We discuss in a later section the results when the inequality does not hold.

Since (N2/N1)
∗ < 1, equation (8.15) implies that the steady-state ratio of per-worker

products, (y2/y1)
∗, is less than one if A2 ≤ A1. (Note that A2 > A1 can be consistent with

the inequality in equation [8.23] if L2 < L1 or η2 > η1.) Thus the follower country’s per-
worker output is likely to fall short of the leader’s value even in the steady state. The
potential to imitate does not generally provide a strong enough force to equalize the levels
of per-worker product in the long run.

Consumption, C2, grows in the steady state at the constant rate γ1. The level of this
consumption path can be determined from country 2’s budget constraint: C2 equals output,
Y2 (from equation [8.13]), less the goods devoted to production of intermediates, N2 X2

(where X2 is given in equation [8.12]), less the resources expended on imitation. Along the
steady-state path, the last amount is ν∗

2 Ṅ2 = ν∗
2γ1 N2, where ν∗

2 is given in equation (8.22).
The formula for C2 and the parallel result for C1 can be manipulated to verify that the steady-
state ratio of per capita consumptions, (c2/c1)

∗, equals the steady-state ratio of per-worker
products, (y2/y1)

∗. Therefore, if A2 ≤ A1, (c2/c1)
∗ < 1; that is, the follower country also

tends to lag behind in the long run in terms of per capita consumption.

6. Scale, represented by Li , is a positive element because the costs of innovating or imitating are assumed to be
lump sum, rather than dependent on the extent of economic activity in a country. The results would be different if
the costs depended on scale, as in some models considered in chapter 6.
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8.2.5 The Dynamic Path and Convergence

The dynamic behavior for country 2 is not as simple as that for country 1. (Remember that
the growth rate of country 1 is constant at all points in time.) The reason is that the growth
rate of consumption, given by equation (8.20), is a linear function of the rate of return, r2.
Equation (8.19) implies that this rate of return equals (π2 + ν̇2)/ν2, which involves the rate
of change of the cost of imitation, ν2. We know that the profit flow, π2, is constant. But ν2

depends on the ratio N2/N1. If, along the transition path, the growth rate of N2 differs from
that of N1, the ratio N2/N1 will display transitional dynamics and, therefore, so will the
rate of return, r2, and the growth rate of consumption.

In this section we study the dynamic behavior of country 2 outside the steady state. This
behavior can be studied by considering differential equations for the variables C2 and N2.
(Since Y2 is proportional to N2, from equation [8.13], the dynamics of Y2 are the same
as those of N2.) We know that, in the steady state, N2 and C2 grow at a constant rate.
Following our analysis from chapter 4, if we want to draw a phase diagram that displays
the qualitative behavior of the economy, it will be convenient to work with controllike
and statelike variables that remain constant in the steady state. Since N2 and N1 grow
at the same constant rate, the ratio N2/N1 will remain constant in the long run. Hence,
we use this ratio as a statelike variable. To simplify notation, define N̂ ≡ N2/N1. We also
know that, in the steady state, C2 and N2 grow at the same rate; hence, the ratio C2/N2

is constant. Thus this ratio is a good controllike variable. We use the letter χ2 ≡ C2/N2 to
describe this ratio. Since Y2 is proportional to N2 (equation [8.13]), χ2 is proportional to
the consumption-output ratio, C2/Y2.

We now describe the dynamic analysis for the variables χ2 and N̂ . For tractability, we
assume a constant-elasticity form of the cost function from equation (8.11):

ν2 = η2 · N̂ σ (8.24)

for N̂ < 1, where σ > 0. Note that ν2 approaches η2 as N̂ approaches 1, the property assumed
in figure 8.1. Equations (8.22) and (8.24) imply that the steady-state ratio of N2 to N1 is
given by

N̂ ∗ = [
(A2/A1)

1/(1−α) · (L2/L1) · (η1/η2)
]1/σ

(8.25)

The parameters are assumed to satisfy the inequality in equation (8.23), so that N̂ ∗ < 1, as
shown in figure 8.1.

The growth rate of χ2 is given by

χ̇2

χ2
= Ċ2

C2
− Ṅ2

N2

We now compute the growth rates of C2 and N2.
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The growth rate of consumption for country 2 is given by equation (8.20). Substitute the
expressions for the rate of return, r2, from equation (8.19) and the cost of imitation, ν2, from
equation (8.24) to get

Ċ2

C2
= (1/θ) ·

[
π2/ν2 + σ ·

˙̂N
N̂

− ρ

]
(8.26)

It follows that, to determine the growth rate of C2, we have to know the growth rate of N̂ ,
which is the the difference between the growth rates of N2 and N1:

˙̂N
N̂

= Ṅ2

N2
− Ṅ1

N1

The change in N2 is determined by the budget constraint: Y2 = C2 + N2 X2 + ν2 Ṅ2.
In other words, total output, Y2 (equation [8.13]), equals total consumption, C2, plus the
resources devoted to the production of intermediates, N2 X2 (where X2 is given in equa-
tion [8.12] and where the marginal cost of producing one unit of intermediates is one),
plus the resources devoted to imitation (which equals the cost per good imitated, ν2, times
the quantity of new products imitated over the next instant, Ṅ2). Rearranging the resource
constraint and using equations (8.13) and (8.12), we get

Ṅ2 = (1/ν2) · [π2 · (1 + α)/α · N2 − C2] (8.27)

We can now divide both sides of the equation by N2 to compute the growth rate of N2 and
use equation (8.24) for the imitation cost, ν2, to get

Ṅ2

N2
= 1

η2 · N̂ σ
· [π2 · (1 + α)/α − χ2] (8.28)

We are now ready to compute the growth rates of N̂ and χ2. Subtract γ1 from equa-
tion (8.28) to get the growth rate of N̂ :

˙̂N
N̂

= 1

η2 · N̂ σ
· [π2 · (1 + α)/α − χ2] − γ1 (8.29)

Substitution for ˙̂N/N̂ from equation (8.29) into equation (8.26) yields an expression for
the growth rate of C2. We can subtract Ṅ2/N2 from equation (8.28) to get the growth rate
of χ2:

χ̇2

χ2
= 1

θη2 · N̂ σ
· {π2 + (θ − σ) · [χ2 − π2 · (1 + α)/α]} − 1

θ
· (σγ1 + ρ) (8.30)
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Figure 8.2
Phase diagram for country 2 when θ > σ . The locus for ˙̂N = 0 is downward sloping and stable. The locus for
χ̇2 = 0 is upward sloping and unstable if θ > σ .

Equations (8.29) and (8.30) form a system of autonomous differential equations in the
variables N̂ and χ2. The steady state of this system has already been discussed in the
previous section. The dynamics can be described by means of a standard two-dimensional
phase diagram in (N̂ , χ2) space.

The locus for ˙̂N = 0 is given by

χ2 = [π2 · (1 + α)/α] − η2 · γ1 · N̂ σ

This locus is downward sloping in (N̂ , χ2) space, as shown in figures 8.2 and 8.3.
Equation (8.29) implies that the ˙̂N = 0 locus is stable; that is, an increase in N̂ reduces
˙̂N in the neighborhood of the locus.

The χ̇2 = 0 schedule is given by

χ2 = π2 · (1 + α)/α − π2/(θ − σ) + (σγ1 + ρ) · η2 · N̂ σ /(θ − σ)

Note that the slope of this locus depends on the sign of θ −σ . If θ > σ , the locus is upward
sloping, as shown in figure 8.2. This locus is unstable; that is, an increase in χ2 raises χ̇2.

The directions of motion are shown by arrows for the four regions in figure 8.2. The only
path that avoids unstable behavior of N̂ and χ2 is the stable, saddle path, shown by the dashed
arrows. The unstable paths can be ruled out as equilibria by arguments analogous to those
used for the neoclassical growth model in chapter 2. If country 2 begins with N̂ (0) < N̂ ∗,
N̂ and χ2 each rise monotonically during the transition toward their steady-state values.



362 Chapter 8

�2 � 0 (� � �)
�2

�*
2

.

N̂
.
 � 0

N̂(0)
N̂

N̂ * � 1

Figure 8.3
Phase diagram for country 2 when θ < σ . The locus for ˙̂N = 0 is again downward sloping and stable. The
locus for χ̇2 = 0 is downward sloping and stable if θ < σ .

Figure 8.3 deals with the case in which θ < σ . Equation (8.30) implies that the χ̇2 = 0
locus is now downward sloping and stable. (We can show that the slope of this locus is
always steeper in magnitude than that of the ˙̂N = 0 locus.) The key finding is that the stable,
saddle path is again upward sloping; that is, N̂ and χ2 still rise monotonically during the
transition from N̂ (0) to N̂ ∗.7

Sinceχ2 and N̂ always rise monotonically toward their steady-state values, equation (8.29)
implies that the growth rate of N̂ falls monotonically toward its steady-state value, 0. (The
monotonic rise of N̂ implies a monotonic increase in ν2.) Thus, during the transition, N2

grows faster than N1—imitation is proportionately greater than innovation—but the growth
rate of N2 falls steadily toward that of N1. In the steady state, the rates of imitation and
innovation occur at the same rate, γ1, and N̂ ≡ N2/N1 remains constant.

The follower’s growth rate slows down during the transition because the imitation cost,
ν2, steadily increases. This increase in ν2 represents a form of diminishing returns, in this
case to imitation. In the standard neoclassical growth model, the diminishing returns to
capital accumulation played an analogous role.

The monotonic increase of N̂ and monotonic decline of ˙̂N/N̂ imply a monotonic decline
in the growth rate of consumption in country 2, Ċ2/C2, in accordance with equation (8.26).

7. If θ = σ , the χ̇2 = 0 locus is vertical. The stable saddle path is again upward sloping in this case.
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Equation (8.20) therefore implies that r2 is monotonically decreasing; it falls steadily toward
its steady-state value, r1.

Since country 2’s per-worker product, y2, is proportional to N2 (equation [8.13]), the
growth rate of y2 exceeds γ1 during the transition but falls gradually toward γ1. Thus the
model exhibits the familiar convergence pattern in which the follower country’s per-worker
output grows faster than the leader’s, but the differential in the growth rates diminishes the
more the follower catches up.

As mentioned before, the follower’s per-worker output, y2, is likely to fall short of the
leader’s, y1, in the steady state; that is, (y2/y1)

∗ < 1. Equations (8.15) and (8.25) imply that
(y2/y1)

∗ is an increasing function of A2/A1 and L2/L1 and a decreasing function of η2/η1.

8.3 Constant (or Slowly Rising) Costs of Imitation

The type of equilibrium discussed thus far depends on the assumption that the imitation
cost, ν2, rises to a sufficient degree as N̂ increases. Specifically, in figure 8.1, the condition
is that ν2 rise above ν∗

2 for N̂ ≡ N2/N1 < 1. (The property that ν2 approaches η2 as N2/N1

approaches 1 is not critical.) Figure 8.4 deals with an alternative case in which ν2 is constant
and low, so that ν2 < ν∗

2 . The analysis would be similar if ν2 were instead slowly rising, so
that ν2 approached (from the left) a value below ν∗

2 as N2/N1 approached 1.
Intuitively, if ν2 is small (namely, below ν∗

2 ), the imitation process will be carried on at
a sufficient pace to eventually exhaust all the available products discovered in country 1.
That is, N̂ = 1 will be reached at some finite date T . At this point, there will be an excess
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Figure 8.4
Low and constant cost of imitation in country 2. The cost, ν2, of imitation in country 2 is constant and lower
than the steady-state value, ν∗

2 , which is again less than the innovation cost, η2.
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supply of persons willing to pay ν2 to copy one of country 1’s discoveries, which continue
to flow in at the rate γ1. Somehow, this excess supply has to be resolved in the equilibrium.
Moreover, for t < T , where N̂ < 1, agents in country 2 realize that a state of excess supply
will arise later, and their previous choices of rates of imitation must be consistent with this
expectation.

8.3.1 The Steady State

It is easiest to begin at the end; that is, when t > T , so that N̂ = 1 has already been attained.
In this case, the natural conjecture from the previous analysis is that country 2 would be in
a steady state in which N2 grows at the rate γ1, the growth rate of N1, so that N̂ = 1 applies
forever. In this situation, the goods discovered in country 1 are immediately copied for use
in country 2.8 Also, C2 grows at the rate γ1, so that χ2 ≡ C2/N2 remains fixed over time.

Suppose, however, that r2 equaled π2/ν2, the value implied by equation (8.19) when ν2

is constant. In this case, r2 > r1 would apply. This result follows from the expression for ν∗
2

in equation (8.22), using also the expression for r1 from equation (8.6) and the condition
ν2 < ν∗

2 in figure 8.4. But r2 > r1 implies that C2 would grow faster than γ1, the growth rate
of C1, so that country 2 would not be in a steady state. The problem is that making copies
at the low cost ν2 is too good a deal to be consistent with the growth of C2 and N2 at the
steady-state rate, γ1. If the rate of return were π2/ν2, agents in country 2 would want to
devote enough resources to copying so that N2 would grow at a rate faster than γ1. But,
since new goods are discovered only at the rate γ1, there is insufficient copyable material
available to support imitation at this fast a rate. Somehow the rate of return in country 2
must be bid down to r1 to support the allocations that arise in the steady state.

If N2 = N1 and imitators in country 2 expend the flow of resources ν2γ1 N1, N2 would grow
along with N1 at the constant rate γ1. However, if each individual in country 2 thinks that he
can copy a good just by paying ν2, the amount spent on copying would exceed ν2γ1 N1; that
is, there would be excess demand for goods to be copied. We suppose in this excess-demand
situation that the monopoly rights to the copied goods in country 2 are allocated in a random
manner. Specifically, we assume that each person’s probability of obtaining the property
right is proportional to the amount spent on copying effort. In equilibrium, the total flow of

8. If we had assumed that imitation takes time, as well as goods, the imitation would occur with a lag, and a gap
between country 1 and country 2 could persist forever. Jovanovic and Lach (1991) construct a model that includes
a time lag for imitation. Mansfield, Schwartz, and Wagner (1981, p. 909) find in their sample of 48 innovations
that the ratio of the time required for imitation to that for innovation averaged 70 percent. The lag with which
advances become known in an industry appears to be brief. For example, Mansfield (1985) reports that 70 percent
of product innovations are familiar to rival companies within a year. Caballero and Jaffe (1993) reach similar
conclusions from their use of patent citation data (references in patent documents to previous patents upon which
the current discovery builds) to measure the time required for ideas to influence other researchers. They find that
the diffusion is rapid with a mean lag between one and two years.
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resources expended by potential imitators would then be ν∗
2γ1 N1, where ν∗

2 > ν2 is the cost
per good that drives the expected rate of return down to r1 (see equations [8.21] and [8.22]
and figure 8.4).9 This bidding up of the effective cost of copying to ν∗

2 deters any further
entry of potential imitators. The same type of result would arise if we used a richer model
in which potential imitators raced or competed against each other to obtain the property
rights over the use of an intermediate good in country 2.

In the steady state, the effective cost of copying is ν∗
2 > ν2, and the expected rate of return

to imitation in country 2 is r1. This rate of return is consistent with growth of C2 and N2

at the steady-state rate, γ1. The steady-state solution is therefore the same as that shown in
figure 8.1, except that (N2/N1)

∗ = 1 applies. (We continue to assume that η2 > ν∗
2 , as shown

in figure 8.4; that is, the inequality in equation [8.23] holds, and agents in country 2 have
no incentive to innovate.)

8.3.2 Transitional Dynamics

Consider now the situation when t < T , so that N2 < N1, and the copyable products are in
plentiful supply. The rate of return in country 2 must then be

r2 = π2/ν2 (8.31)

which is constant. The growth rate of consumption is therefore also constant and given by

Ċ2/C2 = (1/θ) · (π2/ν2 − ρ) (8.32)

This result corresponds to equation (8.26) with σ set to 0.10

The formula for ˙̂N/N̂ is the same as equation (8.29) and that for χ̇2/χ2 is the same as
equation (8.30) with σ set to zero:

˙̂N/N̂ = (1/ν2) · [π2 · (1 + α)/α − χ2] − γ1 (8.33)

χ̇2/χ2 = (1/θ) · (π2/ν2) · [1 − θ · (1 + α)/α] − ρ/θ + χ2/ν2 (8.34)

where, again, χ2 ≡ C2/N2.
Equations (8.33) and (8.34) can be used, as before, to construct a phase diagram in (N̂ , χ2)

space. Figure 8.5 shows the resulting diagram. Note that each locus is now a horizontal line.
We can show readily (if r2 = π2/ν2 > r1) that the ˙̂N = 0 locus lies above the χ̇2 = 0 locus,
as shown in the figure. We also have that N̂ is falling for values above the ˙̂N = 0 locus and
rising for values below it, whereas χ2 is rising for values above the χ̇2 = 0 locus and falling

9. This result holds if the risk involved in imitation is diversifiable, so that potential imitators consider only the
expectation of the return.

10. In equation (8.24), σ = 0 implies that ν2 is independent of N2/N1. However, in the present case, ν2 < η2 also
applies.
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Figure 8.5
Phase diagram for country 2 when ν2 is constant. The locus for ˙̂N = 0 is a horizontal line and lies above the
locus for χ̇2 = 0, which is also a horizontal line. The stable, saddle path lies between the two loci and is upward
sloping.

for values below it. These patterns imply that the stable, saddle path begins between the two
horizontal loci and is then upward sloping. We have drawn the path so that it remains below
the ˙̂N = 0 locus when N̂ reaches 1, a configuration that is implied by the subsequent analysis.

Figure 8.5 implies a transition in which N̂ and χ2 increase monotonically. The rise
in N̂ means that Ṅ2/N2 exceeds γ1 along the path. The expansion of χ2 implies from
equation (8.29) that Ṅ2/N2 declines steadily. Thus the solution accords with the one in
section 8.2.5 in the sense of predicting that the follower grows faster (in terms of number
of known products and output) than the leader, but the gap in the growth rates diminishes
as the follower catches up. One difference from the previous analysis is that Ċ2/C2 is now
constant at a value that exceeds γ1 (see equation [8.32]).

The tricky part of the solution concerns the behavior just at time T , when N̂ reaches 1. Just
after this date, imitations effectively cost ν∗

2 > ν2, and the rate of return is r1. Just before this
date, imitations cost ν2, and the rate of return (from equation [8.31]) is π2/ν2 > r1. Anyone
who pays ν2 to imitate a good just before date T will, in the next instant, experience a sharp
capital gain corresponding to the increase in the shadow price of an imitated product from
ν2 to ν∗

2 . In fact, in this model, the rate of return to copying a good is infinite for an instant
of time at date T . This curious behavior for the rate of return supports the equilibrium for
quantities when the cost of copying is small and constant.11

11. If we had introduced durable capital goods into the model, the path of r(t) would correspond at each date to
the net marginal product of capital and would never be infinite. Hence, the result that r(t) can be infinite for an
instant of time depends on the assumption that all inputs are nondurables.
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Figure 8.6
Time paths of r2 and log(C2) when ν2 is small and constant. The rate of return, r2, is constant up to date T and
constant at a lower level just after date T . The rate of return is infinite just at date T . Correspondingly, log(C2)

has a constant slope up to date T , has a constant flatter slope after date T , and jumps upward at date T .

Figure 8.6 shows the full path of the equilibrium for country 2’s rate of return, r2, and log
of consumption, log(C2). To the left of date T , the rate of return is constant at π2/ν2, and
the slope of log(C2) is the associated constant, (1/θ) · (π2/ν2 − ρ). To the right of date T ,
the rate of return is constant at the lower value, r1 = π1/η1, and the slope of log(C2) is the
correspondingly smaller value, (1/θ) · (π1/η1 − ρ). At time T , the infinite rate of return
(for an instant of time) supports a jump in the level of log(C2). This jump is consistent with
country 2’s overall resource constraint, because the amount expended on imitation jumps
downward at the same time by an equal amount.12 Note that there is no jump at time T (or
any other time) in the level of total output.

Suppose now that ν2 were slowly rising, rather than constant, but that the value of ν2 at
N̂ = 1 remained below ν∗

2 . In this case, the behavior at time T would still involve an infinite

12. The change in the resources devoted to imitation involves two offsetting effects. First, the resource use falls
because the growth rate of N2 declines by a discrete amount. Second, the resource use rises because each unit now
costs ν∗

2 > ν2. In the equilibrium (which involves an infinite rate of return at date T and, hence, an upward jump
in consumption), the net effect must be a reduction in resource use for imitation. Also, the stable, shadow path
shown in figure 8.5 must remain below the ˙̂N = 0 locus at date T to be consistent with the downward jump in ˙̂N
and the upward jump in χ2 at date T . (The loci for ˙̂N = 0 and χ̇2 = 0 shift after date T —downward and upward,
respectively—because ν2 is replaced in the equations by the higher value ν∗

2 .)
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rate of return and a jump in the level of consumption. The main new results are that r2 will
fall steadily for t < T , and the growth rate of C2 will therefore also decline in this range.
Hence, the constancy of Ċ2/C2 in the period before date T holds only if ν2 does not vary
at all.

The bottom line is that cases of constant or slowly rising imitation costs agree qualitatively
with the model from the previous section in the predictions about the follower’s growth rates.
In each case, a lower value of N2/N1 implies a higher growth rate of N2 and, hence, of
Y2. This property extends also to the growth rate of C2, except for the case in which the
imitation cost, ν2, does not rise at all until N2 reaches N1 at date T .

8.4 Foreign Investment and Intellectual Property Rights

We now consider some aspects of foreign investment and intellectual property rights in the
process of technological diffusion. In the previous analysis an innovator in country 1 paid
the cost η1 to obtain the monopoly right over the use of an intermediate good in country 1.
The innovator obtained no property rights over the use of the intermediate good in country 2.
We now assume instead that innovators from country 1 have perpetual monopoly rights
over the use of their intermediate goods in both countries. This situation would apply if
countries fully respected the intellectual property rights of foreigners, a major topic of
ongoing international negotiations in world trade. These intellectual property rights make
it infeasible for agents in country 2 to imitate products without paying a fee to the inventor.

We assume that the cost of adapting a variety of intermediate good from country 1 to
country 2 is the constant ν2. We now think of this cost as an outlay made by the inventor of
the variety of intermediate good in country 1.13 We assume that ν2 < ν∗

2 , as given in equa-
tion (8.22), so that γ2 > γ1 and r2 > r1 would apply in the previous model when N2/N1 < 1.
That is, the cost of adaptation to country 2 is low enough so that country 2 will tend to
grow faster than country 1. We also assume that entrepreneurs in country 2 do not find it
worthwhile to innovate. Hence, all the innovations and adaptations stem from the efforts of
entrepreneurs from country 1.

Suppose that country 2 was previously closed to foreign investment and had not expe-
rienced much imitation of country 1’s inventions. We also assume that country 2 had not
invented much on its own, perhaps because of relatively low values of the parameters A2

and L2 or a relatively high innovation cost, η2. If country 2 were suddenly opened up to
foreign investment, the number N1 of known products from country 1 would greatly exceed
the number N2 available in country 2. The rate of return to foreign investment by country 1

13. The cost estimates provided by Teece (1977), which we discussed earlier, apply directly to this situation.
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in country 2—that is, adaptation of products for use in country 2—is given by r2 = π2/ν2, as
shown in equation (8.31). The rate r2 exceeds the rate r1 = π1/η1 for innovation, as given in
equation (8.6). (This result follows from the assumption ν2 < ν∗

2 in equation [8.22].) Since
the model assumes no diminishing returns to adaptation or innovation, researchers from
country 1 would initially devote all their R&D outlays to foreign investment in country 2.
(This allocation of R&D investment did not arise before, although r2 > r1, because of the
absence of a global capital market.)

The backlog of unadapted products is eventually eliminated—that is, N2 reaches N1—
and the rate of return r2 from pure adaptation becomes unavailable. The researchers from
country 1 are then motivated to direct R&D expenditures to the discovery of new prod-
ucts, that is, to expand N1. However, the rate of return to innovation now exceeds the
value for r1 shown in equation (8.6) because an entrepreneur knows that a successful
product can also be adapted at the cost ν2 for use under conditions of monopoly in
country 2. If the inequality ν2 < ν∗

2 holds, as already assumed, this adaptation is immediately
worthwhile.

The total flow of monopoly profits from the discovery of a new product in country 1 and
the simultaneous adaptation of this product to country 2 is now the sum of the flows shown
in equations (8.4) and (8.14):

π̃ = π1 + π2 =
(

1 − α

α

)
· α2/(1−α) · [

(A1)
1/(1−α) · L1 + (A2)

1/(1−α) · L2
]

(8.35)

The assumption underlying equation (8.35) is that the intermediate inputs used to produce
goods in country 1 operate through the technology in equation (8.1)—with productivity
parameter A1—whereas those used to produce goods in country 2 operate through the
technology in equation (8.9)—with productivity parameter A2. In other words, foreign
investment makes country 1’s intermediate inputs more readily available to country 2 but
is assumed not to affect the productivity parameter that governs the production process in
country 2. This assumption is appropriate, for example, if the parameter A2 represents local
government policies—such as taxation, provision of public services, and maintenance of
property rights—that apply to all producers that operate in country 2.

An innovator in country 1 now pays the total cost η1 + ν2 to secure the flow of monopoly
profit π̃ shown in equation (8.35). Accordingly, the free-entry condition implies that the
rate of return in country 1 is given by

r̃1 = π̃/(η1 + ν2) =
(

1 − α

α

)
· α2/(1−α) ·

[
(A1)

1/(1−α) · L1 + (A2)
1/(1−α) · L2

η1 + ν2

]
(8.36)
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The inequality ν2 < ν∗
2 in equation (8.22) implies that r̃1 exceeds the value for r1 shown in

equation (8.6).14

The constant rate of return in equation (8.36) corresponds to a steady state in which
the various quantities—N1, Y1, C1, N2, Y2, and C2—all grow at a constant rate given by
γ̃1 = (1/θ) · (r̃1 − ρ). This steady state features a simultaneous flow of new products, N1,
and adapted versions of these products, N2 = N1. Since r̃1 is higher than before, γ̃1 exceeds
the value γ1 shown in equation (8.8) for the model with no foreign investment. We discuss
some welfare implications of foreign investment and intellectual property rights later in
this chapter.

8.5 General Implications for Growth Rates in Follower Countries

The various models considered imply that the growth rate of output per worker in country 2
can be written in the form

ẏ2/y2 = γ1 + G[y2/y1, (y2/y1)
∗] (8.37)

where the partial derivatives of the function G satisfy G1 < 0 and G2 > 0. The function also
satisfies the condition G(·, ·) = 0 when y2/y1 = (y2/y1)

∗. Growth rates do not necessarily
exhibit absolute convergence, in the sense described in chapter 1, because the growth rate
of the rich leader is not necessarily lower than the growth rate of the poorer follower—that
is, ẏ2/y2 < γ1 can apply when y2/y1 < 1. If the steady-state level of income for the poor
relative to the rich, (y2/y1)

∗, is small—for example, because A2/A1 is low—the growth
rate of the follower, ẏ2/y2, can be below the growth rate of the leader, γ1, even when the
follower is poorer than the leader (y2 < y1). Country 2’s growth rate, ẏ2/y2, exceeds γ1 if
y2/y1 < (y2/y1)

∗.
The results exhibit conditional convergence, in the sense that the growth rate of the

follower, ẏ2/y2, declines as y2/y1 rises for a given value of (y2/y1)
∗. Also, for given y2/y1,

ẏ2/y2 rises with (y2/y1)
∗. In other words, the growth rate of the follower is an increasing

function of the distance to its steady state. For example, if the government of country 2
adopts policies that are more favorable to production and investment—perhaps in the form
of lower tax rates on capital income or more effective enforcement of property rights—the
change in policy amounts to an increase in A2. In this case, (y2/y1)

∗ increases, and the
growth rate, ẏ2/y2, rises on impact.

14. The condition ν2 < ν∗
2 also implies r̃1 < r2 = π2/ν2. Therefore, as we implicitly assumed before, entrepreneurs

in country 1 would first adapt the entire pool of existing products to country 2 and then switch subsequently to
discovery of new products.
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In the neoclassical growth model with labor-augmenting technological progress, as de-
scribed in chapter 2, the formula for the growth rate of per capita output in a closed economy
looked similar to equation (8.37). The differences are that γ1 is replaced by the rate of ex-
ogenous technical change, denoted by x ; y2/y1 is replaced by ŷ, the country’s output per
effective worker (a concept that takes account of the growth at rate x because of technologi-
cal progress); and (y2/y1)

∗ is replaced by (ŷ)∗, the steady-state level of output per effective
worker. Thus the growth formula in the standard model can be written as

ẏ/y = x + H [ŷ, (ŷ)∗] (8.38)

where the partial derivatives of the function H satisfy H1 < 0, H2 > 0, and H(·, ·) = 0
when ŷ = (ŷ)∗. The value (ŷ)∗ depends on elements included in the parameter A, such as
government policies, and on the willingness to save. Higher values of A raise (ŷ)∗, whereas
higher values of the preference parameters, ρ and θ , reduce (ŷ)∗.

One distinction between the two classes of models is that the intercept in equation (8.37) is
γ1, the growth rate of the leading economy (or economies), whereas that in equation (8.38)
is x , the constant rate of exogenous technological progress. Operationally, γ1 might be
identified with the average growth rate of output per worker in a set of advanced countries.15

The parameter x would not be directly observable and might vary over time or across
countries.

If all followers have the same leaders—because the costs of imitation, νi , are the same in
all cases—and if the rates of exogenous technical change are the same for all countries at a
given point in time, both models imply that the intercept is the same for all countries. In a
single cross section, equation (8.37) would constrain the intercept to equal the observable
value γ1, whereas equation (8.38) would not impose this constraint. Thus the diffusion
model would amount to a restricted version of the neoclassical growth model, and this
restriction would be testable empirically.

In a panel setting, equation (8.37) would allow the intercept to vary over time but only
in line with the observable changes in γ1. Equation (8.38) would fix the intercept, but only
if we retain the version of the neoclassical growth model in which the rate of technological
progress, x , is constant (as well as the same for all countries). If the rate of technical change
is exogenous, but not necessarily constant, equation (8.38) would allow the intercept to
vary over time in an unconstrained manner. In this case, the diffusion model would again
amount to a constrained version of the neoclassical growth model, and the constraint would
be testable empirically.

15. Followers are influenced by the growth of N1, not by the growth of the leader’s output per worker, y1, although
the two growth rates coincide in the present model. Direct measures of N1 and N2 would not generally be available,
although patents or cumulated R&D spending would be possibilities.
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With respect to the terms G(·) and H(·), the key aspect of equation (8.37) is that the growth
rate depends on a country’s characteristics expressed relative to those in the leading economy
(or economies), whereas equation (8.38) involves the absolute levels of these characteristics.
Suppose, for example, that the growth rate, γ1, in the United States—the representation of
the technological leader—is 2 percent per year. Equation (8.37) says that, for given γ1,
the growth rate of a typical follower, say Mexico, depends on the quality of its political
and economic institutions (determinants of the parameter A2) expressed relative to those
in the United States. Equation (8.38) says that the characteristics of Mexican institutions
matter for Mexican growth, but it is not necessary to condition these characteristics on the
comparable attributes of the United States.

If all countries have the same leader, then, in a single cross section, the leader’s character-
istics merge into the overall intercept. However, in a panel context, changes in the leader’s
characteristics—in particular, changes that affect γ1—would shift the intercept over time
in an observable manner. Empirical identification is facilitated if the costs of imitation vary
in an observable way across country pairs or over time. In Jaumotte (1999) this idea is im-
plemented by arguing that imitation costs would be lower the higher is the volume of trade
between a follower country and the relevant set of leaders.16 The idea is that imports by a
follower country from leading countries facilitate the absorption of superior technologies
from the leaders.

Jaumotte (1999) used a sample of 63 developing countries over the period 1960–94 to
represent the follower group, analogous to our country 2. The leaders, which parallel our
country 1, were the OECD countries plus Israel. She used a growth-accounting approach,
which we discuss in chapter 10, to estimate the time paths of Ni for each country in the
two groups. Basically, she filtered out the contribution from a country’s observed growth of
inputs—physical capital, human capital (measured by education), and raw labor—from the
observed growth of output and identified the residual with Ni . She assumed that the cost of
adaptation, ν2, depended positively on N2/N1, as in equation (8.24), but also that the cost
depended negatively on a follower country’s ratio of imports from the group of leaders to
the country’s GDP.

Jaumotte (1999, table 2) found that a follower country’s growth rate of technology,
measured by the constructed Ṅ2/N2, depended negatively on N2 and positively on N1.
Moreover, the results were consistent with the hypothesis that only the ratio of N2 to N1

mattered for Ṅ2/N2. She also found that a larger trade share made Ṅ2/N2 more sensitive to
N2/N1. Within the model this effect would arise if more trade lowers the cost of technological

16. Chua (1993) and Easterly and Levine (1997) examined the idea that a country’s growth depends on develop-
ments in other countries. However, these studies focus on influences from physically adjacent locations, rather
than on locations that are linked through international trade.
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imitation. Thus these empirical results provide some support for the analysis of technological
diffusion in this chapter.

Caselli and Coleman (2001) obtained a direct measure of technological diffusion by
considering countries’ imports of high-tech equipment, mostly computers. Especially for
the many countries that do not have significant exports of computers, this measure is a good
proxy for investment in computers. Then the idea is that accumulation of computers tends
to go along with expanded use of advanced technologies.

Caselli and Coleman (2001, table 2) found, consistent with Jaumotte (1999), that their
measure of technological diffusion was spurred by increased imports of manufacturing
products from OECD countries. Another result, consistent with the theory of Nelson and
Phelps (1966) mentioned before, was that a greater quantity of human capital in a country
raised the rate of technological diffusion. An interpretation of this result is that greater
availability of human capital reduces a country’s costs of adopting sophisticated techniques
or, equivalently, raises the return to this adoption. The human-capital measures that had the
most explanatory power in their framework were the average years of school attainment
at secondary and higher levels. This pattern makes sense because these advanced levels
of education are likely to be especially important for the use of new and sophisticated
technologies. Caselli and Coleman also found that their measure of technological diffusion
was encouraged by better enforcement of property rights and by a reduced level of output
originating in agriculture.

8.6 Switchovers of Technological Leadership, Leapfrogging

Consider again the situation in which innovators possess intellectual property rights only
in their home countries. We have considered thus far the case in which (A2/A1)

1/(1−α) ·
(L2/L1) · (η1/η2) < 1, as shown in equation (8.23), so that country 2 is intrinsically inferior
to country 1 in terms of the underlying parameters. This inequality guarantees in figures 8.1
and 8.4 that ν∗

2 lies below η2 on the vertical axis. For this reason, agents in country 2 never
wish to innovate.

Suppose now that the inequality is reversed,

(A2/A1)
1/(1−α) · (L2/L1) · (η1/η2) > 1 (8.39)

so that country 2 is intrinsically superior to country 1. Since N2(0) < N1(0) still applies,
country 2 again begins in a technologically inferior state. This situation could arise, for
example, if country 2 had been inferior to country 1 for a long time but a recent improvement
in government policy—represented by an increase in A2—made country 2 intrinsically
superior.
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Figure 8.7
Cost of technological change in country 2 when ν∗

2 >η2 . The cost of imitation in country 2, ν2, is again an
increasing function of N2/N1 and approaches the cost of innovation, η2, as N2/N1 approaches 1. The steady-state
value of the imitation cost, ν∗

2 , is now assumed to exceed η2.

Return now to the case shown in figure 8.1 in which ν2 rises with N2/N1 and approaches
η2 as N2/N1 approaches 1. The inequality in equation (8.39) implies, however, that the value
ν∗

2 given in equation (8.22) now exceeds η2. Thus, figure 8.7 shows that N2/N1 reaches
unity and, correspondingly, ν2 reaches η2 at a point where the cost of increasing N2 is still
below ν∗

2 . This result means that agents in country 2 find it advantageous to raise N2/N1

above unity by innovating at the cost η2. Thus, once all of country 1’s discoveries have been
copied, country 2 switches to innovation.

The inventions in country 2 create a pool of products that can be imitated by country 1.
Since the cost of copying is lower than η1, agents in country 1 now find imitation preferable to
invention. Country 1’s role shifts accordingly from leader to follower.17 Note that country 1’s
welfare will be enhanced by the presence of the technologically superior country 2.18

The initial model applies after the switchover, except that the roles are reversed. Coun-
try 2 is now the permanent technological leader, and country 1 is the permanent follower.

17. In the specification where ν2(N2/N1) approaches η2 as N2/N1 approaches 1 (as in figures 8.1 and 8.7),
country 1 switches all at once from leader to follower, and country 2 moves all at once from follower to leader. The
switchover involves a transition with mixing of innovation and imitation within a country if ν2(N2/N1) rises above
η2 before N2/N1 reaches 1 and if an analogous cost function for imitation applies to country 1. In this revised
formulation, country 2 would switch at some point from pure imitation to a mixture of imitation and innovation.
Then, after a finite stock of country 2’s discoveries were built up, the cost of imitation by country 1 would become
low enough so that country 1 would shift to a mixture of imitation and innovation. Eventually, country 2 would
move completely out of imitation, and country 1 would move fully out of innovation.

18. Since final product is physically homogeneous, the rise in productivity in country 2 does not generate an
adverse relative-price effect for country 1.
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Country 2’s rate of return, r2, and growth rate, γ2 (of N2, Y2, and C2), are constant after the
switchover. The values of r2 and γ2 are given, respectively, by equations (8.6) and (8.8) if
the subscripts in the formulas are changed from 1 to 2. The steady-state ratio of numbers
of products, (N2/N1)

∗, is still given by equation (8.25) but now exceeds unity.
Figures 8.2 and 8.3 describe the postswitchover dynamics for country 1 if N̂ now equals

N1/N2 and χ1 replaces χ2. The only difference from before is that N̂ starts at unity, a
value to the right of N̂ ∗. The dynamic path therefore features steadily declining values of
N̂ and χ1 ≡ C1/N1. The steady fall in N̂ means that country 2 continues to grow faster
than country 1 during the postswitchover transition. As N̂ falls, the cost, ν1, for imitation
in country 1 declines, and the rate of return and growth rates in country 1 increase. In the
steady state, country 1’s rate of return reaches r2, a constant, and its growth rate (of N1, Y1,
and C1) reaches γ2, also a constant.19

The switch of technological leadership can occur only once in the model if the underlying
parameters Ai , Li , and ηi do not change. The switch occurs at some point if the country
that starts with the relatively small number of known products, Ni , is intrinsically superior
in the sense of the inequality in equation (8.39). Thus the present framework differs from
models of leapfrogging, as explored by Brezis, Krugman, and Tsiddon (1993), Jovanovic
and Nyarko (1996), and Ohyama and Jones (1995). In those settings, the changes in tech-
nological leadership reflect the effects of backwardness on the willingness to explore and
adopt radically new ideas. In the present model, the countries that start out behind have a
benefit from low costs of imitation but have no advantages with respect to the discovery or
implementation of leading-edge technologies.

In practice, the parameters Ai , Li , and ηi would change over time; for example, because
of shifts in government policies. These movements would occasionally create changes in the
positions of technological leadership. (These changes would be lagged substantially from
the shifts in the underlying parameters.) However, since backwardness does not enhance the
discovery or implementation of new technologies and since the leaders are selected for the
favorable values of their underlying parameters, there would be no tendency for leapfrogging
in the sense that a particular follower is likely eventually to surpass a particular leader.20

In contrast, the probability that a leader would be overtaken eventually by some follower
would likely be high.

19. The final possibility is that (A2/A1)
1/(1−α) · (L2/L1) · (η1/η2) = 1. In this case, the equilibrium can be of the

first type (where country 1 is the permanent leader and country 2 the permanent follower) or of the second type
(where the leadership positions are reversed). There could also be a mixture of invention and imitation in the two
places. In the steady state, agents in both countries are indifferent between innovation and imitation.

20. An interesting, unresolved empirical question is whether leapfrogging applies in this sense to professional
sports teams. One force that goes in this direction is the new-player draft; teams typically get to pick in inverse
relation to their past performance.
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These results seem consistent with the broad patterns of change in world technological
leadership that are highlighted by Brezis, Krugman, and Tsiddon (1993). They argue that
Great Britain overtook the Netherlands as leader in the 1700s, the United States (and, in
some respects, Germany) overtook Great Britain by the late 1800s, and Japan surpassed the
United States in some sectors by the 1980s.21 More recently, the United States may have
resumed the position of technological leadership in many high-tech fields. The striking
aspect of this pattern is not that changes in technological leadership occur but rather that
the positions at the top persist for so long. In particular, most countries have never been
technological leaders. The empirical evidence therefore does not suggest any great benefits
from backwardness, per se, in the discovery and use of the newest technologies.

8.7 Welfare Considerations

Consider the model described in figure 8.1 in which country 1 is always the technological
leader, country 2 is always the follower, and the cost of imitation is increasing in N2/N1. One
source of distortion in this model involves the monopoly pricing of the intermediates that
have already been discovered in country 1 or imitated in country 2. This element is familiar
from the model of chapter 6. From a static perspective, the distortion reflects the excess
of the price paid for each intermediate, 1/α, over the marginal cost of production, 1. This
wedge can be eliminated by using a lump-sum tax in each country to subsidize purchases
of intermediates at the rate (1 − α)/α. Each user of an intermediate then faces a net price
of one, the marginal cost of production.

Another distortion in the model is that agents in country 1 have insufficient incentive to
innovate because they do not take account of the benefit to country 2 from an increase in
the pool of copyable ideas. This effect would be internalized if each innovator in country 1
retained the international property rights over the use of his or her idea. The framework
with intellectual property rights and foreign investment that we considered before provides
one way to achieve this internalization. The guarantee of worldwide property rights over
innovations motivates researchers to consider the global benefits of their R&D.22

21. In premodern times, the dominant technological leader was China. See Temple (1986). For a discussion in the
context of recent theories of endogenous growth, see Young (1993).

22. In the model, foreign investment also gets around the capital-market imperfection that allowed for a divergence
between the rates of return, r1 and r2, that prevailed in the two countries. In effect, the property rights over the use
of designs in another country provide the collateral for foreign investment. The implicit assumption in the original
model was that households from country 1 were unwilling to loan funds to investors in country 2, even though the
rate of return r2 that these investors would be willing to pay exceeded the rate of return r1 available to savers in
country 1.
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Another distortion arises because agents in country 2 do not consider that the imitation
of one of country 1’s ideas raises the cost that will apply to future imitations. To isolate
this effect, suppose that N1 grows at the given rate γ1 and that the effect from monopoly
pricing in country 2 has been neutralized by a subsidy at the rate (1 − α)/α on the use
of intermediates. This subsidy, financed by a lump-sum tax, implies that the net price of
intermediates to users is one, the marginal cost of production. We can then compare the
outcomes of a decentralized solution with those that would be determined by a social planner
in country 2. (A social planner in country 1 would not be relevant here, because we are
assuming that the growth rate γ1 is given and that the distortion from monopoly pricing in
country 1 has been neutralized by the subsidy and tax scheme.)

The social planner seeks to maximize the utility of the representative consumer in coun-
try 2, subject to the production function in equation (8.9); the specification of the cost of
copying ν2, assumed to be given by equation (8.24); and the growth rate of N1 at the given
rate γ1. The optimal quantity of each intermediate, X2, maximizes output, Y2, net of the
outlay on intermediates, and is given by

X2 = L2 A1/(1−α)
2 α1/(1−α) (8.40)

The usual conditions for dynamic optimization lead to the following expressions for the
growth rates of N2 and C2:

Ṅ2/N2 = (1/ν2) · (� − χ2) (8.41)

Ċ2/C2 = (1/θ) · (�/ν2 − ρ − σγ1) (8.42)

where χ2 ≡ C2/N2, and the new parameter � is defined as

� ≡ (1 − α) · L2 A1/(1−α)
2 αα/(1−α) (8.43)

In a decentralized situation in which purchases of intermediates are subsidized at the rate
(1 − α)/α, � turns out to equal the profit flow, π2. (This amount exceeds the value for π2

shown in equation [8.14].)
For the decentralized setting, the subsidy on purchases of intermediates implies that X2

equals the social planner’s choice shown in equation (8.40). Since the values of X2 are
equal, the decentralized path for N2 would coincide with the planner’s path if the choices
of χ2 were the same. That is, the formula that determines Ṅ2/N2 in the decentralized case
would be the same as equation (8.41). Therefore, differences in results arise only because
of differences in the choices of consumption.

The growth rate of consumption in the decentralized solution turns out to be

Ċ2/C2 = (1/θ) · [�/ν2 − ρ − σγ1 + (σ/ν2) · (� − χ2)] (8.44)
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This expression differs from the social planner’s result in equation (8.42) only by the term
that involves �−χ2. It is possible to show that � > χ2 applies in the steady state. Moreover,
since χ2 can be shown to be monotonically increasing during the transition (from the type
of phase-diagram analysis used before), � − χ2 must be positive throughout. It follows
that the decentralized choice of Ċ2/C2 is greater than the social planner’s selection for any
given value of N2/N1 (and, hence, ν2). In other words, the decentralized solution involves
lower levels of χ2 and higher growth rates of C2. Equation (8.41) then implies that the
decentralized choice of Ṅ2/N2 is greater than the social planner’s choice at each value of
N2/N1. This result implies that the steady-state value of N2/N1 in the decentralized solution
exceeds the steady-state value chosen by the social planner.23

The growth rate of N2 is too high in the decentralized solution because the allocation of
resources to imitation (and, hence, growth) is analogous to increased fishing in a congestible
pond. Specifically, an agent that expends ν2(N2/N1) to raise N2 does not consider that this
action will raise the cost faced by future imitators of products. Viewed alternatively, private
agents count the capital gain, ν̇2/ν2, as part of their return to imitation, whereas this term
does not enter into the social return. This kind of distortion would not arise if potential
imitators in country 2 were somehow assigned well-defined property rights at the outset to
the goods that each could copy from country 1. Alternatively, the distortion would not arise
if the inventors in country 1 possessed these rights of adaptation to country 2.

We can make analogous welfare comparisons for the case discussed in section 8.3 in which
ν2 is low and constant. In the steady state, the social planner’s and decentralized solutions
each feature N2/N1 = 1 with N2 and C2 growing at the rate γ1. However, in the decentralized
case, the competition among potential copiers drives the effective cost of imitation up to
ν∗

2 > ν2. This waste of resources implies that the steady-state level of χ2 ≡ C2/N2 is lower
than in the social planner’s setting. (This result holds even if the decentralized solution
involves the appropriate subsidy for the use of intermediates in country 2.)

Recall that, when N2 = N1 was attained at time T in the decentralized case, C2 jumped
upward, and the resources devoted to copying jumped downward correspondingly. We can
show that the solution for the social planner in country 2 entails no such jumps. The growth
rate of C2 falls discretely at time T , but the level of C2—and, hence, the amount of resources
spent on copying—do not jump.

For t < T , we can show that the decentralized choice for Ṅ2/N2 exceeds the social
planner’s value. (This result holds if the decentralized solution involves the appropriate
subsidy on the use of intermediates in country 2.) The values for Ċ2/C2 are the same

23. The parameters are assumed to be such that N2/N1 remains below unity in the steady state.
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(and constant) in the two environments, but the decentralized path features lower levels of
χ2 ≡ C2/N2 and correspondingly higher levels of resources devoted to copying, ν2 Ṅ2.

Again, the problem is the excessive incentive to secure property rights in country 2. In the
model with smoothly rising costs of copying, ν2(N2/N1), this incentive is communicated
by a stream of capital gains to holders of monopoly rights in country 2. In the model with
constant ν2, the inducement comes from the prospect of an infinite rate of capital gain for
an instant at time T . Either way, the capital gains motivate imitation at too fast a rate.24

8.8 Summary Observations about Diffusion and Growth

The diffusion of technology from leading economies to followers involves costs of imitation
and adaptation. We assumed that these costs were lower than those for innovation when
little copying had occurred but rose as the pool of uncopied ideas contracted. This cost
structure implies a form of diminishing returns to imitation and thereby tends to generate
a pattern of convergence. Follower countries tend to grow faster the greater the gap from
the leaders. This process is, however, conditional, in that the growth rate depends, for a
given technological gap, on government policies and other variables that influence the rate
of return to imitation in a follower economy.

In the steady state, the leading and following countries grow at the same rate. Thus
equalization of growth rates occurs in the long run even if countries differ in costs of R&D,
levels of productivity, and the willingness to save. If the countries have the same preferences
about saving (that is, equal parameters ρi and θi ), the equalization of growth rates implies
that rates of return are also the same in the steady state. Hence, even without a global capital
market, the diffusion of technology can equate the rates of return across countries in the
long run.

In some cases, technological diffusion involves imitation by local entrepreneurs of prod-
ucts or ideas developed elsewhere. This process is costly, but often escapes any fees paid
to the inventor of the good or method of production. In other cases, the diffusion occurs
by means of foreign investment. The honoring of intellectual property rights across inter-
national borders helps to provide the proper incentive for discoveries of new goods and
techniques in the leading economies. For this reason, the institution of these rights tends to
raise the long-term growth rate in leading and following economies.

24. In an alternative setting, the cost ν2 is independent of N2/N1 but inversely related to the time since the
invention was made in country 1. The idea is that quicker adaptations are more costly. In this environment, the
distortion would involve agents in country 2 imitating too soon and thereby bearing socially excessive costs of
imitation. Again, the problem stems from the incentive to secure property rights in country 2.
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8.9 Problems

8.1 Pareto optimality in the leader-follower model. Consider the leader-follower model
described in sections 8.1 and 8.2.

a. Discuss the distortions that lead to Pareto nonoptimal outcomes. How do the distortions
differ from those present in the one-country varieties model of chapter 6?

b. What policies could be implemented to ensure Pareto optimality?

c. Suppose that the leading country has a decentralized equilibrium with no government
intervention. Would it ever be optimal for the government of the follower country to subsidize
innovation in the leading country?

8.2 Rates of return in the leader-follower model. Consider again the leader-follower
model from sections 8.1 and 8.2.

a. Are the rates of return constant in the two countries? Which rate of return is higher?

b. What happens if the leader and follower countries share a common, perfect credit market?

8.3 Convergence in the leader-follower model

a. In the model of sections 8.1 and 8.2, discuss whether the two countries converge to the
same levels of per capita output and wage rate. Discuss whether they converge to a common
growth rate of per capita output.

b. Is it possible for the country with an initially lower level of per capita output to become
the country with the higher level of per capita output? Is it possible to get another switch
later on in the relative levels of per capita output?

c. Can the countries switch roles at some point in terms of innovation and imitation?

d. What are the implications of the model for absolute and relative convergence?

8.4 Different theories of convergence. Contrast the results on convergence from the
diffusion theories with those from the Ramsey model. Is it feasible to distinguish the theories
empirically? If so, how?

8.5 Foreign investment

a. Discuss the role of foreign investment in the context of the diffusion models.

b. Does the potential for foreign investment in the imitating economy, country 2, benefit
the agents of the innovating economy, country 1?

c. Does the potential for foreign investment benefit the agents of the imitating economy,
country 2? Would country 2 always want to respect the intellectual property rights of
entrepreneurs from country 1?
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8.6 Leapfrogging

a. Discuss the concept of leapfrogging and demonstrate how it differs from absolute con-
vergence.

b. Does the Ramsey model of chapter 2 (augmented to allow for random shocks to the
technology) preclude leapfrogging? Is this model inconsistent with the observation that an
economy that is initially lagging in technological sophistication becomes the leader at a
later date?

8.7 Innovation and technology transfer (based on Krugman, 1979). Consider a two-
country world (North and South) with M types of consumer goods. These goods cannot
be stored but can be traded across countries. Each country has L consumer-workers with
instantaneous utility functions given by

U =
(

M∑
i=1

(ci )
θ

)1/θ

where 0 < θ < 1 and ci is the amount of good i consumed. There are two kinds of goods,
old ones and new ones. At a point in time, Mo of the M goods are old, and Mn = M − Mo

are new. The technology for producing old goods is common property, so that they can
be produced in the North or the South. The technology for producing new goods is freely
accessible in the North but is unavailable in the South. It takes one unit of labor to produce
one unit of any good, and all goods are produced under conditions of perfect competition.

Normalize the price of each old good to 1, and let Pn be the price of each new good.
(Note that the price of all old goods must be the same, and the price of all new goods must
be the same.) Let wN and wS be the wage rates in the North and South, respectively. Define
τ to be the terms of trade for the North, that is, the ratio of the prices of goods produced in
the North to those produced in the South.

a. How does τ depend on wN and wS? How does y, the ratio of the North’s per capita
income to the South’s per capita income, depend on wN and wS?

b. Let σ ≡ Mn/Mo. Derive the pattern of specialization in the world economy as a function
of σ . Use this result to relate wN , wS , τ , and y to σ .

c. Let Ṁ = i M describe the rate of innovation in the North, where i is exogenous. Let
Ṁo = t Mn describe the rate of technological transfer, where t is exogenous. Find the steady-
state value of σ and its law of motion. How does the world pattern of specialization change
over time? What happens to y over time?

d. Define the set of initial conditions under which convergence applies, that is, ẏ < 0. In this
model, is convergence equivalent to the long-run equalization of incomes, that is, y∗ = 1?
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8.8 Technology choice and overtaking (based on Ohyama and Jones, 1993). Consider
a two-country world with a single, nonstorable good. Each country has L consumer-workers
with linear preferences and rate of time preference ρ > 0. There is a traditional technology,
characterized by

qT
i = Ai · (1 − θi )

for i = 1, 2, where 1 − θi is the share of the labor force used in the traditional technology
in country i . Country 1 is the current technological leader, in the sense that A1 > A2.

At time 0, a new technology appears with the following characteristics:

q N
i = Biθi

Bi = B + λ ·
∫ t

0
q N

i · dτ

where B is a constant with 0 < B < Ai , and λ is another constant with 0 < λ < ρ. The new
technology is less productive initially (B < Ai ) but exhibits learning by doing (λ > 0).

a. Assume that the technologies are mutually exclusive within a country, so that θi must
equal 0 or 1. Under what conditions will the new technology be adopted and by which
country? Is it possible to observe leapfrogging? If so, calculate the time T that it takes for
country 2 to overtake country 1.

b. Assume now that the technologies can be operated simultaneously within each country,
so that 0 ≤ θi ≤ 1. At time 0, each country chooses a value for θi and is then constrained to
maintain it forever. Will we ever observe partial adoption? Discuss whether leapfrogging is
possible and, if so, characterize T .

c. Assume now that there are one-time costs of switching from the traditional to the new
technology, and these costs are given by c(θi ) = cθi/(1 − θi ), where c > 0 is a constant.
Under what conditions will we observe partial adoption? Discuss whether leapfrogging is
possible and, if so, characterize T .

d. (difficult) Finally, assume that θi can be set at different values at each point in time.
Assume again that there are no costs of switching from the old to the new technology.
Describe the dynamics of θi and output. Discuss whether leapfrogging is possible and, if
so, characterize T . Redo the analysis for the case in which the one-time cost of switching
is c(θi ).



9 Labor Supply and Population

In previous chapters, we assumed that population and the labor force grew together at
the exogenous rate n. We now endogenize population and labor force participation in
three different ways. First, we consider the possibility of immigration and emigration in
response to economic opportunities. This process alters population and the labor force for
given fertility and mortality. Second, we introduce choices about fertility, another channel
that allows for an endogenous determination of population and the labor force. Finally, we
allow for variations in work effort. That is, we relax the equality between labor force and
population.

9.1 Migration in Models of Economic Growth

The migration of persons is one mechanism for change in an economy’s population and labor
supply. This migration or labor mobility is analogous to the capital mobility that we explored
in chapter 3. The difference is that, whereas capital tends to move from places with low
rates of return to those with high rates of return, labor tends to move from economies with
low wage rates or other unfavorable characteristics to those with high wage rates or other
favorable elements. We found before that capital mobility tends to speed up an economy’s
convergence toward its steady-state position, and we shall find that labor mobility typically
works in a similar way.

Migration differs in some ways from natural population growth, that is, differences be-
tween births and deaths. First, in the case of migration, gains in population for the destination
economy represent corresponding losses for the source economy. Thus we have to consider
immigration and emigration as two sides of a single process.

Second, unlike newly born persons, migrants come with accumulated human capital.
Since the movement of a person entails the movement of this human capital, labor mobility
or migration implies some degree of capital mobility. Newborns also differ from migrants
in that the residents of an economy tend to care about the newborns—that is, about their
children—but not about the migrants. This difference in linkages with the existing popula-
tion implies differences in the way that population growth interacts with saving behavior
and, hence, with rates of economic growth.

A convenient starting point for the study of migration and growth is the Solow–Swan
model, which assumes a closed economy and an exogenous, constant saving rate. The
extension to incorporate migration means that economies are opened to some extent; that
is, the migration process implies some degree of mobility of raw labor and human capital.
Although the analysis allows for feedback from economic growth to wage rates to the rate
of migration, the underlying optimization problem for migrants is not considered at this
point. That is, the first model just postulates a functional form for a migration function.
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We next extend the analysis to the Ramsey framework in which saving behavior reflects
household optimization. This extension assumes that the representative household deter-
mines the path of consumption without regard to the welfare of immigrants. This model
continues to use a postulated form for the migration function.

Finally, we present a model that allows for capital mobility and assumes that migration
rates are determined by household optimization. In this setting, we can analyze how changes
in the costs or benefits associated with moving affect the dynamic paths of migration and
growth.

9.1.1 Migration in the Solow–Swan Model

The Model with Migration This section introduces migration into the Solow–Swan
model of a closed economy. Thus we allow for mobility of persons but assume that the
economy is closed with respect to foreign goods and assets; that is, we make the unrealistic
assumption that people are more mobile than physical capital. Although this assumption is
extreme, the analysis does bring out some effects of migration on the growth process. A
later section allows for capital mobility.

Let M(t), which can be positive or negative, be the flow of migrants into the domestic
economy and κ(t) the quantity of capital that each migrant brings along. Since we assume
that capital cannot move by itself, the quantity of capital that each migrant carries brings in
a degree of capital mobility.

Migrants typically do not carry much physical capital (machines and buildings) but
possess significant amounts of human capital. We find it convenient here not to distinguish
among the different forms of capital (as we did in chapters 4 and 5) and to deal instead with
a single broad concept of capital that encompasses physical and human forms. Therefore,
κ is the quantity of this broad capital that accompanies each migrant.1

The domestic population and labor force, L(t), grow due to fertility net of mortality at the
constant, exogenous rate n. The overall growth rate of the domestic population is therefore

L̇/L = n + M/L = n + m (9.1)

where m ≡ M/L is the net migration rate. We have omitted time subscripts for convenience.
The change in the domestic capital stock is given by

K̇ = s · F(K , L̂) − δK + κ M (9.2)

where s is the constant gross saving rate. The new element is that κ M—the capital brought

1. In this model the migrants cannot maintain any financial claims on foreign-source income. People who move
relinquish or consume all capital that they cannot carry with them. We also do not consider remittances by migrants
to family members who remain in the source country.
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in by immigrants or taken out by emigrants—contributes to K̇ . The growth rate of capital
per effective worker, k̂, can be determined from equations (9.1) and (9.2) as

˙̂k/k̂ = s · f (k̂)/k̂ − (x + n + δ) − m · [1 − (κ̂/k̂)] (9.3)

where κ̂ ≡ κe−xt is the capital per “effective immigrant,” that is, immigrants augmented by
the technology factor ext . (We assume here that the rate of exogenous technical progress,
x , is the same in the foreign and domestic economies.) Recall that x + n + δ is the effective
depreciation rate for capital in models without migration, that is, the rate of decline in k̂
due to growth of effective labor at the rate x + n and to depreciation of the capital stock
at the rate δ. (See, for example, equation [1.30] in the Solow–Swan model.) This effective
depreciation rate is now augmented by a migration term, m · [1 − (κ̂/k̂)]. The overall term
would therefore be the same as in previous models if m = 0 or if κ̂ = k̂ at all points in time.

Since migrants bring little physical capital, κ̂ < k̂ would apply unless the human capital
per migrant were substantially greater than that per worker in the domestic economy.2 If
κ̂ < k̂, the migration term, m · [1 − (κ̂/k̂)], adds to the effective depreciation rate if m > 0
and subtracts from it if m < 0. If migrants come with no capital, κ̂ = 0, the migration rate,
m, adds one-to-one to the natural population growth rate, n, in equation (9.3). If we think of
n as corresponding to the birth of children, this result makes sense because we treat children
as beginning life with no human capital.3

If m > 0, the quantity κ̂ is the capital per effective worker brought by each immigrant.
This quantity would be related to the total capital per effective worker that prevails in the
immigrant’s place of origin. Given the conditions in the origin country—which determine
κ̂—the quantity κ̂/k̂ would decline as k̂ rises in the destination country.4 Moreover, if we
assume that the typical foreign country is close to its steady-state position, we can treat κ̂

as roughly constant over time.
If m < 0, κ̂ represents the capital per effective worker of each emigrant.5 In this case, κ̂/k̂

is likely to be roughly constant; that is, κ̂/k̂ would not change as k̂ rises.

The Migration Function In a later section we work out a model in which the migration
rate responds positively to the present value of domestic wage rates, compared to the present

2. If m > 0, we have to compare the capital of immigrants with that of persons in the receiving economy. If m < 0,
the comparison is between emigrants and persons in the sending economy.

3. In contrast, death implies the loss of a person’s human capital. We have, however, simplified the analysis by
treating the depreciation of physical and human capital as the constant multiple δ of the existing stocks of capital.

4. We neglect the possibility that a change in k̂ alters the selection of immigrants with respect to their capital κ̂ .

5. We assume that immigration and emigration do not occur simultaneously, so that net and gross migration
coincide. More generally, heterogeneity in human capital or other variables would cause gross flows to exceed net
flows.
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Figure 9.1
The migration rate. For given conditions in other economies, a higher value of k̂ raises the domestic wage rate
and tends accordingly to increase the net migration rate, m. The value k̃ is the quantity of capital per effective
worker that yields a zero net migration rate.

value in other economies. For given conditions elsewhere, a higher value of k̂ raises the
domestic wage rate and tends accordingly to increase the migration rate, m.6

In the present setting, we postulate a positive relation between m and k̂, as shown in
figure 9.1. The assumption is that conditions that affect wage rates per unit of effective
labor in other economies do not change as k̂ changes. We also hold constant any domestic
or foreign amenities that enter into households’ utility functions. Note that the value denoted
k̃ in the figure corresponds to zero net migration.

An experiment that we would like to consider is a shift of the migration function, m(k̂).
The migration theory that we use later relates these shifts to changes in the costs or benefits
associated with moving. For example, a reduction of wage rates or a worsening of amenities
in foreign countries makes migration to the domestic country more attractive and, therefore,
shifts the function m(k̂) upward. The slope of the function depends, among other things,
on the relation between the cost of moving (for the marginal migrant) and the volume of
migration. If this cost increases rapidly with the number of migrants, then a change in k̂ has
only a small effect on migration; that is, the curve m(k̂) is relatively flat.

Define the overall migration term that appears on the right-hand side of equation (9.3) as

ξ(k̂) ≡ m(k̂) · [1 − (κ̂/k̂)] (9.4)

6. With no capital mobility, however, a higher k̂ also reduces the domestic rate of return on capital, including the
human capital that the migrants bring with them. We assume that the effect from the higher wage rate is dominant.
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so that the growth rate of k̂ is given by

(1/k̂) · ˙̂k = s · f (k̂)/k̂ − [x + n + δ + ξ(k̂)] (9.5)

The effective depreciation rate, x + n + δ + ξ(k̂), includes the term ξ(k̂) on a one-to-one
basis. The m(k̂) part of ξ(k̂) in equation (9.4) adds to the growth rate of effective labor
and thereby to x + n. The −m(k̂) · (κ̂/k̂) part of ξ(k̂) is the negative of the effect of the
migrants’ human capital on the growth rate of the domestic capital stock. This inflow of
human capital subtracts from the effective depreciation rate.

If m(k̂) > 0, we argued that we could treat κ̂ as independent of k̂. In this case, the effect
of k̂ on ξ(k̂) is given from equation (9.4) by

ξ ′(k̂) = m ′(k̂) · [1 − (κ̂/k̂)] + m(k̂) · κ̂/(k̂)2

Thus, ξ ′(k̂) > 0 follows from m ′(k̂) > 0, κ̂ < k̂, and m(k̂) > 0.
If m(k̂) < 0, we argued that we could treat κ̂/k̂ as constant. In this case, ξ ′(k̂) > 0 follows

from equation (9.4) because of m ′(k̂) > 0 and κ̂ < k̂. Thus we assume that ξ ′(k̂) > 0 holds
whether the migration rate is positive or negative. It follows that a higher k̂ raises the
effective depreciation term, x + n + δ + ξ(k̂), in equation (9.5). In contrast, this term was
independent of k̂ in earlier models.

The Steady State Figure 9.2 is our standard form of a growth diagram. The s · f (k̂)/k̂
curve is downward sloping as usual because of the diminishing average product of capital.
The horizontal line at x + n + δ has now been replaced by the upward-sloping curve,
x +n +δ+ξ(k̂). If k̂ = k̃, then m(k̂) = 0 (see figure 9.1) and ξ(k̂) = 0 (see equation [9.4]).
Therefore, the height of the effective-depreciation curve at k̃ is x + n + δ. If k̂ > k̃, then
m(k̂) > 0, and the effective-depreciation curve lies above x + n + δ. Conversely, if k̂ < k̃,
then the curve lies below x + n + δ. We have drawn the curves in figure 9.2 so that the
intersection occurs at a point k̂∗ that exceeds k̃.

The steady state corresponds to the intersection of the s · f (k̂)/k̂ and x + n + δ + ξ(k̂)

curves at the point k̂∗. Given the way that we drew the curves, so that k̂∗ > k̃, m∗ > 0 and
the domestic economy is a recipient of migrants in the steady state. That is, the economy
remains in the steady state as a perpetual receiver of migrants (or would persist as a sender
of migrants if k̂∗ < k̃).7

We can use figure 9.2 to assess the effects of changes in various parameters on the steady-
state values. For example, an increase in s or a permanent improvement of the production

7. The migration theory that we consider in a later section assumes that a higher level of population congests some
fixed factor, such as land. This congestion implies that the steady-state migration rate is zero for each economy
(if the natural population growth rate, n, is also zero in each economy in the steady state).
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Figure 9.2
The Solow–Swan model with migration. The positive response of net migration to the wage rate implies that the
rate of population growth is a positive function of k̂. Hence, the effective depreciation term in the Solow–Swan
model becomes upward sloping. The steady state is determined by the intersection of the saving curve, s · f (k̂)/k̂,
with the effective depreciation curve, x + n + δ + ξ(k̂). For any value of k̂, the growth rate of k̂ is given by the
vertical distance between these two curves.

function shifts the s · f (k̂)/k̂ curve upward and leads thereby to increases in k̂∗ and m∗.
The higher value of m∗ arises because the shift raises the steady-state wage rate per unit of
effective labor and thereby makes the domestic economy more attractive to foreigners.

If conditions worsen in other economies, the migration function, m(k̂), would shift upward
in figure 9.1. This change shifts the curve for effective depreciation, x + n + δ + ξ(k̂), in
figure 9.2 in a similar manner (see the expression for ξ [k̂] in equation [9.4]). Hence, k̂∗ falls
and m∗ rises. Thus an expansion of the supply of immigrants lowers the steady-state capital
intensity in the domestic economy. This result follows because the immigrants come with
relatively little capital.

Transitional Dynamics and Convergence To assess the speed of convergence implied
by equation (9.5), we follow our usual practice and assume a Cobb–Douglas production
function, f (k̂) = Ak̂α . We also approximate the ξ(k̂) function from equation (9.4) in a
log-linear form:

ξ(k̂) ≡ m(k̂) · [1 − (κ̂/k̂)] ≈ b · [log(k̂/k̂world)] (9.6)

where b ≥ 0 and k̂world represents the capital intensity in other economies. Equation (9.6)
implies that ξ(k̂) = 0 if the domestic economy has the same capital intensity as the rest of
the world—because the incentive to migrate would then be nil (if we neglect differences
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in amenities or in forms of production functions). We treat k̂world as a constant; that is, we
assume that the world is (on average) in the steady state.

The key element for the convergence analysis will be the size of the parameter b. To see
what this parameter represents, differentiate equation (9.6) with respect to log(k̂) to get8

b = ∂ξ(k̂)/∂[log(k̂)] = [1 − (κ̂/k̂)] · ∂m(k̂)/∂[log(k̂)] (9.7)

This equation shows that, if κ̂ < k̂, b depends positively on the sensitivity of migration
to log(k̂). We noted before that, if the cost of moving (for the marginal migrant) increases
rapidly with the number of migrants, the function m(k̂) in figure 9.1 will be relatively flat.
In this case, the coefficient b will be small. For a limiting case in which the cost of moving
rises extremely rapidly with m, b is close to 0, ξ(k̂) is therefore near 0, and the effective-
depreciation term in equation (9.5) is approximately x + n + δ, as in our earlier models.

For a given sensitivity of migration to log(k̂), the coefficient b declines if κ̂/k̂ rises. In
particular, if κ̂ = k̂, then b = 0, and the effective depreciation term is again x + n + δ.

If we log-linearize the differential equation (9.5) around its steady-state position, we can
compute the speed of convergence to the steady state as

β = (1 − α) · (x + n + δ) + b + b · (1 − α) · log(k̂∗/k̂world) (9.8)

This formula reduces to the Solow–Swan value (equation [1.33]) if b = 0.
If we consider the typical economy, for which k̂∗ = k̂world, and assume b > 0, equa-

tion (9.8) shows that the potential for migration raises the convergence coefficient, β, above
the Solow–Swan value by the amount b. To assess the size of b, we use some empirical
results on the determinants of migration.

Barro and Sala-i-Martin (1991) and Braun (1993) used data from the U.S. states, the
regions of Japan, and five European countries (France, Germany, Italy, Spain, and the
United Kingdom) to estimate the sensitivity of within-country migration to differentials in
per capita income. The regression coefficient for the net migration rate on the log of initial
per capita income or product averaged 0.012 per year.

The sensitivity of international migration to income differentials tends to be smaller than
that for regions within a country. For example, Hatton and Williamson (1994) examine
the behavior of migration from 11 European countries to the United States from 1850
to 1913. Their regression coefficients, based on responses of immigration to proportional
differentials in wage rates, averaged 0.008 per year.

8. For m < 0, we hold fixed κ̂/k̂ to get equation (9.7). For m > 0, if we hold fixed κ̂ , the equation would have the
additional term m(k̂) · (κ̂/k̂) on the right-hand side. Equation (9.7) is then an approximation that is satisfactory
when m(k̂) is relatively small.
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To relate these results to the coefficient b, we can use the Cobb–Douglas relation,
log(ŷ) = log(A) + α · log(k̂), along with equation (9.7), to get

b = α · [1 − (κ̂/k̂)] · ∂m/∂[log(ŷ)] (9.9)

The empirical estimates mentioned before suggest that ∂m/∂[log(ŷ)] is about 0.012 per
year for regions of countries and about 0.008 per year across countries. We have argued
(in chapters 1 and 2) that a coefficient α of around 0.75 is reasonable for a broad concept
of capital. Therefore, we have to specify the ratio κ̂/k̂ to pin down the coefficient b in
equation (9.9).

Dolado, Goria, and Ichino (1994, table 2) examine the composition of immigration
for 1960–87 to nine developed countries—Australia, Belgium, Canada, Germany, the
Netherlands, Sweden, Switzerland, the United Kingdom, and the United States. They ob-
serve that the educational attainment of immigrants averaged about 80 percent of that of
natives, assuming that the schooling of immigrants did not differ systematically from the
average schooling in their countries of origin. Chiswick (1978, table 1) finds for U.S. census
data in 1970 that the school attainment of foreign-born men was 91 percent of that of natives.
Borjas (1992, table 1.4) reports from U.S. census data that the schooling of foreign-born
men rose from 79 percent of natives in 1940 to 82 percent in 1950, 87 percent in 1960,
94 percent in 1970, and 93 percent in 1980.

For international immigration, we take 80 percent as a typical value for the ratio of
immigrants’ to natives’ human capital. If immigrants carry no physical capital and if the
ratio of human to total capital in the domestic economy is 5/8—the value that we specified
in chapter 5—then κ̂/k̂ is 0.5 (0.8 times 5/8).

For migration within a country, the ratio of immigrants’ to natives’ human capital is likely
to be higher than that for international migration. For example, Borjas, Bronars, and Trejo
(1992) find for young U.S. males in 1986 that immigrants to a state averaged 3 percent more
years of education than the average of natives of the state.9 If we assume that this ratio is
100 percent, κ̂/k̂ is 0.62.

In the context of regions of a country, we use κ̂/k̂ = 0.62 and ∂m/∂[log(ŷ)] = 0.012 per
year. If we assume α = 0.75, we find that b is around 0.003 per year. In the international
context, we use κ̂/k̂ = 0.5 and ∂m/∂[log(ŷ)] = 0.008 per year. If we assume α = 0.75, we
get that b is again around 0.003 per year. The results are similar in the two contexts because
the higher value of ∂m/∂[log(ŷ)] in the regional setting is offset by the higher value of κ̂/k̂.

For the other parameter values that we have assumed previously (x = 0.02, n = 0.01,
δ = 0.05), the Solow–Swan value for β when α = 0.75 is 0.020. The value for β implied

9. This information comes from a supplementary table that was provided to us by Steve Trejo.
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by equation (9.8) is higher than the Solow–Swan value by the amount b; that is, β would
be around 0.023 in the cross-region and international contexts. Therefore, the inclusion of
migration suggests, first, that there is a small increase—by roughly 10 percent—in the con-
vergence speed and, second, that convergence coefficients estimated across regions within
countries would not differ greatly from those estimated across countries. This prediction
accords with the findings of Barro and Sala-i-Martin (1992a), who report that estimated
(conditional) convergence rates across regions of countries are only slightly higher than
those across countries.

A lower value of κ̂/k̂ raises b in equation (9.9) and thereby increases the convergence
coefficient, β. The predictions about convergence would therefore differ for an economy that
is receiving migrants, m > 0, from one that is sending migrants, m < 0. Since the receivers
tend to have higher capital intensities than the senders, the value of κ̂/k̂ tends to be lower
for the receivers. Hence, the propensity to migrate raises the speed at which destination
economies approach their steady states relative to the speed for source economies. It is even
possible, as we will discuss, that migration would lower the speed of convergence for the
sending economies.

The potential to migrate raises the speed of convergence because we assumed b > 0. If
the migration rate responds positively to income—that is, if ∂m/∂[log(ŷ)] > 0—then the
coefficient b in equation (9.9) would be negative if κ̂/k̂ > 1. This case could arise if migrants
possess human capital that is substantially greater than the average in their home economies.

For destination economies, where m > 0, the condition κ̂/k̂ ≥ 1 seems implausible. The
immigrants would not only have to possess more human capital than the average person in
the receiving location, but this gap in human capital would also have to more than offset
the immigrants’ failure to carry significant amounts of nonhuman capital. This condition
is unlikely to be satisfied because, as already noted, immigrants tend to have less human
capital than the residents of the receiving economy.

For source economies, where m < 0, the condition κ̂/k̂ ≥ 1 is conceivable but still un-
likely. For migration across regions of a country, the usual view—expressed, for example,
by Greenwood (1975)—is that more educated persons are more likely to migrate. Borjas,
Bronars, and Trejo (1992, tables 2 and 4) quantify this effect for young men in the United
States in 1986. Their figures imply that migrants averaged 2 percent more years of schooling
than the average of native persons from their states of origin. This small excess of human
capital would, however, be offset by the migrants’ failure to carry physical capital (if we
continue to assume that physical capital is not perfectly mobile across the U.S. states).

Hatton and Williamson (1994) observe that European emigrants from 1850 to 1913 were
typically unskilled, so that κ̂/k̂ < 1 would hold even for human capital for the sending
countries in these cases. For poorer countries, it is plausible that persons with relatively
high human capital would be more inclined to migrate, a phenomenon often described
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as a brain drain. This situation is especially likely to apply to the return of settlers from
crumbling empires, as in the case of the British from India, the French from Algeria, and the
Portuguese from Mozambique. In some cases, this force may be great enough to more than
offset the migrants’ failure to carry much nonhuman capital. Thus the potential to migrate
would, in these cases, slow down the speed of convergence for economies that are senders
of immigrants.

A new result when b > 0 is that β in equation (9.8) increases with k̂∗ for given values of
the other parameters. The reason is that a higher k̂∗ implies a higher steady-state migration
rate, m∗, and, hence, a faster speed of convergence in the neighborhood of the steady state.
Recall, for example, that a permanent improvement in the production function or an increase
in the domestic economy’s saving rate, s, raises k̂∗. We find now that these changes also
increase the speed of convergence, β. In contrast, β was invariant with the level of the
production function or the saving rate in the Solow–Swan model.

If we assume perfect labor mobility—that is, let the cost of migration approach 0—then
∂m/∂[log(ŷ)] becomes infinite. Therefore, if κ̂ < k̂, the coefficient b would become infinite
in equation (9.9). Equation (9.8) implies accordingly that β becomes infinite; that is, perfect
labor mobility generates an infinite speed of convergence. This result corresponds to the
effect of perfect capital mobility, as studied in chapter 3.

Finally, consider the effect of the capital-share coefficient, α, on the speed of convergence.
The usual result is that an increase in α implies a smaller tendency of capital to experience
diminishing returns. The convergence speed therefore declines and tends to 0 as α tends
to 1; that is, the convergence property does not appear in the AK model, which we studied
in chapter 4.

The form for the convergence coefficient, β, in equation (9.8) exhibits this standard
inverse relation between β and α for a given coefficient b. (We assume here that k̂∗ = k̂world,
so that the last term on the right-hand side of equation [9.8] is zero.) Equation (9.9) shows
how the coefficient b is determined. For a given value of ∂m/∂[log(ŷ)], b increases with α,
an effect that would offset the inverse relation between β and α. However, we also have to
consider the effect of α on ∂m/∂[log(ŷ)].

In the Cobb–Douglas case, the wage rate per unit of effective labor is ŵ = (1 − α) · Ak̂α ,
which is proportional to ŷ. As α rises, the share of income represented by wages (on raw
labor) declines. We therefore anticipate that ∂m/∂[log(ŷ)] would also decline, because the
benefit from moving raw labor from one place to another becomes smaller. Thus it is unclear,
on net, whether b rises or falls with α. However, as α approaches 1, ŵ approaches 0, and
∂m/∂[log(ŷ)] would tend to 0 (because the benefit from moving raw labor becomes nil).
This result means that b approaches 0 as α approaches 1 and, hence, that the coefficient β

in equation (9.8) also tends to 0 as α approaches 1. Thus, even with migration, the model
does not exhibit the convergence property if diminishing returns to capital are absent.
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9.1.2 Migration in the Ramsey Model

In chapter 2 we used the Ramsey framework of household optimization to extend the
Solow–Swan model to the context of a variable saving rate. We now apply the Ramsey
formulation to the version of the Solow–Swan model that includes migration. The new
results involve the interaction between migration and the choices of saving rates. These
results concern the transitional behavior of saving and, hence, the speed of convergence, and
also involve the level of the saving rate and, hence, some characteristics of the steady state.

Setup of the Ramsey Model with Migration The framework that we use is a modification
of Weil’s (1989) extension of the Blanchard (1985) model and is formally similar to the study
of finite-horizon households that we carried out in chapter 3. We now assume, however,
that the domestic residents consist of immortal families, as in the Ramsey model; that is,
p = 0 in the context of the Blanchard model. The size of each family grows at the constant,
exogenous rate n.

Migrants again enter the economy at the rate m(t), and each migrant comes with the
quantity of capitalκ(t), presumably mainly in the form of human capital.10 A key assumption
is that, unlike the children of the existing residents, no one cares about the immigrants.
That is, their consumption does not appear as an argument in the utility functions of the
residents.11

Let L(t) be the total domestic population at time t , given by

L(t) = L(0) · ent · exp

[∫ t

0
m(v) dv

]
(9.10)

The L(0) inhabitants at time 0 represent identical “natives,” who arrived all at once in
the manner of the Oklahoma land rush of the 1890s.12 The population at later dates then
consists partly of descendants of natives and partly of immigrants and their descendants.
We normalize, henceforth, by setting L(0) = 1.

Immigrant households are indexed by their vintage j ≥ 0 of arrival in the country. For
native families, we set j = 0−; that is, these families arrived in the country sometime
before time 0.

10. As before, migrants cannot maintain any financial claims on foreign-source income.

11. The analysis works also for emigration, m(t) < 0, if the domestic residents do not care about the people who
leave. For example, if migration takes the form of the departure of an entire extended family, it is natural to assume
that the remaining families do not care about those who left. The problem is more complicated if family members
migrate to other places and then send home remittances or receive funding from those who remain in the domestic
economy.

12. We have to get the domestic population started off in some manner. For dates t > 0 that are far in the future,
the precise way that things begin does not matter much. For further discussion, see Braun (1993).
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Optimization Conditions and Aggregation of the Results Households of each vintage j
maximize utility, as given at time t by

U ( j, t) =
∫ ∞

t

{
log[c( j, v)] · e−(ρ−n)·(v−t)

}
dv (9.11)

where c( j, v) is the consumption per person for households of vintage j at time v. We
assume log utility, as in chapter 3, to simplify the aggregation over immigrants of differing
vintages.

The analysis in chapter 2 implies that each household’s maximization of utility, subject
to its budget constraint, dictates the following conditions:

[1/c( j, t)] · c(̇ j, t) = r(t) − ρ (9.12)

a(̇ j, t) = [r(t) − n] · a( j, t) + w(t) − c( j, t) (9.13)

c( j, t) = (ρ − n) · [a( j, t) + w̃(t)] (9.14)

where a( j, t) is assets per person, w(t) is the wage rate (the same for all persons), and w̃(t)
is the per capita present value of future wages, as given by

w̃(t) =
∫ ∞

t
w(v) · en(v−t) · e−r̄(v,t)·(v−t) · dv (9.15)

where r̄(v, t) ≡ [1/(v − t)] · ∫ v

t r(v) dv is the average interest rate between times t and v.
We also have the usual transversality condition, which requires the present value of assets
to tend asymptotically to 0.

The method for studying aggregate consumption and assets is essentially the same as
that used for the finite-horizon economy in chapter 3; therefore, we provide only a sketch
of the analysis. Aggregate consumption at time t is found by summing (integrating) over
the vintages j for 0 ≤ j ≤ t of immigrants:

C(t) =
∫ t

0

[
c( j, t) · m( j) · L( j) · en(t− j)

]
d j + ent · c(0−, t)

= ent ·
∫ t

0

{
c( j, t) · m( j) · exp

[∫ j

0
m(v) dv

]}
d j + ent · c(0−, t) (9.16)

where m( j) · L( j) is the initial size of immigrant vintage j , we used the formula for L( j)
from equation (9.10), and the final term represents the consumption of native families. The
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result for aggregate assets is similar:

A(t) = ent ·
∫ t

0

{
a( j, t) · m( j) · exp

[∫ j

0
m(v) dv

]}
d j + ent · a(0−, t) (9.17)

The aggregate of the present value of wage income is given from equation (9.15) by

W̃ (t) = L(t) · w̃(t) = ent · exp

[∫ t

0
m(v) dv

]
·
∫ ∞

t
w(v)en(v−t) · e−r̄(v,t) · (v−t) · dv

(9.18)

The changes over time in A(t) and W̃ (t) come from differentiation of equations (9.17)
and (9.18) as

Ȧ(t) = κ(t) · m(t) · L(t) + r(t) · A(t) − C(t)

+ w(t) · ent ·
{

1 +
∫ t

0
m( j) · exp

[∫ j

0
m(v) dv

]}
(9.19)

˙̃W = [r(t) + m(t)] · W̃ (t) − w(t) · L(t) (9.20)

To get equation (9.19) we used the individual family’s budget constraint in equation (9.13)
and the condition a(t, t) = κ(t); that is, immigrant families arrive with per capita assets κ(t).

Equation (9.14) implies Ċ(t) = (ρ − n) · [ Ȧ(t) + dW̃/dt]. If we use equations (9.19)
and (9.20) and the condition A(t) = K (t), we eventually get an expression for the growth
rate of per capita consumption:

ċ/c = r(t) − ρ − m(t) · (ρ − n) · [k(t) − κ(t)]/c(t) (9.21)

where c(t) ≡ C(t)/L(t). This relation reduces to the standard Ramsey result under log utility
if m(t) = 0 or κ(t) = k(t). If m(t) > 0 and κ(t) < k(t), the inflow of migrants reduces per
capita consumption in accordance with the last term on the right-hand side of equation (9.21).
In this sense, a higher flow of migrants, m(t), works like an increase in ρ. This effect is
analogous to the inflow of children in the Blanchard (1985) model (the term p + n in
equation [3.32]) because, as Weil (1989) pointed out, immigrants are just like Blanchard’s
unloved children.

Steady State and Dynamics of the Model As in the Ramsey model, the dynamics can
be expressed as a system of differential equations in k̂ and ĉ. The equation for the growth
rate of k̂, analogous to equation (9.3) in the Solow–Swan context, is

˙̂k/k̂ = f (k̂)/k̂ − ĉ/k̂ − (x + n + δ) − m · [1 − (κ̂/k̂)] (9.22)
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The equation for the growth rate of ĉ comes from equation (9.21):

˙̂c/ĉ = f ′(k̂) − (x + ρ + δ) − m · (ρ − n) · (k̂ − κ̂)/ĉ (9.23)

We again use the specification for migration that we assumed in equation (9.6) for the
Solow–Swan model:

m · [1 − (κ̂/k̂)] = b · [log(k̂/k̂world)]

where k̂world is constant. If we substitute this form for migration into equations (9.22)
and (9.23), we can use our usual methods to work out a phase diagram in (k̂, ĉ) space and
use this diagram to analyze the steady state and transitional dynamics.

Equations (9.23) and (9.6) imply that, if ĉ �= 0, then the ˙̂c = 0 locus is given by

f ′(k̂) = δ + ρ + x + (ρ − n) · b · log(k̂/k̂world)

ĉ/k̂
(9.24)

This condition differs from the standard one in chapter 2 by the inclusion of the last term
on the right-hand side. Let k̂∗ be the steady-state value for the model that excludes migra-
tion, that is, the value that satisfies f ′(k̂∗) = δ + ρ + x . Then the form of the ˙̂c = 0 locus
depends on the relation between k̂∗ and k̂world. If k̂∗ = k̂world, as would be true for the typical
economy, the locus is a vertical line at k̂∗, as shown in panel a of figure 9.3. The locus

ĉ

k̂
k̂* � k̂world

k̂* � k̂world k̂* � k̂world k̂* � k̂world

k̂world k̂world

ĉ

k̂

ĉ

k̂
k̂* k̂*

(a) (b) (c)

Figure 9.3
The shape of the ˙̂c = 0 locus in the Ramsey model with migration. The shape of the ˙̂c = 0 locus depends on
the relation between k̂∗ and k̂world. If k̂∗ = k̂world, the locus is vertical, as shown in panel (a). If k̂∗ > k̂world, the
locus is upward sloping (b), and if k̂∗ < k̂world, the locus is downward sloping (c).
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therefore coincides in this case with the standard one from the model without migration
(see figure 2.1).

If the domestic economy would be attractive to immigrants in the no-migration steady
state—that is, if k̂∗ > k̂world—the locus looks as shown in panel b of figure 9.3. In particular,
k̂world < k̂ < k̂∗, ĉ approaches 0 as k̂ tends to k̂world, and ĉ approaches infinity as k̂ tends to k̂∗.
Finally, if k̂∗ < k̂world, the locus looks as shown in panel c of the figure, with k̂∗ < k̂ < k̂world.

Equations (9.22) and (9.6) imply that the ˙̂k = 0 locus is determined by

ĉ = f (k̂) − (x + n + δ) · k̂ − b · log(k̂/k̂world) · k̂ (9.25)

This condition also differs from the standard one in chapter 2 by the inclusion of the last
term on the right-hand side. If k̂ < k̂world, ĉ is higher than before for a given value of k̂,
whereas if k̂ > k̂world, ĉ is lower than before. Otherwise, the shape of the locus, shown in
figure 9.4, is similar to the standard one, shown in figure 2.1.

Figure 9.4 uses the vertical ˙̂c = 0 locus from panel a of figure 9.3, the case that corresponds
to k̂∗ = k̂world. The steady-state value of k̂, denoted by (k̂∗)mig, then equals k̂∗. This result
follows because (k̂∗)mig = k̂world implies m∗ = 0 (from equation [9.6]). Thus, for the typical
economy, the steady-state capital intensity is unaffected by the potential for migration, and
the steady-state migration rate is 0.

(ĉ*)mig

(k̂*)mig

k̂

ĉ

Figure 9.4
The phase diagram for the Ramsey model with migration. This diagram considers the case in which k̂∗ = k̂world,
so that the ˙̂c = 0 locus is vertical, as shown in panel a of figure 9.3. The ˙̂k = 0 locus has the usual inverse U shape.
The steady-state k̂∗ exhibits zero net migration because we assumed k̂∗ = k̂world. The model exhibits the usual
saddle-path stability. If the economy begins at a low value of k̂, k̂ and ĉ rise monotonically during the transition.
Net migration is negative throughout this transition but asymptotically approaches the steady-state value of zero.
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If k̂∗ > k̂world, as in panel b of figure 9.3, the ˙̂k = 0 locus intersects the ˙̂c = 0 locus at
a point where k̂world < (k̂∗)mig < k̂∗ and m∗ > 0. Thus, if the domestic economy would be
attractive to immigrants in its no-migration steady state, the opening up to migration leads
to a steady state with positive immigration and, consequently, a reduced capital intensity
(because migrants bring relatively little capital with them). These conclusions are reversed
if k̂∗ < k̂world, as in panel c of figure 9.3. In this case, k̂∗ < (k̂∗)mig < k̂world and m∗ < 0.

The model is saddle-path stable, as usual, and the phase diagram in figure 9.4 can be used
to show the directions of motion. To assess the implications for the speed of convergence,
we follow our usual procedure and use a Cobb–Douglas production function, f (k̂) = Ak̂α .
We can substitute this functional form into equations (9.22) and (9.23) and then log-linearize
the system around its steady-state position. Since this procedure is familiar, we leave the
details as an exercise and just note that the convergence coefficient turns out to be given by

2β =
{

ζ 2 + 4b · (ρ − n) + 4(1 − α)(ρ + δ + x) ·
[
ρ + δ + x

α
− (n + x + δ)

]}1/2

− ζ

(9.26)

where ζ = ρ − n − b. The result from the standard Ramsey model of chapter 2 (equa-
tion [2.34]) corresponds to equation (9.26) if b = 0 (and θ = 1).

We can readily verify from equation (9.26) that β rises with b. That is, as in the Solow–
Swan model, a greater propensity to migrate raises the convergence speed (if κ̂ < k̂). To
assess this effect quantitatively, we use our usual parameter values, α = 0.75, x = 0.02,
n = 0.01, δ = 0.05, and ρ = 0.02. For these values, the convergence coefficient, β, implied
by equation (9.26) would be 0.025 if b = 0. (This relatively high value of β applies because
log utility—θ = 1—implies a higher intertemporal elasticity of substitution than we usually
assume.) We mentioned before that estimates of migration propensities and of the ratio κ̂/k̂
suggest that b would be around 0.003 in the context of regions of a country or in an
international setting. Equation (9.26) implies that these values of b raise β from 0.025 in
the model without migration to 0.027. This minor effect of migration on the convergence
speed is similar to that found in the Solow–Swan model.

9.1.3 The Braun Model of Migration and Growth

The theories of migration and growth considered thus far have two major shortcomings.
First, the flows of migrants are determined by a postulated migration function and not by
households’ optimizing choices of whether to move. Second, the only capital mobility in
the models derives from the migrants’ carrying of human capital.

Braun (1993) works out several models in which migration reflects optimizing decisions
and in which varying degrees of capital mobility are assumed. A key simplifying assumption
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in his analysis is the existence of a perfect world credit market, which offers the same real
interest rate to residents of all economies. In this case, the choice of whether to migrate
depends only on comparisons across economies of paths of wage rates (and of amenities).

Braun makes some alternative assumptions about the mobility of physical capital. In one
model, physical capital is perfectly mobile across economies, and, in another model, the
changes in an economy’s stock of capital entail adjustment costs of the type that we studied
in chapter 3. To bring out the main ideas in a tractable setting, we work out the case in which
physical capital is perfectly mobile, and we consider the situation of a small economy that
faces a given, constant world real interest rate.

If we use our usual constant-returns-to-scale production functions and assume that the
levels of the technology are the same in all countries, labor would never move if the migration
of people is costly and the movements of capital are free. In contrast, if the levels of
technology differ, people (and capital) tend to flow toward the better places. In fact, if
natural population growth rates are zero, the cost function for migration that we specify
later implies that only the economy with the best technology would remain populated in
the long run. The introduction of adjustment costs for investment does not invalidate this
conclusion, because workers and capital still flow continually toward the best location.

To avoid this result, we introduce a form of diminishing returns to scale in each econ-
omy. In particular, we adopt Braun’s (1993) assumption that an increase in an economy’s
population congests a natural resource, such as land.13 This effect leads to a steady-state
distribution of the world’s population and implies that no location ever gets depopulated.

Setup of the Model The domestic economy and all other economies have access to a
Cobb–Douglas production function,

Y = AK α L̂1−α · (R/L)λ (9.27)

where L̂ ≡ Lext is the effective labor input and x ≥ 0 is the rate of exogenous, labor-
augmenting technological progress in all economies. The new element in equation (9.27) is
the input R, a constant that represents a natural resource to which residents of the domestic
economy have free access. This good is, however, subject to congestion in that the per capita
magnitude, R/L , enters into the production function. We assume 0 < λ < 1 − α, so that the
overall returns to K and L are diminishing for fixed R, but the social marginal product of
L is positive.

We could treat R in equation (9.27) as private land, although, in that case, immigrants
would share in the use of the land only by paying a rental fee. We could alternatively view

13. An alternative assumption is that a location initially features increasing returns to scale, L , and only eventually
exhibits diminishing returns due to congestion.
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R as a governmentally provided service that was provided to residents in fixed aggregate
supply and at no user charge. The incentives to migrate would also be affected by taxation.
For example, a head tax or a fee for immigration would reduce the incentive for foreigners
to come. We study an environment in which immigrants share automatically in the use of
R and where taxes and fees are not levied.

A competitive individual producer views R/L as given (because the L in this term
represents the aggregate population of the economy) and chooses the inputs, K and L ,
subject to a usual constant-returns production function. The factor prices will therefore
equal the respective private marginal products, and the factor payments will exhaust the
total domestic product. The wage rate equals the private marginal product of labor and is
given from equation (9.27) by

w = (1 − α) · Ak̂α · (R/L)λ · ext (9.28)

where k̂ ≡ K/L̂ .
The rental price of capital is r + δ, where r is the world real interest rate. We treat

r as a constant, with r > x ; that is, the world economy is in a steady state in which the
transversality condition is satisfied.14 Producers in the domestic economy equate the private
marginal product of capital, determined from equation (9.27), to the rental price:

αAk̂α−1 · (R/L)λ = r + δ

This condition determines the capital intensity in the domestic economy as

k̂ =
[
αA · (R/L)λ

r + δ

]1/(1−α)

(9.29)

If we substitute for k̂ from equation (9.29) into equation (9.28), the formula for the
domestic wage rate becomes

w =
[
(1 − α) · A1/(1−α)αα/(1−α) · (R/L)λ/(1−α)

(r + δ)α/(1−α)

]
· ext (9.30)

Hence, the domestic wage rate is high relative to that offered elsewhere if the domestic
economy has a relatively large per capita quantity of natural resources, R/L , and a relatively
high level of technology, A. Recall also that some forms of government policies can be
represented by the parameter A.

14. We simplify by assuming that the world’s population growth rate is zero.
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The Decision to Migrate Since we assume perfect capital mobility and neglect any dif-
ferences in amenities that enter into utility functions, people will evaluate locations solely
on the basis of wage rates. Suppose that we think of the world economy as offering the
single wage rate, wworld. The benefit from a permanent move at time t from the world to the
domestic economy is the present value of the wage differential:

B(t) ≡
∫ ∞

t
[w(v) − wworld] · e−r · (v−t) dv (9.31)

If we define B̂(t) ≡ B(t) · e−xt , the time derivative of B̂(t) is given from equation (9.31) by

˙̂B = −[ŵ(t) − ŵworld] + (r − x) · B̂(t) (9.32)

where ŵ(t) ≡ w(t) · e−xt and ŵworld ≡ wworld · e−xt . Since we are assuming that the world
economy is in a steady state, ŵworld is constant.

We assume, without loss of generality, that ŵ(t) ≥ ŵworld. This condition turns out to
imply ŵ(v) ≥ ŵworld and, hence, B̂(v) ≥ 0 for all v ≥ t . Any migration that occurs will
therefore always be in the direction toward the domestic economy. The situation is reversed
if ŵ(t) ≤ ŵworld.

We simplify by assuming that the natural rate of population growth in the domestic
economy is zero. Then, if M(t) ≥ 0 denotes the flow of migrants at time t from the world
to the domestic economy, the growth rate of the domestic population is

L̇/L = M(t)/L(t) (9.33)

The key matter now is to specify the costs of migration. The cost incurred by each migrant
is assumed to be an increasing function of M(t)/L(t). This specification is reasonable if,
for example, the expenses for finding a job or a house increase with the number of new
searchers in relation to the population of the receiving location.15 The cost is assumed to
take the form of a quantity of work time forgone, so that, for a given value of M(t)/L(t),
the cost in units of output is proportional to the world wage rate, wworld, that the migrants
would have earned in their original locations. Hence, the amount paid by each migrant takes
the form

Cost of moving = η[M(t)/L(t)] · wworld (9.34)

15. The key property is that the cost of moving for the marginal mover rises with the number of movers. This
relation would also hold if there were heterogeneity with respect to moving costs. The persons with lower costs
would move sooner, and the cost of moving would therefore rise at the margin with the number of movers (although,
in this case, with the cumulated number, rather than the current flow).
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where we assume η′ > 0 and η′′ ≥ 0. We also simplify the analysis by assuming η(0) = 0;
that is, we ignore any fixed expenses associated with transportation and related outlays and
assume accordingly that the cost per migrant goes to 0 as the flow of migrants goes to 0
(see Braun, 1993, for further discussion).

As people move to the domestic economy, R/L falls, and w declines accordingly in
equation (9.30). If enough people have moved to equate w to wworld, the incentive to migrate
would vanish. (If the domestic technology parameter, A, is the same as the world parameter,
then the equality in wage rates arises when the domestic value of R/L equals the world
value of R/L .) At the point of equal wage rates, the domestic economy is in a steady state
in which migration is zero; population, L , is constant; and the capital intensity, k̂, is also
constant. The condition η(0) = 0 implies that the system actually approaches this steady
state, because if w > wworld, B > 0, and people would be motivated to move at zero cost.
Thus more people migrate, and the domestic population changes as long as w > wworld.
(If we had assumed η(0) > 0, then a positive gap between domestic and world wage rates
could persist in the steady state.)

Since the world economy is not depopulated in the steady state,16 we know that some
of the world’s inhabitants will never move to the domestic economy; that is, some of these
people do not exercise the option to migrate. If people are identical and if they all optimize,
then some of them can end up in equilibrium with a zero net benefit from migration only if
they all end up with a zero net benefit. Hence, the equilibrium entails enough migration at
each date so that the benefits and costs of moving are equated:

B(t) = η[M(t)/L(t)] · wworld (9.35)

for all t . This equation still holds if we replace B(t) by B̂(t) on the left and wworld by the
constant ŵworld on the right.

We can compute the flow of migrants at each date and therefore the growth rate of the
domestic population by inverting equation (9.35):

L̇/L = M(t)/L(t) = ψ(B̂/ŵworld) (9.36)

where the function ψ is the inverse of the function η in equation (9.34). Since η′ > 0 and
η′′ ≥ 0, the function η is one-to-one, and the inverse function ψ is well defined and one-to-
one. The function ψ satisfies the conditions ψ ′ > 0 and ψ ′′ ≤ 0. The assumption η(0) = 0
implies ψ(0) = 0.

16. This condition holds because a large decrease in world population would significantly raise the world value of
R/L and thereby increase wworld. The form for the wage rate in equation (9.28), which also applies for the world,
implies that the equality between w and wworld must occur before population reaches zero in the domestic or the
world economy.
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In our discussions of the Solow–Swan and Ramsey models, we postulated a migration
function in figure 9.1 in which the migration rate, m = M/L , varied positively with ŵ and,
hence, with k̂. We noted that this function assumed that conditions elsewhere, represented
now by ŵworld, were held constant. The main difference between the postulated function
and the present one is that the former relation involved only the current wage rate per unit
of effective labor, ŵ, whereas the latter relation involves the entire path of effective wage
rates as they enter into the benefit expression, B̂.

The Dynamic System, the Steady State, and the Transitional Dynamics The dynamic
system for L and B̂ is given by equations (9.32) and (9.36), where ŵ varies inversely with
L in accordance with equation (9.30):

ŵ =
[
(1 − α) · A1/(1−α)αα/(1−α) · (R/L)λ/(1−α)

(r + δ)α/(1−α)

]
(9.37)

Figure 9.5 uses equations (9.32) and (9.36) to construct a phase diagram in (L , B̂) space.
Equation (9.36) and the properties of the ψ function, including ψ(0) = 0, imply that L̇ = 0
corresponds (if L �= 0) to B̂ = 0. The equation also implies (because ψ ′ > 0) that L̇ > 0 if
B̂ > 0 and L̇ < 0 if B̂ < 0.

B̂
B̂
.
 � 0

L
.
 � 0

0
L*

L

Figure 9.5
The phase diagram when migration is a choice variable. The dynamics of the model can be expressed in terms
of the present value of the benefits from moving, B̂, and the domestic population, L . The system is saddle-path
stable, and the stable arm is downward sloping. Thus a low initial population is associated with high benefits from
net migration toward the domestic economy and, consequently, with a high net migration rate, m. As population
increases, the net benefit from migration diminishes. In the steady state, the net benefit, B̂, is zero, and population,
L , is constant.
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Equation (9.32) implies that ˙̂B = 0 corresponds to a positive, linear relation between
B̂ and ŵ. Since ŵ is inversely related to L in equation (9.37), the relation between B̂ and
L is also inverse, as shown in figure 9.5. Since r > x , values of B̂ above the curve imply
˙̂B > 0, and values below the curve imply ˙̂B < 0.

The figure shows that the steady state involves L = L∗, a constant, and B̂∗ = 0. Equa-
tion (9.32) therefore implies ŵ∗ = ŵworld, and equation (9.37) determines the value L∗ that
satisfies this equality. In particular, L∗ rises with A (for the domestic economy) and increases
equiproportionately with R (for the domestic economy).

The system is saddle-path stable, and figure 9.5 shows the directions of motion. If the
domestic economy starts with L < L∗, then B̂ > 0, and L rises over time. The resulting
decline in ŵ leads to a fall in B̂ and, hence, to a decrease in the migration rate. Over time,
the migration rate falls steadily and approaches zero as L tends to L∗.

We can determine the speed of convergence to the steady state in the usual way by
linearizing in the neighborhood of the steady state. In this case, the system is described
by equations (9.32) and (9.36), and the linearization is in terms of B̂ and log(L/L∗). The
migration rate, which equals the growth rate of L , is given by

M/L = L̇/L ≈ β · log(L∗/L) (9.38)

where the convergence coefficient, β, is given by

2β =
[
(r − x)2 + 4λ · ψ ′(0)

1 − α

]1/2

− (r − x) (9.39)

Equation (9.39) shows that the key determinant of the convergence speed is ψ ′(0), the
sensitivity of the migration rate in the vicinity of the steady state to the relative benefit from
moving, B̂/ŵworld (see equation [9.36]). The greater this sensitivity, the faster the speed of
convergence. Recall that the function ψ is the inverse of the function η, which relates the
cost of moving to the migration rate in equation (9.34). The slope ψ ′(0) is the reciprocal
of η′(0); therefore, the more rapidly migration costs rise with the volume of migration, the
smaller is the responsiveness of the migration rate to the relative benefit, B̂/ŵ, and, hence,
the slower is the speed of convergence.

The convergence speed for L is also the convergence speed for ŷ. To see this point, use
the production function from equation (9.27) and the expression for k̂ in equation (9.29) to
derive a formula for ŷ:

ŷ =
[

A1/(1−α)αα/(1−α) · (R/L)λ/(1−α)

(r + δ)α/(1−α)

]
(9.40)
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This formula is the same as that for ŵ in equation (9.37), except for the multiple 1 − α in
the expression for ŵ. The result for ŷ implies

log(ŷ/ŷ∗) = [λ/(1 − α)] · log(L∗/L) (9.41)

that is, ŷ is above its steady-state value when L is below its steady-state value, and vice
versa. Equation (9.40) also implies that the growth rate of ŷ is given by

˙̂y/ŷ = −[λ/(1 − α)] · (L̇/L) (9.42)

We can use equation (9.42) along with equations (9.38) and (9.41) to get a familiar-looking
convergence equation for ŷ:

˙̂y/ŷ = −β · log(ŷ/ŷ∗) (9.43)

Thus the growth rate of ŷ is inversely related to the level of ŷ, and the speed of convergence,
β, is given by equation (9.39).

Recall that we discussed earlier some empirical findings on net migration rates. These
findings relate the migration rate to differentials in per capita income or product. We can
write equation (9.38) in this form if we use equation (9.41) to transform from log(L∗/L)

to log(ŷ/ŷ∗):

M/L = L̇/L ≈
[
β · (1 − α)

λ

]
· log(ŷ/ŷ∗) (9.44)

We can look at equations (9.43) and (9.44) as a system of two equations that involve the
growth rate of output and the migration rate. Suppose that we examine a group of economies
for which we can assume that the parameters α and λ are the same. Then, places with a
higher ψ ′(0) have a higher value of β. Therefore, these places have a larger responsiveness
of the migration rate to differentials in per capita product in equation (9.44) and a faster
speed of convergence for per capita output in accordance with equation (9.43).

Braun (1993) tested the hypothesis that a higher migration-rate sensitivity tended to
go along with a higher speed of convergence for per capita product or income. He used
information on within-country migration and convergence for the U.S. states, regions of five
European countries (France, Germany, Italy, Spain, and the United Kingdom), and Japan.
That is, he effectively compared seven estimates of migration-rate sensitivities with the
corresponding seven estimates of convergence coefficients for per capita output or income.
Although the number of data points is small, the results provided some support for the
underlying theory, because the places with greater migration-rate sensitivities tended also
to have higher convergence rates. See chapter 11 for a discussion of this evidence.
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Dynamics of the World Economy In the previous analysis we assumed that the world
economy was in a steady state with a constant wage rate per unit of effective labor, ŵworld,
and an associated constant capital intensity, which we can denote by k̂world. We described
a dynamic process for migration whereby the domestic economy’s effective wage rate, ŵ,
approached the constant world value, ŵworld. If the domestic economy has the same level
of technology, A, as the world, then k̂ tends toward the constant k̂world.

More generally, we could allow for a transitional dynamics in which k̂world approached
its steady-state value, (k̂world)

∗. Then, for economy i , the changes over time in k̂i can be
broken into two parts: first, the adjustment of k̂i toward k̂world and, second, the adjustment
of k̂world toward (k̂world)

∗.
Braun (1993) works out an analysis of this type in which the world consists of only

two regions, i = 1, 2. Migration is possible between the regions at the cost specified in
equation (9.34). For the world economy—that is, for the aggregate of the two regions—the
evolution of the capital stock and consumption per effective worker, k̂world and ĉworld, are
similar to that in the Ramsey model of chapter 2. This process implies a gradual adjustment
of k̂world to its steady-state value, (k̂world)

∗, and the speed of convergence depends on the
same parameters that mattered in the Ramsey setting.

At the same time, people migrate toward the region with a higher wage rate, and this
movement tends to reduce per capita output in the high-wage region and raise per capita
output in the low-wage region. The speed of this process involves the convergence coefficient
given in equation (9.39).

The growth rate of each region’s output per effective worker can be approximated by

˙̂yi

ŷi
= −β · log(ŷi/ŷworld) − µ · log[ŷworld/(ŷworld)

∗] (9.45)

where β is given in equation (9.39), and µ is determined by a Ramsey model of the world
economy. Equation (9.45) combines a cross-sectional effect that involves the elimination of
differences across economies with a time-series effect that involves the adjustment of the
world economy to its steady-state position. If we consider a cross section of data for a single
time period, the relative growth rates would depend inversely on the initial relative positions,
ŷi/ŷworld, and would involve the coefficient β. In contrast, if we examine time-series data
on the world variable ŷworld, the growth rate would vary negatively with ŷworld/(ŷworld)

∗

and would involve the coefficient µ. In a panel setting, the growth rate for each economy
depends on ŷi/ŷworld and ŷworld/(ŷworld)

∗ and involves both coefficients, β and µ.

Imperfect Capital Mobility In the present setting, an economy’s speed of convergence
toward the world economy involves the coefficient β in equation (9.39), which reflects only
the gradual migration of persons. If we assume less than complete capital mobility, the
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forces that influenced convergence in some of our previous models would also affect β.
For example, we would get these additional effects on convergence if investment entails
adjustment costs or if capital markets are imperfect.

It is straightforward to allow for adjustment costs for investment if we retain the frame-
work of perfect capital markets (see Braun, 1993). These adjustment costs can be introduced
in the way discussed in chapter 3. The main new finding is that the convergence coefficient,
β, is higher if the sensitivity of the adjustment cost to the quantity of investment is smaller.

The analysis is more complicated if credit markets are imperfect. The rate of return then
differs across the economies, and the decision to migrate would be based on this difference
along with the gap in wage rates. We also have to keep track of ownership of assets in
various places, and the behavior of consumption is correspondingly more complicated. The
results that we obtained before in the settings of the Solow–Swan and Ramsey models apply
when capital flows are entirely absent, except for the human capital carried by migrants.

9.2 Fertility Choice

For Malthus (1798), the effects of economic factors on fertility and mortality were a cen-
tral element in the theory of economic development. Few scholars have generated more
controversy than Malthus, whose main theory states that population is controlled by the
availability of food. Malthus’s insight was based on the assumptions that food is necessary
for the subsistence of humans and that the power of population growth is far greater than the
power of the earth to produce food. Malthus’s theory was based on the idea that, since the
Neolithic agricultural revolution around 8000 B.C., the economy was overwhelmingly agri-
cultural. The law of diminishing returns to land led Malthus to conclude that an expansion
in the number of people would force society to use less productive land, which would not
generate enough food to support the larger population. Food shortages then force families
to postpone marriage and fertility, and the rate of population growth self-corrects. In the
words of Malthus:

We will suppose the means of subsistence in any country just equal to the easy support of its inhabitants.
The constant effort towards population, which is found to act even in the most vicious societies,
increases the number of people before the means of subsistence are increased. The food, therefore,
which before supported eleven million, must now be divided among eleven million and a half. The
poor consequently must live much worse, and many of them be reduced to severe distress. . . . During
this season of distress, the discouragements to marriage and the difficulty of rearing a family are so
great that the progress of population is retarded.17

17. See Malthus (1798, p. 161, n. 19).
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The problem for Malthus was that, at the same time he was writing his book, a new
revolution was taking place in England: the industrial revolution. Perhaps for the first time
in history, standards of living for a substantial number of citizens increased substantially.
But, contrary to Malthus’s preductions, rising prosperity did not lead inevitably to increased
population growth. In fact, the empirical evidence for recent years indicates that, except for
very poor countries or households, increases in per capita income tend to reduce fertility.
Although empirical studies have not confirmed Malthus’s specific predictions, these stud-
ies have typically found important linkages from economic variables—such as per capita
income, wage rates, levels of female and male education, and urbanization—to fertility and
mortality (see Wahl, 1985; Behrman, 1990; Schultz, 1989; and Barro and Lee, 1994). Thus
the empirical findings firmly reject the notion that the natural growth rate of population is
exogenous with respect to economic growth.

Despite this evidence, most modern theories of economic growth have assumed that the
rate of population growth is an exogenous constant. For example, in our presentations of
the Solow–Swan and Ramsey models in chapters 1 and 2, different settings for the rate of
population growth, n, mattered for the growth process, but we did not consider feedback
from the growth process to the rate of population growth. We have allowed in this chapter
for endogenous responses of population through migration but have not yet considered
variations in the natural growth rate of population.

In this section, we construct a growth model in which economic development influences
family choices about the number of children and, hence, the fertility rate.18 We want, in
particular, to design a model that mimics some of the major empirical findings, especially
a negative relation between fertility and per capita income, except at very low levels of per
capita income.

9.2.1 An Overlapping-Generations Setup

We begin with the approach of Becker and Barro (1988) and Barro and Becker (1989), in
which parents and children are linked through altruism. Parental decisions about numbers of
children are made jointly with choices about consumption and intergenerational transfers.
Children are costly to produce and raise, but the addition to utility—as viewed by the
parents—may be sufficient to justify these costs. If the marginal utility attached to children
diminishes with their number, or if the cost of rearing an additional child increases with
the number, the model determines the fertility rate from a standard first-order condition.
The choice of the quantity of children also interacts with the determination of their quality,

18. We do not attempt to explain why the industrial revolution occurred. Lucas (2002), Galor and Weil (2000),
Hansen and Prescott (2002), and Jones (2001) provide models in which a demographic transition and the industrial
revolution occur as endogenous responses to changing economic environments.
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as represented in the model by the amounts of consumption and capital stock allocated to
each person.

Becker and Barro (1988) use an overlapping-generations (OLG) framework in which
people live for two periods, childhood and adulthood. (See the appendix to chapter 3 for a
discussion of OLG frameworks.) Marriage is not considered, and a single adult of generation
i has ni children. The utility function takes the form

Ui = u(ci , ni ) + ϒ(ni ) · niUi+1 (9.46)

where the subscript i is the period in which a person is an adult, Ui is the adult’s utility,
ci is consumption per adult person during adulthood, and ni is the number of children per
adult. The term u(ci , ni ) represents the utils generated during adulthood from consumption
and the presence of children. (This formulation does not distinguish the consumption of
children during their childhood from that of their parents.)

The last term on the right-hand side of equation (9.46) represents the utils that adults
obtain by considering the prospective happiness of their children when the children become
adults. The term Ui+1 is the utility that each child will attain as an adult. This utility is also
determined by equation (9.46), with all variables updated by one period. We assume that
children are identical and are treated equally by parents, so that all attain the same utility,
Ui+1. (This egalitarian treatment will apply if everyone has the same utility function, u[·],
and if this utility is a concave function of the resources provided to each child.)

The function ϒ(ni ) in equation (9.46) represents the degree of altruism that parents attach
to each child’s utility; hence, ϒ(ni ) multiplies the “aggregate” utility attained by the next
generation, niUi+1. The assumed properties are ϒ(ni ) > 0 (parents value their children’s
happiness), ϒ ′(ni ) < 0 (a form of diminishing marginal utility of children), and ϒ(1) < 1.
The last property implies that, if the number of children per adult equals one, parents are
selfish in the sense that they value a unit of u(ci , 1) more than a unit of u(ci+1, 1).19

Becker and Barro (1988) assume that the altruism function takes a constant-elasticity
form,

ϒ(ni ) = ϒni
−ε (9.47)

where ε > 0 and 0 < ϒ < 1. The parameter ϒ represents the degree of altruism between
parents and children that applies when ni = 1. The notion of parents liking children is
captured by ϒ > 0, and the idea of parental selfishness is reflected in ϒ < 1. The condition
ε > 0 yields diminishing marginal utility in the number of children in the sense that ϒ(ni )

declines with ni .

19. In terms of the discussion of altruism in the appendix to chapter 3, the term ϒ combines pure time preference
(the term that involves ρ) with the attitude toward children. We can think of the pure rate of time preference, ρ, as
zero in the present context.
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If we use equations (9.46) and (9.47), we can write Ui as a forward, weighted sum of the
u(c j , n j ) for each generation starting with the i th:

Ui =
∞∑
j=i

ϒ j−i · N 1−ε
j · u(c j , n j ) (9.48)

where N j is the number of adult descendants in generation j . This number equals 1 when
j = i (that is, when we start from the perspective of a single adult) and equals the product
of the various n j for j > i :

Ni = 1; N j =
j−1∏
k=i

nk, for j = i + 1, i + 2, . . . (9.49)

In previous settings, we assumed a functional form for u(c) that implied a constant
elasticity of marginal utility, u′(c), with respect to c. We now make the parallel assumption
that the functional form for u(c j , n j ) implies constant elasticities of marginal utility with
respect to c j and n j :

u(c j , n j ) = [c j · (n j )
φ]1−θ /(1 − θ) (9.50)

where φ > 0 and θ > 0. We also assume φ · (1 − θ) < 1 to get diminishing marginal utility
with respect to n j . If we define

ψ ≡ (1 − ε)/(1 − θ)

where we assume ψ > 0,20 and substitute the form for u(c j , n j ) from equation (9.50) into
equation (9.48), we get

Ui =
∞∑
j=i

ϒ j−i · {[(N j )
ψ · c j · (n j )

φ]1−θ − 1}/(1 − θ) (9.51)

Note that the condition ε > 0 implies ψ · (1 − θ) < 1. We added the term –1 inside the large
brackets, so that, as θ tends to 1, the expression inside the integral approaches the log-utility
form:

Ui =
∞∑
j=i

ϒ j−i · [ψ · log(N j ) + log(c j ) + φ · log(n j )] (9.52)

20. The condition ψ > 0 implies ε < 1 if θ < 1, as in the case considered by Becker and Barro (1988). The present
formulation also allows ε > 1 if θ > 1. If θ = 1, ε = 1 must hold for ψ to be finite.
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If we let θ approach 1, we can derive equation (9.52) from equation (9.51) by using
l’Hôpital’s rule.

We can complete the model as in Becker and Barro (1988) by specifying a cost for
having and raising children and by introducing an intergenerational budget constraint. This
constraint relates a parent’s intergenerational transfer to each child to the parent’s initial
assets, the amounts of wage and asset income, and the expenditures on child rearing and
consumption. The adults in each generation then choose consumption and fertility to max-
imize Ui in equation (9.51), subject to the intertemporal budget constraint. The analysis
is straightforward if the solutions for intergenerational transfers are interior, that is, if par-
ents always opt for positive transfers. We then do not have to consider that the environment
likely precludes negative transfers in the sense of debts left for children. We do not carry out
the details of this analysis here, because we prefer to work instead with a continuous-time
version of the model.

9.2.2 The Model in Continuous Time

The overlapping-generations setup is useful for a study of fertility choice because the length
of the period has an important meaning. It represents the average spread in age between
parents and children, that is, the length of a generation. For aggregate purposes, however, we
would have to add up across families who, at a given point in time, have children of varying
ages. In this setup, the restriction to an integer number of children would be important
at the family level, but this restriction would be smoothed out in the aggregation across
heterogeneous families.

These considerations suggest that it would not be useful to work out an individual family’s
choice problem in a discrete-time setup and then apply the findings directly to the behavior
of economy-wide variables. The results that we would get from the underlying discreteness
in time—which may include a potential to cycle around the steady state—would reflect
the failure to add up appropriately across households. Thus we either have to carry out the
aggregation explicitly or else use as an approximation a continuous-time representation for
the behavior of the typical household. The continuous-time approach lacks realism at the
level of a family—for example, it neglects integer restrictions on the number of children—
but may nevertheless be satisfactory for a study of economy-wide variables.

We now use the results from the previous section to modify the continuous-time model
of infinite-lived households that we introduced in the Ramsey model in chapter 2. The
infinite horizon is natural here because it represents the altruistic linkage from parents to
children to the children’s children and so on. The rate of time preference, ρ > 0, in the
Ramsey formulation corresponds to the degree of intergenerational altruism, ϒ < 1, in the
overlapping-generations model. Two new elements are that time preference also depends
on the number of children and that child rearing uses up resources.
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Births and Deaths In the discrete-period model, a new generation of finite size is born
each period, and each person lives for two periods, childhood and adulthood. In the
continuous-time formulation, we instead treat births and deaths as continuous flows.

Let n ≥ 0 be a family’s birth rate, treated as a choice variable at every point in time,
and d > 0 the mortality rate. For reasons of tractability, we do not allow d to depend on a
family’s age structure. We also do not allow d to depend on family or public expenditures
on medical care, sanitation, and so on, although these influences on the mortality rate would
be an important extension of the model. The size of the family, N , changes continuously in
accordance with

Ṅ = (n − d) · N (9.53)

The variable N will now be an additional state variable for households.

The Utility Function We use the formulation of household utility from the discrete-
time model in equation (9.51) to modify the standard continuous-time representation from
equation (2.1) to

U =
∫ ∞

0

e−ρt

1 − θ
· {[Nψc · (n − d)φ]1−θ − 1} · dt (9.54)

The term e−ρt corresponds to the altruism factor, ϒ j−i , in equation (9.51). Equation (9.54)
includes the net growth rate of population, n − d, rather than the gross fertility rate, n. If
we think of d as representing infant mortality, then n − d refers to surviving children, the
variable that would plausibly appear in the utility function.21 Note that the stock of people
N enters the utility function. It turns out that this fact implies a great deal of difficulty
when it comes to solving the model. Jones (2001) uses a simpler specification of utility
that is independent of the stock of population, a specification that delivers a more tractable
mathematical solution.

Child-Rearing Costs The birth and rearing of each child costs an amount η. We think of
η as expended entirely at the time of birth, although a more realistic model would recognize
that these expenditures arise over a long period of child development. We attempt to get
around this shortcoming by thinking of η as a large single outlay that represents the present
value of expenditures for each child. Since nN is the number of births per unit of time, ηnN
is the total of expenditures on child rearing, and ηn is the amount expended per capita.

21. The model is not rich enough for the mortality rate to depend on age. However, the household’s choices would
not be affected if we entered a factor like d−ι, where ι > 0, multiplicatively with Nψ · c · (n−d)φ in equation (9.54).
This factor could perhaps capture the disutility associated with adult mortality.
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A key issue is the relation of the cost η to other variables, such as the value of parents’
time and measures of child quality, which correspond in the model to consumption and
capital stock per person, c and k.22 If η represents only purchases of market goods and
services, the cost of rearing a child declines relative to per capita income as the economy
grows. In this case, the fertility rate, n, tends—counterfactually—to rise as the economy
develops.

Becker (1991) and others argue that child rearing is intensive in parental time, especially
in the mother’s time in societies in which women are the primary providers of child care.23

In other words, the productivity advances that apply to market goods and services because
of capital accumulation and technological progress are not thought to apply very much to
the raising of children. In this case, the cost η tends to rise with parents’ wage rates or with
other measures of the opportunity costs of parental time. Greater educational attainment
of adults (especially of women) tends in this case to raise η. More generally, η increases
with the per capita quantities of human and physical capital, represented by the variable k
in the model.

To introduce a linkage between η and parents’ wage rates, we would have to allow for
alternative uses of parental time, for example, for choices between time spent producing
goods and time spent raising children. This extension leads to technical complexity in the
form of nonlinearities. Since the main idea involves a positive relation between η and k, we
proceed instead by postulating a linear relation,

η = b0 + bk (9.55)

where b0 ≥ 0 and b ≥ 0. The b0 term represents the goods cost of child rearing, and the bk
term represents the cost that increases with the capital intensity.

The specification in equation (9.55) turns out to be especially simple if we assume
b0 = 0, because the per capita child-rearing cost, ηn = bnk, then combines with the term
nk that has appeared all along as a negative term in the household’s budget constraint (see
equation [2.23]). We discuss later some results for specifications that include the goods
cost, b0.

22. We treat the child-rearing cost as proportional to the number of children. The setup cost for a family to have its
first child suggests that there might be a range in which the cost per child diminishes with the number of children.
Eventually, however, the costs would increase more than linearly with the number, because the bearing of more
children implies that the spacing between births gets inconveniently short or that the parents are very old when
they have children.

23. See Galor and Weil (1996) for an emphasis on this element in the context of growth models. Becker, Murphy,
and Tamura (1990) also stress the linkage between human capital and the costs of child rearing.
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The Family’s Budget Constraint We assume that each family member receives the
same wage rate, w. (More realistically, we could allow a dependence of w on age, so that
children would not start immediately to earn wages.) The family’s assets earn the rate of
return r .

Let c and k be the family’s per capita consumption and assets, respectively. (We have,
for convenience, already imposed the closed-economy condition that per capita assets, a,
equals k.) The budget constraint can then be expressed as

k̇ = w + (r − n + d) · k − bnk − c (9.56)

where we used the form for the child-rearing cost, η, from equation (9.55) with b0 set to
zero. We assume, as usual, that each household takes as given the path of the wage rate, w,
and the rate of return, r .24 The change from the standard formulation is the inclusion of the
per capita outlay on child rearing, bnk.

Optimization Conditions The household’s optimization problem is to choose the path of
the control variables c and n to maximize U in equation (9.54). This maximization problem
is subject to the initial assets k(0); the transition equations for the two state variables, N and
k, given by equations (9.53) and (9.56); the inequalities c ≥ 0 and n ≥ 0 (which will never
bind because of the form of the utility function in equation [9.54]); and the usual restriction
that rules out chain-letter behavior for debt (if we allow k < 0).

We can set up the Hamiltonian expression,

J = e−ρt

1 − θ
· {[Nψc · (n − d)φ]1−θ − 1}

+ ν · [w + (r + d) · k − (1 + b) · nk − c] + µ · (n − d) · N (9.57)

where ν and µ are the shadow prices associated with the two state variables, k and N . Since
the restrictions c ≥ 0 and n ≥ 0 will never bind (because the marginal utilities approach
infinity as c and n tend to 0 and d ≥ 0), the household satisfies the usual first-order conditions
obtained from setting ∂ J/∂c = ∂ J/∂n = 0, ν̇ = −∂ J/∂k, and µ̇ = −∂ J/∂ N .25 The results
simplify considerably under log utility, θ = 1, and we concentrate on this case.

24. We assume, however, that the child-rearing cost, η, depends on the household’s own assets, k, rather than on
the economy-wide capital per person. The analysis is somewhat different if η depends only on economy-wide
variables, perhaps through a relation between η and the wage rate.

25. The one possible problem is that children may be so cheap to produce that it would be attractive to borrow
enough to make n arbitrarily large. This difficulty does not arise if the cost parameter b is big enough to ensure
that the variable �—defined later to equal (1 + b) · k/c − φ/(n − d)—is always positive.
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The conditions ∂ J/∂c = 0 and ν̇ = − ∂ J/∂k can be manipulated in the usual way to get
an expression for the growth rate of c:26

ċ/c = (1/θ) · {r − ρ − (n − d) · [1 − ψ · (1 − θ)] − nb + φ · (1 − θ) · ṅ/(n − d)}
This result simplifies in the case of log utility, θ = 1, to

ċ/c = r − ρ − (n − d) − bn (9.58)

When θ = 1, the rate of population growth, n − d, effectively adds to the time-preference
rate, ρ (see note 26 for a comparison with the standard Ramsey model). In addition, the
term bn subtracts from r because a higher k raises child-rearing costs, given by bnk.

We shall find it useful to define a new variable � as follows:

� ≡ (1 + b) · k/c − φ/(n − d)

We can then use the conditions ∂ J/∂c = ∂ J/∂n = 0 to get

µ = e−ρt · Nψ(1−θ)−1 · c1−θ · (n − d)φ(1−θ) · �
If we differentiate this expression for µ with respect to time and use the condition µ̇ =
−∂ J/∂ N to substitute out for µ̇, we eventually get

�̇ = −ψ + (�/θ) · {ρ − (1 − θ) · [r − (1 − ψ) · (n − d) − nb + φ · ṅ/(n − d)]}
If θ = 1, this differential equation simplifies to

�̇ = −ψ + �ρ

which is unstable. Therefore, if �(0) departs from its steady-state value, ψ/ρ, � moves over
time toward ±∞. Since these unstable paths violate the transversality condition associated

26. In the standard Ramsey analysis considered in chapter 2, n is an exogenous constant and b = 0, so that the
growth rate of c is given by

ċ/c = (1/θ) · {r − ρ − (n − d) · [1 − ψ · (1 − θ)]}
The standard analysis also assumes that ψ · (1 − θ), which equals 1 − ε, is unity, so that the formula becomes

ċ/c = (1/θ) · (r − ρ)

The specification ψ · (1 − θ) = 1 (or, equivalently, ε = 0) implies, however, that the marginal contribution of N to
the flow of utility (for given c and n) is negative if θ > 1 and becomes of unbounded magnitude as θ approaches 1.
For that reason, Becker and Barro (1988) and Barro and Becker (1989) dealt only with the case θ < 1. We assume
here that ψ is positive and finite, in which case the marginal contribution of N to the flow of utility is also positive
and finite.
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with N ,27 optimizing behavior dictates that� equalψ/ρ at every point in time. The definition
of � then implies that the fertility rate always satisfies the condition

n = d + φρ · (c/k)

ρ · (1 + b) − ψ · (c/k)
(9.59)

Equation (9.59) indicates that the fertility rate, n, varies one-to-one with the mortality
rate, d , for given values of the parameters φ, ψ , b, and ρ, and for a given value of the variable
c/k. Higher values of φ and ψ raise the marginal utility associated respectively with n and
N (see equation [9.54]) and thereby raise n. A higher value of b increases the cost of child
rearing and tends accordingly to reduce n. A higher value of ρ deters investment (in N )
and therefore tends to lower n.

The variable c/k expresses the ratio of the income effect on the demand for children,
represented by c, to the cost of children, which depends linearly on k through the term
(1 + b) · nk in the budget constraint shown in equation (9.56). Hence, an increase in c/k
goes along with a rise in n. This result means that n moves in the same direction as c/k
during the transition to the steady state.

Transitional Dynamics and the Steady State The dynamic model consists of the expres-
sions for k̇ and ċ/c in equations (9.56) and (9.58) and the relation for n in equation (9.59).
The equations for k̇ and ċ/c involve w and r , which are determined in the usual way by the
production function. We assume, as usual, that labor input, L , and population, N , coincide;
that labor-augmenting technological progress occurs at the constant rate x ≥ 0; and that the
production function has the Cobb–Douglas form,

ŷ = Ak̂α

where 0 < α < 1, k̂ ≡ K/L̂ , and ŷ ≡ Y/L̂ . If capital depreciates at the constant rate δ, the
profit-maximizing behavior of competitive firms implies the usual formulas,

r = αAk̂α−1 − δ, w = (1 − α) · Ak̂α · ext (9.60)

27. The differential equation for � has the general solution,

� = ψ/ρ + [�(0) − ψ/ρ] · eρt

The condition for µ simplifies when θ = 1 to µN = �e−ρt . Substitution of the solution for � into this expression
for µN leads to

µN = e−ρt · (ψ/ρ) + �(0) − ψ/ρ

Therefore, the transversality condition associated with N—limt→∞(µN ) = 0—is satisfied only if �(0) = ψ/ρ.
In this case, �̇ = 0 for all t , and � always equals its steady-state value, ψ/ρ.
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It is convenient to express the system in terms of the transformed variables

χ ≡ c/k and z ≡ Ak̂α−1

where z is the gross average product of capital. Equations (9.56) and (9.58) can then be
used along with equation (9.60) to get the transition equation for χ :

χ̇/χ = −ρ − (1 − α) · z + χ (9.61)

If we substitute for n from equation (9.59) and use equations (9.56) and (9.60), we get
the transition equation for z:

ż/z = −(1 − α) ·
[

z − δ − bd − x − χ − φρχ · (1 + b)

ρ · (1 + b) − ψχ

]
(9.62)

Figure 9.6 uses equations (9.61) and (9.62) to construct a phase diagram in (z, χ) space.
The curves shown correspond to a particular specification of the underlying parameters:

α = 0.75, δ = 0.05, ρ = 0.02, x = 0.02

d = 0.01, b = 1, ψ = 0.2, φ = 0.2
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Figure 9.6
Phase diagram for the fertility model in (z, χ) space. The fertility model exhibits saddle-path stability. In (z, χ)

space, the stable arm is upward sloping. Therefore, if the economy begins with a high gross average product of
capital, z, then z and χ ≡ c/k decline monotonically during the transition.
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The first row contains values that are familiar from previous discussions. In the second
row, we assume a mortality rate, d , of 0.01 per year. The settings for b, ψ , and φ are more
arbitrary, and we will discuss the dependence of the answers on variations in these parame-
ters. In any event, the general appearance of the phase diagram is not very sensitive to these
choices.

The locus for χ̇ = 0 from equation (9.61) is a positively sloped straight line with inter-
cept ρ. This locus is unstable, that is, χ̇/χ rises with χ for a given z.

Equation (9.62) implies that the ż = 0 locus is positively sloped and stable, that is, ż/z
declines with z for a given χ . The relation between χ and z along this locus is the solution
to a quadratic equation, which has two real, positive roots for a range of “reasonable”
parameters. The larger root turns out always to lie above the χ̇ = 0 locus. The locus for
ż = 0 shown in figure 9.6 corresponds to the smaller root.

The intersection of the two loci determines the steady-state values, z∗ and χ∗. Once these
values are known, we can use equation (9.59) to compute n∗. The steady-state interest rate
can be calculated from the relation

r∗ = αz∗ − δ

Figure 9.6 shows that the stable, saddle path is positively sloped in (z, χ) space. Therefore,
if the economy begins with z(0) > z∗ (that is, k̂[0] < k̂∗), z and χ fall monotonically toward
their steady-state positions.

Equation (9.59) implies that n is positively related to χ ≡ c/k along the transition path.
Therefore, the declining path of χ in figure 9.6 corresponds to a declining path of n.
Figure 9.7 shows the relation between n and z during the transition. (Once we know the
relation between χ and z from figure 9.6, we can use the relation between n and χ from
equation [9.59] to determine n as a function of z.) As z decreases, n falls monotonically
toward its steady-state value. That is, with a given mortality rate, d, the fertility rate declines
steadily as the economy develops.

The result that fertility falls as per capita product rises accords with empirical findings
for countries. The one exception in the data is that fertility and per capita GDP seem to be
positively related at extremely low levels of per capita GDP. That is, the relation for very
poor countries appears to be consistent with Malthus’s theory. This initially rising segment
of the relation between fertility and per capita product tends to appear in the theory if we
introduce a goods cost of child rearing along with the cost that rises linearly with k. The
goods cost introduces a force—an income effect—that generates a positive relation between
fertility and per capita product. Moreover, since the goods cost is relatively more important
in poor countries, the net positive relation between fertility and per capita product tends to
appear only at low levels of per capita product.
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Figure 9.7
Transitional behavior of the fertility rate. If the economy begins with a high gross average product of capital,
z, then, as z declines—along the saddle path shown in figure 9.6—the fertility rate, n, falls toward its steady-state
value. Quantitatively, for the assumed parameter values, if z begins at 0.3 (corresponding to a rate of return of
0.25), n starts at 0.023 and falls gradually toward its steady-state value of 0.018.

We can allow for a goods cost of child rearing by letting the intercept b0 in equation (9.55)
be nonzero. Although our analytical procedure does not go through when the expression for
the child-rearing cost contains a positive intercept, we can use numerical methods to work
out the dynamics of this revised model. Specifically, we provide detailed results for the case
b0 = 50. If we maintain the parameter values, including b = 1, that we used to construct
figures 9.6 and 9.7, a value b0 = 50 means, when n = 0.02 and k̂ is one-tenth of k̂∗, that the
goods cost of raising a child is about one-sixteenth of total output (if the parameter A in the
production function is set to equal 1).

We find numerically that the specification η = 50 + bk leads to the phase diagram in
(z, χ) space shown in figure 9.8.28 The associated relation between n and z appears in
figure 9.9. The interesting feature of figure 9.9, in comparison with figure 9.7, is that n now
rises as z falls for very high values of z (that is, for very low values of k̂). Thus the extended
model can be consistent with the observation that fertility rises with per capita product for
very poor countries but falls with per capita product in the main range of experience.

28. These results assume that the goods cost, which starts at 50, rises at the rate x = 0.02 per year along with
exogenous technological progress.
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Figure 9.8
Phase diagram in (z, χ) space with a goods cost of child rearing. This figure modifies figure 9.6 to include
a goods cost of child rearing. If the economy begins with a high gross average product of capital, z, then z and
χ ≡ c/k still decline monotonically during the transition.

Table 9.1 returns to the specification with b0 = 0 to show how the steady-state values n∗

and r∗ depend on the settings of the parameters φ, ψ , d, and b. For the baseline parameters,
the results are n∗ = 0.018 and r∗ = 0.067. Increases in φ or ψ raise the benefit from children
and thereby increase n∗. For example, n∗ rises to 0.030 if φ or ψ increase to 0.4. The value
n∗ falls to 0.014 if φ declines to 0.1 and to 0.017 if ψ decreases to 0.1. Since ċ/c = x in
the steady state, we can use equation (9.58) to think about the relation between n∗ and r∗.
For given values of ρ, b, and d , r∗ moves by the factor 1 + b in the same direction as n∗.
Therefore, table 9.1 shows that an increase in φ or ψ leads to a rise in r∗.

For a given c/k, equation (9.59) shows that n moves one-to-one with the mortality rate,
d. Because an increase in d turns out to raise (c/k)∗, the full effect of d on n∗ is slightly
greater than one-to-one. For example, if d increases from 0.01 to 0.02, table 9.1 shows that
n∗ rises from 0.0183 to 0.0291. Since the change in the rate of population growth, n∗ − d,
is small, equation (9.58) implies that r∗ still moves in the same direction as n∗, roughly by
the factor b. The table shows accordingly that a rise in d leads to an increase in r∗.

An increase in the cost parameter b leads to a decline in n∗. For example, table 9.1 shows
that if b rises to 2, n∗ decreases to 0.015, whereas if b falls to 0.5, n∗ increases to 0.023.
Since a rise in b is accompanied by a reduction of n∗, equation (9.58) suggests that the
effect on r∗ would be ambiguous. In the range considered in the table, the net effect of b
on r∗ turns out to be positive.
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Transitional behavior of the fertility rate with a goods cost of child rearing. This figure modifies figure 9.7 to
include a goods cost of child rearing. If the economy starts with a high gross average product of capital, z, then, as
z declines along the saddle path shown in figure 9.8, the fertility rate can now adjust in a nonmonotonic fashion.
In contrast with figure 9.7, the fertility rate can rise for a while and then decline later to approach its steady-state
value. This behavior corresponds to the tendency of fertility rates to rise with per capita income for the poorest
countries but to fall with per capita income in the main range of experience.

Table 9.1
Effects of Parameter Variations on n∗ and r∗

Parameter Specification n∗ r∗

Baseline 0.0183 0.067
φ = 0.4 0.0300 0.090
φ = 0.1 0.0139 0.058
ψ = 0.4 0.0300 0.090
ψ = 0.1 0.0168 0.064
d = 0.02 0.0291 0.078
d = 0 0.0076 0.055
b = 0.5 0.0226 0.064
b = 2 0.0152 0.076

Note: The baseline specification is α = 0.75, δ = 0.05, ρ = 0.02, x = 0.02, d = 0.01, b = 1, ψ = 0.2, φ = 0.2. The
table shows the effect on the steady-state values n∗ and r∗ when the designated parameter is changed to the value
indicated while all other parameters remain at their baseline settings.
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9.3 Labor/Leisure Choice

We have assumed, thus far, a fixed relation between labor supply and population; that is,
we have neglected changes in labor-force participation or in work hours and effort. In this
section we let labor supply vary for a given population by allowing for a labor/leisure choice.
The changes in labor supply in this model represent some combination of variations in labor-
force participation, work hours, and work effort, but the analysis does not distinguish these
different components of labor supply.

We carry out the analysis within the Ramsey framework by introducing leisure as an
additional argument of the utility function. We use a specification of preferences that allows
for transitional variations in labor supply but guarantees that the fraction of time devoted
to work effort approaches a constant in the steady state. The model, therefore, allows us to
study the transitional behavior of work effort and also to consider how changes in various
parameters affect the steady-state quantity of work effort.

Population, denoted by N (t), now has to be distinguished from labor input, L(t). We
return to the setting in which N (t) grows exogenously at the constant rate n, but L(t) can
now vary for given N (t). Define �(t) to be the typical person’s intensity of work effort at
time t , so that

L(t) ≡ �(t) · N (t) (9.63)

If �(t) is the fraction of time spent working, it can be measured with available data and
would have a natural upper bound of 100 percent. In contrast, if �(t) allows for variations in
work effort, it would not be readily measurable and would not have an obvious upper bound.

We now modify the formulation of household utility from equation (2.1) to include a
disutility of work effort:

U =
∫ ∞

0
u[c(t), �(t)]e−(ρ−n)t dt (9.64)

where the partial derivatives satisfy the usual concavity conditions, including uc > 0, u� < 0,
ucc < 0, and u�� ≤ 0.29 If the wage rate, w, is the amount paid per unit of labor input, the

29. This formulation assumes that work effort, �, enters negatively into a utility function. Another approach,
due to Becker (1965), assumes that time not spent at market work is used for home production. The important
distinguishing feature of this alternative approach is that the productivity of home work is affected by capital
accumulation and technological progress. The allocation of time between market and home work then depends
on relative productivity trends and on the evolution of relative demands for market- and home-produced goods.
See Greenwood and Hercowitz (1991) and Benhabib, Rogerson, and Wright (1991) for the use of this approach
in dynamic contexts.
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household’s budget constraint is modified from equation (2.2) to

ȧ = w� + (r − n) · a − c (9.65)

We can proceed as usual by setting up the Hamiltonian expression,

J = u(c, �) · e−(ρ−n)t + ν · [w� + (r − n) · a − c]

The maximization problem is the same as that in chapter 2, except that uc, the marginal
utility of consumption, may depend on �, and we have to add a new first-order condition,
∂ J/∂� = 0.

The first-order condition that corresponds to equation (2.7) from the Ramsey model is

r = ρ −
[

ucc · c

uc

]
· (ċ/c) −

[
uc� · �

uc

]
· (�̇/�) (9.66)

Note that we get the original formula from chapter 2 if uc� = 0. If uc� > 0, a higher value
of �̇/� effectively subtracts from the rate of time preference, ρ, because households prefer
to consume a lot in the future when � will be high, that is, when they have little leisure.
This effect is reversed in the introspectively more plausible case in which consumption and
leisure are complements in the sense that uc� < 0.

The new first-order condition, which reflects the substitution between consumption and
leisure at a point in time, is

−u�/uc = w (9.67)

We would like equation (9.67) to be consistent with the empirical regularity that hours
worked per worker—which we take as a rough proxy for �—typically decline at early
stages of economic development but tend eventually to level off (see the discussion in
Barro, 1997, chapter 2). In particular, we would like the model to have a steady state in
which � is constant.

In the steady state of the Ramsey model, w and c grow at the same rate, x . Therefore,
we want to use a form of the utility function for which equation (9.67) implies that �

is constant, at least asymptotically, when w and c grow at the same rate. We also want
to retain the property that the model has a steady state in which c grows at a constant
rate. The appendix 9A (section 9.4) shows that these conditions require the utility function
asymptotically to take the form

u(c, �) = c1−θ · exp[(1 − θ) · ω(�)] − 1

1 − θ
(9.68)
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where θ > 0, ω′(�) < 0, and ω′′(�) ≤ 0.30 This formulation corresponds to the one used by
King, Plosser, and Rebelo (1988a) and Rebelo (1991).31 The sign of uc� depends on the
magnitude of θ : uc�

<
>

0 as θ <
>

1. The standard isoelastic function used in equation (2.8)
is the special case in which ω(�) = 0. This specification is, however, inconsistent with the
choice of a finite amount of work effort.

If we use equation (9.68) to compute u� and uc, the first-order condition in equation (9.67)
implies

−ω′(�) = w/c (9.69)

The algebra for the rest of the model turns out to be cumbersome for general θ , but we can
bring out the main results by considering the special case in which θ = 1. The application
of l’Hôpital’s rule to equation (9.68) shows that the limit of u(c, �) as θ approaches 1 is

u(c, �) = log(c) + ω(�) (9.70)

That is, if utility is logarithmic in c, the function is separable between c and �, so that
uc� = 0. If the utility function takes the form of equation (9.70), the first-order condition in
equation (9.66) reduces to the familiar expression for the growth rate of c:

ċ/c = r − ρ (9.71)

We now define the variables per unit of effective labor to include the effect from variable
work effort, �; that is,

k̂ ≡ K/(�Next )

ĉ ≡ C/(�Next )

If we assume a closed economy and introduce firms in the usual way, equation (9.71) and
the conditions r = f ′(k̂) − δ and a = k imply

˙̂c/ĉ = f ′(k̂) − (δ + ρ + x) − �̇/� (9.72)

˙̂k/k̂ = f (k̂)/k̂ − (x + n + δ) − ĉ/k̂ − �̇/� (9.73)

These results differ from the standard ones (equations [2.23] and [2.24]) only because �̇/�

30. These properties imply uc > 0, u� < 0, and ucc < 0. The condition u�� ≤ 0 requires ω′′(�) + (1 − θ) · [ω′(�)]2 ≤
0, an inequality that must hold if θ ≥ 1.

31. Rebelo (1991, p. 513) shows that another alternative is to specify utility as u(c, �k), where u(·) is homogeneous
of some positive degree, and k should now be thought of as human capital per person. The term �k can then be
viewed as forgone leisure time, adjusted for a person’s quality, as in the formulation used by Becker (1965) and
Heckman (1976).
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adds to the growth rate of effective labor input. Since �̇/� = 0 in the steady state, the formulas
for k̂∗ and ĉ∗ are the same as those in the Ramsey model.

We now assume that the production function is Cobb–Douglas, f (k̂) = Ak̂α , and that the
disutility of work takes a constant-elasticity form:

ω(�) = −ζ · �1+σ

where ζ > 0 and σ ≥ 0. Since the wage rate is given in the Cobb–Douglas case by w =
(1 − α) · Ak̂α · ext , equation (9.69) becomes

ζ · (1 + σ) · �1+σ = (1 − α) · Ak̂α/ĉ (9.74)

(Note that the replacement of c by ĉ on the right-hand side brings in the additional factor of
� on the left-hand side.) Since ŷ is proportional to k̂α , equation (9.74) implies that a high
value of �—little leisure—goes along with a low value of c/y. [This relation holds for a
general form of ω(�) if ω′(�) > 0 and ω′′(�) ≥ 0.] Equation (9.74) implies that the growth
rate of � is given by

�̇/� =
(

α

1 + σ

)
· ( ˙̂k/k̂) −

(
1

1 + σ

)
· ( ˙̂c/ĉ) (9.75)

If we use the Cobb–Douglas forms for f ′(k̂) and f (k̂) and the expression for �̇/� from
equation (9.75), then equations (9.72) and (9.73) lead, after some algebra, to the dynamic
system for k̂ and ĉ:

˙̂k/k̂ = Ak̂α−1 −
(

1

α + σ

)
· [σ · (ĉ/k̂) + (1 + σ) · (x + δ) + ρ + σn] (9.76)

˙̂c/ĉ = αAk̂α−1 +
(

1

α + σ

)
· [α · (ĉ/k̂) − (1 + σ) · (x + δ) − (1 + α + σ) · ρ + αn]

(9.77)

These results reduce to the standard formulas shown in equations (2.36) and (2.37) if θ = 1
(to get the log-utility specification that we have assumed here) and σ approaches infinity.
An infinite σ deters any variation in � over time and therefore reproduces the results from
the model with fixed labor supply.

We already mentioned that the steady-state values of k̂ and ĉ are the same as those in the
Ramsey model, a result that can be verified by setting equations (9.76) and (9.77) to zero.
These steady-state values can be expressed as

r∗ = αA · (k̂∗)α−1 − δ = ρ + x

ĉ∗/k̂∗ = (ρ + δ + x)/α − (n + x + δ)
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We can substitute these values into equation (9.74) to determine the steady-state level of
work effort, �∗:

�∗ =
{[

1 − α

ζ · (1 + σ)

]
·
[

ρ + δ + x

ρ + δ + x − α · (n + x + δ)

]}1/(1+σ)

(9.78)

The transitional dynamics of k̂ and ĉ implied by equations (9.76) and (9.77) can be
analyzed, as usual, with a phase diagram in (k̂, ĉ) space. The system is again saddle-path
stable, and we leave the construction of the phase diagram as an exercise.

If we log-linearize equations (9.76) and (9.77) around the steady state in the usual manner,
the formula for the speed of convergence to the steady state turns out to be

2β = ρ − n −
{

(ρ − n)2 +
[

4 · (1 − α) · (1 + σ)

α + σ

]
· (ρ + δ + θx)

·
[
ρ + δ + x

α
− (n + x + δ)

]}1/2

(9.79)

This formula reduces to the standard Ramsey result (equation [2.34] with θ = 1) if we let
σ approach infinity.

If we use our familiar parameter values (α = 0.75, x = 0.02, n = 0.01, δ = 0.05, ρ = 0.02),
then the value of β implied by equation (9.79) is 0.030 if σ = 0. As σ rises above 0, β

declines and approaches the Ramsey value—which is 0.025 with the assumed parameter
values—as σ tends to infinity. Thus the inclusion of a labor/leisure choice raises the speed
of convergence but only to a moderate extent.

The reason that the convergence coefficient is somewhat higher with variable labor supply
is that � declines monotonically during the transition to the steady state; that is, in this model,
poor people (who expect to be richer later) work harder than rich people. We can prove this
result by substituting for ˙̂k/k̂ and ˙̂c/ĉ from equations (9.76) and (9.77) into the formula for
�̇/� in equation (9.75) to get (after simplifying)

�̇/� =
(

α

α + σ

)
· (χ∗ − χ)

where χ ≡ ĉ/k̂. It is possible to use the method developed in appendix 2B to show that, if
k̂(0) < k̂∗, χ falls monotonically during the transition and, hence, χ > χ∗ applies through-
out. (We leave this demonstration as an exercise.) This result implies �̇/� < 0, that is, � falls
monotonically from its initial value, �(0), to the steady-state value, �∗. The model, there-
fore, accords with the empirical observation that work effort declines during early stages
of economic development.
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9.4 Appendix: The Form of the Utility Function
with Consumption and Work Effort

We study here the required form of the utility function, u(c, �), in the model with a
labor/leisure choice. We want the economy to have a steady state in which ċ/c and �

are constants. Equation (9.66) implies accordingly that the elasticity of the marginal utility
of consumption must be constant (just as in the Ramsey model):

ucc · c

uc
= −θ, a constant (9.80)

The first-order condition in equation (9.67) can be written as

w

c
= −u�

c · uc

We are looking for a steady state in which w and c grow at the same rate, so that w/c is
constant. Therefore, if we take logs of the right-hand side and differentiate with respect to
time, in the steady state,

(u�c · ċ + u�� · �̇)/u� − (ucc · ċ + uc� · �̇)/uc − ċ/c = 0

Since �̇ = 0 and ċ/c is generally nonzero, this condition can be rewritten as

c · u�c

u�

= 1 + c · ucc

uc
= 1 − θ (9.81)

Rewrite equation (9.81) as

1

u�

· ∂(u�)

∂c
= 1 − θ

c

and integrate with respect to c to get

log(u�) = (1 − θ) · log(c) + (function of �)

Integration of this result with respect to � yields

u(c, �) = c1−θ · ϕ(�) + ψ(c) (9.82)

where ϕ and ψ are, as yet, arbitrary functions.
Equations (9.80) and (9.82) imply

ucc · c

uc
= −θ · (1 − θ) · c−θ · ϕ(�) + c · ψ ′′(c)

(1 − θ) · c−θ · ϕ(�) + ψ ′(c)
= −θ
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and the function ψ(c) must be consistent with this equation. Therefore, ψ(c) must satisfy

c · ψ ′′(c) = −θ · ψ ′(c)

If we integrate this condition twice, we get, aside from multiplicative and additive constants,

ψ(c) = c1−θ if θ �= 1

ψ(c) = log(c) if θ = 1

We can substitute the result for ψ(c) into equation (9.82) to get the required form of
u(c, �). One way to write the result, as in equation (9.68), is

u(c, �) = c1−θ · exp[(1 − θ) · ω(�)] − 1

1 − θ
(9.83)

In this form, θ > 0 and ω′(�) < 0 guarantee uc > 0, u� < 0, and ucc < 0. The condition
u�� ≤ 0 requires ω′′(�) + (1 − θ) · [ω′(�)]2 ≤ 0, which must hold if ω′′(�) ≤ 0 and θ ≥ 1.
An application of l’Hôpital’s rule shows that the function in equation (9.83) approaches
log(c) + ω(�) as θ approaches 1.

9.5 Problems

9.1 Migration in neoclassical growth models

a. Under what circumstances does the potential for migration raise the speed of convergence
in the Solow–Swan model? What about in the Ramsey model? What are the sources of the
effects on convergence?

b. Might a government of a country that is receiving immigrants find it desirable to restrict
the number that come? Might the government wish to charge a fee for immigration? Would
the fee tend to vary with the immigrant’s quantity of human capital?

c. Redo part b for the case of a country that is sending emigrants.

9.2 A model of rural-urban migration (based on Mas-Colell and Razin, 1973).
Consider an economy with two productive sectors. The rural or agricultural sector, denoted
A, produces output only for consumption. The urban or industrial sector, denoted I , produces
output for consumption and investment. The production functions are Cobb–Douglas:

YA = (K A)α · (L A)1−α; YI = (K I )
λ · (L I )

1−λ

where 0 < α < 1, 0 < λ < 1. There is no technological progress.
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Each person inelastically supplies 1 unit of labor, and total population, L = L A + L I ,
grows at the constant rate n ≥ 0. The natural rates of population growth are the same in the
rural and urban areas. Capital, K = K A + K I , can move costlessly across sectors. People
can move across sectors at some cost. The rate of migration to the urban sector is assumed
to be positively related to the wage-rate differential:

µ̇/µ = b · (wI − wA)/wA

where b > 0 and µ is the proportion of the population employed in the urban sector.
People save a constant fraction s of income and spend the fraction η of income on

industrial products for consumption purposes. Capital does not depreciate. The price of the
industrial good in units of the agricultural good is denoted by p.

a. Derive the formulas at each point in time for the capital rental rate R, the wage rates wA

and wI , and the relative price of industrial output p. What is the fraction of total capital
employed in the urban sector?

b. Construct a phase diagram in (k, µ) space, where k ≡ K/L . What are the steady-state
levels, k∗ and µ∗? Is the steady state stable?

c. Suppose that the economy begins with µ < µ∗. Show that the migration rate into the
urban sector decreases as the economy moves toward its steady state. Characterize the
behavior of the relative price, p, and the growth rate of capital along the transition path.
Does the model exhibit a convergence property?

9.3 Growth in an optimizing model of migration (based on Braun, 1993). Consider
Braun’s model of migration, which we presented in section 9.1.3. Toward the end of that
section, we mentioned an extension to allow for the dynamics of the world economy.
Assume that the framework of section 9.1.3 applies, including the production function in
equation (9.27), except that the world now consists of only two economies, country 1 and
country 2. The natural resources in each country, R1 and R2, are fixed. The populations of
each country are denoted by L1 and L2, where L = L1 + L2 is world population. Natural
population growth rates are 0 in each economy, and the initial conditions are such that the
flow of migrants is from country 2 to country 1. The cost of moving from country 2 to
country 1 is still given by equation (9.34), except that wworld is replaced by w2. The moving
cost for each migrant again approaches 0 as the number of migrants goes to 0. Capital is
perfectly mobile across the economies. The total capital stock, K = K1 + K2, is allocated
across the economies to equalize the net marginal products of capital at each point in time.
The world rate of return, r—which can now vary over time—equals the net marginal product
of capital. Assume for simplicity that technological progress and depreciation are absent.
Consumers in each country have Ramsey preferences with infinite horizons, as assumed in
chapter 2.
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a. Work out the dynamic system in terms of the variables k, L2, B, and c, where B is the
present value of the benefit from a permanent move from country 2 to country 1 (an analogue
to equation [9.31]) and c ≡ C/L is the world’s average consumption per person. Note that
the state variables for the system are k and L2; for given L , the variable L2 determines the
allocation of population between the two countries. (Hint: people who start in country 1
never move, and the path of consumption, c1, is the same for each person. For people who
start in country 2, the path of consumption, c2, must be the same regardless of when they
move to country 1 or whether they ever move. These considerations, along with the standard
Ramsey formula for consumption growth, determine the behavior of c in relation to the rate
of return, r .)

b. What are the steady-state values of k, L2, and B?

c. Consider a log-linear approximation of the dynamic system in the neighborhood of the
steady state.

(i) Observe that, close to the steady state, a small change in L2 has a negligible effect on
wage rates in the two countries, world output, and the rate of return. Use these facts to break
the four-dimensional system into two separate parts: one that applies to the world variables,
k and c, and another that applies to the migration variables, L2 and B.

(ii) Find the speed of convergence, β, for the world variables and relate the answer to the
solution of the Ramsey model from chapter 2.

(iii) Find the speed of convergence, µ, for L2. Show how the convergence speed for per
capita output in one country, y1, depends on β and µ (see equation [9.45]).

9.4 Endogenous mortality. Consider the model of fertility choice in section 9.2.2.
Suppose that the mortality rate, d , can be influenced by family or public expenditures on
health.

a. Assume that d depends on the household’s current flow of expenditures on health.
Determine the optimal path of these expenditures. How does d evolve as the economy
develops? What are the implications for the behavior of the fertility rate, n, and the capital
intensity, k?

b. Assume now that d depends on public health expenditures per capita. Suppose that the
ratio of this spending to total output is the constant g and that this spending is financed by a
lump-sum tax. How do the paths of the fertility rate, n, and the capital intensity, k, depend
on the choice of g? What is the government’s optimal choice of g? Would it be preferable
to allow g to vary over time?

9.5 Transitional dynamics with a labor/leisure choice. In section 9.3 we worked out
the dynamic conditions for a model with a labor/leisure choice. For the case of log utility
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and a Cobb–Douglas production function, the equations for the growth rates of k̂ and ĉ are
given in equations (9.76) and (9.77). Equation (9.74) relates the choice of work effort, �, to
the variables k̂ and ĉ.

a. Construct the phase diagram in (k̂, ĉ) space.

b. If k̂(0) < k̂∗, describe the transition paths for k̂, ĉ, and �.

c. Verify that the speed of convergence, β, in the neighborhood of the steady state is given
by equation (9.79). Why is the speed of convergence higher than that in the standard Ramsey
model (equation [2.34])?





10 Growth Accounting

Growth accounting is an empirical methodology that allows for the breakdown of observed
growth of GDP into components associated with changes in factor inputs and in production
technologies. Given the impossibility of measuring technological progress directly, the
growth rate of technology is measured “indirectly” as the growth rate in GDP that cannot be
accounted for by the growth of the observable inputs, that is, as “residual growth.” Usually,
the accounting exercise is viewed as a first step in the analysis of fundamental determinants
of economic growth because it does not attempt to explain the forces that drive the growth
rates of each of the inputs or factor shares. The final step involves the relations of factor
growth rates, factor shares, and technological change (the residual) to elements such as
government policies, household preferences, natural resources, initial levels of physical and
human capital, and so on. The growth-accounting exercise can be particularly useful if the
fundamental determinants that matter for factor growth rates are substantially independent
from those that matter for technological change.

The basics of growth accounting were presented in Solow (1957), Kendrick (1961),
Denison (1962), and Jorgenson and Griliches (1967). Griliches (1997, part 1) provides an
overview of this intellectual history, with stress on the development of the Solow residual.

10.1 Standard Primal Growth Accounting

10.1.1 Basic Setup

The analysis starts from a standard production function, which we can write as

Y = F(T, K , L) (10.1)

where T is the level of technology, K is the capital stock, and L is the quantity of labor.
Capital and labor can be disaggregated among types or qualities as in Jorgenson and
Griliches (1967). The production function makes clear that GDP can grow only if there
is growth in productive inputs, including the level of technology.

The growth rate of output can be partitioned into components associated with factor accu-
mulation and technological progress. Taking logarithms of equation (10.1) and derivatives
with respect to time we get

Ẏ/Y = g +
(

FK K

Y

)
· (K̇/K ) +

(
FL L

Y

)
· (L̇/L) (10.2)

where FK , FL are the factor (social) marginal products and g—the growth due to techno-
logical change—is given by

g ≡
(

FT T

Y

)
· (Ṫ /T ) (10.3)
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Equation (10.2) says that the growth rate of GDP can be decomposed into the growth rate of
the three inputs: capital, labor, and technology. In particular, it says that the decomposition
is a weighted average of the growth rates of the three inputs, where the weights are given
by the relative contributions of each of the factors to GDP. (These contributions, in turn, are
the social marginal products times the amount of input divided by GDP.) This formulation
includes Hicks-neutral and labor-augmenting technological progress as special cases. If the
technology factor appears in a Hicks-neutral way, so that F(T, K , L) = T · F̃(K , L), then
FT T = Y and g = Ṫ /T . If the technology factor appears in labor-augmenting form, so that
F(T, K , L) = F̃(K , T L), then FT T = FL L and g = ( FL L

Y ) · (Ṫ /T ).
We argue in the next section that the growth rates of Y , K , and L can be computed em-

pirically (although not without difficulty!). Imagine for now that we are able to compute the
social marginal products, FK and FL (and we argue next that, under some circumstances,
these can be approximated by factor prices). The part of equation (10.2) that cannot be
measured directly is g. However, if all other components of equation (10.2) can be es-
timated empirically, we can compute g from the others. Specifically, the contribution of
technological progress to growth, g, can be calculated from equation (10.2) as a “residual”
or difference between the actual growth rate of GDP and the part of the growth rate that can
be “accounted for” by the growth rate of capital and labor:

g = Ẏ/Y −
(

FK K

Y

)
· (K̇/K ) −

(
FL L

Y

)
· (L̇/L) (10.4)

Notice that, to estimate g empirically, we need to know the social marginal products, FK

and FL , but these values would typically not be measurable directly. In practice, researchers
typically assume that the social marginal products can be measured by observed factor
prices. If the factors are paid their social marginal products, so that FK = R (the rental price
of capital) and FL = w (the wage rate), then FL L = wL , which is the total amount of wages
paid in the economy (the wage bill). Hence, FL L

Y = wL
Y is the fraction of GDP used to pay

wages, a fraction known as the labor share, which we denote by sL . Similarly, the ratio
FK K

Y = RK
Y is the fraction of GDP used to rent capital, a fraction known as the capital share,

which we denote by sK . Using this notation, the estimation of the rate of technological
progress can be rewritten as

ĝ = Ẏ/Y − sK · (K̇/K ) − sL · (L̇/L) (10.5)

In the Cobb–Douglas case, the factor shares would be constant over time (and would
correspond to the exponents in the production function). However, the present analysis is
more general in that the shares are allowed to vary over time.

The value ĝ is often described as an estimate of total factor productivity (TFP) growth.
This formulation was first presented by Solow (1957), so the value ĝ is also sometimes
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called the Solow residual. Since the method just described relies on the growth rates of
the quantities of inputs, the label primal is sometimes attached to TFP growth or to Solow
residual. This labeling distinguishes this approach from a price-based method (which will
be described in the next section), which is labeled as dual.

If all the income associated with the gross domestic product, Y , is attributed to capital
and labor, then the condition sK + sL = 1—or Y = RK + wL—must hold.1 In this case,
the computation of the residual simplifies to

ĝ = Ẏ/Y − sK · (K̇/K ) − (1 − sK ) · (L̇/L) (10.6)

Equation (10.6) can also be rewritten in per capita terms as

ĝ = ẏ/y − sK · (k̇/k) (10.7)

where y ≡ Y/L and k ≡ K/L are quantities per unit of labor.
Although the continuous-time formulation in equation (10.6) is useful conceptually, it

has to be modified empirically to implement on discrete-time data. Thörnqvist (1936) dealt
with this problem by measuring the growth rate between two points in time, t and t + 1,
by logarithmic differences and by using as weights the arithmetic averages of the factor
shares at times t and t + 1. With this approach, the TFP growth rate is approximated in the
Hicks-neutral case by

log[T (t + 1)/T (t)] ≈ log[Y (t + 1)/Y (t)] − s̄K (t) · log[K (t + 1)/K (t)]

− [1 − s̄K (t)] · log[L(t + 1)/L(t)] (10.8)

where s̄K (t) ≡ [sK (t)+ sK (t + 1)]/2 is the average share of capital for periods t and t + 1.2

If Hicks neutrality does not hold, equation (10.8) can still be used to approximate the
contribution of technological progress to growth.

1. The equation of output, Y , to total factor income is consistent with equality between the factor prices and
marginal products if the production function, F(·), exhibits constant returns to scale in K and L—as is true for
a neoclassical production function—so that Y = FK K + FL L holds. In an international context, some net factor
income may accrue to foreign-owned factors, and RK + wL would include this net factor income.

2. Equation (10.8) is only an approximation if the production function takes a general neoclassical form. Diewert
(1976) showed, however, that the equation holds exactly if the production function has the translog specification:

log(Y ) = α0 + αL · log(L) + αK · log(K ) + αt t + (βK K /2) · (log[K ])2

+ (βL L/2) · (log[L])2 + (βt t/2) · t2 + βK L · log(K ) · log(L)

+ βK t · log(K ) · t + βLt · log(L) · t

where the α’s and β’s are constants. To ensure constant returns to scale, the parameters must satisfy the restriction

βK K + βK L = βL L + βK L = βK t + βLt = 0

We leave the proof of Diewert’s proposition as an exercise.
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10.1.2 Measuring Inputs

Capital The practical implementation of the ideas sketched in the previous section re-
quires measuring the growth rate of inputs as well as the shares of capital and labor. Ideally,
we would use the flow of services from physical capital as a measure of capital input. For
example, we would calculate the amount of “machine hours” used in the production pro-
cess during period t . Since the available data do not usually permit this measurement, the
typical procedure calculates the quantity of physical capital of a particular type and then
assumes that the flow of services is proportional to the stock. Sometimes attempts are made
to distinguish the outstanding stock of capital from the portion that is currently utilized in
production.

Measures of the stock of physical capital come from cumulations of figures on gross
physical investment along with estimates of depreciation of existing stocks. This approach,
termed the perpetual-inventory method, considers that the capital stock available in period
t + 1, K (t + 1), is the sum of the capital stock left over from period t—which is the capital
from the previous period minus depreciation, K (t) − δ · K (t)—plus the capital purchased
during the period or investment, I (t):

K (t + 1) = K (t) + I (t) − δ · K (t) (10.9)

where δ is the constant depreciation rate.3 If data on I (t) are available and δ is known (often
an unrealistic assumption), the only other ingredient required to implement equation (10.9)
is the initial stock of capital, K (0). One way to measure K (0) is to obtain a direct estimate of
the stock of capital outstanding in a benchmark year. Another procedure is to make a rough
guess about K (0) and then use equation (10.9) to calculate K (t) in subsequent years. The
estimated stocks of capital during the first few years are sensitive to the initial guess about
K (0) and are, therefore, unreliable. However, as K (0) is depreciated away, the estimated
stocks become progressively more accurate. With this method, it is necessary to have data
on I (t) that substantially predate the interval over which the constructed series on K (t) is
to be used.

Labor The labor input can increase if the number of hours worked in a given period
increases or if the quality of the workers increases. When measuring changes in hours, it is
important to take into account changing labor-force participation rates, as well as the rates
of unemployment and hours worked per worker.

3. This approach assumes that the contribution of each machine to the overall value of the capital stock equals
the machine’s replacement cost. In the language of section 3.6, this formulation neglects adjustment costs for
investment and assumes, therefore, q = 1.
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Qualities of Inputs Early applications of the growth-accounting methodology used a
weighted sum of the growth rate of capital and the growth rate of hours worked. The weights
equaled the shares of each input in total income and were often assumed to be constant over
time. The subtraction of the weighted sum of input growth rates from the growth rate of
aggregate output then yielded an estimate of the TFP growth rate. These studies, such as
Solow (1957) and Denison (1962, 1967), usually found large residuals. In other words, a
substantial fraction of the growth rate of aggregate output was not accounted for by the
growth rates of measured inputs, and, consequently, a substantial role was assigned to
technological progress.

Jorgenson and Griliches (1967) showed that a substantial fraction of the Solow residual
could be explained by changes in the quality of inputs. For example, improvements in the
quality of the labor force reflect increases in average years of schooling and better health.
For given quantities of capital and worker hours, improvements in the quality of labor
raise output. But if labor input is measured only by worker hours, the unmeasured quality
improvements show up as TFP growth. Unmeasured improvements in the quality of capital
have similar effects.

To take improvements in the quality of labor into account, worker hours can be disag-
gregated into many different categories based on schooling, experience, gender, and so on
(see Jorgenson, Gollop, and Fraumeni, 1987, for a detailed discussion and implementation
of this approach). Each category is weighed in accordance with its observed average wage
rate, the usual proxy for the marginal product of labor. For example, if persons with college
education have higher wage rates (and are presumably more productive) than persons with
high school education, then an extra worker with a college education accounts for more
output expansion than would an extra worker with a high school education.

In this approach, the overall labor input is the weighted sum over all categories, where
the weights are the relative wage rates. For a given total of worker hours, the quality of the
labor force improves—and, hence, the measured labor input increases—if workers shift
toward the categories that pay higher wage rates. For example, if the fraction of the labor
force that is college educated increases and the fraction with no schooling declines, then
the total labor input rises even if the aggregate amount of worker hours does not change.

The allowance for quality change in the capital stock also requires a disaggregation into
many components. The aggregate measure of capital input is the weighted sum over all
types, where the weights are the relative rental rates.4 To compute the rental rates, the usual
assumption is that all investments yield the same rate of return. Under perfect foresight, the

4. Feenstra and Markusen (1995) extend this procedure to allow for the introduction of new types of capital goods.
In chapter 6, recall that technological progress took the form of increases in the number of product varieties.
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rental rate of capital is given by the arbitrage condition,

Ri (t) = [1 + r(t)] · Pi (t) − (1 − δi ) · Pi (t + 1) (10.10)

where Ri (t) is the rental rate on the capital good, Pi (t) is the price of the capital good,
δi is the depreciation rate, and r(t) is the economy-wide real interest rate. The hope is to
define categories of capital goods that are homogeneous with respect to Pi (t) and δi . In
practice, however, new varieties of a given category of goods tend to have higher quality
than old ones. The usual failure to take this quality change fully into account leads to an
underestimate of the growth of the capital stock (and also to an understatement of the flow
of current output).

Equation (10.10) shows that, for given Pi (t), the source of variation in rental rates is the
rate of depreciation, δi . Other things equal, short-lived capital has a higher rental rate than
long-lived capital. In this sense, a shift from long-lived to short-lived capital looks like an
improvement in the “quality” of capital.

10.1.3 Results from Growth Accounting

Table 10.1 reports growth-accounting relationships for a number of countries over different
time periods. The results come from four different studies, all of which adjust for changes
in the quality of inputs by using the methodology of Jorgenson and Griliches (1967). In the
table, the growth rate of real GDP is decomposed into contributions from the growth rates
of capital and labor and a residual for TFP growth.

Panel A of table 10.1, from Christensen, Cummings, and Jorgenson (1980), covers
Canada, France, Germany, Italy, Japan, the Netherlands, the United Kingdom, and the
United States for the period 1947–73. The annual growth rates of TFP for these countries
were substantial, ranging from 1.4 percent for the United States to 4.0 percent for Japan.
TFP growth accounts for more than one-third of the overall growth rate of real GDP in all
of the countries.

Panel B of the table, from Jorgenson and Yip (2001), reports the decomposition of growth
into the same three categories for the same OECD countries, except for the Netherlands, for a
more recent period, 1960–95. One observation is that the TFP growth rates are much smaller
than those found for 1947–73. The TFP growth rates in the later period range from 0.6 percent
for Canada and 0.8 percent for the United States to 1.5 percent for Italy and 2.6 percent for
Japan. This reduction in the worldwide growth rate of productivity is known as the productiv-
ity slowdown. Although the TFP growth rate is lower for all the countries in the later period,
the share of overall growth accounted for by TFP change remains high in some countries
because the growth accounted for by changes in factor inputs also declined. For example, in
Germany, Italy, and Japan, TFP growth still accounts for over 40 percent of overall growth
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Table 10.1
Growth Accounting for a Sample of Countries

(1) (2) (3) (4)
Growth Rate Contribution Contribution TFP Growth

Country of GDP from Capital from Labor Rate

Panel A: OECD Countries, 1947–73

Canada 0.0517 0.0254 0.0088 0.0175
(α = 0.44) (49%) (17%) (34%)
Francea 0.0542 0.0225 0.0021 0.0296
(α = 0.40) (42%) (4%) (54%)
Germanyb 0.0661 0.0269 0.0018 0.0374
(α = 0.39) (41%) (3%) (56%)
Italyb 0.0527 0.0180 0.0011 0.0337
(α = 0.39) (34%) (2%) (64%)
Japanb 0.0951 0.0328 0.0221 0.0402
(α = 0.39) (35%) (23%) (42%)
Netherlandsc 0.0536 0.0247 0.0042 0.0248
(α = 0.45) (46%) (8%) (46%)
U.K.d 0.0373 0.0176 0.0003 0.0193
(α = 0.38) (47%) (1%) (52%)
U.S. 0.0402 0.0171 0.0095 0.0135
(α = 0.40) (43%) (24%) (34%)

Panel B: OECD Countries, 1960–95

Canada 0.0369 0.0186 0.0123 0.0057
(α = 0.42) (51%) (33%) (16%)
France 0.0358 0.0180 0.0033 0.0130
(α = 0.41) (53%) (10%) (38%)
Germany 0.0312 0.0177 0.0014 0.0132
(α = 0.39) (56%) (4%) (42%)
Italy 0.0357 0.0182 0.0035 0.0153
(α = 0.34) (51%) (9%) (42%)
Japan 0.0566 0.0178 0.0125 0.0265
(α = 0.43) (31%) (22%) (47%)
U.K. 0.0221 0.0124 0.0017 0.0080
(α = 0.37) (56%) (8%) (36%)
U.S. 0.0318 0.0117 0.0127 0.0076
(α = 0.39) (37%) (40%) (24%)

Table continued
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Table 10.1
(Continued )

(1) (2) (3) (4)
Growth Rate Contribution Contribution TFP Growth

Country of GDP from Capital from Labor Rate

Panel C: Latin American Countries, 1940–90

Argentina 0.0279 0.0128 0.0097 0.0054
(α = 0.54) (46%) (35%) (19%)
Brazil 0.0558 0.0294 0.0150 0.0114
(α = 0.45) (53%) (27%) (20%)
Chile 0.0362 0.0120 0.0103 0.0138
(α = 0.52) (33%) (28%) (38%)
Colombia 0.0454 0.0219 0.0152 0.0084
(α = 0.63) (48%) (33%) (19%)
Mexico 0.0522 0.0259 0.0150 0.0113
(α = 0.69) (50%) (29%) (22%)
Peru 0.0323 0.0252 0.0134 −0.0062
(α = 0.66) (78%) (41%) (−19%)
Venezuela 0.0443 0.0254 0.0179 0.0011
(α = 0.55) (57%) (40%) (2%)

Panel D: East Asian Countries, 1966–90

Hong Konge 0.073 0.030 0.020 0.023
(α = 0.37) (41%) (28%) (32%)
Singapore 0.087 0.056 0.029 0.002
(α = 0.49) (65%) (33%) (2%)
South Korea 0.103 0.041 0.045 0.017
(α = 0.30) (40%) (44%) (16%)
Taiwan 0.094 0.032 0.036 0.026
(α = 0.26) (34%) (39%) (28%)

Sources: Panel A estimates for OECD countries are from Christenson, Cummings, and Jorgenson (1980). Panel B
estimates for OECD countries are from Jorgenson and Yip (2001, tables 3, 5, 7, 10). Panel C estimates for Latin
American countries are from Elias (1990), updated with unpublished notes from Victor Elias. (For this source
only, the calculations assumed that the capital share, α, was constant over time.) Panel D estimates for East Asian
countries are from Young (1995, tables V–VIII).

The average value of the capital share, α, is shown in parentheses below the name of each country. Column 1
reports the annualized growth rate of real GDP. Column 2 is the product of the capital share, α, and the growth
rate of quality-adjusted capital input. The number in parentheses is the percentage of the GDP growth rate that
is explained by the growth of capital input. Column 3 is the product of the labor share, 1 − α, and the growth
rate of quality-adjusted labor input. The number in parentheses is the percentage of the GDP growth rate that is
explained by the growth of labor input. Column 4 shows the growth rate of total factor productivity (TFP). The
number in parentheses is the percentage of the GDP growth rate that is explained by TFP growth.
a1950–73
b1952–73
c1951–73
d 1955–73
e1966–91
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for 1960–95. Column 3 of panels A and B shows that the growth rate of labor input is
virtually nil for France, Germany, Italy, and the United Kingdom for the entire period from
1947 to 1995.

Panel C of table 10.1 reports analogous decompositions of real GDP growth for seven
Latin American countries. The basic results come from Elias (1990) and they have been
updated with unpublished notes from Victor Elias. The estimates of TFP growth for these
countries from 1940 to 1990 ranged between −0.6 percent per year for Peru to 1.4 percent
for Chile.5

Finally, panel D of the table shows the decomposition of the aggregate growth rate for
four fast-growing East Asian countries. The results, from Young (1995), are for Hong Kong,
Singapore, South Korea, and Taiwan for the period 1966–90. Despite the enormous growth
rates in aggregate GDP, the estimates of TFP growth for these countries ranged from only
0.2 percent for Singapore to 2.6 percent for Taiwan. The reason is that the growth rates of
physical capital and labor were also very large in these countries and, therefore, account
for a substantial fraction of the overall growth rate.

Many economists were surprised by the low TFP growth estimates for these East Asian
countries. After seeing these results, some economists concluded that the growth of the
East Asian Miracles was nothing miraculous because, unlike miracles, which, by definition,
cannot be explained, the growth performance of these countries could be explained easily
within the simple framework of factor accumulation. In later sections, however, we will
reexamine the empirical results and the conclusions about East Asian growth.

10.1.4 A Note on Regression-Based Estimates of TFP Growth

An important point about the TFP growth estimates displayed in table 10.1 is that they
represent a direct implementation of equations of the form of equations (10.6) and (10.8)—
extended to include multiple types of capital and labor—and do not involve econometric
estimation. The estimated Solow residual, ĝ, is computed at each date by using time-series
data on Y , K , L , sK , and sL . In practice, researchers report an average of the computed ĝ
values for designated time periods.

An alternative approach would be to regress the growth rate of output, Ẏ/Y , on the growth
rates of inputs, K̇/K and L̇/L , in the form of equation (10.2). (This approach would be
implemented by making suitable adjustments to use discrete-period data.) The intercept
then measures g, and the coefficients on the factor growth rates measure ( FK K

Y ) and ( FL L
Y ),

5. The estimated TFP growth rates in Latin America are particularly low—typically negative—from 1980 to 1990.
The negative values are hard to understand as technical regress in the sense of literal forgetting of technology, but
they may represent declining efficiency of market organization due to policy or other changes.
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respectively. The main advantage of this approach is that it dispenses with the assumption
that the factor social marginal products coincide with the observable factor prices, that is,
FK = R and FL = w.

The disadvantages of the regression approach are several:

• The variables K̇/K and L̇/L cannot usually be regarded as exogenous with respect to
variations in g—in particular, the factor growth rates would receive credit for correlated
variations in unobservable technological change.
• If K̇/K and L̇/L (computed as averages over discrete periods) are measured with error,
then standard estimates of the coefficients of these variables would deliver inconsistent
estimates of ( FK K

Y ) and ( FL L
Y ), respectively. This problem is likely to be especially serious for

the growth rate of capital input, where the measured capital stock is unlikely to correspond
well to the stock currently utilized in production. This problem often leads to low estimates
of the contribution of capital accumulation to economic growth when high-frequency data
are employed.
• The regression framework has to be extended from its usual form to allow for time
variations in factor shares and the TFP growth rate.

Given the drawbacks from the regression method, the usually preferred approach to TFP
estimation is the noneconometric one exemplified by the studies shown in table 10.1.

10.2 Dual Approach to Growth Accounting

Hsieh (2002) exploited a dual approach to growth accounting, whereby the Solow residual
is computed from growth rates of factor prices, rather than factor quantities. This idea goes
back at least to Jorgenson and Griliches (1967).

The dual approach can be derived readily from the equality between output and factor
incomes:

Y = RK + wL (10.11)

Taking logarithms and differentiating both sides of equation (10.11) with respect to time
leads to

Ẏ/Y = sK · (Ṙ/R + K̇/K ) + sL · (ẇ/w + L̇/L)

where sK and sL are again the factor income shares. If the terms involving the growth rates
of factor quantities are placed on the left-hand side of the equation, then the estimated TFP
growth rate is given by

ĝ = Ẏ/Y − sK · (K̇/K ) − sL · (L̇/L) = sK · Ṙ/R + sL · ẇ/w (10.12)
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Hence, the primal estimate of the TFP growth rate in the middle of the equation—based on
filtering Ẏ/Y for the share-weighted growth in factor quantities—equals the share-weighted
growth of factor prices on the right-hand side of the equation. Note that this estimate of TFP
growth uses the same factor-income shares, sK and sL , as the primal estimate but considers
changes in factor prices, rather than quantities. It is for this reason that it is called the dual
or price-based estimate of TFP growth.6

The intuition for the dual estimate on the right-hand side of equation (10.12) is that rising
factor prices (for factors of given quality) can be sustained only if output is increasing for
given inputs. Therefore, the appropriately weighted average of the growth of the factor
prices measures the extent of TFP growth.

It is important to recognize that the derivation of equation (10.12) uses only the condition
Y = RK + wL . No assumptions were made about the relations of factor prices to social
marginal products or about the form of the production function. If Y = RK + wL holds,
then the primal and dual estimates of TFP growth inevitably coincide. In some cases—
notably when factor prices deviate from social marginal products—the estimated value ĝ
from equation (10.12) would deviate from the true value, g. However, the error, g − ĝ, from
the dual approach will be the same as that from the primal approach.7

Hsieh (2002) used the dual approach—the right-hand side of equation (10.12)—to redo
Young’s (1995) estimates of TFP growth for the four East Asian countries included in ta-
ble 10.1. Hsieh’s procedure uses an array of quality categories for L and K . The results,
shown along with primal estimates that are similar to Young’s findings, are in table 10.2.
The most striking conclusion is that the estimate for Singapore changes from the primal
estimate of around zero to a dual estimate of 2.2 percent per year. The estimate for Taiwan
is also revised upward substantially, but those for Hong Kong and South Korea change
little. Hsieh also observed that dual estimates for the United States were similar to primal
estimates.

6. This derivation was suggested by Susanto Basu. The approach was used earlier by Jorgenson and Griliches
(1967, pp. 251–253), who also extend equation (10.12) to allow for changes over time in the relative prices of
multiple outputs. In this case, Ẏ/Y becomes a share-weighted average of output growth rates, and the right-hand
side of the dual-accounting expression subtracts off the share-weighted average of the growth rates of the output
prices. This last term is zero in the present context, which features a fixed relative price of a single form of output.

7. This equivalence does not generally hold if the factor-income shares, sK and sL , are replaced by the marginal-
product weights, (

FK K
Y ) and (

FL L
Y ). If these marginal-product weights are used, then the primal estimate ĝ

calculated from equation (10.4) correctly measures the TFP growth rate, g. The corresponding dual estimate is(
FK K

Y

)
· (Ṙ/R) +

(
FL L

Y

)
· (ẇ/w)

It is possible to show that this estimate equals the primal one if the ratios of the factor prices to social marginal
products—R/FK and w/FL —do not vary over time. (It is not necessary for these ratios to equal unity.) However,
the practical significance of these results is unclear, because FK and FL would not generally be observable.
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Table 10.2
Primal and Dual Estimates of TFP Growth Rates

Country Primal Estimate Dual Estimate

Hong Kong, 1966–91 0.023 0.027
Singapore, 1972–90 −0.007 0.022
South Korea, 1966–90 0.017 0.015
Taiwan, 1966–90 0.021 0.037

Notes: These estimates are from Hsieh (2002, table 1). The primal estimates are computed from data on growth
rates of quantities of factor inputs, using factor income shares as weights. The dual estimates are computed from
data on growth rates of prices of factor inputs, using the same factor income shares as weights. The lack of
coincidence for the primal and dual estimates of TFP growth rates reflects the use of different data, as described
in the text.

If the condition Y = RK + wL holds, then the discrepancy between the primal and dual
estimates of TFP growth has to reflect the use of different data in the two calculations.
Hsieh’s discussion brings out the general nature of this data discrepancy for Singapore. The
Singaporean national accounts show remarkable growth of K over time. Given the behavior
of Y and wL , the rental price, R, should have suffered a correspondingly sharp decline.
However, direct estimates of returns on capital in Singapore—based on observed returns on
financial markets—are relatively stable over time. Put another way, if the path of R implied
by the observed rates of return is accurate—and if information on Y and wL is also viewed
as reasonable—then the implied path of K exhibits much more moderate growth than that
indicated by the national-accounts data. Hsieh argues that the official statistics have, in
fact, substantially overstated the growth of the capital stock and, hence, that the reduced
estimates of capital growth implied by the observed R values are reasonable.

Hsieh’s dual estimate of TFP growth for Singapore—2.2 percent per year—is a weighted
average of the robust wage-rate growth (for given labor quality) and a small amount of rental-
price growth. We should notice, however, that Hsieh could just as well have computed a
primal estimate of TFP growth based on the time series for K that is implied by the observed
and presumed accurate time series for R. (With multiple types of capital, K j , this calculation
would be applied to each type, given the estimated values of the rental prices, R j .) Since
Y = RK + wL holds here by construction, the primal estimate would coincide with the
dual estimate. Thus it is not actually necessary ever to do the dual computation.

10.3 Problems with Growth Accounting

A key assumption in growth-accounting exercises is that factor prices coincide with social
marginal products. If this assumption is violated, then the estimated value ĝ calculated from
equation (10.6) deviates from the true contribution, g, of technical change to economic
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growth. The next sections illustrate these problems for models with increasing returns and
spillovers, for environments with various kinds of taxes, and for settings with different types
of factors.

10.3.1 An Increasing-Returns Model with Spillovers

We discussed in chapter 3 how a number of authors—including Griliches (1979), Romer
(1986), and Lucas (1988)—have constructed models of economic growth with increasing
returns and spillovers. Romer’s analysis is a generalization of Arrow’s (1962) learning-
by-doing model, in which the efficiency of production rises with cumulated experience. In
the version of the Romer model discussed in chapter 4, the output, Yi , of firm i depended
not only on the standard private inputs, Ki and Li , but also on the economy-wide capital
stock, K . The idea is that producers learned by investing (a specific form of “doing”) to
produce more efficiently. Moreover, this knowledge spilled over immediately from one firm
to others so that each firm’s productivity depended on the aggregate of learning, as reflected
in the overall capital stock.

These ideas can be represented with a Cobb–Douglas production function as

Yi = AK α
i K β L1−α

i (10.13)

where 0 < α < 1 and β ≥ 0. For given K , this production function exhibits constant re-
turns to scale in the private inputs, Ki and Li . If β > 0, the spillover effect is present and
positive.

In the Griliches (1979) version of the production function in equation (10.13), Ki rep-
resents firm i’s specific knowledge capital, whereas K (modeled as the sum of the Ki ) is
the aggregate level of knowledge in an industry. Hence, the spillovers again represent the
diffusion of knowledge across firms. In the Lucas (1988) version, Ki is the firm’s employ-
ment of human capital, and K is the aggregate (or possibly average) level of human capital
in an industry or country. In this case, the spillovers involve benefits from interactions with
smart people.

Returning to the Romer interpretation of equation (10.13), each firm behaves competi-
tively, taking as given the economy-wide factor prices, R and w, and the aggregate capital
stock, K . Hence, private marginal products are equated to the factor prices, thereby yielding

R = αYi/Ki and w = (1 − α) · Yi/Li (10.14)

The factor-income shares are, therefore, given, as usual, by

sk = α and sL = 1 − α (10.15)
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In equilibrium, each firm adopts the same capital-labor ratio, ki , but the scale of each
firm is indeterminate. The production function from equation (10.13) can be rewritten as

Yi = Akα
i kβ Li Lβ

where k ≡ K/L . The equilibrium condition ki = k then implies

Yi = Akα+β Li Lβ

which can be aggregated across firms to get

Y = Akα+β L1+β

Finally, the condition k ≡ K/L leads to the economy-wide production function,

Y = AK α+β L1−α (10.16)

This expression relates aggregate output, Y , to the aggregate inputs, K and L . If β > 0,
increasing returns to scale apply economy wide.

The right-hand side of equation (10.16) shows that the correct way to do the growth
accounting with aggregate data is to compute

ĝ = Ṫ /T = Ẏ/Y − (α + β) · (K̇/K ) − (1 − α) · (L̇/L) (10.17)

Hence, sL = 1 − α is the correct weight for L̇/L , but the coefficient sK = α understates
by β ≥ 0 the contribution of K̇/K . This understatement arises because—with the assumed
investment-based spillovers of knowledge—the social marginal product of capital, (α+β) ·
Y/K , exceeds the private marginal product, αY/K . (This private marginal product does
equal the factor price, R.) Note also that the weights on the factor-input growth rates in
equation (10.17) sum to 1 + β, which exceeds one if β > 0 because of the underlying
increasing returns to scale. The increasing returns arise because ideas about how to produce
more efficiently are fundamentally nonrival and spill over freely and instantaneously across
firms.

The interpretation of K —the factor that receives a weight above its income share in
the growth accounting of equation (10.17)—depends on the underlying model. Griliches
(1979) identifies K with knowledge-creating activities, such as R&D. Romer (1986) stresses
physical capital itself. Lucas (1988) emphasizes human capital in the form of education. It is,
of course, also possible to have spillover effects that are negative, such as traffic congestion
and environmental damage.

Implementation of the results from equation (10.17) is difficult because the proper weights
on the factor growth rates cannot be inferred from income shares; specifically, no direct
estimates are available for the coefficient β. If one instead computes the standard Solow
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residual within this model, then one gets

g(Solow) = Ṫ /T + β · (K̇/K ) = Ẏ/Y − α · (K̇/K ) − (1 − α) · (L̇/L) (10.18)

Thus the standard calculation includes the growth effect from spillovers and increasing
returns—β · (K̇/K )—along with the rate of exogenous technological progress, Ṫ /T , in the
Solow residual.

It seems that the separation of the spillovers/increasing returns effect from exogenous
technological progress requires a regression approach. In this approach, the usual Solow
residual, g(Solow), calculated from equation (10.18) could be regressed on the factor growth
rate, K̇/K , that was thought to carry the spillover effects. This method does, however,
encounter the usual econometric problems with respect to simultaneity.

10.3.2 Taxes

In most cases, taxes do not disturb the TFP calculations. Suppose, for example, that firms’
net revenues are taxed, wage and rental payments are tax-deductible expenses for firms, and
wage and rental incomes are taxed at the household level. In this case, competitive firms
equate the marginal product of labor, FL , to the wage, w, and the marginal product of capital,
FK , to the rental price, R. The condition Y = RK +wL also holds (with firms’ net revenue
and taxes equal to zero in equilibrium). Therefore, the formula for ĝ in equation (10.6)
remains valid.

Suppose, instead, that firms acquire capital through equity finance, that wages and depre-
ciation, δK , are tax deductible for firms, and that r is the required (gross-of-personal-tax)
rate of return on equity. A competitive firm still equates the marginal product of labor
to the wage rate, w. The firm also equates the after-tax net marginal product of capital,
(1 − τ) · (FK − δ), to r , where τ is the marginal tax rate on the firm’s earnings. Therefore,
the marginal product of capital is given by

FK = r

1 − τ
+ δ

The growth-accounting formula in equation (10.4) implies, after substitution for FK

and FL ,

g = Ẏ/Y −
[

r

(1 − τ)
· K

Y
+ δK

Y

]
· (K̇/K ) − sL · (L̇/L) (10.19)

If taxes on firms’ earnings are proportional, so that τ is the average, as well as the marginal,
tax rate, then r K/(1 − τ) is equal in equilibrium to firms’ earnings (net of depreciation
but gross of the earnings tax). Hence, the bracketed term in equation (10.19) equals sK , the
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income share of capital, if capital income is measured by firms’ earnings (gross of earnings
taxes) plus depreciation. The usual formula for the TFP growth rate in equation (10.6)
therefore remains valid.

For a tax on output or sales, competitive firms satisfy FL = w/(1−τ) and FK = R/(1−τ),
where R is again the rental price of capital and τ is the marginal tax rate on output. The
growth-accounting formula in equation (10.4) therefore implies, after substitution for FK

and FL ,

g = Ẏ/Y −
[

R

(1 − τ)
· K

Y

]
· (K̇/K ) −

[
w

(1 − τ)
· L

Y

]
· (L̇/L) (10.20)

If the tax on output is proportional, so that marginal and average tax rates coincide, the
total revenue collected is τY . Output, Y , equals factor incomes plus the amount collected
by the indirect tax:

Y = RK + wL + τY

so that the total factor income, RK + wL , equals (1 − τ) · Y . Hence, the bracketed terms
on the right-hand side of equation (10.20) equal sK and sL , respectively. (Note that these
shares are expressed in relation to factor income, rather than gross domestic product.) It
follows that the usual formula for the TFP growth rate given in equation (10.6) still holds.8

The standard growth-accounting formula works, for example, with a proportionate value-
added tax that attaches the same tax rate to value added by capital and labor inputs. However,
the usual formula would be inaccurate if different tax rates applied to the value added by each
factor. If firms pay the tax rate τK on RK and the rate τL on wL , then the growth-accounting
formula in equation (10.4) leads to

g = Ẏ/Y −
(

1 + τK

1 + τ

)
· sK · (K̇/K ) −

(
1 + τL

1 + τ

)
· sL · (L̇/L) (10.21)

where τ is the average of the tax rates, as given by

τ = sK τK + sLτL

If, for example, τK > τL , equation (10.21) indicates that the weight on K̇/K should be
raised relative to that on L̇/L to compute g accurately.

8. The analysis is more complicated if firms are subject to nonproportional tax schedules (with respect to output or
earnings). If marginal tax rates on firms are increasing, there is effectively a penalty on large firms. Hence, in the
present setup with constant returns to scale, firms would be of infinitesimal size in equilibrium. Nonproportional
tax schedules can be admitted in models in which the establishment of a firm requires a fixed cost or in which
span-of-control or other considerations eventually create diminishing returns to firm size.
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10.3.3 Multiple Types of Factors

Suppose now that the production function is

Y = F(A, K1, K2, L1, L2) (10.22)

One interpretation of equation (10.22) is that K1 and K2 represent different types or qualities
of capital goods, whereas L1 and L2 represent different types or qualities of labor. Then the
usual growth-accounting exercise goes through in the manner of Jorgenson and Griliches
(1967) if each type of factor is weighted by its income share. That is, K̇ 1/K1 is weighted
by R1 K1/Y , and so on. The usual Solow residual generated from this procedure accurately
measures the contribution of technological progress to growth, g, as long as all factors are
paid their social marginal products.

Problems arise if the factor categories cannot be distinguished in the data, for example, if
K̇ 1/K1 and K̇ 2/K2 are each associated with the overall capital share, (R1 K1 + R2 K2)/Y .
One source of this kind of problem is that newer, and typically better, types of capital goods
might be aggregated with the older types. Similarly, different categories of labor may be
aggregated in the data.

Another interpretation of equation (10.22) is that K1 and L1 represent factor employments
in sector 1—say, urban manufacturing—whereas K2 and L2 represent employments in
sector 2—say, rural agriculture. Changes may occur over time in sectoral composition, for
example, as a shift from agriculture to industry. Such shifts cause no trouble for the growth
accounting if the various growth rates of factor quantities—distinguished by their sector of
location—are weighted by their income shares. However, errors occur if capital or labor
is aggregated across sectors and if the growth of these aggregates is weighted by overall
income shares of capital or labor, respectively.

To illustrate, suppose that the TFP growth rate is incorrectly estimated as

g̃ = Ẏ/Y −
(

R1 K1 + R2 K2

Y

)
· (K̇/K ) −

(
w1L1 + w2L2

Y

)
· (L̇/L) (10.23)

where K = K1 + K2 and L = L1 + L2. This estimate compares with the appropriate formula,

ĝ = Ẏ/Y −
(

R1 K1

Y

)
· (K̇ 1/K1) −

(
R2 K2

Y

)
· (K̇ 2/K2)

−
(

w1L1

Y

)
· (L̇1/L1) −

(
w2L2

Y

)
· (L̇2/L2) (10.24)

Equation (10.24) correctly estimates the contribution to growth from exogenous technolog-
ical progress—that is, ĝ = g—if all factors are paid their social marginal products.
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The expression for g̃ in equation (10.23) can be shown from algebraic manipulation to
relate to true TFP growth, as estimated by equation (10.24), in accordance with

g̃ − ĝ =
(

K1

K

)
·
(

K2

K

)
· K

Y
· (R1 − R2) ·

(
K̇ 1

K1
− K̇ 2

K2

)

+
(

L1

L

)
·
(

L2

L

)
· L

Y
· (w1 − w2) ·

(
L̇1

L1
− L̇2

L2

)
(10.25)

Hence, if R1 �= R2 and K̇ 1/K1 �= K̇ 2/K2 or if w1 �= w2 and L̇1/L1 �= L̇2/L2, then g̃ �= ĝ.
Specifically, if R1 > R2, then K̇ 1/K1 > K̇ 2/K2 leads to g̃ > ĝ and similarly for labor.

With the interpretation of the factor types as quality classes, the result is that measured
TFP growth overstates true TFP growth if the composition of factors is shifting over time
toward types of higher quality (and such shifts are not allowed for in the estimation). This
problem is the one emphasized and resolved subject to data limitations by Jorgenson and
Griliches (1967).

One sectoral interpretation of the results involves the migration of labor from rural to
urban areas. The urban wage rate, w1, may exceed the rural wage rate, w2, for various
reasons, including minimum-wage legislation and requirements of union membership for
the city jobs. In this case, a shift of labor from the rural to the urban sector represents a
gain in economy-wide productivity. The term involving labor in equation (10.25) reflects
the economic growth generated by this change in the sectoral composition of labor, for a
given growth rate of aggregate labor, L̇/L . This type of growth effect, applied to movements
of labor from low-productivity agriculture to high-productivity industry, was discussed by
Kuznets (1961, p. 61), who derived an expression analogous to equation (10.25).

From the perspective of growth accounting, the terms that involve sectoral shifts should
appear somewhere in the calculations. If the changes in labor quantities in each sector are
weighted by labor-income shares for each type of labor, then the growth contribution from
the sectoral changes appears in the part accounted for by changes in factor quantities in
equation (10.24). If the weighting is done instead in the manner of equation (10.23), then
the contribution appears in the estimated TFP growth rate.

10.4 TFP Growth and R&D

Growth accounting is often viewed as a first step in explaining the TFP growth rate, g, as
estimated in equation (10.6). For example, the research program summarized by Griliches
(1973) focuses on R&D spending as a determinant of the TFP growth rate.9 The theories of

9. Earlier contributors to this literature include Terleckyj (1958), Minasian (1962), Griliches (1964), and Mansfield
(1965).
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endogenous growth that we examined in chapters 6 and 7 have implications for the modeling
of the relationship between technological change and R&D outlays. The following sections
explore these relationships for models that involve increases in the number of types of
products and improvements in the quality of existing products.

10.4.1 Varieties Models

In the product-varieties framework from chapter 6, the aggregate production function is
given from equation (6.13) by

Y = T L1−α N 1−α Xα (10.26)

where T is an exogenous technology factor, L is aggregate labor input, N is the number
of varieties of intermediate products that are currently known and used, X is the aggregate
quantity employed of intermediate inputs, and 0 < α < 1. Technological progress occurs
through the R&D outlays that raise N over time. Hence, the variable N represents the current
state of the endogenously determined technology. In this model, the leading technology—
that is, the one that employs all N varieties that have been discovered—is used by all
producers. Therefore, this specification fits best for general-purpose technologies (David,
1991; Bresnahan and Trajtenberg, 1995), which have broad application in the economy.

Competitive producers of output, Y , equated the marginal product of labor to the wage
rate, so that

w = (1 − α) · (Y/L)

Hence, the share of labor income is, as usual,

sL = wL/Y = 1 − α (10.27)

Competitive producers of final goods equated the marginal product of each type of inter-
mediate input to the price of intermediates, which equaled the monopoly value, 1/α. This
condition can be expressed as

1/α = α · (Y/X)

Therefore, the share of income expended on the N intermediates is

sX = (1/α) · (X/Y ) = α (10.28)

The growth rate of output can be computed from equation (10.26) as

Ẏ/Y = Ṫ /T + (1 − α) · (Ṅ/N ) + sL · (L̇/L) + sX · (Ẋ/X) (10.29)
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where the formulas for sL and sX from equations (10.27) and (10.28) were used. The baseline
model in chapter 6 assumed Ṫ /T = L̇/L = 0. However, equation (10.29) is valid when T
and L are changing as long as the marginal products of labor and each of the intermediate
inputs are equated to their factor prices. Therefore, the usual approach for computing the
TFP growth rate yields, in this model,

ĝ = Ẏ/Y − sL · (L̇/L) − sX · (Ẋ/X) = Ṫ /T + (1 − α) · (Ṅ/N ) (10.30)

Hence, despite the monopoly pricing of the intermediate inputs, the Solow residual correctly
measures the sum of the contributions to productivity growth from exogenous technological
change, Ṫ /T , and endogenous expansion of varieties, Ṅ/N .

Note from equation (10.30) that the endogenous-growth part of the Solow residual reflects
only the fraction 1 − α of the growth rate of the number of varieties, Ṅ/N . The remaining
part, α · (Ṅ/N ), is picked up as part of the term sX · (Ẋ/X) = α · (Ẋ/X) on the left-hand
side of equation (10.30). For a fixed quantity of intermediates of each type, the discovery of
new types of products at the rate Ṅ/N induces an increase in the aggregate of intermediates
at the same rate. The contribution of this expansion of intermediates to growth—which
involves the coefficient α, the income share of payments to intermediates—is attributed
to growth of factor inputs, rather than to the underlying technological progress. In effect,
part of the technological advance from discoveries of new types of intermediate goods is
embodied in the intermediates that use the new technology.

In the baseline model of chapter 6, Ṅ was proportional to the amount of output devoted
to R&D, that is, Ṅ = (1/η)· (R&D), where η was the amount of R&D required to achieve
a unit increase in N . Hence, the growth rate of N was given by

Ṅ/N = (R&D)/ηN = (R&D)/(market value of past R&D) (10.31)

Note that ηN is the product of the number of inventions, N , and the reproduction cost,
η, of each invention. Hence, ηN is the market value of firms, which corresponds to the
market value of their past R&D outlays. The measured TFP growth rate in equation (10.30)
therefore satisfies

ĝ = Ṫ /T + (1 − α) · (R&D)/(market value of past R&D) (10.32)

In the varieties model, the chosen quantity X is proportional to L , so that the value
Y/L computed from equation (10.26) is proportional to N . Since the denominator of the
final term on the right-hand side of equation (10.32) equals ηN , this final term ends up
proportional to the ratio of R&D to per worker output, Y/L . Thus, ĝ in equation (10.32)
can be expressed as a linear function of the ratio (R&D)/(Y/L). This result is similar to
specifications used by Griliches (1973) and Coe and Helpman (1995), among others, except
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that R&D outlays enter in the baseline varieties model in relation to per worker output, Y/L ,
rather that the level of output, Y . The source of the difference is that the model features a
scale benefit from increases in L . In the alternative specification of chapter 6, where the
scale effect from L was eliminated, ĝ would depend on the ratio of R&D to output, as in
the usual empirical specifications.

The empirical methodology described in Griliches (1973) accords well with the general
setting of the varieties model. The Griliches approach begins by applying the usual growth-
accounting analysis to compute a residual. This method corresponds to the calculation of
ĝ in accordance with equation (10.30). The main difference from the theoretical model is
that the intermediate inputs X include service flows from an array of capital goods; that
is, the intermediate inputs are not treated exclusively as nondurables. Griliches then uses a
regression approach to assess the effect of an R&D variable on the computed TFP growth
rate. For example, the TFP growth rate could be regressed on R&D expenditures (typically
expressed as a ratio to output or sales), a trend term (to pick up exogenous technical progress),
and random influences. The regression coefficient on the R&D variable would provide an
estimate of the social rate of return to R&D.

The Griliches methodology has been implemented in a number of studies for firms and
industries in the United States, including Griliches and Lichtenberg (1984) and Griliches
(1988). A major problem in this research is the poor quality of the data on R&D. Neverthe-
less, the studies tend to show high social rates of return to R&D, typically in a range of 20
to 40 percent per year.

Coe and Helpman (1995) applied the approach to aggregate data for 22 OECD countries.
They report remarkably high rates of return to R&D within a country—around 100 percent
per year. Their estimates are even higher—about 130 percent per year—if spillover benefits
across countries are included.

One drawback of the Griliches methodology, which we already discussed generally for
regression approaches to growth accounting, is that the estimation can be confounded by
reverse-causation problems. In this case, the difficulty is that R&D spending would respond
to exogenous changes in productivity growth—the variable Ṫ /T in equation (10.32)—
so that the estimated coefficient on the R&D variable would proxy partly for exogenous
technological progress. This problem may explain the high estimates of rates of return
to R&D in the studies that we mentioned before. For example, in the Coe and Helpman
(1995) analysis, the large regression coefficient on a country’s R&D variable may reflect
the positive response of R&D spending to growth opportunities, rather than the effect of
R&D on productivity growth. This potential for reverse causation also exists in the U.S.
studies of firms and industries.

In principle, the simultaneity problem could be solved by using instrumental variables.
However, satisfactory instruments may not be available. Possible instrumental variables
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include measures of government policies toward R&D, including research subsidies, legal
provisions such as the patent system, and the tax treatment of R&D expenditures.

The varieties model suggests a possible way to extend the usual growth-accounting
procedure to assess the contribution from R&D. An extended Solow residual could be
computed that subtracts from the growth rate of output, Ẏ/Y , not only the contributions
from the growth of factor inputs, sL · (L̇/L) + sX · (Ẋ/X), as in equation (10.30), but also
the term

(1 − α) · (R&D)/(market value of past R&D)

which appears in equation (10.32). However, this computation entails knowledge not only
of the labor share, 1 − α, and the current flow of R&D spending, but also the cumulated
stock or capitalized value of past R&D outlays.

10.4.2 Quality-Ladders Models

The other prominent model of technological change in the endogenous-growth literature
is the quality-ladders formulation, which we discussed in chapter 7. In this framework,
technological progress consists of improvements in the quality of intermediate inputs (or,
equivalently, reductions in the cost of providing inputs of given quality). The number of
varieties of products is usually assumed to be fixed in this setting, although changes in this
number could also be included.

The model worked out in chapter 7 (equations [7.15] and [7.16]) implies that the aggregate
production function can be written as

Y = T L1−α Xα Q1−α (10.33)

where T is the exogenous level of technology, L is aggregate labor input, 0 < α < 1, and X is
the aggregate quantity employed of intermediate inputs. The variable Q ≡ ∑N

j=1 qκ j α/(1−α)

is the aggregate quality index, where N is the fixed number of varieties of intermediates,
q > 1 is the proportionate spacing between rungs on the quality ladder in each sector,
and κ j is the highest quality-ladder position currently achieved in sector j . Each type of
intermediate good is priced at the monopoly level, 1/α > 1. Technological progress occurs
through R&D outlays that allow movements up each sector’s quality ladder, one step at a
time.

The key element of the quality-ladders framework is that different quality grades of in-
termediate inputs within a given sector were modeled as perfect substitutes. Higher ranked
inputs were simply better than lower ranked ones. For this reason, lower quality inter-
mediates of type j (at the rungs κ j − 1, κ j − 2, . . .) were driven out of the market in
equilibrium. This technological obsolescence—or creative destruction—distinguishes the
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quality-ladders model from the varieties framework. In that framework—explored in the
previous section—no technological obsolescence occurred, and new varieties of products
worked alongside the old ones to produce goods.

Equation (10.33) implies that the standard growth-accounting approach would yield in
the quality-ladders model

ĝ = Ẏ/Y − sL · (L̇/L) − sX · (Ẋ/X) = Ṫ /T + (1 − α) · (Q̇/Q) (10.34)

where, as in the varieties model, sL = wL/Y and sX = (1/α) · (X/Y ).10 Therefore, in this
model, the Solow residual measures the sum of exogenous technological progress, Ṫ /T ,
and the growth rate of overall quality, Q̇/Q, weighted by the labor share, 1 − α. This
result is similar to equation (10.30) from the varieties model, except that the measure of
technological change is Q̇/Q, rather than Ṅ/N . Again, a portion of the contribution from
technological change (the part α · Q̇/Q) is embodied in the growth of inputs, Ẋ/X , and
only the remainder appears in the Solow residual.

Some new results arise from the relation of Q̇/Q to R&D expenditures. In the version of
the quality-ladders model explored in chapter 7, the growth rate of Q can be expressed as11

Q̇/Q = [
1 − q−α/(1−α)

] · (R&D)/(market value of past R&D) (10.35)

The main difference from the expression for Ṅ/N in equation (10.31) is the presence of
the constant in front, [1 − q−α/(1−α)], which is between zero and one. This term is less than
one because of the obsolescence of the old types of intermediates in the sectors that expe-
rience quality enhancements. The constant is higher the larger is q, which represents the
ratio of the productivity of a newly discovered grade of intermediate input to the produc-
tivity of the next lowest grade. If q is higher, then creative destruction is more creation

10. We have assumed Ṅ = 0 to derive equation (10.34). The underlying model also assumed that L and T were
constant over time. However, equation (10.34) is valid even when L and T are changing.

11. Equation (7.33) implies

Q̇/Q = p ·
[

qα/(1−α) − 1
]

where p is the probability per unit time of research success in each sector. (In the equilibrium considered in chap-
ter 7, the probability of research success, p, is the same in each sector.) The probability is given from equations
(7.19) and (7.21) by

p = Z(κ j )

qα/(1−α) · E[V (κ j )]

where Z(κ j ) is the current flow of R&D expenditure in sector j and E[V (κ j )] is the market value of the leading-
edge firm in sector j . Since only the leading-edge firm in a sector has positive market value, the term E[V (κ j )]
corresponds to the market value of past R&D in the sector. It follows that the proportionate constant in equa-
tion (10.35) is 1 − q−α/(1−α), which is between zero and one.
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than destruction, and, hence, the contribution of the current R&D flow to the overall quality
index, Q, is attenuated to a lesser extent.

The quality index, Q, can be viewed as a measure of the R&D capital stock. However, it
is incorrect in this model to follow the common practice by which this stock is constructed.
In the usual perpetual-inventory approach, the change in the R&D capital stock equals
current R&D spending—the counterpart to gross investment—less depreciation on the ex-
isting R&D capital stock. The last term, often modeled as a constant fraction of the existing
stock, is thought to correspond to obsolescence of old technologies. In the quality-ladders
framework, the correct procedure is to discount current R&D expenditure by the factor
[1 − q−α/(1−α)] < 1 to allow for the contemporaneous obsolescence of lower quality inter-
mediate inputs. Then this discounted R&D spending enters one-to-one as the net investment
flow that changes the R&D capital stock (that is, the quality index, Q). The depreciation
rate on this stock is zero, because no technological forgetting occurs in the model.

The growth-accounting formula can be written from equations (10.34) and (10.35) as

ĝ = Ṫ /T + (1 − α) · [
1 − q−α/(1−α)

] · (R&D)/(market value of past R&D) (10.36)

This result parallels equation (10.32), except for the presence of the coefficient
[1 − q−α/(1−α)] < 1. Thus, in the quality-ladders model, the contribution of the R&D vari-
able to TFP growth is less than one-to-one partly because of the multiplication by the
labor share, 1 −α, and partly because of the multiplication by the obsolescence coefficient,
[1 − q−α/(1−α)]. Since the parameter q would not be directly observable, a nonregression
approach to assessing the growth effects from R&D seems not to be feasible within the
quality-ladders framework.

In the basic quality-ladders model, the market value of past R&D is proportional to per
worker output, Y/L .12 Hence, the TFP growth rate can be expressed from equation (10.36)
as a linear function of the ratio (R&D)/(Y/L), which is the R&D variable that also arose
in the basic version of the varieties model. Also as before, this variable becomes the one
typically used in empirical studies, (R&D)/Y , if the specification of R&D costs is changed
to eliminate the scale effect in the model.

The impact of R&D on the TFP growth rate in equation (10.36) can be assessed empir-
ically from a regression approach. In principle, the results could be used to estimate the
obsolescence coefficient, [1 − q−α/(1−α)]. However, this approach again involves problems
of simultaneity and would require satisfactory instruments for the R&D variable.

12. See equations (7.68) and (7.16).
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10.5 Growth Accounting Versus Sources of Growth

Growth accounting is often used inappropriately to pinpoint the ultimate sources of growth,
whereas, in fact, it is only an accounting decomposition. To see this point, consider a
neoclassical economy in the steady state. Assume that the production function is Cobb–
Douglas with exogenous, labor-augmenting technological progress at the rate x :

Y = AK α · (Lext )1−α

Assume, for simplicity, that the aggregate labor force, L , is constant.
We found in chapters 1 and 2 that the steady-state growth rate of output and the capital

stock will also be x . Hence, if we use the growth-accounting decomposition described in
this chapter, we get

Ẏ/Y = α · (K̇/K ) + (1 − α) · x

where Ẏ/Y = K̇/K = x . Since we attribute αx of the steady-state growth rate, x , of output
to the growth of capital, we compute a TFP growth rate of (1 − α) · x . Hence, we assign
only the fraction 1 − α of the growth rate of output to technological progress, whereas, in
fact, no growth would have occurred without this progress.

A reasonable view for this model is that the ultimate source of growth is entirely tech-
nological because, without such progress, no growth of GDP would have occurred. Nev-
ertheless, the growth-accounting decomposition gets the accounting right in the sense that
technological progress triggered an additional accumulation of capital which, in turn, gen-
erated a larger growth of GDP than would have occurred had the capital stock remained
constant. To the extent that capital is endogenous and responds to technological progress,
all the growth in GDP can be attributed to technology. In this sense, the allocation of only
the part (1−α) · x of the growth rate of GDP to technological progress is misleading. How-
ever, it is also true that, if the capital stock had not grown in response to the technological
progress, GDP would have grown at the rate (1 − α) · x , rather than x .

It is easy to illustrate the point with a picture. Figure 10.1 graphs a production function
in per capita terms. Suppose that the economy starts in a steady state with the constant
capital stock k∗ and the constant GDP per person y∗. Imagine that the technology improves
so that the production function shifts upward proportionately. If the capital stock did not
increase, GDP would go up from y∗ to y∗′. Thus, y∗′ − y∗ is the increase in GDP that can be
attributed directly to the improvement in technology. The capital stock, however, increases
in response to the improvement in technology (as was shown in chapters 1 and 2). Let
the new steady-state capital stock be k∗∗ and the new steady-state GDP level be y∗∗ > y∗′.
Notice that y∗∗− y∗′ is the increase in GDP that can be attributed to the endogenous increase
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Figure 10.1
The economy’s reaction to technological progress. This figure graphs two production functions in per capita
terms. Suppose that the economy starts in a steady state with the constant capital stock k∗ and the constant GDP
per person y∗. Imagine that the technology improves so that the production function shifts upward proportionately.
If the capital stock did not increase, GDP would go up from y∗ to y∗′. Thus, y∗′ − y∗ is the increase in GDP
that can be attributed directly to the improvement in technology. The capital stock, however, increases in response
to the improvement in technology. The new steady-state capital stock k∗∗ and the new steady-state GDP level is
y∗∗. The difference y∗∗ − y∗ is the increase in GDP that can be attributed to the endogenous increase in capital.
The growth-accounting exercise correctly indicates that the increase of output from y∗ to y∗′ can be attributed to
technological progress, whereas the increase from y∗′ to y∗∗ can be attributed to the subsequent response of the
capital stock. However, the example should make clear that the only ultimate source of growth is technological
progress in the sense that, without it, GDP would not have increased.

in capital. The growth-accounting exercise correctly indicates that the increase of output
from y∗ to y∗′ can be attributed to technological progress, whereas the increase from y∗′ to
y∗∗ can be attributed to the subsequent response of the capital stock. However, the example
should make clear that the only ultimate source of growth is technological progress in the
sense that, without it, GDP would not have increased.

The TFP growth rate, (1 − α) · x , is the answer to the question, What would the growth
rate of output have been if technological progress occurred at the rate x and the capital
stock (and labor input) had been constant? Similarly, the growth rate αx is the answer to
the question, What would the growth rate of output have been if the capital stock grew as it
did (at the rate x) and technological progress had been nil? These answers follow logically,
given the premises, but do not correspond well to economic causation. If technological
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progress is truly exogenous, then the reasonable economic statement for the steady state
of the neoclassical growth model is that different rates of technological change show up
one-to-one in the long run as differences in growth rates of output.

If we want to attribute to technology both the direct increase in GDP and the increase
in GDP that results from the endogenous response of capital, we would have to divide the
measured ĝ by (1 − α). In other words, we have13

x = ĝ

1 − α
(10.37)

As an illustration, table 10.3 displays the corrections for the four East Asian Miracle coun-
tries that appear in table 10.2. Column 1 displays the growth rate of aggregate GDP. Column 2
shows the estimated growth rate of TFP from the last column of table 10.2. In parentheses,
we show the fraction of the aggregate growth that can be accounted for by technology.
Column 3 computes the growth rate of GDP for which technological progress is ultimately
responsible (directly and indirectly) by using the correction suggested in equation (10.37).
Notice that the fraction of total GDP growth for which technological progress is responsible
is 59 percent for Hong Kong, 49 percent for Singapore, and 53 percent for Taiwan (up from
37 percent, 25 percent, and 39 percent, respectively). Only South Korea’s growth rate re-
mains largely explained by exogenous factor accumulation (TFP growth is responsible for
only 20 percent of GDP growth). Thus, even though the estimates of TFP growth are small,
it is possible that technological progress is responsible for more than half of the growth
of GDP.

The problem is magnified when we recognize that human capital would also respond
endogenously to exogenous improvements in technology. Correction for this additional
factor would deliver a formula similar to equation (10.37), except that the relevant capital
share would be the sum of the shares of physical and human capital. As discussed elsewhere
in this book, this share is not known, but the evidence on the speed of convergence suggests
that it may be close to 0.7. Column 4 of table 10.3 uses this number for the share of
broad capital to show the growth of GDP for which technological progress is ultimately
responsible when physical and human capital both respond. Technological progress is now
responsible for all of the growth rate of GDP in Hong Kong and Taiwan. (Technological
change is responsible for more than 100 percent of the growth rate because the responses
of human and physical capital to the exogenous improvements in technology should have
been larger than they actually were.) Technology also explains 84 percent of the growth
rate for Singapore and 49 percent for South Korea.

13. This calculation assumes that all of the response in capital occurs within the period of observation.
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Table 10.3
TFP Growth Adjusted for Endogenous Responses of Capital

(1) (2) (3) (4)
GDP Growth TFP Growth TFP Growth Adjusted TFP Growth Adjusted

Country Rate Rate for Physical Capital for Broad Capital

Hong Kong 0.073 0.027 0.043 0.090
(37%) (59%) (123%)

Singapore 0.087 0.022 0.043 0.073
(25%) (49%) (84%)

South Korea 0.103 0.015 0.021 0.050
(14%) (20%) (49%)

Taiwan 0.094 0.037 0.050 0.123
(39%) (53%) (131%)

Notes: Column 1 shows the growth rate of GDP as given in table 10.1, panel D. Column 2 shows the TFP growth
rate indicated for the dual column in table 10.2. Column 3 adjusts for responses of physical capital by multiplying
the TFP growth rate by 1/(1 − α), where α is the capital share shown in table 10.1, panel D. Column 4 adjusts
for responses of physical and human capital by multiplying the TFP growth rate by 1/0.3, that is, by assuming
a broad capital share of α = 0.7. The numbers in parentheses show the percentages of the growth rate of GDP
accounted for by each measure of TFP growth.

The corrections made in this section surely overstate the importance of technological
progress because they assume that all of the endogenous responses of capital occur within
the period of observation. The calculations are not meant to offer a realistic way of adjusting
the TFP estimates to make causality statements about ultimate sources of growth but, rather,
to warn the reader that such claims should be avoided. A small positive number for ĝ
is, in principle, consistent with a situation in which technological progress is ultimately
responsible for a small part of GDP growth, but it is also consistent with a situation in
which it is ultimately responsible for the entirety of GDP growth. Thus the same accounting
decomposition is consistent with two entirely different visions of growth.

Growth accounting may be able to provide a mechanical decomposition of the growth of
output into growth of an array of inputs and growth of total factor productivity. Successful
accounting of this sort is likely to be useful and may stimulate the development of useful
economic theories of growth. Growth accounting does not, however, constitute a theory
of growth because it does not attempt to explain how the changes in inputs and the im-
provements in total factor productivity relate to elements—such as aspects of preferences,
technology, and government policies—that can reasonably be viewed as fundamentals.
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A key property of the neoclassical growth model is its prediction of conditional convergence,
a concept that applies when the growth rate of an economy is positively related to the
distance between this economy’s level of income and its own steady state. Conditional
convergence should not be confused with absolute convergence, a concept that applies
when poor economies tend to grow faster than rich ones (and, therefore, the poor tend
to “catch up”). It is possible that two economies converge in the conditional sense (the
growth rate of each economy declines as it approaches its own steady state) but not in the
absolute sense (the rich economy can grow faster than the poor one if the former is further
below its own steady state). The two concepts are identical if a group of economies tend to
converge to the same steady state. We found in chapters 1 and 2 that neoclassical economies
with similar tastes and technologies converge to the same steady state. Therefore, in this
case, the neoclassical growth model predicts absolute convergence; that is, poor economies
tend to grow faster than rich ones. Thus one way to test the convergence hypothesis is to
check whether economies with similar tastes and technologies—economies that are likely
to converge to the same steady state—converge in an absolute sense.

In this chapter, we test the convergence predictions of the neoclassical growth model by
looking at the behavior of regions within countries. Although differences in technology,
preferences, and institutions exist across regions, these differences are likely to be smaller
than those across countries. Firms and households of different regions within a single
country tend to have access to similar technologies and have roughly similar tastes and
cultures. Furthermore, the regions share a common central government and therefore have
similar institutional setups and legal systems. This relative homogeneity means that regions
are more likely to converge to similar steady states. Hence, absolute convergence is more
likely to apply across regions within countries than across countries.

It can be argued that using regions to test the convergence hypothesis is incorrect because
inputs tend to be more mobile across regions than across countries. Legal, cultural, linguistic,
and institutional barriers to factor movements tend to be smaller across regions within a
country than across countries. Hence, the assumption of a closed economy—a standard
condition of the neoclassical growth model—is likely to be violated for regional data sets.
However, we found in chapter 3 that the dynamic properties of economies that are open to
capital movements can be similar to those of closed economies if a fraction of the capital
stock—which includes human capital—is not mobile or cannot be used as collateral in
interregional or international credit transactions. The speed of convergence is increased by
the existence of capital mobility but remains within a fairly narrow range for reasonable
values of the fraction of capital that is mobile. Another result is that a technology without
diminishing returns to capital—that is, some version of the AK technology—implies a zero
convergence speed whether the economy is open or closed.
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We also found in chapter 9 that the allowance for migration in neoclassical growth
models tends to accelerate the process of convergence. The change is, again, a quantitative
modification to the speed of convergence. The main point, therefore, is that although regions
within a country are relatively open to flows of capital and persons, the neoclassical growth
model still provides a useful framework for the empirical analysis.

11.1 Two Concepts of Convergence

Two concepts of convergence appear in discussions of economic growth across countries or
regions. In one view (Barro, 1984, chapter 12; Baumol, 1986; DeLong, 1988; Barro, 1991a;
Barro and Sala-i-Martin, 1991, 1992a, 1992b), convergence applies if a poor economy
tends to grow faster than a rich one, so that the poor country tends to catch up to the rich
one in terms of levels of per capita income or product. This property corresponds to our
concept of β convergence.1 The second concept (Easterlin, 1960a; Borts and Stein, 1964,
chapter 2; Streissler, 1979; Barro, 1984, chapter 12; Baumol, 1986; Dowrick and Nguyen,
1989; Barro and Sala-i-Martin, 1991, 1992a, 1992b) concerns cross-sectional dispersion. In
this context, convergence occurs if the dispersion—measured, for example, by the standard
deviation of the logarithm of per capita income or product across a group of countries or
regions—declines over time. We call this process σ convergence. Convergence of the first
kind (poor countries tending to grow faster than rich ones) tends to generate convergence
of the second kind (reduced dispersion of per capita income or product), but this process is
offset by new disturbances that tend to increase dispersion.

To make the relation between the two concepts more precise, we consider a version of the
growth equation predicted by the neoclassical growth model of chapter 2. Equation (2.35)
relates the growth rate of income per capita for economy i between two points in time to
the initial level of income. We apply equation (2.35) here to discrete periods of unit length
(say years), and we also augment it to include a random disturbance:

log(yit/yi,t−1) = ait − (1 − e−β) · log(yi,t−1) + uit (11.1)

where the subscript t denotes the year, and the subscript i denotes the country or region.
The theory implies that the intercept, ait , equals xi +(1−e−β)·[log(ŷ∗

i ) + xi ·(t −1)], where
ŷ∗

i is the steady-state level of ŷi and xi is the rate of technological progress. We assume
that the random variable uit has 0 mean, variance σ 2

ut , and is distributed independently of
log(yi,t−1), u jt for j �= i , and lagged disturbances.

1. This phenomenon is sometimes described as “regression toward the mean.”
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We can think of the random disturbance as reflecting unexpected changes in produc-
tion conditions or preferences. We begin by treating the coefficient ait as the same for all
economies so that ait = at . This specification means that the steady-state value, ŷ∗

i , and
the rate of exogenous technological progress, xi , are the same for all economies. This as-
sumption is more reasonable for regional data sets than for international data sets; it is
plausible that different regions within a country are more similar than different countries
with respect to technology and preferences.

If the intercept ait is the same in all places and β > 0, equation (11.1) implies that poor
economies tend to grow faster than rich ones. The neoclassical growth models of chapters 1
and 2 made this prediction. The AK model discussed in chapter 4 predicts, in contrast, a
0 value for β and, consequently, no convergence of this type. The same conclusion holds
for various endogenous growth models (chapters 6 and 7) that incorporate a linearity in the
production function.2

Since the coefficient on log(yi,t−1) in equation (11.1) is less than 1, the convergence is not
strong enough to eliminate the serial correlation in log(yit ). Put alternatively, in the absence
of random shocks, convergence to the steady state is direct and involves no oscillations or
overshooting. Therefore, for a pair of economies, the one that starts out behind is predicted
to remain behind at any future date.

Let σ 2
t be the cross-economy variance of log(yit ) at time t . Equation (11.1) and the

assumed properties of uit imply that σ 2
t evolves over time in accordance with the first-order

difference equation3

σ 2
t = e−2β · σ 2

t−1 + σ 2
ut (11.2)

where we have assumed that the cross section is large enough so that the sample variance
of log(yit ) corresponds to the population variance.

If the variance of the disturbance, σ 2
ut , is constant over time (σ 2

ut = σ 2
u for all t), the

solution of the first-order difference equation (11.2) is

σ 2
t = σ 2

u

1 − e−2β
+

(
σ 2

0 − σ 2
u

1 − e−2β

)
· e−2βt (11.3)

where σ 2
0 is the variance of log(yi0). (It can be readily verified that the solution in equa-

tion [11.3] satisfies equation [11.2].) Equation (11.3) implies that σ 2
t monotonically ap-

proaches its steady-state value, σ 2 = σ 2
u /(1 − e−2β), which rises with σ 2

u but declines with

2. We showed, however, in chapter 4 that β convergence would apply if the technology were asymptotically AK
but featured diminishing returns to capital for finite K .

3. To derive equation (11.2), add log(yi,t−1) to both sides of equation (11.1), compute the variance, and use the
condition that the covariance between uit and log(yi,t−1) is 0.
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Figure 11.1
Theoretical behavior of dispersion. The figure shows the dispersion of per capita product, measured as the vari-
ance of the log of per capita product across economies. Although β convergence is assumed to apply, the dispersion
may fall, rise, or remain constant, depending on whether it starts above, below, or at its steady-state value, σ 2. The
figure assumes β = 0.02 per year.

the convergence coefficient, β. Over time, σ 2
t falls (or rises) if the initial value σ 2

0 is greater
than (or less than) the steady-state value, σ 2. Thus a positive coefficient β (β convergence)
does not imply a falling σ 2

t (σ convergence). To put it another way, β convergence is a
necessary but not a sufficient condition for σ convergence.

Figure 11.1 shows the time pattern of σ 2
t with σ 2

0 above or below σ 2. The convergence
coefficient used, β = 0.02 per year, corresponds to the estimates that we report in a later
section. With this value of β, the cross-sectional variance is predicted to fall or rise over
time at a slow rate. In particular, if σ 2

0 departs substantially from the steady-state value, σ 2,
then it takes about 100 years for σ 2

t to get close to σ 2.
The cross-sectional dispersion of log(yit ) is sensitive to shocks that have a common

influence on subgroups of countries or regions. These kinds of disturbances violate the
condition that uit in equation (11.1) is independent of u jt for i �= j . To the extent that these
shocks tend to benefit or hurt regions with high or low income (that is, to the extent that
the shocks are correlated with the explanatory variable), the omission of such shocks from
the regressions will tend to bias the estimates of β.

Examples are shocks that generate changes in the terms of trade for commodities. For
the United States, an example is the sharp drop in the relative prices of agricultural goods
during the 1920s. This disturbance had an adverse effect on the incomes of agricultural
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regions relative to the incomes of industrial regions. We can think also of the two oil price
increases of the 1970s and the price decline of the 1980s. These shocks had effects in the
same direction on the incomes of oil-producing regions relative to other regions. Another
example for the United States is the Civil War. This shock had a strong adverse impact on
the incomes of southern states relative to the incomes of northern states.

Formally, let St be a random variable that represents an economy-wide disturbance for
period t . For example, St could reflect the relative price of oil as determined on world
markets. Then equation (11.1) can be modified to

log(yit/yi,t−1) = ait − (1 − e−β) · log(yi,t−1) + ϕi St + uit (11.4)

where ϕi measures the effect of the aggregate disturbance on the growth rate in region i .
If a positive value of St signifies an increase in the relative price of oil, then ϕi would be
positive for countries or regions that produce a lot of oil.4 The coefficient ϕi would tend to
be negative for economies that produce goods, such as automobiles, that use oil as an input.
We think of the coefficient ϕi as distributed cross sectionally with mean ϕ̄ and variance σ 2

ϕ .
If log(yi,t−1) and ϕi are uncorrelated, estimates of β in equation (11.4) would be consistent

when the shock is omitted from the regression. If log(yi,t−1) and ϕi are positively correlated,
the coefficient estimated by OLS on log(yi,t−1) in equation (11.4) would be positively
or negatively biased as St is positive or negative. As an example, if oil producers have
relatively high per capita income, an increase in oil prices will benefit the relatively rich
states. Consequently, an OLS regression of growth on initial income will underestimate the
true convergence coefficient. In the empirical analysis of the next sections, we hold constant
proxies for St as an attempt to obtain consistent estimates of the convergence coefficients.

Equation (11.4) implies that the variance of the log of per capita income evolves as

σ 2
t = e−2β · σ 2

t−1 + σ 2
ut + S2

t · σ 2
ϕ + 2St · e−β · cov[log(yi,t−1), ϕi ] (11.5)

where the variances and covariances are conditioned on the current and past realizations of
the aggregate shocks, St , St−1, . . . . If cov[log(yi,t−1), ϕi ] equals 0—that is, if the shock is
uncorrelated with initial income—equation (11.5) corresponds to equation (11.2), except
that realizations of St effectively move σ 2

ut around over time. A temporarily large value of
St raises σ 2

t above the long-run value σ 2 that corresponds to a typical value of St . Therefore,
in the absence of a new shock, σ 2

t returns gradually toward σ 2, as shown in figure 11.1.

4. More precisely, this shock would have a positive effect on the real income derived from the countries or regions
that produce a lot of oil. This income may be owned by “foreigners” and appear as part of the net factor payments
from “abroad,” the term that differentiates GNP from GDP. For example, a substantial fraction of the capital inputs
of Wyoming is owned by residents of other states. A positive oil shock will increase Wyoming’s nominal GDP
(and raise the real value of this GDP when deflated by a national price index) but not necessarily raise its GNP or
personal income. For the U.S. states, this distinction is important in a few cases, notably for oil producers.
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11.2 Convergence Across the U.S. States

11.2.1 β Convergence

We now use the data on per capita income for the U.S. states to estimate the speed of
convergence, β.5 (The definitions and sources of the data are in the appendix, section 11.12.)
Suppose, for the moment, that we have observations at only two points in time, 0 and T .
Then equation (2.35) implies that the average growth rate of per capita income for economy
i over the interval from 0 to T is given by

(1/T ) · log(yiT /yi0) = x − [(1 − e−βT )/T ] · log(yi0) + [(1 − e−βT )/T ] · log(ŷ∗
i ) + ui0,T

(11.6)

where ui0,T represents the effect of the error terms, uit , between dates 0 and T ; ŷ∗
i is the

steady-state level of income; and x is the rate of technological progress, which we assume
is the same for all economies.

The coefficient on initial income in equation (11.6) is (1 − e−βT )/T , an expression that
declines with the length of the interval, T , for a given β. That is, if we estimate a linear
relation between the growth rate of income and the log of initial income, the coefficient is
predicted to be smaller the longer the time span over which the growth rate is averaged.
The reason is that the growth rate declines as income increases (if yi0 < ŷ∗

i ). Hence, if we
compute the growth rate over a longer time span, it combines more of the smaller future
growth rates with the initially larger growth rates. Hence, as the interval increases, the effect
of the initial position on the average growth rate declines. The coefficient (1 − e−βT /T )

approaches 0 as T approaches infinity, and it tends to β as T approaches 0.
Notice that equation (11.6) includes the term [(1 − e−βT )/T ] · log(ŷ∗

i ) as an explanatory
variable. That is, the growth rate of economy i depends on its initial level of income, yi0,
but it also depends on the steady-state level of income. This is why we use the concept
of conditional rather than absolute convergence: the growth rate of an economy depends
negatively on its initial level of income, after we “condition” on the steady state.

5. Barro and Sala-i-Martin (1992a) also use the data on gross state product (GSP), reported by the Bureau of
Economic Analysis. GSP is analogous to GDP in that it assigns the product to the state in which it has been
produced. In contrast, income (like GNP) assigns the product to the state in which the owners of the inputs reside.
This distinction is potentially important if the economies are open and people tend to own capital in other states,
or if there is a lot of interstate commuting (people live in one state and work in another). Barro and Sala-i-Martin
(1992a) show that, in practice, the distinction turns out not to be that important; the estimates of the speed of
convergence for GSP are similar to those for personal income. Since GSP data are available only starting in 1963,
we limit attention in this chapter to the results that use the income data.
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The usefulness of using regional data can be seen as follows: imagine that, instead of
estimating the multivariate equation (11.6), we estimate the univariate regression

(1/T ) · log(yiT /yi0) = a − [(1 − e−βT )/T ] · log(yi0) + wi0,T (11.7)

Notice that, in equation (11.7), the term [(1−e−βT )/T ] · log(ŷ∗
i ) is no longer an explanatory

variable. If the term that multiplies initial income in equation (11.7) turns out to be negative,
we will conclude that poor economies tend to grow faster than rich economies so that
“absolute convergence” applies. It is for this reason that regressions like equation (11.7)
have been used in the literature to test the absolute convergence hypothesis. The question
is whether the failure to find a negative coefficient is reason to reject the neoclassical
growth model. Remember that the neoclassical model predicts a multivariate relation such as
equation (11.6). Suppose that, instead of equation (11.6), we estimate equation (11.7). If we
analyze data sets in which the various economies converge to different steady states, that is
ŷ∗

i �= ŷ∗
j for all i and j , then the univariate regression equation (11.7) is misspecified and the

excluded term is incorporated into the error term: wi0,T = ui0,T + [(1−e−βT )/T ] · log(ŷ∗
i ).

If the steady-state level of income, ŷ∗
i , is correlated with the explanatory variable yi0,

the error term is correlated with the right-hand-side variable, and the univariate regression
equation (11.7) will provide biased estimates ofβ. In particular, if currently richer economies
tend to converge to a higher steady-state level of income (that is, if ŷ∗

i and yi0 are positively
correlated), the estimate of β in equation (11.7) is biased toward zero. In other words,
researchers could find no relation between growth and the initial level of income, even
though conditional convergence holds. Under these circumstances, the only way to get
consistent estimates of β is to get measures of ŷ∗

i and include them in the regression.
Imagine now that we have a data set in which the various economies converge to different

steady states, but that there is no correlation between the initial and the steady-state level of
income. Although the univariate regression is still misspecified, the error term (which again
includes the missing variable, ŷ∗

i ) is not correlated with the explanatory variable. Hence,
the usual estimation of equation (11.7) can provide a consistent estimate of β. Finally, if
we analyze a data set in which all economies have the same steady state, that is, if ŷ∗

i = ŷ∗
j

for all i and j , the term [(1 − e−βT )/T ] · log(ŷ∗
i ) is incorporated into the constant term, and

the usual estimation of equation (11.7) will again provide a consistent estimate of β.
In sum, there are two ways to estimate the speed of convergence, β. The first is to use

general data sets (that is, data sets for which there is no guarantee that the initial level of
income is uncorrelated with the steady-state level of income) and find proxies for the steady-
state level of income. The second is to use data sets in which the various economies tend to
converge to similar steady states or that, at least, the steady states are unrelated to the initial
level of income. This second context is the one in which regional data sets play an important
role. Although differences in technology, preferences, and institutions exist across regions,
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these differences are likely to be smaller than those across countries. Firms and households
of different regions within a single country tend to have access to similar technologies and
have roughly similar tastes and cultures. Furthermore, the regions share a common central
government and therefore have similar institutional setups and legal systems. This relative
homogeneity means that absolute convergence is more likely to apply across regions within
countries than across countries.

Table 11.1 shows nonlinear least-squares estimates in the form of equation (11.7) for 47
or 48 U.S. states or territories for various time periods. The rows of table 11.1 correspond to
the different time periods. For example, the first row applies to the 120-year period between
1880 and 2000. The first column of the table refers to the equation with only one explanatory
variable, the logarithm of income per capita at the beginning of the period. Column two
adds four regional dummies, corresponding to the four main census regions: Northeast,
South, Midwest, and West. Finally, column three includes sectoral variables that are meant
to capture the aggregate shocks discussed in the previous section. We already argued that
the inclusion of these auxiliary variables would help to obtain accurate estimates of β.

Each cell contains the estimate of β, the standard error of this estimate (in parentheses),
the R2, and the standard error of the regression (in brackets). All equations have been
estimated with constant terms, which are not reported in table 11.1.

The point estimate of β for the long sample, 1880–2000, is 0.0172 (s.e. = 0.0024).6

The high R2, 0.92, can be appreciated from figure 11.2, which provides a scatter plot of
the average growth rate of income per capita between 1880 and 2000 against the log of
income per capita in 1880.

The second column of the first row presents the estimated speed of convergence when
the four regional dummies are incorporated. The estimated β coefficient is 0.0160 (0.0034).
The similarity between this estimate and the previous one suggests that the speed at which
average incomes converge across the census regions is not substantially different from the
speed at which average incomes converge for the states within each of the regions. We can
check this result by computing the average income for each of the four regions. The growth
rate of a region’s average income between 1880 and 2000 is plotted against the log of the
region’s average income in 1880 in figure 11.3. The negative relation is clear (the correlation
coefficient is −0.97). The estimated speed of convergence implied by this relation is 2.1
percent per year, about the same as the within-region rate shown in column 2.

The next ten rows of table 11.1 divide the sample into subperiods. The first two are twenty
years long (1880 to 1900 and 1920 to 1940), because income data for 1890 and 1910 are
unavailable. The remaining eight subperiods are ten years long.

6. This regression includes 47 states or territories. Data for the Oklahoma territory are unavailable for 1880.



Empirical Analysis of Regional Data Sets 469

Table 11.1
Regressions for Personal Income Across U.S. States

(1) (2) (3)
Equations with

Equations with Structural Variables
Basic Equation Regional Dummies and Regional Dummies

Period β̂ R2[σ̂ ] β̂ R2[σ̂ ] β̂ R2[σ̂ ]

1880–2000 0.0172 0.92 0.0160 0.95 — —
(0.0024) [0.0012] (0.0034) [0.0010]

1880–1900 0.0101 0.36 0.0224 0.62 0.0268 0.65
(0.0022) [0.0068] (0.0043) [0.0054] (0.0051) [0.0053]

1900–20 0.0218 0.62 0.0209 0.67 0.0270 0.71
(0.0031) [0.0065] (0.0065) [0.0062] (0.0077) [0.0060]

1920–30 −0.0149 0.14 −0.0128 0.43 0.0209 0.64
(0.0051) [0.0132] (0.0078) [0.0111] (0.0119) [0.0089]

1930–40 0.0129 0.28 0.0072 0.34 0.0147 0.37
(0.0033) [0.0079] (0.0052) [0.0078] (0.0083) [0.0078]

1940–50 0.0502 0.73 0.0512 0.88 0.0304 0.91
(0.0058) [0.0087] (0.0062) [0.0059] (0.0065) [0.0052]

1950–60 0.0193 0.40 0.0191 0.52 0.0305 0.74
(0.0039) [0.0051] (0.0056) [0.0047] (0.0053) [0.0035]

1960–70 0.0286 0.61 0.0181 0.73 0.0196 0.74
(0.0039) [0.0040] (0.0046) [0.0034] (0.0061) [0.0035]

1970–80 0.0186 0.27 0.0079 0.44 0.0057 0.46
(0.0049) [0.0044] (0.0055) [0.0040] (0.0068) [0.0040]

1980–90 0.0036 0.01 0.0095 0.57 0.0029 0.69
(0.0085) [0.0077] (0.0074) [0.0052] (0.0070) [0.0045]

1990–2000 0.0016 0.01 −0.0005 0.07 0.0029 0.14
(0.0035) [0.0035] (0.0045) [0.0035] (0.0050) [0.0034]

Joint, 9 0.0150 — 0.0164 — 0.0212 —
subperiods (0.0015) — (0.0021) — (0.0023) —

Note: The regressions use nonlinear least squares to estimate equations of the form

(1/T ) · log(yit/yi,t−T ) = a − [log(yi,t−T )] · [(1 − e−βT )/T ] + other variables

where yi,t−T is per capita income in state i at the beginning of the period divided by the overall CPI, T is the
length of the interval, and the other variables are regional dummies and structural measures (see the description
in the text). See the appendix (section 11.12) for a discussion of the data on the U.S. states. The samples that
begin in 1880 have 47 observations. The others have 48 observations. Each column contains the estimate of β, the
standard error of this estimate (in parentheses), the R2 of the regression, and the standard error of the equation (in
brackets). The estimated coefficients for constants, regional dummies, and structural variables are not reported.
The likelihood-ratio statistic refers to a test of the equality of the coefficients of the log of initial income over the
nine subperiods. The p value comes from a χ2 distribution with eight degrees of freedom.
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Figure 11.2
Convergence of personal income across U.S. states: 1880 personal income and 1880–2000 income growth.
The average growth rate of state per capita income for 1880–2000, shown on the vertical axis, is negatively related
to the log of per capita income in 1880, shown on the horizontal axis. Thus, absolute β convergence exists for the
U.S. states.

The estimated β coefficient is significantly positive—indicating β convergence—for
seven of the ten subperiods. The coefficient has the wrong sign (β < 0) for only one of the
subperiods, 1920–30, a time of large declines in the relative price of agricultural commodi-
ties. A likely explanation for this result is that agricultural states tended to be poor states, and
the agricultural states suffered the most from the fall in agricultural prices. The estimated
coefficient is insignificant for the two most recent subperiods, the 1980s and the 1990s. If
we constrain the β coefficients to be the same for all subperiods, the joint estimate for the
basic equation is 0.0150 (0.0015).

Column 2 of Table 11.1 adds regional dummies, where the coefficients of these dummies
are allowed to differ for each period. These regional variables capture effects that are
common to all states within a region in a given period. The estimated β coefficient for
the 1920s still has the wrong sign, as does the the coefficient for the 1990s, although they
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Figure 11.3
Convergence of personal income across U.S. regions: 1880 income and 1880–2000 income growth. The
negative relation between income growth and initial income, shown for the U.S. states in figure 11.2, applies in
figure 11.3 to averages over the four main census regions.

are both estimated with substantial error. Hence, even within regions, poor states tended to
grow slower than rich states during the 1920s. The joint estimate for the nine subperiods is
now 0.0164 (0.0021), similar to that for the basic regression.

Aggregate shocks that affect groups of states differentially, such as shifts in the relative
prices of agricultural products or oil, might explain the instability of the estimated coeffi-
cients. Following Barro and Sala-i-Martin (1991, 1992a, 1992b), the third column of table
11.1 adds an additional variable to the regression as an attempt to hold these aggregate
shocks constant. The variable, denoted by Sit (for structure), is calculated as

Sit =
9∑

j=1

ωi j,t−T · [log(y jt/y j,t−T )/T ] (11.8)

where ωi j,t−T is the weight of sector j in state i’s personal income at time t − T and y jt is
the national average of personal income per worker in sector j at time t . The nine sectors
used are agriculture, mining, construction, manufacturing, trade, finance and real estate,
transportation, services, and government. We think of Sit as a proxy for the effects reflected
in the term ϕi St in equation (11.4).
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The structural variable reveals how much a state would grow if each of its sectors grew at
the national average rate. For example, suppose that economy i specializes in the production
of cars and that the aggregate car sector does not grow over the period between t − T and
t . The low value of Sit for this region indicates that it should not grow very fast because the
car industry has suffered from the shock.

Note from equation (11.8) that Sit depends on the contemporaneous growth rates of
national averages and on lagged values of state i’s sectoral shares. For this reason, the
variable can be reasonably treated as exogenous to the current growth experience of state i .

Because of lack of data, we can include the structural variable only for the periods after
1929. For the periods before 1929, we obtain a rough measure of Sit by using the share of
agriculture in the state’s total income.

Column three includes structural variables, as well as regional dummies, in the growth
regressions. (The coefficients on the regional and structural variables are allowed to differ
for each period.) One contrast with the previous results is that the estimated β coefficient
for the 1920s becomes positive and close to 0.02. The coefficients for the 1980s and 1990s
are also positive but their size continues to be small. The joint estimate of β for the nine
subperiods is 0.0212 (0.0023).

The main conclusion is that the U.S. states tend to converge at a speed of about 2 percent
per year. Averages for the four census regions converge at a rate that is similar to that for
states within regions. If we hold constant measures of structural shocks, we cannot reject
the hypothesis that the speed of convergence is stable over time, although the estimates for
the last two decades are insignificantly different from zero.

11.2.2 Measurement Error

The existence of temporary measurement error in income tends to introduce an upward bias
in the estimate of β; that is, the elimination of measurement error over time can generate the
appearance of convergence.7 One reason for measurement error is that each state’s nominal
income is deflated by a national price index, because accurate indexes do not exist at the
state level.

One way to handle measurement error is to use earlier lags of the log of income as
instruments in the regressions. If measurement error is temporary (and the error term is not
serially correlated), the earlier lags of the log of income would be satisfactory instruments
for the log of income at the start of each period. If we reestimate column 1 of table 11.1
with the previous lag of the log of income used as an instrument, we get a joint estimate

7. The same property holds for short-term business fluctuations. We may want to design a model in which these
temporary fluctuations of output are distinguished from the kinds of transitional dynamics that appear in growth
models.



Empirical Analysis of Regional Data Sets 473

of β of 0.0176 (0.0019). This panel uses nine subperiods starting in 1900 because the
observation for 1880–1900 is lost. The OLS estimate of β for the same nine subperiods is
0.0165 (0.0018). Hence, the use of instruments generates a minor change in the estimate
of β, which suggests that measurement error does not explain the significantly negative
relation between growth and the initial level of income.

When we estimate the subperiods separately, we again find only a small difference be-
tween the instrumental-variable (IV) and OLS estimates. The largest change applies to
1950–60, for which the IV estimate is 0.0139 (0.0040), compared with the OLS value of
0.0193 (0.0039).

The results for columns 2 and 3 of table 11.1 are similar. Our conclusion is that measure-
ment error is unlikely to be a key element in the results.

11.2.3 σ Convergence

Figure 11.4 shows the cross-sectional standard deviation for the log of per capita personal
income net of transfers for 47 or 48 U.S. states or territories from 1880 to 2000. The
dispersion declined from 0.54 in 1880 to 0.33 in 1920 but then rose to 0.40 in 1930. This
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Figure 11.4
Dispersion of personal income across U.S. states, 1880–2000. The figure shows the cross-sectional standard
deviation of the log of per capita personal income for 47 or 48 U.S. states or territories from 1880 to 2000. This
measure of dispersion declined from 1880 to 1920, rose in the 1920s, fell from 1930 to the mid-1970s, rose through
1988, declined again through 1992, and then remained fairly flat.
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rise reflects the adverse shock to agriculture during the 1920s; the agricultural states were
relatively poor in 1920 and suffered a further reduction in income with the fall in agricultural
prices.

After reaching a peak in 1932, the dispersion fell to 0.36 in 1940, 0.24 in 1950, 0.20 in
1960, and 0.16 in 1970. The long-run decline stopped in the mid-1970s, with a low point
of 0.14 in 1976. After that, σt rose to a peak of 0.16 in 1988. Dispersion fell to 0.14 in the
early 1990s, then remained relatively flat.

11.3 Convergence Across Japanese Prefectures

11.3.1 β Convergence

Barro and Sala-i-Martin (1992b) analyze the pattern of β convergence for per capita in-
come across 47 Japanese prefectures (see the appendix, section 11.12, for the sources and
definitions). Table 11.2 reports nonlinear estimates of the convergence coefficient, β, for
the period 1930–90. The setup of table 11.2 parallels that of table 11.1.

The first row of table 11.2 pertains to regressions for the whole period, 1930–90. The basic
equation in column 1 includes only the log of initial income as a regressor.
The estimated β coefficient is 0.0279 (0.0033), with an R2 of 0.92. The good fit can be ap-
preciated in figure 11.5. The strong negative correlation between the growth rate from 1930
to 1990 and the log of per capita income in 1930 confirms the existence of β convergence
across the Japanese prefectures.

The estimated β coefficient is essentially the same in column 2, which incorporates
dummies for the seven Japanese districts as explanatory variables. This finding suggests
that the speed of convergence for prefectures within districts is similar to that across districts.
This idea can be checked by running a regression that uses the seven data points for the
growth and level of the average per capita income of districts. The negative relation between
the growth rate from 1930 to 1990 and the log of per capita income in 1930 is displayed in
figure 11.6. The β coefficient estimated from these observations (not reported in the table) is
0.0261 (0.0079). Hence, we confirm that the speed of convergence across districts is about
the same as that within districts.

The second and third rows of table 11.2 break the full sample into two long subperi-
ods, 1930–55 and 1955–90. For the basic equation, the speed of convergence for the first
subperiod is larger than that for the second, 0.0358 (0.0035) versus 0.0191 (0.0035). The
same relation holds for the second column, which adds the district dummies as explanatory
variables. (Different coefficients on the dummies are estimated for the two subperiods.)
Hence, we conclude that the speed of convergence after 1955 was substantially slower than
that between 1930 and 1955. The lack of sectoral data for the early period does not, how-
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Table 11.2
Regressions for Personal Income Across Japanese Prefectures

(1) (2) (3)
Equations with

Equations with Structural Variables
Basic Equation District Dummies and District Dummies

Period β̂ R2[σ̂ ] β̂ R2[σ̂ ] β̂ R2[σ̂ ]

1930–90 0.0279 0.92 0.0276 0.97 — —
(0.0033) [0.0019] (0.0024) [0.0012]

1930–55 0.0358 0.86 0.0380 0.90 — —
(0.0035) [0.0045] (0.0037) [0.0038]

1955–90 0.0191 0.59 0.0222 0.81 — —
(0.0035) [0.0027] (0.0035) [0.0020]

1955–60 −0.0152 0.07 −0.0023 0.44 0.0047 0.46
(0.0079) [0.0133] (0.0082) [0.0111] (0.0118) [0.0112]

1960–65 0.0296 0.30 0.0360 0.55 0.0414 0.56
(0.0072) [0.0108] (0.0079) [0.0093] (0.0096) [0.0093]

1965–70 −0.0010 0.00 0.0127 0.47 0.0382 0.62
(0.0062) [0.0097] (0.0067) [0.0076] (0.0091) [0.0065]

1970–75 0.0967 0.78 0.0625 0.87 0.0661 0.87
(0.0100) [0.0095] (0.0092) [0.0078] (0.0118) [0.0079]

1975–80 0.0338 0.23 0.0455 0.37 0.0469 0.37
(0.0100) [0.0087] (0.0119) [0.0085] (0.0145) [0.0086]

1980–85 −0.0115 0.04 0.0076 0.37 0.0102 0.37
(0.0077) [0.0075] (0.0089) [0.0066] (0.0094) [0.0067]

1985–90 0.0007 0.00 0.0086 0.28 0.0085 0.28
(0.0067) [0.0067] (0.0082) [0.0061] (0.0085) [0.0062]

Joint, 7 subperiods 0.0125 — 0.0232 — 0.0312 —

Likelihood-ratio (0.0032) — (0.0034) — (0.0040) —
statistic 94.6 40.6 26.4
(p value) (0.000) (0.000) (0.002)

Note: See the appendix (section 11.12) for a discussion of the data on Japanese prefectures, and see the note to
table 11.1 for the form of the regressions. The variable yi,t−T is per capita income in prefecture i at the beginning
of the period divided by the overall CPI. All samples have 47 observations. The likelihood-ratio statistic refers to
a test of the equality of the coefficients of the log of initial income over the seven subperiods. The p value comes
from a χ2 distribution with six degrees of freedom.

ever, allow us to investigate the cause of this difference. We therefore restrict the rest of the
analysis to the post-1955 period.

The next seven rows of table 11.2 break the sample into five-year subperiods starting in
1955. For three of the subperiods, the sign of the estimated β coefficient in the basic equation
is opposite to the one expected. The speed of convergence is positive and significant for
the periods 1960–65, 1970–75, and 1975–80. The joint estimate for the seven subperiods
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Figure 11.5
Convergence of personal income across Japanese prefectures: 1930 income and 1930–90 income growth.
The growth rate of prefectural per capita income for 1930–90, shown on the vertical axis, is negatively related to
the log of per capita income in 1930, shown on the horizontal axis. Thus absolute β convergence exists for the
Japanese prefectures. The numbers shown identify each prefecture; see table 11.10.

is 0.0125 (0.0032). A test for the equality of coefficients over time is strongly rejected; the
p value is 0.000.

The results with district dummies in column 2 allow for different coefficients on the
dummies in each subperiod. In this case, only the estimated β coefficient for 1955–60 has
the wrong sign, and it is not significant. The joint estimate is 0.0232 (0.0034). However, we
still reject the equality of coefficients; the p value is again 0.000.

Column 3 adds a measure of the structural variable, Sit , defined in equation (11.8). This
variable is analogous to the one constructed for the U.S. states. The coefficients on the
structural variable are allowed to differ for each subperiod. In contrast with the previous
two columns, none of the subperiods has the wrong sign when the sectoral variable is
included. The joint estimate for the seven subperiods is 0.0312 (0.0040). We still reject the
hypothesis of coefficient stability over time: the p value is now 0.002.
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Figure 11.6
Convergence of personal income across Japanese districts: 1930 income and 1930–90 income growth. The
negative relation between income growth and initial income, shown for Japanese prefectures in figure 11.5, applies
also in figure 11.6 to averages for the seven major districts.

One source of instability in the estimated β coefficients is that Tokyo is an outlier in the
1980s: Tokyo was by far the richest prefecture in its district in 1980 and had the largest
growth rate from 1980 to 1990, an outcome not captured by the structural variable that we
have included. If we add a dummy for Tokyo for the 1980s, we get estimated β coefficients of
0.0218 (0.0112) for 1980–85 and 0.0203 (0.0096) for 1985–90. With this dummy included,
the test of equality of coefficients now rejects with a p value of 0.010.

Another source of instability is the period 1970–75, for which the estimated β coefficient
of 0.0661 (0.0118) is substantially higher than the others. A likely explanation for this high
estimated value of β is that the oil shock of 1973 had an especially adverse impact on
the richer industrial areas. The structural variable is supposed to hold constant this type of
shock, but the construct that we have been able to measure does not seem to capture this
effect.
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As with the U.S. states, we reestimated the equations for Japanese prefectures with earlier
lags of income used as instruments. The conclusion again is that the estimates are not
materially affected. For example, in column 3 of table 11.2, the joint estimate of β falls
from 0.0312 (0.0040) to 0.0282 (0.0042) when the instruments are used.

11.3.2 σ Convergence Across Prefectures

We want now to assess the extent to which there has been σ convergence across prefectures
in Japan. We calculate the unweighted cross-sectional standard deviation for the log of per
capita income, σt , for the 47 prefectures from 1930 to 1990. Figure 11.7 shows that the
dispersion of personal income increased from 0.47 in 1930 to 0.63 in 1940. One explanation
of this phenomenon is the explosion of military spending during the period. The average
growth rates for districts 1 (Hokkaido–Tohoku) and 7 (Kyushu), which are mainly agricul-
tural, were −2.4 percent and −1.7 percent per year, respectively. In contrast, the industrial
regions of Tokyo, Osaka, and Aichi grew at 3.7, 3.1, and 1.7 percent per year, respectively.

The cross-prefectural dispersion decreased dramatically after World War II: it fell to 0.29
in 1950, 0.25 in 1960, 0.23 in 1970, and hit a minimum of 0.12 in 1978. The dispersion
then increased slightly: σt rose to 0.13 in 1980, 0.14 in 1985, and 0.15 in 1987, but has been
relatively stable since 1987. Thus the pattern is similar to that for the U.S. states.
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Figure 11.7
Dispersion of personal income across Japanese prefectures, 1930–90. The figure shows the cross-sectional
standard deviation of the log of per capita personal income for 47 Japanese prefectures from 1930 to 1990. This
measure of dispersion fell from the end of World War II until 1980.
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11.4 Convergence Across European Regions

11.4.1 β Convergence

Barro and Sala-i-Martin (1991) analyzed convergence for 90 regions in eight European
countries: 11 in Germany, 11 in the United Kingdom, 20 in Italy, 21 in France, 4 in the
Netherlands, 3 in Belgium, 3 in Denmark, and 17 in Spain. The data, described in the
appendix (section 11.12), correspond to GDP per capita for the first seven countries and to
income per capita for Spain.

Table 11.3 shows the estimates of β in the form of equation (11.6) for the period 1950–90.
The regressions include country dummies for each period to proxy for differences in the
steady-state values of xi and ŷ∗

i in equation (11.6) and for countrywide fixed effects in the
error terms. The country dummies, which are not reported in table 11.3, have substantial
explanatory power. The first four rows of column 1 show the results for four decades. The
estimates of β are reasonably stable over time; they range from 0.010 (0.004) for the 1980s
to 0.023 (0.009) for the 1960s. The joint estimate for the four decades is 0.019 (0.002). The

Table 11.3
Convergence Across European Regions

(1) (2)
Equations with

Equations with Sectoral Shares and
Country Dummies Country Dummies

Period β̂ R2[σ̂ ] β̂ R2[σ̂ ]

1950–60 0.018 0.83 0.034 0.84
(0.006) [0.0099] (0.009) [0.0094]

1960–70 0.023 0.97 0.020 0.97
(0.009) [0.0065] (0.006) [0.0064]

1970–80 0.020 0.99 0.022 0.99
(0.009) [0.0079] (0.007) [0.0077]

1980–90 0.010 0.97 0.007 0.97
(0.004) [0.0066] (0.005) [0.0064]

Joint, 4 subperiods 0.019 — 0.018 —
(0.002) — (0.003) —

Likelihood-ratio statistic 4.9 8.6
(p value) (0.179) (0.034)

Note: See the appendix (section 11.12) for a discussion of the data on European regions, and see the note to
table 11.1 for the form of the regressions. The variable yi,t−T is an index of the per capita GDP (income for Spain)
in region i at the beginning of the interval. All samples have 90 observations. The likelihood-ratio statistic refers
to a test of the equality of the coefficients of the log of initial per capita GDP or income over the four subperiods.
The p value comes from a χ2 distribution with three degrees of freedom.
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Figure 11.8
Growth rate from 1950 to 1990 versus 1950 per capita GDP for 90 regions in Europe. The growth rate of a
region’s per capita GDP for 1950–90, shown on the vertical axis, is negatively related to the log of per capita GDP
in 1950, shown on the horizontal axis. The growth rate and level of per capita GDP are measured relative to the
country means. Hence, this figure shows that absolute β convergence exists for the regions within Germany, the
United Kingdom, Italy, France, the Netherlands, Belgium, Denmark, and Spain. The numbers shown identify the
regions; see table 11.9.

hypothesis of constant β over time cannot be rejected at conventional levels of significance;
the p value is 0.18.

Figure 11.8 shows for the 90 regions the relation of the growth rate of per capita GDP
(income for Spain) from 1950 to 1990 (1955 to 1987 for Spain) to the log of per capita
GDP or income at the start of the period. The variables are measured relative to the means
of the respective countries. The figure shows the negative relation that is familiar from
the U.S. states and Japanese prefectures. The correlation between the growth rate and the
log of initial per capita GDP or income in figure 11.8 is −0.72. Since the underlying
numbers are expressed relative to own-country means, the relation in figure 11.8 pertains
to β convergence within countries, rather than between countries. The graph therefore
corresponds to the estimates that include country dummies in column 1 of table 11.3.
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Column 2 adds the share of agriculture and industry in total employment or GDP at
the start of each subperiod.8 These share variables are as close as we can come with
our present data for the European regions to measuring the structural variable, Sit , that
appears in equation (11.8). The results allow for period-specific coefficients for the sectoral
shares.

The joint estimate of β for the four subperiods is now 0.018 (0.003). The test of the
hypothesis of stability of β across periods yields a p value of 0.034. Thus, in contrast to
our findings for the United States and Japan, the inclusion of the share variables makes
the β coefficients appear less stable over time. Probably, a better measure of structural
composition would yield more satisfactory results.

We have also estimated the joint system for Europe with individual β coefficients for
the five large countries (Germany, the United Kingdom, Italy, France, and Spain). This
system corresponds to the four-period regression shown in column 2 of table 11.3, except
that the coefficient β is allowed to vary over the countries (but not over the subperiods).
This system contains country dummies (with different coefficients for each subperiod) and
share variables (with coefficients that vary over the subperiods but not across the coun-
tries). The resulting estimates of β are as follows: Germany (11 regions), 0.0224 (0.0067);
United Kingdom (11 regions), 0.0277 (0.0104); Italy (20 regions), 0.0155 (0.0037); France
(21 regions), 0.0121 (0.0061); and Spain (17 regions), 0.0182 (0.0048). Note that the indi-
vidual point estimates are all close to 2 percent per year; they range from 1.2 percent per
year for France to 2.8 percent per year for the United Kingdom.

A test for equality of the β coefficients across the five countries yields a p value of 0.55.
Hence, we cannot reject the hypothesis that the speed of regional convergence within the
five European countries is the same.

We also reestimated the European equations with earlier lags of per capita GDP or
income used as instruments. This procedure necessitated the elimination of the first sub-
period; hence, we include only the three decades from 1960 to 1990. The use of instru-
ments had little impact on the results that included only country dummies, correspond-
ing to column 1 of table 11.3. The joint estimate of β goes from 0.0187 (0.0022) in
the OLS case (with only three subperiods included) to 0.0165 (0.0023). If the agricul-
tural and industrial share variables are added, however, the joint estimate of β goes from
0.0153 (0.0034) to 0.0073 (0.0038). We think that the sharp drop in the estimated β co-
efficient in this case reflects inadequacies in the share variables as measures of structural
shifts.

8. The share figures for the first three subperiods are based on employment. The values for 1980–90 are based on
GDP.
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Figure 11.9
Dispersion of per capita GDP within five European countries. The figure shows the cross-sectional standard
deviation of the log of per capita GDP from 1950 to 1990 for 11 regions in Germany, 11 in the United Kingdom,
20 in Italy, 21 in France, and 17 in Spain. This measure of dispersion fell in most cases since 1950 but has been
roughly stable in Germany and the United Kingdom since 1970.

11.4.2 σ Convergence

Figure 11.9 shows the behavior of σt for the regions within the five large countries: Germany,
the United Kingdom, Italy, France, and Spain. The countries are always ranked in descending
order of dispersion as Italy, Spain, Germany, France, and the United Kingdom. The overall
pattern shows declines in σt over time for each country, although little net change occurs
since 1970 for Germany and the United Kingdom. The rise in σt from 1974 to 1980 for the
United Kingdom—the only oil producer in the European sample—likely reflects the effect
of oil shocks. In 1990 the values of σt are 0.27 for Italy, 0.22 for Spain (for 1987), 0.19 for
Germany, 0.14 for France, and 0.12 for the United Kingdom.

11.5 Convergence Across Other Regions Around the World

Many researchers have recently studied the patterns of convergence across regions in various
countries around the world. Coulombe and Lee (1993) find that the speed of convergence
across regions in Canada is not too different from the 2 percent per year we found for the
U.S. states, Japanese prefectures, and European regions. Persson (1997) finds similar results
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for 24 Swedish counties for the period 1911–93. Cashin and Sahay (1995) find strong evi-
dence of absolute convergence across Indian states between 1961 and 1991. Other regional
studies in the recent literature include O’Leary (2000) for Ireland; Petrakos and Saratsis
(2000) for Greece; Hossain (2000) for Bangladesh; Utrera and Koroch (1998) for Argentina;
Magalhaes, Hewings, and Azzoni (2000) for Brazil; Cashin (1995) for Australasia; Yao and
Weeks (2000) for China; Cashin and Loayza (1995) for South Pacific countries; Gezici and
Hewings (2001) for Turkey; and Sanchez-Robles and Villaverde (2001) for Spain.

11.6 Migration Across the U.S. States

This section considers the empirical determinants of net migration among the U.S. states.
The analysis in section 9.1.3 suggests that mit , the annual rate of net migration into region
i between years t − T and t , can be described by a function of the form

mit = f (yi,t−T , θi , πi,t−T ; variables that depend on t but not i) (11.9)

where yi,t−T is per capita income at the beginning of the period, θi is a vector of fixed
amenities (such as climate and geography), and πi,t−T is the population density in region i
at the beginning of the period.9 The set of variables that depends on t but not on i includes
any elements that influence per capita incomes and population densities in other economies.
Also included are effects like technological progress in heating and air conditioning—these
changes alter people’s attitudes about weather and population density.

Per capita income—a proxy for wage rates—would have a positive effect on migration,
whereas population density would have a negative effect. The functional form that we
implement empirically is

mit = a + b · log(yi,t−T ) + c1θi + c2πi,t−T + c3 · (πi,t−T )2 + vi t (11.10)

where vi t is an error term, b > 0, and the form allows for a quadratic in population density,
πi,t−T . The marginal effect of πi,t−T on mit is negative if c2 + 2c3 < 0.

Although there is an extensive literature about variables to include as amenities, θi , the
present analysis includes only the log of average heating-degree days, denoted log(heati ),
which is a disamenity so that c1 < 0. The variable log(heati ) has a good deal of explanatory
power for net migration across the U.S. states. We considered alternative measures of the
weather, but they did not fit as well. It would be useful to include migration for retire-
ment, a mechanism that likely explains outliers such as Florida. However, these kinds of

9. Some amenities, such as government policies with respect to tax rates and regulations, would vary over time.
We do not deal with these types of variables in the present analysis.
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Figure 11.10
Migration and initial state income, 1900–90. The average net migration rate for 48 U.S. states or territories from
1900 to 1990, shown on the vertical axis, is positively related to the log of initial per capita income, shown on the
horizontal axis. Florida, Arizona, California, and Nevada have notably higher net migration rates than the values
predicted by their initial levels of income.

modifications probably would not change the basic findings that we now present about the
relation between net migration and state per capita income.

The data on net migration for the U.S. states start in 1900 and are available for every
census year except 1910 and 1930—see Barro and Sala-i-Martin (1991). We calculate the
10-year annual migration rates into a state by dividing the number of net migrants between
dates t − T and t by the state’s population at date t − T .

Figure 11.10 shows the simple long-term relation between the migration rate and the log
of initial income per capita.10 The horizontal axis plots the log of state per capita income in
1900. The positive association is evident (correlation = 0.51). The main outlier is Florida,
which has a lower than average initial income per capita and a very high net migration rate
of 3 percent per year.

10. The variable on the vertical axis is the average annual in-migration rate for each state from 1900 to 1987. The
variable is the average for each subperiod weighted by the length of the interval.
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Table 11.4
Regressions for Net Migration into U.S. States, 1900–89

Log of Heating Square of
Per Capita Degree Population Population

Period Income Days Density Density R2[σ̂ ]

1900–20 0.0335 −0.0066 −0.0433 0.0307 0.70
(0.0075) (0.0037) (0.0079) (0.0095) [0.0111]

1920–30 0.0363 −0.0124 −0.0433 0.0307 0.61
(0.0078) (0.0027) (0.0079) (0.0095) [0.0079]

1930–40 0.0191 −0.0048 −0.0433 0.0307 0.71
(0.0037) (0.0014) (0.0079) (0.0095) [0.0041]

1940–50 0.0261 −0.0135 −0.0433 0.0307 0.82
(0.0055) (0.0022) (0.0079) (0.0095) [0.0065]

1950–60 0.0438 −0.0205 −0.0433 0.0307 0.70
(0.0086) (0.0031) (0.0079) (0.0095) [0.0091]

1960–70 0.0435 −0.0056 −0.0433 0.0307 0.70
(0.0083) (0.0025) (0.0079) (0.0095) [0.0069]

1970–80 0.0240 −0.0077 −0.0433 0.0307 0.73
(0.0091) (0.0024) (0.0079) (0.0095) [0.0072]

1980–89 0.0163 −0.0066 −0.0433 0.0307 0.72
(0.0061) (0.0019) (0.0079) (0.0095) [0.0053]

Joint, 8 subperiods 0.0260 individual −0.0427 0.0300 —
(0.0023) coefficients (0.0079) (0.0097) —

Note: The likelihood-ratio statistic for a test of the equality of the income coefficients over the eight subperiods is
17.1, with a p value of 0.017 (from a χ2 distribution with seven degrees of freedom). The regressions use iterative,
weighted least squares and take the form

mit = at + bt · log(yi,t−T ) + c1t · Heati + c2 · πi,t−T + c3 · π2
i,t−T + c4t · Regioni + c5t · Sit

where mit is the net flow of migrants into state i between years t −T and t , expressed as a ratio to the population at
t − T ; Heati is heating degree days; πi,t−T is population density (thousands of persons per square mile); Regioni
is a set of dummies for the four main census regions; and Sit is the structural variable described in the text. The
estimates of at , c4t , and c5t are not shown. The data are discussed in the appendix (section 11.12). All samples
have 48 observations. Standard errors are in parentheses.

Table 11.4 shows regression results in the form of equation (11.10) for net migration
into U.S. states. The results reported are for eight subperiods starting with 1900–20. The
regressions include period-specific coefficients for log(yi,t−T ) and for the log of heating-
degree days. (The hypothesis of stability over the subperiods in the coefficients of log[heati ]
is rejected at the 5 percent level, although the estimated coefficients on log[yi,t−T ] change
little if only a single coefficient is estimated for the heat variable.) Since the hypothesis
that the coefficients for the population-density variables are stable over time is accepted at
the 5 percent level, we estimate equation (11.10) with one coefficient for the density and
one for the square of the density. The regressions also include period-specific coefficients
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for regional dummies and structural-share variables. (The estimated coefficients for the
regional and structural variables are sometimes significant but play a minor role overall.)

The estimated coefficients for log(heati ) in table 11.4 are all negative and most are
significantly different from 0; other things equal, people prefer warmer states. The jointly
estimated coefficients for density are −0.043 (0.008) on the linear term and 0.030 (0.010)
on the squared term. These point estimates imply that the marginal effect of population
density on migration is negative for all states, except for the three with the highest densities:
New Jersey, Rhode Island since 1960, and Massachusetts since 1970.

The coefficient on the log of initial per capita income is significantly positive for all
subperiods. The joint estimate is 0.0260 (0.0023). The estimated response of migration to
the log of initial level is, however, not stable over time: the p value for the rejection of this
hypothesis is 0.017. The main sources of instability are the unusually large coefficients on
income in the 1950s and 1960s; the coefficients in these two subperiods are 0.0438 (0.0086)
and 0.0435 (0.0083), respectively.

Although highly significant, the jointly estimated coefficient on initial income, 0.026, is
small in an economic sense. The coefficient means that, other things equal, a 10 percent
differential in income per capita raises net in-migration only by enough to raise the area’s rate
of population growth by 0.26 percent per year. Our previous results suggest that differences
in per capita income tend themselves to vanish at a slow speed, roughly 2 percent per
year. The combination of the results for migration with those for income convergence
suggests that net migration rates would be highly persistent over time. The data confirm this
idea: the correlation between the average migration rate for 1900–40 with that for 1940–89
is 0.70.

11.7 Migration Across Japanese Prefectures

Before we analyze migration across Japanese prefectures and implement equation (11.10)
for Japan, we should mention that there is a substantial difference between the typical
Japanese prefecture and the typical U.S. state in terms of area. The average size of a
Japanese prefecture is 6394 square kilometers,11 roughly half the size of Connecticut. The
largest prefecture, Hokkaido, is 83,520 km2, or roughly the size of South Carolina. The
second largest prefecture, Iwate, has an area of 15,277 km2, a bit larger than Connecticut
and a bit smaller than New Jersey. In comparison, the average U.S. state has an area of
163,031 km2, and the area of the largest state in the continental United States, Texas, is

11. This figure excludes Hokkaido, which is about five times as large as any of the other prefectures. The average
size including Hokkaido is 8036 km2, two-thirds the size of Connecticut.
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691,030 km2. California, with an area of 411,049 km2, is slightly larger than all of Japan
(377,682 km2).

The contrast in size means that Japanese prefectures resemble metropolitan areas more
than states, so that daytime commuting across prefectures can be significant. Urban
economists, such as Henderson (1988), think that people like to live in cities for two reasons.
First, there are demand or consumption externalities. That is, cities provide amenities, such
as theaters and museums, features that can be supplied only if there is a sufficient scale of
demand. Second, there are production externalities, which tend to generate high wages in
big cities. An offsetting force is that people want to live away from crowded cities because
they tend to be associated with crime, less friendly neighborhoods, and (in equilibrium)
high land and housing prices (see Roback, 1982). Thus the decision to migrate to a city
involves a trade-off. This trade-off can be avoided if people live in a suburb and commute to
the central city. People are especially willing to pay high commuting costs when densities
in the central city are extremely high.

To deal with these issues empirically, we would like to have a measure of the density of the
neighboring prefectures. Conceptually, we could construct such a measure by weighting the
neighbors’ densities by their distance in some way. In practice, however, we observe that
there are two main areas in Japan that have an abnormally high population density, Tokyo and
Osaka. In 1990, Tokyo’s density was 5470 people/km2 and Osaka’s was 4674 people/km2,
compared to an average for the other prefectures of 624 people/km2.12 Hence, the problems
that we have mentioned are likely to arise in these two regions only. We can confirm this
idea by considering the ratio of daytime to nighttime population, a measure of the extent
of commuting.13 A ratio smaller than one indicates that there are people who live in that
prefecture but work in another, and a ratio larger than one indicates the opposite. The ratio
is close to one for all prefectures except for the ones around Tokyo and Osaka: Tokyo’s
ratio is 1.184 and Osaka’s is 1.053. The ratios for the Tokyo region are 0.872 for Saitama,
0.876 for Chiba, and 0.910 for Kanagawa. For the Osaka region, the ratios are 0.955 for
Hyogo, 0.871 for Nara, and 0.986 for Wakayama.14

We constructed a variable called neighbor’s density by assigning the prefectures of
the Tokyo area (Tokyo and its immediate neighbors, Saitama, Chiba, and Kanagawa) and
the Osaka area (Osaka and its immediate neighbors, Hyogo, Nara, and Wakayama) the
average density of their immediate neighbors. For other prefectures, the variable equals its

12. In comparison, the U.S. state with the largest density in 1990 was New Jersey with 390 people/km2.

13. The source of these data is the Statistics Bureau, Management and Coordination Agency.

14. There seems to be some commuting across prefectures in the areas surrounding Kyoto and Aichi, but the
magnitudes are much smaller: Aichi’s ratio is 1.016 (and its neighboring prefecture, Gifu, has a ratio of 0.977)
and Kyoto’s is 1.011.
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own population density. We expect to find a positive relation between migration and this
neighbor variable and a negative relation between migration and own density. This relation
would indicate that people do not like to live in dense areas (they have to pay the congestion
costs) but like to be close to these areas (so that they get the benefits of a big city).

The functional form that we estimate is

mit = a + b · log(yi,t−T ) + c1θi + c2πi,t−T + c3π
ne
i,t−T + vi t (11.11)

where vi t is an error term, and πne
i,t−T is the population density of the surrounding prefectures.

To calculate the amenity (weather) variable, we squared the difference between the maxi-
mum and average temperatures, added the square of the difference between the minimum
and average temperatures, and then took the square root. Hence, this variable measures ex-
treme temperature. A variable similar to the one used for the United States (heating degree
days) was unavailable. We experimented with other weather variables, such as maximum
and minimum temperatures and average snowfall over the year. These alternative variables
did not fit as well.

Figure 11.11 shows the relation between the average annual migration rate for 1955–87
and the log of income per capita in 1955. The clear positive association (simple correlation
of 0.58) suggests that net migration reacts positively to income differentials. An interesting
point is that the three outliers at the top of the figure are Chiba, Saitama, and Kanagawa,
the prefectures surrounding Tokyo.

Table 11.5 shows the results of estimating migration equations of the form of equa-
tion (11.10). The first row refers to the average migration rate for the whole period, 1955–
90. The coefficient on the log of initial income per capita is 0.0126 (0.0061). As expected,
net migration is negatively associated with own density (−0.0049 [0.0022]) and positively
associated with neighbor’s density (0.0190 [0.0034]). The extreme temperature variable is
insignificant.

The next seven rows in table 11.5 show results for the 5-year subperiods beginning
with 1955–60. The estimated coefficient on initial income is significantly positive for all
subperiods, except for 1975–80, for which the coefficient is positive, but insignificant.
The joint estimate is 0.0188 (0.0019), which implies that, other things equal, a 10 percent
increase in a prefecture’s per capita income raises net in-migration by enough to raise that
prefecture’s rate of population growth by 0.19 percentage points per year. This result is
close to that found for the U.S. states. A test of the stability of the income coefficients over
time is rejected with a p value of 0.006.

The own-density variable is significantly negative, except for the first subperiod, and the
neighbors’ density variable is positive for all subperiods (significantly so for four of the
seven subperiods). The extreme weather variable is negative, but only marginally significant.
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Figure 11.11
Migration and initial prefectural income, 1955–90. The average net migration rate for 47 Japanese prefectures
from 1955 to 1990, shown on the vertical axis, is positively related to the log of 1955 per capita income, shown on
the horizontal axis. The three prefectures surrounding Tokyo—Chiba, Saitama, and Kanagawa—had substantially
higher net migration rates than the values predicted by their initial levels of income.

Thus weather does not seem to play an important role in the process of internal migration
in Japan.

To summarize, some main findings are that the rate of net in-migration to a prefecture is
negatively related to own density and positively related to the density of neighbors. Holding
other things constant, migration is positively associated with initial per capita income. A
notable result is the similarity of the coefficients on income for the United States and Japan,
0.026 from the joint estimation for the U.S. states and 0.019 from the joint estimation for
Japanese prefectures.

Recall that differences in per capita income tend to dissipate at a slow rate, something
like 2.5 to 3 percent per year for the Japanese prefectures. Putting this result together with
those for migration, the implication is that net migration rates would be highly persistent
over time. The data confirm this idea: the correlation between the average migration rate
for 1955–70 with that for 1970–90 is 0.60.
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Table 11.5
Regressions for Net Migration into Japanese Prefectures, 1955–90

Log of Own Neighbors’
Per Capita Extreme Population Population

Period Income Temperature Density Density R2[σ̂ ]

1955–90 0.0126 0.00014 −0.0049 0.0190 0.62
(0.0061) (0.00062) (0.0022) (0.0034) [0.0061]

1955–60 0.0216 −0.00014 0.0060 0.0025 0.85
(0.0036) (0.00012) (0.0013) (0.0019) [0.0038]

1960–65 0.0317 −0.00014 −0.0019 0.0147 0.74
(0.0058) (0.00012) (0.0020) (0.0031) [0.0071]

1965–70 0.0344 −0.00014 −0.0065 0.0142 0.71
(0.0070) (0.00012) (0.0017) (0.0025) [0.0066]

1970–75 0.0194 −0.00014 −0.0064 0.0114 0.53
(0.0060) (0.00012) (0.0015) (0.0023) [0.0070]

1975–80 0.0060 −0.00014 −0.0037 0.0052 0.32
(0.0067) (0.00012) (0.0011) (0.0014) [0.0043]

1980–85 0.0101 −0.00014 −0.0023 0.0037 0.39
(0.0044) (0.00012) (0.0006) (0.0086) [0.0030]

1985–90 0.0148 −0.00014 −0.0026 0.0046 0.56
(0.0040) (0.00012) (0.0006) (0.0084) [0.0029]

Joint, 7 0.0188 −0.00040 individual individual —
subperiods (0.0019) (0.00015) coefficients coefficients —

Note: The likelihood-ratio statistic for the hypothesis that the income coefficients are the same is 18.0, with a
p value of 0.006. The regressions use iterative, weighted least squares to estimate equations of the form

mit = at + b · log(yi,t−T ) + c1 · Tempi + c2t · πi,t−T + c3t · πne
i,t−T + c4t · Districti + c5t · Sit

where mit is the net flow of migrants into prefecture i between years t − T and t , expressed as a ratio to the
population at time t − T ; Tempi is a measure of extreme temperature, calculated as deviations of maximum
and minimum temperatures from the average temperature; πi,t−T is population density (thousands of persons per
square kilometer); πne

i,t−T is the population density of the neighboring prefectures (see the text); Districti is a
set of dummy variables for the district; and Sit is the structural variable described in the text. All samples have
47 observations. (See the note to table 11.4 for additional information.)

11.8 Migration Across European Regions

We now estimate the sensitivity of the net migration rate to income across the regions of the
five large European countries: Germany, the United Kingdom, Italy, France, and Spain. The
dependent variable is the average net migration rate for each of the four decades starting in
1950. We are missing observations for the United Kingdom in the 1950s and 1980s and for
France in the 1980s.

We estimate a system of regressions similar to those for the United States and Japan. The
explanatory variables are the logarithm of per capita GDP or income at the beginning of
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the decade, population density at the beginning of the decade, sectoral variables (shares in
employment or GDP of agriculture and industry at the start of each decade), a temperature
variable, and country dummies. We estimate a system of equations for the five countries,
with the density and temperature variables restricted to have the same coefficients over time
and across countries but with the coefficients of the other variables allowed to vary over
time and across countries.

Table 11.6 reports the estimated coefficients on the log of initial per capita GDP or
income. The first column contains the estimates for the 1950s, the second for the 1960s,
and so on. The last column restricts the coefficients to be the same over the decades. The
first row is for Germany, the second for the United Kingdom, the third for Italy, the fourth
for France, and the fifth for Spain. The last row restricts the coefficients to be the same for
the five countries.

Table 11.6
Regressions for Net Migration into European Regions, 1950–90, Coefficients on the Log of Per Capita GDP

1950s 1960s 1970s 1980s Total

Germany 0.0311 0.0074 0.0040 0.0024 0.0076
(0.0121) (0.0088) (0.0038) (0.0086) (0.0014)

United Kingdom — 0.0049 −0.0069 — −0.0041
(0.0011) (0.0013) (0.0023)

Italy 0.0182 0.0208 0.0089 0.0309 0.0117
(0.0041) (0.0027) (0.0020) (0.0106) (0.0018)

France 0.0090 −0.0008 0.0097 — 0.0100
(0.0056) (0.0095) (0.0041) (0.0036)

Spain 0.0126 0.0135 0.0117 0.0031 0.0034
(0.0068) (0.0112) (0.0063) (0.0070) (0.0021)

Overall 0.0107 0.0072 0.0046 0.0141 0.0064
(0.0038) (0.0040) (0.0024) (0.0070) (0.0021)

Note: The regressions take the form

mi jt = a jt + b jt · log(yi j,t−T ) + c1 · Tempi j + c2 · πi j,t−T

+ c3 · (Country dummy) + c4 j t · AGi j,t−T + c5 j t · INi j,t−T

where mi jt is the net flow of migrants into region i of country j between years t − T and t , expressed as a ratio to
the population at time t −T ; Tempi j is the average maximum temperature; πi j,t−T is population density (thousands
of persons per square kilometer); AGi j,t−T is the share of employment or GDP (for the 1980s) in agriculture; and
INi j,t−T is the corresponding share in industry. All estimation is by the iterative, seemingly unrelated procedure.
The table reports only the estimates of the coefficients b jt . The numbers in the first five rows and first four columns
apply when each country has a different coefficient for each period. The last column restricts the coefficients to be
the same over time for each country. The last row restricts the coefficients to be the same across countries for each
decade. The number in the intersection of the last row and column applies when all countries and time periods
have a single coefficient.
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In contrast with the results for the United States and Japan, the coefficients on the log of per
capita GDP or income are not precisely estimated for the European countries. For Germany,
the estimated coefficient for the 1950s is positive and significant, 0.031 (0.012), whereas
those for the other three decades are insignificant. The estimated income coefficients for
Italy are significantly positive, but many of those for the United Kingdom, France, and
Spain are insignificant.

If we restrict the coefficients to be the same over time but allow them to vary across
countries, the estimated values are 0.0076 (0.0014) for Germany, −0.0041 (0.0023) for
the United Kingdom, 0.0117 (0.0018) for Italy, 0.0100 (0.0036) for France, and 0.0034
(0.0021) for Spain. If we restrict the coefficients to be the same across countries but allow
them to vary over time, the estimated values are 0.0107 (0.0038) for the 1950s, 0.0072
(0.0040) for the 1960s, 0.0046 (0.0024) for the 1970s, and 0.0141 (0.0070) for the 1980s.
Finally, if we restrict the coefficients to be the same across countries and over time, we get
the estimate 0.0064 (0.0021). Although this estimate is significantly positive, the size of the
coefficient is much smaller than the comparable values for the United States (0.026) and
Japan (0.019). The main finding, therefore, is that the migration rate for European regions
is positively related to per capita GDP or income, but the magnitude of the relation is weak,
and the coefficients cannot be estimated with great precision.

11.9 Migration and Convergence

We found in chapter 9 that the migration of workers with low human capital from poor to
rich economies tended to speed up the convergence of per capita income and product. The
convergence coefficients estimated in growth regressions would include this effect from
migration. In this section we attempt to estimate the effect of migration on convergence
by including the net migration rate as an explanatory variable in the growth regressions. If
migration is an important source of convergence—and if we can treat the migration rate as
exogenous with respect to the error term in the growth equation—the estimated convergence
coefficient, β, should become smaller when migration is held constant.

We enter the contemporaneous net migration rate in growth regressions in table 11.7.
The first row reports the estimated speed of convergence, β, for the U.S. states. The sample
period, 1920–90, is divided into seven ten-year subperiods. The regression includes period-
specific coefficients for constant terms, dummies for the four major census regions, and the
structural variable discussed before. The coefficient on the log of initial per capita income
is constrained to be the same for each subperiod. This setup parallels the joint estimation
shown in table 11.1, column 3, except for the elimination of the two early subperiods.

Column 1 of the table reports the estimate of β when the migration rate is not included in
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Table 11.7
Migration and Convergence

(1) (2) (3)
Migration Migration Migration
Excluded Included (OLS) Included (IV)

β β Migration β Migration

United States, 0.0196 0.0231 0.0931 0.0174 −0.006
1920–90 (0.0025) (0.0028) (0.0305) (0.0033) (0.048)

Japan, 0.0312 0.0340 0.0907 0.0311 −0.108
1955–90 (0.0040) (0.0044) (0.0041) (0.0042) (0.112)

Germany, 0.0243 0.0240 −0.014 0.0181 −0.542
1950–90 (0.0088) (0.0091) (0.235) (0.0093) (0.429)

United Kingdom, 0.0176 0.0220 0.116 0.0261 0.222
1960–80a (0.0132) (0.0203) (0.395) (0.0267) (0.570)

Italy, 0.0206 0.0244 0.166 0.0180 −0.121
1950–90 (0.0058) (0.0070) (0.156) (0.0098) (0.370)

France, 0.0224 0.0172 −0.038 0.0177 −0.084
1950–80b (0.0265) (0.0063) (0.126) (0.0065) (0.178)

Spain, 0.0245 0.0295 −0.124 0.0268 −0.068
1950–90 (0.0102) (0.0096) (0.102) (0.0119) (0.203)

Note: The regressions for the growth rates of per capita income or GDP are analogous to the joint estimations
shown in table 11.1, column 3, for the U.S. states; table 11.2, column 3, for the Japanese prefectures; and table 11.3,
column 2, for the European regions (except that the five large European countries are treated separately here).
The β coefficients refer to the log of initial per capita income or GDP, and the migration coefficients refer to
the net migration rate. In column 1 the migration rate is not included as a regressor. In column 2 the migration
rate is added, and the estimation is by OLS. In column 3 instrumental estimation is used. The instruments are the
regressors included in the migration equations, as reported in table 11.4 for the United States, table 11.5 for Japan,
and table 11.6 for Europe.
aTwo subperiods.
bThree subperiods.

the regressions. The speed of convergence is 0.0196 (0.0025), close to the familiar 2 percent
per year. Column 2 adds the net migration rate as a regressor. (The coefficient on this variable
is constrained to be the same for each subperiod.) The estimated coefficient on the migration
rate is positive and significant, 0.093 (0.030), and the estimate of β, 0.0231 (0.0028), is
actually somewhat higher than that shown in column 1. Thus, contrary to expectations, the
estimate of β does not diminish when the net migration rate is held constant.

The results are likely influenced by the endogeneity of the net migration rate. Specifi-
cally, states with more favorable growth prospects (owing to factors not held constant by the
included explanatory variables) are likely to have higher per capita growth rates and higher
net migration rates. We attempt to isolate exogenous shifts in migration by using as instru-
ments the explanatory variables used to explain the net migration rate in table 11.4. These
variables include population density and the log of heating degree days. (The assumption
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is that these determinants of migration do not enter directly into the growth equation.) The
results, contained in column 3 of table 11.7, show an insignificant coefficient on the migra-
tion rate, −0.006 (0.048), and an estimated β coefficient, 0.0174 (0.0033), that is slightly
lower than that in column 1. These results suggest that migration does not account for a
large part of β convergence for the U.S. states.

The second row of table 11.7 applies the same procedure to Japan. The first column reports
the joint estimate of β over seven five-year periods when the migration rate is excluded as a
regressor. The estimate of β, 0.0312 (0.0040), is the same as that in column 3 of table 11.2.
When the migration rate is added in column 2 of table 11.7, the estimated coefficient on
migration is positive and similar to that found for the United States, 0.0907 (0.0041), and
the estimate of β increases to 0.0340 (0.0044). In column 3, which includes instruments
for migration, the estimated coefficient on migration is insignificant, −0.11 (0.11), and the
estimate of β, 0.0311 (0.0042), is essentially the same as that in column 1. Hence, as for
the U.S. states, migration does not appear to be a major element in β convergence for the
Japanese prefectures.

The last five rows of table 11.7 apply an analogous procedure to the five large European
countries. The main findings are similar to those for the United States and Japan in that
the estimated β coefficients do not change a great deal when migration rates are held
constant. One surprising result is that the net migration rates are insignificant in the OLS
regressions for the European regions, whereas the usual endogeneity story suggests positive
coefficients. It may be that the regional net migration rates are not well measured for the
European countries, a possibility that would also account for the difficulties in the estimated
migration equations in these cases.

A second prediction from the migration theory in chapter 9 is that economies with higher
sensitivity of net migration to per capita income will have higher convergence coefficients,
β. To check this possibility, we plot in figure 11.12 the estimated β coefficients against the
estimated coefficients of the log of per capita GDP or income from the migration equations.
The figure has seven data points, corresponding to the United States, Japan, Germany, the
United Kingdom, Italy, France, and Spain. The figure shows a weak positive relation between
the two coefficients; the correlation is 0.27.15 The imprecision with which the coefficients
in the migration equations are estimated for the European countries suggests that this relation
should be interpreted with caution. See Braun (1993) for further discussion of this approach.

15. The β coefficients for France and the United Kingdom are those estimated over the same subperiods for which
the migration data are available. The β coefficient estimated over the full sample is lower for France and higher
for the United Kingdom. If we use these alternative estimates of β, the correlation with the coefficient from the
migration equations is slightly higher, 0.32.
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Figure 11.12
Income Coefficient of Migration and Speed of Convergence. The vertical axis shows the estimated coefficient
on the log of per capita income or GDP from migration regressions. The horizontal axis has the estimated β

convergence coefficient from growth regressions. The seven data points—for the United States, Japan, Germany,
the United Kingdom, Italy, France, and Spain—exhibit a positive relation, as predicted by the theory of migration
and growth.

11.10 β Convergence in Panel Data with Fixed Effects

Following Islam (1995), a number of researchers have attempted to estimate the speed of
convergence using panel data sets and variants of fixed-effects estimation. Caselli, Esquivel,
and Laffort (1996), for example, use panel data for a cross section of countries, while
Canova and Marcet (1995) use regional data. One claimed advantage of panel data over
cross sections is that one does not need to hold constant the steady state because it can be
implicitly estimated using fixed effects. The main result is that estimates of the speed of
convergence from panel data with fixed effects tend to be much larger than the 2 percent-
per-year number estimated from cross sections or panels without fixed effects. Speeds of
convergence in the range of 12 to 20 percent per year are not uncommon in this literature.
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One potential problem with the fixed-effects approach is that, in order to work, one
needs to include many time-series observations. This procedure can be carried out only
by shortening the time periods within which the growth rate is computed. In other words,
the dependent variable tends to be the yearly growth rate or the growth rate over two to
five years. The problem with such short time spans is that the growth rates tend to capture
short-term adjustments around the trend rather than long-term convergence. In particular,
the existence of business cycles tends to bias upward the estimates of speeds of convergence.
In this context, Shioji (1997) provides evidence that, once one corrects for the measurement
error introduced by business cycles, the estimated speed of convergence from panels with
fixed effects is still close to 2 percent per year.

11.11 Conclusions

We studied the behavior of the U.S. states since 1880, the prefectures of Japan since 1930,
and the regions of eight European countries since 1950. The results indicate that absolute β

convergence is the norm for these regional economies. That is, poor regions of these coun-
tries tend to grow faster per capita than rich ones. The convergence is absolute because it
applies when no explanatory variables other than the initial level of per capita product or
income are held constant.

We can interpret the results as consistent with the neoclassical growth model described
in chapters 1 and 2 if regions within a country have roughly similar tastes, technologies, and
political institutions. This relative homogeneity generates similar steady-state positions. The
observed convergence effect is, however, also consistent with the models of technological
diffusion described in chapter 8.

One surprising result is the similarity of the speed of β convergence across data sets. The
estimates of β are around 2–3 percent per year in the various contexts. This slow speed of
convergence implies that it takes 25–35 years to eliminate one-half of an initial gap in per
capita incomes. This behavior deviates from the quantitative predictions of the neoclassical
growth model if the capital share is close to one-third. The empirical evidence is, however,
consistent with the theory if the capital share is around three-quarters.

The analysis of migration indicates that the rate of net migration tends to respond pos-
itively to the initial level of per capita product or income, once a set of other explanatory
variables is held constant. This relation is clear for the U.S. states and the Japanese prefec-
tures but is weaker for the regions of five large European countries. We also check whether
the presence of β convergence in the regional data can be explained by the behavior of net
migration. The evidence here is not definitive but suggests that migration plays only a minor
role in the convergence story.



Empirical Analysis of Regional Data Sets 497

11.12 Appendix on Regional Data Sets

We describe data for the U.S. states, regions of eight European countries (Germany, the
United Kingdom, Italy, France, the Netherlands, Belgium, Denmark, and Spain), and pre-
fectures of Japan. Data for regions of other countries, such as Argentina, Brazil, China,
India, Mexico, and the USSR, are also available. Additional information is available by city
and county; see, for example, Ades and Glaeser (1995).

11.12.1 Data for U.S. States

Table 11.8 shows a sampling of the data for the U.S. states (shown on the U.S. map in
figure 11.13). Figures on nominal personal income and nominal per capita personal income
are available by state since 1929 from the U.S. Commerce Department (Bureau of Economic
Analysis, 2002; updates appear in issues of U.S. Survey of Current Business). The concept
of personal income used in these regional accounts corresponds to that employed in the
national accounts. The numbers are reported annually, but values prior to 1965 are based
on interpolations of estimates constructed at approximately five-year intervals. Data are
reported with and without transfer payments. Figures on gross state product are available
annually since 1963 (from issues of U.S. Survey of Current Business).

Reliable data on price levels are unavailable by state, although some information exists for
cities. We have computed real income by dividing the nominal figures on personal income
by the national values of the consumer price index (1982–84 = 1.0). (We used the figures
from Citibase for all items except shelter since 1947. Before 1947, we used the overall
index from U.S. Department of Commerce, 1975, series E135.) As long as the same index
is used at each date for each state, the particular index chosen does not affect the relative
levels and growth rates across the states.

Earlier income figures are reported by Easterlin (1960a, 1960b) for 1920 (48 states), 1900
(48 states or territories), 1880 (47 states or territories, with Oklahoma excluded), and 1840
(29 states or territories). These data are exclusive of transfer payments, and the figures for
1840 do not cover all components of personal income. Estimates of the consumer price
index for all items (U.S. Department of Commerce, 1975, series E135) are used to deflate
these earlier values.

For the census years since 1930, labor earnings (including those from self-employment)
can be broken down into nine sectors: agriculture; mining; construction; total manufacturing;
transportation and public utilities; wholesale and retail trade; finance, insurance, and real
estate; services; and government and government enterprises. For periods before 1930,
information is available on the fraction of income originating in agriculture.



Table 11.8
Data for U.S. States

Real Per Capita Real Per Capita Growth Rate of Population, Population, Growth Rate of Net Migrants,
Income, 1900 ($1000s, Income, 2000 ($1000s, Real Per Capita 1900 1990 Population, 1900–89

State 1982–84 base) 1982–84 base) Income (millions) (millions) 1900–90 (millions)

AL Alabama 1.00 12.95 0.0256 1.829 4.046 0.0088 −1.32
AZ Arizona 3.69 13.79 0.0132 0.093 3.681 0.0409 2.03
AR Arkansas 1.03 12.11 0.0246 1.312 2.353 0.0065 −1.14
CA California 4.20 17.78 0.0144 1.403 29.956 0.0340 16.59
CO Colorado 3.66 17.90 0.0159 0.529 3.302 0.0203 1.11
CT Connecticut 3.19 22.55 0.0196 0.908 3.290 0.0143 0.76
DE Delaware 2.52 17.15 0.0192 0.185 0.669 0.0143 0.18
FL Florida 1.29 15.36 0.0248 0.529 13.044 0.0356 9.37
GA Georgia 0.98 15.33 0.0275 2.222 6.504 0.0120 −0.28
ID Idaho 2.54 13.04 0.0164 0.154 1.011 0.0209 0.04
IL Illinois 2.99 17.57 0.0177 4.822 11.443 0.0096 −0.17
IN Indiana 2.09 14.81 0.0196 2.516 5.554 0.0088 −0.30
IA Iowa 2.33 14.55 0.0183 2.232 2.780 0.0024 −1.41
KS Kansas 2.15 15.12 0.0195 1.470 2.480 0.0058 −0.65
KY Kentucky 1.38 13.27 0.0226 2.147 3.690 0.0060 −1.54
LA Louisiana 1.47 12.71 0.0216 1.382 4.211 0.0124 −0.52
ME Maine 2.16 14.02 0.0187 0.694 1.231 0.0064 −0.11
MD Maryland 2.34 18.55 0.0207 1.188 4.802 0.0155 1.26
MA Massachusetts 3.49 20.81 0.0179 2.850 6.020 0.0083 0.14
MI Michigan 2.13 16.04 0.0202 2.421 9.314 0.0150 0.62
MN Minnesota 2.38 17.61 0.0200 1.737 4.390 0.0103 −0.34
MS Mississippi 0.97 11.51 0.0247 1.551 2.574 0.0056 −1.62
MO Missouri 2.16 15.00 0.0194 3.107 5.127 0.0056 −0.83
MT Montana 4.77 12.44 0.0096 0.226 0.799 0.0140 −0.07
NE Nebraska 2.43 15.26 0.0184 1.066 1.580 0.0044 −0.71
NV Nevada 4.54 16.31 0.0128 0.035 1.224 0.0395 0.79
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NH New Hampshire 2.46 18.23 0.0200 0.412 1.111 0.0110 0.31
NJ New Jersey 3.19 20.48 0.0186 1.884 7.735 0.0157 2.20
NM New Mexico 1.70 12.08 0.0196 0.180 1.520 0.0237 0.16
NY New York 3.71 19.04 0.0164 7.269 18.002 0.0101 1.13
NC North Carolina 0.82 14.81 0.0289 1.894 6.653 0.0140 −0.30
ND North Dakota 2.40 13.67 0.0174 0.312 0.637 0.0079 −0.49
OH Ohio 2.55 15.40 0.0180 4.158 10.859 0.0107 0.14
OK Oklahoma 1.31 13.01 0.0230 0.670 3.146 0.0172 −0.19
OR Oregon 2.85 15.26 0.0168 0.395 2.861 0.0220 1.27
PA Pennsylvania 2.88 16.30 0.0173 6.302 11.893 0.0071 −1.99
RI Rhode Island 3.36 16.09 0.0157 0.429 1.005 0.0095 0.05
SC South Carolina 0.86 13.22 0.0273 1.340 3.498 0.0107 −0.75
SD South Dakota 2.11 14.34 0.0192 0.381 0.696 0.0067 −0.43
TN Tennessee 1.16 14.28 0.0251 2.021 4.887 0.0098 −0.46
TX Texas 1.58 15.30 0.0227 3.049 17.055 0.0191 3.33
UT Utah 2.11 12.89 0.0181 0.272 1.729 0.0206 0.06
VT Vermont 2.19 14.85 0.0191 0.344 0.565 0.0055 −0.05
VA Virginia 1.27 17.14 0.0260 1.854 6.213 0.0134 0.61
WA Washington 3.40 17.18 0.0162 0.496 4.909 0.0255 2.16
WV West Virginia 1.35 12.01 0.0219 0.959 1.790 0.0069 −1.10
WI Wisconsin 2.05 15.49 0.0202 2.058 4.906 0.0097 −0.33
WY Wyoming 3.57 15.14 0.0144 0.089 0.452 0.0181 0.03

Notes: The two-letter abbreviation (zip code) for each of the 48 states is shown before the state name.
The U.S. Census regional classifications are as follows:
Northeast: ME, NH, VT, MA, RI, CT, NY, NJ, PA.
South: DE, MD, VA, WV, NC, SC, GA, FL, KY, TN, AL, MS, AR, LA, OK, TX.
Midwest: MN, IA, MO, ND, SD, NE, KS, OH, IN, IL, MI, WI.
West: MT, ID, WY, CO, NM, AZ, UT, NV, WA, OR, CA.
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Figure 11.13
Map of the U.S. states.

Population density is the ratio of population to total area (land plus water); the data on
area are in U.S. Department of Commerce, Bureau of the Census (1990). Net migration
flows can be computed from census figures by taking the change in population over a period,
subtracting the number of births, and adding the number of deaths.

11.12.2 Data for European Regions

Table 11.9 has a sampling of the data for regions of European countries (shown on the
map in figure 11.14). We have data on GDP, population, and related variables for regions
of eight European countries—Germany (11 regions), the United Kingdom (11), Italy (20),
France (21), the Netherlands (4), Belgium (3), Denmark (3), and Spain (17).

For the countries other than Spain, the data on GDP and population for 1950, 1960, and
1970 are from Molle, Van Holst, and Smits (1980). Figures for 1966 (missing France and
Denmark), 1970 (missing Denmark), 1974, 1980, 1985, and 1990 (missing Denmark) are
from Eurostat. For Spain, data on regional income and GDP are provided for various years
from 1955 to 1987 by the Banco de Bilbao (various issues). The figures on population
are from INE, Anuario Estatistico de España (various issues). The data applied originally
to 50 provinces and have been aggregated to 17 regions.



Table 11.9
Data for European Regions

Real Per Capita GDP, Real Per Capita GDP, Growth Rate of Real Net Migrants,
1950 Proportionate 1990 Proportionate Per Capita GDP Population, Population, Various
Deviation from Deviation from Deviation from 1950d 1990e Growth Rate of Periodsg

Region Country Meana Country Meanb Country Meanc (millions) (millions) Population f (millions)

Germany

1. Schleswig-Holstein −0.36 −0.20 0.0039 2.595 2.615 0.0002 0.31
2. Hamburg 0.54 0.42 −0.0029 1.606 1.641 0.0005 0.13
3. Niedersachsen −0.25 −0.18 0.0019 6.797 7.342 0.0019 0.21
4. Bremen 0.34 0.20 −0.0034 0.559 0.679 0.0049 0.10
5. Nordrhein Westfalia 0.12 −0.08 −0.0049 13.207 17.248 0.0067 2.05
6. Hessen −0.06 0.12 0.0044 4.324 5.718 0.0070 1.19
7. Rheinland-Pfalz −0.25 −0.15 0.0023 3.005 3.735 0.0054 0.25
8. Saarland 0.17 −0.10 −0.0067 0.955 1.071 0.0029 0.00
9. Baden-Württemberg −0.03 0.02 0.0014 6.430 9.729 0.0104 1.78
10. Bayern −0.19 −0.01 0.0045 9.185 11.337 0.0053 1.52
11. Berlin (West) −0.02 −0.04 −0.0005 2.147 2.118 −0.0003 0.26

United Kingdom

12. North −0.07 −0.07 −0.0008 3.133 3.075 −0.0005 −0.24
13. Yorkshire-Humberside 0.11 −0.01 −0.0039 4.494 4.952 0.0024 −0.16
14. East Midlands −0.02 0.04 0.0005 2.909 4.019 0.0081 0.21
15. East Anglia −0.04 0.10 0.0027 1.381 2.059 0.0100 0.34
16. South-East 0.30 0.27 −0.0016 15.174 17.458 0.0035 −0.45
17. South-West −0.22 0.03 0.0056 3.238 4.667 0.0091 0.66
18. North-West 0.08 −0.02 −0.0034 6.424 6.389 −0.0001 −0.48
19. West Midlands 0.14 −0.01 −0.0045 4.422 5.219 0.0041 −0.20
20. Wales −0.24 −0.10 0.0025 2.584 2.881 0.0027 0.08
21. Scotland −0.03 0.00 −0.0002 5.096 5.102 0.0000 −0.45
22. Northern Ireland −0.35 −0.22 0.0031 1.371 1.589 0.0037 −0.20

Italy

23. Piemonte 0.47 0.23 −0.0066 3.504 4.357 0.0054 0.87
24. Valle d’Aosta 0.53 0.31 −0.0057 0.095 0.116 0.0050 0.02
25. Liguria 0.61 0.18 −0.0106 1.555 1.723 0.0026 0.30
26. Lombardia 0.52 0.34 −0.0045 6.433 8.928 0.0082 1.25

Table continued
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Table 11.9
(Continued )

Real Per Capita GDP, Real Per Capita GDP, Growth Rate of Real Net Migrants,
1950 Proportionate 1990 Proportionate Per Capita GDP Population, Population, Various
Deviation from Deviation from Deviation from 1950d 1990e Growth Rate of Periodsg

Region Country Meana Country Meanb Country Meanc (millions) (millions) Population f (millions)

27. Trentino–Alto Adige 0.19 0.22 0.0007 0.735 0.889 0.0048 −0.03
28. Veneto −0.01 0.19 0.0050 3.841 4.392 0.0034 −0.35
29. Fruili-Venezia-Giulia 0.12 0.24 0.0030 1.200 1.202 0.0000 −0.58
30. Emilia-Romagna 0.17 0.28 0.0027 3.509 3.925 0.0028 0.19
31. Marche −0.06 0.08 0.0036 1.352 1.433 0.0015 −0.13
32. Toscana 0.16 0.13 −0.0006 3.152 3.562 0.0031 0.29
33. Umbria −0.04 0.03 0.0016 0.806 0.822 0.0005 −0.07
34. Lazio 0.21 0.17 −0.0008 3.322 5.181 0.0111 0.62
35. Campania −0.29 −0.33 −0.0011 4.276 5.831 0.0078 −0.88
36. Abruzzi −0.32 −0.10 0.0054 1.238 1.269 0.0006 −0.27
37. Molise −0.49 −0.20 0.0071 0.398 0.336 −0.0042 −0.14
38. Puglia −0.33 −0.26 0.0017 3.181 4.076 0.0062 −0.77
39. Basilicata −0.47 −0.41 0.0016 0.617 0.624 0.0003 −0.25
40. Calabria −0.48 −0.46 0.0005 1.987 2.153 0.0020 −0.79
41. Sicilia −0.32 −0.37 −0.0012 4.422 5.185 0.0040 −1.08
42. Sardegna −0.16 −0.27 −0.0027 1.259 1.661 0.0069 −0.23

France

43. Region Parisienne 0.61 0.50 −0.0026 7.009 10.227 0.0094 1.02
44. Champagne-Ardenne 0.05 0.11 0.0015 1.110 1.341 0.0047 −0.06
45. Picarde 0.05 −0.05 −0.0026 1.355 1.804 0.0072 0.04
46. Haute Normandie 0.13 0.05 −0.0020 1.232 1.731 0.0085 0.03
47. Centre −0.18 0.02 0.0049 1.758 2.363 0.0074 0.30
48. Basse Normandie −0.14 −0.04 0.0024 1.145 1.385 0.0048 −0.10
49. Bourgogne −0.11 −0.01 0.0025 1.376 1.602 0.0038 0.10
50. Nord–Pas de Calais 0.17 −0.09 −0.0067 3.309 3.945 0.0044 −0.39
51. Lorraine 0.24 −0.03 −0.0067 1.874 2.293 0.0050 −0.22
52. Alsace 0.19 0.14 −0.0014 1.196 1.619 0.0075 0.15
53. Franche-Comte 0.05 0.03 −0.0005 0.841 1.092 0.0065 0.02
54. Pays de la Loire −0.11 −0.03 0.0020 2.293 3.048 0.0071 0.03
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55. Bretagne −0.20 −0.08 0.0030 2.358 2.784 0.0042 0.03
56. Poitou-Charente −0.25 −0.11 0.0035 1.379 1.588 0.0035 −0.03
57. Aquitaine −0.15 0.00 0.0036 2.206 2.787 0.0058 0.35
58. Midi-Pyrénées −0.27 −0.10 0.0043 1.982 2.423 0.0050 0.29
59. Limousin −0.05 −0.14 −0.0023 0.760 0.719 −0.0014 0.04
60. Rhône-Alpes 0.12 0.09 −0.0009 3.580 5.338 0.0100 0.77
61. Auvergne −0.06 −0.09 −0.0009 1.261 1.314 0.0010 0.03
62. Languedoc-Roussillon −0.18 −0.14 0.0008 1.453 2.119 0.0094 0.48
63/64. Provence–Alpes–

Côtes d’Azur–Corse 0.08 −0.01 −0.0021 2.533 4.499 0.0144 1.52

Netherlands

65. Noord −0.10 0.04 0.0035 1.215 1.596 0.0068 —
66. Oost −0.12 −0.13 −0.0003 1.788 3.050 0.0134 —
67. West 0.18 0.12 −0.0015 5.155 6.996 0.0076 —
68. Zuid 0.04 −0.03 −0.0016 2.007 3.306 0.0125 —

Belgium

69. Vlaanderen −0.14 0.09 0.0057 3.963 4.486 0.0030 —
70. Wallonie −0.01 −0.21 −0.0049 2.841 3.251 0.0034 —
71. Brabant 0.15 0.12 −0.0008 1.849 2.248 0.0049 —

Denmark

72. Sjalland-Lolland-
Falster-Bornholm 0.08 0.19 0.0031 1.984 1.718 −0.0040 —

73. Fyn −0.02 −0.14 −0.0034 0.396 0.586 0.0109 —
74. Jylland −0.06 −0.05 0.0003 1.902 2.817 0.0109 —

Table continued
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Table 11.9
(Continued )

Real Per Capita GDP, Real Per Capita GDP, Growth Rate of Real Net Migrants,
1950 Proportionate 1990 Proportionate Per Capita GDP Population, Population, Various
Deviation from Deviation from Deviation from 1950d 1990e Growth Rate of Periodsg

Region Country Meana Country Meanb Country Meanc (millions) (millions) Population f (millions)

Spain

75. Andalucia −0.29 −0.29 0.0002 5.621 6.920 0.0053 −1.67
76. Aragon 0.01 0.08 0.0022 1.095 1.213 0.0026 −0.12
77. Asturias 0.17 −0.06 −0.0074 0.893 1.126 0.0059 −0.02
78. Balears 0.08 0.34 0.0080 0.423 0.682 0.0122 0.12
79. Canaries −0.22 −0.03 0.0059 0.800 1.485 0.0158 0.02
80. Cantabria 0.18 0.05 −0.0043 0.406 0.527 0.0067 −0.04
81. Castilla–La Mancha −0.43 −0.26 0.0052 2.028 1.714 −0.0043 −0.91
82. Castilla-Leon −0.13 −0.11 0.0007 2.864 2.626 −0.0022 −0.97
83. Catalunya 0.34 0.25 −0.0029 3.271 6.008 0.0156 1.42
84. Euskadi (Basque) 0.74 0.11 −0.0197 1.075 2.129 0.0175 0.43
85. Extremadura −0.58 −0.43 0.0047 1.366 1.129 −0.0049 −0.70
86. Galicia −0.36 −0.20 0.0050 2.604 2.804 0.0019 −0.41
87. Madrid 0.48 0.34 −0.0042 1.956 4.876 0.0234 1.40
88. Murcia −0.35 −0.15 0.0062 0.759 1.027 0.0078 −0.16
89. Navarra 0.19 0.13 −0.0019 0.384 0.521 0.0078 0.00
90. La Rioja 0.11 0.14 0.0008 0.230 0.260 0.0032 −0.03
91. Valencia 0.05 0.10 0.0014 2.316 3.787 0.0126 0.54

aDifference of logarithm of per capita GDP in 1950 from country mean in 1950. Values for Spain are for 1955.
bDifference of logarithm of per capita GDP in 1990 from country mean in 1990. Values for Denmark are for 1985 and for Spain are for 1987.
cDifference of annual growth rate of per capita GDP from 1950 to 1990 from country mean growth rate. Values for Denmark are for 1950–85 and for Spain are for
1955–87.
d Values for Spain are for 1951.
eValues for Denmark are for 1986.
f Annual growth rate of population from 1950 to 1990. Values for Denmark are for 1950–86 and for Spain are for 1951–90.
gTime periods are 1954–88 for Germany, 1961–85 for the United Kingdom, 1951–87 for Italy, 1954–82 for France, and 1951–87 for Spain.
Note: The numbers for the regions correspond to those used for the map in figure 11.4.
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We do not have regional price data. In addition, the figures on GDP are sometimes pro-
vided in an index form that are not comparable across countries. We have therefore focused
on regional GDP figures that are expressed as deviations from means for the respective
countries.

For the countries other than Spain, Molle, Van Holst, and Smits (1980) provide a break-
down of employment into three sectors—agriculture, industry, and services—for 1950,
1960, and 1970. For the other years, Eurostat provides a division of GDP into the same
three sectors. For Spain, the breakdown of GDP into these three components for the various
years is available from Banco de Bilbao (various issues).

Net migration flows are computed for the five larger countries from information on pop-
ulation, births, and deaths. The national sources are as follows: Germany: Statistischen
Bundesamtes, Statistisches Jahrbuch für die Bundesrepublik Deutschland, various years.
United Kingdom: Population Trends 51, Spring 1988. France: INSEE, Statistiques et Indi-
cateurs des Regions Francaises, 1978; INSEE, Donnes de Demographie Regionale 1982,
1986. Italy: ISTAT, Sommario Storice di Statistiche Sulla Populazzione: Anni 1951–1987,
1990. Spain: INE, Anuario Estatistico de España, various issues.

11.12.3 Data for Japanese Prefectures

Data for Japanese prefectures are in table 11.10 (a prefectural map is shown in figure 11.15).
The figures on income are collected since 1955 by the Economic Planning Agency (EPA)
of Japan. The accounts are constructed in accordance with the “1983 standardized system
of prefectural accounts,” so that all figures are comparable. The aggregate of the income
figures from the 47 prefectures coincides theoretically with Japan’s national income. The
data are collected annually and published in the Annual Report on Prefectural Accounts. For
1930, we obtained income data by prefecture from National Economy Studies Association.
We do not have price data by prefecture and therefore use national price indexes to deflate
each region’s income.

Data on population are from the Statistics Bureau at the Management and Coordination
Agency. The principal source of these figures is the quinquennial population census taken
by the Statistics Bureau.

Migration data are collected by the Statistics Bureau. These figures are derived from the
Basic Resident Registers and the Statistical Survey on Legal Migrants. These data exclude
persons without Japanese nationality.



Table 11.10
Data for Japanese Prefectures

Real Per Capita Real Per Capita
Income, 1955a Income, 1990 Growth Rate of Population, Population, Growth Net Migrants,
(million yen, (million yen, Real Per Capita 1955 1990 Rate of 1955–90c

Prefecture 1985 base) 1985 base) Incomeb (millions) (millions) Population (millions)

1. Hokkaido 0.441 2.396 0.0484 4.784 5.644 0.0030 −0.76
2. Aomori 0.326 2.045 0.0525 1.391 1.483 0.0012 −0.36
3. Iwate 0.298 2.093 0.0557 1.437 1.417 −0.0003 −0.41
4. Miyagi 0.367 2.453 0.0543 1.748 2.249 0.0046 −0.11
5. Akita 0.371 2.137 0.0500 1.362 1.227 −0.0019 −0.44
6. Yamagata 0.337 2.206 0.0537 1.370 1.258 −0.0016 −0.38
7. Fukushima 0.339 2.413 0.0561 2.120 2.104 −0.0001 −0.57
8. Niigata 0.388 2.398 0.0520 2.501 2.475 −0.0002 −0.63
9. Ibaraki 0.348 2.648 0.0580 2.099 2.845 0.0055 0.09
10. Tochigi 0.518 2.788 0.0561 1.571 1.935 0.0038 −0.13
11. Gumma 0.369 2.640 0.0562 1.624 1.966 0.0035 −0.15
12. Saitama 0.460 2.825 0.0519 2.279 6.405 0.0188 2.41
13. Chiba 0.368 2.880 0.0588 2.225 5.555 0.0166 1.93
14. Tokyo 0.811 4.238 0.0472 8.016 11.855 0.0071 0.10
15. Kanagawa 0.564 2.960 0.0474 2.901 7.980 0.0184 2.58
16. Yamanashi 0.321 2.557 0.0593 0.819 0.853 0.0007 −0.16
17. Nagano 0.374 2.633 0.0558 2.050 2.157 0.0009 −0.33
18. Shizuoka 0.452 2.883 0.0530 2.638 3.671 0.0060 −0.02
19. Toyama 0.426 2.616 0.0518 1.028 1.120 0.0016 −0.16
20. Ishikawa 0.412 2.608 0.0527 0.964 1.165 0.0034 −0.09
21. Gifu 0.441 2.551 0.0502 1.599 2.067 0.0047 −0.07
22. Aichi 0.579 2.971 0.0467 3.779 6.690 0.0104 0.86
23. Mie 0.406 2.621 0.0533 1.505 1.793 0.0032 −0.11
24. Fukui 0.395 2.429 0.0519 0.758 0.824 0.0015 −0.13
25. Shiga 0.434 2.794 0.0532 0.857 1.222 0.0065 0.09
26. Kyoto 0.531 2.664 0.0461 1.928 2.603 0.0054 0.02
27. Osaka 0.709 3.190 0.0430 4.586 8.735 0.0117 1.27

Table continued
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Table 11.10
(Continued )

Real Per Capita Real Per Capita
Income, 1955a Income, 1990 Growth Rate of Population, Population, Growth Net Migrants,
(million yen, (million yen, Real Per Capita 1955 1990 Rate of 1955–90c

Prefecture 1985 base) 1985 base) Incomeb (millions) (millions) Population (millions)

28. Hyogo 0.618 2.668 0.0418 3.660 5.405 0.0071 0.29
29. Nara 0.418 2.190 0.0473 0.777 1.375 0.0104 0.30
30. Wakayama 0.438 2.109 0.0449 1.012 1.074 0.0011 −0.15
31. Tottori 0.373 2.193 0.0506 0.615 0.616 0.0000 −0.12
32. Shimane 0.336 2.121 0.0527 0.931 0.781 −0.0032 −0.26
33. Okayama 0.413 2.555 0.0521 1.716 1.926 0.0021 −0.16
34. Hiroshima 0.478 2.678 0.0492 2.180 2.850 0.0049 0.00
35. Yamaguchi 0.445 2.299 0.0469 1.619 1.573 −0.0005 −0.34
36. Tokushima 0.344 2.297 0.0542 0.898 0.832 −0.0014 −0.20
37. Kagawa 0.394 2.524 0.0531 0.951 1.023 0.0013 −0.11
38. Ehime 0.397 2.157 0.0483 1.563 1.515 −0.0006 −0.37
39. Kochi 0.367 2.025 0.0484 0.917 0.825 −0.0019 −0.18
40. Fukuoka 0.490 2.502 0.0466 3.867 4.811 0.0040 −0.28
41. Saga 0.368 2.131 0.0502 0.982 0.878 −0.0020 −0.34
42. Nagasaki 0.369 2.027 0.0487 1.795 1.563 −0.0025 −0.65
43. Kumamoto 0.326 2.294 0.0558 1.898 1.840 −0.0006 −0.47
44. Oita 0.316 2.218 0.0556 1.298 1.237 −0.0009 −0.30
45. Miyazaki 0.317 2.078 0.0537 1.155 1.169 0.0002 −0.28
46. Kagoshima 0.255 2.019 0.0591 2.084 1.798 −0.0027 −0.68
47. Okinawa 0.282 1.880 0.0542 0.801 1.222 0.0077 −0.01

aValue for Tochigi is for 1960.
bValue for Tochigi is for 1960–90.
cValue for Okinawa is for 1965–90.
Notes: The numbers for the prefectures correspond to those used for the map in figure 11.15. The district classifications are as follows: District 1 (Hokkaido-Tohoku),
prefectures 1–8. District 2 (Kanto-Koshin), prefectures 9–17. District 3 (Chubu), prefectures 18–24. District 4 (Kinki), prefectures 25–30. District 5 (Chugoku), prefectures
31–35. District 6 (Shikoku), prefectures 36–39. District 7 (Kyushu), prefectures 40–47.
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12 Empirical Analysis of a Cross Section of Countries

Growth rates vary enormously across countries over long periods of time. Figure 12.1
(which repeats figure I.3 from the Introduction) illustrates these divergences in the form
of a histogram for the growth rate of real per capita GDP for 112 countries with available
data from 1960 to 2000.1 The mean value for the growth rate is 1.8 percent per year,
with a standard deviation of 1.7. The lowest decile comprises 11 countries with growth
rates below −0.5 percent per year, and the highest decile consists of the 11 with growth
rates above 3.9 percent per year. For quintiles, the poorest performing 22 places have
growth rates below 0.4 percent per year, and the best performing 22 have growth rates
above 3.0 percent per year.

The difference between per capita growth at −1.3 percent per year—the average for the
lowest decile—and growth at 5.0 percent per year—the average for the highest decile—is
that real per capita GDP falls by 41 percent over 40 years in the former case and rises by a
factor of more than 7 in the latter. Even more extreme, the two slowest growing countries, the
Democratic Republic of Congo (the former Zaire) and Central African Republic, fell from
levels of real per capita GDP in 1960 of $980 and $2180 (1996 U.S. dollars), respectively, to
levels of $320 and $1120 in 2000 (1995 for the former Zaire). From 1960 to 2000, the two
fastest growing countries, Taiwan and Singapore, rose from $1430 and $2160, respectively,
to $18,700 and $26,100. Thus, although the Central African Republic was 50 percent richer
than Taiwan in 1960, Taiwan was richer by an amazing factor of 17 in 2000. Over 40 years,
the observed variations in growth rates have made dramatic differences in the average living
standards of a country’s residents.

12.1 Losers and Winners from 1960 to 2000

Table 12.1 applies to loser countries, the 20 with the lowest per capita growth rates from
1960 to 2000. The countries are arranged in ascending order of growth rates, as shown
in column 2. This group contains an astonishing 18 countries in sub-Saharan Africa and
two in Latin America (Nicaragua and Venezuela). The table also shows per capita growth
rates over the three ten-year subperiods, 1965–75, 1975–85, and 1985–95. The fitted values
shown for these periods will be discussed later.

Table 12.2 provides a parallel treatment of winners, that is, the 20 countries with the
highest per capita growth rates. These countries are arranged in descending order of growth

1. The GDP data are the purchasing-power adjusted values from version 6.1 of the Penn-World Tables, as described
in Summers and Heston (1991) and Heston, Summers, and Aten (2002). For 11 countries with missing data for
2000, the growth rates for 1995–2000 were computed from World Bank figures. For Taiwan, the growth rate for
1995–2000 came from national sources. For the Democratic Republic of Congo (former Zaire), the growth rate is
for 1960–95.
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Figure 12.1
Histogram for growth rate of per capita GDP from 1960 to 2000. The growth rates are computed for 112 coun-
tries from the values of per capita GDP shown for 1960 and 2000 in figures I.1 and I.2. For Democratic Republic
of Congo (former Zaire), the growth rate is for 1960 to 1995. The data are from Penn-World Tables version 6.1,
as described in Summers and Heston (1991) and Heston, Summers, and Aten (2002). The GDP values are chain
weighted and in 1996 U.S. dollars. For the 112 countries, the mean growth rate is 0.018 per year, and the standard
deviation is 0.017. The highest growth rate is 0.064 and the lowest is −0.032. Representative countries are labeled
within each group.

rates, as shown in column 2. The winners include nine economies in East Asia (Taiwan,
Singapore, South Korea, Hong Kong, Thailand, China, Japan, Malaysia, and Indonesia),
four in western Europe (Ireland, Portugal, Spain, and Luxembourg), and two in sub-Saharan
Africa (Botswana and Congo-Brazzaville). Also included are Cyprus, Barbados, Romania,
and two islands off of Africa, Cape Verde and Mauritius.

The main regressions for per capita growth rates that we will discuss apply to the
three ten-year periods 1965–75, 1975–85, and 1985–95. This econometric analysis can
be viewed, in part, as a determination of which characteristics make it likely that a country
will end up in the losers or winners lists shown in tables 12.1 and 12.2. The fitted values
indicated for the three ten-year periods (for countries that have the necessary data to be
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Table 12.1
Details of 20 Slowest Growing Countries

Growth Growth Fitted Growth Fitted Growth Fitted Growth
Country 1960–2000a 1965–75 1965–75 1975–85 1975–85 1985–95 1985–95 1995–2000b

Congo (Kinshasa) −0.032 0.001 0.005 −0.040 −0.003 −0.069 −0.026 —
Central African Republic −0.017 −0.012 — −0.019 — −0.035 — 0.004
Niger −0.015 −0.041 −0.015 −0.026 −0.067 −0.008 −0.004 0.012
Angola −0.014 −0.032 — −0.011 — −0.040 — 0.021
Nicaragua −0.012 0.012 0.003 −0.037 −0.009 −0.050 −0.024 −0.006
Mozambique −0.011 0.004 — −0.081 — 0.003 −0.001 0.051
Madagascar −0.010 0.004 — −0.021 — −0.015 — 0.004
Nigeria −0.009 0.000 — −0.004 — −0.010 — −0.054
Zambia −0.008 −0.008 0.021 −0.021 0.007 −0.029 −0.003 0.018
Chad −0.007 −0.012 — −0.004 — −0.014 — 0.003
Comoros −0.005 0.007 — −0.005 — −0.031 — −0.011
Venezuela −0.005 −0.019 0.014 −0.019 0.006 0.004 0.004 −0.020
Senegal −0.003 −0.008 −0.005 −0.006 −0.003 −0.002 0.005 0.021
Rwanda −0.001 0.015 — 0.023 — −0.037 — 0.038
Togo −0.001 0.004 −0.005 0.011 0.000 −0.039 0.004 −0.002
Burundi −0.001 0.024 — −0.004 — −0.007 — −0.056
Mali 0.000 0.008 0.014 0.002 0.000 −0.006 0.011 0.036
Guinea 0.001 −0.016 — −0.006 — 0.015 — 0.015
Equatorial Guinea 0.002 0.015 — −0.084 — −0.041 — 0.229
Benin 0.003 −0.013 — 0.018 — −0.009 — 0.026

Notes: The data, from Penn-World Tables version 6.1, are described in Summers and Heston (1991) and Heston, Summers, and Aten (2002). The fitted
values come from the regression system shown in column 2 of table 12.3.
aFor Congo (Kinshasa), the growth rate is for 1960–95.
bFor countries for which the Penn-World Tables version 6.1 data are unavailable for 1995–2000, the values are from World Bank (Central African Republic
and Angola).
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Table 12.2
Details of 20 Fastest Growing Countries

Growth Growth Fitted Growth Fitted Growth Fitted Growth
Country 1960–2000 1965–75 1965–75 1975–85 1975–85 1985–95 1985–95 1995–2000 a

Taiwan 0.064 0.069 0.056 0.065 0.050 0.068 0.041 0.047
Singapore 0.062 0.094 — 0.054 0.074 0.052 0.062 0.028
South Korea 0.059 0.071 0.052 0.059 0.048 0.072 0.052 0.032
Hong Kong 0.054 0.048 0.062 0.062 0.052 0.053 0.041 0.008
Botswana 0.051 0.082 — 0.062 0.027 0.036 0.007 0.043
Thailand 0.046 0.043 0.046 0.045 0.042 0.073 0.051 0.003
Cyprus 0.046 0.012 0.043 0.075 0.036 0.052 0.015 0.029
China 0.043 0.017 — 0.049 0.055 0.065 0.044 0.057
Japan 0.042 0.065 0.055 0.030 0.033 0.027 0.030 0.012
Ireland 0.041 0.035 0.027 0.025 0.012 0.046 0.012 0.085
Barbados 0.039 0.064 — 0.023 — 0.028 — 0.036
Malaysia 0.039 0.036 0.031 0.042 0.041 0.047 0.037 0.026
Portugal 0.038 0.049 0.054 0.021 0.026 0.035 0.015 0.040
Mauritius 0.037 0.010 — 0.038 — 0.050 — 0.041
Romania 0.035 0.072 — 0.063 — −0.020 — −0.020
Cape Verde 0.035 0.022 — 0.076 — 0.023 — 0.048
Spain 0.034 0.047 0.047 0.005 0.024 0.033 0.021 0.020
Indonesia 0.034 0.046 0.018 0.047 0.025 0.047 0.014 0.000
Luxembourg 0.033 0.022 — 0.021 — 0.054 — 0.049
Congo (Brazzaville) 0.032 0.041 0.029 0.059 0.018 −0.021 −0.017 0.005

Notes: The data, from Penn-World Tables version 6.1, are described in Summers and Heston (1991) and Heston, Summers, and Aten (2002). The fitted
values come from the regression system shown in column 2 of table 12.3.
aFor countries for which the Penn-World Tables version 6.1 data are unavailable for 1995–2000, the values are from World Bank (Singapore, Botswana,
and Cyprus) or national sources (Taiwan).
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included in the statistical analysis) show how much of the growth rates can be explained by
the regressions.

The correlations of growth rates across the 10-year periods are positive but not very
strong—0.43 for growth between 1975–85 and 1965–75 and 0.42 for the comparison be-
tween 1985–95 and 1975–85. Therefore, although there is persistence over time in which
countries are slow or fast growers, there are also substantial changes over time in these
groupings. If one examines 5-year intervals, the correlations are weaker. For example, for
the seven intervals from 1960–65 to 1995–2000, the average correlation of one period’s
growth rate with the previous one is only 0.17. The lower correlation applies because five-
year intervals tend to be sensitive to temporary factors associated with “business cycles.”
The last five-year period is noteworthy for being virtually unrelated to the history—the
correlation of growth rates in 1995–2000 with those in 1990–95 is only 0.05.

12.2 An Empirical Analysis of Growth Rates

This section considers the empirical determinants of growth; that is, the regression results
that underlie the fitted values shown in tables 12.1 and 12.2. The sample of 87 countries
(constituting 241 observations for countries at 10-year intervals), listed in the appendix in
table 12.8, covers a broad range of experience from developing to developed countries. The
included countries were determined by the availability of data.

An interesting empirical question is whether poor economies tend to “catch up,” that
is, tend to grow faster than rich economies. This is the concept of absolute convergence
described in chapters 1 and 2. Figure 12.2 shows that this proposition fares badly in terms of
the cross-country data: for the 112 countries with the necessary data, the growth rate from
1960 to 2000 is virtually unrelated to the log of per capita GDP in 1960. (The correlation
is actually somewhat positive, 0.19.) Some researchers have used this lack of correlation
between growth and the initial level of income as evidence against the neoclassical growth
models of Solow–Swan and Ramsey. In chapters 1, 2, and 11, however, we showed that
the lack of absolute convergence across economies is perfectly consistent with neoclassi-
cal theory if the different economies in the data set tend to converge to different steady
states. In other words, the neoclassical model predicts conditional rather than absolute con-
vergence: holding constant variables that proxy for the steady state, the theory predicts a
negative partial correlation between growth and the initial level of income. We have to ex-
amine the relation between the growth rate and the starting position after holding constant
some variables that distinguish the countries.

We use an empirical framework that relates the real per capita growth rate to two kinds
of variables: first, initial levels of state variables, such as the stock of physical capital and
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Figure 12.2
Growth rate versus GDP (simple relation). These data are for the 112 countries described in figure 12.1. The
log of per capita GDP in 1960 is on the horizontal axis, and the growth rate of per capita GDP from 1960 to 2000
is on the vertical. The correlation between the two is weakly positive: 0.19. Thus there is no evidence from the
broad cross-country sample of absolute convergence.

the stock of human capital in the forms of educational attainment and health; and second,
control or environmental variables (some of which are chosen by governments and some by
private agents), such as the ratio of government consumption to GDP, the ratio of domestic
investment to GDP, the extent of international openness, movements in the terms of trade,
the fertility rate, indicators of macroeconomic stability, measures of maintenance of the rule
of law and democracy, and so on.

One of the state variables that we use is school attainment at various levels, as constructed
by Barro and Lee (2001). We use standard UN numbers on life expectancy at various ages
to represent the level of health. Life expectancy at age one turns out to have the most
explanatory power. The available data on physical capital seem unreliable, especially for
developing countries and even relative to the measures of human capital, because they
depend on arbitrary assumptions about depreciation and also rely on inaccurate measures
of benchmark stocks and investment flows. As an alternative to using the limited data that
are available on physical capital, we assume that, for given values of schooling and health,
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a higher level of initial real per capita GDP reflects a greater stock of physical capital per
person (or a larger quantity of natural resources).

We can write a function for a country’s per capita growth rate in period t , Dyt , as

Dyt = F(yt−1, ht−1, . . .) (12.1)

where yt−1 is initial per capita GDP and ht−1 is initial human capital per person (based
on measures of educational attainment and health). The omitted variables, denoted by . . . ,
comprise an array of control and environmental influences. These variables would include
preferences for saving and fertility, government policies with respect to spending and market
distortions, and so on.

12.2.1 Effects from State Variables

The Solow–Swan and Ramsey models predict that, for given values of the environmental
and control variables, an equiproportionate increase in yt−1 and ht−1 would reduce Dyt

in equation (12.1). That is, because of diminishing returns to reproducible factors, a richer
economy—with higher levels of y and h—tends to grow at a slower rate. The environmental
and control variables determine the steady-state level of output per “effective” worker in
these models. A change in any of these variables, such as the saving rate or a government
policy instrument or the growth rate of population, affects the growth rate for given values of
the state variables. For example, a higher saving rate tends to increase Dyt in equation (12.1)
for given values of yt−1 and ht−1.

The model with human and physical capital in chapter 5 predicts some influences on
growth from imbalances between physical and human capital. In particular, for given yt−1,
a higher value of ht−1 in equation (12.1) tends to raise the growth rate. This situation
applies, for example, in the aftermath of a war that destroys primarily physical capital.
Thus, although the influence of yt−1 on Dyt in equation (12.1) would be negative, the effect
of ht−1 tends to be positive.

Empirically, we enter the initial level of per capita GDP into the growth equation in the
form log(yt−1) so that the coefficient on this variable represents the rate of convergence,
that is, the responsiveness of the growth rate, Dyt , to a proportional change in yt−1.2 In
the regressions, the variable ht−1 is represented by average years of school attainment and
life expectancy.

2. This identification would be exact if the length of the observation interval for the data were negligible. Suppose
that the data are observed at interval T , convergence occurs continuously at the rate β, and all right-hand-
side variables other than log(y) do not change over time. In this case, equation (2.42) from chapter 2 implies that
the coefficient on log(yt−T ) in a regression for the average growth rate, (1/T ) · log(yt/yt−T ), is −(1 − e−βT )/T .
This expression tends to β as T tends to 0 and tends to 0 as T approaches infinity.
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12.2.2 Control and Environmental Variables

In the basic regression that we will consider, the control and environmental variables are
a measure of international openness,3 the ratio of government consumption to GDP,4 a
subjective indicator of maintenance of the rule of law, a subjective indicator of democracy
(electoral rights), the log of the total fertility rate, the ratio of real gross domestic investment
to real GDP, and the inflation rate. The system also includes the contemporaneous growth
rate of the terms of trade, interacted with the extent of international openness (the ratio of
exports plus imports to GDP). We take account of the likely endogeneity of the explanatory
variables by using lagged values as instruments. These lagged variables may be satisfactory
because the error term in the equation for the per capita growth rate turns out to display little
serial correlation.5

In the neoclassical growth models of Solow–Swan and Ramsey, the effects of the con-
trol and environmental variables on the growth rate correspond to their influences on the
steady-state position. For example, an exogenously higher value of the rule of law indicator
raises the steady-state level of output per effective worker. The growth rate, Dyt , tends
accordingly to increase for given values of the state variables. Similarly, a higher ratio of
(nonproductive) government consumption to GDP tends to depress the steady-state level of
output per effective worker and thereby reduce the growth rate for given values of the state
variables.

In neoclassical growth models, a change in a control or environmental variable affects
the steady-state level of output per effective worker, but not the long-term per capita growth
rate. The long-run or steady-state growth rate is given by the rate of exogenous technological
progress. In contrast, in the endogenous-growth models of chapters 6 and 7, variables that
affect R&D intensity also influence long-term growth rates. However, even in the Solow–
Swan and Ramsey models, if the adjustment to the new steady-state position takes a long
time—as seems to be true empirically—then the growth effect of a variable such as the
rule-of-law indicator or the government consumption ratio lasts for a long time.

The measures of educational attainment that we use in the main analysis are based on
years of schooling and do not adjust for variations in school quality. A measure of quality,
based on internationally comparable test scores, turns out to have much more explanatory

3. This variable is the ratio of exports plus imports to GDP, filtered for the usual relation of this ratio to country
size as represented by the logs of population and area.

4. The variable used in the main analysis nets out from the standard measure of government consumption the
outlays on defense and education.

5. Instead of including lagged inflation, the system includes dummy variables for whether the country is a former
colony of Spain or Portugal or a former colony of another country other than Britain or France. These colonial
dummies turn out to have substantial explanatory power for inflation.
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power for growth. However, this test-score measure is unavailable for much of the sample
and is, therefore, excluded from the basic system.

Health capital is proxied in the basic system by the reciprocal of life expectancy at age
one. If the probability of dying were independent of age, then this reciprocal would give
the probability per year of dying. We also consider later measures of infant mortality (up to
age 1) and child mortality (for ages 1–5), as well as incidence of a specific disease, malaria.

We assume that the government consumption variable measures expenditures that do not
directly affect productivity but that entail distortions of private decisions. These distortions
can reflect the governmental activities themselves and also involve the adverse effects from
the associated public finance.6 A higher value of the government consumption ratio leads
to a lower steady-state level of output per effective worker and, hence, to a lower growth
rate for given values of the state variables.

The fertility rate is an important influence on population growth, which has a negative
effect on the steady-state ratio of capital to effective worker in the neoclassical growth
model. Hence, we anticipate a negative effect of the fertility rate on economic growth.
Higher fertility also reflects greater resources devoted to child rearing, as in the model
developed in chapter 9. This channel provides another reason why higher fertility would be
expected to reduce growth.

The effect of the saving rate in the neoclassical growth model is measured empirically
by the ratio of real investment to real GDP. Recall that we attempt to isolate the effect of
the saving rate on growth, rather than the reverse, by using lagged values—in this case, the
lagged investment ratio—as instruments.

We assume that an improvement in the rule of law, as gauged by the subjective indicator
provided by an international consulting firm (Political Risk Services), implies enhanced
property rights and, therefore, an incentive for higher investment and growth. More broadly,
the idea is that well-functioning political and legal institutions help to sustain growth. Some
historical analyses attempt to relate current institutional characteristics, such as maintenance
of the rule of law, to practices of colonial powers long ago. Acemoglu, Johnson, and
Robinson (2002) argue that European colonists were more likely to invest in institutions
in regions that were previously poor or empty, notably present-day Canada and the United
States, because they lacked the potential for exploitation of mineral wealth and indigenous
populations. Acemoglu, Johnson, and Robinson (2001) stress that the adverse mortality
experience of settlers in parts of Latin America and Africa may have limited institutional
investments in those colonies. Woodberry (2002) argues that the establishment of quality

6. We would hold constant the tax effects directly, but the available data on public finance are inadequate for this
purpose. See Easterly and Rebelo (1993) for attempts to measure the relevant marginal tax rates.
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schooling by missionaries in some colonies may have had a long-lasting influence on
political institutions. These analyses suggest instrumental variables—from the long-term
history—that can be used to get more reliable estimates of the effects of current variables,
such as the rule-of-law indicator.

We also include another subjective indicator (from Freedom House) of the extent of
democracy in the sense of electoral rights. Theoretically, the effect of democracy on growth
is ambiguous. Negative effects arise in political models that stress the incentive of electoral
majorities to use their political power to transfer resources away from rich minority groups.
Democracy may also be productive as a mechanism for government to commit itself not to
confiscate the capital accumulated by the private sector. The empirical analysis allows for
a linear and squared term in democracy, thereby allowing for the possibility that the sign of
the net effect would depend on the extent of democracy.

The explanatory variables also include a measure of the extent of international openness—
the ratio of exports plus imports to GDP. Openness is well known to vary by country size—
larger countries tend to be less open because internal trade offers a large market that can
substitute effectively for international trade. The explanatory variable used in the analysis
of growth filters out the normal relationship (estimated in another regression system) of
international openness to the logs of population and area. This filtered variable reflects
especially the influences of government policies, such as tariffs and trade restrictions, on
international trade.

We include also the growth rate over each decade of the terms of trade, measured by
the ratio of export prices to import prices. This ratio appears as a product with the extent
of openness, measured by exports plus imports over GDP. This terms-of-trade variable
measures the effect of changes in international prices on the income position of domestic
residents. This real income position would rise because of higher export prices and fall
with higher import prices. We view the terms of trade as determined on world markets
and, hence, exogenously to the behavior of an individual country. Since an improvement in
the terms of trade raises a country’s real income, we would predict an increase in domestic
consumption. An effect on production, GDP, depends, however, on a response of allocations
or effort to the shift in relative prices. If an increase in the relative price of the goods that a
country produces tends to generate more output, that is, a positive response of supply, then
the effect of this variable on the growth rate would be positive. One effect of this type is that
an increase in the relative price of oil—an import for most countries—would reduce the
production of goods that use oil as an input.

Finally, the basic system includes the average inflation rate as a measure of macroeco-
nomic stability. Alternative measures can also be considered, including fiscal variables.
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12.3 Regression Results for Growth Rates

12.3.1 A Basic Regression

Table 12.3 contains regression results for the growth rate of real per capita GDP. For the
basic system shown in column 2, 72 countries are included for 1965–75, 86 countries for
1975–85, and 83 countries for 1985–95. Table 12.9 in the appendix shows the means and
standard deviations for the variables that are included in the various regressions.

The estimation uses instrumental variables, as already discussed, and allows the error
terms to be correlated across the time periods and to have different variances for each
period. The error terms are assumed to be independent across countries, and the error
variances are not allowed to vary across countries. The system includes separate dummies
for the different time periods. Hence, the analysis does not explain why the world’s average
growth rate changes over time. The following discussion of results refers to the system
shown in column 2 of table 12.3.

Initial Per Capita GDP The variable log(GDP) is an observation of the log of real per
capita GDP for 1965 in the 1965–75 regression, for 1975 in the 1975–85 regression, and for
1985 in the 1985–95 equation. Earlier values—for 1960, 1970, and 1980, respectively—are
included in the list of instruments. This instrumental procedure lessens the tendency to
overestimate the convergence rate because of temporary measurement error in GDP. (For
example, if log[GDP] in 1965 were low due to temporary measurement error, then the
growth rate from 1965 to 1975 would tend to be high because the observation for 1975
would tend not to include the same measurement error.)

The estimated coefficient on log(GDP), −0.025 (s.e. = 0.003), shows the conditional
convergence that has been reported in various studies, such as Barro (1991) and Mankiw,
Romer, and Weil (1992). The convergence is conditional in that it predicts higher growth in
response to lower starting GDP per person only if the other explanatory variables (some of
which are highly correlated with GDP per person) are held constant. The magnitude of the
estimated coefficient implies that convergence occurs at the rate of about 2.5 percent per
year.7 According to this coefficient, a one-standard-deviation decline in the log of per capita
GDP (1.03 in 1985) would raise the growth rate on impact by 0.026. This effect is very
large in comparison with the other effects that we are about to describe—that is, conditional
convergence can have important influences on growth rates.

7. This result uses the formula from note 2. The result is correct, however, only if the other right-hand-side variables
do not change as per capita GDP varies.
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Table 12.3
Basic Cross-Country Growth Regressions

(1) (2) (3) (4) (5) (6)
Coefficient for Coefficient for Coefficient with

Explanatory Variable Coefficient Low-Income Sample High-Income Sample p Valuea Data at 5-Year Intervals

Log of per capita GDP −0.0248 (0.0029) −0.0207 (0.0052) −0.0318 (0.0049) 0.12 −0.0237 (0.0029)
Male upper-level schooling 0.0036 (0.0016) 0.0056 (0.0045) 0.0020 (0.0016) 0.44 0.0023 (0.0015)
1/(life expectancy at age 1) −5.04 (0.86) −5.13 (1.18) −1.28 (1.44) 0.040 −4.91 (0.90)
Log of total fertility rate −0.0118 (0.0050) −0.0209 (0.0120) −0.0211 (0.0054) 0.99 −0.0160 (0.0048)
Government consumption ratio −0.062 (0.023) −0.102 (0.031) −0.000 (0.031) 0.021 −0.066 (0.021)
Rule of law 0.0185 (0.0059) 0.0237 (0.0099) 0.0223 (0.0063) 0.90 0.0174 (0.0062)
Democracy 0.079 (0.028) 0.044 (0.049) 0.105 (0.038) 0.32b 0.032 (0.017)
Democracy squared −0.074 (0.025) −0.054 (0.052) −0.080 (0.031) 0.67 −0.028 (0.016)
Openness ratio 0.0054 (0.0048) 0.0169 (0.0113) 0.0061 (0.0046) 0.38 0.0094 (0.0043)
Change in terms of trade 0.130 (0.053) 0.181 (0.076) 0.036 (0.070) 0.16 0.029 (0.021)
Investment ratio 0.083 (0.024) 0.109 (0.035) 0.077 (0.027) 0.46 0.058 (0.022)
Inflation rate −0.019 (0.010) −0.019 (0.012) −0.019 (0.009) 0.99 −0.031 (0.007)
Constant 0.296 (0.034) 0.294 (0.052) 0.295 (0.052) 0.99c 0.306 (0.035)
Dummy, 1975–85 −0.0078 (0.0026) −0.0078 (0.0038) −0.0066 (0.0032) 0.81 d

Dummy, 1985–95 −0.0128 (0.0034) −0.0194 (0.0051) −0.0052 (0.0040) 0.031
Number of observations 72, 86, 83 26, 38, 33 46, 48, 50 72, 79, 86, 84

79, 80, 60
R-squared .60, .49, .51 .78, .53, .65 .56, .56, .40 .40, .26, .27, .31,

.46, .19, .04

Notes: Estimation is by three-stage least squares. In column 2 the dependent variables are the growth rates of per capita GDP for 1965–75, 1975–85, and
1985–95. Instruments are the values in 1960, 1970, and 1980 of the log of per capita GDP, the life-expectancy variable, and the fertility variable; averages
for 1960–64, 1970–74, and 1980–84 of the government consumption variable and the investment ratio; values in 1965, 1975, and 1985 of the schooling
variable and the democracy variables; the openness and terms-of-trade variables (growth rates over 1965–75, 1975–85, and 1985–95, interacted with the
corresponding averages of the ratio of exports plus imports to GDP); and dummies for Spanish or Portuguese colonies and other colonies (aside from
Britain and France). The variances of the error terms are allowed to be correlated over the time periods and to have different variances for each period.
Columns 3 and 4 separate the samples into countries with levels of per capita GDP below and above the median (for 1960, 1970, and 1980). Column 6
uses equations for economic growth for seven five-year periods, 1965–70, . . . , 1995–2000.
aThe p values refer to the hypothesis that the coefficients are the same for the two income groups.
bThe p value for democracy and democracy-squared jointly is 0.022.
cThe p value for the constant and two time dummies jointly is 0.10.
d The time dummies at the 5-year intervals are −0.0014 (0.0040) for 1970–75, −0.0000 (0.0040) for 1975–80, −0.0180 (0.0040) for 1980–85, −0.0112
(0.0037) for 1985–90, −0.0184 (0.0045) for 1990–95, and −0.0165 (0.0042) for 1995–2000.
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Figure 12.3
Growth rate versus GDP (partial relation). The log of per capita GDP for 1965, 1975, and 1985 is shown on
the horizontal axis. The vertical axis plots the corresponding growth rate of real per capita GDP from 1965 to
1975, 1975 to 1985, and 1985 to 1995. These growth rates are filtered for the estimated effect of the explanatory
variables other than the log of per capita GDP that are shown in column 2 of table 12.3. The filtered values were
then normalized to have zero mean. Thus the diagram shows the partial relation between the growth rate of per
capita GDP and the log of per capita GDP.

Figure 12.3 provides a graphical description of the partial relation between the growth
rate and the level of per capita GDP. The horizontal axis shows the values of the log of per
capita GDP at the start of each of the three ten-year periods: 1965, 1975, and 1985. The
vertical axis refers to the subsequent ten-year growth rate of per capita GDP—for 1965–75,
1975–85, and 1985–95. These growth rates have been filtered for the estimated effects of the
explanatory variables other than the log of per capita GDP that are included in the system
of column 2, table 12.3. (The average value has also been normalized to have zero mean.)
Thus, conceptually, the figure shows the estimated effect of the log of per capita GDP on
subsequent growth when all the other explanatory variable are held constant. The graph
suggests that the estimated relationship is not driven by obvious outlier observations and
does not have any clear departures from linearity. An analogous construction will be used
for each of the explanatory variables.
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Educational Attainment The school-attainment variable that tends to be significantly
related to subsequent growth is the average years of male secondary and higher schooling
(referred to as upper-level schooling), observed at the start of each period, 1965, 1975,
and 1985. Since these variables are predetermined, they enter as their own instruments in
the regressions. Attainment of females and for both sexes at the primary level turn out
not to be significantly related to growth rates, as discussed later. The estimated coefficient,
0.0036 (0.0016), means that a one-standard-deviation increase in male upper-level schooling
(by 1.3 years, the value for 1985 shown in table 12.9) raises the growth rate on impact
by 0.005. Figure 12.4 depicts the partial relationship between economic growth and the
school-attainment variable.

Life Expectancy The life-expectancy variable—the reciprocal of life expectancy at age
one—applies to 1960, 1970, and 1980, respectively, for the three growth equations. These
values would correspond to the mortality rate per year if mortality were (counterfactually)
independent of age. The reciprocal of life expectancy at age one has slightly more explana-
tory power than variables based on life expectancy at birth or at age 5. (The reciprocals
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Figure 12.4
Growth rate versus schooling (partial relation). The diagram shows the partial relation between the growth rate
of per capita GDP and the average years of school attainment of males at the upper level (higher schooling plus
secondary schooling). The variable on the horizontal axis is measured in 1965, 1975, and 1985. See the description
of figure 12.3 for the general procedure.
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Figure 12.5
Growth rate versus life expectancy (partial relation). The diagram shows the partial relation between the growth
rate of per capita GDP and the reciprocal of life expectancy at age one. The variable on the horizontal axis is
measured in 1960, 1970, and 1980. See the description of figure 12.3 for the general procedure.

of life expectancy at age 1 also appear in the instrument lists.) The estimated coefficient
of −5.0 (s.e. = 0.9) is highly significant and indicates that better health predicts higher
economic growth. A one-standard error reduction in the reciprocal of life expectancy at age
1 (0.0022 in 1980) is estimated to raise the growth rate on impact by 0.011. Figure 12.5
shows graphically the partial relation between growth and this health indicator.

Fertility Rate The fertility rate (total lifetime live births for the typical woman over her
expected lifetime) enters as a log at the dates 1960, 1970, and 1980. These variables also
appear in the instrument lists. The estimated coefficient is negative and significant: −0.012
(s.e. = 0.005). A one-standard-deviation decline in the log of the fertility rate (by 0.53 in
1980) is estimated to raise the growth rate on impact by 0.006. The partial relation appears
in figure 12.6.

Government Consumption Ratio The ratio of real government consumption to real
GDP8 was adjusted by subtracting the estimated ratio to real GDP of real spending on defense

8. These data are from Penn-World Tables version 6.1, as described in Summers and Heston (1991).
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Figure 12.6
Growth rate versus fertility rate (partial relation). The diagram shows the partial relation between the growth
rate of per capita GDP and the log of the total fertility rate. The variable on the horizontal axis is measured in
1960, 1970, and 1980. See the description of figure 12.3 for the general procedure.

and noncapital real expenditures on education. The elimination of expenditures for defense
and education—categories of spending that are included in standard measures of government
consumption—was made because these items are not properly viewed as consumption. In
particular, they are likely to have direct effects on productivity or the security of property
rights. The growth equation for 1965–75 includes as a regressor the average of the adjusted
government consumption ratio for 1965–74 and includes the adjusted ratio for 1960–64 in
the list of instruments. The analogous timing applies to the growth equations for the other
two ten-year periods.

The estimated coefficient of the government consumption ratio is negative and significant:
−0.062 (0.023). This estimate implies that a reduction in the ratio by 0.059 (its standard
deviation in 1985–94) would raise the growth rate on impact by 0.004. The partial relation
is shown in figure 12.7.

Rule of Law The rule-of-law variable comes from a subjective measure provided in
International Country Risk Guide by the international consulting company Political Risk
Services. This variable was first proposed by Knack and Keefer (1995). The underly-
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Figure 12.7
Growth rate versus government consumption (partial relation). The diagram shows the partial relation between
the growth rate of per capita GDP and the ratio of government consumption to GDP. The ratio involves the standard
measure of government consumption less the estimated real outlays on defense and education. The variable on
the horizontal axis is the average for 1965–74, 1975–84, and 1985–94. See the description of figure 12.3 for the
general procedure.

ing data are tabulated in seven categories, which have been adjusted here to a zero-to-
one scale, with one representing the most favorable environment for maintenance of the
rule of law. These data start only in 1982. The estimation shown in table 12.3 uses the
earliest value available (usually for 1982 but sometimes for 1985) in the growth equa-
tions for 1965–75 and 1975–85. (This procedure may be satisfactory because the rule-
of-law variable exhibits substantial persistence over time.) The third equation uses the
average of the rule of law for 1985–94 as a regressor and enters the value for 1985 in
the instrument list. The estimated coefficient is positive and significant: 0.0185 (0.0059).
This estimate means that an increase in the rule of law by one standard deviation (0.26
for 1985–94) would raise the growth rate on impact by 0.005. The partial relation with
growth is shown in figure 12.8. (Note that many of the rule-of-law observations
apply to one of seven categories. The averaging for 1985–94 generates the intermediate
values.)
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Figure 12.8
Growth rate versus rule of law (partial relation). The diagram shows the partial relation between the growth
rate of per capita GDP and the Political Risk Services indicator for maintenance of the rule of law. The variable on
the horizontal axis associated with growth in 1965–75 and 1975–85 applies to 1982 or 1985. The value associated
with growth in 1985–95 is the average for 1985–94. See the description of figure 12.3 for the general procedure.

Democracy The democracy variable comes from a subjective measure provided by Free-
dom House.9 The variable used refers to electoral rights—an alternative measure that applies
to civil liberties is considered later. The underlying data are tabulated in seven categories,
which have been adjusted here to a zero-to-one scale, with one indicating a full represen-
tative democracy and zero a complete totalitarian system. These data begin in 1972, but
information from another source (Bollen, 1990) was used to generate data for 1960 and
1965. The systems include also the square of democracy to allow for a nonlinear effect on
economic growth. The first growth equation includes as regressors the average of democ-
racy and the average of its square over the period 1965–74. The instrument list includes
the level and squared value in 1965 (or sometimes 1960). The other two growth equations
use as regressors the average values for 1975–84 and 1985–94, respectively, and include
the values at the start of each period in the instrument lists.

9. For an earlier discussion, see Gastil (1987).



Empirical Analysis of a Cross Section of Countries 529

�.06
0.0 0.2

Democracy indicator
0.4 0.6 0.8 1.0

�.04

�.02

.00

.02

.04

.06

G
ro

w
th

 r
at

e 
(u

ne
xp

la
in

ed
 p

ar
t)

Figure 12.9
Growth rate versus democracy (partial relation). The diagram shows the partial relation between the growth
rate of per capita GDP and the Freedom House indicator for democracy (electoral rights). The variable on the
horizontal axis is the average for 1965–74, 1975–84, and 1985–94. The solid curve is the fitted relation implied
by the estimated coefficients on the linear and squared terms for democracy. See the description of figure 12.3 for
the general procedure.

The results indicate that the linear and squared term in democracy are each statistically
significant: 0.079 (0.028) and −0.074 (0.025), respectively. The p value for joint signifi-
cance is 0.011. These estimates imply that, starting from a fully totalitarian system (where
the democracy variable takes on the value zero), increases in democracy tend to stimulate
growth. However, the positive influence attenuates as democracy rises and reaches zero
when the indicator takes on a midrange value of 0.53. (Note that the mean of the democracy
variable for 1985–94 is 0.64.) Therefore, democratization appears to enhance growth for
countries that are not very democratic but to retard growth for countries that have already
achieved a substantial amount of democracy. This nonlinear relation is shown by the di-
agram in figure 12.9. The solid line indicates the fitted value implied by the linear and
squared terms in democracy.

International Openness The degree of international openness is measured by the ratio
of exports plus imports to GDP. This measure is highly sensitive to country size, as large
countries tend to rely relatively more on domestic trade. To take account of this relation, the
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Figure 12.10
Growth rate versus openness (partial relation). The diagram shows the partial relation between the growth rate
of per capita GDP and the openness ratio. This variable is the ratio of exports plus imports to GDP, filtered for the
usual relation of this ratio to the logs of population and area. The variable on the horizontal axis is the average for
1965–74, 1975–84, and 1985–94. See the description of figure 12.3 for the general procedure.

ratio of exports plus imports to GDP was filtered for its relation in a regression context to
the logs of population and area. We consider later whether country size has itself a relation
to economic growth.

The openness variable enters into each growth equation as an average for the correspond-
ing ten-year period (1965–74 and so on). In the basic system, these variables also appear in
the respective instrument lists. This specification is appropriate if the trade ratio is (largely)
exogenous to economic growth. The estimated coefficient on the openness variable is pos-
itive but not statistically significant, 0.0054 (0.0048). Hence, there is only weak statistical
evidence that greater international openness stimulates economic growth. The point esti-
mate implies that a one-standard-deviation increase in the openness ratio (0.39 in 1985–94)
would raise the growth rate on impact by 0.002. The partial relation between growth and
the openness variable is shown graphically in figure 12.10.

The Terms of Trade This variable is measured by the growth rate of the terms of trade
(export prices relative to import prices) over each ten-year period (1965–75 and so on),
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Figure 12.11
Growth rate versus terms of trade (partial relation). The diagram shows the partial relation between the growth
rate of per capita GDP and the terms-of-trade variable. This variable is the growth rate of the terms of trade (export
prices relative to import prices) multiplied by the average ratio of exports plus imports to GDP. The growth rate of
the terms of trade is for 1965–75, 1975–85, and 1985–95. The ratios of exports plus imports to GDP are averages
for 1965–74, 1975–84, and 1985–94. See the description of figure 12.3 for the general procedure.

multiplied by the average ratio of exports plus imports to GDP for the period (1965–74
and so on). These variables also appear in the instrument lists. The idea here is that move-
ments in the terms of trade depend primarily on world conditions and would, therefore,
be largely exogenous with respect to contemporaneous economic growth for an individ-
ual country.10 The estimated coefficient is positive and significant: 0.130 (0.053). Hence,
changes in the terms of trade do matter for growth over ten-year periods. The results imply
that a one-standard-deviation increase in the variable (by 0.017 in 1985–95) would raise
the growth rate on impact by 0.002. Figure 12.11 shows the partial relation between growth
and the terms-of-trade variable.

Investment Ratio The ratio of real gross domestic investment (private plus public) to real
GDP enters into the regressions as averages for each of the ten-year periods (1965–74 and

10. The results are virtually the same if the instrument list includes the growth rate of the terms of trade interacted
with the lagged ratio of exports plus imports to GDP, rather than the contemporaneous ratio.
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Figure 12.12
Growth rate versus investment (partial relation). The diagram shows the partial relation between the growth
rate of per capita GDP and the ratio of investment to GDP. The variable on the horizontal axis is the average for
1965–74, 1975–84, and 1985–94. See the description of figure 12.3 for the general procedure.

so on).11 The corresponding instrument is the average value of the ratio over the preceding
five years (1960–64, 1970–74, and 1980–84). The estimated coefficient is positive and
statistically significant, 0.083 (0.024). This point estimate implies that a one-standard-
deviation increase in the investment ratio (by 0.081 in 1985–94) would raise the growth rate
on impact by 0.007. The partial relation with growth is depicted graphically in figure 12.12.

Inflation Rate The inflation variable is the average rate of retail price inflation over
each of the ten-year periods (1965–75 and so on). A cross-country analysis of inflation
suggested as instruments dummies for prior colonial status. In particular, former colonies
of Spain and Portugal and of other countries aside from Britain and France had substantial
explanatory power for inflation. The results shown in table 12.3 apply when the instrument
lists include these two colony dummies—former colony of Spain or Portugal and former
colony of another country aside from Britain and France—but neither contemporaneous nor

11. The data are from Penn-World Tables version 6.1, as described in Summers and Heston (1991).
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Figure 12.13
Growth rate versus inflation (partial relation). The diagram shows the partial relation between the growth rate
of per capita GDP and the average rate of retail price inflation. The variable on the horizontal axis is for 1965–75,
1975–85, and 1985–95. See the description of figure 12.3 for the general procedure.

lagged inflation itself. The estimated coefficient, −0.019 (0.010), is negative and marginally
statistically significant. This coefficient implies that a one-standard-deviation increase in
the inflation rate (0.38 in 1985–95) lowers the growth rate on impact by 0.007. However,
the coefficient also implies that the moderate variations of inflation experienced by most
countries—say, changes on the order of 0.05 per year—affect growth rates by less than
0.001. Figure 12.13 shows graphically the partial relation between growth and inflation.
This diagram makes clear that the main force driving the estimated relationship is the
behavior at high rates of inflation—notably at rates above 20–30 percent per year.

The point estimate of the coefficient on the inflation rate is similar, −0.018 (0.005), if
contemporaneous inflation appears instead of the colony dummies in the instrument lists.
However, the estimated coefficient is close to zero, 0.003 (0.009), if the instrument lists
contain lagged inflation (for 1960–65, 1970–75, and 1980–85), rather that contemporaneous
inflation. This result is surprising because lagged inflation does have substantial explanatory
power for inflation.

Constant Terms The regressions include an overall constant term and separate time
dummies for the two later periods, 1975–85 and 1985–95. These two time dummies are
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significantly negative: −0.0078 (0.0026) and −0.0128 (0.0034), respectively. Hence, the
world’s rate of economic growth seems to have declined from 1965 to 1995.12

12.3.2 Tests of Stability of Coefficients

Columns 3 and 4 of table 12.3 show results when countries with per capita GDP below the
median for each period are separated from those above the median. The division was based
on values of per capita GDP in 1960, 1970, and 1980. Since the median was calculated
for all countries with GDP data, it turns out that far more than half of the countries in
the regression sample are in the portion with per capita GDP above the median. (Higher
income countries are more likely to have data on the other variables needed for inclusion
in the regression sample.)

A joint test for equality of all coefficients across the two income groups is rejected
with a very low p value. However, when considering variables individually, the results
show considerable stability across the low and high income groups. In particular, for
the p values shown in column 5 of table 12.3, the only values that are less than 0.05
are for the life-expectancy variable, the government consumption ratio, and the dummy
for the 1985–95 period. Notably, the low-income countries exhibit more sensitivity of
growth to life expectancy and government consumption than do the high-income coun-
tries. Also, the decline in the growth rate from 1965–75 to 1985–95 applies mainly to the
low-income group. Despite these exceptions, the most striking finding about the results in
columns 3–5 of the table is the extent to which similar coefficients are found for poor and rich
countries.

Column 6 of table 12.3 shows the coefficient estimates when the data are employed
at five-year intervals, instead of the ten-year periods used before. In the five-year case,
there are seven equations, where the dependent variables are the rates of growth of per
capita GDP from 1965–70 to 1995–2000. In most cases, the coefficients shown for the
five-year specification in column 6 are similar to those from the ten-year estimation, which
are in column 2. The main exceptions are for the terms-of-trade variable (which has a
smaller coefficient in the five-year sample), the openness variable (which is larger and now
statistically significant in the five-year setting), and the democracy variable (for which the
magnitudes of the two coefficients are smaller in the five-year case). The fits of the equations
in the five-year setting, as gauged by R-squared values, are notably poorer than those for
the ten-year setting. This pattern suggests that growth outcomes over intervals as short
as five years are influenced considerably by short-term and temporary forces (“business

12. The mean growth rate for each decade also depends on the mean values of the regressors. For the 70 countries
included in the regressions for all three ten-year periods, the average growth rates were 0.0255 for 1965–75, 0.0162
for 1975–85, and 0.0138 for 1985–95.
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Table 12.4
Stability of Coefficients over Time in Cross-Country Growth Regressions

Coefficients by Time Period

(1) (2) (3) (4) (5)
Explanatory Variable 1965–75 1975–85 1985–95 p valuea

Log of per capita GDP −0.0222 (0.0041) −0.0231 (0.0064) −0.0338 (0.0061) 0.25
Male upper-level schooling 0.0038 (0.0026) 0.0070 (0.0028) 0.0022 (0.0029) 0.13
1/(life expectancy at age 1) −5.48 (1.48) −3.74 (1.59) −7.94 (1.86) 0.13
Log of total fertility rate 0.0008 (0.0079) −0.0143 (0.0104) −0.0307 (0.0101) 0.052
Government consumption ratio −0.060 (0.035) −0.017 (0.035) −0.099 (0.059) 0.35
Rule of law 0.0262 (0.0087) 0.0191 (0.0117) 0.0079 (0.0173) 0.64
Democracy 0.129 (0.070) 0.111 (0.055) 0.120 (0.053) 0.98
Democracy squared −0.127 (0.058) −0.109 (0.051) −0.097 (0.048) 0.93
Openness ratio −0.0005 (0.0123) 0.0043 (0.0095) 0.0028 (0.0079) 0.95
Change in terms of trade 0.063 (0.094) 0.225 (0.110) −0.120 (0.133) 0.16
Investment ratio 0.117 (0.037) 0.068 (0.050) 0.095 (0.056) 0.73
Inflation rate 0.061 (0.031) −0.046 (0.032) −0.018 (0.014) 0.033
Constant 0.239 (0.056) 0.252 (0.062) 0.428 (0.068) 0.046
Number of observations 72 86 83
R-squared 0.55 0.48 0.57

Notes: Columns 2–4 provide estimates of the regression system from column 2 of table 12.3 when the coefficients
are allowed to vary across the three time periods, 1965–75, 1975–85, and 1985–95.
aThe p values refer to the hypothesis that the coefficients are the same for all three time periods.

cycles”), which were not considered in the theories of long-term economic growth. One
notable finding is the poor fit for the final five-year period, 1995–2000. In this case, the
R-squared value is only 0.04. One reason for this result is that several previous growth
champions in East Asia did poorly in 1995–2000 because of the Asian financial crisis.

Table 12.4 allows for an array of different coefficients over the three ten-year time periods.
(In the initial estimation, only the constant terms differed across the periods.) A joint test
for equality of all coefficients across the time periods would be rejected with a low p value.
However, when the variables are considered individually, the only p values of 0.05 or less
are for the inflation rate and the fertility rate—see column 5 of table 12.4. Overall, the
striking finding from table 12.4 is the extent of stability of the estimated coefficients over
time.

12.3.3 Additional Explanatory Variables

The empirical literature on the determinants of economic growth has become very large and
has suggested numerous additional explanatory variables. Table 12.5 shows the estimated
coefficients of some of these candidate variables when added one at a time to the basic
regression shown in column 2 of table 12.3.
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Table 12.5
Additional Explanatory Variables in Cross-Country Growth Regressions

(1) (2) (3) (4) (5)
Additional

New Explanatory Variable Coefficient New Variable Coefficient p Valuea

Log of population 0.0004 (0.0009)
Log of per capita GDP squared −0.0035 (0.0020)
Female upper-level schooling −0.0034 (0.0041)
Male primary schooling −0.0011 (0.0025) Female primary 0.0007 (0.0024) 0.90

schooling
Male college schoolingb 0.0105 (0.0093) Male secondary 0.0024 (0.0020) 0.075

schooling
Student test scoresc 0.121 (0.024)
Infant mortality rate −0.001 (0.057)
1/(life expectancy at birth) −0.97 (2.52)
1/(life expectancy at age 5) 0.90 (2.00)
Malaria incidence 0.0019 (0.0045)
Official corruption 0.0093 (0.0068)
Quality of bureaucracy 0.0076 (0.0088)
Civil libertiesd −0.045 (0.081) Civil liberties squared 0.003 (0.070) 0.36
Sub-Saharan Africa dummye −0.0080 (0.0051) Latin America dummy 0.0031 (0.0039) 0.011
East Asia dummy 0.0100 (0.0047) OECD dummy 0.0004 (0.0054)
Population share < 15 −0.070 (0.070) Population share > 64 −0.080 (0.110) 0.61
Government spending −0.057 (0.068) Government spending 0.064 (0.028) 0.069
on education on defense
Log of black-market premium −0.0122 (0.0058)
Private financial system credit −0.0041 (0.0065)
Financial system deposits −0.002 (0.011)
British legal structure dummy −0.0018 (0.0044) French legal structure 0.0047 (0.0045) 0.10

dummy
Absolute latitude 0.066 (0.027) Latitude squared −0.085 (0.044) 0.036
(degrees ÷ 100)
Landlocked dummy −0.0088 (0.0032)
Ethnic fractionalization −0.0080 (0.0059)
Linguistic fractionalization −0.0084 (0.0050)
Religious fractionalization −0.0088 (0.0058)
British colony dummy f −0.0064 (0.0043) French colony dummy 0.0003 (0.0053) 0.39
Spanish/Portuguese colony −0.0019 (0.0053) Other colony dummy −0.0055 (0.0075)
dummy

Notes: Each new explanatory variable or group of new variables is added to the system shown in column 2 of
table 12.3.
a p value is for the test of the hypothesis that the coefficients of the new explanatory variables are jointly zero.
bUpper-level male schooling is omitted. The p value for equality of college and secondary variables is 0.44.
cNumbers of observations for this sample are 39, 45, and 44.
d This system is only for the two periods 1975–85 and 1985–95.
eThe four regional dummy variables are entered together.
f The four colony dummies are entered together.
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The first variable, the log of population, is intended to see whether the scale of a country
matters for its growth outcomes. This variable is entered for 1960, 1970, and 1980, and ap-
pears also in the instrument lists. The estimated coefficient is insignificant, 0.0004 (0.0009).
Hence, there is no indication that country size matters for economic growth.

The square of the log of per capita GDP was entered to see whether the rate of convergence
depended on the level of per capita GDP. This new variable enters with the same timing
as the linear term in log of per capita GDP. If the coefficient on the square variable were
negative, the rate of convergence would be increasing with per capita GDP. The result is
a negative and statistically significant coefficient, −0.0035 (0.0020). This result conflicts
with the theory, in which increases in per capita GDP (moving toward the steady state) were
predicted to slow down the rate of convergence.

We considered a number of alternative measures of years of education, all of which enter
with the same timing as the male upper-level schooling variable. Female upper-level school-
ing has a negative but statistically insignificant coefficient, −0.0034 (0.0041). Schooling
at the primary level for males or females also has statistically insignificant coefficients:
−0.0011 (0.0025) and 0.0007 (0.0024), respectively. Hence, the main relation between
growth and years of schooling involves the male upper-level component, the variable in-
cluded in column 2 of table 12.3. A separation of this male variable into college and
high-school components generates two positive coefficients, 0.0105 (0.0093) and 0.0024
(0.0020), that are insignificantly different from each other (p value for equality is 0.46).

All these schooling variables refer to the quantity of education, as measured by years
of schooling, rather than the quality. A possible measure of quality is the outcome on
internationally comparable examinations. Of course, these test scores may reflect inputs
other than formal education, for example, the influences of family members. In any event,
the main problem here is that the data are available only for a subset of the countries and time
periods from the original regression sample. Because of the limited data, we constructed a
single cross section of test scores and used the same value for each country for the three time
periods considered for growth. (Thus the underlying test scores apply at different points in
time in each equation, and some of the data refer to scores that postdate the measured rates
of economic growth.) The estimated coefficient of the test-scores variable is positive and
highly significant, 0.121 (0.024). Another result in this specification is that the estimated
coefficient of male upper-level schooling becomes insignificant, 0.0013 (0.0015). Thus
the overall indication is that the quality of education is far more important for economic
outcomes than the years of schooling . Unfortunately, the limited amount of international
data on test scores makes it difficult to go further with this analysis.

Another set of results refers to alternative measures of health. Recall that we previously
included the reciprocal of life expectancy at age 1. (This measure has more explanatory
power than life expectancy at age 1 or the log of this life expectancy.) With this variable
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held fixed, the infant mortality rate (for 1960, 1970, and 1980) is insignificant, −0.001
(0.057). Also insignificant are the reciprocal of life expectancy at birth (−0.97, s.e. = 2.52)
or at age 5 (0.90, s.e. = 2.00). (These variables also enter for 1960, 1970, and 1980.) Gallup
and Sachs (1998) have generated numerous measures of the effects of specific diseases.
We did not find important relations with growth, once the basic life expectancy variable
was considered. As an example, the variable for the incidence of malaria in 1966 was
insignificant, 0.0019 (0.0045).

Alternatives to the rule-of-law indicator have also been proposed in the literature. With
our rule-of-law measure (and the other explanatory variables, including democracy) held
constant, an indicator from Political Risk Services of the extent of official corruption was
positive but insignificant, 0.0067 (0.0071).13 (Note that, for this indicator, a higher value
means a “better” system with less official corruption.) Also insignificant was an indica-
tor from Political Risk Services for the quality of the bureaucracy, 0.0054 (0.0091). The
corruption and bureaucratic quality indicators were entered with the same timing as the
rule-of-law variable, which we discussed before.

The democracy variable included in column 2 of table 12.3 is the Freedom House indicator
of electoral rights. Because of the high degree of correlation, it turns out to be impossible to
distinguish this measure empirically from the other Freedom House indicator, which refers
to civil liberties. The linear and squared term in civil liberties are insignificant if added to the
system (p value = 0.53).14 However, the linear and squared terms in electoral rights are also
jointly insignificant when the civil liberties variables are already included (p value = 0.12).

The discussion earlier in this chapter indicated how the group of slowest growing coun-
tries was dominated by sub-Saharan Africa, whereas the fastest growing group was dom-
inated by East Asia. A natural question is whether the low and high growth outcomes
by region continue to apply after holding constant the explanatory variables included in
the basic regression system shown in column 2 of table 12.3. That is, the question is
whether the included explanatory variables already measure the growth consequences of
being located in a particular region. The regional dummy variables shown in table 12.5
have estimated coefficients of −0.007 (0.005) for sub-Saharan Africa, 0.006 (0.004) for
Latin America, 0.009 (0.005) for East Asia, and −0.001 (0.006) for the OECD.15 Thus
only the East Asian dummy is significant at usual critical levels. The main observation
here is that most of the consequences of an economy being included in any of these

13. For a discussion of corruption, see Mauro (1995).

14. This system covers only the two ten-year periods for growth, 1975–85 and 1985–95, because independent
measures of electoral rights and civil liberties were unavailable before 1972. The timing for the civil liberties
variable is the same as that discussed before for the electoral rights indicator.

15. The OECD countries are those other than Turkey that have been members since the 1960s.
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regions is already held constant by the explanatory variables included in the basic regression
system.

A reasonable expectation is that productivity would depend on age structure—notably,
output per person would be expected to be higher if a larger fraction of the population is in
the prime age category of 15–65 and less in the categories of under 15 and over 65. However,
the two population share variables (for under 15 and over 65) are jointly insignificant if
added to the regression system—the p value for the two jointly is 0.78. (These age structure
variables are observed in 1960, 1970, and 1980.)

The basic system includes as a measure of government spending the standard definition
of government consumption less the outlays on defense and education. If these last two
components of government spending are entered separately (each as estimated ratios of real
spending to real GDP), the estimated coefficients are 0.009 (0.074) for education and 0.033
(0.028) for defense. The timing of these variables is the same as that discussed before for
the government consumption ratio. These two variables are jointly insignificant (p value
is 0.4).16

The black-market premium on the foreign exchange is sometimes entered into growth
equations as a proxy for a class of market distortions. However, this indicator can also
proxy more generally for macroeconomic instability, in particular, for instability that relates
to the balance of payments. The estimated coefficient on the log of one plus the black-
market premium is negative and marginally significant:−0.010 (0.006). (This variable enters
as averages for 1965–74, 1975–84, and 1985–92. The instrument lists include values for
1960–64, 1970–74, and 1980–84.) Hence, there is an indication that this distortion measure
has inverse predictive power for economic growth.

Other analyses, such as King and Levine (1993) and Greenwood and Jovanovic (1990),
have stressed the special role of the domestic financial system as an engine of growth.
We consider here two proxies for this financial development. One is the ratio of private
financial system credit to GDP and the other is a measure of financial system deposits
(the M3 aggregate less the transactions-related M1 aggregate, again as a ratio to GDP).
These variables are measured at the beginning of each ten-year period: 1965, 1975, and
1985. Of course, the development of the financial system is endogenous with respect to
general economic development. Thus these financial proxies would be expected to mat-
ter only to the extent that they take on values that are unusual for an economy’s level
of development—as measured empirically by per capita GDP and some of the other
explanatory variables. In any event, the estimated coefficients of the financial proxies are

16. Since the variable included in table 12.3 is based on standard government consumption less outlays on education
and defense, we can also test whether the standard government consumption measure is the appropriate one to
enter into the growth systems. This hypothesis is rejected with a p value of 0.022.
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insignificantly different from zero: −0.005 (0.007) for the credit measure and 0.000 (0.011)
for the deposit measure.

The line of research exemplified by La Porta et al. (1998) stresses the role of legal struc-
tures. In particular, this literature argues that the British common-law tradition is superior
as a basis for economic development to the French statute-law system. The data consist of
dummy variables for five types of legal traditions: British, French, Scandinavian, German,
and socialist. Dummy variables for British and French legal structure turn out to have little
explanatory power for growth: the coefficient on the British variable is 0.0027 (0.0045) and
that on the French variable is 0.0095 (0.0046). The two variables are jointly significant,
with a p value of 0.04—but, contrary to the basic hypothesis, the French system seems
to be somewhat more favorable for growth than the British one (or other systems). Note,
however, that these legal structure variables are entered into the basic system of table 12.3,
column 2, which already holds constant measures of the rule of law and democracy.

Geographical elements have been stressed in the research by Gallup and Sachs (1998).
One commonly used indicator is the absolute value of degrees latitude. The idea is that
places too close to the equator have bad climate from the standpoint of excessive heat and
humidity. Since too great a departure from the equator would signify excessive cold, we
also include the square of latitude in the system. The result is that the linear term (0.065,
s.e. = 0.028) and squared term (−0.101, s.e. = 0.047) are jointly marginally significant,
with a p value of 0.07. The point estimates imply that the optimal (absolute) latitude from
the standpoint of growth promotion is 32 degrees.

Another geographical factor, landlocked status, is likely to be important from the stand-
point of encouraging trade and other communication with the rest of the world. (Note, how-
ever, that international openness is already held constant in the basic regression system.) A
dummy for land-locked status turns out to be significantly negative: −0.0110 (0.0033).

Various measures of ethnic, linguistic, and religious fractionalization have been argued
to matter for political decision making and conflict and, hence, for economic growth. A
standard measure of fractionalization is one minus the Herfindahl index for membership
shares (in ethnic, linguistic, or religious groups). This measure gives the probability that two
randomly chosen persons in a country will come from different groups. The three measures
of fractionalization considered in table 12.5 each have negative but statistically insignificant
coefficients in the growth equations.17

Finally, colonial heritage has been argued to be important for growth. Sometimes these
influences are thought to derive from inherited legal or monetary institutions—therefore,
it is important to note the explanatory variables that are already included in column 2 of

17. The indices for ethnicity and language come from Alesina et al. (2003) and apply to the late 1990s. The value
for religion was computed from Barrett’s (1982) data on religious affiliation among ten major groups in 1970.
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table 12.3. In any event, dummies for four colonial categories (British, French, Spanish or
Portuguese, and other) are jointly insignificant for growth, with a p value of 0.39.18

12.4 Summary and Conclusions about Growth

Differences in per capita growth rates across countries are large and relate systematically to
a set of quantifiable explanatory variables. One element of this set is a net convergence term,
the positive effect on growth when the initial level of real per capita GDP is low relative to the
starting amount of human capital in the forms of educational attainment and life expectancy
and relative to explanatory variables that capture policies and national characteristics. There
is also evidence that countries with higher initial human capital converge faster to their
steady-state positions.

The empirical findings on conditional convergence are consistent with the neoclassical
growth model of chapters 1 and 2 and with the imbalance effect for physical and human
capital that was described in chapter 5. This convergence effect also appears in models of
technological diffusion, as described in chapter 8.

For given values of per capita GDP and human capital, growth depends positively on the
rule of law and international openness and negatively on the ratio of government consump-
tion to GDP and the rate of inflation. Growth increases with favorable movements in the
terms of trade and declines with increases in the fertility rate. The relation between growth
and the investment ratio is positive but weak when the variables already mentioned are held
constant and if the lagged investment ratio is used as an instrument.

12.5 Robustness

A central question for empirical economics in general and for economic growth in partic-
ular is which explanatory variables to include and which to exclude. The problem is that
variables are significantly correlated with growth depending on which other variables are
held constant. Specifically, which variables should be included in the growth regressions?
Although we have dealt thus far with panels of three ten-year periods or seven five-year
periods, we describe the problem and some possible solutions in the framework of a single
cross-sectional regression. The reason is that we follow closely the analysis of Sala-i-Martin
(1997a, 1997b) and Sala-i-Martin, Doppelhoffer, and Miller (2003).

18. The system in table 12.3, column 2, included in the instrument lists the dummies for Spanish or Portuguese
and other colonies and excluded measures of inflation. The present system adds the other two colony dummies
and also includes the lagged inflation rate.
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Our starting point is a cross-country regression of the form

γ = α + β1x1 + β2x2 + · · · + βn xn + ε (12.2)

where γ is the vector of rates of economic growth, and x1, . . . , xn are vectors of potential
explanatory variables. The question we consider is which variables x j should be included in
the regression. One problem is that economic theories are not precise enough to pinpoint the
exact determinants of growth. For example, throughout the book, we have explored a number
of growth theories, each of which suggests a different set of potential regressors. A second,
perhaps more important, problem is that the theories tend not be mutually inconsistent: it
is reasonable that physical capital accumulation matters for growth and, at the same time,
that human capital, technological progress, and government polices matter as well.

Notice that we cannot include all potential variables in one regression and “let the data
speak,” because the number of potential variables is larger than the number of countries in the
world, rendering the all-inclusive regression computationally impossible. The methodology
usually used by empirical growth analysts consists of simply “trying” the variables that are
thought to be potentially important determinants of growth.19 However, as soon as one starts
running regressions combining the various variables, one finds that x1 is significant when
the regression includes x2 and x3 but becomes insignificant when x4 is included. Since one
does not know a priori the “true” variables to include, one is left with the question, Which
variables are “truly” correlated with growth?

12.5.1 Levine and Renelt (1992)

An initial answer to this question was given by Levine and Renelt (1992). They applied a
modified version of Leamer’s (1983, 1985) extreme-bounds analysis to identify “robust”
empirical relations for economic growth. In brief, the extreme-bounds test works as follows.
Imagine that we have a pool of potential K variables and are interested in knowing whether
variable z is “robust.” We would estimate regressions of the form:

γ = α j + βz j z + βz j x j + ε (12.3)

where x j is a vector of variables taken from the pool of the K variables available.20 One needs
to estimate this regression for all possible x j combinations. For each model, j , one finds

19. The typical economic growth paper first presents a theory, followed by an empirical section in which it is
shown that the variable that captures the phenomenon highlighted by the theory is correlated with growth when
a number of other variables are held constant. The typical paper then proceeds to show that the central variable
remains significant even when changes are made in the set of explanatory variables.

20. Following Leamer (1983, 1985), Levine and Renelt also include some “fixed” variables that appear in all
regressions and are not tested. The researcher is supposed to know that these variables belong in the regression
for sure. Since we do not know whether there are any variables that belong in the true model for sure, we ignore
the fixed variables in our description of Levine and Renelt (1992).
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an estimate, β̂ z j , and the corresponding standard deviation, σ̂z j . The lower extreme bound
is defined to be the lowest value of β̂ z j − 2σ̂z j over all possible models j , and the upper
extreme bound is defined to be the largest value of β̂ z j + 2σ̂z j . The extreme-bounds test for
variable z says that if the lower extreme bound is negative and the upper extreme bound is
positive, then variable z is fragile. The test is then repeated for all variables in the data set.

Notice that, if β̂z j is not significantly different from zero for a single one of the millions
of possible regressions, the extreme-bounds test says that this variable is not robust. The
reason is that we say that β̂ z j is not “significant” when the interval [β̂ z j − 2σ̂z j , β̂ z j + 2σ̂z j ]
includes zero. Thus every regression carries a “veto power” (independent of how poorly the
regression actually fits) in the sense that, if the coefficient βz j for that particular regression
happens not to be significant, then variable z will be labeled nonrobust regardless of what
the other millions of regressions that include z as an explanatory variable say. The main
result in the Levine and Renelt (1992) analysis is that all variables are, not surprisingly,
found to be “fragile.”

12.5.2 Bayesian Averaging of Classical Estimates (BACE)

The fact that any single regression carries a veto power to render a variable nonrobust led
Sala-i-Martin (1997a, 1997b) to argue that this test was too strong to be meaningful.21 He
proposed to depart from this “extreme” test and, instead of assigning a label of “fragile” or
“not fragile” to a particular variable, he assigned a “level of confidence” to each variable. To
this end, he constructed weighted averages of all the estimates of β̂z j and its corresponding
standard deviations, σ̂z j , using weights proportional to the likelihoods of each of the models.
In other words, the β̂ z j that come from models that fit well tend to have larger weights in the
weighted average of OLS coefficients. To measure significance, Sala-i-Martin calculated a
likelihood-weighted sum of normal cumulative distribution functions. He finds that Levine
and Renelt’s pessimistic conclusion is not warranted and that a number of variables are sig-
nificantly correlated with growth. In order to maintain comparability, Sala-i-Martin (1997a,
1997b) followed Levine and Renelt in assuming that there is a set of “fixed regressors”
that belongs in all models, and he restricts all the regressions to have seven explanatory
variables. One of the shortcomings of this approach is that the statistical properties of these
weighted averages are not well understood, since he did not derive them from a statistical
theory.

Sala-i-Martin, Doppelhoffer, and Miller (2003) (SDM from now on) show that Sala-
i-Martin’s approach is a particular case of Bayesian model averaging, a method that we

21. For other criticisms of the extreme bounds test, see Durlauf and Quah (1999) and Temple (1999). Granger and
Uhlig (1990) have proposed what they call the reasonable extreme bounds, and Doppelhoffer (2000) applies this
bound to economic growth regressions.
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discuss next. A natural way to think about model uncertainty is to admit that we do not
know which model is “true” and, instead, attach probabilities to different possible models.
While intuitively appealing, this approach requires a departure from the classical framework
in which conditioning on a model is essential. This approach has recently come to be known
as Bayesian model averaging. The procedure accords with standard Bayesian reasoning:
the idea dates back at least to Jeffreys (1961) and was extended by Leamer (1978).

The fully Bayesian approach has been applied to various problems by a number of authors.
Examples include Raftery, Madigan, and Hoeting (1997) and York et al. (1995). A pure
Bayesian approach requires specification of the prior distributions of all of the relevant
parameters conditional on each possible model. Under ideal conditions, elicitation of prior
parameters is difficult and is indeed one of the major reasons for Bayesian approaches
remaining relatively unpopular. When the number of possible regressors is K , the number
of possible linear models is 2K , so with K large, fully specifying priors is infeasible. Thus
authors implementing the fully Bayesian approach have used priors that are essentially
arbitrary. This technique makes the ultimate estimates dependent on arbitrarily chosen
prior parameters in a manner that is difficult to interpret. In existing applications of this
approach, the impact of these prior parameters has been neither examined nor explained.

SDM (2003) use the Bayesian approach to averaging across models, while following
the classical spirit. They propose a model-averaging technique, which they call Bayesian
averaging of classical estimates, or BACE, to determine the “importance” of variables in
cross-country growth regressions. They show that the weighting method can be derived as a
limiting case of a standard Bayesian analysis as the prior information becomes “dominated”
by the data. BACE combines the averaging of estimates across models, which is a Bayesian
concept, with classical OLS estimation, which comes from the assumption of diffuse priors.

A full derivation of the BACE methodology is in SDM (2003). Here we report the main
findings. Let model M j be a statistical growth model with a particular set of explanatory
variables. Bayes’s rule and basic probability theory suggest that the posterior distribution
of the parameters is the weighted average of all the possible conditional posterior densities
with the weights given by the posterior probabilities of each of the possible models:

g(β | y) =
2K∑
j=1

P(M j | y) · g(β | y, M j ) (12.4)

where g(β | y) is the posterior distribution of β (conditional on the data set), g(β | y, M j )

is the distribution of β conditional on the data and on model M j , and P(M j | y) is the
posterior probability of model j conditional on the data. If we have K potential explanatory
variables, there are 2K possible models. If the researcher has diffuse priors (that is, if we
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are incapable or unwilling to specify priors) and we assume that the priors get dominated
by the data,22 then the posterior probability of the j th model can be written as

P(M j | y) = P(M j ) · ω( j) (12.5)

where

ω( j) = T −k j /2 · SSE−T/2
j∑2K

i=1 P(Mi )T −ki /2 · SSE−T/2
i

SSE j is the sum of the squares of residuals for model j , T is the number of observations,
and k j is the size (that is, the number of regressors) of model j . In other words, the weights
assigned to each model in equation (12.4) are the product of the prior we have for model
j , P(M j ), times a measure of the goodness of fit for model j relative to the goodness of
fit of all possible models. Notice that the weights in equation (12.5) are corrected by the
degrees of freedom (larger models get penalized) in the spirit of the Schwarz (1978) model
selection criterion.

The only remaining issue is to decide what is the prior probability that we attach to
model j . In other words, before we see the data, what probability do we attach to each of
the possible 2K models.

One common approach to this problem in the statistical literature has been to think of
each model as having an equal probability. This is one way to confess ignorance: before
we analyze the data, we don’t know which model is more likely, so we assume that they
are all equally likely. While this approach is sensible for some applications, in our case it
is not for at least two reasons. First, since we have a large number of potential regressors,
this prior has the odd and troubling implication that the expected size (the expected number
of regressors) is large. In particular, since we are going to use a data set with 67 variables,
assuming that all models are equally likely means that we expect the number of explanatory
variables of the cross-country regression to be 33.5 on average. The second undesirable
implication is that the expected size of the model depends on the data set used. If we use a
data set with 32 variables and we assume that all models are equally likely, we implicitly
assume that the expected size of the model is 16. If, instead, we had a data set with 100
potential regressors, we would be assuming that the expected size is 50. Since we do not
believe that the size of the regression that “explains” growth should depend on the data set
that we happen to use, we need to modify our priors about each of the models.

SDM (2003) specify the model prior probabilities by assuming that each variable has
a prior probability k̄/K of entering each particular regression, where k̄ is the prior mean

22. See SDM (2003).
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model size and K is the total number of potential regressors.23 The implied prior P(M j )

for a model of size k j is, therefore,

P(M j ) =
(

k̄

K

)k j (
1 − k̄

K

)K−k j

(12.6)

Notice that the “equal probability for each possible model” is the special case in which
k̄ = K/2. One of the beauties of this approach is that the only parameter that the researcher
needs to specify ex ante is the “expected models size,” k̄. And since we only need to specify
one parameter, it is very easy to perform robustness tests by changing this single prior
parameter.

Equations (12.4), (12.5), and (12.6) describe the posterior distribution of β. Once this
distribution is determined, we can find its mean, its variance, and other moments. For
example, taking expectations with respect to β across equation (12.4), we have

E(β | y) =
2K∑
j=1

P(Mi | y) · β̂ j (12.7)

where β̂ j = E(β | y, M j ) is the OLS estimate of β with the regressors in model j . In
Bayesian terms, β̂ j is the posterior mean conditional on model j . Note that any variable
excluded from a particular model has a slope coefficient with degenerate posterior distri-
bution at zero. In words, the expected value of β is the weighted average of OLS estimates,
where the weights are proportional to a measure of goodness of fit and the prior model
size.24

The posterior variance of β is given by

var(β | y) =
2K∑
j=1

P(Mi | y) · var(β | y, M j ) +
2K∑
j=1

P(Mi | y) ·

β̂ j −

2K∑
j=1

P(Mi | y) · β̂ j




2

(12.8)

23. In most applications the prior probability of including a particular variable is not, for most researchers,
independent of the probability of including any other variable. For example, in a growth regression if a variable
proxying political instability is included, such as a count of revolutions, many researchers would think it less
likely that another measure, such as the number of assassinations, would be included as well. While this sort of
interdependence can be readily incorporated into the BACE framework, SDM (2003) do not pursue this avenue.

24. Note that the weighted average of OLS coefficients, where the weights are proportial to a measure of goodness
of fit, is similar to the one postulated by Sala-i-Martin (1997a, 1997b). This is exactly true when all the regressions
have the same size.
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Inspection of equation (12.8) demonstrates that the posterior variance incorporates both the
estimated variances in individual models and the variance in estimates of the β’s across
different models.

While posterior means and variances are of interest, there are other ways to summarize
the large amount of information supplied by the full posterior distribution. In particular, an
interesting statistic is the posterior probability that a particular variable is in the regression
(i.e., has a nonzero coefficient). SDM (2003) call this the posterior inclusion probability
for the variable—it is calculated as the sum of the posterior model probabilities for all
the models that include the variable. The posterior mean and variance conditional on the
inclusion of the variable can also be estimated. The true (unconditional) posterior mean is
computed according to equation (12.7), while the posterior standard deviation is the square
root of the variance formula in equation (12.8). The true posterior mean is a weighted average
of the OLS estimates for all regressions, including regressions in which the variable does
not appear and thus has a coefficient of zero. Hence, the conditional posterior mean can be
computed by dividing the unconditional mean by the posterior inclusion probability.25

12.5.3 Main Results in Sala-i-Martin, Doppelhofer, and Miller (2003)

SDM (2003) apply BACE to a set of 67 variables. The variables were selected using the
following criteria. (1) Use variables that are available as closely as possible to the beginning
of the sample, 1960. This restriction means that some interesting variables in the literature
(such as the measures of the rule of law and corruption considered earlier) are excluded
from the analysis. (2) Use variables that allow for a “balanced” data set. By balanced, we
mean an equal number of observations for all regressions. With these restrictions, the total
size of the data set becomes 68 variables (including the dependent variable, the growth rate
of GDP per capita between 1960 and 1996) for 88 countries.

Column 1 of table 12.6 reports the fraction of regressions that are significant at the 95 per-
cent level for each explanatory variable, when we combine each variable with all possible
combinations of the remaining 67 variables. Notice that all variables are insignificant for
a subset of the models. Hence, the Levine and Renelt (1992) extreme-bounds test would
label all of them as nonrobust.

Figure 12.14 shows the posterior densities (approximated by histograms) of the coefficient
estimates for four selected variables (the investment price, the initial level of GDP per capita,
primary schooling, and the number of years an economy has been “open”).26 Note that, in
figure 12.14, each distribution consists of two parts: first, a continuous part that is the

25. Similarly, the unconditional variance can be computed from the conditional variance as follows:

σ 2
uncond = [σ 2

cond + β2
cond] · (Posterior inclusion probablity) − β2

uncond

26. See SDM (2003) for results on the remaining variables.



Table 12.6
Baseline Estimation for All 67 Variables

Fraction of Posterior Posterior Mean Posterior s.d. Posterior Posterior Sign
Regressions Inclusion Conditional on Conditional on Unconditional Unconditional Certainty
with |t stat| > 2 Probability Inclusion Inclusion Mean s.d. Probability

Rank Variable (1) (2) (3) (4) (3)′ (4)′ (5)

1 East asian 0.99 0.823 0.021805 0.006118 0.017935 0.010010 0.999
2 Primary schooling 1960 0.96 0.796 0.026852 0.007977 0.021386 0.012945 0.999
3 Investment price 0.99 0.774 −0.000084 0.000025 −0.000065 0.000041 0.999
4 GDP 1960 (log) 0.30 0.685 −0.008538 0.002888 −0.005845 0.004631 0.999
5 Fraction of tropical area (or people) 0.59 0.563 −0.014757 0.004227 −0.008312 0.007977 0.997
6 Population density in coastal areas 1960s 0.85 0.428 0.000009 0.000003 0.000004 0.000005 0.996
7 Malaria prevalence in 1960s 0.84 0.252 −0.015702 0.006177 −0.003956 0.007489 0.990
8 Life expectancy in 1960 0.79 0.209 0.000808 0.000354 0.000168 0.000366 0.986
9 Fraction Confucian 0.97 0.206 0.054429 0.022426 0.011239 0.024275 0.988
10 African dummy 0.90 0.154 −0.014706 0.006866 −0.002260 0.005948 0.980
11 Latin American dummy 0.30 0.149 −0.012758 0.005834 −0.001905 0.005075 0.969
12 Fraction GDP in mining 0.07 0.124 0.038823 0.019255 0.004818 0.014487 0.978
13 Spanish colony 0.24 0.123 −0.010720 0.005041 −0.001320 0.003942 0.972
14 Years open 0.98 0.119 0.012209 0.006287 0.001457 0.004514 0.977
15 Fraction Muslim 0.11 0.114 0.012629 0.006257 0.001446 0.004545 0.973
16 Fraction Buddhist 0.90 0.108 0.021667 0.010722 0.002348 0.007604 0.974
17 Ethnolinguistic fractionalization 0.52 0.105 −0.011281 0.005835 −0.001181 0.003936 0.974
18 Government consumption share 1960s 0.77 0.104 −0.044171 0.025383 −0.004586 0.015761 0.975

19 Population density 1960 0.01 0.086 0.000013 0.000007 0.000001 0.000004 0.965
20 Real exchange rate distortions 0.92 0.082 −0.000079 0.000043 −0.000006 0.000025 0.966
21 Fraction speaking foreign language 0.43 0.080 0.007006 0.003960 0.000559 0.002204 0.962
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22 (Imports + exports)/GDP 0.67 0.076 0.008858 0.005210 0.000674 0.002754 0.949
23 Political rights 0.35 0.066 −0.001847 0.001202 −0.000121 0.000551 0.939
24 Government share of GDP 0.58 0.063 −0.034874 0.029379 −0.002205 0.011253 0.935
25 Higher education in 1960 0.10 0.061 −0.069693 0.041833 −0.004282 0.019688 0.946
26 Fraction population in tropics 0.85 0.058 −0.010741 0.006754 −0.000622 0.002990 0.940
27 Primary exports in 1970 0.75 0.053 −0.011343 0.007520 −0.000604 0.003082 0.926
28 Public investment share 0.00 0.048 −0.061540 0.042950 −0.002964 0.016201 0.922
29 Fraction protestants 0.29 0.046 −0.011872 0.009288 −0.000544 0.003180 0.909
30 Fraction Hindus 0.07 0.045 0.017558 0.012575 0.000790 0.004512 0.915
31 Fraction population less than 15 0.24 0.041 0.044962 0.041100 0.001850 0.012216 0.871
32 Air distance to big cities 0.18 0.039 −0.000001 0.000001 0.000000 0.000000 0.888
33 Gov C share deflated with GDP prices 0.05 0.036 −0.033647 0.027365 −0.001195 0.008087 0.893
34 Absolute latitude 0.37 0.033 0.000136 0.000233 0.000004 0.000049 0.737
35 Fraction Catholic 0.16 0.033 −0.008415 0.008478 −0.000278 0.002155 0.837
36 Fertility rates in 1960s 0.46 0.031 −0.007525 0.010113 −0.000232 0.002199 0.767
37 European dummy 0.19 0.030 −0.002278 0.010487 −0.000068 0.001858 0.544
38 Outward orientation 0.01 0.030 −0.003296 0.002727 −0.000098 0.000730 0.886
39 Colony dummy 0.44 0.029 −0.005010 0.004721 −0.000147 0.001169 0.858
40 Civil liberties 0.15 0.029 −0.007192 0.007122 −0.000207 0.001705 0.846
41 Revolutions and coups 0.07 0.029 −0.007065 0.006089 −0.000202 0.001565 0.877
42 British colony dummy 0.09 0.027 0.003654 0.003626 0.000097 0.000835 0.844
43 Hydrocarbon deposits in 1993 0.01 0.025 0.000307 0.000418 0.000008 0.000081 0.773
44 Fraction population over 65 0.20 0.022 0.019382 0.119469 0.000435 0.018127 0.566
45 Defense spending share 0.26 0.021 0.045336 0.076813 0.000967 0.012992 0.737
46 Population in 1960 0.07 0.021 0.000000 0.000000 0.000000 0.000000 0.806

Table continued
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Table 12.6
(Continued )

Fraction of Posterior Posterior Mean Posterior s.d. Posterior Posterior Sign
Regressions Inclusion Conditional on Conditional on Unconditional Unconditional Certainty
with |t stat| > 2 Probability Inclusion Inclusion Mean s.d. Probability

Rank Variable (1) (2) (3) (4) (3)′ (4)′ (5)

47 Terms of trade growth in 1960s 0.00 0.021 0.032627 0.046650 0.000693 0.008265 0.752
48 Public educ. spend. /GDP in 1960s 0.11 0.021 0.129517 0.172847 0.002698 0.031056 0.777
49 Landlocked country dummy 0.04 0.021 −0.002080 0.004206 −0.000043 0.000671 0.701
50 Religion measure 0.18 0.020 −0.004737 0.007232 −0.000097 0.001233 0.751
51 Size of economy 0.18 0.020 −0.000520 0.001443 −0.000011 0.000218 0.661
52 Socialist dummy 0.00 0.020 0.003983 0.004966 0.000081 0.000903 0.788
53 English-speaking population 0.07 0.020 −0.003669 0.007137 −0.000073 0.001132 0.686
54 Average inflation 1960–90 0.01 0.020 −0.000073 0.000097 −0.000001 0.000017 0.784
55 Oil-producing country dummy 0.00 0.019 0.004845 0.007088 0.000094 0.001193 0.751
56 Population growth rate 1960–90 0.21 0.019 0.020837 0.307794 0.000401 0.042787 0.533
57 Timing of independence 0.11 0.019 0.001143 0.002051 0.000022 0.000324 0.716
58 Fraction land area near navigable water 0.35 0.019 −0.002598 0.005864 −0.000048 0.000875 0.657
59 Square of inflation 1960–90 0.00 0.018 −0.000001 0.000001 0.000000 0.000000 0.736
60 Fraction spent in war 1960–90 0.00 0.016 −0.001415 0.009226 −0.000022 0.001176 0.555
61 Land area 0.01 0.016 0.000000 0.000000 0.000000 0.000000 0.577
62 Tropical climate zone 0.16 0.016 −0.002069 0.006593 −0.000032 0.000864 0.616
63 Terms of trade ranking 0.23 0.016 −0.003730 0.009625 −0.000058 0.001288 0.647
64 Capitalism 0.06 0.015 −0.000231 0.001080 −0.000003 0.000136 0.589
65 Fraction Orthodox 0.00 0.015 0.005689 0.013576 0.000086 0.001804 0.660
66 War participation 1960–90 0.02 0.015 −0.000734 0.002983 −0.000011 0.000377 0.593
67 Interior density 0.00 0.015 −0.000001 0.000016 0.000000 0.000002 0.532
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Figure 12.14
Posterior densities. This figure shows the posterior densities (approximated by histograms) of the coefficient estimates for four selected variables.
Panels (a), (b), (c), and (d) refer to primary schooling, the investment price, the initial level of GDP per capita GDP, and the number of years an economy
has been “open.” Each distribution consists of two parts: first, a continuous part that is the posterior density conditional on inclusion in the model and,
second, a discrete mass at zero representing the probability that the variable does not belong in the model (one minus the posterior inclusion probability).
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posterior density conditional on inclusion in the model, and second, a discrete mass at zero
representing the probability that the variable does not belong in the model (one minus the
posterior inclusion probability).

Baseline Estimation This section presents the baseline estimation results with a prior
expected model size k̄ = 7. The choice of the baseline model size is motivated by the fact
that most empirical growth studies include a moderate number of explanatory variables.
The posterior model size for the baseline estimation is 7.46, which is very close to the prior
model size. In the next section, we check the robustness of our results to changes in the
prior mean model size. The results are based on approximately 89 million randomly drawn
regressions.27

Table 12.6 shows the results: column 2 reports the posterior inclusion probability of a
variable in the growth regression. Variables are sorted in descending order of this posterior
probability. The posterior inclusion probability is the sum of the posterior probabilities of
all of the regressions that include that variable. The goodness-of-fit measure is adjusted to
penalize highly parameterized models in the fashion of the Schwarz model selection crite-
rion. Thus variables with high inclusion probabilities are variables that have high marginal
contribution to the goodness-of-fit of the regression model.

We can divide the variables according to whether seeing the data causes us to increase or
decrease our inclusion probability relative to the prior probability. Since our expected model
size is 7, the prior inclusion probability for each variable is 7/67 = 0.104. There are 18 vari-
ables for which the posterior inclusion probability increases relative to the prior probability
after we have estimated all the regressions (these variables are shaded in table 12.6). For
these variables, our belief that they belong in the regression is strengthened once we see
the data. We could label these variables as “strong” or “robust.” The remaining 49 variables
have little or no support for inclusion: seeing the data further reduces our already modest
initial assessment of their inclusion probability.

Columns 3 and 4 show the posterior mean and standard deviation of the distributions,
conditional on the variable being included in the model. That is, these are the means and
standard deviation of the “hump-shaped” part of the distribution shown in figure 12.14.
Columns 3′ and 4′ report the corresponding unconditional means and variances.28

27. The total number of possible regression models equals 267, which is approximately equal to 1.48 × 1020

models. However, convergence of the estimates is attained relatively quickly; after 33 million draws the maximum
change of coefficient estimates normalized by the standard deviation of the regressors relative to the dependent
variable is smaller than 10−3 per 10,000, and after 89 million draws, the maximum change is smaller than 10−6.
See SDM (2003) for details on sampling and other technical issues.

28. Remember that the unconditional mean is equal to the conditional mean times the posterior probability of
inclusion and that the relation between the unconditional and conditional variances is given by the formula in
note 25.
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From the posterior density, we can also estimate the posterior probability, conditional on
inclusion, that a coefficient has the same sign as its posterior mean. This “sign certainty prob-
ability,” reported in column 5 is another measure of the significance of the variables. This
is the posterior probability on the same side of zero as the posterior mean of the coefficient,
conditional on the variable’s inclusion. As noted earlier, for each individual regression, the
posterior density is equal to the classical sampling distribution of the coefficient. In clas-
sical terms, a coefficient would be 5 percent significant in a two-sided test if 97.5 percent
of the probability in the sampling distribution were on the same side of zero as the coeffi-
cient estimate. So if, for example, it just happened that a coefficient were exactly 5 percent
significant in every single regression, its sign certainty probability would be 97.5 percent.
Applying a 0.975 cutoff to this quantity identifies a set of 13 variables, all of which are
also in the group of 18 “strong” variables for which the posterior inclusion probability is
larger than the prior inclusion probability. The remaining five have very large sign certainty
probabilities (between 0.970 and 0.975). Note that there is in principle no reason why a
variable could not have a very high posterior inclusion probability and still have a low sign
certainty probability. It just happens that in our data set there are no such variables.29

Another interesting statistic is the posterior mean model size. For the baseline estimation,
the prior model size was seven, and the posterior mean model size is 7.46. This number
is, of course, sensitive to the specification of the prior mean model size, as we will discuss
subsequently.

We are now ready to analyze the variables that are “strongly” related to growth.

Variables Strongly or Robustly Related to Growth Not surprisingly, the top variable
is the dummy for East Asian countries, which is positively related with economic growth.
This finding, of course, reflects the exceptional growth performance of East Asian countries
between 1960 and the mid-1990s.30 The sign certainty probability in column 5 shows that
the probability mass of the density to the left of zero equals to 0.9992. Notice that the
fraction of regressions for which the East Asian dummy has a t statistic greater than 2 in
absolute value is 99 percent.

The second variable is a measure of human capital: the primary schooling enrollment
rate in 1960. This variable is positively related to growth and the inclusion probability is
0.80. The posterior distribution of the coefficient estimates is shown in the first panel of
figure 12.14. Since the inclusion probability is relatively high, the mass at zero (which shows

29. This result would occur if, for example, a variable contributed a great deal to the fit of the model but switched
signs in the presence of another important variable. Notice that the BACE weights in equation (12.5) penalize
the inclusion of additional variables that are strongly correlated with other included regressors and do not explain
more of the variation of the dependent variable.

30. Notice that the dummy is present despite the robust positive relationship between the fraction of population
Confucian (which is ranked ninth in the table).
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one minus the inclusion probability) is relatively small. Conditional on being included in
the model, a 10 percentage point increase of the primary school enrollment rate is associated
with a 0.27 percentage point increase of the growth rate. This can be contrasted with the
average sample growth rate of 1.82 percent between 1960 and 1996. The sign certainty
probability for this variable is also 0.999, and the fraction of regressions with a t statistic
larger than 2 is 96 percent.

The third variable is the average price of investment goods between 1960 and 1964.
Its inclusion probability is 0.77. This variable is depicted graphically in the second panel
of figure 12.14. The posterior mean coefficient is very precisely estimated to be negative,
which indicates that a relative high price of investment goods at the beginning of the
sample is strongly and negatively related to subsequent income growth.31 The sign certainty
probability in column 5 shows that the probability mass of the density to the left of zero
equals 0.99. This result can also be seen in figure 12.14, where almost all of the continuous
density lies below zero.

The next variable is the initial level of per capita GDP, a measure of conditional conver-
gence. The inclusion probability is 0.69. The third panel in figure 12.14 shows the posterior
distribution of the coefficient estimates for initial income. Conditional on inclusion, the pos-
terior mean coefficient is −0.009 (with a standard deviation of 0.003). In other words, the
coefficient associated with conditional convergence is very precisely estimated, although
the mean coefficient is somewhat smaller than the convergence coefficient predicted by
the neoclassical models described in chapters 1 and 2 or from the technological diffusion
models described in chapter 8. The sign certainty probability in column 5 is 0.999. The
fraction of regressions in which the coefficient for initial income has a t statistic greater
than 2 in absolute value is only 30 percent, so that an extreme-bounds test very easily labels
the variable as not robust.

The next variables reflect the poor economic performance of tropical countries: the pro-
portion of a country’s area in the tropics and the index of malaria prevalence both have
a negative relation with growth. Another geographical variable that performs well is the
density of the population in coastal areas, which has a positive relationship with growth,
suggesting that areas that are densely populated and are close to the sea have experienced
higher growth rates.

Life expectancy in 1960, which reflects nutrition, health care, and literacy rates, is posi-
tively related to growth: countries with high life expectancy in 1960 tended to grow faster
over the following four decades. The inclusion probability for this variable is 0.21.

31. Once the relative price of investment goods is included among the pool of explanatory variables, the share of
investment in GDP in 1961 becomes insignificant and has the “wrong sign,” while the other results are unaffected.
The estimation results including investment share are available from the authors upon request.
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Dummies for sub-Saharan Africa and Latin America are negatively related to income
growth. The posterior means conditional on inclusion are both negative, implying that
Latin American and sub-Saharan African countries had income per capita growth rates be-
tween 1960 and 1996 that were 1.47 and 1.28 percentage points respectively below the level
that would be predicted by the countries’ other characteristics. For comparison, the sample
average growth rate is 1.82. The African dummy is significant in 90 percent of the regres-
sions, and the sign certainty probability is 98 percent. Although the Latin American dummy
is only significant in 33 percent of the regressions, its sign certainty is almost as high as the
African: 97 percent.

The fraction of GDP in mining has a positive relationship with growth and inclusion
probability of 0.12. This variable captures the success of countries with a large endowment
of natural resources. Many economists expect that the large rents associated with more
political instability or rent-seeking would lower economic growth. However, our study
shows that economies with a larger mining sector tend to perform better.

Former Spanish colonies tend to grow less, whereas the number of years an economy has
been open has a positive sign. The fractions of the population Muslim and Buddhist each
have a positive association with growth. The index of ethnolinguistic fractionalization is
negatively related to growth and it also appears to be robust.

Finally, the share of government consumption in GDP is robustly estimated, and its sign
is negative. Perhaps the real surprise is the negative coefficient of the public investment
share. Table 12.6 shows that this variable is not robust when the prior model size is k̄ = 7.
However, we will see later that this is one of the variables that become important in larger
models, and the sign remains negative.

Variables Marginally Related to Growth There are three variables that have posterior
probabilities somewhat lower than their prior probabilities but nonetheless are fairly pre-
cisely estimated if they are included in the growth regression (that is, their sign certainty
probability is larger than 95 percent). These variables are the overall density in 1960 (which
is positively related to growth), real exchange rate distortions (negative), and the fraction
of population speaking a foreign language (positive).

Variables Not Robustly Related to Growth The remaining 46 variables show little evi-
dence of robust partial correlation with growth. They neither contribute importantly to the
goodness-of-fit of growth regressions, as measured by their posterior inclusion probabil-
ities, nor have estimates that are robust across different sets of conditioning variables. It
is interesting to notice that some political variables such as the number of revolutions and
coups or the index of political rights are not robustly related to economic growth. Similarly,
the degree of capitalism measure or a socialism dummy have no strong relationship with
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growth.32 Some macroeconomic variables, such as the inflation rate, also do not appear to
be strongly related to growth. Other surprisingly weak variables are the spending in pub-
lic education, measures of higher education, geographical measures such as latitude, and
various proxies for “scale effects,” such as the total population, aggregate GDP, or the total
area of a country.

12.5.4 Robustness Analysis

Until now we have concentrated on results derived for a prior model size k̄ = 7. As discussed
earlier, while we feel that this is a reasonable expected model size, it is in some sense
arbitrary. We need to explore the effects of the prior on our conclusions. Table 12.7 performs
precisely this task, reporting the posterior inclusion probabilities and conditional posterior
means, respectively, for k̄ equal to 5, 9, 11, 16, and 22. Note that each k̄ has a corresponding
value of the prior probability of inclusion, which is reported in the first row of the table.
Thus, to see whether a variable improves its probability of inclusion relative to the prior,
we need to compare the posterior probability to the corresponding prior probability. The
variables that are important in the baseline case of k̄ = 7 and are not important for other
prior model sizes are shaded in table 12.7. Variables that are not important for k̄ = 7 but
become important with other sizes are both shaded and their cells are bordered.

“Strong” Variables That Become “Weak” Note that most of the strongest variables
show little sensitivity to the choice of prior model size, either in terms of their inclusion
probabilities or their coefficient estimates. Some of the important variables seem to improve
substantially with the prior model size. For example, for the fraction of GDP in mining, the
posterior inclusion probability rises from 7 percent with k̄ = 5 to 66 percent with k̄ = 22.
This result suggests that mining is a variable that requires other conditioning variables
in order to display its full importance. The fraction of Confucians and the sub-Saharan
Africa dummy also do better with more conditioning variables and have stable coefficient
estimates.

Although most of the strong variables remain strong, five of them tend to lose power as we
increase the prior model size. That is, for larger models, the posterior probability declines to
levels below the prior size. These variables are the index of malaria prevalence, the former
Spanish colony, the number of years an economy has been open, the index of ethnolinguistic
fractionalization, and the government consumption share. These findings suggest that these
variables could be acting as catchalls for various other effects. For example, the openness
index captures various aspects of the openness of a country to trade (tariff and nontariff
barriers, black market premium, degree of socialism, and monopolization of exports by the

32. We should point out that neither the former Soviet Union nor most of the rest of socialist East European
countries are included in the data set, mainly because of missing data.
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Table 12.7
Posterior Inclusion Probabilities with Different Prior Model Sizes

Rank Variable kbar5 kbar7 kbar9 kbar11 kbar16 kbar22 kbar28

Prior inclusion probability 0.075 0.104 0.134 0.164 0.239 0.328 0.418
1 East Asian 0.891 0.823 0.757 0.711 0.585 0.481 0.455
2 Primary schooling 1960 0.709 0.796 0.826 0.862 0.890 0.924 0.950
3 Investment price 0.635 0.774 0.840 0.891 0.936 0.968 0.985
4 GDP 1960 (log) 0.526 0.685 0.788 0.843 0.920 0.960 0.978
5 Fraction of tropical area 0.536 0.563 0.548 0.542 0.462 0.399 0.388

(or people)
6 Population density coastal 1960s 0.350 0.428 0.463 0.473 0.433 0.389 0.352
7 Malaria prevalence in 1960s 0.339 0.252 0.203 0.176 0.145 0.131 0.138
8 Life expectancy in 1960 0.176 0.209 0.262 0.278 0.368 0.440 0.467
9 Fraction confucian 0.140 0.206 0.272 0.333 0.501 0.671 0.777
10 African dummy 0.095 0.154 0.223 0.272 0.406 0.519 0.565
11 Latin American dummy 0.101 0.149 0.205 0.240 0.340 0.413 0.429
12 Fraction GDP in mining 0.072 0.124 0.209 0.275 0.478 0.659 0.761
13 Spanish colony 0.130 0.123 0.119 0.116 0.124 0.148 0.182
14 Years open 0.090 0.119 0.124 0.132 0.145 0.155 0.177
15 Fraction Muslim 0.078 0.114 0.150 0.178 0.267 0.366 0.450
16 Fraction Buddhist 0.073 0.108 0.152 0.190 0.320 0.465 0.563
17 Ethnolinguistic fractionalization 0.080 0.105 0.131 0.140 0.155 0.160 0.184
18 Government consumption 0.090 0.104 0.135 0.147 0.213 0.262 0.297

share 1960s

19 Population density 1960 0.043 0.086 0.137 0.175 0.257 0.295 0.316
20 Real exchange rate distortions 0.059 0.082 0.117 0.134 0.205 0.263 0.319
21 Fraction speaking foreign 0.052 0.080 0.110 0.149 0.247 0.374 0.478

language

22 (Imports + exports)/GDP 0.063 0.076 0.085 0.099 0.131 0.181 0.240
23 Political rights 0.042 0.066 0.082 0.095 0.114 0.130 0.154
24 Government share of GDP 0.044 0.063 0.087 0.112 0.186 0.252 0.291
25 Higher education in 1960 0.059 0.061 0.066 0.070 0.079 0.103 0.131
26 Fraction population in tropics 0.047 0.058 0.061 0.074 0.099 0.132 0.157
27 Primary exports in 1970 0.047 0.053 0.065 0.072 0.104 0.137 0.162
28 Public investment share 0.023 0.048 0.096 0.151 0.321 0.525 0.669
29 Fraction Protestants 0.035 0.046 0.055 0.061 0.083 0.120 0.156
30 Fraction Hindus 0.028 0.045 0.059 0.077 0.126 0.179 0.227
31 Fraction population less than 15 0.035 0.041 0.045 0.050 0.067 0.093 0.123
32 Air distance to big cities 0.024 0.039 0.054 0.072 0.097 0.115 0.141
33 Gov C share deflated with 0.021 0.036 0.056 0.075 0.137 0.225 0.310

GDP price
34 Absolute latitude 0.029 0.033 0.040 0.042 0.059 0.086 0.115
35 Fraction Catholic 0.019 0.033 0.042 0.056 0.104 0.163 0.223
36 Fertility rates in 1960s 0.020 0.031 0.043 0.063 0.108 0.170 0.232
37 European dummy 0.020 0.030 0.043 0.049 0.094 0.148 0.201
38 Outward orientation 0.019 0.030 0.043 0.054 0.085 0.134 0.178
39 Colony dummy 0.022 0.029 0.039 0.049 0.075 0.105 0.146
40 Civil liberties 0.021 0.029 0.037 0.044 0.069 0.106 0.155
41 Revolutions and coups 0.019 0.029 0.038 0.056 0.106 0.188 0.282
42 British colony dummy 0.022 0.027 0.034 0.041 0.057 0.085 0.119

Table continued
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Table 12.7
(Continued )

Rank Variable kbar5 kbar7 kbar9 kbar11 kbar16 kbar22 kbar28

43 Hydrocarbon deposits in 1993 0.015 0.025 0.035 0.048 0.089 0.143 0.196
44 Fraction population over 65 0.020 0.022 0.029 0.038 0.069 0.119 0.169
45 Defense spending share 0.016 0.021 0.027 0.033 0.049 0.073 0.102
46 Population in 1960 0.016 0.021 0.040 0.041 0.063 0.092 0.118
47 Terms of trade growth in 1960s 0.015 0.021 0.026 0.033 0.051 0.068 0.104
48 Public education spending/GDP 0.014 0.021 0.027 0.037 0.063 0.102 0.141

in 1960s
49 Landlocked country dummy 0.012 0.021 0.029 0.033 0.055 0.080 0.109
50 Religion measure 0.012 0.020 0.025 0.037 0.048 0.068 0.092
51 Size of economy 0.016 0.020 0.026 0.033 0.051 0.076 0.104
52 Socialist dummy 0.012 0.020 0.024 0.032 0.054 0.091 0.144
53 English-speaking population 0.015 0.020 0.025 0.028 0.043 0.063 0.087
54 Average inflation 1960–90 0.015 0.020 0.024 0.030 0.043 0.064 0.100
55 Oil-producing country dummy 0.012 0.019 0.025 0.033 0.050 0.071 0.095
56 Population growth rate 0.014 0.019 0.023 0.029 0.046 0.074 0.098

1960–90
57 Timing of independence 0.014 0.019 0.024 0.031 0.048 0.076 0.099
58 Fraction land area near navigable 0.013 0.019 0.024 0.031 0.055 0.092 0.142

water
59 Square of inflation 1960–90 0.013 0.018 0.022 0.027 0.041 0.063 0.105
60 Fraction spent in war 1960–90 0.010 0.016 0.019 0.024 0.039 0.060 0.087
61 Land area 0.010 0.016 0.022 0.026 0.043 0.071 0.103
62 Tropical climate zone 0.012 0.016 0.020 0.028 0.042 0.067 0.100
63 Terms of trade ranking 0.011 0.016 0.019 0.026 0.039 0.063 0.086
64 Capitalism 0.010 0.015 0.020 0.026 0.047 0.084 0.128
65 Fraction Othodox 0.011 0.015 0.020 0.025 0.036 0.059 0.083
66 War participation 1960–90 0.010 0.015 0.019 0.025 0.040 0.060 0.089
67 Interior density 0.010 0.015 0.019 0.023 0.039 0.062 0.085

government). The other 13 variables that were robust in the baseline model also appear to
be robust to different prior specifications.

“Weak” Variables That Become “Strong” At the other end of the scale, most of the
46 variables that showed little partial correlation in the baseline estimation are not helped by
alternative priors. Their posterior inclusion probabilities rise as k̄ increases, a result which is
hardly surprising as their prior inclusion probabilities are rising. But their posterior inclusion
probabilities remain below the prior so we are forced to think of them as “weak.”

There are three variables that are weak in the baseline study but become “strong” with
some prior model sizes. These are the population density, the fraction of population that
speaks a foreign language (a measure of international social capital and openness), and the
public investment share. As mentioned before, the public investment share is particularly
interesting because it becomes strong for larger prior model sizes, but the sign of the
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correlation is negative. That is, a larger public investment share tends to be associated with
lower grow rates.

Our interpretation of these results is that our baseline results are robust to alternative
prior size specifications. This robustness applies also to the “sign certainty probabilities,”
which are not reported here.

Nonlinearities The literature has identified some variables that may affect growth in a
highly nonlinear way: for example, it has been argued that inflation has important negative
effects on growth but only for very high levels of inflation. To test this hypothesis, we include
the average inflation rate in the 1960s, 1970s, and 1980s, and its square as separate regressors.
The BACE procedure allows such variables to enter individually, and the data would assign
larger weight to well-fitting models if there were a nonlinear relationship. The posterior
inclusion probabilities for inflation and its square are very low, and the conditional coefficient
estimates are not different from zero.

12.6 Appendix: Long-Term Data on GDP

Maddison (1991) and subsequent unpublished updates describe long-term data on real
GDP and population for 16 developed countries. His estimates try to adjust for changes in

Table 12.8
Countries Included in Growth Sample (Table 12.3, column 2)

Algeria
Argentina
Australia
Austria
Bangladesh
Belgium
Bolivia
Botswana
Brazil
Cameroon
Canada
Chile
China
Colombia
Congo (Brazzaville)
Congo (Kinshasa)
Costa Rica
Cyprus
Denmark
Dominican Republic
Ecuador
Egypt

El Salvador
Finland
France
Gambia
Ghana
Greece
Guatemala
Guyana
Haiti
Hong Kong
Honduras
Hungary
Iceland
India
Indonesia
Iran
Ireland
Israel
Italy
Jamaica
Japan
Jordan

Kenya
Malawi
Malaysia
Mali
Mexico
Mozambique
Netherlands
New Zealand
Nicaragua
Niger
Norway
Pakistan
Panama
Papua New Guinea
Paraguay
Peru
Philippines
Poland
Portugal
Senegal
Sierra Leone
Singapore

South Africa
South Korea
Spain
Sri Lanka
Sweden
Switzerland
Syria
Taiwan
Thailand
Togo
Trinidad
Tunisia
Turkey
Uganda
Uruguay
United Kingdom
United States
Venezuela
West Germany
Zambia
Zimbabwe
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Table 12.9
Means and Standard Deviations for Variables in Basic Growth System

1965–75 Regression 1975–85 Regression 1985–95 Regression

Growth rate 0.026 (0.020) 0.016 (0.024) 0.014 (0.026)
Log of per capita GDP 8.15 (0.94) 8.32 (0.97) 8.45 (1.03)
Male upper-level schooling 1.04 (0.96) 1.39 (1.15) 1.91 (1.34)
1/(life expectancy at age 1) 0.0165 (0.0027) 0.0159 (0.0024) 0.0152 (0.0022)
Log of total fertility rate 1.58 (0.41) 1.50 (0.46) 1.31 (0.53)
Government consumption ratio 0.093 (0.061) 0.104 (0.070) 0.091 (0.059)
Rule-of-law indicator 0.56 (0.33) 0.55 (0.33) 0.58 (0.26)
Democracy indicator 0.60 (0.32) 0.56 (0.33) 0.64 (0.32)
Square of democracy 0.49 (0.37) 0.44 (0.38) 0.52 (0.37)
Openness ratio −0.02 (0.18) −0.01 (0.35) 0.00 (0.39)
Terms-of-trade variable −0.004 (0.020) 0.000 (0.021) −0.003 (0.017)
Investment ratio 0.185 (0.092) 0.179 (0.078) 0.178 (0.081)
Inflation rate 0.100 (0.110) 0.180 (0.209) 0.231 (0.375)

Number of observations 72 86 83

Note: The entries give the means and standard deviations (in parentheses) of the variables that enter into the panel
regression in table 12.3, column 2. The statistics apply only to the samples used for each subperiod.

national boundaries. Data are available annually through 1990 from starting dates between
1870 and 1900. The real GDP numbers are expressed in 1985 U.S. dollars. The conversion
from domestic real GDP values was based on Eurostat/OECD benchmark studies for 1985.
These studies follow the methodology of the UN’s International Comparison Project (ICP),
which is analogous to the procedure used by Summers and Heston (1991) and Heston,
Summers, and Aten (2002) for more recent data.

The figures on real per capita GDP begin in 1870 for 13 countries (Australia, Austria,
Belgium, Canada, Denmark, Finland, France, Germany, Italy, Norway, Sweden, the United
Kingdom, and the United States), in 1885 for Japan, in 1889 for Switzerland, and in 1900
for the Netherlands. Data for selected years beginning in 1820 are provided in Maddison
(1991, table A.5) for the 16 countries except Canada, which starts in 1850. This source also
provides data for the United Kingdom in 1700 and 1780 and for the Netherlands in 1700.

Table 12.10 shows data at 20-year intervals starting in 1870 for GDP per capita in 1985
U.S. dollars, the corresponding ratio to the U.S. GDP per capita, and the level of population.
The table also indicates the annual growth rate over each period for real per capita GDP
and population.

Maddison (1989) provides long-term data for some additional countries. Data on real GDP
indexes are presented in his tables B-4 and B-5 for selected years from 1900 and annually for
1950–87 for nine Asian countries (Bangladesh, China, India, Indonesia, Pakistan, Philip-
pines, South Korea, Taiwan, and Thailand) and six Latin American countries (Argentina,
Brazil, Chile, Colombia, Mexico, and Peru). Population figures are in his tables C-3 and
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Table 12.10
Long-Term Data for 16 Currently Developed Countries

GDP Per Capita Ratio to U.S. Growth Rate Population Growth Rate
(1985 $US) GDP Per Capita GDP Per Capita (1000s) Population

Australia
1870 3143 1.40 — 1620 —
1890 3949 1.27 0.0114 3107 0.0326
1910 4615 1.02 0.0078 4375 0.0171
1930 3963 0.70 −0.0076 6469 0.0196
1950 5970 0.69 0.0205 8177 0.0117
1970 9747 0.76 0.0245 12,507 0.0212
1990 13,514 0.74 0.0163 17,806 0.0177

Austria
1870 1442 0.64 — 4520 —
1890 1892 0.61 0.0136 5394 0.0088
1910 2547 0.56 0.0149 6614 0.0102
1930 2776 0.49 0.0043 6684 0.0005
1950 2869 0.33 0.0016 6935 0.0018
1970 7547 0.59 0.0484 7467 0.0037
1990 12,976 0.71 0.0271 7718 0.0017

Belgium
1870 2009 0.90 — 5096 —
1890 2654 0.86 0.0139 6096 0.0090
1910 3146 0.69 0.0085 7498 0.0104
1930 3855 0.68 0.0102 8076 0.0037
1950 4229 0.49 0.0046 8640 0.0034
1970 8235 0.64 0.0333 9638 0.0055
1990 13,320 0.73 0.0240 9967 0.0017

Canada
1870 1330 0.59 — 3736 —
1890 1846 0.60 0.0164 4918 0.0137
1910 3179 0.70 0.0272 7188 0.0190
1930 3955 0.70 0.0109 10,488 0.0189
1950 6112 0.71 0.0218 13,737 0.0135
1970 10,200 0.80 0.0256 21,324 0.0220
1990 17,070 0.93 0.0257 26,620 0.0111

Denmark
1870 1543 0.69 — 1888 —
1890 1944 0.63 0.0116 2294 0.0097
1910 2856 0.63 0.0192 2882 0.0114
1930 4114 0.73 0.0182 3542 0.0103
1950 5227 0.61 0.0120 4269 0.0093
1970 9575 0.75 0.0303 4929 0.0072
1990 14,086 0.77 0.0193 5140 0.0021

Finland
1870 933 0.42 — 1754 —
1890 1130 0.36 0.0096 2364 0.0149
1910 1560 0.34 0.0161 2929 0.0107
1930 2181 0.39 0.0168 3449 0.0082
1950 3481 0.40 0.0234 4009 0.0075
1970 7838 0.61 0.0406 4606 0.0069
1990 14,012 0.77 0.0290 4986 0.0040

Table continued
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Table 12.10
(Continued )

GDP Per Capita Ratio to U.S. Growth Rate Population Growth Rate
(1985 $US) GDP Per Capita GDP Per Capita (1000s) Population

France
1870 1582 0.70 — 38,440 —
1890 1955 0.63 0.0106 40,107 0.0021
1910 2406 0.53 0.0104 41,398 0.0016
1930 3591 0.64 0.0200 41,610 0.0003
1950 4176 0.49 0.0075 41,836 0.0003
1970 9245 0.72 0.0397 50,772 0.0097
1990 14,245 0.78 0.0216 56,420 0.0053

Germany (West)
1870 1223 0.55 — 24,870 —
1890 1624 0.52 0.0142 30,014 0.0094
1910 2256 0.50 0.0164 39,356 0.0135
1930 2714 0.48 0.0092 44,026 0.0056
1950 3542 0.41 0.0133 49,983 0.0063
1970 9257 0.72 0.0480 60,651 0.0097
1990 14,288 0.78 0.0217 63,232 0.0021

Italy
1870 1216 0.54 — 27,888 —
1890 1352 0.44 0.0053 31,702 0.0064
1910 1891 0.42 0.0168 36,572 0.0071
1930 2366 0.42 0.0112 40,791 0.0055
1950 2840 0.33 0.0091 47,105 0.0072
1970 7884 0.62 0.0511 53,661 0.0065
1990 13,215 0.72 0.0258 57,647 0.0036

Japan
1890 842 0.27 — 40,077 —
1910 1084 0.24 0.0126 49,518 0.0106
1930 1539 0.27 0.0175 64,203 0.0130
1950 1620 0.19 0.0026 83,563 0.0132
1970 8168 0.64 0.0809 104,334 0.0111
1990 16,144 0.88 0.0341 123,540 0.0084

Netherlands
1910 2965 0.65 — 5902 —
1930 4400 0.78 0.0197 7884 0.0145
1950 4708 0.55 0.0034 10,114 0.0125
1970 9392 0.73 0.0345 13,194 0.0133
1990 13,078 0.72 0.0166 14,947 0.0062

Norway
1870 1190 0.53 — 1735 —
1890 1477 0.48 0.0108 1997 0.0070
1910 1875 0.41 0.0119 2384 0.0089
1930 3086 0.55 0.0249 2807 0.0082
1950 4541 0.53 0.0193 3265 0.0076
1970 8335 0.65 0.0304 3879 0.0086
1990 15,418 0.84 0.0308 4241 0.0045
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Table 12.10
(Continued )

GDP Per Capita Ratio to U.S. Growth Rate Population Growth Rate
(1985 $US) GDP Per Capita GDP Per Capita (1000s) Population

Sweden
1870 1401 0.62 — 4164 —
1890 1757 0.57 0.0112 4780 0.0069
1910 2509 0.55 0.0178 5449 0.0065
1930 3315 0.59 0.0139 6131 0.0059
1950 5673 0.66 0.0269 7015 0.0067
1970 10,707 0.84 0.0318 8043 0.0068
1990 14,804 0.81 0.0162 8559 0.0031

Switzerland
1910 2979 0.66 — 3735 —
1930 4511 0.80 0.0207 4051 0.0041
1950 6546 0.76 0.0186 4694 0.0074
1970 12,208 0.95 0.0312 6267 0.0145
1990 15,650 0.86 0.0124 6796 0.0041

United Kingdom
1870 2693 1.20 — 29,312 —
1890 3383 1.09 0.0114 35,000 0.0089
1910 3891 0.86 0.0070 41,938 0.0090
1930 4287 0.76 0.0048 45,866 0.0045
1950 5651 0.66 0.0138 50,363 0.0047
1970 8994 0.70 0.0232 55,632 0.0050
1990 13,589 0.74 0.0206 57,411 0.0016

United States
1870 2244 1.0 — 40,061 —
1890 3101 1.0 0.0162 63,302 0.0229
1910 4538 1.0 0.0190 92,767 0.0191
1930 5642 1.0 0.0109 123,668 0.0144
1950 8605 1.0 0.0211 152,271 0.0104
1970 12,815 1.0 0.0199 205,052 0.0149
1990 18,258 1.0 0.0177 251,394 0.0102

Note: These data are from Maddison (1991) and updates.

C-4, and values of real GDP per capita are expressed in terms of 1980 international dol-
lars in his table A-1. Numbers are also provided for the Soviet Union, although post-1990
experience suggested that these data were highly inaccurate.

Table 12.11 presents the figures for the nine Asian and six Latin American countries
for 1900, 1913, 1950, 1973, and 1987. The table shows real per capita GDP in 1980
international dollars, the ratio of these values to the U.S. real per capita GDP, and the level
of population. Also shown are the annual growth rates for each period of real per capita
GDP and population.
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Table 12.11
Long-Term Data for 15 Currently Less-Developed Countries

GDP Per Capita Ratio to U.S. Growth Rate Population Growth Rate
(1985 $US) GDP Per Capita GDP Per Capita (1000s) Population

Bangladesh
1900 349 0.12 — 29,012 —
1913 371 0.10 0.0047 31,786 0.0070
1950 331 0.05 −0.0031 43,135 0.0083
1973 281 0.03 −0.0071 74,368 0.0237
1987 375 0.03 0.0206 102,961 0.0232

China
1900 401 0.14 — 400,000 —
1913 415 0.11 0.0026 430,000 0.0056
1950 338 0.05 −0.0055 546,815 0.0065
1973 774 0.07 0.0360 881,940 0.0208
1987 1748 0.13 0.0582 1,069,608 0.0138

India
1900 378 0.13 — 234,655 —
1913 399 0.11 0.0042 251,826 0.0054
1950 359 0.05 −0.0029 359,943 0.0097
1973 513 0.05 0.0155 579,000 0.0207
1987 662 0.05 0.0182 787,930 0.0220

Indonesia
1900 499 0.17 — 40,209 —
1913 529 0.14 0.0045 48,150 0.0139
1950 484 0.07 −0.0024 72,747 0.0112
1973 786 0.07 0.0211 124,189 0.0233
1987 1200 0.09 0.0302 170,744 0.0227

Pakistan
1900 413 0.14 — 19,759 —
1913 438 0.12 0.0045 20,007 0.0010
1950 390 0.06 −0.0031 37,646 0.0171
1973 579 0.05 0.0172 67,900 0.0256
1987 885 0.07 0.0303 101,611 0.0288

Philippines
1900 718 0.25 — 7324 —
1913 985 0.26 0.0243 9384 0.0191
1950 898 0.13 −0.0025 20,062 0.0205
1973 1400 0.13 0.0193 39,701 0.0297
1987 1519 0.11 0.0058 57,011 0.0258

South Korea
1900 549 0.19 — 8772 —
1913 610 0.16 0.0081 10,277 0.0122
1950 564 0.08 −0.0021 20,557 0.0187
1973 1790 0.16 0.0502 34,103 0.0220
1987 4143 0.31 0.0599 42,512 0.0157

Taiwan
1900 434 0.15 — 2858 —
1913 453 0.12 0.0033 3469 0.0149
1950 526 0.08 0.0040 7882 0.0222
1973 2087 0.19 0.0599 15,427 0.0292
1987 4744 0.35 0.0587 19,551 0.0169
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Table 12.11
(Continued )

GDP Per Capita Ratio to U.S. Growth Rate Population Growth Rate
(1985 $US) GDP Per Capita GDP Per Capita (1000s) Population

Thailand
1900 626 0.22 — 7320 —
1913 652 0.17 0.0031 8690 0.0132
1950 653 0.10 0.0000 19,442 0.0218
1973 1343 0.12 0.0314 39,303 0.0306
1987 2294 0.17 0.0382 53,377 0.0219

Argentina
1900 1284 0.44 — 4693 —
1913 1770 0.47 0.0247 7653 0.0376
1950 2324 0.35 0.0074 17,150 0.0218
1973 3713 0.34 0.0204 25,195 0.0167
1987 3302 0.24 −0.0084 31,500 0.0160

Brazil
1900 436 0.15 — 17,984 —
1913 521 0.14 0.0137 23,660 0.0211
1950 1073 0.16 0.0195 51,941 0.0213
1973 2504 0.23 0.0368 99,836 0.0284
1987 3417 0.25 0.0222 140,692 0.0245

Chile
1900 956 0.33 — 2974 —
1913 1255 0.33 0.0209 3491 0.0123
1950 2350 0.35 0.0170 6091 0.0150
1973 3309 0.30 0.0149 9899 0.0211
1987 3393 0.25 0.0018 12,485 0.0166

Colombia
1900 610 0.21 — 3998 —
1913 801 0.21 0.0210 5195 0.0201
1950 1395 0.21 0.0150 11,597 0.0217
1973 2318 0.21 0.0221 22,571 0.0290
1987 3027 0.22 0.0191 29,496 0.0191

Mexico
1900 649 0.22 — 13,607 —
1913 822 0.22 0.0182 14,971 0.0073
1950 1169 0.17 0.0095 27,376 0.0163
1973 2349 0.21 0.0303 56,481 0.0315
1987 2667 0.20 0.0091 81,163 0.0259

Peru
1900 624 0.21 — 3791 —
1913 819 0.22 0.0209 4507 0.0133
1950 1349 0.20 0.0135 7630 0.0142
1973 2357 0.21 0.0243 14,350 0.0275
1987 2380 0.18 0.0007 20,756 0.0264

Note: These data are from Maddison (1989).
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Maddison (1992) describes long-term data on saving rates and investment ratios for
11 countries: Australia, Canada, France, Germany, Japan, the Netherlands, the United
Kingdom, the United States, India, South Korea, and Taiwan. These data begin in 1820
for France; 1870 for Australia, Canada, the United Kingdom, and the United States; and
later years for the other countries. Intermediate years are missing for some of the countries.
The table in the introduction shows data over 20-year intervals for the eight countries for
which a long-term picture can be constructed.
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This appendix discusses the main mathematical methods used in the text. We consider
differential equations, static optimization, dynamic optimization, some results in matrix
theory, and a few results from calculus.

A.1 Differential Equations

A.1.1 Introduction

A differential equation is an equation that involves derivatives of variables. If there is only
one independent variable, it is called an ordinary differential equation (ODE). The order
of the ODE is that of the highest derivative; that is, if the highest derivative is an ODE
of order n, it is an nth-order ODE. When the functional form of the equation is linear, it
is a linear ODE. Most of the differential equations that we encounter in the book involve
derivatives of functions with respect to time.

An example of a differential equation is

a1 · ẏ(t) + a2 · y(t) + x(t) = 0 (A.1)
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where the dot on top of y(t) represents the derivative of y(t) with respect to time, ẏ(t) ≡
dy(t)/dt , a1 and a2 are constants, and x(t) is a known function of time. The function
x(t) is sometimes called the forcing function. Equation (A.1) is a first-order linear ODE
with constant coefficients. If x(t) = a3, a constant, the equation is called autonomous. (An
equation is autonomous when it depends on time only through the variable y[t].) If x(t) = 0,
the equation is called homogeneous.

A second-order, linear ODE with constant coefficients takes the form,

a1 · ÿ(t) + a2 · ẏ(t) + a3 · y(t) + x(t) = 0 (A.2)

where a1, a2, and a3 are constants and ÿ(t) ≡ d2 y(t)/dt2. The equation

a1 · ẏ(t) + a2(t) · y(t) + x(t) = 0 (A.3)

where a2(t) is a known function of time, is a first-order, linear ODE with variable coeffi-
cients. The equation

log[ẏ(t)] + 1/y(t) = 0 (A.4)

is a nonlinear first-order ODE.
The goal when solving a differential equation is to find the behavior of y(t). The first

solution method that we use is graphical, a technique that can be used for nonlinear, as well
as linear, differential equations. The disadvantage is that it can be used only for autonomous
equations. The second method is analytical. In some circumstances, we will be able to find
an exact formula for y(t), even when the equation is not autonomous. The drawback of the
analytical approach is that it can be used only with a limited set of functional forms. One
of them, however, is the linear function in equation (A.1). When we encounter nonlinear
differential equations, we will often approximate the solution by linearizing the equation
by means of a Taylor-series expansion. (See section A.6.2.)

A third method for solving differential equations relies on numerical analysis. Most mod-
ern mathematical computer packages contain subroutines that solve differential equations
numerically. Matlab, for example, has the subroutines ODE23 and ODE45, and Mathemat-
ica has the command NDSOLVE.

A.1.2 First-Order Ordinary Differential Equations

Graphical Solutions

CONSTRUCTING THE DIAGRAM Consider an autonomous ordinary differential equation of
the form,

ẏ(t) = f [y(t)] (A.5)
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where f (·) is a known function. Equation (A.5) is autonomous because the function
f (·) does not depend on time independently of y. The function f (·) may or may not be
linear.

To solve equation (A.5) graphically, we plot f (·) as a function of y in figure A.1. The
horizontal axis shows the value of y, and the vertical axis has f (·) and ẏ. Positive values of
f (·) correspond to positive values of ẏ, in accordance with equation (A.5). Since ẏ is the
derivative of y with respect to time, positive values of ẏ correspond to increasing values of y.
To reflect this relation, we draw arrows pointing east (increasing y) when f (·) lies above

Stable steady state

Unstable
steady state

y*y~
y

y
.

(c)

y
.

y*
y

Unstable Stable

y*
y

y
.

(a) (b)

Figure A.1
(a) Linear ODE. If the coefficient a in equation (A.6) is positive, then the differential equation for y is unstable.
(b) Linear ODE. If the coefficient a in equation (A.6) is negative, then the differential equation for y is stable.
(c) Nonlinear ODE. In equation (A.7), the slope of f (•) with respect to y is initially positive and is subsequently
negative. The steady state at 0 is unstable, whereas that at y∗ is stable.
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the horizontal axis and pointing west (decreasing y) when f (·) lies below the horizontal
axis. The arrows reveal the direction in which y moves over time and therefore provide a
qualitative solution to the differential equation.

Sometimes the differential equation is expressed in terms of the difference of two
functions, for example,

ẏ(t) = f [y(t)] − g[y(t)]

Instead of graphing f (·) − g(·), we can graph f (·) and g(·) separately. The rate of change
of y(t), ẏ(t), is given in this case by the vertical distance between f (·) and g(·). For values
of y where f (·) lies above g(·), ẏ(t) is positive and therefore y(t) is increasing over time.
The opposite is true when f (·) lies below g(·). The steady state is given by the point(s) at
which the curves f (·) and g(·) cross.

As an example, consider a linear form for f (·):
ẏ(t) = f [y(t)] = a · y(t) − x (A.6)

where a and x are constants, with a > 0. The graph of f (·) is a straight line with positive
slope. This line, depicted in figure A.1a, intercepts the vertical axis at ẏ = −x and crosses
the horizontal axis at y∗ = x/a. For values of y above y∗, the function lies above the
horizontal axis. Thus, ẏ is positive and y is increasing. Hence, to the right of y∗, we draw
arrows pointing northeast (see figure A.1a). The opposite conditions apply to the left of y∗,
and we draw arrows pointing southwest.

If the initial value, y(0), equals y∗, equation (A.6) implies that ẏ equals 0, so that y does
not change over time. It follows that y(t) remains forever at y∗. The value y∗ is called the
steady-state value of y.

If y(0) > y∗, then ẏ > 0, so that y grows over time. Conversely, if y(0) < y∗, then ẏ < 0,
so that y decreases over time. The qualitative dynamics of y(t) are fully determined in
figure A.1a: once the initial value, y(0), is specified, the arrows show how y moves as time
evolves. An interesting point is that unless y(0) = y∗, the dynamics of the equation when
a > 0 move y away from the steady state. This behavior applies for initial values below and
above y∗. In this case, we say that the differential equation is unstable.

Imagine now that a < 0. The graph of f (·) is then a downward-sloping straight line,
depicted in figure A.1b, which intercepts the vertical axis at ẏ = − x and the horizontal axis
at y∗ = −x/a. To the left of y∗, ẏ is positive, so that y increases over time. Correspondingly,
the arrows in the figure point southeast. The opposite relation applies to the right of y∗.
Note that, regardless of the initial value, y(0), the dynamics of the equation brings y(t)
back to the steady state, y∗. In this case, we say that equation (A.6) is stable.
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This graphical approach can be used to analyze the dynamics of more complicated
nonlinear functions. Consider, for example, the differential equation

ẏ(t) = f [y(t)] = s · [y(t)]α − δ · y(t) (A.7)

where s, δ, and α are positive constants and α < 1. Chapter 1 shows that the fundamental
equation of the Solow–Swan growth model takes the form of equation (A.7), where y(t) is
the capital stock. Under this interpretation, equation (A.7) says that the net increase in the
capital stock equals the difference between total saving and total depreciation. Total saving
is assumed to be the constant fraction, s, of output, yα , and total depreciation is proportional
to the existing capital stock.

Since only nonnegative values of the capital stock are economically meaningful, we look
only at the first quadrant in figure A.1c. For low values of y, the function f (·) is upward
sloping. It reaches a maximum when sα ỹα−1 = δ, and it becomes downward sloping for
higher values of y. The function f (·) crosses the horizontal axis at two points, y = 0 and
y = y∗ = (δ/s)1/(α−1).

To the right of y∗, ẏ is negative, so that y is falling. Hence, we draw arrows pointing
west. To the left of y∗, ẏ is positive, so that y is rising, and we draw arrows pointing east. It
follows that the equation has two steady states. The first one is y∗ and is stable in that, for
any positive initial value, y(0), the dynamics of the equation moves y(t) toward y∗. The
second steady state, 0, is unstable: if y(0) > 0, the dynamics moves y(t) away from 0.

STABILITY The preceding discussion suggests that if f (·) slopes upward at the steady-
state value, y∗, the steady state is unstable. That is, if y(0) 
= y∗, y(t) moves away from y∗.
The reason is simple: if f (·) is upward sloping when f (y∗) = 0, then, for y > y∗, f (y) > 0.
Hence, ẏ > 0 and y increases over time. On the other hand, for y < y∗, f (y) < 0, ẏ < 0,
and y decreases over time. The conclusion is that y increases when it is already too large
and falls when it is already too small, an indication of instability.

Conversely, if f (·) is downward sloping at the steady-state value, y∗, the equation is
stable. In this case, if y(0) 
= y∗, y(t) approaches y∗ over time.

To summarize, if we are interested in the stability of the differential equation in the
neighborhood of a steady state, all we have to do is compute the derivative of f (·) and
evaluate it at the steady-state value, y∗:

If ∂ ẏ/∂y|y∗ > 0, y is locally unstable

If ∂ ẏ/∂y|y∗ < 0, y is locally stable
(A.8)

Although nonlinear differential equations may have more than one steady state, the local
stability properties of each of these steady states will still be determined by the condition
in equation (A.8).
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Analytical Solutions The solution to some equations is almost immediate because the
equation can be integrated. For instance, the solution to ẏ(t) = a is obviously y(t) = b +at ,
where b is an arbitrary constant.

Equations that involve polynomial functions of time are equally easy to solve, for example,

ẏ(t) = a0 + a1t + a2 · t2 + · · · + an · tn

has the solution

y(t) = b + a0t + a1 · (t2/2) + · · · + an · [tn+1/(n + 1)]

In general, the functional forms that we work with will not be this simple. We now derive
the general solution for linear, first-order ODEs.

LINEAR, FIRST-ORDER DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS The gen-
eral form of the linear, first-order ODE with constant coefficients is

ẏ(t) + a · y(t) + x(t) = 0 (A.9)

where a is a constant and x(t) is a known function of time. The easiest way to solve this
equation is to carry out the following steps.

First, put all the terms involving y and its derivatives on one side of the equation and the
rest on the other side:

ẏ(t) + a · y(t) = −x(t)

Second, multiply both sides of the equation by eat and integrate:

∫
eat · [ẏ(t) + a · y(t)] · dt = −

∫
eat · x(t) · dt (A.10)

The term eat is called the integrating factor. The reason for multiplying by the integrating
factor is that the term inside the left-hand side integral becomes the derivative of eat · y(t)
with respect to time:

eat · [ẏ(t) + a · y(t)] = (d/dt)[eat · y(t) + b0]

where b0 is an arbitrary constant. Note that the integral on the left-hand side of equa-
tion (A.10) is the integral of the derivative of some function and therefore equals the
function itself (see section A.5.5). Hence, the term on the left-hand side of equation (A.10)
equals eat · y(t) + b0.

Third, compute the integral on the right-hand side of equation (A.10), making sure to add
another constant term b1. Note that this integral is a function of t . Call the result INT(t) + b1.
Since x(t) is a known function of time, INT(t) is also a known function of time.
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Fourth, multiply both sides by e−at to get y(t):

y(t) = −e−at · INT(t) + be−at (A.11)

where b = b1 − b0 is an arbitrary constant. Equation (A.11) is the general solution to the
ODE in equation (A.9).

Consider, as an example, the differential equation

ẏ(t) − y(t) − 1 = 0 (A.12)

In this example, the forcing function x(t) is a constant, −1. To solve this equation, we follow
the steps outlined previously. First, put all the terms involving y(t) and its derivatives on the
left-hand side of the equation and all the other terms on the right-hand side. Then multiply
both sides by e−t and integrate:

∫
e−t [ẏ(t) − y(t)] · dt =

∫
e−t dt (A.13)

The term inside the integral on the left-hand side is the derivative of e−t ·y(t)+b0 with respect
to time. Hence, the integral on the left-hand side equals e−t · y(t) + b0. The right-hand side
equals −e−t + b1. Hence, the solution to equation (A.12) is

y(t) = −1 + bet (A.14)

where b = b1 − b0 is an arbitrary constant. We can verify that equation (A.14) satisfies
equation (A.12) by taking derivatives with respect to time to get ẏ(t) = bet = y(t) + 1.

The result in equation (A.11) is the general solution to equation (A.9); to get a particular
or exact solution, we have to specify the arbitrary constant of integration, b. To pin down
which of the infinitely many possible paths applies, we need to know a value of y(t) for at
least one point in time. This boundary condition will determine the unique solution to the
differential equation.

Figure A.2 shows an array of solutions to the ODE in the example of equation (A.12). To
choose among them, imagine that we know that y(t) = 0 when t = 0. This type of boundary
condition is called an initial condition because it pins down the path by specifying the
value of y(t) at the initial date. In our example, we can substitute t = 0 and y(0) = 0 in
equation (A.14) to find that y(0) = − 1 + be0 = 0, which implies b = 1. We can therefore
plug b = 1 into equation (A.14) to get the particular solution,

y(t) = −1 + et (A.15)

This equation, which determines a unique value of y at each point in time, corresponds to
the time path labeled A in figure A.2.
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Figure A.2
Solutions to a differential equation. The figure shows an array of solutions to the differential equation (A.12).

Instead of knowing the initial value of the function, we may know the value at some
terminal date; that is, we could have a terminal condition.1 As an example, suppose that the
terminal date is t1 = 1000, and the value of y(t) at that time is 0. Thus, y(1000) = −1 + b ·
e1000 = 0. The solution, b = e−1000, implies

y(t) = −1 + (e−1000) · et (A.16)

This result corresponds to path B in figure A.2.

LINEAR, FIRST-ORDER DIFFERENTIAL EQUATIONS WITH VARIABLE COEFFICIENTS Consider
now the differential equation

ẏ(t) + a(t) · y(t) + x(t) = 0 (A.17)

where a(t) is a known function of time but is no longer a constant. We can follow the

same steps as before. The difference is that the integrating factor is now e
∫ t

0
a(τ )dτ , so that

the left-hand side becomes the derivative of y(t) · e
∫ t

0
a(τ )dτ .2 Again, when we integrate

the derivative of a function, we get back the original function. Using this information, we

1. When we deal with growth models with infinite horizons, we may know the limiting value of a variable as time
tends to infinity. This information will provide us with a terminal condition.

2. The lower limit of integration can be an arbitrary constant. Leibniz’s rule for differentiation of definite integrals
says that d[

∫ t

0
f (τ ) dτ ]/dt = f (t). Note that we are taking the derivative with respect to the upper limit of

integration. See section A.6.6.
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find that the solution to the ODE is

y(t) = −e−
∫ t

0
a(τ )dτ ·

∫
e
∫ t

0
a(τ )dτ · x(t) · dt + b · e−

∫ t

0
a(τ )dτ (A.18)

where b is an arbitrary constant of integration. To find the particular or exact solution, we
again have to make use of a boundary condition.

A.1.3 Systems of Linear Ordinary Differential Equations

We now study a system of linear, first-order ODEs of the form

ẏ1(t) = a11 y1(t) + · · · + a1n yn(t) + x1(t)

· · ·
ẏn(t) = an1 y1(t) + · · · + ann yn(t) + xn(t)

In matrix notation, the system is

ẏ(t) = A · y(t) + x(t) (A.19)

where y(t) is a column vector of n functions of time,
[y1(t)···

yn(t)

]
, ẏ(t) is the column vector of

the n corresponding derivatives, A is an n × n square matrix of constant coefficients, and
x(t) is a vector of n functions.

We consider three procedures for solving this system of differential equations. The first
one is a graphical device called a phase diagram, similar to the one that we used for a single
differential equation. The advantage of a phase diagram is that it is simple and provides
a qualitative solution. Furthermore, this technique works for nonlinear, as well as linear,
systems. The drawbacks of phase diagrams are that they work only for 2 × 2 systems and
only for autonomous equations with steady states.

The second procedure is analytical. The advantages of the analytical approach are that
it gives quantitative answers and can be used in larger systems. The disadvantage is that it
works, in general, only for linear equations. Later in this section, however, we use linear
approximations to nonlinear systems.

The third procedure is numerical. Later in this section, we describe the time-elimination
method for solving nonlinear systems numerically.

Phase Diagrams

DIAGONAL SYSTEMS Start with the simple case in which A is a 2 × 2 diagonal matrix and
the equations are homogeneous; that is, the components of the vector x(t) are 0. The system
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Figure A.3
Directions of motion. The figure shows the directions of motion for y1 and y2 in the diagonal system given in
equation (A.20).

can then be rewritten as

ẏ1(t) = a11 · y1(t)

ẏ2(t) = a22 · y2(t)
(A.20)

where a11 and a22 are real numbers.
A phase diagram is a graphical tool, similar to the one used in the previous section, which

allows us to visualize the dynamics of the system. In figure A.3, y1 is on the horizontal axis,
and y2 is on the vertical axis. Each point in the space represents the position of the system
(y1, y2) at a given moment in time. Imagine that, at time 0, we are at the point labeled “0” in
the figure; that is, y1 equals y1(0) and y2 equals y2(0). If we want to see what the position of
the economy will be at the “next instant,” we could have a third dimension to represent time.
More conveniently, we can represent the dynamics with arrows that point in the direction
of motion, just as in section A.1.2. For instance, an arrow that points northeast at point “0”
signifies that the variables y1 and y2 are each growing over time. If the arrow points north,
y2 grows and y1 is stationary, and so on.

The object of a phase diagram is to translate the dynamics implied by the two differential
equations into a system of arrows that describe the qualitative behavior of the economy
over time. As a simple example, consider the diagonal system that we studied before. The
dynamics depend on the signs of the two diagonal elements of A. We now consider three
cases.



578 Appendix on Mathematical Methods

Case 1, a11 > 0 and a22 > 0 To construct the phase diagram, follow the following steps:

1. Start in figure A.4a by plotting the locus of points for which ẏ1 equals 0, called the
ẏ1 = 0 schedule. In this case, the locus corresponds to the points for which y1(t) = 0; that
is, the vertical axis.

2. Analyze the dynamics of y1 in each of the two regions generated by the ẏ1 = 0 schedule.
For positive y1 (that is, to the right of the ẏ1 = 0 schedule), ẏ1 is positive because a11 > 0
and y1 > 0. Hence, the arrows point east. The opposite is true to the left of the vertical
axis because in that region, ẏ1 is given by the product of a positive number, a11 > 0, and a
negative number, y1 < 0. Therefore, the arrows point west.

3. Repeat the procedure for ẏ2. In the present example, the ẏ2 = 0 schedule is the horizontal
axis shown in figure A.4b. For positive y2, ẏ2 is the product of two positive numbers and
is therefore positive. Hence, y2 is increasing and, correspondingly, the arrows point north.
Similarly, the arrows point south for negative y2.

4. Join the two pictures in figure A.4c. The two schedules divide the space into four regions.
(In this simple case, the regions correspond to the four quadrants, a result that is not general.)
In the first quadrant, one arrow points east and the other points north. We combine the two
into an arrow that points northeast. This construction means that, if the economy is in this
region, y1 and y2 are increasing. The combined arrows for the second, third, and fourth
quadrants point northwest, southwest, and southeast, respectively. Along the vertical axis,
the arrows point north for positive y2 and south for negative y2. On the horizontal axis, the
arrows point east for positive y1 and west for negative y1. Finally, at the origin, ẏ1 and ẏ2

are 0. Hence, if the economy happens to be at the origin, it remains there forever. This point
is the steady state. It is unstable in that if the initial position deviates from the origin by a
small amount in any direction, the dynamics of the system (the arrows) take it away from
the steady state.

5. Use the boundary conditions to see which one of the many paths depicted in the picture
constitutes the exact solution. Imagine, for example, that, at time zero, the value of y1 is 1
and the value of y2 is 2. (In this case, the two boundary conditions are initial conditions,
but, in other cases that we consider, we may have one initial condition and one terminal
condition or two terminal conditions.) The initial conditions imply that the system starts at
point “0” in figure A.4c. The subsequent behavior of y1 and y2 is given by the path going
through “0,” as depicted in figure A.4c.

Case 2, a11 < 0 and a22 < 0 Arguments similar to those of the previous section imply that
the ẏ1 = 0 schedule is again the vertical axis, and the ẏ2 = 0 schedule is again the horizontal
axis. We follow the same steps as before to find in figure A.5 that the arrows point southwest
in the first quadrant, southeast in the second, northeast in the third, and northwest in the
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Figure A.4
(a) The ẏ1 = 0 locus. The figure shows the ẏ1 = 0 schedule (the vertical axis in this example) for the system in
equation (A.20) when a11 > 0. The arrows show the direction of motion for y1. (b) The ẏ2 = 0 locus. The figure
shows the ẏ2 = 0 schedule (the horizontal axis in this example) for the system in equation (A.20) when a22 > 0.
The arrows show the direction of motion for y2. (c) The phase diagram in an unstable case. The results from
figures A.4(a) and A.4(b) are joined to generate a simple phase diagram. The arrows show the directions of motion
for y1 and y2 when a11 > 0 and a22 > 0. This system is unstable.
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y2

y1

Steady state

Figure A.5
The phase diagram in a stable case. In this example, a11 < 0 and a22 < 0 apply in equation (A.20). This system
is stable.

y2

y1
y1 � 1

Figure A.6
The phase diagram in a case of saddle-path stability. In this example, a11 < 0 and a22 > 0 apply in equa-
tion (A.20). This system is saddle-path stable.

fourth. The steady state is the origin and, unlike the previous case, this position is stable.
For any initial values of y1 and y2, the dynamics of the system takes it back to the steady
state.

Case 3, a11 < 0 and a22 > 0 As in the previous cases, the ẏ1 = 0 schedule is the vertical
axis, and the ẏ2 = 0 schedule is the horizontal axis. The dynamics in this third case, shown
in figure A.6, is, however, more complicated than before. The arrows point northwest in the
first quadrant, northeast in the second, southeast in the third, and southwest in the fourth.
The arrows point toward the origin along the horizontal axis and away from it along the
vertical axis. The origin is, again, the steady state.
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The new element is that the system is neither stable nor unstable. If the system starts
at the steady state, it remains there. If it starts along the horizontal axis, the dynamics of
the system takes it back to the steady state. But if the system starts at any point off the
horizontal axis, no matter how close to it, the dynamics takes it away from the steady state.
The system explodes in the sense that y2 approaches infinity as t tends to infinity.

This case is called saddle-path stable. The reason for this name is the analogy with
a marble left on top of a saddle. There is one point on the saddle where, if left there, the
marble does not move. This point corresponds to the steady state. There is a trajectory on the
saddle with the property that if the marble is left at any point on that trajectory, it rolls toward
the steady state. But if the marble is left at any other point, the marble falls to the ground.

Two results about the dynamic paths shown in figure A.6 are worth highlighting. First,
none of the paths cross each other. Second, there are only two paths going through the
steady state, one is the saddle path that we just mentioned, and the other is the unstable path
that corresponds to the vertical axis. These paths are called the stable arm and the unstable
arm, respectively. All two-dimensional systems of ODEs that exhibit saddle-path stability
have one stable arm and one unstable arm, each going through the steady state.

Figure A.6 shows the dynamics of the economy for all possible points. The particu-
lar path followed depends on two boundary conditions, which have to be specified. As
an example, suppose that the initial condition is y1(0) = 1, and the terminal condition is
limt→∞[y2(t)] = 0. The initial condition says that the economy starts anywhere on the
vertical line y1 = 1 (see figure A.6). Among all the possible points on this line, only the one
on the horizontal axis has the property that y2 approaches 0 as time goes to infinity. Hence,
the terminal condition ensures that the starting point for this economy is y2(0) = 0, right on
the stable arm.

By symmetry, the case in which a11 > 0 and a22 < 0 also displays saddle-path stability.
The only difference is that now the horizontal axis is unstable, whereas the vertical axis is
stable.

The key lesson in this section is that if the matrix associated with the system of ODEs is
diagonal, its stability properties depend on the signs of the coefficients. If both are positive,
the system is unstable. If both are negative, the system is stable. If they have opposite signs,
the system is saddle-path stable.

A NONDIAGONAL EXAMPLE When the system of ODEs is nondiagonal, we follow the same
steps to construct the phase diagram. As an example, consider the case

ẏ1(t) = 0.06 · y1(t) − y2(t) + 1.4

ẏ2(t) = −0.004 · y1(t) + 0.04
(A.21)

with the boundary conditions y1(0) = 1 and limt→∞[e−0.06t · y1(t)] = 0.
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The ẏ1 = 0 locus is the upward-sloping line y2 = 1.4 + 0.06 · y1. If we start at a point
on the ẏ1 = 0 schedule and increase y1 a bit, the right-hand side of the expression for ẏ1 in
equation (A.21) increases. Hence, ẏ1 becomes positive and y1 is increasing in that region.
The arrows in this region therefore point east. A symmetric argument implies that the arrows
point west for points to the left of the ẏ1 = 0 schedule.

The ẏ2 = 0 locus is given by y1 = 10, a vertical line; that is, this locus is independent of
y2. The expression for ẏ2 in equation (A.21) implies that if y1 rises, ẏ2 decreases. Hence,
to the right of the ẏ2 = 0 locus, ẏ2 is negative, and the arrows point south. The reverse is
true to the left of the locus.

The two loci divide the space into four regions, labeled 1 through 4 in figure A.7a. The
steady state is the point at which the two loci cross, a condition that corresponds in this
case to y∗

1 = 10 and y∗
2 = 2. In region 1, the combined arrows point southwest; in region 2,

northwest; in region 3, northeast; and in region 4, southeast.
To assess the stability properties of the system, we can ask the following question: From

how many of the four regions do the arrows allow the system to move toward the steady
state? If the answer is two, the system is saddle-path stable, and the saddle path is located
in these two regions.

Figure A.7a shows that the system can move toward the steady state if and only if it starts
in regions 1 and 3. Therefore, the system is saddle-path stable. The saddle path, located in
regions 1 and 3, goes through the steady state. If the system starts on this path, it converges
to the steady state. If it starts slightly above the saddle path in region 3—say, at point x0

in figure A.7a—it follows the arrows northeast for a while. The path eventually crosses the
ẏ1 = 0 locus, and the system then moves northwest, away from the steady state. We can
also show readily that the system diverges from the steady state if it starts below the stable
arm in region 3. In fact, the system diverges from the steady state if it begins at any point
that is not on the stable arm.

The exact path along which the system evolves depends on the boundary conditions. This
example specifies one initial and one terminal condition. The initial condition says that the
system starts somewhere on the vertical line y1 = 1. The terminal condition says that the
product of y1 and a term that goes to 0 at a rate of 0.06 per year goes to 0 as t goes to
infinity. If the system ends up in the steady state, y1 will be constant, so that the product
of a constant and a term that approaches zero will be zero. Hence, the terminal condition
will be satisfied if y1 approaches a constant in the long run. If the system does not end
up in the steady state, y1 will increase or decrease at an ever-increasing rate. (The arrows
move the economy away from the ẏ1 = 0 axis, and y1 grows in magnitude at an increasing
rate.) Since the product of a factor that decreases at rate of 0.06 per year and a factor whose
absolute value grows at ever-increasing rates is not 0, the terminal condition requires the
system to end up at the steady state. It follows that, because y1(0) is not at the steady state,
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Figure A.7
(a) The phase diagram in a nonlinear example with saddle-path stability. The figure shows the phase diagram
for the system in equation (A.21). This system is saddle-path stable. (b) The stable arm and the unstable arm.
This figure is generated by erasing the y1 = 0 and y2 = 0 schedules and the normal axes in figure A.7a. We are
left with the stable arm and the unstable arm.
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the corresponding value y2(0) must be the one that puts the system on the stable arm, as
shown in figure A.7a.

Suppose that we erase the normal axes and the ẏ1 = 0 and ẏ2 = 0 schedules, as shown in
figure A.7b. We are then left with the stable arm (with arrows pointing toward the steady
state) and the unstable arm (with arrows pointing away from the steady state). These two
lines divide the space into four regions with the corresponding dynamics as represented by
the arrows. Note the similarity between figure A.7b and figure A.6. We can, in fact, think of
figure A.7b as a distorted version of figure A.6. This perspective will allow us to interpret
the analytical solution to these systems.

A NONLINEAR EXAMPLE We conclude this section on phase diagrams with a nonlinear
example. Consider the following system:

k̇(t) = k(t)0.3 − c(t) (A.22)

ċ(t) = c(t) · [0.3 · k(t)−0.7 − 0.06] (A.23)

with boundary conditions k(0) = 1 and limt→∞[e−0.06t · k(t)] = 0. The main difference
between this system and the ones already considered is that the functional forms are now
nonlinear. However, to construct a phase diagram for nonlinear systems, we follow exactly
the same steps as before.

The k̇ = 0 locus is given from equation (A.22) by c = k0.3. If we put k on the horizontal
axis and c on the vertical, this locus is an upward-sloping and concave curve, as shown in
figure A.8. Consider a point slightly to the right of the k̇ = 0 locus; that is, with slightly
higher k and the same c. Equation (A.22) implies that the new point has a larger right-hand
side; hence, k̇ must be positive. Therefore, k rises to the right of the k̇ = 0 schedule and the
arrows point east. A symmetric argument shows that the arrows point west to the left of the
k̇ = 0 schedule.

The ċ = 0 schedule is given from equation (A.23) by k = 10, a vertical line (see figure A.8).
Consider a point to the right of the ċ = 0 locus; that is, with the same c and higher k.
Equation (A.23) implies ċ < 0; hence, the arrows point south. By a similar argument, the
arrows to the left of the ċ = 0 schedule point north.

We can now combine the dynamics for k and c. The steady state is the point at which the
k̇ = 0 and ċ = 0 loci cross, a condition that corresponds to k∗ = 10 and c∗ = 2. Figure A.8
shows that the arrows are such that the system approaches the steady state only from regions 1
and 3. We conclude that the system is saddle-path stable. The stable arm in this case is not
a linear function. It is still true, however, that the stable arm runs between regions 1 and 3
and goes through the steady state. The unstable arm moves between regions 2 and 4.
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Figure A.8
The phase diagram for a nonlinear model. The figure shows the phase diagram for the system in equations (A.22)
and (A.23). This system is saddle-path stable.

We can again use the boundary conditions to select the path that the system will follow.
In this example, the boundary conditions ensure that the system begins on the stable arm
and therefore approaches its steady state over time.

Analytical Solutions of Linear, Homogeneous Systems We now consider the analytical
solution to systems of linear ODEs. We start with the homogeneous case because the solution
to the general case is intensive in notation. The x(t) vector in equation (A.19) is then set to
0, so the system becomes

ẏ(t) = A · y(t) (A.24)

where y(t) is an n × 1 column vector of functions of time, yi (t), A is an n × n matrix of
constant coefficients, and ẏ(t) is the vector of time derivatives corresponding to y(t).

Imagine that there is an n × n matrix V with the property that if we premultiply A by
V −1 and postmultiply by V , we get a diagonal n × n matrix:

V −1 AV = D (A.25)

where D is a square matrix in which all the off-diagonal elements are 0. Section A.5 shows
that V and D may exist: they are, respectively, the matrix of eigenvectors and the diagonal
matrix of eigenvalues associated with A.3

3. A sufficient condition for the matrix A to be diagonalizable is for all the eigenvalues to be different. In this case,
the eigenvectors are linearly independent, so that det(V ) 
= 0 and V −1 exists.
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We can define the variables z(t) as

z(t) = V −1 · y(t)

Since V −1 is a matrix of constants, ż(t) = V −1 · ẏ(t). We can therefore rewrite the system
from equation (A.24) in terms of the transformed z(t) variables:

ż(t) = V −1 · ẏ(t) = V −1 A · y(t) = V −1 AV V −1 · y(t) = D · z(t) (A.26)

This system consists of n one-dimensional differential equations:

ż1(t) = α1 · z1(t)

ż2(t) = α2 · z2(t)

· · ·
żn(t) = αn · zn(t)

(A.27)

We showed in section A.2.2 that the solution for each of these differential equations
takes the form zi (t) = bi · eαi t , where each bi is an arbitrary constant of integration that is
determined by the boundary conditions (see equation [A.11]). We can express this result in
matrix notation as

z(t) = Eb (A.28)

where E is a diagonal matrix with eαi t in the i th diagonal term, and b is a column vector of
the constants bi .

We can transform the solution for the z variables back to the y variables by using the
relation y = V z. The solution for y is

y = V Eb

or, in nonmatrix notation,

yi (t) = vi1eα1t · b1 + vi2eα2t · b2 + · · · + vineαn t · bn (A.29)

In summary, the general method to solve a system of equations of the form of equa-
tion (A.24) is as follows:

1. Find the eigenvalues of the matrix A and call them α1, . . . , αn .

2. Find the corresponding eigenvectors and arrange them as columns in a matrix V .

3. The solution takes the form of equation (A.29).

4. Use the boundary conditions to determine the arbitrary constants of integration (bi ).
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The Relation Between the Graphical and Analytical Solutions We now relate the
graphical and analytical approaches to each other. Remember that when we constructed
the phase diagram, we suggested that if we erase the axes and the ẏi = 0 loci and look at
the remaining picture in figure A.7b, we get a distorted version of the picture in figure A.6,
for which the matrix A was diagonal. We saw also that the analytical solution involved a
diagonal matrix of eigenvalues. The similarities in the two approaches are no coincidence:
when we diagonalize a matrix we implicitly find a set of axes (or vector basis) on which the
linear application represented by A can be expressed as a diagonal matrix (see section A.5).
The new axes are the eigenvectors, and the elements in the corresponding diagonal matrix
are the eigenvalues.

The graphical solution to the system of equations is basically the same thing. The stable
and unstable arms correspond to the two eigenvectors. If we think of these two arms as a
new set of axes—that is, if we erase the old axes and the ẏi = 0 schedules—then the old
matrix A can be represented by the diagonal eigenvalue matrix. The phase diagram for the
nondiagonal case looks accordingly like a distorted version of the diagonal one.

Stability Recall that the stability properties of the diagonal examples depend on the
signs of the diagonal elements. Not surprisingly, therefore, the stability properties of the
nondiagonal system depend on the signs of its eigenvalues. Several possibilities arise:

1. The two eigenvalues are real and positive. In this case, the system is unstable.

2. The two eigenvalues are real and negative. In this case the system is stable.

3. The two eigenvalues are real with opposite signs. In this case, the system is saddle-path
stable. Furthermore, when the system is saddle-path stable, the stable arm corresponds
to the eigenvector associated with the negative eigenvalue.4 Similarly, the unstable arm
corresponds to the eigenvector associated with the positive eigenvalue. The intuition is
again that the axes associated with the diagonal matrix are given by the eigenvectors. As
we saw in the examples, when the system is diagonal, the axis associated with the negative
component of the diagonal matrix is the stable arm, and the axis associated with the positive
component is the unstable arm.

4. The two eigenvalues are complex with negative real parts. The system converges in this
case to the steady state in an oscillating manner (figure A.9a).

5. The two eigenvalues are complex with positive real parts. The system is unstable and
oscillating, as depicted in figure A.9b.

4. Throughout the book we will use interchangeably the terms eigenvector associated with negative eigenvalue
and negative eigenvector.
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Figure A.9
(a) Stable, oscillating dynamics. If the two eigenvalues are complex with negative real parts, then the system
converges to the steady state in an oscillating manner. (b) Unstable, oscillating dynamics. If the two eigenvalues
are complex with positive real parts, then the system diverges from the steady state in an oscillating manner.
(c) Oscillating dynamics. If the two eigenvalues are complex with 0 real parts, then the trajectories are ellipses
around the steady state. This system neither converges nor diverges.
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6. The two eigenvalues are complex with zero real parts. The trajectories are then ellipses
around the steady state, as shown in figure A.9c.

7. The two eigenvalues are equal. In this case, the matrix of eigenvectors cannot be inverted,
and the analytical solution outlined earlier in this section cannot be applied. The solution
in this case takes the form

yi (t) = (bi1 + bi2 · t) · eαt

where bi1 and bi2 are functions of the constants of integration and the coefficients in A, and
α is the unique eigenvalue. The solution is stable if α < 0 and unstable if α > 0.

We should mention that, in nonlinear systems, there is one more type of equilibrium
called a limit cycle. A stable limit cycle is one toward which trajectories converge, and an
unstable limit cycle is one from which trajectories diverge.

The stability properties of systems with higher dimensions are similar. If all eigenval-
ues are positive, the system is unstable. If all the eigenvalues are negative, the system is
stable. If the eigenvalues have different signs, the system is saddle-path stable. Since, as
argued before, the stable arm corresponds to the eigenvector(s) associated with the negative
eigenvalue(s), the dimension of the stable arm is the number of negative eigenvalues. For
instance, in a 3 × 3 system with one negative eigenvalue, the stable arm is a line going
through the steady state and corresponding to the negative eigenvector. If there are two neg-
ative eigenvalues, the stable manifold is a plane going through the steady state. This plane
is generated by the two negative eigenvalues. In an n × n system, the stable arm (sometimes
called the stable manifold) is a hyperplane generated by the associated eigenvectors, with
dimension equal to the number of negative eigenvalues.

Analytical Solutions of Linear, Nonhomogeneous Systems Consider now the nonho-
mogeneous system of differential equations,

ẏ(t) = A · y(t) + x(t) (A.30)

where y(t) is an n × 1 vector of functions of time, ẏ(t) is the corresponding vector of
time derivatives, A is an n × n matrix of constants, and x(t) is an n × 1 vector of known
functions of time, where these functions can be constants. The procedure to find the solutions
to equation (A.30) parallels the one that we used for the homogeneous case. Begin again with
the matrix V , composed of the eigenvectors of A, such that V −1 AV generates a diagonal
matrix D, which contains the eigenvalues of A. Transform the system by premultiplying
all terms by V −1 and then define z ≡ V −1 y to get

ż = V −1 ẏ = V −1 · (Ay + x) = V −1 AV V −1 y + V −1x = Dz + V −1x
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This matrix equation defines a system of n linear differential equations of the form

żi (t) = αi · zi (t) + V −1
i · x(t)

where V −1
i is the i th row of V −1. As we saw in section A.2.2, the solution to each of these

linear ODEs with fixed coefficients takes the form of equation (A.11):

zi (t) = eαi t ·
∫

e−αi τ · V −1
i · x(τ ) · dτ + eαi t · bi

for i = 1, . . . , n, where bi is again an arbitrary constant of integration. We can write these
solutions in matrix notation as

z = E X̂ + Eb (A.31)

where, again, E is a diagonal matrix of terms eαi t , X̂ is a column vector with integrals of
the form∫

e−αi τ · V −1
i · x(τ ) · dτ

as each of its elements, and b is a column vector of arbitrary constants. Once the time path
of z is known, we can find the time path of y by premultiplying z by V .

As an example, consider the system of ODEs in equation (A.21). In matrix notation, this
system can be written as[
ẏ1(t)

ẏ2(t)

]
=

[
0.06 −1

−0.004 0

]
•

[
y1(t)

y2(t)

]
+

[
1.4

0.04

]
(A.32)

with the boundary conditions y1(0) = 1 and

lim
t→∞[e−0.06·t · y1(t)] = 0

In this example, x is a vector of constants. In section A.5 we show how to find the eigenvalues
and eigenvectors associated with a matrix A. We find that the diagonal matrix of eigenvalues,
D, and the matrix of eigenvectors, V , are given by

D =
[

0.1 0
0 −0.4

]
, V =

[
1 1

−0.04 0.1

]

where

V −1 =
[

0.1/0.14 −1/0.14

0.04/0.14 1/0.14

]
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Define
z1

z2
= V −1 • y1

y2
. The system in terms of the new variables can be written as

ż1 = 0.1 · z1 + 10/14

ż2 = −0.04 · z2 + 9.6/14

a system of two differential equations that we know how to solve (see section A.2.2):

z1(t) = −100/14 + b1e0.1·t

z2(t) = 240/14 + b2e−0.04·t

where b1 and b2 are constants of integration, which have to be pinned down by the boundary
conditions. We can transform the solution for z1 and z2 into a solution for y1 and y2 by
premultiplying z by V to get

y1(t) = 10 + b1e0.1·t + b2e−0.04·t (A.33)

y2(t) = 2 − 0.04 · b1e0.1·t + 0.1 · b2e−0.04·t (A.34)

We now need to determine the values of the constants, b1 and b2. The initial condition
y1(0) = 1 implies b1 + b2 = − 9. We can multiply both sides of equation (A.33) by e−0.06·t ,
take limits as t goes to infinity, and use the terminal condition, limt→∞[e−0.06t · y1(t)] = 0,
to get

lim
t→∞[e−0.06·t · y1(t)] = lim

t→∞[10 · e−0.06·t + b1e0.04·t + b2e−0.1·t ] = 0

The first and third terms in the middle expression go to 0 as t goes to infinity, but the second
term approaches infinity unless b1 equals 0. Hence, the condition for the whole expression to
equal 0 is b1 = 0, which implies b2 = − 9. The exact solution to the system of ODEs is
therefore

y1(t) = 10 − 9 · e−0.04·t

y2(t) = 2 − 0.9 · e−0.04·t

Note that y1(t) equals 1 at t = 0, increases over time, and asymptotes to its steady-state
value, y∗

1 = 10 (see figure A.10a). The variable y2 equals 1.1 at t = 0, increases over time, and
asymptotes to its steady-state value, y∗

2 = 2 (see figure A.10b). In other words, the boundary
conditions select the initial value of y2 that causes the system to end up at its steady state.
In terms of figure A.7a, the value y2(0) is chosen so as to put the system on the stable

arm. At the initial point, [y1(0)
y2(0)

] = [ 1
1.1], the vector going toward the steady state is [ 9

0.9] or, by

normalizing the first element to unity, [ 1
0.1], the negative eigenvector. Hence, as noted before,
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y1(t)

Time

10

1

y2(t)

Time

2

1.1

(a) (b)

Figure A.10
(a) Solution for y1(t). The figure shows the solution for y1(t) in the system in equation (A.32). (b) Solution for
y2(t). The figure shows the solution for y2(t) in the system in equation (A.32).

the stable arm goes through the steady state and corresponds to the eigenvector associated
with the negative eigenvalue.

Linearization of Nonlinear Systems Many of the systems of ODEs that we encounter
in the book are nonlinear. In this case, we can use the phase-diagram techniques that we
discussed before, or alternatively, we can approximate the equations linearly by means of
Taylor-series expansions.

Consider the following system of ODEs:

ẏ1(t) = f 1[y1(t), . . . , yn(t)]

ẏ2(t) = f 2[y1(t), . . . , yn(t)]

. . .

ẏn(t) = f n[y1(t), . . . , yn(t)]

(A.35)

where the functions f 1(•), f 2(•), . . . , f n(•) are nonlinear. We can use a Taylor-series
expansion to study the system’s dynamics in the neighborhood of its steady state. (Taylor’s
theorem is in section A.6.2.) The first-order expansion can be written as

ẏ1(t) = f 1(•) + ( f 1)y1(•) · (y1 − y∗
1 ) + · · · + ( f 1)yn (•) · (yn − y∗

n ) + R1

· · ·
ẏn(t) = f n(•) + ( f n)y1(•) · (y1 − y∗

1 ) + · · · + ( f n)yn (•) · (yn − y∗
n ) + Rn

(A.36)

where f 1(•), . . . , f n(•) are the values of the functions f 1(•), . . . , f n(•) at the steady
state, and ( f 1)yi (•), . . . , ( f n)yi (•) are the partial derivatives with respect to yi at the steady
state. The terms Ri are the Taylor residuals. If the system is close to its steady state, these
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residuals are small and can be neglected. The convenience of linearizing around the steady
state is that, by definition of a steady state, the first element in each of the equations—
f 1(•), . . . , f n(•)—is 0; that is, the steady-state value of ẏi is zero for all i .

The linearized system in equation (A.36) can be written in matrix notation as

ẏ = A · (y − y∗) (A.37)

where A is an n × n matrix of constants corresponding to the first partial derivatives evalu-
ated at the steady state. This linear system is similar to those analyzed in previous sections.

Consider the example of the system of nonlinear equations that we have already studied
graphically,

k̇ = k0.3 − c (A.22)

ċ = c · (0.3 · k−0.7 − 0.06) (A.23)

with the boundary conditions k(0) = 1 and limt→∞[e−0.06t · k(t)] = 0. The steady-state
values are k∗ = 10 and c∗ = 2. We can linearize this system as follows:

k̇ = 0.3 · (k∗)−0.7 · (k − k∗) − (c − c∗) = 0.06 · k − c + 1.4

ċ = c∗ · [0.3 · (−0.7) · (k∗)−1.7] · (k − k∗) − 0 · (c − c∗) = −0.008 · k + 0.08
(A.38)

We know how to solve this linear system; in fact, we have already solved it! If we relabel
k and c as y1 and y2, respectively, then it coincides with the system in equation (A.32).

As a graphical intuition, consider the phase diagram that we constructed for the nonlinear
system defined by equations (A.22) and (A.23), as depicted in figure A.8. The loci in this
figure are nonlinear. Around the steady state, however, the ċ = 0 locus is vertical, and the
k̇ = 0 locus is upward sloping. We can approximate these two loci with a vertical line and
an upward-sloping line going through the same steady state. When the system is close to its
steady state, this approximation is good. The approximation deteriorates as we move away
from the steady state because the k̇ = 0 schedule is strictly concave. The dynamics of the
nonlinear system is similar to that of the linear system in the vicinity of the steady state.
In fact, at the steady state, the nonlinear stable arm corresponds to the negative eigenvector
of the linearized system. Qualitatively, we see by comparing figures A.7a and A.8 that the
two systems have similar dynamic properties.

The Time-Elimination Method for Nonlinear Systems In section A.2.3 we saw that
one way to get a qualitative solution to a system of nonlinear differential equations was to
use a phase diagram. The problem with this graphical approach is that it does not allow
us to evaluate the model quantitatively. Later in that section we worked out an analytical
solution to a linearized version of the system. The problem with this approach is that the
quantification is local, valid only as an approximation in the neighborhood of the steady
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state. This section describes a method to find global numerical solutions to a system of
ODEs. This method provides accurate results for a given configuration of parameters.

Consider again the system of nonlinear equations defined by equations (A.22) and (A.23):

k̇(t) = k(t)0.3 − c(t) (A.22)

ċ(t) = c(t) · [0.3 · k(t)−0.7 − 0.06] (A.23)

with the boundary conditions k(0) = 1 and limt→∞[e−0.06t · k(t)] = 0. The phase diagram
for this system is in figure A.8. If we knew the initial values, c(0) and k(0), then standard
numerical methods for solving differential equations would allow us to solve out for the
entire paths of c and k by integrating equations (A.22) and (A.23) with respect to time.5

The problem is that c(0) is unknown. Instead, we are given the transversality condition, a
restriction that forces the initial value of c to be on the stable arm. The challenge is to express
this condition in terms of the required value of c(0). The usual solution involves a method
called shooting. Start with a guess about c(0) and then work out the time paths implied by
the differential equations (A.22) and (A.23). Then check whether the time paths approach
the steady state and therefore satisfy the transversality condition. If the paths miss—as is
almost sure to be true on the first try—then the system eventually diverges from the steady
state. In this case, adjust the guess accordingly; reduce the conjectured value of c(0) if the
prior guess is too high, and vice versa. An approximation to the correct c(0) can be found
by iterating many times in this manner.

Mulligan and Sala-i-Martin (1991) worked out a much more efficient numerical technique
called the time-elimination method. The key to this method is to eliminate time from the
equations, just as we do when we construct a phase diagram. Recall that the stable arm
shown in figure A.8 expresses c as a function of k. In dynamic programming this function
is sometimes called the policy function. Imagine for a moment that we had a closed-form
solution to this policy function, c = c(k). In this case, we could use equation (A.22) to
express k̇ as a function of k: k̇ = k0.3 − c(k). Since we know k(0), we could use standard
numerical methods to solve this first-order differential equation in k. Once we knew the
path for k, we could determine the path for c (since we know the policy function, c[k]).

The time-elimination method provides a numerical technique for working out the pol-
icy function, c = c(k). The trick is to note that the slope of this function is given by the

5. When the boundary conditions of a problem take the form of a set of values for all the variables at a single point
in time, we call it an initial-value problem. For instance, the present problem would be an initial-value problem
if we replaced the transversality condition, limt→∞[e−0.06t · k(t)] = 0, with some value for c(0). In contrast, for
a boundary-value problem, the boundary conditions apply at different points in time. The present system is a
boundary-value problem because we are given an initial condition, k(0) = 1, which applies at t = 0, and a terminal
condition, limt→∞[e−0.06t · k(t)] = 0, which applies at t = ∞. Initial-value problems are much easier to solve
numerically.
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ratio of ċ to k̇:

dc/dk = c′(k) = ċ/k̇ = c(k) · [0.3 · k−0.7 − 0.06]

k0.3 − c(k)
(A.39)

where we used the formulas for k̇ and ċ from equations (A.22) and (A.23). Time does not
appear in equation (A.39); hence, the name time-elimination method.

Note that equation (A.39) is a differential equation in c, where the derivative, dc/dk, is
with respect to k rather than t . To solve this equation numerically by standard methods, we
need one boundary condition; that is, we have to know one point, (c, k), that lies on the
stable arm. Although we do not know the initial pair, [c(0), k(0)], we know that the policy
function goes through the steady state, (c∗, k∗). We can therefore start from this point and
then solve equation (A.39) numerically to determine the rest of the policy function.6 Note
that, by eliminating time, we transformed a difficult boundary-value problem into a much
easier initial-value problem.

Before we implement this method, there is one more problem that must be addressed.
The slope of the policy function at the steady state is

c′(k∗) = (ċ)∗/(k̇)∗ = 0/0

which is an indeterminate form. There are two ways to solve this problem. The first one uses
l’Hôpital’s rule for evaluating indeterminate forms (see section A.6.3). In this example, the
application of l’Hôpital’s rule yields

c′(k∗) = [c∗ · (−0.21) · (k∗)−1.7]/[0.3 · (k∗)−0.7 − c′(k∗)]

which implies a quadratic equation in c′(k):

[c′(k∗)]2 − [0.3 · (k∗)−0.7] · c′(k∗) − 0.21 · c∗ · (k∗)−1.7 = 0

This equation has two solutions for c′(k∗):

c′(k∗) = [0.3 · (k∗)−0.7 − {[0.3 · (k∗)−0.7]2 + 4 · (0.21) · c∗ · (k∗)−1.7}1/2]/2 (A.40)

c′(k∗) = [0.3 · (k∗)−0.7 + {[0.3 · (k∗)−0.7]2 + 4 · (0.21) · c∗ · (k∗)−1.7}1/2]/2 (A.41)

There are two solutions because there are two trajectories that go through the steady state: the
stable arm and the unstable arm. The phase diagram in figure A.8 suggests that the stable arm

6. We might have considered starting from the steady state and going backward in time to solve the original system
of two differential equations numerically. This idea does not work, however, because k̇ and ċ are 0 at the steady
state. Therefore, if we start at the steady state, we do not know how to move backward in time; that is, we cannot
tell from where we came.
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is upward sloping and the unstable arm is downward sloping. Since the slope of the stable
arm at the steady state is positive, it must be given by the solution in equation (A.41).

The second way to compute the steady-state is to realize that, at the steady state, the policy
function corresponds to the negative eigenvector. In other words, the slope of the negative
eigenvector coincides with the steady-state slope of the policy function. Hence, we can use
this value as the initial slope and then use equation (A.39) to compute the whole policy
function. The advantage of the eigenvalue method over the l’Hôpital’s rule method is that
it does not require prior qualitative information about the sign of the steady-state slope.

The time-elimination method can be readily extended to systems of three differential
equations with two controls and one state variable (see Mulligan and Sala-i-Martin, 1991,
1993). Consider a nonlinear system of equations,

ċ(t) = c[c(t), u(t), k(t)]

u̇(t) = u[c(t), u(t), k(t)] (A.42)

k̇(t) = k[c(t), u(t), k(t)]

where c(t) and u(t) are control variables, and k(t) is the state variable. Imagine that we
are given the initial value k(0) and two transversality conditions (which apply at t = ∞).
Suppose that the steady-state values are c∗, u∗, and k∗. Again, if we knew c(0) and u(0), we
could find the solution to equation (A.42) by integrating with respect to time. The problem,
however, is that c(0) and u(0) are unknown.

Imagine for the moment that we had closed-form expressions for c(k) and u(k), the
policy functions for the problem. In this case we could plug these two functions into the k̇
equation to get a single differential equation in k. Since we know k(0), the whole time path
for k(t) could be found by integrating this differential equation with respect to time. Once
we knew the path for k, we could determine the paths for c and u by plugging k(t) into the
two functions c(k) and u(k).

The time-elimination method provides a simple way to find c(k) and u(k) numerically.
Use the chain rule of calculus to eliminate time from equation (A.42) to get the slopes of
c(k) and u(k) as follows:

dc/dk = c′(k) = ċ/k̇ = c[c(k), u(k), k]

k[c(k), u(k), k]

du/dk = u′(k) = u̇/k̇ = u[c(k), u(k), k]

k[c(k), u(k), k]

(A.43)

We can solve this system numerically by using the steady state, (c∗, u∗, k∗), as the initial
condition. The steady-state slopes can be found by using l’Hôpital’s rule or by computing
the slope of the eigenvector associated with the negative eigenvalue.
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A.2 Static Optimization

A.2.1 Unconstrained Maxima

Consider a univariate real function u(•). We say that a function u(x) has a local maximum
at x if for all x in the neighborhood of x (that is, for all x in the interval [x − ε, x + ε],
where ε is some positive number), u(x) ≥ u(x). We say that u(x) has an absolute maximum7

at x if for all x in the domain of u, u(x) ≥ u(x).
Let u(x) be twice continuously differentiable in the closed interval [a, b] and let x in

the interior of [a, b] be a local maximum. A necessary condition for x to be an interior
local maximum is for the first derivative of u(•) evaluated at x to be 0, u′(x) = 0, and
for the second derivative to be nonpositive, u′′(x) ≤ 0. If u′(x) = 0 and u′′(x) ≤ 0, then x is
an interior local maximum. That is, if the objective function is strictly concave (a negative
second derivative), the necessary condition u′(x) = 0 is also a sufficient condition.

For practical purposes, if we want to find the maximum of a function in some interval, we
compute the first derivative of that function and find the values of x that satisfy the equation
u′(x) = 0. This condition gives us some candidate points, often called critical points. We
then compute the second derivative of u(•) and evaluate it at the critical points. If it is
negative, the critical point is a local maximum. We then compare the value u(x) with the
value of the function at each of the corners a and b. The absolute maximum of u(•) in the
interval [a, b] occurs at one of the x , a, or b, depending on which has the largest image.

The multidimensional case is similar to the unidimensional case that we just described.
Consider a function u : Rn → R, twice continuously differentiable. A necessary condition
for u(x) to have an interior local maximum at x (where x is now an n-dimensional vector,
x ≡ [x1, . . . , xn]) is for all the partial derivatives to vanish when evaluated at x . In other
words, just as in the unidimensional case, functions are “flat at the top.”

These necessary conditions are not sufficient, however, because local minima and saddle
points also satisfy them. As a parallel to the unidimensional case, a sufficient condition is
for the function u to be strictly concave at the critical point.8

7. A function u(•) achieves a minimum at point x if −u(•) achieves a maximum at that point. Hence, to analyze
minima of the function u(•), we can analyze maxima of −u(•).

8. One way to check strict concavity is to determine the definiteness of the Hessian, the matrix of second derivatives:
if the Hessian is negative definite, the function u is strictly concave. A matrix is negative definite if and only if
all its eigenvalues are negative. A matrix is negative semidefinite if and only if all its eigenvalues are nonpositive.
A matrix is positive definite if and only if all its eigenvalues are positive. A matrix is positive semidefinite if and
only if all its eigenvalues are nonnegative. A matrix is not definite if its eigenvalues do not all have the same signs.
As we argued in a previous section, if we want to know the signs of the eigenvalues, we do not necessarily have
to calculate them. For instance, in the 2 × 2 case, if the determinant of a matrix is negative, the eigenvalues must
have opposite signs, because the determinant of the matrix equals the product of its eigenvalues.
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A.2.2 Classical Nonlinear Programming: Equality Constraints

Suppose that we want to find the maximum of the function u : Rn → R, subject to the
constraint that the chosen point lie along a plane generated by the restriction g(x) = a,
where g : Rn → R, and x is an n-dimensional vector, x ≡ (x1, . . . , xn). That is, the problem
is

max
x1,...,xn

[u(x1, . . . , xn)], subject to g(x1, . . . , xn) = a (A.44)

We assume that u(•) and g(•) are twice continuously differentiable. One easy way to
solve this problem is to realize that the restriction describes an implicit function for x1:
x1 = x̃1(x2, . . . , xn). (We assume here that the restriction uniquely determines x1 for given
values of x2, . . . , xn .) We can plug the result for x1 into u(x) to get an unconstrained function
of (x2, . . . , xn):

u[x̃1(x2, . . . , xn), (x2, . . . , xn)] ≡ ũ(x2, . . . , xn) (A.45)

As just mentioned, the necessary condition for an unconstrained maximum of a function
is for all the partial derivatives to vanish. When taking partial derivatives of u(•) with respect
to each of the arguments xi , i = 2, . . . , n, we have to realize that u(•) depends on xi directly
and also indirectly through the dependence of x1 on xi . Hence, the necessary condition for
a constrained maximum is

∂ ũ(•)/∂xi = [∂u(•)/∂x1] · ∂ x̃1/∂xi + ∂u(•)/∂xi = 0 (A.46)

for i = 2, . . . , n. We can calculate the partial derivatives ∂ x̃1/∂xi from the implicit function
theorem (section A.6.1), ∂ x̃1/∂xi = − [∂g(•)/∂xi ]/[∂g(•)/∂x1]. By plugging this expres-
sion into equation (A.46) we get

∂g(•)/∂xi

∂g(•)/∂x1
= ∂u(•)/∂xi

∂u(•)/∂x1
(A.47)

Another way to satisfy these conditions is for each of the partial derivatives of g with
respect to xi to be proportional to the partial derivative of u with respect to xi , where the
constant of proportionality µ is the same for all i . This set of conditions can be written in
matrix notation as

Du(x) = µ · Dg(x) (A.48)

where x is an n-dimensional vector, and Dg and Du are the vectors of partial derivatives
of g and u with respect to each of their arguments (Dg ≡ [∂g(•)/∂x1, . . . , ∂g(•)/∂xn],
and analogously for Du). The vectors Dg and Du are called the gradients of g and u,
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Figure A.11
Solution to a maximization problem subject to equality constraints. The figure illustrates the solution from
equation (A.48), which involves a Lagrange multiplier, µ.

respectively. The gradient of a function u(•) evaluated at a point x is a vector perpendicular
to the tangent line of the function at that point (see figure A.11). Equation (A.48) says
that a necessary condition for x to be a maximum of the constrained problem is for the
gradient of the restriction to be proportional to the gradient of the objective function at that
point. The factor of proportionality is often called the Lagrange multiplier, µ. If we think of
u(•) as a utility function and g(•) = a as a budget constraint (total spending, g[•], equals
total income, a), then equation (A.48) is the familiar equality between marginal rates of
substitution and marginal rates of transformation (or relative prices).

A convenient device for the derivation of these first-order conditions is the Lagrangian,
which adds to the objective function a constant µ times the constraint:

L(•) = u(x1, . . . , xn) + µ · [a − g(x1, . . . , xn)] (A.49)

The first-order conditions in equation (A.48) are found by taking derivatives of the
Lagrangian with respect to each of its arguments. Note that the derivative with respect
to the Lagrange multiplier, µ, recovers the constraint.

To give an economic interpretation to the Lagrange multiplier, consider the change in
utility, u(•), when income, a, changes. The total change in utility is given by

du(•)/da =
n∑

i=1

[∂u(•)/∂xi ] · ∂xi/∂a

where ∂xi/∂a is the change in the optimal quantity of good xi when the constraint is relaxed
by the amount ∂a. We can use the first-order conditions in equation (A.48) to rewrite this
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expression as

du(•)/da =
n∑

i=1

µ · [∂g(•)/∂xi ] · ∂xi/∂a (A.50)

If we totally differentiate the budget constraint with respect to a, we get

dg(•)/da =
n∑

i=1

[∂g(•)/∂xi ] · ∂xi/∂a = 1

Substitution of this result into equation (A.50) implies

du(•)/da = µ (A.51)

In other words, the Lagrange multiplier, µ, represents the extra utility that the agent gets
when the constraint is relaxed by one unit. The Lagrange multiplier is therefore often
referred to as the shadow price or shadow value of the constraint. This interpretation is
important and will be used throughout the book.

A.2.3 Inequality Constraints: The Kuhn–Tucker Conditions

Imagine now that an agent faces m inequality restrictions of the form

gi (x1, . . . , xn) ≤ ai for i = 1, . . . , m

All the functions gi (•) are assumed to be twice continuously differentiable, and each ai is
constant. The problem can be written as

max
x1,...,xn

[u(x1, . . . , xn)], subject to

g1(x1, . . . , xn) ≤ a1

. . .

gm(x1, . . . , xn) ≤ am

(A.52)

Most economic constraints take the form shown in equation (A.52). For example, a budget
constraint does not require an agent to spend all of his income but says that he cannot spend
more than his income.

An easy way to solve the problem in equation (A.52) is to use the Kuhn–Tucker (1951)
theorem. The theorem says that if x = (x1, . . . , xn) is a solution to problem (A.52),9 then

9. An additional condition is that the “constraint qualification” be satisfied. This condition requires the gradients
of the constraints to be linearly independent.
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there exists a set of m Lagrange multipliers such that

(a) Du(•) =
m∑

i=1

µi · [Dgi (•)]

(b) gi (•) ≤ ai , µi ≥ 0

(c) µi · [ai − gi (•)] = 0

(A.53)

Condition (a) in equation (A.53) says that the gradient of the objective function must be a
linear combination of the gradients of the restrictions. The weights in this linear combination
are the Lagrange multipliers. In the particular case when there is only one restriction, m = 1,
this condition is equivalent to equation (A.48). Condition (b) in equation (A.53) says that
for x to be an optimum, the constraints have to be satisfied and the shadow prices must be
nonnegative. That is, Du(•) must lie on the cone generated by the Dgi (•).

Condition (c) in equation (A.53) is often called the complementary-slackness condition.
It says that the product of the shadow price and the constraint is 0. This condition means
that if the constraint gi (•) − ai is not binding (if it is not satisfied with strict equality), the
shadow price must be 0. That is, Dgi (•) receives no weight in the linear combination that
generates Du(•). In contrast, if the price is strictly positive, the constraint associated with
it must be binding.10

Consider the example in figure A.12. There are two constraints, g1(•) ≤ a1 and g2(•) ≤ a2.
The first constraint restricts the set of points in the space to lie between the curve labeled
g1 and the origin. Similarly, the second constraint restricts to the space between the curve
labeled g2 and the origin. The objective function can be represented by a set of indifference
curves labeled ui , which increase in the northeast direction. The gradients of the two con-
straints (which point in the direction perpendicular to the tangent at that particular point) are
labeled Dg1 and Dg2. Condition (a) says that if x is to be an optimum, the gradient of u(•)

must be a linear combination of the two gradients Dg1 and Dg2. Condition (b) says that the
linear combination must involve nonnegative weights. Graphically, these conditions mean
that the gradient of u must lie on the cone described by the gradients of the two constraints.

To understand the meaning of the complementary-slackness condition, imagine that the
preferences for a pair of goods take the form of a bell (figure A.13a). The indifference curves
are circles around a point that yields maximum utility. (This point would correspond to a
level of satiation beyond which agents would not like to go, no matter what the prices are.)
Suppose that the budget constraint lies to the left of this satiation point (see figure A.13b).

10. In economic terms, the complementary-slackness condition says that if a constraint is not binding (that is, if
it is unimportant) and we relax it by one unit, the attained utility does not change.
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Du

Figure A.12
Solution to a maximization problem subject to inequality constraints. The figure illustrates the solution to a
maximization problem of the form of equation (A.53) with two inequality constraints.

The agent would like to consume more of both goods, but the budget constraint does not
permit him or her to do so. Hence, the constraint is binding. The Kuhn–Tucker theorem
says that the gradient of the objective function at the optimum is proportional to the gradient
of the constraint. Since the gradient is perpendicular to the function, this condition means
that the maximum occurs at the tangency point.

Consider now what happens when the satiation point is fully inside the budget set
(figure A.13c). The individual clearly achieves maximum utility by remaining inside the
budget set. In other words, since the constraint is not binding, the agent behaves as if he
were not constrained. The Kuhn–Tucker theorem says that, at the optimum, the gradient of
the objective function is proportional to the gradient of the constraint. The complementary-
slackness condition says that when the constraint is not binding, the factor of proportionality
is 0. Hence, the gradient of the objective function must equal 0, the condition for an un-
constrained maximum. To summarize, the complementary-slackness condition says that if
a constraint is not binding, it will not affect the optimal choice.

The Kuhn–Tucker conditions can be read another way by writing the Lagrangian function
as

L(x1, . . . , xn; µ1, . . . , µm) = u(x1, . . . , xn) +
m∑

i=1

µi · [ai − gi (x1, . . . , xn)] (A.54)



Appendix on Mathematical Methods 603

u

x1

x2

(a)

Unconstrained
maximum

Constrained
maximum

Du � Dg

x2

x*
2

x*
1

x1

(b)

Constrained and
unconstrained maximum
at Du � 0

x2

x*
2

x*
1

x1

(c)

Figure A.13
(a) Preferences over two goods. The indifference curves for x1 and x2 are assumed to take the form of a bell.
(b) Maximizing utility subject to a binding inequality constraint. In this example, the budget constraint for x1
and x2 is binding. (c) Maximizing utility subject to a nonbinding inequality constraint. In this example, the
budget constraint for x1 and x2 is not binding.

Condition (a) in equation (A.53) says that a necessary condition for the vector x to be a
maximum of the constrained problem is for it to be a maximum of the associated Lagrangian.
Conditions (b) and (c) in equation (A.53) say that, at the optimum, the Lagrangian has a
minimum with respect to the vector µ ≡ (µ1, . . . , µm). (Condition [b] says that the two
components in [c] are nonnegative; hence, the product of the two is minimized at 0.) Taken
together, conditions (a)–(c) in equation (A.53) say that a necessary condition for x to be
an optimum is for the Lagrangian to have a saddle point at (x, µ); that is, a maximum with
respect to x and a minimum with respect to µ.
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Conditions (a)–(c) in equation (A.53) are the set of necessary conditions from the Kuhn–
Tucker theorem; if a point is to be an optimum, it must satisfy them. If the objective function
u(•) is concave and the constraints form a convex set, the necessary conditions are also
sufficient.11

A.3 Dynamic Optimization in Continuous Time

A.3.1 Introduction

Mathematicians have long worried about dynamic problems. It is commonly thought that
the first person to solve one of these problems was Bernoulli in 1696. Euler and Lagrange
also worked with dynamic problems. Most applications of their theoretical findings were
in physics, especially as related to Hamilton’s principle or the principle of least action.
Economists have been interested in dynamic problems since at least the work of Hotelling
and Ramsey in the 1920s. It was not until the 1960s, however, that dynamic mathemat-
ical techniques were widely introduced into economics, mainly in the work of the neo-
classical growth theorists. These techniques are now part of the toolbox of most modern
economists.

The methodology that classical mathematicians used to solve dynamic problems is known
as the calculus of variations. This approach has since been generalized in two ways. First,
Richard Bellman, an American mathematician, developed the method of dynamic pro-
gramming in the 1950s. This method is especially suited to discrete-time problems and
is particularly useful for stochastic models. Second, also in the 1950s, a team of Russian
mathematicians led by L. Pontryagin developed the maximum principle of optimal control.
(The first English translation of this work did not appear, however, until 1962.)

In this chapter, we demonstrate how to use Pontryagin’s technique. The maximum prin-
ciple is a generalization of the classical calculus of variations in that it provides solutions
to problems in which one or more of the constraints involve the derivatives of some of the
state variables. This type of constraint is central to the theory of economic growth.

Our goal in this section is not to prove the maximum principle but, rather, to provide a
heuristic derivation along with a description of the procedure that we follow to use the
solutions. This approach will provide us with a set of tools that will allow us to solve the
various dynamic models that will be encountered in the book.12

11. A slightly less restrictive set of sufficient conditions is given by Arrow and Enthoven (1961): they require the
objective function to be quasi-concave, that is, to exhibit convex upper-level sets.

12. A full proof of the maximum principle is in Pontryagin et al. (1962).
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A.3.2 The Typical Problem

The typical problem that we want to solve takes the following form. The agent chooses or
controls a number of variables, called control variables,13 so as to maximize an objective
function subject to some constraints. These constraints are dynamic in that they describe
the evolution of the state of the economy, as represented by a set of state variables, over
time. The problem is given by

max
c(t)

V (0) =
∫ T

0
v[k(t), c(t), t] · dt, subject to

(a) k̇(t) = g[k(t), c(t), t]

(b) k(0) = k0 > 0

(c) k(T ) · e−r̄(T )·T ≥ 0

(A.55)

where V (0) is the value of the objective function as seen from the initial moment 0, r(t) is
an average discount rate that applies between dates 0 and t , and T is the terminal planning
date, which could be finite or infinite. We discuss the difference between a finite and an
infinite horizon in section A.4.7.

The variable k(t)—which appears with an overdot in part (a) of equation (A.55)—is the
state variable, and the variable c(t) is the control variable. Each of these variables is a
function of time. The objective function in equation (A.55) is the integral of instantaneous
felicity functions, v(•),14 over the interval from 0 to T . These felicity functions depend on
the state and control variables, k(t) and c(t), and on time, t .

The accumulation constraint in part (a) of equation (A.55) is a differential equation in k(t);
this constraint shows how the choice of the control variable, c(t), translates into a pattern
of movement for the state variable, k(t). The expression for k̇(t) is called the transition
equation or equation of motion. Although we have only one transition equation, there is a
continuum of constraints, one for every point in time between 0 and T .15

The initial condition in part (b) of equation (A.55) says that the state variable, k(t), begins
at a given value, k0. The final constraint, in part (c) of equation (A.55), says that the chosen

13. Pontryagin et al. (1962) call these control variables steering variables.

14. Examples of felicity functions are utility functions of consumers, profit functions of firms, and objective
functions of governments. To fix ideas, in this chapter we identify them with utility functions.

15. This accumulation equation could be cast as an inequality restriction, k̇ ≤ g(•). Typically, individuals will
not find it optimal to satisfy this restriction with strict inequality because it will be advantageous to increase c(t)
to raise the current flow of utility or to increase k(t) to raise the future flows of utility. We therefore leave the
restriction as an equality.
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value of the state variable at the end of the planning horizon, k(T ), discounted at the rate
r(T ), must be nonnegative. For finite values of T , this constraint implies k(T ) ≥ 0, as long
as the discount rate r(T ) is positive and finite. If k(t) represents a person’s net assets and T
the person’s lifetime, the constraint in part (c) of equation (A.55) precludes dying in debt. If
the planning horizon is infinite, the condition says that net assets can be negative and grow
forever in magnitude, as long as the rate of growth is less than r(t). This constraint rules
out chain letters or Ponzi schemes for debt.

An economic example of a dynamic problem of this kind is a growth model in which
v(•) is an instantaneous utility function that depends on the level of consumption and is
discounted by a time-preference factor,

v(k, c, t) = e−ρt · u[c(t)] (A.56)

In this example, v(•) does not depend on the capital stock, k(t), and depends directly on
time only through the discount factor, e−ρt . The constraint describes the accumulation of
the variable k(t). If we think of k(t) as physical capital, an example of such a constraint is

k̇ = g[k(t), c(t), t] = f [k(t), t] − c(t) − δ · k(t) (A.57)

where δ is the fraction of the capital stock that depreciates at every instant. Equation (A.57)
says that the increase in the capital stock (net investment) equals total saving minus depre-
ciation. Total saving, in turn, equals the difference between output, f (•), and consumption,
c(t). The dependence of production on t , for given k(t), could reflect the state of technology
or knowledge at a given point in time.

A.3.3 Heuristic Derivation of the First-Order Conditions

A formal proof of the maximum principle is outside the scope of this book; we will instead
provide a heuristic derivation. Readers who are interested only in the procedure for finding
the first-order conditions, and not in the derivation, can skip sections A.4.3–A.4.9 and go
directly to section A.4.10.

The starting point is the static method for solving nonlinear optimization problems, the
Kuhn–Tucker Theorem. This theorem, described in section A.3.3, suggests the construction
of a Lagrangian of the form,

L =
∫ T

0
v[k(t), c(t), t] · dt +

∫ T

0
{µ(t) · (g[k(t), c(t), t] − k̇(t))} · dt + ν · k(T ) · er̄(T ) · T

(A.58)

where µ(t) is the Lagrange multiplier associated with the constraint in part (a) of equa-
tion (A.55), and ν is the multiplier associated with the constraint in part (c) of



Appendix on Mathematical Methods 607

equation (A.55).16 Since there is a continuum of constraints from part (a), one for each
instant t between 0 and T , there is a corresponding continuum of Lagrange multipliers,
µ(t). The µ(t) are called costate variables or dynamic Lagrange multipliers. Following
the parallel with the static case, these costate variables can be interpreted as shadow prices:
µ(t) is the price or value of an extra unit of capital stock at time t in units of utility at time 0.
Since each of the constraints, g(•) − k̇, equals 0, each of the products, µ(t) · [g(•) − k̇],
also equals 0. It follows that the “sum” of all of the constraints equals 0:

∫ T

0
{µ(t) · (g[k(t), c(t), t] − k̇(t))} · dt = 0

This expression appears in the middle of equation (A.58).
To find the set of first-order necessary conditions in a static problem, we would maximize

L with respect to c(t) and k(t) for all t between 0 and T . The problem with this procedure is
that we do not know how to take the derivative of k̇ with respect to k. To avoid this problem,
we can rewrite the Lagrangian by integrating the term µ(t) · k̇(t) by parts to get17

L =
∫ T

0
(v[k(t), c(t), t] + µ(t) · g[k(t), c(t), t]) dt

+
∫ T

0
µ(t)k(t) dt + µ(0)k0 − µ(T )k(T ) + νk(T )e−r̄(T )T (A.59)

The expression inside the first integral is called the Hamiltonian function,

H(k, c, t, µ) ≡ v(k, c, t) + µ · g(k, c, t) (A.60)

The Hamiltonian function has an economic interpretation (see Dorfman, 1969). At an instant
in time, the agent consumes c(t) and owns a stock of capital k(t). These two variables affect
utility through two channels. First, the direct contribution of consumption, and perhaps
capital, to utility, is captured by the term v(•) in equation (A.60). Second, the choice
of consumption affects the change in the capital stock in accordance with the transition
equation for k̇ in part (a) of equation (A.55). The value of this change in the capital stock

16. We would also have the constraints c(t) ≥ 0, but commonly assumed forms of the utility function imply that
these constraints will not be binding. We therefore ignore these inequality restrictions in the present discussion.

17. To integrate
∫ T

0
(k̇) · µ dt by parts, start with (d/dt)(µk) = µ̇k + k̇µ. Integrate both sides of this expression

between 0 and T and note that
∫ T

0
(d/dt)(kµ) · dt = k(T ) · µ(T ) − k(0) · µ(0). From this expression, subtract

the integral of kµ̇ to get
∫ T

0
(k̇) · µ dt = k(T ) · µ(T ) − k(0) · µ(0) −

∫ T

0
(µ̇) · k dt , which is the expression used

to compute equation (A.59). See sections A.6.4 and A.6.5 for further discussion.
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is the term µ · g(•) in equation (A.60). Hence, for a given value of the shadow price, µ, the
Hamiltonian captures the total contribution to utility from the choice of c(t).

Rewrite the Lagrangian from equation (A.59) as

L =
∫ T

0
{H [k(t), c(t), t] + µ̇(t) · k(t)} · dt + µ(0) · k0 − µ(T ) · k(T ) + ν · k(T ) · e−r(T ) · T

(A.61)

Let c(t) and k(t) be the optimal time paths for the control and state variables, respectively.
If we perturb the optimal path c(t) by an arbitrary perturbation function, p1(t), we can
generate a neighboring path for the control variable,

c(t) = c(t) + ε · p1(t)

When c(t) is thus perturbed, there must be a corresponding perturbation to k(t) and k(T )

so as to satisfy the budget constraint:

k(t) = k(t) + ε · p2(t)

k(T ) = k(T ) + ε · dk(T )

If the initial paths are optimal, then ∂L/∂ε should equal 0. Before we compute such a
derivative, it will be convenient to rewrite the Lagrangian in terms of ε:

L(·, ε) =
∫ T

0
{H [k(•, ε); c(•, ε)] + µ̇(•) · k(•, ε)} · dt

+ µ(0) · k0 − µ(T ) · k(T, ε) + ν · k(T, ε) · e−r̄(T )·T

We can now take the derivative of the Lagrangian with respect to ε and set it to 0:

∂L/∂ε =
∫ T

0
[∂ H/∂ε + µ̇ · ∂k/∂ε] · dt + [νe−r̄(T )T − µ(T )] · ∂k(T, ε)/∂ε = 0

The chain rule of calculus implies ∂ H/∂ε = [∂ H/∂c] · p1(t) + [∂ H/∂k] · p2(t) and
∂k(T, ε)/∂ε = dk(T ). Use these formulas and rearrange terms in the expression for ∂L/∂ε

to get

∂L/∂ε =
∫ T

0
{[∂ H/∂c] · p1(t) + [∂ H/∂k + µ̇] · p2(t)} · dt

+ [ν · e−r̄(T )T − µ(T )] · dk(T ) = 0 (A.62)
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Equation (A.62) can hold for all perturbation paths, described by p1(t), p2(t), and dk(T ),
only if each of the components in the equation vanishes, that is,

∂ H/∂c = 0 (A.63)

∂ H/∂k + µ̇ = 0 (A.64)

ν · e−r̄(T )·T = µ(T ) (A.65)

The first-order condition with respect to the control variable in equation (A.63) says that
if c(t) and k(t) are a solution to the dynamic problem, the derivative of the Hamiltonian
with respect to the control c equals 0 for all t . This result is called the maximum principle.
Equation (A.64) says that the partial derivative of the Hamiltonian with respect to the
state variable equals the negative of the derivative of the multiplier, −µ̇. This result and
the transition equation in part (a) of equation (A.55) are often called the Euler equations.
Finally, equation (A.65) says that the costate variable at the terminal date, µ, equals ν, the
static Lagrange multiplier associated with the nonnegativity constraint on k at the terminal
date, discounted at the rate r̄(T ).

A.3.4 Transversality Conditions

Section A.3.3 showed that the Kuhn–Tucker necessary first-order conditions include a
complementary-slackness condition associated with the inequality constraints. In the static
problem, these conditions say that if a restriction is not binding, the shadow price associated
with it is 0. In the present dynamic problem, there is an inequality constraint that says that the
stock of capital left at the end of the planning period, discounted at the rate r̄(T ), cannot be
negative, k(T ) ·e−r̄(T )·T ≥ 0. The condition associated with this constraint requires ν ·k(T ) ·
e−r̄(T )·T = 0, with ν ≥ 0. Equation (A.65) implies that we can rewrite this complementary-
slackness condition as

µ(T ) · k(T ) = 0 (A.66)

This boundary condition is often called the transversality condition. It says that if the
quantity of capital left is positive, k(T ) > 0, its price must be 0, µ(T ) = 0. Alternatively, if
capital at the terminal date has a positive value, µ(T ) > 0, the agent must leave no capital,
k(T ) = 0. We discuss later the meaning of equation (A.66) when T is infinite.

A.3.5 The Behavior of the Hamiltonian over Time

To see how the optimal value of the Hamiltonian behaves over time, take the total derivative
of H with respect to t to get

d H(k, c, µ, t)/dt = [∂ H/∂k] · k̇ + [∂ H/∂c · ċ] + [∂ H/∂µ] · µ̇ + ∂ H/∂t (A.67)
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The first-order condition in equation (A.63) implies that, at the optimum, ∂ H/∂c = 0; hence,
the second term on the right-hand side of equation (A.67) equals 0. Equation (A.64) requires
∂ H/∂k = − µ̇. Since ∂ H/∂µ = g = k̇, the first and third terms on the right-hand side of
equation (A.67) cancel. Hence, at the optimum, the total derivative of the Hamiltonian with
respect to time equals the partial derivative, ∂ H/∂t . If the problem is autonomous—that
is, if neither the objective function nor the constraints depend directly on time—then the
derivative of the Hamiltonian with respect to time is 0. In other words, the Hamiltonian
associated with autonomous problems is constant at all points in time. These results on the
behavior of the Hamiltonian will be used later in this appendix.

A.3.6 Sufficient Conditions

In a static, nonlinear maximization problem, the Kuhn–Tucker necessary conditions are also
sufficient when the objective function is concave and the restrictions generate a convex set.
Mangasarian (1966) extends this result to dynamic problems and shows that if the functions
v(•) and g(•) in equation (A.55) are both concave in k and c, then the necessary conditions
are also sufficient. This sufficiency result is easy to use but is somewhat restrictive.

More general sufficiency conditions are given by Arrow and Kurz (1970). Define
H 0(k, µ, t) to be the maximum of H(k, c, µ, t) with respect to c, given k, µ, and t . The
Arrow–Kurz theorem says that if H 0(k, µ, t) is concave in k, for given µ and t , then
the necessary conditions are also sufficient. Concavity of v(•) and g(•) is sufficient, but
not necessary, for the Arrow–Kurz condition to be satisfied. The disadvantage of this more
general result is that checking the properties of a derived function, such as H 0, tends to be
harder than checking the properties of v(•) and g(•).

A.3.7 Infinite Horizons

Most of the growth models that we discuss in the book involve economic agents with infinite
planning horizons. The typical problem takes the form

max
c(t)

V (0) =
∫ ∞

0
v[k(t), c(t), t] · dt, subject to

(a) k̇(t) = g[k(t), c(t), t]

(b) k(t) = k0

(c) lim
t→∞[k(t) · e−r̄(t)·t ] ≥ 0

(A.68)

The only difference between equation (A.68) and equation (A.55) is that the planning
horizon—the number on top of the integral—in equation (A.68) is infinity, rather than
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T < ∞. The first-order conditions for the infinite-horizon problem are the same as those
for the finite horizon case, equations (A.63) and (A.64). The key difference is that the
transversality condition, shown in equation (A.66), applies not to a finite T , but to the limit
as T tends to infinity. In other words, the transversality condition is now

lim
t→∞[µ(t) · k(t)] = 0 (A.69)

The intuitive explanation for the new condition is that the value of the capital stock must
be asymptotically 0; otherwise, something valuable would be left over. If the quantity k(t)
remains positive asymptotically, then the price, µ(t), must approach 0 asymptotically. If
k(t) grows forever at a positive rate—as occurs in some of the models that we study in this
book—then the price µ(t) must approach 0 at a faster rate so that the product, µ(t) · k(t),
goes to 0.

Although equation (A.69) has intuitive appeal as the limiting version of equation (A.66),
there is disagreement over the conditions under which equation (A.69) is actually a necessary
condition for the infinite-horizon problem in equation (A.68). Recall that the only argument
we gave for its validity was the analogue to the transversality condition in the finite-horizon
case. Some researchers have found counterexamples in which equation (A.69) is not a
necessary condition for optimization. In section A.4.9 we discuss one of these examples.

One transversality condition that always applies was found by Michel (1982). He argues
that the transversality condition requires the value of the Hamiltonian to approach 0 as t
goes to infinity:

lim
t→∞[H(t)] = 0 (A.70)

We can derive this transversality condition if we follow Michel and think of the infinite-
horizon case as a setting in which the agent chooses the terminal date, T . If we perturb
the terminal date T in equation (A.61) by ε · dT , we find that the limit of integration now
depends on ε. When we take derivatives of the Lagrangian with respect to ε, we find that one
of the terms in equation (A.62) is H(T ) · dT . This term comes from taking the derivative
of the limit of integration, T (ε), with respect to ε. As with all the terms in equation (A.62),
this one will have to be 0 at the optimum. If the terminal date is fixed, so that dT = 0, then
H(T ) can take on any value. But if the terminal date is variable, so that dT is nonzero,
then H(T ) must vanish. If we take the limit as T goes to infinity, we get the transversality
condition in equation (A.70). This condition is redundant in most of the models that we
study in the book because it will be satisfied whenever equation (A.69) is satisfied. Thus,
in most cases, we can use equation (A.69) and ignore equation (A.70).
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A.3.8 Example: The Neoclassical Growth Model

We consider here the example of the neoclassical growth model with a Cobb–Douglas
production function. (See chapter 2 for more details.) Assume that economic agents choose
the path of consumption, c(t), and capital, k(t), so as to maximize the objective function,

U (0) =
∫ ∞

0
e−ρt · log[c(t)] · dt

(a) k̇(t) = [k(t)α − c(t) − δ · k(t)]

(b) k(0) = 1

(c) lim
t→∞[k(t) · e−r̄(t)·t ] ≥ 0

(A.71)

where α is a constant with 0 < α < 1. We normalize the initial capital k(0) to unity. The
interest rate, r(t), equals the net marginal product of capital, α ·k(t)α−1 − δ, and the average
interest rate, r̄(t), equals (1/t) · ∫ t

0 r(v) · dv.
The agent can be thought of as a household-producer who wants to maximize utility,

represented as the present discounted value of a stream of instantaneous felicities. Each
of these felicities depends on the instantaneous flow of consumption. The felicity function
is assumed in equation (A.71) to be logarithmic. The discount rate is ρ > 0 . The agent has
access to the technology (the Cobb–Douglas form described in chapter 1) that transforms
capital into output according to y(t) = [k(t)]α . The accumulation constraint in part (a)
of equation (A.71) says that total output has to be divided between consumption, c(t),
depreciation, δ · k(t), and capital accumulation, k̇(t). The initial condition in part (b) of
equation (A.71) says that the capital stock at time 0 is 1. The restriction in part (c) of
equation (A.71) says that the capital stock left over at the “end of the planning horizon,” when
discounted at the average interest rate, r̄(t), is nonnegative. (If k[t] represents household
assets, this condition precludes chain-letter policies in which debt accumulates forever at a
rate at least as high as the interest rate.)

To solve the optimization problem, set up the Hamiltonian,

H(c, k, t, µ) = e−ρt · log(c) + µ · (kα − c − δk) (A.72)

Equations (A.63) and (A.64) imply that the first-order conditions are

Hc = e−ρt · (1/c) − µ = 0 (A.73)

Hk = µ · (αkα−1 − δ) = −µ̇ (A.74)

and equation (A.69) implies that the transversality condition is

lim
t→∞[µ(t) · k(t)] = 0 (A.75)
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Equation (A.74) and the transition relation in part (a) of equation (A.71) form a system
of ODEs in which µ̇ and k̇ depend on µ, k, and c. Equation (A.73) relates µ to c, so that we
can eliminate one of these two variables from the system. If we eliminate µ and take logs
and time derivatives of equation (A.73), we get

−ρ − ċ/c = µ̇/µ

We can substitute this result into equation (A.74) to eliminate µ̇/µ to get

ċ/c = (αkα−1 − ρ − δ) (A.76)

This condition says that consumption accumulates at a rate equal to the difference between
the net marginal product of capital, αkα−1 − δ, and the discount rate, ρ.

Part (a) of equation (A.71) and equation (A.76) form a system of nonlinear ODEs in k
and c. In the steady state, the term αkα−1 equals ρ + δ, which determines the steady-state
capital stock as k∗ = [(ρ + δ)/α]−1/(1−α). Part (a) of equation (A.71) then determines
the steady-state level of consumption as c∗ = (k∗)α − δk∗. Equation (A.74) implies that, as
t goes to infinity, µ̇/µ tends to −ρ, so that µ(t) tends to µ(0) · e−ρt . The transversality
condition in equation (A.75) can therefore be expressed as

lim
t→∞[e−ρt · k(t)] = 0 (A.77)

Equation (A.77) provides a terminal condition, which, together with the initial condition
k(0) = 1, yields the exact solution to the system of ODEs.

If we set ρ = 0.06, δ = 0, and α = 0.3, this system corresponds to the nonlinear system
that we studied in section A.2.3 with equations (A.22) and (A.23) and linearized later in that
section with equation (A.38). We know from before that this system exhibits saddle-path
stability, and the initial and terminal conditions ensure that the economy starts exactly on
the stable arm. We use more complicated versions of this model in the text.

Finally, we can verify that the preceding conditions imply that the steady-state value of
the Hamiltonian is 0, as implied by equation (A.70):

lim
t→∞[H(t)] = lim

t→∞{e−ρt · log[c(t)]} + lim
t→∞{µ(t) · [k(t)α − c(t) − δ · k(t)]}

= log(c∗) · lim
t→∞(e−ρt ) + 0 · lim

t→∞[µ(t)] = 0 + 0 = 0

Hence, although equation (A.70) is a necessary condition for optimization, it is already
implied by the other conditions.

A.3.9 Transversality Conditions in Infinite-Horizon Problems

The transversality condition in equation (A.75) is not universally accepted as a necessary
condition for the infinite-horizon problem. Halkin (1974) provides an example in which
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the optimum does not satisfy the transversality condition.18 An even more famous coun-
terexample is the neoclassical growth model of Ramsey (1928). The difference between the
original Ramsey model and the one described in the last section is that Ramsey assumed
no discounting. His version of the model is

U (0) =
∫ ∞

0
log[c(t)] · dt

(a) k̇(t) = [k(t)α − c(t) − δ · k(t)]

(b) k(0) = 1

(c) lim
t→∞[k(t)] ≥ 0

(A.78)

The main difference from before, equation (A.71), is that ρ has now been set to 0. An im-
mediate problem with equation (A.78) is that, if c(t) asymptotically approaches a constant
(as in the previous problem), then utility is not bounded. To solve this problem, Ramsey
rewrote the integrand as the deviation from a “bliss point.” This revised specification will re-
sult in bounded utility if the deviation from the bliss point approaches 0 at a fast enough rate.

We found in the previous section that steady-state consumption converged to a constant,
given by c∗ = (k∗)α − δk∗, where k∗ satisfied α · (k∗)α−1 = (ρ + δ). We therefore begin
with the conjecture that steady-state consumption in the present model will be c̃ = k̃α − δk̃,
where k̃ satisfies αk̃α−1 = δ. The corresponding Ramseylike objective function is

U (0) =
∫ ∞

0
(log[c(t)] − log[c̃]) · dt (A.79)

To solve the problem of maximizing U (0), as given in equation (A.79), set up the
Hamiltonian,

H(c, k, µ) = [log(c) − log(c̃)] + µ · (kα − c − δk) (A.80)

The first-order conditions are

Hc = 1/c − µ = 0 (A.81)

Hk = µ · (αkα−1 − δ) = −µ̇ (A.82)

which correspond to equations (A.73) and (A.74).

18. This example was first presented in Arrow and Kurz (1970, p. 46). They mention, however, that the idea came
from Halkin, who published the result later in Econometrica.
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If c tends to c̃ as t approaches infinity, equation (A.81) implies

lim
t→∞[µ(t)] = 1/c̃ > 0 (A.83)

Since limt→∞[k(t)] = k̃ > 0, it follows that limt→∞[µ(t) · k(t)] 
= 0; hence, the usual
transversality condition in equation (A.75) is violated.

The literature has a number of examples of this sort in which the standard transversality
condition is not a necessary condition for optimization. Pitchford (1977) observes that all
known cases involve no time discounting. Weitzman (1973) shows that, for discrete-time
problems, a transversality condition analogous to equation (A.75) is necessary when there is
time discounting and the objective function converges. Benveniste and Scheinkman (1982)
show that this result holds also in continuous time.

All the models discussed in this book feature time discounting and an objective function
that converges. We therefore assume that the transversality condition in equation (A.75) is
a necessary condition for optimization in our infinite-horizon problems.

A.3.10 Summary of the Procedure to Find the First-Order Conditions

Instead of going through the whole derivation every time we encounter a dynamic problem,
we shall use the following cookbook procedure.

Step one: Construct a Hamiltonian function by adding to the felicity function, v(•), a
Lagrange multiplier times the right-hand side of the transition equation:

H = v(k, c, t) + µ(t) · g(k, c, t) (A.84)

Step two: Take the derivative of the Hamiltonian with respect to the control variable and set
it to 0:

∂ H/∂c = ∂v/∂c + µ · ∂g/∂c = 0 (A.85)

Step three: Take the derivative of the Hamiltonian with respect to the state variable (the
variable that appears with an overdot in the transition equation) and set it to equal the
negative of the derivative of the multiplier with respect to time:

∂ H/∂k ≡ ∂v/∂k + µ · ∂g/∂k = −µ̇ (A.86)

Step four (transversality condition):

Case 1: Finite horizons. Set the product of the shadow price and the capital stock at the end
of the planning horizon to 0:

µ(T ) · k(T ) = 0 (A.87)
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Case 2: Infinite horizons with discounting. The transversality condition is

lim
t→∞[µ(t) · k(t)] = 0 (A.88)

Case 3: Infinite horizons without discounting. The Ramsey counterexample shows that
equation (A.88) need not apply. In this case, we use Michel’s condition,

lim
t→∞[H(t)] = 0 (A.89)

If we combine equations (A.85) and (A.86) with the transition equation from part (a) of
equation (A.55), we can form a system of two differential equations in the variables µ and
k. Alternatively, we can use equation (A.85) to transform the ODE for µ̇ into an ODE for ċ.
For the system to be determinate, we need two boundary conditions. One initial condition
is given by the starting value of the state variable, k(0). One terminal condition is given by
the transversality condition, equation (A.87), (A.88), or (A.89), depending on the nature of
the problem.

A.3.11 Present-Value and Current-Value Hamiltonians

Most of the models that we deal with in this book have an objective function of the form,

∫ T

0
v[k(t), c(t), t] · dt =

∫ T

0
e−ρt · u[k(t), c(t)] · dt (A.90)

where ρ is a constant discount rate, and e−ρt is a discount factor. Once the discount factor
is taken into account, the instantaneous felicity function does not depend directly on time.
If the constraints are the ones assumed before, we can solve the problem by constructing
the Hamiltonian,

H = e−ρt · u(k, c) + µ · g(k, c, t)

In this formulation, the shadow price µ(t) represents the value of the capital stock at time t
in units of time-zero utils.

It is sometimes convenient to restructure the problem in terms of current-value prices;
that is, prices of the capital stock at time t in units of time-t utils. To accomplish this
restructuring, rewrite the Hamiltonian as

H = e−ρt · [u(k, c) + q(t) · g(k, c, t)]

where q(t) ≡ µ(t) · eρt . The variable q(t) is the current-value shadow price. Define Ĥ ≡
Heρt to be the current-value Hamiltonian:

Ĥ ≡ u(k, c) + q(t) · g(k, c, t) (A.91)
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The first-order conditions are still Hc = 0 and Hk = −µ̇. They can be expressed, however,
in terms of the current-value Hamiltonian and current-value prices as

Ĥ c = 0 (A.92)

Ĥ k = ρq − q̇ (A.93)

The transversality condition, µ(T ) · k(T ) = 0, can be expressed as

q(T ) · e−ρT · k(T ) = 0 (A.94)

An interesting point about equation (A.93) is that it looks like an asset-pricing formula: q
is the price of capital in terms of current utility, Ĥk is the dividend received by the agent (the
marginal contribution of capital to utility), q̇ is the capital gain (the change in the price of the
asset), and ρ is the rate of return on an alternative asset (consumption). Equation (A.93) says
that, at the optimum, the agent is indifferent between the two types of investments because
the overall rate of return to capital, (Ĥk + q̇)/q, equals the return to consumption, ρ.

A.3.12 Multiple Variables

Consider a more general dynamic problem with n control and m state variables. Choose
c1(t), c2(t), . . . , cn(t) to maximize

∫ T

0
u[k1(t), . . . , km(t); c1(t), . . . , cn(t); t] · dt, subject to

k̇1(t) = g1[k1(t), . . . , km(t), c1(t), . . . , cn(t), t]

k̇2(t) = g2[k1(t), . . . , km(t), c1(t), . . . , cn(t), t]

· · ·
k̇m(t) = gm[k1(t), . . . , km(t), c1(t), . . . , cn(t), t]

k1(0) > 0, . . . , km(0) > 0, given

k1(T ) ≥ 0, . . . , km(T ) ≥ 0, free

(A.95)

The solution is similar to that for one control variable and one state variable, as analyzed
before. The Hamiltonian is

H = u[k1(t), . . . , km(t); c1(t), . . . , cn(t); t] +
m∑

i=1

µi · gi (•) (A.96)
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The first-order necessary conditions for a maximum are

∂ H/∂ci (t) = 0, i = 1, . . . , n (A.97)

∂ H/∂ki (t) = −µ̇i , i = 1, . . . , m (A.98)

and the transversality conditions are

µi (T ) · ki (T ) = 0, i = 1, . . . , m (A.99)

A.4 Useful Results in Matrix Algebra: Eigenvalues, Eigenvectors,
and Diagonalization of Matrices

Given an n-dimensional square matrix A, can we find the values of a scalar α and the
corresponding nonzero column vectors v, such that

(A − α I ) · v = 0 (A.100)

where I is the n-dimensional identity matrix? Note that equation (A.100) forms a system
of n homogeneous linear equations (that is, the constant term is 0 for all equations). If we
want nontrivial solutions, so that v 
= 0, then the determinant of (A − α I ) must vanish:

det(A − α I ) = 0 (A.101)

Equation (A.101) defines a polynomial equation of nth degree in α and is called the
characteristic equation. Typically, there will be n solutions to this equation. These solutions
are called characteristic roots or eigenvalues.

By construction and rearrangement of equation (A.101), each eigenvalue, αi , is associated
with a vector vi (determined up to a scalar multiple) that satisfies

Avi = viαi , i = 1, . . . , n (A.102)

The vectorvi is called the characteristic vector or eigenvector. For everyαi , equation (A.102)
determines an n × 1 column vector (A is n × n, vi is n × 1, and αi is 1 × 1). We can arrange
these column vectors into an n × n matrix V to get

AV = V D (A.103)

where V is the n × n matrix of eigenvectors, and D is an n × n diagonal matrix with the
eigenvalues as diagonal elements.

If det(V ) 
= 0, a condition that holds if the eigenvectors are linearly independent, V can
be inverted and equation (A.103) can be rewritten as

V −1 AV = D (A.104)
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In other words, if we premultiply A by the inverse of V and postmultiply it by V , we
get a diagonal matrix with the eigenvalues as diagonal elements. This procedure is called
diagonalization of the matrix A. This result is useful for solving systems of differential
equations.

Intuitively, when we diagonalize a matrix, we find a set of axes (a vector basis) for which
the linear application represented by A can be expressed as a diagonal matrix. The new axes
correspond to the eigenvectors. The linear application in these transformed axes is given by
the diagonal matrix of eigenvalues.

We can state two useful results. First, if all the eigenvalues are different, then the matrix
of eigenvectors is nonsingular; that is, det(V ) 
= 0. In this case, V −1 exists and, hence, the
matrix A can be diagonalized.

A second interesting theorem states that the determinant and trace (the sum of the elements
on the main diagonal) of the diagonal matrix equal, respectively, the determinant and trace
of the original matrix. This result will be useful in situations in which we want to know
the signs of the eigenvalues. Suppose, for example, that A is a 2 × 2 matrix and we want to
know whether its two eigenvalues have the same sign. If the determinant of A is negative,
the determinant of D will be negative. But, since D is diagonal, its determinant is just the
product of the two eigenvalues. Hence, the two eigenvalues must have opposite signs.

As an example, consider the eigenvalues, eigenvectors, and diagonal matrix associated

with A = [
0.06 −1

−0.004 0

]
. Start by constructing the system of equations

(A − α I ) · v =
[

0.06 − α −1
−0.004 0 − α

]
·
[
v1

v2

]
= 0 (A.105)

To get a nontrivial solution, where v 
= 0, we must have[
0.06 − α −1
−0.004 0 − α

]
= 0

This equality determines the characteristic equation α2 − 0.06 · α − 0.004 = 0, which is
satisfied for two values of α: α1 = 0.1 and α2 =−0.04. The diagonal matrix associated with
A is therefore

D =
[

0.1 0
0 −0.04

]

To find the eigenvector associated with the positive eigenvalue, α1 = 0.1, substitute α1

into equation (A.105):[
0.06 − 0.1 −1
−0.004 −0.1

]
·
[
v1

v2

]
= 0
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This equation imposes two conditions on the relation between v11 and v21: −0.04 · v11 −
v21 = 0 and −0.004 · v11 − 0.1 · v21 = 0. The second condition is linearly dependent on the
first and can be ignored. The resulting solution for v11 and v21 will therefore be unique
only up to an arbitrary scalar multiple of each value. If we normalize v11 to 1, we get
v21 = −0.04. The first eigenvector is therefore

[
1

−0.004

]
.

If we repeat the procedure for α2 = −0.04, we find a relation between v12 and v22:
01 · v12 − v22 = 0. If we normalize v12 to 1, we get v22 = 0.1, and the second eigenvec-
tor is

[
1

0.1

]
. The two eigenvectors are linearly independent, and the matrix of normalized

eigenvectors is

V =
[

1 1
−0.04 0.1

]

We can now check that, indeed, V −1AV = D by calculating the inverse of V :

V −1 =
[

0.1/0.14 −1/0.14

0.04/0.14 1/0.14

]

It is then easy to verify that V −1AV is the diagonal matrix D shown earlier.

A.5 Useful Results in Calculus

A.5.1 Implicit-Function Theorem

Let f (x1, x2) be a bivariate function in the real space. Assume that f (•) is twice continu-
ously differentiable. Let φ(x1, x2) = 0 be an equation that involves x1 and x2 only through
f (x1, x2) and that implicitly defines x2 as a function of x1: x2 = x̃2(x1). An example is
φ(x1, x2) = f (x1, x2) − a = 0, where a is a constant. The implicit-function theorem says
that the slope of the implicit function, x̃2(x1), is

dx̃2

dx1
= −∂ f (x1, x2)/∂x1

∂ f (x1, x2)/∂x2
(A.106)

This result holds whether or not an explicit or closed-form solution exists for x̃2(x1).
As an example, consider the function f (x1, x2) = 3x2

1 − x2 and the equation φ(x1, x2) =
3x2

1 − x2 −1 = 0. In this case, we can find an explicit function x̃2(x1) = 3x2
1 −1. If we apply

the implicit-function theorem from equation (A.106), we get

dx̃2/dx1 = −(6x1)/(−1) = 6x1
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In this example, we do not need the implicit-function theorem to compute dx̃2/dx1, because
we can differentiate x̃2(x1) = 3x2

1 − 1 directly to get 6x1. The theorem is useful, however,
when no closed-form solution exists for x̃2(x1).

As another example, consider f (x1, x2) = log(x1) + 3 · (x1)
2 · x2 + ex2 and the equation

φ(x1, x2) = log(x1) + 3.(x1)
2 · x2 + ex2 − 17 = 0, which implicitly defines x2 as a function

of x1. An explicit function x̃2(x1) cannot be found. We can, however, compute the derivative
of this function by using the implicit-function theorem,

dx̃2/dx1 = −[(1/x1) + 6x1x2]/[3 · (x1)
2 + ex2 ]

A multivariate version of the implicit-function theorem is also available. Let f (x1, . . . , xn)

be an n-variate function in the real space. Assume that f (•) is twice continuously dif-
ferentiable. Let φ(x1, . . . , xn) = 0 be an equation that involves x1, . . . , xn only through
f (x1, . . . , xn) and that implicitly defines xn as a function of x1, x2, . . . , xn−1: xn =
x̃n(x1, . . . , xn−1). The implicit-function theorem gives the derivatives of the implicit
function x̃n(x1, . . . , xn−1) as

∂ x̃n

∂xi
= − ∂ f (•)/∂xi

∂ f (•)/∂xn
, i = 1, . . . , n − 1 (A.107)

A.5.2 Taylor’s Theorem

Let f (x) be a univariate function in the real space. Taylor’s theorem says that we can
approximate this function around the point x∗ with a polynomial of degree n as follows:

f (x) = f (x∗) + (d f/dx)|x∗ · (x − x∗) + (d2 f/dx2)|x∗ · (x − x∗)2 · (1/2!)

+ (d3 f/dx3)|x∗ · (x − x∗)3 · (1/3!) + · · ·
+ (dn f/dxn)|x∗ · (x − x∗)n · (1/n!) + Rn (A.108)

where (dn f/dxn)|x∗ is the nth derivative of f with respect to x evaluated at the point x∗, n!
is n factorial [n ·(n−1) · · · · · 2 ·1], and Rn is a residual. The expression in equation (A.108),
with Rn omitted, is the Taylor-Series expansion of f (x) around x∗. The presence of the
residual Rn in the equation indicates that the Taylor expansion is not an exact formula for
f (x). The content of the theorem is that it describes conditions under which the approxi-
mation gets better as n increases.

We can check on the accuracy of the Taylor formula—that is, the size of Rn—by com-
puting the approximation to a polynomial. If the formula is useful, it should reproduce
the exact polynomial. For example, if we use a polynomial of degree 3 to approximate x3
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around 1, we get

x3 = 13 + (3 · 12) · (x − 1) + (6 · 1) · (x − 1)2/2 + 6 · (x − 1)3/6 + R3

= 1 + (3x − 3) + 3 · (x2 − 2x + 1) + (x3 − 3x2 + 3x − 1) + R3

= x3

The residual, R3, is 0 in this case.
As another example, we can use a polynomial of order 4 to approximate the nonlinear

function ex around 0:

ex = e0 + e0 · x + e0 · (x2/2) + e0 · (x3/6) + e0 · (x4/24) + R4

= 1 + x + x2/2 + x3/6 + x4/24 + R4

The approximation (the formula with Rn omitted) gets better as the value of n increases.
If we use a polynomial of order 1 to approximate a function around a point x∗, we say

that we linearize the function around x∗. We can also log-linearize a function f (x) by
using a first-order Taylor expansion of log(x) around log(x∗). Log-linearizations are used
frequently in this book and are often useful for empirical analyses.

The two-dimensional version of Taylor’s theorem is as follows. Let f (x1, x2) be a twice
continuously differentiable real function. We can approximate f (x1, x2) around the point
(x∗

1 , x∗
2 ) with a second-order expansion as follows:

f (x1, x2) = f (x∗
1 , x∗

2 ) + fx1(•) · (x1 − x∗
1 ) + fx2(•) · (x2 − x∗

2 )

+ (1/2) · [ fx1x2(•) · (x1 − x∗
1 )2 + 2 · fx1x2(•) · (x1 − x∗

1 ) · (x2 − x∗
2 )

+ fx2x2(•) · (x2 − x∗
2 )2] + R2 (A.109)

where fxi (•) is the partial derivative of f (•) with respect to xi evaluated at (x∗
1 , x∗

2 ), and
fxi x j (•) is the second partial derivative of f (•) with respect to xi and x j evaluated at (x∗

1 , x∗
2 ).

The linear approximation of f (•) around (x∗
1 , x∗

2 ) is given by the first three terms of the
right-hand side of equation (A.109).

A.5.3 L’Hôpital’s Rule

Let f (x) and g(x) be two real functions twice continuously differentiable. Suppose that the
limits of both functions as x approaches x∗ are 0; that is,

lim
x→x∗[ f (x)] = lim

x→x∗[g(x)] = 0

Imagine that we are interested in the limit of the ratio, f (x)/g(x), as x approaches x∗.
In this case, the ratio takes on the indeterminate form 0/0 as x tends to x∗. L’Hôpital’s
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rule is

lim
x→x∗

(
f (x)

g(x)

)
= lim

x→x∗

(
f ′(x)

g′(x)

)
(A.110)

provided that the limit on the right-hand side exists. If the right-hand side still equals
0/0, we can apply l’Hôpital’s rule again, until we get a result that is hopefully not an
indeterminate form. L’Hôpital’s rule applies to the indeterminate form 0/0 and also works
for the indeterminate form ∞/∞. The rule does not apply, however, if f (x)/g(x) tends to
infinity as x approaches x∗.

As an example, consider f (x) = 2x and g(x) = x . The limit of the ratio f (x)/g(x) as x
tends to 0 is

lim
x→x∗

(
f (x)

g(x)

)
= 0

0
= lim

x→x∗

(
f ′(x)

g′(x)

)
= 2

1
= 2

A.5.4 Integration by Parts

To integrate a function by parts, note that the formula for the derivative of a product of two
functions of time, v1(t) and v2(t), implies

d[v1v2] = v2 · dv1 + v1 · dv2

where dv1 = v′
1(t) · dt and dv2 = v′

2(t) · dt . Take the integral of both sides of the above
equation to get

v1v2 =
∫

v2 · dv1 +
∫

v1 · dv2

Rearrange to get the formula for integration by parts:

∫
v2 · dv1 = v1v2 −

∫
v1 · dv2 (A.111)

As an example, compute the integral
∫

tet dt . Define v1 = t and dv2 = et dv. By inte-
grating dv2 we get v2 = et . Take the derivative of v1 to get dv1 = 1. Use the formula for
integration by parts in equation (A.111) to get

∫
tet dt = tet −

∫
et dt = et · (t − 1)
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A.5.5 Fundamental Theorem of Calculus

Let f (t) be continuous in a ≤ t ≤ b. If F(t) = ∫
f (t) · dt is the indefinite integral of f (t),

so that F ′(t) = f (t), the definite integral is

∫ b

a
f (t) dt =

∫ b

a
F ′(t) dt = F(b) − F(a) (A.112)

An interpretation of a definite integral is that it represents the area below the function f (t)
and between the points a and b (see figure A.14).

A.5.6 Rules of Differentiation of Integrals

Differentiation with Respect to the Variable of Integration The condition F ′(t) = f (t)
implies that the derivative of an indefinite integral with respect to the variable of integration,
t , is the function f (t) itself:

∂

∂t

(∫
f (t) dt

)
= ∂

∂t
[F(t)] = F ′(t) = f (t) (A.113)

Leibniz’s Rule for Differentiation of Definite Integrals Let F(a, b, c) be the function
describing the definite integral of f (c, t), where a and b are, respectively, the lower and
upper limits of integration, and c is a parameter of the function f (•):

F(a, b, c) =
∫ b

a
f (c, t) · dt (A.114)

f(t)

a b
t

Area � F(b) � F(a)

� �a

b
f(t) dt

Figure A.14
The definite integral. The definite integral corresponds to the area under a curve between the limits of integration.
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We assume that f (c, t) has a continuous partial derivative with respect to c, fc(•) ≡
∂ f (•)/∂c. The derivative of F(•) with respect to c is

∂ F(•)

∂c
=

∫ b

a
fc(c, t) dt (A.115)

The derivatives of F(•) with respect to the limits of integration are

∂ F(•)

∂b
= ∂

∂b

{ ∫ b

a
fc(c, t) dt

}
= f (c, t) |t=b = f (c, b) (A.116)

∂ F(•)

∂a
= ∂

∂a

{ ∫ b

a
fc(c, t) dt

}
= − f (c, t) |t=a = − f (c, a) (A.117)

We can combine equations (A.115)–(A.117) to get Leibniz’s rule of integration. Suppose
that a and b are functions of c:

F(c) =
∫ b(c)

a(c)
f (c, t) · dt (A.118)

Leibniz’s rule is

d F(c)

dc
=

∫ b(c)

a(c)
fc(c, t) · dt + f (c, b[c]) · b′(c) − f (c, a[c]) · a′(c) (A.119)
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