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Semiparametric Regression for the Applied Econometrician

This book provides an accessible collection of techniques for analyzing nonpara-
metric and semiparametric regression models. Worked examples include estimation
of Engel curves and equivalence scales; scale economies; semiparametric Cobb–
Douglas, translog, and CES cost functions; household gasoline consumption; hedo-
nic housing prices; and, option prices and state price density estimation. The book
should be of interest to a broad range of economists, including those working in
industrial organization, labor, development, urban, energy, and financial economics.

A variety of testing procedures are covered such as simple goodness-of-fit tests
and residual regression tests. These procedures can be used to test hypotheses such
as parametric and semiparametric specifications, significance, monotonicity, and
additive separability. Other topics include endogeneity of parametric and nonpara-
metric effects as well as heteroskedasticity and autocorrelation in the residuals.
Bootstrap procedures are provided.

Adonis Yatchew teaches economics at the University of Toronto. His principal areas
of research are theoretical and applied econometrics. In addition, he has a strong
interest in regulatory and energy economics and is Joint Editor of the Energy
Journal. He has received the social science undergraduate teaching award at the
University of Toronto and has taught at the University of Chicago.
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Further Praise for Semiparametric Regression for the Applied Econometrician

“This fluent book is an excellent source for learning, or updating one’s knowl-
edge of semi- and nonparametric methods and their applications. It is a valuable
addition to the existent books on these topics.”

– Rosa Matzkin, Northwestern University

“Yatchew’s book is an excellent account of semiparametric regression. The
material is nicely integrated by using a simple set of ideas which exploit the
impact of differencing and weighting operations on the data. The empirical
applications are attractive and will be extremely helpful for those encountering
this material for the first time.”

– Adrian Pagan, Australian National University

“At the University of Toronto Adonis Yatchew is known for excellence in teach-
ing. The key to this excellence is the succinct transparency of his exposition. At
its best such exposition transcends the medium of presentation (either lecture or
text). This monograph reflects the clarity of the author’s thinking on the rapidly
expanding fields of semiparametric and nonparametric analysis. Both students
and researchers will appreciate the mix of theory and empirical application.”

– Dale Poirier, University of California, Irvine
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Table 6.2. Härdle and Mammen (1993) specification

test – implementation. 122
Table 6.3. Hong and White (1995) specification

test – implementation. 123
Table 6.4. Li (1994), Zheng (1996) residual regression test of

specification – implementation. 123
Table 6.5. Residual regression test of significance –

implementation. 125
Table 7.1. Distribution of family composition. 143
Table 7.2. Parsimonious model estimates. 145
Table 8.1. Wild bootstrap. 157
Table 8.2. Bootstrap confidence intervals at f (xo). 161
Table 8.3. Bootstrap goodness-of-fit tests. 164
Table 8.4. Bootstrap residual regression tests. 165
Table 8.5. Percentile-t bootstrap confidence intervals for β in the

partial linear model. 167
Table 8.6. Asymptotic versus bootstrap confidence intervals:

Scale economies in electricity distribution. 168
Table 8.7. Confidence intervals for δ in the index model:

Percentile method. 169



Preface

This book has been largely motivated by pedagogical interests. Nonparametric
and semiparametric regression models are widely studied by theoretical econo-
metricians but are much underused by applied economists. In comparison with
the linear regression model y = zβ + ε, semiparametric techniques are theo-
retically sophisticated and often require substantial programming experience.

Two natural extensions to the linear model that allow greater flexibility are the
partial linear model y = zβ + f (x)+ ε, which adds a nonparametric function,
and the index model y = f (zβ) + ε, which applies a nonparametric function
to the linear index zβ. Together, these models and their variants comprise the
most commonly used semiparametric specifications in the applied econometrics
literature. A particularly appealing feature for economists is that these models
permit the inclusion of multiple explanatory variables without succumbing to
the “curse of dimensionality.”

We begin by describing the idea of differencing, which provides a simple
way to analyze the partial linear model because it allows one to remove the
nonparametric effect f (x) and to analyze the parametric portion of the model
zβ as if the nonparametric portion were not there to begin with. Thus, one can
draw not only on the reservoir of parametric human capital but one can also
make use of existing software. By the end of the first chapter, the reader will
be able to estimate the partial linear model and apply it to a real data set (the
empirical example analyzes scale economies in electricity distribution using a
semiparametric Cobb–Douglas specification).

Chapter 2 describes the broad contours of nonparametric and semiparametric
regression modeling, the categorization of models, the “curse of dimensio-
nality,” and basic theoretical results.

Chapters 3 and 4 are devoted to smoothing and differencing, respectively. The
techniques are reinforced by empirical examples on Engel curves, gasoline de-
mand, the effect of weather on electricity demand, and semiparametric translog
and CES cost function models. Methods that incorporate heteroskedasticity,
autocorrelation, and endogeneity of right-hand-side variables are included.

xvii



xviii Preface

Chapter 5 focuses on nonparametric functions of several variables. The ex-
ample on hedonic pricing of housing attributes illustrates the benefits of non-
parametric modeling of location effects.

Economic theory rarely prescribes a specific functional form. Typically, the
implications of theory involve constraints such as monotonicity, concavity,
homotheticity, separability, and so on. Chapter 6 begins by outlining two broad
classes of tests of these and other properties: goodness-of-fit tests that com-
pare restricted and unrestricted estimates of the residual variance, and residual
regression tests that regress residuals from a restricted regression on all the
explanatory variables to see whether there is anything left to be explained. Both
of these tests have close relatives in the parametric world. The chapter then
proceeds to constrained estimation, which is illustrated by an option pricing
example.

Chapter 7 addresses the index model with an application to equivalence scale
estimation using South African household survey data. Chapter 8 describes
bootstrap techniques for various procedures described in earlier chapters.

A cornerstone of the pedagogical philosophy underlying this book is that
the second best way to learn econometric techniques is to actually apply them.
(The best way is to teach them.1) To this purpose, data and sample programs are
available for the various examples and exercises at www.chass.utoronto.ca/∼
yatchew/. With the exception of constrained estimation of option prices, all
code is in S-Plus.2 The reader should be able to translate the code into other
programs such as Stata easily enough.

By working through the examples and exercises,3 the reader should be able
to

� estimate nonparametric regression, partial linear, and index models;
� test various properties using large sample results and bootstrap techniques;
� estimate nonparametric models subject to constraints such as monotonicity

and concavity.

Well-known references in the nonparametrics and semiparametrics literature
include Härdle (1990), Stoker (1991), Bickel et al. (1993), Horowitz (1998),

1 Each year I tell my students the apocryphal story of a junior faculty member complaining to a
senior colleague of his inability to get through to his students. After repeating the same lecture
to his class on three different occasions, he exclaims in exasperation “I am so disappointed.
Today I thought I had finally gotten through to them. This time even I understood the material,
and they still did not understand.”

2 Krause and Olson (1997) have provided a particularly pleasant introduction to S-Plus. See also
Venables and Ripley (1994).

3 Many of the examples and portions of the text draw upon previously published work, in par-
ticular, Yatchew (1997, 1998, 1999, 2000), Yatchew and Bos (1997), Yatchew and No (2001),
and Yatchew, Sun, and Deri (2001). The permission for use of these materials is gratefully
acknowledged.



Preface xix

and Pagan and Ullah (1999).4 It is hoped that this book is worthy of being
squeezed onto a nearby bookshelf by providing an applied approach with nu-
merical examples and adaptable code. It is intended for the applied economist
and econometrician working with cross-sectional or possibly panel data.5 It
is expected that the reader has had a good basic course in econometrics and
is thoroughly familiar with estimation and testing of the linear model and as-
sociated ideas such as heteroskedasticity and endogeneity. Some knowledge
of nonlinear regression modeling and inference is desirable but not essential.
Given the presence of empirical examples, the book could be used as a text in
an advanced undergraduate course and certainly at the graduate level.

I owe a great intellectual debt to too many to name them individually, and
regrettably not all of them appear in the references. Several anonymous review-
ers provided extensive and valuable comments for which I am grateful. Thanks
are also due to Scott Parris at Cambridge University Press for his unflagging
efforts in this endeavor. My sister Oenone kindly contributed countless hours
of proofreading time. Finally, it is indeed a special privilege to thank Peter
Phillips, whose intellectual guidance shaped several aspects of this book. It was
Peter who from the start insisted on reproducible empirical exercises. Those
who are acquainted with both of us surely know to whom the errors belong.

4 There are also several surveys: Delgado and Robinson (1992), Härdle and Linton (1994), Powell
(1994), Linton (1995a), and Yatchew (1998). See also DiNardo and Tobias (2001).

5 With the exception of correlation in the residuals, time-dependent data issues have not been
covered here.
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1 Introduction to Differencing

1.1 A Simple Idea

Consider the nonparametric regression model

y = f (x)+ ε (1.1.1)

for which little is assumed about the function f except that it is smooth. In its
simplest incarnation, the residuals are independently and identically distributed
with mean zero and constant variance σ 2

ε , and the x’s are generated by a process
that ensures they will eventually be dense in the domain. Closeness of the
x’s combined with smoothness of f provides a basis for estimation of the
regression function. By averaging or smoothing observations on y for which
the corresponding x’s are close to a given point, say xo, one obtains a reasonable
estimate of the regression effect f (xo).

This premise – that x’s that are close will have corresponding values of the
regression function that are close – may also be used to remove the regression
effect. It is this removal or differencing that provides a simple exploratory tool.
To illustrate the idea we present four applications:

1. Estimation of the residual variance σ 2
ε ,

2. Estimation and inference in the partial linear model y = zβ + f (x)+ ε,
3. A specification test on the regression function f , and
4. A test of equality of nonparametric regression functions.1

1 The first-order differencing estimator of the residual variance in a nonparametric setting ap-
pears in Rice (1984). Although unaware of his result at the time, I presented the identical
estimator at a conference held at the IC2 Institute at the University of Texas at Austin in May
1984. Differencing subsequently appeared in a series of nonparametric and semiparametric set-
tings, including Powell (1987), Yatchew (1988), Hall, Kay, and Titterington (1990), Yatchew
(1997, 1998, 1999, 2000), Lewbel (2000), Fan and Huang (2001), and Horowitz and Spokoiny
(2001).
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2 Semiparametric Regression for the Applied Econometrician

1.2 Estimation of the Residual Variance

Suppose one has data (y1, x1), . . . , (yn, xn) on the pure nonparametric regres-
sion model (1.1.1), where x is a bounded scalar lying, say, in the unit interval,
ε is i.i.d. with E(ε | x) = 0,Var (ε | x) = σ 2

ε , and all that is known about f is that
its first derivative is bounded. Most important, the data have been rearranged
so that x1 ≤ · · · ≤ xn. Consider the following estimator of σ 2

ε :

s2
diff =

1

2n

n∑
i=2

(yi − yi−1)
2. (1.2.1)

The estimator is consistent because, as the x’s become close, differencing tends
to remove the nonparametric effect yi − yi−1 = f (xi )− f (xi−1)+ εi − εi−1

∼=
εi − εi−1, so that2

s2
diff
∼= 1

2n

n∑
i=2

(εi − εi−1)
2 ∼= 1

n

n∑
i=1

ε2
i −

1

n

n∑
i=2

εiεi−1. (1.2.2)

An obvious advantage of s2
diff is that no initial estimate of the regression

function f needs to be calculated. Indeed, no consistent estimate of f is im-
plicit in (1.2.1). Nevertheless, the terms in s2

diff that involve f converge to zero
sufficiently quickly so that the asymptotic distribution of the estimator can be
derived directly from the approximation in (1.2.2). In particular,

n1/2
(
s2
diff − σ 2

ε

) D→ N (0, E(ε4)). (1.2.3)

Moreover, derivation of this result is facilitated by the assumption that the εi
are independent so that reordering of the data does not affect the distribution of
the right-hand side in (1.2.2).

1.3 The Partial Linear Model

Consider now the partial linear model y = zβ+ f (x)+ ε, where for simplicity
all variables are assumed to be scalars. We assume that E(ε | z, x) = 0 and
that Var(ε | z, x) = σ 2

ε .3 As before, the x’s have bounded support, say the unit
interval, and have been rearranged so that x1 ≤ · · · ≤ xn. Suppose that the con-
ditional mean of z is a smooth function of x , say E(z | x) = g(x) where g′ is

2 To see why this approximation works, suppose that the xi are equally spaced on the unit
interval and that f ′ ≤ L . By the mean value theorem, for some x∗i ∈ [xi−1, xi ] we have
f (xi ) − f (xi−1) = f ′(x∗i )(xi − xi−1) ≤ L/n. Thus, yi − yi−1 = εi − εi−1 + O(1/n).
For detailed development of the argument, see Exercise 1. If the xi have a density function
bounded away from zero on the support, then xi − xi−1 ∼= OP (1/n) and yi − yi−1 ∼=
εi − εi−1 + OP (1/n). See Appendix B, Lemma B.2, for a related result.

3 For extensions to the heteroskedastic and autocorrelated cases, see Sections 3.6 and 4.5.



Introduction to Differencing 3

bounded and Var(z | x) = σ 2
u . Then we may rewrite z = g(x)+u. Differencing

yields

yi − yi−1 = (zi − zi−1)β + ( f (xi )− f (xi−1))+ εi − εi−1

= (g(xi )− g(xi−1))β + (ui − ui−1)β

+ ( f (xi )− f (xi−1))+ εi − εi−1

∼= (ui − ui−1)β + εi − εi−1. (1.3.1)

Thus, the direct effect f (x) of the nonparametric variable x and the indirect
effect g(x) that occurs through z are removed. Suppose we apply the OLS
estimator of β to the differenced data, that is,

β̂diff =
∑

(yi − yi−1)(zi − zi−1)∑
(zi − zi−1)2

. (1.3.2)

Then, substituting the approximations zi − zi−1
∼= ui − ui−1 and yi − yi−1

∼=
(ui − ui−1)β + εi − εi−1 into (1.3.2) and rearranging, we have

n1/2(β̂diff − β) ∼= n1/2 1
n

∑
(εi − εi−1)(ui − ui−1)

1
n

∑
(ui − ui−1)2

. (1.3.3)

The denominator converges to 2 σ 2
u , and the numerator has mean zero and

variance 6 σ 2
ε σ

2
u . Thus, the ratio has mean zero and variance 6 σ 2

ε σ
2
u /(2σ

2
u )

2 =
1.5 σ 2

ε /σ
2
u . Furthermore, the ratio may be shown to be approximately normal

(using a finitely dependent central limit theorem). Thus, we have

n1/2(β̂diff − β)
D→ N

(
0,

1.5 σ 2
ε

σ 2
u

)
. (1.3.4)

For the most efficient estimator, the corresponding variance in (1.3.4) would be
σ 2
ε /σ

2
u so the proposed estimator based on first differences has relative efficiency

2/3 = 1/1.5. In Chapters 3 and 4 we will produce efficient estimators.
Now, in order to use (1.3.4) to perform inference, we will need consistent

estimators of σ 2
ε and σ 2

u . These may be obtained using

s2
ε =

1

2n

n∑
i=2

((yi − yi−1)− (zi − zi−1)β̂diff)
2

∼= 1

2n

n∑
i=2

(εi − εi−1)
2 P→ σ 2

ε (1.3.5)

and

s2
u =

1

2n

n∑
i=2

(zi − zi−1)
2 ∼= 1

2n

n∑
i=2

(ui − ui−1)
2 P→ σ 2

u . (1.3.6)
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The preceding procedure generalizes straightforwardly to models with multiple
parametric explanatory variables.

1.4 Specification Test

Suppose, for example, one wants to test the null hypothesis that f is a linear
function. Let s2

res be the usual estimate of the residual variance obtained from
a linear regression of y on x . If the linear model is correct, then s2

res will be
approximately equal to the average of the true squared residuals:

s2
res =

1

n

n∑
i=1

(yi − γ̂1 − γ̂2xi )
2 ∼= 1

n

n∑
i=1

ε2
i . (1.4.1)

If the linear specification is incorrect, then s2
res will overestimate the residual

variance while s2
diff in (1.2.1) will remain a consistent estimator, thus forming

the basis of a test. Consider the test statistic

V = n1/2
(
s2
res − s2

diff

)
s2
diff

. (1.4.2)

Equations (1.2.2) and (1.4.1) imply that the numerator of V is approximately
equal to

n1/2
1

n

∑
εi εi−1

D→ N
(
0, σ 4

ε

)
. (1.4.3)

Since s2
diff, the denominator of V , is a consistent estimator of σ 2

ε , V is asymp-
totically N (0,1) under H0. (Note that this is a one-sided test, and one rejects for
large values of the statistic.)

As we will see later, this test procedure may be used to test a variety of
null hypotheses such as general parametric and semiparametric specifications,
monotonicity, concavity, additive separability, and other constraints. One simply
inserts the restricted estimator of the variance in (1.4.2). We refer to test statistics
that compare restricted and unrestricted estimates of the residual variance as
“goodness-of-fit” tests.

1.5 Test of Equality of Regression Functions

Suppose we are given data (yA1, xA1), . . . , (yAn, xAn) and (yB1, xB1), . . . ,

(yBn, xBn) from two possibly different regression models A and B. Assume
x is a scalar and that each data set has been reordered so that the x’s are in
increasing order. The basic models are

yAi = f A(xAi )+ εAi
(1.5.1)

yBi = fB(xBi )+ εBi
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where given the x’s, the ε’s have mean 0, variance σ 2
ε , and are independent

within and between populations; f A and fB have first derivatives bounded.
Using (1.2.1), define consistent “within” differencing estimators of the variance

s2
A =

1

2n

n∑
i

(yAi − yAi−1)
2

(1.5.2)

s2
B =

1

2n

n∑
i

(yBi − yBi−1)
2.

As we will do frequently, we have dropped the subscript “diff ”. Now pool
all the data and reorder so that the pooled x’s are in increasing order:
(y∗1 , x

∗
1 ), . . . . . . , (y

∗
2n, x

∗
2n). (Note that the pooled data have only one subscript.)

Applying the differencing estimator once again, we have

s2
p =

1

4n

2n∑
j

(
y∗j − y∗j−1

)2
. (1.5.3)

The basic idea behind the test procedure is to compare the pooled estimator
with the average of the within estimators. If f A = fB , then the within and
pooled estimators are consistent and should yield similar estimates. If f A 
= fB,
then the within estimators remain consistent, whereas the pooled estimator
overestimates the residual variance, as may be seen in Figure 1.1.

To formalize this idea, define the test statistic

ϒ ≡ (2n)1/2
(
s2
p − 1/2

(
s2
A + s2

B

))
. (1.5.4)

If f A = fB , then differencing removes the regression effect sufficiently
quickly in both the within and the pooled estimators so that

ϒ ≡ (2n)1/2
(
s2
p − 1/2

(
s2
A + s2

B

))
∼= (2n)1/2

4n

(
2n∑
j

(
ε∗j − ε∗j−1

)2 − n∑
i

(εAi − εAi−1)
2−

n∑
i

(εBi − εBi−1)
2

)

∼= (2n)1/2

2n

(
2n∑
j

ε∗2
j − ε∗jε

∗
j−1−

n∑
i

ε2
Ai − εAiεAi−1 −

n∑
i

ε2
Bi − εBiεBi−1

)

∼= 1

(2n)1/2

(
n∑
i

εAiεAi−1 +
n∑
i

εBiεBi−1

)
− 1

(2n)1/2

(
2n∑
j

ε∗jε
∗
j−1

)
.

(1.5.5)

Consider the two terms in the last line. In large samples, each is approx-
imately N (0, σ 4

ε ). If observations that are consecutive in the individual data
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A

B

Within estimators of residual variance

A

B

Pooled estimator of residual variance

Figure 1.1. Testing equality of regression functions.
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sets tend to be consecutive after pooling and reordering, then the covariance
between the two terms will be large. In particular, the covariance is approxi-
mately σ 4

ε (1−π), where π equals the probability that consecutive observations
in the pooled reordered data set come from different populations.

It follows that under Ho : f A = fB ,

ϒ
D→ N
(
0, 2πσ 4

ε

)
. (1.5.6)

For example, if reordering the pooled data is equivalent to stacking data sets
A and B – because the two sets of x’s, xA and xB , do not intersect – then π ∼= 0
and indeed the statistic ϒ becomes degenerate. This is not surprising, since
observing nonparametric functions over different domains cannot provide a
basis for testing whether they are the same. If the pooled data involve a simple
interleaving of data sets A and B, then π ∼= 1 and ϒ → N (0, 2σ 4

ε ). If xA and
xB are independent of each other but have the same distribution, then for the
pooled reordered data the probability that consecutive observations come from
different populations is 1/2 and ϒ → N (0, σ 4

ε ).
4 To implement the test, one may

obtain a consistent estimate π̂ by taking the proportion of observations in the
pooled reordered data that are preceded by an observation from a different
population.

1.6 Empirical Application: Scale Economies in Electricity Distribution5

To illustrate these ideas, consider a simple variant of the Cobb–Douglas model
for the costs of distributing electricity

tc = f (cust)+ β1wage+ β2 pcap

+β3PUC+ β4kwh+ β5life+ β6lf+ β7 kmwire+ ε (1.6.1)

where tc is the log of total cost per customer, cust is the log of the number of
customers, wage is the log wage rate, pcap is the log price of capital, PUC is a
dummy variable for public utility commissions that deliver additional services
and therefore may benefit from economies of scope, life is the log of the re-
maining life of distribution assets, lf is the log of the load factor (this measures
capacity utilization relative to peak usage), and kmwire is the log of kilometers
of distribution wire per customer. The data consist of 81 municipal distributors
in Ontario, Canada, during 1993. (For more details, see Yatchew, 2000.)

4 For example, distribute nmen and nwomen randomly along a stretch of beach facing the sunset.
Then, for any individual, the probability that the person to the left is of the opposite sex is 1/2.
More generally, if xA and xB are independent of each other and have different distributions,
then π depends on the relative density of observations from each of the two populations.

5 Variable definitions for empirical examples are contained in Appendix E.
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Because the data have been reordered so that the nonparametric variable cust
is in increasing order, first differencing (1.6.1) tends to remove the nonpara-
metric effect f . We also divide by

√
2 so that the residuals in the differenced

Equation (1.6.2) have the same variance as those in (1.6.1). Thus, we have

[tci − tci−1]/
√

2
∼= β1[wagei − wagei−1]/

√
2+ β2[pcapi − pcapi−1]/

√
2

+β3[PUCi − PUCi−1]/
√

2+ β4[kwhi − kwhi−1]/
√

2

+β5[lifei − lifei−1]/
√

2+ β6[lfi − lfi−1]/
√

2

+β7[kmwirei − kmwirei−1]/
√

2+ [εi − εi−1]/
√

2. (1.6.2)

Figure 1.2 summarizes our estimates of the parametric effects β using the
differenced equation. It also contains estimates of a pure parametric specifi-
cation in which the scale effect f is modeled with a quadratic. Applying the
specification test (1.4.2), where s2

diff is replaced with (1.3.5), yields a value of
1.50, indicating that the quadratic model may be adequate.

Thus far our results suggest that by differencing we can perform inference on
β as if there were no nonparametric component f in the model to begin with.
But, having estimatedβ, we can then proceed to apply a variety of nonparametric
techniques to analyze f as ifβ were known. Such a modular approach simplifies
implementation because it permits the use of existing software designed for pure
nonparametric models.

More precisely, suppose we assemble the ordered pairs (yi−zi β̂diff, xi ); then,
we have

yi − zi β̂diff = zi (β − β̂diff)+ f (xi )+ εi ∼= f (xi )+ εi . (1.6.3)

If we apply conventional smoothing methods to these ordered pairs such
as kernel estimation (see Section 3.2), then consistency, optimal rate of con-
vergence results, and the construction of confidence intervals for f remain
valid because β̂diff converges sufficiently quickly to β that the approximation
in the last part of (1.6.3) leaves asymptotic arguments unaffected. (This is in-
deed why we could apply the specification test after removing the estimated
parametric effect.) Thus, in Figure 1.2 we have also plotted a nonparametric
(kernel) estimate of f that can be compared with the quadratic estimate. In sub-
sequent sections, we will elaborate this example further and provide additional
ones.

1.7 Why Differencing?

An important advantage of differencing procedures is their simplicity. Con-
sider once again the partial linear model y = zβ + f (x) + ε. Conventional
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Variable Quadratic model Partial linear modela

Coef SE Coef SE
cust −0.833 0.175 – –
cust2 0.040 0.009 – –

wage 0.833 0.325 0.448 0.367
pcap 0.562 0.075 0.459 0.076

PUC −0.071 0.039 −0.086 0.043
kwh −0.017 0.089 −0.011 0.087
life −0.603 0.119 −0.506 0.131
lf 1.244 0.434 1.252 0.457

kmwire 0.445 0.086 0.352 0.094

s2
ε .021 .018
R2 .618 .675
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a Test of quadratic versus nonparametric specification of scale effect: V = n1/2(s2
res − s2

diff)/
s2
diff = 811/2(.021− .018)/.018 = 1.5, where V is N (0,1), Section 1.4.

Figure 1.2. Partial linear model – Log-linear cost function: Scale economies in elec-
tricity distribution.
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estimators, such as the one proposed by Robinson (1988) (see Section 3.6),
require one to estimate E(y | x) and E(z | x) using nonparametric regressions.
The estimated residuals from each of these regressions (hence the term “double
residual method”) are then used to estimate the parametric regression

y − E(y | x) = (z − E(z | x))β + ε. (1.7.1)

If z is a vector, then a separate nonparametric regression is run for each com-
ponent of z, where the independent variable is the nonparametric variable x . In
contrast, differencing eliminates these first-stage regressions so that estimation
of β can be performed – regardless of its dimension – even if nonparametric
regression procedures are not available within the software being used. Simi-
larly, tests of parametric specifications against nonparametric alternatives and
tests of equality of regression functions across two or more (sub-) samples can
be carried out without performing a nonparametric regression.

As should be evident from the empirical example of the last section, dif-
ferencing may easily be combined with other procedures. In that example,
we used differencing to estimate the parametric component of a partial linear
model. We then removed the estimated parametric effect and applied conven-
tional nonparametric procedures to analyze the nonparametric component. Such
modular analysis does require theoretical justification, which we will provide
in Section 4.12.

As we have seen, the partial linear model permits a simple semiparametric
generalization of the Cobb–Douglas model. Translog and other linear-in-
parameters models may be generalized similarly. If we allow the parametric por-
tion of the model to be nonlinear – so that we have a partial parametric model –
then we may also obtain simple semiparametric generalizations of models such
as the constant elasticity of substitution (CES) cost function. These, too, may
be estimated straightforwardly using differencing (see Section 4.7). The key
requirement is that the parametric and nonparametric portions of the model be
additively separable.

Other procedures commonly used by the econometrician may be imported
into the differencing setting with relative ease. If some of the parametric vari-
ables are potentially correlated with the residuals, instrumental variable tech-
niques can be applied, with suitable modification, as can the Hausman endo-
geneity test (see Section 4.8). If the residuals are potentially not homoskedastic,
then well-known techniques such as White’s heteroskedasticity-consistent stan-
dard errors can be adapted (see Section 4.5). The reader will no doubt find other
procedures that can be readily transplanted.

Earlier we have pointed out that the first-order differencing estimator of β

in the partial linear model is inefficient when compared with the most efficient
estimator (see Section 1.3). The same is true for the first-order differencing esti-
mator of the residual variance (see Section 1.2). This problem can be corrected
using higher-order differencing, as demonstrated in Chapter 4.
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Most important, however, the simplicity of differencing provides a useful
pedagogical device. Applied econometricians can begin using nonparametric
techniques quickly and with conventional econometric software. Indeed, all
the procedures in the example of Section 1.6 can be executed within packages
such as E-Views, SAS, Shazam, Stata, or TSP. Furthermore, because the partial
linear model can easily accommodate multiple parametric variables, one can
immediately apply these techniques to data that are of practical interest.

Simplicity and versatility, however, have a price. One of the criticisms of
differencing is that it can result in greater bias in moderately sized samples than
other estimators.6 A second criticism is that differencing, as proposed here,
works only if the dimension of the model’s nonparametric component does not
exceed 3 (see Section 5.3). Indeed, in most of what follows we will apply differ-
encing to models in which the nonparametric variable is a scalar. More general
techniques based on smoothing will usually be prescribed when the nonparamet-
ric variable is a vector. However, we would argue that, even if differencing tech-
niques were limited to one (nonparametric) dimension, they have the potential
of significant “market share.” The reason is that high-dimensional nonparamet-
ric regression models, unless they rely on additional structure (such as additive
separability), suffer from the “curse of dimensionality” which severely limits
one’s ability to estimate the regression relationship with any degree of precision.
It is not surprising, therefore, that the majority of applied papers using nonpara-
metric regression limit the nonparametric component to one or two dimensions.

1.8 Empirical Applications

The target audience for this book consists of applied econometricians and
economists. Thus, the following empirical applications will be introduced and
carried through various chapters:

� Engel curve estimation (South African data)
� Scale economies in electricity distribution (data from Ontario, Canada)
� Household gasoline consumption (Canadian data)
� Housing prices (data from Ottawa, Canada)
� Option prices and state price densities (simulated data)
� Weather and electricity demand (data from Ontario, Canada)
� Equivalence scale estimation (South African data).

Empirical results presented in tables and in figures are worked through in
exercises at the end of each chapter along with additional empirical and theo-
retical problems. The reader is especially urged to do the applied exercises for

6 Seifert, Gasser, and Wolf (1993) have studied this issue for differencing estimators of the
residual variance.
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this is by the far the best way to gain a proper understanding of the techniques,
their range, and limitations.

For convenience, variable definitions are collected in Appendix E. Other data
sets may be obtained easily. For example, household survey data for various
developing countries are available at the World Bank Web site www.worldbank.
org/lsms. These are the Living Standard Measurement Study household surveys
from which our South African data were extracted.

1.9 Notational Conventions

With mild abuse of notation, symbols such as y and x will be used to denote both
the variable in question and the corresponding column vector of observations
on the variable. The context should make it clear which applies. If x is a vector,
then f (x) will denote the vector consisting of f evaluated at the components
of x . If X is a matrix and δ is a conformable parameter vector, then f (Xδ) is
also a vector.

We will frequently use subscripts to denote components of vectors or ma-
trices, for example, βi , Aij or [AB]ij . For any two matrices A, B of identical
dimension, we will on a few occasions use the notation [A � B]ij = Aij Bij .

When differencing procedures are applied, the first few observations may be
treated differently or lost. For example, to calculate the differencing estimator
of the residual variance s2

diff =
∑n

i (yi − yi−1)
2/2n, we begin the summation at

i = 2. For the mathematical arguments that follow, such effects are negligible.
Thus, we will use the symbol

.= to denote “equal except for end effects.” As
must be evident by now, we will also use the symbol ∼= to denote approximate
equality,

P→ for convergence in probability, and
D→ for convergence in dis-

tribution. The abbreviation “i.i.d.” will denote “independently and identically
distributed.”

Because differencing will be one of the themes in what follows, several
estimators will merit the subscript “diff ”, as in the preceding paragraph or in
(1.3.2). For simplicity, we will regularly suppress this annotation.

To denote low-order derivatives we will the use the conventional notation
f ′, f ′′, f ′′′. Occasionally we will need higher-order derivatives which we will
denote by bracketed superscripts; for example, f (m).

1.10 Exercises7

1. Suppose y = f (x) + ε, | f ′| ≤ L for which we have data (yi , xi ) i = 1, . . . , n,
where the xi are equally spaced on the unit interval. We will derive the distribution

7 Data and sample programs for empirical exercises are available on the Web. See the Preface
for details.
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of s2
diff =

∑n
i (yi − yi−1)

2/2n, which we may rewrite as

s2
diff =

1

2n

n∑
i=2

(εi − εi−1)
2 + 1

2n

n∑
i=2

( f (xi )− f (xi−1))
2

+ 1

n

n∑
i=2

( f (xi )− f (xi−1))(εi − εi−1).

(a) Show that the first term on the right-hand side satisfies

n1/2

(
1

2n

n∑
i=2

(εi − εi−1)
2 − σ 2

ε

)
D→ N (0, E(ε4)).

(b) Show that the second term is O( 1
n2 ).

(c) Show that the variance of the third term is O( 1
n3 ) so that the third term is OP(

1
n3/2 ).

Thus,

n1/2
(
s2
diff − σ 2

ε

) = ( 1

2n

n∑
i=2

(εi − εi−1)
2 − σ 2

ε

)
+ O
( 1

n3/2

)
+ OP

( 1

n

)
.

2. Consider the restricted estimator of the residual variance (1.4.1) used in the differ-
encing specification test. Show that

s2
res =

1

n

n∑
i=1

(yi − γ̂1 − γ̂2xi )
2 = 1

n

n∑
i=1

(εi + (γ1 − γ̂1)− (γ2 − γ̂2xi ))
2

= 1

n

n∑
i=1

ε2
i + OP

( 1

n

)
.

Combine this with (1.2.2) and the results of the previous exercise to derive the
distribution of V in Section 1.4.

3. Derive the covariance between the two terms in the last line of (1.5.5). Use this to
obtain the approximate distribution of the differencing test of equality of regression
functions (1.5.6). How would the test statistic change if the two subpopulations were
of unequal size?

4. Scale Economies in Electricity Distribution

(a) Verify that the data have been reordered so that the nonparametric variable cust,
which is the log of the number of customers, is in increasing order.

(b) Fit the quadratic model in Figure 1.2, where all variables are parametric. Estimate
the residual variance, the variance of the dependent variable tc, and calculate
R2 = 1− s2

ε /s
2
tc.

(c) Transform the data by first differencing as in (1.6.2) and apply ordinary least-
squares to obtain estimates of the parametric effects in the partial linear model.
To obtain the standard errors, rescale the standard errors provided by the OLS
procedure by

√
1.5, as indicated in (1.3.4).
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(d) Remove the estimated parametric effects using (1.6.3) and produce a scatterplot
of the ordered pairs (yi−zi β̂diff, xi ), where the x variable is the log of the number
of customers.

(e) Apply a smoothing or nonparametric regression procedure (such as ksmooth in
S-Plus) to the ordered pairs in (d) to produce a nonparametric estimate of the
scale effect.

(f) Apply the specification test in (1.4.2) to the ordered pairs in (d) to test the
quadratic specification against the nonparametric alternative.



2 Background and Overview

2.1 Categorization of Models

We now turn to a description of the range of models addressed in this book.
Consider first the pure nonparametric model y = f (x) + ε, where ε is i.i.d.
with mean 0 and constant variance σ 2

ε . If f is only known to lie in a family of
smooth functions �, then the model is nonparametric and incorporates weak
constraints on its structure. We will soon see that such models are actually
difficult to estimate with precision if x is a vector of dimension exceeding
two or three. If f satisfies some additional properties (such as monotonicity,
concavity, homogeneity, or symmetry) and hence lies in �̄ ⊂ �, we will say
that the model is constrained nonparametric. Figure 2.1 depicts a parametric
and a pure nonparametric model at opposite corners.

Given the difficulty in estimating pure nonparametric models with multi-
ple explanatory variables, researchers have sought parsimonious hybrids. One
such example is the partial linear model introduced in Chapter 1. One can see
in Figure 2.1 that for any fixed value of x , the function is linear in z. Par-
tial parametric models are an obvious generalization, where y = g(z;β) +
f (x) + ε and g is a known function. For the partial parametric surface in
Figure 2.1, g is quadratic in z – a shape that is replicated for any fixed value
of x .

Index models constitute another hybrid. In this case y = f (xβ)+ ε. For any
fixed value of the index xβ, the function f (xβ) is constant. The index model
depicted in Figure 2.1 is given by f (xβ) = cos(x1 + x2); thus, the function is
flat along lines where x1 + x2 = constant. Partial linear index models are yet
another generalization, where y = f (xβ)+ zδ + ε.

Finally, if we can partition x into two subsets xa and xb such that f is of the
form fa(xa)+ fb(xb), where fa and fb are both nonparametric, then the model
is called additively separable. (Of course, partial linear and partial paramet-
ric models are also additively separable, but in these cases one component is
parametric and the other nonparametric.)

15
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� is a family of smooth functions. �̄ is a smooth family with additional constraints such as mono-
tonicity, concavity, symmetry, or other constraints.

Figure 2.1. Categorization of regression functions.
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2.2 The Curse of Dimensionality and the Need for Large Data Sets

2.2.1 Dimension Matters

In comparison with parametric estimation, nonparametric procedures can im-
pose enormous data requirements. To gain an appreciation of the problem as
well as remedies for it, we begin with a deterministic framework. Suppose the
objective is to approximate a function f. If it is known to be linear in one vari-
able, two observations are sufficient to determine the entire function precisely;
three are sufficient if f is linear in two variables. If f is of the form g(x;β),
where g is known and β is an unknown k-dimensional vector, then k judiciously
selected points are usually sufficient to solve for β. No further observations on
the function are necessary.

Let us turn to the pure nonparametric case. Suppose f, defined on the unit in-
terval, is known only to have a first derivative bounded byL (i.e., supx∈[0,1] | f ′| ≤
L). If we sample f at n equidistant points and approximate f at any point by
the closest point at which we have an evaluation, then our approximation error
cannot exceed 1/2 L/n. Increasing the density of points reduces approximation
error at a rate O(1/n).

Now suppose f is a function on the unit square and that it has derivatives
bounded in all directions by L. To approximate the function, we need to sample
throughout its domain. If we distribute n points uniformly on the unit square,
each will “occupy” an area 1/n, and the typical distance between points will be
1/n1/2 so that the approximation error is now O(1/n1/2). If we repeat this argu-
ment for functions of k variables, the typical distance between points becomes
1/n1/k and the approximation error is O(1/n1/k). In general, this method of ap-
proximation yields errors proportional to the distance to the nearest observation.

Thus, for n = 100, the potential approximation error is 10 times larger in 2
dimensions than in 1 and 40 times larger in 5 dimensions. One begins to see
the virtues of parametric modeling to avoid this curse of dimensionality.1

2.2.2 Restrictions That Mitigate the Curse

We will consider four types of restrictions that substantially reduce approxi-
mation error: a partial linear structure, the index model specification, additive
separability, and smoothness assumptions.

Suppose a regression function defined on the unit square has the partial linear
form zβ + f (x) (the function f is unknown except for a derivative bound). In this
case, we need two evaluations along the z-axis to completely determine β (see
the partial linear surface in Figure 2.1). Furthermore, n equidistant evaluations

1 For an exposition of the curse of dimensionality in the case of density estimation, see Silverman
(1986) and Scott (1992).
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along the x-axis will ensure that f can be approximated with error O(1/n)
so that the approximation error for the regression function as a whole is also
O(1/n), the same as if it were a nonparametric function of one variable.

Now consider the index model. If β were known, then we would have a
nonparametric function of one variable; thus, to obtain a good approximation
of f , we need to take n distinct and say equidistant values of the index xβ.
How do we obtain β? Suppose for simplicity that the model is f (x1 + x2β).
(The coefficient of the first variable has been normalized to 1.) Beginning at a
point (x1a, x2a), travel in a direction along which f is constant to a nearby point
(x1b, x2b). Because f (x1a + x2aβ) = f (x1b + x2bβ) and hence x1a + x2aβ =
x1b + x2bβ, we may solve for β. Thus, just as for the partial linear model, the
approximation error for the regression function as a whole is O(1/n), the same
as if it were a nonparametric function of one variable.

Next, consider an additively separable function on the unit square: f (xa, xb)
= fa(xa) + fb(xb), where the functions fa and fb satisfy a derivative bound
( fb(0) = 0 is imposed as an identification condition). If we take 2n observations,
n along each axis, then fa and fb can be approximated with error O(1/n), so
approximation error for f is also O(1/n), once again the same as if f were a
nonparametric function of one variable.

The following proposition should now be plausible: For partially linear,
index, or additively separable models, the approximation error depends on the
maximum dimension of the nonparametric components of the model.

Smoothness can also reduce approximation error. Suppose f is twice differ-
entiable on the unit interval with f ′ and f ′′ bounded by L and we evaluate f at
n equidistant values of x. Consider approximation of f at xo ∈ [xi ,xi+1]. Using
a Taylor expansion, we have

f (xo) = f (xi )+ f ′(xi )(xo − xi )

+ 1/2 f
′′(x∗)(xo − xi )

2 x∗ ∈ [xi , xo]. (2.2.1)

If we approximate f (xo) using f (xi ) + f ′(xi )(xo − xi ), the error is
O(xo − xi )2 = O(1/n2). Of course we do not observe f ′(xi ). However,
the bound on the second derivative implies that f ′(xi ) − [ f (xi+1) − f (xi )]/
[xi+1 − xi ] is O(1/n) and thus

f (xo) = f (xi )+ [ f (xi+1)− f (xi )]

[xi+1 − xi ]
(xo − xi )+ O

(
1

n2

)
. (2.2.2)

This local linear approximation involves nothing more than joining the ob-
served points with straight lines. If third-order (kth order) derivatives are boun-
ded, then local quadratic (k − 1 order polynomial) approximations will reduce
the error further.

In this section, we have used the elementary idea that if a function is
smooth, its value at a given point can be approximated reasonably well by using
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evaluations of the function at neighboring points. This idea is fundamental to
nonparametric estimation where, of course, f is combined with noise to yield the
observed data. All results illustrated in this section have analogues in the non-
parametric setting. Data requirements grow very rapidly as the dimension of the
nonparametric component increases. The rate of convergence (i.e., the rate at
which we learn about the unknown regression function) can be improved using
semiparametric structure, additive separability, and smoothness assumptions.
Finally, the curse of dimensionality underscores the paramount importance of
procedures that validate models with faster rates of convergence. Among these
are specification tests of a parametric null against a nonparametric alternative
and significance tests that can reduce the number of explanatory variables in
the model.

2.3 Local Averaging Versus Optimization

2.3.1 Local Averaging

In Chapter 1 we introduced the idea of differencing, a device that allowed us
to remove the nonparametric effect. Suppose the object of interest is now the
nonparametric function itself. A convenient way of estimating the function at
a given point is by averaging or smoothing neighboring observations. Suppose
we are given data (y1, x1) . . . (yn, xn) on the model y = f (x) + ε, where x is
a scalar. Local averaging estimators are extensions of conventional estimators
of location to a nonparametric regression setting. If one divides the scatterplot
into neighborhoods, then one can compute local means as approximations to the
regression function. A more appealing alternative is to have the “neighborhood”
move along the x-axis and to compute a moving average along the way. The
wider the neighborhood, the smoother the estimate, as may be seen in Figure 2.2.
(If one were in a vessel, the “sea” represented by the solid line in the bottom
panel would be the most placid.)

2.3.2 Bias-Variance Trade-Off

Suppose then we define the estimator to be

f̂ (xo) = 1

no

∑
N (xo)

yi

= f (xo)+ 1

no

∑
N (xo)

( f (xi )− f (xo))+ 1

no

∑
N (xo)

εi (2.3.1)

where summations are taken over observations in the neighborhood N (xo)
around xo, and no is the number of elements in N (xo). Conditional on the
x’s, the bias of the estimator consists of the second term, and the variance is
determined by the third term.
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Data-generating mechanism yi = xi cos(4πxi ) + εi εi ∼ N (0, .09) xi ∈ [0, 1], n = 100.
Observations are averaged over neighborhoods of the indicated width.

Figure 2.2. Naive local averaging.
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The mean-squared error (i.e., the bias squared plus the variance) is given by

E[ f̂ (xo)− f (xo)]
2 =
(

1

no

∑
N (xo)

f (xi )− f (xo)

)2

+ σ 2
ε

no
. (2.3.2)

Mean-squared error can be minimized by widening the neighborhood N (xo)
until the increase in bias squared is offset by the reduction in variance. (The
latter declines because no increases as the neighborhood widens.) This trade-
off between bias and variance is illustrated in Figure 2.3, which continues the

Data-generating mechanism yi = xi cos(4πxi )+ εi εi ∼ N (0, .09) xi ∈ [0, 1], n = 100.

Figure 2.3. Bias-variance trade-off.
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example of Figure 2.2. In the first panel, local averaging is taking place using
just 10 percent of the data at each point (of course, fewer observations are used
as one approaches the boundaries of the domain). The solid line is E[ f̂ (x)]
and the estimator exhibits little bias; it coincides almost perfectly with the true
regression function (the dotted line). The broken lines on either side correspond
to two times the standard errors of the estimator at each point: 2(Var[ f̂ (x)])1/2.
In the second panel the neighborhood is substantially broader; we are now
averaging about 30 percent of the data at each point. The standard error curves
are tighter, but some bias has been introduced. The E[ f̂ (x)] no longer coincides
perfectly with the true regression curve. In the third panel, averaging is taking
place over 80 percent of the data. The standard error curves are even tighter,
but now there is substantial bias particularly at the peaks and valleys of the
true regression function. The expectation of the estimator E[ f̂ (x)] is fairly flat,
while the true regression function undulates around it.

A more general formulation of local averaging estimators modifies (2.3.1)
as follows:

f̂ (xo) =
n∑
1

wi (xo)yi . (2.3.3)

The estimate of the regression function at xo is a weighted sum of the yi ,
where the weights wi (xo) depend on xo. (Various local averaging estimators can
be put in this form, including kernel and nearest-neighbor.) Because one would
expect that observations close to xo would have conditional means similar to
f (xo), it is natural to assign higher weights to these observations and lower
weights to those that are farther away. Local averaging estimators have the
advantage that, as long as the weights are known or can be easily calculated, f̂
is also easy to calculate. The disadvantage of such estimators is that it is often
difficult to impose additional structure on the estimating function f̂ .

2.3.3 Naive Optimization

Optimization estimators, on the other hand, are more amenable to incorporating
additional structure. As a prelude to our later discussion, consider the following
naive estimator. Given data (y1, x1) . . . (yn, xn) on yi = f (xi ) + εi , where
xi ∈ [0, 1] and | f ′| ≤ L , suppose one solves

min
ŷ1,...,ŷn

1

n

∑
i

(yi − ŷi )
2 s.t.

∣∣∣∣ ŷi − ŷ j
xi − x j

∣∣∣∣ ≤ L i, j = 1, . . . , n.

(2.3.4)

Here ŷi is the estimate of f at xi and f̂ is a piecewise linear function joining the
ŷi with slope not exceeding the derivative bound L. Under general conditions
this estimator will be consistent. Furthermore, adding monotonicity or concavity
constraints, at least at the points where we have data, is straightforward. As
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additional structure is imposed, the estimator becomes smoother, and its fit to
the true regression function improves (see Figure 2.4).

2.4 A Bird’s-Eye View of Important Theoretical Results

The non- and semiparametric literatures contain many theoretical results. Here
we summarize – in crude form – the main categories of results that are of
particular interest to the applied researcher.

2.4.1 Computability of Estimators

Our preliminary exposition of local averaging estimators suggests that their
computation is generally straightforward. The naive optimization estimator con-
sidered in Section 2.3.3 can also be calculated easily even with additional con-
straints on the regression function. What is more surprising is that estimators
minimizing the sum of squared residuals over (fairly general) infinite dimen-
sional classes of smooth functions can be obtained by solving finite dimensional
(often quadratic) optimization problems (see Sections 3.1 to 3.4).

2.4.2 Consistency

In nonparametric regression, smoothness conditions (in particular, the existence
of bounded derivatives) play a central role in ensuring consistency of the es-
timator. They are also critical in determining the rate of convergence as well
as certain distributional results.2 With sufficient smoothness, derivatives of the
regression function can be estimated consistently, sometimes by differentiating
the estimator of the function itself (see Sections 3.1 to 3.4 and 3.7).

2.4.3 Rate of Convergence

How quickly does one “discover” the true regression function? In a parametric
setting, the rate at which the variance of estimators goes to zero is typically 1/n.3

2 For example, in proving these results for minimization estimators, smoothness is used to
ensure that uniform (over classes of functions) laws of large numbers and uniform central limit
theorems apply (see Dudley 1984, Pollard 1984, and Andrews 1994a,b).

3 In the location model y = µ+ ε, Var(ȳ) = σ 2
y /n; hence, µ− ȳ = OP (n

−1/2) and (µ− ȳ)2 =
OP (1/n). For the linear model y = α + βx + ε where the ordered pairs (y, x) are say i.i.d.,
we have ∫

(α + βx − α̂ − β̂x)2dx = (α − α̂)2
∫
dx + (β − β̂)2

∫
x2dx

+ 2(α − α̂)(β − β̂)
∫
xdx = OP (1/n)

because α̂, β̂ are unbiased and Var(α̂), Var(β̂) and Cov(α̂, β̂) converge to 0 at 1/n. The same
rate of convergence usually applies to general parametric forms of the regression function.
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Data-generating mechanism yi = xi + εi εi ∼ N (0, .04) xi ∈ [0,1]. Simulations performed
using GAMS – General Algebraic Modeling System (Brooke, Kendrick, and Meeraus 1992).

Figure 2.4. Naive nonparametric least squares.
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It does not depend on the number of explanatory variables. For nonparametric
estimators, convergence slows dramatically as the number of explanatory vari-
ables increases (recall our earlier discussion of the curse of dimensionality), but
this is ameliorated somewhat if the function is differentiable. The optimal rate
at which a nonparametric estimator can converge to the true regression function
is given by (see Stone 1980, 1982)∫

[ f̂ (x)− f (x)]2dx = OP

( 1

n2m/(2m+ d)

)
, (2.4.1)

where m is the degree of differentiability of f and d is the dimension of x. For
a twice differentiable function of one variable, (2.4.1) implies an optimal rate
of convergence of OP(n−4/5) (a case that will recur repeatedly). For a function
of two variables, it is OP(n−2/3).

Local averaging and nonparametric least-squares estimators can be con-
structed that achieve the optimal rate of convergence (see Sections 3.1 through
3.3). Rate of convergence also plays an important role in test procedures.

If the model is additively separable or partially linear, then the rate of con-
vergence of the optimal estimator depends on the nonparametric component of
the model with the highest dimension (Stone 1985, 1986). For example, for the
additively separable model y= fa(xa)+ fb(xb)+ ε, where xa, xb are scalars,
the convergence rate is the same as if the regression function were a nonpara-
metric function of one variable. The same is true for the partial linear model
y = zβ + f (x)+ ε, where x and z are scalars.

Estimators of β in the partial linear model can be constructed that are n1/2-
consistent (i.e., for which the variance shrinks at the parametric rate 1/n) and
asymptotically normal. In Section 1.3, we have already seen a simple differenc-
ing estimator with this property (see Sections 3.6 and 4.5 for further discussion).
Also, estimators of δ in the index model y = f (xδ)+ ε can be constructed that
are n1/2-consistent asymptotically normal (see Chapter 7).

For the hybrid regression function f (z, xa, xb, xc) = zβ + fa(xa)+ fb(xb)+
fc(xc), where xa, xb, xc are of dimension da, db, dc, respectively, the optimal
rate of convergence for the regression as a whole is the same as for a nonpara-
metric regression model with number of variables equal to max{da, db, dc}.

Constraints such as monotonicity or concavity do not enhance the (large
sample) rate of convergence if enough smoothness is imposed on the model
(see Section 6.6). They can improve performance of the estimator (such as the
mean-squared error) if strong smoothness assumptions are not made or if the
data set is of moderate size (recall Figure 2.4).

2.4.4 Bias-Variance Trade-Off

By increasing the number of observations over which averaging is taking place,
one can reduce the variance of a local averaging estimator. But as progressively
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less similar observations are introduced, the estimator generally becomes more
biased. The objective is to minimize the mean-squared error (variance plus bias
squared). For nonparametric estimators that achieve optimal rates of conver-
gence, the square of the bias and the variance converge to zero at the same rate
(see Sections 3.1 and 3.2). (In parametric settings the former converges to zero
much more quickly than the latter.) Unfortunately, this property can complicate
the construction of confidence intervals and test procedures.

2.4.5 Asymptotic Distributions of Estimators

For a wide variety of nonparametric estimators, the estimate of the regression
function at a point is approximately normally distributed. The joint distribu-
tion at a collection of points is joint normally distributed. Various functionals
such as the average sum of squared residuals are also normally distributed (see
Sections 3.1 through 3.3). In many cases, the bootstrap may be used to con-
struct confidence intervals and critical values that are more accurate than those
obtained using asymptotic methods (see Chapter 8).

2.4.6 How Much to Smooth

Smoothness parameters such as the size of the neighborhood over which av-
eraging is being performed can be selected optimally by choosing the value
that minimizes out-of-sample prediction error. The technique, known as cross-
validation, will be discussed in Section 3.5.

2.4.7 Testing Procedures

A variety of specification tests of parametric or semiparametric null hypotheses
against nonparametric or semiparametric alternatives are available.

Nonparametric tests of significance are also available as are tests of additive
separability, monotonicity, homogeneity, concavity, and maximization hypothe-
ses. A fairly unified testing theory can be constructed using either “goodness-
of-fit” type tests or “residual regression” tests (see Chapters 6 and 8).



3 Introduction to Smoothing

3.1 A Simple Smoother

3.1.1 The Moving Average Smoother1

A wide variety of smoothing methods have been proposed. We will begin with a
very simple moving average or “running mean” smoother. Suppose we are given
data (y1, x1) . . . (yn, xn) on the model y = f (x) + ε. We continue to assume
that x is scalar and that the data have been reordered so that x1≤· · ·≤ xn . For
the time being, we will further assume that the xi are equally spaced on the
unit interval. Define the estimator of f at xi to be the average of k consecutive
observations centered at xi . (To avoid ambiguity, it is convenient to choose k
odd.) Formally, we define

f̂ (xi ) = 1

k

ī∑
j= i

y j , (3.1.1)

where i = i − (k − 1)/2 and ī = i + (k − 1)/2 denote the lower and upper
limits of summations. The estimator is of course equal to

f̂ (xi ) = 1

k

ī∑
j= i

f (x j )+ 1

k

ī∑
j= i

ε j . (3.1.2)

If k – the number of neighbors being averaged – increases with n, then
by conventional central limit theorems the second term on the right-hand side
will be approximately normal with mean 0 and variance σ 2

ε /k. If these neigh-
bors cluster closer and closer to xi – the point at which we are estimating
the function – then the first term will converge to f (xi ). Furthermore, if this

1 The estimator is also sometimes called the “symmetric nearest-neighbor smoother.”

27
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convergence is fast enough, we will have

k1/2( f̂ (xi )− f (xi ))
D→ N
(
0, σ 2

ε

)
. (3.1.3)

A 95 percent confidence interval for f (xi ) is immediate

f̂ (xi )± 1.96
σε

k1/2
, (3.1.4)

and indeed quite familiar from the conventional estimation of a mean (σε may
be replaced by a consistent estimator). It is this simple kind of reasoning that
we will now make more precise.

3.1.2 A Basic Approximation

Let us rewrite (3.1.2) as follows:

f̂ (xi ) = 1

k

ī∑
j= i

y j

= 1

k

ī∑
j= i

f (x j )+ 1

k

ī∑
j= i

ε j

∼= f (xi )+ f ′(xi )
k

ī∑
j= i

(x j − xi )

+ f ′′(xi )
2k

ī∑
j= i

(x j − xi )
2 + 1

k

ī∑
j= i

ε j

∼= f (xi )+ 1/2 f
′′(xi )

1

k

ī∑
j= i

(x j − xi )
2 + 1

k

ī∑
j= i

ε j . (3.1.5)

In the third and fourth lines, we have applied a second-order Taylor series.2

Note that with the x j symmetric around xi , the second term in the third line is
zero. So, we may rewrite (3.1.5) as3

f̂ (xi ) ∼= f (xi )+ 1

24

(
k

n

)2

f ′′(xi )+ 1

k

ī∑
j= i

ε j . (3.1.6)

2 In particular, f (x j ) = f (xi ) + f ′(xi )(x j − xi ) + 1/2 f
′ ′(xi )(x j − xi )2 + o(x j − xi )2. We are

obviously assuming second-order derivatives exist.
3 We have used the result 1/2

1
k

∑ī
j=i (x j − xi )2 = 1

24
(k2−1)
n2

∼= 1
24 (

k
n )

2. See the exercises for
further details.
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The last term is an average of k independent and identical random variables so
that its variance is σ 2

ε /k and we have

f̂ (xi ) = f (xi )+ O

(
k

n

)2

+ OP

(
1

k1/2

)
. (3.1.7)

The bias E( f̂ (xi )− f (xi )) is approximated by the second term of (3.1.6) and
the Var( f̂ (xi )) is approximately σ 2

ε /k, thus, the mean-squared error (the sum
of the bias squared and the variance) at a point xi is

E[ f̂ (xi )− f (xi )]
2 = O

(
k

n

)4

+ O

(
1

k

)
. (3.1.8)

3.1.3 Consistency and Rate of Convergence

The approximation embodied in (3.1.6) yields dividends immediately. As long
as k/n → 0 and k →∞, the second and third terms go to zero and we have a
consistent estimator.

The rate at which f̂ (xi )− f (xi ) → 0 depends on which of the second or
third terms in (3.1.6) converge to zero more slowly. Optimality is achieved
when the bias squared and the variance shrink to zero at the same rate. Using
(3.1.7), one can see that this occurs if O(k2/n2) = OP(1/k

1/2), which implies
that optimality can be achieved by choosing k = O(n4/5). In this case,

f̂ (xi ) ∼= f (xi )+ O

(
1

n2/5

)
+ OP

(
1

n2/5

)
. (3.1.9)

Equivalently, we could have solved for the optimal rate using (3.1.8). Setting
O(k4/n4) = O(1/k) and solving, we again obtain k = O(n4/5). Substituting
into (3.1.8) yields a rate of convergence of E[ f̂ (xi )− f (xi )]

2 = O(n−4/5) for
the mean-squared error at a point xi . This, in turn, underpins the following,∫

[ f̂ (x)− f (x)]
2
dx = OP

(
1

n4/5

)
, (3.1.10)

which is a rather pleasant result in that it satisfies Stone’s optimal rate of con-
vergence, (2.4.1), where the order of differentiability m = 2 and the dimension
d = 1.

3.1.4 Asymptotic Normality and Confidence Intervals

Applying a central limit theorem to the last term of (3.1.6), we have

k1/2

(
f̂ (xi )− f (xi )− 1

24

(
k

n

)2

f ′′(xi )

)
D→ N
(
0, σ 2

ε

)
. (3.1.11)
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If we select k optimally, say, k = n4/5, then k1/2(k/n)2 = 1 and the con-
struction of a confidence interval for f (xi ) is complicated by the presence of
the term involving f ′′(xi ), which would need to be estimated. However, if we
require k to grow more slowly than n4/5 (e.g., k = n3/4), then k1/2(k/n)2 → 0
and (3.1.11) becomes k1/2( f̂ (xi )− f (xi ))

D→ N (0, σ 2
ε ). Intuitively, we are

adding observations sufficiently slowly that they are rapidly clustering around
the point of estimation. As a consequence, the bias is small relative to the vari-
ance (see (3.1.7)). In this case, a 95 percent confidence interval for f (xi ) is
approximately f̂ (xi )± 1.96σε/k

1/2. These are of course exactly the results we
began with in (3.1.3) and (3.1.4).

Let us pause for a moment. In these last sections, we have illustrated three
essential results for a simple moving average estimator: that it is consistent; that
by allowing the number of terms in the average to grow at an appropriate rate,
the optimal rate of convergence can be achieved; and, that it is asymptotically
normal.

3.1.5 Smoothing Matrix

It is often convenient to write moving average (and other) smoothers in matrix
notation. Let S be the smoother matrix defined by

S
(n−k+1)xn

=



1
k , . . ..

1
k , 0, . . . . . . . . . . . . . . . . . . . ., 0

0, 1
k , . . . . . ,

1
k , 0, . . . . . . . . . . . . . . . . 0

: :
: :

0, . . . . . . . . . . . . . . . 0, 1
k , . . . . . . ,

1
k , 0

0, . . . . . . . . . . . . . . . . . . 0, 1
k , . . . . . , 1

k


. (3.1.12)

Then we may rewrite (3.1.1) in vector-matrix form as

ŷ = f̂ (x) = Sy, (3.1.13)

where x, y, ŷ, f̂ (x) are vectors.

3.1.6 Empirical Application: Engel Curve Estimation

A common problem in a variety of areas of economics is the estimation of
Engel curves. Using South African household survey data (see Appendix E),
we select the subset consisting of single individuals and plot the food share of
total expenditure as a function of the log of total expenditure in Figure 3.1. The
subset contains 1,109 observations.

We apply the moving average smoother with k= 51 to obtain the solid irregu-
lar line in the upper panel. The lack of smoothness is a feature of moving average
smoothers. Note that the estimator does not quite extend to the boundaries of
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Model: y = f (x)+ ε, x is log of total expenditure and y is the food share of expenditure.
Data: The data consist of a sample of 1,109 single individuals (“Singles”) from South Africa.

Figure 3.1. Engel curve estimation using moving average smoother.
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the data because it drops observations at either end. This shortcoming will be
remedied shortly, but boundary behavior is an important feature distinguishing
nonparametric estimators.

The lower panel uses (3.1.3) to produce 95 percent pointwise confidence
intervals. At median expenditure (log (total expenditure)= 6.54), the 95 percent
confidence interval for food share is 38 to 46 percent.

3.2 Kernel Smoothers

3.2.1 Estimator

Let us return now to the more general formulation of a nonparametric estimator
we proposed in Chapter 2:

f̂ (xo) =
n∑
1

wi (xo)yi . (3.2.1)

Here we are estimating the regression function at the point xo as a weighted sum
of the yi , where the weights wi (xo) depend on xo. A conceptually convenient
way to construct local averaging weights is to use a unimodal function centered
at zero that declines in either direction at a rate controlled by a scale parameter.
Natural candidates for such functions, which are commonly known as kernels,
are probability density functions. Let K be a bounded function that integrates
to 1 and is symmetric around 0. Define the weights to be

wi (xo) =
1

λn
K
( xi−xo

λ

)
1

λn

∑n
1K
( xi−xo

λ

) . (3.2.2)

The shape of the weights (which, by construction, sum to 1) is determined by
K, and their magnitude is controlled by λ, which is known as the bandwidth.
A large value of λ results in greater weight being put on observations that are
far from xo. Using (3.2.1) the nonparametric regression function estimator, first
suggested by Nadaraya (1964) and Watson (1964), becomes

f̂ (xo) =
1

λn

∑n
1K
( xi−xo

λ

)
yi

1

λn

∑n
1K
( xi−xo

λ

) . (3.2.3)

A variety of other kernels are available (see Figure 3.2). Generally, selection
of the kernel is less important than selection of the bandwidth over which
observations are averaged. The simplest is the uniform kernel (also known as



Figure 3.2. Alternative kernel functions.
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the rectangular or box kernel), which takes a value of 1/2 on [−1,1] and 0
elsewhere. But the normal and other kernels are also widely used (see Wand
and Jones 1995 for an extensive treatment of kernel smoothing).

Much of the intuition developed using the moving average smoother applies
in the current setting. Indeed, with equally spaced x’s on the unit interval, and
the uniform kernel, the essential difference is the definition of the smoothing
parameter. The uniform kernel simply averages observations that lie in the
interval xo± λ. With n data points in the unit interval, the proportion of ob-
servations falling in an interval of width 2λ will be 2λ, and the number of
observations will be 2λn. Thus, if one uses the substitution k= 2λn in the
arguments of Section 3.1, analogous results will be obtained for the uniform
kernel estimator, which in this case is virtually identical to the moving average
smoother.

In particular, (3.1.6) and (3.1.7) become

f̂ (xi ) ∼= f (xi )+ 1

24
(2λ)2 f ′′(xi )+ 1

2λn

∑
j

ε j (3.2.4)

and

f̂ (xi ) ∼= f (xi )+ O(λ2)+ OP

(
1

λ1/2n1/2

)
. (3.2.4a)

Analogously to the conditions on k, we impose the following two conditions
on λ: the first is λ → 0, which ensures that averaging takes place over a shrink-
ing neighborhood, thus eventually eliminating bias. The second is λn → ∞,
which ensures that the number of observations being averaged grows and the
variance of the estimator declines to 0.

3.2.2 Asymptotic Normality

Suppose now that the x’s are randomly distributed (say on the unit interval) with
probability density p(x). For a general kernel, the Nadaraya–Watson kernel
estimator (3.2.3) is consistent. The numerator converges to f (xo)p(xo) and the
denominator converges to p(xo).

The rate of convergence is optimized if λ= O(n−1/5) in which case the
integrated squared error converges at the optimal rate OP(n−4/5), as in (3.1.10).
Confidence intervals may be constructed using

λ
1/2n1/2

(
f̂ (xo)− f (xo)− 1/2aKλ

2

(
f ′′(xo)+ 2 f ′(xo)

p′(xo)
p(xo)

))
D→ N

[
0,

bKσ 2
ε

p(xo)

]
, (3.2.5)
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where p (.) is the density of x and

aK =
∫
u2K (u)du bK =

∫
K 2(u)du. (3.2.6)

Wand and Jones (1995, p. 176) provide the values of aK and bK for various
kernels.

3.2.3 Comparison to Moving Average Smoother

Equation (3.2.5) requires estimation of the first and second derivatives of the
regression function. However, if λ shrinks to zero faster than at the optimal rate,
then the bias term disappears. Under such conditions, and assuming a uniform
kernel for which bK = 1/2, we may rewrite (3.2.5) as

λ
1/2n1/2( f̂ (xo)− f (xo))

D→ N

[
0,

σ 2
ε

2p(xo)

]
. (3.2.7)

What is the probability that an observation will fall in the interval xo ± λ?
It is roughly the height of the density times twice the bandwidth or 2λp(xo).
Now consider the variance of f̂ (xo) implied by (3.2.7) – σ 2

ε /2λp(xo)n. The
denominator is approximately the number of observations one can expect to be
averaging when calculating the estimate of f at xo. Compare this to the variance
of the moving average estimator in Section 3.1, which is σ 2

ε /k.

3.2.4 Confidence Intervals

Again let us assume that the bias term is made to disappear asymptotically by
permitting the bandwidth to shrink at a rate that is faster than the optimal rate.
Applying (3.2.5), define the standard error of the estimated regression function
at a point to be

s f̂ (xo) =
√

bK σ̂ 2
ε

λ p̂(xo)n
, (3.2.8)

where

p̂(xo) = 1

λn

n∑
1

K

(
xi − xo

λ

)
(3.2.9)

is the denominator of (3.2.3). (See footnote to Table 3.1 for values of bK .) Then
a 95 percent pointwise confidence interval can be constructed using

f̂ (xo)± 1.96 s f̂ . (3.2.10)
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Table 3.1. Asymptotic confidence intervals for kernel
estimators – implementation.

1. Select λ so that n1/5λ → 0, for example, λ = O(n−1/4). This ensures that
the bias term does not appear in (3.2.5).

2. Select a kernel K and obtain bK =
∫
K 2(u)du. For the uniform kernel on

[−1,1] bK = 1/2 .
a

3. Estimate f using the Nadaraya–Watson estimator (3.2.3).
4. Calculate σ̂ 2

ε = 1/n
∑

(yi − f̂ (xi ))2.
5. Estimate p(xo) using (3.2.9). If the uniform kernel is used, p̂(xo) equals

the proportion of xi in the interval xo ± λ divided by the width of the
interval 2λ.

6. Calculate the confidence interval at f (xo) using
f̂ (xo)± 1.96

√
bK σ̂ 2

ε / p̂(xo)λn
7. Repeat at other points if desired.

a For other kernels, the values of bK are as follows: triangular, 2/3; quartic or
biweight, 5/7; Epanechnikov, 3/5; triweight, 350/429; normal, 1/(2π1/2).

Table 3.1 provides implementation details. For confidence intervals when
the residuals are heteroskedastic, see the bootstrap procedures in Chapter 8,
Table 8.2.

3.2.5 Uniform Confidence Bands4

A potentially more interesting graphic for nonparametric estimation is a confi-
dence band or ribbon around the estimated function. Its interpretation is that, in
repeated samples, 95 percent of the estimated confidence bands will contain the
entire true regression function f . The plausibility of an alternative specification
(such as a parametric estimate, a monotone or concave estimate) can then be
assessed by superimposing this specification on the graph to see if it falls within
the band. Without loss of generality, assume that the domain of the nonpara-
metric regression function is the unit interval. Returning to the assumption that
λ → 0 at a rate faster than optimal (but slowly enough to ensure consistency),
a uniform 95 percent confidence band or ribbon can be constructed around the
function f using

f̂ (x)±
(
c

d
+ d + 1

2d
ln

( ∫
(K ′(u))2

4π2
∫
K 2(u)

))
s f̂ , (3.2.11)

where d =√2 ln(1/λ), c satisfies exp[−2exp(−c)]= .95, and s f̂ is the

4 See Härdle and Linton (1994, p. 2317). See also Eubank and Speckman (1993) for an alternative
approach to constructing uniform confidence bands for the case where the x’s are equally spaced.
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estimated standard error of the estimated regression function defined in
(3.2.8).

3.2.6 Empirical Application: Engel Curve Estimation

We now apply kernel estimation to the South African data set on single indi-
viduals considered earlier. The upper panel of Figure 3.3 illustrates a kernel
estimate (using a triangular kernel). It is considerably smoother than the simple
moving average estimator in Figure 3.1. The lower panel of Figure 3.3 displays
95 percent pointwise confidence intervals as well as a 95 percent uniform con-
fidence band around the estimate. Note that the uniform band – because it is
designed to capture the entire function with 95 percent probability – is wider
than the pointwise intervals.

3.3 Nonparametric Least-Squares and Spline Smoothers

3.3.1 Estimation

In Section 2.3.3, we introduced a primitive nonparametric least-squares estima-
tor that imposed smoothness by bounding the slope of the estimating function.
We will need a more tractable way to impose constraints on various order
derivatives. Let Cm be the set of functions that have continuous derivatives up
to order m. (For purposes of exposition we restrict these functions to the unit
interval.) A measure of smoothness that is particularly convenient is given by
the Sobolev norm

‖ f ‖Sob =
[∫

f 2 + ( f ′)2 + ( f ′′)2 + · · · + ( f (m)
)2
dx

]1/2

, (3.3.1)

where (m) denotes the mth-order derivative. A small value of the norm implies
that neither the function nor any of its derivatives up to order m can be too large
over a significant portion of the domain. Indeed, bounding this norm implies that
all lower-order derivatives are bounded in supnorm. Recall from Section 2.3.3
and Figure 2.4 that even bounding the first derivative produces a consistent
nonparametric least-squares estimator.

Suppose we take our estimating set � to be the set of functions in Cm for
which the square of the Sobolev norm is bounded by sayL, that is, �={ f ∈ Cm,

‖ f ‖2
Sob ≤ L}. The task of finding the function in � that best fits the data appears

to be daunting. After all, � is an infinite dimensional family. What is remarkable
is that the solution f̂ that satisfies

s2 = min
f

1

n

∑
i

[yi − f (xi )]
2 s.t. ‖ f ‖2

Sob ≤ L (3.3.2)
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Model: y = f (x)+ ε, x is log total expenditure and y is the food share of expenditure.
Data: The data consist of a sample of 1,109 single individuals (“Singles”) from South Africa.

Figure 3.3. Engel curve estimation using kernel estimator.
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can be obtained by minimizing a quadratic objective function subject to a qua-
dratic constraint. The solution is of the form f̂ =∑n

1 ĉi rxi , where rx1 , . . . , rxn
are functions computable from x1, . . . , xn and ĉ = (ĉ1, . . . , ĉn) is obtained by
solving

min
c

1

n
[y − Rc]′[y − Rc] s.t. c′Rc ≤ L . (3.3.3)

Here y is the n × 1 vector of observations on the dependent variable, and R
is an n × n matrix computable from x1, . . . , xn . Note that even though one is
estimating n parameters to fit n observations, the parameters are constrained;
thus, there is no immediate reason to expect perfect fit.

The rxi are called representor functions and R, the matrix of inner products of
the rxi , the representor matrix (see Wahba 1990, Yatchew and Bos 1997). Details
of these computations are contained in Appendix D. An efficient algorithm for
solving (3.3.3) may be found in Golub and Van Loan (1989, p. 564).

Furthermore, if x is a vector, the Sobolev norm (3.3.1) generalizes to in-
clude various order partial derivatives. The optimization problem has the same
quadratic structure as in the one-dimensional case above, and the functions
rx1 , . . . , rxn as well as the matrix R are directly computable from the data
x1, . . . , xn . Further results may be found in Chapters 5 and 6 and Appendix D.

3.3.2 Properties5

The main statistical properties of the procedure are these: f̂ is a consistent
estimator of f ; indeed, low-order derivatives of f̂ consistently estimate the
corresponding derivatives of f . The rate at which f̂ converges to f satisfies the
optimal rates given by Stone, (2.4.1). The optimal convergence result is useful
in producing consistent tests of a broad range of hypotheses.

The average minimum sum of squared residuals s2 is a consistent estimator of
the residual variance σ 2

ε . Furthermore, in large samples, s2 is indistinguishable
from the true average sum of squared residuals in the sense that

n1/2

(
s2 − 1

n

∑
ε2
i

)
P→ 0. (3.3.4)

Next, since n1/2(1/n
∑

ε2
i − σ 2

ε ) → N (0,Var(ε2)) ( just apply an ordinary
central limit theorem), (3.3.4) implies that

n1/2
(
s2 − σ 2

ε

) D→ N (0,Var(ε2)). (3.3.5)

5 These results are proved using empirical processes theory, as discussed in Dudley (1984) and
Pollard (1984).
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As explained in Section 3.6.2, this result lies at the heart of demonstrating
that nonparametric least squares can be used to produce n1/2-consistent normal
estimators in the partial linear model.

3.3.3 Spline Smoothers

The nonparametric least-squares estimator is closely related to spline estima-
tion. Assume for the moment η> 0 is a given constant,6 and consider the
“penalized” least-squares problem

min
f

1

n

∑
i

[yi − f (xi )]
2 + η‖ f ‖2

Sob. (3.3.6)

The criterion function trades off fidelity to the data against smoothness of the
function f . There is a penalty for selecting functions that fit the data extremely
well but as a consequence are very rough (recall that the Sobolev norm measures
the smoothness of a function and its derivatives). A larger η results in a smoother
function being selected.

If one solves (3.3.2), our nonparametric least-squares problem, takes the
Lagrangian multiplier, say η̂ associated with the smoothness constraint, and
then uses it in solving (3.3.6), the resulting f̂ will be identical.

In their simplest incarnation, spline estimators use
∫
( f ′′)2 as the measure of

smoothness (see Eubank 1988, Wahba 1990). Equation (3.3.6) becomes

min
f

1

n

∑
i

[yi − f (xi )]
2 + η

∫
( f ′′)2. (3.3.7)

As η increases, the estimate becomes progressively smoother. In the limit, f ′′

is forced to zero, producing a linear fit. At the other extreme, as η goes to zero,
the estimator produces a function that interpolates the data points perfectly.

3.4 Local Polynomial Smoothers

3.4.1 Local Linear Regression

A natural extension of local averaging is the idea of local regression. Suppose
one runs a linear regression using only observations that lie in a neighborhood
of xo which we will denote by N (xo). If included observations were given equal
weight, one would solve

min
a,b

∑
xi∈N (xo)

[yi − a(xo)− b(xo)xi ]
2 (3.4.1)

6 Actually, it is selected using cross-validation, which is a procedure we will discuss shortly.
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where the dependence of the regression coefficients on xo is emphasized by the
notation. The estimate of f at xo would be given by

f̂ (xo) = â(xo)+ b̂(xo)xo. (3.4.2)

Repeating this procedure at a series of points in the domain, one obtains a
nonparametric estimator of the regression function f .

Alternatively, one could perform a weighted regression assigning higher
weights to closer observations and lower ones to those that are farther away.
(In the preceding procedure, one assigns a weight of 1 to observations in N (xo)
and 0 to others.) A natural way to implement this is to let the weights be deter-
mined by a kernel function and controlled by the bandwidth parameter λ. The
optimization problem may then conveniently be written as

min
a, b

∑
i

[yi − a(xo)− b(xo)xi ]
2 K

(
xi − xo

λ

)
. (3.4.3)

Solutions are once again plugged into (3.4.2). This procedure is sometimes
referred to as “kernel regression” because it applies kernel weights to a local
regression. By replacing the linear function in (3.4.3) with a polynomial, the
procedure generalizes to local polynomial regression.

Key references in this literature include Cleveland (1979), Cleveland and
Devlin (1988), and Fan and Gijbels (1996). The latter is a monograph devoted
to the subject and contains an extensive bibliography.

3.4.2 Properties

Under general conditions, local polynomial regression procedures are consis-
tent, achieve optimal rates of convergence with suitable selection of the band-
width, and yield point estimates that are asymptotically normal. For construction
of confidence intervals, see Fan and Gijbels (1996, pp. 116–118). Furthermore,
the behavior of local polynomial regression procedures at the boundary is often
superior to kernel and spline estimation. An algorithm used to implement local
polynomial regression proceeds as follows:

For a point xo find the k nearest-neighbors. These will constitute the neigh-
borhood N (xo). Define the span to be k/n. It is the fraction of total obser-
vations used in the local regression.

Let �(xo) be the largest distance between xo and any other point in the
neighborhood N (xo). Assign weights to each point in the neighborhood
using K (|xi − xo|/�(xo)), where K is the triweight kernel in Figure 3.2.

Calculate the weighted least-squares estimator using the observations in the
neighborhood and produce the fitted value f̂ (xo). Repeat at the other values
of x .
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Model: y = f (x)+ ε, x is log total expenditure and y is the food share of expenditure.
Data: The data consist of a sample of 1,109 single individuals (“Singles”) from South Africa.

Figure 3.4. Engel curve estimation using kernel, spline, and lowess estimators.

Variants on these estimators include loess (local regression;7 Cleveland and
Devlin 1988) and lowess (locally weighted scatterplot smoothing; Cleveland
1979). After initial estimates using local regression, lowess seeks to increase
robustness by assigning lower weights to those observations with large residuals
and repeating the local regression procedure.

3.4.3 Empirical Application: Engel Curve Estimation

Figure 3.4 illustrates the application of kernel, spline, and lowess estimators to
the data on single South Africans. Relative to the precision of estimation (as
illustrated by the confidence intervals and bands in Figure 3.3), the estimators
track each other closely. One should keep in mind that this is a sizable data set
with over 1,000 observations.

7 Evidently the name was chosen because a loess is a surface of loamy, silt, or clay deposits
common in river valleys and usually formed by wind (see Chambers and Hastie 1993, p. 314).



Introduction to Smoothing 43

3.5 Selection of Smoothing Parameter8

3.5.1 Kernel Estimation

We now turn to selection of smoothing parameters for kernel estimators. If the
bandwidth λ is too large, then oversmoothing will exacerbate bias and eliminate
important features of the regression function. Selection of a value of λ that is
too small will cause the estimator to track the current data too closely, thus
impairing the prediction accuracy of the estimated regression function when
applied to new data (see Figures 2.2 and 2.3). To obtain a good estimate of f
one would like to select λ to minimize the mean integrated squared error (MISE)

MISE(λ) = E
∫

[ f̂ (x; λ)− f (x)]2dx, (3.5.1)

where we write f̂ (x; λ) to denote explicitly that the kernel estimator depends
on the choice of λ. Of course we do not observe f , so theMISE cannot be mini-
mized directly. Nor will selecting λ by minimizing the estimate of the residual
variance

σ̂ 2
ε(λ) =

1

n

n∑
i=1

[yi − f̂ (xi ; λ)]2 (3.5.2)

lead to a useful result, for the minimum of (3.5.2) occurs when λ is reduced to
the point where the data are fit perfectly. However, this idea can be modified
to produce useful results. Consider a slight variation on (3.5.2) known as the
cross-validation function

CV(λ) = 1

n

n∑
i=1

[yi − f̂ −i (xi ; λ)]2. (3.5.3)

The only difference between (3.5.2) and (3.5.3) is that the kernel estimator
is subscripted with a curious “−i” which is used to denote that f̂ −i is obtained
by omitting the i th observation. The estimate of f at each point xi is obtained
by estimating the regression function using all other observations and then
predicting the value of f at the omitted observation. (Thus, for a given value
of λ, CV(λ) requires calculation of n separate kernel estimates.)9

8 Cross-validation was first proposed for the kernel estimator by Clark (1975) and for spline
estimation by Wahba and Wold (1975).

9 The notion that out-of-sample prediction is a useful criterion for estimation and testing is, of
course, quite generally applied in statistics. In the simplest case, one can imagine dividing a
sample in two, using one part to estimate the model and the other to assess its accuracy or
validity. This naive approach, however, does not make optimal use of the data, a problem that
is resolved through the cross-validation device.
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This subtle change results in some extremely propitious properties, (see, e.g.,
Härdle and Marron 1985, and Härdle, Hall, and Marron 1988). In particular,
suppose an optimal λ, say λOPT, could be chosen to minimize (3.5.1). Let λ̂ be
the value that minimizes (3.5.3). ThenMISE(λ̂)/MISE(λOPT) converges in large
samples to 1. That is, in large samples, selecting λ through cross-validation is
as good as knowing the λ that minimizes the integrated mean-squared error.

3.5.2 Nonparametric Least Squares

The heuristics of smoothness bound selection for nonparametric least squares
are similar. If one selects L in (3.3.2) to be much larger than the squared true
norm of the function f , then the estimator will be less efficient though it will
be consistent. If one selects a bound that is smaller, then the estimator will
generally be inconsistent. The cross-validation function is defined as

CV(L) = 1

n

n∑
i=1

[yi − f̂ −i (xi )]
2, (3.5.4)

where f̂ −i is obtained by solving

min
f

1

n

n∑
j 
= i

[y j − f (x j )]
2 s.t. ‖ f ‖2

Sob ≤ L . (3.5.5)

The interpretation of the smoothing parameter is somewhat different. In ker-
nel estimation it corresponds to the width of the interval over which averaging
takes place; in nonparametric least squares it is the diameter of the set of func-
tions over which estimation takes place.

Figure 3.5 illustrates the behavior of the cross-validation function for both
kernel and nonparametric least-squares estimators. The data-generating mecha-
nism is given by the model yi = xi + εi , εi ∼ N (0,.01), i = 1, . . . , 25 where the
xi are equally spaced on the interval [0,1]. The minimum of the cross-validation
function for the kernel estimator is approximately at a bandwidth of .25.

For the nonparametric least-squares cross-validation function, note first that
the square of the second-order Sobolev norm (3.3.1) of the true regression
function is given by

∫
1
0x

2 + 1 = 11/3 for m≥ 2. Thus, L = 11/3 would be the
smallest value that would ensure consistency of the nonparametric least-squares
problem (3.3.2). In the simulations (Figure 3.5), the minimum of the cross-
validation function is between 1.4 and 1.5.10

10 For optimality results on cross-validation in a spline setting, see Li (1986, 1987), Wahba (1990,
p. 47).
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Data-generating mechanism: yi = xi + εi , εi ∼ N (0,.01), i = 1, . . . 25, where xi are equally
spaced on the interval [0,1]. Kernel cross-validation performed using triangular kernel. Nonpara-
metric least-squares cross-validation performed using Fortran code written by the author.

Figure 3.5. Selection of smoothing parameters.
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Model: y = f (x)+ ε, x is log total expenditure and y is the food share of expenditure.
Data: 1,109 single individuals (“Singles”) from South Africa.
Kernel: triangular kernel

Figure 3.6. Cross-validation of bandwidth for Engel curve estimation.

3.5.3 Implementation

Various researchers have investigated alternate procedures for selecting the
smoothing parameter. Unfortunately, unlike the case of kernel estimation of den-
sity functions, no convenient rules of thumb are available for kernel regression.11

However, by simply trying different values for the smoothing parameter and
visually examining the resulting estimate of the regression function, it is often
possible to obtain a useful indication of whether one is over- or undersmoothing.

Furthermore, cross-validation can be automated relatively easily. The kernel
cross-validation function in Figure 3.5 was obtained using the “regcvl” function
inXploRe. S-Plus uses cross-validation to produce its spline estimates, and other
automated procedures are also available.12

Figure 3.6 contains the cross-validation function for the data on food expen-
ditures by South African singles (see Figures 3.1, 3.3, and 3.4). We have used a
triangular kernel (because of the speed of computation). The minimum appears
to be at about .35.

11 For “rules of thumb” in a kernel density estimation setting, see Scott (1992). For alternatives
to cross-validation in a nonparametric regression setting, see, for example, Simonoff (1996,
p. 197) and references therein.

12 See Venables and Ripley (1994, p. 250).
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3.6 Partial Linear Model

3.6.1 Kernel Estimation

Given i.i.d. data (y1, x1, z1), . . . , (yn, xn, zn), consider the semiparametric re-
gression model discussed in Chapter 1,

y = zβ + f (x)+ ε, (3.6.1)

where E(y | z, x) = zβ + f (x), σ 2
ε = Var[y | z, x]. The function f is not

known to lie in a particular parametric family. An early and important analysis
of this model was that of Engle et al. (1986), who used it to study the impact
of weather on electricity demand, which is an example that we too consider in
Section 4.6.3.

Robinson’s (1988) influential paper – one that was paralleled by Speckman
(1988) in the statistics literature – demonstrates that β can be estimated at
parametric rates, that is, β̂ − β = OP(n

−1/2), despite the presence of the non-
parametric function f. Specifically, Robinson rewrites (3.6.1) conditioning on
the nonparametric variable x as follows:

y − E(y | x) = y − E(z | x)β − f (x) = (z − E(z | x))β + ε. (3.6.2)

If E(y | x) and E(z | x) are known, then ordinary least squares on (3.6.2)
yields an estimate of β,which is asymptotically normal with variance σ 2

ε /nσ
2
u ,

where σ 2
u is the variance of z conditional on x . (For the moment we will assume

that this conditional variance is constant.)
Of course, the regression functions E(y | x) and E(z | x) are generally not even

known to have particular parametric forms. Robinson then produces nonpara-
metric (kernel) estimators of h(x) = E(y | x) and g(x) = E(z | x) that converge
sufficiently quickly that their substitution in the OLS estimator does not affect
its asymptotic distribution. The estimator is distributed as13

n1/2(β̂ − β)
D→ N

(
0,

σ 2
ε

σ 2
u

)
. (3.6.3)

It is often called the “double residual” estimator because it involves the residuals
from initial nonparametric regressions of y on x and z on x , as may be seen
from (3.6.2).

13 For general results of this nature, see Newey (1994a). See also Linton (1995b) who has an-
alyzed higher-order properties of β̂. Bickel and Kwon (2001) have discussed inference for
semiparametric models in a general setting.
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3.6.2 Nonparametric Least Squares

Returning to (3.6.1), consider the conditional distribution of y, z | x
z = E(z | x)+ u = g(x)+ u

y = E(y | x)+ v = h(x)+ v = (g(x)β + f (x))+ (uβ + ε) (3.6.4)

then,

Cov

(
u

v

)
≡
[
σ 2
u σuv

. . . σ 2
v

]
=
[
σ 2
u σ 2

u β

. . . σ 2
u β

2 + σ 2
ε

]
. (3.6.5)

Under sufficient smoothness assumptions, the nonparametric least-squares
estimator (3.3.2) can be applied equation by equation. The sample variances
s2
u =
∑

û2
i /n, s2

v =
∑

v̂2
i /n are n1/2-consistent, asymptotically normal esti-

mators of the corresponding population variances σ 2
u , σ

2
v (using (3.3.5)). It can

also be demonstrated that suv =
∑

ûi v̂i/n is a n1/2-consistent, asymptotically
normal estimator of σuv . In summary, the sample analogue to (3.6.5), that is, the
matrix of estimated variances and covariances, is n1/2-consistent asymptotically
normal.

Now β = σuv/σ
2
u , so that it is fairly straightforward to show that its sample

analogue, β̂ = suv/s2
u , is also n1/2-consistent, asymptotically normal. Further-

more, its variance is given by σ 2
ε /nσ

2
u , which is the same variance attained by

the Robinson estimator. Inference may be conducted using (3.6.3). 14

3.6.3 The General Case

Suppose one is given data (y1, x1, z1), . . . . , (yn, xn, zn), where zi is a p-
dimensional vector and xi and yi are scalars.15 Let zi = g (xi ) + ui , where
g is now a vector function with first derivatives bounded, E (ui | xi ) = 0, and
E (Var (zi | xi )) =

∑
z|x . Write the model as

y
n×1

= Z
n×p

β
p×1

+ f (x)
n×1

+ ε
n×1

, (3.6.6)

where Z is the n × p matrix with ith row zi . In this case, the double residual
method requires that a separate nonparametric regression be performed for the
dependent variable and for each parametric variable. Let ĥ(x)

n×1
be the estimates

14 We note that one can perform semiparametric least squares on the model (3.6.1) by minimizing
the sum of squared residuals with respect to β and f subject to a smoothness constraint on f,
but the resulting estimator of β would not in general converge at n1/2 (see Rice 1986 and Chen
1988).

15 The case where x is also a vector requires nonparametric regression of several variables, which
is covered in Chapter 5. Otherwise, the arguments of the current section apply directly. For
proofs of the assertions below, see Robinson (1988) and Speckman (1988).
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resulting from a nonparametric regression of y on x . Let ĝ(x)
n×p

be the estimates

resulting from a nonparametric regression of each column of Z on x . (A kernel,
spline, nonparametric least-squares, local polynomial, or other nonparametric
smoother may be used). Write

y − ĥ(x) ∼= (Z − ĝ(x))β + ε. (3.6.7)

Then the double residual estimator of β is given by

β̂ = ((Z − ĝ(x))′(Z − ĝ(x)))−1(Z − ĝ(x))′(y − ĥ(x)) (3.6.8)

with large sample distribution

n1/2(β̂ − β)
D→ N

(
0, σ 2

ε

∑−1

z|x

)
. (3.6.9)

The residual variance may be estimated consistently using

s2 = 1

n
(y − ĥ(x)− (Z − ĝ(x))β̂)′(y − ĥ(x)− (Z − ĝ(x))β̂),

(3.6.10)

and a consistent estimate of the covariance matrix of β̂ is given by∑̂
β̂
= s2((Z − ĝ(x))′(Z − ĝ(x)))−1. (3.6.11)

Equations (3.6.9) to (3.6.11) may be used to construct confidence intervals
for β. Linear restrictions of the form Rβ = r may be tested using the con-
ventional statistic, which – if the null hypothesis is true – has the following
distribution:

(Rβ̂ − r)′
(
R
∑̂

β̂
R′
)−1

(Rβ̂ − r)
D→ χ2

rank(R). (3.6.12)

Equivalently one may use

n
(
s2
res − s2

)
s2

D→ χ2
rank(R), (3.6.13)

where s2 is the unrestricted estimator obtained in (3.6.10), and s2
res is obtained

by estimating the model (3.6.6) subject to the linear constraints16 and then
applying (3.6.10). Finally, one can perform a kernel regression of y− Z β̂ on x
to obtain f̂ .

16 Recall that for a linear model, the restricted OLS estimator may be obtained by redefining
variables. The “double-residual” model being estimated in (3.6.2) is linear.
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3.6.4 Heteroskedasticity

Consider the basic linear regression model expressed in matrix notation y =
Zβ + ε, where coefficients are estimated using OLS: β̂ols = (Z ′Z)−1Z ′y. If
the observations have unknown covariance matrix � then

Var(β̂ols) =
1

n

(
Z ′Z
n

)−1 Z ′�Z

n

(
Z ′Z
n

)−1

. (3.6.14)

White (1980) demonstrated that to estimate this covariance matrix, one need
only obtain a consistent estimator of plim (Z ′�Z/n) and not of � itself. In the
case of heteroskedasticity, he proposed Z ′�̂Z/n where the diagonal elements of
�̂ are the squares of the estimated OLS residuals ε̂2

i . (Off-diagonal elements are
zero.) He then showed that Z ′�Z/n−Z ′�̂Z/n

P→ 0. Substitution into (3.6.14)
yields a heteroskedasticity-consistent covariance matrix estimator fo β̂OLS.

Note that in the case of heteroskedasticity, the interior matrix of (3.6.14) may
be written as

Z ′�Z

n
= 1

n

∑
σ 2
i z

′
i zi , (3.6.15)

where σ 2
i are the diagonal entries in � and zi is the i th row of the Z matrix.

The estimate may be computed using

Z ′�̂Z

n
= 1

n

∑
ε̂2
i z
′
i zi . (3.6.16)

Let us return to the partial linear model y = Zβ + f (x) + ε and suppose
that the residuals have covariance matrix �. Then the covariance matrix of the
OLS estimator (3.6.8) is approximately

Var(β̂OLS)
∼= 1

n

(
(Z − ĝ(x))′(Z − ĝ(x))

n

)−1

× (Z − ĝ(x))′�(Z − ĝ(x))

n

(
(Z − ĝ(x))′(Z − ĝ(x))

n

)−1

,

(3.6.17)

and in the case of heteroskedasticity, the interior matrix may be estimated using

(Z − ĝ(x))′�̂(Z − ĝ(x))

n
= 1

n

∑
ε̂2
i (zi − ĝ(xi ))

′(zi − ĝ(xi )),

(3.6.18)
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where �̂ is a diagonal matrix with entries ε̂2
i , the estimated residuals from

(3.6.7), and ĝ(xi ) is the ith row of ĝ(x)
n×p

.17

3.6.5 Heteroskedasticity and Autocorrelation

Return once again to the pure linear regression model y= Zβ + ε. Then for
arbitrary residual covariance matrix �, the variance of the OLS estimator is
given by (3.6.14). Furthermore, the interior matrix of (3.6.14) may be written as

Z ′�Z

n
= 1

n

∑
i, j

σij z
′
i z j , (3.6.19)

where σij denotes elements of � and zi , z j are the i th and j th rows of the
Z matrix. If the covariances are zero for observations that are more than say
L periods apart, then (3.6.19) becomes

Z ′�Z

n
= 1

n

∑
i, j

|i− j |≤L

σij z
′
i z j , (3.6.20)

which may be estimated using

Z ′�̂Z

n
= 1

n

∑
i, j

|i− j |≤L

ε̂i ε̂j z
′
i z j . (3.6.21)

Here �̂ is the matrix ε̂ε̂′ with all terms whose expectation is known to be zero
set to zero. (Thus, all entries more than L subdiagonals from the main diagonal
are zero.) The results may be found in White (1985).

Consistency is retained even if distant correlations are never actually zero but
die off sufficiently quickly. In this case, L is permitted to increase with sample
size.

As a practical matter, however, (3.6.21) need not be positive definite. To re-
solve this, Newey and West (1987) proposed a modification as follows. Rewrite
(3.6.21) as

1

n

∑
i, j

|i− j |≤L

ε̂i ε̂j z
′
i z j

= 1

n

∑
i

ε̂2
i z
′
i zi +

1

n

L∑
�=1

n∑
i=�+1

ε̂i ε̂i−�(z
′
i zi−� + z′i−�zi ), (3.6.22)

17 Here and in the next section it is convenient to think of �̂ as the matrix ε̂ε̂′ with all terms whose
expectation is known to be zero set to zero (which in the case of pure heteroskedasticity means
that all off-diagonal terms are set to zero).
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but now insert weights to obtain

1

n

∑
i

ε̂2
i z
′
i zi +

1

n

L∑
�=1

(
1− �

L + 1

) n∑
i=�+1

ε̂i ε̂i−�(z
′
i zi−� + z′i−�zi ).

(3.6.23)

Thus, the matrix (3.6.20) may be estimated using either the White (1985)
estimator in (3.6.21) or the Newey–West estimator in (3.6.23).

Return once again to the partial linear model. For arbitrary �, the OLS
estimator (3.6.8) has a covariance matrix given by (3.6.17). Analogously to
(3.6.21), the interior matrix may be estimated using (White 1985)

(Z − ĝ(x))′�̂(Z − ĝ(x))

n
= 1

n

∑
i, j

|i− j |≤L

ε̂i ε̂ j (zi − ĝ(xi ))
′(z j − ĝ(x j )),

(3.6.24)

where �̂ equals ε̂ε̂′ with all entries more than L subdiagonals from the main
diagonal set to zero. Alternatively, following (3.6.23), the interior matrix may
be estimated using the Newey–West approach as follows:

1

n

∑
i

ε̂2
i (zi − ĝ(xi ))

′(zi − ĝ(xi ))

+ 1

n

L∑
�=1

(
1− �

L + 1

) n∑
i=�+1

ε̂i ε̂i−�((zi − ĝ(xi ))
′(zi−� − ĝ(xi−�))

+ (zi−� − ĝ(xi−�)
′(zi − ĝ(xi ))). (3.6.25)

3.7 Derivative Estimation

3.7.1 Point Estimates

A variety of derivative estimators based on kernel procedures have been pro-
posed. Conceptually, the simplest approach is to take derivatives of the kernel
estimate. This may be done analytically or numerically. For example, suppose
f̂ is a kernel estimate of f, and let h → 0 as sample size increases. Ullah (1988)
and Rilstone and Ullah (1989) proposed

f̂
′
(x) = 1

2h
( f̂ (x + h)− f̂ (x − h)) (3.7.1)

and

f̂
′′
(x) = 1

(2h)2
( f̂ (x + 2h)− 2 f̂ (x)+ f̂ (x − 2h)). (3.7.2)
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However, the rate at which the optimal bandwidth goes to zero depends on the
derivative being estimated. Generally, higher-order derivatives require greater
smoothing of the function itself and hence a bandwidth that shrinks to zero
more slowly.18

Nonparametric least-squares estimators of the kind discussed in Section 3.3
(and later in 5.1) can also be differentiated to produce estimates of derivatives.
Generally it is required that the measure of smoothness incorporate at least two
more derivatives than the derivative that is of interest. For example, if one is
interested in the first derivative, than the Sobolev norm (3.3.1) should be of
order three or more. If one is interested in the second derivative (as we will be
later when estimating the state price density in an option pricing model), then
the norm should be of order four or more.19

3.7.2 Average Derivative Estimation

Average derivatives or functionals of average derivatives are also frequently of
interest. Consider

E( f ′(x)) =
∫

f ′(x)p(x)dx, (3.7.3)

where p(x) is the density function of x . Let p̂(x) be an estimate of p(x). A
simple “direct” estimator may be obtained using∫

f̂
′
(x) p̂(x)dx . (3.7.4)

Or, one can use

1

n

n∑
i=1

f̂
′
(xi ). (3.7.5)

An alternative “indirect” estimator was proposed by Härdle and Stoker (1989).
Suppose one is interested in the regression function on the interval [a,b] and
that the density function is zero at the endpoints, that is, p(a) = p(b) = 0. Let
s(x) be the negative of the score function, that is, s(x) = −p′(x)/p(x). Then
an alternative expression for the average derivative is given by

E( f ′(x)) = E(s(x)y). (3.7.6)

18 See, for example, Härdle (1990, Proposition 3.1.2, p. 33), which imples that estimation of the first
derivative has an associated optimal bandwidth of order O(n−1/7); for the second derivative, it
is O(n−1/9). Recall that when estimating the function itself, the optimal bandwidth is O(n−1/5).

19 Thus, the usual spline estimators that penalize the second derivative (see, e.g., (3.3.7)) will
not in general produce consistent estimators of first and second derivatives. For spline esti-
mators that penalize higher-order derivatives, see Jim Ramsay’s S-Plus routines available at
www.psych.mcgill.ca/faculty/ramsay/ramsay.html.
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The result is obtained using integration by parts, in particular

E(s(x)y) = E(s(x) f (x)) = −
∫

p′(x) f (x)dx

= −p(x) f (x)| ba +
∫

p(x) f ′(x)dx (3.7.7)

= E( f ′(x))

because the density of x is zero at the endpoints. The sample analogue of (3.7.6)
is given by

−1

n

n∑
i=1

p̂′(xi )
p̂(xi )

yi . (3.7.8)

In regions of sparse data, f̂ ′, the estimate of the derivative used in (3.7.5)
may be poor. Similarly, the estimated value of the density p̂(xi ) appearing in
the denominator of (3.7.8) may be close to zero, leading to inaccurate estimates
of the average derivative. To mitigate this problem, the estimators are usually
modified to remove such observations. In particular, (3.7.5) becomes

1

n

n∑
i=1

f̂ ′(xi )Ii , (3.7.5a)

and (3.7.8) becomes

−1

n

n∑
i=1

p̂′(xi )
p̂(xi )

yi Ii , (3.7.8a)

where Ii is an indicator function that is zero if the density p̂(xi ) is close to zero.

3.8 Exercises20

1. Derive the approximation used in Footnote 3 to justify (3.1.5). In particular, prove
that

1

k

ī∑
j= i

(x j − xi )
2 = k2 − 1

12n2
,

where x1, . . . , xn are equally spaced on the unit interval.

20 Data and sample programs for empirical exercises are available on the Web. See the Preface for
details.
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2. Properties of Kernel Estimators: Suppose x’s are uniformly distributed on the unit
interval and we are using the uniform kernel to estimate the model y = f (x) + ε.
By adapting the results in (3.1.5)–(3.1.11),

(a) derive conditions under which the kernel estimator is consistent at a point, say
xo;

(b) derive the optimal rate of convergence for the bandwidth parameter λ;
(c) derive a 95 percent confidence interval for f (xo).

3. Moving Average Estimation: The purpose of this exercise is to perform a nonparamet-
ric regression using the simple moving average estimator and to construct pointwise
confidence intervals.

(a) Open the South African survey data and select the subset of the data where the
number of adults is 1 and the number of children 0. You will need data on the
food share of total expenditure (FoodShr) and the log of total expenditure (ltexp).
The number of observations will be 1,109.

(b) Sort the data so that ltexp is in increasing order and produce a scatterplot of the
data.

(c) Using k= 51, apply the moving average estimator (3.1.1). You will obtain an
estimate of the food share function f for observations 26 through 1,084. Super-
impose the results on your scatterplot.

(d) Calculate 95 percent pointwise confidence intervals using (3.1.4) and superim-
pose these on a plot of the estimated regression function. Your results should be
similar to those in Figure 3.1.

4. Kernel Estimation, Confidence Intervals, and Bands: The purpose of this exercise is
to perform a kernel regression and to construct pointwise confidence intervals and a
uniform confidence band for the South African food share data on single individuals
(see Exercise 3).

(a) We will use the triangular kernel (Figure 3.2). Show that
∫
K 2(u) = 2/3 and that∫

K ′(u)2 = 2.
(b) Estimate the share function f using the triangular kernel and a bandwidth of .5.
(c) Estimate the residual variance σ 2

ε using the average sum of squared residuals
from this regression.

(d) Calculate s f̂ at all the points at which you have data using (3.2.8).
(e) Plot f̂ and the 95 percent pointwise confidence intervals using (3.2.10).
(f) Calculate the 95 percent uniform confidence band and superimpose it on your

previous plot. Your results should be similar to those in Figure 3.3.

5. Estimation Using Spline and Lowess Estimators: The purpose of this exercise is to
produce spline and lowess estimates using the South African food share data on single
individuals (see Exercise 3).

(a) Estimate the share function f using a spline estimator (e.g., smooth.spline in
S-Plus).

(b) Estimate f using a lowess estimator (e.g., lowess in S-Plus).
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(c) Plot the kernel estimator of f from Exercise 4(b) above. Superimpose the spline
and lowess estimates. Your results should be similar to Figure 3.4.

6. Estimation Using the Super-smoother: A smoother related to our simple moving
average in Section 3.1 is the super-smoother. However, rather than taking a moving
average, one performs least squares on k consecutive observations. Furthermore,
at each point, cross-validation is used to select k. By allowing variability in the
span (defined to be k/n), regions where the function has greater fluctuation will
be estimated using observations that tend to be closer together, thus reducing bias.
We will use the South African food share data on single individuals (see Exercise 3).

(a) Estimate the share function f using the super-smoother (e.g., supsmu in S-Plus)
and plot the results.

(b) Superimpose the moving average estimate from Exercise 3(c) and the kernel
estimate from Exercise 4(b) above.

7. Cross-Validation Simulation: Let yi = xi + εi , εi ∼ N (0,.01), i = 1, . . . , 25, where
the xi are equally spaced on the interval [0,1]. Generate a data set using this model.
Using a triangular kernel, calculate the cross-validation function (3.5.3) for values of
the bandwidthλ in the range [.1,.5] in increments of say .025. Plot the cross-validation
function, which should be similar to the upper panel of Figure 3.5.

8. Cross-Validation and Engel Curve Estimation: Open the South African food share
data on single individuals (see Exercise 3). Using a triangular kernel, calculate the
cross-validation function (3.5.3) for values of the bandwidth λ in the range [.2,.6] in
increments of say .025. Plot the cross-validation function, which should be similar
to that of Figure 3.6.

9. Engel Curves with Heteroskedastic Variance

(a) Using South African food share data on single individuals, apply a nonparametric
smoother (such as kernel or loess) to estimate the Engel curve y = f (x) + ε,
where x is “log expenditure,” and y is “food share.”

(b) Calculate the residuals from this procedure ε̂1, . . . , ε̂n , and use a nonparametric
smoother to estimate the model ε̂2 = g(x)+ v. You have estimated a model for
the residual variance as a function of x . Plot your results.



4 Higher-Order Differencing
Procedures

4.1 Differencing Matrices

4.1.1 Definitions

In the previous chapter we introduced the idea of smoothing, which was used to
estimate a nonparametric regression function. Now we will return to the idea of
differencing, which in Chapter 1 was used to remove the nonparametric effect
from a regression model.

Let m be the order of differencing and d0, d1, . . . , dm differencing weights
that satisfy the conditions

m∑
j=0

d j = 0
m∑
j=0

d2
j = 1. (4.1.1)

The purpose of these restrictions will be made clear shortly. Define the differ-
encing matrix

D
n×n

=



d0, d1, d2, . . dm, 0, . . . . . . . . . . . . . . . . . . . , 0
0, d0, d1, d2, . . dm, 0, . . . . . . . . . . . . . . . . . , 0

: :
: :

0, . . . . . . . . . . . . . . . . . . 0, d0, d1, d2, . . dm, 0
0, . . . . . . . . . . . . . . . . . . . . 0, d0, d1, d2, . . dm
0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0

: :
0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0


. (4.1.2)

The last m rows have been filled with zeros so that D is square. It will be
convenient to use lag matrices Li . For i > 0, define Li to be a square matrix with
0’s everywhere except on the i th diagonal below the main diagonal, where it has
1’s. If i < 0, Li has 1’s on the i th diagonal above the main diagonal. The matrix
L0 is defined to be the usual identity matrix, L ′i = L−i , and Li L j

.= Li+ j . It is

57
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evident from (4.1.2) that (except for end effects, which we denote using
.=) the

differencing matrix of order m is a weighted sum of lag matrices, that is,

D
.= d0L0 + d1L

′
1 + · · · + dmL

′
m . (4.1.3)

4.1.2 Basic Properties of Differencing and Related Matrices

We will need the matrix D′D, which has a symmetric band structure with 1’s
on the main diagonal. Hence, tr(D′D)

.= n. As one moves away from the main
diagonal, consecutive diagonals take values

∑m−k
j=0 d jd j+k k = 1, . . . ,m. The

remainder of the matrix is zero. Equivalently, using (4.1.3) and the properties
of lag matrices, one can obtain

D′D .= L0 + (L1 + L ′1)
m−1∑
j=0

d jd j+1 + (L2 + L ′2)
m−2∑
j=0

d jd j+2 + · · · ·

+ (Lm−1 + L ′m−1)

1∑
j=0

d jd j+m−1 + (Lm + L ′m) d0dm . (4.1.4)

Because band structure is preserved by matrix multiplication, the matrix
D′DD′D will also have this property as well as being symmetric. The value on
the main diagonal may be determined by multiplying the expansion in (4.1.4) by
itself. Note that only products of the form LkL ′k and L ′k Lk yield (except for end
effects) the identity matrix L0. Thus, the common diagonal value of D′DD′D
will be the sum of the coefficients of L0, L ′1L1, L1L ′1, L

′
2L2, L2L ′2, . . . , L

′
mLm,

LmL ′m, that is,

[D′DD′D]i i
.= 1+ 2

m∑
k=1

(
m−k∑
j=0

d jd j+k

)2

. (4.1.5)

A particularly useful quantity will be

δ =
m∑
k=1

(
m−k∑
j=0

d jd j+k

)2

. (4.1.6)

We now have [D′DD′D]i i
.= 1+ 2δ and tr(D′DD′D)

.= n(1+ 2δ).1

4.2 Variance Estimation

4.2.1 The mth-Order Differencing Estimator

Let us return to the problem of estimating the residual variance in a pure non-
parametric regression model yi = f (xi ) + εi , where ε | x is distributed with

1 The trace of D′DD′D may be obtained alternatively as follows. Because for any symmetric
matrix A, tr (AA) is the sum of squares of elements of A, we may use (4.1.4) to conclude that
tr(D′DD′D)

.= n(1+ 2δ).
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mean 0, variance σ 2
ε , and E(ε4 | x) = ηε, and f has first derivative bounded.

Given observations on the model (y1, x1) . . . . (yn, xn), where the x’s have been
reordered so that they are in increasing order, define y′ = (y1, . . . , yn) and
f (x)′ = ( f (x1), . . . , f (xn)). In vector notation we have

y = f (x)+ ε. (4.2.1)

Applying the differencing matrix, we have

Dy = Df (x)+ Dε. (4.2.2)

A typical element of the vector Dy is of the form

d0yi + · · · + dm yi +m = d0 f (xi )+ · · · + dm f (xi +m)
(4.2.3)+ d0εi + · · · + dmεi+m,

and thus the role of the constraints (4.1.1) is now evident. The first condition
ensures that, as the x’s become close, the nonparametric effect is removed. The
second condition ensures that the variance of the weighted sum of the residuals
remains equal to σ 2

ε .

The mth-order differencing estimator of the residual variance is now defined
to be

s2
diff =

1

n

n−m∑
i=1

(d0yi + d1yi+1 + · · · + dm yi+m)2 = 1

n
y′D′Dy. (4.2.4)

4.2.2 Properties

Because differencing removes the nonparametric effect, in large samples we
have

s2
diff
∼= 1

n
ε′D′Dε. (4.2.5)

Using the mean and variance of a quadratic form (see Appendix B,
Lemma B.1), we have

E
(
s2
diff

) ∼= σ 2
ε

1

n
tr(D′D)

.= σ 2
ε (4.2.6)

and

Var
(
s2
diff

) ∼= 1

n

[(
ηε − 3σ 4

ε

)+ σ 4
ε

2

n
tr(D′DD′D)

]
= 1

n

[
Var(ε2)+ 4σ 4

ε δ
]
, (4.2.7)

where δ is defined in (4.1.6) and ηε = E(ε4 | x).
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4.2.3 Optimal Differencing Coefficients

From (4.2.7) it is evident that, to minimize the large sample variance of the
differencing estimator, one needs to make δ as small as possible. Using time
series techniques, Hall et al. (1990) have shown that if the d j are selected to
minimize δ, then

m−k∑
j=0

d jd j+k = − 1

2m
, k = 1, 2, . . . ,m and δ = 1

4m
. (4.2.8)

In this case, matrix D′D has (except for end effects) 1’s on the main diagonal,
− 1

2m on the m adjacent diagonals, and 0’s elsewhere. That is,

D′D .= L0 − 1

2m
(L1 + L ′1 + · · · + Lm + L ′m), (4.2.9)

so that tr(D′D)
.= n.2 Using (4.25) yields,

s2
diff
∼= ε′ε

n
− 1

2mn
ε′(L1 + L ′1 + · · · + Lm + L ′m)ε. (4.2.10a)

Applying (4.2.7) and δ = 1/4m from (4.2.8), we have

Var
(
s2
diff

) ∼= 1

n

(
Var (ε2)+ σ 4

ε

m

)
. (4.2.10b)

On the other hand, if the regression function were parametric (e.g., if it were
known to be linear and we used a conventional OLS estimator), then

s2
OLS =

1

n

n∑
i=1

(yi − γ̂1 − γ̂2xi )
2 ∼= 1

n

n∑
i=1

ε2
i + OP

(
1

n

)
, (4.2.11a)

in which case

Var
(
s2
OLS

) ∼= 1

n
Var(ε2). (4.2.11b)

Comparing the variances of the two residual estimators (4.2.10b) and
(4.2.11b), we see that, as the order of differencing m increases, the variance of
the differencing estimator approaches that of parametric estimators.

Optimal differencing weights do not have analytic expressions but may be
calculated easily using standard optimization techniques. Hall et al. (1990)
present weights to order m = 10. With minor modifications, these are repro-
duced in Table 4.1. Appendix C discusses calculation of optimal weights and
contains weights for certain higher values of m.

2 The matrix D′DD′D has a symmetric band structure with 1+ 1/2m on the main diagonal so
that tr(D′DD′D)

.= n(1+ 1/2m).
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Table 4.1. Optimal differencing weights.a

m (d0, d1, . . . , dm)

1 (0.7071,−.0.7071)
2 (0.8090,−0.5000,−0.3090)
3 (0.8582,−0.3832,−0.2809,−0.1942)
4 (0.8873,−0.3099,−0.2464,−0.1901,−0.1409)
5 (0.9064,−0.2600,−0.2167,−0.1774,−0.1420,−0.1103)
6 (0.9200,−0.2238,−0.1925,−0.1635,−0.1369,−0.1126,−0.0906)
7 (0.9302,−0.1965,−0.1728,−0.1506,−0.1299,−0.1107,−0.0930,−0.0768)
8 (0.9380,−0.1751,−0.1565,−0.1389,−0.1224,−0.1069,−0.0925,−0.0791,−0.0666)
9 (0.9443,−0.1578,−0.1429,−0.1287,−0.1152,−0.1025,−0.0905,−0.0792,−0.0687,−0.0588)

10 (0.9494,−0.1437,−0.1314,−0.1197,−0.1085,−0.0978,−0.0877,−0.0782,−0.0691,−0.0606,−.0527)

a In contrast to those in Hall et al. (1990), all the optimal weight sequences provided here decline
in absolute value toward zero.

4.2.4 Moving Average Differencing Coefficients

Recall that our objective is to remove the nonparametric effect at a point, say
xi . Suppose we average consecutive observations centered at xi (omitting the
one at xi ) and subtract the average from yi . In this case, the differencing matrix
will have the form

D
n×n

= 1√
1+ 1

m

×



− 1
m , . . . ,− 1

m , 1,− 1
m . . .− 1

m , 0, . . . . . . . . . . . . . , 0

0,− 1
m , . . . ,− 1

m , 1,− 1
m . . .− 1

m , 0, . . . . . . . . . . . . , 0
: :
: :
: :

0, . . . . . . . . . . . . 0,− 1
m , . . . ,− 1

m , 1,− 1
m . . .− 1

m , 0

0, . . . . . . . . . . . . . . 0,− 1
m , . . . ,− 1

m , 1,− 1
m . . .− 1

m

0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0

: :
0, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 0



.

(4.1.2a)

Again we have filled the last m rows with zeros so that D is square.
The differencing weights sum to zero and the constant multiplying the

matrix ensures that their sum of squares is 1. The value of δ – which through
(4.2.7) plays an important role in large sample efficiency – does not have a
simple closed-form solution such as the one available for optimal differencing
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Table 4.2. Values of δ for alternate differencing coefficients.a

m Optimal Moving average

2 .12500 .47222
4 .06250 .22500
6 .04167 .14683
8 .03125 .10880

10 .02500 .08636
20 .01250 .04246
50 .00500 .01680

100 .00250 .00837
200 .00125 .00418
500 .00050 .00167

aSee (4.1.6) for definition of δ.

coefficients. (In that case it is 1/4m.) Nevertheless, its value can be computed
directly using (4.1.6). Table 4.2 lists values of δ for moving average and optimal
differencing weights. The moving average values are larger. On the other hand,
symmetry of the moving average weights is likely to reduce bias relative to the
optimal weights which decline monotonically in one direction. We compare
alternative differencing weights in Section 4.10.

4.2.5 Asymptotic Normality

Proposition 4.2.1: Let d0, d1, . . . , dm be arbitrary differencing
weights satisfying (4.1.1); then,

n1/2
(
s2
diff − σ 2

ε

) ∼ N
(
0, ηε − σ 4

ε + 4σ 4
ε δ
)

= N
(
0, ηε − 3σ 4

ε + 2σ 4
ε (1+ 2δ)

)
, (4.2.12a)

which, if one uses optimal differencing weights, becomes

n1/2
(
s2
diff − σ 2

ε

) ∼ N

(
0, ηε − σ 4

ε +
σ 4
ε

m

)
. (4.2.12b)

To make use of these results, we will need a consistent estimator ofηε = E(ε4)

for which we will use fourth-order powers of the differenced data. To motivate
the estimator, it is convenient to establish the following:

E(d0εi + · · · + dmεi+m)4 = ηε

(
m∑
i=0

d4
i

)
+ 6σ 4

ε

(
m−1∑
i=0

d2
i

m∑
j=i+1

d2
j

)
.

(4.2.13)
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This result may be obtained by first noting that, when the left-hand side is
expanded, only two types of terms will have nonzero expectations: those that
involve the fourth power of a residual (e.g., Eε4

i = ηε) and those that involve
products of squares of residuals (e.g., Eε2

i ε
2
i+ j = σ 4

ε , j 
= 0). Equation (4.2.13)
is then obtained by summing the coefficients of such terms. We now have the
following result.

Proposition 4.2.2: Let

η̂ε =
1

n

∑n−m
i=1

(d0yi + · · · + dm yi+m)4 − 6
(
s2
diff

)2(∑m−1

i=0
d2
i

∑m

j=i+1
d2
j

)
∑m

i=0
d4
i

;

(4.2.14a)

then, η̂ε
P→ ηε.

Equations (4.2.13) and (4.2.14a) are valid for arbitrary differencing weights.
If the order of differencing is large (say m≥ 25 ), then the denominator ap-
proaches 1 and the right-hand side of the numerator approaches 0; thus

η̂ε
∼= 1

n

n−m∑
i=1

(d0yi + · · · + dm yi +m)
4. (4.2.14b)

These results may be used to test equality of residual variances for two pos-
sibly different regression models: yA= f A(xA)+ εA and yB = fB(xB)+ εB .
Let s2

A, η̂A, s
2
B, η̂B be optimal differencing estimators of the residual variances

and fourth-order moments obtained using (4.2.4) and (4.2.14a). Then, Propo-
sitions 4.2.1 and 4.2.2 imply that, under the null hypothesis,

s2
A− s2

B(
η̂A+ (1/m− 1)s4

A

nA
+ η̂B + (1/m− 1)s4

B

nB

)1/2
∼ N (0, 1). (4.2.15)

4.3 Specification Test3

4.3.1 A Simple Statistic

We remain with the pure nonparametric model y = f (x)+ ε, where f has first
derivative bounded, E(ε | x) = 0, and Var(ε | x) = σ 2

ε . Let h(x, γ ) be a known

3 A variety of procedures are available for testing a parametric null against a nonparametric
alternative. See Chapter 6.
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function of x and an unknown parameter γ (h can of course be linear). We wish
to test the null hypothesis that the regression function has the parametric form
h(x, γ ) against the nonparametric alternative f (x). Let γ̂LS be obtained using,
for example, parametric nonlinear least squares. Define the restricted estimator
of the residual variance

s2
res =

1

n

∑
(yi − h(xi , γ̂LS))

2. (4.3.1)

Proposition 4.3.1: Suppose H0 : f (x) = h(x, γ ) is true, where h is
a known function. Define s2

res as in (4.3.1). For arbitrary differencing weights
satisfying (4.1.1) we have(

n

4δ

)1/2
(
s2
res − s2

diff

)
s2
diff

D→ N (0, 1). (4.3.2a)

If one uses optimal differencing weights, the statistic becomes

(mn)1/2

(
s2
res − s2

diff

)
s2
diff

D→ N (0, 1). (4.3.2b)

In the denominator, s2
diff may be replaced by s2

res because, under the null, both
estimators of the residual variance are consistent.

A test of the significance of x is a special case of the preceding procedure. In
this case, f is a constant function; thus, the restricted estimator of the regression
function is just the sample mean of the yi .

4.3.2 Heteroskedasticity

Suppose now the residuals are independent but heteroskedastic with unknown
covariance matrix � and one uses optimal differencing weights to obtain s2

diff.
The specification test in Proposition 4.3.1 may be extended as follows. If the
null hypothesis is true and optimal differencing coefficients are used, then

(mn)1/2

(
s2
res − s2

diff

)
ξ̂ 1/2

D→ N (0, 1), (4.3.2c)

where

ξ̂ = 1

m

(
1

n

∑
ε̂2
i ε̂

2
i−1 + · · · · + 1

n

∑
ε̂2
i ε̂

2
i−m

)
. (4.3.2d)

As in Proposition 4.3.1, the result is readily modified for arbitrary differencing
coefficients.
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4.3.3 Empirical Application: Log-Linearity of Engel Curves

We return to our South African data on single individuals and ask whether a
model that is linear in the log of expenditures provides an adequate represen-
tation. There is a considerable body of evidence in the empirical literature to
support the proposition that food Engel curves are approximately linear. On the
other hand, as we will see later, nonlinearities in Engel curves are important
in identifying equivalence scales. Figure 4.1 displays a kernel estimate and the
linear OLS estimate. The kernel estimate lies close to the linear model except
at the right tail of the income distribution. (At the left tail there also appears to
be a departure from linearity, but it is modest.) Furthermore, there are relatively
few observations in the right tail of the distribution, and, as a consequence,
the nonparametric model is not being estimated precisely (see the confidence
intervals in Figure 3.3). Suppose we compare the fit of the linear and kernel
models. The former has an R2 of .477. If we estimate the residual variance

log of total expenditure
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Optimal differencing estimate of residual variance using m= 25: s2
diff = .01941. Implied R2 =

.490. Linear model: FoodShr= 1.75
(.043)

− .203
(.0064)

∗ ltexp. Standard errors in parentheses. s2
res=

.01993, R2 = .477.

Figure 4.1. Testing linearity of Engel curves.
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using m = 25 and optimal differencing coefficients (see (4.2.4)), then the R2,
which we define to be 1− s2

diff/s
2
y , increases to .490. This is not a dramatic

increase in explanatory power. A formal test of the linear specification may
be implemented using (4.3.2b), yielding a value of 4.45, which suggests rejec-
tion of the null. In contrast, a test of significance of the expenditure variable
using (4.3.2b) yields an overwhelming rejection of the null with a statistic of
160.2.

4.4 Test of Equality of Regression Functions4

4.4.1 A Simplified Test Procedure

Suppose one has data (yA1, xA1), . . . , (yAnA , xAnA) and (yB1, xB1), . . . , (yBnB ,
xBnB ) from two possibly different regression models A and B. We emphasize
that the data have already been ordered so that within each subpopulation the x’s
are in increasing order. Let n = nA+ nB be the total number of observations.
The basic models are

yAi = f A(xAi )+ εAi (4.4.1)
yBi = fB(xBi )+ εBi

where, given the x’s, the ε’s have mean 0, variance σ 2
ε , and are independent

within and between populations; f A and fB have first derivatives bounded.
Using (4.2.4), define consistent differencing estimators of the variance, say s2

A
and s2

B . Let s2
w be the “within” estimator of σ 2

ε obtained by taking the weighted
sum of the two individual estimates:

s2
w =

nA
n
s2
A +

nB
n
s2
B . (4.4.2)

Concatenate the data on the dependent variable to obtain the n-dimensional
column vectors x = (xA1, . . . , xAnA , xB1, . . . , xBnB )

′ and y = (yA1, . . . , yAnA ,
yB1, . . . , yBnB )

′. Since under the null hypothesis f A= fB , we may estimate
the common function using, say, a kernel smoother. Furthermore, if an optimal
bandwidth is used, then the average sum of squared residuals from this restricted

4 A number of procedures are available for testing equality of nonparametric regression functions.
These include Hall and Hart (1990), Härdle and Marron (1990), King, Hart, and Wehrly (1991),
Delgado (1993), Kulasekera (1995), Pinkse and Robinson (1995), Young and Bowman (1995),
Baltagi, Hidalgo, and Li (1996), Kulasekera and Wang (1997), Koul and Schick (1997), Fan
and Lin (1998), Munk and Dette (1998), Lavergne (2001) and Hall and Yatchew (2002). See
also Hart (1997, p. 236).
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regression will satisfy

n1/2

(
s2
res −

1

n

n∑
i=2

ε2
i

)
P→ 0. (4.4.3)

This is true because the estimator satisfies the optimal rate of convergence
(3.1.10). Thus, for fixed order of differencingm, we may apply the specification
test in Proposition 4.3.1, setting s2

diff = s2
w.

4.4.2 The Differencing Estimator Applied to the Pooled Data

An alternative test procedure applies the differencing estimator to the pooled
data. Define Pp, the “pooled” permutation matrix, to be the matrix that reorders
the pooled data so that the x’s are in increasing order. Thus, if x∗ = Ppx , then
the consecutive elements of the reordered vector x∗ are in increasing order.
Apply the differencing estimator of the variance (4.2.4) to the reordered data
to obtain

s2
p =

1

n
y′P ′pD

′DPpy, (4.4.4)

the pooled estimator of the residual variance.

Proposition 4.4.1: For arbitrary differencing coefficients satisfying
(4.1.1), we have n1/2(s2

diff−σ 2
ε )

D→ N (0, ηε − 3σ 4
ε +2σ 4

ε (1+2δ)). If, in addition,
f A= fB , then n1/2(s2

p − σ 2
ε ) has the same approximate distribution. If optimal

differencing coefficients are used, then the approximate distribution becomes
N (0, ηε + (1/m− 1)σ 4

ε ).

The asymptotic variances of s2
w, s

2
p may be obtained using (4.2.7) and

(4.2.10b) (see also Appendix B, Lemma B.1, or Hall et al. 1990). Asymptotic
normality follows from finitely dependent central limit theory.

We will now consider a statistic based on the difference of the pooled and
within estimates of the variance. Define

ϒ ≡ n1/2
(
s2
p − s2

w

) .= 1

n1/2
y′[P ′pD

′DPp − D′D]y. (4.4.5)

The second occurrence of D′D corresponds to the within estimator and is –
more precisely – a block diagonal matrix with two D′D matrices, one for each
of the two subpopulations. (Except for end effects, a block diagonal D′D matrix
is identical to the second such matrix in (4.4.5).)
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Proposition 4.4.2: Let Qϒ = P ′pD
′DPp−D′D and π̂ϒ = tr(QϒQϒ)/

n. Suppose π̂ϒ
P→πϒ > 0. Then, under the null hypothesis that f A = fB ,

ϒ = n1/2
(
s2
p − s2

w

) D→ N
(
0, 2πϒσ 4

ε

)
. (4.4.6)

Thus, ϒ/s2
w(2π̂ϒ)

1/2
D→ N (0, 1), and one would reject for large positive values

of the test statistic. The quantity πϒ no longer admits the simple interpretation
associated with π in Chapter 1; however, it remains between 0 and 1 (see
Yatchew 1999). The condition πϒ > 0 ensures that, in the pooled reordered
data, the proportion of observations that are near observations from a different
probability law does not go to 0. (Heuristically, this requires that the data
intermingle upon pooling and that neither nA/n nor nB/n converge to zero.)
Ideally, of course, one would like the pooled x’s to be well intermingled so
that s2

p contains many terms incorporating fs(x∗j )− ft (x∗j−1), where s 
= t and ∗

denotes data reordered after pooling.

4.4.3 Properties

The test procedure described in the last subsection is consistent. For example,
suppose we use first-order differencing (m= 1), xA and xB are independently
and uniformly distributed on the unit interval, and an equal number of observa-
tions are taken from each subpopulation (i.e., nA= nB = 1/2 n). If f A 
= fB , then
the within estimator in (4.4.2) remains consistent, whereas the pooled estimator
in (4.4.4) converges as follows

s2
p → σ 2

ε + 1/4

∫
( f A(x)− fB(x))

2dx (4.4.7)

so that the mean of ϒ defined in (4.4.6) diverges (see Yatchew 1999). In general,
power depends not only on the difference between the two regression functions
but also on the degree to which data are generated from both populations at
points where the difference is large. For fixed differencing of order m, the
procedure will detect local alternatives that converge to the null at a rate close
to n−1/4. The rate may be improved by permitting the order of differencing to
grow with sample size. Nonconstant variances across equations can readily be
incorporated (see Yatchew 1999).

The test procedure may be applied to the partial linear model. Consider
yA= zAβA+ f A(xA)+ εA and yB = zBβB+ fB(xB)+ εB . Suppose one obtains
n1/2- consistent estimators ofβA andβB (e.g., by using the differencing estimator
in Section 4.5). To test f A= fB one can apply (4.4.2), (4.4.4), and (4.4.5) to
yA− zAβ̂ A

∼= f A(xA) + εA and yB − zB β̂B
∼= fB(xB) + εB without altering

the asymptotic properties of the procedure. Alternatively, one can apply the
simplified procedure outlined in Section 4.4.1 that uses Proposition 4.3.1.
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4.4.4 Empirical Application: Testing Equality of Engel Curves

Equivalence scales are used to compare the welfare of families of different
composition. For example, if a single person spends $50,000 and a couple
needs $82,500 to achieve the same standard of living, we say the equivalence
scale is 1.65. Engel’s method for constructing equivalence scales is premised
on the idea that two households are equally well off if they spend the same
proportion of their total expenditures on food. The existence of equivalence
scales and how to calculate them have been a matter of much debate, and we
will devote considerable effort later to their estimation.

The upper panel of Figure 4.2 illustrates the food Engel curves for singles
and couples with no children. There are 1,109 observations in the first group
and 890 in the second. Geometrically, Engel’s method asks whether a leftward
horizontal shift of the “couples” Engel curve would cause it to be superimposed
on the “singles” Engel curve. The magnitude of the shift measures the log of the
equivalence scale. (Keep in mind that the horizontal variable is the log of total
expenditures.) Later – in the context of index model estimation – we will show
how to estimate that shift, but assume for the moment that it is .5, in which case
the equivalence scale is 1.65 = exp(.5).

The lower panel of Figure 4.2 illustrates the two Engel curves following a
horizontal shift of the couples Engel curve. They seem to track each other fairly
closely, and we can now ask whether the two Engel curves coincide. (If they
do not, there is no single equivalence scale that works at all levels of income.)

Let yA and yB be the food shares for singles and couples. Let xA be the log of
total expenditures for singles. Define xB to be the log (total expenditures/1.65),
which equals log (total expenditures)− .5.

To apply the simplified procedure based on the specification test in Proposi-
tion 4.3.1, we first estimate the common regression function using a kernel esti-
mator. The average sum of squared residuals s2

res is .018356. Using m = 25, we
calculate s2

w to be .018033 and substitute this quantity for s2
diff in (4.3.2b) to ob-

tain a statistic of 4.01. Next we apply the test of equality of regression functions
in Proposition 4.4.2. For m= 25, the standardized test statistic ϒ/s2

w(2π̂ϒ)
1/2

takes a value of 1.76. Thus, there is some evidence against the hypothesis that
the two Engel curves coincide. However, the rejection – given the size of the
data set – is hardly overwhelming.

In performing these tests it is useful to compare implied values of R2 = 1−
s2
ε /s

2
y , where s2

y = .04106 is the variance of the food share variable across
all 1,999 observations. We can take s2

w to be an unconstrained estimator of
the residual variance. The implied “unrestricted” fit is 56.1 percent. Both s2

res,
the estimated residual variance from the kernel regression, and s2

p, the pooled
estimator of the residual variance, impose the restriction of equality of re-
gression functions. The corresponding implied fits are 55.5 and 55.8 percent,
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respectively. Thus, the imposition of the constraint results in a modest deterio-
ration in fit.

4.5 Partial Linear Model

4.5.1 Estimator

Let us return to estimation of the partial linear model yi = ziβ + f (xi ) + εi ,
where xi is a scalar, zi is a p-dimensional row vector, εi | xi , zi is distributed
with mean 0, variance σ 2

ε , and f has a bounded first derivative. We will also
assume that the vector of parametric variables z has a smooth regression rela-
tionship with the nonparametric variable x . Thus, we may write zi = g(xi )+ ui ,
where g is a vector function with first derivatives bounded, E(ui | xi ) = 0, and
E(Var (zi | xi )) =

∑
z | x . Assume that each observation is independently drawn

and that the data (y1, x1, z1), . . . , (yn, xn, zn)have been reordered so that the x’s
are in increasing order. Define y′ = (y1, . . . , yn), f (x)′ = ( f (x1), . . . , f (xn)),
and Z as the n × p matrix with i th row zi . In matrix notation, we have

y = Zβ + f (x)+ ε. (4.5.1)

Applying the differencing matrix, we have

Dy = DZβ + Df (x)+ Dε ∼= DZβ + Dε. (4.5.2)

The following proposition contains our main result.

Proposition 4.5.1: For arbitrary differencing coefficients satisfying
(4.1.1), define β̂diff = [(DZ)′DZ ]−1(DZ)′Dy. Then,

n1/2(β̂diff − β)
D→ N
(

0, (1+ 2δ)σ 2
ε

∑−1

z|x

)
(4.5.3)

s2
diff =

1

n
(Dy − DZ β̂diff)

′(Dy − DZ β̂diff)
P→ σ 2

ε (4.5.4)∑̂
z|x =

1

n
(DZ)′DZ

P→
∑

z|x . (4.5.5)

For optimal differencing coefficients, replace 1+ 2δ in (4.5.3) with 1+ 1
2m .

The covariance matrix of the differencing estimator of β may be estimated
using ∑̂

β̂
= (1+ 2δ)

s2
diff

n

∑̂−1

z|x . (4.5.6)

Proposition 4.5.2: Linear restrictions of the form Rβ = r may be
tested using the conventional statistic which – if the null hypothesis is true – has
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the following distribution:

(Rβ̂ − r)′
(
R
∑̂

β̂
R′
)−1

(Rβ̂ − r)
D→ χ2

rank(R). (4.5.7a)

Equivalently, one may use

n
(
s2
diff res − s2

diff

)
s2
diff(1+ 2δ)

D→ χ2
rank(R), (4.5.7b)

where s2
diff is the unrestricted differencing estimator in (4.5.4) and s2

diff res is
obtained by estimating the differenced model (4.5.2) subject to the linear
constraints5 and then applying (4.5.4).

The statistic in (4.5.7b) is but a thinly disguised version of its analogue in
the usual analysis of linear models, which compares restricted and unrestricted
sum of squares.

A heuristic proof of Proposition 4.5.1 in the case in which all variables are
scalars is provided in Chapter 1. More detailed proofs of Propositions 4.5.1 and
4.5.2 may be found in Appendix B. As is evident from (4.5.3), the estimator is
n1/2-consistent and asymptotically normal. It is close to being asymptotically
efficient for moderate values of m. For example, at m= 10, it has a relative
efficiency of 95 percent. By increasing the order of differencing as sample size
increases, the estimator becomes asymptotically efficient.

4.5.2 Heteroskedasticity

Suppose now that Var (εε′) = �; then, the residual vector in (4.5.2) has covari-
ance matrix D�D′, and

Var (β̂diff) ∼= 1

n

(
Z ′D′DZ

n

)−1 Z ′D′D�D′DZ

n

(
Z ′D′DZ

n

)−1

.

(4.5.8)

If the order of differencing is large or, better still, if m increases with sample
size, then we may estimate the interior matrix using

Z ′D′�̂DZ

n
, (4.5.9)

where �̂ is a diagonal matrix of squared estimated residuals from (4.5.2).

5 Recall that for a linear model the restricted OLS estimator may be obtained by redefining
variables. The model we are estimating in (4.5.2) is approximately linear since, as a result of
differencing, Df (x) is close to zero.
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Suppose, on the other hand, that the order of differencing m is fixed at some
low level. Now consider the structure of D�D′. Because � is diagonal, the
nonzero elements of D�D′ consist of the main diagonal and the m adjacent di-
agonals (m is the order of differencing). This is because differencing introduces
a moving average process of order m into the residuals.6 White’s (1985) gen-
eralizations may then be applied to our differenced model Dy ∼= DZβ + Dε,
where, as usual, differencing has (approximately) removed the nonparametric
effect. To mimic the structure of D�D′ we define D̂�D′ to be the matrix
D̂εD̂ε

′
with all terms more than m diagonals away from the main diagonal set

to zero. In this case we may estimate the interior matrix of (4.5.8) using

Z ′D′ D̂�D′DZ

n
. (4.5.10)

With some additional effort, autocorrelation-consistent standard errors may
also be constructed for differencing estimators, though the double residual
method outlined in Section 3.6 generally results in simpler implementation.

4.6 Empirical Applications

4.6.1 Household Gasoline Demand in Canada

In a recent paper, Yatchew and No (2001) estimated a partial linear model
of household demand for gasoline in Canada – a model very similar to those
estimated by Hausman and Newey (1995) and Schmalensee and Stoker (1999).
The basic specification is given by

dist = f (price)+β1income+β2drivers+β3hhsize+β4youngsingle

+β5age+ β6retire+ β7urban+ monthly dummies+ ε,

(4.6.1)

where dist is the log of distance traveled per month by the household, price
is the log of price of a liter of gasoline, drivers is the log of the number of
licensed drivers in the household, hhsize is the log of the size of the household,
youngsingle is a dummy for singles up to age of 35, age is the log of age, retire
is a dummy for those households where the head is over the age of 65, and
urban is a dummy for urban dwellers. Figure 4.3 summarizes the results. The
“parametric estimates” refer to a model in which price enters log-linearly. The
“double residual estimates” use Robinson (1988) (see Section 3.6). That pro-
cedure requires one to estimate regression functions of the dependent variable
and each of the parametric independent variables on the nonparametric variable.

6 Alternatively, note that D�D′ = (d0L0 + · · · + dm Lm)�(d0L ′0 + · · · + dm L ′m). The lag
matrices Li , L ′i shift the main diagonal of � to the i th off-diagonals.



Robinson double- Differencing
Variable Parametric estimates residual estimates estimates

Coef SE Coef SE HCSE Coef SE

price −0.9170 0.0960 − − − − −
income 0.2890 0.0200 0.3000 0.0200 0.0201 0.2816 0.0209
drivers 0.5610 0.0330 0.5650 0.0330 0.0318 0.5686 0.0338
hhsize 0.1000 0.0260 0.0940 0.0260 0.0256 0.0892 0.0274

youngsingle 0.1930 0.0610 0.1980 0.0610 0.0651 0.2099 0.0622
age −0.0780 0.0440 −0.0750 0.0440 0.0419 −0.1171 0.0555
retire −0.2070 0.0320 −0.1980 0.0320 0.0342 −0.2113 0.0387
urban −0.3310 0.0200 −0.3250 0.0200 0.0195 −0.3331 0.0203

Monthly Effects
(see Figure 4.4)

s2
ε .5003 .5053 .4997
R2 .2635 .2563 .2644
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Variance of dependent variable is .6794. Order of differencing m = 10. Number of observations is
6230. Robinson estimates of parametric effects produced using kernel procedure ksmooth in S-Plus.
Solid line is kernel estimate applied to data after removal of estimated parametric effect. Dotted
line is parametric estimate of price effect. Specification test of log-linear model for price effect
yields value of .3089. Nonparametric significance test for price effect yields test statistic of 3.964.

Figure 4.3. Household demand for gasoline.
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The residuals are then used to estimate the parametric effects. We implement
Robinson’s method using ksmooth, a kernel regression estimation procedure in
S-Plus.

The “differencing estimates” use tenth-order differencing and Proposi-
tion 4.5.1 to estimate the parametric effects. The three sets of estimates are
very similar except that the standard errors of the differencing estimates are
marginally larger.

The estimated parametric effects, which have been estimated by differencing,
are then removed, and kernel regression is applied to obtain a nonparametric
estimate of the price effect (the solid line in Figure 4.3). Applying the specifica-
tion test in Proposition 4.3.1 yields a value of .31, suggesting that the log-linear
specification is adequate. A test of the significance of the price effect using the
same proposition yields a value of 4.0, which indicates that the price variable
is significant. Figure 4.4 displays seasonal effects.

Figure 4.3 also contains heteroskedasticity-consistent standard errors(HCSE)
for the double residual estimates. The HCSE were computed using (3.6.17)
and (3.6.18). There is very little difference in standard errors relative to the
homoskedastic case.
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Figure 4.4. Household demand for gasoline: Monthly effects.
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4.6.2 Scale Economies in Electricity Distribution7

We now consider the example of Section 1.6 in considerably more detail. Sup-
pose we have a slightly more general specification that is a semiparametric
variant of the translog model (variable definitions may be found in Appendix E):

tc = f (cust)+ β1wage+ β2pcap+ 1/2 β11wage
2 + 1/2 β22pcap

2

+β12wage · pcap+ β31cust · wage+ β32cust · pcap+ β4PUC

+β5kwh+ β6life+ β7lf+ β8kmwire+ ε. (4.6.2)

Note that, in addition to appearing nonparametrically, the scale variable cust
interacts parametrically with wages and the price of capital. One can readily
verify that, if these interaction terms are zero (i.e., β31 =β32 = 0), then the
cost function is homothetic. If in addition β11 =β22 =β12 = 0, then the model
reduces to the log-linear specification of Section 1.6.

Differencing estimates of the parametric component of (4.6.2) are presented
in Figure 4.5. (We use third-order optimal differencing coefficients, in which
case m = 3.) Applying Proposition 4.5.2, we do not find significant statistical
evidence against either the homothetic or the log-linear models. For example,
the statistic testing the full version (4.6.2) against the log-linear specification,
which sets five parameters to zero and is distributed χ2

5 under the null, takes
a value of 3.23. Estimates of nonprice covariate effects exhibit little variation
as one moves from the full translog model to the homothetic and log-linear
models.

The last column of Figure 4.5 contains HCSEs reported two ways: the first
uses (4.5.9), which does not incorporate off-diagonal terms; the second uses
(4.5.10), which does. We believe the latter to be more accurate here given the
low order of differencing the small data set permits.

We may now remove the estimated parametric effect from the dependent
variable and analyze the nonparametric effect. In particular, for purposes of the
tests that follow, the approximation yi − zi β̂ = zi (β − β̂) + f (xi ) + εi ∼=
f (xi )+ εi does not alter the large sample properties of the procedures. We use
the estimates of the log-linear model to remove the parametric effect.

Figure 4.5 displays the ordered pairs (yi − zi β̂diff, xi ) as well as a kernel
estimate of f. Parametric null hypotheses may be tested against nonparametric
alternatives using the specification test in Section 4.3. If we insert a constant
function for f , then the procedure constitutes a test of significance of the scale
variable x against a nonparametric alternative. The resulting statistic is 9.8,
indicating a strong scale effect. Next we test a quadratic model for output.
The resulting test statistic is 2.4, suggesting that the quadratic model may be
inadequate.

7 For a detailed treatment of these data, see Yatchew (2000).



Variable
Full model: semi- Homothetic model: semi- Log-linear model: semi-

parametric Cobb–Douglasparametric translog parametric homothetic

Coef Coef SE Coef SE HCSE HCSE
Eqn. 4.5.9 Eqn. 4.5.10

wage 5.917 6.298 12.453 0.623 0.320 0.343 0.361
pcap 2.512 1.393 1.600 0.545 0.068 0.078 0.112

1/2wage
2 0.311 0.720 2.130

1/2 pcap
2 0.073 0.032 0.066

wage pcap 0.886 0.534 0.599·
cust · wage 0.054
cust · pcap 0.039

PUC 0.083 0.086 0.039 0.075 0.038 0.034 0.033
kwh 0.031 0.033 0.086 0.008 0.086 0.074 0.089
life 0.630 0.634 0.115 0.628 0.113 0.095 0.097
lf 1.200 1.249 0.436 1.327 0.434 0.326 0.304

kmwire 0.396

SE

13.297
2.107
2.342
0.083

0.738
0.086
0.049

0.039
0.086
0.117
0.450
0.087 0.399 0.087 0.413 0.084 0.090 0.115
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Test of full (translog) model versus log-linear (Cobb–Douglas) model: χ2
5 under Ho : 3.23. Test of

quadratic versus nonparametric specification of scale effect: V = (mn)1/2(s2
res − s2

diff)/s
2
diff =

(3 ∗ 81)1/2(.0211− .0183)/.0183= 2.4 where V is N (0,1). Kernel estimate produced using
ksmooth function in S-Plus. The last two columns of the table contain heteroskedasticity-consistent
standard errors (HCSEs).

Figure 4.5. Scale economies in electricity distribution.

77



78 Semiparametric Regression for the Applied Econometrician

To provide further illustrations of differencing procedures we divide our
data into two subpopulations: those that deliver additional services besides
electricity, that is, public utility commissions (PUC), and those that are pure
electricity distribution utilities (non-PUC). The numbers of observations in the
two subpopulations are nPUC = 37 and nnonPUC = 44. We denote differencing
estimates of parametric effects and of residual variances as β̂PUC, β̂nonPUC, s2

PUC,

and s2
nonPUC. For each subpopulation, we estimate the log-linear model using

the differencing estimator and report the results in Figure 4.6.
To test whether PUC and non-PUC entities experience the same parametric

effects, we use

(β̂PUC − β̂nonPUC)
′
(
�̂β̂PUC

+ �̂β̂nonPUC

)−1

× (β̂PUC − β̂nonPUC)
D→ χ2

dim(β). (4.6.3)

The computed value of the χ2
6 test statistic is 6.4, and thus the null is not

rejected. Next, we constrain the parametric effects to be equal across the two
types of utilities while permitting distinct nonparametric effects. This is accom-
plished by taking a weighted combination of the two estimates

β̂weighted =
[
�̂−1

β̂PUC
+ �̂−1

β̂nonPUC

]−1[
�̂−1

β̂PUC
· β̂PUC+ �̂−1

β̂nonPUC
· β̂nonPUC

]
(4.6.4)

with estimated covariance matrix

�̂β̂weighted
=
[
�̂−1

β̂PUC
+ �̂−1

β̂nonPUC

]−1
. (4.6.5)

The results are reported in Table 4.3.8 The data can be purged of the estimated
parametric effects, and separate nonparametric curves can be fitted to each

8 A numerically similar estimator with the same large sample properties may be constructed by
differencing the data within each subpopulation and then stacking as follows[

DyPUC
DynonPUC

]
=
[
DZPUC

DZnonPUC

]
β +
[
DfPUC(xPUC)
DfnonPUC(xnonPUC)

]
+
[
DεPUC
DεnonPUC

]
.

Let β̂ be the OLS estimator applied to the preceding equation. Then, the common residual
variance may be estimated using

s2 = 1

n

([
DyPUC
DynonPUC

]
−
[
DZPUC

DZnonPUC

]
β̂

)′([ DyPUC
DynonPUC)

]
−
[
DZPUC

DZnonPUC

]
β̂

)
,

and the covariance matrix of β̂ may be estimated using∑̂
β̂
=
(

1+ 1

2m

)
s2

n

[
(DZPUC)

′(DZPUC)+ (DZnonPUC)
′(DZnonPUC)

]−1
,

where m is the order of (optimal) differencing.
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Partial linear modela

Variable PUC non-PUC

Coef SE Coef SE

wage 0.65 0.348 1.514 0.684
pcap 0.424 0.090 0.632 0.113

kwh 0.108 0.121 0.079 0.123
life −0.495 0.131 −0.650 0.199
lf 1.944 0.546 0.453 0.702

kmwire 0.297 0.109 0.464 0.123
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Figure 4.6. Scale economies in electricity distribution: PUC and non-PUC analysis.
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Table 4.3. Mixed estimation of PUC/non-PUC effects: Scale
economies in electricity distribution.a

Variable Coef SE

wage 0.875 0.304
pcap 0.526 0.067

kwh 0.066 0.086
life −0.547 0.107
lf 1.328 0.422

kmwire 0.398 0.078

aEstimates of parametric effects are obtained separately for PUC and
non-PUC subpopulations. Hence, no PUC effect is estimated. The
estimates above are obtained using (4.6.4) and (4.6.5).

subset of the data, as in the bottom panel of Figure 4.6. The PUC curve lies
below the non-PUC curve consistent with our earlier finding that PUC entities
have lower costs (see PUC coefficients in Figure 4.5).

We may now adapt our test of equality of regression functions in Section 4.4.2
to test whether the curves in Figure 4.6 are parallel, that is, whether one can be
superimposed on the other by a vertical translation. This may be accomplished
simply by removing the mean of the purged dependent variable from each of
the two subpopulations.

Define the within estimate to be the weighted average of the subpopulation
variance estimates, keeping in mind that the estimated parametric effect has
been removed using, say, β̂weighted:

s2
w =

nPUC
n

s2
PUC +

nnonPUC
n

s2
nonPUC. (4.6.6)

Let ypurgePUC be the vector of data on the dependent variable for PUCs with
the estimated parametric effect removed and then centered around 0 and define
ypurgenonPUC similarly.9 Now stack these two vectors and the corresponding data on
the nonparametric variable x to obtain the ordered pairs (ypurgei , xi ) i = 1, . . . , n.
Let Pp be the permutation matrix that reorders these data so that the nonpara-
metric variable x is in increasing order. Note that, because separate equations

9 Because the hypothesis that the parametric effects are the same across the two populations
has not been rejected, one may use subpopulation estimates β2

PUC and β2
nonPUC or the weighted

estimate β̂weighted when computing s2
PUC, s2

nonPUC, and s2
p .
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were estimated for the two subpopulations, z does not contain the PUC dummy.
Define

s2
p =

1

n
ypurge

′
P ′pD

′DPpy
purge. (4.6.7)

If the null hypothesis is true, then differencing will still remove the non-
parametric effect in the pooled data and s2

p will converge to σ 2
ε . Otherwise, it

will generally converge to some larger value. Applying Proposition 4.4.2 with
m= 1, we obtain a value of 1.77 for ϒ/s2

w(2π̂ϒ)
1/2, which, noting that this

is a one-sided test, suggests that there is some evidence against the hypothe-
sis that the scale effects are parallel. Finally, we note that, given the size of
the two subsamples, one must view the asymptotic inferences with some cau-
tion. An alternative approach that generally provides better inference in mod-
erately sized samples would be based on the bootstrap, which is discussed in
Chapter 8.

4.6.3 Weather and Electricity Demand

In a classic paper, Engle et al. (1986) used the partial linear model to study
the impact of weather and other variables on electricity demand. We estimate
a similar model in which weather enters nonparametrically and other variables
enter parametrically. Our data consist of 288 quarterly observations in Ontario
for the period 1971 to 1994. The specification is

elect = f (tempt )+ β1relpricet + β2gdpt + ε, (4.6.8)

where elec is the log of electricity sales, temp is heating and cooling degree days
measured relative to 68 ◦F, relprice is the log of the ratio of the price of electricity
to the price of natural gas, and gdp is the log of gross provincial product. We
begin by testing whether electricity sales and gdp are cointegrated under the
assumption that relprice and temp are stationary (setting aside issues of global
warming). The Johansen test indicates a strong cointegrating relationship. We
therefore reestimate the model in the form

elect − gdpt = f (tempt )+ β1relpricet + ε. (4.6.9)

Figure 4.7 contains estimates of a pure parametric specification for which
the temperature effect is modeled using a quadratic as well as estimates of
the partial linear model (4.6.9). The price of electricity relative to natural
gas is negative and quite strongly significant. In the partial linear model, the
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Variable Quadratic model Partial linear modela

Coef Newey–West Coef Newey–West
SE SE

constant −1.707 0.0286 − −
temp −1.29× 10−4 3.80× 10−5 − −
temp2 4.07× 10−7 5.08× 10−8 − −
relprice −0.0695 0.0255 −0.073 .0252

s2 .00312 .00282
R2 .788 .809

Quadratic
Loess

Estimated temperature effect

a The partial linear model was estimated using the double residual procedure with loess as the
smoother. The scatterplot consists of points with the parametric (relative price) effect removed.

Figure 4.7. Weather and electricity demand.
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ratio of the coefficient estimate to the Newey–West standard error is −2.9
(see Section 3.6).

4.7 Partial Parametric Model

4.7.1 Estimator

A natural generalization of the partial linear model replaces the linear portion
with a nonlinear parametric specification yi = f (xi )+ r(zi , β)+ εi , where the
regression function r is known and β is a p-dimensional vector. Suppose that
the data (y1, x1, z1), . . . , (yn, xn, zn) have been reordered so that the x’s are in
increasing order. Let x ′ = (x1, . . . , xn), y′ = (y1, . . . , yn), and Z be the n × p
matrix with i th row zi .

Define f (x)′ = ( f (x1), . . . , f (xn)) to be the column vector of nonparametric
effects and r(Z , β) = (r(z1, β), . . . , r(zn, β))′ to be the column vector of
parametric effects. Let ∂r(z, β)/∂β be the p × 1 column vector of partial
derivatives of r with respect to β and ∂r(Z , β)/∂β the p× n matrix of partials
of r(z1, β), . . . , r(zn, β) with respect to β. In matrix notation we may write the
model as

y = f (x)+ r(Z , β)+ ε. (4.7.1)

Applying the differencing matrix, we have

Dy = Df (x)+ Dr(Z , β)+ Dε. (4.7.2)

Proposition 4.7.1: For arbitrary differencing weights satisfying
(4.1.1), let β̂diffnls satisfy

min
β

1

n
(Dy − Dr(Z , β))′(Dy − Dr(Z , β)); (4.7.3)

then,

β̂diffnls
A∼ N

(
β, (1+ 2δ)

σ 2
ε

n

∑−1

∂r
∂β
|x

)
, (4.7.4)

where ∑
∂r
∂β
|x = E

(
Var

(
∂r

∂β
| x
))

. (4.7.5)

Furthermore,

s2
diffnls =

1

n
(Dy − Dr(Z , β̂nls))

′(Dy − Dr(Z , β̂nls))
P→ σ 2

ε ,

(4.7.6)
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and ∑̂
∂r
∂β
|x =

1

n

∂r(Z , β̂)

∂β
D′D

∂r(Z , β̂)

∂β ′
P→
∑

∂r
∂β
|x . (4.7.7)

For optimal differencing weights, replace 1+ 2δ with 1+ 1/2m in (4.7.4).

As will be illustrated in Section 4.7.2, nonlinear least-squares procedures
(e.g., in S-Plus) may be applied to (4.7.2) to obtain estimates of β. However,
the covariance matrix produced by such programs needs to be multiplied by
1+ 2δ as indicated by (4.7.4) (see also Footnote to Table 4.4.)

4.7.2 Empirical Application: CES Cost Function

We continue with our example on electricity distribution costs. Consider a
conventional constant elasticity of substitution (CES) cost function (see, e.g.,
Varian 1992, p. 56)

tc = β0 + 1

ρ
log(β1WAGE

ρ + (1− β1)PCAP
ρ), (4.7.8)

where tc is the log of total cost per customer and WAGE and PCAP denote
factor prices in levels. (Elsewhere we use wage and pcap to denote logs of
factor prices. See Appendix E for variable definitions.) We are interested in
assessing whether cost per customer is affected by the scale of operation, that
is, the number of customers. We therefore introduce a nonparametric scale effect
(as well as several covariates)

tc = f (cust)+ 1

ρ
log(β1WAGE

ρ + (1− β1)PCAP
ρ)

+β2PUC+ β3kwh+ β4life+ β5lf+ β6 kmwire+ ε. (4.7.9)

First differencing and dividing by
√

2 so that the variance of the residual
remains the same yields

[tci − tci−1]/
√

2

∼= 1

ρ

[
log
(
β1WAGE

ρ
i + (1− β1)PCAP

ρ
i

)
− log

(
β1WAGE

ρ
i−1 + (1− β1)PCAP

ρ
i−1

)]
/
√

2

+β2[PUCi − PUCi−1]/
√

2+ β3[kwhi − kwhi−1]/
√

2

+β4[lifei − lifei−1]/
√

2+ β5[lfi − lfi−1]/
√

2

+β6[kmwirei − kmwirei−1]/
√

2+ [εi − εi−1]/
√

2. (4.7.10)
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Table 4.4. Scale economies in electricity distribution: CES cost function.

Parametric model Partial parametric modela

Variable Coef SE Coef SE

cust −0.739 0.177 — —
cust2 0.036 0.010 — —

WAGE 0.544 0.221 0.701 0.200
PCAP 1− .544 — 1− .701 —

ρ 0.197 0.560 0.467 0.585

PUC −0.082 0.038 −0.081 0.047
kwh 0.001 0.087 −0.008 0.092
life −0.594 0.122 −0.492 0.149
lf 1.144 0.433 1.241 0.479

kmwire 0.4293 0.086 0.371 0.096

s2
ε .0214 .0177
R2 .611 .678

aOrder of differencing m = 1. Model estimated using nonlinear least squares in
S-Plus. Standard errors produced byS-Plusmultiplied by

√
1.5 as per (4.7.4). Test of

quadratic versus nonparametric specification of scale effect using the differencing
test statistic in (4.3.2b) yieldsV = (mn)1/2(s2

res− s2
diff)/s

2
diff = 811/2(.0214−.0177)/

.0177 = 1.88.

Our parametric null consists of a quadratic specification for the scale effect,
that is, f (cust) = γ0 + γ1cust + γ2cust2 in (4.7.9). Results for this paramet-
ric specification and for (4.7.10) are presented in Table 4.4. The model was
estimated using nonlinear least squares in S-Plus. Applying the differencing
specification test yields an asymptotically N (0, 1) statistic of 1.88.

The effects of covariates (PUC, kwh, life, lf, and kmwire) remain fairly similar
across the various parametric and semiparametric specifications contained in
Figures 1.2 and 4.5. Variants of the Leontief model may be implemented by
imposing the restriction ρ= 1, which is a parameter that is estimated quite
imprecisely in this specification.

4.8 Endogenous Parametric Variables in the Partial Linear Model

4.8.1 Instrumental Variables

We return to the framework of Section 4.5, the partial linear model. Suppose
one or more of the p parametric variables in Z are correlated with the residual
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and suppose W is an n× q matrix of observations on instruments for Z . We
will assume that there are at least as many instruments as parametric variables,
that is, q ≥ p, and that each instrument has a smooth regression function on x ,
the nonparametric variable. Let D̂Z be the predicted values of DZ:

D̂Z = DW ((DW )′DW )−1(DW )′DZ . (4.8.1)

As is the case for the conventional linear model, instrumental variable esti-
mation may be motivated by multiplying (4.5.2) by (D̂Z)′:

(D̂Z)′Dy = (D̂Z)′Df (x)+ (D̂Z)′DZβ + (D̂Z)′Dε. (4.8.2)

Because differencing removes the nonparametric effect in large samples, this
suggests the two-stage-least-squares estimator ((D̂Z)′DZ)−1(D̂Z)′Dy. De-
fine the conditional moment matrices:

∑
w | x = ExVar(w | x) and

∑
zw | x =

ExCov(z, w | x), where Cov(z, w | x) is the p× q matrix of covariances be-
tween the z and w variables conditional on x .

Proposition 4.8.1: For arbitrary differencing weights satisfying
(4.1.1),

β̂diff2sls = [(D̂Z)′DZ ]−1(D̂Z)′Dy

D→ N

(
β, (1+ 2δ)

σ 2
ε

n

[∑
zw|x

∑−1

w|x

∑′
zw|x

]−1
)

(4.8.3)

s2
diff2sls =

1

n
(Dy − DZ β̂diff2sls)

′(Dy − DZ β̂diff2sls)
P→ σ 2

ε (4.8.4)

∑̂
w|x =

1

n
(DW )′DW P→

∑
w|x (4.8.5)

∑̂
zw|x =

1

n
(DZ)′DW P→

∑
zw|x . (4.8.6)

For optimal differencing weights, replace 1+ 2δ with 1+ 1/2m in (4.8.3).

4.8.2 Hausman Test

We can now produce a Hausman-type test (Hausman 1978) of endogeneity. The
covariance matrices of each of the two estimators may be replaced by consistent
estimates.
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Proposition 4.8.2: Let
∑

β̂diff
be the large sample covariance matrix of

β̂diff (Eq. (4.5.3)) and
∑

β̂diff2sls
the corresponding covariance matrix for β̂diff2sls

(Eq. (4.8.3)); then, under the null hypothesis that z is uncorrelated with ε,

(β̂diff − β̂diff2sls)
′[�β̂diff2sls

−�β̂diff

]−1
(β̂diff − β̂diff2sls)

D→ χ2
p,

(4.8.7)

where p is the dimension of β.

4.9 Endogenous Nonparametric Variable

4.9.1 Estimation

Suppose that in the pure nonparametric regression model, the explanatory vari-
able x is correlated with the residual. That is,

y = f (x)+ ε E(ε | x) 
= 0. (4.9.1)

In general, this model is difficult to estimate because conventional instrumen-
tal variable techniques are not directly transferable to a nonlinear or nonparamet-
ric setting. However, suppose an instrument w exists for x that is uncorrelated
with the residual

x = wπ + u E(u |w) = 0 E(ε |w) = 0. (4.9.2)

Suppose further that E(ε | x, u)= ρu, in which case we may write
ε = ρu + v. This is a fairly strong assumption, but in this case we have

y = f (x)+ uρ + v E(v | x, u) = 0. (4.9.3)

Equation (4.9.3) is a partial linear model. To estimate it we need to perform
the linear regression in (4.9.2), and save the residuals and insert them into
(4.9.3), from which we may estimate ρ. If ρ̂ is significantly different from zero,
then x is endogenous.

The model generalizes readily to the case of the partial linear model y =
f (x) + zβ + ε. In this case, if x is correlated with the residual we need to
perform the first-stage regression (4.9.2). We then rewrite the model as y =
f (x) + ρu + zβ + v, reorder so that x is in increasing order, and regress the
differenced values of y on the differenced values of û and z.

The approach described here originates with Hausman (1978). See also Holly
and Sargan (1982) and Blundell and Duncan (1998). Generalizations may be
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found in Newey, Powell, and Vella (1999). The model may of course also be
estimated using the double residual method in Section 3.6.

4.9.2 Empirical Application: Household Gasoline Demand
and Price Endogeneity

Earlier we have estimated household demand for gasoline using Canadian mi-
crodata (see Section 4.6.1). The price variable, which enters nonparametri-
cally, has a significant and negative effect on consumption, as illustrated in
Figure 4.3.

However, the interpretation of the price effect is in question. If one examines
the variation in prices within a given urban area, the coefficient of variation
may be found to be as much as 5 percent or higher for regular gasoline.10 Thus,
individuals who drive more are likely to encounter a broader range of prices;
hence, their search and transaction costs for cheap gasoline are lower. Further-
more, these same individuals derive greater benefit from cheap gas and therefore
would be willing to incur higher search and transactions costs. Thus, one might
expect price to be negatively correlated with the residual in an equation in which
the dependent variable is distance traveled or the level of gasoline consumption.
In this case the price coefficient would overestimate the true responsiveness of
consumption to price.11 To separate these two effects one should ideally have
much more precise data on location. One could then instrument the observed
price variable with the average price over a relatively small geographic area
(such as the average intracity price). This level of detail is not available in these
(public) data; however, as a check on our estimates we can instrument our price
variable with the five provincial or regional dummies. These will serve the role
of w in (4.9.2). Following (4.9.3), (4.6.1) may be rewritten as

y = f (price)+ uρ + zβ + v, (4.9.4)

where z is the collection of parametric variables, u is the residual in the instru-
mental variable equation price= regional dummies · π + u, and E(v | price,
u, z) = 0. After estimating u from an OLS regression, (4.9.4) was
estimated using differencing. The coefficient of u was .31 with a standard

10 The coefficient of variation of the price of regular gasoline is about 9 percent in our complete
data set. After adjusting for geographic and time-of-year effects, the coefficient falls to about
7 percent.

11 In the extreme case, demand could be perfectly inelastic at the same time that the estimated
price effect is significantly negative.
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error of .25, which, given the available instruments, does not suggest endo-
geneity.

4.10 Alternative Differencing Coefficients

Hall et al. (1990, p. 515, Table 2), henceforth HKT, compared the relative
efficiency of alternative differencing estimators of the residual variance. They
found that, for small m, optimal weights performed substantially better than
a “spike” sequence in which the differencing weight near the middle of the
sequence was close to unity whereas others were equal and close to zero. This
is essentially equivalent to using a running mean smoother. For large m, they
found both types of weights to have similar properties.

They also compared optimal weights to the usual weights used for numerical
differentiation. (These are equivalent to mth-order divided differences for equ-
ally spaced data.) They found that these weights become progressively less
efficient relative to optimal weights as m increases.

Seifert et al. (1993) studied the mean-squared error of various differencing-
type estimators of the residual variance. They found that the bias resulting from
the use of HKT optimal weights can be substantial in some cases, particularly
if sample size is small and the signal-to-noise ratio is high. The mean-squared
error of differencing estimators of the partial linear model has apparently not
been studied.

Because HKT differencing weights put maximum weight at the extreme of a
sequence, one would expect that in some cases bias would be exacerbated. On
the other hand, weights that are symmetric about a midpoint and decline as one
moves away might have better bias properties. In particular, for even m (so that
the number of weights is odd), we solve the optimization problem given by

min
d0,...,dm

δ =
m∑
k=1

(
m−k∑
j=0

d jd j + k

)2

s.t.
m∑
j=0

d j = 0
m∑
j=0

d2
j = 1 (4.10.1)

d0 = dm d1 = dm−1 d2 = dm−2 . . . . . . dm/2−1 = dm/2+1

dm/2+1 ≤ dm/2+2 · · · · ≤ dm .

The constraints impose (4.1.1), symmetry, and monotonicity toward zero as
one moves away from the centermost weight. Optimal values are presented in
Table 4.5.

The optimization problems were solved using GAMS (see Brooke et al.
1992). Table 4.6 compares the efficiency of optimal weights to symmetric
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Table 4.5. Symmetric optimal differencing weights.

m (d0, d1, . . . , dm )

2 (−0.4082, 0.8165, −0.4082)

4 (−0.1872,−0.2588, 0.8921,−0.2588,−0.1872)

6 (−0.1191,−0.1561,−0.1867, 0.9237,−0.1867,−0.1561,−0.1191)

8 (−0.0868,−0.1091,−0.1292,−0.1454, 0.9410,−0.1454,−0.1292,−0.1091,−0.0868)

10 (−0.0681,−0.0830,−0.0969,−0.1091,−0.1189, 0.9519,−0.1189,−0.1091,−0.0969,−0.0830,−0.0681)

Table 4.6. Relative efficiency of alternative differencing sequences.

(1+ 2δ)

m Optimal Symmetric optimal Moving average

2 1.250 1.940 1.944
4 1.125 1.430 1.450
6 1.083 1.276 1.294
8 1.063 1.204 1.218

10 1.050 1.161 1.173
20 1.025 1.079 1.085

100 1.005 1.015 1.017
200 1.003 1.008 1.008
500 1.001 1.003 1.003

optimal weights. It is not surprising that symmetric optimal weights are sub-
stantially less efficient (since we are free to choose only about half as many
coefficients). For discussion of HKT optimal weights, see Section 4.2.3 and
Appendix C.

4.11 The Relationship of Differencing to Smoothing

Chapter 3 focused on smoothing techniques. The essential objective was to pro-
duce good estimates of a nonparametric regression function. Take, for example,
the basic model

y = f (x)+ ε. (4.11.1)

If one smooths the data by applying a smoother S that takes local averages,
then one can expect a reasonable approximation to the function f

Sy = S f (x)+ Sε ∼= S f ∼= f, (4.11.2)

where Sε ∼= 0 because smoothing random noise produces the zero function.
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The present chapter has discussed differencing procedures. The objective has
been to remove a nonparametric effect

Dy = Df (x)+ Dε ∼= Dε. (4.11.3)

The essence of the relationship between smoothing and differencing is this.
A smoothing procedure can always be used to remove a nonparametric effect.
For example, using (4.11.2) we may write

(I − S)y = (I − S) f (x)+ (I − S)ε ∼= (I − S)ε, (4.11.4)

and we may think of D = I − S as a differencing procedure.
Differencing, on the other hand, will not in general contain an implicit useful

estimate of the nonparametric effect. This is because there is no requirement for
the order of differencing to increase with sample size. It is, however, a convenient
device for producing test procedures, as we have seen in Section 4.3. (We will
make use of this device in Chapter 6 to produce a general class of goodness-of-fit
tests.)

As we have seen, differencing also yields a simple estimator of the partial
linear model

Dy = Df (x)+ DZβ + Dε

∼= DZβ + Dε, (4.11.5)

where D is applied to data that have been reordered so that the x’s (but not
necessarily the z’s) are close. The asymptotic properties of the differencing
estimator are similar to those produced by the double residual method

(I − S)y = (I − S) f (x)+ (I − S)Zβ + (I − S)ε
∼= (I − S)Zβ + (I − S)ε
∼= (I − S)Zβ + ε, (4.11.6)

where S smooths data by a nonparametric regression on the x variable. The
residuals in the differenced model (4.11.5) are Dε and are approximately equal
to ε only if the order of differencing is large. There is an additional distinction
between smoothing and differencing obscured by the preceding notation but
one we have emphasized earlier. When applying differencing, we use a single
differencing matrix D and apply it to all the data. However, when smoothing is
applied in the double residual procedure, it is common to run separate nonpara-
metric regressions for y and each column of Z on the nonparametric variable x .
This implies that the smoothing matrix S will in general be different in each of
these regressions.
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4.12 Combining Differencing and Smoothing

4.12.1 Modular Approach to Analysis of the Partial Linear Model

Our applications of the partial linear model y= zβ + f (x)+ ε leave some un-
tidy loose ends. Typically, our analysis is divided into two components: first we
obtain a differencing estimate of β and undertake inference procedures on β as
if f were not present in the model. Then we analyze f by performing nonpara-
metric estimation and inference on the newly constructed data (yi − zi β̂diff, xi )
as if β were known. Is such a modular approach valid? Separate analysis of the
parametric portion is justified by virtue of results like Proposition 4.5.1. How-
ever, a little more justification is necessary with respect to the appropriateness
of our analysis of the nonparametric part.12

In the following we will provide justification for various modular procedures
we have already implemented – whether they involve combining differencing
procedures in sequence or combining differencing and smoothing procedures.

4.12.2 Combining Differencing Procedures in Sequence

Recall the estimator of the residual variance in the partial linear model y=
zβ + f (x)+ ε as defined in (4.5.4):

s2
diff =

1

n
(Dy − DZ β̂diff)

′(Dy − DZ β̂diff)

= 1

n
(y − Z β̂diff)

′D′D(y − Z β̂diff). (4.12.1)

It is easy to show that β̂ converges to β sufficiently quickly so that the
approximation yi − zi β̂diff

∼= f (xi )+ εi remains valid. In particular, we have

n1/2

(
1

n
(y − Z β̂diff)

′D′D(y − Z β̂diff)

− 1

n
( f (x)+ ε)′D′D( f (x)+ ε)

)
P→ 0. (4.12.2)

This in turn implies that inference on the residual variance (Propositions 4.2.1
and 4.2.2 and Equation (4.2.15)), specification testing (Proposition 4.3.1), and
tests of equality of regression functions (Propositions 4.4.1 and 4.4.2) may be
applied to the data with the estimated parametric effect removed. In each case,
differencing is used first to estimate the parametric effect and then to perform
a specific inference procedure.

12 For example, we have applied tests of specification, tests of equality of nonparametric regression
functions, and conventional kernel and spline estimation procedures after removing estimated
parametric effects.
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4.12.3 Combining Differencing and Smoothing

Suppose we perform a kernel regression of yi − zi β̂diff on xi . For simplicity,
assume the x’s to be uniformly distributed on the unit interval and that the
uniform kernel is used. Defineλ as the bandwidth and N (xo) = {xi | xi ∈ xo±λ}
to be the neighborhood of xo over which smoothing is being performed. Using
a Taylor approximation (see Sections 3.1 and 3.2), we have

f̂ (xo) ∼= 1

2λn

∑
N (xo)

yi − zi β̂diff

= 1

2λn

∑
N (xo)

f (xi )+ 1

2λn

∑
N (xo)

εi + (β − β̂diff)
1

2λn

∑
N (xo)

zi

∼= f (xo)+ 1/2 f
′′(xo)

1

2λn

∑
N (xo)

(xi − xo)
2

+ 1

2λn

∑
N (xo)

εi + (β − β̂diff)
1

2λn

∑
N (xo)

zi . (4.12.3)

The neighborhood N (xo)will have close to 2λn terms so that in each summation
we are calculating a simple average.

Consider the term involving the second derivative, which corresponds to the
bias:

∑
N (xo)

(xi − xo)2/2λn is like the variance of a uniform variable on an
interval of width 2λ centered at xo, in which case it is OP(λ

2).
The next term corresponds to the variance term: it has mean 0 and variance

σ 2
ε /2λn so that it is OP((λn)

1/2). The last term arises out of the removal of the
estimated parametric effect, where β has been estimated n1/2-consistently so it
is of order OP(n−

1/2)OP(1). Summarizing, we have

f̂ (xo)− f (xo) = OP(λ
2)+ OP((λn)

−1/2)+ OP(n
−1/2)OP(1).

(4.12.4)

So long as λ→ 0 and λn→∞, consistency of the kernel estimator is unaf-
fected because all three terms converge to zero. Furthermore, λ = O(n−1/5)

still minimizes the rate at which the (sum of the) three terms converge to zero.

f̂ (xo)− f (xo) = OP(n
−2/5)+ OP(n

−2/5)+ OP(n
−1/2)OP(1),

(4.12.5)

so that the optimal rate of convergence is unaffected. The order of the first two
terms is OP(n−2/5), whereas the third term converges to zero more quickly and
independently of λ. Confidence intervals may also be constructed in the usual
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way, for applying (4.12.4) we have

(λn)1/2( f̂ (xo)− f (xo))

=OP((λn)
1/2λ2)+ OP(1)+ OP(λ

1/2)

=OP(1)+ OP(1)+ OP(n
−1/10) if λ= O(n−1/5), (4.12.6)

and the third term goes to zero, albeit slowly. If the optimal bandwidth
λ= O(n−1/5) is selected, then confidence intervals must correct for a bias term.

Similar arguments apply to other nonparametric estimators. For example, if
one uses a nonparametric least-squares or spline estimator in a regression of
yi − zi β̂diff on xi , then the estimator f̂ remains consistent and its rate of con-
vergence is unchanged.

4.12.4 Reprise

The practical point of this section is that for the partial linear model y =
zβ+ f (x)+ε (or more generally the partial parametric model), we can separate
the analysis of the parametric portion from the analysis of the nonparametric
portion. Given a differencing estimate ofβ (or for that matter, any n1/2-consistent
estimate), we may construct the new dependent variable y∗i = yi − zi β̂diff, set
aside the original yi , and analyze the data (y∗i , xi ) as if they came from the pure
nonparametric model y∗i = f (xi )+ εi . None of the large sample properties we
have discussed will be affected. This holds true regardless of the dimension of
the parametric variable z.

This idea – that so long as the rate of convergence of an estimator is fast
enough we can treat it as known – will be used extensively to simplify testing
and inference procedures in later chapters. Indeed, we have already used it to
derive a simple specification test (Sections 1.4 and 4.3). In the specification test
setting, the parametric model estimates converged fast enough so that we could
replace the estimated sum of squared residuals with the actual sum of squared
residuals when deriving an approximate distribution for the test statistic (see,
e.g., (1.4.1)).

4.13 Exercises13

1. (a) Suppose the components ofϑ = (ϑ1, . . . , ϑξ )
′ are i.i.d. with Eϑi = 0,Var (ϑi )=

σ 2
ϑ , Eϑ4

i = ηϑ , and covariance matrix σ 2
ϑ Iξ . If A is a symmetric matrix, show

that E(ϑ ′Aϑ) = σ 2
ϑ trA and Var (ϑ ′Aϑ) = (ηϑ − 3σ 4

ϑ )trA � A + σ 4
ϑ trAA.

(If A, B are matrices of identical dimension, define [A � B]ij = AijBij.)

13 Data and sample programs for empirical exercises are available on the Web. See the Preface
for details.
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(b) Consider the heteroskedastic case where Var (ϑi ) = σ 2
i , Eϑ4

i = ηi , ϑ has the
diagonal covariance matrix �, and η is the diagonal matrix with entries ηi .
Then E(ϑ ′Aϑ) = trA� and Var (ϑ ′Aϑ) = tr(η� A� A − 3�2 � A� A)+
2tr(�A�A).

2. (a) Suppose x has support the unit interval with density bounded away from 0.
Given n observations on x , reorder them so that they are in increasing order:
x1 ≤ · · · · ≤ xn . Then for any ε positive and arbitrarily close to 0, 1/n

∑
(xi −

xi−1)
2 = OP(n−2(1−ε)).14

(b) For an arbitrary collection of points in the unit interval, prove that the maximum
value that 1/n

∑
(xi−xi−1)

2 can take is 1/n. (This occurs when all observations
are at one of the two endpoints of the interval.)

3. (a) Using the results of Exercise 2, prove that

n1/2
(
s2
diff −

1

n
ε′D′Dε

)
P→ 0.

(b) Using Exercise 1, derive the mean and variance of s2
diff as in (4.2.6) and (4.2.7).

(c) Now assemble the results and use a finitely dependent central limit theorem to
prove Proposition 4.2.1.

4. Derive (4.2.13) and use it to prove Proposition 4.2.2.

5. Prove Proposition 4.3.1.

6. Prove Proposition 4.4.1.

7. Prove Proposition 4.4.2.

8. (a) Suppose an equal number of observations are drawn from two populations
A and B with differing regression functions f A 
= fB . Furthermore, suppose
the data are such that upon pooling and reordering, the x’s become perfectly
interleaved. That is, an observation from subpopulation A is always followed
by an observation from subpopulation B. Show that the pooled estimator in
(4.4.4) with first-order differencing converges as follows:

s2
p → σ 2

ε + 1/2

∫
( f A(x)− fB(x))

2dx .

(b) Suppose, more generally, that xA and xB are independently and uniformly dis-
tributed on the unit interval and an equal number of observations are taken from
each subpopulation (i.e., nA = nB = 1/2 n). Show that the pooled estimator in
(4.4.4) with first-order differencing converges as in (4.4.7).

9. South African Food Share Engel Curves – Testing Parametric Specifications.
Results should be similar to Figure 4.1.

(a) Using South African food share data on single individuals, fit a linear regression
model of the form FoodShr = α+βltexp+ ε, where FoodShr is the food share

14 Because ε may be chosen arbitrarily close to zero, we will write 1/n
∑

(xi − xi−1)
2 ∼=

OP (n−2). Note also that for fixed j , 1/n
∑

(xi − xi− j )
2 ∼= OP (n−2).



96 Semiparametric Regression for the Applied Econometrician

and ltexp is the log of total expenditure. Obtain the estimate of the residual
variance and the R2.

(b) Fit a kernel smooth f̂ to the data and plot the linear and kernel fits on one graph.
Estimate the residual variance using the kernel fit by applying

s2
ker =

1

n

∑
(yi − f̂ (xi ))

2.

(c) Estimate the residual variance using the optimal differencing estimator (4.2.4)
for m = 5, 10, 25.

(d) Test the linear fit by applying Proposition 4.3.1.

10. South African Food Share Data – Testing Similarity of Shape of Engel Curves.
Results should be similar to Figure 4.2.

(a) From the South African food share data, select two subsets: the first consisting
of single individuals and the second consisting of couples with no children.

(b) Fit kernel smooths to the model FoodShr = f (ltexp) + ε for each of the two
subsets and plot these on a single graph.

(c) For the couples data, subtract .5 from ltexp, the log of total expenditure (which
is equivalent to dividing total expenditure by 1.65). Replot the kernel smooths
from Part (b).

(d) Using the “singles” data and the translated “couples” data, apply Proposi-
tion 4.4.2 to test equality of regression functions.

11. Household Gasoline Consumption: The objective of this problem is to apply dif-
ferencing and double residual methods. The results should be similar to those in
Figures 4.3 and 4.4.

(a) Using the data on household gasoline consumption, estimate (4.6.1) under the
assumption that f is linear. Calculate the R2 = 1− s2

ε /s
2
y .

(b) Reorder the data so that the price variable is in increasing order. Use optimal
differencing coefficients (say m= 10) to remove the nonparametric effect and
estimate the parametric effects in (4.6.1). Estimate the residual variance using
(4.5.4). Estimate the standard errors using (4.5.5) and (4.5.6). Calculate R2 =
1− s2

diff/s
2
y .

(c) Apply the double residual method outlined in Section 3.6 by first doing a kernel
regression of the dependent variable and each of the parametric variables in
(4.6.1) on the log of price. (You will perform 18 plus 1 regressions.) Save the
residuals from each and apply ordinary least squares. The OLS procedure will
produce the estimated standard errors for the parametric effects. Calculate the
average sum of squared residuals from this OLS regression and use this as the
estimate of the residual variance. Calculate R2 = 1− s2

ε /s
2
y .

(d) Using the estimates from the differencing procedure in Part (b), remove the
estimated parametric effect from the dependent variable and perform a kernel
regression of this purged variable on the log of price. Plot this and the estimated
parametric effect of price from Part (a).
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(e) Apply Proposition 4.3.1 to test linearity of the price effect. Run a linear regres-
sion of model (4.6.1), omitting the price variable. Using the estimated residual
variance, apply Proposition 4.3.1 to test the significance of the price effect.

(f) Estimate the heteroskedasticity-consistent standard errors using (3.6.17) and
(3.6.18).

12. Scale Economies in Electricity Distribution: The results should be similar to those
in Figures 4.5 and 4.6 and Table 4.3.

(a) Using the electricity distribution data and (4.6.2), estimate semiparametric vari-
ants of translog, homothetic, and Cobb–Douglas models. In each case the scale
variable (number of customers) is nonparametric and other variables are para-
metric.

(b) Test the semiparametric Cobb–Douglas variant against the full semiparametric
translog using Proposition 4.5.2.

(c) Divide your data into two subsets consisting of public utility commissions
(PUC) and non-PUC. Using the Cobb–Douglas variant of (4.6.2), apply the
differencing estimator of Proposition 4.5.1 to estimate the separate parametric
effects for each subpopulation. Apply (4.6.3) to test the null that the parametric
effects are the same.

(d) Calculate the weighted combination of these two estimates β̂weighted using
(4.6.4) and (4.6.5). For each subpopulation, use β̂weighted to remove the es-
timated parametric effects by subtracting β̂weighted(z − z̄) from the dependent
variable. The vector mean of the independent variables z̄ should be calculated
separately within each subpopulation.

(e) Test whether the nonparametric regression effects for the two subpopulations
are parallel.

(f) Estimate heteroskedasticity-consistent standard errors using the two methods
outlined in Section 4.5 (in particular see (4.5.9) and (4.5.10)).

13. Weather and Electricity Demand: Results should be similar to Figure 4.7.

(a) Estimate the relationship between electricity consumption, the price of electric-
ity relative to natural gas, and a quadratic temperature effect. Obtain Newey–
West standard errors for the coefficients of this parametric specification.

(b) Estimate the partial linear model (4.6.9) using the double residual method and
the loess estimator. Obtain heteroskedasticity- and autocorrelation-consistent
standard errors using the procedures outlined in Section 3.6.5 (assume
L = 5).

14. CES Cost Function and Scale Economies in Electricity Distribution:Results should
be similar to those in Table 4.4.

(a) Using the electricity distribution data and a nonlinear least-squares procedure,
estimate (4.7.9) assuming the function f that measures the scale effect is
quadratic.
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(b) After ensuring that the data are reordered so that the scale effect is increasing,
first difference the specification as indicated in (4.7.10) and apply nonlinear
least squares. Rescale the estimated standard errors by

√
1.5.

(c) Using the estimated residual variances from the two preceding procedures,
apply the specification test in Section 4.3 to assess the quality of the quadratic fit.

15. Endogeneity of Observed Price of Gasoline

(a) Regress the log of price on the Regional Dummies and save the residuals û.
(b) Estimate (4.9.4) where z consists of all parametric variables appearing in (4.6.1).

Test the endogenity of price by determining whether the coefficient of û is
significantly different from zero.



5 Nonparametric Functions
of Several Variables

5.1 Smoothing

5.1.1 Introduction

In economics it is rarely the case that one is interested in a function of a
single variable. Moreover, even if one is comfortable incorporating most of
the explanatory variables parametrically (e.g., within a partial linear model),
more than one variable may enter nonparametrically. The effects of geographic
location – a two-dimensional variable – provides a good example. (Indeed,
in Section 5.4.1 we estimate the effects of location on housing prices non-
parametrically while permitting other housing characteristics to be modeled
parametrically.)

In this chapter we therefore turn to models in which there are several nonpara-
metric variables. A variety of techniques are available. We will focus primarily
on kernel and nonparametric least-squares estimators. However, the elemen-
tary “moving average smoother” which we considered in Section 3.1 has a
close multidimensional relative in nearest-neighbor estimation. Spline tech-
niques have natural generalizations (see particularly Wahba 1990 and Green
and Silverman 1994). Local linear and local polynomial smoothers also have
multivariate counterparts (see Fan and Gijbels 1996).

5.1.2 Kernel Estimation of Functions of Several Variables

Suppose f is a function of two variables and one has data (y1, x1), . . . , (yn, xn)
on the model yi = f (xi1, xi2) + εi , where xi = (xi1, xi2). We will assume f is
a function on the unit square [0,1]2. We want to estimate f (xo) by averaging
nearby observations; in particular, we will average observations falling in a
square of dimension 2λ× 2λ, which is centered at xo. If the xi are drawn from,
say, a uniform distribution on the unit square, then there will be (approximately)
4λ2n observations in the neighborhood N (xo)={xi |xi1∈ xo1 ± λ, xi2∈ xo2 ± λ}.
For example, any square with sides 2λ= .5 has area .25 and will capture about
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25 percent of the observations. Consider then

f̂ (xo) = 1

4λ2n

∑
N (xo)

yi

= 1

4λ2n

∑
N (xo)

f (xi )+ 1

4λ2n

∑
N (xo)

εi

∼= f (xo)+ O(λ2)+ 1

4λ2n

∑
N (xo)

εi

∼= f (xo)+ O(λ2)+ OP

(
1

λn1/2

)
. (5.1.1)

We have mimicked the reasoning in Sections 3.1 and 3.2 but this time for the
bivariate uniform kernel estimator. (As before, we have assumed that f is twice
differentiable but spared the reader the details of the Taylor series expansion.)
The last line of (5.1.1) may now be compared with its counterpart in the univari-
ate case, (3.2.4a). Note the subtle difference. The bias term is still proportional
to λ2, but the variance term is now OP(1/λn

1/2) rather than OP(1/λ
1/2n1/2) since

we are averaging approximately 4λ2n values of εi .
Hence, for consistency, we now need λ → 0 and λn1/2 → ∞. As before,

convergence of f̂ (xo) to f (xo) is fastest when the bias and variance terms go
to zero at the same rate, that is, when λ = O(n−1/6). The second and third
terms of the last line of (5.1.1) are then O(n−1/3) and OP(n−1/3), respectively.
Furthermore,

∫
[ f̂ (x)− f (x)]2dx = OP(n−2/3), which is optimal (see (2.4.1)).

More generally, if the xi are d-dimensional with probability density p(x)
defined, say, on the unit cube in R

d and we are using a kernel K then the
estimator becomes

f̂ (xo) =
1

λdn

∑n
1 yi
∏d

j=1 K
( xij−xoj

λ

)
1

λdn

∑n
1

∏d
j=1 K

( xij−xoj
λ

) . (5.1.2)

Again, if K is the uniform kernel that takes the value 1/2 on [−1,1], then
the product of the kernels (hence the term product kernel) is 1/2

d only if xij ∈
[xoj − λ, xoj + λ] for j = 1, . . . , d , that is, only if xi falls in the d-dimensional
cube centered at xo with sides of length 2λ. The estimator is consistent if
λ → 0 and λd/2n1/2 →∞. Indeed, the numerator converges to f (xo)p(xo) and
the denominator converges to p(xo), where p(x) is the density function of x .
Confidence interval construction is simplified if the bias term converges to zero
sufficiently quickly so that it does not affect the asymptotic distribution. For
d = 2, one requires λ = o(n−1/6); for d = 3, the condition is λ = o(n−1/7).

In the preceding paragraph we have introduced a simple kernel estimator for
functions of several variables that averages observations over a cube centered
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at xo. A multitude of variations and alternatives exist. For example, one could
select different bandwidths for each dimension so that averaging would take
place over rectangular cubes rather than perfect cubes. Or, one might select
different kernels for each dimension. Still more generally, one could average
over nonrectangular regions such as spheres or ellipsoids.1

5.1.3 Loess

The loess estimator we described in Section 3.4 extends readily to the multi-
variate setting. To estimate the function at a point, say xo, k nearest-neighbors
are selected and a weighted local regression is performed. In S-Plus, one can
choose between local linear and local quadratic regressions. In addition one
can choose to rescale the explanatory variables by their standard deviations.
For more details, see Chambers and Hastie (1993, pp. 309–376). In the applica-
tions to follow, we use loess to estimate the first-stage nonparametric regression
in a double residual estimator of the partial linear model.

5.1.4 Nonparametric Least Squares

In Section 3.3 we introduced a nonparametric least-squares estimator for func-
tions of one variable. The estimator is a linear combination of functions called
representors, and it uses a measure of smoothness (3.3.1) that integrates the
square of a function and two or more of its derivatives. Suppose we are given data
(y1, x1), . . . , (yn, xn) on the model yi = f (xi1, xi2)+εi , where xi = (xi1, xi2).
We will assume f is a function on the unit square [0,1]2. Define the Sobolev
norm ‖ f ‖Sob as in Appendix D. Suppose f̂ satisfies

s2 = min
f

1

n

∑
i

[yi − f (xi )]
2 s.t. ‖ f ‖2

Sob ≤ L . (5.1.3)

Then the solution is of the form f̂ =∑n
1 ĉi rxi , where rx1 , . . . , rxn are functions

computable from x1, . . . , xn , and ĉ = (ĉ1, . . . , ĉn) is obtained by solving

min
c

1

n
[y − Rc]′ [y − Rc] s.t. c′Rc ≤ L . (5.1.4)

Here y is the n× 1 vector of observations on the dependent variable, and
R is the matrix of inner products of the representors rxi . The difference be-
tween the one-dimensional problem (3.3.3) and its two-dimensional counter-
part is the calculation of the representor matrix. Fortunately, in our setup,

1 See Scott (1992, pp. 149–155) and Wand and Jones (1995, pp. 103–105).
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two-dimensional representors are products of one-dimensional representors. In
particular, let rxi (x1, x2) be the representor function at the point xi = (xi1, xi2).
Then rxi (x1, x2) = rxi1(x1)rxi2(x2), where rxi1(x1) is the representor in the
Sobolev space of functions of x1, and rxi2(x2) is defined analogously. Theoret-
ical and computational details are contained in Appendix D. See also Wahba
(1990) and Yatchew and Bos (1997).

5.2 Additive Separability

5.2.1 Backfitting

The nonparametrics literature has devoted considerable attention to improving
the rate of convergence of nonparametric estimators using additive models,
which, in the simplest case, are of the form f (xa, xb) = fa(xa) + fb(xb).2 A
powerful and general algorithm used to estimate additively separable models
is motivated by the observation that

E[y − fa(xa) | xb] = fb(xb) and E[y − fb(xb) | xa] = fa(xa).

(5.2.1)

If f̂ a is a good estimate of fa , then fb may be estimated by nonparametric
regression of y− f̂ a(xa) on xb. A parallel argument holds for estimation of fa .
Beginning with these observations, the algorithm in Table 5.1 has been widely
studied.

The initial estimates f 0
a , f

0
b in Table 5.1 may be set to zero or to the estimates

from a parametric procedure (such as a linear regression).
The procedure may be generalized in the obvious fashion to additively separ-

able models with more than two additive terms, where each term may be a
function of several variables. Assuming that optimal nonparametric estimators
are applied to each component, the rate of convergence of the estimated regres-
sion function equals the rate of convergence of the component with the largest
number of explanatory variables.

For example, if y= fa(xa)+ fb(xb)+ fc(xc)+ ε, where xa, xb, xc are sca-
lars, and optimal estimators are applied in the estimation of fa, fb, fc, then the
rate of convergence of f̂ a+ f̂ b+ f̂ c is the same as if the regression model were
a function of only one variable. That is,

∫
(( f̂ a+ f̂ b+ f̂ c)− ( fa+ fb+ fc))2 =

OP(n−2m/(2m+1)), where m is the number of bounded derivatives.3

2 See, for example, Stone (1985, 1986); Buja, Hastie, and Tibshirani (1989) Hastie and
Tibshirani (1987, 1990); Linton (1997); Linton, Mammen, and Nielsen (1999); Linton (2000)
and references therein.

3 Applying (2.4.1) and assuming two bounded derivatives, we have
∫
( f̂ a + f̂ b + f̂ c)2 =

OP (n−4/5) as compared with OP (n−4/7) for the model f (xa, xb, xc) or OP (n−1) for the
parametric model.
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Table 5.1. The backfitting algorithm.a

Initialization: Select initial estimates f 0
a , f

0
b .

Iteration: Obtain f̂ ia by nonparametric regression of y − f̂ i−1
b (xb) on xa .

Obtain f̂ ib by nonparametric regression of y − f̂ i−1
a (xa) on xb.

Convergence: Continue iteration until there is little change in individual function
estimates.

a See Hastie and Tibshirani (1990), Chapter 4 and references therein.

More generally, if f is additively separable with parametric and nonpara-
metric components, say y = zβ + fa(xa)+ fb(xb)+ ε, where z, xa, xb are of
dimension dz, da, db, respectively, then the rate of convergence of the optimal
estimator is given by4∫

((zβ̂ + f̂ a(xa)+ f̂ b(xb))− (zβ + fa(xa)+ fb(xb)))
2

= OP
(
n

−2m
2m+max{da ,db }

)
. (5.2.2)

The result is very similar to (2.4.1) except that d has been replaced by
max{da,db}.

In performing the component nonparametric regressions, a variety of tech-
niques may be used, including kernel, spline, and loess estimation. Indeed, the
algorithm is particularly versatile in that different techniques may be selected
for different components. For example, fa may be estimated using kernel re-
gression and fb using nonparametric least squares (or even nonparametric least
squares subject to constraints). The backfitting algorithm is available in S-Plus
using the function gam (generalized additive model).

An alternative procedure for estimation of additive (and multiplicative) mod-
els based on marginal integration has been proposed by Newey (1994b) and
Linton and Nielsen (1995). One of the major attractions to their approach is
that, in contrast to backfitting, their estimator has simple statistical properties.

5.2.2 Additively Separable Nonparametric Least Squares

We turn now to nonparametric least-squares estimation of the additively sepa-
rable model. The optimization problem in (5.1.3) becomes

min
fa , fb

1

n

∑
i

[yi − fa(xai )− fb(xbi )]
2 s.t. ‖ fa + fb‖2

Sob ≤ L ,

(5.2.3)

4 Again assuming two bounded derivatives and supposing that the dimensions dz, da, db are
3, 2, 1, respectively, then the optimal rate of convergence is OP (n−2/3) as compared with
OP (n−4/10) for the model f (z, xa, xb) or OP (n−1) for the parametric model.
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which can be transformed into the finite dimensional optimization problem

min
ca ,cb

1

n
[y − Raca − Rbcb]′ [y − Raca − Rbcb]

s.t. c′a Raca + c′b Rbcb ≤ L , (5.2.4)

where y is the n × 1 vector of observations on the dependent variable, ca ,
cb are n × 1 vectors of unknowns, and Ra, Rb are (representor) matrices
that may be computed directly from xa1, . . . , xan and xb1, . . . , xbn , respec-
tively. The estimated regression function is of the form f̂ a(xa)+ f̂ b(xb) =∑n

1 ĉai rxai (xa) + ĉbi rxbi (xb). The optimization problem involves a quadratic
objective function and a quadratic constraint. (There is also an identifying re-
striction that may be imposed as a linear function of the ci , but this does not
complicate the problem appreciably.) See Appendix D and Yatchew and Bos
(1997).

A similar procedure is available if the model is multiplicatively separable, that
is, f (xa, xb) = fa(xa) · fb(xb). Note that this restriction is useful in imposing
homotheticity.

5.3 Differencing

5.3.1 Two Dimensions

Consider again the pure nonparametric model

y = f (x)+ ε, (5.3.1)

where x is a vector of dimension 2. Suppose, as in Section 1.2, that we are
interested in estimating the residual variance. We would like to ensure that the
data (y1, x1) . . . . (yn, xn) have been reordered so that the x’s are “close”.

For illustrative purposes, suppose the x’s constitute a uniform grid on the unit
square. Each point may be thought of as “occupying” an area of 1/n, and the
distance between adjacent observations is therefore 1/n1/2.5 Suppose further
that the data have been reordered so that ‖xi− xi−1‖ = n−1/2, where ‖·‖ denotes
the usual Euclidean distance. If we use the first-order differencing estimator
s2
diff =

∑n
i=2(yi − yi−1)

2/2n, then

(
s2
diff − σ 2

ε

) = ( 1

2n

n∑
i=2

(εi − εi−1)
2 − σ 2

ε

)
+ 1

2n

n∑
i=2

( f (xi )− f (xi−1))
2

+ 2

2n

n∑
i=2

(εi − εi−1)( f (xi )− f (xi−1)). (5.3.2)

5 If x is a scalar and the data are equally spaced on the unit interval, the distance between
adjacent observations is 1/n, which is much closer.
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The first term on the right-hand-side is OP(n−
1/2). Assume that f satisfies a

Lipschitz constraint | f (xa)− f (xb)| ≤ L‖xa − xb‖. Then for the second term
we have

1

2n

n∑
i=2

( f (xi )− f (xi−1))
2 ≤ 1

2n

n∑
i=2

L2‖xi − xi−1‖2 = O

(
1

n

)
.

(5.3.3)

Consider now

Var

(
2

2n

n∑
i=2

εi ( f (xi )− f (xi−1))

)
= σ 2

ε

n2

n∑
i=2

( f (xi )− f (xi−1))
2

≤ σ 2
ε

n2

n∑
i=2

L2‖xi − xi−1‖2 = O

(
1

n2

)
, (5.3.4)

from which we can conclude that the third term of (5.3.2) is OP(1/n).
The point of this exercise is that if x is two-dimensional, differencing removes

the nonparametric effect sufficiently quickly, so that

(
s2
diff − σ 2

ε

) = ( 1

2n

n∑
i=2

(εi − εi−1)
2 − σ 2

ε

)
+ O

(
1

n

)
+ OP

(
1

n

)
.

(5.3.5)

Compare this with the one-dimensional case in which the second and third
terms are O(1/n2) and OP(1/n3/2), respectively.

5.3.2 Higher Dimensions and the Curse of Dimensionality

With n points distributed on the uniform grid in the unit cube in R
q , each

point continues to “occupy” a volume 1/n, but the distance between adjacent
observations is 1/n1/q and

∑
( f (xi ) − f (xi−1))

2 = O(n1−2/q). Thus, (5.3.3)
becomes O(1/n2/q), and the variance of the third term becomes O(1/n1+2/q).
Hence, with the x’s lying in a q-dimensional cube, (5.3.5) becomes

(
s2
diff − σ 2

ε

) =( 1

2n

n∑
i=2

(εi − εi−1)
2 − σ 2

ε

)
+ O

(
1

n2/q

)
+ OP

(
1

n1/2+ 1/q

)

= OP

(
1

n1/2

)
+ O

(
1

n2/q

)
+ OP

(
1

n1/2+ 1/q

)
. (5.3.6)

How does the dimensionality of x affect the differencing estimator? First,
s2
diff remains consistent regardless of the dimension of x . However, the bias term

(the second term of (5.3.6)) converges to 0 more slowly as q increases. Second,
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s2
diff is n1/2-consistent and

n1/2
(
s2
diff − σ 2

ε

)− n1/2

(
1

2n

n∑
i=2

(εi − εi−1)
2 − σ 2

ε

)
P→ 0 (5.3.7)

if q does not exceed 3. This is important because, whenever we have derived
the large sample distribution of an estimator or test statistic that uses differenc-
ing, we have used the property that the nonparametric effect is being removed
sufficiently quickly that it can be ignored. Essentially, this has required that a
condition like (5.3.7) hold.

With random x’s, similar results hold so long as reasonable ordering rules
are used. If x is a scalar, the obvious ordering rule is x1 ≤ · · · ≤ xn . If x is of
dimension 2 or 3, we propose the following ordering rule based on the nearest-
neighbor algorithm because it is simple to compute. (Other ordering rules for
which the conclusion of Proposition 5.3.1 holds can easily be devised.)

Proposition 5.3.1: Suppose x has support the unit cube in R
q with

density bounded away from 0. Select ε positive and arbitrarily close to 0. Cover
the unit cube with subcubes of volume 1/n1−ε , each with sides 1/n(1−ε)/q .
Within each subcube, construct a path using the nearest-neighbor algorithm.
Following this, knit the paths together by joining endpoints in contiguous sub-
cubes to obtain a reordering of all the data. Then, for any ε > 0, 1/n

∑ ‖xi −
xi−1‖2 = OP(n−2(1−ε)/q).

Because ε may be chosen arbitrarily close to 0, we write 1/n
∑ ‖xi −

xi−1‖2 ∼= OP(n−2/q).

We may now assert that propositions in Chapter 4, where we consid-
ered only a scalar nonparametric variable, continue to hold so long as
q, the number of nonparametric variables, does not exceed 3 and the
preceding ordering rule is employed. In particular, the specification test
of Section 4.3 and the analysis of the partial linear model of Section 4.5
continue to apply in this more general setting.6

However, it is important to keep in mind that, as dimension increases from 1
to 2 to 3, and the x’s become progressively more dispersed, bias becomes a much
more important issue. From this point of view, using a smoother that efficiently

6 Additional testing procedures using differencing may be found in Yatchew (1988). Tests of
significance, symmetry, and homogeneity are proposed. Although that paper uses sample
splitting to obtain the distribution of the test statistic, the device is often unnecessary, and
the full data set can be used to calculate the restricted and unrestricted estimators of the
residual variance. A test of homotheticity may also be devised. Chapter 6 contains an extensive
discussion of hypothesis testing.
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removes nonparametric effects becomes more appealing. Nevertheless, there
are applications for which differencing may be applied effectively as will be
illustrated in Section 5.4.2.

5.4 Empirical Applications

5.4.1 Hedonic Pricing of Housing Attributes

Housing prices are very much affected by location, which is an effect that
has no natural parametric specification. The price surface may be unimodal,
multimodal, or have ridges (for example, prices along subway lines are often
higher). Therefore, we include a two-dimensional nonparametric location effect
f (x1, x2), where x1, x2 are location coordinates.

The partial linear model that follows was estimated by Ho (1995) using semi-
parametric least squares. The data consist of 92 detached homes in the Ottawa
area that sold during 1987. The dependent variable y is saleprice; the z variables
include lot size (lotarea), square footage of housing (usespc), number of bed-
rooms (nrbed), average neighborhood income (avginc), distance to highway
(dhwy), presence of garage (grge), fireplace ( frplc), or luxury appointments
(lux).

Figure 5.1 contains estimates of a pure parametric model in which the location
effect is modeled using a linear specification. It also contains estimates of
the partial linear model. Having estimated the parametric effects using the
double residual method, where loess is applied in the first stage, the constructed
data (yi − zi β̂diff, x1i , x2i ) are then smoothed to estimate the nonparametric
effect. For an alternative semiparametric hedonic pricing model in the real
estate market, see Anglin and Gencay (1996).

5.4.2 Household Gasoline Demand in Canada

We now respecify the model in (4.6.1), allowing price and age to appear non-
parametrically:

dist = f (price, age)+ β1 income+ β2 drivers+ β3 hhsize

+β4 youngsingle+ β5 urban+ monthly dummies+ ε.

(5.4.1)

The upper panel of Figure 5.2 illustrates the scatter of data on price and age
and the path we take through the data points to apply differencing. Estimates of
the parametric effects are provided using differencing and the double residual
method. These do not differ substantially from those in which only price is
modeled nonparametrically (see Figure 4.3). A test of the joint significance
of the nonparametric variables using Proposition 4.3.1 yields a value of 5.96,
which is strongly significant. A test of a fully parametric specification where
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Estimated models

y = α + zβ + γ1x1 + γ2x2 + ε y = zβ + f (x1, x2)+ ε

OLS Double residual using loess

Coeff SE Coeff SE

α 74.0 18.0
frplc 11.7 6.2 frplc 12.6 5.8
grge 11.8 5.1 grge 12.9 4.9
lux 60.7 10.5 lux 57.6 10.6
avginc .478 .22 avginc .60 .23
dhwy −15.3 6.7 dhwy 1.5 21.4
lotarea 3.2 2.3 lotarea 3.1 2.2
nrbed 6.6 4.9 nrbed 6.4 4.8
usespc 21.1 11.0 usespc 24.7 10.6

γ1 7.5 2.2
γ2 −3.2 2.5

R2 .62 R2 .66
s2
res 424.3 s2

diff 375.5

Data with parametric effect  removed Estimated location effects

Under the null that location has no effect, ( f is constant), s2
res = 507.4. For the partial linear model

we calculate R2 = 1−s2
diff/s

2
y . The loess function in S-Plus is used in applying the double-residual

method and to produce the “Estimated location effects” after removal of parametric effects. In the
latter case, the dependent variable is yi − zi β̂diff.

Figure 5.1. Hedonic prices of housing attributes.
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price and age enter log-linearly yields a statistic of 2.16. For more extensive
analysis of these data, including the application of other testing procedures, see
Yatchew and No (2001).

5.5 Exercises7

1. (a) Using a second-order Taylor series expansion for functions of two variables,
verify (5.1.1).

(b) Assume that p(x) is uniform on the unit square and that one is using the uniform
kernel. Show that the denominator of (5.1.2) converges to 1 and that the numerator
reduces to the first line of (5.1.1) if the dimension d = 2.

2. Hedonic Housing Prices: The objective is to estimate a partial linear specification
in which the two-dimensional location effect is modeled using nonparametric and
additively separable specifications.

(a) Open the data on housing prices. Estimate a fully parametric model using a
linear specification for the location effect. Repeat using a quadratic specification.
Calculate the corresponding values of R2.

(b) Using the double residual method, estimate the partial linear model y = zβ +
f (x1, x2) + ε contained in Figure 5.1. (Use loess to estimate the effects of
the location variables x1, x2 on the dependent variable y and the parametric
independent variables z.) Calculate R2.

(c) Estimate the model allowing an additively separable location effect y = zβ +
f1(x1) + f2(x2) + ε. (The gam function in S-Plus allows one to estimate the
nonparametric effects using alternative nonparametric estimators such as kernel,
spline, or loess.) Calculate R2.

3. Household Gasoline Consumption: The objective is to estimate a partial linear spec-
ification with a two-dimensional nonparametric effect.

(a) Estimate the gasoline consumption model (5.4.1) using differencing and the or-
dering procedure pictured in the upper panel of Figure 5.2. Calculate the implied
R2.

(b) Test the significance of the nonparametric effects using the specification test in
Proposition 4.3.1.

(c) Reestimate using the double residual method. (You may use loess to estimate
the first-stage nonparametric regressions.) Compare the estimates of parametric
effects, their standard errors, and the corresponding R2 with the results obtained
in Part (a).

(d) Reestimate (5.4.1) using an additively separable specification for the nonpara-
metric variables f (price, age) = f1( price)+ f2(age) and compare the resulting
R2 fit with those obtained in Parts (a) and (b).

(e) Estimate a fully parametric specification in whichprice andage enter log-linearly.
Using the results of Part (a) and Proposition 4.3.1, perform a specification test
to assess the adequacy of the parametric model.

7 Data and sample programs for empirical exercises are available on the Web. See the Preface
for details.



6 Constrained Estimation
and Hypothesis Testing

6.1 The Framework

Economic theory rarely dictates a specific functional form. Instead, it typically
specifies a collection of potentially related variables and general functional
properties of the relationship. For example, economic theory may imply that
the impact of a given variable is positive or negative (monotonicity), that dou-
bling of prices and incomes should not alter consumption patterns (homogeneity
of degree zero), that a proportionate increase in all inputs will increase output
by the same proportion (constant returns to scale or, equivalently, homogeneity
of degree one), that the effect of one variable does not depend on the level of
another (additive separability), that the relationship possesses certain curva-
ture properties such as concavity or convexity, or that observed consumption
patterns result from optimization of utility subject to a budget constraint (the
maximization hypothesis).

Empirical investigation is then required to assess whether one or another
variable is significant or whether a particular property holds. In parametric
regression modeling, a functional form is selected and properties are tested by
imposing restrictions on the parameters. However, rejection of a hypothesis
may be a consequence of the specific functional form that has been selected
(but not implied by economic theory). Thus, although the translog production
function is richer and more flexible than the Cobb–Douglas, it may not capture
all the interesting features of the production process and may indeed lead to
incorrect rejection of restrictions. Nonparametric procedures, on the other hand,
provide both richer families of functions and more robust tests for assessing the
implications of economic theory. Within this framework it is also possible to
test whether a specific parametric form is adequate.

In the following sections, we therefore focus on the imposition of additional
constraints on nonparametric regression estimation and testing of these con-
straints. However, before proceeding, we provide some standardized notation.

111
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(The ideas are illustrated graphically in Figure 6.1.) Begin with the true model

y = f (x)+ ε. (6.1.1)

We will maintain that f lies in the set �, which is a set of smooth functions.
The corresponding (unrestricted) estimator is denoted as f̂ unr with correspond-
ing estimated residual variance

s2
unr =

1

n

∑
(yi − f̂ unr(xi ))

2. (6.1.2)

We also want to estimate f subject to constraints of the form f ∈ �̄ ⊂ �,
where the set �̄ combines smoothness with additional functional properties. We
denote the restricted estimator as f̂ res with corresponding estimated residual
variance

s2
res =

1

n

∑
(yi − f̂ res(xi ))

2. (6.1.3)

In some cases, it is a simple matter to ensure that the restricted estimator f̂ res
satisfies these additional properties everywhere in its domain. In other cases,
the estimator may only satisfy the restrictions asymptotically.

Our general null and alternative hypotheses will be of the form

H0 : f ∈ �̄
H1 : f ∈ �. (6.1.4)

Define f̄ to be the “closest” function to f in the restricted set �̄ in the sense
that

f̄ satisfies min
f ∗ ∈ �̄

∫
( f ∗ − f )2 dx . (6.1.5)

When the null hypothesis is true, f̄ = f (since f ∈ �̄), the integral is equal
to zero and the restricted estimator converges to f̄ = f . If the null hypothesis
is not true, we will assume f̂ res converges to f̄ 
= f .

One final important notational convention follows. Because certain tests will
depend on the difference between the true regression function and the closest
function in �̄, we will reserve special notation for it. In particular,

f� = f − f̄ . (6.1.6)

If the null hypothesis is true, f� = 0.
Much of the testing literature for parametric regression models can be embed-

ded in a general and unified theoretical framework. The situation is somewhat
less gratifying for nonparametric models, although several approaches show
promise. We therefore begin by outlining two generic testing procedures that di-
rectly test hypotheses on f – one is analogous to a conventional goodness-of-fit
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� is the “unrestricted” set of functions, �̄ is the “restricted” set of functions. Let f̄ be the closest
function in �̄ to the true regression function f. If Ho is true, then f lies in � and f̄ = f . If Ho is
false, then the difference f� = f − f̄ 
= 0.

Figure 6.1. Constrained and unconstrained estimation and testing.

test (such as the familiar F or χ2 tests); the other involves performing a residual
regression. (For a third general approach, see Hall and Yatchew 2002.)

6.2 Goodness-of-Fit Tests

6.2.1 Parametric Goodness-of-Fit Tests

A natural basis for testing constraints imposed on the regression function is to
compare the restricted estimate of the residual variance with the unrestricted
estimate

n1/2
(
s2
res − s2

unr

)
s2
unr

. (6.2.1)

The reader will recognize that, in the linear regression model with normal
residuals, multiplying this statistic by n1/2/r , where r is the number of restric-
tions, yields a statistic very similar to the traditional F-statistic.
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The difficulty in applying the usual F-statistic in a nonparametric setting
lies in the derivation of its (approximate) distribution. Consider the problem of
testing a parametric null hypothesis against a nonparametric alternative (i.e., a
specification test). How would one calculate the numerator degrees of freedom,
that is, the degrees of freedom associated with restricting a nonparametric form
to be parametric?1

6.2.2 Rapid Convergence under the Null

In some cases, however, it is relatively straightforward to obtain an approximate
distribution for (6.2.1). Suppose that the restricted estimator f̂ res converges
quickly enough so that

n1/2

(
s2
res −

1

n

n∑
i=1

ε2
i

)
= n1/2

(
1

n

n∑
i=1

ε̂2
i −

1

n

n∑
i=1

ε2
i

)
P→ 0. (6.2.2)

Furthermore, if we use the differencing estimator to calculate the unrestricted
variance, then the distribution of the test statistic is greatly simplified. For
example, if we use optimal differencing coefficients, then

n1/2

(
s2
diff −

ε′ε
n
+ 1

mn
ε′ (L1 + L2 + · · · + Lm) ε

)
P→ 0. (6.2.3)

Differencing removes the nonparametric regression effect sufficiently quickly
so that (6.2.3) holds.2 If we replace s2

unr with s2
diff and combine (6.2.2) and

(6.2.3), the numerator of (6.2.1) becomes

n1/2
(
s2
res − s2

diff

) ∼= 1

mn1/2
ε′ (L1 + L2 + · · · + Lm) ε, (6.2.4)

and it is easy to show that the right-hand side is approximately N
(
0, σ 4

ε /m
)
,

in which case

V = (mn)1/2

(
s2
res − s2

diff

)
s2
diff

D→ N (0, 1). (6.2.5)

For arbitrary differencing coefficients satisfying (4.1.1), a similar argument
yields

V =
(
n

4δ

)1/2
(
s2
res − s2

diff

)
s2
diff

D→ N (0, 1), (6.2.6)

1 Although, a number of authors have proposed that this be done by calculating the trace of
certain “smoother” matrices. See Cleveland (1979), Cleveland and Devlin (1988), and Hastie
and Tibshirani (1990, pp. 52–55 and Appendix B).

2 See (4.2.10a) and Lemmas B.2 and B.3 in Appendix B.
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where δ is defined in (4.1.6). This is of course precisely the specification test
we developed in Section 4.3 except that now the restrictions are not necessarily
parametric. They need only be such that the convergence is fast enough to
produce (6.2.2).

We have already used this idea to produce a simple test of equality of regres-
sion functions in Section 4.4. We can also use it to test other restrictions such
as monotonicity, concavity, or additive separability. As in Section 4.3, the test
can readily be modified to incorporate heteroskedasticity. Finally, we note that
the power of the test can be increased by permitting the order of differencing
m to increase with sample size.

6.3 Residual Regression Tests

6.3.1 Overview

An alternative approach used by Li (1994), Fan and Li (1996), and Zheng (1996)
begins by rewriting the regression model y = f (x)+ ε as

y = f̄ (x)+ [ f (x)− f̄ (x)+ ε] = f̄ (x)+ f�(x)+ ε. (6.3.1)

We assume that the restricted regression estimator f̂ res estimates f̄ con-
sistently and note that if the null hypothesis is true, that is, if f ∈ �̄, then
f�= 0. Thus, if we perform an “auxiliary” regression of the estimated residu-
als yi − f̂ res(xi ) on xi to estimate f� and perform a significance test, we will
have a test of the null hypothesis f ∈ �̄.3

Equivalently, observe that

Eε,x [(y − f̄ (x))Eε[y − f̄ (x) | x]] = Eε,x [(y − f̄ (x)) f�(x)]

= Ex f
2
�(x) ≥ 0, (6.3.2)

where the expression equals zero only if the null hypothesis is true. One way
to obtain a sample analogue of the second expression is to calculate

1

n

∑
(yi − f̂ res(xi ))( f̂ unr(xi )− f̂ res(xi )). (6.3.3)

Note that f̂ unr− f̂ res is an estimator of f� = f − f̄ .
A closely related procedure uses the sample analogue

1

n

∑
(yi − f̂ res(xi )) f̂ �(xi ), (6.3.4)

where f̂ � is obtained by performing an (unrestricted) nonparametric regression
of yi − f̂ res (xi ) on the xi .

3 The idea, of course, is not new and has been exploited extensively for specification testing in
parametric regression models (see, e.g., MacKinnon 1992).
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6.3.2 U-statistic Test – Scalar x’s, Moving Average Smoother

We begin with the case in which x is a scalar, say, in the unit interval. We assume
the data have been reordered so that the xi are in increasing order. Consider the
moving average smoother (Section 3.1) of f� given by

f̂ �(xi ) = 1

k

ī∑
j=i, j 
=i

(y j − f̂ res(x j )), (6.3.5)

where this time k is even; i = i − k/2 and ī = i + k/2 denote the lower and
upper limits of summations. We are averaging k values of (y j − f̂ res(x j )) in
the neighborhood of xi . (Momentarily, we will explain why the summation in
(6.3.5) excludes the i th observation.) Then (6.3.4) becomes

U = 1

kn

∑
i

ī∑
j= i, j 
=i

(yi − f̂ res(xi ))(y j − f̂ res(x j )). (6.3.6)

Using the substitution yi − f̂ res(xi ) = εi + ( f (xi )− f̂ res(xi )), we expand U
to obtain

U ∼= U1 +U2 +U3

= 1

kn

∑
i

ī∑
j=i, j 
=i

εiε j

+ 1

kn

∑
i

ī∑
j=i, j 
=i

( f (xi )− f̂ res(xi ))( f (x j )− f̂ res(x j )) (6.3.7)

+ 2

kn

∑
i

ī∑
j=i, j 
=i

εi ( f (x j )− f̂ res(x j )).

The following results can be demonstrated:

U1 ∼ N

(
0,

2σ 4
ε

kn

)

U2 = OP

(
1

n

∑
( f (xi )− f̂ res (xi ))

2

)
(6.3.8)

U3 = 1

n1/2
OP

((
1

n

∑
( f (xi )− f̂ res (xi ))

2

)1/2
)

.
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The random variable U1 is a U -statistic, and its distribution has been studied
extensively.4 Omission of the i th term avoids terms like ε2

i and thus ensures
that the mean of U1 is zero. A modicum of insight into the asymptotic dis-
tribution of U1 may be gleaned by the following reasoning. U1 is a quadratic
form for which the interposing matrix is related to the smoother matrix S for
the moving average estimator defined in (3.1.12). It is band diagonal with
0’s on the main diagonal, 1/kn on the k/2 diagonals adjacent to the main
diagonal, and 0’s everywhere else. Thus, summing each diagonal, we have
U1

∼= 1/kn
∑

i 2εiεi−1 + · · · + 2εiεi−k/2. Note that U1 is an average of about
kn/2 distinct objects that are uncorrelated but not independent. Next note that
Var (
∑

i 2εiεi−1 + · · · + 2εiεi−k/2) ∼= 4σ 4kn/2, and thus Var (U1) ∼= 2σ 4/kn.
Finally, apply a central limit theorem for dependent processes such as those in
McLeish (1974). Keep in mind that the number of terms under the summation
sign is growing as k grows.

Suppose now the null hypothesis is true and f̂ res→ f . If this conver-
gence is sufficiently rapid, the distribution of U is determined by the distri-
bution of U1, which will form the basis for tests of a variety of null hypo-
theses.

Put another way, because k1/2n1/2U1 has constant variance, the objective is to
select a restricted estimator f̂ res that converges to f sufficiently quickly (under
the null hypothesis) and a rate of growth for k so that k1/2n1/2U2 and k1/2n1/2U3

both converge to zero. (Note that if the null hypothesis is false, then k1/2n1/2U
diverges.)

Let us pause for a moment to consider a special case. If the restricted estimate
is a parametric model, then U2 and U3 are OP(n−1).5 Since (for consistency
of the estimator) we require k/n→ 0, then k1/2n1/2U2 and k1/2n1/2U3 both go to
zero. Hence k1/2n1/2U ∼ N (0, 2σ 4

ε ). This result is a simple variant of the Fan
and Li (1996) specification test discussed below.

6.3.3 U-statistic Test – Vector x’s, Kernel Smoother

We now assume the xi are random vectors with probability law p (x) and
dim (x) = d. We will use a product kernel estimator (see Section 5.1).

4 The U signifies that such statistics were designed to be unbiased estimators of distribution
characteristics. The seminal paper is due to Hoeffding (1948). See Serfling (1980, Chapter 5)
for a general introduction as well as Lee (1990). The results on U-statistics most relevant here
are contained in Hall (1984) and De Jong (1987).

5 For example, if we are fitting a mean, then, using (6.3.8), U2 = OP ((ȳ − µ)2) = OP (n−1)

and U3 = n−1/2OP ((ȳ − µ)2)
1/2 = n−1/2OP (n

−1/2) = OP (n−1).
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Consider

1

λdn

∑
j 
=i

(y j − f̂ res(x j ))
d∏

k=1

K

(
x jk − xik

λ

)
. (6.3.9)

In contrast to (6.3.5), this is not a consistent estimator of f�(xi ) (the de-
nominator of the kernel estimator is missing; see (5.1.2)). However, it is a
consistent estimator of f�(xi )p(xi ). The conditional moment (replacing 6.3.2)),
which motivates the test statistic, is given by

Eε,x [(y − f̄ (x))Eε[y − f̄ (x) | x]p(x)] = Ex
[
f 2
�(x)p(x)

] ≥ 0,

(6.3.10)

where equality holds only if the null hypothesis is true. TheU statistic becomes

U = 1

λdn2

∑
i

∑
j 
=i

(yi − f̂ res(xi ))(y j − f̂ res(x j ))

×
d∏

k=1

K

(
xjk − xik

λ

)
. (6.3.11)

Its behavior again depends on the rate at which f̂ res converges to f (as in
(6.3.8)). We now state the more general result. Suppose

1

n

∑
( f (xi )− f̂ res(xi ))

2 = OP(n
−r ), (6.3.12)

and

nλd/2n−r = n1−rλd/2 → 0, (6.3.13)

then,

nλd/2U ∼ N

(
0, 2σ 4

ε

∫
p2(x)

∫
K 2(u)

)
, (6.3.14)

and σ 2
U = Var (U ) = 2σ 4

ε

∫
p2(x)

∫
K 2(u)/λdn2 may be estimated using

σ̂ 2
U = 2

n4λ2d

∑
i

∑
j 
=i

(yi − f̂ res(xi ))
2(y j − f̂ res(x j ))

2

×
d∏

k=1

K 2

(
xjk − xik

λ

)
. (6.3.15)

We can apply (6.3.11) to (6.3.15) to produce tests of a broad variety of
hypotheses, including specification, significance, additive separability, mono-
tonicity, concavity, homotheticity, and demand theory. In each case we need to
produce a restricted estimator with a sufficiently rapid rate of convergence.
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6.4 Specification Tests6

Assume g(x, θ) is a known function of its arguments, where θ is a finite di-
mensional parameter vector. In this section we are concerned with tests of

H0 : f ∈ �̄ = { f ∈� | f = g(·, θ) for some θ}. (6.4.1)

Let θ̂ be an estimator of the parameter θ , such as nonlinear least squares,
which converges at a rate n−1/2 to θ̄; θ̄ = θ if H0 is true.

6.4.1 Bierens (1990)

If the parametric specification under the null hypothesis (6.4.1) is true, then
Eε[y−g(x, θ̄ ) | x] = Eε[y−g(x, θ) | x] = Eε[ε | x] = 0 for all x . Suppose that
the null hypothesis is false and that the probability that Eε,x [y−g(x, θ̄ ) | x] = 0
is less than 1. Then, for (almost) any real number τ , the following holds:

Eε,x [eτ x (y − g(x, θ̄ ))] = Ex [eτ x ( f (x)− g(x, θ̄ ))] 
= 0. (6.4.2)

Bierens proposes a test based on n1/2 times the sample analogue of the left
expression

B(τ ) = n1/2
1

n

∑
eτ xi (yi − g(xi , θ̂ )). (6.4.3)

He then demonstrates that, under the null hypothesis, B(τ ) is asymptotically
normal with mean zero and variance given by

σ 2
B(τ ) = Eε,x

[
(y − g(x, θ))2 ·

(
eτ x − b(τ )′A−1 dg(x, θ)

dθ

)2
]
,

(6.4.4)

where

b(τ ) = Ex

[
eτ x

dg(x, θ)

dθ

]
A = Ex

[
dg(x, θ)

dθ

][
dg(x, θ)

dθ

]′
.

(6.4.5)

Estimates of b(τ ) and A, say b̂(τ ), Â, are obtained by using sample analogues
and replacing θ with θ̂ from a parametric estimation procedure. The variance

6 There is a huge literature on specification testing. In this section we focus specifically on
tests in which the alternative involves a nonparametric component to the regression function.
Procedures not discussed here but worthy of note include Azzalini, Bowman, and Härdle
(1989); Eubank and Spiegelman (1990); Lee (1991); Eubank and Hart (1992); Wooldridge
(1992); Azzalini and Bowman (1993); Gozalo (1993); Whang and Andrews (1993); Horowitz
and Härdle (1994); Bierens and Ploeberger (1997); Dette (1999); Ellison and Ellison (2000);
Aı̈t-Sahalia, Bickel, and Stoker (2001); Horowitz and Spokoiny (2001); and Stengos and Sun
(2001). See also Yatchew (1988, 1992).
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Table 6.1. Bierens (1990) specification test – implementation.

Test Statistic: Test H0 : E(y | x) = θ1 + θ2x; under H0:

B(τ )

σ̂B(τ )
= n1/2

σ̂B(τ )

1

n

∑
eτ xi (yi − θ̂ 1 − θ̂ 2xi )∼ N (0, 1)

θ̂1, θ̂2 are OLS estimators,

σ̂ 2
B(τ ) =

1

n

∑
(yi − θ̂ 1 − θ̂ 2xi )

2 ·
(
eτ xi − b̂(τ )′ Â−1

[
1
xi

])2

b̂(τ ) =


1

n

∑
eτ xi

1

n

∑
xi e

τ xi

 Â =

 1
1

n

∑
xi

1

n

∑
xi

1

n

∑
x2
i


σ 2
B(τ ) is estimated using

σ̂ 2
B(τ ) =

1

n

∑
(yi − g(xi , θ̂ ))

2 ·
(
eτ xi − b̂(τ )′ Â−1 dg(xi , θ)

dθ

)2

.

(6.4.6)

What we have not dealt with so far is how to select τ . Bierens proposes that τ
be selected to maximize B2(τ )/σ̂ 2

B(τ ). The resulting test procedure is consistent,
does not require nonparametric estimation of the regression function, and is
applicable if x is a vector (see Table 6.1 for implementation).

6.4.2 Härdle and Mammen (1993)

Härdle and Mammen base their specification test on the integrated squared
difference I = ∫ ( f̂ res(x)− f̂ unr(x))2dx . Here f̂ unr is a kernel estimator of f,
and f̂ res is (for technical reasons a smoothed version of) the parametric estimate
g(x, θ̂ ). Their statistic is given by

I = nλ1/2

∫
(Kg(x; θ̂ )− f̂ unr(x))

2π(x) dx, (6.4.7)

where π(x) is a weight function selected by the user that permits discrepancies
between the nonparametric and parametric estimators to be weighted differently
in different parts of the domain, and

Kg(x, θ̂ ) =
∑

i K ((x − xi )/λ) g(xi , θ̂ )∑
i K ((x − xi )/λ)

, (6.4.8)
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where K is the kernel function and λ = O(n−1/5).7

Let K (2)(·) and K (4)(·) be the 2-times and 4-times convolution products of
K.8 Let p(x) be the density of x, which is assumed to have bounded support
(e.g., the unit interval), with p(x) bounded away from zero on the support. Then
in large samples and under the null hypothesis that the parametric specification
is correct,

I ∼ N

(
λ−1/2K (2)(0)σ 2

ε

∫
π(x)/p(x) dx,

2K (4)(0)σ 4
ε

∫
π2(x)/p2(x) dx

)
. (6.4.9)

All elements can be either computed or estimated (see Table 6.2 for imple-
mentation). If one sets π(x) = p(x), then greater weight is assigned in regions
where there are likely to be more observations and, hence, presumably, the
discrepancy is being estimated more accurately. In this case, the integrals in
(6.4.9) become

∫
dx , and if one uses the uniform kernel the result simplifies to

I ∼ N

(
1/2 λ

−1/2σ 2
ε

∫
dx, 2/3 σ

4
ε

∫
dx

)
. (6.4.10)

In simulations, Härdle and Mammen found that this normal approximation is
substantially inferior to bootstrapping the critical values of the test statistic. They
demonstrated that the “wild” bootstrap (see Chapter 8) yields a test procedure
that has correct asymptotic size under the null and is consistent under the
alternative. (They also demonstrated that conventional bootstrap procedures
fail.) Finally, the test can be applied to circumstances under which x is a vector
and ε is heteroskedastic.

6.4.3 Hong and White (1995)

Hong and White proposed tests based on series expansions, in particular the
flexible Fourier form (Gallant 1981). To test a quadratic null, the unrestricted

7 Härdle and Mammen (1993) impose the following conditions: K is symmetric, twice contin-
uously differentiable, integrates to one, and has compact support. The last condition would,
strictly speaking, rule out the normal kernel.

8 Recall that K (·) may be viewed as a density. Let u1, u2, u3, u4 be i.i.d. with density K (·). The
convolution products K (2)(·) and K (4)(·) are the densities of u1 + u2 and u1 + u2 + u3 + u4,
respectively. We will need to evaluate these densities at 0. If K (·) is the uniform density on
[−1, 1], then K (2)(0) = 1/2 and K (4)(0) = 1/3. If K (·) is N (0, 1), then K (2)(0) = 1/(2

√
π)

and K (4)(0) = 1/(2
√

2π).
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Table 6.2. Härdle and Mammen (1993) specification test – implementation.

Test Statistic: Test H0 : E(y | x) = θ0 + θ1x; using Ho using a uniform kernel:a

I = nλ1/2
∫
(K (θ̂0 + θ̂ 1x)− f̂ unr(x))2 p̂(x) dx

∼ N
(

1/2 λ
−1/2σ 2

ε

∫
dx, 2/3 σ

4
ε

∫
dx
)

.

1. Regress y on x to obtain θ̂ 0 + θ̂ 1x .
2. Perform kernel regression using uniform kernel on (θ̂0 + θ̂ 1xi , xi ) to obtain the

smoothed parametric estimate K(θ̂ 0 + θ̂ 1x).
3. Perform kernel regression using uniform kernel on (yi , xi ) to obtain f̂ unr(x)

and s2
unr.

4. Obtain p̂(x) using a kernel density estimation procedure.

5. Calculate
(
I − 1/2 λ

−1/2s2
unr

∫
dx
)/(

2/3 s
4
unr

∫
dx
)1/2 and compare to N (0, 1).

a Any symmetric twice-differentiable kernel with compact support may be used, but then
the constants in the asymptotic approximation will change.

regression model is given by

f (x) = θ0 + θ1x + θ2x
2 +

N ∗∑
j=1

Y1 j cos( j x)+ Y2 j sin( j x), (6.4.11)

where the number of unknown coefficients 3+2N ∗ increases with sample size.
The rate at which N ∗ may be permitted to grow depends on the null hypothesis
being tested. Let s2

unr be obtained by estimating model (6.4.11) and s2
res by

estimating the parametric regression. Then in large samples

n
(
s2
res − s2

unr

)
s2
unr

∼ N (3+ 2N ∗, 2(3+ 2N ∗)). (6.4.12)

Table 6.3 provides implementation details.

6.4.4 Li (1994) and Zheng (1996)

These authors proposed specification tests based on residual regression, which
is discussed in a general setting in Section 6.3. If x is a scalar, the test statistic
U of (6.3.11) becomes

U = 1

n

∑
i

(yi − g(xi , θ̂ ))

×
 1

λn

∑
j 
=1

(y j − g(x j , θ̂ ))K

(
xi − x j

λ

) . (6.4.13)
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Table 6.3. Hong and White (1995) specification test – implementation.

Test Statistic: Test H0 : E(y | x) = θ0 + θ1x + θ2x2; under the null:a

n
(
s2
res − s2

unr

)
s2
unr

∼ N (3+ 2N ∗ , 2(3+ 2N ∗)).

1. Rescale the data on x so that xi ∈ [0, 2π ].
2. Estimate y = θ0 + θ1x + θ2x2 + ε by OLS to obtain s2

res.
3. Determine number of terms in unrestricted model: N ∗ = O(n.10 log(n)).
4. Generate explanatory variables cos( j xi ), sin( j xi ), j = 1, . . . N ∗.
5. Perform the (unrestricted) regression y = θo+θ1x+θ2x2+∑N∗

j=1 γ1 j cos( j x)
+ γ2 j sin( j x)+ ε to obtain s2

unr.
6. Calculate test statistic and perform a one-tailed test using a critical value

from the N (0, 1).

a If one is testing the linear model, set θ2 = 0, N ∗ = O(n.19 log(n)).

Table 6.4. Li (1994) and Zheng (1996) residual regression test
of specification – implementation.

Test Statistic: Test H0 : E(y | x) = θ0 + θ1x; under Ho using a uniform kernel:

U = 1

n

∑
i

(yi − θ̂o − θ̂ 1xi )

[
1

λn

∑
j 
=i

(y j − θ̂o − θ̂ 1x j )Kij

]

∼ N

(
0,

2σ 4
ε

∫
p2(x)

∫
K 2

λn2

)
,

where Kij is defined below.

1. Perform (restricted) regression y on x to obtain θ̂o + θ̂ 1xi .
2. Calculate the kernel matrix Kij, where

Kij = 1/2 if |x j − xi | ≤ λ j 
= i (note that diagonal elements Kii = 0)
Kij = 0 otherwise.

3. Calculate U .
4. Define σ 2

U = Var(U ) = 2σ 4
ε

∫
p2(x)

∫
K 2/λn2 and estimate it using

σ̂ 2
U =

2

n4λ2

∑
i

∑
j 
=i

(yi − θ̂ o − θ̂ 1xi )
2(y j − θ̂ o − θ̂ 1x j )

2K2
ij.

5. Perform a one-sided test comparing U/σ̂U with the critical value from the N (0, 1).
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The term in square brackets is a consistent estimator of f�(x)p(x) = ( f (x)−
g(x, θ̄ ))p(x). Under the null hypothesis this is the zero function, and we have
from (6.3.14)

nλ1/2U ∼ N

(
0, 2σ 4

ε

∫
p2(x)

∫
K 2(u)

)
. (6.4.14)

Implementation details are contained in Table 6.4. We note that the test is valid
under heteroskedasticity.

6.5 Significance Tests

Let us begin by disposing of significance tests where the null hypothesis is of
the form f (x) = µ, and µ is a constant. This null model constitutes the simplest
possible parametric specification, and so all specification testing methodologies
proposed in the previous section immediately yield tests of significance of this
kind.9 If x is a vector, then this null hypothesis corresponds to testing the joint
significance of all the explanatory variables.

What is more challenging – and more useful – is the derivation of tests of
significance for a subset of the explanatory variables. Consider the following
hypotheses:

H0 : f ∈ �̄ = { f ∈ � | f (x1, x2) is smooth and constant wrt x2}
H1 : f ∈ � = { f | f (x1, x2) is smooth}. (6.5.1)

As before, f̄ is the “closest” function to f , the true regression function, in the
restricted set �̄ (Eq. (6.1.5)). If the null hypothesis is true, then f̄ (x) = f (x)
for all x .

The residual regression tests of Section 6.3 may be used for testing hypotheses
of this type. To test hypotheses like the null in (6.5.1), we may apply the
results in (6.3.11) through (6.3.15). The restricted estimator under the null
f̂ res is any one-dimensional nonparametric estimator that converges, say, at
the optimal rate. Under the alternative, a two-dimensional kernel estimator is
applied. Implementation details are contained in Table 6.5. Additional tests
of significance may be found in Racine (1997), Lavergne and Vuong (2000),
Aı̈t-Sahalia et al. (2001), and Delgado and Manteiga (2001).

9 For example, the Bierens (1990) test statistic reduces to

B(τ )

σ̂B(τ )
= n1/2 1

n

∑
i e

τ xi (yi − ȳ)(
1
n

∑
i
(yi − ȳ)2

(
eτ xi − 1

n

∑
j
eτ x j
)2
)1/2 ∼ N (0, 1),

where ȳ is the sample mean.
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Table 6.5. Residual regression test of significance – implementation.a

Test Statistic: Test H0 : f (x1, x2) is smooth and constant with respect to x2, against
H1 : f (x1, x2) is smooth; using the uniform kernel, under the null we have

U = 1

n

∑
i

(yi − f̂ res(x1i ))

[
1

λ2n

∑
j 
=i

(y j − f̂ res(xij))Kij

]

∼ N

(
0,

2σ 4
∫
p2(x1, x2)

∫
K 2

λ2n2

)
,

where Kij is defined below.
1. Perform the restricted regression of y on x1 to obtain f̂ res(x1).

The estimator may be a kernel regression, nonparametric least squares, or another
estimator that converges at the optimal rate.

2. Calculate the product kernel matrix Kij:
Kij = 1/4 if |x1i − x1 j | ≤ λ and |x2i − x2 j | ≤ λ i 
= j
Kij = 0 otherwise.

3. Calculate U .
4. Determine λ. For example, if the f̂ res was obtained using an optimal bandwidth,

then its rate of convergence is OP(n−4/5), that is, r = 4/5 . Now using (6.3.13),
select λ so that λn1/5 → 0, thus λ = O(n−1/4) suffices.

5. Estimate σ 2
U = Var(U ) using

σ̂ 2
U =

2

n4λ4

∑
i

∑
j 
=i

(yi − f̂ res(x1i ))
2(y j − f̂ res(x1 j ))

2K2
ij.

6. Perform a one-sided test comparing U/σ̂U with the critical value from the N (0, 1).

a The test described here is similar to those found in Li (1994), Fan and Li (1996), and
Zheng (1996).

6.6 Monotonicity, Concavity, and Other Restrictions10

6.6.1 Isotonic Regression

Suppose we are interested in imposing monotonicity on our estimate of the
regression function and in testing this property, that is,

H0 : f ∈ �̄ = { f ∈� | f smooth and monotone}
H1 : f ∈ � = { f | f smooth}. (6.6.1)

10 There is a substantial literature on estimation and testing subject to constraints such as mono-
tonicity and concavity (convexity). Work on monotonicity and/or concavity includes Wright
and Wegman (1980); Schlee (1982); Friedman and Tibshirani (1984); Villalobas and Wahba
(1987); Mukarjee (1988); Ramsay (1988); Kelly and Rice (1990); Mammen (1991); Goldman
and Ruud (1992); Yatchew (1992); Mukarjee and Stern (1994); Yatchew and Bos (1997);
Bowman, Jones, and Gijbels (1998); Diack and Thomas-Agnan (1998); Ramsay (1998);
Mammen and Thomas-Agnan (1999); Diack (2000); Gijbels et al. (2000); Hall and Heckman
(2000); Hall and Huang (2001); Groeneboom, Jongbloed, and Wellner (2001); Juditsky and
Nemirovski (2002); and Hall and Yatchew (2002).
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The isotonic regression literature, in the simplest case, considers least-
squares regression subject only to monotonicity constraints; that is, given data
(y1, x1), . . . , (yn, xn) on the model yi = f (xi )+ εi , the optimization problem
is given by

min
ŷ1,...,ŷn

1

n

∑
i

(yi − ŷi )
2 s.t. ŷ j ≤ ŷi for x j ≤ xi , (6.6.2)

if f is increasing. The literature goes back several decades (see e.g., Barlow et al.
(1972) and Robertson, Wright, and Dykstra (1988)). The estimation problem in
(6.6.2) differs from our setup in (6.6.1) in that we impose additional smoothness
constraints so that the regression function is estimable under the alternative.

Isotonic regression may be implemented using the functionmonreg in XploRe
(see Härdle, Klinke and Turlach 1995) or using GAMS (Brooke et al. 1992).

6.6.2 Why Monotonicity Does Not Enhance the Rate of Convergence

If one is willing to impose sufficient smoothness on the estimated regression
function and if the true regression function is strictly monotone, then mono-
tonicity constraints will not improve the rate of convergence.

To see why this is the case, consider the following example in a simplified
parametric setting. Suppose one is estimating the model y = µ+ ε subject to
the constraint µ ≤ 2. The usual (unconstrained) estimator of µ is the sample
mean ȳ. An estimator µ̂ that incorporates the inequality constraint would set
µ̂ = ȳ if ȳ ≤ 2, and µ̂ = 2 if ȳ > 2. If the true mean is, say, 1.5, then as
sample size increases, the probability that the unconstrained estimator equals the
constrained estimator goes to 1. Thus, the constraint becomes nonbinding.11

In nonparametric regression, an analogous result holds. If the true regression
function is strictly monotone (e.g., if the first derivative is bounded away from
zero), then with sufficient smoothness assumptions, the monotonicity restric-
tions become nonbinding as sample size increases. (This happens if the first
derivative is estimated consistently, in which case, as sample size increases,
the derivative estimate will also be bounded away from zero with probability
going to 1.) The constrained estimator then has the same convergence rate as
the unconstrained estimator.12 This negative finding, however, does not imply
that monotonicity will be uninformative in small samples (nor does it pre-
clude testing for the presence of this property). Indeed, one could argue that,
given the paucity of a priori information present in nonparametric estimation,
any additional constraints should be exploited as far as possible particularly

11 See Wolak (1989) and references therein for tests of inequality constraints in parametric
models.

12 Utreras (1984), Mammen (1991), and Yatchew and Bos (1997) find this result for different
estimators.
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in moderately sized samples. (Recall Figure 2.4 in which the imposition of
monotonicity results in better fit.)

6.6.3 Kernel-Based Algorithms for Estimating Monotone
Regression Functions

Mammen (1991) analyzed two estimators that combine smoothing with mono-
tonicity constraints in estimation. The first estimator consists of two steps:
smoothing of the data by applying a kernel estimator followed by determina-
tion of the closest set of monotonic points to the smoothed points. That is,
given data (y1, x1), . . . . ,(yn, xn), let (ỹ1, x1), . . . . , (ỹn, xn) be the set of points
obtained by applying a kernel estimator; then, solve

min
ŷ1,...,ŷn

1

n

∑
i

(ỹi − ŷi )
2 s.t. ŷi ≤ ŷ j if xi ≤ x j . (6.6.3)

The second estimator examined by Mammen reverses the two steps.
Mammen demonstrated that, if the true regression function is strictly monotone
and if one chooses the optimal bandwidth for twice differentiable functions (i.e.,
λ = n−1/5), then both estimators converge at the same rate as a conventional
kernel estimator. Hall and Huang (2001) proposed an alternative procedure for
producing a monotone estimate from an initial “smooth” estimate.

6.6.4 Nonparametric Least Squares Subject to Monotonicity Constraints

An alternative approach involves augmenting the nonparametric least-squares
optimization problem (3.3.3) with monotonicity constraints. Assume the data
have been ordered so that x1 ≤ · · · ≤ xn . For expositional purposes, suppose
R is invertible and set Rc in (3.3.3) equal to ŷ. Consider

min
ŷ

1

n
[y − ŷ]′[y − ŷ]

s.t. ŷ′R−1 ŷ ≤ L (6.6.4a)

ŷi−1 ≤ ŷi i = 2,. . . . , n.

If f is strictly increasing, the monotonicity constraints are nonbinding in
large samples so that the estimator achieves the optimal rate of convergence
n−2m/(2m+1), where m is the degree of differentiability. Equation (6.6.4a) illus-
trates the relative ease with which the nonparametric least-squares estimator
can incorporate additional constraints.

Alternatively, let R(1) be the matrix of first derivatives of the representors
rx1 , . . . , rxn evaluated at the data points x1, . . . , xn . Then one may write

min
c

1

n
[y − Rc]′[y − Rc] s.t. c′Rc ≤ L R(1)c ≥ 0. (6.6.4b)
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Versions (6.6.4a) and (6.6.4b) are slightly different. Using the mean value
theorem, the former ensures that the estimated derivative is positive at some
point between each pair of consecutive points. The latter requires the estimated
derivative to be positive at the points x1, . . . , xn . Neither procedure ensures that
the estimated function is monotone everywhere in small samples, but as data
accumulate, the smoothness requirement prevents nonmonotonicity.

6.6.5 Residual Regression and Goodness-of-Fit Tests of Restrictions

Let f̂ res be any of the estimators discussed above that impose smoothness and
monotonicity. If f is twice differentiable, they converge at a rate n−4/5. Using
(6.3.13), if we set λ = o(n−2/5), then the U -statistic of (6.3.11) with d = 1
has the normal distribution specified in (6.3.14) under the null hypothesis of
monotonicity.

Suppose we estimate the isotonic regression in (6.6.2), which imposes only
monotonicity. Van de Geer (1990) demonstrated that, in this case,

∫
( f̂ − f )2 ∼=

OP(n−2/3). Thus, again using (6.3.13), we need λ = o(n−2/3).
Furthermore, all these estimators converge sufficiently quickly so that (6.2.2)

holds and we may apply a goodness-of-fit test. For example, let s2
mon be the

estimated residual variance from a smooth monotone or isotonic regression and
s2
diff a differencing estimate. Then,

(mn)1/2

(
s2
mon − s2

diff

)
s2
diff

D→ N (0, 1). (6.6.5)

Tests of convexity (concavity) as well as of other restrictions may be imple-
mented in a similar fashion. For example, convexity constraints may be imposed
using

min
ŷ1,...,ŷn

1

n

∑
(yi − ŷi )

2

s.t. ŷ′R−1 ŷ ≤ L (6.6.6a)

ŷi+1≤ xi+2 − xi+1

xi+2 − xi
ŷi + xi+1 − xi

xi+2 − xi
ŷi+2 ∀i.

Alternatively, let R(2) be the matrix of second derivatives of the representors
rx1 , . . . , rxn evaluated at the data points x1, . . . , xn . Then one may write

min
ŷ

1

n
[y − Rc]′[y − Rc] s.t. c′Rc ≤ L R(2)c ≥ 0. (6.6.6b)

If sufficient derivatives are bounded and if the function is strictly convex, then
the convexity constraints will not enhance the large sample rate of convergence.

The residual regression test may be used to produce tests of separabil-
ity. The procedure gam (generalized linear model) in S-Plus estimates such
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specifications. Additional tests of additively separable models may be found in
Barry (1993); Eubank et al. (1995); Sperlich, Tjostheim, and Yang (1999); Dette
and Von Lieres und Wilkau (2001); Gozalo and Linton (2001); and Derbort,
Dette, and Munk (2002).

Implications of demand theory can also be imposed and tested. See Epstein
and Yatchew (1985), Varian (1985, 1990), Matzkin (1994) and references
therein, Hausman and Newey (1995), Lewbel (1995), and Yatchew and Bos
(1997).

In general, validity of the goodness-of-fit and residual regression tests re-
quire first demonstrating that the restricted estimator of the regression function
converges sufficiently quickly. If the model is partially linear, then the esti-
mated parametric effect may be first removed (using a n1/2-consistent estimator)
without altering the asymptotic validity of either the residual regression or the
goodness-of-fit tests that are subsequently applied to the nonparametric portion
of the model.

6.6.6 Empirical Application: Estimation of Option Prices13

Option price data have characteristics that are both nonparametric and para-
metric. The economic theory of option pricing predicts that the price of a call
option should be a monotone decreasing convex function of the strike price. It
also predicts that the state price density, which is proportional to the second
derivative of the call function, should be a valid density function over future
values of the underlying asset price and hence should be nonnegative and inte-
grate to 1. Except in a few polar cases, the theory does not prescribe specific
functional forms. All this points to a nonparametric approach to estimation.

On the other hand, multiple transactions are typically observed at a finite
vector of strike prices. Thus, one could argue that the model for the option
price as a function of the strike price is intrinsically parametric. Indeed, given
sufficient data, one can obtain a good estimate of the call function by simply
taking the mean transactions price at each strike price. Unfortunately, even
with large data sets, accurate estimation of the call function at a finite number
of points does not ensure good estimates of its first and second derivatives.

In this example we apply the nonparametric least-squares estimator and show
how it can incorporate various “shape” constraints such as monotonicity and
convexity of the call function.

Suppose we are given data (x1, y1), . . . , (xn, yn), where xi is the strike price
and yi is the option price. Let X = (X1, . . . , Xk) be the vector of k distinct
strike prices. We will assume that the vector X is in increasing order. As usual,

13 This application is drawn from Yatchew and Härdle (2001), who apply the techniques to
options data on the DAX index. See also Aı̈t-Sahalia and Duarte (2000).
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x , y, and X will denote both the variable in question and the vector of observa-
tions on that variable. Our model is given by

yi = f (xi )+ εi i = 1, . . . , n. (6.6.7)

We assume the following. The regression function f is four times differ-
entiable, which will ensure consistent and smooth estimates of the function,
its first and second derivatives. (Other orders of differentiation can readily be
accommodated using the framework that follows.) The vector of distinct strike
prices X lies in the interval [a,b]. The residuals εi are independent but possibly
heteroskedastic, and � is the diagonal matrix of variances σ 2

1 , . . . , σ
2
n .

We have generated 20 independent transactions prices at each of 25 strike
prices. The top panel of Figure 6.2A depicts all 500 observations and the
“true” call function. Note that the variance decreases as the option price de-
clines. The second panel depicts the estimated call function obtained by tak-
ing the mean transactions price at each of the 25 strike prices. The estimate
lies close to the true function. However, under closer examination it may be
seen that the estimate is not convex. Although the differences would seem to
be de minimis, we will soon see that this results in rather poor estimates of
derivatives.

Consider the following naive approximations to the first and second deriva-
tives that use first and second divided differences of the point mean estimates
Ŷ1, . . . , Ŷk . In particular, define

Ŷ j − Ŷ j−1

X j − X j−1
j = 2, . . . , k (6.6.8)

and

Ŷ j+1 − Ŷ j

X j+1 − X j
− Ŷ j − Ŷ j−1

X j − X j−1

X j − X j−1
j = 3, . . . , k. (6.6.9)

By the mean value theorem, these should provide reasonable approximations
to the first and second derivatives. The upper panels of Figures 6.2B and 6.2C
depict divided difference estimates of the first and second derivatives using
point means and (6.6.8) and (6.6.9). The estimates are poor, particularly at low
strike prices where the variance of the residual is relatively larger.

Consider now the following nonparametric least-squares problem, which
incorporates a smoothness constraint

min
f

1

n

∑
i

[
yi − f (xi )

σi

]2

s.t. ‖ f ‖2
Sob ≤ L . (6.6.10)
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Figure 6.2A. Data and estimated call function.
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Figure 6.2B. Estimated first derivative.a
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Figure 6.2C. Estimated SPDs.a
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We will rewrite (6.6.10) to reflect that option pricing data are usually char-
acterized by repeated observations at a fixed vector of strike prices. Let B be
the n × k matrix such that

Bij = 1 if xi = X j

= 0 otherwise
(6.6.11)

so that (6.6.10) becomes

min
f

1

n

[ y − B f (X)
n×1 n×k k×1

]′∑
n×n

−1[ y − B f (X)
n×1 n×k k×1

]
s.t. ‖ f ‖2

Sob ≤ L . (6.6.12)

The problem may be solved using

min
c

1

n
[y − BRc]′�−1[y − BRc] s.t. c′Rc ≤ L , (6.6.13)

where calculation of the k × k representor matrix R is detailed in Appendix D.
One can impose monotonicity and convexity by supplementing (6.6.13) with
constraints like those in (6.6.4a) and (6.6.6a), or (6.6.4b) and (6.6.6b). Consider
then

min
c

1

n
[y − BRc]′

∑−1 [y − BRc]

s.t. c′Rc ≤ L

R(1)c ≤ 0

R(2)c ≥ 0.

(6.6.14)

The bottom panels of Figures 6.2A, 6.2B, and 6.2C depict the resulting smooth
constrained estimates f̂ (X) = Rĉ, f̂ ′(X) = R(1)ĉ, and f̂ ′′(X) = R(2)ĉ that
evidently provide much improved approximations to the true derivatives.

6.7 Conclusions

Because economic theory rarely provides parametric functional forms, ex-
ploratory data analysis and testing that rationalizes a specific parametric regres-
sion function is particularly beneficial. In this connection, we have described a
variety of specification tests.

Even though parametric specification is not its forte, economic theory does
play a role in producing other valuable restrictions on the regression function. By
specifying which variables are potentially relevant to an equation and excluding
myriad others from consideration, rate of convergence is improved. (Exclusion
restrictions may come disguised; e.g., as homogeneity of degree zero.) The
imposition of exclusion restrictions on either local averaging or minimization
estimators is straightforward – one simply reduces the dimensionality of the
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Simulated EMSE: E
[

1
n

∑
(µ̂(xt )− µ(xt ))2

]
E
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Data-generating mechanism: y = x1+ε, x1 ∈ [1, 2], ε ∼ N (0, σ 2 = .25), ‖ · ‖2
Sob =

∫ 2

1

(
x2

1+1
)

dx1 = 3.33.
Estimated models: y = µ( · )+ ε, ‖ · ‖2

Sob ≤ 10.0.

Smooth 2-dim µ(·) = f (x1, x2)

Separable µ(·) = f1(x1)+ f2(x2)

Smooth 1-Dim µ(·) = f (x1)

Monotone µ(·) = f (x1), f (x1t ) ≤ f (x1τ ), x1t ≤ x1τ
Linear µ(·) = β0 + β1x1

Each model is estimated using nonparametric least squares. Sobolev smoothness norms are of
fourth order. In each case, 1,000 replications were performed.

Figure 6.3. Constrained estimation – simulated expected mean-squared error.

regression function. Other restrictions that may be driven by considerations of
economic theory and that enhance convergence rates are additive separability
and semiparametric specifications. Monotonicity and concavity restrictions do
not enhance the (large sample) rate of convergence if sufficient smoothness is
imposed but are beneficial in small samples. Alternatively, their presence can
be used to reduce the dependency on smoothness assumptions.

Figure 6.3 illustrates the consequences of imposing progressively more strin-
gent restrictions on a model that, unbeknown to the investigator, is linear in one
variable. The benefits of “learning” that the model is a function of one variable
rather than two are evident. The expected mean-squared error (EMSE), given
fixed sample size, declines by more than 40 percent as one moves from the
smooth two-dimensional to a smooth one-dimensional model. This observation
underscores the importance of powerful significance tests for nonparametric
models. As expected, separability and linearity can also substantially improve
the accuracy of the estimator.
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In this chapter we have focused on constrained estimation and hypothesis
testing. Because of the curse of dimensionality and the consequences for con-
vergence rates, it is extremely desirable to improve the accuracy of estimates
by validating parametric specifications. Accordingly, we have provided imple-
mentation details for a variety of specification tests. Reducing the number of
explanatory variables or imposing a separable structure also enhances conver-
gence rates.

The discussion of estimation subject to monotonicity and concavity con-
straints underlines one of the advantages of the nonparametric least-squares es-
timator: such constraints can be imposed relatively easily. Other implications of
economic theory can also be incorporated into the nonparametric least-squares
estimation procedure with little difficulty.

As in parametric approaches, a general methodology for testing hypothe-
ses can be based upon an examination of the residuals from the constrained
regression. If the null hypothesis is true, these residuals should be unrelated
to the explanatory variables. Thus, the procedure involves a nonparametric re-
gression of the constrained residuals on all explanatory variables. The resulting
test, which can be applied in a wide variety of circumstances, is based on a
U -statistic. An alternative class of procedures that compare restricted and un-
restricted estimates of the residual variance is also available.

6.8 Exercises14

1. South African Food Share Engel Curves — Testing Parametric Specifications.
Using data on single individuals, fit linear and quadratic models for FoodShr as
a function of the log of total expenditure ltexp. Test these specifications using the
following procedures:

(a) Bierens (1990), Table 6.1
(b) Härdle and Mammen (1993), Table 6.2
(c) Hong and White (1995), Table 6.3
(d) Li (1994) and Zheng (1996) residual regression test, Table 6.4

Compare your conclusions to those obtained using the differencing test procedure,
Chapter 4, Exercise 9.

2. Repeat Exercise 1 using data on couples with no children and couples with one child.

3. Option Pricing: The purpose of this exercise is to estimate a call function and its first
and second derivatives using individual point means and a spline estimator.

(a) Using simulated option pricing data and produce a scatterplot of option prices
against strike prices. (There are 20 observations at each of 25 strike prices.)

14 Data and sample programs for empirical exercises are available on the Web. See the Preface
for details.
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(b) Superimpose the true values (X1, f (X1)), . . . , (X25, f (X25)) on the plot in
Part (a).

(c) Estimate the call function using individual means at each strike price. Plot the
estimates and the true function.

(d) Use the divided difference formulas in (6.6.8) and (6.6.9) to approximate the first
and second derivatives of the call function. Plot these against the true first and
second derivatives.

(e) Estimate the call function and its first two derivatives using a spline estimator
(such as smooth.spline in S-Plus). Plot these estimates against the true first and
second derivatives. (Note, however, that spline estimators such as smooth.spline,
which penalize only the second derivative, as in (3.3.7), do not ensure consistency
of the estimates of first and second derivatives.)

4. Option Pricing: The purpose of this exercise is to estimate a call function and its first
two derivatives using a constrained nonparametric least-squares procedure. Results
should be similar to the bottom panels in Figures 6.2A, 6.2B, and 6.2C.15

(a) Open the file containing the simulated data and the representor matrices R, R(1),
and R(2). Using GAMS (or similar optimization program), solve optimization
problem (6.6.14), setting L = .1 and � equal to the identity matrix.

(b) Calculate the estimates of the call function and its first two derivatives at the vector
of observed strike prices: f̂ (X) = Rĉ, f̂ ′(X) = R(1)ĉ, and f̂ ′′(X) = R(2)ĉ. Plot
these estimates against the corresponding true functions.

(c) At each strike price calculate the variance of observed option prices. Use these
to construct an estimator of �, say �̂. Solve (6.6.14) using �̂.

15 Note that this part will require using a constrained optimization program such as GAMS
(Brooke et al. 1992), which stands for General Algebraic Modeling System and is a general
package for solving a broad range of linear, nonlinear, integer, and other optimization problems
subject to constraints. It should not be confused with the gam function in S-Plus, which stands
for generalized additive models.



7 Index Models and Other
Semiparametric Specifications

7.1 Index Models

7.1.1 Introduction

A natural generalization of the conventional linear regression model y = xδ+ε

is given by the specification

y = f (xδ)+ ε, (7.1.1)

where x is a vector of explanatory variables and f is an unknown but smooth
function. The regression is a nonparametric function of the linear index xδ from
which the term index model arises. The objective is to estimate δ and f .

Such specifications are appealing because they can accommodate multiple
explanatory variables (within the linear index) while retaining nonparametric
flexibility (through the function f ) without succumbing to the curse of dimen-
sionality. The reason is that the nonparametric portion of the model is a function
of only one variable, the linear index itself.1

7.1.2 Estimation

Suppose one is given independent observations (y1, x1), . . . , (yn, xn), where
the xi are, say, p-dimensional row vectors. As usual, y and ε denote both the
variable in question and the corresponding column vector of data; X is the
n× p matrix of data on the explanatory variables, and f (Xδ) an n-dimensional
column vector. We now rewrite (7.1.1) in matrix notation

y = f (Xδ)+ ε. (7.1.2)

1 If the dependent variable y is binary, then (7.1.1) constitutes the semiparametric analogue
of probit and logit models. For a foothold into this literature, see Cosslett (1987), Klein and
Spady (1993), Cavanagh and Sherman (1998), and Horowitz (1998, Chapter 3) and references
therein.

138
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For a fixed δ, one can estimate f using a conventional smoother to obtain
f̂ δ . One can then calculate the estimated residual variance using the average
residual sum of squares. A basic estimation strategy proposed by Ichimura
(1993) and Klein and Spady (1993) consists of searching over different values
of δ until the one that minimizes the estimated residual variance is found2:

s2 = min
δ

1

n
[y − f̂ δ(Xδ)]′[y − f̂ δ(Xδ)]. (7.1.3)

The estimate δ̂ is the value that satisfies the minimum in (7.1.3), and f̂ δ is
the corresponding estimate of the unknown regression function f .

Härdle, Hall, and Ichimura (1993) developed a methodology for optimal
selection of the smoothing parameter in the estimation of f . Essentially, the
grid search in (7.1.3) is embedded in a broader optimization problem in which
the smoothing parameter is chosen simultaneously.

7.1.3 Properties

Let

V = E[ f ′(xδo)2(x − E(x | xδo))′(x − E(x | xδo)) | xδo], (7.1.4)

where δo is the true value of δ, and x is a p-dimensional row vector. Then, under
general conditions,

n1/2(δ̂ − δo)
D→ N (0, σ 2

ε V
−1). (7.1.5)

Note that the finite dimensional parameter δo is estimated n1/2-consistently.
Let S be a smoother that regresses onto the vector X δ̂. Then, (I − S)X

regresses the columns of X onto the vector X δ̂ and takes the residuals.
For an arbitrary vector a, let diag(a) be the diagonal matrix with the elements

of a on the main diagonal. Next, estimate the derivative of f and evaluate at
the vector X δ̂. Call this estimated vector f̂ ′(·). Then, a consistent estimate of
V may be obtained using

1

n
((I − S)X)′ diag( f̂ ′(·)2)((I − S)X). (7.1.6)

Furthermore, σ 2
ε may be estimated using s2 in (7.1.3).

2 For an alternative estimation strategy based on average derivatives, see Härdle and Stoker
(1989); Powell, Stock, and Stoker (1989); Härdle and Tsybakov (1993); Horowitz and Härdle
(1996); and Hristache, Juditsky, and Spokoiny (2001). See also Stoker (1986, 1991). For a test
of a linear null against the linear index model alternative, see Horowitz and Härdle (1994).
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7.1.4 Identification

The following conditions are sufficient for identification of δ and f and are
likely to be satisfied in many practical applications. First, there is at least one
continuous explanatory variable in the vector x . The coefficient of the first con-
tinuous variable is set to 1. Such a normalization is required because rescaling
of the vector δ by a constant and a similar rescaling of the function f by the
inverse of the constant will produce the same regression function.3 Second,
the function f is differentiable and not constant on the support of xδ. Third,
the matrix X is of full rank; this is a common assumption that avoids multi-
collinearity. Finally, varying the discrete components of x does not divide the
support of xδ into disjoint subsets. (For additional details, see Horowitz 1998,
pp. 14–20.)

7.1.5 Empirical Application: Engel’s Method for Estimation
of Equivalence Scales

Earlier, in the context of testing equality of nonparametric Engel curves, we
introduced the idea of equivalence scales (Section 4.4.4).4 Engel’s initial ob-
servation was that richer households spend a smaller fraction of their income
on food. His method for calculating equivalence scales is premised on the as-
sumption that two households of different demographic composition are equally
well off if they spend the same share of income on food. Figure 7.1 displays
nonparametric estimates of Engel curves for households consisting of single
individuals and those consisting of couples with no children. Engel’s method
amounts to calculating the horizontal difference between the two curves.

Our objective is to estimate this horizontal shift and to test whether the
two curves are parallel. If they are, then the equivalence scale is said to be
“base-independent” because it does not depend on the income levels at which
comparisons are made.

To see that this problem can be put in an index model framework, let log x
be the log of household expenditure and let z be a dummy variable that is zero
for singles and one for couples. Then, we may write

y = f (log x − zδ)+ ε. (7.1.7)

We have normalized the coefficient of the continuous variable log x to 1.
Because z is a dummy variable, zδ simply shifts the Engel curve for couples
horizontally by δ. The actual equivalence scale is � = exp(δ).

3 Alternatively, one could set ‖δ‖ = 1, where the double bars denote the usual Euclidean norm.
4 Equivalence scale estimation has a long tradition. For an overview, see Deaton (1997), Lewbel

(1997), and Van Praag and Warnaar (1997).
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δ̂ = .5 with s.e. sδ̂ = .039. �̂ = exp(δ̂) = 1.65 with s.e. s�̂ = �̂·0.039 = .064

Figure 7.1. Engel’s method for estimating equivalence scales.
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Figure 7.1 reports the results of applying the estimation procedure we have
outlined. The search grid for δ was the interval [.3, .7] that (taking the exponents
of the endpoints) maps to equivalence scales for couples versus singles in the
range [1.35, 2.01]. In theory one would expect costs for couples not to exceed
two times that of singles. The lower panel of Figure 7.1 displays the values of
the function being minimized in (7.1.3) for different values of δ. The function
is flat over the range .5 to .6. The numerical minimum is about δ̂ = .5 with an
estimated standard error of .039. To obtain an estimate of the actual equivalence
scale we take �̂ = exp(δ̂) = 1.65. Applying the “delta method” (an unfortunate
coincidence of nomenclature5), we find its standard error to be s�̂ = �̂·0.039 =
.064.

A simple test of base-independence may now be conducted. It is essentially
a test of whether the couples curve overlays the singles curve after a horizontal
shift of .5. Even though δ is not known but estimated, because it achieves n1/2-
convergence, we can use the tests outlined in Section 4.4, treating δ as known.

Using order of differencing m = 25, we estimate the residual variances for
singles and couples to be .0194 and .0174, respectively. Following (4.4.2), we
calculate the weighted average of these using

s2
w =

nSingles
n

s2
Singles +

nCouples
n

s2
Couples. (7.1.8)

This is the “within” or unrestricted estimate of the residual variance. The
value is .0183. This is to be compared with the minimized value of the objective
function (7.1.3), which is .0184. Applying Proposition 4.3.1 (see discussion in
Section 4.4), we obtain a test statistic of 1.27, which is consistent with base-
independence.

7.1.6 Empirical Application: Engel’s Method for Multiple Family Types

The procedure outlined in the previous section may be used to estimate equiv-
alence scales for any pair of family types – couples with one child versus
singles, couples with one child versus childless couples, and so on. Table 7.1
summarizes the distribution of family types in the South African data. There is
considerable variation in family size and composition, and the possible number
of pairwise estimates is large.

On the other hand, it is reasonable to assume that families of similar com-
position are informative about each other’s equivalence scales. Thus, from an
efficiency point of view it is useful to embed these various comparisons within
a single model.

5 See, for example, Greene (2000, p. 118).
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Table 7.1. Distribution of family composition.

(Number of families)

Children 0 1 2 3 4 5
Adults

1 1109 138 126 85 61 14 1,533
2 890 526 524 309 144 65 2,458
3 373 314 322 233 138 67 1,447
4 222 227 230 160 104 66 1,009
5 105 117 144 116 66 43 591
6 50 44 71 78 45 32 320

2749 1366 1417 981 558 287 7,358

Yatchew et al. (2003) discuss alternative formulations. We will focus on a
parsimonious specification. Suppose the equivalence scale � is the following
function of the number of adults (A) and the number of children (K )

� = exp(δ) = (A + β2K )β1 . (7.1.9)

Here β1 reflects scale economies in the household and β2 measures the effect
on the equivalence scale of children relative to adults. Both parameters are
restricted to be between 0 and 1.6 Then we may write the model as

y = f (log x − β1 log(A + β2K ))+ ε. (7.1.10)

This is a mildly more general specification than the linear index model (7.1.1)
because the index is nonlinear. Nevertheless, the estimation strategy that we
described earlier remains valid, and we may search over a grid of values of
(β1, β2), as in (7.1.3). The difference lies in the calculation of the covariance
matrix of the estimates. We will replace (7.1.4)–(7.1.6) with their more general
counterparts in Section 7.2.

For current purposes it is important to note that the search over (a subset of)
a two-dimensional space is substantially more time consuming. As one adds
more variables and parameters to the index, the problem becomes progressively
more difficult. Figure 7.2 plots the results of the grid search and provides the
estimates of the parameters (β1, β2). Evidently, the function is quite flat in the
direction of β2. The procedure was performed in S-Plus. Much faster searches

6 See, for example, Citro and Michael (1995, p. 176), who recommend values around .7 for β1

and β2.
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Figure 7.2. Parsimonious version of Engel’s method.

can be conducted using Fortran (we use the matrix version Fortran 90) and other
programming languages.

We may now use the “delta method” to estimate the standard errors of the
log equivalence scales δ and the actual equivalence scales �. For the various
family types appearing in Table 7.1, these values are tabulated in Table 7.2. For
example, for couples with no children, the estimated equivalence scale is 1.52
relative to a single individual with a standard error of .023, which is much more
precise than that obtained using pairwise estimation. (See Figure 7.1, where
our pairwise estimate was 1.65 with standard error .064.) Yatchew et al. (2003)
found that a parsimonious specification similar to (7.1.10), which incorporates
multiple family types, can produce dramatic reductions in standard errors
relative to pairwise estimation.

7.2 Partial Linear Index Models

7.2.1 Introduction

We now consider a somewhat more general specification that is a hybrid of
the index model and the partial linear model. Suppose we are given data
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Table 7.2. Parsimonious model estimates.

β̂1 β̂2

.6 .8 corr(β̂1, β̂2)

(.0215) (.0880) −0.592 n = 7,358 s2 = .01836 R2 = .509

Equivalence Log
scale se equivalence se

Adults Children �̂ = exp(δ̂) �̂ scale δ̂ δ̂

1 0 1.00 0.000 0.00 0.000
1 1 1.42 0.034 0.35 0.024
1 2 1.77 0.058 0.57 0.033
1 3 2.08 0.078 0.73 0.038
1 4 2.37 0.096 0.86 0.041
1 5 2.63 0.112 0.97 0.043
2 0 1.52 0.023 0.42 0.015
2 1 1.85 0.035 0.62 0.019
2 2 2.16 0.055 0.77 0.026
2 3 2.43 0.075 0.89 0.031
2 4 2.69 0.093 0.99 0.035
2 5 2.93 0.110 1.08 0.038
3 0 1.93 0.046 0.66 0.024
3 1 2.23 0.052 0.80 0.023
3 2 2.50 0.067 0.92 0.027
3 3 2.75 0.083 1.01 0.030
3 4 2.99 0.100 1.09 0.033
3 5 3.21 0.116 1.17 0.036
4 0 2.30 0.068 0.83 0.030
4 1 2.56 0.073 0.94 0.029
4 2 2.81 0.084 1.03 0.030
4 3 3.05 0.098 1.11 0.032
4 4 3.27 0.113 1.18 0.034
4 5 3.48 0.127 1.25 0.037
5 0 2.63 0.091 0.97 0.035
5 1 2.87 0.095 1.05 0.033
5 2 3.10 0.104 1.13 0.034
5 3 3.32 0.116 1.20 0.035
5 4 3.53 0.129 1.26 0.036
5 5 3.74 0.142 1.32 0.038
6 0 2.93 0.113 1.08 0.038
6 1 3.16 0.117 1.15 0.037
6 2 3.38 0.125 1.22 0.037
6 3 3.59 0.135 1.28 0.038
6 4 3.79 0.147 1.33 0.039
6 5 3.98 0.159 1.38 0.040
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(y1, w1, z1), . . . , (yn, wn, zn) on the model yi = f (r(wi , β))+ ziη+εi , where
wi and zi are finite dimensional vectors of exogenous variables, f is a nonpara-
metric function, r is a known function, β and η are finite dimensional parameter
vectors, βo and ηo are the true parameter values, ro = r(w, βo), and εi |wi , zi
are i.i.d with mean 0 and variance σ 2. Set up the model in matrix notation,
where the i th rows of W and Z are wi and zi , respectively:

y = f (r(W, β))+ Zη + ε. (7.2.1)

The regression function is composed of an index function (with possibly
nonlinear index) and a linear component. (We could have made this nonlinear
parametric, but the extension will be natural from our discussion below.)

7.2.2 Estimation

To estimate this model we need to modify our previous procedures slightly.
First, note that if β is known, then (7.2.1) is a partial linear model that may be
estimated in a variety of ways. We proceed as follows. For a fixed β, calculate
the vector r(W, β). Let S be a nonparametric smoother that regresses onto the
vector r(W, β) and apply the double residual method (Section 3.6):

(I − S)y ∼= (I − S) f (r(W, βo))+ (I − S)Zηo + (I − S)ε. (7.2.2a)

If the selected β is close to the true value βo, then (I − S) f (r(W, βo)) ∼= 0.
Obtain an estimate of η:

η̂β = [((I − S)Z)′((I − S)Z)]−1((I − S)Z)′(I − S)y. (7.2.3a)

By a grid search over values of β, find

s2 = min
β

1

n
((I−S)y−(I−S)Z η̂β)

′((I−S)y−(I−S)Z η̂β). (7.2.4a)

Let β̂ be the value that satisfies (7.2.4). The estimator of η is η̂ = η̂β̂ .
Note that the double residual method requires one to compute a separate

nonparametric regression for each column of the matrix Z in (7.2.2), which can
be time-consuming. The procedure can be accelerated by using a differencing
procedure. For fixed β, let Pβ be the permutation matrix that reorders the vector
r(W, β), so that it is in increasing order, and let D be a differencing matrix.
Then

DPβ y ∼= DPβ f (r(W, βo))+ DPβ Zηo + DPβε. (7.2.2b)

Our estimate of η is given by

η̂β = [(DPβ Z)
′(DPβ Z)]

−1(DPβ Z)
′DPβ y, (7.2.3b)
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and the optimization problem becomes

s2 = min
β

1

n
(DPβ y − DPβ Z η̂β)

′(DPβ y − DPβ Z η̂β). (7.2.4b)

7.2.3 Covariance Matrix

Recall that ro = r(w, βo). To obtain large-sample standard errors, define the
following conditional covariance matrices:

�z = E [(z − E(z | ro))′(z − E(z | ro)) | ro]
�z f ′ = E

[
f ′(ro)

(
∂r

∂β
− E

(
∂r

∂β
| ro
))′

(z − E(z | ro)) | ro
]

(7.2.5)

� f ′ = E

[
f ′(ro)2

(
∂r

∂β
− E

(
∂r

∂β
| ro
))′(

∂r

∂β
− E

(
∂r

∂β
| ro
))

| ro
]
.

Let

V =
[
�z �′

z f ′

�z f ′ � f ′

]
; (7.2.6a)

then,

n1/2

(
η̂− ηo

β̂ − βo

)
D→ N (0, σ 2V−1). (7.2.7a)

Let f̂ ′ be a consistent estimator of the first derivative of f and define
diag( f̂ ′(·)) to be the diagonal matrix with diagonal elements the components
of the vector f̂ ′(r(W, β̂)). Define R to be the matrix whose i th row is the
vector partial derivative ∂r(wi , β̂)/∂β. Let S be a smoother that regresses onto
the vector r(W, β̂). Then the submatrices of the matrix V in (7.2.6a) may be
estimated consistently as follows:

1

n
((I − S)Z)′((I − S)Z)

P→ �z

1

n
((I − S)R)′diag( f̂ ′(·))((I − S)Z)

P→ �z f ′ (7.2.8a)

1

n
((I − S)R)′diag( f̂ ′(·)2)((I − S)R)

P→ � f ′ .

Proof of the preceding result, which may be found in Yatchew et al. (2003),
is a straightforward variation on existing proofs in the literature, particularly
Ichimura (1993), Klein and Spady (1993), and Carroll et al. (1997).
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For the parsimonious model (7.2.12) below, β = (β1, β2), w = (x, A, K ),

r(w, β) = log x − β1 log(A + β2K ), and the matrix R has i th row(
∂r(wi , β)

∂β1
,
∂r(wi , β)

∂β2

)
β̂1,β̂2

=
(
− log(Ai + β̂2Ki ), − β̂1Ki

Ai + β̂2Ki

)
. (7.2.9)

Equation (7.2.9) also applies to the parsimonious model (7.1.10). However,
in that specification η = 0, so that (7.2.6a) and (7.2.7b) become

V = � f ′ (7.2.6b)

and

n1/2(β̂ − βo)
D→ N (0, σ 2V−1). (7.2.7b)

Furthermore, V = � f ′ is estimated using the last equation in (7.2.8a)

1

n
((I − S)R)′ diag( f̂ ′(·)2)((I − S)R)

P→ � f ′ . (7.2.8b)

7.2.4 Base-Independent Equivalence Scales

To make these ideas more concrete, it is helpful to outline the problem of
equivalence scale estimation further. Engel’s method, although widely used, is –
strictly speaking – not quite correct. The reasons are outlined extensively in
Deaton (1997), but the essence of the argument is this: families with children
are likely to spend a larger share of income on food than families without
children even if they are at the same level of utility. This occurs by virtue of the
needs and consumption patterns of children versus adults. The problem can be
corrected by a simple modification to Engel’s approach: rather than searching
for a horizontal shift that superimposes one Engel curve on another, a combined
horizontal and vertical shift that achieves the superimposition is sought instead.7

Return to the problem of finding the equivalence scale for childless cou-
ples versus single individuals, which we considered earlier. Equation (7.1.7) is
modified to

y = f (log x − zδ)+ zη + ε, (7.2.10)

7 See Blundell, Duncan, and Pendakur (1998) and Pendakur (1999) for econometric models of
this type. For the underlying theoretical arguments, see Lewbel (1989), and Blackorby and
Donaldson (1989, 1993, 1994) and references therein.
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where, as before, log x is the log of household expenditure, and z is a dummy
variable that is 1 for couples and 0 for singles.8

Equation (7.2.10) is a partial linear index model, and it can be generalized
easily to accommodate multiple family types. Suppose then that there are q+1
family types and select the first type as the reference to which the other q types
will be compared. Let z be a q-dimensional row vector of dummy variables
for the q (nonreference) types and store data on these in a matrix Z . Then the
model may be written in matrix notation as

y
n×1

= f

(
log x
n×1

− Z
n×q δ

q×1

)
+ Z

n×q
η

q×1
+ ε

n×1
. (7.2.11)

If this model is correct, then base-independent equivalence scales exist and
are given by the q-dimensional vector � = exp(δ).

In our empirical example there are 36 family types (see Table 7.1), and so
estimation of (7.2.11) requires search in a 36-dimensional space. As before,
a parsimonious version may be specified by making the equivalence scale a
function of the number of adults and children in the family (Eq. (7.1.9)). Our
model becomes

y
n×1

= f

(
log x
n×1

−β1 log

(
A
n×1

+β2 K
n×1

))
+ Z

n×q
η

q×1
+ ε

n×1
, (7.2.12)

where A and K are vectors indicating the number of adults and children in each
family. This yields a much simpler estimation problem, for it requires search
over a two-dimensional space to estimate (β1, β2); the dimension of η affects
estimation speed only marginally because it is not estimated by a search.

One of the advantages of semiparametric models of equivalence scales of the
form (7.2.12) is that the parametric function inside f may readily be modified
to incorporate other demographic variables such as age.

7.2.5 Testing Base-Independence and Other Hypotheses

We will want to test base-independence as well as several other hypotheses such
as the validity of the parsimonious specification (7.2.12). In each case we will
use a goodness-of-fit type statistic (Section 6.2). For convenience, under the
alternative hypothesis we will use an optimal differencing estimator to obtain
the unrestricted sample variance. Under the null we will use an estimator that

8 The parameter η has a specific interpretation; it is the elasticity of the equivalence scale with
respect to the price of food. For details, see Pendakur (1999) and references therein.
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satisfies (6.2.2) and thus our statistics will be of the form

(mn)1/2

(
s2
res − s2

unr

)
s2
unr

D→ N (0, 1). (7.2.13)

Consider a test of the base-independent parsimonious specification (7.2.12)
against the alternative that Engel curves for the various family types are not
similar in shape. That is, under the alternative we have q + 1 distinct
models,

y j = f j (log x j )+ ε j j = 0, 1, . . . q, (7.2.14)

where y j , log x j , and ε j are column vectors of length n j for the j th family
type. In this case we may use the differencing estimator (4.2.4) to estimate
s2
diff, j , the residual variance for each family type j . We then construct s2

unr as
their weighted combination, where the weights reflect the relative sizes of the
subpopulations. That is,

s2
unr =

q∑
j=0

n j

n
s2
diff, j =

1

n

q∑
j=0

y′j D
′Dyj . (7.2.15)

To complete the test, the restricted estimator s2
res is obtained directly from

(7.2.4a) (or (7.2.4b)), and the test in (7.2.13) may be applied.
Next, consider testing the parsimonious specification (7.2.12) against the

more general alternative (7.2.10). Once estimation of the latter is complete (and
this may take a while), one may perform the following test procedure. Obtain
s2
res from (7.2.4a). Using δ̂, η̂ from the unrestricted procedure, construct the set

of ordered pairs: (yi− zi η̂, log xi− zi δ̂) i = 1, . . . , n, where the log xi− zi δ̂ are
in increasing order. Define the unrestricted variance s2

unr to be the differencing
estimator (4.2.4) applied to these ordered pairs. Finally, calculate the test statistic
(7.2.13).

In selecting the order of differencing m for the unrestricted estimators of the
residual variance, the objective is to under smooth estimation of the alternative
relative to the null. This ensures that test statistic (7.2.13) admits the simple
standard normal approximation under the null. For further details, see Yatchew
et al. (2003). Tests of other hypotheses, such as whether adult households and
households with children can be embedded in a single model, may also be
readily constructed. Finally, tests on η may be constructed using the estimated
covariance matrix of η̂.9

9 Indeed it may be interesting to find a more parsimonious specification for the additively
separable portion of the model zη. After all, one would expect that “similar” family types
should have similar values for η as well.
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7.3 Exercises10

1. Engel Equivalence Scales for Couples Versus Singles: The purpose of this exercise
is to estimate equivalence scales for pairs of household types using the index model
specification (7.1.7). Results should be similar to those in Figure 7.1.

(a) Using the South African data for single individuals, estimate the Engel curve for
food share as a function of log expenditure. (Use a smoother such as kernel or
loess.) Graph your estimate. Repeat using the data on couples with no children.

(b) Set up a grid of values for δ. Let z be a dummy variable that is 0 for singles and
1 for couples. By searching over the grid, find the value δ̂ that satisfies

s2 = min
δ

1

n
[y − f̂ δ(log x − zδ)]′ [y − f̂ δ(log x − zδ)],

where y, z, and log x are n-dimensional vectors.
(c) Estimate the first derivative vector f̂ ′(·) by applying the perturbation method in

(3.7.1) to the ordered pairs (yi , log xi − zi δ̂). Plot your estimate.
(d) Use a nonparametric smoother, say S, to regress the dummy variable z on the

vector log x − zδ̂. Take the residuals to obtain the vector (I − S)z.
(e) Estimate V in (7.1.4) using ((I − S)z)′diag f̂ (·)2((I − S)z)/n.

(f) Calculate the standard error of δ̂, sδ̂ =
√
s2V̂−1/n.

(g) Calculate the equivalence scale �̂ = exp(δ̂). Using the delta method, obtain an
estimate of the standard error of the equivalence scale s�̂ = �̂ · sδ̂ .

(h) Estimate the residual variance for each of these data sets using a low-order
differencing estimator. Use (7.1.8) to calculate the weighted average of the
residual variances s2

w . Are your results consistent with the hypothesis of base-
independence?

2. Repeat Exercise 1 for couples with one child versus singles and couples with two
children versus singles.

3. Engel Equivalence Scales for Multiple Family Types: The purpose of this exercise
is to estimate equivalence scales across multiple family types using the index model
specification (7.1.10). Results should be similar to those in Figure 7.2 and Table 7.2.

(a) Assemble the data on all family types. Set up a grid of values for β = (β1, β2).
By searching over the grid, find the value (β̂1, β̂2) that satisfies

s2 = min
β

1

n
[y − f̂ β(log x − β1 log(A + β2K ))]′

× [y − f̂ β(log x − β1 log(A + β2K ))].

(b) Estimate the first derivative vector f̂ ′(·) by applying the perturbation method
in (3.7.1) to the ordered pairs (yi , log xi − β̂1 log(Ai + β̂2Ki )), i = 1, . . . , n.
Plot your estimate.

10 Data and sample programs for empirical exercises are available on the Web. See the Preface
for details.
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(c) Calculate the matrix R whose i th row is given by(
− log(Ai + β̂2Ki ), − β̂1Ki

Ai + β̂2Ki

)
.

Use a nonparametric smoother, say S, to regress each column of this matrix on
the vector log x − β̂1 log(A + β̂2K ) and take the residuals to obtain the matrix
(I − S)R.

(d) Estimate the covariance matrix of (β̂1, β̂2) using s2V̂−1/n, where V̂ is obtained
using (7.2.8b).

(e) Calculate δ̂ = β̂1 log(A + β̂2K ) and �̂ = exp(δ̂) for the various combinations
of adults and children in Table 7.1 and apply the delta method to obtain their
standard errors.

4. General Equivalence Scales for Couples versus Singles: The purpose of this exercise
is to estimate equivalence scales for pairs of household types using the partial linear
index model specification (7.2.10). The results should be similar to Yatchew et al.
(2003). Note that because you are estimating both δ and η, the precision of your
equivalence scales will decline substantially relative to Exercise 1.

(a) Let z be a dummy variable that is 0 for singles and 1 for couples. For fixed δ,
let Pδ be the permutation matrix that reorders the vector log x − zδ so that it
is in increasing order. Let D be a differencing matrix. For example, you may
use D = I − S, where S is the nearest-neighbor smoothing matrix defined in
(3.1.12). Set up a grid of values for δ. Use the method outlined in Section 7.2.2
to obtain estimates δ̂ and η̂.

(b) Estimate the first derivative vector f̂ ′(·) by applying the perturbation method
in (3.7.1) to the ordered pairs (yi − zi η̂, log xi − zi δ̂). Plot your estimate.

(c) Use a nonparametric smoother, say S, to regress the dummy variable z on the
vector log x − zδ̂. Take the residuals to obtain the vector (I − S)z.

(d) Estimate V in (7.2.6) using (7.2.8), which in this case becomes

1

n
((I − S)z)′((I − S)z)

1

n
((I − S)z)′ diag( f̂ ′(·))((I − S)z)

1

n
((I − S)z)′ diag( f̂ ′(·)2)((I − S)z).

(e) Calculate the standard errors of δ̂ and η̂.
(f) Calculate the equivalence scale �̂ = exp(δ̂). Using the delta method, obtain an

estimate of the standard error of the equivalence scale s�̂ = �̂ · sδ̂ .
5. General Equivalence Scales for Multiple Family Types: The purpose of this exercise

is to estimate equivalence scales for multiple household types using the partial linear
index model specification (7.2.12). The results should be similar to those of Yatchew
et al. (2003). Note that because you are estimating both β and η, the precision of
your equivalence scales will decline substantially relative to Exercise 3.
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(a) Assemble the data on all family types. Set up a grid of values forβ = (β1, β2). Let
Pβ be the permutation matrix that reorders the vector log x−β1 log(A+β2K ) so
that it is in increasing order. Let D be a differencing matrix and define S = I−D.
Use the method outlined in Section 7.2.2 to obtain estimates β̂1, β̂2, and η̂.

(b) Estimate the first derivative vector f̂ ′(·) by applying the perturbation method
in (3.7.1) to the ordered pairs (yi − zi η̂, log xi − β̂1 log(Ai + β̂2Ki )),

i = 1, . . . , n. Plot your estimate.
(c) Calculate the R and (I − S)R matrices as in 3(c) above. Calculate (I − S)Z .
(d) Estimate V in (7.2.6) using (7.2.8). Calculate the standard errors of β̂ and η̂

using s2V̂−1/n.
(e) Calculate δ̂ = β̂1 log(A + β̂2K ) and �̂ = exp(δ̂) for the various combinations

of adults and children in Table 7.1 and apply the delta method to obtain their
standard errors.



8 Bootstrap Procedures

8.1 Background

8.1.1 Introduction

Bootstrap procedures, widely attributed to Efron (1979),1 are simulation-based
techniques that provide estimates of variability, confidence intervals, and critical
values for tests. The fundamental idea is to create replications by treating the
existing data set (say of size n) as a population from which samples (of size n)
are obtained. In the bootstrap world, sampling from the original data becomes
the data-generating mechanism (DGM). Variation in estimates occurs because,
upon selection, each data point is replaced in the population.

In many circumstances, bootstrap procedures are simpler to implement than
their asymptotic counterparts. In addition, they are often more accurate. By
drawing correctly sized samples from the original data2 the simulated distribu-
tion inherits higher-order moment properties of the true DGM. The conventional
asymptotic normal approximation ignores such information.

It is not surprising that major advances in bootstrap techniques and non-
parametric procedures have occurred more or less contemporaneously. Both
have been driven by the precipitous drop in computing costs. The emergence of
automated data collection – which has produced very large data sets – has also
contributed indirectly to the development of nonparametric techniques. Fur-
thermore, although the bootstrap requires resampling many times, calculations
need not be done serially but can be performed contemporaneously, making the
bootstrap particularly suitable for parallel processing.

1 Actually, Monte Carlo inference techniques had been recommended by several authors prior to
Efron’s work, among them Barnard (1963) and Hartigan (1969, 1971). For additional precursors
see Hall (1992, p. 35) and Davison and Hinkley (1997, p. 59).

2 One hopes the data are representative of the underlying population. Prospects for this of course
improve as sample size n increases.
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We begin with a rudimentary introduction to the bootstrap. (References for
further reading in this voluminous literature are provided at the end of this
section.) This is followed by a delineation of several bootstrap techniques in
nonparametric and semiparametric settings. Throughout this chapter, the super-
script B will signify a bootstrap sample, estimate, confidence interval, or test
statistic.

At first sight, it might appear that there is a natural, unique way to perform
resampling: one should just mimic the methodology used to obtain the original
sample. On closer examination, one discovers that there are often several sen-
sible ways to resample the data. In the regression setting, which has been our
mainstay throughout this book, we rely principally on taking random samples
from estimated residuals, although other approaches are possible.

8.1.2 Location Scale Models

As an example, consider the usual location scale model where y1, . . . , yn are
i.i.d. with mean µy and variance σ 2

y . The distributional family is unknown. The
variance of ȳ is estimated using s2

ȳ = s2
y/n, where s2

y =�(yi − ȳ)2/(n−1). The
central limit theorem, which states that n1/2(ȳ−µy)/sy

D→ N (0, 1), provides
the basis for asymptotic confidence intervals and test procedures on µy .
Bootstrap inference on µy proceeds as follows. Take many random samples

of size n from the original sample, each time calculating the sample mean ȳ B .
The bootstrap estimate of the variance of ȳ is obtained by calculating the sample
variance of the ȳ B . Indeed, a bootstrap approximation to the sampling distribu-
tion of ȳ can be obtained by plotting the histogram of the ȳ B . By calculating
the .025 and .975 quantiles of this distribution, one can obtain a 95 percent
confidence interval for µy . The procedure we have just described is an example
of the “percentile” method because it works with the percentiles or quantiles
of the bootstrap distribution for the parameter estimator of interest, in this case
the sample mean.

There is substantial evidence – both theoretical and empirical – that it is usu-
ally better to simulate the distribution of a statistic that is a pivot (or at least an
asymptotic pivot).3 In this case, bootstrap inference on the mean would proceed
as follows.

3 Pivots are statistics whose distributions do not depend on any unknown parameters. There
are precious few “true pivots”. Among them are the following. If the data are i.i.d. normal,
then n1/2(ȳ−µ)/sy is precisely tn− 1 and (n− 1)s2

y/σ
2 is precisely χ2

n− 1. The Kolmogorov–
Smirnov statistic is also a true pivot. On the other hand, there are numerous asymptotic pivots.
For example, if the data are i.i.d. with unknown distribution but have a finite mean and variance,
then n1/2(ȳ−µ)/sy converges to a standard normal in large samples and so is an asymptotic
pivot.
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Take many random samples of size n from the original sample, each time
calculating the statistic t B= n1/2(ȳ B − ȳ)/sBy , where ȳ B and sBy are the mean
and standard deviation of the bootstrapped data. To construct a 95 percent
confidence interval for µy , obtain the .025 and .975 quantiles of the distri-
bution of t B , say c.025, c.975, and isolate µy within the probability statement:
Prob [c.025 ≤ n1/2(ȳ−µy)/sy ≤ c.975]∼= .95. A two-sided test of the hypothesis
H0:µ=µo at a 5 percent significance level can be performed by determining
whether the resulting confidence interval [ȳ− c.975 sy/n

1/2, ȳ− c.025 sy/n
1/2]

contains µo. This procedure is an example of the “percentile-t” method be-
cause it uses an asymptotic pivot that takes the form of a t-statistic.

An alternative approach to testing H0:µ=µo, which will be instructive
shortly, is to impose the null hypothesis on the bootstrap DGM. In this case, us-
ing the original data and sample mean, one calculates the residuals ε̂i = yi − ȳ.
One then takes repeated samples of size n from ε̂1, . . . , ε̂n , constructs the boot-
strap data set yBi =µo+ ε̂Bi , i = 1, . . . , n, and calculates t B = n1/2(ȳ B −µo)/sBy
each time. (Note that the bootstrap DGM satisfies the null hypothesis.) To ob-
tain critical values c.025, c.975 for a two-sided test at a 5 percent significance
level, obtain the .025 and .975 quantiles of the (simulated) distribution of t B .
Finally, accept the null hypothesis if the interval contains t= n1/2(ȳ−µo)/sy ;
otherwise, reject it.

8.1.3 Regression Models

Suppose we now have data (y1, x1), . . . , (yn, xn) on the model y= f (x)+ ε,
where f may or may not lie in a parametric family. The εi are i.i.d. with
mean 0, variance σ 2

ε , and are independent of x . A “joint” resampling methodo-
logy involves drawing i.i.d. observations with replacement from the original
collection of ordered pairs.

Residual resampling, on the other hand, proceeds as follows. First, f is
estimated using, say, f̂ . The estimated residuals ε̂i = yi − f̂ (xi ) are assembled
and centered so that their mean is zero (just as the true εi have a mean of zero).
One then samples independently from these to construct a bootstrap data set:
(yB1 , x1), . . . , (yBn , xn), where yBi = f̂ (xi )+ ε̂Bi . Statistics of interest are then
computed from these simulated data.

An alternative residual resampling methodology known as the “wild” or “ex-
ternal” bootstrap is useful particularly in heteroskedastic settings. In this case,
for each estimated residual ε̂i = yi − f̂ (xi ) one creates a two-point distribution
for a random variable, say, ωi with probabilities as shown in Table 8.1.

The random variable ωi has the properties E(ωi )= 0, E(ω2
i )= ε̂2

i , E(ω3
i )=

ε̂3
i . One then draws from this distribution to obtain ε̂Bi . The bootstrap data set

(yB1 , x1), . . . , (yBn , xn) is then constructed, where yBi = f̂ (xi )+ ε̂Bi , and statis-
tics of interest are calculated. See Wu (1986) and Härdle (1990, pp.106–108,247).
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Table 8.1. Wild bootstrap.

ωi Prob(ωi )

ε̂i (1−
√

5)/2 (5+√5)/10
ε̂i (1+

√
5)/2 (5−√5)/10

8.1.4 Validity of the Bootstrap

Suppose that the statistic being used to produce a confidence interval or test
statistic has a nondegenerate limiting distribution. To establish that bootstrap-
based confidence intervals have correct coverage probabilities in large samples
or that bootstrap test procedures have correct asymptotic size, three conditions
are typically sufficient (see Beran and Ducharme, 1991, Proposition 1.3, p. 19,
and Proposition 4.3, p. 49). The first condition requires that the DGM used for
bootstrap simulations of the statistic converges to the true DGM. This is the
case if the original estimator is consistent. The second is a continuity condition
requiring that small changes in the true DGM will result in small changes to
the limiting distribution of the statistic. The third condition – “triangular array
convergence” – which is usually the most difficult to verify, requires that, along
any path of DGMs converging to the true DGM, the exact sampling distribution
of the statistic converges to the limiting distribution under the true DGM. Put
another way, if the bootstrap DGM is close to the true DGM and the sample
is large, then the distribution of the bootstrap statistic should be close to the
limiting distribution of the true statistic.

8.1.5 Benefits of the Bootstrap

In the following sections we describe bootstrap techniques in nonparametric
and semiparametric regression settings. We advocate their use because they
are often more accurate than the asymptotic procedures we have proposed
earlier. Moreover, in some cases, there is ambiguity in the implementation of
the asymptotic technique with potentially different outcomes.4 In other cases,
no convenient asymptotic approximation is available.

The increased accuracy that can result from bootstrapping has been formally
analyzed using Edgeworth expansions. We outline the argument in its simplest
form. Let y1, . . . , yn be i.i.d. with mean µ and variance σ 2; ȳ and s2 are the

4 For example, consider estimation of standard errors for the parameters of the index model that
depend on the derivative f ′ of the nonparametric regression function (see (7.1.4)). The degree
of smoothing that one uses to estimate f ′ can influence the standard errors significantly. As we
will see shortly, the bootstrap can be helpful in such situations.
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sample mean and variance, respectively. Then t= n1/2(ȳ−µ)/s converges to
a standard normal and is therefore an asymptotic pivot. Under quite general
regularity conditions, the distribution of t can be expanded as a power series
in n1/2

P[t ≤ x]="(x)+ 1

n1/2
q(x)φ(x)+ O

(
1

n

)
, (8.1.1)

where φ and " are the standard normal density and distribution functions,
respectively, and q is a polynomial whose coefficients depend on moments
(or cumulants) of ȳ. Equation (8.1.1) is an Edgeworth expansion. Asn gets large,
the right-hand side converges to the standard normal, as one would expect. Fur-
thermore, the error implicit in the normal approximation is P[t ≤ x]−"(x)=
O(1/n1/2).

Now, let t B= n1/2(ȳ B − ȳ)/sB be the bootstrap analogue of t . Then it, too,
has an expansion similar to (8.1.1),

P[t B≤ x]="(x)+ 1

n1/2
q̂(x)φ(x)+ OP

(
1

n

)
, (8.1.2)

where q̂ is obtained from q by replacing moments (which appear in the co-
efficients of q) with corresponding bootstrap estimates. Because moments
(and smooth functions of moments) can be estimated n1/2-consistently, we
have q̂(x)− q(x)= OP(1/n1/2). Thus, subtracting (8.1.2) from (8.1.1), one
obtains

P[t≤ x]− P[t B≤ x]= OP

(
1

n

)
. (8.1.3)

That is, the error of approximation of the bootstrap distribution is OP(1/n)
rather than O(1/n1/2), which results from using the asymptotic normal.

A similar argument can be advanced in nonparametric regression, which
typically entails taking local rather than global averages. Consider the simple
moving average smoother of Section 3.1 and suppose that k, the number of
neighbors being averaged, increases sufficiently slowly so that the bias term in
(3.1.11) disappears quickly. In this case t= k1/2( f̂ (xo)− f (xo))/s converges to
a standard normal, where s2 estimates the residual variance. Then the statistic
admits an Edgeworth expansion (compare with (8.1.1)),

P[t ≤ x]="(x)+ 1

k1/2
q(x)φ(x)+ o

(
1

k1/2

)
. (8.1.4)

Let t B= k1/2( f̂ B(xo)− f̂ (xo))/sB be the bootstrap analogue of t . Then it too
has an expansion similar to (8.1.4):

P[t B≤ x]="(x)+ 1

k1/2
q̂(x)φ(x)+ oP

(
1

k1/2

)
, (8.1.5)
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where q̂(x)− q(x)= oP(1) so that

P[t ≤ x]− P[t B≤ x]= oP

(
1

k1/2

)
. (8.1.6)

In summary, (8.1.3) and (8.1.6) indicate that the bootstrap can result in
approximations to sampling distributions that are superior to the asymptotic
normal. For detailed Edgeworth analysis of an extensive range of bootstrap
procedures, see Hall (1992). For an overview, see Horowitz (2001).

8.1.6 Limitations of the Bootstrap

Although the bootstrap works in a broad class of models, there are cases in
which it fails or at least requires modification to work properly. A particularly
simple example of relevance to econometricians was provided by Andrews
(2000). Suppose y1, . . . , yn are drawn from an N (µ, 1) distribution and one
knows that µ≥ 0. The maximum likelihood estimator is then µ̂= max{ȳ, 0}.
If the true mean is zero, the bootstrap will fail to approximate the distribution
of n1/2(µ̂−µ) correctly even in large samples. The basic idea extends to much
more general models whenever a parameter is inequality constrained and its
true value lies on the boundary of the parameter space. Inequality constraints
are common; take for example the estimation of equivalence scales that involves
a priori constraints on parameters (see discussion following (7.1.9)). In these
circumstances, it is possible to modify the bootstrap to regain consistency by
taking bootstrap samples of size m� n.

A second example is the specification test proposed by Härdle and Mammen
(1993), which we discussed in Section 6.4.2. In that case, the wild bootstrap
succeeds where the conventional bootstrap fails. For various other examples,
see Andrews (2000) and Beran (1997) and references therein. In a time series
context, bootstrap failures can be spectacular; see Phillips (2001).

8.1.7 Summary of Bootstrap Choices

As we mentioned earlier, a variety of methods are available for implementing
the bootstrap. In the regression setting, one chooses first between joint sam-
pling and residual sampling. We will use the latter exclusively. Having done
so, one needs to decide whether to assume the residuals are homoskedastic –
in which case one can sample them randomly – or whether the residuals are
heteroskedastic – in which case a device like the wild bootstrap is required. One
must also decide whether to use the “percentile” method or the “percentile-t”
method. Although the former will produce confidence intervals and critical val-
ues that are asymptotically valid, the latter, which uses a pivot, is typically more
accurate. For a detailed discussion of the alternative bootstrap methodologies
in a nonparametric setting, their advantages, and disadvantages, see Hall (1992,
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Sections 4.4 and 4.5) and Horowitz (2001, Sections 4.2 and 4.3). Finally, one
must select the number of bootstrap replications. There is a growing literature
on this subject (see, e.g., Andrews and Buchinsky 2000). A practical approach
involves increasing the number of bootstrap iterations until there is little change
in the resulting critical value or confidence interval.

8.1.8 Further Reading

Efron and Tibshirani (1993) provide a readable introduction to the bootstrap.
Shao and Tu (1995) provide a more technical survey of various developments.
Härdle (1990) discusses applications of the bootstrap in a nonparametric setting.
See also Hall (1992, pp. 224–234). Hall (1992) provides extensive Edgeworth
analysis explaining why the bootstrap can outperform the traditional asymp-
totic approach. An abbreviated version of the arguments in Hall (1992) may
be found in Hall (1994). LePage and Billard (1992) and Mammen (1992) con-
tain explorations into the limitations of the bootstrap. Beran and Ducharme
(1991) provide an approachable treatment of the large sample validity of the
bootstrap. Horowitz (1997) offers theory and numerical analysis for a variety
of bootstrap methods, whereas Horowitz (2001) provides an extensive review
of the bootstrap in econometrics. Davison and Hinkley (1997) contains a prac-
tical review of bootstrap methods and their applications with some attention to
nonparametric regression.

8.2 Bootstrap Confidence Intervals for Kernel Smoothers

Consider the problem of constructing pointwise confidence intervals for a non-
parametric regression function. We have described asymptotic procedures for
doing so in Chapter 3. If one uses an optimal bandwidth, these are complicated
by the presence of biases (as in (3.2.5)). Indeed, this was the reason that under-
smoothing was used to simplify confidence interval construction (see (3.2.7) to
(3.2.10)).

Table 8.2 outlines the implementation of several bootstrap procedures. The
upper panel delineates construction of percentile confidence intervals. These
require only reestimation of the regression function f (xo) from each bootstrap
sample and are therefore the simplest to implement.

The second panel indicates how to construct percentile-t confidence intervals.
Because the bootstrap is attempting to mimic the distribution of the asymptotic
pivot t = ( f̂ (xo)− f (xo))/s f̂ , one needs to calculate f̂ B(xo) and sB

f̂
(xo) from

each bootstrap sample. (For the latter, see Section 3.2 and particularly (3.2.8).)
The third panel explains how to modify the previous procedures to allow for
heteroskedasticity.

In Figure 8.1 we illustrate the application of these techniques to our
South African data on food expenditures by single individuals. Note that the
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Table 8.2. Bootstrap confidence intervals at f (xo).a

Percentile bootstrap confidence interval at f ((xo)):
1. Using cross-validation, find the optimal bandwidth λ= O(n−1/5). Estimate f and

call this estimate f̂ λ.
2. Reestimate f using a wider bandwidth, say λ̄= 1.1λ (which will result in some

oversmoothing) and call this estimate f̂ λ̄.
3. Reestimate f using a narrower bandwidth, say .9λ (which will result in some

undersmoothing) and calculate the residuals ε̂i .
4. (a) Center the residuals obtained in Step 3 and sample with replacement to obtain boot-

strap residuals ε̂Bi . Construct a bootstrap data set yBi = f̂ λ̄(xi )+ ε̂Bi , i = 1, . . . , n.
(b) Estimate f (xo) using the bootstrap data and the original optimal λ to obtain
f̂ Bλ (xo).

(c) Repeat the resampling many times saving the results from (b).
5. To calculate a 95 percent confidence interval for f (xo), obtain the .025 and .975

quantiles of the distribution of f̂ Bλ (xo).

Percentile-t bootstrap confidence interval at f ((xo)):
Replace Steps 4 and 5 above with
4. (a) Resample with replacement from the centered residuals to obtain bootstrap

residuals ε̂Bi and construct a bootstrap data set yBi = f̂ λ̄(xi )+ ε̂Bi , i = 1, . . . , n.
(b) Calculate f̂ Bλ (xo) and sB

f̂
(xo) using (3.2.3) and (3.2.8). Then calculate

t B = ( f̂ B(xo)− f̂ (xo))/sBf̂ .
(c) Repeat the resampling many times saving t B each time.

5. To calculate a 95 percent confidence interval for f (xo), obtain c.025 and c.975, the
.025 and .975 quantiles of the empirical distribution of t B from Step 4(c). A
95 percent confidence interval is given by

[ f̂ (xo)− c.975 · s f̂ (xo), f̂ (xo)− c.025 · s f̂ (xo)],
where f̂ (xo) and s f̂ (xo) are calculated using the original data.

Heteroskedasticity:
Replace 4(a) in either of the preceding procedures with
4. (a) Sample using the wild bootstrap (Table 8.1) from the uncentered residuals to

obtain bootstrap residuals ε̂Bi and construct a bootstrap data set
yBi = f̂ λ̄(xi )+ ε̂Bi , i = 1, . . . , n.

a For definitions of various estimators, see Section 3.2. Note that xo may be a vector, in
which case one is producing a collection of pointwise confidence intervals.
Source: Härdle (1990, pp. 106–107).



162 Semiparametric Regression for the Applied Econometrician

Figure 8.1. Percentile bootstrap confidence intervals for Engel curves.

Data: Food share of expenditure by single individuals from South Africa; compare with Figure 3.3.
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heteroskedastic confidence intervals in the lower panel are narrower at high
levels of income than their homoskedastic counterparts. This is because there
is less variance in food share expenditures at high levels of income, as may be
seen from the scatterplot in Figure 3.3.

8.3 Bootstrap Goodness-of-Fit and Residual Regression Tests

8.3.1 Goodness-of-Fit Tests

We have proposed a simple goodness-of-fit statistic for testing various restric-
tions on the regression function. It involves comparison of the restricted estimate
of the residual variance to the differencing estimate. To simplify exposition, we
will assume that optimal differencing coefficients are used so that the statistic
has the form (see Sections 4.3 and 6.2, and (6.2.5))

V = (mn)1/2

(
s2
res− s2

diff

)
s2
diff

D→ N (0, 1), (8.3.1)

where m is the order of differencing. The essential idea underlying bootstrap
critical values is the creation of a DGM that satisfies the null hypothesis. This
is done by imposing the restrictions of the null hypothesis on the estimate of
the regression function. The resulting restricted estimate of f and the (cen-
tered) estimated residuals constitute the bootstrap DGM. Repeated samples are
then taken, and the test statistic is recomputed each time. Behavior of the test
statistic under the null hypothesis is assessed (and critical values are obtained)
by observing the behavior of the bootstrapped test statistic. Table 8.3 contains
implementation details. The bootstrap approach requires only the ability to
compute the various components of the test statistic and, as such, it is appli-
cable to a variety of hypotheses. Computing time depends on sample size, the
number of bootstrap samples that are taken, and the time required to compute
the various components of the test statistic.

Goodness-of-fit statistics like (8.3.1) can be obtained in a variety of ways. In
calculating the differencing estimator s2

diff one need not use optimal differenc-
ing coefficients. For arbitrary coefficients the statistic takes the form (6.2.6).
More generally, one can replace s2

diff with other unrestricted estimators of the
residual variance such as those obtained by applying a smoother. The key re-
quirement is that one undersmooth when estimating the residual variance under
the alternative.

A variety of estimators may also be available under the null, depending on
the specific restrictions being imposed. For the null, the key condition is that
the difference between the estimated sum of squared residuals and the true sum
of squared residuals converge to zero sufficiently quickly (see (6.2.2)).
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Table 8.3 Bootstrap goodness-of-fit tests.

Hypotheses: Ho : f ∈ �̄, H1 : f ∈� where � is a smooth set of functions and �̄ is a
smooth set of functions with additional constraints.

Test statistic: V=(mn)1/2(s2
res−s2

diff)/s
2
diff where s2

res is the estimated residual variance
from a restricted regression and s2

diff is an optimal differencing estimator of order m.

Bootstrap test
1. Perform the restricted regression where the constraints of the null hypothesis are

imposed. Save the estimates of the regression function f̂ res(x1), . . . . , f̂ res(xn), the
residuals ε̂res,1, . . . . , ε̂res,n , and the estimated residual variance s2

res.
2. Calculate s2

diff.
3. Calculate the value of the test statistic V .
4. (a) Sample with replacement from the centered restricted residuals to obtain

ε̂B1 , . . . . , ε̂Bn .
(b) Construct a bootstrap data set (yB1 , x1), . . . . , (yBn , xn), where yBi = f̂ res(xi)+ ε̂Bi .
(c) Using the bootstrap data set, estimate the model under the null and calculate
s2B
res, s

2B
diff, and V B .

(d) Repeat Steps (a)–(c) multiple times, each time saving the value of the test
statistic V B . Define the bootstrap critical value for a 5 percent significance level test
to be the 95th percentile of the V B .

5. Compare V , the actual value of the statistic, with the bootstrap critical value.

The hypotheses that can be tested using these goodness-of-fit-type statistics
include a parametric null, a semiparametric null (such as the partial linear
model or index model), equality of regression functions, additive separability,
monotonicity, concavity, and base-independence of equivalence scales.

8.3.2 Residual Regression Tests

As with goodness-of-fit tests, a wide variety of hypotheses can be tested using
residual regression procedures. Recall that the test statistic may be decomposed
into three components (U =U1 +U2 +U3) as in (6.3.7). The key is to ensure
that the estimator of the regression function under the null hypothesis converges
sufficiently quickly so that the large sample distribution of U is determined by
the first term U1 (see particularly (6.3.12) and (6.3.13)).

Table 8.4 summarizes a procedure for obtaining bootstrap critical values for
the class of residual regression tests we have discussed in Section 6.3 when
the residuals are homoskedastic. If the residuals are heteroskedastic, then one
replaces random sampling from the centered restricted residuals with sampling
using the wild bootstrap.
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Table 8.4 Bootstrap residual regression tests.

Hypotheses: H0 : f ∈ �̄, H1 : f ∈�, where � is a smooth set of functions and �̄ is a
smooth set of functions with additional constraints.

Test statistic: We implement using the uniform kernel. Let Kij be the ijth entry of the
kernel matrix defined by

Kij= 1/2 if |x j − xi | ≤ λ j 
= i (note that diagonal elements Ki i = 0)

Kij= 0 otherwise.

Let

U = 1

n

∑
i

(yi − f̂ res(xi ))

[
1

λn

∑
j 
= i

(y j − f̂res(x j ))Kij

]
∼ N

(
0,

2σ 4
ε

∫
p2(x)

∫
K 2

λn2

)
.

Define σ 2
U =Var(U )= 2σ 4

ε

∫
p2(x)

∫
K 2/λn2, which may be estimated using

σ̂ 2
U =

2

n4λ2

∑
i

∑
j 
= i

(yi − f̂res(xi ))
2(y j − f̂res(x j ))

2K2
ij.

Bootstrap test
1. Perform the restricted regression where the constraints of the null hypothesis are

imposed. Save the estimates of the regression function f̂ res(x1), . . . . , f̂ res(xn) and
the residuals ε̂res,1, . . . . , ε̂res,n . Center the residuals so that their mean is zero.

2. Calculate U , σ̂U , and U/σ̂U .
3. (a) Sample with replacement from the centered restricted residuals to obtain

ε̂B1 , . . . . , ε̂Bn and construct a bootstrap data set
(
yB1 , x1

)
, . . . . ,

(
yBn , xn

)
, where

yBi = f̂res(xi )+ ε̂Bi .
(b) Using the bootstrap data set, estimate the model under the null and calculate σ̂ B

U ,
UB , and UB/σ̂ B

U .
(c) Repeat Steps (a) and (b) multiple times, each time saving the value of the
standardized test statistic UB/σ̂ B

U . Define the bootstrap critical value for a 5 percent
significance level test to be the 95th percentile of the UB/σ̂ B

U .
4. Compare U/σ̂U , the actual value of the statistic, with the bootstrap critical value.

Heteroskedasticity:
Replace 3.(a) with
3. (a) Sample using the wild bootstrap (Table 8.1) from ε̂res,1, . . . . , ε̂res,n to obtain

ε̂B1 , . . . . , ε̂Bn .

Li and Wang (1998) found that the bootstrap approximation to the distribu-
tion of residual regression tests is superior to the asymptotic approximation.
Yatchew and Sun (2001) found similar results for goodness-of-fit tests. A prin-
cipal reason is that the bootstrap corrects for the nonzero mean in the finite
sample distributions of these test statistics.
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8.4 Bootstrap Inference in Partial Linear and Index Models

8.4.1 Partial Linear Models

Let us return to the partial linear model y= zβ + f (x)+ ε, which we have
discussed in Sections 1.3, 3.6, and 4.5. Table 8.5 summarizes how to construct
bootstrap confidence intervals for the components ofβ using the double residual
estimation procedure. Under homoskedasticity, we use random sampling from
centered residuals. Under heteroskedasticity, we use the wild bootstrap. Validity
of bootstrap procedures in the partial linear model has been confirmed (see, e.g.,
Mammen and Van de Geer 1997 and Yatchew and Bos 1997). Linton (1995b)
studied higher-order approximations to the distributions of estimators of the
partial linear model. See also Härdle, Liang, and Gao (2000).

We illustrate two of the preceding bootstrap procedures by applying them
to our data on electricity distribution costs (see Sections 1.6 and 4.6.2). With
wages and capital prices entering in a Cobb–Douglas format, the specification
is given by

tc = f (cust)+β1 wage+β2 pcap+β3 PUC+β4 kwh

+β5 life+β6 lf +β7 kmwire+ ε. (8.4.1)

We reestimate this model using the double residual method and apply the
bootstrap procedure outlined in Table 8.5 to obtain percentile-t confidence
intervals for the components of β. The process is repeated using the wild boot-
strap. The results are summarized in Table 8.6 in which asymptotic confidence
intervals are also reported.

8.4.2 Index Models

Let us return to the index model

y= f (xδ)+ ε, (8.4.2)

which we have studied in Chapter 7. To estimate the standard error of δ̂ one
needs to estimate the derivative f ′ (see (7.1.4)–(7.1.6)). The result can be quite
sensitive to the smoothing parameter used to estimate f ′. Unfortunately, cross-
validation does not provide good guidance for smoothing parameter selection
if one is interested in the derivative of a function.

The bootstrap provides an alternative mechanism for calibrating standard
errors or, more importantly, for directly obtaining confidence intervals for δ.
However, the estimator δ̂ requires a grid search and thus the bootstrap can be
time-consuming. This limitation continues to diminish as computing speeds
increase and search algorithms become more intelligent. In the examples and
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Table 8.5 Percentile-t bootstrap confidence intervals for β in the partial
linear model.a

Let y= f (x)+ zβ + ε, where z is a p-dimensional vector. To construct bootstrap
confidence intervals for the components of β using the double residual estimation
procedure, proceed as follows:

1. (a) Estimate h(x)= E(y | x) and g(x)= E(z | x) to obtain the vector ĥ(x) and the
n× p matrix ĝ(x).
(b) Estimate β using the double residual estimator
β̂ = ((Z − ĝ(x))′(Z − ĝ(x)))−1(Z − ĝ(x))′(y − ĥ(x)).
(c) Estimate the residual variance
s2 = (y− ĥ(x)− (Z − ĝ(x))β̂)′(y− ĥ(x)− (Z − ĝ(x))β̂)/n.
(d) Estimate the covariance matrix of β̂ using �̂β̂ = s2((Z − ĝ(x))′(Z − ĝ(x)))−1.
(e) Perform a kernel regression of y− Z β̂ on x to obtain f̂ .

The DGM for the regression function is the vector Z β̂ + f̂ (x). The estimated residuals
ε̂= y− Z β̂ − f̂ (x) will provide the DGM for the residuals.

2. (a) Sample with replacement from the centered residuals to obtain ε̂B1 , . . . . , ε̂Bn .
(b) Construct a bootstrap data set (yB1 , x1, z1), . . . . , (yBn , xn, zn), where
yBi = f̂ (xi )+ zi β̂ + ε̂Bi .

(c) Perform a kernel regression of yB on x to obtain ĥ
B
(x).

(d) Calculate the bootstrap estimate

β̂B = ((Z − ĝ(x))′(Z − ĝ(x)))−1(Z − ĝ(x))′(yB − ĥ
B
(x)).

(e) Calculate the bootstrap residual variance

s2B = (yB − ĥ
B
(x)− (Z − ĝ(x))β̂B)′(yB − ĥ

B
(x)− (Z − ĝ(x))β̂B)/n.

(f) Calculate the estimated covariance matrix of β̂
B

using
�̂B

β̂
= s2B ((Z − ĝ(x))′(Z − ĝ(x)))−1.

(g) For each component of β, calculate the bootstrap t-statistic

t Bj =
(
β̂B

j − β̂ j

)/[
�̂B

β̂

]1/2
jj
, j = 1, . . . , p.

(h) Repeat Steps (a)–(g) multiple times saving the results from Step (g).
3. To calculate a 95 percent confidence interval for, say, β j , proceed as follows. Let

c.025 and c.975 be the .025 and .975 quantiles of the empirical distribution of t Bj from
Step 2 (g). A 95 percent confidence interval is given by[
β̂ j − c.975 ·

[
�̂β̂

]1/2
jj
, β̂ j − c.025 ·

[
�̂β̂

]1/2
jj

]
.

Heteroskedasticity:
Replace 2(a) with
2. (a) Sample using the wild bootstrap (Table 8.1) from the uncentered residuals

ε̂1, . . . . , ε̂n to obtain ε̂B1 , . . . . , ε̂Bn .

a See, in particular, Section 3.6.3 for definitions of terms and notation.
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Table 8.6 Asymptotic versus bootstrap confidence intervals: Scale economies
in electricity distribution.

Partial linear modela

95 percent Confidence intervals
Asymptotic

Percentile-t Bootstrap
Variable Coef Asy SE Wild Bootstrap

wage 0.692 0.279 0.146 1.238
0.031 1.326
0.079 1.351

pcap 0.504 0.066 0.374 0.634
0.358 0.659
0.354 0.651

PUC −0.067 0.035 −0.136 0.003
−0.144 0.019
−0.134 −0.004

kwh 0.015 0.080 −0.142 0.172
−0.156 0.194
−0.155 0.202

life −0.500 0.111 −0.716 −0.281
−0.747 −0.240
−0.734 −0.283

lf 1.279 0.398 0.499 2.057
0.387 2.120
0.510 2.064

kmwire 0.356 0.081 0.197 0.516
0.200 0.538
0.196 0.524

s2 .017
R2 .692

a Model estimated using kernel double residual method. Number of bootstrap replica-
tions = 1,000.

exercises to follow, we use S-Plus. Much faster results can be obtained if one
uses Fortran or other programming languages.

A further advantage of the bootstrap is that it incorporates nonnormality,
which can emerge if the sample is of moderate size and the ex ante bounds
on δ are tight. For example, suppose one is estimating an equivalence scale
by searching over values of δ in the interval [a, b]. The bootstrap can often
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Table 8.7 Confidence intervals for δ in the index model: Percentile method.

Let y= f (xδ)+ ε. To construct bootstrap confidence intervals for the components of
δ, proceed as follows:

1. Using a grid search, find δ̂ the value that minimizes (7.1.3). Perform a
nonparametric regression on the ordered pairs (yi , xi δ̂) to obtain
f̂ (xi δ̂), i = 1, . . . , n. Calculate the residuals ε̂i = yi − f̂ (xi δ̂).

2. (a) Sample with replacement from the centered residuals to obtain ε̂Bi , i = 1, . . . , n.
(b) Construct the bootstrap data set (yB1 , x1), . . . . , (yBn , xn) where
yBi = f̂ (xi δ̂)+ ε̂Bi .
(c) Using the bootstrap data, obtain δ̂B by minimizing (7.1.3).

3. Repeat Step 2 multiple times to obtain the bootstrap distribution of δ̂B . For a
95 percent confidence interval for a component of δ, extract the corresponding .025
and .975 quantiles.

Heteroskedasticity:
Replace 2 (a) with
2. (a) Sample using the wild bootstrap (Table 8.1) from ε̂i to obtain ε̂Bi for i = 1, . . . , n.

outperform the normal approximation to the sampling distribution of δ̂, partic-
ularly if estimates of δ are frequently at or near the boundary (although as we
have indicated above, the bootstrap fails if the true value of δ is actually on the
boundary). Table 8.7 outlines a procedure for constructing bootstrap confidence
intervals for δ. We describe the percentile method because of its simplicity and
because no estimate of f ′ is required.

The discussion thus far has been of index models, but all the points that have
been made apply also to the partial linear index models discussed in Section 7.2.
The bootstrap procedure described in Table 8.7 can readily be extended to this
case.

Figure 8.2 illustrates the application of the procedure to estimation of the
equivalence scale for couples versus singles using the South African data set. If
Engel’s method is used, then the index model becomes y= f (log x − zδ)+ ε,
where x is household expenditure, z is a dummy variable distinguishing couples
from singles, and δ is the log equivalence scale.5 The resulting estimate is
�̂= exp(δ̂)= 1.65 with asymptotic standard error .064 (see Figure 7.1). The
95 percent asymptotic confidence interval is given by [1.52, 1.78]. The bootstrap
confidence interval is very similar at [1.55,1.80].

5 See Gozalo (1997) for an alternative analysis of equivalence scale estimation using the boot-
strap.
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Engel equivalence scale General equivalence scale
Asymptotic confidence interval: [1.52,1.78] [1.17, 2.13]

Bootstrap confidence interval: [1.55,1.80] [1.43, 1.89]
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Figure 8.2. Equivalence scale estimation for singles versus couples: Asymptotic versus
bootstrap methods.

Next we use the theoretically more valid approach to constructing equivalence
scales embodied in the model

y= f (log x − zδ)+ zη+ ε.
(8.4.3)

In this case we need to estimate both δ and a vertical shift parameter η

(see Section 7.2 for further discussion). The estimate �̂ remains at 1.65, but
its standard error increases substantially to .24 (Chapter 7, Exercise 4). The
asymptotic confidence interval is [1.17,2.13]. Note that the asymptotic approach
does not preclude confidence intervals extending beyond the domain of search.
By comparison, the bootstrap interval is much tighter at [1.43,1.89].

Figure 8.2 summarizes these results and plots the bootstrap distributions of
the estimated equivalence scale using Engel’s method and the more general
approach using the partial linear index model.
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8.5 Exercises6

1. South African Food Share Data: For single individuals in this data set, perform the
following:

(a) Construct pointwise confidence intervals for food share as a function of log of
total expenditure. Use the bootstrap procedure outlined in Table 8.2. (You may
use either the percentile or the percentile-t method.)

(b) Repeat using the wild bootstrap.
(c) Test the log-linearity of the preceding Engel curve by constructing critical values

using:

(i) the goodness-of-fit test procedure outlined in Table 8.3 with order of differ-
encing m= 10,

(ii) the residual regression test procedure outlined in Table 8.4.

(d) Repeat the residual regression test using the wild bootstrap to allow for the
possibility of heteroskedasticity.

(e) Repeat Parts (c) and (d) but this time testing whether food share is quadratic in
the log of total expenditure.

2. South African Food Share Data: Repeat Exercise 1 for childless couples and for
couples with one child.

3. Scale Economies in Electricity Distribution:

(a) Using the percentile-t bootstrap procedure outlined in Table 8.5, construct 95 per-
cent two-sided confidence intervals for the seven parameters in the parametric
portion of the “Semiparametric Cobb–Douglas” specification in Table 8.6 (see
also Figure 4.5).

(b) Repeat Part (a) using the wild bootstrap.
(c) Outline a bootstrap procedure for performing tests of the general linear hypoth-

esis Rβ= r in the partial linear model. (For the asymptotic test, see Section 3.6.)
Test the “Semiparametric Translog” specification in Figure 4.5 against the “Semi-
parametric Cobb–Douglas.”

(d) Remove the estimated parametric effects and test a quadratic specification for the
scale effect against the “Semiparametric Cobb–Douglas” by using the bootstrap
procedures outlined in Tables 8.3 and 8.4.

(e) Following the procedure outlined in Table 8.2, design a methodology for con-
structing confidence intervals for the nonparametric portion of a partial linear
model. Why is your procedure valid? Use the procedure to construct a 95 per-
cent confidence interval for the scale effect in the Semiparametric Cobb–Douglas
specification.

4. Equivalence Scales for Singles Versus Couples: This exercise applies bootstrap pro-
cedures to produce confidence intervals for equivalence scales using the food share
data for South African singles and couples.

6 Data and sample programs for empirical exercises are available on the Web. See the Preface for
details.
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(a) Simulate the sampling distribution of the estimated Engel equivalence scale using
the method in Table 8.7. Plot your results and calculate a 95 percent confidence
interval. Compare your results to the asymptotic confidence interval (see Chapter
7, Exercise 1).

(b) Adapt the bootstrap procedure in Table 8.7 so that it applies to the partial linear
index model in (8.4.3) (refer to Section 7.2). Simulate the sampling distribu-
tion of the estimated general equivalence scale. Plot your results and calculate a
95 percent confidence interval. Compare your results to the asymptotic confi-
dence interval (see Chapter 7, Exercise 4.).

5. Equivalence Scales for Childless Couples Versus Couples with Children:

(a) Repeat Exercise 4 for childless couples versus couples with one child.
(b) Repeat Exercise 4 for childless couples versus couples with two children.



Appendix A – Mathematical
Preliminaries

Suppose an, n = 1, . . . ,∞ is a sequence of numbers. Then the sequence an is
of smaller order than the sequence n−r , written an = o(n−r ) if nran converges
to zero. For example, if an = n−1/4, then an = o(n−1/5) because n1/5 ·n−1/4 →
0. A sequence is o(1) if it converges to 0.

The sequence an is the same order as the sequence n−r , written an = O(n−r )
if nran is a bounded sequence. For example, the sequence an = 7n−1/4 + 3n−1/5

= O(n−1/5) because n1/5an converges to 3 and hence is a bounded sequence.
A sequence is O(1) if it is bounded.

Now suppose an, n = 1, . . . ,∞ is a sequence of random variables. Then,
an = oP(n−r ) if nran converges in probability to zero. For example, let an =
ε̄n = 1/n

∑n
i=1 εi , where εi are i.i.d. with mean zero and variance σ 2

ε . Then
E(ε̄n) = 0,Var (ε̄n) = σ 2

ε /n. Because the mean is 0 and the variance converges
to 0, the sequence ε̄n converges in probability to 0 and is oP(1). Furthermore,
for any r < 1/2, ε̄n = oP(n−r ) since Var (nr ε̄n) = σ 2

ε /n
1−2r converges to 0.

A sequence of random variables bn, n = 1, . . . ,∞ is bounded in probability
if, for any δ > 0, no matter how small, there exists a constant Bδ and a point in
the sequence nδ such that for all n > nδ,Prob [|bn| > Bδ] < δ.

Write an = OP(1) if an is bounded in probability and an = OP(n−r ) if nran
is bounded in probability. For example, suppose nran converges to a random
variable with finite mean and variance, then an = OP(n−r ). Thus, using the
central limit theorem we find that n1/2 ε̄n converges to an N (0, σ 2

ε ), in which
case ε̄n = OP(n

−1/2) and n1/2 ε̄n = OP(1).
Suppose yi = µy + εi , where µy is a constant, and define the sample mean

ȳn based on n observations. Then

ȳn = OP(µy + ε̄n) = µy + OP(ε̄n) = O(1)+ OP
(
n−1/2
)

and

n1/2(ȳn − µy) = n1/2ε̄n = OP(1).

Let λn be a sequence of real numbers converging to zero. In the main text,
λhas usually been used to represent the shrinking bandwidth in kernel regression
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(although we have suppressed then subscript). Typically, we consider sequences
of the form λn = n−r , where 0 < r < 1. Let an = 1/(λnn)

∑λnn
i=1 εi be the

average of the first λnn = n1−r values of εi . For example, if n = 100, r = 1/5,
then we are averaging the first 39.8 ∼= 40 observations. Then,

E[an] = 0 and Var [an] = σ 2
ε /λnn = σ 2

ε /n
1−r .

Hence,

an = OP
(
(λnn)

−1/2
) = OP

(
n−1/2(1−r)).

Suppose now that we draw n observations from the uniform distribution on
[0,1]. Assume again that 0 < r < 1, in which case 0 < λn = n−r < 1. Then
the proportion of observations falling in an interval of width 2λn will be ap-
proximately 2λn and the number of observations in the same interval will be
about 2nλn.

If we draw n observations from the uniform distribution on the unit square
[0,1]2 then the proportion of observations falling in a square of dimension
2λn · 2λn will be approximately 4λ2

n, and the number of observations in the
same square will be about 4nλ2

n.



Appendix B – Proofs

Notation: If A, B are matrices of identical dimension, define [A �
B]ij = AijBij.

Lemma B.1: (a) Suppose the components of ϑ = (ϑ1, . . . , ϑξ )
′ are

i.i.d. with Eϑi = 0,Var(ϑi ) = σ 2
ϑ , Eϑ4

i = ηϑ , and covariance matrix σ 2
ϑ Iξ .

If A is a symmetric matrix, then E(ϑ ′Aϑ) = σ 2
ϑ trA and Var(ϑ ′Aϑ) = (ηϑ −

3σ 4
ϑ)trA � A + σ 4

ϑ2trAA.
(b) Consider the heteroskedastic case in which Var(ϑi ) = σ 2

i , Eϑ4
i = ηi , ϑ

has the diagonal covariance matrix �, and η is the diagonal matrix with entries
ηi . Then E(ϑ ′Aϑ) = trA� and Var(ϑ ′Aϑ) = tr(η� A� A−3�2� A� A)+
2tr(�A�A). For results of this type see, for example, Schott (1997, p. 391,
Theorem 9.18), or they may be proved directly.

Lemma B.2: Suppose x has support the unit interval with density
bounded away from 0. Given n observations on x , reorder them so that they
are in increasing order: x1 ≤ · · · ≤ xn. Then for any ε positive and arbitrarily
close to 0, 1/n

∑
(xi − xi−1)

2 = OP(n−2(1−ε)).

Proof: Partition the unit interval into n1−ε subintervals and note that
the probability of an empty subinterval goes to zero as n increases. The maxi-
mum distance between observations in adjacent subintervals is 2/n1−ε , and the
maximum distance between observations within a subinterval is 1/n1−ε , from
which the result follows immediately. �

Comment on Lemma B.2: Because ε may be chosen arbitrarily close
to zero, we write 1/n

∑
(xi − xi−1)

2 ∼= OP(n−2). Note also that for fixed j ,
1/n
∑

(xi− xi− j )
2 ∼= OP(n−2). For an arbitrary collection of points in the unit

interval, the maximum value that 1/n
∑

(xi − xi−1)
2 can take is 1/n, which

occurs when all observations are at one of the two endpoints of the interval.
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Lemma B.3: Suppose (xi , εi ), i = 1, . . . , n are i.i.d. The xi have
density bounded away from zero on the unit interval, and εi | xi ∼ (0, σ 2

ε ).
Assume data have been reordered so that x1 ≤ · · · ≤ xn . Define f (x) =
( f (x1), . . . , f (xn))′, where the function f has a bounded first derivative. Let
D be a differencing matrix of say order m. Then f (x)′D′Df (x) = OP(n−1+ε)

and Var( f (x)′D′Dε) = OP(n−1+ε), where ε is positive and arbitrarily close
to 0.

Proof: The result follows immediately from Yatchew (1997, Ap-
pendix, Equations (A.2) and (A.3)). �

Lemma B.4: Suppose (yi , xi , zi , wi ), i = 1, . . . , n are i.i.d., where
y and x are scalars and z and w are p- and q-dimensional row vectors, re-
spectively. Suppose the data have been reordered so that x1 ≤ · · · ≤ xn . Let
Z be the n × p matrix of observations on z and W the n × q matrix of
observations on w. Suppose E(z | x) and E(w | x) are smooth vector func-
tions of x having first derivatives bounded. Let �z|x = ExVar(z | x),�w|x =
ExVar(w | x), and �zw|x = ExCov(z, w | x), where Cov(z, w | x) is the p × q
matrix of covariances between the z and w variables conditional on x . Let
d0, d1, . . . , dm be differencing weights satisfying constraints (4.1.1), define δ

using (4.1.6), and let D be the corresponding differencing matrix as in (4.1.2).
Then

Z ′D′DZ

n
P→�z|x

Z ′D′DD′DZ

n
P→ (1+ 2δ)�z|x

W ′D′DW
n

P→�w|x
W ′D′DD′DW

n
P→ (1+ 2δ)�w|x

Z ′D′DW
n

P→�zw|x
Z ′D′DD′DW

n
P→ (1+ 2δ)�zw|x .

Proof: Because z has a smooth regression function on x , write
zi = g(xi ) + ui , where g is a vector function with first derivatives bounded,
E(ui | xi ) = 0 , and E(Var(zi | xi )) = �z|x . Let g(x) be the n × p matrix with
i th row g(xi ). Let U be the n × p matrix with i th row ui . Then

Z ′D′DZ

n
= U ′D′DU

n
+ g(x)′D′Dg(x)

n
+ g(x)′D′DU

n
+ U ′D′Dg(x)

n

∼= U ′D′DU
n

+ OP

(
1

n3/2

)
.
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The second line uses Lemma B.3. Using (4.1.4), write

U ′D′DU
n

.= U ′L0U

n
+

m−1∑
j=0

d jd j+1
U ′(L1 + L ′1)U

n

+ · · · + d0dm
U ′(Lm + L ′m)U

n

and note that all terms but the first on the right-hand side converge to zero ma-
trices. Thus, U ′DD′U/n

P→ �z|x and Z ′DD′Z/n P→ �z|x . Because the diago-
nal entries of D′DD′D are 1+ 2δ, we may use similar arguments to show that
U ′D′DD′DU/n

P→ (1+ 2δ)�z|x and that Z ′D′DD′DZ/n P→ (1+ 2δ)�z|x .
Convergence of other quantities in the statement of the lemma may be proved
by analogous reasoning. �

Comments on Lemma B.4: More generally, suppose (yi , xi , h(zi )),
i = 1, . . . , n are i.i.d., where h is a p-dimensional vector function such that
E(h(z) | x) has the first derivative bounded. Define �h(z)|x to be the p× p
conditional covariance matrix of h(z) given x . Let h(Z) be the n × p matrix
whose i th row is h(zi ). Then

h(Z)′D′Dh(Z)
n

P→ �h(z)|x
h(Z)′D′DD′Dh(Z)

n
P→ (1+ 2δ)�h(z)|x .

Proof of Proposition 4.2.1: For the mean and variance use (4.2.6)
and (4.2.7). From (4.1.4) note that s2

diff has a band structure and thus a finitely
dependent central limit theorem may be applied (see e.g., Serfling 1980). �

Proof of Proposition 4.2.2: Use (4.2.13) to conclude that

1

n

n−m∑
i=1

(d0yi + · · · + dm yi+m)4 P→ ηε

(
m∑
i=0

d4
i

)
+ 6σ 4

ε

m−1∑
i=0

d2
i

m∑
j=i+1

d2
j

,

from which the result follows immediately. �

Proof of Proposition 4.3.1: If optimal differencing coefficients are
used, then in large samples,

n1/2
(
s2
res − s2

diff

)
∼= n1/2

(
1

n

∑
ε2
i −

1

n

∑
(d0εi + d1εi+1 + · · · + dmεi+m)2

)
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.= − n1/2

m−1∑
j=0

d jd j+1

 2

n

∑
εiεi+1 +

m−2∑
j=0

d jd j+2


× 2

n

∑
εiεi+2 + · · · + d0dm

2

n

∑
εiεi+m


= + n1/2

m

(
1

n

∑
εiεi+1 + 1

n

∑
εiεi+2 + · · · + 1

n

∑
εiεi+m

)
,

which is asymptotically N (0, σ 4
ε /m). To obtain the third line, use the condition∑m

0 d2
j = 1. To obtain the fourth, use

∑
j d j d j+k = −1/2m, k = 1, . . . ,m.

For arbitrary differencing coefficients, use (4.1.6). �

Proof of Propositions 4.4.1 and 4.4.2: See Yatchew (1999). �

Proof of Proposition 4.5.1: Define g(x) and U as in the proof of
Lemma B.4. Using Lemma B.3, note that differencing removes both f (x), the
direct effect of x , and g(x), the indirect effect of x , sufficiently quickly that we
have the following approximation:

n1/2(β̂ − β) ∼=
(
Z ′D′DZ

n

)−1 Z ′D′Dε

n1/2

∼=
(
U ′D′DU

n

)−1(U ′D′Dε

n1/2

)
. (B4.5.1)

Using Lemma B.4 and δ = 1/4m (see (4.2.8) and Appendix C), note that with
optimal differencing coefficients

Var

(
U ′D′Dε

n1/2

)
= σ 2

ε E

[
U ′D′DD′DU

n

]
P→ σ 2

ε

(
1+ 1

2m

)
�z|x

and (U ′DD′U/n)−1 P→ �−1
z|x . Thus,

Var
(
n1/2
(
β̂ − β

)) P→ σ 2
ε

(
1+ 1

2m

)
�−1
z|x .

Use (4.2.9) to write

U ′D′Dε

n1/2

.= U ′L0ε

n1/2
− 1

2m

(
U ′(L1 + L ′1)ε

n1/2
+ · · · · · + U ′(Lm + L ′m)ε

n1/2

)
,

and conclude asymptotic normality.
For arbitrary differencing coefficients, use (4.1.6). �
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Proof of Proposition 4.5.2: Using Proposition 4.5.1, we have under
the null hypothesis

n1/2(Rβ̂diff − r)
A∼ N
(

0, (1+ 2δ)σ 2
ε R
∑−1

z|x R
′
)
,

from which (4.5.7) follows immediately.
To derive (4.5.7a) we will rely on the analogous analysis for conventional lin-
ear models. Thus, rewrite (4.5.2) to be approximately y∗ = Z∗β + ε∗. Define
β̂unr to be the OLS estimator applied to this model (this is just the usual dif-
ferencing estimator in (4.5.3)). Define β̂res to be the restricted OLS estimator.
Then

β̂res − β̂unr = −(Z∗
′
Z∗)−1R′[R(Z∗

′
Z∗)−1R′]−1(Rβ̂unr − r).

Next write the difference of the residual sums of squares from these two regres-
sions as

ε̂∗
′

resε̂
∗
res − ε̂∗

′
unrε̂

∗
unr = (β̂res − β̂unr)

′(Z∗
′
Z∗)(β̂res − β̂unr).

See for example, Greene (2000, pp. 281–3). Combining these two results yields

ε̂∗
′

resε̂
∗
res − ε̂∗

′
unrε̂

∗
unr = (Rβ̂unr − r)′[R(Z∗

′
Z∗)−1R′]−1(Rβ̂unr − r).

Divide both sides by s2
unr(1+ 2δ) = s2

diff(1+ 2δ) to obtain

n
(
s2
res − s2

diff

)
s2
diff(1+ 2δ)

= (Rβ̂ − r)′
(
R
∑̂

β
R′
)−1

(Rβ̂ − r)

and recall that s2
res is the restricted differencing estimator. �

Proof of Proposition 4.7.1: Consistency and asymptotic normality
may be shown using standard proofs for nonlinear least squares. To derive
the large sample covariance matrix, proceed as follows. Take the first-order
conditions for β

1

n

∂r(Z , β̂)

∂β
D′D(y − r(Z , β̂)) = 0;

then, expand in a first-order Taylor series. Note that terms involving the second
derivatives of r(·) converge to zero. Thus one obtains

1

n

∂r(Z , β)

∂β
D′Dε − 1

n

∂r(Z , β)

∂β
D′D

∂r(Z , β)

∂β ′
(β̂diffnls − β) ∼= 0.



180 Semiparametric Regression for the Applied Econometrician

Refer to Comments on Lemma B.4 and set h(z) = ∂r(z, β)/∂β to conclude

1

n

∂r(Z , β)

∂β
D′D

∂r(Z , β)

∂β ′
P→
∑

∂r
∂β
|x

1

n

∂r(Z , β)

∂β
D′DD′D

∂r(Z , β)

∂β ′
P→ (1+ 2δ)

∑
∂r
∂β
|x .

The convergence is retained if we replace β with β̂diffnls. Thus, we may write

n1/2
(
β̂diffnls − β

) ∼=∑−1

∂r
∂β
|x ·

∂r(Z ,β)

∂β

D′Dε

n1/2
.

Next, note that

Var

(
∂r(Z ,β)

∂β

D′Dε

n1/2

)
= σ 2

ε E

[
1

n

∂r(Z , β)

∂β
D′DD′D

∂r(Z , β)

∂β ′

]
P→(1+ 2δ)

∑
∂r
∂β
|x ,

and thus

Var
(
n1/2
(
β̂nls − β

)) P→ (1+ 2δ)
∑−1

∂r
∂β
|x .

Asymptotic normality follows straightforwardly. �

Proof of Theorem 4.8.1: Define g(x) and U as in the proof of
Lemma B.4 above. Because w, the vector of instruments, has a smooth re-
gression function on x , write wi = h(xi )+vi , where h is a vector function with
first derivatives bounded, E(vi | xi ) = 0, and E(Var(wi | xi )) = �w|x . Let W
be the n× q matrix with i th row wi . Let h(x) be the n× q matrix with i th row
h(xi ). Let V be the n × q matrix with i th row vi . Using Lemma B.3, note that
differencing removes f (x), g(x), and h(x) sufficiently quickly that we have
the following approximation:

n1/2(β̂diff2sls − β)

∼=
(
Z ′D′DW

n

(
W ′D′DW

n

)−1 W ′D′DZ

n

)−1

× Z ′D′DW
n

(
W ′D′DW

n

)−1 W ′D′Dε

n
1/2

∼=
(
U ′D′DV

n

(
V ′D′DV

n

)−1 V ′D′DU
n

)−1

(B4.8.1)

× U ′D′DV
n

(
V ′D′DV

n

)−1 V ′D′Dε

n
1/2

.
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Using Lemma B.4

Var

(
V ′D′Dε

n1/2

)
= σ 2

ε E

[
V ′D′DD′DV

n

]
P→ σ 2

ε (1+ 2δ)�w|x

V ′D′DV/n
P→�w|x

U ′D′DV/n
P→�zw|x .

Thus, after simplification,

Var
(
n1/2
(
β̂diff2sls − β

)) P→ σ 2
ε (1+ 2δ)

[
�zw|x�−1

w|x�
′
zw|x
]−1

.

Finally, expand V ′D′Dε
n1/2 and conclude asymptotic normality. �

Proof of Proposition 4.8.2: Note that

Var
(
n1/2
(
β̂diff − β̂diff2sls

))
= nVar (β̂diff)+ nVar (β̂diff2sls)− 2nCov (β̂diff, β̂diff2sls).

Using Propositions 4.5.1 and 4.8.1, we know that the first term converges to
σ 2
ε (1 + 2δ)�−1

z|x and the second to σ 2
ε (1 + 2δ)[�zw|x�−1

w|x�
′
zw|x ]−1. We need

to establish the limit of the third term. Using (B4.5.1) and (B4.8.1) and Lemma
B.4, we have

nCov(β̂diff, β̂diff2sls) ∼= E
[
n1/2(β̂diff − β)n1/2(β̂diff2sls − β)′

]
∼= E

[(
Z ′D′DZ

n

)−1 Z ′D′Dε

n1/2

ε′D′DW
n1/2

(
W ′D′DW

n

)−1

× W ′D′DZ

n

(
Z ′D′DW

n

(
W ′D′DW

n

)−1 W ′D′DZ

n

)−1


= σ 2
ε E

[(
Z ′D′DZ

n

)−1 Z ′D′D′D′DW
n

(
W ′D′DW

n

)−1

× W ′D′DZ

n

(
Z ′D′DW

n

(
W ′D′DW

n

)−1 W ′D′DZ

n

)−1


P→ σ 2
ε (1+ 2δ)�−1

z|x
[
�zw|x�−1

w|x�
′
zw|x
][
�zw|x�−1

w|x�
′
zw|x
]−1

= σ 2
ε (1+ 2δ)�−1

z|x .
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Hence,

Var
(
n1/2(β̂diff − β̂diff2sls)

) P→ σ 2
ε (1+ 2δ)

([
�zw|x�−1

w|x�
′
zw|x
]−1 −�−1

z|x
)
,

and the result follows immediately. �

Proof of Proposition 5.3.1: There are n1−ε subcubes, and note that
the probability of an empty subcube goes to zero as n increases. The maximum
segment within each q-dimensional subcube is proportional to 1/n(1−ε)/q as is
the maximum segment between points in contiguous subcubes from which the
result follows immediately. �



Appendix C – Optimal Differencing
Weights

Proposition C1: Define δ as in Equation (4.1.6) and consider the
optimization problem

min
d0,d1,...,dm

δ =
m∑
k=1

m−k∑
j=0

d jd j+k

2

s.t.
m∑
j=0

d j = 0
m∑
j=0

d2
j = 1;

(C1.1)

then,

m−k∑
j=0

d jd j+k = − 1

2m
k = 1, . . ,m, (C1.2)

in which case δ = 1/4m. Furthermore, d0, d1, . . . , dm may be chosen so that
the roots of

d0z
m + d1z

m−1 + · · · + dm−1z
1 + dm = 0 (C1.3)

lie on or outside the unit circle.

Proof of Proposition C1: For purposes of interpretation it will be
convenient to think of differencing of residuals as a moving average process.
Define

ε∗i = d0εi + · · · + dmεi+m

and

ρk =
m−k∑
j=0

d jd j+k k = 0, . . . ,m.

183
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Note that ρk = corr(ε∗i , ε
∗
i+k). For k = 0, we have ρ0 =

∑m
j=0 d

2
j = 1. Next

we have

0 =
 m∑

j=0

d j

2

=
m∑
j=0

d2
j + 2

m∑
k=1

m−k∑
j=0

d jd j+k

= 1+ 2
m∑
k=1

ρk,

which implies
m∑
k=1

ρk = − 1/2. Thus (C1.1) may be written as

min
ρ1,...,ρm

m∑
k=1

ρ2
k s.t.

m∑
k=1

ρk = − 1/2 ,

which is minimized when the ρk are equal to each other, in which case ρk =
−1/2m, k = 1, . . . ,m. Thus we have proved (C1.2).

As Hall et al. (1990) point out, the objective is to select moving average
weights that reproduce the covariance structure

cov (d0εi + · · · + dmεi+m, d0εi+k + · · · + dmεi+m+k)

= − 1

2m
σ 2
ε k= 1, . . . ,m

= 0 k>m (C1.4)

var (d0εi + · · · + dmεi+m) = σ 2
ε .

This can be achieved by solving

R(z) = − 1

2m
[z2m + z2m−1 + · · · + zm+1 − 2mzm + zm−1 + · · · + z + 1] = 0.

It is easy to show that “1” is a root of R(z) with multiplicity 2. Furthermore,
the polynomial is “self-reciprocal” (see, e.g., Anderson 1971, p. 224, and
Barbeau 1995, pp. 22–23, 152) so that if r = (a + bı) is a root, then so is
1/r = (a − bı)/(a2 + b2), where ı denotes

√−1.
Thus, the set of all roots is given by � = {1, r2, . . . , rm, 1, 1/r2, . . . , 1/rm},

where |r j | = |a j + b j ı| = (a2
j + b2

j )
1/2 > 1, j = 2, . . . ,m. A self-reciprocal

polynomial may be rewritten in the form R(z) = zmM(z)M(1/z), where M
is a polynomial with real coefficients. There are, however, multiple ways to
construct M . In particular, obtain any partition of the roots� = S∪Sc satisfying
the following conditions: if s ∈ S, then 1/s ∈ Sc; if in addition s is complex
and s ∈ S, then s̄ ∈ S. Compose M using the roots in S and normalize the
coefficients of M so that their sum of squares equals 1. Then, by construction,
the coefficients reproduce the covariance structure in (C1.4) and are therefore
optimal differencing weights. Valid partitioning requires only that reciprocal
pairs be separated (so that zmM(z)M(1/z) = R(z)) and that conjugate pairs be
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kept together (to ensure that M has real coefficients). Of course, there is only
one partition that separates the two unit roots and those that are respectively
inside and outside the unit circle. �

Comment: For example, if m = 4, then the roots of R(z) are given by

� = {1, r2 = −.2137− 1.7979ı, r3 = −.2137+ 1.7976ı,

r4 = −1.9219, 1, 1/r2, 1/r3, 1/r4}.
Note that r2, r3, r4 lie outside the unit circle. If one takes S = {1, r2, r3, r4},

then the differencing weights are (0.8873,−0.3099,−0.2464,−0.1901,
−0.1409). Table 4.1 in Chapter 4 tabulates differencing weights up to order 10,
where S consists of the root “1” and all roots outside the unit circle. Note that
the “spike” occurs at d0 whether m is even or odd. The remaining weights
d1, . . . , dm are negative and monotonically increasing to 0. (Order or sign re-
versal preserves optimality of a sequence.) The pattern persists for all values
of m.

In contrast, if one takes S = {1, 1/r2, 1/r3, r4} then the differencing weights
become (0.2708,−0.0142, 0.6909,−0.4858,−0.4617), which are those ob-
tained by Hall et al. (1990, p. 523, Table 1).

Differencing Coefficients: m = 25

0.97873,-0.06128,-0.05915,-0.05705,-0.05500,-0.05298,-0.05100,

-0.04906,-0.04715,-0.04528,-0.04345,-0.04166,-0.03990,-0.03818,

-0.03650,-0.03486,-0.03325,-0.03168,-0.03015,-0.02865,-0.02719,

-0.02577,-0.02438,-0.02303,-0.02171,-0.02043

Differencing Coefficients: m = 50

0.98918,-0.03132,-0.03077,-0.03023,-0.02969,-0.02916,-0.02863,

-0.02811,-0.02759,-0.02708,-0.02657,-0.02606,-0.02556,-0.02507,

-0.02458,-0.02409,-0.02361,-0.02314,-0.02266,-0.02220,-0.02174,

-0.02128,-0.02083,-0.02038,-0.01994,-0.01950,-0.01907,-0.01864,

-0.01822,-0.01780,-0.01739,-0.01698,-0.01658,-0.01618,-0.01578,

-0.01539,-0.01501,-0.01463,-0.01425,-0.01388,-0.01352,-0.01316,

-0.01280,-0.01245,-0.01210,-0.01176,-0.01142,-0.01108,-0.01075,

-0.01043,-0.01011

Differencing Coefficients: m = 100

0.99454083,-0.01583636,-0.01569757,-0.01555936,-0.01542178,

-0.01528478,-0.01514841,-0.01501262,-0.01487745,-0.01474289,

-0.01460892,-0.01447556,-0.01434282,-0.01421067,-0.01407914,
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-0.01394819,-0.01381786,-0.01368816,-0.01355903,-0.01343053,

-0.01330264,-0.01317535,-0.01304868,-0.01292260,-0.01279714,

-0.01267228,-0.01254803,-0.01242439,-0.01230136,-0.01217894,

-0.01205713,-0.01193592,-0.01181533,-0.01169534,-0.01157596,

-0.01145719,-0.01133903,-0.01122148,-0.01110453,-0.01098819,

-0.01087247,-0.01075735,-0.01064283,-0.01052892,-0.01041563,

-0.01030293,-0.01019085,-0.01007937,-0.00996850,-0.00985823,

-0.00974857,-0.00963952,-0.00953107,-0.00942322,-0.00931598,

-0.00920935,-0.00910332,-0.00899789,-0.00889306,-0.00878884,

-0.00868522,-0.00858220,-0.00847978,-0.00837797,-0.00827675,

-0.00817614,-0.00807612,-0.00797670,-0.00787788,-0.00777966,

-0.00768203,-0.00758500,-0.00748857,-0.00739273,-0.00729749,

-0.00720284,-0.00710878,-0.00701532,-0.00692245,-0.00683017,

-0.00673848,-0.00664738,-0.00655687,-0.00646694,-0.00637761,

-0.00628886,-0.00620070,-0.00611312,-0.00602612,-0.00593971,

-0.00585389,-0.00576864,-0.00568397,-0.00559989,-0.00551638,

-0.00543345,-0.00535110,-0.00526933,-0.00518813,-0.00510750,

-0.00502745



Appendix D – Nonparametric
Least Squares

The results in this appendix are widely used in the spline function literature.
See particularly Wahba (1990). A collection of proofs may be found in Yatchew
and Bos (1997).

1. Sobolev Space Results

Let N be the nonnegative natural numbers. Let Qq ⊂ R
q be the unit cube,

which will be the domain of the nonparametric regression models below. (The
estimators remain valid if the domain is a rectangular cube.) Suppose α=
(α1, . . . , αq)∈N

q , define |α|∞ =max|αi |, and let x = (x1, . . . , xq) ∈ R
q . We

use the following conventional derivative notation Dα f (x)= ∂α1 + ···+αq f (x)/
∂xα1

1 · · · ∂xαq
q .

Let Cm be the space of m-times continuously differentiable scalar func-
tions, that is, Cm = { f :Qq → R

1|Dα f ∈ C0, |α|∞ ≤ m} andC0 = { f :Qq →
R

1| f continuous on Qq}. On the space Cm , define the norm, ‖ f ‖∞,m =∑
|α|∞≤m maxx∈Qq |Dαf (x)|, in which case Cm is a complete, normed, linear

space, that is, a Banach space. Consider the following inner product of scalar
functions and the induced norm

〈 f, g〉Sob =
∑

|α|∞≤m

∫
Qq

Dαf Dαg

‖ f ‖Sob =
 ∑
|α|∞≤m

∫
Qq

[Dαf ]2

1/2

and define the Sobolev spaceHm as the completion of { f ∈ Cm}with respect to
‖ f ‖Sob. The following results on the Sobolev space Hm are particularly useful.

Proposition D.1: Hm is a Hilbert space.

187
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The Hilbert space property allows one to take projections and to express Hm

as a direct sum of subspaces that are orthogonal to one another.

Proposition D.2: Given a ∈ Qq and b ∈ N
q , |b|∞ ≤ m − 1, there

exists a function rba ∈ Hm called a representor s.t. 〈rba , f 〉Sob = Db f (a) for all
f ∈ Hm . Furthermore, rba (x) =

∏q
i=1 r

bi
ai (xi ) for all x ∈ Qq , where rbiai (.) is the

representor in the Sobolev space of functions of one variable on Q1 with inner
product 〈 f,g〉Sob =

∑m
α=0

∫
Q1

dαf
dxα

dαg
dxα .

If b equals the zero vector, then we have representors of function evalua-
tion, which we have denoted in the text as ra = r0

a . Proposition D.2 further
assures us of the existence of representors for derivative evaluation (of order
|b|∞ ≤ m − 1). The problem of solving for representors is well known (see
Wahba 1990). For the inner product above, representors of function evaluation
consist of two functions spliced together, each of which is a linear combination
of trigonometric functions. Formulas may be derived using elementary meth-
ods, in particular integration by parts and the solution of a linear differential
equation. Details may be found in Section 3 in this appendix. Finally, Propo-
sition D.2 states that representors in spaces of functions of several variables
may be written as products of representors in spaces of functions of one vari-
able. This particularly facilitates their implementation, for one simply calculates
one-dimensional representors and then multiplies them together.

Proposition D.3: The embedding Hm → Cm−1 is compact.

Compactness of the embedding means that, given a ball of functions in
Hm (with respect to ‖ f ‖Sob), its closure is compact in Cm−1 (with respect
to ‖ f ‖∞,m). This result ensures that functions in a bounded ball in Hm have all
lower-order derivatives bounded in supnorm.

Proposition D.4: Divide x into two subsets x = (xa, xb). If f (xa, xb)
is of the form fa(xa)+ fb(xb) and either

∫
fa = 0 or

∫
fb = 0, then ‖ f ‖2

Sob =
‖ fa‖2

Sob + ‖ fb‖2
Sob.

This result is useful for analyzing additively separable models.

2. Nonparametric Least Squares

Computation of Estimator

Given data (y1, x1), . . . , (yn, xn) on a nonparametric regression model y =
f (x) + υ (x can be a vector). Let rx1 , . . . , rxn be the representors of func-
tion evaluation at x1, . . . , xn , respectively, that is, 〈rx1, f 〉Sob = f (xi ) for all
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f ∈ Hm . Let R be the n× n representor matrix whose columns (and rows)
equal the representors evaluated at x1, . . . , xn; that is, Rij = 〈rxi , rx j 〉Sob =
rxi (x j ) = rx j (xi ).

Proposition D.5: Let y = (y1, . . . , yn)′ and define

σ̂ 2 = min
f

1

n

∑
i

[yi − f (xi )]
2 s.t. ‖ f ‖2

Sob ≤ L

s2 = min
c

1

n
[y − Rc]′[y − Rc] s.t. c′Rc ≤ L ,

where c is an n× 1 vector. Then σ̂ 2 = s2. Furthermore, there exists a solution
to the infinite dimensional problem of the form f̂ = ∑n

1 ĉi rxi , where ĉ =
(ĉ1, . . . , ĉn)′ solves the finite dimensional problem.

This result ensures the computability of the estimator; f̂ can be expressed as
a linear combination of the representors with the number of terms equal to the
number of observations. Perfect fit is precluded, except by extraordinary coin-
cidence, since the coefficients must satisfy the quadratic smoothness constraint.

Additive Separability

Partition x = (xa, xb) with dimensions qa, qb, respectively, and x ∈ Qqa+qb =
[0, 1]qa+qb . Define

�̄ =
{
f (xa, xb) ∈ Hm: f (xa, xb)

= fa(xa)+ fb(xb), ‖ fa + fb‖2
Sob ≤ L ,

∫
fb = 0

}
,

where the integral constraint is an identification condition.

Proposition D.6: Given data (y1, xa1, xb1), . . . , (yn, xan, xbn), let
y = (y1, . . . , yn)′ and define

σ̂ 2 = min
fa , fb

1

n

∑
t

[yi − fa(xai )− fb(xbi )]
2 s.t. ‖ fa + fb‖2

Sob ≤ L ,∫
fb = 0

s2 = min
ca ,cb

1

n
[y − Raca − Rbcb]′ [y − Raca − Rbcb]

s.t. c′a Raca + c′b Rbcb ≤ L ,
∑
i

cbi = 0,

where ca, cb are n × 1 vectors and Ra, Rb are the representor matrices on
[0,1]qa at xa1, . . . , xan and on [0,1]qb at xb1, . . . , xbn , respectively. Then
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σ̂ 2 = s2. Furthermore, there exists a solution to the infinite dimensional prob-
lem of the form f̂ a(xa) + f̂ b(xb) =

∑n
1 ĉai rxai (xa) + ĉbi rxbi (xb), where ĉa =

(ĉa1, . . . , ĉan)′, ĉb = (ĉb1, . . . , ĉbn)′ solve the finite dimensional problem.
The sets of functions { fa(xa)} and { fb(xb)|

∫
fb = 0} are orthogonal in the

Sobolev space Hm on Qqa+qb . Thus, using the Hilbert space property of Hm

(Proposition D.1), it can be shown that a function fa+ fb satisfying the infinite
dimensional optimization problem has a unique representation as a sum of
functions from the two subspaces.

For extensions to multiplicative separability and homothetic demand, see
Yatchew and Bos (1997).

3. Calculation of Representors

Let 〈 f,g〉Sob =
∫ 1

0

∑m
k=0 f (k)(x)g(k)(x)dx , where bracketed superscripts de-

note derivatives. We construct a function ra ∈ Hm[0,1] such that 〈 f,ra〉Sob =
f (a) for all f ∈Hm[0,1]. This representor of function evaluation ra will be
of the form

ra(x) =
{
La(x) 0 ≤ x ≤ a
Ra(x) a ≤ x ≤ 1

,

where La and Ra are both analytic functions. For ra of this form to be an element
of Hm[0,1], it suffices that L(k)

a (a) = R(k)
a (a), 0 ≤ k ≤ m − 1. Now write

f (a) = 〈ra, f 〉Sob

=
∫ a

0

m∑
k=0

L(k)
a (x) f (k)(x)dx +

∫ 1

a

m∑
k=0

R(k)
a (x) f (k)(x)dx .

We ask that this be true for all f ∈ Hm[0,1], but by density it suffices to
demonstrate the result for all f ∈ C∞[0,1]. Hence, assume that f ∈ C∞[0,1].
Thus, integrating by parts, we have

m∑
k=0

∫ a

0
L(k)
a (x) f (k)(x)dx =

m∑
k=0

{
k−1∑
j=0

(−1) j L(k+ j)
a (x) f (k− j−1)(x)

∣∣∣∣a
0

+ (−1)k
∫ a

0
L(2k)
a (x) f (x)dx

}

=
m∑
k=0

k−1∑
j=0

(−1) j L(k+ j)
a (x) f (k− j−1)(x)

∣∣∣∣a
0

+
∫ a

0

{
m∑
k=0

(−1)k L(2k)
a (x)

}
f (x)dx .
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If we let i = k − j − 1 in the first sum, this may be written as

m∑
k=0

∫ a

0
L(k)
a (x) f (k)(x)dx =

m∑
k=1

k−1∑
i=0

(−1)k−i−1L(2k−1−i)
a (x) f (i)(x)

∣∣∣∣a
0

+
∫ a

0

{
m∑
k=0

(−1)k L(2k)
a (x)

}
f (x)dx

=
m−1∑
i=0

m∑
k=i+1

(−1)k−i−1L(2k−1−i)
a (x) f (i)(x)

∣∣∣∣a
0

+
∫ a

0

{
m∑
k=0

(−1)k L(2k)
a (x)

}
f (x)dx

=
m−1∑
i=0

f (i)(a)

{
m∑

k=i+1

(−1)k−i−1L(2k−1−i)
a (a)

}

−
m−1∑
i=0

f (i)(0)

{
m∑

k=i+1

(−1)k−i−1L(2k−1−i)
a (0)

}

+
∫ a

0

{
m∑
k=0

(−1)k L(2k)
a (x)

}
f (x)dx .

Similarly,
∫ 1
a

m∑
k=0

R(k)
a (x) f (k)(x) dx may be written as

−
m−1∑
i=0

f (i)(a)

{
m∑

k=i+1

(−1)k−i−1R(2k−1−i)
a (a)

}

+
m−1∑
i=0

f (i)(1)

{
m∑

k=i+1

(−1)k−i−1R(2k−1−i)
a (1)

}

+
∫ 1

a

{
m∑
k=0

(−1)k R(2k)
a (x)

}
f (x)dx .

Thus, since f (x) is arbitrary, we require both La and Ra to be solutions of the
constant coefficient differential equation

m∑
k=0

(−1)ku(2k)(x) = 0.
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Boundary conditions are obtained by setting the coefficients of f (i)(a), 1 ≤
i ≤ m − 1, f (i)(0), 0 ≤ i ≤ m − 1 and f (i)(1), 0 ≤ i ≤ m − 1 to zero and the
coefficient of f (a) to 1. That is,

m∑
k=i+1

(−1)k−i−1
{
L(2k−1−i)
a (a)− R(2k−1−i)

a (a)
} = 0 1 ≤ i ≤ m − 1

m∑
k=i+1

(−1)k−i−1L(2k−1−i)
a (0) = 0 0 ≤ i ≤ m − 1

m∑
k=i+1

(−1)k−i−1R(2k−1−i)
a (1) = 0 0 ≤ i ≤ m − 1

m∑
k=1

(−1)k−1
{
L(2k−1)
a (a)− R(2k−1)

a (a)
} = 1.

Furthermore, for ra ∈ Hm[0,1], we require, L(k)
a (a) = R(k)

a (a), 0 ≤ k ≤ m−1.
This results in (m − 1) + m + m + 1 + m = 4m boundary conditions. The
general solution of the preceding differential equation is obtained by finding
the roots of its characteristic polynomial Pm(λ) =

∑m
k=0(−1)kλ2k . This is

easily done by noting that (1 + λ2)Pm(λ) = 1 + (−1)mλ2m+2, and thus the
characteristic roots are given by λk = eiθk , λk 
= ±i , where

θk =


(2k + 1)π

2m + 2
m even

2kπ

2m + 2
m odd

.

The general solution is given by the linear combination
∑

k ak e
(Re(λk ))x

sin(Im(λk))x , where the sum is taken over 2m linearly independent real solu-
tions of the differential equation above.

Let La(x) =
∑2m

k=1 akuk(x) and Ra(x) =
∑2m

k=1 bkuk(x), where the uk, 1 ≤
k ≤ 2m are 2m basis functions of the solution space of the differential equation.
To show that ra exists and is unique, we need only demonstrate that the boundary
conditions uniquely determine the ak and bk . Because we have 4k unknowns
(2m ak’s and 2m bk’s) and 4m boundary conditions, the boundary conditions
constitute a square 4m × 4m linear system in the ak’s and bk’s. Thus, it suffices
to show that the only solution of the associated homogenous system is the zero
vector. Now suppose that Lh

a(x) and Rh
a (x) are the functions corresponding to
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solutions of the homogeneous system (i.e., with the coefficient of f (a) in the
boundary conditions set to 0 instead of 1). Then, by exactly the same integration
by parts, it follows that 〈rha , f 〉Sob = 0 for all f ∈ C∞[0,1]. Hence, rha , Lh

a(x),
and Rh

a (x) are all identically zero and thus, by the linear independence of the
uk(x), so are the ak’s and bk’s.



Appendix E – Variable Definitions

Engel Curves and Equivalence Scale Estimation
Source: Living Standards Measurement Survey, http://www.worldbank.org/

lsms/
ltexp log(total monthly household expenditure)
FoodShr share of total expenditure on food
A number of adults in the household
K number of children in the household

Scale Economies in Electricity Distribution
Source: Ontario municipal distributors. See Yatchew (2000).
tc log(total cost per customer)
cust log (number of customers)
wage log(wage of lineman)
pcap log(accumulated gross investment/kilometers of distribution wire)
PUC public utility commission dummy
kwh log(kilowatt hour sales per customer)
life log(remaining lifetime of fixed assets)
lf log(load factor)
kmwire log(kilometers of distribution wire per customer)

Household Gasoline Consumption
Source: National Private Vehicle Use Survey, Statistics Canada. See Yatchew

and No (2001).
dist log (distance traveled per month)
price log (price of liter of gasoline)
income log (annual household income)
drivers log (number of licensed drivers in household)
hhsize log (number of members of household)
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youngsingle dummy for singles up to age 35
age log(age)
retire dummy for households where head is over 65
urban dummy for urban dwellers

Weather and Electricity Demand
Source: Ontario Hydro Corporation, 1997
elec log of monthly electricity sales
temp heating and cooling degree days relative to 68 ◦F
relprice log of ratio of price of electricity to the price of natural gas
gdp log of Ontario gross GDP

Housing Prices
Source: Ph.D. Thesis, Michael Ho (1995)
saleprice sale price of house
frplc dummy for fireplace(s)
grge dummy for garage
lux dummy for luxury appointments
avginc average neighborhood income
dwhy distance to highway
ltarea area of lot
nrbed number of bedrooms
usespc usable space
x1,x2 location coordinates

Option Prices and State Price Densities
Source: Simulated data. See Yatchew and Härdle (2001)
x strike price
y option price
X vector of distinct strike prices
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