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Preface

This book is the product of an intellectual odyssey in search of an
understanding of historical truth in culture, society, and politics, and the
scenarios likely to unfold from them. The quest for this understanding of
reality and its potential is not always easy. Those who fail to understand
history will not fully understand the current situation. If they do not under-
stand their current situation, they will be unable to take advantage of its
latent opportunities or to sidestep the emergent snares hidden within it.
George Santayana appreciated the dangers inherent in this ignorance when
he said, ‘‘Those who fail to learn from history are doomed to repeat it.’’
Kierkegaard lemented that history is replete with examples of men con-
demned to live life forward while only understanding it backward. Even
if, as Nobel laureate Neils Bohr once remarked, ‘‘Prediction is difficult,
especially of the future,’’ many great pundits and leaders emphasized the
real need to understand the past and how to forecast from it. Winston
Churchill, with an intuitive understanding of extrapolation, remarked that
‘‘the farther back you can look, the farther forward you can see.’’

Tragic tales abound where vital policies failed because decision makers
did not fathom the historical background—with its flow of cultural forces,
demographic resources, social forces, economic processes, political pro-
cesses—of a problem for which they had to make policy. Too often lives
were lost or runied for lack of adequate diplomatic, military, political, or
economic intelligence and understanding. Obversely, policies succeeded in
accomplishing vital objectives because policy makers have understood the
likely scenarios of events. After we learned from the past, we needed to
study and understand the current situation to appreciate its future possibili-
ties and probabilities. Indeed, the journalistic and scientific quest for ‘‘what
is’’ may reveal the outlines of ‘‘what can be.’’ The qualitative investigation
of ‘‘what has been’’ and ‘‘what is’’ may be the mere beginning of this quest.

The principal objective of this textbook is to introduce the reader to the

xv
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fundamental approaches to time series analysis and forecasting. Although
the book explores the basic nature of a time series, it presumes that the
reader has an understanding of the methodology of measurement and scale
construction. In case there are missing data, the book briefly addresses the
imputation of missing data. For the most part, the book assumes that there
are not significant amounts of missing data in the series and that any missing
data have been properly replaced or imputed. Designed for the advanced
undergraduate or the beginning graduate student, this text examines the
principal approaches to the analysis of time series processes and their
forecasting. In simple and clear language, it explains moving average, expo-
nential smoothing, decomposition (Census X-11 plus comments on Census
X-12), ARIMA, intervention, transfer function, regression, error correc-
tion, and autoregressive error models. These models are generally used for
analysis of historical, recent, current, or simulated data with a view toward
forecasting. The book also examines evaluation of models, forecasts, and
their combinations. Thus, the text attempts to discuss the basic approaches
to time series analysis and forecasting.

Another objective of this text is to explain and demonstrate novel theo-
retical features and their applications. Some of the relatively new features
include treatment of Y2K problem circumventions, Census X-12, different
transfer function modeling strategies, a scenario analysis, an application of
different forecast combination methods, and an analysis of sample size
requirements for different models. Although Census X-12 is not yet part
of either statistical package, its principal features are discussed because it
is being used by governments as the standard method of deseasonalization.
In fact, SAS is planning on implementing PROC X12 in a forthcoming
version. When dealing with transfer function models, both the conventional
Box–Jenkins–Tiao and the linear transfer function approaches are pre-
sented. The newer approach, which does not use prewhitening, is more
amenable to more complex, multiple input models. In the chapter on event
impact or intervention analysis, an approach is taken that compared the
impact of an intervention with what would have happened if all things
remained the same. A ‘‘what if ’’ baseline is posited against which the impact
is measured and modeled. The book also briefly addresses cointegration
and error correction models, which embed both long-run and short-run
changes in the same model. In the penultimate chapter, the evaluation and
comparison of models and forecasts are discussed. Attention is paid to the
relative advantages and disadvantages of the application of one approach
over another under different conditions. This section is especially important
in view of the discovery in some of the forecast competitions that the more
complex models do not always provide the best forecasts. The methods as
well as the relative advantages and disadvantages of combining forecasts
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to improve forecast accuracy are also analyzed. Finally, to dispel erroneous
conventional wisdom concerning sample size, the final chapter empirically
examines the selection of the proper sample size for different types of
analysis. In so doing, Monnie McGee makes a scholarly methodological
contribution to the study of sample size required for time series tests
to attain a power of 0.80, an approach to the subject of power of time
series tests that has not received sufficient discussion in the literature until
now.

As theory and modeling are explained, the text shows how popular
statistical programs, using recent and historical data are prepared to perform
the time series analysis and forecasting. The statistical packages used in
this book—namely, the Statistical Analysis System (SAS) and the Statistical
Package for the Social Sciences (SPSS)—are arguably the most popular
general purpose statistical packages among university students in the social
or natural sciences today. An understanding of theory is necessary for their
proper application under varying circumstances. Therefore, after explaining
the statistical theory, along with basic preprocessing commands, I present
computer program examples that apply either or both of the SAS Econo-
metric Time Series (SAS/ETS) module or the SPSS Trends module. The
programming syntax, instead of the graphic interfaces, of the packages is
presented because the use of this syntax tends to remain constant over
time while the graphical interfaces of the statistical packages change fre-
quently. In the presentation of data, the real data are first graphed. Because
graphical display can be critical to understanding the nature of the series,
graphs of the data (especially the SAS Graphs) are elaborately programmed
to produce high-resolution graphical output. The data are culled from areas
of public opinion research, policy analysis, political science, economics,
sociology, and even astronomy and occasionally come from areas of great
historical, social, economic, or political importance during the period of
time analyzed. The graphs include not only the historical data; after Chapter
7 explains forecasting, they also include forecasts and their profiles. SAS
and SPSS computer programs, along with their data, are posted on the
Academic Press Web site (http://www.academicpress.com/sbe/authors) to
assist instructors in teaching and students in learning this subject matter.
Students may run these programs and examine the output for themselves.
Through their application of these time series programming techniques,
they can enhance their capabilities in the quest for understanding the past,
the present, and to a limited extent, que sera.

This text is the product of an abiding interest in understanding longitudi-
nal data analysis in general and time series processes in particular. I could
not have accomplished this work without the help of many people. Working
on three other projects at the time I was writing this book, I asked Professor
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Monnie McGee to help me expedite a time consuming analysis of the sample
size and statistical power of common time series models. Although Monnie
used S plus and I use SAS and SPSS in the rest of the book, researchers and
students will find that many of her findings apply to other statistical packages
as well. Therefore, a key contributing scholar is Professor Monnie McGee,
who contributed an important chapter on a subject that must be a concern to
practitioners in the field, sample size and power of times series tests.

There are a number of scholars to whom I owe a great intellectual debt
for both inspiration and time series and forecasting education. Although I
have quoted them freely, I would like to give special thanks to George E. P.
Box, Gwilym Jenkins, Clive W. J. Granger, Robert F. Engle, Paul Newbold,
Spyros Makridakis, Steven Wheelwright, Steven McGee, Rob Hyndman,
Michelle Hibon, Robert Fildes, Richard McCleary, Richard Hay, Jr., Wayne
Fuller, David A. Dickey, T. C. Mills, David F. Hendry, Charles Ostrom,
Dan Wood, G. S. Maddala, Jan Kamenta, Robert Pindyck, Daniel Ruben-
feld, Walter Labys, George G. Judge, R. Carter Hill, Henri Theil, J. J.
Johnston, Frank Diebold, Bill Greene, David Greenberg, Richard Maisel,
J. Scott Armstrong, David F. Hendry, Damodir Gujarati, Jeff Siminoff,
Cliff Hurvitch, Gary Simon, Donald Rock, and Mark Nicolich.

The research and writing of many other scholars substantially influenced
this work. They are numerous and I list the principal ones in alphabetical
order. Bovas Abraham, Sam Adams, Isaiah Berlin, Bruce L. Bowerman,
Lynne Bresler, Peter J. Brockwell, Courtney Brown, Brent L. Cohen, Jeff
B. Cromwell, Russell Davidson, Richard A. Davis, Gul Ege, Dan Ege,
Donald Erdman, Robert Fildes, Phillip H. Francis, W. Gilchrist, Jennifer
M. Ginn, A. S. Goldberger, Jim Granato, William E. Griffiths, Damodar
N. Gujarati, J. D. Hamilton, D. M. Hanssens, Eric A. Hanusheck, Averill
Harriman, Andrew C. Harvey, K. Holden, C. C. Holt, R. Robert Huckfeldt,
G. B. Hudak, Rob J. Hyndman John Jackson, J. J. Johnston, M. G. Kendall,
Paul Kennedy, Minbo Kim, Lyman Kirkpatrick Jr., P. A. Klein, C. W.
Kohfeld, Stanley I. Kutler, Walter Labys, Johannes Ledolter, Mike Leo-
nard, R. Lewandowski, Thomas W. Likens, Charles C. Lin, Mark Little,
L.-M. Liu, Jeffrey Lopes, Hans Lütkepohol, James MacKinnon, David
McDowell, V. E. McGee, G. R. Meek, Errol E. Meidinger, G. C. Montgom-
ery, Meltem A. Narter, C. R. Nelson, M. P. Neimira, Richard T. O’Connell,
Keith Ord, Sudhakar Pandit, Alan Pankratz, H. Jin Park, D. A. Peel, C.
I. Plosser, James Ramsey, David P. Reilly, T. Terasvirta, Michel Terraza,
J. L. Thompson, George C. Tiao, R. S. Tsay, Walter Vandaele, Helen
Weeks, William W. S. Wei, John Williams, Terry Woodfield, Donna Wood-
ward, and Shein-Ming Wu.

There are other scholars, writers, statesmen, and consultants whose data,
activities research, and teachings directly or indirectly contributed to the
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writing of this text. They include D. F. Andrews, Professor Courtney Brown,
Dr. Carl Cohen, Professor Jim Granato, Dr. Stanley Greenberg, the Honor-
able Averill Harriman, Steven A. M. Herzog, R. Robert Huckfeldt, Profes-
sor Guillermina Jasso, President Lyndon Baines Johnson, Professor Lyman
Kirkpatrick, Jr., Professor Stanley Kutler, Mike Leonard, Dr. Carol Magai,
Robert S. McNamara, McGeorge Bundy, Professor Mark Nicolich, David
P. Reilly, Professor Donald Rock, Gus Russo, John Stockwell, Professor
Pamela Stone, Professor Peter Tuckel, and Donna Woodward.

I also owe a debt of deep gratitude to key people at Academic Press.
To Senior Editor Dr. Scott Bentley and his assistants Beth Bloom, Karen
Frost, and Nick Panissidi; to production editors and staff members Brenda
Johnson, Mark Sherry, and Mike Early; and to Jerry Altman for posting
such accompanying teaching materials as the computer program syntax and
data sets at http://www.apnet.com/sbe/authors, I remain truly grateful. For
her invaluable editorial help, I must give thanks to Kristin Landon. Nor
can I forget Lana Traver, Kelly Ricci, and the rest of the staff of the PRD
Group for their cooperative graphics preparation and composition; I must
express my appreciation to them for their professional contribution to
this work.

To the very knowledgeable and helpful people at SAS and SPSS, I
must acknowledge a debt for their gracious and substantial assistance. SAS
consultants, Donna Woodward, Kevin Meyer, and SAS developer Michael
Leonard were always gracious, knowledgeable, and very helpful. Other
consultants have helped more obliquely. For their very knowledgeable and
personal professional assistance, I remain deeply indebted.

I would also like to thank the people at SPSS, to whom I owe a real
debt of gratitude for their knowledgeable and professional assistance. Tony
Babinec, Director of Advanced Marketing Products; Mary Nelson and
David Cody, Managers in charge of Decision Time development; Dave
Nichols, Senior Support Statistician; Dongping Fang, Statistician; and David
Mathesson, from the Technical Support staff, provided friendly and knowl-
edgeable assistance with various aspects of the SPSS Trends algorithms.
Nor can I forget Andy Kodner or Dave Mattingly, who were also very
helpful. To David Mattingly and Mary Nelson, I want to express my thanks
for the opportunity to beta-test the Trends module. To Mary Nelson and
David Cody, I would like to express my gratitude for the opportunity to
beta-test the Decision Time Software in the summer of 1999.

The roots of my interest in forecast go back to the mid to late 1960s and
1970s, when my friends from those years saw my concern with forecasting
emerge. To Lehigh University professors Joseph A. Dowling, Jerry Fish-
man, John Cary, and George Kyte, I remain grateful for support and
guidance. To Roman Yuszczuk, George Russ, and other dear friends, to



xx Preface

whom I confided those ominous forecasts, there is no need to say that I
told you so. In my lectures, I explained what I observed, analyzed, and
foresaw, daring to be forthright in hopes of preventing something worse,
and risking the consequences. Many people were wont to say that if you
remember the 1960s you were not there. However, we sought to understand
and do remember. To Professors Stanley Tennenbaum, John Myhill, and
Akiko Kino, at the State University of New York at Buffalo Mathematics
Department during the late 1960s, a word of thanks should be offered. For
other friends from Buffalo, such as Jesse Nash and Laurie McNeil, I also
have to be thankful.

To my friends at the University of Waterloo, in Ontario, Canada, where
I immersed myself in statistics and its applications, I remain grateful. To the
Snyder family, Richard Ernst, Bill Thomas, Professor June Lowe, Professor
Ashok Kapur, Professor Carlo Sempi, and Drs. Steve and Betty Gregory,
I express my thanks for all their help. Moreover, I confess an indirect
obligation to Admiral Hyman Rickover, whose legendary advice inspired
me not to waste time.

To Lt. Col. Robert Avon, Ret., Executive Director of the Lake George
Opera Festival, who permitted me to forecast student audience develop-
ment for the Lake George Opera Festival, I still owe a debt of gratitude,
as well as to those friends from Skidmore College Professors Daniel Egy,
Bill Fox, Bob Smith, and Bob Jones. To librarians Barbara Smith and
Mary O’Donnell, I remain grateful. Nor are Jane Marshall and Marsha
Levell forgotten.

From the University of Michigan, where I spent several summers, with
financial assistance from the Inter-University Consortium for Political and
Social Research (ICPSR) and New York University, I am indebted to Hank
Heitowit and Gwen Fellenberger for their guidance, assistance, and support.
With the inspiration and teachings of Professor Daniel Wood, John Wil-
liams, Walter C. Labys, Courtney Brown, and Jim Granato, along with the
assistance of Genie Baker, Dieter Burrell, Professor Xavier Martin, and
Dr. Maryke Dressing, I developed my knowledge of dynamic regression
and time series to include autoregression and ARIMA analysis. As for all
of my good friends at and from Ann Arbor, both identified and unnamed,
I remain grateful for their contribution to a wonderful intellectual milieu
in which our genuine pursuit of knowledge, understanding, and wisdom
was really appreciated and supported.

I am deeply grateful for the support of New York University as well.
From the Academic Computing Facility, I gleaned much support. To Frank
Lopresti, head of the Statistics and Social Science Group, I owe a debt of
gratitude for his cooperation and flexibility, as well as to Dr. Yakov Smotrit-
sky, without whose help in data set acquisition much of this would not
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have been possible. To Burt Holland for his early support of my involvement
with ICPSR and to Edi Franceschini and Dr. George Sadowsky, I remain
indebted for the opportunity to teach the time series sequence. To Judy
Clifford, I also remain grateful for her administrative assistance. For colle-
gial support, instruction, and inspiration, I must specifically thank the New
York University Stern School of Business Statistics and Operations Re-
search (including some already acknowledged) faculty, including Professors
Jeff Siminoff, Gary Simon, Bill Greene, James Ramsey, Cliff Hurvich,
Rohit Deo, Halina Frydman, Frank Diebold, Edward Melnick, Aaron Ten-
enbein, and Andreas Weigand. Moreover, the support and inspiration of
the Sociology Department Faculty including Professors Richard Maisel,
David Greenberg, Jo Dixon, Wolf Hydebrand, and Guillermina Jasso, was
instrumental in developing my knowledge of longitudinal analysis in areas
of event history and time series analysis. These people are fine scholars
and good people, who help constitute and maintain a very good intellectual
milieu for which I am grateful.

A number of intellectual friends from other fields were the source of
inspiration and other kinds of assistance. In research in the field of addic-
tions research. Valerie C. Lorenz, Ph.D., C.A.S., and William Holmes, of
the Compulsive Gambling Center, Inc. In Baltimore, Maryland; Robert M.
Politzer, Sc.D. C.A.S., Director of Research for the Washington Center
for Addictions; and Clark J. Hudak, Jr. Ph.D., Director of the Washington
Center for Addictions proved to be wonderful research colleagues studying
pathological gambling. Professor John Kindt of the University of Illinois
at Champaign/Urbana; Professor Henry Lesieur, formerly of the Depart-
ment of Sociology at St. Johns University; and Howard Shaffer, Ph.D.,
C.A.S., Editor-in-chief of the Journal of Gambling Studies, and research
assistants Mathew Hall, Walter Bethune, and Emily McNamara at Harvard
Medical School, Division of Addictions, have been good, efficient, and
supportive colleagues. Nor can I neglect the supportive assistance of Dr.
Veronica J. Brodsky at New York University in this area.

In the area of drug addiction research, I thank Steve Titus of the New
York University Medical Center Department of Environmental Medicine
for the opportunity to assist in structural equation modeling of drug abuse
predispositions research. Among former colleagues in sociomedical re-
search, I thank Dr. Karolyn Siegel and Dr. Shelly Kern, formerly of the
Department of Social work Research at Memorial Sloan Kettering Cancer
Center; Dr. Ann Brunswick, Dr. Peter Messeri, and Dr. Carla Lewis at
Columbia University School of Public Health; Dr. Stephanie Auer, Dr.
Steven G. Sclan, and Dr. Bary Reisberg of the Aging and Dementia Re-
search Center at New York University Medical School; and more recently
Dr. Carl Cohen and Dr. Carol Magai, State University Health Science
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Center at Brooklyn. It was a pleasure to work with John Stockwell in
researching developing patterns of the AIDS crisis. His findings proved
invaluable in analysis of the gathering of data and its evaluation.

JFK assassination study contributed to my analysis of the Watergate
scandal. Among those who did prodigious amounts of investigative work
in this area were Gus Russo, John Davis, Robert Blakey, Gaeton Fonzi,
John Stockwell, Jim Marrs, Dick Russell, and Mary Nichols. Jim Gray and
Gilbert Offenhartz should also be mentioned. Special thanks must also
go to Michael Bechloss for transcribing the LBJ White House tapes that
explained the official basis of the Warren Commission position.

In the fields of political history, political science, and public opinion
research, I also thank Professor Marina Mercada, whose courses in interna-
tional relations permitted me to present some of my former research, out
of which my interest in longitudinal analysis and forecast grew. In the field
of political science, Professors Adamantia Pollis, Aristide Zolberg, Richard
Bensel, and Jacob Landynski of the Graduate Faculty of the New School
for Social Research are wonderful people. In the area of International
economics, I also thank Professor Giuseppe Ammendola for his recent
assistance. As persons who helped in the more quantitative dimension,
Professors Donald Rock and Mark Nicolich provided great inspiration and
statistical advice, and to both of them I will always remain indebted. To
Professors Dan Cohen and Pam Stone, former chairpersons of the Com-
puter Science and Sociology Departments of Hunter College, respectfully,
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Processes

1.1. PURPOSE

The purpose of this textbook is to introduce basic time series analysis and
forecasting. As an applied approach to time series analysis, this text is
designed to link theory with programming practice. Utilizing two of the
most contemporaneously popular computer statistical packages—namely,
SAS and SPSS—this book may serve as a basic text for those who wish to
learn or do time series analysis. It may be used as a reference for persons
using these techniques for forecasting.

The level of presentation is kept as simple as possible to make it useful
for undergraduates as well as graduate students. Although the presentation
primarily concentrates on the theory of time series analysis and forecasting,
it contains samples of SAS and SPSS computer programs and analysis of
their output. The discussion of these programs and their output demonstrate
their application to problems and their interpretation to persons unfamiliar
with them.

Over time, the computer program interfaces and menu options change
as new versions of the statistical packages appear on the market. Therefore,

1
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I have decided not to depend on the graphical user interface or menus
selections peculiar to one version; instead, I concentrate on the use of
program command syntax. Both SAS and SPSS allow the user to apply the
command syntax to run a program. As a matter of fact, SPSS provides
more options to those who employ that syntax than those who use the
menus. In short, knowledge of the command syntax should have a longer
useful life than knowledge of the menu selections from the graphical user
interface of a particular version of the software.

At this time, SAS has an automatic time series and forecasting system
and SPSS has a module, DecisionTime�, under development. After these
systems allow the researcher to submit the series or event variables to be
analyzed, they purport to automatically test different models, select the
best model according to specified criteria, and generate a forecast profile
from it. They allow custom-design of the intervention or transfer function
model. To date, these automatic systems have neither been entered into
international competition, nor have they been comparatively evaluated.

Because of their pedagogical utility for teaching all of the aspects of
time series analysis and forecasting, this book focuses on the program
syntax that can be used in SAS and SPSS. As it is explained in this text,
the student can learn the theory, its decision points, the options available,
the criteria for making those decisions, and how to make the proper deci-
sions at each step. In this way, he can learn the model and forecast evalua-
tion, as well as the proper protocol for applying time series analysis to
forecasting. If he needs to modify the model, he will better know how to
alter or apply it. For these reasons, the SAS and SPSS syntax for program-
ming time series analysis and forecasting is the focus of this book.

This book does not require a very sophisticated mathematical back-
ground. A background knowledge of basic algebra, statistics, and matrix
algebra is needed. A knowledge of basic statistics is also presumed. Al-
though the use of calculus is generally avoided, basic calculus is used in
Chapter Six to explain the statistical estimation of Box–Jenkins time series
analysis. Therefore, advanced undergraduate students, graduate students,
postgraduate students, and researchers in the social sciences, business, man-
agement, operations research, engineering, or applied mathematics fields
should find this text easy to read and understand.

1.2. TIME SERIES

Granger and Newbold (1986) describe a time series as ‘‘. . . a sequence
of observations ordered by a time parameter.’’ Time series may be measured
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continuously or discretely. Continuous time series are recorded instantane-
ously and steadily, as an oscillograph records harmonic oscillations of an
audio amplifier. Most measurements in the social sciences are made at
regular intervals, and these time series data are discrete. Accumulations
of rainfall measured discretely at regular intervals would be an example.
Others may be pooled from individual observations to make up a summary
statistic, measured at regular intervals over time. Some linear series that
are not chronologically ordered may be amenable to time series analysis.
Ideally, the series used consist of observations that are equidistant from
one another in time and contain no missing observations.

1.3. MISSING DATA

If some data values are missing, they should be replaced by a theoretically
defensible algorithm. If some social or economic indicators have too much
missing data, then the series may not be amenable to time series analysis.
Much World Bank and United Nations data come from countries that for
one reason or another did not collect data on particular problems or issues
regularly for a long enough period of time for it to be useful.

When a series does not have too many missing observations, it may be
possible to perform some missing data analysis, estimation, and replace-
ment. A crude missing data replacement method is to plug in the mean
for the overall series. A less crude algorithm is to use the mean of the period
within the series in which the observation is missing. Another algorithm is
to take the mean of the adjacent observations. Missing value replacement
in exponential smoothing often applies one-step-ahead forecasting from
the previous observation. Other forms of interpolation employ linear
splines, cubic splines, or step function estimation of the missing data. There
are other methods as well. Both SAS and SPSS provide options for missing
data replacement. Both warn the user that the series being analyzed contains
missing values and then estimate values for substitution (Ege et al., 1993;
SPSS, 1996). Nonetheless, if there are too many observations missing, the
series may simply be unusable.

1.4. SAMPLE SIZE

As a rule, the series should contain enough observations for proper
parameter estimation. There seems to be no hard and fast rule about the
minimum size. Some authors say at least 30 observations are needed. Others
say 50, and others indicate that there should be at least 60 observations.
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If the series includes cycles, then it should span enough cycles to precisely
model them. If the series possesses seasonality, it should span enough
seasons to model them accurately; thus, seasonal processes need more
observations than nonseasonal ones. If the parameters of the process are
estimated with large-sample maximum likelihood estimators, these series
will require more observations than those whose parameters are estimated
with unconditional or conditional least squares. For pedagogical reasons
as well as reasons of scholarly interest, I may occasionally use series with
fewer than 50 observations. Because the resolution of this issue may be
crucial to proper modeling of a series, Monnie McGee in the last chapter
gives a power and sample size analysis suggesting that these figures may
not always be large enough. Not all series of interest meet these minimal
sample size criteria, and therefore they should be modeled with reservation.
Clearly, the more observations, the better. For details of determining the
approximate minimal length of the series, see the final chapter.

1.5. REPRESENTATIVENESS

If the series comes from a sample of a population, then the sampling
should be done so that the sample is representative of the population. The
sampling should be a probability sample repeated at equal intervals over
time. If a single sample is being used to infer an underlying probability
distribution and the sample moments for limited lengths of the series ap-
proach their population moments as the series gets infinitely large, the
process is said to be ergodic (Mills, 1990). Without representativeness the
sample would not have external validity.

1.6. SCOPE OF APPLICATION

Time series data abound in many different fields. There are clearly time
series in political science (measures of presidential approval, proportion of
the vote that is Democratic or Republican). Many series can be found in
economics (GPI, GNP, GDP, CPI, national unemployment, and exchange
rate fluctuations, to name a few). There are multiple series in sociology
(for example, immigration rates, crime rates of particular offenses, popula-
tion size, percentage of the population employed). There are many series
in psychology (relapse rates for drug, alcohol, or gambling addictions are
cases in point). There are many time series in biomedical statistics (pulse,
EEG waves, and blood pressure, for example). In meteorology, one may
monitor temperatures, barometric pressures, or percent of cloud cover. In
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astronomy one may monitor the sunspot activity, brightness of stars, or
other phenomena. Depending on the nature of the time series and the
objective of the analysis, different approaches are used to study these data.

1.7. STOCHASTIC AND DETERMINISTIC PROCESSES

A series may be an observed realization of an underlying stochastic
process. The underlying data-generating process is not observed; it is only
more or less imperfectly represented in the observed series. Time series
are realizations of underlying data-generating processes over a time span,
occurring at regular points in time. As such, time series have identifiable
stochastic or deterministic components. If the process is stochastic, each
data value of the series may be viewed as a sample mean of a probability
distribution of an underlying population at each point in time. Each distribu-
tion has a mean and variance. Each pair of distributions has a covariance
between observed values. One makes a working assumption of ergodicity—
that, as the length of the realization approaches infinity, the sample mo-
ments of the realized series approximate the population moments of the
data-generating process—in order to estimate the unknown parameters of
the population from single realizations.

Those series that are not driven by stochastic processes may be driven
by deterministic processes. Some deterministic processes may be functional
relationships prescribed by the laws of physics or accounting. They may
indicate the presence or absence of an event. There may be any number
of processes that do not involve probability distributions and estimation.
Phenomena that can be calculated exactly are deterministic and not sto-
chastic.

1.8. STATIONARITY

Time series may be stationary or nonstationary. Stationary series are
characterized by a kind of statistical equilibrium around a constant mean
level as well as a constant dispersion around that mean level (Box and
Jenkins, 1976). There are several kinds of stationarity. A series is said to
be stationary in the wide sense, weak sense, or second order if it has a
fixed mean and a constant variance. A series is said to be strictly stationary
if it has, in addition to a fixed mean and constant variance, a constant
autocovariance structure. When a series possesses this covariance stationar-
ity, the covariance structure is stable over time (Diebold, 1998). That is to
say, the autocovariance remains the same regardless of the point of temporal
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reference. Under these circumstances, the autocovariance depends only on
the number of time periods between the two points of temporal reference
(Mills, 1990, 1993). If a series is stationary, the magnitude of the autocorrela-
tion attenuates fairly rapidly, whereas if the series is nonstationary or
integrated, the autocorrelation diminishes gradually over time. If, however,
these equally spaced observations are deemed realizations of multivariate
normal distributions, the series is considered to be strictly stationary.

Many macroeconomic series are integrated or nonstationary. Nonsta-
tionary series that lack mean stationarity have no mean attractor toward
which the level tends over time. Nonstationary series without homogeneous
stationarity do not have a constant or bounded variance. If the series has
a stochastic trend, then the level with an element of randomness, is a
function of time. In regressions of one series on another, each of which is
riven with stochastic trend, a spurious regression with an inflated coefficient
of determination may result. Null hypotheses with T and F tests will tend
to be overrejected, suggesting false positive relationships (Granger and
Newbold, 1986; Greene, 1997). Unstable and indefinitely growing variances
inherent in nonstationary series not only complicate significance tests, they
render forecasting problematic as well.

Nonstationary series are characterized by random walk, drift, trend, or
changing variance. If each realization of the stochastic process appears to
be a random fluctuation, as in the haphazard step of a drunken sailor,
bereft of his bearings, zapped with random shocks, the series of movements
is a random walk. If the series exhibits such sporadic movement around a
level before the end of the time horizon under consideration, it exhibits
random walk plus drift. Drift, in other words, is random variation around
a nonzero mean. This behavior, not entirely predictable from its past, is
sometimes inappropriately called a stochastic trend, because a series with
trend manifests an average change in mean level over time (Harvey, 1993).
When a disequilibrium of forces impinges on the series and stochastically
brings about a change in level of the series, we say that the series is
characterized by stochastic trend (Wei, 1990). Deterministic trends are
systematic changes of the mean level of a series as a function of time.
Whether or not these trends are deterministic or stochastic, they may be
linear or curvilinear. If they are curvilinear, trends may be polynomial,
exponential, or dampened. A trend may be short-run or long-run. The level
of the series may erratically move about. There may be many local turning
points. If the data have a stochastic trend, then there is a change of level
in the series that is not entirely predictable from its history. Seasonal effects
are annual fluctuations that coincide with period(s) of the year. For example,
power usage may rise with heating costs during the winter and with air
conditioning costs during the summer. Swimsuit sales may peak during the
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early or middle summer. The seasonal effects may be additive or multiplica-
tive. Cyclical or long-wave effects are fluctuations that have much longer
periods, such as the 11-year sunspot cycle or a particular business cycle.
They may interact with trends to produce a trend cycle. Other nonstationary
series have growing or shrinking variance. Changes in variance may come
from trading-day effects or the influence of other variables on the series
under consideration. One says that series afflicted with significantly chang-
ing variance have homogeneous nonstationarity. To prepare them for statis-
tical modeling, series are transformed to stationarity either by taking the
natural log, by taking a difference, or by taking residuals from a regression.
If the series can be transformed to stationarity by differencing, one calls the
series difference-stationary. If one can transform the series to stationarity by
detrending it in a regression and using the residuals, then we say that the
series is trend-stationary.

Time series can be presented in graphs or plots. SPSS may be used to
produce a time sequence plot; SAS may be used to produce a timeplot or
graphical plot of the series. The ordinate usually refers to the level of the
series, whereas the abscissa is the time horizon or window under consider-
ation. Other software may be used to produce the appropriate time se-
quence charts.

1.9. METHODOLOGICAL APPROACHES

This book presents four basic approaches to analyzing time series data.
It examines smoothing methods, decomposition models, Box–Jenkins time
series models, and autoregression models for time series analysis and fore-
casting. Although all of the methods may use extrapolation, the exponential
smoothing and calendar-based decomposition methods are sometimes
called extrapolative methods. Univariate Box–Jenkins models are some-
times called noncausal models, where the objective is to describe the series
and to base prediction on the formulated model rather than to explain
what influences them. Multivariate time series methods can include the use
of an intervention indicator in Box–Jenkins–Tiao intervention models to
examine the impact of an event on the time series. They can also include
transfer function models, where an input series and a response series are
cross-correlated through some transfer function. Both the intervention and
transfer function models are sometimes referred to as causal models, where
change in the exogenous variable or series is used to explain the change
in the endogenous series. The exogenous component can consist of either
a dummy indicator of the presence of an impact or a stochastic series
that drives the response series. Such models are used to test hypothesized
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explanatory interrelationships between the time-dependent processes.
Causal models may include autoregression models, where the endogenous
variable is a function of lags of itself, lags of other series, time, and/or
autocorrelated errors. Throughout the book, there are examples of forecast-
ing with these models. Also, in Chapters 7 and 10, regression and autoregres-
sion models are used to combine forecasts to improve accuracy. After a
discussion of model and forecast evaluation, the book concludes with a
sample size and power analysis of common time series models by Monnie
McGee. With these approaches, this book opens the door to time series
analysis and forecasting.

The introduction considers the nature of time and a time series. The
first section of the book addresses means of measuring those series. It
discusses the extrapolation methods. These methods begin with the single
moving average, the double moving average, and the moving average with
trend. They extend to single exponential smoothing, double exponential
smoothing, and then more advanced kinds of smoothing techniques. The
time series decomposition methods include additive decomposition, multi-
plicative decomposition, and the Census X-12 decomposition.

The next section addresses the more sophisticated univariate Box–
Jenkins models. This section begins with a consideration of the assumptions
of Box–Jenkins methodology. The assumption of stationarity is discussed
in detail. Various transformations to attain stationarity—including, loga-
rithms, differencing, and others— are also addressed. Simple autoregressive
process and moving average processes, along with the bounds of stationarity
and invertibility, are explained. The section continues with an explication
of the principles of autoregressive moving average (ARMA), autoregressive
integrated moving average (ARIMA), seasonal ARIMA, and mixed multi-
plicative models coupled with examples of programming in both SAS and
SPSS. The computer syntax and data sets will be found on the Academic
Press Web Site (World Wide Web URL: http://www.academicpress.com/
sbe/authors/). After a consideration of the identification of models, a discus-
sion of estimation and diagnosis follows. The section concludes with a
treatment of metadiagnosis and forecasting of the univariate noncausal
models.

The third section focuses on multivariate causal time series models,
including intervention and transfer function models. This treatment begins
with the multivariate Box–Jenkins–Tiao approach to impact analysis. The
presence or absence of deterministic events is coded as a step or pulse, and
the impacts as response functions. The responses are formulated as func-
tions of those step or pulse input variables over time. The treatment of
multiple time series continues with a consideration of transfer function
(sometimes called TFARIMA or ARMAX) models, which model the trans-
fer function between the input and the output time series. Both conventional
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prewhitening and the linear transfer function modeling approaches are
presented. Other causal models include regression time series models. The
problems encountered using multiple regression and correctives for those
problems are also reviewed. Autoregressive models, including distributed
lag and ARCH models, are also considered. Following a chapter on model
and forecast evaluation, Monnie McGee provides an assessment of minimal
sample requirements.

1.10. IMPORTANCE

What this book is not about is important in delimiting the scope of the
subject matter. It avoids discussion of subjective methods, such as the
Delphi technique of forecasting. It focuses on discrete time series and it
concentrates on the time, not the frequency, domain. It does not attempt
to deal with all kinds of multiple time series, nor does it address vector
autoregression, vector autoregressive moving average, or state space mod-
els. Although it briefly discusses ARCH and GARCH models with regard
to forecasting, it does not examine all kinds of nonlinear models. It does
not attempt to deal with Bayesian models, engineering control systems, or
dynamic simultaneous equation models. For reasons of space and economy,
these models remain beyond the scope of this book and are left for a more
advanced text.

To understand the nature of time series data, one needs to describe the
series and then formulate it in terms of a statistical model. The time-
ordering and temporal dependence pose unique problems for statistical
analysis, and these problems must be taken into consideration. In order to
forecast these processes, policies, and behaviors, corrections have to be
developed and implemented for these problems. Forecasting is often neces-
sary to understand the current situation when there is a time lag between
data collection and assessment. Forecasting is also necessary for tactical
planning and/or strategic planning. Moreover, forecasting may be essential
to process engineering and control as well. These methods are essential
for operations research in many areas. Whether the objective is description,
explanation, prediction, monitoring, adaptation, or control, the study of
time-ordered and -dependent phenomena is important.

1.11. NOTATION

1.11.1. GENDER

A few words about the basic notation used in this work are now in order.
Although reference is made to the researcher in the masculine sense, no
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gender bias is implied. Researchers may indeed be female and often are.
The masculine attribution rests purely on convention and convenience: No
invidious bias is intended.

1.11.2. SUMMATION

The data are presumed to be discrete. The text makes use of subscript,
summation, expectation, lag, and difference notation. To present, develop,
and explain the processes discussed, a review of the elements of this notation
is in order. The summation operator symbolizes adding the elements in a
series and is signified by the capital Greek letter sigma (�). When it is
necessary to indicate temporal position in the series, a subscript is used. If
the variable in a time series is indicated by yt , then the subscript t indicates
the temporal position of the element in the series. If t proceeds from 1, 2,
. . . , T, this series may be represented by y1 through yT . The summation
operator usually possesses a subscript and a superscript. The subscript
identifies the type and lower limit of the series to be summed, whereas the
superscript indicates the upper limit of the series to be summed. For ex-
ample,

�T
t�1

yi � y1 � y2 � . . . � yT (1.1)

has a subscript of t � 1 and a superscript of T. The meaning of this symbol
is that the sum of the y values for period 1 to T inclusive is calculated. T
is often used as the total number of time periods. It is often used instead
of n to indicate the total sample size of a series. Single summation is
thereby indicated.

Double summation has a slightly more complicated meaning. If a table
of rows and columns is being considered, one may indicate that the sum
of the rows and the columns is computed by two summation signs in tandem.
The inside (rightmost) sum cycles (sums) first.

�C
c�1

�R
r�1

xrc

� x11 � x12 � . . . � x1C

� x21 � x22 � . . . � x2C (1.2)

. . . . . .

� xR1 � xR2 � . . . � xRC .
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The double sum means that one takes row 1 and sums the elements in the
columns of that row, then takes row 2 and sums the elements in the columns
of that row, and iterates the process until all of the elements in the table
have been summed. A triple sum would involve summing by cycling through
rows, columns, and layers for the summing. The sums would be taken by
iterating through the layers, columns, and rows in that order. When the
elements in all of the combinations of rows, columns, and layers would be
summed, the process would be completed.

If the data were continuous rather than discrete, then the integration
sign from calculus would be used. A single integration sign would represent
the area under the function that follows the integration sign. With the
discrete time series used here, the summation sign is generally appropriate.

1.11.3. EXPECTATION

Expectation is an operation often performed on discrete variables used
in the explanations of this text. Therefore, it is helpful to understand the
meaning of the expected value of a variable. The expected value of a
discrete random variable is obtained by multiplying its value at a particular
time period times its probability:

E(Y) � �T
i�1

Yi p(Yi), (1.3)

where

E(Y) � expected value of discrete variable Y,
Yi � value of Y at time period i, and

p(Yi) � probability of Y at periods 1 through T.

The expected value of a continuous random variable is often called
its mean.

E(Y) � ��

��
Yf (Y) dy, (1.4)

where E(Y) is the expected value of random variable Y.
There are a few simple rules for expectation. One of them is that if there

is a constant k, then E(ky) � kE(y). Another is that if there is a ran-
dom variable x, then E(kx) � � kx p(kx). Also, E(k � x) � k � E(x). If
there are two random variables, x and y, then E(x � y) � E(x) � E(y)
and E(xy) � E(x)E(y). The variance of a variable is often defined in terms
of its expectation. Var(x) � E[x � E(x)]2. The covariance of two variables
is defined by Cov(x, y) � E[x � E(x)]E[(y � E(y)]. As these basic equations
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may be invoked from time to time, it is useful to be somewhat familiar
with this notation (Hays, 1973).

1.11.4. LAG OPERATOR

The lag operator, symbolized by L, is also used for much of this analysis.
Originally, Box and Jenkins used a B to designate the same operator, which
they called the backshift operator. The lag operator used on a variable
at time t refers to the value of the same variable at time t � 1; therefore,
Lyt � yt�1 . Similarly, 2LYT � 2Yt�1 . The lag operator backshifts the focus
one lag or time period. The algebra of the lag is similar to that of the
exponential operator. More generally, LnLm(Yt) � Ln�m(Yt) � Yt�n�m .

Powers of the lag operator translate into periods of lag: L6 � yt�6 ;
L(Lyt) � L2yt � yt�2 . Inverses of lags exist as well: LL�1 � 1. Inverses of
expressions involving lags invert the expression: zt(1 � L)�1 � zt/(1�L).
It is also interesting that inverse of the first lag may result in series of
infinite differences. We refer to the inverse of differencing as summing or
integration because 1/(1 � L) � (1 � L)�1 � (1 � L � L2 � L3 � . . . � Ln�1

� Ln � . . .). Using the lag operator facilitates explanations of differencing.

1.11.5. THE DIFFERENCE OPERATOR

The difference operator, del, is symbolized by the �. The first difference
of yt is given by the following expression: wt � �yt � yt � yt�1 . Another
way of expressing this first difference is wt � �yt � (1 � L)yt . The second
difference is the first difference of the first difference: �2yt � �(�yt) �
(1 � L)(1 � L)yt � (1 � 2L � L2)yt � (yt � 2 yt�1 � yt�2).

These brief introductory explanations should enable the reader pre-
viously unfamiliar with this notation to more easily understand the following
chapters. Previewing these matters of mathematical expression now will
facilitate later analysis.

1.11.6. MEAN-CENTERING THE SERIES

There are some circumstances in which the centering of a series is advis-
able. Series are often mean-centered when complicated models, interven-
tion models, or multiple input transfer function models are developed in
order to save degrees of freedom in estimating the model as well as to
simplify the model. To distinguish series that have been centered from
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those that have not, a difference in case is used. In this text, a capital Yt

will be used to denote a series that has been centered, by the subtraction
of the value of the series mean from the original series value at each time
period, whereas a small yt will be used to denote a series that has not been
mean-centered.

REFERENCES

Box, G.E.P. and Jenkins, G.M. (1976). Time Series Analysis Forecasting and Control. San
Francisco: Holden Day, p. 21.

Diebold, F.X. (1998). Elements of Forecasting. Cincinnati: Southwestern College Publishing,
p. 130.

Ege, G., Erdman, D.J., Killam, R.B., Kim, M., Lin, C.C., Little, M.R., Sawyer, D.M., Stokes,
M.E., Narter, M.A., & Park, H.J. (1993). SAS ETS/User’s Guide. Version 6, 2nd ed. Cary,
NC: SAS Institute, Inc., pp. 139, 216.

Goodrich, R. (1992) Applied Statistical Forecasting. Belmont, MA: Business Forecast Systems,
pp. 10–11.

Granger, C.W.J. and Newbold, P. (1986) Forecasting Econometric Time Series, New York:
Academic Press, p. 1.

Greene, W. H. (1997). Econometric Analysis 3rd ed. Englewood Cliffs, NJ: Prentice Hall, p. 844.
Harvey, A.C. (1993) Time Series Models, Cambridge, MA: Cambridge University Press,

pp. 10–11.
Hays, W. (1973). Statistics for the Social Sciences. 2nd ed. New York: Holt, Rhinehart, and

Winston, pp. 861–877 presents the algebra of summation and expectation. Also, Kirk, R.
(1982). Experimental Design. 2nd ed. Belmont, CA: Brooks Cole, p. 768.

Mills, T.C. (1990). Time Series Techniques for Economists. New York: Cambridge University
Press, pp. 63–66.

Mills, T.C. (1993). The Econometric Modeling of Financial Time Series. New York: Cambridge
University Press, p. 8.

SPSS, Inc. (1996). SPSS 7.0 Statistical Algorithms. Chicago, Ill: SPSS, Inc., p. 45.
Wei, W.S. (1990). Time Series Analysis Univariate and Multivariate Methods Redwood City,

CA.: Addison-Wesley, p. 70.



This Page Intentionally Left Blank



Chapter 2

Extrapolative and
Decomposition Models

2.1. Introduction 2.5. Decomposition Methods
2.2. Goodness-of-Fit Indicators 2.6. New Features of Census X-12
2.3. Averaging Techniques References
2.4. Exponential Smoothing

2.1. INTRODUCTION

This chapter examines exponential smoothing and decomposition mod-
els. It begins with an introduction of statistics useful in assessment time
series analysis and forecasting. From an examination of moving average
methods, it develops an explanation of exponential smoothing models,
which are then used as a basis for expounding on decomposition methods.
The decomposition methods used by the U.S. Bureau of the Census and
Statistics Canada to decompose series into their trend, cycle, seasonal, and
irregular components are now used around the world to remove the seasonal
component from these series preparatory to making them available for
public use. Even though these methods are early ones in the development
of time series and forecasting, their current applications give them pedagogi-
cal and contemporary practical value (Holden et. al., 1990).

2.2. GOODNESS-OF-FIT INDICATORS

Many researchers seek to analyze time series data by detecting, ex-
tracting, and then extrapolating the patterns inherent in time series. They

15
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may try to decompose the time series into additive or multiplicative compo-
nent patterns. The preliminary toolkit used for inspection of a series includes
a number of univariate assessment-of-fit indicators. The construction and
formulation of these indicators are examined so the reader will see how
they can be applied to the comparative analysis of fit, explanation, and
accuracy in the methods of analysis.

After fitting a time series model, one can evaluate it with forecast fit
measures. The researcher may subtract the forecast value from the observed
value of the data at that time point and obtain a measure of error or bias.
The statistics used to describe this error are similar to the univariate statistics
just mentioned, except that the forecast is often substituted for the average
value of the series. To evaluate the amount of this forecast error, the
researcher may employ the mean error or the mean absolute error. The
mean error (ME) is merely the average error. The mean absolute error
(MAE) is calculated by taking the absolute value of the difference between
the estimated forecast and the actual value at the same time so that the
negative values do not cancel the positive values. The average of these
absolute values is taken to obtain the mean absolute error:

Mean absolute error � �T
t�1

�et�
T

(2.1)

where t � time period, T � total number of observations, and et � (observed
value � forecasted value)at time t . To attain a sense of the dispersion of error,
the researcher can examine the sum of squared errors, the mean square
error, or the standard deviation of the errors. Another statistic commonly
used to assess the forecast accuracy is the sum of squared errors. Instead
of taking the absolute value of the error to avoid the cancellation of error
caused by adding negative to positive errors, one squares the error for each
observation, and adds up these squares for the whole forecast to give the
sum of squared errors (SSE):

Sum of squared errors � �T
t�1

e2
t (2.2)

When the sum of squared errors is divided by its degrees of freedom, the
result is the error variance or mean square error (MSE):

Mean square error � �T
t�1

e2
t

T � k
(2.3)

where T � total number of observations, and k � number of parameters
in model. When the square root of the mean square error is computed, the
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result is the standard deviation of error, sometimes referred to as the root
mean square error (RMSE):

Standard deviation of errors

(root mean square error) � ��T
t�1

e2

T � k
(2.4)

Any of these standard statistics can be used to assess the extent of forecast
error in a forecast.

There are a number of proportional measures that can also be used for
description of the relative error of the series. The percentage error, the
mean percentage error, and the mean absolute percentage error measure
the relative amount of error or bias in the forecast. The percentage error
(PE) is the proportion of error at a particular point of time in the series:

Percentage error �
(xt � ft)

xt

� 100 (2.5)

where xt � observed value of data at time t, and ft � forecasted value at
time t.

Although the percentage error is a good measure of accuracy for a
particular forecast, the analyst may choose to analyze relative error in the
entire series. The average percentage error in the entire series is a general
measure of fit useful in comparing the fits of different models. This measure
adds up all of the percentage errors at each time point and divides them
by the number of time points. This measure is sometimes abbreviated MPE:

Mean percentage error � �T
t�1

PEt

T
(2.6)

where PEt � percentage error of data at time t. Because the positive and
negative errors may tend to cancel themselves, this statistic is often replaced
by the mean absolute percentage error (MAPE):

Mean absolute percentage error � �T
t�1

�PEt �
T

(2.7)

where PEt � percentage error, and T � total number of observations.
With any or all of these statistics, a time series forecast may be described

and comparatively evaluated (Makridakis et al., 1983).
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2.3. AVERAGING TECHNIQUES

2.3.1. THE SIMPLE AVERAGE

For preliminary description and analysis, summary measures may be
used to describe a series spanning a number of time periods. Some of these
summary statistics—for example, a simple average, a single moving average,
a centered moving average, or possibly a double moving average—can be
used to smooth a series. To smooth a time series, the analyst may wish to
express the general level of the series as a simple average or the changing
level over time as a moving average. The general level may serve as a
baseline against which to describe fluctuations. The simple average can be
used to describe a series that does not exhibit a trend; it gives each observa-
tion an equal weight in the computation. The simple average is helpful in
designating and comparing the general levels of different series, each of
which may have a constant mean:

Simple Average � ȳ � �T
t�1

yt

T
(2.8)

2.3.2. THE SINGLE MOVING AVERAGE

When a researcher analyzes a time series, he may be more interested
in a sliding assessment of the level of the series. He may use one of several
linear moving average methods, including a single or double moving average
for forecasting. The single moving average is a mean of a constant number
of observations. This mean is based on the same number of observations
in a sliding time span that moves its point of origin one time period at a
time, from the beginning to the most recent observations of the series. The
number of observations used for the computation of the mean is called the
order of the series. The mean is computed and recorded for this number
of observations from the beginning until the end of the series, at which
point the calculations cease. Each of the observations in the calculation of
the moving average is given an equal weight when the simple average is
calculated. In the formula for the moving average, shown in Eq. (2.9), the
subscript i is replaced by t, and the n from the simple average becomes a
t as well. The span from t1 to t3 embraces three time periods.

A single moving average of order three

MA(3) � �t3
t�t1

xt (2.9)
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The cumulative effect of the moving average, however, gives more
weight to the central observations than to those at the ends of the
series.

The effect of the single moving average is to smooth out irregular
fluctuations, sometimes referred to as the hash, of the time series. This
moving average may also smooth out the seasonality (characteristic annual
variation, often associated with the seasons of the year) inherent in the
series. The extent of smoothing depends on the order of the series: The
more time periods included in this order (average), the more smoothing
takes place. A moving average of order 1, sometimes referred to as a
naive forecast, is used as a forecast by taking the last observation as a
forecast for the subsequent value of the series.

As an illustration, a moving average of order 3—that is, MA(3)—is
used for forecasting one-step-ahead; this kind of moving average is often
used for quarterly data. This moving average takes the average of the
three quarterly observations of that year, thereby effectively smoothing
out additive seasonal variation of that year. This average is set aside in
another column. At the next calculation of this moving average, the
starting point for calculation begins with the value of the observation at
the second time period in the observed series. The sum of the three
observations, beginning with that second time period, is taken and then
divided by 3. The mean that is calculated and recorded as the second
observation in the column for the single moving average series. The third
observation of the new single moving average series is calculated using
the third observation of the original series as the first of three consecutive
observations added together before dividing that sum by 3. Again this
mean is set aside in the column reserved for the new series consisting
of single moving averages. The sequence of means computed from an
average based on consecutive observations moving over time constitutes
the new series that is called the single moving average. The computation
of this kind of moving average lends more weight to the middle observa-
tions in the series than does the simple average. Table 2.1 shows the
computations for a moving average of order 3 of household heating
units sold.

Note that the moving average does not extend for the whole time
span of the series. The moving average of order T begins after t periods
have elapsed. In this example, T � 3 and the moving average is a mean
of the three preceding periods. Nonetheless, some persons opt for some
smoothing of irregular variation and prefer this kind of moving average
for naive forecasting of the next observation of the series from last single
moving average value.
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Table 2.1

Forecasting with Single Moving Average Smoothing

Sales in Single Moving
Monthly Time Periods Heating Units Average (T � 3) Error

1. January 10 units
2. February 9
3. March 8
4. April 7 (10 � 9 � 8)/3 � 9.00 �2.00
5. May 3 (9 � 8 � 7)/3 � 8.00 �5.00
6. June 2 6.00 �4.00
7. July 1 4.00 �3.00
8. August 0 2.00 �2.00
9. September 1 1.00 �0.00

10. October 5 0.67 4.33
11. November 12 2.00 10.0
12. December 14 6.00 8.0

Forecast 10.33

2.3.3. CENTERED MOVING AVERAGES

Calculation of the moving average differs depending on whether the
series contains an even or odd number of observations. Many series have
even numbers of observations, such as those spanning a year of 12 months.
A T-period moving average should really be centered at time period
(T � 1)/2, and this centering is sometimes called the correction for lag
(Makridakis et al., 1983). Rarely, however, is the naive forecast using a
single moving average tendered except as an impromptu approximation
for general purposes. In cases such as this, centering the moving average
solves the problem. Centering involves taking an additional moving average
of order 2 of the first moving averages. The resulting moving average is a
mid-value for the first moving average of an even order. The researcher
would take the moving average for the period before the midpoint and the
moving average for the period after that midpoint, and then take the average
of those two scores to obtain the centered moving average. This is a common
means by which moving averages of even-numbered series are handled.

2.3.4. DOUBLE MOVING AVERAGES

A double moving average may be used for additional smoothing of a
single moving average. Computing the double moving average is simple:
First a single moving average series is computed. Then a second moving
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average series is calculated from the first moving average. The double
moving average is distinguished from the single moving average by begin-
ning T periods after the starting point of the series. The first moving average
is of order T. A second moving average, made up of the components of
the first moving average, is of order N. In other words, the double moving
average takes the average of N of the first moving averages. The double
moving average begins T � N time points after the beginning of the first
point in the series. It results in more smoothing of the first smoothing
moving average. The extent of this smoothing depends on the lengths of
the first and second moving average. For long series, with much irregularity
or incremental error, this kind of smoothing facilitates elimination of short-
run fluctuations. This double moving average is called a moving average
of order T by N, denoted by (T � N). Let T � 3 and N � 3 in the example
in Table 2.2.

The use of double moving averages permits calculation of intercept and
trend for the basic formula by which exponential smoothing forecasts are
generated. In Table 2.2, note that the forecast is constructed with the aid
of the double moving average. The double moving average can be used to
compute an intercept and a trend coefficient, the average change over
h periods, which are added together to obtain the forecast, Ft�h , for h

steps ahead:

Ft�h � at � bth (2.10)

Table 2.2

Double Moving Average Forecasting with Linear Trend

C E
Single Double

A B Moving D Moving F H
Time Data Average Error, Average Error, G Prediction,

Periods T Series MA(3) B � C MA(3 � 3) C � E Trend E � F � G

1 34
2 36
3 38 36 2
4 40 38 2
5 42 40 2 38 2 2 42
6 44 42 2 40 2 2 44
7 46 44 2 42 2 2 46
8 48 46 2 44 2 2 48
9 50 48 2 46 2 2 50

10 52 50 2 48 2 2 52

54
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The intercept, at , is simply two times the single moving average minus the
double moving average. The trend coefficient, bt , is the average difference
between single moving average and the double moving average from one
time point to the next, and this is computed by subtracting the double from
the single moving average, multiplying the difference by 2, and dividing by
T � 1. To obtain the forecast, the error between the single and double
moving average is added to the sum of the single moving average and the
trend. This process has been called a moving average with linear trend. It
is helpful to consider the calculations of the moving average with linear
trend for the forecast. For longer series, this process may reduce the mini-
mum mean square error of the series and hence render a more accurate
forecast than the earlier naive one (Makridakis et al., 1983).

2.3.5. WEIGHTED MOVING AVERAGES

Although the simple averages use equally weighted observations at first,
they end up with equally weighted observations except for the endpoints.
However, double moving averages have substantially unequally weighted
observations, with potentially problematic consequences for prediction. A
double moving average of 3 by 3 provides a good illustration of this problem.
The weighting of the observations in a double moving average gives the
middle observations more influence than more recent observations because
the middle values in the series are used in the calculation of the final mean
more than the observations at either the original or the recent tail of the
time series. The more recent observations have more effect on future
observations than those in the more distant past, so a linearly weighted
series might be of greater utility than a conventional moving average.

Double moving average:

MA(3)1 � X1 � X2 � X3

MA(3)2 � X2 � X3 � X4

MA(3)3 � X3 � X4 � X5

X1 � 2X2 � 3X3 � 2X4 � X5

X1 � 2X2 � 3X3 � 2X4 � X5

Forecast (double moving average)t�1 � xt � �� Xt�1 � �� Xt�2 � �� xt�3 � �� xt�4

Forecast (linearly weighted moving average)t�1 � xt � �� xt�1 � �� xt�2 � �� xt�3

(2.11)

This forecast is characterized by a linear decrement of the weights as the
time period is extended into the past. This weighting scheme gives 1/T less
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importance to each of the T values as one proceeds back along the time
path. The effect of the past observations on the future ones may actually
decline nonlinearly as one proceeds into the past. To compensate for the
irregular weighting of observations, exponential smoothing is introduced.

2.4. EXPONENTIAL SMOOTHING

2.4.1. SIMPLE EXPONENTIAL SMOOTHING

Exponential smoothing is a method, conceived of by Robert Macaulay
in 1931 and developed by Robert G. Brown during World War II, for
extrapolative forecasting from series data. The more sophisticated exponen-
tial smoothing methods seek to isolate trends or seasonality from irregular
variation. Where such patterns are found, the more advanced methods
identify and model these patterns. The models can then incorporate those
patterns into the forecast. When used for forecasting, exponential smooth-
ing uses weighted averages of the past data. The effect of recent observations
is expected to decline exponentially over time. The further back along the
historical time path one travels, the less influence each observation has on
the forecasts. To represent this geometric decline in influence, an exponen-
tial weighting scheme is applied in a procedure referred to as simple (single)
exponential smoothing (Gardiner, 1987).

Suppose that a prediction is going to be based on a moving average.
The moving average prediction will be called MAt�1 and the previous
moving average will be called MAt . If the moving average under consider-
ation is made up of 10 observations, then the easiest way to update the
moving average is to slide it along the time path, one time period at a time.
At each time period, the average of the 10 observations will be taken.
Another way to conceptualize this same process is to take 1/10 of the value
of the observation at time t and to subtract 1/10 of the moving average
formed from the ten most recent observations before combining them to
produce a new moving average prediction (Brown, 1963):

MAt�1 � (1 � 1/10)MAt � (1/10)xt (2.12)

In this example, the moving average consists of 10 observations, though
the moving average may be made up of any number of observations. The
proportion of the latest observation taken is called a smoothing constant,
�. The formula representing this simple smoothing is

MAt�1 � (1 � �)MAt � (�)xt

� (�)xt � (1 � �)MAt (2.13)
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In view of the fact that this moving average is a smoothing function that
may be applied for the purpose of forecasting, a forecast, F6 , may be
substituted for the moving average, MAt , in this formula to obtain a formula
for forecasting:

F̂t�1 � �xt � (1 � �)Ft . (2.14)

Extending this expression one step along the time line into the past, one
obtains the expansion:

F̂t�1 � �xt � (1 � �)[�Xt�1 � (1 � �)]Ft�1

� �xt � �(1 � �)Xt�1 � (1 � �)2Ft�1 . (2.15)

If this expression is extended two and then n steps into the past, it becomes

F̂t�1 � �xt � (1 � �)[�Xt�1 � (1 � �)]Ft�1

� �xt � �(1 � �)Xt�1 � (1 � �)2Ft�1 � �(1 � �)3Xt�3 (2.16)

� · · · � �(1 � �) n�1Xt�n�1 � (1 � �) nFt�n�1 .

At this point, the meaning of the smoothing weight, �, is modified slightly
from the meaning it had in the first example. The magnitude of the smooth-
ing constant ranges between 0 and 1.0. A smaller smoothing constant gives
more relative weight to the observations in the more distant past. A larger
smoothing constant, within these bounds, gives more weight to the most
recent observation and less weight to the most distant observations. The
smaller the smoothing weight, the more weight is given to observations in
the past and the greater the smoothing of the data. In this way, the smooth-
ing constant, �, controls the memory of the process.

Two choices must be made before simple exponential smoothing is possi-
ble: the initial value of the smoothing weight and the final value of the
smoothing constant.

First consider the choice of the optimal smoothing constant. This constant
may be found by graphical or statistical comparison. Any of the goodness-
of-fit indicators discussed earlier can be applied to objectively compare one
forecast error with another. Often, the better smoothing weight is less than
0.5 and greater than 0.10, although this need not be the case. For graphical
presentation and evaluation, a spreadsheet may be used to generate the
predictions and chart them. The smoothing constant of a simple exponential
smoothing of these data can be chosen by visual inspection.

A manager planning his inventory might decide that he should use a
particular smoothing constant to estimate his needs. Three smoothings,
along with their smoothing constants, are shown in Figure 2.1. The data
are represented by the heavy line in the background, while the different
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Figure 2.1 Single exponential smoothing with various smoothing parameters.

single exponential smoothings constructed with the three different smooth-
ing constants shown in the legend are shown as lines broken by symbols.
Based on the level of smoothing, the manager can decide which suits his
needs optimally.

Makridakis et al. (1983) suggest four ways to choose an initial value of
the series. The forecaster should acquire enough data to divide his data
set into at least two segments. The first (historical or training) segment is
for estimating initial values and model parameters. The second (hold-out)
data set is used for validation of the explanatory or forecasting model. It
is common to select the average of the estimation sample as the starting
value of the smoothing constant to be used for forecasting over the span
of the validation sample. If the series is an extension of a previous series,
then the average of that previous series may be used. Alternatively, the
mean of the whole series may be used as a starting value. Different starting
values may be employed while some measure of forecasting accuracy may
be compared to see which will be ultimately chosen as the best. Finally,
backcasting, using an ARIMA model to be discussed in Chapters Four
through Seven, may be employed. Based on the existing data in the series,
the analyst may forecast backward to obtain the initial value.

When these matters are resolved, the equation that emerges from a
simple (single) exponential smoothing is a linear constant model. The model
has merely a mean and an error term. Note that this model accounts for
neither trend nor seasonality.

Yt � � � et (2.17)

Models that accommodate trend and seasonality will be discussed shortly.
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2.4.1.1. Single Exponential Smoothing: Programming Syntax and
Output Interpretation

Both SAS and SPS have programs that perform single exponential
smoothing. Both programs allow the user to select the initial value for the
smoothing, but by default select the mean of the series for an initial value.
Neither program tolerates missing values within the series for exponential
smoothing. The SPSS program permits the user to insert his own smoothing
weight, �, or permits a grid search of the sum of squared errors to find the
optimal smoothing weight value for smoothing or forecasting.

If a retailer examined the proportion of available space in his warehouse
over the past 262 days to estimate how freely he could procure stock over
the next 24 days, he might employ this simple extrapolative method. If he
were using SAS, his prepared program might contain explanatory annota-
tions in the program bracketed by /* and */ and title statements that begin
the documentation of the exponential smoothing procedure invoked by a
PROC FORECAST statement.

Each SAS program has a DATA step, a PROC step, and a data set.
The data step defines the variables and their locations. It performs any
transformations of them prior to the inclusion of the data under a CARDS
or DATALINES statement. The statistical PROCedure usually follows the
preliminary data preparation. Title statements are often inserted under-
neath the procedure referred to, and such titles will appear at the top of
the pages containing the statistical output of that procedure.

Title 'SAS program file: C2pgm1.sas';

Title2 'Simple Exponential Smoothing';

title3 'Free Warehouse Space';

title4 'for Stock Procurement';

data one; retain time(1); /* time is initialized at 1 */

input invspace; /* variable is defined */

time + 1; /* time counter constructed */

cards; /* the data follow */

data go here

proc print data=one; /* check of program construction */

title ’data one’; /* gets data from data set one */

run;

proc forecast data=one method=expo trend=1 lead=24

outall outfitstats out=fore outest=foretest;

var invspace; /* *************************** */

id time; /* Explanation of Proc Forecast */

run; /* proc forecast does expo smothg */

/* method=exp uses simple exponential smoothing */

/* trend = 1 uses a constant model */

/* lead=24 forecasts 24 days ahead */
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/* outall produces actual forecast l95 u95 std vars */

/* outfitstats produces forecast eval stats */

/* out=fore produces output data set */

/* outest=foretest produces forecast eval data set */

/* invspace is the variable under examination */

/* id time uses the time counter as the day var */

/* *********************************** */

proc print data=foretest; * prints the evaluation stats */

title 'Forecast Evaluation Statistics';

run;

data all; /* Merges original data with generated data/*

merge fore one; by time;

run;

symbol1 i=join c=green; /* sets up the lines for the plot */

symbol2 i=join c=red;

symbol3 i=join c=blue;

symbol4 i=join v=star c=purple;

axis1 order=(.10 to .50 by .02) label=('Inv Space'); /*creates axis */

proc gplot data=all; /* gplot gets merged data */

plot invspace*time=_type_/overlay vaxis=axis1;/* plots space v time */

where _type_ ^='RESIDUAL' & _type_ ^= 'STD'; /* drops nuisance vars */

title 'Exponential Smoothing Forecast of';

title2 'Free Inventory Space';

run;

The SAS forecast procedure produces two output data sets. The forecast
values are produced in an output data set called FORE and the fit statistics
in a data set called FORETEST. The fit statistics, based on the fit of the
model to the historical data, are first listed below and defined for the
reader.

Evaluate Series

OBS _TYPE_ TIME INVSPACE

1 N 262 262 sample size

2 NRESID 262 262 number of residuals

3 DF 262 261 degrees of freedom

4 WEIGHT 262 0.2 smoothing weight

5 S1 262 0.2383997 smoothed value

6 SIGMA 262 0.0557227 standard deviation of error

7 CONSTANT 262 0.2383997 constant

8 SST 262 1.2794963 total sum of squares

9 SSE 262 0.8104098 sum of squared errors

10 MSE 262 0.003105 mean square error
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11 RMSE 262 0.0557227 root mean square error

12 MAPE 262 13.317347 mean absolute percent error

13 MPE 262 -3.795525 mean percent error

14 MAE 262 0.0398765 mean absolute error

15 ME 262 -0.003094 mean error

16 MAXE 262 0.363617 maximum error

17 MINE 262 -0.163524 minimum error

18 MAXPE 262 61.318205 maximum percentage error

19 MINPE 262 -95.07207 minimum percentage error

20 RSQUARE 262 0.3666181 r square

21 ADJRSQ 262 0.3666181 adjusted r square

22 RW_RSQ 262 0.3720846 random walk r square

23 ARSQ 262 0.3617646 Amemiya's adjusted r square

24 APC 262 0.0031169 Amemiya's Prediction Criterion

25 AIC 262 -1511.983 Akaike Information Criterion

26 SBC 262 -1508.414 Schwartz Bayesian Criterion

When the data in the FORE data set are graphed with the plotting com-
mands, the plot in Fig. 2.2 is produced.

In Figure 2.2 the actual data, the forecast, and the upper and lower 95%

confidence limits of the forecast are plotted in a time sequence plot. From
an inspection of this chart, the manager can easily decide what proportion
of space will be available for inventory storage in the next 24 days.

The SPSS command syntax for simple exponential smoothing of these
inventory data and a time sequence plot of its predictions follows. In both

Figure 2.2 Exponential smoothing forecast of free inventory space (SAS Graph).
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SPSS and SAS, comments may be indicated by a statement beginning with
a single asterisk at the left-hand side of the line. SPSS commands begin in
the left-most column of the line. The usual command terminator (in the
case of SPSS, a period; in the case of SAS, a semicolon) ends the comment.
Continuations of SPSS commands are indicated by the / at the beginning
of the next subcommand.

* SPSS Program file: c2pgm2.sps.

get file='c2fig3.sav'.

TSET PRINT=DEFAULT NEWVAR=ALL.

PREDICT THRU 300.

EXSMOOTH /VARIABLES=invspace

/MODEL=NN

/ALPHA=GRID(0 1 .1)

/INITIAL=CALCULATE.

Execute.

* iterative replacement of missing time values for predicted periods.

if (missing(time)=1) time=$casenum.

*Sequence Charts.

TEMPORARY.

COMPUTE #OBSN = #OBSN � 1.

COMPUTE MK_V_# = ( #OBSN < 261 ).

TSPLOT VARIABLES= invspace fit_1

/ID= time

/NOLOG

/MARK MK_V_#.

* the following command tests the model for fit.

Fit err_1 /dfe=261.

These SPSS commands invoke simple exponential smoothing of the variable
invspace. Based on the 262 cases (days) of the invspace variable de-
scribing the proportion of available inventory space, these commands re-
quest predicted values through 300 observations. The MODEL subcommand
specifies the type of trend and seasonal component. Because this is simple
exponential smoothing, the NN designation stands for neither trend nor
seasonal component. In other words, the first of these letters is the trend
parameter. Trend specification options are N, for none, L for linear, E for
exponential, and D for dampened. The types of seasonal component options
available are N for none, A for additive, and M for multiplicative. The
smoothing weight, ALPHA, is found by a grid search over the sum of squared
errors produced by each iteration of alpha from 0 to 1 by a step value
of 0.1. The smoothing weight yielding the smallest sum of squared
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errors is chosen by the program as the alpha for the final model. The
/INITIAL =CALCULATE option invokes the mean of the series as a start-
ing value. Alternatively, the user may enter his own choice of starting
value. Two variables are constructed as a result of this analysis, the fit,
called fit_1, and the error, called err_1. These variables are placed at
the end of the system file, which is given a suffix of .sav. These newly
constructed variables contain the predicted and residual scores of the
smoothing process. Because of the forecast into the future horizon, the
output specifies how many cases have been added to the dataset. From this
output, it may be seen that the grid search arrives at an optimal alpha of
0.2 on the basis of an objective criterion of a minimum sum of squared
errors.

MODEL: MOD_2.c2pgm2.sps.

Results of EXSMOOTH procedure for Variable INVSPACE

MODEL= NN (No trend, no seasonality)

Initial values: Series Trend

.31557 Not used

DFE = 261.

The 10 smallest SSE’s are: Alpha SSE

.2000000 .83483

.3000000 .84597

.1000000 .86395

.4000000 .87678

.5000000 .91916

.6000000 .97101

.7000000 1.03279

.8000000 1.10613

.9000000 1.19352

.0000000 1.27950

The following new variables are being created:

NAME LABEL

FIT_1 Fit for INVSPACE from EXSMOOTH, MOD_2 NN A .20

ERR_1 Error for INVSPACE from EXSMOOTH, MOD_2 NN A .20

24 new cases have been added.

The goodness of fit of the model is tested with the next command, FIT
err_1 /DFE=261. For a correct test of fit, the user must find or calculate
the degrees of freedom (DFE � number of observations minus the number
of degrees of freedom for the hypothesis) and enter them (SPSS 7.0 Algo-

rithms, 1997). They are given in the output of the smoothing and can be
entered in this command thereafter. The output contains a few measures
of fit, such as mean error, mean absolute error, mean square error, and root
mean square error. These statistics are useful in comparing and contrasting
competing models.
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FIT Error Statistics

Error Variable ERR_1

Observed Variable N/A

N of Cases Use 262

Deg Freedom Use 261

Mean Error Use -.0015

Mean Abs Error Use .0404

Mean Pct Error Use N/A

Mean Abs Pct Err Use N/A

SSE Use .8348

MSE Use .0032

RMS Use .0566

Durbin-Watson Use 1.8789

At the time of this writing, SPSS can produce a time sequence plot. Figure
2.3 graphically presents the actual proportion of inventory space available
along with the values predicted by this computational scheme. A line of
demarcation separates the actual from the predicted values.

Single exponential smoothing is advantageous for forecasting under par-
ticular circumstances. It is a simple form of moving average model. These

Figure 2.3 A single exponential smoothing of free inventory space (SPSS Chart).
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models lack trend or seasonality, and they do not require a long series for
prediction. They are easy to program and can be run with a spreadsheet
by those who understand the process. However, they lack flexibility without
more development, and are not that useful for modeling a process unless
they themselves yield a mathematical model of the process. The output
from this procedure, a mean plus some random error, is merely a smoothed
set of values plus a sequence of predictions, which leaves something to be
desired if one needs to explain a more complicated data-generating process.

2.4.2. HOLT’S LINEAR EXPONENTIAL SMOOTHING

In failing to account for trends in the data, simple exponential smoothing
remains unable to handle interesting and important nonstationary pro-
cesses. E. S. Gardiner expounds on how C. C. Holt, whose early work
was sponsored by the Office of Naval Research, developed a model that
accommodates a trend in the series (Gardiner, 1987). The final model
for a prediction contains a mean and a slope coefficient along with the
error term:

Yt � �t � �tt � et (2.18)

This final model consists of two component equations for updating (smooth-
ing) the two parameters of the equation system—namely, the mean, �, and
the trend coefficient, �. The updating equation for the mean level of the
model is a version of the simple exponential smoothing, except that the
trend coefficient is added to the previous intercept to form the component
that receives the exponential decline in influence on the current observation
as the process is expanded back into the past. The alpha coefficient is the
smoothing weight for this equation:

�t � �Yt � (1 � �)(�t�1 � bt�1) (2.19)

The trend coefficient is also updated by a similar exponential smoothing.
To distinguish the trend updating smoothing weight from that for the
intercept, � is used instead. The values for both smoothing weights can
range from 0 to 1.0.

bt � �(ut � ut�1) � (1 � �)bt�1 (2.20)

In the algorithm by which this process works, first the level is updated.
The level is a function of the current value of the dependent variable plus
a portion of the previous level and trend at that point in time. Once the
new level is found, the trend parameter is updated. Based on the difference
between the current and previous intercept and a complement of the previ-
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ous trend, the current trend parameter is found. This process updates the
coefficients of the final prediction equation, taking into account the mean
and the trend as well. If one were to compute the forecast equation h steps
ahead, it would be Ŷt(h) � ut � htt .

Holt’s method can be applied to prediction of trust in government. Either
SAS or SPSS may be used to program this forecast. In the American
National Election Study, political scientists at the Institute of Social Re-
search at the University of Michigan have studied attitudes of the voting
public, including trust in government. The aggregate response to this indica-
tor functions as a feeling thermometer for the political system. The public
are asked ‘‘How much do you trust the government to do the right thing?’’
The possible answers are Don’t know, Never, Some of the time, Most of
the time, and Almost always. The percentage of people having a positive
attitude—that is, trusting government to do the right thing most of the
time or almost always—is examined over time. If the percentage of re-
sponses shows a serious decline in public trust, then the political climate
may become too hostile for the political process to function and it may
break down. When the series of biennial surveys was examined, a short
series was constructed that lends itself to some exponential smoothing.

A preliminary review of the series revealed the presence of a negative
trend in public trust in government. A plot of percentage of positive trust
in government vs time was constructed with SAS Graph and is shown in
Fig. 2.4.

From the series depicted in the graph, it appears that decline in public
trust set in during domestic racial strife, urban riots, and escalation of the

Figure 2.4 Holt Smoothing Forecast of Public Trust in Government National Election Study
Table 5A.1 (1958–1994). Source: Inter-University Consortium for Political and Social Re-
search, Institute of Social Research, University of Michigan. Data (SAS Graph).
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Vietnam War. A credibility gap developed over inflated body counts and
over-optimistic official assessments of allied military operations in Vietnam.
Public trust in government declined after the Tet Offensive in 1968 and
continued to slide until 1970, when the slippage seemed to let up. In 1972,
during the Watergate scandal, trust in government plummeted. When Presi-
dent Richard Nixon left office in 1974, the steepness of the decline abated,
but President Gerald Ford’s pardon of Nixon and the intelligence agency
scandals kept trust in government slipping. It was not till Reagan came
into office that trust in government began to grow, and grow it did for 5
years. The Iran–Contra scandal probably produced another crisis that made
people politically cynical again. The first 2 years of the Bush tenure experi-
enced an improvement in public trust, but it began to decline until the Gulf
War. During the Gulf War, there was a growth in trust in government. But
during the economic doldrums of the last year of the Bush term, trust
declined again. This slippage was turned around by the first 2 years of the
Clinton administration. In 1994, the Republicans gained control of Con-
gress, and by the end of 1995 had shut down the government while de-
manding huge reductions in taxes and Medicare spending. Trust in govern-
ment began to fall again.

What is the prediction, ceteris paribus, of how much the public would
trust government in the last years of the Clinton presidency? A glance at
the output statistics for this model discovers that the trend is a �2.94 and
that the constant for the model is 76.38. The R 2 for this and the no-trend
model were compared, and the linear trend model was found to have the
better fit. It is interesting to note that the farther into the future the predic-
tion is extended, the wider the confidence interval. Contrary to this statisti-
cal prediction and those of political pundits, by 1998, President William J.
Clinton, in spite of a campaign to tarnish his reputation with allegations
of one scandal or another, enjoyed the highest public job approval rating
since he came into office: more than 63% of the public approved of his
job performance according to both the Gallup and Washington Post polls
(spring 1998).

It is easy to program a Holt linear trend exponential smoothing model
in SAS. The basic difference between this program and the previous SAS
program is that in the earlier program, the TREND option was assigned
a value of 1 for a constant only. In this program the TREND option has
a value of 2, for two parameters. The first parameter is a constant, and the
second is that of a linear trend. A regression on a constant, a time and a
time-squared parameter reveals whether the constant, linear, and/or qua-
dratic terms are significant. The value of the TREND option represents
the highest number of parameters used for testing the time trend. Therefore,
if there were a quadratic trend, then a value of 3 would be used for the
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TREND option. In this case, the optimal coefficient value for TREND is
2. In this case, the linear component was the significant one, which is why
the Holt model was chosen for smoothing and forecasting 6 years ahead
with such a short series.

SAS PROGRAM SYNTAX:

/* c2pgm3.sas */

title'National Election Study Table 5A.1 v604';

title2 'Percentage who Trust in Federal Government 1958-1994';

title3 'How much of the time do you trust the gvt to do whats right';

title4 '1960 and 1962 values are interpolations';

data trust; /* name of data set */

input date: monyy5. none some most almalwys dk; /* variable definitn */

label none=’None of the time’ /* var labels */

some=’Some of the time’

most=’Most of the time’

almalwys=’Almost always’;

Positive = most � almalwys; /*construction of test variables */

Negative = none � some;

year = year(date); /* construction of time trend vars */

yearsq = year**2; output;

label Positive = ’Most � almost always’

Negative = ’None � sometimes’;

cards;

data go here

proc print label; /* check of data */

run;

/* The Graphical Plot */

axis1 label=none order=(0 to 80 by 10); /* Sets up axis for plot */

symbol1 v=star c=brown i=join; /* defines the lines in plot */

symbol2 v=square c=black i=join;

symbol3 v=circle c=cyan i=join; /* Gplot to examine raw data */

symbol4 v=diamond c=green i=join;

symbol5 v=triange c=blue i=join;

footnote justify=L 'Star=none Square=some Circle=most Diamond=almost

always';

proc gplot; /* Examine the answer battery re trust in govt */

plot (none some most almalwys) * date /overlay

vaxis=axis1 ;

format date monyy5. ;

run;

/* collapsing the plot into positive & negative */
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axis1 order=(20 to 80 by 10) label=none

offset=(2,2) width=3 ;

axis2 order=(1958 to 2000 by 10) label = ('Year');

symbol1 v=star c=blue i=join;

symbol2 v=square c=red i=join;

footnote justify=L 'Star=% Most or Almost always Square= % None or some

Trust';

proc gplot;

plot (positive negative) * year/ vaxis=axis1

haxis=axis2 overlay;

run;

proc reg;

model positive = year yearsq;

title5 'Test of Type of Trend in Trust in Government';

run;

proc forecast data=trust trend=2 interval=year2 lead=3 out=resid

outactual outlimit outest=fits outfitstats;

var positive; /* trend = 2 for Holt Linear model */

id date;

format date monyy5.;

title5 'Holt Forecast with Linear Trend';

run;

proc print data=fits; /* checking fit for this model */

title5 'Goodness of fit';

run;

proc print data=resid; /* printing out the forecast values

*/

run;

proc gplot data=resid; /* generating forecast interval plot */

plot positive * date = _type_ /

haxis = ’1958 to 2000 by 2’;

format date year4.;

footnote justify=L ’ ’;

title5 'Percentage Trusting Government Most of time or Almost always';

run;

SPSS PROGRAM SYNTAX:

* C2PGM4.SPS .

* Example of Holt Linear Exponential Smoothing Applied to short.

* series from American National Election Study Data.

title'National Election Study Table 5A.1 v604'.

subtitle 'Percentage who Trust in Federal Government 1958-1994'.

* 'How much of the time do you trust the gvt to do whats right'.

* '1960 and 1962 values are interpolations'.

DATA LIST/DATE 1-5(A) NONE 8 SOME 9-14 MOST 15-18 ALMALWYS 19-23 DK 25-28.

VAR LABEL NONE ’NONE OF THE TIME’/
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SOME ’SOME OF THE TIME’/

MOST ’MOST OF THE TIME’/

ALMALWYS ’ALMOST ALWAYS’.

COMPUTE POSITIVE=SUM(MOST,ALMALWYS).

COMPUTE NEGATIVE=SUM(NONE,SOME).

STRING YEARA(A2).

COMPUTE YEARA=SUBST(DATE,4,2).

RECODE YEARA (CONVERT) INTO ELECYEAR.

COMPUTE ELECYEAR = 1900 + ELECYEAR.

FORMATS ELECYEAR(F4.0).

VAR LABELS POSITIVE ’MOST � ALMOST ALWAYS’

NEGATIVE = ’NONE � SOMETIMES’.

FORMATS NONE,SOME,MOST,ALMALWYS,DK(F4.1).

BEGIN DATA.

Data go here

END DATA.

LIST VARIABLES=ALL.

EXECUTE.

DATE YEAR 1952 BY 2.

EXECUTE.

* EXPONENTIAL SMOOTHING.

TSET PRINT=DEFAULT NEWVAR=ALL .

PREDICT THRU 22 .

EXSMOOTH /VARIABLES=POSITIVE

/MODEL=HOLT

/ALPHA=GRID(0 1 .1)

/GAMMA=GRID(0 1 .2)

/INITIAL=CALCULATE.

Execute.

Fit err_1 /DfE=17.

Execute.

*Sequence Charts .

TEMPORARY.

COMPUTE #OBSN = #OBSN � 1.

COMPUTE MK_V_# = ( #OBSN < 19 ).

TSPLOT VARIABLES= POSITIVE FIT_1

/ID= YEAR

/NOLOG

/FORMAT NOFILL NOREFERENCE

/MARK MK_V_#.

EXECUTE.

The SPSS output follows. The output shows the initial values of the constant
and the linear trend parameter, and it provides, in decreasing order of
quality, the 10 best alphas, gammas, and their associated sums of squared
errors. The first line contains the best parameter estimates, selected for the
smoothing predicted scores. The fit and error variables are then constructed.
The output, shown below, specifies the model as a HOLT model with a
linear trend, but no seasonality. Values for the mean and trend parameters
are given. The fit statistics, not shown here, would follow the listed output.
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The command syntax for a time sequence plot of the actual and predicted
values, with a vertical reference line at the point of prediction, concludes
SPSS program C2pgm4.sps.

Results of EXSMOOTH procedure for Variable POSITIVE

MODEL= HOLT (Linear trend, no seasonality)

Initial values: Series Trend

74.44444 -2.88889

DFE = 17.

The 10 smallest SSE’s are: Alpha Gamma SSE

1.000000 .0000000 819.92420

.9000000 .0000000 820.80126

.8000000 .0000000 844.68187

.7000000 .0000000 891.48161

.9000000 .2000000 948.54177

1.000000 .2000000 953.90135

.6000000 .0000000 961.79947

.8000000 .2000000 983.15832

.9000000 .4000000 1006.43601

.8000000 .4000000 1024.63425

The following new variables are being created:

NAME LABEL

FIT_1 Fit for POSITIVE from EXSMOOTH, MOD_8 HO A1.00 G .00

ERR_1 Error for POSITIVE from EXSMOOTH, MOD_8 HO A1.00 G .00

3 new cases have been added.

For models with a constant, linear trend and no seasonality, the Holt
method is fairly simple and may be applied to stationary or nonstationary
series. It is applicable to short series, but it cannot handle seasonality. If
the series has significant seasonal variation, the accuracy of the forecast
degrades and the analyst will have to resort to a more sophisticated model.

2.4.3. THE DAMPENED TREND LINEAR EXPONENTIAL

SMOOTHING MODEL

Although taking a linear trend into account represents an improvement
on simple exponential smoothing, it does not deal with more complex
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types of trends. Neither dampened nor exponential trends are linear. A
DAMPENED trend refers to a regression component for the trend in the
updating equation. The updating (smoothing) equations are the same as
in the linear Holt exponential smoothing model (Equations 2.19 and 2.20),
except that the lagged trend coefficients, bt�1 , are multiplied by a dampening
factor, �i. When these modifications are made, the final prediction model for
a dampened trend linear exponential smoothing equation with no seasonal
component (SAS Institute, 1995) follows:

Yt�h � �t � �h
i�0

� ibt (2.21)

with � i � dampening factor.
Otherwise, the model is the same.

Alternatively, the model could have an EXPONENTIAL trend, where
time is an exponent of the trend parameter in the final equation : Yt�h �
�tb

t
t . Many series have other variations in type of trend. It is common for

series to have regular annual variation that also needs to be taken into
account. For exponential smoothing to be widely applicable, it would have
to be able to model this variation as well.

2.4.4. EXPONENTIAL SMOOTHING FOR SERIES WITH TREND

AND SEASONALITY: WINTER’S METHODS

To accommodate both tend and seasonality, the Winters model adds a
seasonal parameter to the Holt model. This is a useful addition, insofar as
seasonality is commonplace with many kinds of series data. Many goods
and services are more frequently produced, sold, distributed, or consumed
during specific times of the year. Clearly, management, planning or bud-
geting that involves these goods might require forecasting that can accom-
modate seasonal variation in the series. This accommodation can be additive
or multiplicative. In the additive model, the seasonal parameter, St , is
merely added to the overall Holt equation to produce the additive Win-
ters model:

Yt�h � �t � btt � St�p�h � et (2.22)

The subscript p is the periodicity of the seasonality, and t � h, is the number
of periods into the forecast horizon the prediction is being made. Each
of the three parameters in this model requires an updating (smoothing)
equation: The updating equation for the mean is

�t � �(Yt � St�p) � (1 � �)(�t�1 � bt�1) (2.23)
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Meanwhile, the trend updating equation is given by

bt � �(�t � �t�1) � (1 � �)bt�1 (2.24)

and the seasonal updating is done by

St � �(Yt � �t) � (1 � �)St�p (2.25)

The seasonal smoothing weight is called delta, �. The seasonal factors,
represented by St�p , are normalized so that they sum to zero in the additive
Winters model. All together, these smoothing equations adjust and combine
the component parts of the prediction equation from the values of the
previous components (SAS Institute, 1995). By adding one more parameter
to the Holt model, the Winters model additively accommodates the major
components of a time series.

The multiplicative Winters model consists of a linear trend and a multipli-
cative seasonal parameter, �. The general formula for this Winters model is

Ŷt � (�t � btt)St�p�h � et (2.26)

As with the additive version, each of the three parameters is updated with
its own exponential smoothing equation. Because this is a multiplicative
model, smoothing is performed by division of the seasonal component into
the series. The mean is updated by the smoothed ratio of the series divided
by its seasonal component at its periodic lag plus smoothed lagged linear
and trend components:

�t � � � Yt

St�p
�� (1 � �)(�t�1 � bt�1) (2.27)

The trend is smoothed the same way as in the Holt model and the additive
Winters version:

bt � �(�t � �t�1) � (1 � �)bt�1 (2.28)

The seasonal smoothing follows from a portion of the ratio of the series
value over the average plus a smoothed portion of the seasonality at its
periodic lag. The seasonal component is normalized in the Winters models
so that the seasonal factors, represented by St , average to l.

St � � �Yt

ut
�� (1 � �)St�p (2.29)

2.4.4.1. PROGRAM SYNTAX AND OUTPUT INTERPRETATION

If seasonality resides or appears to reside within a series, regardless of
whether a series exhibits a trend, the use of a Winters model may be
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appropriate. The model may be additive or multiplicative. From data on
U.S. young male unemployment (ages 16–19) from 1951 through 1954, it
can be seen that there are significant seasonal variations in the unadjusted
data. The variable for this male unemployment is called ‘‘maleun.’’ There
is a month variable in the data set and a summer dummy variable is
constructed out of that. The date variable is constructed in SAS with the
intnx function. There was significantly more annual unemployment among
these youths during the summer when they entered the workplace than
when they were out of the workplace and in school. To handle this seasonal
variation, a 6-month forecast of young male unemployment is generated
with a Winters multiplicative seasonal model.

SAS program syntax:

/* c2pgm5.sas */

options ls=80;

title 'Young US Male Unemployment(in thousands)';

title2 '16-19 years of age, data not pre-seasonally adjusted';

title3 'Andrews & Herzberg Data p 392';

title4 'Springer-Verlag 1985 Table 65.1';

Data munemp;

input maleun 6-8 year 43-46 month 51-52 summer 57-60;

date = intnx(’month’,'01jan1948'd,_n_-1); /* creation of date var*/

Summer = 0; /* creation of summer */

if month > 5 and month ‹ 9 then summer=1; /* dummy variable */

format date monyy5.;

if year > 1951;

cards;

the data go here

proc print;

run;

symbol1 i=join v=star c=red;

proc gplot;

plot maleun * date;

run;

proc forecast data=munemp interval=month lead=6 outactual outlimits

out=pred outest=est outfitstats

method=winters seasons=12 trend=2 ;

id date;

var maleun;

proc print data=est;

title 'Fit Statistics';

run;
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symbol1 i=join c=green;

symbol2 i=join c=blue;

symbol3 i=join c=red;

symbol4 i=join c=red;

proc gplot data=pred;

plot maleun * date = _type_ ;

title 'Forecast Plot of Young US Male Unemployment';

title2 '16-19 years of age, data not pre-seasonally adjusted';

title3 'Andrews & Herzberg Data p 392';

title4 'Springer-Verlag 1985 Table 65.1';

run;

The principal difference between the Winters model and the Holt model
in SAS is the METHOD=WINTERS option in the forecast procedure and the
SEASONS=12. The user can set the number of seasons or use terms such
as QTR, MONTH, DAY, or HOUR. This model is set to accommodate a constant
and a linear trend in addition to these seasons. Its R 2 value is 0.43. This
forecast procedure produces the fit statistics in the output file called EST
and the forecast values are called PRED in the output file. When PRED
is plotted, it appears as shown in Fig. 2.5.

SPSS program syntax for the summer U.S. male unemployment series
is given next.

SPSS program syntax:

*C2pgm6.sps.

* Same data source: Andrews and Herzberg Data Springer 1985.

Figure 2.5 Winters forecast of young (ages 16 through 19) U.S. male unemployment. Data
from Andrews and Herberg (1984), DATA, New York: Springer-Verlag, Table 65.1, p. 392.
(SAS Graph).
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Title 'Young US Male Unemployment'.

Subtitle 'Ages 16-19 from Data '.

Data list free /maleun year month.

Begin data.

Data go here

End data.

List variables=all.

execute.

* Exponential Smoothing.

TSET PRINT=DEFAULT NEWVAR=ALL .

PREDICT THRU YEAR 1956 MONTH 8 .

EXSMOOTH /VARIABLES=maleun

/SEASFACT=month

/MODEL=WINTERS

/ALPHA=GRID(0 1 .1)

/DELTA=GRID(0 1 .2)

/GAMMA=GRID(0 1 .2)

/INITIAL=CALCULATE.

FIT ERR_1/DFE=35.

execute.

*Sequence Charts .

TSPLOT VARIABLES= maleun fit_1

/ID= date_

/NOLOG

/MARK YEAR 1955 MONTH 12 .

This SPSS program performs a multiplicative Winters exponential
smoothing on the young male unemployment data used in the SAS program,
after listing out the data. Like the previous SAS program, it uses monthly
seasonal components to model the seasonal variation in the series. From
the optimal sum of squared errors, the model settles on an alpha updating
parameter value of 0.9, a gamma trend updating value of 0.0, and a seasonal
delta parameter value of 1.0, after employing a series mean of 193.2 and
a trend of 192.3 as starting values.

The fit of this model is very good, as can be seen from the forecast plot.
Without the ability to model the seasonality, the forecast could have a
worse fit and less accuracy. The deviations of the fit from the actual data
can be seen in Fig. 2.6, in which the seasonal fluctuation manifests itself in
the fit of this model.

2.4.5. BASIC EVALUATION OF EXPONENTIAL SMOOTHING

Exponential smoothing has specific applications of which the analyst
should be aware. These methods are easy to learn, understand, set up, and
use. Because they are based on short-term moving averages, they are good
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Figure 2.6 Winters forecast of young U.S. male unemployment. Data from Andrews and
Herberg (1984), DATA, New York: Springer-Verlag, Table 65.1, p. 392. (SPSS Chart).

for short-term series. They are easy to program, especially with SAS, SPSS,
and other statistical packages designed to analyze time series. They are
economical in consumption of computer time and resources and they are
easily run on personal computers. They are easy to monitor, evaluate, and
regulate by adaptive procedures—for example, parameter selection with
grid searches of sums of squared errors. They do well in competition, but
they are not good at predicting all kinds of turning points (Fildes, 1987).

How do the various exponential smoothing methods fare in competition
with one another? Single exponential smoothing is often better than the
naive forecast based on the last observation. Single exponential smoothing
generally forecasts well with deseasonalized monthly data. When yearly
data are analyzed, single exponential smoothing often does not do as well
as the Holt or Winters methods, where trends or seasonality may be in-
volved. The Winters method does the best when there is trend and seasonal-
ity in the data. For short, deseasonalized, monthly series, single exponential
smoothing has done better than Holt or Winters methods, or even the
Box–Jenkins approach discussed in the next chapter (Makridakis et al.,

1984). If the series data are more plentiful and the inherent patterns more
complex, then other methods may be more useful.
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2.5. DECOMPOSITION METHODS

Before exploring exponential smoothing, it is helpful to examine a time
series and come to an appreciation of its component parts. An examination
of what these components are, how they are formulated, how they may
differ from one to another, how one tests for their presence, and how one
estimates their parameters is in order. When early economists sought to
understand the nature of a business cycle, they began studying series in
search of calendar effects (prior monthly and trading day adjustments),
trends, cycles, seasonal, and irregular components. These components could
be added or multiplied together to constitute the time series. The decompo-
sition could be represented by

Ŷat � P̂t � D̂t � T̂t � Ŝt � Ĉt � Ît

or
Ŷmt � P̂t � D̂t � T̂t � Ŝt � Ĉt � Ît

(2.30)

where Ŷat � additively composed time series, Ŷmt � multiplicatively com-
posed time series, P̂t � prior monthly adjustments, D̂t � trading day adjust-
ments, T̂t � trend, Ŝt � seasonality, and Ît � irregularity. The multiplicative
decomposition multiplies these components by one another. In the additive
decomposition, component predictor variables are added to one another.
This multiplicative process is the one usually used by the U.S. Bureau of
the Census and is generally assumed unless the additive relationship is
specifically postulated.

2.5.1. COMPONENTS OF A SERIES

Whether the process undergirding an observed series is additive or multi-
plicative, one needs to ascertain whether it contains a trend. Calendar
effects consist of prior monthly and trading day adjustments. In the X-12
version being developed now, there will also be a leap year and moving
holiday adjustment (Niemira and Klein, 1994).

The trend is a long run tendency characterizing the time series. It may
be a linear increase or decrease in level over time. It may be stochastic,
a result of a random process, or deterministic, a result of a prescribed
mathematical function of time. If nonlinear, the trend could be fitted or
modeled by a polynomial or fractional power. It might even be of a com-
pound, logistic, or S-shaped nature. Seasonal components or signals, by
contrast, are distinguishable patterns of regular annual variations in a series.
These may be due to changes in the precipitation or temperature, or to
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legal or academic requirements such as paying taxes or taking exams. Cycles,
however, are more or less regular long-range swings above or below some
equilibrium level or trend line. They have upswings, peaks, downswings, and
troughs. They are studied for their turning points, durations, frequencies,
depths, phases, and effects on related phenomena. Fluctuation of sunspot
activity take place in an 11-year cycle, for example. Business cycles are
postulated recurrent patterns of prosperity, warning, recession, depression,
and recovery that can extend for periods much longer than a single year,
for another example (Makridakis et al., 1983). What is left over after these
components are extracted from the series is the irregular or error compo-
nent. For the most part, these four types of change make up the basic
components of a series.

2.5.2. TRENDS

Trends, whether deterministic or stochastic, have to be considered for
extracting, fitting, and forecasting. A deterministic trend may derive from
a definition that prescribes a well-defined formula for increment or decre-
ment as a function of time, such as contractual interest. The cost of a 3-
year loan may increase by agreement at a simple 2% per year. The interest
on the loan by agreement is 0.02% per year. The amount of interest in
effect is determined by agreement on a formula and hence deterministic.

A stochastic trend is due to random shift of level, perhaps the cumulative
effect of some force that endows the series with a long-run change in level.
Trends may stem from changes in society, social movements, technology,
social custom, economic conditions, market conditions, or environment
(Farnum and Stanton, 1989). An example of a stochastic, nonlinear histori-
cal trend is the growth after 1977 in the number of international terrorist
incidents until a peak was reached in 1987, after which this number declined.

The trend is quadratic. It rises to an apex at 1987 and then declines,
perhaps owing to the increased international cooperation against such per-
sons and their cells or organizations. These tallies exclude incidents of intra-
Palestinian violence. (Wilcox, 1997). Insofar as the trend represents a shift
of the mean, it needs to be detected, identified, and modeled or the series
may become unamenable to modeling, fitting, and forecasting. Usually the
series can be detrended by decomposing it into its components of variation
and extracting these signals.

Regression may be used to test and model a trend. First, one plots the
series against time. If the trend appears linear, one can regress it against
a measure of time. If one finds a significant and/or substantial relationship
with time, the magnitude of the coefficient of time is evidence of a linear
trend. Alternatively, some trends may appear to be nonlinear. For example,
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Figure 2.7 Number of international terrorist incidents: Source: U.S. Department of State
(http://www.state.gov/www/global/terrorism/1997Report/incidents.html) (SAS Graph).

one can construe a plot of the number of international terrorist incidents
between 1977 and 1996 against time as a linear or a quadratic trend, de-
pending on how time is parameterized. If time is measured by the year,
there is a negative linear trend, but if trend is measured by the number of
years since 1977, when the data began to be collected, then there appears
to be a nonlinear trend, rising until 1987 when an apex is reached and then
declining. To test the existence of a statistically significant quadratic trend,
a regression model was specified with both a linear and a quadratic time
component—for example, time and time squared. The dependent variable
was the number of international terrorist incidents; the independent vari-
ables were a count of the number of years and a squared count of the
number of years since the inception of the series. Both the linear and the
squared term were found to be statistically significant predictor variables.
Assuming that both linear and quadratic coefficients are significant, the
higher coefficient will determine whether the trend is more quadratic than
linear, or vice versa. The signs of the linear coefficients determine whether
the curve is sloping downward or upward; the signs of the quadratic coeffi-
cients determine whether the function is curved upward or downward. A
statistically significant quadratic trend curving downward has been found
to characterize this number of international terrorist incidents over time
(Wilcox, 1997). In this case the quadratic model was plotted against the
year along with its upper and lower confidence intervals to see if the actual
series remained bracketed by them.

When nonlinear relationships exist, one can transform them into linear
ones prior to modeling by either a natural log transformation of the depen-
dent variable or a Box–Cox transformation.The series may be detrended
by regression or transformation.
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If the functional form of the trend is more complicated, the researcher
designates the real data as the series of interest C(t) and the functional
form Y(t). He may compute the sum of squared errors (SSE) as follows:
SSE � [C(t) � Y(T)]2. This is the unexplained sum of squares. The propor-
tion of variance explained for the model, R 2, may be computed as follows:
R 2 � 1 � (SSE/SS Total). R 2 is the objective criterion by which the fit is
tested. This is the sort of curve fitting that SPSS performs with its
CURVEFIT procedure.

A researcher may opt for all of these tests. The R 2 and significance tests
for each parameter indicate which are significant. The functional form with
the highest R 2 indicates the best fit and the one that should be chosen.

If the researcher is using SAS, he may use linear regression to test each
of these functional forms. In so doing, he should regress the series of interest
as a dependent variable upon the time variable. The R 2 may be output as
values of the output data set and printed in a list linking each variable for
each model. He may compare these R 2 values to determine which fits best.
The following SAS code tests the R 2 for several of these models and finally
prints R 2 for each model.

Options ls=80 ps=55;

title 'c2pgm7.sas Functional Forms of Various Trends';

data trend;

do time = 1 to 200;

a = (1/1000)*time;

b = .001*time;

linear = a � b*time;

square = a � b*time � time**2;

power = a*time**b;

compound = a*(b**time);

inverse = a � b/time;

Ln1 = a � b*log(time);

growth = Exp(a � b*time);

exponen = a*exp(b*time);

Sshape = exp(a � b/time);

output;

end;

symbol1 i=join c=green;

symbol2 i=join c=red;

symbol3 i=join c=blue;

proc gplot;

plot (square power) * time;

run;
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proc gplot;

plot (compound inverse growth exponen sshape)*time;

run;

Once one identifies the nature of the trend, one usually needs to detrend
the series for subsequent analysis. An appropriate transformation may
render the relationship linear, and one can perform a regression with the
transformed dependent variable.

If the trend is stochastic, one way to detrend the series is by a difference
transformation. By subtracting the value of the series one time lag before
the current time period, one obtains the first difference of the series. This
procedure removes a linear trend. Take the linear trend model: Yt � a �
bt. If one subtracts its first lag from it, the following equation is obtained:
Zt � �Yt � Yt � Yt�1 � (a � a) � [bt � b(t�l)] � b. From this result, one
can conclude that the linear (first order) trend component, t, was removed.

If the series has a higher order trend component, the first difference will
not remove all of the trend. Consider a series with a quadratic trend: Yt �
a � bt � ct 2. By subtracting its first lag, Granger (1989) obtains its first
difference, �Yt , which is also designated, Zt :

Zt � �Yt � Yt � Yt�1 � (a � a) � [bt � b(t � 1)] � [(ct 2 � c(t � 1)2]

� (bt � bt � b) � [ct 2 � (ct 2 � 2ct � c)] (2.31)
� b � 2ct � c

What remains is still a function of time and therefore trend. Although one
has removed the quadratic trend, the linear trend remains. By taking the
first difference again, one obtains the second difference and the trend
disappears altogether:

�Zt � b � 2ct � c � [(b � 2c(t � 1) � c)]

� (b � b) � (2ct � 2ct) � (c � 2c � c) (2.32)
� 0

In other words, the second difference of the quadratic trend removes the
time factor altogether:

�2Yt � 0 (2.33)

By mathematical induction, one may infer that the power of the differencing
is equal to the power of the trend. Series that can be detrended by differenc-
ing are called difference stationary series.

Other series must be detrended by regression and subtraction of the
trend component from the series. These series are called trend stationary.
If a series cannot be detrended by differencing, one should try regression
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detrending. Later, if necessary, one can difference the residuals from the
regression. Once it is detrended, the series may be further analyzed.

2.5.3. SEASONALITY

When the series is characterized by a substantial regular annual variation,
one must control for the seasonality as well as trend in order to forecast.
Seasonality, the periodic annual changes in the series, may follow from
yearly changes in weather such as temperature, humidity, or precipitation.
Seasonal changes provide optimal times in the crop cycle for turning the
soil, fertilizing, planting, and harvesting. Summer vacations from primary
and secondary school traditionally allow children time for summer recre-
ation. Sports equipment and clothing sales in temperate zones follow the
seasons, whether for water or snow sports. Forecasting with such series
requires seasonal adjustment (deseasonalization), which is discussed in
more detail shortly, or seasonal variation may augment the forecast error
unnecessarily.

2.5.4. CYCLES

For years economists have searched for clear cut-cycles, like those found
in nature—for example, the sun-spot cycle. Economists have searched for
inventory, investment, growth, building, and monetary cycles. Eventually,
researchers began to look for indicators of the business cycle. They searched
for leading indicators that would portend a turning point in the business
cycle. Although they found a number of coincident and lagging indicators,
the search for reliable leading indicators has generally been unsuccessful
(Niemira and Klein, 1994). Where trend and cycle are not separated from
one another, the series component is called the trend-cycle. Later in the
chapter, there will be a discussion of the classical decomposition and X-11
methods of analyzing economic processes to show how the indicator can
be decomposed into trend, seasonal, cyclical, and irregular components.

2.5.5. BACKGROUND

Decomposition of time series began in the 1920s with the work of Freder-
ick R. Macaulay of the National Bureau of Economic Research on the
ratio-to-moving average approach to time series decomposition. Work on
decomposition was pursued by the U.S. Bureau of the Census. As each
method was developed, it was given the name, ‘‘X’’- hyphenated with the
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version number. By 1965, the U.S. Bureau of the Census proclaimed a
computer-intensive calendar-based method for seasonal adjustment of orig-
inal time series developed by Julius Shishkin, Allan Young, and John C.
Musgrave. This method, known as X-11, became the official method for
seasonal decomposition and adjustment.

The X-11 method decomposes a series into prior monthly, trading day,
trend, cyclical, seasonal, and irregular variations. Prior monthly factors are
calendar adjustments made for the months in which the series is under
consideration. The trading day adjustment is obtained by a regression on
the days of the week for the months under consideration. The seasonal
component consists of the regular patterns of intrayear variations. The
trend-cycle is the component of variation consisting of the long-range trend
and business cycle. The irregular variations are residual effects of unusual
phenomena such as strikes, political events, weather conditions, reporting
errors, and sampling errors (Shishkin, et al., 1967). An estimate of the trend
and cyclical factors is obtained with a moving average that extends over
the seasonal period. Dividing this moving average into the original series
yields seasonal irregular ratios. Each month of these ratios is smoothed
over the years in the series to provide estimates of the seasonal adjustment
factors. The irregular factor is filtered by the smoothing process. Dividing
each month’s data by these adjustment factors gives the seasonally adjusted
data (Brocklebank and Dickey, 1994). The series decomposition and sea-
sonal adjustment facilitates comparisons between sequential months or
quarters as well as comparison of trends and cycles evident in these series
(Ege et al., 1993). Because many of the series made publicly available by
governments are now seasonally adjusted by this method, it is important
to understand this method and its programming.

The decomposition may be either an additive or a multiplicative model,
although the multiplicative model is most commonly applied. Although
we expound the multiplicative procedure, the additive procedure merely
replaces multiplication with addition and division with subtraction. In the
1980s, Estela B. Dagum (1988) and colleagues at the Time Series Research
and Analysis Division of Statistics Canada began to use autoregressive
integrated moving average (ARIMA) methods to extend the X-11 method.
Dagum et al. (1996) applied the ARIMA procedure to X-11 to backcast
starting values as well as to seasonally adjust their data. Their innovations
included automatically removing trading day and Easter holiday effects
before ARIMA modeling, selecting and replacing extreme values, generat-
ing improved seasonal and trend cycle weights, and forecasting more accu-
rately over variable horizons. This chapter focuses on classical decomposi-
tion and the X-11 procedure, apart from the enhancements incorporated
by Statistics Canada. The additive theory presumes that the trend, cycle,
seasonality, and error components can be summed together to yield the
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series under consideration. The formulation of this decomposition was
previously shown in Eq. (2.30). The multiplicative method of decomposition
presumes that these components may be multiplied together to yield the
series, previously shown in Eq. (2.30). Statistical packages usually provide
the ability to model the series with either the additive or the multiplicative
model. To perform decomposition, SPSS has the SEASON procedure and
SAS has the X11 procedure. SEASON is a procedure for classical decompo-
sition. Both SAS X11 and the SPSS X11ARIMA can perform the Census
X-11 seasonal adjustment with ARIMA endpoint adjustment.

In connection with year 2000 (Y2K) programming problems, researchers
using the latest versions can proceed with confidence. Individuals using
older versions of these statistical packages have to be more careful. SAS
Institute, Inc. notes that a small number of Year 2000-related problems
have been reported for PROC X11 in releases 6.12 and 6.09E of SAS
econometric time series software. SAS Institute, Inc. has provided mainte-
nance for these releases which corrects these problems. Users running
releases 6.12 and 6.09E should install the most recent maintenance to
receive all available fixes. Users running earlier versions of SAS should
upgrade to the most current release. These problems have been corrected
for Version 7 and later releases of SAS software. For information on Y2K
issues and fixes related to SAS software products, please see SAS Institute’s
web site at http://www.sas.com. Although the SPSS XIIARIMA procedure
works well for series and forecasts within the 20th Century, it exhibits end-
of-the-century problems and therefore the procedure has been removed
altogether from version 10 of SPSS. In these respects, both SAS and SPSS
have sought to free their software from end-of-the-century seasonal adjust-
ment and forecasting complications.

2.5.6. OVERVIEW OF X-11

Shishkin et al. (1967) explain the decomposition process in some detail.
There are basically five stages in this process: (1) trading day adjustment,
(2) estimation of the variable trend cycle with a moving average procedure,
(3) preparation of seasonal adjustment factors and their application to
effect the seasonal adjustment, (4) a graduated treatment of extremes, and
(5) the generation of component tables and summary statistics. Within
stages 2 through 4, there are iterations of smoothing and adjustment.

2.5.6.1. Stage 1: Prior Factors and Trading Day Adjustment

Because different countries and months have different numbers of work-
ing or trading days, the first stage in the X-11 process adjusts the series for
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the number of trading days for the locale of the series under process. The
monthly irregular values are regressed on a monthly data set that contains
the number of days in the month in which each day occurs. The regression
yields the seven daily weights. From these weights come the monthly factors,
which are divided into the data to filter out trading day variation (Shiskin
et al., 1967). This division adjusts the data for the number of trading days.
These prior factors are optionally used to preadjust the data for subsequent
analysis and processing.

2.5.6.2. Stage 2: Estimation of the Trend Cycle

The trend-cycle is estimated by a moving average routine. The choice
of the moving average to be used is based on a ratio of the estimate of the
irregular to the estimate of the cyclical components of variation. First, this
analyst obtains the ratio of a preliminary estimate of the seasonally adjusted
series to the 13-term moving average of the preliminary seasonally adjusted
series. The ratio is divided into high, medium, and low levels of irregularity
to cyclical variation. For the higher levels of irregularity, the longer 23-
term moving average is used for smoothing. For medium levels, the 13-
term moving average is used, and for the smoother series, a 9-term moving
average is applied. The smoother series receive the shorter moving average
smoothing, although quarterly series are smoothed with a 5-term moving
average. The precise weights of these moving averages are given in Shiskin
et al. (1967).

2.5.6.3. Stage 3: Seasonal Factor Procedure

The third stage of the X-11 process entails a preliminary preparation of
seasonal correction factors and the use of those factors to seasonally adjust
the data. In stages 3 through 5, this method iterates through estimation of
the trend cycle, seasonal, and irregular (error) components of the data.
Within each iteration, the procedure smoothes the data to estimate the
trend cycle component, divides the data by the trend cycle to estimate
seasonal and irregular components, and uses a moving average to eliminate
randomness while calculating standard deviations with which to form con-
trol limits for use in outlier identification and replacement. Each iteration
also includes an estimation of the trend cycle, seasonal, and irregular compo-
nents.

ŜtÎt �
Ot

Ĉt

(2.34)

The hats over the terms in Eq. (2.34) designate preliminary estimates.
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2.5.6.4. Stage 4: Smoothing of Outlier Distortion

Extreme values, which may arise from unusual events, are eliminated
by outlier trimming. For smoothing, one takes a 3 � 3 moving average and
use its standard deviation over a period of 5 years as a vehicle with which
to determine control limits for each month. Data points residing outside
these limits, usually 2.5 standard deviations away from the moving average,
are deemed outliers. Outliers are replaced by a value weighted according
to its closeness to the average. The farther away the observation, the less
weight it is given. This has the effect of smoothing or trimming the distortion
from outliers.

2.5.6.5. Stage 5 : Output of Tables, Summary Measures,
and Test Statistics

The last basic stage in the process is to compute summary test statistics
to confirm the seasonal adjustment. Among the test statistics computed
are those from the adjoining month test, the January test, the equality test,
and the percentage change test. Once the program computes these summary
statistics that test for the presence or removal of seasonality, the assessment
begins. For the span of interest, each year consists of a row of 12 columns.
Each column contains the monthly values of the series. The bottom row
contains the average monthly value of each column. In addition to the
battery of test statistics mentioned, the month for cyclical dominance is
also indicated. We now turn to applications of these tests and summary mea-
sures.

The first test statistic computed is the adjoining month test. One way is
to look at a year by month data matrix is to examine the individual cells.
For each cell in the data matrix, a ratio can be computed of the value for
that month to the average of the values for the preceding and the proceding
adjacent months, except when the first month is January and there is no
preceding month, in which case the value of the ratio is 0. This ratio is
called the adjoining month test. The adjoining month test may be used to
assess residual seasonality. Nonseasonal data do not manifest much varia-
tion in the adjoining month tests, whereas seasonal data do. The adjacent
month test statistics indicate whether the seasonality has been successfully
removed from the series.

The January test statistic helps in evaluating the adjusted series as a
standard for comparison. If the seasonally adjusted series data values are
divided by the value for January of that year, and that fraction is multiplied
by 100, then the series are all standardized on the same annual starting
value of 100. This percentage of the January value provides a criterion for
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evaluating month-to-month variation in the series for residual seasonality.
If there is not much fluctuation, then seasonality is no longer inherent in
the series.

The equality test helps determine whether the data were properly ad-
justed. Dividing the 12-month moving average of the seasonally adjusted
data by the 12-month moving average of the raw data yields a fraction. When
one multiplies this fraction by 100, one obtains a set of ratios standardized on
a base of 100. When these ratios are very close to 100, then there is negligible
overadjustment. If the equality test ratios are below 90 or above 110, then
there may have been seasonal overadjustment.

Among the tests that are useful in comparing the seasonally adjusted
with the raw data is the percentage change test. Percentage change tests
show the percentage change from one month to the next. When applied
to the values in the original data, the percentage change tests provide a
basis against which to compare percentage change tests of seasonally ad-
justed data, random components, or trend cycle components. The differ-
ences will reveal the amount of seasonality that was adjusted out of the
original data.

Another measure of relative variation is the month of cyclical dominance
(MCD). The ratio of the average percentage change (for all of the months)
of the error (irregular) component to that of the trend cycle helps determine
the month of cyclical dominance. The span of this average can extend from
one to multiple months. As the number of months included in this average
increases, the percentage change of error gets reduced and the percentage
change in trend cycle increases. Eventually, they converge to the same
level. If the span of the average is extended farther, the ratio declines to
less than 1. The span in which this ratio dips below 1 is called the month
of cyclical dominance. If this month of cyclical dominance is 3, then a
moving average of 3 months of the seasonally adjusted data should capture
the trend cycle of the series. Such an average can then be used as a basis for
estimating the trend cycle of the series and forecasting future observations
(Makridakis et al., 1983). In these ways, the summary statistical tests can
be used to evaluate the extent of deseasonalization.

2.5.6.6. X11-ARIMA

One of the problems with X-11 is that the weighting for the series is
symmetric. The endpoints are asymmetrically produced, resulting in poor
predictions under some circumstances. To remedy this problem, Dagum et

al. (1996) explained how Statistics Canada used the ARIMA procedure to
identify the X-11 extreme values, replace them, and develop the weights for
the trend cycle and seasonal components. These innovations substantially
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improved the forecasting capability (Dagum, 1988). The application of the
Box–Jenkins ARIMA option to X-11 decomposition is known as X11AR-
IMA/88. Both SAS and SPSS X-11 programs have options for applying
the ARIMA technique for such purposes, although SPSS is removing this
procedure from Version 10 to assure users of Y2K compliance. The theoreti-
cal details of the ARIMA modeling procedure are discussed in the chapters
immediately following. For now, it is enough to note that this is an improved
method of forecasting endpoints and backcasting initial values of the model.

2.5.6.7. Statistical Packages: SAS and SPSS versions of X-11

Census X-11 can be programmed with many popular statistical packages,
including SAS and SPSS. Often, it is useful to try to decompose a series
prior to further analysis. Both SAS and SPSS can perform simple additive
or multiplicative decomposition of the time series. SAS Proc X11 can be
used to either additively or multiplicatively decompose a series into the
trading day, trend cycle, seasonal, and irregular components. It can generate
tables at almost every intermediate step and can seasonally adjust monthly
or quarterly series that have no missing data. The program outputs tables
beginning with the letters A through C containing the results of intermediate
calculations in the X-11 process. Tables beginning with the letter D contain
the final estimates of the series components. Table D10 contains the final
seasonal factors. Table D11 contains the seasonal adjustment of the series.
Table D12 contains the estimate of the trend cycle, and table D13 contains
the final irregular component (Ege et al., 1993). SAS can also produce these
tables and/or their data in an output data set for use in subsequent
analysis.

SAS Syntax for X-11

The SAS syntax for the X11 procedure can be exemplified by the price
of gas per 100 therms in U.S. cities.

options ls=80 ps=55;

title ' C2pgm8.sas Average Price of US Utilities';

title2 'Bureau of Labor Statistics Data';

title3 'Data extracted on: August 04, 1996 (02:13 AM)';

data gas;

title4 'Gas price per 100 therms';

input year month $ cost1;

label cost='$ Price per 100 therms';

date=intnx('month','01nov1978’d,_n_-1);

Seriesid='apu000072611';

format date monyy5.;
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cost = cost1;

if month='M09' and year= 1985 then cost = 61.57;

time � 1;

cards;

1978 M11 27.667

.....................

1996 M06 65.261

proc print;

run;

symbol1 i=join v=star c=green;

proc gplot ;

plot cost1 * date;

run;

proc x11 ;

monthly date=date;

var cost;

tables b1 d10 d11 d12 d13 f2 ;

output out=out2 b1=cost d10=d10 d11=adjusted d12=d12 d13=d13 f1=f1;

run;

symbol1 i=join v=star c=red;

symbol2 i=join c=green;

legend label=none value=(’original’ ’adjusted’);

proc gplot data=out2;

plot cost * date=1 adjusted*date=2/overlay legend;

plot cost * date;

run;

proc gplot data=out2;

plot d10 * date;

title4 ’Final Seasonal Factors’;

run;

proc gplot data=out2;

plot d12 * date;

title4 ’Final Trend Cycle’;

run;

proc gplot data=out2;

plot d13 * date;

title4 ’Final Irregular Series’;

run;

proc gplot data=out2;

plot adjusted * date;

title4 ’Final Seasonally adjusted Series’;

run;

In this example, PROC X11 gathers its data from the file, called ‘‘gas-
dat.’’ These data are the average U.S. city price in dollars per 100 therms
of natural gas, an indicator of utility costs in the United States. These data
are monthly and the variable containing the date is called, ‘‘date.’’ The
series with missing data, ‘‘cost1,’’ has its missing data replaced and the
series with the estimated and replaced missing data is called ‘‘cost.’’ It is
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‘‘cost’’ that is subjected to X-11 seasonal adjustment in this example. For
simplification, only specific tables are requested: Tables B1 and D10 through
D13, produced along with the month of cyclical domination in F1. Then
the data are plotted against the original series and the adjusted series
overlaid. The final seasonal factors and other tables are then graphed in
the accompanying figures.

The first graph, in Fig. 2.8, shows the original series from Table B1 and
prior factors plotted along with the final seasonally adjusted series from
Table D11. The cost of gas increases until September 1983, and then begins
to decline. The gradual decline continues until September 1992.

The difference between the original and the seasonally adjusted series
is that a lot of the sharp peaks and valleys in the variation are attenuated.
The series may be decomposed to reveal the trend cycle, from Table D12,
shown in Fig. 2.9.

Decomposition of the original series also yields the final seasonal factors,
from Table D10, shown in Fig, 2.10.

Also, the final irregular component of the original series may be found
in Table D13, shown in Fig. 2.11.

In general, the series may be decomposed into its component parts and
seasonally adjusted to smooth out the jagged edges. Not only are the
seasonally adjusted data available for plotting, as shown in Figure 2.12,
they are available in tabulations as shown in Tables 2.3 and 2.4 as well.

SPSS Syntax for Decomposition

SPSS also performs decomposition and seasonal adjustment. SEASON
and X11ARIMA estimate seasonal factors prior to additive, multiplicative,

Figure 2.8 Decomposition of Average U.S. City Price of Natural Gas series into Original
and Seasonally Adjusted Series (SAS Graph of PROC X11 Output). (Source: U.S. Bureau
of Labor Statistics Data).



Figure 2.9 D12: Final trend-cycle of U.S. City Average Prices of Natural Gas (dollars/100
therms). A SAS Graph of PROC X11 Output. (Source: U.S. Bureau of Labor Statistics Data).

Figure 2.10 D10: Final Seasonal Factors: U.S. Average City Price of natural gas (SAS Graph
of PROC X11 Output). (Source: U.S. Bureau of Labor Statistics Data).

Figure 2.11 D13: Irregular Component: U.S. Average City Price of natural gas (SAS Graph
of PROC X11 Output). (Source: U.S. Bureau of Labor Statistics Data).
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Figure 2.12 Seasonally Adjusted Series of U.S. Average City Price of natural gas (SAS
Graph of PROC X11 Output). (Source: U.S. Bureau of Labor Statistics Data).

Table 2.3

Seasonally Adjusted Average U.S. City Cost of $ Price per Therm

X11 Procedure
Seasonal Adjustment of—COST $ Price per 100 Therms

D13 Final Irregular Series
Year Jan Feb Mar Apr May Jun

1978 . . . . . .
1979 100.366 100.502 100.052 99.802 98.270 99.715
1980 99.574 99.905 100.556 99.858 99.601 98.913
1981 100.016 100.272 99.781 99.512 100.735 100.220
1982 100.442 99.375 100.183 100.295 101.650 100.707
1983 100.357 99.918 98.931 101.278 99.991 99.946
1984 99.305 100.187 100.190 100.228 99.696 99.536
1985 99.814 98.590 100.388 100.141 99.625 100.107
1986 100.220 100.042 99.555 99.761 100.814 101.585
1987 99.774 100.432 99.957 99.676 100.163 100.200
1988 100.312 99.866 100.031 99.636 102.293 100.075
1989 99.578 100.015 100.219 100.608 99.620 99.578
1990 100.217 100.753 101.800 98.992 100.304 100.599
1991 100.357 99.716 99.950 100.212 99.778 98.556
1992 100.298 99.913 98.969 100.319 100.075 99.902
1993 99.959 99.856 100.026 99.685 100.069 100.390
1994 99.695 99.513 100.817 100.528 99.726 99.405
1995 99.840 100.264 99.690 100.420 99.764 99.620
1996 101.634 102.238 97.759 99.066 102.267 100.616
S.D. 0.505 0.705 0.819 0.545 1.005 0.677
Total: 21201 Mean: 100.01 S.D.: 0.69879
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Table 2.4

Seasonally Adjusted Average U.S. City Cost of $ Price per Therm

X11 Procedure
Seasonal Adjustment of—COST $ Price per 100 Therms

D11 Final Seasonally Adjusted Series
Year Jul Aug Sep Oct Nov Dec Total

1978 . . . . 28.008 28.758 56.767
1979 31.635 32.018 32.774 33.748 34.630 35.450 381.507
1980 39.580 40.006 40.064 40.310 39.475 40.590 462.222
1981 44.410 45.177 46.772 46.845 47.299 47.395 532.832
1982 53.565 53.440 55.653 58.479 58.807 60.403 646.967
1983 63.437 63.205 63.822 63.163 63.379 63.871 754.831
1984 63.066 63.236 62.933 62.785 63.410 63.194 755.805
1985 61.903 61.401 60.755 60.775 60.469 60.248 742.567
1986 58.955 59.183 58.560 57.907 55.886 56.244 704.570
1987 55.797 56.101 55.769 55.293 54.875 54.878 669.546
1988 56.390 56.221 56.762 56.940 56.161 56.137 669.761
1989 56.847 56.975 56.449 56.954 56.814 56.354 680.313
1990 55.363 55.706 56.255 56.161 57.190 57.618 677.342
1991 56.775 56.423 56.354 56.709 57.639 57.749 685.159
1992 58.380 58.318 59.925 61.059 61.990 61.285 703.012
1993 64.495 64.964 65.344 65.320 64.919 65.467 765.126
1994 64.751 64.993 64.266 63.863 64.050 63.785 779.843
1995 61.603 61.110 61.004 60.178 59.825 61.449 740.125
1996 . . . . . . 381.833
Avg 55.703 55.793 56.086 56.264 54.713 55.049
Total: 11790 Mean: 55.614 S.D.: 9.3479

or natural log additive series decomposition into seasonal, trend, cycle, and
irregular components.

For simple decomposition, users may prefer the less complicated SEA-
SON. The SPSS program C2pgm9.sps, up to the point of the ‘‘list variables’’
command, is inserted into a syntax window and run. At this juncture, a
date variable is created with the ‘‘define dates’’ option in the data window
of the menu. Years and months are selected and the starting year and
month are inserted into the data set. This defines the periodicity of the
data set as monthly, a definition that is necessary for the remainder of the
program to be run. Then the remainder of the program is run from the
syntax window.

* SEASON program c2pgm9.sps.

*Seasonal Decomposition.

title ' Average Price of US Utilities'.

subtitle 'Bureau of Labor Statistics Data'.
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* Data extracted on: August 04, 1996 (02:13 AM)'.

* Gas price per 100 therms'.

data list / year 2-5 month 8-9 cost1 15-20.

compute cost = cost1.

if (month=9 & year= 1985) cost = 61.57.

var labels cost='$ Price per 100 therms'.

* Seriesid='apu000072611'.

begin data.

1978 M11 27.667

Data go here

1996 M06 65.261

end data.

list variables=all.

*at this point monthly date variables are constructed in sav file.

* Seasonal Decomposition.

TSET PRINT=BRIEF NEWVAR=ALL .

SEASON

/VARIABLES=cost

/MODEL=MULTIPLICATIVE

/MA=CENTERED.

*Sequence Charts .

title 'Trend-cycle'.

TSPLOT VARIABLES= stc_1

/ID= date_

/NOLO

/FORMAT NOFILL NOREFERENCE.

*Sequence Charts .

title 'Seasonal Factors'.

TSPLOT VARIABLES= saf_1

/ID= date_

/NOLO

/FORMAT NOFILL NOREFERENCE.

*Sequence Charts .

title 'Irregular Series.

TSPLOT VARIABLES= err_1

/ID= date_

/NOLO

/FORMAT NOFILL NOREFERENCE.

title 'Seasonally Adjusted Series.

TSPLOT VARIABLES= sas_1

/ID= date_

/NOLO

/FORMAT NOFILL NOREFERENCE.

In this classical seasonal decomposition program, the same cost of gas
series featured in the SAS program above is decomposed into a multiplica-
tive model. The program decomposes the series into components for each
of which it creates a new variable in the data set. It automatically decom-
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poses the series into constructed a trend cycle component, stc_1, a season-
ally adjusted factors series, saf_1, an irregular component, err_1, and
the final seasonally adjusted series, sas_1. These generated series can
be plotted against the date variable with commands at the end of the
SPSS program.

2.5.7.3. SPSS X11ARIMA

Although SPSS has provided the interface, SPSS based this program on
an early version of the computer code of the Statistics Canada version of
the United States Bureau of the Census X-11 ( SPSS Trends 6.1, 1994;
Mathesson, 1994). With X11ARIMA, the user may opt for seasonal adjust-
ment of the series by these factors after requesting the summary statistics
on the seasonally adjusted series. It is possible to forecast or backcast, with
a custom design of the ARIMA model, the endpoints of the series prior
to seasonal adjustment to improve forecasting with the series. Other adjust-
ments can be made to improve the model as well. The researcher has
alternatives of trading day regression adjustments, moving average adjust-
ments, replacement of extreme values, and establishment of control limits.
In short, the SPSS X11ARIMA program is a good program for performing
Census X-11 seasonal adjustment on 20th Century series (Monsell, 1999).

The output of the SPSS X11ARIMA program consists of 3 to 76 tables.
The user has some control over which tables he would like. He may specify
the number of digits to the right of the decimal place in a format statement.
Four new variables are generated by the program. The seasonally adjusted
series is saved with the variable name, sas_1. The effect of seasonal
adjustment is to smooth frequent seasonal peaks and troughs of the season-
ality while preserving the longer cyclical and trend effects. Seasonal adjust-
ment factors are produced with the variable name of saf_1. The trend
cycle smoothing of the original series is called stc_1. The error or irregular
component of the series is saved as err_1. These four variables are saved
at the end of the SPSS system file being used.

SPSS X11ARIMA, however, has some limitations. The periodicity of
the X11ARIMA model is found from the SPSS Date_ variable. This trend
cycle is based on a periodicity of 12 if the series is monthly and a periodicity
of 4 if the series is quarterly. Either monthly or quarterly periodicity is
required for this X11ARIMA procedure to be used. Extreme values are
included in estimation of the trend cycle component. Estimation of the
seasonal factors begins with a 3 � 3 moving average and finishes with a 3
;ti; 5 moving average. Trend cycle smoothing is performed with a multiple
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higher order Henderson moving average. Although the program is unable
to estimate series with missing data, SPSS, with the new missing values
replacement module, possesses a variety of ways to estimate and replace
missing values. Moreover, SPSS cannot perform X11ARIMA with dates
prior to 1900, and each series must contain at least 3 years of data. For
ARIMA extrapolation, 5 years of data is a minimum series length (SPSS
Trends 6.1, 1994). When the series has more than 15 years of observations,
backcasts are not generated by the ARIMA subcommand. To allow the
backcasts to be generated, the series length must be limited. Finally, sea-
sonal adjustment and 1 year ahead forecasts cannot extend into the 21st
Century.

Although a full explanation of the ARIMA estimation backcasting and
forecasting is at this point beyond the scope of the book, an example of
the SPSS syntax for this procedure appears as follows:

* SPSS X11ARIMA c2pgm10.sps.

X11ARIMA

/VARIABLES cost

/MODEL=MULTIPLICATIVE

/NOPRVARS

/ARIMA=EXTREMES(REPLACE) BACKCAST

/YEARTOTAL

/NOEXTREMETC

/MONTHLEN=TRADEDAYS

/PERIOD=MONTHLY

/TRADEDAYREG TDSIGMA(2.5) ADJUST

COMPUTE(1978)

BEGIN(1978)

/DAYWGTS=MON(1.4) TUES(1.4) WED(1.4) THUR(1.4)

FRI(1.4)

/NOUSERMODEL

/LOWSIGMA=1.5 /HISIGMA=2.5

/SAVE=PRED SAF STC RESID

/MACURVES SEASFACT(Hybrid) TRENDCYC(12)

HENDERSON(SELECT)

/PRINT STANDARD

/PLOT ALL .
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The explanation of the X11ARIMA syntax is involved. The model uses
the cost variable. It can generate multiplicative, additive, or natural log
additive models, although this example is a multiplicative model. The
NOPRVARS subcommand specifies that no variable is used for prior adjust-
ment of the series. The ARIMA subcommand means that the Box–Jenkins
method, including extreme values in this case, will be used for backcasting
starting values. It may also be used for forecasting. A discussion of backcast-
ing and forecasting techniques follows in later chapters. The NOYEARTOTAL
subcommand indicates that the calendar year totals are not preserved.
NOEXTREMETCmeans that the extremes are not modified in the trend cycle.
The MONTHLEN=TRADEDAYS option means that the month length variation
is included in the trading day factors rather than in the seasonal factors.
Trading-day regression estimates of the series beginning in 1978 are com-
puted and form the control limits beyond which extreme values are replaced.
The trading days are equally weighted in the estimation process. There is
no custom-designed ARIMAmodel applied for this purpose. The Henderson
weighted moving average is used for smoothing the trend cycle and the
standard tables and plots are generated. The variables created may be used
for decomposition or forecasting.

2.5.8. COMPARISON OF EXPONENTIAL SMOOTHING

AND X-11 DECOMPOSITION

Both exponential smoothing and decomposition methods described here
are forms of univariate modeling and decomposition. They deal with single
series, their decomposition, and component extraction. The moving average
and exponential smoothing methods are simple methods utilized for inven-
tory control and short-term forecasting. Where trends are inherent in the
data, regression trend fitting, Holt–Winters exponential smoothing, and
decomposition methods prove useful. If the series are short, the moving
average and exponential smoothing methods are often useful. When the
forecast horizon is one step ahead or just a few steps ahead, they prove
very efficient. For longer series and longer run forecasts, regression trend
fitting or decomposition of the series into a trend cycle may be more useful.
Where seasonality inheres within the series, Winters and decomposition
methods may be useful with short forecasting horizons. Kenny and Durbin
(1982) evaluated various forecasting techniques and recommend applica-
tion of X-11 to a series augmented with a 12-month forecast in order to
obtain satisfactory results. In Chapters 7 and 10 of this book, methods of
combining techniques to improve forecasts will be discussed.
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2.6. NEW FEATURES OF CENSUS X-12

The U.S. Census has developed its X-12 program, which contains some
innovations over the earlier X-11 and the 1988 update, X11ARIMA, devel-
oped by E. B. Dagum et al. Dagum had introduced X11ARIMA to use
back- and forecasting to reduce bias at the ends of the series. The new
X-12 program contains more ‘‘systematic and focused diagnostics for
assessing the quality of seasonal adjustments.’’ X-12 has a wide variety
of filters from which to choose in order to extract trend and seasonal
patterns, plus a set of asymmetric filters to be used for the ends of the
series. Some of the diagnostics assess the stability of the extracted com-
ponents of the series. Optional power transformations permit optimal
modeling of the series. X-12 contains a linear regression with ARIMA
errors (REGARIMA) that forecasts, backcasts, and preadjusts for sundry
effects. Such a procedure is discussed briefly in Chapter 11. The corrected
Akaike Information Criterion is used to detect the existence of trading-
day effects.

Corrected Akaike Information Criterion

� �2LnL � 2m � N

(N � m � 1)
�,

(2.35)

where

L � estimated likelihood function,
N � sample size, and
m � number of estimated paramters.

This REGARIMA can partial out the effects of explanatory variables prior
to decomposition, as well as better test for seasonal patterns and sundry
calendar effects, including trading-day, moving-holiday, and leap-year ef-
fects. In this way, it can partial out user-defined effects and thereby eliminate
corruption from such sources of bias (Findley et al., 1998; Makridakis et

al., 1997). REGARIMA provides for enhanced detection of and protection
from additive outliers and level shifts (including transient ramps). More-
over, the X-12 program incorporates an option for automatic model selec-
tion based on the best corrected AIC (Findley et al., 1998). X-12 may soon
become the institutional standard deseasonalization for series data and find
its way into the SAS and SPSS statistical packages.
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Chapter 3

Introduction to Box–Jenkins
Time Series Analysis

3.1. Introduction 3.6. Tests for Nonstationarity
3.2. The Importance of Time Series 3.7. Stabilizing the Variance

Analysis Modeling 3.8. Structural or Regime Stability
3.3. Limitations 3.9. Strict Stationarity
3.4. Assumptions 3.10. Implications of Stationarity
3.5. Time Series References

3.1. INTRODUCTION

In 1972 George E. P. Box and Gwilym M. Jenkins developed a method
for analyzing stationary univariate time series data. In this chapter, the
importance and general nature of the ARIMA approach to time series
analysis are discussed. The novel contributions of this method and limita-
tions are explained. Prerequisites of Box–Jenkins models are defined and
explored. Different types of nonstationarity are elaborated. We also discuss
tests for detecting these forms of nonstationarity and expound on transfor-
mations to stationarity. We then review problems following from the failure
to fulfill these prerequisites, as well as common means by which these
problems may be resolved. Programming examples with both SAS and
SPSS are included. This new approach to modeling time series is introduced.

3.2. THE IMPORTANCE OF TIME SERIES
ANALYSIS MODELING

The smoothing methods were methods of extrapolation based on moving
average, and weighted moving averages, with adjustments for trend and

69
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seasonality. Decomposition methods utilized these techniques to break
down series into trend, cycle, season, and irregular components and to
deseasonalize series in preparation for forecasting. The Box–Jenkins (AR-
IMA) method differences the series to stationarity and then combines the
moving average with autoregressive parameters to yield a comprehensive
model amenable to forecasting. By synthesizing previously known methods,
Box and Jenkins have endowed modeling capability with greater flexibility
and power. The model developed serves not only to explain the underlying
process generating the series, but as a basis for forecasting. Introducing
exogenous inputs of a deterministic or stochastic nature allows analysis of
the impulse responses of discrete endogenous response series. In fact, these
processes may be used to study engineering feedback and control systems
(Box et al., 1994).

3.3. LIMITATIONS

There are a few limitations to the Box–Jenkins models. If there are not
enough data, they may be no better at forecasting than the decomposition
or exponential smoothing techniques. Box–Jenkins models usually are
based on stochastic rather than deterministic or axiomatic processes. Much
depends on the proper temporal focus. These models are better at formulat-
ing incremental rather than structural change (McCleary et al., 1980). They
presume weak stationarity, equal-spaced intervals of observations, and at
least 30 to 50 observations. Most authors recommend at least 50 observa-
tions, but Monnie McGee examines this matter more closely in the last
chapter of this text and shows that the recommended number of observa-
tions will be found to depend on other factors not yet fully addressed. If
these assumptions are fulfilled, the Box–Jenkins methodology may provide
good forecasting from univariate series.

3.4. ASSUMPTIONS

The Box–Jenkins method requires that the discrete time series data be
equally spaced over time and that there be no missing values in the series.
It has been noted that ‘‘. . . the series may be modeled as a probabilistic
function of past inputs, random shocks, and outputs’’ (McCleary et al.,

1980). The choice of temporal interval is important. If the data vary every
month but are gathered only once a year, then the monthly or seasonal
changes will be lost in the data collection. Conversely, if the data are
gathered every month, but the changes take place every 11 years, then the
analyst may not see the long-run changes unless enough data are gathered.
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Therefore, temporal resolution should be designed to focus on the subject
or object of analysis as it changes over time: The rate of observation must
be synchronized with the rate of change for proper study of the subject
matter. The data are usually serially dependent; adjacent values of the
series usually exhibit dependence. When the data are deterministic, the
past completely determines the current or future (Gottman, 1981). Unless
the series is deterministic, it is assumed to be a stochastic realization of an
underlying data-generating process. The series must be long enough to
provide power for testing the parameters for significance, thereby permit-
ting accurate parameter estimation. Although conventional wisdom main-
tains that the series should be about 50 observations in length, series length
remains a subject of controversy (Box and Jenkins, 1976; McCleary et al.,

1980). If the series contains seasonal components, its length must span a
sufficient number of seasons for modeling purposes. If maximum likelihood
estimation is used, then the series may have to be as long as 100 observations.
Sometimes series are so long that they may experience a change of defini-
tion. For example, AIDS data from the Centers for Disease Control (CDC)
underwent several changes of the definition of AIDS. The characteristics
of the series under one definition may well be different from those under
another definition. The counts may experience regime shifts, and reference
lines identifying the changes in definition should be entered in the time
sequence graphs for careful delineation and examination of the regimes.
Technically speaking, each segment should have enough observations for
correct modeling. There is no substitute for understanding the theory and
controversies surrounding the inclusion/exclusion criteria and means of
data collection for the series under consideration.

The series also needs to be stationary in the second or weak sense. As
was noted in Chapter 1, the series must be stationary in mean, variance,
and autocovariance. The mean, variance, and autocovariance structure be-
tween the same number of time lags should be constant. The reason for
this requirement is to render the general mechanism of the time series
process more or less time-invariant (Granger and Newbold, 1986). Nonsta-
tionary series have permanent memories, whereas stationary series have
temporary memories. Nonstationary series have gradually diminishing auto-
correlations that can be a function of time, whereas stationary series have
stable but rapidly diminishing autocorrelations. Nonstationary series have
unbounded variances that grow as a function of time, whereas stationary
series have finite variances that are bounded. Stationary processes possess
important properties of convergence as the sample size increases. The
sample mean converges to the true mean. The variance estimates converges
to the true variance of the process. These limiting properties often do not
exist in nonstationary processes (Banerjee et al., 1993). The lack of finite
bounded variances can inflate forecast errors. Nonstationary series that are
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time dependent may have spurious correlation with one another, confound-
ing and compounding problems with multivariate time series modeling. All
of these problems plague proper modeling of the data-generating process,
for which reason weak or covariance stationarity is required for this kind
of time series modeling. If the series does not fulfill these requirements,
then the data require preprocessing prior to analysis.

Missing values may be replaced by several algorithms. If some are miss-
ing, then they should be replaced by a theoretically defensible algorithm
for missing data replacement. A crude missing data replacement method
is to plug in the mean for the overall series. A less crude algorithm is to
use the mean of the period of the series in which the observation is missing.
Another algorithm is to take the mean of the adjacent observations. An-
other technique may be to take the median of nearby points. Linear interpo-
lation may be employed to impute a missing value, as can linear trend at
a point. In the Windows version of SPSS, a ‘‘syntax window’’ may be opened
and any one of the following missing value replacement commands may
be inserted, preparatory to execution of the command.

Figure 3.1
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Selecting the command and running it will construct a new series, called
sales 1, which has the missing value replaced. This series may then be used
in the analysis.

With SAS, PROC EXPAND may be used to interpolate the missing
values. Interpolation may be performed by fitting a continuous curve joining
line segments. The SAS syntax for this procedure begins with an options
statement.

options ls�80 ps�60; /* sets column width and page length */

data expnd;

input Y; /* inputs variable Y */

date � intnx(’year’,’01jan1900’d, _n_-1);

/* ******************************************* */

/* INTNX function creates new variable */

/* which is named DATE in form of year, */

/* starting date, and increments of one */

/* year for each observation in data set */

/* ******************************************* */

format date year4.; /* format for date is 19?? */

cards; /* the data follow the cards statement */

24

25

.

.

29

30

proc expand data�expnd out�new from � year method�join ;

convert Y � Ynew/observed � middle;

id date;

title ’Interpolated data observed�middle’;

title2 ’Method � Join’;

proc print data�new; var date Y Ynew;

run;

proc expand data�expnd out�new2 from � year method�join;

convert Y � Ynew/observed � average;

id date;

title ’Interpolated data observed � average’;

title2 ’Method�Join’;

run;

proc print data�new2; var date Y Ynew;

run;

In this program, the PROC EXPAND utilizes the join algorithm to interpo-
late a middle and an average value for missing value in two different output
data sets. A date variable is constructed from 1900 through 1906 with the
INTNX function. This data variable is formatted to produce a yearly value
with the format date year4. command. The variable name of the series
under consideration is called Y. The data set is called expnd, and the proc
expand output data sets constructed by the middle and average values are
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called new and new2, respectively. The raw data for the variable name is
called Y while the interpolated series is called Ynew. The results of this
interpolation are displayed in the SAS output:

Interpolated data observed�middle

Method�join

OBS DATE Y YNEW

1 1900 24 24

2 1901 25 25

3 1902 26 26

4 1903 27 27

5 1904 . 28

6 1905 29 29

7 1906 30 30

Interpolated data observed � average

Method�Join

OBS DATE Y YNEW

1 1900 24 24.0000

2 1901 25 25.0000

3 1902 26 26.0000

4 1903 27 27.0000

5 1904 . 28.0000

6 1905 29 29.0000

7 1906 30 30.0000

Box–Jenkins time series analysis requires complete time series. If the
series has outliers, these outliers may follow from aberrations in the series.
The researcher may consider them missing values and use the missing-
value replacement process just described to replace them. In this way, he
can prepare a complete time series, with equally spaced temporal intervals,
prior to Box–Jenkins analysis.

3.5. TIME SERIES

3.5.1. MOVING AVERAGE PROCESSES

In the social sciences, time series are discrete, stochastic realizations of
underlying data-generating processes. There is a constant time ordering to
the data. The values of the realization are equally spaced over time. Adja-
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cent values usually are related to one another. This process may take place
in several ways. One way involves a shock, innovation, or error driving the
time-ordered stochastic series. That is, a random error, innovation, or shock,
et�1 , at a previous time period, t�1, plus a shock at current time, t, drives
the series to yield an output value of Yt at time t (McCleary et al., 1980).
An example of this process may be epidemiological tracking of the preva-
lence rate of a disease. The prevalence rate is the proportion of the total
population reported to have a disease at a point or interval of time. Reports
of AIDS cases to the Centers for Disease Control (CDC) in Atlanta, for
example, lead to a reported CDC prevalence rate in the United States.
Researchers may deem the number of cases reported to the CDC as input
shocks, and the CDC National Case Count as the output. The cases reported
to the CDC and the number of deaths can be tallied each quarter and then
graphed. When these data are modeled as a first-order moving average
process, they can be used to explain the diffusion of the disease and to
forecast the growth of a social problem for health care policy planning.

The growth of this series, once it has been mean centered, may follow
an effect at time t, which is represented by et, plus a portion of the shock
carried over effect from the previous time period, t�1. The lag of time
between t and t�1 may not just be that of one time period. It may be that
of several or q time periods. In this case et�q would be the shock that drives
this series. The more cases reported to the CDC, the higher the national
prevalence rate. The fewer cases reported, the less the national incidence
level reported. This process may be expressed by the following moving
average formula:

Yt � et � 	1et�1

� et(1 � 	1L),
(3.1)

where yt is the original series, � is the mean of series, Yt is the mean
centered series or Yt � yt � �, et is the shock at time t, et�1 is the previous
shock, and 	1 is the moving average coefficient. In this instance we observe
that the current national prevalence is equal to a shock during the same
time period as well as 	1 times a shock at the previous time period.

The value of 	1 will depend on which of these signs will be used. The
computer program calculates the mean of the series, with which the series
can be centered. This process, which involves a finite memory of one time
lag, is called a first-order moving average and is designated as MA(1).

Higher order moving average models are also possible. A second-order
moving average process, MA(2), would entail a memory for two time lags.
If, hypothetically, the contemporary U.S. AIDS prevalence series had a
memory that lasted for two time periods, then shocks from two time periods
in the past would have an effect on the series before that effect wore off.
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The model of the series would be that of a second-order moving average,
formulated as

Yt � et � 	1et�1 � 	2et�2

� et(1 � 	1L � 	2L
2).

(3.2)

In this case, the prevalence rate is a function of the current and previous
two shocks. The extent to which the effect of those shocks would be carried
over to the present would be represented by the magnitudes, signs, and
significances of parameters 	1 and 	2.

3.5.2. AUTOREGRESSIVE PROCESSES

Another type of process may be at work as well. When the value of a
series at a current time period is a function of its immediately previous
value plus some error, the underlying generating mechanism is called an
autoregressive process. For example, the percentage of Gallup Poll respon-
dents among the U.S. public who approve of a president’s job performance
is a function of its value at a lag of one time period. Therefore, the Yt is
a function of some portion of Yt�1 plus some error term. The nature of this
relationship may be expressed as follows:

Yt � �1Yt�1 � et

� �1LYt � et (3.3)

or

(1 � �1L)Yt � et .

When the output is a regression on the immediately previous output plus
some error term, the portion of the previous rating carried over to the
rating at time t is designated as �1. This kind of relationship is called a first-
order autoregressive process and is designated as AR(1). The presidential
approval series is one where approval is regressed upon a previous value
of itself plus some random error. But if the effect of the presidential ap-
proval carried over for two time periods, then the autoregressive relation-
ship would be represented by

Yt � �1Yt�1 � �2Yt�2 � et

� (�1L � �2L
2)Yt � et .

(3.4)
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In this formula the current approval rating would be a function of its two
previous ratings, a so-called second-order autoregressive relationship,
AR(2).

3.5.3. ARMA PROCESSES

Another data-generating mechanism that may be at work is a combina-
tion of the autoregressive and moving average processes. Series that have
both autoregressive and moving average characteristics are known as
ARMA processes. A formulation of an ARMA process is given in Eq. (3.5):

Yt � �1Yt�1 � �2Yt�2 � et � 	1et�1 � 	2et�2 . (3.5)

In this case, both the autoregressive and the moving average processes are
of order 2. Sometimes this process is designated as ARMA(2,2). To be
sure, ARMA(1,1) processes may occur as well. Most processes in the social
sciences are first- or second-order.

3.5.4. NONSTATIONARY SERIES AND TRANSFORMATIONS

TO STATIONARITY

Because the Box–Jenkins method is an analysis in the time domain
applied to stationary series data, it is necessary to consider the basis of
nonstationarity, with a view toward transforming series into stationarity.
Stationary series are found in stable environments (Farnum and Stanton,
1989). Such series may have local or global stationarity (Harvey, 1991).
Global stationarity pertains to the time span of the whole series. Local
stationarity pertains to the time span of a portion of the series. There is
weak and strong (strict) stationarity. When a process is weakly stationary,
there is stationarity in the mean, the homogeneity, and the autocovariance
structure. In other words, both the mean and variance remain constant
over time, and the autocovariance depends only on the number of time
lags between temporal reference points in the series. Weak stationarity is
also called covariance stationarity or stationarity in the second sense. For
strict stationarity to obtain, another condition must be fulfilled. If the
distributions of the observations are normally distributed, the series is said
to possess strict stationarity (Harvey, 1991; Mills, 1990).

Perhaps the simplest of all series is a white noise process, a series of
random shocks, normally and independently distributed around a mean of
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zero with a constant variance but without serial correlation. An example
of a white noise model, with merely a mean (constant) of zero and an error
term unrelated to previous errors is (Enders, 1995; Harvey, 1993)

E(et) � E(et�k) � 0

E(e2
t ) � E(e2

t�1) � E(e2
t�k) (3.6)

E(et , et�k) � �
 2, if k � 0

0, if k � 0
	 ,

where k is the number of lags. This process may be construed as a series
of random shocks around some mean, which might be zero. Although
the distinction between weak and strong stationarity may be important,
references in this text to stationarity denote weak (covariance) stationarity
unless otherwise specified.

Nonstationarity may follow from the presence of one or several of five
conditions: outliers, random walk, drift, trend, or changing variance. The
series must be examined in order to ascertain whether any of these nonsta-
tionary phenomena inhere within the series. A plot or graph of the data
against time (sometimes referred to as a timeplot or time sequence plot)
is constructed first. Outliers, which distort the mean of the series and render
it nonconstant, often stand out in a time sequence plot of the series. If the
value of the outlier indicates a typographical error, one of the missing value
replacement algorithms may be invoked in order to substitute a more
plausible observation. Trimming the series, by weighting the outliers, may
also be used to induce mean stationarity.

If a nonstationary series is riven with trend, the series possesses an
average change in level over time. The trend may be stochastic or determin-
istic. Consider the stochastic trend first. When a nonstationary series is
characterized by a random walk, each subsequent observation of the series
randomly wanders from the previous one. That is, the current observation
of the series, Yt, equals the previous observation of the series, Yt�1, plus a
random shock or innovation, et. A series with random walk follows the
movement of a drunken sailor navigating his next step on dry land
(McCleary et al., 1980). Without reversion to the mean, the value of this
series meanders aimlessly. The formulation of this random walk process is

yt � yt�1 � et ,

so that

yt � yt�1 � et (3.7)

or

(1 � L)yt � et .
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The accumulation of these random variations generates meanderings of
series level:

yt � yt�1 � et

� yt�2 � et�1 � et
(3.8)

� . . .

� yt�j � �j�1

i�0

et�i .

Other examples of such nonconstant mean levels are birth rates and death
rates. In this nonstationary process, the level meanders in accordance with
time, while the variance, to2, grows in accordance with time. As the time t

approaches infinity, the variance approaches infinity. This kind of stochastic
trend may be rendered stationary by differencing, however:

yt � yt�1 � et

yt � yt�1 � yt�1 � yt�1 � et (3.9)

�yt � et ,

where et � N(0, 
 2
t ).

To render a random walk stationary, it is necessary to transform the
series. First differencing—that is, subtracting the lagged value of the series
from its current value—causes the resulting series to randomly fluctuate
around the point of origin, which turns out to be not significantly different
from the zero level. We call processes that can be transformed into sta-
tionarity by differencing, ‘‘difference stationary’’ (Nelson and Plosser,
1982). An example of first differencing being used to endow a difference
stationary series with stability in the mean is shown with annual U.S. male
(16� years old) civilian employment in Fig. 3.2. After differencing removes
the stochastic trend, the transformed series exhibits a constant mean.

If the nonstationary series is random walk plus drift, then the series will
appear to fluctuate randomly from the previous temporal position, but this
process will start out at some level significantly different from zero. That
nonzero level around which the random walk originates can be represented
by a constant term, �. That white noise process drifts around the level, �,
which is significantly different from zero. Drift emanates from the accumula-
tion or integration of successive shocks over time. An example of random
walk plus stochastic drift might be the gambler’s toss of a fair coin. Each
toss may be a heads or a tails. Because each toss is, under fair and ideal
conditions, independent of every other toss, the outcome of the flip of the
fair coin is going to be a head or a tail. That is, there will be one outcome
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Figure 3.2 Unemployment of U.S. males 16� years old. Monthly data, not seasonally
adjusted; labor force data from current population survey. Source: Bureau of Labor Sta-
tistics.

out of two possibilities. In the long-run or global perspective—that is, after
many tosses—the probability of a heads will be �� and the probability of a
tails will be ��. In the short-run perspective, there may be a run of several
random heads in a row. The number of heads or tails may drift upward or
downward. A gambler commits a fallacy when believing that because there
have been so many heads in a row, the next flip has to turn up a tails,
because each flip is completely independent of any other. This drift is an
integrative process. The formulation of this process (Hendry, 1995) is:

yt � yt�1 � � � et

� yt�2 � � � � � et�1 � et
(3.10)� . .

� y0 � �t � �k
k�0

et�k .

The drift is integrated into the stochastic trend described earlier, while its
variance, var(y) � t
2, approaches infinity as the time, t, approaches infinity.
Hence, the variance of any forecast error, though the process is still differ-
ence stationary, increases without bound as well (Nelson and Plosser, 1982).
The significance test is biased downward when drift is added to the ran-
dom walk.

We call a series with a deterministic trend ‘‘trend stationary,’’ and we
can detrend by regression on a linear or polynomial time parameter (Nelson
and Plosser, 1982). Regression coefficients of the time variable are trend
coefficients; the significant time parameters will control for the trend, and
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the residuals will comprise the detrended stochastic component of the
series. For example, such a trend may be formulated as

yt � � � b1t � et

whose expected value is
(3.11)

E(yt) � � � b1t � E(et)

� � � b1t.

Examples of trend are population growth, learning, inflation/deflation, tech-
nological change, developments in social norms or customs, developing
environmental conditions, and growth of public awareness of a phenome-
non (Farnum and Stanton, 1989). The level, variance, and covariance of
these processes are functions of time also. As the time increases, the level
and variance increase. Such integrated series have no asymptotic variance
limit, and the forecast error may expand indefinitely. The addition of a
deterministic trend biases the significance test further downward than when
there is random walk plus drift. In general, transformations to stationary
are performed by differencing for stochastic trends and by regression for
deterministic trends (Enders, 1995). For the most part, differencing will
handle the transformations to stationarity (Nelson and Plosser, 1982).

3.6. TESTS FOR NONSTATIONARITY

3.6.1. THE DICKEY–FULLER TEST

There are objective tests that may be conducted to determine whether
a series is nonstationary. The series could be nonstationary because of
random walk, drift, or trend. One way to test this is to evaluate a regression
that nests a mean, a lagged term (to test for difference stationarity), and
a deterministic trend term (to test for trend stationarity) in one model:

yt � � � yt�1 � �t � et

and by taking the first difference of the yt one finds that (3.12)

�yt � � � (� � 1)yt�1 � �t � et .

This model forms the basis of the Dickey–Fuller test. The test parameter
distributions depend on the sample size and which terms are in the model.
Therefore, the application of the Dickey–Fuller test depends on the regres-
sion context in which the lagged dependent variable is tested. The three
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model contexts are those of (1) a pure random walk, (2) random walk plus
drift, or (3) the combination of deterministic trend, random walk, and drift.

To detect the stochastic form of nonstationarity, the Dickey–Fuller test
entails a regression of a series on a first lag of itself to determine whether
the regression coefficient of the lagged term is essentially equal to unity
and is significant, under conditions (cases) of no constant, some nonzero
constant, or some nonzero constant plus a deterministic trend coefficient.
Consider the case called the autoregressive no constant test. The model to
be tested presumes that the regression equation contains no significant
constant term. The regression equation to be tested in the first case is

yt � �yt�1 � et (3.13)

A regression equation without a constant means that this model tests for
pure random walk without drift.

yt � �1yt�1 � et

and if �1 � 1, then
(3.14)

yt � yt�1 � et

(1 � L)yt � et

t �
�1 � 1

se�1

�t� � t ,

(3.15)

where t is the critical value of this first case. The null hypothesis is that
�1 � 1. If the null hypothesis cannot be rejected, the data generating process
is inferred to have a unit root and to be nonstationary. Therefore, the two-
sided significance test performed is that for the statistical significance of
�1�1. The test resembles a t-test. The null hypothesis that the series is a
nonstationary random walk is rejected if �t� � �1�, where the value of 1

depends on the sample size and which other parameters are in the equation.
Monte Carlo studies have shown that the critical values do not follow those
of a t-test, however. Only when the sample is reasonably small and other
parameters are not contained in the model does this distribution resemble
a t distribution. In general, the smaller the sample size, the larger the critical
values, and for all three models the parameter is biased slightly downward
(Banerjee et al., 1993). Because of this bias, the Dickey–Fuller table of
critical values for � � 1 stems is reproduced with permission from John
Wiley and Sons, Inc., and Wayne Fuller in Appendix A (Fuller, 1996).
Notwithstanding that, SAS has performed its own Monte Carlo studies
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with 108 replications, which is more than the 60,000 used by Dickey, for
which reason the accuracy of the SAS critical values for � � 1 is expected
to be much greater than those reported in earlier papers (SAS Institute,
1995).

The second Dickey–Fuller case involves a context of random walk plus
drift. A regression tests the hypothesis that the series is nonstationary in
the context of random walk plus drift. The regression in this second case,
sometimes called the AR(1) with constant model (Greene, 1997), is

yt � �0 � �1 yt�1 � et . (3.16)

The null hypothesis is that the series under consideration is a integrated
at the first order, that is, I(1). In other words, the null hypothesis is a test
of whether � � 1. The alternative hypothesis is that the series is stationary.
In the context of random walk plus drift around a nonzero mean, when
the series is asymptotically stationary it has a constant mean of �0/(1 � �)
(Banerjee et al., 1993). These different circumstances require that when
this regression model is tested, the significance test specified in Eq. (3.16)
be based not on the critical values for 1 but on those for 2. The distribution
of critical values is biased downward more than those of the t distribution,
and even more than those of the first case. The t2 critical values, for the
model of AR(1) with a constant, may also be found in the Dickey–Fuller
Table in Appendix A. The Dickey–Fuller tests involve an individual and
a joint test. There is not only the test for � � 1; there is a joint F test for
the null hypothesis that ��0 and � � 1 as well. These two tests comprise
the essence of the Dickey–Fuller tests in the context of random walk
plus drift.

The third Dickey–Fuller case is one with a context of random walk
plus drift in addition to a deterministic linear trend. In this context, a
regression, shown in Eq. (3.17), also tests the null hypothesis that the series
is nonstationary. As in the earlier cases, the null hypothesis is that �1�1,
and the alternative hypothesis is that the series is stationary. If the null
hypothesis for the test in Eq. (3.15) is rejected, there would be no simple
differencing required. In this context, the distribution of the test statistic
becomes even more nonstandard than in the first and second contexts; that
is to say, the limiting distribution of critical values for 3 is more strongly
biased downward than before. The reader may find the critical values for
the 3 parameter in a third section of the Dickey–Fuller Table in Appendix
A or from the SAS program.

yt � �0 � �1 yt�1 � bt � et (3.17)

Because this version of the Dickey–Fuller test includes the lagged endoge-
nous variable and the time trend parameter, difference stationary as well
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as trend stationary aspects of the series are tested at the same time with
the joint F test. The joint F test for this model simultaneously tests the null
hypothesis that � � 1 and ��0. The alternative hypothesis of the joint F

test is that at least one of these is not as hypothesized. Yet the Dickey–Fuller
tests presume that the residuals are white noise.

3.6.2. AUGMENTED DICKEY–FULLER TEST

Not all Dickey–Fuller regression models have white noise residuals. If
there is autocorrelation in the series, it has to be removed from the residuals
of the regressions before the Dickey–Fuller tests are run. Under conditions
of residual serial correlation, the augmented Dickey–Fuller test,

yt � �0 � �1 yt�1 � �p�1

j�2

�j �yt�j � et , (3.18)

may be applied. Even if the process is an ARMA(p,q) process, Said and
Dickey (1984) found that the MA(q) portion of an ARMA (p,q) process
under conditions of MA(q) parameter invertibility can be represented by
an AR(p) process of the kind in Eq. (3.18) when p gets large enough
(Banerjee et al., 1993). If the series is afflicted with higher order autocorrela-
tion, successive orders of lagged differencing will be required to render the
residuals white noise. Often, the number of lags required will not be known
in advance. If the number of lags is too low, the model will be misspecified
and the residuals will be contaminated with autocorrelation. It is advisable
to set the number of lags high enough so that the autocorrelation will be
removed from the residuals. Said and Dickey suggest that one less than
the AR order of the model will do. If the number of lags is higher than
needed, there may be cost in efficiency as the coefficients of the excess
lagged terms lose significance. The augmented Dickey–Fuller equations
are identical to the three foregoing Dickey–Fuller equations, except that
they contain the higher order lags of the differenced dependent variable
to take care of serial correlation before testing for the unit root. SAS
provides the critical values for these coefficients in accordance with the
number of lagged difference terms applied.

To test for random walk nonstationarity under conditions of serial corre-
lation in the residuals, the augmented Dickey–Fuller (ADF) test requires
estimating regression Eq. (3.18). If the series has a higher order serial
correlation, higher order differencing will be required in order to transform
the residuals into white noise disturbances. This preparation should be
completed before the test for stationarity is performed. If three lagged
orders of differenced dependent variables are necessary to remove the
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autocorrelation from the residuals, and if the series has a random walk
plus drift, Eq. (3.19) might be employed to test for nonstationarity:

yt � �0 � �1 yt�1 � �3
j�2

�j yt�j � et
(3.19)

� �0 � �1 yt�1 � �2 yt�2 � �3 yt�3 � et .

If the series has random walk plus drift around a stochastic trend, the
Dickey–Fuller test can be constructed with the addition of a time trend
variable, according to

yt � �0 � �1 yt�1 � �p
j�2

�j yt�j � bt � et . (3.20)

The question of how many autoregressive lags or what order of model to
use in the test may arise. A likelihood ratio test may be conducted to
determine whether the addition of the extra lag significantly adds to the
variance of the model. Cromwell et al. (1994), assuming normality of the
residuals, give the formula for the Likelihood ratio test:

LR � T ln �
 2
k�1


 2
k
� ,

where

T is the size of sample, (3.21)

 2

i is the residual variance of model i.

LR � � 2 with 1 df, for the test of
h0, the model is of order AR(k � 1), and
ha, the model is of order AR(k).

When additional lags no longer improve the fit of the model, the order of
the model has been determined. At this point, the Dickey–Fuller test for
the (�1 � 1)/SE is performed and the observed value can be compared
to the critical value for the model employed. If the observed absolute t

value is less than the critical value, the series is nonstationary. If the ob-
served absolute t value is greater than the critical value, no simple differenc-
ing is required.

3.6.3. ASSUMPTIONS OF THE DICKEY–FULLER AND

AUGMENTED DICKEY–FULLER TESTS

The Dickey–Fuller tests presume that the errors are independent of one
another—that is, they are distributed as white noise—and are homoge-
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neous. All of the autoregressive terms required to render the residuals
white noise have to be in the augmented Dickey–Fuller model for it to be
properly estimated. If there are moving average terms, the model must be
amenable to inversion into an autoregressive process. If there are multiple
roots, the series must be differenced to the order of the number of roots
before subjecting it to the test. For example, if there are two roots, the
series would have to be twice differenced to render it potentially stationary.
Testing for white noise residuals can be performed with an autocorrelation
function and a partial autocorrelation function. These functions will be
elaborated in the next chapter.

3.6.4. PROGRAMMING THE DICKEY–FULLER TEST

Some statistical packages have built-in procedures that perform Dickey–
Fuller and augmented Dickey–Fuller tests. Although SPSS currently has
no procedure that automatically performs the Dickey–Fuller test, SAS
version 6.12 contains the augmented Dickey–Fuller test as an option within
the Identify subcommand of the PROC ARIMA. For pedagogical purposes,
the natural log of gross domestic product (GDP) in billions of current
dollars is used. This series requires first and fourth lag seasonal differencing
to render it stationary. An annotated SAS program is given to show how
the series is at first assessed for stationarity using the Dickey–Fuller tests,
then the augmented Dickey–Fuller tests, and then with a test for a seasonal
root at lag 4.

options ls=80; /* Limits output to 80 columns */

title 'C3pgm1.sas ' ; /* Program on disk */

title2 'Source: Bureau of Econ Analysis, Dept of Commerce';

title3 'National Accounts Data';

title4 'Annual data from Survey of Current Business, August 1997';

title5 'downloaded from http://www.bea.doc.gov/bea/dn1.htm July 9, 1998';

data grdopr; /* Defines data set GRDOPR */

infile 'c:statssasgdpcur.dat'; /* Reads in data from GDPCUR.dat */

input year gdpcur; /* Defines variables and order of vars */

time = _n_; /* Construction of a trend variable */

lgdp = log(gdpcur); /* Takes natural log of GDP in current $ */

lglgdp=lag(lgdp); /* Takes lag of ln(GDPcurrent) */

label gdpcur='GDP in current $Billions'

lgdp='LN of GDP in current $Billions'

year='Year of Observation'

lglgdp='Lag of LN(GDPcur)';

proc print; /* Lists out data for checking */

run;
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proc arima data=grdopr;

identify var=lgdp

stationarity=(adf=(0)) nlag=20; /* Stationary subcommand invokes */

/* Regular Dickey-Fuller Tests */

title6 'Ln(GDP) in need of Differencing'; /* at 0 lag only */

run;

proc arima data=grdopr;

identify var=lgdp

stationarity=(adf=(0,1,2,3,4)); /* Augmented Dickey-Fuller Tests */

title7 'Augmented Dickey-Fuller Tests'; /* at lags 0 through 4 */

run;

proc arima data=grdopr;

identify var=lgdp(1) /* Test of First Differenced series */

stationarity=(adf=(0,1,2,3,4)); /* Augmented Dickey Fuller Test */

title6 'ADF of Diff1[Ln(GDPcur)]'; /* @ lags 0 thru 4 */

run;

proc arima data=grdopr;

identify var=lgdp(1)

stationarity=(adf=(0) Dlag=4); /* Augmented Dickey Fuller Test */

title6 'ADF of Diff1[Ln(GDPcur)]'; /* Seasonal root @ lag 4 test */

run;

proc arima data=grdopr; /* Test of Diffd Stationary series */

identify var=lgdp(1,4)

stationarity=(adf=(0)); /* Dickey Fuller Test AT LAG 0 */

title6 'ADF of Diff1,4[Ln(GDPcur)]'; /* OF DIFFERENCED SERIES */

run;

The output indicates that the natural log of the series is in need of differenc-
ing and one that needs no further differencing to render it stationary. Closer
inspection reveals that regular differencing at lag 1 and seasonal differencing
at lag 4 is necessary to effect stationarity.

Users of SAS version 6.12 or higher will find that the Dickey–Fuller or
augmented Dickey–Fuller tests may be programmed by the inclusion of a
stationarity option in the ARIMA procedure’s identify subcom-
mand. To render the residuals white noise and amenable for analysis, the
serial correlation is first eliminated by the inclusion of autoregressive orders
within the model. The list of AR orders to be tested is included within the
parentheses of adf=( ). If there were first-order autoregression and the
test were to be done on such a series, then adf=(1) would be used. Once
the serial correlation is eliminated, nonsignificant probabilities indicate that
differencing is in order. Significant probabilities indicate that the series is
stationary in the output of these tests.

In this example there was no reason to suspect residual autocorrelation
in the series, so the order of lagged differenced terms was set to zero. If
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there is reason to suspect higher order autoregression in the series, the
user may specify more than one (autoregressive order) in the parenthesis.
Hence, the following command invokes a regular Dickey–Fuller test.

proc arima data=qgrdopr;

identify var=lgdp stationarity=(adf�(0)) nlag=20;

title5 'Ln(GDP) in need of Differencing';

run;

In addition to the usual ARIMA, the output for this Dickey–Fuller test
of the natural log of annual U.S. gross domestic product from 1946 through
1997 indicates that the series is in need of differencing. The series has a
significant single mean but it lacks a deterministic trend. Therefore, the
line of output used for analysis is the middle line, entitled Single Mean.

Augmented Dickey–Fuller Unit Root Tests

Type Lags RHO Prob<RHO T Prob<T F Prob<F

Zero Mean 0 1.0430 0.9133 12.1151 0.9999 -- --

Single Mean 0 -0.0292 0.9528 0.1487 0.9380 138.3900 0.0010

Trend 0 -2.1522 0.9629 1.0000 0.9351 0.5017 0.9900

Reading from the middle line for the single mean model, the null hypothe-
sis of nonstationarity is confirmed. Some differencing would be in order
here.

In the first line, the model being tested is that of the random walk
without drift and without trend. The � is the coefficient of the lagged
response variable. The probability less than rho is a Dickey–Fuller probabil-
ity. The t test for (��1)/SE� is the test for whether the lagged endogenous
term is significant, according to the SAS simulations of Dickey–Fuller
probabilities for i. The null hypothesis is that the response series is nonsta-
tionary. The alternative hypothesis is that the response series is stationary. If
this discovered probability is greater or equal to .05, then the null hypothesis
cannot be rejected and simple differencing is needed to render the series
stationary. There is no joint test of the mean, �, and � here, for it is already
assumed that � � 0.

In the second line, the test is performed for the model of random walk
with drift but without a deterministic trend. The t test for � � (��1)/SE
is the test of significance used when there is a constant in the model, and
the probability less than t indicates that the null hypothesis that � �1
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cannot be rejected. Therefore, it is inferred that the series being tested is
nonstationary. The F test is the simultaneous test of the null hypoth-
esis that the intercept and mean both equal zero—that is, that � � 1 and
�1 � 1.

In the third line, labeled Trend, these are the probabilities found when
there is a random walk, with drift around a deterministic trend. If there
were a time trend variable in the model and the model had a constant, the
third line would be used for interpretation. The t test is the same Studentized
t test described earlier, but in the larger context of a single mean, a random
walk, and a deterministic trend. The F test for this model tests the null
hypothesis that neither the deterministic trend nor the stochastic trend is
significant; in other words, the joint test here tests the null hypothesis that
��0 and ��1. Because our model does not have a deterministic trend, this
is not the model that we examine to test our series stationarity. For all
three contexts, nonsignificance of the T or � probabilities indicates that the
series is in need of differencing to render it stationary.

If lagged AR terms are included to eliminate autocorrelation in the
residuals, then the augmented Dickey–Fuller test is performed. It is invoked
by specifying the number of lagged difference terms in the ADF � ((list of
lagged terms) DLAG�orders of seasonal lags)) subcommand. In program
C3PGM1.SAS, there is an example of how a seasonal lag at T � 4 is
tested. Once the logged series has been differenced at lags 1 and seasonally
differenced at lag 4, it becomes a stationary white noise series. The output
for the last Dickey–Fuller test in the preceding program on the regular
and seasonally differenced series can be interpreted from the Single Mean
line below. The significant probabilities for coefficients for rho and tau
suggest that the series is now stationary and that no further differenc-
ing is necessary (Hamilton, 1994; Leonard and Woodward, 1997; Meyer,
1998).

Augmented Dickey-Fuller Unit Root Tests

Type Lags RHO Prob<RHO T Prob<T F Prob<F

Zero Mean 0 -50.0517 0.0001 -7.4820 0.0001 -- --

Single Mean 0 -50.2561 0.0004 -7.4452 0.0001 27.7303 0.0010

Trend 0 -50.4605 0.0001 -7.3603 0.0001 27.1855 0.0010

SAS has computed the Dickey–Fuller tests with Monte Carlo studies of
more than 60,000 replications, so the Dickey–Fuller probabilities obtained
from SAS are likely to be more accurate than those found in the regular
tables (Meyer, 1998).
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3.7. STABILIZING THE VARIANCE

Weak or covariance stationarity requires not only mean stationarity, but
variance or homogeneous stationarity as well. Often, series exhibit volatility
or fluctuating variance. An example is the series showing the growth in the
total gross federal debt.

Figure 3.3 The growth of the gross total federal debt.

Graphing a series may reveal variance instability. If the variation in the
series expands, contracts, or fluctuates with the passage of time, the change
in variation will usually be apparent in a time plot. A simple graph of the
series over time should reveal this volatility.

Once the researcher detects variance instability, he should consider vari-
ance stabilizing transformations. The natural log transformation, a power
transformation, or a natural log of a series are examples of transformations
that may stabilize the variance; a Box–Cox transformation (Eq. 3.23) is
another common option. Examples of the power transformation already
mentioned are the cube, square, square root, cube root, or fourth root of
the original series. When a series variance is proportional to the level of
a series or an exponential form of it, taking the log of the series may be
another way of rendering its variance more stable.

To determine whether the natural log of a process is an appropriate
transformation, one can test it with the SAS %LOGTEST macro. This
macro estimates the process, with a chosen order of differencing and autore-
gression. It compares the fit of the maximum likelihood estimated model
of the original series with that of its natural log. The test criteria are several
measures of goodness of fit of the model. Optional criteria have different
penalties for the number of degrees of freedom in the model. The penalties
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for more degrees of freedom increase according to whether the analyst
employs the mean square error, the Akaike Information Criterion, or the
Schwartz Information Criterion (Diebold, 1998; Ege et al., 1993):

Mean square error � �T
t�1

e2
t

T

Akaike Information Criterion � exp(2k/T) �T
t�1

e2
t

T
(3.22)

Schwartz Bayesian Criterion � T (k) �T
t�1

e2
t

T
.

Actually, SAS computes the natural log of these criteria and seeks the
value of that transformation. If, for example, the natural log transformation
produces a significant improvement of fit as indicated by a lower AIC, then
a log transformation for the original series is recommended for variance sta-
bilization.

The syntax of the SAS %LOGTEST macro begins with a percent sign,
indicating the beginning of a macro and the macro name, LOGTEST. The
arguments of the macro are embraced by the parentheses. Among the
arguments are the data set name, the variable under consideration, the
specification of the output data set, and the print command. The macro
command, %LOGTEST(data set, variable, OUT=TRANS, PRINT=

YES), terminated with a semicolon, produces the output:

TRANS LOGLIK RMSE AIC SBC

NONE -259.390 327185.77 530.780 542.488

LOG -233.079 88801.13 478.159 489.866

The comparison of the untransformed series, called NONE, and the natural
log transformed series, called LOG, gives the root mean square residual,
the Akaike Information Criterion, and the Schwartz Bayesian Criterion
for the two series. Clearly, the natural log transformation of the total gross
federal debt improves the variance stationarity of the series, as indicated
by the lower RMSE, AIC, and SBC. Other options that may be added are
a constant with the CONST= option, the AR=n, to specify the order of the
AR model to be fit, and the DIF= option, which specifies the differencing
to be applied before the test.

Because they are functions of the accumulation of error in the stochastic
trend process, the variance and covariance are functions of time in the
trend stationary process. Whether one applies the natural log of a series
or a power transformation, all of these transformations are members of a
family of Box–Cox transformations:
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y �
(Xt � C)� � 1

�
if 0 � � � 1

(3.23)

y � ln Xt � C if � � 0,

where C is a constant, and � is the shape parameter. In all cases, � is a
real number. When � � ��, the Box–Cox transformation reduces to a square
root transformation. If the variance rises along with the level, then � should
be less than unity. If the variance declines as the level of the series increases,
then � should be set to some number greater than unity to stabilize the
variance (Pankratz, 1991). Such series must be transformed into stationarity
before the Box–Jenkins methodology can be applied.

3.8. STRUCTURAL OR REGIME STABILITY

If a series is covariance stationary, it has homogeneous variance. The
condition of covariance stationarity implies a stable regime, in which the
parameters of a model remain constant. Parameter constancy means that
the parameters of a model fit the data equally well across the whole series:
there is no significant difference between the residual variance from one
part of the data set to another. Structural stability may be tested by the
joint F (Chow) test that is part of an analysis of variance. Assuming that
the series is long enough, the errors of the models are normally distributed,
and those errors have equal variance, the researcher divides the sample
into two subsets or segments, separated by a break-point. Three models
may be developed. One model (M1�2) may be formulated on the basis of
the whole data set. From each of the two subsets of data, a model may
be formulated. Models M1 can be formed from the first segment and model
M2 can be formed from the second segment. Each model has a residual
variance that makes up part of the test of structural stability. If there is no
difference between the whole data set and the sum of its two parts, the
residual variances of the whole model should be equal to those of the sum
of the subset models and the series would reveal no significant break-points.

The joint F test for structural stability is a ratio of two residual variances.
Each variance is itself a ratio of sums of squares to its degrees of freedom.
The composite numerator variance consists, on the one hand, of the pooled
models residual sums of squares subtracted from the sums of squares of
the residuals based on the whole data set (RSS1�2 � [RSS1 � RSS2]). To
provide the numerator variance, the resulting sum of squared residuals
is then divided by its degrees of freedom, which dfnum � (n1 � n2 �
p � 1) � (n1 � n2 � 2p � 2) � p � 1, where p is the number of estimated
parameters. The denominator variance consists of the ratio of the sum of
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squared residuals of the model based on the pooled data (RSS1�2) to its
respective degrees of freedom (n1 � n2 � 2p � 2). The joint F test is
therefore:

F �

�(RSS1�2 � [RSS1 � RSS2])

(p � 1)
�

� (RSS1 � RSS2)

(n1 � n2 � 2p � 2
� (3.24)

where RSS1�2 is the residual sum of squares of whole dataset, RSS1 is the
residual sum of squares of first dataset, RSS2 is the residual sum of squares
of second dataset, p is the number of parameters estimated. If the residual
variances are constant and approximately equal, then the residuals are
additive, and the joint F test yields a nonsignificant result. When this joint
F test is nonsignificant, the series has structural stability across the break-
point. When this joint F test is significant, the series lacks structural stability
(Kennedy, 1992; Gujarati, 1995; Maddala, 1992).

3.9. STRICT STATIONARITY

In addition to all of the foregoing conditions holding for weak stationar-
ity, strict stationarity requires normality of the distribution as well. Box–
Jenkins time series analysis does require weak stationarity, but it does not
require strict stationarity. Nonetheless, if one wishes to test his series for
strict stationarity, he may analyze skewness ratio and the kurtosis coefficient
of the distribution. If Yt is a random variable with mean �, then the rth
central moment may be defined as follows:

�r � T �1 �
t

[yt � �]r,

for
(3.25)

r � level of moment, and

t � 1, 2, . . . , T.

From this formulation, the skewness ratio (�1)
1/2 � (�3 ) /(�2)

3/2 and the
kurtosis coefficient �2 � (�4) /(�2)

2 may be derived. The latter is normally
distributed with mean 0 and standard error � (24/T)1/2. If the random
variable is normally distributed, the skewness ratio is 0 and the kurtosis
coefficient is 3 (Cromwell et al., 1994). It is more important that the series
be rendered weakly stationary before the analysis begins.



94 3/Introduction to Box–Jenkins Time Series Analysis

3.10. IMPLICATIONS OF STATIONARITY

When a series exhibits weak stationarity, Box–Jenkins analysis becomes
feasible. Whether the series is characterized by an autoregressive or moving
average process, weak stationarity renders parameter values of the realiza-
tion of the data-generating process stable in time (Granger and Newbold,
1986). For the purposes of this discussion, it is assumed that the series has
already been transformed to a condition of stationarity through appropriate
transformation.

3.10.1. FOR AUTOREGRESSION

A first-order autoregression obtains when a series whose current obser-
vation is a function of the immediately previous observation plus some
innovation or random shock. This process has been formulated earlier in
Eq. (3.3). An autoregression may be expanded as

Y0 � e0

Y1 � �1y0 � e1

� �1e0 � e1

Y2 � �1Y1 � e2

� �1(�1e0 � e1) � e2 (3.26)

� �2
1e0 � �1e1 � e2

�

�

Yt � �t
1e0 � �t�1

2 e1 � � � � � �1et�1 � et

to show that it is a function of multiple lags. McCleary et al. (1980) have
described this phenomenon as ‘‘tracking a shock through time’’ and have
formulated it as follows: When one notes that � < 1, then the power series
of � is one that diminishes over time. According to the preceding equation,
if �2 � .25, then �3 � .125 and �4 is .0625. The farther back in time the
analyst looks, the smaller the coefficient of the shock to the system in an
autoregressive model. If this model is construed as an input–output system,
the diminution of this coefficient may be interpreted as a leakage of effect
from the system. Table 3.1 shows the leakage from the system at each time
period. The autoregression and its corresponding leakage that characterizes
this input–output system can be expressed by standard formulas:
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Autoregression within the system is

��
i�1

�i
1et�i

and leakage from the system is
(3.27)

��
i�1

(1 � �1)
ieti

where i is the number of past time periods. After a few time periods the
effects of the previous shocks to the system are so small that they may be
discarded as insignificant. For this attenuation to take place, however, the
value of � must be between �1 and �1. The evanescence of the effect is
indicated by the amount less than 1 or greater than �1. The persistence
of the effect is measured by its closeness to the value of 1 or �1. The closer
the effect is to 1 or to �1, the longer the effect persists. If the value of
� � 1 or � � �1, then this diminution of effect does not occur. The bounds
of 1 and �1 for the autoregressive parameter are known as the bounds of
stationarity. When � equals 1 or �1, the process is no longer stationary.
If the process is not stationary, it would need to be transformed to stationar-
ity in order for it to be amenable to convergence or attenuation, which is
required for the process to be analytically manageable. In sum, it is neces-
sary therefore to have autoregressive coefficients of � whose absolute value
is less than 1.

With an autoregressive process, Vandaele (1983) notes that the variance
of the process may be expressed as

Var(Yt) � E(�1Yt�1 � et)
2

� E(�1Y
2
t�1 � 2�1Yt�1et � e2

t )

and because E(Yt�1et) � 0, (3.28)

Var(Yt) � �2
1Var(Yt�1) � 0 � E(e2

t )

� �2
1Var(Yt�1) � 
 2

e .

Table 3.1

Leakage from Autoregression

Time Portion remaining Leakage

t � 0 e0 � � �

t � 1 �1e0 (1 � �1)e0

t � 2 �2
1e0 (1 � �2

1)e0

� � �

t � t � t
1e0 � 0 (1 � � t

1)e0
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Under conditions of constant variance,

Var(Yt) � �2
1Var(Yt) � 
 2

e

(1 � �2
1)Var(Yt) � 
 2

e (3.29)

Var(Yt) �

 2

e

1 � �2
1

.

If � � 1, the process is unstable. The variance of the error becomes infinite
as the time increases and the following process obtains:

(1 � �1L)Yt � et

if �1 � 1
(3.30)

(1 � L)Yt � et

Yt � Yt�1 � et

which leads to that nonstationary accumulation of random shocks, Yt �

Y0 � e1 � e2 � � � � � et . This is a nonstationary process. Hence, for this
process to be stable, it is necessary that � � 1 (Vandaele, 1983). When the
autoregressive coefficient remains within the bounds of stationarity, the
first-order autoregressive process may converge and be modeled.

In the second-order autoregressive process

Y1 � �1Yt�1 � �2Yt�2 � et

or (3.31)

(1 � �1L � �2L
2)Yt � et .

Vandaele (1983) suggests that in autoregressive models the constant of the
model may be parameterized in terms of its mean.

If the constant, C, is nonzero, then

(1 � �1L � �2L
2)(yt � �) � C � et ,

and if the mean, �, is constant,

C � (1 � �1 � �2)�, (3.32)

where

�i is an autoregressive parameter

C is a nonzero constant

� is the mean.
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where �i is an autoregressive parameter, C is a constant, � is the mean.
For this process to be convergent, new bounds of stationarity would have
to hold:

Autoregressive model of order 2

Bounds of stationarity:

�1 � �2 � 1 (3.33)

�1 � �2 � �1

�2 � �1 � �1.

Heretofore, we have considered autoregressive processes of order 1 and
2. We may also consider pth-order autoregressive processes. The bounds
of stationarity may be elaborated for those also. Most of the time in the
social sciences, data-generating processes will be explainable in terms of
orders of 1 or 2. When the parameters of the data-generating process lie
within the bounds of stationarity, the process becomes convergent and
manageable. The implications of stationary extend beyond those of auto-
regressive processes.

3.10.2. IMPLICATIONS OF STATIONARITY FOR MOVING

AVERAGE PROCESSES

The implications of stationarity extend to moving average processes as
well. Indeed, according to Wold in 1938, a series may be explained in terms
of an infinite linear combination of weighted innovations or random shocks.
Such a series may be interpreted as an infinite moving average of innova-
tions or shocks. More often than not, moving average models may be
conceived of as a finite, rather than infinite, order of weighted past shocks.
Equations (3.1) and (3.2) exemplify first- and second-order moving average
processes. Most moving average models are first- or second-order. First-
order moving average models (MA(1)) tend to be more common than
second-order (MA(2)) models. Higher order moving average models tend
to be more rare; often, they may be reformulated as lower order moving
average models. In general, in a moving average process, a shock to the
system enters the system and persists only for q time periods, after which
it disappears completely.

Consider the MA(1) model. An MA(1) model is invertible to an infinite
order AR(1) model, as shown in equation set (3.34):
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Y � et � 	1et�1

Yt � (1 � 	1L)et

Yt

(1 � 	1L)
� et

(3.34)

(1 � 	1L � 	2
1L

2 � � � �)Yt � et

Yt � 	1Yt�1 � 	2
1Yt�2 � � � � � � et.

For this inversion to be effected, the parameter 	1 must conform to certain
bounds of invertibility. That is, in magnitude, the bounds of invertibility
for an MA(1) model are defined by the inequality of ��1� � 1. If �	1� � 1,
then the process would be unstable. Instead of converging, the process
would be a nonstationary random walk. If it were a random walk, the
process would require the integrated accumulation of outcomes from one
shock. The effect would hardly be tractable. If ��1� � 1, the process would
not converge; rather, it would explode. Differencing would be required
before stationarity could be attained.

In an MA(2) process, the shock lasts for two periods and then the impact
it has on the model dies.

For the MA(2) case

Yt � et � 	1et�1 � 	2et�2

or

Yt

(1 � 	1L � 	2L
2)

� et. (35)

This can also be expanded into another autoregressive series,

Yt � 	1Yt�1 � 	2
1Yt�2 � 	3

1Yt�3 � � � �

� 	2Yt�2 � 	2
2Yt�4 � 	3

2Yt�6 � � � �

� 2	1	2Yt�3 � 3	2
1	2Yt�4 � 3	1	

2
2Yt�5 � 4	3

1	2Yt�5 � � � � � et.

For an MA(q) process, the effect of the shock persists for q lags and then
desists. For this MA(2) process to be stationary, it must conform to the
following boundary conditions of invertibility:

Bounds of Invertibility

For ARIMA(0,0,1) �1 � 	1 � �1

For ARIMA(0,0,2) �1 � 	2 � �1 (3.36)
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For ARIMA(0,0,2) 	1 � 	2 � �1

For ARIMA(0,0,2) 	2 � 	1 � �1.

For an MA(2) model, similar conditions, also expressed in Eq. (3.36), must
obtain for the process to be stable.

Given these conditions, the series formed can converge to a solution.
From Eq. 3.34, it can be seen that an ARIMA (0,0,1) process can be
converted into an infinite series of weighted past observations of the data-
generating process. For this process to be tractable and stable, the parame-
ters must reside within the bounds of invertibility for �. If the parameters
for � equal or exceed the bounds of invertibility, one may assume that the
series is nonstationary and should be differenced (McCleary et al., 1980).

In the next chapter, the theory of the Box–Jenkins ARIMA models is
discussed in greater detail. Derivation and use of the autocorrelation and
partial autocorrelation functions are developed for identifying and analyz-
ing time series. The characteristic patterns of the autocorrelation and partial
autocorrelation functions for different types of models are reviewed, and
programming of this identification procedure with SAS and SPSS is ad-
dressed.
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4.1. INTRODUCTION TO ARIMA

This chapter examines basic Box–Jenkins time series analysis. It
reviews time sequence graphs and explains how inspection of these plots
enables the analyst to examine the series for outliers, missing data, and
stationarity. It expounds graphical examination of the effect of smoothing,
missing data replacement, and/or transformations to stationarity. Correlo-
gram review also permits the analyst to employ other basic analytical
techniques, allowing identification of the type of series under consider-
ation.

Two of these basic analytical tools, the sample autocorrelation function
(ACF) and the sample partial autocorrelation function (PACF), are theo-
retically defined and derived. Their significance tests are given. Graphical
characteristic patterns of the ACFs and PACFs are discussed. Once the
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characteristic ACF and PACF patterns of different types of models are
understood and catalogued, they can be used to match and identify the
nature of unknown data generating processes. To demonstrate application
of these functions, we utilize ACF and PACF graphs (of the correlation
over time), called correlograms. The characteristic ACF of nonstationary
series is compared to the characteristic pattern after transformation to
stationarity. The chapter then expounds the implications of bounds of
stationarity and invertibility for correlograms, and derives and explains
characteristic ACF patterns of the autoregressive processes, moving aver-
age, and ARMA processes. For the PACF, the characteristic patterns of
those same processes are also distinguished and identified. A discussion of
more complex ARMA processes and their patterns follows. Aspects of
ARMA model order identification are also addressed with the corner
method, and then the researcher is introduced to the integrated, ARIMA
models as well.

Other types of autocorrelation functions are also discussed. The chapter
briefly mentions the inverse autocorrelation function (IACF) and the sam-
ple extended autocorrelation function (EACF). Along with the discussion
of the sample EACF is an explanation of the corner method for identifying
the order of ARMA models. For preliminary graphing and plotting of the
ACF and PACF plots, some SAS and SPSS programming syntax is provided.
In sum, this chapter introduces the reader to basic theoretical and graphical
identification of the basic ARIMA models, before addressing seasonal
models in the following chapter.

4.2. GRAPHICAL ANALYSIS OF TIME SERIES DATA

4.2.1. TIME SEQUENCE GRAPHS

After undertaking background research regarding the series of interest
and possible influences on it, the researcher first visually examines the data.
He plots the series data against time in order to inspect it for outliers,
missing data, or elements of nonstationarity. If any element of nonstationar-
ity—such as a sudden sharp singular change; a random walk; a random
walk plus drift, which is such random fluctuation around a nonzero intercept
term (Enders, 1995); a random walk plus drift around a deterministic or
stochastic trend (Cromwell et al., 1994); or even variance instability—is
evident in the data, then the patterns of nonstationarity generally become
apparent in either a time sequence plot or a correlogram. Those sudden
drastic changes in the series could be evidence of outliers. The analyst may
observe a random walk. He may perceive that the series drifts in one
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direction or another. He may discern a linear or polynomial trend. He may
observe the unstable variation in the series. What do these nonstationary
characteristics look like?

There are characteristic patterns of these components of nonstationarity.
A white noise series has mere random variation. There is no discernible
pattern in its representation, as can be seen in Fig. 4.1. In a white noise
series, there is no upward or downward trend of observed data values. The
temporal distribution of these values appears to be erratic or random. These
series exhibit no drift, and no growth or diminution of variance. Moreover,
no autocorrelation is apparent within the series.

When stationarity does not exist, there may be pure random variation
around a zero mean or random walk about a previous nonzero level, called
random walk with drift. This series may appear to randomly drift upward.
The irregular change in mean signifies trend nonstationarity. An example of
random walk with drift is the annual U.S. unemployment from 1954 through
1994, the upper of the two series shown in the SPSS chart in Fig. 4.2. These
data are taken from Table B-42 of the 1998 Economic Report of the (US)

President. The phenomenon observed appears to be random walk around a
mean level of 5.75 percent. The existence of this mean is what enables us to
use the term drift. The question arises whether the series should be centered
before analysis. Although it is not necessary, the researcher may opt for pre-
analysis centering. For simple analysis, centering is unnecessary, and not us-
ing it forces the student to learn the difference between the mean and the
constant in time series analysis. For more complicated modeling—especially
where intervention or transfer functions are involved—centering is recom-

Figure 4.1 White noise simulation.



104 4/The Basic ARIMA Model

Unemployment

Differenced
Unemployment

19891986198319801977197419711968196519621959195619531950

�4

�2

0

2

4

6

8

10

12

U
ne

m
pl

oy
m

en
t i

n 
10

00
s

Year

Figure 4.2 U.S. percent unemployment series.

mended. First differencing transforms the series into a condition of stationar-
ity, and this differenced series is presented in the lower part of Fig. 4.2.

Another example of nonstationarity may be a trend, a more or less long-
run tendency of increasing or decreasing mean. We can obtain an example
of an SAS graph of a series exhibiting a linear trend from Federal Reserve

Figure 4.3 Gross private domestic fixed investment by date, 1970 Q1 to 1993 Q4. Billions
of dollars. Seasonally adjusted at annual rate. Source: Bureau of Economic Analysis, Survey
of Current Business. Forecast of model with lead of 12 for forecast horizon.
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Figure 4.4 Gross private domestic fixed investment, 1946 Q1 to 1993 Q4, in billions of dollars.
Seasonally adjusted at annual rate. Source: Bureau of Economic Analysis, Survey of Current
Business. A possible quadratic trend.

Bank of Chicago, National Income and Products Accounts data archive.
Culled from 1970 through 1993, the gross domestic private investment is a
linear function of time and therefore exhibits a distinct linear trend Fig. 4.3.
When gross domestic private investment is regressed against time, there is
a significant positive linear component. When the series is examined over
a longer time span, it may reveal an example of a quadratic trend, as can
be seen in Fig. 4.4. It is often helpful to couple the graphical examination
of the data with an objective statistical test.

In SAS, ASCII time plots or high-resolution graphic plots can be em-
ployed to display the series. The analyst may invoke the SPSS Time Se-
quence Plot or the SAS GPLOT procedure to obtain high-resolution graphi-
cal representation of the data. The SAS syntax for a graphical time sequence
plot, where the series under consideration is the percent of civilian unem-
ployment from Table B-42 of the 1998 Economic Report of the President,

is shown in Fig. 4.5. The series is designated by the variable name UNEM-

P RA, and the year is designated by the variable name YEAR (Bowerman
and O’Connell, 1993; Ege et al., 1993; Brocklebank and Dickey, 1994). The
SAS command syntax to produce Fig. 4.5 follows:

symbol1 i�join c�blue;

axis1 label�(a�90 ’Percent Unemployment’);

proc gplot;

plot unemp ra * year/vaxis�axis1;

title justify�L ’Figure 4.5 U.S. Civilian Unemployment rate 1950-

97’;
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Figure 4.5 U.S. civilian unemployment rate, 1950–1997. Seasonally adjusted for all civilian
workers. Source: 1998 Economic Report of the President, Table B-42.

title2 ’Seasonally adjusted for All Civilian Workers’;

title3 ’Source: 1998 Economic Report of the President Table B-42’;

title4 ’Data from Government Printing Office On-line Services’;

title5 ’http://www.gpo.ucop.edu/catalog/erp98 appen b.html on 2/12/98’;

run;

This syntax is appended to the SAS program (SAS/ETS Software: Applica-

tions Guide, 1992) in order to generate a graphical time plot of the unem-
ployment series. The SPSS syntax for a similar time plot may be entered
in a syntax window once the data are already entered. This syntax can then
be ‘‘selected’’ or ‘‘marked’’ and then the selection can be executed or run.
The SPSS� Time Sequence Plot command syntax is given as follows (SPSS-

X Trends, 1988; SPSS Trends Release 6.0, 1993):

TSPLOT VARIABLES� unempl

/ID� date

/NOLOG

/FORMAT NOFILL REFERENCE.

4.2.2. CORRELOGRAMS AND STATIONARITY

Correlograms for stationary processes exhibit characteristic patterns.
The autoregressive parameters of a stationary process must reside within
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the bounds of stability. That is, the absolute values of the parameter esti-
mates have to be less than unity. Only when the estimated values of these
parameters adhere to this criterion will the process converge and the corre-
logram reveal rapid attenuation of the magnitude of the ACF. Rapid attenu-
ation suggests that the magnitude of the ACF drops below the level of
significance after a few lags. Because the autoregressive parameters of
nonstationary processes may not be less than unity, the autocorrelations
inherent in those processes may not rapidly dampen. Instead, they may
very slowly decline, even undulate, or increase. Conversely, very gradual
attenuation or wild fluctuation of the ACF before it drops below the level
of significance is usually evidence of nonstationarity.

Similarly, the PACF of the moving average process exhibits rapid attenu-
ation. For a moving average process to be stationary, the estimated values
of the parameters must reside within the bounds of invertibility. Only then
will this process converge and only then will the PACF of the moving
average process attenuate rapidly. If the PACF of the moving average
process does not rapidly dampen, the PACF will not attenuate rapidly, and
that will be evidence of nonstationarity.

Often, after detection of nonstationary evidence, diagnosis of nonsta-
tionarity is helpful. Determination of whether the problem stems from
a deterministic or a stochastic trend is in order. The diagnosis decomposes
the components of nonstationary so that the series may be appropriately
and effectively transformed. This diagnosis can be accomplished with
the help of the Dickey–Fuller or augmented Dickey–Fuller tests, in
cases of serial correlation, described in the previous chapter. A comparison
of the second and third Dickey–Fuller or augmented Dickey–Fuller
regressions will reveal whether trend stationarity exists. Once we know
the precise nature of the nonstationarity, we can consider the appropriate
corrective transformations: regression detrending for series with trend
stationarity and differencing for series with stochastic trends. We also
must determine the order of integration and undertake the appropriate
transformation to effect stationarity. A linear or polynomial time trend
may be used if the series has trend stationarity, and first or higher order
differencing may be used if the series has stochastic trend. If there is
heteroskedasticity in the series, it may be necessary to subject the series
to a Box–Cox transformation or a log transformation to bring about
variance stability. We can compare the AIC of the log transformation
of the series with that of the raw series to see whether a natural log
transformation is worth applying. Graphical inspection of the data should
be coupled with a particular test of the series for nonstationarity to
confirm the results of those tests (Mills, 1990).
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4.3. BASIC FORMULATION OF THE
AUTOREGRESSIVE INTEGRATED MOVING
AVERAGE MODEL

The basic processes of the Box–Jenkins ARIMA (p,d,q) model include
the autoregressive process, the integrated process, and the moving average
process. As part of the orientation of the reader, fundamental definitions
and notational conventions are specified, clarifying the mean and constant
as well as the convention of the sign of moving average components. Our
attention is then turned to the order of integration of the model, which is
indicated by the I(d) distribution designation. If a series is I(0), then it is
stationary and has an ARIMA(p,0,q) designation. If a series requires first
differencing to render it stationary, then d�1 and it is distributed as I(1)
and is given an ARIMA(p,1,q) designation. Once the process has been
transformed into stationarity, we can proceed with the analysis.

The series is then examined for autoregressive or moving average compo-
nents. First, we have to consider centering and the difference between
the mean and the constant. Consider the autoregressive process first. The
parameter � is the level of the process. In this text, the convention that Yt

is centered is employed here—such that Yt � yt��. When the terms of
constant and mean are not used interchangeably, it is helpful to distinguish
between them. In the autoregressive process, where a series yt is repre-
sented as

yt � � � �1(yt�1 � �) � et

(1 � �1L)yt � (1 � �1L)� � et
(4.1)

(1 � �1L)Yt � C � et

C � (1 � �1)� for an ARIMA(1,0,0) model,

where the mean of the series is � and the constant estimate of the autore-
gressive model is C (Ege et al., 1993; Vandaele, 1983; Babinec, 1996; Bresler,
et al., 1992; Brocklebank and Dickey, 1994). The first-order autoregressive
coefficient is designated �1. If the autoregressive process were a second-
order process, then the mean-centered series could be represented by

(yt � �) � �1(yt�1 � �) � �2(yt�2 � �) � et

yt � �1yt�1 � �2yt�2 � �(1 � �1 � �2) � et
(4.2)

(1 � �1L � �2L
2)yt � �(1 � �1 � �2) � et

(1 � �1L � �2L
2)yt � C � et .
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Hence, for an ARIMA(2,0,0) model,

C � �(1 � �1 � �2).

Higher order autoregressive processes would have three or more lags of
the series. The autoregressive process is sometimes represented by [ARI-
MA(p,0,0)], where p is the order (the highest number of significant lags)
of this process. For higher order autoregressive processes with a mean term
in the model, the constant estimate is C��(1 � �1 � �2 � � � � � �p).
Whereas the autoregressive process is a function of previous observations
in the series, the moving average process is a function of the series innova-
tions. When these series are stationary, the process remains in equilibrium
around a constant level (Babinee, 1996; Zang, 1996).

Moving average processes are functions of current and past shocks
around some mean. A first-order moving average process may be repre-
sented by kind of linear filter,

yt � � � et � 	1et�1
(4.3)

Yt � et � 	1et�1 ,

where � is the mean or constant estimate of this model, et is the current
innovation or shock, 	1 is the first-order moving average coefficient, and
et�1 is the previous shock to the system. A second-order moving average
process is represented by

yt � � � et � 	1et�1 � 	2et�2
(4.4)

Yt � et � 	1et�1 � 	2et�2 .

In the case of the second order moving average process, the current observa-
tion is a function of some mean or intercept, the current innovation, and
two past innovations—one at lag 1 and the other at lag 2. Although some
scholars use a plus rather than a minus sign parameterization of the previous
moving average components, this amounts to mere convention of what
value one assigns to �	t�i, the weight of an innovation, at a particular time
t�i (Granger and Newbold, 1986; Harvey, 1993). The original parameteriza-
tion employed by Box and Jenkins is the one used in this text. In this
process �	2 is the coefficient of the shock two time periods prior to the
current time period. The moving average process is sometimes represented
by [ARIMA(0,0,q)], where q represents the order of the process.

A combination of these processes is called the autoregressive moving aver-
age [ARMA(p,q)], sometimes referred to as an [ARIMA(p,0,q)] model. In
this notation, the p is the order of the autoregressive process and the q is the
order of the moving average process. With this stationary model, a zero in
the middle position signifies the order of differencing required. If there are
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autoregressive and moving average components to the differenced series,
such a series may be modeled as an ARIMA(p,d,q) model, where d is the
order of differencing that is required to render the series stationary.

In sum, autoregression is the extent to which current output observation
is a function of past outputs of the system. The order of autoregression
signifies the number of previous observations of which the series is a signifi-
cant function. Autoregression coefficients of higher orders would not be
significant. The autoregressive process tends to have a longer memory; that
of the moving average process is comparatively finite. The moving average
process is only a function of a finite number of past shocks to the system.
When the process under consideration contains both the autoregressive
and the moving average component, it is referred to as a mixed autoregres-
sive–moving average ARMA model. The model of the regular AR-
IMA(1,1,1) process is

(1 � L)(yt � �) � �1(yt�1 � �) � et � 	1et�1
(4.5)

(1 � L)(1 � �1L)yt � (1 � �1)� � (1 � 	1L)et

where yt is the current output observation, et is the current shock to system
	1 is the moving average parameter, � � mean of the series, and �1 is the
autoregressive parameter. The mean of the series is designated by �. When
the 	 precedes the L in this set of parentheses, that is the first-order
autoregressive parameter, and when the parameter preceding the L is the
	, that is the first-order moving average parameter. Given this notation,
the model will be expounded in light of particular analytical functions.

4.4. THE SAMPLE AUTOCORRELATION FUNCTION

When we analyze the ARIMA process, we find several functions that
are of considerable analytical utility. The first of these functions is the
autocovariance function (ACV). This function shows the covariance in a
series between one observation and another observation in the same series
k lags away. The autocovariance at lag k is the autocovariance between a
series Yt at time t and the same series Yt�k, lagged by k time periods. It
may be formulated as

ACV(k) � E(Yt ,Yt�k) � �n�k

t�1

(Yt � Ȳ)(Yt�k � Ȳ). (4.6)

The autocorrelation function, ACF(k), may be construed as a standard-
ization of the autocovariance function. The standardization is performed
by dividing the autocovariance (with a distance of k lags between observa-
tions) by a quantity equal to the variance—that is, the product of the
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standard deviation at lag 0 and the standard deviation at lag 0. This is
analogous to computing the Pearson product moment correlation of the
series by dividing the covariance of a series and its lagged form by the
product of the standard deviation of the series times itself. Because of
covariance stationarity, it does not matter whether the k is a lead or a lag
from reference time t: The autocorrelation would be the same, regardless
of where the reference point is in the series, as long as the time lag (or
lead) between the two time points is the same.

ACF(k) �
ACV(YtYt�k)

std dev Yt � std dev Yt

�

�n�k

t�1

(Yt � Ȳ)(Yt�k � Ȳ)/(n � k)

�n
t�1

(Yt � Ȳ)2/n (4.7)

�
E(YtYt�k)


 2
y

.

The expected value of the autocorrelation function for lag 1 (where k �
1) is derived by dividing Eq. (4.6) by the output variance (which is the
square root of the variance of Y at time t times the square root of the
variance of Y at the same time period). Given this definition of the autocor-
relation function, shown in Eq. (4.7), different characteristic patterns
emerge for various autoregressive and moving average autoregressive pro-
cesses. To these patterns, we now turn our attention.

It is instructive to examine the characteristic differences between the
ACFs of those two processes. The first-order autoregressive process, some-
times referred to as ARIMA(1,0,0) or AR(1), may be represented by the
formula in equation set (4.8). We can use this equation to illustrate the
formulation of the autocorrelation function. The characteristic pattern of
the autoregressive process is seen to be one of gradual attenuation of the
magnitude of the autocorrelation. The autocorrelation function for such a
process is computed with the autoregression parameter, �.

The ARIMA(1,0,0) process can be written

(1 � �1L)yt � � � et;

therefore;

yt � � � �1yt�1 � et , (4.8)

and with the autocovariance for lag 1,
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ACV(1) � E[(Yt)(Yt�1)]

� E[(Yt�1)(�1Yt�1 � et�1)]

� E(�tY
2
t�1 � Yt�1et�1) (4.9)

� �1Y
2
t�1 and because of stationarity

� �1

2
y.

Assume that the series is centered, so that Yt � yt � � and that Yt�1 �
yt�1 � �. We may take the covariance of the series and its lag at time t � 1
in Eq. (4.9). This result is the first-order autocovariance of an autoregressive
model. Because Yt and Yt�1 are independent

E(Y1et�1) � 0,

and because of homogeneity

E(Y 2
t�1) � 
 2

y . (4.10)

Therefore,

ACV(1) � �1EY 2
t � �1


2
y .

The autocorrelation, E[ACF(1)], can be computed by dividing the covari-
ance by the variance:

ACF(1) �
Cov(Yt ,Yt�1)

Var(Yt)

� �1


 2
y


 2
y

(4.11)

� �1.

This autocorrelation is that for the first-order autoregressive process.
If the process is second-order, ARIMA(2,0,0), then the manifestation is

ACF(2) �
ACV(2)

Variance

ACV(2) � E(YtYt�2)

� E[(�1Yt�1 � et)(Yt�2)]
(4.12)

� E[�1(�1Yt�2 � et�1) � et)(Yt�2)]

� E[(�2
1Y

2
t�2 � �1Yt�2et�1 � Ytet�2)]

� �2
1E(Y 2

t�2) � �2
1


2
y ;
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so

ACF(2) �
�2

1

2
y


 2
y

� �2
1 .

The autocorrelation function defines the autoregressive process as the ex-
pectation of the current observation times that of the previous observation.
By mathematical induction, the more general case can be inferred. In Eq.
(4.13), this AR process is generalized in this way to the kth power for the
ARIMA(1,0,0) or AR(1) model:

ACF(3) � �3
1

.

.
(4.13)

ACF(k) � �k
1 .

Therefore, the strength of the autocorrelation of the stationary autoregres-
sive process exponentially diminishes over time, as long as the magnitude
of the autoregressive parameter remains less than 1. With this exponential
attenuation, the decline in magnitude approaches zero as the time lag
becomes infinite. This exponential decline in magnitude of the parameter
forms the characteristic pattern of the ACF for the autoregressive process.
The autocorrelation function has different implications for the moving
average process.

If the magnitude of the autoregressive parameter equals unity, then the
process becomes a nonstationary ARIMA(0,1,0) process. If Yt � �1Yt�1 �
et , then Yt � et/(1 � �1L) � et(1 � �1L � �1L

2 � �1L
3 � � � � � �

p
1Lp). In

other words, if �1 � 1, then this process represents a random walk. But if
	1 � 1, then the process exhibits a nonstationary stochastic trend and/or
goes out of control. Therefore, stationarity requires that the autoregressive
parameter remain within particular limits.

Amovingaverageprocessexhibitsadifferentcharacteristicautocorrelation
function pattern. The characteristic pattern consists of sharp spikes up to and
including the lag, indicating the order of the MA(q) process under consider-
ation. Consider the case of the first-order moving average process, sometimes
referred to as an ARIMA(0,0,1) or MA(1), and represented by the expected
value of the series at time, tt�1. For this process the autocovariance, ACV(1) is

E(yt , yt�1) � E[(et � 	1et�1)(et�1 � 	1et�2)]

� E[etet�1 � 	1e
2
t�1 � 	1etet�2 � 	 2

1et�1et�2]
(4.14)

� �	1Ee2
t�1

� �	1

2
e .
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In this first-order moving average process, the autocovariance equals minus
the magnitude of the shock, 	, times the variance of the shock at the first
time lag. The autocorrelation function is formed from the autocovariance
and the process variance. The process variance of the first-order moving
average is given by

Variance � E(y 2
t ) � E(et � 	1et�1)

2

� E(e2
t � 2	1e1et�1 � 	 2

1e
2
t�1)

(4.15)
� E(e2

t � 2	1Ee1et�1 � 	 2
1Ee2

t�1)

� 
 2
e(1 � 	 2

1).

The autocorrelation is equal to the covariance divided by the process vari-
ance. For the first-order moving average process, the ACF at lag 1 equals

E(ACF(1)) �
�	1

1 � 	 2
1

. (4.16)

If the ACV for the first-order moving average is calculated at lag 2 (two
lags difference between two first-order moving averages), the numerator
and hence the ACF(2) is found to disappear completely:

E(ytyt�2)

� E(et � 	1et�1)(et�2 � 	1et�3)
(4.17)

� E[(et)(et�2) � 	 2
1(et)(et�3) � 	1etet�3 � 	1(et)(et�2)]

� 0.

Hence, the moving average is shown to spike at the lag of its order and
then drop to zero:

ACF(1) �
0

1 � 	 2
1

� 0. (4.18)

At higher orders, the ACF, say from ACF(3) to ACF(q), where q � 1,
equals zero as well. Therefore, the ACF(1) of the first-order moving average
is shown to have finite memory: After the time period of that shock, its
autocorrelation drops to zero and disappears.

It is possible to compute the ACF(1) for a second-order moving average
process using the same method. From a derivation of the equations, it may
be seen that the ACF for a second-order moving average will have negative
values for ACF(1) and ACF(2) but zero values for higher lags. Consider
the first-order autocovariance, ACV(1). The multiplication proceeds by
multiplying the first, the outside, and the inside terms that result in squared
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components of the same kind, and finally the rest of the inside terms
in sequence:

E(YtYt�1) � E[(et � 	1et�1 � 	2et�2)(et�1 � 	1et�2 � 	2et�3)]

� E[(etet�1 � 	2etet�3

� 	1e
2
t�1 � 	1	2e

2
t�2

� 	1etet�2 � 	 2
1et�1et�2

(4.19)
�	1	2et�1et�3 � 	2et�1et�2

� 	 2
1et�2et�3)]

� �	1Ee2
t�1 � 	1	2Ee2

t�2

� �
 2
e	1(1 � 	2).

The output variance is

E(Y 2
t ) � E[(et � 	1et�1 � 	2et�2)]2

� E[(e2
t � 2	1etet�1 � 2	2etet�2

� 	 2
1e2

t�1 � 2	1	2et�1et�2
(4.20)

� 	2
2e

2
t�2)]

� Ee2
t � 	 2

1Ee2
t�1 � 	 2

2E 2
t�2

� 
 2
e(1 � 	 2

1 � 	 2
2).

To obtain the ACF(1) for the second-order moving average process, the
autocovariance is divided by the process variance. The expected value of
ACF(2) � ACV(2)/Var is

E(ACF(2)) �
�
 2

e	1(1 � 	2)


 2
e(1 � 	 2

1 � 	 2
2)

(4.21)

�
�	1(1 � 	2)

1 � 	 2
1 � 	 2

2

.

From Eq. (4.21), it can be seen that for positive innovations, there will be
two negative spikes on the ACF(2) from the parameters in the numerator.
For a second-order moving average process, we may also compute ACF(2).
We can compute the autocovariance using

E(YtYt�2) � E(et � 	1et�1 � 	2et�2)(et�2 � 	1et�3 � 	2et�4)

� �	2Ee2
t�2 (4.22)

� �	2

2
e .
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When we divide the variance into the autocovariance, we obtain ACF(2):

ACF(2) �
�	2


2
e


 2
e(1 � 	 2

1 � 	 2
2)

(4.23)

�
�	2

1 � 	 2
1 � 	 2

2

.

These autocorrelation formulations are for moving averages. For a second-
order moving average, if there is a positive innovation at lag 2, then this will
appear as a spike on the ACF at lag 2. We can similarly show that the ACF(q),
where q � 2 for a second-order moving average process, is 0. That is, the
ACF(3) for the MA(2) model may be shown in Eq. (4.24) to equal zero:

E(yt , yt�3)

� (et � 	1et�1 � 	2et�2)(et�3 � 	1et�4 � 	2et�5) (4.24)

� 0.

Because there are no identical product terms, the ACF for the MA process
drops off immediately after the order of its time lag of the process has tran-
spired.

The autocorrelation at lag k, ACF(k), for an MA(q) process can be
expanded by mathematical induction to show that ACV(k)/Var is

ACF(k) � ��	k � 	1	k�1 � 	2	k�2 � � � � � 	q�k	q

1 � 	 2
2 � � � � � 	 2

q
�

for k � 1,2,3, . . . , q

(4.25)if k � � q, ACF(k) � 0

and if k � q, ACF(k) � 0,

where k is the order of correlation and q is the order of moving average
process. Unlike the exponential attenuation of the ACF of the autoregres-
sive process, the characteristic pattern of the moving average process is
delimited by the order of the process and drops to zero immediately thereaf-
ter. Consequently, the memory of the moving average process is finite and
limited to the order of its process.

A more complex situation is that of the mixed AR and MA process.
This kind of process is commonly referred to as an ARIMA(1,0,1) or
ARMA process. The implications for the ACF in the ARMA process
are interesting. With a centered series, the ARMA process possesses the
autoregressive component on the left-hand side of the lower equation of
(4.26) and the moving average component on the right-hand side:

Yt � �1Yt�1 � et � 	1et�1

(1 � �1L)Yt � (1 � 	1L)et.
(4.26)

Therefore

Yt � (1 � �1L)�1(1 � 	1L)et .
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From Eq. (4.25), we can see that if �1 � 	1, then the ARMA reduces to
an ARIMA(0,0,0), a white noise process. Another way of expressing
Eq. (4.26) is

Yt � (1 � �1L � �2
1L2 � � � � � � p

1Lp )(1 � 	1L)et

� (1 � �1L � �2
1L

2 � � � � � � p
1Lp )

� (	1L � 	1�1L
2 � 	1	

2
1L

3 � � � � � 	1�
p�1
1 Lp )et (4.27)

� (1 � (�1 � 	1)L � (�1 � 	1)�1L
2 � � � � � (�1 � 	1)� p�1

1 Lp )et

� (1 � (	1 � 	1)L � (	1 � �1)�1L
2 � � � � � (	1 � �1)� p�1

1 Lp )et .

If there is a small difference between the autoregressive parameter �1 and
the moving average parameter 	1, and that difference is called v, then �1

� 	1 � v. In this case each �1 � 	1 � v, and the equation in (4.26) reduces
to an autoregressive model of order (p � 1) in the penultimate equation
of equation set (4.27) or a kind of MA model, as revealed in the final
equation of that set. Of course, the absolute values of such AR or MA
parameters must lie within bounds permitting series convergence.

Consider the first order ACF(1) for the ARMA. First the variance and
then the autocovariance are computed. Because E(Yt�1 et�1) � E(�1Yt�2,

et�1 � et�1
2 � 	1et�2et�1) � 
e

2, the variance for the ARMA(1,1) is:

Var(Yt) � E(�1Yt�1 � et � 	1et�1)
2

� �2
1Y

2
t�1 � �1Yt�1et � �1	1Yt�1et�1

� �1Yt�1et � e2
t � 	1etet�1

��1	1Yt�1et�1 � 	1etet�1 � 	 2
1e2

t�1
(4.28)

� �2
1


2
y � (1 � 2�1	1 � 	 2

1)
 2
e

� �2
1 Var(Yt) � (1 � 2�1	1 � 	 2

1)
 2
e .

Therefore,

Var(Yt) �
(1 � 	 2

1 � 2 �1	1)
 2
e

(1 � �2
1)

.

Wei (1990) computes the autocovariance as follows:

ACV(k) � E(Yt�kYt) � E[(�1Yt�kYt�1) � Yt�ket � 	1Yt�ket�1)]

� E[�1Yt�kYt] � E(Yt�ket) � 	1E(Yt�ket�1).

If k � 0, then Var(Yt) � ACV(0), and
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Var(Yt) � �1ACV(1) � 
 2
e � 	t�1E(Ytet�1).

Because

E(Ytet�1) � �1E(Yt�1et�1 � 	1E(et�1)
2 � (�1 � 	1)
 2

e
(4.29)

Var(Yt) � �1ACV(1) � 
 2
e � 	1(�1 � 	1)
 2

e .

If k � 1, then

ACV(1) � �1Var(Yt) � 	1

2
e .

From Eq. (4.28), we obtain Var(Yt), and by substitution, obtain

ACV(1) �
�1(1 � 	 2

1 � 2�1	1)
 2
e

1 � �2
1

� 	1

2
e .

After the rightmost term is multiplied by 1 � 	2, the numerator terms can
be collected and factored. Then the ACF(1) for the ARMA is computed
by dividing the autocovariance by the variance:

ACF(1) �
ACV(1)

Variance
(4.30)

�
(1 � �1	1)(�1 � 	1)

(1 � 2�1	1 � 	 2
1)
 2

e

.

We have an exponentially attenuating ACF. The magnitude is modulated
by the order of the theta in the denominator. Similarly, the ACF(k) of the
ARMA(1,1) or ARIMA(1,0,1) is equal to ACF(k) � �1ACF(k � 1) for
k � 2 (Box et al., 1994; Griffiths et al., 1993; Vandaele, 1983; Wei, 1990).
Therefore, these models may have ACFs that taper off. For the most part,
most complex models may be reduced to small-order AR, MA, or ARMA
processes. Clearly, the ACF is a valuable instrument for identification of
the nature of the data-generating process.

4.5. THE STANDARD ERROR OF THE ACF

Although the magnitude and relative magnitude of the ACF are impor-
tant, the standard error and confidence interval are essential for proper infer-
ence. Unless we know the confidence limits, it is hard to tell below what mag-
nitude of the ACF may be attributable to normal error variation within the
series and above what magnitude of the ACF may be clearly statistically sig-
nificant. Once we know the magnitude of the standard error of the ACF, we
can estimate the confidence limits formed by �2 standard errors. ACFs with
magnitudes beyond the confidence limits are those worthy of attention.
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The standard error of the ACF has been derived. Box and Jenkins (1976)
use Bartlett’s approximation of the variance of the ACF to obtain the
standard error of the ACF. They maintain that if the samples are large and
the series is completely random, the variance (ACF) approximately equals
the inverse of the sample size:

Var(ACF) 
 1/T, where T � number of observations in data set. (4.31)

The standard error then is the square root of this variance:

Standard error(ACF) � 1/�T for random series, and

(4.32)
Standard error(ACF) �

1

�T
�1 � 2 �q

k�1

r2
k� for MA(q).

Therefore, the confidence limits are formed from � 1.96/�T or � 2/�T .
If the process is an MA process, SPSS makes a slight adjustment by adding
2 times the sum of the autocorrelations (SPSS 7.0 Statistical Algorithms,

1996).
The significance of the autocorrelation coefficient can also be determined

by either the Box–Pierce portmanteau Q statistic or the modified Ljung–
Box Q statistic (Box et al., 1994; Cromwell et al., 1994):

Box–Pierce Q statistic(df�k�p�q�1) � T �m
k�1

r2
k, and

(4.33)

Ljung–Box Q Statistic(df�k�p�q�1) � T(T � 2) �m
m�1

r2
k

T � k
,

where m is any positive maximum lag, T is the number of observations, k

is the lag of autocorrelation, rk is the autocorrelation for lag k, SAS and
SPSS use the modified Box–Ljung Q statistic to test the significance of
autocorrelations and partial autocorrelations. Given the degrees of free-
dom, the Box–Ljung Q is known to provide better chi-square significance
tests at lower sample sizes than the earlier Box–Pierce Q statistic (Mills,
1990).

4.6. THE BOUNDS OF STATIONARITY
AND INVERTIBILITY

Certain conditions must hold for these processes, which consist in part
of series, to be asymptotically convergent and hence stable. According to
Wold’s decomposition theorem, these stationary processes may be ex-
pressed as a series of an infinite number of weighted random shocks, with
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the sum of the absolute values of the weights being less than infinity.
By inverting the autoregressive component of a first-order autoregressive
process, so that Yt � � � (1 � �1L)�1et � 1 � �1L � �1

2L2 � � � �)et , one
obtains an infinite sequence of moving average shocks. For these infinite
series to converge rather than randomly walk or even diverge, the compo-
nent roots have to lie within certain limits. The roots of the equation for
the process to be stationary have to reside outside the unit circle. For a
first-order autoregression equation, if the ��1� � 1, then the series at the
bottom of equation sets (4.34 and 4.35) converges. If ��1� � 1, there is a
unit root in Eq. (4.8) and the process becomes a nonstationary random
walk that does not stabilize. When the process is a random walk, the process
after inversion becomes an infinite, random sum of shocks. The series may
drift about, and in so doing, fails to converge. If the series is nonstationary
and ��1� � 1, the series goes out of control. The summation of shocks
endows it with an exponential stochastic trend while it fails to converge.
Alternatively, a nonstationary variance may be unstable and increase to
infinity as time progresses. This condition begins as the process goes beyond
the unit bound of stationarity. Unless roots of the equation lie within the
bounds mentioned, the first-order autoregressive process will not converge
and will be characterized by asymptotic instability. In the correlogram, a
nonstationary autoregressive process exhibits a slow rather than an expo-
nential diminution in magnitude of autocorrelation. Therefore, these pa-
rameter limits are called the bounds of stationarity for autoregressive pro-
cesses.

Higher order AR(p) models have bounds of stationarity as well. For
example, the AR(2) model, yt � � � �1yt�1 � �2yt�2 � et, has three sets
of boundaries of stationarity: �1 � �2 � 1, �2 � �1 � 1, and �2 � 1. For
a nonlinear model with two roots, the roots of the equation, Yt (1 �
�1L � �2L2 ) � et, must lie within limits that make solution of the equation
possible. Wei (1990) and Enders (1993) show that these limits are partly
determined by the discriminant, ��2

1 � 4�2, of the solution equation for
the roots and provide a good detailed exposition of the characteristic root
derivation of these parameters. If the discriminant is positive, the parame-
ters remaining within the bounds of stationarity guarantee that the process
will converge. If the discriminant is negative, the formulation is converted
to a cosine function and under specific conditions this cycles or undulates
with some attenuation. In short, for the process to remain stationary, the
characteristic roots must lie outside the unit circle, and higher order models
have similar constraints. These limits constitute the bounds of stationarity
for autoregressive processes.

The MA models have similar limits within which they remain stable.
These boundaries are referred to in MA models as bounds of invertibility.
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The MA(1) model, yt � � � et � 	1et�1 , has its bounds of invertibility.
That is, yt � � � et � 	1et�1 � (1 � 	1L) et. Another way of expressing
this is Yt/(1 � 	1L) � Yt � 	1L � 	2

1L
2 � . . . � 	1

qLq � et. When 	1 �
� �1, as long as this invertibility obtains, the moving average process is
another expression of an infinite autoregressive process. This condition
exhibits the duality of autoregression and moving average processes. This
condition exists for an MA(1) model as long as 	1 � 1. For an MA(1)
model, this inequality defines the bounds of invertibility.

Consider the first-order moving average process,

Yt � �1Yt�1 � et

(1 � �1L)Yt � et

Yt �
et

(1 � �1L)
(4.34)

� (1 � �1L)�1et

� (1 � �1L � �2
1L

2 � . . . � �p
1Lp)et

� et � �1et�1 � �2
1e2

t�2 � . . . � �p
1et�p .

This process is one which can be extended as follows (McCleary et al., 1980):

If Yt � et � 	1et�1

and

et�1 � Yt�1 � 	1et�2 ,

and

Yt � et � 	1(Yt�1 � 	1et�2)

� et � 	1Yt�1 � 	 2
1et�2 .

(4.35)
By extension;

et�2 � Yt�2 � 	1et�3 ,

for which reason

Yt � et � 	1Yt�1 � 	 2
1et�2

� et � 	1Yt�1 � 	 2
1Yt�2 � 	 3

1et�3

� et � ��
i�1

	 i
1yt�i .

The moving average process in Eq. (4.35) is expressed as a function of
the sum of a current and an infinite series of past observations. If we transfer
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the sum portion of the formula to the left-hand side of the equation, we
can conceive of the above formula as a lag function of Yt in which the Yt

portion may be divided by the lag function (1 � �	Li). This division renders
the process invertible. Yet this series converges only if �	1� � 1. If �	1� � 1,
then the series becomes unstable and nonstationary. If �	1� � 1, then its
magnitude grows beyond limit and the series becomes unstable. Only if
�1 � 	1 � 1 does the process asymptotically converge to a limit. For this
reason these bounds of a moving average process are called the bounds of
invertibility. For an MA(2) model, the following bounds of invertibility
hold: 	1 � 	2 � 1, 	2 � 	1 � 1, and 	2 � 1. Prior to modeling, series have
to be tested for stability and convergence. One way of doing this is to test
for a unit root. Because most series are AR(1), AR(2), MA(1), MA(2), or
some combination thereof, the limits discussed in this section are used to
test the bounds of stability or invertibility. If these conditions do not hold,
we can transform the series so that the roots lie within those boundaries.
Similar conditions have to hold for the moving average processes to be
asymptotically stable.

4.7. THE SAMPLE PARTIAL
AUTOCORRELATION FUNCTION

The other analytical function that serves as a fundamental tool of Box–
Jenkins time series analysis is the sample partial autocorrelation function
(PACF). This partial autocorrelation function, used in conjunction with
the autocorrelation function, can be used to distinguish a first-order from
a higher order autoregressive process. It works in much the same way as
a partial correlation. This function, when working at k lags, controls for
the confounding autocorrelations in the intermediate lags. The effect is to
partial out those autocorrelations, leaving only the autocorrelation between
the current and kth observation.

It is helpful to derive the partial autocorrelation function in order to
understand its source and meaning. Consider the first-order autoregres-
sion process:

Yt � �1Yt�1 � et

YtYt�1 � �1Yt�1Yt�1 � etYt�1

E(YtYt�1) � �1E(Yt�1Yt�1) � E(etYt�1). (4.36)

With �1 � autocovariance (ACV(Yt))
and �0 � Variance (Yt), then

�1 � �1�0 .
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When we divide both sides of the last equation in (4.36) by �0 , we obtain
the result in Eq. (4.37). From this we observe that the first partial autocorre-
lation is equal to the first autocorrelation:

�1 � �1 . (4.37)

Furthermore, to obtain the PACF for the second parameter, the first-order
autocorrelation should be controlled. Yet the autocorrelation at lag k is a
function of the intervening lags:

�k � �k
1 . (4.38)

Just as the ACF of lag 3 is correlated with the ACF of the previous lag,
the ACF of lag k is correlated with the intervening ACFs. To ascertain the
partial autocorrelation of lag 1 with lag 3 controlling for the autocorrelation
at lag 2, it is possible to apply the ordinary formula for partial correlation.
Recalling that

rxz.y �
rxz � rxyryz

�(1 � r2
xy)(1 � r2

xz)

x � Yt

y � Yt�1

z � Yt�2
(4.39)

PACF(2) � �13.2 �
�2 � �1�1

�(1 � �2
1)(1 � �2

1)
�

� 1 �1

�1 �2
�

� 1 �1

�1 1 �
�

�2 � �2
1

1 � �2
1

.

The derivation of PACF(k) is a little more complicated. Consider an autore-
gressive process of order k. The partial correlation is generally derived
by the Cramer’s rule solution to the Yule–Walker equations (Pandit and
Wu, 1993):

� 1 �1 �1

�1 1 �2

�2 �1 �3
�

(PACF(3) �
(4.40)

� 1 �1 �2

�1 1 �1

�2 �1 1
�
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This formula can be extended further. In general, the Yule–Walker equa-
tions, explaining the derivation of the partial autocorrelation function from
the autocorrelations, are

�1 � �1 � �2�1 � � � � � �p�p�1

�2 � �1 � �2 � � � � � �p�p�2

. . . . .

. . . . .

. . . . .

�p � �1�p�1 � �2�p�2 � � � � � �p .

(4.41)

Expressed in matrix form, they are

� � P�1
p �p .

For an autoregressive process, the partial autocorrelation function exhibits
diminishing spikes through the lag of the process, after which those spikes
disappear. In an AR(1) model, there will be one spike in the PACF. If the
autocorrelation is positive, the partial autocorrelation function will exhibit
positive spikes. If the autocorrelation is negative, then the PACF for the
AR(1) model will exhibit negative spikes. Because the model is only that of
an AR(1) process, there will be no partial spikes at higher lags. Similarly, in
an AR(2) model, there will be two PACF spikes with the same sign as those
of the autocorrelation. No PACF spikes will appear at higher lags. Therefore,
the PACF very clearly indicates the order of the autoregressive process.

The PACF is not as useful in identifying the order of the moving average
process as it is in identifying the order of the autoregressive process. For
a moving average ARIMA(0,0,1) model, the ACF(1) and therefore
PACF(1) was derived from Eqs. (4.15)–(4.18) to be equal to the first
equation in the following set. For the MA(1) process, the PACF at the kth
lag equals the third equation in set (4.43):

PACF(1) � �
	1

1 � 	 2
1

PACF(2) � �
	 2

1

1 � 	 2
1 � 	 4

1

(4.43)

PACF(k) � �
	 k

1(1 � 	 2
1)

1 � 	 2(k�1)
1

, where k � 1.

The implications of this formulation are several. For the first-order mov-
ing average model, the PACF gradually attenuates as time passes. If the
shock is positive, then the PACF will be negative in sign and will be
exponential in decline of size. If the innovation is negative, then the PACF
will be positive and exponentially diminish in size.
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If the data-generating process under consideration is MA(2), then the
ACF and PACF are

ACF(1) �
�	1(1 � 	2)

1 � 	 2
1 � 	 2

2

ACF(2) �
�	2

1 � 	 2
1 � 	 2

2

ACF(k � 2) � 0

and for higher order MA(q) processes,

ACF(k) �
�	k � 	1	k�1 � � � � � 	q�k	q

1 � 	 2
1 � � � � � 	 2

q

ACF(k � q) � 0.
(4.44)For the MA(2) process

the PACF(1) � �1,

PACF(2) �
�2 � �2

1

1 � �2
1

,

PACF(3) �
�3

1 � 2�1�2 � �1�
2
1

1 � �2
2 � 2�2

1 � 2�2
1�2

,

.

.

.

The ACF will indicate the order of the model. There will be as many signifi-
cant spikes as the model order. As for the PACF for the MA(2) model, as
long as the roots are real and positive the PACF of an MA(q) process is that
of a dampened exponential, but as long as those roots are complex, then the
PACF is one of attenuated undulation (Box et al., 1994).

4.7.1. STANDARD ERROR OF THE PACF

The estimated standard errors of the partial autocorrelation are the same
as those of the autocorrelation. They approximately are equal to the inverse
of the square root of the sample size.

4.8. BOUNDS OF STATIONARITY AND
INVERTIBILITY REVIEWED

The autoregressive function can be formulated as an infinite series:

Yt � �1Yt�1 � �2Yt�2 � � � � � �pYt�p � et

� (1 � �1L � �2L
2 � � � � � �pL p )Yt � et
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and

Y0 � e0

Y1 � �1Y0 � e1

� �1e0 � e1

Y2 � �1Y1 � e2

� �1(�1e0 � e1) � e2 (4.45)

� �2
1e0 � �1e1 � e2

.

.

Yt � �t
1e0 � �t�1

1 e0 � . . . � �1et�1 � et .

If �1 were greater than 1, then the series would lead to uncontrolled explo-
sion of output yt. If 	1 were equal to 1, there would be trend (nonstationarity)
in the series, and either regression detrending or differencing would be
required to eliminate it. For the series to be stationary, 	1 must be less
than �1 and more than �1. That is, ��1� must be less than 1, if the parameter
estimate is to remain within the bounds of stationarity. If the series con-
verges, an infinite-order autoregressive process is equivalent to a first-order
moving average process. Similarly, a first-order autoregressive process is
equivalent to an infinite-order moving average process by dint of 1/ (1�
L) � 1 � L � L2 � L3 � . . . . That is to say, (1 � �1L)Yt � et. In other
words, Yt � et/(1 � �1L) � (1 � 	1L � 	1L

2 � 	1L
3 � � � �) � et. Because

	1 � �	1, Yt � (1 � 	1L � 	1L
2 � 	1L

3 � � � �)et. In these respects, there
is a duality between the autoregressive and the moving average process
(Gottman, 1981). Yet for these AR and MA processes to be invertible and
hence stable, then the bounds of stationarity and bounds of invertibility
must obtain.

4.9. OTHER SAMPLE AUTOCORRELATION
FUNCTIONS

Other correlation functions have been found to be useful in identifying
univariate time series models. These are the Inverse Autocorrelation Func-
tion (IACF) and the Extended Sample Autocorrelation Function (EACF
or ESACF). Ege et al. (1993) explained that when the usual invertible
model, �(L)Wt � 	(L)et, was reparameterized as 	(L)Zt � 	(L)et, the ACF
of the reparameterized model is really the IACF of the initial model. They
note that the IACF for an overdifferenced model has the appearance of a
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stationary sample ACF, but that an IACF of a nonstationary model has
the appearance of a noninvertible moving average. (See also Abraham and
Ledolter, 1984; Cleveland, 1972; Chatfield, 1980; and Wei, 1990, for further
discussion of this function.) For ARMA models, the ACF, IACF, and
PACF all exhibit tapering-off correlations, for which reason it is not always
easy to identify the orders of the ARMA model by the usual ACF and
PACF. Although the extended autocorrelation function has been found
very helpful for identification of these ARMA(p,q) processes, as of this
writing the EACF is contained in the SAS and not the SPSS package.
Because the EACF is so useful in this identification process, the general
theory of the sample EACF is presented here (Liu et al., 1986).

The sample extended autocorrelation function is presented in the form of
a table. Consider an ARMA(p,d,q) model. A tabular matrix is constructed.
The structure of the matrix is determined by the orders of the possible ARMA
models. If these data are being analyzed before differencing, the matrix would
have p � d � 1 rows, where d is the order of differencing. If no differencing
is required, this matrix has p � 1 rows and q � 1 matrix columns. In this case,
there are p � 1 rows, extending from 0 to p � 1 rows, and q � 1 columns
extending from 0 to q columns, in this table. Iterated regression analysis is
employedto yieldACF parameters to fill thecontents of the cellsof thematrix.
An ARMA model is run for each column of the table. An mth-order autore-
gression of Zt of the matrix for the jth moving average order of the matrix
determines what is placed in the cell. More precisely, where wt(j) refers to a
mean centered stationary series and wt( j) � (1 � �1

(j)L � . . . � �m
(mj)Lm)Zt,

the significance of the 	I
(mj) sample autocorrelation determines what is placed

in the cell of the matrix. In this case, m refers to the pth autoregressive order
of the model and j refers to the q�1 moving average order of the matrix. If
the sample autocorrelation coefficient is significant, an ‘‘X’’ is placed in the
cell. Where the coefficient is not significant, a ‘‘0’’ is placed in the cell. The
matrix of X’s and 0’s usually displays a triangular shape of zeroes, the upper
left-hand vertex of which indicates the order of the ARMA(p,q) model.

By way of illustration, Wei (1990) presents the iterated regressions:

Zt � �p
i�1

�(1)
i Zt�i

Zt � �p
i�1

�(1)
i Zt�i � �(1)

1 ê(1)
t�1 � e(1)

t where t � p � 2, . . . , n

Zt � �p
i�1

�(2)
i Zt�i � �(2)

1 ê(1)
t�1 � �(2)

2 ê(0)
t�2 � e(2)

t where t � p � 3, . . . , n

Zt � �p
i�1

�(q)
i Zt�i � �p

i�1

�(q)
i ê(q�i)

t�i � e(q)
t where t � p � q � 1, . . . , n.
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Table 4.1

Extended Autocorrelation Function Table

MA

AR 0 1 2 3

0 x x x x
1 x 0 0 0
2 x x 0 0

The first equation in set (4.46) exhibits the i � 1 to i � p ACF parameters
for the MA(0) order. The second exhibits those ACF parameters for the
MA(1) order. The third equation exhibits them for the MA(2) order. The
last equation does the same for the MA(q) order. The superscripts represent
the sequence of iteration for the order of the MA parameters in the model.

A tabular matrix is constructed for presentation. The number of rows
is the order of the AR(p) � 1 and the number of columns is the order of
the MA(q) � 1. The cells of the matrix contain X’s where the ACF coeffi-
cients are significant. Where the coefficients are not significant, 0’s are
entered. After this procedure is followed for each row of the ARMA model,
the pattern of X’s and 0’s in the table is examined. There will be a triangular
pattern of zeroes in the table, which gives the most concise representation
of the ARMA configuration. The upper-leftmost corner of that triangle of
zeroes indicates the order of the most parsimonious ARMA model. An
example of this corner method may be found in Table 4.1.

The other correlogram, the cross-correlation function, is addressed where
it comes into play with the study of multivariate ARIMA or ARMAX
models with transfer functions.

4.10. TENTATIVE IDENTIFICATION OF
CHARACTERISTIC PATTERNS OF INTEGRATED,
AUTOREGRESSIVE, MOVING AVERAGE, AND
ARMA PROCESSES

4.10.1. PRELIMINARY PROGRAMMING SYNTAX FOR

IDENTIFICATION OF THE MODEL

Programming the identification of a series with SAS is easy. In the
computer program entitled, C4Fig6.sas, shown below, the researcher de-
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cides to analyze the U.S. unemployment rate from January 1948 through
August 1996. He gives the data set a name, such as ‘‘UNEMPL.’’ Then he
reads in the variable—named PCTUNEMP—with the INPUT statement.
The INTNX function constructs a monthly date variable beginning on
January 1, 1948. The SAS statistical procedure for invoking the ACF, IACF,
and PACF of that series is given as follows:

Title ‘US Unemployment rate’;

Data unempl;

input pctunemp;

Date � intnx(‘month’,‘01jan1948’d, n �1);

cards;

3.4

3.8.

...

5.4

5.1

Proc ARIMA;

Identify var�pctunemp

Identify var�pctunemp(1) Esacf;

run;

To difference the series, he merely adds another IDENTIFY subcommand
and places a 1 in parentheses, which first differences the series and generates
the ACF, IACF, and PACF for the differenced series as well. When the
undifferenced series proves to be nonstationary, this first differencing will
be in order. The SAS ACF, IACF, and PACF output are found in Figs.
(4.6) through (4.8). If there is reason to suspect that the model contains
both autoregressive and moving average elements—on which elaboration
will come later—invocation of the EACF to determine the order of the
model is accomplished by merely inserting the ESACF option in the IDEN-
TIFY subcommand before the semicolon, and the EACF output can be
found in Fig. 4.9. If a Dickey–Fuller test suggests that the series still needs
first differencing, the EACF in the upper tableau reveals a triangle of
low ACF values whose upper left vertex suggests that the model after
differencing may be an ARIMA(3,1,3).

The SPSS syntax for this process is slightly different in form and se-
quence. To construct a title statement, generate a listing, construct a date
variable, and plot a data series, the first 22 lines of command syntax may
be used. To generate the ACF and PACF of the series, all commands begin
in column 1 of the syntax window. At the writing of this text, SPSS has no
IACF or EACF option. From a review of the SAS or the SPSS TSPLOT
output, it can be seen that the series clearly needs differencing. The SPSS
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ACF command syntax employs the DIFF�1 subcommand for identifying
this differenced series:

title ’Seasonally Adjstd Unemploymt Rate of Civilian Labor Force’.

subtitle ’Labor Force Stats from Current Population Survey’.

data list / pctunemp 1-4 (1).

begin data.

3.4

3.8

..

..

5.4

5.1

end data.

list variables�all.

execute.

Date year 1948 month 1 12.

execute.

*Sequence Charts .

title ’US Unemployment Rate’.

subtitle ’source: Bureau of Labor Statistics’.

TSPLOT VARIABLES� pctunemp

/ID� year

/NOLOG

/FORMAT NOFILL NOREFERENCE.

title ’Identification of Series’.

ACF

VARIABLES� pctunemp

/NOLOG

/DIFF�1

/SERROR�IND

/PACF.

The SPSS ACF and PACF output for the differenced series can be found
in Figs. 4.10 and 4.11, respectively.

4.10.2. STATIONARITY ASSESSMENT

When the researcher attempts to analyze the data, he first graphs the
series. If there is sufficient evidence that the series is nonstationary, he
attempts to identify that evidence, confirms it, and transforms the series
to stationarity. Preliminary evidence is gathered by graphing the data. If
the series exhibits either a deterministic or stochastic trend upward, the
researcher has reason to suspect nonstationarity. If the ACF attenuates
very slowly, that is evidence of nonstationarity. In the seasonally adjusted
civilian labor force U.S. percent unemployment series, extending from
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January 1948 through August 1996, it can be seen from the sample ACF
in Fig. 4.6 that for 24 lags, all of the spikes exceed the confidence limit
dots. This ACF is an example of a series exhibiting nonstationarity.

Statistical tests for nonstationarity, such as the Dickey–Fuller test, and
first differencing of the series, may be applied. If the residuals from that
first differencing are stationary, then the series has been rendered stationary
by this transformation. If the residuals are not yet stationary, then second
differencing may be in order. This is first differencing of the first differenced
series. Generalized differencing is usually performed until stationarity is
attained. If the series possess autocorrelation, the augmented Dickey–
Fuller tests may be employed to determine when no further differencing
is needed.

4.10.3. IDENTIFYING AUTOREGRESSIVE MODELS

Once the series has been rendered stationary, the ACF and PACF are
examined to determine the type and order of the model. During the discus-
sion of the nature of the autoregressive models, with their current observa-
tions being functions of earlier observations plus errors, these models were
found to have a gradually attenuating ACF on the one hand, and a PACF
that spikes at the order of the autoregressive model on the other. A first-
order autoregressive process, an AR(1) model, would have an exponentially
declining function as the lag k increases. The magnitude of the ACF is
equal to 	k. Consider a characteristic form of the AR(1) model. The ACF
and the PACF of the AR(1) process have the following shown in Fig. 4.12
if 	1 � 0. If, on the other hand, the 	1 � 0, then the ACF and PACF would
have the general appearance of Fig. 4.13. An actual example of an ARIMA
(1,0,0) or AR(1) model is the Gallup Poll Index (Gallup Poll Index, 1996)
of public approval of President William J. Clinton’s job performance. These
polls are taken one or more times per month and ask, ‘‘Do you approve
of the way that the President is handling his job?’’ Because the intervals
are supposed to be equally spaced and these polls are not temporally
equidistant, the average monthly approval percentage is computed and a
working assumption that these averages are equally spaced, though in fact
the polls were not, is made. The characteristic ACF and PACF patterns
of this series can be seen in Figs. 4.14 and 4.15, respectively. It may appear
that the number of significant spikes is 2 in the PACF, but the most parsimo-
nious model is an AR(1).

The second-order autoregressive process, the ARIMA(2,0,0) model, has
an appearance similar to that of the AR(1) model. The AR(2) process has
a longer memory than the AR(1) process in that the AR(2) process is a
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Figure 4.12 ACF of AR(1) series where �1 � 0.

function of the previous two observations plus an error term. The ACF of
the AR(2) process gradually attenuates as the AR(1) model does, except
that the attenuation begins after the second lag rather than after the first
lag. The PACF of the AR(2) model is what differs from that of the AR(1)
model. The PACF of the AR(2) process clearly has two significant spikes,

Figure 4.13 ACF of AR(1) series where �1 � 0.
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Figure 4.15
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whereas that of the AR(1) process has only one significant spike. If the
ACF of the AR(2) process is positive, then the PACF spikes will be positive.
If the ACF is negative, then the PACF spikes will be negative. The ACF
in Fig. 4.16 and the PACF in Fig. 4.17 of the Chicago Hyde Park purse
snatching series extending from January 1969 to September 1973 collected
by Reed to evaluate Operation Whistlestop (reported in McCleary et al.,
1980) represent an underlying AR(2) process. In general, the autoregressive
process is identified by the characteristic patterns of its ACF and PACF.
The ACF has a gradual attenuation and the PACF possesses the same
number of spikes as the order of the model. (Makidakas et al., 1983; Bresler
et al., 1991).

4.10.4. IDENTIFYING MOVING AVERAGE MODELS

Unlike the autoregressive processes, moving average processes have
short-term, finite memories. These processes are functions of the error
terms. In the first-order moving average process, the MA(1) process, is a
function of the current error and the previous error. Consequently, the

Figure 4.16
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Figure 4.17

ACF of the MA(1) process usually has only one significant spike, whereas
the PACF of the MA models generally exhibits gradual attenuation. Owing
to the SPSS and SAS parameterization of the model, the ACF and PACF
of the first-order moving average happens to be negative when the 	1 � 0.
Examples of the negative spikes (with a positive 	1) of an MA(1) ACF are
shown in Fig. 4.18 and those of PACF in Fig. 4.19. In contrast, a first-order
MA(1) model with a positive 	1 has negative spikes in its respective ACF
and PACF.

Second-order MA(2) models commonly have two significant spikes in
the ACF followed by no subsequent significant spikes. MA(2) models,
owing to the invertibility of the AR with the MA models, have gradual
attenuation in the PACF. For stationarity to obtain, the roots have to be
real and lie outside the unit circle. If the 	1 and 	2 are positive and real,
these spikes in the ACF and PACF are negative. If the 	1 and 	2 are
negative, with complex roots, then the spikes of the ACF function are
positive, as shown in Fig. 4.20. The PACF characteristic pattern of the
MA(2) models, with negative spikes, is displayed in Fig. 4.21. In reality,
the models are more mixed than these ideal types.
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Figure 4.18 ACF of MA(1) series, 	1 � 0.

Figure 4.19 PACF of MA(1) series, 	1 � 0.
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Figure 4.20 ACF of MA(2) series, 	1, 	2 � 0.

It is helpful to examine a less than pure example of an MA(2) model.
The Democratic percentage of seats in the U.S. House of Representatives,
when analyzed from 1896 through 1992, reveals an MA(2) moving average
process. U.S. House of Representatives, 1998; Stanley and Neimi, 1995).
The ACF for this series is found in Fig. 4.22, and the PACF is found in
Fig. 4.23. While the ACF clearly indicates an MA(2) series, the PACF is
more ambiguous. For this particular PACF, there is less of a gradual and
more of an irregular attenuation, like that shown in Fig. 4.21. At first glance,

Figure 4.21 PACF of MA(2) series, 	1 � 0, 	2 � 0.
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Figure 4.22

Figure 4.23
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the series ACF and PACE appear to suggest that the underlying data
generating process is an AR(1), but a comparison of SBC for estimated
AR(1), MA(1), and MA(2) models supports the conclusion that the under-
lying process is really MA(2). In this instance the 	1 and 	2 are both negative,
so the significant spikes in the ACF are both positive (Makridakis et al.,
1983; Bresler et al., 1991).

4.10.5. IDENTIFYING MIXED AUTOREGRESSIVE–MOVING

AVERAGE MODELS

In reality, many models are mixed models. Some models require differ-
encing before they can be analyzed. These models are nonstationary before
differencing but after differencing may be modeled as either AR or MA
models. Still, other models are mixed autoregressive moving average pro-
cesses that requires no prior differencing. Mixed ARMA(1,1) models have
at least four different characteristic patterns, classified on the basis of
combinations of different signs of the autoregressive and moving average
parameters.

Consider first an ARMA(1,1) model with both autoregressive and mov-
ing average parameters greater than zero. The characteristic ACF and
PACF patterns (Figs. 4.24 and 4.25) exhibit beginning spikes that are posi-
tive in sign. The ACF spikes gradually taper off in the correlogram. The
gradual decay is not exponential in that it seems to drop, level off, then
drop, level off and so on. This ACF pattern continues until the ACF spikes
drop below significance. The PACF for the ARMA(1,1) exhibits significant
spikes at lags 1, 3, 10, and 14. Stepdown ACF attenuation combined with
a positive PACF spike can suggest an ARMA(1,1) model.

Another ARMA(1,1) model is characterized by both the autoregressive
component and the moving average being negative. A different characteris-
tic identification pattern is exhibited by this mixed ARMA(1,1) model and
can be seen in Figs. 4.26 and 4.27. The ACF exhibits alternating spikes that
begin on the negative side and alternate to the positive side. As can be
seen in Fig. 4.26 the magnitude of the spikes dampens exponentially. The
PACF for this model reveals a single negative spike at lag 1, which can be
seen in Fig. 4.27. The significant spike at lag 11 is ignored as the usual one
out of 20 tolerable errors.

Another ARMA(1,1) model has an autoregressive component that is
negative and a moving average component that is positive. In the ACF
shown in Fig. 4.28, the negative autoregressive parameter yields first a
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Figure 4.28

Figure 4.29
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negative and then a positive spike. The signs of the spikes continue to
alternate and the magnitude of the spikes decays in the characteristic ACF
pattern. The PACF for this ARMA(1,1) model remains negative but gradu-
ally tapers off into nonsignificance, notwithstanding a significant spike at
lag 10 (Fig. 4.29).

Finally, the characteristic correlograms for the ARMA(1,1) model with
the positive AR parameter and the negative MA parameter produces a
slightly different characteristic pattern. The ACF for this series is one with
positive and very gradual (not exponential) declining magnitude, exempli-
fied in Fig. 4.30. In Fig. 4.31, the PACF exhibits pronounced significant
negative spikes at lags 1 and 14.

From these characteristic patterns, the analyst would identify the nature
of the mixed autoregressive moving average model. When the ARMA
model is characterized by ambiguity owing to all of the correlograms tailing
off, the researcher may have recourse to the EACF (ESACF). To be sure
of the order of an ARMA, the researcher identifies the upper left vertex
of the triangle of zeroes in the EACF and uses the location of intersection
of marked rows and columns as indication of the order of the ARMA model.

In concluding this chapter, it is helpful to be able to examine an identifi-

Figure 4.30



4.10. Tentative Identification of Characteristic Patterns 147

Figure 4.31

cation table. Table 4.2 contains the characteristic form of the integrated,
autoregressive, moving average, and mixed models to facilitate identifica-
tion of the characteristic patterns by examination of the ACF and PACF.
The researcher first tests the series for nonstationarity. If it appears to be
nonstationary in mean or variance, he applies an appropriate transformation
to render it stationary. The ACF and PACF are examined to determine
the nature of the series. If the ACF slowly attenuates, the series may require
further differencing. Once stationarity is achieved, the series characteristics
may be examined further. If the underlying process is autoregressive, mov-
ing average, or mixed, the correlograms will exhibit the forms described
in Table 4.2. After the researcher identifies the nature of the series, he can
estimate the parameters. To assess accuracy of estimation, he examines the
residuals of the estimation. If they are white noise, random error devoid
of tell-tale residual pattern, he assumes that the estimation is correct. If a
pattern of significant spikes persists in the residuals, alternative identifica-
tion and estimation may be in order. When the characteristic patterns of
spikes have been properly identified and estimated in the model, the residu-
als of the estimation process will resemble random insignificant white noise
and that stage of the modeling will have been completed (Cook and Camp-
bell, 1979).
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Table 4.2

Identification of ARIMA Processes

Process ACF PACF

White noise process
ARIMA(0,0,0) no significant spikes no significant spikes

Integrated process
ARIMA(0,1,0) d � 1 slow attenuation 1 spike at order of differ-

encing

Autoregressive processes
ARIMA(1,0,0) �1 � 0 exponential decay, positive 1 positive spike at lag 1

spikes
ARIMA(1,0,0) �1 � 0 oscillating decay, begins 1 negative spike at lag 1

with negative spike
ARIMA(2,0,0) �1 ,�2 � 0 exponential decay, positive 2 positive spikes at lags 1

spikes and 2
ARIMA(2,0,0) �1 � 0, �2 � 0 oscillating exponential 1 negative spike at lag 1, 1

decay positive spike at lag 2

Moving average processes
ARIMA(0,0,1) 	1 � 0 1 negative spike at lag 1 exponential decay of nega-

tive spikes
ARIMA(0,0,1) 	1 � 0 1 positive spike at lag 1 oscillating decay of posi-

tive and negative spikes
ARIMA(0,0,2) 	1 ,	2 � 0 2 negative spikes at lags 1 exponential decay of nega-

and 2 tive spikes
ARIMA(0,0,2) 	1 ,	2 � 0 2 positive spikes at lags 1 oscillating decay of posi-

and 2 tive and negative spikes

Mixed processes
ARIMA(1,0,1) �1 � 0, 	1 � 0 exponential decay of posi- exponential decay of posi-

tive spikes tive spikes
ARIMA(1,0,1) �1 � 0, 	1 � 0 exponential decay of posi- oscillating decay of posi-

tive spikes tive and negative spikes
ARIMA(1,0,1) �1 � 0, 	1 � 0 oscillating decay exponential decay of nega-

tive spikes
ARIMA(1,0,1) �1 � 0, 	1 � 0 oscillating decay of nega- oscillating decay of nega-

tive and positive spikes tive and positive spikes

This chapter has presented the basis for identification of ARIMA pro-
cesses. We have discussed various series, their nonstationarity, their trans-
formations to stationary, and their autoregressive or moving average charac-
teristics, as well as different types of these models. We explained and
illustrated the characteristics by which they can be identified. In this way,
we have elaborated the additive Box–Jenkins models. Computer program
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syntax and data sets are available on the World Wide Web by which they
may be tested.
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5.1. CYCLICITY

Cyclicity can be defined as long wave swings, whereas seasonality is
generally defined as annual periodicity within a time series (Granger, 1989).
Cycles involve deviations from trends or equilibrium levels. They may
assume the likeness of a sine wave. They are characterized by phases and
turning points in the series. There are several different classifications of
phases of a cycle. The cycle may be described by four basic phases. The
reference point is an equilibrium level or trend line. In the upswing phase,
the series value increases. When the series reaches a maximum, the turning
point is called the peak of the cycle. The cycle then enters the downswing
or contraction phase. When the series value reaches the equilibrium or
trend line, a point of inflection (where the concavity of the cycle changes)
has been reached. After the point of inflection, the value of the series goes
negative. The series value eventually reaches a minimum value, the turning
point at which is called the trough of the cycle. The upswing phase is
resumed until the point of inflection is reached again, which completes
the cycle.
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The cycle is measured according to its frequency, duration, amplitude,
and phase shift. The frequency pertains to the number of cycles per span
of some standard number of time periods. The duration (wavelength) of
the cycle refers to the number of time periods the cycle spans. The amplitude
of the cycle refers to the magnitude of the distance between minimum to
maximum series values during the cycle. The phase shift refers to horizontal
displacement of the cycle—measured by the angle (usually measured in
radians) added to the equilibrium level to create an intercept for the begin-
ning of the cycle.

More complex classifications of the phases of business cycles have been
propounded by several prominent economists, a number of whom formed
the National Bureau of Economic Research in 1920. Among these econo-
mists were Arthur Burns and Wesley Mitchell, who focused on the sequence
of changes delineated by turning points: expansion, recession, and recovery.
In another classification, proposed by Joseph Schumpeter, there are up-
swing, recession, depression, and revival phases. At the peak of the cycle,
the upswing turns into the recession phase. At the point of inflection, or
equilibrium level, the recession turns into the depression phase. At the
lower turning point, or trough, of the cycle, the depression turns into the
upswing again. This upswing has been called the expansion, recovery, or
revival phase (Neimira and Klein, 1994).

Not only have economists sought to determine the durations of expansion
and contraction phases along with the diffusion of effect of these cycles on
related series, they have also endeavored to identify leading, coincident,
and lagging indicators of business cycle turning points. The methodology

Figure 5.1 Schumpeter’s business cycle: fluctuation around an equilibrium level or trend line.
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of leading indicators is dealt with in Chapter 9 in the discussion of transfer
function models.

Many important cycles are seasonal. They have annual periodicity. A
crop price cycle is associated with varying yield from the annual harvests.
When there is developing abundance of supply, the price tends to decrease.
As the supply becomes depleted, the price gradually rises. The recurrent
decline and rise in produce price is associated with a seasonal pattern.
Depending on the goods or service under consideration, the span of seasonal
activity may extend over a month, a quarter, a half-year, or a year. Examples
of activities associated with a particular season include the summer purchase
of swim suits, summer flooding the unemployed with out-of-school young
adults, autumn return-to-school purchases, or purchase of winter sporting
equipment. Purchasing during the Thanksgiving–Christmas holiday season
is another example. Many series that have not been deseasonalized are
riven with variation that demands special attention, whether for modeling
the series or for forecasting its values.

To model seasonality, the length of the series must exceed the length
of the span of the seasonality (Enders, 1995). Incomplete spans of seasonal-
ity may add error to the analysis. Enders writes that when seasonal variation
predominates, much of the error in the forecast may derive from this
variation. Therefore, we should remove or model seasonality to whatever
extent is possible before forecasting. There are several methods for ad-
justing for or modeling seasonality. Ratio-to-moving averages, Winter’s
exponential smoothing, or the Census X-11 methods, which were discussed
in Chapter 2, have been used to model or extract seasonality. Because
these methods were discussed earlier, they will not be reviewed here. Sea-
sonal dummy or trigonometric function variables may be employed with
autoregression methods, which are discussed later, to model deterministic
seasonality or cyclicity.

Especially when a series is being used for forecasting, the seasonality,
which contributes to error variance, should be removed. When that is done
the series is called seasonally adjusted. If the series is not seasonally adjusted
first, seasonality can be modeled in the Box–Jenkins approach by employing
seasonal components alone or mixing these seasonal with regular nonsea-
sonal components to construct multiplicative Box–Jenkins models. Within
Box–Jenkins models, seasonality may refer to any repetition of pattern of
activity (McCleary et al., 1980; Makridakis et al., 1983). Seasonal variation
has an order to it. By convention, the order of seasonality is the number
of seasons in an annual period. Quarterly seasonal peaks in data indicate
a seasonal order of 4. If the data are measured daily but monthly seasonality
is present, then the order of the seasonality is 12 (Bowerman and O’Connell,
1993). In order to approach the basics of seasonal modeling, we turn first
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to the subject of seasonal stationarity and its complement, seasonal nonsta-
tionarity.

5.2. SEASONAL NONSTATIONARITY

If the series under consideration exhibits annual patterns of nonstationar-
ity, these characteristics need to be identified, removed, or modeled before
further analysis can proceed. Annual patterns may manifest themselves as
quarterly shifts in the mean level of the series. Alternatively, they may
appear as monthly fluctuations in variance. By controlling for such types
of seasonal nonstationarity, we can identify the confounding effects of
seasonal features and set them aside in or completely remove them from
the model. How the researcher proceeds usually depends on the kind
of nonstationarity detected. Graphical review, by time sequence plot or
correlogram, of the time series enables the analyst to find and identify
different types of seasonal nonstationarity.

One type of nonstationarity to look for would be a seasonal shift in the
mean level of the series. Sudden changes in the mean level of a series may
follow from a shift in deterministic regime or a local trend. The series might
reach a threshold level or experience a delayed reaction to other influences
that may bring about a sudden shift of level. Enders (1995) discusses how
within the periods there may be stationarity, but between periods there
may be nonstationarity. He proceeds to give an example where these step
or ramp shifts in mean might artificially produce the appearance of an
overall significant positive (or negative) trend. If this characteristic trend
is not removed from the data or controlled by modeling, the nonstationarity
may preclude proper analysis.

The series in Fig. 5.2 is an example of nonstationarity brought about by
sudden shifts in level. The series in this graph has three distinct different
levels of mean. McCleary et al. (1980) also give an example of this kind of
nonstationarity. The first level proceeds around a mean of 3.4 or so for
four time periods before rising to a new level. The second level hovers
around 5.5 for four time periods before abruptly increasing again. One
time period later the series assumes a new level around 7.4 and hovers
there for four more time periods. The series is characterized by three
different levels within the time horizon of our data capture. Each time the
series shifts level, it does so within a time span of one period. The time-
dependent mean shift therefore is rather abrupt. It is the graphical review
that brings this aspect of the structural change to the fore.

We can detect sudden time-dependent mean shifts with regression analy-
sis. The researcher can test for significant regime shifts with dummy variable
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Figure 5.2 Seasonal nonstationarity with shifts of level.

regression analysis. With the appearance of three distinct levels in the
series, it would be necessary to construct two dummy variables. Each
dummy variable would be constructed to indicate a change of level from
a reference or equilibrium level. The dummy variable is given a value of
0 before the change and a value of 1 after the change. If the dummy variable
regression coefficient is found to be significant, the regime level of the
model is changed by the magnitude of the significant coefficient. If the
dummy variable is not significant and there are enough observations in this
part of the series, the apparent shift in regime level is not distinguishable
from ordinary error variance. If a significant change in regime takes place
haphazardly, then there is simple mean nonstationarity. A seasonal pulse
could be a source of seasonal nonstationarity as well. Similarly, a dummy
variate could be used to model such a pulse (Reilly, 1999). If the mean level
changes significantly at annual intervals, then seasonal mean nonstationarity
obtains. The residuals may be used to model the remainder of an addi-
tive series.
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A seasonal shift in slope of a trend may be another kind of seasonal
nonstationarity. As displayed in Fig. 5.3, with each shift in level, the trend
increases. This piecewise increase in inclination has the appearance of a
ramp function, as opposed to the previously displayed step function. Ramp
functions represent a series that eventually exhibits a gradual increase in
the level of a series. This change in slope takes place often in response to
some external event or influence. We can similarly test these functions with
dummy variable regression analysis. The use of dummy variables to denote
the segment of this series where the level substantially increases will yield
significant regression coefficients. The residuals can be used for further
ARIMA analysis.

Repeated wavelike patterns that span periods longer than 1 year are
called cycles. If these cycles are not removed beforehand, the researcher
can model them with multiplicative Box–Jenkins models. In Fig. 5.4, the
well-known Wolfer sunspot data from 1770 through 1869 from Box et al.

(1994) has been graphed. Figure 5.4 displays these cycles as possessing an
11-year span.

The Wolfer sunspot time series in Fig. 5.4, exhibits this kind of nonsta-
tionarity. When the seasonality in the series derives from annual periodic

Figure 5.3 Seasonal nonstationarity with shifts of trend.
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Figure 5.4 Wolfer sunspot data.

fluctuation, such as in the Sutter County, California, labor force data,
presented and analyzed in McCleary et al. (1980), the analyst can model
this seasonality as well. In the case of the Sutter County data, nonstationarity
flows from trend as well as seasonality. Seasonal changes may appear as
periodic peaks or valleys in the series. One of the seasonal examples men-
tioned is the growth in the workforce during the summer, when migrant
laborers and students enter the work force. That seasonality can be observed
in the time sequence plot of the Sutter County work force data in Fig. 5.5.
In this graph the annual periods clearly indicate seasonality in the work
force size.

Seasonal nonstationarity may also be detected by correlograms as well.
Consider the monthly time series data from the Sutter County, California,
labor force size. There appear to be annual or 12-month spikes in the ACF
and PACF correlograms. The ACF in Fig. 5.6 clearly exhibits this prima
facie evidence of seasonal nonstationarity. The PACF in Fig. 5.7 reveals
the seasonal spikes as well. Slow attenuation of the seasonal peaks in
the Fig. 5.6 ACF signifies seasonal nonstationarity. The 12-month ACF
periodicity can be seen in the periodic peaks at lags 12 and 24, suggestive
of seasonal differencing at lag 12. The sample PACF of seasonal models
is often difficult to interpret. When the parameterization of the seasonal
model is discussed, we will see that the multiplication of the nonseasonal
by the seasonal factors can produce significant interaction terms, which
render analysis of the individual lag structure somewhat complicated. For
this reason, it is the ACF, and not the PACF, that is used as the principal
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Figure 5.5 Labor force size, Sutter County, California, Jan 1946 through Dec 1966.

Figure 5.6
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Figure 5.7

guide to seasonal model analysis. As an illustration, the sample PACF in
Fig. 5.7 shows significant positive spikes at lags 11 and 12, a significant
negative spike at lag 14, and a large negative spike at lag 13, suggestive of
a multiplicative model that we will soon examine in detail. However, the
PACFs tip off the analyst to the multiplicative nature of the series, as they
reveal statistical significance of the interaction product spikes. Together
with the time sequence plot, the sample ACF and PACF suggest seasonal
nonstationarity.

Seasonal nonstationarity may be detected by unit root tests. When a
series is nonstationary, it requires a transformation to render it stationary.
If there is seasonal trend nonstationarity and this trend is deterministic, a
regression of the response against a linear measure of time will not only
control for the trend; it will also yield residuals amenable to further analysis.
If the series is one of stochastic trend, with an accumulation of moving
average shocks leading to the movement away from a starting point, then
the series may be difference stationary, in which case differencing will
render the series stationary.

For the most part, the parameterization of the augmented Dickey–Fuller
test was discussed earlier in Chapter 3. To test for a seasonal root at lag
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12, the maximum testable seasonal lag, under the current SAS system, at
the time of this writing, the DLAG option is used to specify the order of
the seasonal lag, while the ADF � 0 option specifies the autoregressive
lag used to effect the white noise condition necessary for proper testing of
seasonal nonstationarity. To properly neutralize the contamination of the
autocorrelation in the testing of the series, it is recommended that the ADF
option � (p � 1), where p equals the autoregressive order of the process
to be tested (Meyer, 1999). If there is no autocorrelation in the series, the
following programming syntax is used:

PROC ARIMA;

IDENTIFY VAR=XX Stationarity=(adf=0 DLAG=12);

Run;

From this command syntax the following output is obtained.

Seasonal Dickey-Fuller Unit Root Tests

Type Lags RHO Prob<RHO T Prob<T

Zero Mean 0 -111.044 0.0001 -7.9546 0.0001

Single Mean 0 -111.043 0.0001 -7.9370 0.0001

Assuming that the series contains within it enough observations, a signifi-
cant � or T test indicates that the series is seasonally stationary and no

Figure 5.8 International airline passenger fares.
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seasonal differencing is required. A nonsignificant � or T test indicates that
the series is seasonally nonstationary in its tested form and is in need of
differencing before further modeling is attempted. When there is a seasonal
unit root, the model requires more differencing at a seasonal lag prior to
further analysis. Although SAS has the test for the seasonal unit root, SPSS
currently has no such procedure.

There may be seasonal variations in volatility or variance. Figure 5.8
illustrates growing variation in annual international airline ticket sales data
(Box et al., 1994). When a change in volatility cannot be handled by differ-
encing alone, then a Box-Cox, log, power, arcsine, or square root transfor-
mation may be in order to stabilize the variance along with the seasonal dif-
ferencing.

5.3. SEASONAL DIFFERENCING

The first order of business is to detect and eliminate the nonstationarity.
As stochastic nonseasonal nonstationarity is commonly eliminated by first
or second differencing, we can often eliminate stochastic seasonal nonsta-
tionarity by seasonal differencing. Seasonal differencing means differencing
by the order of seasonal periodicity. When a series exhibits regular patterns
of behavior within an annual period, the order of periodicity signifies the
number of seasons within a year. Quarterly data would have a periodicity
of 4, since there are four seasons within the year. If data are monthly, and
their time plot or sample ACF reveals quarterly peaks, then quarterly
nonstationarity exists. Seasonal differencing with an order of 4 could be
used to resolve the problem. If the data are recorded daily with monthly
peaks (or valleys), then differencing with an order of 12 might eliminate
the seasonal nonstationarity. If fluctuations in the series are also annual,
as in the Sutter County work force data series, a regular first difference
and a seasonal 12th difference could transform the series into stationarity.
The seasonal difference has a smaller variance than the nonseasonal differ-
ence, and taking seasonal differences has the effect of rendering seasonal
variation in the series stationary. Modeling seasonality in Box–Jenkins
methodology takes place in much the same way as modeling of regular
nonseasonal series.

The formulation of seasonal differencing may be additive or multiplica-
tive. On the one hand, there is an additive formulation of a difference at
a seasonal lag–such as (1 � Ls)—as in (1 � L4)yt � C � et . On the
other hand, a model with multiplicative seasonal differencing entails the
multiplication of the nonseasonal by the seasonal differencing factors. When
the product of a regular difference and a seasonal difference is required
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to render a series stationary, one multiplies the first regular factor by the
seasonal factor to obtain the differencing for the series. The multiplicative
seasonal ARIMA model has multiplicative differencing, such as (1 � Ld )
(1 � Ls)yt � C � et , where Yt is the undifferenced series variable, d is the
order of regular differencing and s is the order of seasonal differencing. In
the differenced model, zt is used to indicate previous differencing of Yt .
For the multiplicative model, wt is used by convention to indicate seasonal
differencing of the regularly differenced model, wt � � � (1 � Ls)zt .
Consequently, the centered form that a series with regular and seasonal
differencing takes is Wt � (1 � Ld )(1 � Ls)Yt .

An example of a seasonal model with differencing at a seasonal lag
indicated by the length of the seasonal period is the Sutter County, Califor-
nia, labor force data (McCleary et al. 1980). The sample ACF of this series
exhibits a seasonal nonstationarity of order 12. Under these circumstances,
we would try seasonal differencing of order 12 as a means of effecting
stationarity. To complete the transformation to stationarity, this model also
requires regular differencing at the first lag. In sum, it involves first-order
regular and 12th-order seasonal differencing before the series is sufficiently
stationary to be amenable to further analysis. When one multiplies the
regular and the seasonal factors in the Sutter County work force series,
the result is a simple product of the lag factors:

Wt � (1 � L)(1 � L12)Workforcet

� Workforcet � Workforcet�1 � Workforcet�12 (5.1)
� Workforcet�13 .

The net effect of the multiplication of the lag factors is to transform the
nonstationary lag structures of the workforce series into a stationary one,
which may be analyzed further into regular and seasonal ARIMA compo-
nents. The final lag structure of the transformed series is simply the product
of the lags resulting from the multiplication of regular by seasonal differenc-
ing factors.

5.4. MULTIPLICATIVE SEASONAL MODELS

Just as ARIMA notation has regular parameters, it may also have sea-
sonal parameters. The regular parameters of the ARIMA model are de-
noted in the formulation of ARIMA(p,d,q) by uncapitalized letters respec-
tively representing the regular autoregressive, integration, and moving
average orders of the model. Similarly, the seasonal components of the
ARIMA model are denoted by ARIMA(P,D,Q)s , where capitalized letters
respectively represent the seasonal components of the model and the s
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indicates the order of periodicity or seasonality. Seasonal ARIMA models
are sometimes called SARIMA models. A full formulation of a multiplica-
tive SARIMA model has the general form ARIMA(p,d,q)(P,D,Q)s . The
parentheses enclose the nonseasonal and the seasonal factors, respectively.
The parameters enclosed indicate the order of the model. An example of
a model with monthly data characterized by regular as well as seasonal
random walk is an ARIMA(0,1,0)(0,1,0)12 model. The differencing required
is that of first-order nonseasonal and seasonal differencing, with the seasonal
differencing performed at a lag of 12 months. Seasonal models formulate
the between-season periodic variation, whereas nonseasonal models formu-
late the within-season variation (Wei, 1990; Box et al., 1994). Multiplicative
seasonal models consist of multiplication of nonseasonal and seasonal
factors.

One may multiply the regular and the seasonal factors when they are
expressed in terms of their lag operators. When the two factors are
multiplied, the seasonal model assumes a more complicated form than with
the simple additive models discussed in the previous chapter. In this process,
the models are reduced to their lag factors and then multiplied to give the
penultimate structure. The terms are then collected and redistributed to
give the final equation. The transformed expansion of the Sutter County
labor force differencing was just explained. The factors on the right-hand
side of the model are similarly expanded. If the parameters of the series are
small enough and if the sample size is small enough, when this multiplication
takes place, the product or interaction term may turn out to be nonsignifi-
cant. In the Sutter County labor force model, the constant happens to equal
0 and therefore drops out of the model. An example of a series, where the
positive interaction term with a magnitude of 0.12 at lag 13 happens to be
nonsignificant, is

(1 � 0.4L)(1 � 0.3L12)Yt � (1 � 0.4L � 0.3L12 � 0.12L13)Yt (5.2)
� Yt � 0.4Yt�1 � 0.3Yt�12 � 0.12Yt�13 .

Owing to the multiplication of the regular with the seasonal moving
average term, there is a small positive differencing interaction at lag 13. In
this case, the other lags have negative spikes while the 13th lag is a spike
in the opposite direction. If the series is not long enough, this interaction
term may turn out to be nonsignificant. Under these circumstances, a
researcher identifying the model might treat it as if it did not contain
its interaction term and might specify it as an additive subset model:
(1 � 0.4L � 0.3L12), requiring only first- and 12th-order regular differenc-
ing. The only difference between the additive and multiplicative model is
the inclusion of such interactions. These interactions, with their opposite
directions, may complicate the appearance of a sample PACF used for
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analysis of these models. It is this seasonal differencing (1 � Ls) that Box
and Jenkins (1976) called the simplifying operator, insofar as it renders the
residual series stationary and amenable to further analysis.

5.4.1. SEASONAL AUTOREGRESSIVE MODELS

Apart from seasonal differencing, there are seasonal autoregressive mod-
els (SAR), seasonal moving average (SMA) models, and seasonal autore-
gressive moving average (SARMA) models. Seasonal autoregressive mod-
els contain autoregressive parameters at seasonal lags. A centered, purely
seasonal autoregressive model, (1 � �1L3)Yt � et , might be identified by
exponentially declining ACF spikes at every third lag. The ACF at the first
lag might equal 0.5, while the ACF at lag 3 would equal 0.25, and the ACF
at lag six would equal 0.125, etc., as can be seen in Fig. 5.9. The PACF for
a purely SAR model reveals a positive spike at the seasonal lag as shown
in Fig. 5.10. Hence, either the time sequence plot, ACF, or PACF can be
used as a primary instrument for identifying seasonal autoregressive models.

A multiplicative seasonal autoregressive model contains both nonsea-
sonal and seasonal autoregressive factors. A simple example of a seasonal
autoregressive model would be one with a regular first-order autoregressive
term and a seasonal autoregressive term of order 12. A simple formulation
of this ARIMA(1,0,0)(1,0,0)12 is:

yt � � � et/(1 � �1L)(1 � �12L12)
C � � � �1� � �12� � �1�12�

(1 � �1L)(1 � �12L12)(yt � �) � et

(1 � �1L)(1 � �12L12)Yt � et ,

(5.3)

Figure 5.9 Seasonal autoregression.
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Figure 5.10 Seasonal autoregression.

where C is the constant, � is the mean. We can expand this to

Yt(1 � �1L � �12L12 � �1�12L13) � et

or
Yt � �1Yt�1 � �12Yt�12 � �1�12Yt�13 � et

or (5.4)
Yt � �1Yt�1 � �12Yt�12 � �1�12Yt�13 � et

or
(yt � �) � �1(yt�1 � �) � �12(yt�12 � �) � �1�12(yt�13 � �) � et .

Note that an interaction term is present in this model as well. The sign of
that term is opposite that of the other autoregressive terms and it emerges
at a lag one more than the highest seasonal autoregressive term. As the
main effects of that interaction term have smaller parameters, the interac-
tion term may disappear into insignificance.

If the model being analyzed required differencing, it becomes more
elaborate. The differencing factors are multiplied by the autoregressive
factors, rendering the result more complicated. In the following example,
first-order regular differencing combined with regular and seasonal autore-
gression has a sample ACF characterized by regular first-order and seasonal
12th-order autoregressive characteristics in monthly data. The notation for
such a model is ARIMA(1,1,0)(1,0,0)12 . A model of a series that exemplifies
a model that contains regular and seasonal autoregressive parameters, along
with the first differencing, is

(1 � L)(1 � �1L)(1 � �12L12)yt � � � et . (5.5)
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Expansion of this seasonal autoregressive series yields

(1 � L)(1 � �1L � �12L12 � �1�12L13)yt � � � et

� (1 � �1L � �12L12 � �1�12L13 � L � �1L2 � �12L13

� �1�12L14)yt � � � et

� (1 � L � �1L � �1L2 � �12L12 � �12L13 � �1�12L13 (5.6)
� �1�12L14)yt � � � et

� yt � yt�1 � �1yt�1 � �1yt�2 � �12yt�12 � �12yt�13

� �1�12yt�13 � �1�12yt�14 � � � et .

A simple first difference multiplied by a first- and seasonal 12th-order
autoregressive term yields an equation consisting of a first difference plus
a second order regular autoregressive term along with seasonal 12th- and
13th-order autoregressive terms coupled with two interaction terms of 13th-
and 14th-order. Although the seasonal ACF is not complicated, the seasonal
PACF becomes more complex. It is the PACF that will reveal the opposite
signed interaction term at the appropriate lag, signifying the presence of
a multiplicative seasonal autoregressive model. The actual ACF and PACF
of this model will be examined in detail when the problem of identifying
seasonal models is addressed.

5.4.2. SEASONAL MOVING AVERAGE MODELS

The seasonal moving average model typically possesses a seasonal mov-
ing average component. Moreover, the seasonal moving average model is
a common multiplicative model. Because the differencing factors are not
multiplied directly by the moving average factors, these models tend to be
a little simpler than the type just described. If the interactions are small
or negligible, then the multiplicative moving average model may reduce to
an additive model whose nonsignificant multiplicative components have
been trimmed away. In other words, an ARIMA (0,0,1)(0,0,1)12 model is
a common seasonal moving average model that may reduce to an additive
subset model if the interaction term is negligible. Although the seasonal
multiplicative model has a regular moving average component at lag one
and a seasonal component at lag 12 along with a reversed signed interaction
component at lag 13, the additive subset may only have regular and seasonal
moving average components at lags 1 and 12, lacking that reverse signed
component at lag 13. In general, multiplicative models retain the significant
interaction terms distinguishing the multiplicative from the nonseasonal or
seasonal subset model. This full multiplicative model, with the mean term
included, can be formulated as

yt � � � (1 � 	1L)(1 � �12L12)et (5.7)
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and expanded to

yt � � � et � 	1et�1 � �12et�12 � 	1�12et�13 . (5.8)

Owing to the multiplication of factors, the interaction term with a sign
opposite that of the other terms is present in the seasonal multiplicative
model. That interaction term usually appears at a lag equal to the sum of
the lags of the factors, unless the product of the first- and 12th-order moving
average terms turns out to be nonsignificant.

Often, models require regular as well as seasonal differencing. A com-
mon model has an ARIMA(0,1,1)(0,1,1)12 structure. Three models having
this form of moving average structure are the Sutter County, California,
work force size, depicted in Fig. 5.5, from January 1946 through December
1966; the international airline fares, depicted in Fig. 5.8, from January
1949 through December 1960; and the U.S. civilian unemployment rate of
persons over 16, seasonally adjusted, during the period from January 1948
through August 1996, the last of which is shown in the SPSS chart in Fig.
5.11. The equation for this model is

(1 � L)(1 � L12)Yt � (1 � 	1L)(1 � �12L12)et . (5.9)

Figure 5.11 U.S. civilian unemployment rate of seasonally adjusted CPS data.
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It reveals the regular and seasonal differencing at lags 1 and 12 as well as
the moving average parameters at lags 1 and 12. When the equation is
expanded it has the following formulation:

Yt � Yt�1 � Yt�12 � Yt�13 � et � 	1et�1 � �12et�12 � 	1�12et�13

or (5.10)
Yt � Yt�1 � Yt�12 � Yt�13 � et � 	1et�1 � �12et�12 � 	1�12et�13 .

This seasonal moving average model requiring a multiplicative formulation
and is a common one among series.

5.4.3. SEASONAL AUTOREGRESSIVE MOVING

AVERAGE MODELS

A slightly more complicated model would be the mixed, multiplicative,
seasonal model. In addition to possible regular and seasonal differencing,
this model contains both regular and seasonal autoregressive and seasonal
moving average parameters. An example of this kind of series would be an
ARIMA(1,1,1)(1,1,1)4 . Such a model possesses both regular and quarterly
seasonal characteristics. In its factored form, the model, with a constant
equal to 0, is

(1 � L)(1 � L4)(1 � �1L)(1 � �4L4)Yt � (1 � 	1L)(1 � �4L4)et

(1 � L � L4 � L5)(1 � �1L � �4L4 � �1�4L5)Yt

� (1 � 	1L � �4L4 � 	1�4L5)et

With the left-hand side expanded, this equation becomes

(1 � L � L4 � L5 � �1L � �1L2 � �1L5 � �1L6 � �4L4 � �4L5

� �4L8 � �4L9 � �1�4L5 � �1�4L6 � �1�4L9 � �1�4L10)Yt (5.11)
� (1 � 	1L � �4L4 � 	1�4L5)et .

Expanded, this equation is

Yt � Yt�1 � Yt�4 � Yt�5 � �1Yt�1 � �1Yt�2 � �1Yt�5

� �1Yt�6 � �4Yt�4 � �4Yt�5 � �4Yt�8 � �4Yt�9 (5.12)
� �1�4Yt�5 � �1�4Yt�6 � �1�4Yt�9 � �1�4Yt�10

� et � 	1et�1 � �4et�4 � 	1�4et�5 .

It is clear that the seasonal ARIMA models may become quite complicated,
which is why they are usually expressed in factored terms.
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5.5. THE AUTOCORRELATION STRUCTURE OF
SEASONAL ARIMA MODELS

To be able to identify the seasonal ARIMA model, we must understand
the basis of its autocorrelation structure. The autocorrelation function of
the SARIMA model is computed in the same way as that of regular ARIMA
models. The autocorrelation is the autocovariance divided by the variance,
except in the multiplicative models the seasonal components are entered
as factors. A brief discussion of some simple autoregression and moving
average models is presented along with the rules for identification of the
autocovariance structure.

The autocorrelation structure of the seasonal autoregression model is
based on the ARIMA(p,0,0)(P,0,0)s model or some variant thereof. First-
order structures are reported to be the most common. Second-order struc-
tures are reportedly less common and higher order structures are rather
rare (McCleary and Hay, 1980). Consider the simple additive seasonal
ARIMA(1,0,0)4 model, (1 � �4L4)Yt � et . Owing to the boundary require-
ments of stability and invertibility, which hold for seasonal and regular
parameters in ARIMA models, this fourth-order seasonal autoregressive
model can be expressed as an exponentially weighted moving average
model, Yt � et/(1 � �4L4) � (1 � �4L4 � �2

4L8 � �3
4L12 � . . .)et . As the

exponentiation of the seasonal component increases, the magnitude of the
seasonal autoregressive parameter, which has to be less than 1, decreases.
If the process were a multiplicative one, where a regular autoregressive
process is multiplied by the seasonal one, the seasonal pattern would be
superimposed on the regular one. Seasonal autoregressive decay would
periodically enhance regular autoregressive decay when the parameter val-
ues were of the same sign. It would periodically suppress the regular autore-
gressive decay when the parameter values were of opposite signs. The
presence of multiplicative seasonal factors complicates the identification
process somewhat. Examples of the characteristic patterns of autocorrela-
tion will be provided in the next section dealing with identification. How
the researcher can handle these complications will be addressed as well.

The autocovariance and autocorrelation structure of the seasonal moving
average model is similar to that of nonseasonal moving average models.
If, on the one hand, the model is a purely seasonal moving average model,
the seasonal autocorrelation is formed by taking the lag 12 autocovariance
and dividing it by the variance. The formula is the same except that the
seasonal parameter would replace the nonseasonal parameter:

�12 � �
�12

1 � �2
12

. (5.13)
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However, a seasonal multiplicative moving average model has a more
elaborately formed ACF. Series G in Box and Jenkins (1976), for example,
is the natural log of the international airline ticket fares, and its model is
an ARIMA(0,1,1)(0,1,1)12 . If one uses an already differenced series, that
version can be formulated as Wt � (1 � L)(1 � L12)Yt , where Wt is the
regular and seasonally differenced natural log of airline fares. Box and
Jenkins (1976) have computed the autocovariances for Wt :

�0 � (1 � 	 2)(1 � �2)
 2
e

�1 � �	(1 � �2)
 2
e

�11 � 	�
 2
e (5.14)

�12 � ��(1 � �2)
 2
e

�13 � 	�
 2
e

�j � 0, in other cases.

The autocorrelations are computed by dividing the autocovariances by the
variance of Wt (Mills, 1990):

�1 � �1/�0 � �	1/(1 � 	2
1)

�12 � �12/�0 � ��12/(1 � �2
12) (5.15)

�1�12 � �1�12/�0 � 	1�12/(1 � 	2
1)(1 � �2

12)

�j � 0, in other cases.

If we know which of the sample ACFs and PACFs is significant, we can
proceed to identify the different seasonal models.

5.6. STATIONARITY AND INVERTIBILITY OF
SEASONAL ARIMA MODELS

Seasonal models as well as regular ARIMA models have parameters
that must meet the bound of stationarity and invertibility. The seasonal
autoregressive models ARIMA(p,d,0)(P,D,0)s need to be stationary for
analysis. For stationarity to exist, both the regular and the seasonal autore-
gressive parameters need to lie within the bounds of stationarity. That is,

�1 � �p , �s � � 1. (5.16)

Autoregressive processes whose parameter estimates remain within these
bounds are invertible. Consider the basic ARIMA(1,0,0)(1,0,0)12 model:

(1 � �1L)(1 � �12L12)Yt � et

yt � � � et/(1 � �1L)(1 � �12L
12)

� (1 � �1L � �1�12L13 � � � �)et

(5.17)
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If we find that these parameters lie within the bounds of stationarity, their
products will also lie within the bounds of stationarity. As the regular and
seasonal infinite series converge, so their products converge. Stability is
thereby assured.

The bounds of invertibility similarly must hold for multiplicative seasonal
moving average models. Hence, the series

Wt � (1 � 	1L)(1 � �12L12)et (5.18)

would have to possess regular and seasonal parameters that lie within the
same bounds of invertibility (�	1�, �	s� � �1) for the mixed seasonal moving
average model to be stationary. If the moving average parameters were con-
fined to this range, the product of these factors would also be confined to
these bounds. Only under such conditions would the series converge and
remain stable.

5.7. A MODELING STRATEGY FOR THE SEASONAL
ARIMA MODEL

5.7.1. IDENTIFICATION OF SEASONAL NONSTATIONARITY

After graphing the series, and viewing its sample correlograms, the ana-
lyst can look for seasonal patterns. To identify seasonality, the researcher
searches for evidence of annual fluctuation in the data. The researcher must
know what distinguishes seasonal nonstationarity, seasonal autoregression,
and seasonal moving averages from nonseasonal patterns; he must also
know how to distinguish these seasonal patterns from one another. To
perform these analyses, he can rely primarily on the time sequence plot
and the ACF to perform these analyses, pursuing a strategy of inquiry that
maximizes opportunity for ascertaining the optimal model. When there is
a seasonal unit root, the model requires more differencing at a seasonal
lag prior to further analysis (Meyer, 1998). Although SAS has the test for
the seasonal unit root, SPSS currently has no such procedure.

5.7.2. PURELY SEASONAL MODELS

The first part of the strategy entails graphing the series with a time plot as
well as running the sample ACF and PACF correlograms. The first thing the
researcher looks for is evidence of nonstationarity. He plots the series against
time and checks for nonseasonal or seasonal changes that reveal nonsta-
tionarity. Peaks ina series every 12 months would indicate annual seasonality;
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peaks in a series every 3 months would indicate quarterly seasonality. An
example of seasonal nonstationarity would be a quarterly shift of the series
level. After plotting the series against time, the analyst turns to analysis of
the correlograms.

To confirmthe natureof thisperiodicity, theresearcher can examineACFs
and PACFs. The characteristic patterns of the seasonal ARSAR, MASMA,
and SARSMA models reveal the nature of the seasonality in the model. Sea-
sonal models have pronounced regular ACF and PACF patterns with a peri-
odicity equal to the order of seasonality, the number of times per year that
seasonal variation occurs. If the seasonality is annual, the prominent seasonal
ACF spikes are heightened patterns at seasonal lags over and above the regu-
lar nonseasonal variation once per year. If the seasonality is quarterly, there
will be prominent ACF spikes four times per year.

Purely SAR models have significant and pronounced ACFs, which expo-
nentially attenuate at seasonal lags. If the decay of the seasonal ACF is very
gradual, then the series remains seasonally nonstationary and in need of sea-
sonal differencing as in Fig. 5.6. In other words, if the model is a purely sea-
sonal autoregressive (SAR) model of order sP, then the seasonal autoregres-
sive �t�s parameter effect is observed at the t � s lag, where P is the number
of seasonal autoregressive parameters necessary to specify the model and s

is the order of seasonality at which the influence of the previous value is
experienced by the series. If the seasonality is quarterly, then s in the case of
pure seasonality would equal 4, 8, 12, etc. SAR models have sP significant
and pronounced autoregressive spikes in the IACF and PACF at s, 2s, 3s, . . . ,
Ps seasonal lags. The ACF of this model will exhibit exponentially declining
spikes at seasonal lags, while the PACF of this model will exhibit as many
spikes at seasonal lags as represent the order of the model.

Purely SMA models exhibit the pronounced MA pattern at seasonal
lags. These models possess significant and pronounced ACF spikes every
sQ lags, where Q is the number of seasonal moving average parameters
necessary to specify the model and s is the order of the seasonality. In
other words, pronounced, significant spikes are found at each seasonal lag
up to Q seasonal lags. If the model is a purely seasonal MA (SMA) model
of order sQ, then the ACF will exhibit as many �t�s spikes at t � s seasonal
lags as is the order of the SMA model, whereas the PACF will exhibit
exponential decline at t � s seasonal lags. The prominent seasonal IACF
and PACF spikes taper off gradually. That is to say, the prominent seasonal
MA spikes tail off at multiples of the order of seasonality. If this tapering
is very gradual in the SMA model, then the series remains seasonally
nonstationary and in need of seasonal differencing. Once stationarity
has been attained by regular and seasonal differencing, the model can be
identified.

In other words, in purely seasonal models, the prominent spikes of the
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ACF will be found between the periods rather than within them. If the
model is a mixed SARSMA model of order (sP,sQ), then the seasonal lags
will taper off exponentially after Q lags, whereas the seasonal lags of the
PACF will taper off gradually after P lags ( Bresler et al., 1991). When
models are purely seasonal, they may be modeled as additive models at
seasonal lags. The spikes will be apparent between the seasonal periods.
The purely seasonal models will show relatively few autoregressive or
moving average patterns within those seasonal periods.

After each attempt at identification, the researcher estimates the compo-
nents and examines the residuals. When all of the seasonal parameters are
properly identified and estimated, the ACF and PACF of the residuals
should resemble white noise.

Once the parameters have been identified, the modeling includes several
other steps. The parameters identified have to be estimated by means
discussed in the next chapter. The researcher then diagnoses and fine-tunes
the fitting and may produce forecasts. With metadiagnosis, he compares
alternative models and their forecasts. From this analysis, he may find an
optimal solely seasonal model.

5.7.3. A MODELING STRATEGY FOR GENERAL MULTIPLICATIVE

SEASONAL MODELS

Box–Jenkins modeling methodology for multiplicative models deals with
nonseasonal and seasonal factors in the model. The time plot shows evi-
dence of seasonal variation over and above regular patterns of variation,
and in so doing indicates whether preliminary transformation is in order.
Seasonal nonstationarity will confound the autocorrelations and make it
hard to model the series and/or forecasting from that model. Testing for
seasonal roots may be performed to determine whether seasonal differenc-
ing is in order (Frances, 1991; Meyer, 1998; Reilly, 1999). Seasonal differenc-
ing is performed to neutralize the seasonal nonstationarity and regular
differencing may follow to render the remainder of the series stationary.
If there is residual nonhomogeneity, a Box–Cox, natural log, or power
transformation might be applied to achieve covariance stationary. As noted
earlier, when the variance is not constant and the standard deviation is
proportional to the mean, then the natural log may be the transformation
of choice. To be sure that the seasonal and regular differencing is no longer
needed, regular and seasonal stationarity may be tested with Dickey–Fuller
and augmented Dickey–Fuller tests for nonseasonal as well as seasonal
unit roots. These tests will indicate whether series require regular and
seasonal differencing to bring about the stationarity necessary for identifi-
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cation of the series. Then the appropriate differencing is performed to
effect covariance stationarity.

The parameters of the model are usually identified predominantly with
the ACF, and, to a lesser extent, with the PACF, mainly because the PACFs
of seasonal models become relatively complicated and difficult to interpret.
The analyst looks for evidence of nonseasonal AR, MA, or ARMA patterns
upon which are superimposed seasonal AR, MA, or ARMA patterns. For
additive MA models with both nonseasonal and seasonal parameters, there
will be q spikes before the seasonal spike, where q is the order of the
nonseasonal MA parameter. For multiplicative MA models, the ACF has
q spikes before and q spikes after the seasonal lag. During this phase of
the modeling process, the analyst searches for evidence of interaction terms
and hence multiplicative models. The seasonal components are identified
first, and then the nonseasonal multiplicative factors. Testing these parame-
ters for stationarity and invertibility can assure the analyst of a good model.
Estimation of those parameters is undertaken by one of the selected com-
puter algorithms, and then diagnosis of the residuals is performed to be
sure that the variation is properly modeled. If the residuals are not white
noise, the analyst examines them for telltale patterns and returns to the
identification stage for either complete remodeling or fine-tuning of the
existing model. Each time he estimates a model, he compares the fit of the
models in a metadiagnosis to see which model has the better fit. This process
is reiterated until the residuals are white noise and the optimal fit is attained.

5.7.3.1. Identification of Multiplicative Seasonal Components

Once the model has been rendered both nonseasonally and seasonally
stationary, the Box–Jenkins method proceeds after the fashion of modeling
with a nonseasonal series (Wei, 1990). If the model is a natural log multipli-
cative ARIMA(0,1,1)(0,1,1)12 model, it will have to have been natural log
transformed and then differenced at lags 1 and 12 before the remainder
of the modeling takes place. The structure of the ACF and PACF depends
on the relative direction and magnitude of the parameters.

In order to facilitate identification of seasonal models, the analyst must
consider some of the characteristic patterns of common seasonal models.
Simple additive seasonal models are examined first. The analyst begins by
looking for purely seasonal nonstationarity. Over and above any other
pattern, he searches for seasonal patterns of shifts in level or rise and fall
in the time plot as well as periodic spikes in the sample ACFs and PACFs.
In the correlograms, this phenomenon is characterized by periodic peaks,
which in and of themselves decline in magnitude very gradually. The general
ACF patterns of these nonstationary characteristics are presented in
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Fig. 5.12. This kind of seasonal peaking and gradual attenuation is generally
characteristic of seasonal ARIMA models as well. When the series requires
seasonal differencing for stationarity, then the periodic peaks in the sample
ACF in Fig. 5.12 may indicate the order of differencing required. Once the
series is properly differenced, the sample ACF will decay rapidly (Granger
and Newbold, 1986). After the transformation phase of the modeling is
completed, the residuals will appear to be stationary.

The analyst then examines the series for the proper orders of regular
and seasonal autoregression and/or moving average parameters. Seasonal
autoregressive models may be identified by the outline of an autoregressive
pattern at seasonal lags. The nonseasonal periods will manifest compara-
tively reduced ACFs. In these models, there is a gradual (but not too
gradual) attenuation of the ACF and a significant seasonal spike at each
of the lags indicating the order of the seasonal autoregression. That is, if
there is only one significant seasonal PACF spike, then the model may be
a seasonal AR(1), sometimes referred to as a SAR(1). If there are two
significant seasonal PACF spikes, with more gradual attenuation of the
seasonal ACF, then the model may be an SAR(2). Seasonal multiplicative
models contain one or more interaction terms, whose sign equals the prod-

Figure 5.12
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Figure 5.13

uct of the signs of its components. The general autocorrelation structure,
after first differencing, of the ARIMA(1,1,0)(1,0,0)12 series of the natural
log of the Consumer Price Index for all urban consumers since 1980 is
given in Figs. 5.13 and 5.14. In the first correlogram, the ACF for this model
is presented, whereas in the second correlogram, a PACF of the model is
shown. All of the seasonal autoregressive parameters are positive. If the
� parameter were negative, the sample PACF would exhibit a negative
rather than a positive seasonal spike, while the seasonal ACF parameters
would exhibit diminishing oscillations. If the seasonal spike were negative,
there would appear to be negative seasonal spikes in the general patterns.
Figures 5.15 and 5.16 depict correlograms where, following differencing,
the superimposed seasonal pattern overlays the regular patterns, yielding
an ARIMA(2,1,0)(1,1,0)11 model.

Some multiplicative seasonal models are easy to identify. Figures 5.17
and 5.18 present the ACF and PACF for an ARIMA(0,0,1)(0,0,1)12 seasonal
moving average model. These models have ACFs with spikes at the first
significant nonseasonal lag and several spikes around the seasonal lag for
the model. The PACFs tend to gradually attenuate but exhibit reverse
spikes after the seasonal first lag of the model.
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Figure 5.14

Figure 5.15



Figure 5.16

Figure 5.17
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Figure 5.18

Sometimes testing for seasonal unit roots is required to be sure that the
model is in fact seasonal and multiplicative. From a visual inspection of
the correlograms in Figures 5.19 and 5.20, we might suspect the model to
be an ARIMA(0,0,2)(0,0,1)12 model. The sign-reversed moving average
parameter at lag 13 shown in the PACF can indicate the multiplicative
model. When we test for a seasonal unit root test, we find that the apparent
seasonal unit root at lag 12 is not real. Consequently, we should reformulate
the apparently multiplicative seasonal model as a nonseasonal moving aver-
age model with parameters at lags 1, 2, and 13. This MA(3) model yields
pure white noise residuals, but a more parsimonious alternative might be
an MA(2) model with moving average parameters at lags 1 and 2. Although
the MA(2) model has a lower SBC than the MA(3) model, it lacks white
noise residuals because its correlograms contain a residual significant spike
at lag 13. The model selection decision therefore hinges on the tradeoff
between the white noise residuals and the incremental parsimony.

The characteristic correlogram pattern of the multiplicative autoregres-
sion model can be complicated. There are basically two sets of patterns.
There is the regular pattern within the seasonal period and there is the
seasonal period pattern. The regular pattern within periods has been de-
scribed in Chapter 3 and 4. An ACF of such a model exhibits a seasonal
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Figure 5.19

Figure 5.20
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autoregressive pattern superimposed on a regular series, as if there were
a seasonal modulation of the amplitude of the regular series with the annual
periodicity being the order of seasonality of the model. The parameters of
the within series autoregression are contained in the first factor, while those
of the seasonal variation are contained within the second factor of the
(1,0,0)(1,0,0)12 model. In general, this kind of pattern was shown in Section
5.4.1. The PACF of such a series would reveal a spike at the lag of the
interaction term. With higher order models, there would be a cluster of
significant spikes around the lag of the interaction term.

The characteristic correlogram pattern of seasonal moving average mod-
els is easier to identify than those of autocorrelated models. The ACF
reveals regular and the periodic seasonal moving average spikes. If the
model has an MA(1) component, than there will only be one regular signifi-
cant spike. If the model has an MA(2) component, then the model with
have two regular significant spikes. The duration of the seasonal spiking
will indicate the order of the seasonal component. Multiplicative models
possess an interaction term, whose sign is equal to the sign of the product
of its components. The signs of the moving average parameters are reversed.
They are treated as negative when multiplied to yield the interaction prod-
uct term. Therefore, if regular and seasonal moving average parameters
are positive, the sign of the interaction term is negative. With higher order
models, there is often a cluster of interaction terms in the PACF. The
PACF of these models manifests periodic gradual attenuation. When sea-
sonal moving average models are identified this way, it remains for the
user to fit the model.

5.7.3.2. Estimation, Diagnosis, and Comparison
of Multiplicative Models

Different combinations of multiplicative parameters can be estimated.
To determine whether the identified parameters are statistically significant,
we can examine t ratios of the parameters to their standard errors. Then
we may have to consider some important modeling questions. If some of the
parameters are nonsignificant, do they seem to be theoretically necessary? Is
the retention of those parameters necessary for the residuals to approximate
white noise? Does the model converge? These factors need to be considered
as we evaluate the adequacy of the model. For pruning or fine-tuning the
model, we take note of the mean square error, likelihood ratio, AIC, and/
or SBC. The model may be simplified by trimming out the theoretically
unimportant and statistically nonsignificant parameter(s). We note whether
a significant reduction in the likelihood ratio, AIC, or SBC has occurred,
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and whether this constitutes model improvement. Thus, we can assess the
fit of the model.

Another way of assessing the utility of the model is to compare the
forecast accuracy of the models. Positive or negative forecast bias can
occasionally be detected in the forecast profile graphs. The accuracy of the
forecast can be seen in the narrowness of the confidence intervals around
the point forecast. The accuracy can also be compared with the mean
absolute percentage error over different time horizons. The details of fore-
casting are covered in Chapter 7 and the comparative evaluation of models
and forecasts are covered in Chapter 11. In this way, we can diagnose and
compare plausible alternative models.

5.7.3.3. Model Simplification

Once we have modeled these seasonal components, we can identify the
regular components. Although a researcher begins with identifying a larger
multiplicative model, he should then estimate, diagnose, and trim it down
to a more parsimonious yet still adequate model. Maintaining explanatory
power while simplifying the model furthers parsimony. When the researcher
attempts to reduce the multiplicative model to a simpler additive model, by
pruning interaction terms of borderline significance, he seeks to maximize
parsimony. Sometimes the multiplicative seasonal model will reduce to a
purely seasonal model. This is another type of additive seasonal model
where the regular nonseasonal components turn out to be nonsignificant.
Model comparison criteria—such as measures of fit, parsimony, and fore-
cast accuracy—may be used to compare and contrast the multiplicative
with the simpler model.

5.7.3.4. Metadiagnosis

After the seasonal models have been compared and simplified, the re-
searcher may perform further metadiagnosis by comparing the models for
fit, parsimony, reliability, and forecast accuracy. The criteria for fit (sum
of squared errors), parsimony (minimum information criteria), and forecast
accuracy (minimum squared forecast error, minimum absolute percentage
error, etc.) will be discussed in detail in the chapter on metadiagnosis and
forecasting. After the model is estimated on historical data, it should be
tested on data set aside for validation, the hold-out sample. If the same
model is an adequate description of the process on the validation data set,
then the model is stable and reliable. It then passes a pretest of predictive
validity. Each of the competing models should be tested in these ways in
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order to determine which among them is the optimal model. Metadiagnosis
and forecasting will be covered in detail in Chapter 7.

5.8. PROGRAMMING SEASONAL MULTIPLICATIVE
BOX–JENKINS MODELS

5.8.1. SAS PROGRAMMING SYNTAX

The programming of seasonal models using SAS and SPSS is very
simple. First, there is the question of differencing to effect seasonal
stationarity. In SAS, the programming of tests for seasonal unit roots
have been discussed in section 5.2. Differencing is specified in the SAS
ARIMA procedure within the IDENTIFY subcommand. For a purely
seasonal model, a seasonal differencing of 4 might be required, and
this could be accomplished with the following option in the identify
subcommand, coupled with an NLAG option for the number of lags in
the correlogram to examine.

PROC ARIMA;

IDENTIFY VAR=Y (4) NLAG=30;

RUN;

A seasonal difference of 12 accompanying a regular first difference would
be modeled by

PROC ARIMA;

IDENTIFY VAR= Y(12) NLAG=35;

RUN;

In the event that nonseasonal as well as seasonal differencing are required
in the same model, then the following option may be implemented:

PROC ARIMA;

IDENTIFY Var=Y(1,12) NLAG=35;

RUN:

Specifying a seasonal model involves more than the differencing needed
to bring about stationarity. It involves the specification of the SAR or SMA
parameters as well. Consider the purely seasonal model. This model may
be a subset of a larger multiplicative model. In order to specify the purely
seasonal model,

(1 � L4)yt � � � (1 � �1L4)et

yt � yt�4 � � � et � �1et�4 ,
(5.19)
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which is an ARIMA(0,1,1)4 model, the user would include the parameters
in the ESTIMATE subcommand of the SAS ARIMA procedure. The way
to specify only at the fourth lag and to prevent all of the earlier lags from
being specified is to place the 4 in parentheses in the SAS ESTIMATE

subcommand.

PROC ARIMA;

IDENTIFY Var=Y(4) NLAG=30;

ESTIMATE Q=(4) PRINTALL PLOT;

RUN;

TheESTIMATE subcommand generates the parameter estimation, including
the constant, with the t tests. It also generates a variance and standard
error of the residuals, along with the AIC and SBC criteria for the model,
plus Q statistics for autocorrelation in the residuals. The PRINTALL option
generates the optimization summary or iteration history of the model. The
PLOT option invokes and ACF, IACF, and PACF of the residuals in addi-
tion to the Q statistics.

If the user wishes to estimate an ARIMA(0,1,1)(0,1,1)12 multiplicative
model,

(1 � L)(1 � L12)yt � � � (1 � 	1L)(1 � �12L12)et , (5.20)

he may use the differencing option to specify the orders of the nonseasonal
and the seasonal differencing, and then he may invoke the ESTIMATE

subcommand and define his factored multiplicative model in the ESTIMATE
subcommand as the product of two factors:

PROC ARIMA;

IDENTIFY VAR=Y(1,12);

ESTIMATE Q=(1)(12) PRINTALL PLOT;

RUN;

If, however, the interaction ‘‘product’’ term does not turn out to be
significant, the researcher may wish to run a subset model. The ESTIMATE
subcommand in this case employs only the significant components that
comprise the additive subset of the factored model. They are combined in
one factor’s parentheses.

PROC ARIMA;

IDENTIFY VAR=Y(1,12);

ESTIMATE Q=(1 12) PRINTALL PLOT;

RUN;
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If the user wished to estimate a seasonal multiplicative
ARIMA(1,1,0)(1,1,1)12 model, with regular and seasonal differencing, the
formulation becomes more complex:

(1 � L)(1 � L12)(1 � �1L)(1 � �12L12)yt � � � (1 � �12L12)et . (5.21)

The differencing accounted for by the first two factors on the left-hand
side of the equation is taken care of in the IDENTIFY subcommand, while
the AR and SAR factors are specified with the P=(1)(12) options in the
ESTIMATE subcommand. The seasonal moving average is specified with
the Q=(12) option. The parentheses guarantee a purely seasonal specifica-
tion here.

PROC ARIMA;

IDENTIFY=Y(1,12);

ESTIMATE P=(1)(1) Q=(12) PRINTALL PLOT;

RUN;

5.8.2. SPSS PROGRAMMING SYNTAX

In SPSS, similar syntax may be employed to generate either a purely
seasonal model or a multiplicative seasonal model. For the purely seasonal
model specified in Eq. (5.21), the SPSS syntax required is as follows:

ARIMA Y/

MODEL=CONSTANT/

SD=4/

SQ=(4)/

MXITER=10/

PAREPS .001/

SSQPCT .001/

FORECAST EXACT.

For the multiplicative ARIMA(0,1,1)(0,1,1)12 model, the following syntax
may be used:

ARIMA Y/

MODEL=(0,1,1)(0,1,1) 12 CONSTANT/

MXITER=10/

PAREPS .001/

SSQPCT .001/

FORECAST EXACT.

The ARIMA(1,1,0)(1,1,1)12 model is programmed by reformulating the
ARIMA specification in the second line to read
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ARIMA Y/

MODEL=(1,1,0)(1,1,1)12 CONSTANT/

MXITER=10/

PAREPS .001/

SSQPCT .001/

FORECAST EXACT.

In these ways, both SAS and SPSS can be used to program purely (additive)
seasonaland multiplicative seasonal models.

5.9. ALTERNATIVE METHODS
OF MODELING SEASONALITY

Suppose that the scientist discovers that a seasonal shift in level occurs
within the series. This shift may be either deterministic or stochastic. If the
shift is well defined and well behaved throughout the series, it may be
modeled by traditional methods of analysis. Moving average, Winters expo-
nential smoothing, decomposition, and regression techniques may be used
to control for deterministic trend and/or seasonality. A Winters exponential
smoothing model can handle either additive or multiplicative seasonality.
An X-11 or X-12 decomposition may extract the trend-cycle as well as
seasonal components, leaving the stochastic residuals for subsequent analy-
sis. If a consistent deterministic linear or polynomial trend is discovered,
then a linear or polynomial regression analysis may be used to control for
this trend. If sales are found to vary systematically according to the four
seasons of the year, a multiple linear regression analysis may model the
seasonal part of the process. If there are four shifts per year, the researcher
may need three seasonal dummy independent variables to model the sea-
sonal changes. The seasonal dummies, named time, in Eq. (5.22) are all
coded 1 and 0, depending upon whether the observation respectively takes
place during that season or during another. All measures are implicitly
coded in comparison with the reference season. In this case, the reference
category is the autumn sales season. The residuals may be used for further
modeling in accordance with the Wold decomposition theorem, which main-
tains that any series is a combination of deterministic and stochastic pro-
cesses.

At other times, we can employ a trigonometric function—such as a sine
or cosine—in such a regression model to represent and control for this
annual periodicity. Especially when series data are more or less continuous
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Figure 5.21 Deterministic trigonometric function modeling monthly sine and quarterly co-
sine seasonality.

and contain seasonal variation of the kind shown in Fig. 5.21, trigonometric
predictor variables may be constructed out of these functions and employed
on the right-hand side of a regression model explaining seasonal variation
in series Yt [Eq. (5.23)]. These functions may be adapted to model determin-
istic long-wave cyclical variation as well.

yt � � � winter�time � spring�time � summer�time � et (5.22)

Yt � C � �period/2

i�1

(X1t � X2t) � et ,

where

X1t � b1 sin�(2	 freq Time)

periodicity
� (phase shift)�

and

X2t � b2 cos�(2	 freq Time)

periodicity
� (phase shift)�

(5.23)

and where

C � constant

periodicity � order of seasonality

bi � amplitude.
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Regression models with time-varying covariates are useful in modeling
effects other than seasonality. In addition to modeling deterministic cyclicity
with trigonometric functions and seasonality with seasonal dummy vari-
ables, regression analyses with holiday dummy variables can also be used
to model holiday effects—such as those of Thanksgiving or Easter. Such
variables are coded 0 when the holiday is not in effect and 1 if the holiday
is in effect. Trading day variables may be included as well. For each month
the trading day variable may have a value equal to the number of trading
days in that month. With the inclusion of seasonal dummies, holiday dum-
mies, and trading day covariates, the regression model that regresses the
value of a series on time may account for a variety of time series effects.
An example of an autoregression model of monthly GDPPC at a particular
monthly time t might be

GDPPCt � C � �1GDPPCt�1 � �2TTime
� �3tWinter � �4Spring � �5tSummer

(5.24)� �6tHoliday � �7tTradingdays � et ,
where GDPPCt � gross domestic product per capita.

In this model, there are three seasonal dummy variables—namely, Winter,
Spring, and Summer—while there is a Holiday dummy coded 1 for holidays
and 0 for all other times. There is a time varying covariate—that is, TRAD-
INGDAYS—which contains the number of trading days for the months
surveyed (Diebold, 1998).

The residuals, of course, may be saved and used in combination with
Box–Jenkins ARIMA modeling. Such combined autoregression and
ARIMA models have been found to be effective in forecast competitions.
When different models or combinations of them fit, plausible alternative
models need to be formulated. Model comparison criteria relating to mea-
sures of model fit (sum of squared residuals), parsimony (minimum informa-
tion criteria), or forecast accuracy (sum of squared forecast errors, etc.),
which will be covered in the chapter on metadiagnosis and forecasting,
may be used to determine which is the optimal model.

5.10. THE QUESTION OF DETERMINISTIC OR
STOCHASTIC SEASONALITY

The nature of seasonality is important to proper specification of the
model. Tests for seasonal nonstationarity may be in order (Frances, 1991;
Meyer, 1998). When these tests indicate that adjustments for seasonality
are in order, then the question arises as to how to control for seasonality.
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If, on the one hand, seasonal factors follow a precise deterministic functional
form, then seasonality may be modeled by dummy or trigonometric vari-
ables in a model (Granger and Newbold, 1986; Diebold, 1998; Reilly, 1999).
If, on the other, the seasonality, depending on the memory of the series,
may follow a more stochastic form—where the seasonality may be more
or less recently emergent in the series, seasonal differencing and a seasonal
multiplicative Box–Jenkins modeling may be preferred. If the researcher
is unclear as to the nature of the seasonality, he may apply an appropriate
seasonal unit root test—for example, the augmented Dickey–Fuller or
Phillips–Perron Test—to help ascertain the nature of the seasonal variation.
He can then model the seasonal variation in different ways and compare
the models for goodness of fit as well as forecast accuracy with a view
toward choosing the optimal model.
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Chapter 6

Estimation and Diagnosis

6.1. Introduction 6.3. Diagnosis of the Model
6.2. Estimation References

6.1. INTRODUCTION

The second and third stages of the Box–Jenkins model-building protocol
are those of estimation and diagnosis. In Chapters 3 through 5, the reader
has been introduced to preliminary considerations and the identification
process of nonseasonal as well as seasonal time series models. This chapter
explains the succeeding stages of estimation and diagnosis. In the estima-
tion stage, three principal algorithms for estimating the identified
model parameters are explained. In the diagnosis stage, the omnibus fit of
the model and the significance of its estimated component parameters are
assessed by various tests and protocols. Chapter 7 addresses the subsequent
stages of metadiagnosis and forecasting. During metadiagnosis concurrent
model evaluation and during forecasting predictive model evaluation is
undertaken. After such model assessment, the optimal model is found as
part of the Box–Jenkins model building strategy.

6.2. ESTIMATION

After identification of the model components, the parameters are esti-
mated. Three principal algorithms used by popular statistical packages to
estimate model parameters are unconditional least squares, conditional

191
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least squares, and maximum likelihood estimation. SAS permits the use of
any of these techniques while SPSS employs maximum likelihood for model
estimation allowing the researcher to choose between conditional and un-
conditional least squares when forecasting. Therefore, each of these algo-
rithms is explained in this chapter. The first estimation technique discussed
is that of conditional least squares, on which unconditional sums of squares,
the next technique to be explained, is based.

6.2.1. CONDITIONAL LEAST SQUARES

This algorithm is based on minimization of residual variance. A function
is estimated that has an error term. In this case, this function is a version
of the ARIMA model. Consider first an integrated moving average (IMA)
model. The model is already rendered stationary, so wt , implying that Yt

was integrated and required differencing, is employed as a differenced
indicator of the series variable. After first differencing the mean is zero.
The model is

wt � �1wt�1 � et � 	1et�1 . (6.1)

Table 6.1 displays the recursive conditional least squares estimation of this
model. It contains IBM closing stock prices, extending from June 29, 1959,
at time t � 0, to July 10, 1959, at time t � 11 (Box et al., 1994). Time t �

Table 6.1

Recursive Calculation of Least Squares

	1

Time t IBM Stock Price Yt wt et .53 et�1 	1et�1 at 	1at�1

�1 447.10 0.00 0.00 .53 0.00 0.00 0.00 0.00
0 445 �2.10 �2.10 .53 0.00 0.00 0.00 2.10
1 448 3.00 1.89 .53 �2.10 �1.11 3.97 0.97
2 450 2.00 3.00 .53 1.89 1.00 1.83 �0.17
3 447 �3.00 �1.41 .53 3.00 1.59 �0.33 2.67
4 451 4.00 3.25 .53 �1.41 �0.75 5.04 1.04
5 453 2.00 3.72 .53 �3.25 1.72 1.96 �0.04
6 454 1.00 2.97 .53 �3.72 1.97 �0.08 1.08
7 454 0.00 1.58 .53 �2.97 1.58 �2.03 �2.03
8 459 5.00 5.84 .53 �1.58 0.84 �3.83 �8.83
9 440 �19.00 �15.91 .53 5.84 3.09 �16.66 2.34

10 446 6.00 �2.43 .53 �15.91 �8.43 4.41 �1.59
11 443 �3.00 �4.29 .53 �2.43 �1.29 �3.00 0.00
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�1 is the previous day to which the value of price is backcast. The closing
stock price values are the observations found in the column Yt . The values
of the first differences of those Yt values are found in the column labeled,
wt . This series is a first differenced, first-order moving average process of
the type just described. Starting values are needed for et�1 , wt�1 , and at�1,
where at�1 is the error generated when back forecasting (backcasting) the
starting values. In higher order ARIMA models, starting values would be
needed for the wt�1 , . . . , wt�p , and et�1 , . . . , et�q , and at�1 , . . . at�q . If the
model had seasonal terms, then starting values would be needed for those
as well. In Table 6.1 the starting values for the unobserved et�1 and at�1 are
at first set to zero. The model is reexpressed as a function of its error term:

et � 	1et�1 � wt � �1wt�1

(1 � 	1L)et � (1 � �1L)wt (6.2)

�
(1 � �1L)wt

(1 � 	1L)
.

In the first cycle, estimation of the starting values is computed by
back-forecasting. In the second cycle, with the new starting values, the
error terms are estimated through a process of forward recursion. Then
the sum of the squared errors is computed as a criterion to be mini-
mized with a nonlinear least squares algorithm (McCleary et al., 1980):

(6.3)S(wt , �1 , 	1) � �n
t�1

e2
t � �n

t�1
�(1 � �1L)wt

(1 � 	1L)
�2

.

To explain conditional least squares, we consider the simpler
ARIMA(0,0,1) model

wt � et � 	1et�1 � (1 � 	1L)et

so that
(6.4)

et �
wt

1 � 	1L
� ��

i�0

	 i
1wt�i.

In general, the model is estimated by minimizing the objective criterion of
the sum of squared errors. For each value of 	1 tried, an error term [Eqs.
(6.2 through 6.4)] and its sum of squares are computed:

��
t�1

e2
t � S(	) � ��

t�1
���

i�0

	i
1wt�i�2

. (6.5)

The value of 	 yielding the minimum sum of squares is chosen as the
final estimate.

We return to Table 6.1 to elaborate on the estimation process, which



194 6/Estimation and Diagnosis

entails backcasting the starting values at t � 0 and estimating the model
at t � 0. Because

wt � (1 � 	1L)et for model estimation and
wt � (1 � 	1F)at for backcasting

(6.6)
where
F � the lead operator,

the equation error, et � wt � 	1et�1 can be reexpressed for back-forecasting
as at � wt � 	1at�1 . In column 2 the data for Yt and its difference wt are
given. The et�1 and at�1 are given starting values of 0 for a particular selected
starting value of 	1 .

The first cycle begins with backward estimation. The purpose is the
backcast the starting value of et�1 at t � 0. Therefore, the 	1at�1 , beginning
at time period t � 11 is given a value of zero. With backward recursion,
t � 1 is now t � 1. Hence, from at � wt � 	1at�1 , at � �3 � .53*0, at �
�3. At time t � 10, 	1at�1 � .53*(�3) � �1.59 and because at � 4.41,
wt � 6.00. As this process proceeds backward to time t � 1, at , at�1, and
	1at�1 can be calculated. In this way, the starting value of 	1at�1 � 2.10 for
time t � 0 can be backcast.

With the newly backcast starting values, the second cycle begins. At
time t � 0, w0 � �	1at�1 . From et � wt � 	1et�1 , the calculation of the
values of et can proceed by forward recursion. Then the et , e2

t are stored
for the selected value of 	1 . The sums of those squared errors are computed
and stored for that value of 	1, in both Table 6.1 and 6.2.

The value of 	1 is incrementally changed and the process is reiterated.
In Table 6.2, the sums of squared errors associated with particular values

Table 6.2

Estimation of Moving Average Parameter �1

Iteration 	1 SS error

1 0.52 361.88
2 0.54 361.60
3 0.56 361.50
4 0.58 361.55
5 0.60 361.73
6 0.62 362.00
7 0.64 362.35
8 0.66 362.72
9 0.68 363.10

10 0.70 363.43
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of 	1 are recorded. These sums of squared errors for each value of the
parameter 	1 are plotted as a function and stored in the computer
(Fig. 6.1). This function guides the estimation of the best parameter value.
In the estimation process, the new value of the parameter 	1 is based on
the movement from a previous value along a downward slope in the sum
of squared errors function. Further changes in 	1 eventually cease to reduce
the sum of squared errors beyond some criterion (tolerated error) of conver-
gence. If the sum of squared error function is deemed to attain a minimum
value, then the process has converged upon the value of the parameter
estimate. In short, the movement of the parameter 	1 along its parameter
space finally achieves a minimization of this sum of squared errors (fails to
reduce it beyond some criterion). Convergence is attained and the iterations
cease. The process has iterated to a solution.

6.2.2. UNCONDITIONAL LEAST SQUARES

The algorithm of unconditional least squares is almost identical to that
of conditional least squares. The difference between them is in the computa-
tion of the starting values. In conditional least squares, the estimation is
conditional on starting values of unobserved errors being set to zero, but
in conditional least squares, the backcast values that may be closer to the
real ones are used. In unconditional least squares, the starting values are
simply set to zero (Ege et al., 1993). If the series is sufficiently long, condi-
tional and unconditional least squares estimation processes will yield very
similar estimates.

6.2.2.1. Estimation of Autoregressive Parameters

The same estimation process can be extended to include AR, ARI, and
ARIMA models. A moving average model may be expressed as an infinite
order autoregressive model.

wt � et(1 � 	1L)

wt

(1 � 	1L)
� et

(6.7)

wt(1 � 	1L � 	2
1L2 � 	3

1L3. . .) � et

wt � �	1wt�1 � 	2
1wt�2 � 	3

1wt�3 � � � � � 	 i
1wt�i � et

and because 	t � �	,t

wt � 	1wt�1 � 	2wt�2 � 	3wt�3 � � � � � 	iwt�i � et . (6.8)
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Figure 6.1 Parameter Estimation of 	1 .

Thus, this model can be reparameterized in terms of 	 parameters. The
autoregressive process can be represented by a weighted sum of present
and past values of the white noise process (Box et al., 1994; Ege et al.,

1993). The sum of squared errors function can be inferred from this formula-
tion, and that function is used to estimate the values of the parameters, 	i :

wt � et � ��
i�1

	i L
i

et � wt � ��
i�1

	iL
i.

(6.9)

For least squares estimation,

��
i�1

ê2
t � �n

i�1
�wt � ��

i�1

	̂i L
i�2

.

Of course, the absolute values of the 	i weights must have values less than
1 for the process to be stable and to be able to converge. This process
iterates until the value of the parameter being estimated minimizes the
sum of squared errors. At that point, the process has iterated to a solution.
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Under conditions of stationarity and stability, the moving average
and the autoregressive processes are interchangeable. An infinite or
finite-order autoregressive process can be converted to a moving average
process and estimated. Owing to the stationarity of the moving average
parameter, the significant autoregressive parameters will taper off to
nonsignificance after a few lags (Box and Jenkins, 1976). Conversely,
these may be converted to a moving average model without much
difficulty, and such models can be estimated in the manner described.
These models are trimmed to those with preliminary identification and
estimated. Partial autocorrelations can be estimated by fitting successive
autoregressive parameters and computing the value of the last parameter
at each stage of estimation. The least squares error criterion and signifi-
cance tests of the parameters will determine the proper order of the
process. Alternatively, the autoregressive process can be estimated by
the Yule–Walker equations expounded in Chapter 4, Section 4.7. Bivariate
correlations can be substituted for the theoretical autocorrelations and
the partial autoregressive coefficients can be computed and used as
starting values for the least squares estimation process:

For an AR1 process, �̂11 � r1 .

For an AR2 process, �̂21 �
r1(1 � r2)

1 � r2
1 (6.10)

and

�̂22 �
r2 � r2

1

1 � r2
1

,

where �ii is the partial autoregressive parameter, ri is the bivariate correla-
tion coefficient. With the Yule–Walker equations, the starting values of
the autoregressive parameters and all of the autoregressive parameters can
be estimated.

6.2.2.2. Estimation of ARIMA Model Parameters

In the event that the model is an ARIMA(1,1,1), it can be appropriately
transformed to permit estimation. Just as one can convert a moving
average model into an autoregressive model and vice versa, so one can
convert a mixed model to a higher order autoregressive model, which
may be sequentially estimated. Given an ARIMA(1,1,1) model with
wt � Yt � Yt�1 ,
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(1 � �1L)wt � (1 � 	1L)et.

Therefore,

et �
(1 � �1L)

(1 � 	1L)
wt.

Thus, for unweighted least squares:

�n
t�1

e2
t � �n

t�1

(wt � CtV
�1
t (w1, . . . , wt�1)

l), (6.11)

where

C � covariance matrix of wt and (w1, . . . , wt�1) and

V � variance of (w1 , . . . , wt�1) if �1 � 	1,

� n�1 (1 � �1	1)

(�1 � 	1)
2 ((1 � �2

1)(1 � � � �1	1)) ((1 � �2
1)(1 � 	2

1))

((1 � �2
1)(1 � 	2

1)) ((1 � 	2
1)(1 � �1	1))�

In this way, the mixed model can be converted to an autoregressive process,
with attenuating coefficients, and it can be iteratively solved by least squares
to minimize the error variance for the ARIMA parameters (Ege et al., 1993).

6.2.3. MAXIMUM LIKELIHOOD ESTIMATION

Another numerical method used for parameter estimation of a nonlinear
system of equations is maximum likelihood estimation. The Levenberg–
Marquardt algorithm transforms a nonlinear model into a linear form for
maximum likelihood estimation. This algorithm attempts to optimize the
estimation process by combining an objective log-likelihood function, a
conditional least squares estimation of starting values, a modified Gauss–
Newton method of iterative linearization estimation, a steepest descent
directional supervisor, and a step-size governor to enhance efficiency, with
a convergence test to determine when to cease iteration. The integrated
algorithm provides for efficient and reasonably fast maximum likelihood
estimation of nonlinear models.

Maximum likelihood estimation usually begins with a likelihood function
to minimize or maximize. A likelihood function is a probability formula.
When observations are independent of one another, the probability of the
multiple successive occurrences is the product of their individual probabili-
ties. For example, in two coin tosses, the probability of a head in one toss
is ¹⁄₂. The probability of two heads in two tosses is ¹⁄₂ � ¹⁄₂ � ¹⁄₄. In a time
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series, white noise appears as random shocks and the individual shock is
et . If the condition of ergodicity exists, each shock is independently and
normally distributed, and therefore possess a normal probability distribu-
tion [N � (0,
2)]. The probability density function of a shock therefore is
given by McCleary et al. (1980):

p(et ) �
e�e2

t /2
2
e


e�2	
. (6.12)

The multiplicative constant 1/�(2	) can be dropped and the probability of
the product of multiple shocks can be expressed (Box et al., 1994) as

p(a1 ,a2 , . . . ,an ) 
 
 �n
e exp����n

t�1

e2
1

2
 2
e
�	 . (6.13)

Taking the natural log of that function, the analyst can obtain the natural
log of the likelihood function, conditional on the choice of the pa-
rameters:

LL(�,	,
e) � �n ln(
e) �
�e2

t ,(�,	)

2
2
e

. (6.14)

The first term on the right-hand side of Eq. (6.14) will be negative whenever
the 
 is positive and zero whenever 
 is equal to 1. The second term on
the right-hand side of this equation will always be negative. The e2

t can be
conceptualized as (yt � �)2. When these scores are mean deviations, the
second term on the right hand side appears to be the negative �z2/2. In
other words, the �2 log likelihood of the right-hand side of the equation
is distributed as a �2 distribution. Therefore, the maximum (log) likelihood
will occur when the sum of squared error term is at a minimum. When this
�2 log likelihood is calculated for the null model—that is, the model
with only the constant in it—and then subtracted from that of the full
model—that is, the model with all of the parameters in it—the difference
of these two log likelihoods is distributed as a �2 with p degrees of freedom,
where p is equal to the number of parameters in the model. This is the
amount of reduction of sum of squared error that is attributable to the
inclusion of parameters in the model. This subtraction of log likelihoods
is a likelihood ratio �2 with p degrees of freedom. If the likelihood ratio
�2 is statistically significant, then the parameters included in the model
significantly minimize the sum of squared errors, maximize the likelihood,
and thereby improve parameter estimation.

The algorithm basically works after the fashion of a guided grid search.
The grid search moves along values of the parameter being estimated. First,
starting values of the parameter identified by the model are obtained from
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conditional least squares estimates, a series mean, or values preset by the
researcher. A sum of squared errors, referred to as the old sum of squared
errors, is computed for these starting parameter values. Vectors of slopes,
of the sum of squared errors for each parameter being estimated, are
computed. The vector with the steepest slope (largest derivative) is chosen
for direction and step size guidance. With this selection of direction and
step size, an incremental value is added to the starting value of the parameter
to form a new value of the parameter being estimated. At this point, a new
sum of squared errors is calculated and compared to the old sum of squared
errors. The process is repeated as long as each new sum of squared errors
is substantially smaller than the old sum of squared errors. At the beginning
of the next cycle, the new starting value is now the old value of the parame-
ter. Iterations continue until the reduction of the error sum of squares fails
to exceed some limit, called the criterion of convergence.

An unmodified grid search without the aid of the steepest descent innova-
tion has serious deficiencies. If, by chance, the starting value is close to this
minimum value of the error sum of squares, then convergence takes place
quickly. If, however, the starting value is far away, the process takes longer
before convergence is reached. If the convergence criterion is quite small,
the process may not converge for a long time, if ever. Therefore, a grid
search method by itself leaves much to be desired in an estimation algo-
rithm. To render it more useful, a mechanism of steepest descent is incorpo-
rated.

The steepest descent algorithm can be clarified with some elaboration.
To facilitate efficient convergence of a grid search process that by itself
might meander randomly, the Levenberg–Marquardt algorithm controls
both the direction and the size of the step at each iteration. At the end of
each iteration, it computes the derivatives of S(	) in several directions and
follows the direction of the steepest derivative of that function with respect
to the parameter in question. For control of the step size, the algorithm
assesses the speed of convergence. The farther away from the minimum
of the lack of fit function, the larger the step size is made. Conversely, the
nearer that minimum, the shorter the step size. The size of the step is
basically controlled by the steepness of the descent toward the minimum.
By multiplying the first derivative of the lack of fit function with respect to
the parameter, the algorithm provides for control of the speed of movement
toward convergence (Draper and Smith, 1981).

The modified Gauss–Newton method of iterative linearization applies
a Taylor series linear approximation of the functional relationship between
the log-likelihood function taken from the identified model and the parame-
ter estimates of each of the parameters that derives from the nonlinear
ARIMA model. Let us consider the nature of the derivative of our postu-
lated model. Suppose a hypothesized IMA model is of the form
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w� � f(�� , 	) � �� (6.15)
� �t � 	1�t�1 , where � � N(0, 
 2).

By definition,

�f(�,	0)

�	i

�
f(�,	i) � f(�,	0)

	i � 	0

.

(6.16)Therefore,

f(�,	i) � f(�,	0) �
�f(�,	0)

�	i

(	i � 	0).

Yet this holds for a particular point on the 	i axis. The nonlinear ARIMA
model is reformulated as a function of the error and approximated by a
Taylor series linear approximation. If a higher order—for example, with
derivatives taken to the ith power—Taylor series approximation were ap-
plied, with i successive derivatives taken, the factor by which these deriva-
tives would be multiplied would be 1/i!. Therefore, the general formula
for the approximation includes division by I!, as shown in Greene (1997)
and derived in Thomas (1983):

f(�,	i) � f(�,	0) � �p
i�1

1

i!
��if(�,	0)

�	i
i
	 (	i � 	0)i � �t . (6.17)

The equation may be expressed as a function of the likelihood or sum of
squared errors. The sum of squared errors is

S(	) � �n
i�1
�wt � f(�,	0) � �p

i�1

1

i!
��f(�,	0)

�f(	i)
i � (	i � 	0)i	2

(6.18)

� �n
i�1

�2
t .

The left-hand side of Eq. (6.17) may be considered a new function to be
minimized. Alternatively, its opposite, the log likelihood, may be the func-
tion to be maximized. In either case, the root of that function to be found
may be set to zero, so that the approximation of the function can be solved.
The equation can be reexpressed as a function of the parameter 	 to show
how the iteration process works:

�1 � 	1 � 	0 (6.19)
	1 � 	0 � �1 .

The � approaches the criterion of convergence as 	1 approaches its parame-
ter estimate. Unless the criterion of convergence is properly set, this ap-
proach may oscillate excessively back and forth between positive and nega-
tive values of step size before converging on the final parameter estimate,
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	i � 	0 �
f(�,	0)

��f(�,	0)

�	0
� , (6.20)

where 	0 is the old value of parameter 	 and 	i is the new value of parame-
ter 	.

The Levenberg–Marquardt algorithm clearly controls convergence of
the estimation. If the slope of the lack of fit function is positive, then the
value of the parameter is reduced. If the slope is negative, the value of the
parameter is increased. Eventually, the value of the parameter 	 approaches
the point where the lack of fit function is minimized and the likelihood is
maximized. This is the point where f(�,	) � 0, the root of the equation.
At this time, the change in 	 converges to a solution and iterations cease.

Other forms of maximum likelihood algorithms exist. Brockwell and
Davis (1991) suggest that ARMA models are often estimated with algorithm
based on the principle

	1 � 	0 � d
�S(	)

�	
, (6.21)

where d is some coefficient of step size. Here, the sign of the derivative of
sum of squared errors with respect to the parameter 	 will control the
direction of the change in value of the parameter. Positive slopes indicating a
growth in the sum of squared errors will decrease the value of the parameter,
while negative derivatives indicating declines in the sum of squared errors
result in an increase in the parameter value of Fig. 6.1. If the log likelihood
replaces the sum of squared errors then the sign in the equation becomes a
positive rather than a negative. This proceeds until convergence is attained.
Another modification of this algorithm is the Newton–Raphson algorithm
where d is replaced by the inverse of the negative of the Hessian matrix:

	i � 	0 � ���2S(	)

�	2
0

��1�S(	)

�	0

. (6.22)

If the slope is positive in Fig. 6.1, the new parameter 	 becomes less positive,
and if the slope is negative, the new parameter 	 becomes more positive.
In this way, it eventually converges on the point where the slope is horizontal
and the derivative is 0. The minus times the inverse of the second derivative
matrix is the information matrix. The elements of the principal diagonal
of this matrix are the asymptotic variances of the 	. The more peaked the
slope, the more the information. The more the information, the larger the
step size and the greater the change in value of the parameter. Conversely,
the smaller the step size, the less the information, the flatter the curve, and
the less the change in the parameter value. This control over the step size
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renders the convergence process much more efficient than a mere grid
search (Long and Trivedi, 1993).

If 	1 is the parameter that minimizes the S(	), one can express the upper
equation to show how the functional relationship may change in connection
with the previous value of the parameter, 	1 . To do so, the algorithm moves
the parameter 	1 from its starting value, and the likelihood (or sum of
squared errors) as well as the derivative of the likelihood function with
respect to the parameter in several directions are computed. In order to
expedite convergence, the procedure chooses the derivative with the
steepest slope. The direction in which the movement of the parameter will
proceed is the opposite of the sign of the slope. If the sign of the derivative
is positive, then the value of the parameter will decrease. If the sign of the
derivative is negative, then the value of the parameter will increase. As long
as the partial derivative is nonzero, there is a tendency for the parameter 	
to move in the next step in a direction to reduce the sum of squared errors.
From the graph of this function in Fig. 6.1, we see that it is possible to
iterate through the parameter values of 	 until this lack of fit function
arrives at a minimum. At this point the derivative of the function approaches
zero. The reduction of the sum of squared errors ceases to improve beyond
a limit of convergence, so that further iteration ceases.

In other words, the value of the sum of squared error function after
each shift of the parameter 	1 is calculated and recorded. The change in
the value of the parameter is a function of the slope of the sum of squared
error function. If the slope is negative, then the shift in the value of the
parameter 	 will be in a positive direction. If the slope is positive, then the
shift in the value of the parameter will be in the negative direction. When
the function attains a minimum, provided that the criterion of convergence
is reached, the iterations cease (Draper and Smith, 1981; Eliason, 1993;
Long and Trivedi, 1993; Wei, 1990).

McCleary et al. (1980) give four criteria of convergence: The Leven-
berg–Marquardt algorithm converges when any one of these criteria has
been met. First, when the percentage reduction of S(	) goes below a set
limit, the iteration process will end. Second, when the percentage change
in the value of the parameter (	1) goes below a specified level, the iteration
process will stop. Third, when the number of iterations reaches a maximum
limit, adjustable by the researcher, which has been set as the default limit
for the program, the iterations will terminate. Fourth, when the last iteration
reached a minimal ratio of change from the initial sum of squared errors
or log-likelihood to the last one, the program will complete its iteration
process.

In sum, this maximum likelihood estimation follows an iterative process.
It begins with starting values of the model parameters to be estimated.
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These starting values can be supplied by the user or by his selection of
options within the program. SAS utilizes conditional least squares to obtain
the starting values. SPSS gives the researcher the choice of user predefined
or automatically set starting values. The Levenberg–Marquardt algorithm
computes the sum of squared errors. Then it computes a Taylor series
linear approximation of the model, from which a vector of correction factors
is derived. The new value of the parameter is then corrected by the appro-
priate element of this vector. A new sum of squared errors is computed.
If the new sum of squared errors is less than the old one, then the adjustment
is made to the approximation. If the new sum of squared errors is greater
than the old one, then the test for convergence is applied. That is, the
change in the sum of squared errors is tested to see whether it is below
the level of convergence—whether the new sum of squared errors is almost
identical to the old one. If it is, then the iterations cease. If not, then
the process cycles through another iteration (Draper and Smith, 1981;
Eliason, 1993).

There may be potential problems with efficient maximum likelihood
estimation, and the researcher should be aware of them. Sometimes, prelim-
inary moving average estimates do not converge, in which case other initial
starting values may be tried. This problem may stem from multicollinearity
which flattens error surfaces along the parameter space. This flattening of
the valleys makes it difficult for the algorithm to find a minimum of the
sum of squared errors or a maximum of the log likelihood. When the
parameter values are close to the bounds of stability or stationarity, these
flat surfaces may also be found, and there may be a need to increase the
number of iterations permitted for the algorithm to converge. If some of
the parameters are not identifiable, it may be possible to trim them from
the model. Sometimes convergence takes place on a local rather than a
global minimum. The analyst may randomly try different starting values
from the range of possible values to assure himself that convergence always
takes place on the same optimal value of the parameter. If the parameter
estimates remain the same, then the reliability of this solution would suggest
that the solution is indeed the optimal one.

6.2.4. COMPUTER APPLICATIONS

Of the two statistical packages compared here, SAS allows the user to
choose freely from three different algorithms for estimation: conditional
least squares, unconditional least squares, and maximum likelihood estima-
tion. SPSS uses only maximum likelihood estimation, but allows the user to
choose between conditional and unconditional least squares for forecasting.
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Although both SPSS and SAS employ a version of the Marquardt algorithm
as described in Kohn and Ansley (1986), and Morf et al. (1974), SPSS now
uses Melard’s fast maximum likelihood algorithm (1984). If the analyst
employs the maximum likelihood estimation in both models, the results
are identical to the thousandths decimal place. Beyond that, differences
begin to appear.

Although there is some controversy over which algorithm yields the
best results under what circumstances, conditional least squares generally
performs better with smaller data sets than maximum likelihood estimation.
For very large data sets, conditional least squares is faster than maximum
likelihood estimation, but maximum likelihood is believed to be more
accurate (Vandaele, 1983; Brocklebank and Dickey, 1986). Because maxi-
mum likelihood estimation entails asymptotic estimation, it should be used
only with larger data sets. Standard errors tend to be smaller and differences
in iterated sum of squared errors are easier to detect with larger sample
sizes. With smaller data sets, these differences are harder to detect and
iterative maximum likelihood estimation can meander myopically about,
doing more damage than good. In general, if the data set is small, it is
advisable to avoid maximum likelihood estimation. But if parameter esti-
mates are close to the bounds of stationarity or stability or if seasonal
multiplicative models are estimated, either conditional least squares or
unconditional least squares might yield better results. The algorithms may
produce different results, and the user is advised to try several to get a
sense of the possible variation. Conditional least squares attempts to obtain
more accurate starting values, while unconditional least squares might use
either the series mean or midpoint of neighbors. Both SPSS and SAS
employ missing data replacement algorithms to replace missing values in
the data set if the user has not already done so. Using interpolative proce-
dures based on the work of Jones (1980) and Kohn and Ansley (1986),
SAS and SPSS automatically replace the missing values from predictions
from an infinite memory process of the previously nonmissing data, and
these artificial values are updated at each stage of iteration. In the interven-
tion or transfer function models covered later, which involve other input
variables, the user must supply the missing values for those input variables.

Computer syntax specifying the type of model estimation to be invoked
is available in the SAS PROC ARIMA procedure and shown in Program
syntax example 6.1. In the ESTIMATE subcommand, the user may select
the kind of estimation. The user may specify the order of the autoregression
with a P=X, where X is the numeric order of the autoregression. The user
may specify the order of the moving average with Q=Y, where Y is the
numeric order of the moving average. If a multiplicative model is being
estimated, then a P=(1)(12) or a Q=(1)(12) may be in order. If there
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is to be no mean term in the model, an option called NOINT (alternatively,
the specification NOCONSTANT may be used) is added to the subcommand.
PRINTALL and PLOT are usually advisable if one wishes to diagnose the
estimation process. PRINTALL gives the iteration history and diagnostics;
PLOT provides the ACF, IACF, and PACF of the model residuals.

Specification of the algorithm comes with the METHOD option. With
any algorithm, the options available are CLS, ULS, and ML. These signify
conditional least squares, unconditional least squares, and maximum likeli-
hood, respectively. If the user fails to specify the algorithm of choice, CLS
is used in default. The user may specify his starting values with the AR=,
MA=, MU= options. In the SAS program syntax Example 6.1, the initial
values of the CLS model for the regular and seasonal moving average
parameters are 0.3 and 0.4, respectively. The initial value for the mean is
0.1. METHOD=ML is used to obtain maximum likelihood estimation, but
maximum likelihood estimation uses starting values from conditional least
squares. Therefore, if the user provides starting values for maximum likeli-
hood estimation, the program begins conditional least squares estimation
with those starting values and then uses the conditional least squares esti-
mates as the starting values for the maximum likelihood estimation. With
maximum likelihood, it may be advisable to limit the number of iterations
with the MAXIT option. MAXIT=41 is used in the example. The CONVERGE=
.0001 specifies the convergence criterion. To request unconditional least
squares estimation, the user merely specifies METHOD=ULS. If the user does
not specify which type of estimation is preferred, SAS invokes conditional
least squares by default.

Program Syntax Example 6.1

PROC ARIMA DATA=SASSTOCK;

IDENTIFY VAR = Yt(1,1) nlag=20;

ESTIMATE Q=(1)(12) MU=.1 MA=.3,.4 PRINTALL PLOT NOINT

METHOD=ML MAXIT=41 CONVERGE=.0001;

SPSS users may also wish to specify their ARIMA estimation syntax.
They must remember that the first line of an SPSS command must begin
in column 1 while continuations of the command must be indented at least
one space, and delimited with a forward slash. The user does not have
control over the choice of algorithm at the estimation stage: Melard’s
fast maximum likelihood algorithm is automatically invoked for parameter
estimation. Only when he begins his forecasting does he currently have a
choice of either conditional least squares or unconditional least squares as
a forecast option. He can therefore include a /FORECAST CLS or a
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/FORECAST EXACT option statement at the end of the procedural com-
mand syntax in Example 6.2 to obtain, respectively, either CLS or ULS
forecast estimation. Although subcommands follow the forward slashes,
the termination of the SPSS command is designated by a period.

Users can set the starting values of the parameters with the AR=, MA=,
SAR=, SMA=, REG=, or CON= subcommands. The user can control the crite-
rion of convergence as a percentage change in the parameter value with
the /PAREPS=.001 subcommand. He can also control the criterion of
convergence as a percentage of sum of squared errors with the /SSQPCT =

.001 subcommand. Also, he can control the number of iterations with the
MXITER=10 subcommand.

Program Syntax Example 6.2

ARIMA SPSSTOCK / Model=(0,1,1)(0,1,1) Constant/

AR=0 / MA=.1/ SAR=0/ SMA=.1/CON=0.5/

MXITER=41 /SSQPCT = .0001/FORECAST CLS.

In both the SAS and SPSS examples, the maximum number of iterations
was set to 41 and the convergence criterion was set to .0001 of the sum of
squared errors. Both use the maximum likelihood estimation algorithm.
SPSS uses starting values of the parameters as .1 for the moving average
and the seasonal moving average estimates, along with a starting value of
.5 for the constant. If the algorithm does not converge, SAS permits the
use of two other algorithms. With SPSS, the user may try to increase the
MXITER option limit and/or change the SSQPCT criterion. Either or both
of these adjustments might facilitate convergence.

These three algorithms are the principal estimation techniques employed
by SAS and SPSS. Each algorithm has its own advantages and disadvan-
tages. Abraham and Ledolter (1983) maintain that unconditional least
squares works well when the parameters are not close to the bounds of
invertibility. Brocklebank and Dickey (1994) find that conditional least
squares is much faster than either unconditional least squares or maximum
likelihood estimation on large data sets. Granger and Newbold (1986)
note that unconditional least squares and conditional least squares are
satisfactory for larger sample sizes, when their results approximate those
of maximum likelihood estimation. Maximum likelihood estimation is based
on large sample asymptotic estimators, which are asymptotically normally
distributed, for which reason it is advisable to have long series of at least
50 equally spaced observations before applying it. Granger and Newbold
(1986) claim that maximum likelihood estimation gives satisfactory results
even with more limited-size samples. Unfortunately, maximum likelihood
estimation is vulnerable to local minima. Therefore, it may be necessary
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to try randomly selected starting values within the permissible range of
parameter values to be sure that the convergence uniformly takes place
on the same parameter estimate. The maximum likelihood method, as an
iterative procedure, consumes more computer time and resources than
others. Often, the researcher would be well advised to try several of these
methods. If convergent validity holds, then different algorithms using the
same starting values and missing data replacement procedure should yield
identical results. If they do not yield essentially the same results, then it is
important to ascertain which of the models explains and fits better, a
subject that will be examined in the next chapter on metadiagnosis and fore-
casting.

6.3. DIAGNOSIS OF THE MODEL

After estimation of the model, the Box–Jenkins model building strategy
entails a diagnosis of the adequacy of the model. More specifically, it is
necessary to ascertain in what way the model is adequate and in what way
it is inadequate. This stage of the modeling strategy involves several steps
(Kendall and Ord, 1990). Perhaps the first order of business is to assess
the omnibus fit of the model. This entails being sure that the model con-
verged upon a minimum sum of squared errors. The sum of squared residu-
als should be quite small so that the R2 of the model would be quite large.
Note can be made of the information criteria for benchmark or baseline
reference. The second-stage individual parameter evaluations will be made
in accordance with their reduction of the value of the information criteria
to a minimum.

Evaluation of the individual parameter estimates should be the second
order of business. Review of the parameters estimates may reveal adequa-
cies or inadequacies of the model. Their significance, magnitude, intercorre-
lation, number, proximity to the boundaries of stationarity or invertibility,
and estimation algorithm have implications for their retention or exclusion
from the model. Stable and parsimonious models are preferred.

Parameter estimation should be attempted by different algorithms to
see if they yield identical results. Different tests producing identical results
on the same data provides concurrent validation of the estimation tech-
niques employed. A kind of convergent validation can be inferred from
this multimethod approach. The model exhibits reliability, stability, and
relative robustness to variations in the estimations when this takes place.
If the results from the various estimations differ substantially, that is evi-
dence of what Leamer (1983) referred to as a fragile model. The magnitudes
of the parameter estimates should be reasonable. The parameter estimates
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should lie well within the bounds of stationarity and invertibility. If neces-
sary, their polynomials should be formulated and their roots should be
tested for reality or complexity. If the parameter estimates are close to
these bounds, then unit root tests might be in order. For example, if the
absolute value of the first-order autoregressive parameter is close to 1,
then the model may be nonstationary and differencing might be in order.
Parameter estimates near the bounds of stability or invertibility might result
in wild fluctuations at the initial stages of iteration, which might suggest
misspecification of the model. In moving average models, the parameters
should be within the bounds of invertibility. If the model is a second-order
moving average model, the sum of 	1 and 	2 should be less than 1. 	2 minus
	1 should be less than 1. The absolute value of 	2 should be less than 1 as
well. If the model is a second-order autoregressive model, the � coefficients
should similarly lie within the bounds of stationarity.

Not only should the parameter estimates be of reasonable magnitude,
they should be clearly statistically significant as well. Their t-ratios should
be greater than 1.96. If the parameters are not significant, they should be
trimmed from the model. If they are significant, they should remain within
the model. Sometimes, parameters may be close to significance and should
remain within the model anyway for reasons of theory testing and theory
building. These statistical significances are merely estimates of the real
significance and may vary somewhat from the real ones in the data-generat-
ing process.

The estimation process should have successfully converged upon the
estimates. If the parameter estimates are too close to the bounds of sta-
tionarity or stability, the estimation process for the model may not have
converged. If the model did not converge, there may be several reasons
for it. The parameter estimates might be so intercorrelated that collinearity
between them flattens the response surface of the sum of squared errors.
The grid search on so flat a response surface might meander without conver-
gence. Either increasing the maximum number of iterations permitted or
loosening the criterion of convergence might facilitate iteration to a so-
lution.

Collinearity between the parameter estimates should be examined. Usu-
ally, the statistical package includes a correlation matrix of parameters.
Evidence of collinearity can be found in this matrix, from which it can
be inferred that the response surface of the parameter space may level
off or flatten out. When the parameter estimates are highly intercorre-
lated, one option is to reduce the number of intercorrelated items in the
model.

Model diagnosis entails residual analysis as well. If the model is properly
specified and the model parameters account for all of the systematic vari-
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ance, then the residuals should resemble white noise. Residual analysis is
performed with the autocorrelation and partial autocorrelation function.
These correlograms can be examined with reference to modified Portman-
teau tests of their associated significance levels. It should be remembered
that the Portmanteau statistic might inflate the autocorrelation under condi-
tions of short series or short lag times, for which reason the modified
Ljung–Box statistic is used to provide better significance tests. White noise
residuals do not have significant p values. These white noise p values of
the residuals should not be less than 0.05. Graphically, white noise residuals
have associated spikes that do not extend beyond the confidence interval
limits. The ACF and PACF plots reveal these limits as dotted lines spread-
ing out from the midpoint of the plot. When spikes protrude beyond the
limits of two standard errors on each side of the central vertical axis of no
autocorrelation, then the autocorrelation or partial autocorrelation of the
residuals have significant spikes with p values less than 0.05. Indication of
significant ACF or PACF residual spikes is empirical evidence of lack
of fit.

The pattern of lack of fit will suggest the reparameterization of the model.
Slowly attenuating autocorrelation functions suggest further differencing.
Sharp and pronounced alternating spikes in the correlogram may suggest
that overdifferencing has been invoked and that a lower order of differenc-
ing is in order. Seasonal spiking of slowly attenuating autocorrelation func-
tions suggest that seasonal differencing may be in order.

Combinations of ACF and PACF patterns indicate whether the addi-
tional terms should be moving average or autoregressive. Gradual attenua-
tion of the ACF with a few spikes and sudden decline in PACF magnitude
suggest that autoregressive parameters should be added, whereas gradual
attenuation of the PACF and a few finite spikes of the ACF with sudden
decline of their magnitude suggest moving average terms should be used.
If these patterns have seasonal spikes in the same direction, with no spikes
in the opposite direction, then a purely seasonal model may be indicated.
There may be alternating seasonal spikes indicating negative seasonal pa-
rameters. If there is seasonal spiking with an occasional spike in the opposite
direction, a multiplicative seasonal model may be in order. The type of
seasonal parameters would depend on the pattern of spikes characterizing
the ACF and the PACF. Once these have been properly identified and
estimated, the ACF and PACF of the residuals should appear as white
noise.

The model needs to be tested by underfitting and overfitting. If the model
is optimal, neither underfitting (dropping of questionable parameters) nor
overfitting (including extra parameters) should yield a lower sum of squared
errors. Diagnoses of these models come from the use of the R2 statistic.
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Based on the minimum sum of squared residuals, the R2 of the model is
found with the following formula:

R2 � 1 �

�T
t�1

SS2
error

�T
t�1

SStotal

. (6.23)

These are not the only useful indicators of goodness of fit. The R2 may be
adjusted for degrees of freedom where the additional parameters tend to
inflate this statistic:

Adjusted R2 � �1 �
k

T
� r2, (6.24)

where k � number of parameters, T � number of observations. If the
parameters are all accounted for in the model, then the residuals should
consist purely of white noise or unsystematic random variation.

The model should be reasonable and parsimonious. It should be as
elegant as possible. It must account for as much of the systematic variance
as possible, leaving white noise residuals. The parameters of the model
should be estimated with convergence of the model upon a minimum sum
of squared residuals. The parameter estimates should not be highly intercor-
related and they should be significant. The diagnostic tests discussed in this
section permit the assessment of these properties of statistical adequacy.

Diagnostic testing also requires assessment of the methodological ade-
quacy of the model. If the research, sampling, and data collection were
conducted properly, there should be no impairment of the internal or
external validity of the data. Cook and Campbell (1979) point out that
the researcher must methodologically guard against threats to the internal
validity of a time series analysis. Short time series may deprive the analyst
of adequate statistical power to estimate and find real significance. Not
much has been written on the subject of power analysis for ARIMA models,
but most writers pay homage to the caveat that the series needs to be long
enough to possess enough power to detect and reject a false null hypothesis.
For seasonal models or even longer cyclical models, there is a greater need
for longer series. The series needs to include several seasons and cycles if
these are to be detected and properly identified. For impact assessment
models, the segment of the series before the intervention and the segment
of the series after the intervention have to be long enough to be properly
modeled. For all of these reasons, short time series threaten the validity
and utility of time series models.

Cook and Campbell (1979) warn about flaws in research design or hap-
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penstance that jeopardize the statistical conclusion validity of interrupted
time series quasi-experiments. They mention the lack of an equivalent
control group, nonequivalent dependent variables being modeled, uncon-
trolled and/or unscheduled removal of treatment from the series, uncon-
trolled and/or unscheduled contamination of control and experimental
groups by migration of subjects between groups, and inadequate archival
recording of experimental processes as possible contaminants of the purity
of the research process. For impact assessment studies, which will be ex-
plained in much greater detail in Chapters 8 and 9, the analyst has to be
sure that his series is long enough for him to detect and model gradual, ramp,
or delayed impacts. Instrumentation should have been reliably calibrated to
ensure that data collection procedures had not been altered over time.
If the subjects, exhibiting the trait being observed, measured, recorded,
modeled, and analyzed, are changing over time, then sample selection bias
threatens the internal validity of the sampling and measuring process. If
too much of the data generating process is not being detected, then the
data might not be a valid indicator of what is really happening.

One example of this problem is revealed in the development of the
AIDS epidemic. In the early years, it was not clear what AIDS was. In the
early 1980s, it was thought of as Kaposi sarcoma and PCP peumonia. By
1984 other opportunistic infections were included in the definition. By 1987,
the scope of these infections had widened considerably. By 1992, the T cell
count was also included as a criterion. Then the T cell count standard
changed to broaden the definition further. Because of the frequency of this
redefinition, it was difficult to find a series of 30 or more observations under
the same definition. In 1991, the U.S. Centers for Disease Control and
Prevention (CDC) suspected that it was obtaining data on about 85% of
the actual AIDS cases in the United States. The CDC got its data from
the state health departments which got their data from the hospitals in
each state. One researcher, John Stockwell, in personal communication,
expressed suspicions this level was much less than the real number of cases,
many of which were being treated at a private and local level without being
reported to the hospitals. Although the CDC publicly distributed its data
on the number of reported AIDS cases and deaths per month, this suspicion
in addition to the frequent changes in the definition of AIDS made it
difficult to confidently model the growth of the epidemic in the domestic
United States with ARIMA models.

Historical impacts on univariate time series should have been precluded
by isolation of the phenomenon under study as much as possible. Univariate
series being analyzed ought not to have been significantly or substantially
affected by other events over time. Univariate time series analysis are
studies of the history of a process. External influences might effect a shift
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in level or variance of the series being observed. Nonetheless, measuring
the data with reactive tests may sensitize, fatigue, or mute the respondent
and impair the validity of the data. Surveys conducted without regard to
these facts may produce specious data. Any or all of these problems may
impair the internal validity of the study.

External validity needs to be protected and assessed as well. The sam-
pling should have been performed so as to avoid biasing the results. It
helps to have had a control group and an experimental group. Care must
be taken to see that people from one group do not migrate to another
group during the experiment, which is what was reported to have happened
during the early AZT clinical trials. Local history and selection may interact
when members of the control group learn that they are not being given
anything other than a placebo. They may drop out of the study to get into
the control group. Attrition then takes place for reasons other than death
from AIDS. Without a double-blind experiment, this kind of interaction
can complicate matters. The researcher needs to study the research method-
ology employed to know whether and how much to trust the data. Problems
such as these may affect the data collection and measurement. Once it has
been determined that the model is adequate, the question of optimality of
the model arises.
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Chapter 7

Metadiagnosis and
Forecasting

7.1. Introduction 7.5. Basic Combinations of Forecasts
7.2. Metadiagnosis 7.6. Forecast Evaluation
7.3. Forecasting with Box–Jenkins 7.7. Statistical Package Forecast Syntax

Models 7.8. Regression Combination of
7.4. Characteristics of the Optimal Forecasts

Forecast References

7.1. INTRODUCTION

After the ARIMA models are assessed for adequacy, the analyst under-
takes a metadiagnosis of the different ARIMA models. In this stage of
the analysis, the researcher compares and contrasts competing models to
determine which is the best explanatory model. On the one hand, the
analyst may use concurrent tests of the information set, model fit, stability,
and explanatory power, and parsimony. He may review the model for
aspects of parameter size, number, scope, significance, and stability. As
part of this evaluation, he should assess the model for its forecasting ability,
stability, and robustness; or he may assess it for predictive precision, validity,
and reliability. Because each model is an imperfect representation of the
data-generating process, the analyst should compare and contrast the mod-
els for their fit, precision, scope, validity, and reliability in order to choose
one that is optimal for his purposes.

This chapter presents metadiagnosis as a process and concentrates on
the criteria that the analyst uses in this endeavor. The chapter is divided
into concurrent and predictive perspectives. The researcher should compare
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different algorithms whether he is model building or forecasting. Compari-
son of the results of the different algorithms permits assessment of the
convergent validity of the model. If different algorithms yield virtually
identical results, this outcome would be empirical evidence of convergent
validity as defined by Campbell and Fiske. If the fit of the model provided
by one algorithm is significantly better than that provided by another, then
one model may have more validity than the other. The previous chapter
discussed some of the techniques involved in diagnosing models. This chap-
ter will discuss the tools and techniques designed to metadiagnose—that
is, compare and contrast—models.

Models may be compared by the size, quality, and cost of data collection
and cleaning (Granger, 1989). When large data sets are required, the cost
of acquiring the information may be high. When the data have to be
reviewed and cleaned of errors, the cost of the cleaning is higher for larger
data sets. Minimum size requirements for different time series models will
be addressed in greater detail in the final chapter.

Models are often compared according to standards of concurrent
omnibus fitting statistics. Among them are those measuring goodness of
it. There are also complementary lack of fit statistics. One family of
goodness of fit criteria is the model R2 and its variants. Complementing
that family is another of lack of fit: the sum of squared errors, the residual
variance, or the residual standard error. The number of parameters to
be estimated is a measure of parsimony of the model. Because fit tends
to improve with the addition of parameters modeled, several information
criteria may be employed as standards of goodness of fit adjusted for
the number of parameters to be estimated. Models may be compared
according to the speed of estimation or model nonconvergence. The
analyst can use these measures for concurrent metadiagnosis before he
begins the forecasting.

Models can be compared in the longitudinal perspective as well:
according to their predictive validity, precision of forecasting, or magni-
tude of forecast error. By posing critical questions, the researcher may
compare the stability of the models: Regardless of starting values, does
the model always converge on the same parameter estimates? Are these
parameter estimates always statistically significant? When the model is
estimated, how stable are the magnitudes and significance of the parameter
estimates to other changes? Models can be compared according to
fulfillment of their assumptions. If they violate assumptions, which models
violate which assumptions? Can the model tolerate minor violations of
those assumptions? Is it robust to more serious violations? He can also
compare models according to their robustness in face of violation of
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elegance. This chapter will address the metadiagnosis of different models
and their ability to forecast.

A substantial portion of metadiagnosis involves forecasting comparisons.
Practitioners of social science, policy planning, and engineering find that
metadiagnosis is central to their objectives. Comparative analysis of fore-
casts provide for fine tuning of the forecast. Forecast comparison provides
the basis for statistical process adjustment and control. The forecast, in
addition to the feedback, provides the basis for feedfoward to predict where
the process will be given specific amounts of correction. In this way, the
forecast helps determine the amount of adjustment for statistical process
control. Therefore, forecasting comparisons are important objectives of the
scientist, the policy planner, and the engineer.

The chapter discusses the forecasting process and its characteristic
profiles. Forecasting allows assessment of predictive validity. With the
help of a forecast function, the analyst makes a point forecast that he
hopes is not biased. The time span over which the forecast extends is
called the forecast horizon. On either side of the point forecast, confidence
limits are constructed. The confidence limits defines the boundaries of
the forecast interval. The forecasting error over the forecast horizon can
be measured by the minimum mean square forecast error or the mean
absolute percentage of forecast error. Both measures are useful criteria
of metadiagnosis; together they form the basis of forecast profiles of
different processes. The chapter also examines the forecast profiles
characteristic of white noise, integrated processes, basic autoregressive,
moving average processes, and ARMA processes. These profiles provide
a basis for forecast and model evaluation. Therefore, the latter part of
the chapter on metadiagnosis is devoted to the discussion of the theory
and application of forecasting.

7.2. METADIAGNOSIS

The principal question is how can one compare and contrast several
competing models to determine which is the better model. The better model
will usually fit the data well. The general model goodness of fit needs to
be evaluated. Commonly used measures of goodness/lack of fit include the
mean error, the mean percent error, the mean absolute error, and the mean
absolute percentage error. Applied to forecasts, these measures are:
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Mean prediction error �
1

T
�T
t�0

(yt � ŷt )

Mean percent prediction error �
100

T
�T
t�0

(yt � ŷt )

yt
(7.1)

Mean absolute error �
1

T
�T
t�0

�yt � ŷt�

Mean absolute percent prediction error �
100

T
�T
t�0
�(yt � ŷt)

yt
� ,

where T is the total number of temporal periods (number of observations),
yt is the actual value and ŷt is the forecast value at time t. These are average
measures of percent and absolute error that can be used as indicators of
forecast accuracy. Although there is no single absolute level above which
the model is unacceptable, the smaller the measure of error, the better the
model fits the data.

There are several measures of omnibus fit based on the sum of squares.
First, there is the total sum of squares.

Total sum of squares (SST) � �T
t�0

(yt � y)2, (7.2)

where y is the series mean.
Second, there is the sum of squared errors (referred to by SPSS as the

adjusted sum of squares). SAS refers to this measure as the SSE. The
smaller the sum of squared errors, for a given number of degrees of freedom,
the better the model fit:

Sum of squared errors (SSE) (adjusted sum of squares)
(7.3)

� �T
t�0

(yt � ŷt)
2

where ŷ is the predicted value.
The mean square error or error variance, sometimes referred to as sigma

squared, 
 2, is frequently used as a measure of lack of fit. This criterion
serves as a good basis of comparison of different models:

Mean square error (MSE) �

�T
t�0

(yt � ŷt)
2

T � k
�

SSE

T � k
, (7.4)

where T is sample size, and k is the number of parameters to be estimated.
By simply taking the square root of the error variance, the analyst obtains
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another common criterion of lack of fit, the root mean square error (referred
to as sigma, 
):

Root mean square error (RMSE) � �MSE � � SSE

T � k
. (7.5)

From these measures, several measures of the proportion of variance
explained may be constructed, including the R2 and the adjusted R2. Al-
though the R2 does not adjust for the number of variables in the model,
the adjusted version attempts to compensate for inflation due to the number
of predictor variables in the model:

R2 � 1 �
SSE

SST
(7.6)

Adjusted R2 � 1 � ��T � 1

T � k
�(1 � R2)	 ,

where k is the number of parameters. The LaGrange multiplier is merely
TR2, where T, as has been noted in Eq. (7.1), is the total number of data
points in the series. The adjusted R2 and the R2 of Amemiya use slightly
different adjustments to compensate for the number of parameters being
estimated. Both measures are included in the SAS forecasting output, and
both attempt to provide a sense of overall fit per number of parameters
being estimated. The better the specification of the model, the higher these
criteria will be. The R2 statistics typically range from a minimal value of 0
to a maximum value of 1. Adjusted R2 of overparameterized models with
poor fits can actually be less than 1. The closer these R2 values are to 1,
the greater the proportion of explained variation and the better the ability
of the model to forecast:

Amemiya’s adjusted R2 � 1 � ��T � k

T � k
�(1 � R2)	 (7.7)

where k is the number of parameters.
Another measure of fit is Harvey’s random walk R2, which takes the R2

of the model and compares it to the R2 of a random walk:

Harvey’s random walk R2 � �1 � �T � 1

T
�� SSE

RWSSE
, (7.8)

where

RWSSE � �T
t�2

(yt � yt�1 � �)2
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� �
1

T � 1
�T
t�2

(yt � yt�1).

A version of this Amemiya’s adjusted R2 is Amemiya’s prediction criterion
(APC). This is a degree of freedom corrected version of the sum of squared
errors. The formula for the APC is

Amemiya’s prediction criterion � �1

T
� SST �T � k

n � k
�(1 � R2). (7.9)

When the likelihood function of the model is calculated, the log of that
number is usually a negative number. When one subtracts the log likelihood
of the model with its parameters from the minus log likelihood of the
model with only the intercept, the researcher obtains a number that when
multiplied by �2 provides the likelihood ratio �2 of the model. This �2 is
distributed as a �2 with the number of degrees of freedom equal to the
number of parameters in the model. The higher this likelihood ratio �2,
the more the additional parameters improve the fit of the model. Akaike’s
information criterion (AIC) and the Schwarz Bayesian criterion (SBC) are
measures of this logged fit that attempt to adjust for added parameters in
the model. These information criteria are designed to deal with the fit of
the nonlinear models and to account for the number of the parameters in
the model as well. They consist of the natural log of the MSE plus a penalty
for the number of parameters being estimated:

Akaike’s information criterion � T ln(MSE) � 2k

Schwarz Bayesian Information criterion � T ln(MSE) � k ln(T),
(7.10)

where

Mean square error �
1

T � k
(SSE)

T � number of observations
k � number of parameters.

Insofar as they deal with both the fit and the parsimony of the model,
these information criteria provide a measure of efficient and parsimonious
prediction. The lower value of an information criterion indicates the bet-
ter model.

Parsimony of the model may be determined by the number of parameters
(k) in the model. K � p � q � P � Q � 1 if there is a constant in the
model. It is equal to p � q � P � Q if there is no constant in the model.
For this reason, the number of parameters estimated is often the basis of
the degrees of freedom for the model, by which the sum of squares is
divided to provide a measure of variance.
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For the purposes of metadiagnosis, these statistical measures of goodness
of fit are available and are often used to compare and contrast different
aspects of the models (SAS, 1995). Whether the measures assess the good-
ness of fit, magnitude of error or the effectiveness, efficiency, or parsimoni-
ousness of prediction, the comparative measures enable the analyst to assess
competing model forecasts within the concurrent evaluation sample as well
as into the forecast horizon of the future.

By a judicious application of these concurrent criteria, the analyst can
derive a sense of which competing model is best. Occasionally, the analyst
will find that one model is superior according to some criteria, while another
model is superior according to other criteria. The forecaster must decide
which of the competing criteria might render the different models more or
less advantageous. For example, some models require more information
than others. Some models provide a better fit but the number of parameters
in them render them more complicated. Other models provide more parsi-
monious explanations but do not fit as well. The question arises as to which
borderline parameters should be kept in the model or which algorithm
should be used for estimation. Exponentially weighted smoothing models
may not handle seasonality and trend as well as others. X-11 or X-12 models,
which decompose a series into its component parts, involve complicated
processes. Box–Jenkins models can combine some of the best features of
both of these models, insofar as they can model cycles, stochastic trends,
seasonality, and innovations, while providing an elegant, comprehensive,
explanatory formulation of the process.

7.2.1. STATISTICAL PROGRAM OUTPUT

OF METADIAGNOSTIC CRITERIA

The statistical package printout includes an array of metadiagnostic
indicators. Whether the analyst is using SAS or SPSS, the principal compara-
tive measures of fit are included in the output of the programs. In SAS,
the standard ARIMA procedure listing contains the standard deviation
and sample size of the series. It also includes the iteration history of the
sum of squared errors (SSE), the stopping values of these iterations in
terms of SSE, the latest R2 of SSE, the number of iterations, the error
variance, the standard error, the number of residuals, the AIC, and the
SBC. In SPSS, the standard ARIMA output listing includes the number
of iterations, the adjusted sum of squared errors, the residual variance, the
standard error of the residuals, the number of residuals, the AIC and the
SBC. These comparative tests of the models are part of the standard output
of the statistical programs under consideration here. We can obtain compar-
ative tests not included in the standard output by applying auxiliary analysis
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to the forecasting procedures in the two packages. We now turn our atten-
tion to the theory and programming of this analysis.

7.3. FORECASTING WITH BOX–JENKINS MODELS

7.3.1. FORECASTING OBJECTIVES

The importance of forecasting is well understood. The philosopher Kier-
kegaard was reported to have observed, ‘‘Life has to be lived forward but
can only be understood backward’’ and ‘‘Those who forget the past are
condemned to repeat its mistakes.’’ Moreover, C. F. Kettering is reported
in 1949 to have said that ‘‘We should all be concerned about the future
because we all have to spend the rest of our lives there’’ (2020 Vision,
1999). Forecasters, during the twentieth century, have developed better
short-term as well as long-term forecasting capability. Consequently, fore-
casting has become increasingly useful and important in formulating edu-
cated estimates of things to come. As previously noted, strategists, policy
makers, business executives, project managers, investors, and foremen re-
sort to forecasting for help in strategic planning, investment, policy plan-
ning, resource procurement, scheduling, inventory maintenance, quality
assurance, and resource mobilization in the short run. Nonetheless, the
strategists and planners are aware that the basic and ultimate purpose of
forecasting is to predict in the near term what will happen in order to avoid
substantial cost or loss. The cost of poor prediction may be the loss of
soldiers in war, jobs in an economy, job performance approval of public
officials in politics, control in a production process, or profits in business.
By having an informed and educated opinion of future probabilities, the
planner can mobilize and deploy the necessary resources to facilitate or
secure achievement of the objectives at hand and thereby reduce the sub-
stantial cost of miscalculation (Chatfield, 1975).

The forecaster has a number of methodological objectives as well. He
needs to know how the forecast is to be used (Chatfield, 1975). He needs
to assess the reasonableness of his model specification, to test the fit of his
model, to quasi-predictively validate his model, and to compare forecasts
of different models with respect to forecast accuracy and forecast error
variance.

To accomplish these objectives, the forecaster collects sample data and
divides the sample into two subsamples. The forecasting model is developed
on the basis of the first subsample. The temporal period spanning this
portion of the series is called the historical, estimation, or initialization
period. The competing models are formulated on the basis of this period.
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The second subsample is sometimes referred to as the holdout, evaluation,
or validation subsample (Makridakis et al., 1983). Alternative parameteriza-
tions are tested and refined on the basis of the evaluation or validation
period (McCleary et al., 1980).

The models are compared according to a variety of criteria. Evaluation of
forecast error with reference to the holdout subsample, permits preliminary
predictive validation of the model. The cost of acquiring the required
information for the method employed also provides a standard of compari-
son. The simplicity or parsimony of the model is also important. Albert
Einstein is said to have commented that things should be as explained as
simply as possible but not more simply. Following the assessment of model
fit and predictive validation, the forecaster may use the best model to
forecast over the forecast horizon. The cost and ease of computation are
important criteria. The forecast may be evaluated on the basis of its sophisti-
cation, which depends on the components of the forecast profile. The point
and interval forecasts are important and often essential components of the
forecast profile. Occasionally, the whole probability density distribution of
the forecast is included to construct the forecast profile (Diebold, 1998).
On the basis of such components, the forecaster may hazard a probability
forecast. For example, he might say that it is almost certain that he will
not win the lottery or that it is highly unlikely that the horse will win the
race. These are probability forecasts for one point in time. The definition
and duration of the forecast horizon are other criteria of comparison. The
beginning, duration, and endpoint of the forecast horizon are bases upon
which the forecast may be compared. The forecaster generally assumes
that the circumstances surrounding the forecast are constant. This assump-
tion fails as the forecast horizon is extended further into the future. Because
the length of the forecast horizon may vary, the stability of the forecast
over a particular horizon may be an issue. The value of the forecast depends
on how well it holds up under changing vicissitudes (Makridakis et al.,

1983; Makridakis, 1984). Stable forecasts are clearly more reliable than
unstable ones.

Different approaches may be used for forecasting. There are forecasts
from exponential smoothing, which basically reduce to the moving average
models that have already been covered. There are also the X-11 (or X-12)
forecasts, which predict fairly well over a 12-month period or so. The more
comprehensive Box–Jenkins methods of forecasting are generally very
good for short-term forecasts. Regression analysis can be used with moving
average models or series with deterministic trends, and autoregression
models may also serve to predict over the longer run. What is more, there
are methods of combining forecasts to improve reliability and to reduce
forecast error. This exposition of the Box–Jenkins approach to forecasting
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includes a discussion of basic concepts—including the nature of the forecast
function, forecast error, forecast variance, forecast profiles, review of mea-
sures of fit, and forecast assessment. The programming and interpretation
of computer output follows, while the final section of the chapter compares
the relative advantages and disadvantages of these forecasting methods
and addresses the theory and programming of combining forecasts.

7.3.2. BASIC METHODOLOGY OF FORECASTING

Forecasting involves basic definitions and assumptions. A decision needs
to be made at current time t and the optimal decision depends on expected
future value of a random variable, yt�h , the value being predicted or forecast.
The number of time points forecast into the future forecast horizon is called
the lead time, h. The value of the random variable for such a forecast is
the value of yt�h . A forecaster would like to obtain a prediction as close
as possible to the actual value of the variable in question at the concurrent
or future temporal point of interest. As a rule, the more accurate the
prediction, the less the cost of miscalculation. As the forecaster develops
his model on the basis of the historical or estimation sample, he makes the
first assumption that his model is a stable definition of the underlying data-
generation process. He conducts these tests on the validation period series.
To do so, he extrapolates over the validation period and compares his
predicted values to the actual values of the series. When he builds his
model, he wishes to minimize the difference between his forecasts and the
observed values of the process under examination during the validation
period. This difference is known as the forecast error, et . One criterion for
measuring the precision of prediction is the sum of squared forecast errors.
A more commonly used criterion is the mean square forecast error (MSFE).
This MSFE is the average difference between the true value and the pre-
dicted value,

Mean square forecast error: MSFEt(yt�h) �
1

T ���T
i�1

ŷt�h � yt�h�2

, (7.11)

where h � number of periods into the future horizon one wishes to forecast.
This would be divided by T, but since T � 1, it is invisible. It would also
be summed, but for one case, the sum is 1, so that is also invisible. It will,
however, be shown that this can be estimated by the conditional expectation
of ŷt�h:

ŷt(h) � E(yt�h � yt , yt�1 , . . . , y1), (7.12)
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where h is the forecast horizon lead time. This is an expectation that is
conditional on the information up to and including time t. Having found
that he is able to predict well over his validation period, the forecaster
makes a second assumption, that his model is stable over the forecast
horizon as well. The implication is that the ceteris paribus assumption holds.
That is, all other potentially important influential factors remain essentially
the same. It is this constant condition that permits the model to remain
stable. On that basis, he proceeds to extrapolate values (yt�1 , yt�2 , . . . ,
yt�h�1) into the future to estimate yt�h . As t extends the time of prediction,
h, called the forecast horizon, the forecast emerges. These forecasts based
only on the data up to the beginning of the forecast horizon are called
unconditional forecasts or ex ante forecasts (Armstrong, 1999).

There are, of course, some caveats to these assumptions. There have to
be enough data points for a forecast. The important data have to be col-
lected. The most recent data obtained should be collected. These data have
to be valid and cleaned. It may be noted that the ceteris paribus assumption
may not correspond to reality. The forecaster needs to be especially knowl-
edgeable within his field of prediction. He needs to know what external
factors significantly impinge upon it. In many arenas, only a forecaster with
comprehensive historical knowledge and solid situational understanding of
the processes at work will be able to understand whether potentially influ-
ential factors remain the same or begin to significantly change. Only then
can the expert forecaster know whether these assumptions hold or whether,
because of their impact, important turning points ensue. Forecasts based
on information drawn from the situation, over which the forecast horizon
extends, are called ex post forecasts (Armstrong, 1999).

7.3.3. THE FORECAST FUNCTION

When the predicted values of the identified, estimated, and diagnosed
model are plotted as a function of time, they represent a relationship
referred to as the forecast function. This model may be an autoregressive
model based on the previous lags of the dependent variable. It may be a
moving average model based on the previous errors of the dependent
variable. It is an additive, nonseasonal autoregressive, integrated, moving
average model. Alternatively, it may be a more complex seasonal, multipli-
cative form of an ARIMA model. Whatever the ARIMA model, there are
three basic parameterizations of the forecast function (Box and Jenkins,
1976). One of them is the actual difference equation model formulated,
such that Yt�h � �1Yt�h�1 � �2Yt�h�2 � � � � � �p�dYt�h�p�d � 	1et�h�1 �
	2et�h�2 � � � � �	qet�h�q � et�q . Another expression is a weighted sum of
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random shocks with � weights, such that Yt�h � �
�

l�0
�let�h�l where �0 � 1

and L�(L) � 	(L)/�(L). The other form is an autoregressive sum of

previous values with 	 weights, such that Yt�h � �
�

l�0
	lYt�h�l�et�l . Any of

these formulations of the forecast function may be used to obtain point
forecasts. The easiest way to understand the forecasting process is first to
consider the difference equation form of the basic model.

7.3.3.1. An AR(1) Forecast Function

The difference equation parameterization of the basic model is simply
the equation identified, estimated, and diagnosed. The analyst takes the
equation, collects its terms, and expresses it as a regression equation. Then
he merely extends the time subscript of the model one time period into
the future, whereupon the analyst has the formula for the one-step-ahead
forecast. For example, the process can be shown in the following equation:

(1 � �1)yt � C � et

yt � C � �1yt�1 � et (7.13)
ŷt�1 � C � �1yt � et�1 ,

where C is a constant. If y is centered and C is set to zero, the computation
for an autoregressive forecasting process can be illustrated with the aid of
Table 7.1. A question arises as to initial values. For purposes of this example,
the initial values at time t � 0 of the actual series data, YT , is set to 1 and

Table 7.1

Simulated AR(1) Model with 1-Step-Ahead Forecast Horizon

Forecast
�1 � .6Time AR(1) Model Forecast error

t �1Yt�1 et Yt � �1Yt�1 � et Ŷt�1 � �1Yt Yt�1 � Ŷt�1

0 1.000 0.000
1 0.600 �0.230 0.370 0.222 0.329
2 0.222 0.329 0.551 0.331 0.120
3 0.331 0.120 0.451 0.270 0.140
4 0.270 0.140 0.410 0.246 �0.330
5 0.246 �0.330 �0.084 �0.050 0.348
6 �0.050 0.348 0.298 0.179 0.298
7 0.179 0.298 0.477 0.286 0.770
8 0.286 0.770 1.056 0.634 0.758
9 0.634 0.758 1.392 0.835 0.746

10 0.835 0.746 1.581 0.949 0.222
11 0.949 0.222 1.171 0.702 0.799
12 0.702 0.799 1.501 0.901 �0.901
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its forecast, Ŷt�1 , is set to 0. For the first time period, t � 1, there is no
forecast. The value of the forecast at this time period therefore is set to
0.0. The autoregressive parameter, �1 , is set to 0.600. From this value of
�1 times the starting value of Yt , the value of 0.600 is obtained. When this
amount is added to the random shock of �0.230, the response value of Yt

at time t � 1 becomes 0.370. The forecast (Ŷt�1) for the next time period,
t � 2, is 0.600 times the 0.370, which equals 0.222. The forecast error is
computed by subtracting the forecast at this time period from the actual
value at the next time period, 0.551 minus 0.222, yielding 0.329. This process
is repeated at t � 2, in order to obtain the new value of Yt � 0.551 and a
forecast equal to 0.331. The forecast error, the difference between this
value and the value of the Yt at that point in time, is 0.120. The process is
iterated until the end of the series:

et�h � Yt�h � Ŷt�h (7.14)
� Yt�h � ft�h

where

Ŷt�h � ft�h � forecast at t � h.

The forecast errors can be squared and added, and their average taken.
Finally, the criterion value of the minimum mean square forecast error is
used to compare the relative error of prediction of the different �1 models.
The value of �1 that yields the minimum lack of fit and best prediction is
the one estimated for the model. Similarly, this same minimum mean square
forecast error criterion may be used to compare the fit of models with
different parameters for metadiagnosis.

Because the AR(1) process can be reparameterized as

yt � C � �1yt�1 � et (7.15)
(1 � �1L)yt � C � et ,

and therefore

ŷt � E(yt) �
C

(1 � �1L)
,

it can be expressed as an infinite moving average process. It may also be
expressed as the accumulation or sum of an infinite order series of random
shocks plus an autogressive component:

Ŷt�h � ��
j�0

�h�1
j et�h�j � �hYt . (7.16)

These shocks can be interpreted as one-step-ahead forecast errors. At h �
1, the forecast error is not correlated. After time h � 1, these forecast
errors are generally correlated.
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The expectation of the forecast error of an unbiased forecast at time t is
0. The unconditional expectation of E(yt) � � and the relationship between
the constant and the mean is

lim
h��

ŷt � E(yt) � C ��
h�0

� h
1 �

C

(1 � �1L)
� �y . (7.17)

If the series is centered, the unconditional expectation of the AR(1) is 0,
whatever the lead time h. Although the point forecast may deviate from
expectation, the unbiased forecast on the average will be equal to zero
(Granger and Newbold, 1986). McCleary et al. (1980) demonstrate how
stepping the AR(1) equation ahead one time period, and then taking the
expectation, the analyst is left with

Yt�1 � E(et�1 � �1Yt) � �1Yt . (7.18)

From the point of view of the forecast origin, t, the expected value of the
one-step-ahead shock, et�1 , is zero. With a centered (zero mean) series, the
successive conditional forecasts for the first-order AR process are

E(Yt�1) � �1Yt

E(Yt�2) � �2
1Yt

.

.

.
E(Yt�h) � � h

1Yt .

(7.19)

The first-order autoregressive process has a characteristic forecast function.
At the commencement of the forecast, there is an initial spike equal to the
value of the autoregressive parameter times the value of the series. The
direction of that spike depends upon the value of the autoregressive parame-
ter. After the spike, there is an incremental increase in the value of the
series along the forecast horizon. That increase exponentially converges to
the value at the beginning of the forecast.

7.3.3.2. An IMA(1,1) Forecast Function

The general form of an integrated moving average (IMA) model is
represented by the differenced response being equal to the current error
minus a fraction of the previous error. This moving average process may
be expressed as Yt � Yt�1 � et � 	let�1 . Simulated data for such a model
are found in Table 7.2. The differenced response is represented by wt . The
disturbance or shock at the current time t is represented as et and the
previous disturbance or shock to the process is represented as et�1 . The first-
order moving average parameter, representing the component of stochastic
trend, is 	1 .

Starting values are needed for wt and et�1 . These values may be obtained
from a preexisting series, from the mean of the current series by presetting
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Table 7.2

ARIMA(0,1,1) or IMA(1,1) Model

wt � Yt � Yt�1 � et � 	1et�1

Moving Effect of
Differenced Current average Previous previous

Time Response response shock parameter shock shock
t Yt wt � Yt � Yt�1 et 	1 et�1 �	1et�1

�1 [445.00] 0.00 0.00 0.00 0.00
0 445.00 0.00 0.00 0.20 0.00 0.00
1 439.50 �5.50 �5.50 0.20 0.00 0.00
2 435.60 �3.90 �5.00 0.20 �5.50 1.10
3 434.59 �1.01 �2.01 0.20 �5.00 1.00
4 434.01 �0.59 0.99 0.20 �2.01 0.40
5 436.20 2.20 2.00 0.20 �0.99 0.20
6 431.80 �4.40 �4.00 0.20 2.00 �0.40
7 431.20 �0.60 �1.40 0.20 �4.00 0.80
8 433.66 �2.45 2.17 0.20 �1.40 0.28
9 433.07 �0.59 �0.15 0.20 2.17 �0.43

10 432.04 �1.03 �1.06 0.20 �0.15 0.03
h � 1 432.29 0.25 0.04 0.20 �1.06 0.21
h � 2 432.29 0.00 0.00

them to zero, or by the back-forecasting previously described. Differencing
often has the effect of centering the differenced series around a zero mean.
Therefore, the mean is set to 0. The choice of starting values may depend
on the known series length, and/or how much of the series has unfolded
at the point of consideration. In this example, the starting value for the
response variable, Yt , at time t � 0, is set to 445.0, and the starting values
of et and et�1 at this point are also set to 0. A previous starting value may
be backforecast with conditional least squares.

The shock or disturbance at time t drives this process, along with a
portion of the shock from the previous point in time, characterized by
�	1et�1 . By time t � 1, 	1 , which is 0.20 in this iteration of estimation,
times the previous error (which is zero) yields 0.00, and this product is
subtracted from the current error, et, of �5.50 to yield a response of �5.50.
The actual decline of 5.50 is observed. This decline of the differenced value,
wt , means that response has dropped from 445 at t � 0 to 439.50 at t � 1.
This process is iterated until the forecast horizon is reached. The magnitude
of 	1 is estimated by least squares. For pedagogical purposes, this value is
assumed for this pass to be 0.20.

When the first-order moving average process extends into the forecast
horizon indicated by time h � 0, the forecast value is predicated upon the
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expected value E(et�h) � 0. A one-step-ahead forecast may be computed
from �	1et . Clearly, the expected value of the future shock at h � 1
continues to be zero. The one-step-ahead forecast at h � 1, �̂t�1 � et�1 �
	1et , from this first-order moving average process allows a jump, based on
the expectation of the future shock, E(et�1) � 0 and a portion of the current
shock, �	1et . The effect of this first-order jolt is to jar the one-step-ahead
forecast before the eventual forecast function stabilizes around the series
mean, which in this case is zero. The two-step-ahead forecast at h � 2 has
�̂t�2 � E(et�2) � 0. The stabilization of the forecast of the moving average
process around zero (or the series mean, if it is not zero) is reflected in the
blank cells of Table 7.2 for h � 2. If this process were a third order process,
there would be two jumps before the forecast function would be stabilized.
If the undifferenced process were a qth-order moving average, there would
be q � d jumps before the function was stabilized, the number of jumps
is the order of the moving average minus the order of differencing.

Farnum and Stanton (1989) summarize this procedure. The analyst must
take note of the optimal model he has estimated. If he wishes to forecast
h steps ahead, then he needs to replace t with t � h as the subscript of
each component of the model. Yt will become Ŷt�h for h � 0,1,2, etc. In
the event that past values were being modeled as Yt�h , then the h may
assume the appropriate values for 0,1,2, etc. Past errors may be represented
by previous errors as required by the lags in the equation, so that et�h

becomes et�h for h � 0,1,2,3, etc., while future errors et�h are given values
equal to their expectation as they are set to 0 for all h. Stationary series,
which require no initial differencing, have forecast functions that converge
to their expected value, the series mean.

7.3.3.3. An ARIMA (1,1,1) Forecast Function

The forecast of the ARIMA (p,d,q) may be conceived as a linear combi-
nation of its random shock components and may be useful in determining
the forecast variance. If we collect the autoregressive and moving average
terms of this model, we can parameterize the ARIMA model as a series
of weighted shocks. For example, a basic, centered ARIMA (p,d,q) model
may generally be represented as

Yt �
	(L)

(L)�(L)
(7.20)

�
(1 � 	1L � 	2

1L2 � . . .)et

(1 � L)d(1 � �1L � �2
1L � �2

1L2 � � � � � �l�1
1 Ll�1)

.
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Expressed as a series of weighted shocks, this equation is

Yt � ��
j�0

�jet�j . (7.21)

If one assumes that the series, Yt , has already been differenced and
centered as Wt , then

Wt �
(1 � 	1L)et

1 � �1L

� (1 � �1L)�1(1 � 	1L)et

� (1 � �1L � �2
1L2 � � � � � �L

1 LL)(1 � 	1L)et

� (1 � �1L � �2
1L2 � � � � � �L

1 LL (7.22)

� 	1L � 	1�1L2 � 	1w2
1L3 � � � �)

� (1 � (�1 � 	1)L � (�2
1 � 	1�1)L2 � (�3

1 � 	1�
2
1)L3

� (�4
1 � 	1�

3
1)L4 � � � �)et .

After the fourth or fifth � weight, the attenuation is so substantial that the
remainder is often negligible. In other words,

�1 � �1 � 	1

�2 � �2
1 � 	1�1

�3 � �3
1 � 	1�

2
1

�4 � �4
1 � 	1�

3
1

. . .

�p � �p
1 � 	1�

p�1
1 .

(7.23)

In general, the series can be divided into two components: those expected
observations within the forecast horizon h, and those actual current and
past observations t, t � 1, t � 2, etc. Pindyck and Rubenfeld (1991) show
that the forecast function with h leads into the forecast horizon may be
defined as a function of weighted shocks within the horizon and another
summation of them during the evaluation period:

Ŵt�h � �0et�h � �1et�h�1 � � � � � �het � �h�1et�1 � � � �
(7.24)

Ŵt�h � �0et�h � �1et�h�1 � � � � � �het � �h�1et�1 � ��
j�0

�h�jet�j .

Because the � and � parameters are estimated optimally to minimize the
sum of squared errors or the mean square forecast error, by maximum
likelihood, conditional, or unconditional least squares, the � weights may
be estimated. With the holdout sample, it is easy to distinguish the estimated
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from the real � weight. Both real and estimated weights are necessary for
obtaining a forecast error and a forecast interval.

7.3.4. THE FORECAST ERROR

The forecast error for lead time h is defined as the difference between
the actual forecast and its conditional expectation, consisting of optimal
estimates, which can be expressed as a linear combination of � weights:

et(h) � Yt�h � Ŷt(h)
(7.25)

� �0et�h � �1et�h�1 � � � � � �h�1et�1 .

The same holds for a differenced and centered series, Wt ; the forecast error
over the forecast horizon h is the difference between the forecast and its
conditional expectation:

et(h) � Wt�h � Ŵt(h)
(7.26)

� �0et�h � �1et�h�1 � � � � � �h�1et�1 .

The forecast error denoted by êt�1 is the difference between the value of
wt�1 and its forecast. For example, the expression of the forecast error of
differenced series and uncentered series wt that represents a first-order
autoregressive process is:

êt�1 � wt�1 � ŵt�1

� � � �1wt � et�1 � (� � �1wt) (7.27)
� et�1 .

Measuring the forecast error permits formulation of the cost of such error.
If this cost can be derived, it can be formulated as a function of the forecast
error. With this function, the researcher can estimate the cost of forecast
inaccuracy. Usually, the forecast with the smallest error is the one-step-
ahead forecast. If the series is integrated or autoregressive, then the forecast
error increases as prediction is projected into the forecast horizon. If the
researcher is able to assess the increasing cost of inaccurate prediction, he
may also be able to assess how far ahead it is affordable to forecast. Once
he has properly formulated the forecast error, he can formulate the forecast
error variance.

7.3.5. FORECAST ERROR VARIANCE

The one-step-ahead forecast variance at time � t � 1 time is

Var(êt�1) � Var(et�1) � 
 2
e , (7.28)
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and in terms of expectations, the variance of the forecast error is

Var(et�h) � E(et�h)2

� E(Wt�h � Ŵt�h)2

� (�2
0 � �2

1 � � � � � �2
h�1)
 2

e (7.29)

� �1 � �h�1

i�1

�2
i�
 2

e .

The optimum values for the � weights are found by minimizing the forecast
variance or mean square forecast error. The optimum forecast is based on
the conditional expectation of yt�h , which derives from the expected value
of the errors in the forecast horizon equalling 0, and the expected value
for the past residuals, which are simply those from the estimated equation
(Pindyck and Rubenfeld, 1991).

7.3.6. FORECAST CONFIDENCE INTERVALS

An estimate of the forecast error variance is needed in order to compute
the confidence intervals of a forecast. This estimate is based on the sum
of squared errors obtained after the final estimates of the parameters are
made and can be found in Eq. (7.28). The denominator is the number of
degrees of freedom for the error term. The asymptotic standard error is
found by taking the square root of the forecast error variance. This may
be used with a t value to form the forecast confidence interval:

Forecast interval of ŷt�h � ŷt�h � t(1��/2,df) ��1 � �h�1

i�1

� 2
i� 
 2

e , (7.30)

where

t(1��/2,df)

� (1 � �/2)th percentile of a t distribution with df degrees of freedom.

The forecasts may be updated with the assistance of the � weights. As the
lead time gets larger, the interval generally becomes larger, although the
exact pattern depends on the � weights. This forecast interval formula is
analogous to the formula for the confidence interval of a mean.

The autoregressive parameterization of the forecasts is based on an
infinite autoregressive function of previous observations. Owing to inverti-
bility, a stationary moving average model can be parameterized as an infinite
autoregressive model. The weights in this linear combination are called 	
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weights. A series parameterized in terms of these weights may be expressed
as follows: Because

�(L)

	(L)
� 1 � ��

i�1

	iL
i,

(7.31)

yt � et � ��
i�1

	t yt�i .

The forecast function comprises an autoregressive sum of weighted past
values of the series, and an autoregressive sum of estimated autoregressive
response values as shown in Equation 7.32 (Ege et al., 1993):

ŷt�h � �h�1

i�1

	̂t ŷt�h�i � ��
i�h

	̂i yt�h�i . (7.32)

On this basis, the one-step-ahead forecast may be formulated as follows:

ŷt�1 � 	1 yt � 	2 yt�1 � 	3 yt�2 � . . . . (7.33)

Similarly, the second-step-ahead forecast is

ŷt�2 � 	1 ŷt�1 � 	2 yt � 	3 yt�1 � � � � (7.34)

The autoregressive parameterization of the function into forecast horizon
components and actual components may be estimated by updating one
step at a time so as to minimize the mean forecast error. Suppose � is the
smoothing parameter. The larger the �, the more the recent observations
are weighted in the calculation of the sum of squared errors or minimization
of the mean square forecast error with the holdout sample. Then the updat-
ing formula for the forecast may be derived from the formula for simple
exponential smoothing found in Chapter 2:

ŷt�h � �yt � �(1 � �)yt�1 � �(1 � �)2yt�2 � . . . . (7.35)

The smaller the smoothing parameter, �, the more the history of the series
counts in determining the point forecast value. By using this updating
approach explained in Chapter 2 in the section on exponential smoothing,
the forecast can be extrapolated as well. For the reason that this procedure
involves one step at a time and the forecast function predicted by this
procedure is based on the most recent past estimates, the forecast function
computed in this way is often referred to as the eventual forecast function.

7.3.7. FORECAST PROFILES FOR BASIC PROCESSES

Different forecast functions possess different error structures. The fore-
cast functions therefore possess different forecast error variances. The fore-
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cast intervals clearly depend on the type of forecast error and its variance.
Hence, different processes have different forecast profiles. It is helpful to
consider the basic forecast profiles at this point, so the analyst can recognize
them in conjunction with the models he is estimating. He may check these
profiles against the type of process that produces them to be sure they
match. More detailed examination of complicated profiles can be found in
Box and Jenkins (1976), Box et al. (1994), Pindyck and Rubenfeld (1991),
and Diebold (1998). For this reason, we examine common forecast profiles
for white noise, integrated, AR, MA, and ARMA processes.

7.3.7.1. Forecast Profile for a White Noise Process

McCleary and Hay (1980) explain the forecast for the white noise process
as the sum of the shocks from the point of origin of the forecast horizon.
At that point, yt � et . The � weights (�1 � �2 � � � � � �h � 0) are all
equal to zero. The expectations of the shocks are all equal to zero. The
product of these components remains zero. For the reason that all of
the � weights are constant, the error variances at each point in the forecast
horizon are equal to 
 2

e . Therefore, Var(1) � 
 2
e , Var(2) � 
 2

e . . .
Var(h) � 
 2

e . In other words, the forecast profile for the white noise process
is constant. There is no deviation from the series mean and the forecast
profile is one of parallel lines extrapolated to the end of the forecast horizon.
An example of a white noise forecast profile is simulated over time. The
forecast profile for this process begins at time period of 75. As the forecast
horizon extends 24 periods into the future, this white noise process forecast
function converges on the series mean of zero, since the series has been
centered, and the constant forecast error variance provides for a parallel
line forecast profile for the duration of the forecast horizon, as can be seen
in Fig. 7.1.

7.3.7.2. The ARIMA(0,1,0) or I(1) Forecast Profile

The annual U.S. national unemployment series taken from the 1995
Economic Report of the President is an integrated series (see C7pgm1.sas
listed on the Academic Press World Wide Web site for this textbook:
http://www.academicpress.com/sbe/authors). Unemployment is equal to its
previous year’s tally in thousands plus some random shock. McCleary et

al. (1980) show how an I(1) series is white noise after differencing and is
formulated as Yt � Yt�1 � et . The forecast is simply the updated equation.
Since the expectation of the error equals zero, E(Yt�1) � Yt . Also, E(Yt�2)
� E(Yt � et�1 � et�2) � Yt . The same holds for the forecasts Yt�3 . . . Yt�h .
The expectation of the series is the latest series value plus the value of
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Figure 7.1 White noise forecast profile.

each shock in the forecast horizon. Because the expectation of each shock
is zero, E(Yt�h) � E(Yt � et�h � et�h�1 � . . . � et � et�1 � . . .) � Yt . As
a result, the forecast value of the series at each temporal point in the
forecast horizon is the series value at the origin of the horizon. This forecast
function provides for a constant point forecast after differencing, leaving
white noise residuals.

The forecast error variance is an integrated process. When the difference
between the value of the forecast function of one time point and the
previous one is taken, the error variance equals 
 2

e . For each period ahead
in the forecast horizon, another 
 2

e is added. This result renders the forecast
error variance of an I(1) process cumulative. After h periods into the
forecast horizon, the forecast variance is h
 2

e . Consequently, the forecast
error variance accumulates and the forecast interval spreads as the forecast
function proceeds along the forecast horizon. An example of widening
forecast interval from an integrated process are the IBM closing stock
prices in the beginning of 1962 shown in Fig. 7.2.

7.3.7.3. Forecast Profile for the AR Process

AR(p) forecast profiles are recognizable by spreading forecast intervals
as well. The spread exponentially declines until it levels out. The rate
of declining spread is a function of the magnitude of the autoregressive
parameters. In the AR(1) forecast profile, the addition of variance at each
time point in the forecast horizon declines in order of the square of the
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Figure 7.2 Forecast profile for ARIMA(0,1,0) model: IBM 1962 closing stock prices.

first autoregressive parameter estimate. In the AR(1) model, the forecast
interval and function establish this pattern. Because an AR(1) model is
characterized by the equation with C designating the constant

yt � C � �1 yt�1 � et , (7.36)

a forecast one, two, and h steps ahead will be:

ŷt�1 � �1 yt � C � et�1

ŷt�2 � �1 ŷt�1 � C � et�1 (7.37)
� �2

1 yt � C(�1 � 1)

ŷt�h � � h
1 yt � C(� h�1

1 � � h�2
1 � � � � � �1 � 1).

As h increases along the forecast horizon, its temporal order of magnitude
increases. When the parameter �, which is less than unity, is taken to the
h power, the exponentiated result diminishes in magnitude. As h becomes
large, this exponentiated increment to the forecast function converges to
zero, if the process has been centered. Otherwise, as h becomes large for
a stationary series, this limit converges to the mean of the series:

lim
h��

ŷt�h �
C

(1 � �1)
� �y . (7.38)

Indeed, for AR forecasts, in general, a stationary series converges to its
mean (Pindyck and Rubenfeld, 1991; Griffiths et al., 1993).
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7.3.7.3.1. The Forecast Interval for the AR(1) Process

By subtracting the expected value h steps ahead on the forecast horizon
from the forecast function at that point in time, one can obtain the forecast
error for the AR(1) process:

et�h � yt�h � ŷt�h

� �1 yt�h�1 � C � et�h � ŷt�h (7.39)
� �2

1 yt�h�2 � C(�1� 1) � et�h � �1et�h�1 � ŷt�h

� � h
1 yt � C(� h�1

1 � � � � � �1 � 1)

� et�h � �1et�h�1 � � � � � �h�1
1 et�1 � ŷt�h .

When one substitutes Eq. (7.37) for the estimated component on the far
right-hand side of Eq. (7.39), the following formula for et�h is obtained
(Pindyck and Rubenfeld, 1991; Gilchrist, 1976):

et�h � et�h � �1et�h�1 � � � � � � h�1
1 et�1 . (7.40)

From the sequential squaring of the error components in Eq. (7.41), this
forecast error is computed by the expanding forecast interval of the
AR(1) process:

E(e2
1) � 
 2

e

E(e2
2) � (
 2

e � �2
1


2
e)2 � (1 � �2

1)
 2
e

E(e2
3) � (
 2

2 � �2
1


2
e � �4

1)
 2
e)2 (7.41)

� (1 � �2
1 � �4

1)
 2
e

E(e2
h) � (1 � �2

1 � �4
1 � � � � � �(2h�2)

1 )
 2
e .

Figure 7.3 Forecast profile of AR(1) model: series B IBM stock prices (Box et al., 1994).
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The process yields exhibits a characteristic AR(1) forecast profile. The
forecast error variance spreads with an exponential decline of the incremen-
tal spread as the forecast horizon extends. The computation of the forecast
interval was shown in Eq. (7.30), and the shape of the forecast profile for
this AR(1) process is displayed in Fig. (7.3).

7.3.7.3.2. The Forecast Interval for the AR(2) Process

Second and higher order autoregressive processes, such as Yt � C �
�1Yt�1 � �2Yt�2 � et , may be characterized by oscillation if the second-
order autoregressive parameter, �2 , is not of the same sign as the first-order
autoregressive coefficient. This discrepancy in signs creates an apparent
undulation in the forecast that is short lived and dissipates rapidly along
the forecast horizon as the higher order leads are characterized by conver-
gence to their mean limits. This kind of forecast profile is presented in
Fig. 7.4.

7.3.7.4. Forecast Profile for the MA Process

The point forecast of an MA(1) process is derived from the formula from
the MA model. The expectation of et�1 through et�h equals 0. Therefore, as

Figure 7.4 Forecast profile of AR(2) process.
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the forecast function is extended, the forecast function rapidly converges
to the series mean:

yt � et � 	1et�1 � �

ŷt�1 � E(yt) � � � 	1et�1
(7.42).

.
ŷt�h � E(� � et�h � 	1et�h�1) � �y .

A stationary MA(1) process is a short, one-period memory process. For
one or two periods ahead, the best forecast is the mean of the series
(Pindyck and Rubenfeld, 1991). The forecast variance of such an MA series
around that mean can also be computed as

E(e2
t�h) � E(yt�h � ŷt�h)2

� E(et�h � 	1et�h�1)2

(7.43)
� E(e2

t�h � 2	1et�h�1et�h � 	2
1e2

t�h�1)

� (1 � 	2
1)
 2

e .

7.3.7.4.1. The Forecast Interval of an MA(1) Process

The forecast error variance is formulated in Eq. (7.43). Owing to the
short, one-period memory of this process, the value of the error variance
remains the same after the initial shock. Although the forecast interval
might expand during the first lead period, it would remain constant into
the forecast horizon beyond that first lead. The interval is merely the
point forecast plus or minus the 1.96 times the asymptotic standard error
[the square root of the forecast error variance in Eq. (7.43)]. It is this
forecast interval that comprises the forecast profile for the MA(1) process
of the Democratic proportion of major party seats in the U.S. House
of Representatives (Maisel, 1994; U.S. House of Representatives, 1998).
The MA(1) model that explains the percentage of Democratic seats at
this time is the proportion of Democratic seats in Houset � 54.6 �
(1 � 0.49L) et , and the forecast profile from this MA(1) is displayed in
Fig. 7.5. After the first lead period, the forecast interval of the likelihood
of percentage of a Democratic Congress remains constant, unless the
Republicans exhibit obviously poor political judgement in coping with
the political, economic, and social welfare issues that challenge them.
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Figure 7.5 Forecast profile of MA(1) process: percentage of Democrats in U.S. House of
Representatives. Data courtesy of Prof. Richard Maisel, NYU Graduate Sociology Depart-
ment. Updated data available from the U.S. House of Representatives Web site (http://
clerkweb.house.gov/histrecs/hostory/elections/political/divisions.htm). Downloaded 10/25/98.

7.3.7.4.2. The Forecast Profile of an MA(2) Process

The forecast profile for the MA(2) model is very much the same. A
simulation produces an MA(2) process Yt � (1 � 0.71L � 0.21L2)et . A
forecast profile for the MA(2) model is produced. The point forecast is
jostled only for the first two leads, suggestive of the shocks at lags 1 and
2 in an MA(2) process, and then it levels off at the series mean. We can
see that the forecast profile is shown to get jarred during the first two leads,
and then levels off on an interval parallel to that of the estimated forecast
of the series mean. The number of shocks or disturbances prior to the
leveling off of the series is equal to the order of the MA process. If there
were six of these shocks or if the order of the MA did not end until lag 6,
then there would be six disturbances in the forecast profile before the MA
forecast profile leveled out. Figure 7.6 depicts this simulated process for
the MA(2) series.

7.3.7.4.3. The Forecast Profile for the ARMA Process

The simple ARMA process has been theoretically developed in the
discussions of Eq. (7.20) through (7.23). From the derivation and elabora-
tion of these equations, it can be seen that the forecast interval of an
ARMA(1,1) process is one whose limits over the forecast horizon may be
expanding at a diminishing level:

Yt � C � �1Yt�1 � et � 	1et�1 . (7.44)
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Figure 7.6 Forecast profile for MA(2) process. Simulation of y(t) � (1 � 0.7L �

0.21L2)e(t) process.

The existence of the autoregressive component provides for the division
by 1 � �1 . The conditional expected value of the one, two, and h, step
ahead forecasts are as follows:

yt�1 � E(C � �1 yt � et�1 � 	1et) � C � �1 yt � 	1êt

yt�2 � E(C � �1 yt�1 � et�2 � 	1et�1) � C � �1 ŷt�1

� �2
1 yt � C(�1 � 1) � �1	1êt (7.45)

�
�
ŷt�h � �h

1 yt � C(�h�1
1 � �h�2

1 � � � � � �1 � 1) � �h�1
1 	1êt .

From this equation, one can infer that as the forecast horizon extends
farther into the future, so that h becomes large, the increment added to
the ARMA(1,1) forecast interval rapidly becomes negligible and reaches
a limiting value:

lim
h��

ŷt�h �
C

(1 � �1)
⇒ C ⇒ �y . (7.46)

Figure 7.7 reveals how the ARMA(1,1) forecast profile undulates with
exponentially diminishing amplitude and proceeds to converge upon the
mean, based on Eq. (7.37), with a stationary series.
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Figure 7.7 Forecast profile for ARMA(1,1) process.

7.3.7.4.4. Forecast Interval for the IMA Model The more complex
IMA(1,1) model exhibits a different forecast profile. The implicit integra-
tion in this model produces a gradually expanding forecast profile, as can
be seen in Fig. 7.8. The farther into the forecast horizon the forecast is
extended, the larger the forecast error. An example of this kind of process
is the natural log of U.S. coffee consumption, the forecast profile for which
is displayed in Fig. 7.9. This is a model that can be easily reparameterized
as an ARIMA(1,1,0) model. The expanding forecast interval is suggestive
of this fact. To be sure, when the model is reparameterized as such, the

Figure 7.8 Forecast profile for IMA(1,1) model. Simulated IMA process.
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Figure 7.9 Forecast profile for ARIMA(0,1,1) model: U.S. coffee consumption, 1910 through
1970. Source: Rob Hyndman Time Series Data Library (http://www/maths.monash.edu.au/
�hyndman/)—extracted 1997.

SBC is almost as low as that of the IMA(1,1) model. In the event that
the model has multiple MA parameters, there will be shifts in the point
forecast and forecast intervals. These apparent shifts will appear to be
deviations from the smooth patterns the forecast points and intervals
are following.

7.4. CHARACTERISTICS OF
THE OPTIMAL FORECAST

It is useful to understand the nature of an optimal forecast. Granger
and Newbold (1986) note that the information set of a finite sample longer
than the memory of the series, given a known model, is necessary. Using
a least squares estimation, the weight in the weighted sum of squared errors
has to be chosen so as to minimize the sum of squared errors in finding
the solution. What is more, there should be invertibility of the forecast.
This way, an infinite autoregressive process could be expressed as a finite
moving average process. An h step ahead optimal forecast can be expressed
as an MA(h � 1) model. The forecast error for the one-step-ahead forecast
should be white noise. If the forecast error were otherwise, it might be
improved by the incorporation of that other function and therefore would
not be optimal. Meanwhile, the forecast error variance often increases
along the forecast horizon. From Eqs. (7.29) and (7.30), we can see that
the forecast variance increases with the value of h. From the forecast
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profiles, however, we can see that for stationary models, the forecast interval
exhibits an initial expansion due to the autoregressive component shown
in Figs. 7.3 and 7.4, and then begins to exhibit an asymptotic leveling off
of that interval around the mean value, shown in Figs. 7.5 and 7.6. This
may take place with diminishing levels, as can be seen in the forecast profile
for the ARMA(1,1) process in Fig. 7.7 (Granger, 1989).

7.5. BASIC COMBINATION OF FORECASTS

There may be a need to enhance the reliability, robustness and accuracy
of separate forecasts by combining forecasts from different statistical mod-
els. After all, Niels Bohr, a Nobel laureate in physics, said, ‘‘Prediction is
very difficult, especially of the future.’’ The imperfection of a single forecast
was underscored by John Maynard Keynes, who is reported to have re-
marked, ‘‘There are two kinds of forecasters: those who don’t know, and
those who don’t know that they don’t know.’’ David Hendry (1999) has
since stated, ‘‘The things that can hurt us are those things that we don’t
know that we don’t know.’’ Because different methods of forecasting pos-
sess different assumptions, procedures, advantages, and disadvantages, it
is a common contention that enhanced reliability can be derived from com-
bining forecasts (Winkler, 1983, 1989; Makridakis, 1989). Combining fore-
casts permits the analyst to guard against mistakes, varying circumstances,
failing assumptions, possible cheating, and variations in accuracy (Arm-
strong, 1985). If an individual forecast is already optimal or it encompasses
the other forecast prior to combination, combining that forecast with another
will not improve the forecast accuracy. However, Bates and Granger (1969)
found that by combining forecasts it is generally possible to improve ro-
bustness as well as enhance the forecast accuracy of the separate forecasts.

This section discusses some methods for combining forecasts, as well as
some problems that may stem from applying these methods. For example,
an analyst might obtain separate forecasts from exponential smoothing,
X-11, ARIMA, or autoregression (see Chapter 10). These two or more
forecasts could be combined by any of the methods explained here. The
first method is that of averaging the separate forecasts; the second is the
variance–covariance method proposed by Bates and Granger (1969); and
the third method is the regression method advocated by Granger and
Ramanathan in 1984. More advanced methods of combining forecasts in-
volving regression are broached in this section, and those involving autore-
gression will be discussed in Chapters 10 and 11.

Consider the first two methods. One method is to take the simple arith-
metic average of the separate forecasts. The second method, the variance–
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covariance method, requires a weighted average of the forecasts, with the
inverse of the error variances serving as combining weights. One method
of combining forecasts is to take the smoothed function of two one-step-
ahead forecasts. One forecast may be based on one approach or model
while the other forecast may emerge from another approach or another
model. Let F1t and F2t be two forecasts that have been mean centered, with
forecast errors ef1 and ef2 , respectively. The combined forecast, CFt , can
be formulated as a function of these two component forecasts, shown in
Eq. (7.47), if one assumes that both forecasts have been mean-centered:

CFt � �F1t � (1 � �)F2t . (7.47)

Meanwhile, the forecast error for the combined forecast can be expressed as

eCFt
� (CFt � Yt�1) � �eF1t

� (1 � �)eF2t
. (7.48)

The forecast variance for the combined forecast can be computed by squar-
ing the forecast error:


 2
CFt

� �2
 2
eF1t � (1 � �)2
eF2t � 2�(1 � �)
eF1t
eF2t . (7.49)

The objective in this case is to minimize the forecast error variance of the
combined forecast. To do so, we take the first derivative of Eq. (7.49) with
respect to �. Then we set this equal to zero and solve for � to determine
the optimal smoothing weight, �:

� �

 2

eF2t � 
eF1t
eF2t


 2
eF1t � 
 2

eF2t � 2
eF1t
eF2t

. (7.50)

If there is no correlation between the two series, the optimum smoothing
weight, �, has almost the same ratio, except that it lacks the cross-product
terms in the numerator and denominator, as:

� �

 2

eF2t


 2
eF1t � 
 2

eF2t

. (7.51)

When the optimal value for � is plugged into the equation, the minimum
error and error variance for the combined forecast are obtained. In this
way, one-step-ahead simultaneous forecasts are combined to produce an
optimal forecast. The weights therefore depend on the accuracy of the
forecast (Armstrong, 1999a, 1999b). Trimming the means used for forecasts
might improve the accuracy of these forecasts (Armstrong, 1999b).

Another version of the preceding combination method is known as the
Kalman filter, mentioned in Box et al., (1994), which combines a current
prediction with a previous forecast. This approach uses exponential smooth-
ing to update the prediction. In this way, the moving average can be given
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the appropriate weights. Two independent estimates are combined to form
a smoothed prediction. Because one of these is a prior information set,
this approach has been referred to as Bayesian forecasting. It attempts to
improve the accuracy of a forecast with current data by minimizing the
errors of the combined forecast. Minimizing the total forecast error permits
derivation of an optimal smoothing weight for the combination of indepen-
dent forecasts.

Makridakis, Wheelwright, and McGee (1983) as well as Granger and
Newbold (1986) explain the variance–covariance method as an exponen-
tially smoothed updating formula. This combined one-step-ahead forecast
consists of exponentially smoothing the recent data (Yt) and the prior
forecast (Ft) in accordance with

Ft�1 � �Yt � (1 � �)Ft . (7.52)

The smoothing constant � is estimated to improve the forecast. If we know
the variances of Yt and Ft are Insert 
 2

1 and 
 2
2 , respectively, we can compute

the overall variance as the weighted sum of these variances, shown in Eqs.
(7.48) and (7.49). In order to obtain the minimum variance, the variance,

 2, can be differentiated with respect to the smoothing constant, �. The
result is set to equal zero and differentiated to obtain the minimum slope.
The equation is solved to obtain the optimum smoothing constant, �, which
is then substituted into Eq. (7.47). With a similar updating of the variance
of Yt , the optimum forecast, based on current data and previous informa-
tion, may be obtained.

To ascertain the optimum updating variance, Eq. (7.50) can be substi-
tuted into Eq. (7.49). At the same time, recall that the correlation between
the Ft and Yt is

� �

F1Yt


F1

Yt

. (7.53)

When one applies this correlation to Eq. (7.49), after Eq. (7.50) has been
substituted into it, the resulting formula–following Holden et al., (1990)—
for the variance of the updated forecast becomes


 2
Ft�1

�

 2

F
 2
Y(1 � �FY )

(
Y � �FY
F)2 � 
 2
F(1 � �FY )

. (7.54)

Together with the first-order solution, this equation permits automatic
updating of the forecast by updating the earlier forecast with the new data.
In this way, a minimum forecast error is maintained.

Another method for combining forecasts is the regression method.
Granger and Ramanathan (1984) are credited with modernizing the earlier
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regression parameterization of the earlier Bates and Granger (1969) ap-
proach. Bates and Granger advocated that the coefficients be constrained
to sum to unity and that the intercept be constrained to equal zero, whereas
Granger and Ramanathan (1984) suggested that less biased results are
obtained without these constraints. From separate forecasts, F1 and F2 , a
combined forecast CFt could be obtained with the following regression
formula:

CFt � � � �1F1t � �2F2t � et . (7.55)

In this case, the intercept is not constrained to equal zero and the regression
coefficients are not constrained to equal unity. The result is usually a more
accurate combined forecast with smaller error variance and therefore a
smaller 95% forecast interval around the predicted scores.

Scholars have made noteworthy suggestions about appropriate applica-
tions of forecasting models. Granger and Newbold (1986) note that the
simple exponential smoothing for updating is generally optimally applied
when the model is an ARIMA(0,k,k) configuration. Those processes with
autoregression incorporated within them may be handled better by pure
ARIMA forecasts. Brown et al. (1975) are also cited as developing a means
of monitoring the performance of the forecast by a cumulative error chart
with control limits. When the forecast exceeds the limits, this is an indication
that something is awry. Trigg and Leach (1964, 1967) developed a method
of monitoring the forecast error with a tracking signal made up of the ratio
of the smoothed error to the mean absolute deviation. An approximation
of confidence limits of plus or minus two standard errors is ascertainable
so that the signal should remain within them. When the forecast error
exceeded those limits, the value of the smoothing constant could be in-
creased to give more weight to current rather than past observations. More-
over, the Holt or Winters version (explained in Chapter 2) of exponential
smoothing might better be applied, for the reason that they accommodate
trend and seasonality better than does simple exponential smoothing.

7.6. FORECAST EVALUATION

Models can be evaluated not only with respect to their optimality, but also
according to their ability to produce a good forecast. Indeed, metadiagnosis
entails comparative evaluation of models according to, among other things,
their forecasting capability. The forecast should be relatively cheaper than
the others, given the value of the forecast generated (Granger and Newbold,
1986). The forecast should have face validity. It should make intuitive sense
(Armstrong, 1999). The forecast should be rational, in that the forecasts
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should be efficient and unbiased (Clements and Hendry, 1998). The better
the model, the more accurate the forecast. In terms of absolute accuracy,
we can evaluate the forecast by different measures presented in Chapter
2. The accuracy of a forecast is evaluated against real data in the evaluation
or holdout sample, if not against another known, tested, and established
criterion. One common measure of this accuracy is the forecast error vari-
ance or mean square forecast error. The mean absolute percentage error,
mean absolute error, mean error, mean absolute percent error, maximum
error, and minimum error are criteria less sensitive to outlier distortion
that are often preferred. Measures of error used should not be too sensitive,
and there should be provisions for checking their measurements (Arm-
strong, 1999).

Forecast accuracy can depend on the forecast horizon. Some forecasts
are more stable than others. How far into the future this horizon extends
and where it ends must be known. In general, the farther into the future
the forecast horizon, the more difficult it is to forecast. Some methods are
better at short-run forecasting while other methods are better at long-run
forecasting. The more stable the forecast, the more reliable the forecast.
Armstrong (1999) notes that there should be consistency over the forecast
horizon. Although this topic is broached here, the last chapter delves into
the subject in greater detail.

The dispersion of the forecast interval is a measure of forecast accuracy.
The width of the 95% confidence interval at a particular point of interest
on the forecast horizon is another standard by which forecast accuracy can
be measured, as is the shape of the forecast profile due to its probability
distribution. The mean square forecast error (MSFE) is commonly used to
assess the accuracy of the forecast, but because the MSFE is sensitive
to outlier distortion, the mean absolute percentage error (MAPE) may
be preferred.

There are other common measures of fit such as R2, adjusted R2, and
Amemiya’s adjusted R2. Although these measures may be used for model
evaluation, Armstrong suggests that R2 and adjusted R2 not be used for
forecast evaluation (1999). There are also minimum information criteria—
for example, the AIC and the SBC—that are used to assess parsimonious
fit. These criteria are joint functions of the minimum forecast error and some
form of penalty for the number of free parameters (degrees of freedom) in
the model. The AIC tends to produce more overparameterized models,
whereas the SBC applies a stronger penalty for the number of terms in the
model than the AIC. The lower the value of the AIC or the SBC, the better
the fit of the model.

Forecasts can be evaluated according to the information set required
and acquired. The more data and the more recent the data, the better. The
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less biased and more valid the data, the better. Often, validity and reliability
can be enhanced by using alternative sources for data collection. The data
must be checked for and cleaned of input errors. The more recent data
should be weighted more heavily (Armstrong, 1999). Some exponential
smoothing methods do not require as much data as ARIMA models require
in order to generate a good forecast.

Forecasts can be evaluated by the cost of the forecast, when the cost
and function of forecast error are known. The cost of acquiring data may
figure into this calculation. The more data required, the more costly the
forecast may be (Granger, 1989).

Forecasts can also be evaluated in terms of their complexity or parsi-
mony. The lesser the parameter redundancy and parameter uncertainty,
the better the model used for forecasting. Simpler forecasts are preferred
to complex forecasts, given the same level of accuracy (Diebold, 1998).

Relative forecast ability might be assessed in terms of the comparative
abilities of different approaches. One criterion of relative forecast ability
is that of forecast efficiency. Forecast efficiency of a model involves compar-
ing the mean square forecast error of the model to some baseline model.
The forecast error variance of the model under consideration may be de-
rived from a baseline comparison. That baseline used is often the naive
forecast, a forecast formed by assuming that there is no change in the value
of the latest observation. Theil developed a U statistic (Makridakis et al.,

1983), which compares forecasts. It takes the square root of a ratio:

Theil’s U ��
�T
t�1

(FPEt�1 � APEt�1)2

(t � 1)

�T
t�1

(APEt�1)2

t � 1

,

where

Ft�1 � forecasted value
Xt�1 � actual value

FPE �
Ft�1 � Xt

Xt

APE �
Xt�1 � Xt

St

.

The numerator of the ratio consists of the mean square error between the
forecast and the naive baseline (average). The denominator of the ratio
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consists of the mean square of the average percentage error (baseline
average). When there is no difference between the model forecast and the
naive forecast, U equals zero. When the forecast error variance exceeds
the mean square average baseline error variance, then the value of the U

rises. The choice of the naive or baseline model is open to debate. Different
scholars employ different models as their baseline. If alternative models
have been systematically eliminated, the final model should be more accu-
rate and more general. The more general the model, the more theory or
parameters it encompasses. The more the model encompasses the variance
inherent in the series being forecasted, the better fit the model has. There-
fore, the more encompassing the model, the more useful the forecast.

Although the final chapter contains a more complete comparison of
forecast abilities, this chapter takes note of major advantages and disadvan-
tages of various models already presented. Models smoothed with single
exponential weighting may not require long series. Some of the simpler
smoothing methods—such as simple, double, or Holt’s method—may not
handle seasonality as well as others. The Winter’s method can forecast
series with both trend and seasonal turning points. Nonetheless, the simpler
methods are cheaper and easier to compute, and often provide better
forecasts than more complex methods—such as X-11 decomposition or
Box–Jenkins methods (Hibon and Makridakis, 1999). Although X-11 de-
composition models work well for basic signal extraction of regular long
wave cyclical turning points, they sometimes may not comprehensively
explain the underlying data generation process well. Box–Jenkins models
generally handle both moving average and autoregressive problems along
with some seasonal variation well and generally offer fairly good predictive
validity over the short run. Sometimes, some regression or autoregression
models, which will be covered later, have more explanatory power and
predict better than others over the long run. Granger and Newbold say
that Box–Jenkins methods give better series forecasts than other methods
in the near term. How models can be combined to improve prediction and
the advantages and methodology of combining models will be discussed in
more detail in the final chapter.

7.7. STATISTICAL PACKAGE FORECAST SYNTAX

7.7.1. INTRODUCTION

At this time both SAS and SPSS have the ability to forecast. After
the model is developed, it is used to generate the forecast values of the
data set. The user determines how many periods into the future horizon
he forecasts by setting the appropriate parameters. The residuals are easily
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produced. From those residuals, the standard errors of the predicted values
are estimated. The upper and lower 95% confidence limits are also gener-
ated. With SAS the user has the capability of generating its forecasts with
any of three types of estimation, whereas with SPSS the user may chose
one of two types of estimation.

The default estimation for SAS forecasts is conditional least squares,
whereas with it is unconditional least squares. Although both packages
allow forecasts generated with unconditional least squares or conditional
least squares, only SAS permits maximum likelihood to be used for the
estimation of the forecasts. The forecast subcommands of the two packages
generate these variables, which may then be used to construct the graphical
forecast profile plot.

7.7.2. SAS SYNTAX

The SAS programming syntax for forecasting the natural log of U.S.
coffee consumption is given in program c7pgm2.sas. This program syntax
constructs a data set called COFFEE and sets up a time variable that begins
with a value (set by the RETAIN statement) of 1910 and is a counter
(constructed with the TIME � 1 statement) that increments by a value of
one for each observation. The date variable is constructed with the INTNX
function. The format is specified by the FORMAT statement. The data follow
the CARDS statement.

/* c7pgm2.sas or c7fig9.sas */

title ’ Forecast Profile for ARIMA(0,1,1) Model’;

title2 ’US Coffee Consumption 1910 through 1970’;

title3 ’Rob Hyndman Time Series Library: coffee.dat’;

data coffee; RETAIN TIME(1909);

input cofcon;

time + 1;

lcofcon=log(cofcon);

DATE = INTNX(’year’,’01JAN1910’d,_n_-1);

format Date YEAR.;

cards;

9.2

8.3

...

14.2

13.8
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proc print;

run;

SYMBOL1 V=STAR C=BROWN I=SPLINE;

PROC GPLOT;

PLOT COFCON * date/haxis=axis1;

title ’US Coffee Consumption 1910-1970’;

RUN;

proc gplot;

plot lcofcon*date;

title ’Log of US Coffee Consumption 1910-1970’;

run;

/* A proc print is used to check the data to be sure the

program is reading the data correctly.

The GPLOT plots the natural log of coffee consumption against

the date so the analyst may view the data */

proc arima;

i var=lcofcon(1) nlag=20;

e q=1 printall plot noint;

f lead=12 id=date interval=year printall out=fore;

run;

The FORECAST subcommand which begins with the letter f within the
PROC ARIMA, sets up a 12-step-ahead forecast with the LEAD subcommand.
The ID variable is set to equal DATE so the DATE variable will be used for
identification of the observation and output with the data set. Because the
LEAD is set to 12 periods and the interval is set to ‘YEAR’, a 12-step-ahead
forecast will extend into the future 12 years. The PRINTALL statement will
printout the data and the variables created by the FORECAST subprocedure.
The output data set is constructed with the OUT = subcommand, and the
output data set is called ‘FORE’. FORECAST, UCL95, and LCL95 variables
are generated, which along with the natural log of the U.S. coffee consump-
tion make up the component variables of the forecast plot.

data new;

merge fore coffee; by date;

if _n_ � 62 then forecast=.;

if _n_ � 62 then l95=.;

if _n_ � 62 then u95=.;

proc print;

run;
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DATA NEW sets up a data set called NEW. The MERGE command matches
the data sets called ‘COFFEE’ and ‘FORE’ according to the key variable,
called DATE, into the NEW data set. Then the FORECAST variable and its
confidence limit variables, L95 and U95, are stripped of values before the
forecast begins. To clarify graphical presentation of the forecast profile
plot, values of the forecast components are set to missing (period) before
the forecast begins at observation 62. The data are printed to confirm
proper trimming.

symbol1 i=spline c=green v=star;

symbol2 i=spline c=blue v=plus;

symbol3 i=spline c=red;

symbol4 i=spline c=red;

axis1 label=(’Date’) ;

proc gplot data=new;

plot (lcofcon forecast l95 u95)*date/overlay

haxis=axis1;

title ’Forecast profile for ARIMA(0,1,1) model’;

title2 ’US Coffee Consumption 1910 through 1970’;

title3 ’Source: Rob Hyndman Time Series Data Library-extracted 1997’;

title4 ’World Wide Web URL: http://www.maths.monash.edu.au/~hyndman/’;

run;

Then the forecast profile plot is constructed. The lines are defined by
their respective SYMBOL subcommands. The points are joined with the I=
JOIN subcommand. The type of data value is indicated by the V= option.
Actual data are represented by a STAR and the forecast is represented by
a PLUS sign. The forecast proceeds horizontally ahead, unless the natural
logged series is centered, in which case it lifts upward. Although the line
color is not shown here, the user may select the C= option to specify the
color of the line. In this syntax, green lines are chosen to represent actual
data. Blue and red lines are selected to respectively designate, the forecast
and its confidence intervals. The AXIS1 subcommand defines the label for
the horizontal axis. The data come from DATA NEW and an OVERLAY plot
is generated against the date. The forecast profile plot generated by SAS
may be found in Fig. 7.8.

7.7.3. SPSS SYNTAX

The SPSS syntax, contained in C7pgm3.sps, for generating the forecast is
different. The forecasts extend from 1970 through 1982 as can be seen in the
third line of the following SPSS program syntax. The variable used for the
ARIMA model is the natural log of U.S. coffee consumption from 1910
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through 1970. The forecasts extend through 1982. The model from which the
forecasts are generated is an ARIMA(0,1,1) without a constant model. The
final line of command syntax shows that the user chooses conditional least
squares with which to estimate the forecast function and interval.

* ARIMA.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU YEAR 1982 .

ARIMA 1cofcon

/MODEL=( 0 1 1 )NOCONSTANT

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

Title 'Forecast Profile for Coffee Consumption’.

Subtitle ‘of IMA(1,1) Process’.

*Sequence Charts .

TSPLOT VARIABLES=Icofcon fit 1 lcl 1 ucl 1

/ID= year

/NOLOG

/MARK YEAR 1970 .

Figure 7.10 ln(U.S. coffee consumption), 1910 through 1970.
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This procedure generates a forecast variable called FIT_1. It generates up-
per and lower confidence limit variables, called, UCL_1 and LCL_1, respec-
tively. Along with the data, these newly generated variables comprise the
component variables of the forecast profile plot. The forecast profile plot
generated by SPSS TSplot command can be found in Fig. 7.10. The final chap-
ter of this book will further examine the forecast accuracy of various models.

7.8. REGRESSION COMBINATION OF FORECASTS

It is also possible to improve the accuracy of forecasts by combining
forecasts with regression analysis (Granger and Ramanathan, 1984). When
one forecast does not encompass (subsume) the other, the researcher can
use regression analysis to form the combining weights of the combined
point forecast. The regression model of the combined forecast is a function
of an intercept and two component forecasts. If one forecast encompassed
the other, the regression coefficient of the encompassed forecast would be
nonsignificant and the combined forecast would merely be a function of
one of the two component forecasts. In such a case, the combination is of
little use. If neither of two component forecast encompasses the other, then
the combination is a function of the intercept and two significant regression
coefficients, each of which is multiplied by the component forecast. Al-
though the example here uses only two component forecasts, a forecast
combination may entail the regression combination of more than two com-
ponent forecasts (Granger, 1989).

The methodology for combining forecasts merits serious consideration.
The overall sample is divided into an historical and an evaluation subset.
Different models are developed on the basis of the historical subsample.
In this example, one of the models is a Box–Jenkins ARIMA model and
the other is a polynomial regression model. Forecasts from each of these
models are generated and graphed. The forecasts span the evaluation pe-
riod. The data sets from the respective forecasts and the evaluation sample
are merged. Then the forecast from each separate model is compared with
the actual data. The residual, its variance, and the mean absolute percentage
error are calculated within the evaluation sample to assess the accuracy of
the separate forecasts. In this way, the evaluation of the separate forecasts is
performed on the basis of the data in the evaluation period. The forecast
profiles are then graphed for visual comparison.

A combining regression is performed on the basis of the data within the
evaluation period. The dependent variable in this combining regression is
that of the real data in the evaluation sample: Actualt�h � a � b1F1,t�h �
b2F2,t�h � et�h . The predictor variables are the forecasts from the different
models mentioned. The regression model output supplies an intercept and
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regression coefficients, which are sometimes called the combining weights.
The predicted scores from the regression model are saved, because they
are the combined forecast of the real data. The forecast interval around
the forecast is formed from the upper and lower 95% confidence intervals
around those predicted individual scores. These intervals are generally
smaller than the forecast intervals around either of the F1,t�h and F2,t�h

forecasts from the earlier models.
We can evaluate the combined forecast by subtracting the combined

forecast from the actual data in the evaluation period. This subtraction
yields the residual. The residual variance and mean absolute percentage
error are computed. We can use these criteria to compare the accuracy of
the combined forecast to that of each of its component forecasts.

For a programming example of this combining process, the U.S. defense
and space equipment index reported by the U.S. Federal Reserve Board
on its World Wide Web data base (U.S. Federal Reserve Board, 1999) is
used. The index is a measure of the gross product value of defense and
space equipment produced in the United States. The reference year for
the index is 1992 and the gross product value for that year is 86.44. The
data were selected because they are central to a contemporary American
public policy controversy revolving around defense spending. Some pundits
suggest that the demise of the Cold War, the fall of the Berlin Wall in
1989, and the dissolution of the Soviet Union in 1991 have led to a reduction
of U.S. defense spending. These pundits hope that funds from this peace
dividend could be marshaled to save social security and/or medicare from
eventual depletion. Some hoped that it could increase funding of biomedical
research and national health insurance. Other scholars and commentators
contend that the decline in defense spending has seriously reduced the
ability and readiness of the United States to provide for national defense,
international security, foreign aid, and domestic disaster relief in a changing
world. The index chosen shows the rate of decline in production of defense
and space equipment from January 1988 through March 1999. These data
were subset into an historical sample extending from January 1988 through
December 1994, and an evaluation sample, extending from January 1995
through March 1999, shown in Fig. 7.11. A caveat should be noted, however,
that these models were developed on the basis of an historical sample
that does not span the time in which NATO allied countries attacked the
Milosevic regime in Serbia for the latter’s policies of mass murder of ethnic
Albanian men, rape of ethnic Albanian women, destruction of their identifi-
cation records, and the forced expatriation of surviving women and children
from the province of Kosovo. Therefore, the forecasts here are almost exten-
sions of what might have happened had the Milosevic regime submitted to
NATO’s demands that the Serbian military and paramilitary forces leave
Kosovo, that those forced out be allowed to return, and that the inhabitants
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Figure 7.11 U.S. defense and space gross product value index. Series B52008 and T52008.
1992 value weight: 84.677. Source: Federal Reserve Board Statistical Release G.17 (http://
www.bog.frb.fed.us/releases/g17/ipdisk/gvp.sa). Retrieval date: May 7, 1999.

reside under some autonomy guarded by a NATO-run peacekeeping opera-
tion. The revelations of Serbian commitment of crimes against humanity and
NATO’s military response demonstrate that the farther into the future the
forecast horizon is extended, the more likely it is that unforeseen exogenous
events may render earlier forecasts inappropriate or moot.

Two models were developed on the basis of the historical sample in
program C7pgm4.sas. The first of the two forecasting models is that of an
IMA model. The first forecast is generated and shown in Fig. 7.12.

The integrated moving average model, built from and fitted to these
data, is

(1 � L)(Defense/Space gross product value � 0.316)
� (1 � 0.302L � 0.205L18)et

and generates the first forecast shown in Fig. 7.12. The second model is a
polynomial regression model, with R2 � 0.976, that has significant linear,
quadratic, and cubic time period predictors, each of which has a p � 0.01,
and is formulated as follows:

Defense/SpaceGrossProductValuet � 97.035 � 0.197Time
� 0.011Time2 � 0.00007Time3 � et .



Figure 7.12 U.S. defense and space gross product value index. Source: Federal Reserve
Board Statistical Release G.17 Series B52008 and T52008. 1992 value weight: 84.677. Model
1: IMA forecast.

Figure 7.13 U.S. defense and space gross product value index. Source: Federal Reserve
Board Statistical Release G.17 Series B52008 and T52008. 1992 value weight: 84.677. Model
2: Estimation of polynomial regression forecast from data in the estimation sample.

259
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Figure 7.14 U.S. defense and space gross product value index. Source: Federal Reserve
Board Statistical Release G.17 Series B52008 and T52008. 1992 value weight: 84.677. Model
2: Polynomial regression forecast.

The forecast profile of the cubic regression is depicted in Fig. 7.13. Although
the fit is good in the historical period, the regression forecast in the evalua-
tion period (shown in Fig. 7.14) seriously mispredicts as the forecast is
extended further into the horizon of the evaluation sample.

The accuracy of these separate forecasts can be improved by regression
analysis. An ordinary least squares (OLS) regression analysis of the real
data in the evaluation period on the forecasts of the two models yields
predicted scores that are the combined forecast. In this program,
C7pgm4.sas, two models are developed on the basis of the historical sample.
Forecasts from each of these models are projected over the time horizon
of the evaluation sample. The actual data are then regressed on the two
forecasts. The combined forecast regression, with an R2 of 0.932 and all
highly significant parameters (p � 0.001), estimates the equation used to
project the point forecast over the time horizon of the evaluation sample:

Combined Forecastt � 63.839 � 1.157F1t � .782F2t � et

The predicted scores from this regression model are in fact the combined
forecast. The combining regression generates predicted these mean scores
along with the 95% confidence limits around the mean within the evalua-
tion sample.

The improved predictive forecast profile of this method is shown in Fig.
7.15. Graphical comparison of the combined forecast with the component
forecasts reveals how the accuracy of the combined forecast is improved.
For example, the predicted values cleave more closely to the real data than
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Figure 7.15 U.S. defense and space gross product value index. Source: Federal Reserve
Board Statistical Release G.17 Series B52008 and T52008. 1992 value weight: 84.677. Model
3: Regression combination forecast within evaluation sample.

in the polynomial regression model. The confidence intervals are smaller
than those in either component model.

We can perform a quick and partial evaluation of the combination of
forecasts by comparing the models according to some criteria of measure-
ment error. We could use the mean square error or the mean absolute
percentage error for this comparison. Although the mean square error or
error variance is commonly used, it is sensitive to outliers. Because the
mean absolute percentage error is less vulnerable to the influence of out-
liers, the mean absolute percentage error is often preferred as a criterion
of comparison. These measures can be computed for the historical sample
as well as for the validation sample. In this example, these statistics are
computed over the evaluation sample and displayed in Table 7.3. From
Table 7.3, we can see that both component forecasts have a larger error
variance and a larger mean absolute percentage error than the regression
combination of forecasts. Moreover, the regression combination of forecasts

Table 7.3

Forecast Evaluation

Mean square Mean absolute
Type of model forecast error percentage error

ARIMA forecast 5.319 2.794
Polynomial regression forecast 5.982 42.217
Regression combined forecast 0.607 0.008
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reduces the dependency of the forecast on the statistical method employed,
thereby yielding a more reliable and robust prediction.

Of course, it is possible to forecast beyond the time horizon of the
evaluation sample as well. If the researcher has reason to perform only a
short-run forecast beyond the evaluation sample, he might use the combined
forecast produced from the combining regression as a series from which
ARIMA forecasts and confidence intervals are extended beyond the evalua-
tion sample. If he has reason to believe that there is more of a long-range
trend in the series, he may use the original models to generate longer
component forecasts that extend beyond the evaluation sample. With the
combining regression developed in the evaluation sample, he may extend
the combined forecast, based on the extended component forecasts, beyond
the evaluation sample. On the basis of the extended combined forecast as
the series under consideration, he may develop an ARIMA model that
generates a forecast and its confidence limits that extend beyond the evalua-
tion sample.

Before combining the forecasts, the analyst should note that there are
matters of estimation, functional form, and power to be considered.
Whether OLS regression analysis should be used for combining forecasts
depends on the type of series that are being combined. If the series are
stationary, the regression coefficients may be relatively small and nonsig-
nificant. Under those circumstances, it may be preferable to combine fore-
casts with a simple or weighted average of the separate forecasts. The series
used for forecasting in this example is that of an integrated moving average
series, and this series is amenable to combining by OLS regression analysis.
If the series under examination possesses autocorrelated errors, then OLS
regression will be inefficient and some form of autoregression, discussed
in Chapter 10, would be preferred for combining the separate forecasts.
Alternatively, if the series under analysis exhibits deterministic trend and
ARMA errors, then a detrending regression analysis followed by an
ARIMA modeling of the errors could be used as the basis of forecast
combination (Diebold, 1998).

Although linear combinations have been employed in this example, the
functional form of the combining regression analysis need not be linear. It
can contain squared and cubic terms. It may contain interaction terms. It
can contain interactions between main effects and polynomial terms. It can
also be intrinsically nonlinear. Different models can be tried until the R2

of the combining regression is high enough or the SBC is low enough to
render the combining model worthwhile.

Moreover, it is essential that the evaluation period be long enough that
there are enough observations to confer sufficient statistical power on the
combining regression model. If the evaluation period is not long enough,
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the regression coefficients of the component forecasts may not be significant
when they otherwise would be. Of course, the higher the R2 of the combining
regression, the fewer the number of observations needed with a constant
number of component forecasts. Clearly, these matters merit considera-
tion before the analyst proceeds to combine forecasts with regression
analysis.
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Impact Analysis

8.1. INTRODUCTION: EVENT INTERVENTIONS
AND THEIR IMPACTS

The study of impact analysis shifts the reader from examination of the
univariate history of a series to the examination of multiple time-dependent
series. With impact analysis, the researcher assesses the response in a series
to a discrete event or intervention input (Makridakis and Wheelright, 1987).
These events or interventions are often unusual or singular. The interven-
tion input may be a scandal, war, embargo, strike, or price change (Pack,
1987). The response series may be a popularity rating, a gross domestic
product, industrial productivity index, or a level of sales. Gallup Poll ap-
proval ratings of how well the incumbent President is handling his job are
tallied several times a month and provide ample examples of public ap-
praisal of Presidential response to various events (The Gallup Poll, 1997).
Gallup responses are coded as approve, disapprove, or no opinion. The
percent approving the President’s handling of his job is often used as a
measure of public approval of his decisions, directives, actions, and policies.

265
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The kind of impact that these interventions have on the public approval
series may be statistically modeled. Some presidential responses to chal-
lenges have sudden and temporary impacts. For example, instantaneous
but short-lived heightening of public approval followed President Ronald
Reagan’s April 1986 retaliatory bombing of Libya for a terrorist attack on
a German disco patronized by American servicemen. In that terrorist attack,
two American servicemen were killed. The American public immediately
favored this kind of counterterrorist reprisal. The public felt that the re-
sponse was appropriate given the nature of the problem, although news of
unintended collateral damage may have attenuated residual approval. An
immediate climb in President George Bush’s presidential approval ratings
followed the rallying of an alliance of nations and the waging of the Gulf
War against Saddam Hussein after Iraq invaded the state of Kuwait. Bush’s
favorable ratings impact lasted longer than that from Reagan’s retaliatory
bombing, although Bush’s popularity waned as the economy faltered. Other
impacts are just as abrupt but more permanent in duration. The political fall-
out fromthe Watergatescandal resulted in anunprecedented decline inpresi-
dential approval ratings. President Richard Nixon’s stature and popularity
declined rapidly and failed to recover. Military strategists may study the im-
pact of various wars on U.S. gross national product or the economic warfare
waged by OPEC with its oil embargo and production cutback directed against
Israel and her allies after the Yom Kippur War of 1973. An ecologist might
study the decline in atmospheric pollutants following the passage of legisla-
tion requiring the installation of emission control devices on automobiles in
an urban area, such as Los Angeles. A criminologist may wish to examine
the effects of gun-control laws on the number of armed robbery arrests in a
given area. A psychopharmacologist may wish to study the response time
degradation on the perceptual speed of his patients that comes from their
taking particular kinds of drugs, such as chlorpromazine. Another policy ana-
lyst studying the effect of seat-belt legislation on the number of automobile
accident fatalities will be able to assess the impact on highway public safety.
Impact analysis is useful for identifying and modeling the effect of events on
a process under examination.

Some impacts are mere impulse responses in the series under examina-
tion. Not all impacts stem from exogenous events. Sometimes an outlying
observation may represent an error in the value of an item of data input.
If this outlier remains part of the series, it represents a mean deviation that
could seriously bias autocorrelation and partial autocorrelation functions.
If it is discovered later, the gross error in the data can be modeled as
an observational outlier. If an outlier has a substantial impact that lasts
throughout the series, then its presence may corrupt the ACF and PACF,
thereby undermining specification of the model (Chang et al., 1988). Once
an observation has been determined to be in error, it may be deemed



8.2. Assumptions of the Event Intervention (Impact) Model 267

missing. Missing values can be estimated by linear interpolation. We can
then replace the missing value with the estimated value to prevent corrup-
tion of the modeling process. Outliers have basically two types of impacts,
which will also be discussed in this chapter. Impact analysis permits the
analyst to model the impact of an event or outlier, thereby describing and
controlling for its effects.

8.2. ASSUMPTIONS OF THE EVENT INTERVENTION
(IMPACT) MODEL

Impact analysis is predicated on particular assumptions. The system in
which the input event and the impact response take place is assumed to
be closed. Apart from the noise of the series itself, the only exogenous
impact on the series is presumed to be that of the event or intervention.
All other things are presumed to remain the same or to remain external
to the system. Series are best analyzed when they are fairly stable and the
intervention event alone precipitates the impact. If too many significant or
important events affect the response series at about the same time, it may
be difficult to partial out the effect of a particular intervention. Therefore,
the system under observation should be one where the effects of a particular
event under examination can be easily distinguished from others. This
requirement often renders analysis of presidential approval a difficult one,
because the presidential agenda includes many important decisions in a
short span of time. Another assumption is that the temporal delimitations
of the input event or phenomenon are presumed to be known. The time
of onset, the duration, and the time of termination of the input event
have to be identifiable. Because the presence or absence of an event is a
deterministic rather than a stochastic phenomenon, the impact-generating
events can be modeled by indicator variables, such as pulse or step indica-
tors. Moreover, the ARIMA model (sometimes called the noise model),
that describes the series before the intervention, has to be stable. The
character of the noise model is assumed not to change after the beginning
of the input event; this process is supposed to continue as before even after
the inception of the intervention. The only apparent changes are assumed
to stem from the impact of the event or intervention. Another assumption
is that there are enough observations in the series before and after the
onset of the event for the researcher to separately model the preintervention
series and the postintervention series by whichever parameter estimation
process he is using. For example, a researcher wishing to show the influence
of war on annual gross domestic product would need to have yearly data
dating back to the 1920s to have enough non-wartime data to model a
comparison. From the emergence of the Cold War in 1947 until 1989, the
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United States had been on some kind of wartime footing. During most of
this time, at least one geographical part of the world has been entangled
in a bloody and costly conflict of one kind or another. Committed to
collective international, regional, and national security, the United States
has been obliged to militarily support Third World allies against unfriendly
forces in various parts of the world. Consequently, the United States has
engaged in substantial tactical and strategic military research and develop-
ment, along with weapons production and distribution, to confer upon itself
and its allies security against military threat. In each of these areas, the
United States has sought to maintain comfortable leads in the surface,
bomber, naval, and missile, as well as computer, communication, command,
control, and intelligence (C4I), modernization races. Owing to this resource
commitment and mobilization, the analyst would have to reach back into
the 1920s for GDP levels during times of complete peace. This means that
the intervention analysis of war on annual GDP would require a much
longer series, the first segment of which would have to extend over portions
of the 1920s, than an ordinary ARIMA model would need.

8.3. IMPACT ANALYSIS THEORY

The impact response model is formulated as a regression function. With
the dependent variable representing the response series, the regression
model contains independent variables consisting of an ARIMA noise model
and an intervention function. More specifically, the response variable, Yt ,

is a function of the preintervention ARIMA noise model plus the input
function of the deterministic intervention indicator for each of the interven-
tions being modeled:

Yt � Nt � �t
�f(It), (8.1)

where

Nt � ARIMA preintervention model
f (It) � intervention function at time t.

8.3.1. INTERVENTION INDICATORS

The f (It) is a function of a deterministic (dummy) intervention indica-
tor. The summation of these functions suggests that there can be more than
one intervention and that all of the intervention indicators are ultimately
included. The intervention indicator is an exogenous variable whose discrete
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coding represents the presence or absence of an input event. If the interven-
tion function is a step function, then the value of f (It) is 0 until the event
begins at time T. At the onset of the event, the intervention function f (It)
is equal to 1. The intervention remains at 1 for the duration of the presence
of the event, as can be seen in Eq. (8.2):

f (It) � S(t) when S(t) ��0 when t � T

1 when t � T
� (8.2)

S(t) � step function.

If f (It) is a pulse function, then a different condition obtains. Prior to the
event, the intervention indicator is coded as zero. At the instance of onset,
the intervention function is coded as one. It remains one for the duration
of the presence of the event, which in the case of a conventional pulse is
only one time period, or in the case of an extended pulse, the time period
spanned by the duration of the event. A pulse function is shown in Eq. (8.3):

f (It) � P(t) when P(t) ��0 when t � T

1 when t � T
�. (8.3)

The step and conventional pulse functions are input variables. They are
interrelated. Actually, the pulse function is merely a transformed step
function; the pulse function is a differenced step function:

P(t) � (1 � L)S(t). (8.4)

The coding for the indicator variables representing these input functions
is given in Table 8.1. The coding of the intervention indicator can be used

Table 8.1

Indicator Coding for Pulse and
Step Function Inputs

Pulse function Step function

Time (t) P(t) Time (t) S(t)

1 0 1 0
2 0 2 0
3 0 3 0
4 0 4 0
5 0 5 0
6 1 6 1
7 0 7 1
8 0 8 1
9 0 9 1

10 0 10 1
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to specify the presence or absence of a particular input phenomenon, such
as one of those mentioned. In Table 8.1, note that the onset of the interven-
tion input begins in time period 6 (t � T) and remains for only one period
in the case of the pulse, but remains for the duration of the time periods
in the case of the step function. The pulse function can also be used to code
the transient presence of an observational outlier (McDowell et al., 1990).

8.3.2. THE INTERVENTION (IMPULSE RESPONSE) FUNCTION

Changes in the level or shape of a series at the time of the impact of
an input indicator are presumed to be responses to the intervention. For this
reason, it is important to appreciate the general structure of an intervention
function over time. One function will be considered at a time. The structure
of the intervention function determines the shape of the impact over time
on the series under consideration. The dependent series responds in a
particular form because it is dependent on the intervention input. The
response function is characterized according to whether it is basically one
of a step or a pulse. A step function is generally formulated as

f (It) � S(t) �
�(L)It�b

1 � �1L
(8.5)

where

�(L) � �0 � �1L � �2L2 � ��� � �sL
b,

whereas a simple intervention pulse function is formulated as

f (It) � P(t) �
�i(L)It�b(1 � L)

1 � �1L
, (8.6)

where

�s(L) � �0 � �1L � �2L2 � ��� � �sL
s.

To define and explain the operation of the impulse response function f (It),
the components of the numerator of a simple step function, called a zero-
order function, will be addressed first:

f (It) � S(t) � �0It�b . (8.7)

8.3.3. THE SIMPLE STEP FUNCTION: ABRUPT ONSET,
PERMANENT DURATION

Suppose the input event is properly represented by a dummy variable.
A step function represents permanent change in a response. When the
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denominator of the step function in Eq. (8.5) reduces to unity, what remains
is the simple step function in Eq. (8.7). The components of this step function
include the regression coefficient of the intervention, �0, representing some
gain or loss; the intervention indicator variable, It�b, which some call the
change agent (McDowell et al., 1980), coded as a 0 or 1 to indicate the
absence or presence of the intervention; and the time delay involved for
the impact to take effect, the subscript b. Suppose for the sake of simplicity,
that the time delay is nonexistent—that is, b � 0. We can observe the
nature of the step function by the change in level of the series at the time
of onset of the event. A positive �0 would indicate a rise in the level of
the series at the time of impact of the intervention. A negative �0 would
indicate a drop in the level of the series at the time of impact of the
intervention. The magnitude of the slope, �0 , would indicate the size of
rise or drop in the level. Therefore, one could compute, respectively, the
magnitude of this regression effect and its variance by

�̂ �

�
T

YtIt

�
T

Y 2
t

(8.8)

Var(�̂) �

 2

e�
T

Y 2
t

.

A distinction can be drawn between the time of incidence of the interven-
tion and the time of impact on the response variable, Yt . The b index in
the t � b subscript of the intervention indicator value represents the number
of periods of delay between the instance of the intervention and the time
of its impact on the response. If b � 2, there would be two periods of delay
between the intervention and the time at which its impact is observed in
the response variable Yt . If the b � 4, then there would be a lapse of four
time periods before the impact of the intervention was experienced by the
response variable. If b � 0, the response to an input step function is abrupt
and permanent.

To illustrate this relationship between the response and the intervention,
a simplifying assumption that the noise model contributes nothing to the
response Yt is made. Assume for the sake of simplification that the value
of the delay parameter b � 0 for this case. In this case, the value of It�b �
It . The value of the response Yt becomes dependent solely on the functional
relationship between Yt and It , in the case that f (It) is a step intervention.
Prior to the instance of the intervention, the value of t is t � T and the
value of It is 0, as can be seen in Fig. 8.1. At time t � T, the value of It

becomes 1. At time t � T, the value of It remains 1.0. Let the regression
coefficient, �0 , be equal to 0.5, and if there is no delay, then the change in
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Figure 8.1 Zero-order step function.

the response Yt can be seen to jump from 0.0 to 0.5 in one period of time.
At the time of intervention, there will be an immediate increase in level
of the response by a positive 0.5 value of Yt . Of course, if the value of the
regression coefficient were �1, then there would be a drop in the magnitude
of the response by 0.5. The new level would be maintained for the duration
of the series.

Suppose the value of the delay parameter were other than zero. If
b � 3 and �0 � 0.50, then there would be a lag of three time periods before
the response function Yt would be changed by a factor of the regression
coefficient, multiplied by the value of It . Let the value of It suddenly jump
from 0.0 to 1.0. The value of Yt would abruptly be increased by a value of
0.50 three time periods later. If b � 9, then the delay before the change
in Yt would take place would be nine time periods. In this way, the delay
parameter is subsumed as part of the step function. To the extent that the
delay parameter is other than zero, the onset is less than instant. Nonethe-
less, when it kicks in, the onset is abrupt and permanent in this case.

8.3.4. FIRST-ORDER STEP FUNCTION: GRADUAL ONSET,
PERMANENT DURATION

The first-order step function can be elaborated as a ratio that includes
a numerator such as that already described, as well as a denominator that
includes a single rate (decay) parameter (Makridakis et al., 1983). The
single rate parameter, �1 , is part of the denominator of the first-order step
response function. The order of the response function is equal to the number
of rate parameters in the denominator:

St � f (It) �
�0It�b

1 � �1L
. (8.9)
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When the rate parameter �1 � 0 or when the lag operator L � 0, the
denominator reduces to unity and the formula reduces to that of Eq. (8.7).
If the denominator reduces to unity, the onset of the impact is abrupt and
instantaneous. If this rate parameter is greater than zero but less than unity
and the input is a step function, there is a gradual increase in the level of
the response until a permanent level is attained. The rate parameter controls
the gradualness of the growth in the impact after onset. The lag operator,
L, controls the lags at which this gradual increase is experienced. When
there is one time lag in the function, the function is generally called a first-
order impulse response function.

Consider the operation of the first-order response function to a step
intervention. Suppose that the ARIMA noise model is pure white noise
and is negligible. Assume also that the value of the series is zero prior to
the intervention. Assume the value of the intervention indicator prior to
the onset of intervention at time T is zero and also that the lag time before
impact b equals zero as well. The general formula for this impact is

Yt � �1Yt�1 � �0It�b . (8.10)

At time t � T this process yields

Yt � �1 � 0 � �0 � 0 � 0. (8.11)

When time t � T, the series jumps from zero to a level equal to the
regression coefficient:

Yt � �1 � 0 � �0 � 1 � �0 . (8.12)

At time t � T � 1, the process adds an increment of the regression coefficient
times the rate parameter to the equation:

YT�1 � �1 � �0 � �0 � 1 � �1�0 � �0 . (8.13)

At time t � T � 2, the process acts as though the rate parameter is an
autoregression coefficient and adds a new level to the series. The added
increment is equal to the previous series level times the rate coefficient:

YT�2 � �1(�1�0 � �0) � �0 � 1
(8.14)

� � 2
1�0 � �1�0 � �0 .

By induction, it can be seen that as long as the rate parameter, �1 , is greater
than 0 and less than 1, a smaller increment is added to the impact at
each time period after the impact. The general function defining this pro-
cess is

YT�n � �1(�n�1
1 �0 � � n�2

1 �0 � ��� � �0 � 1)
(8.15)

� � n
1�0 � � n�1

1 �0 � ��� � �0 .
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Figure 8.2 Step response functions for different decay parameters.

The shape of this impact is gradually increasing at a declining rate impact
with permanent duration, which depends on the magnitude of the rate
parameter, �1 , as can be seen in Fig. 8.2.

In general, the shape of the first-order function may change as the
magnitude of the rate parameter changes. The closer the value of the rate
parameter, �1 , is to zero, the more closely the response function approxi-
mates a sharp step upward from one time period to the following time
period. The closer the value of the rate parameter, �1 , is to unity, the more
gradually and quickly the response approaches its upper limit. Three values
of rate parameters are shown in Fig. 8.2 along with the corresponding
response functions.

Let us consider how this process works. The assumption that the preinter-
vention series is equal to zero is used for simplification. Also for simplifica-
tion, assume that the delay parameter b � 0, the slope parameter �0 � 1,
and the rate parameter �1 � 0.5. The impulse response function in this
case equals

Yt �
�0It

1 � L
� Yt�1 � �0It . (8.16)

When time t � T, the intervention indicator equals 0 and the series re-
sembles

Yt � 0.5 � 0 � �0 � 0 � 0. (8.17)

At the time t � T,

Yt�T � 0.5 � 0 � �0 � 1 � �0 . (8.18)
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Figure 8.3 Step response function with delta 1 � 1 is a ramp function.

Then when t � T � 1,

Yt�T�1 � 0.5 � �0 � �0 � 1 � 1.5 � �0 . (8.19)

Then when t � T � 2,

Yt�T�2 � 0.5 � 1.5�0 � �0 � 1 � 1.75 � �0 . (8.20)

When t � T � 3,

Yt�T�3 � 0.5 � 1.75�0 � �0 � 1 � 1.875 � �0 . (8.21)

From these examples, the attenuation of slope as the series finds its new
level is controlled by the rate parameter. When the rate parameter �1 is
set to unity, this creates a constant linear trend that transforms the response
into the ramp function shown in Fig. 8.3. Alternatively, if �0 � 0 and �1 �
1, then the ramp function is one that is declining instead of inclining. Figure
8.4 presents an example of a negative ramp function. Similarly, by allowing
�1 � 1, the ramp levels off as it decreases, as can be seen in Fig. 8.5.

Figure 8.4 Negative ramp function with omega 0 � 0 and delta 1 � 1.
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Figure 8.5 Scree response function with �0 � �1 and �1 � 0.5.

To recapitulate, a first-order step response, Yt � �0It�b/(1 � �1), �
�0(1 � �1L � �1L

2 � � �1L
n)It�b , has a response series, a regression slope,

a rate parameter, a delay parameter, and an intervention indicator. The Yt

is the response series. It is the intervention indicator, a dummy variable
coded to indicate absence or presence of the intervention. The b in It�b is
the time delay parameter, the number of time periods in the delay before
the effect of the intervention is experienced. The regression level parameter
is �0 . Positive values of omega, �0 , assure a positive level, whereas negative
values of �0 provide for a negative level. The rate parameter in a first-order
step function is �1 . The rate parameter controls the decay or attenuation rate
of the level of the response. A step function with �1 � 1 has no leveling
off of slope. With a rate parameter midway between one and zero, there
is a gradual attenuation of slope. With �1 � 0, there is an abrupt, vertical
increase the size of �0, the regression coefficient, in slope of the series. If
�1 � 0, then there will be attenuating oscillation as long as ��1� � 1. The
latter condition is referred to as the lower boundary of system stability.

The analyst has to be wary of violations of the boundaries of stability.
If a boundary of system stability is violated, the change does not converge
to a limit. When �1 � 1, the series oscillation, instead of attenuating,
oscillates with increasing amplitude. When �1 � 1, the series trends upward
with increasing amplitude toward an infinite slope. Either violation pro-
duces an explosive or chaotic process that for practical purposes becomes
unmanageable.

8.3.5. ABRUPT ONSET, TEMPORARY DURATION

When a time plot reveals a series level that suddenly shifts at the time
of intervention but immediately returns to its previous level, the impact of
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the exogenous intervention can be modeled by a pulse response function.
The pulse function has been formulated in Eq. (8.6). To understand the
functional relationship between the pulsed input and the response, it is
helpful to consider what is happening before, during, and after the inter-
vention.

Some simplifying assumptions are made: that the value of the series
prior to the time of intervention is zero, and that the delay time, b, is zero.
At the time of intervention, t � T, the presence of the intervention, It ,
coded as one at this point in time, has an impact on the series. The magnitude
of the sudden impact is measured by the regression coefficient, �0 . In these
terms, the pulsed impact can be represented by the elaborated formula in
Eq. (8.22):

Yt � �1Yt�1 � �0It(1 � L)
(8.22)

� �1Yt�1 � �0It � �0It�1 .

When the step function is differenced, it becomes a pulse function. The
elaboration of the pulse function can be seen in Eq. (8.22): The effect of
this differencing is to subtract the lagged value of �0It�1 , the last product
on the right-hand side of the equation, from the �0It , the next-to-last
product on the right-hand side.

This first-order pulse response function has a structure that endows it
with a sudden peak and a more or less gradual return to its previous value.
This response function can be represented by some delta parameter times
the lagged response value plus some regression coefficient times the pulse
function. Given the simplifying assumptions, when time t � T, the value
of the intervention indicator, It , and its lagged value, It�1 , are both zero
and the value of the lagged series value, Yt�1 , is zero. Therefore, before
the time of intervention, the value of the series, Yt , is zero. In Table
8.2, the values of the parameters, shown at each point in time, facilitate
understanding of the calculations. The coding of these parameters before
the intervention may be seen in the first two rows of data in Table 8.2.

If we presume that the value of the �0 regression coefficient is 0.5 and
that the value of the �1 parameter is 0.3, then the value of the series before
the intervention can be computed from

Yt�T � 0.3 � 0 � 0.5 � 0 � 0.5 � 0 � 0. (8.23)

When t � T, the time of the intervention, the value of the intervention
indicator changes to unity. Its lagged value is still zero. But now the series
value suddenly jumps to a peak of 0.5:

Yt�T � 0.3 � 0 � 0.5 � 1 � 0.5 � 0 � 0.5. (8.24)

After the intervention time, the level of the series begins to diminish. At
t � T, the lagged value of the intervention is still zero. But at t � T � 1,
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Table 8.2

Pulse Response Function of Abrupt Onset, Temporary Duration:
Yt � �1Yt�1 � 	0It(1 � L)

Time Yt �1 Yt�1 �0 It �0 It�1 �0It(1 � L)

T � 2 0.0000 0.3 0.0 0.5 0 0.5 0 0.00
T � 1 0.0000 0.3 0.0 0.5 0 0.5 0 0.00
T 0.5000 0.3 0.0 0.5 1 0.5 0 0.50
T � 1 0.1500 0.3 0.5 0.5 1 0.5 1 0.00
T � 2 0.0450 0.3 0.15 0.5 1 0.5 1 0.00
T � 3 0.0135 0.3 0.045 0.5 1 0.5 1 0.00

the lagged value of the series, Yt�1 , equals 0.5. The lagged value of the
intervention indicator is now unity. However, the differencing takes effect.
The differencing subtracts the regression effect at its previous value from
that at its current value. What remains is the value of the rate parameter
times the lagged value of the series. The net effect is that of a reduction
in the value of the series, as can be seen in Eq. (8.25). The value of the
series declines from 0.5 to 0.15:

Yt�T�1 � 0.3 � 0.5 � 0.5 � 1 � 0.5 � 1 � 0.15. (8.25)

Similarly, at the next time period, t � T � 2, the same process is at work.
The pulse effect of subtracting the regressed lagged intervention indicator
from its current value reduces this value further:

Yt�T�2 � 0.3 � 0.15 � 0.5 � 1 � 0.5 � 1 � 0.045. (8.26)

At this point in time, all that remains is the lagged value of the series of
0.15 multiplied by the rate parameter of 0.3 to yield 0.045, further diminish-
ing the level of the series. After the passage of several periods of time, the
level of the series declines to its previous value, a graph of which is shown
in Fig. 8.6.

The sharpness of attenuation is controlled by the positive magnitude of
the rate parameter. When the rate parameter �1 � 1, there is no decay:
The effect is that of a step function. When the value of the delta is less
than but close to unity, there is slow decay. A value of 0.8 or 0.9 would
mean very gradual attenuation of the level of the series as time passes. In
contrast, a value of 0.1 or 0.2 yields a much steeper and rapid decay of the
level of the series with the passage of time.

8.3.6. ABRUPT ONSET AND OSCILLATORY DECAY

When a pulse input function possesses a negative rate parameter, the
series response function with a pulse input assumes a different shape,
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Figure 8.6 Pulse response function: abrupt onset, temporary duration; delta 1 � 0.3,
omega 0 � 0.5.

Yt � �0/(1 � �1)It�b(1 � L) � �0(1 � �1L � �1L2 � � � �)It�b(1 � L).

Suppose there is a first-order decay process—with only a single small nega-
tive �1 rate parameter—then the response reaches a peak and then decays
with oscillation. If the rate parameter has a value of �1, then unattenuated
oscillation takes place. This is an example of a nonstationary process. The
rate parameter may range from �1 to 0. The closer �1 is to �1, the more
unattenuated the oscillation, whereas the closer the negative rate parameter
is to zero, the more the decay in the oscillation. When the pulse input is
used, the oscillation fluctuates around zero. When a step input is used with
a negative pulse and a first-order decay, the oscillation fluctuates around
the level of the first regression peak, �0. An example of a pulse input
function with a first-order negative decay is given in Fig. 8.7.

8.3.7. GRADUATED ONSET AND GRADUAL DECAY

Sometimes the impulse response function appears to be one of gradual
onset coupled with more or less gradual decay. The researcher can construct
this compound response function by combining two step input functions.
The gradual onset is produced by a second-order (two rate parameters in
the denominator) step function, whereas the temporary duration can be
produced by the subtraction of the third lag of the same function. Consider
the following higher order response function equation:

Yt �
�0It � �0It�3

(1 � �1L � �2L2 � �1L4 � �2L5) (8.27)

� �1Yt�1 � �2Yt�2 � �1Yt�4 � �1Yt�5 � �0It � �0It�3 .
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Figure 8.7 Pulse response function: abrupt onset, temporary duration; �1 � �0.3,
�0 � 0.5.

When we expand this equation, with the same simplifying assumptions used
before, over the time line before and after intervention, in Table 8.3, we
display the calculated impact response in Fig. 8.8. If we eliminated from
the denominator, the third and fourth delta parameters, we would have a
simpler function. With two delta parameters, we would have a second-
order response function. Second-order response functions can be used to
introduce varying or undulating decay rates. The roots of the delta polyno-
mial, (1 � �1L � �2L2), control the extent of dampening of the decay rate.
In the second-order case, complex roots underdampen and yield undulation,
real roots dampen and therefore attenuate decay, whereas real and equal
roots critically dampen the decay rate (Box et al., 1994).

We can also combine the same response functions with different parame-
ters to generate compound response functions. By conjoining different
response functions with various parameters, we can construct a variety of
compound response functions. Readers interested in compound response
functions may refer to Mills, 1990 and to Box et al., 1994.

8.4. SIGNIFICANCE TESTS FOR IMPULSE
RESPONSE FUNCTIONS

Most statistical packages employ standard T tests, in which the
parameter is divided by its asymptotic standard error, to test for the statisti-
cal significance of the parameters. Both SAS and SPSS employ these tests
to evaluate the parameter significance. Although statistical packages usually
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Table 8.3

Data for Compound Response Function with Graduated
Onset and Gradual Decline Response

(Yt � �1Yt�1 � �2Yt�2 � �1Yt�4 � �1Yt�5 � 	0It � 	0It�3)

Time �1 �2 �0 It Yt�1 �1Yt�1 �2Yt�2 �0It Y1t Y2t Yt � Y1t � Y2t

1 0.5 0.3 3 0 0.00 0.00 0.00 0 0.00 0.00 0.00
2 0.5 0.3 3 0 0.00 0.00 0.00 0 0.00 0.00 0.00
3 0.5 0.3 3 0 0.00 0.00 0.00 0 0.00 0.00 0.00
4 0.5 0.3 3 0 0.00 0.00 0.00 0 0.00 0.00 0.00
5 0.5 0.3 3 0 0.00 0.00 0.00 0 0.00 0.00 0.00
6 0.5 0.3 3 1 0.00 0.00 0.00 3 3.00 0.00 3.00
7 0.5 0.3 3 1 3.00 1.50 0.00 3 4.50 0.00 4.50
8 0.5 0.3 3 1 4.50 2.25 0.00 3 5.25 0.00 5.25
9 0.5 0.3 3 1 5.25 2.63 0.90 3 6.53 3.00 3.53

10 0.5 0.3 3 1 6.53 3.26 1.35 3 7.61 4.50 3.11
11 0.5 0.3 3 1 7.61 3.81 1.58 3 8.38 5.25 3.13
12 0.5 0.3 3 1 8.38 4.19 1.96 3 9.15 6.53 2.62
13 0.5 0.3 3 1 9.15 4.57 2.28 3 9.86 7.61 2.25
14 0.5 0.3 3 1 9.86 4.93 2.51 3 10.44 8.38 2.06
15 0.5 0.3 3 1 10.44 5.22 2.74 3 10.97 9.15 1.82
16 0.5 0.3 3 1 10.97 5.48 2.96 3 11.44 9.86 1.58
17 0.5 0.3 3 1 11.44 5.72 3.13 3 11.85 10.44 1.41
18 0.5 0.3 3 1 11.85 5.93 3.29 3 12.22 10.97 1.25

Figure 8.8 Compound response function: graduated onset, gradual decay.
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employ such T tests for assessment of the statistical significance of the
components for the response functions, T tests may not be the most appro-
priate for the analysis of impacts. Box and Tiao (1975, 1978) point out that
the dynamic characteristics of the intervention and the serial correlation
in the series bias such significance tests. Likelihood ratio tests have been
suggested for use instead. Suppose a pulse response function represents an
observational (additive) or innovational (with more lasting effect) outlier.
Chang et al. (1988) and Box et al. (1994) suggest that the significance of
the function may be found by the following formulas.

A significance test for an innovational outlier is

�I,T �
�̂I,t


e

and a significance test for an observational (additive) outlier is

�O,T �
�̂O,t


e

, (8.28)

where

�̂ � regression coefficient


e � asymptotic standard error

 � ��n�T

i�0

	2
1

	i �
	i(L)

�i(L)
.

A more detailed theoretical derivation of the likelihood ratio tests may be
found in Box and Tiao (1975). We can test the significance of other impulse
response functions by such likelihood ratio tests. Yet likelihood ratio tests
usually require large sample sizes for proper assessment, and sufficiently
large sample sizes may not always be available.

8.5. MODELING STRATEGIES FOR
IMPACT ANALYSIS

There are two basic modeling strategies used in intervention analysis.
In the preferred and conventional approach, the preintervention series is
modeled first, and the impact is modeled afterward. In the alternative
approach, the modeling of the impact is undertaken on the whole series
before the modeling of the residual noise model. We will address the former
strategy first.
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8.5.1. THE BOX–JENKINS–TIAO STRATEGY

With both strategies for intervention analysis, the analyst reviews the
literature concerning the preintervention series, the intervention input, and
the observed impact of the input on the post intervention series. He must
examine the timing of the onset, duration, and termination of the input
event under examination so he can distinguish real from spurious im-
pacts. With the conventional strategy, the analyst then divides the sample
into two segments, the preintervention series and the postintervention
series.

With the conventional strategy, the analyst should be sure there are
enough observations inthe preintervention model for separate ARIMA
modeling. Then he graphs the preintervention series, examines it, and
checks it for outliers. If there are outliers in the preintervention series and
if there are enough observations prior to the incidence of the outliers,
they may be identified, deemed missing values, and replaced by means of
adjacent observations or by linear interpolations. After initial replacement
of outliers, the analyst should recheck the series for outliers; if they exist,
they should be replaced. This process should be reiterated until all outliers
are smoothed out.

With an ARIMA model building protocol, the researcher transforms to
stationarity, identifies, estimates, and diagnoses the ARIMA noise model
for the preintervention series. Alternative noise models are estimated. After
he finds the residuals of the preintervention models to be white noise, the
researcher may compare models of the preintervention series. He metadi-
agnoses alternative models and selects the optimal noise model. An assump-
tion is made that this noise model remains stable throughout the analysis
and that any change in the process follows from the impact of the event
or input.

A review of the source and nature of the intervention follows the model-
ing of the preintervention series. The researcher assesses the source of the
exogenous input and determines whether the impact stems from the step
or pulse input process. Then he codes the source of the input as a dummy
variable to represent the presence or absence of the exogenous event. A
graph of the series is plotted. The researcher must be careful to distinguish
between a pulse, whether singular or seasonal, event input and an outlier.
If there is a distinct outlier, he needs to deal with the outlier separately
from the impact of the event. The timing of the input event is usually
known and can often be distinguished from extraneous events with un-
known timing. If the impact of the input event suddenly appears and sud-
denly disappears, it may be represented by a pulse function. If the source
of the pulse is an observational outlier whose timing was not previously
known, it may also be smoothed out or coded as a separate pulse. If there
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are plenty of observations prior to the appearance of an observational
outlier, then the preoutlier ARIMA noise model up to the impact of that
outlier is estimated. The detected observational outlier may be modeled
as a pulse input or smoothed out. If the outlier has an innovational, that
is, more or less lasting, effect on the series, it needs to be modeled as an
impulse response function of a pulse effect plus noise. (Box et al., 1994).
The researcher should use likelihood ratio tests to detect the significance
of a possible outlier or pulse function. If the outliers are ignored and left
in the series, they may seriously bias the ACF and PACF of the series
(Mills, 1990). Such biases may impair specification of the noise or transfer
function model. For these reasons, detection, identification, and modeling
of outliers may be important (Chang et al., 1988; Mills, 1990) and may have
to be based on a scholarly study of the situation. Even though the timing
of outliers is generally unknown, they may be modeled to preclude biasing
specification of the model.

Once the outliers have been modeled or replaced, the quantity of the
other inputs should be addressed. There may be no impact, one impact,
or multiple impacts. If there are multiple inputs, they may be separated
from the primary input by enough time and data to allow them to be
modeled as well. The analyst should test alternative explanatory inputs of
phenomena. He needs to examine the nature of each of these alternative
explanatory inputs, particularly their duration. If the event abruptly occurs
and abruptly disappears, the event may be modeled as a pulse function. If
the event suddenly occurs and remains for a short duration, it can be
modeled as an extended pulse function. (Extended pulses are coded as
unity as long as the event is present and zero at all other times). If the
event appears and remains, it can be coded as a step function. The analyst
can assess the fit of the model after formulation and inclusion of the input.
In these ways, he can model the nature of the deterministic input.

There are several ways to assess the nature of each impact (Vandaele,
1983; Mills, 1990). First, the researcher should review the literature to gain
an idea what kind of impact to expect. He can formulate a null hypothesis
of no impact and a research hypothesis based on the literature and theory.
In his first assessment of impact, he can test this hypothesis with observation
of the postintervention response. Second, the researcher should check to
see whether the noise model remains stable over the whole series. This
entails an iterative process of checking to see whether the ARIMA noise
model parameters remain significant both before and after the intervention
impact, and whether their sign and magnitude remain stable as well. The
ARIMA noise is modeled separately before and after the intervention.
If the noise model parameter values remain stable before and after the
intervention, the noise model appears to be stable. If the noise model is
stable across the time span of the whole series, then an ARIMA model
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for the noise can be reliably formulated on the basis of the preintervention
series. If the system is fairly isolated from other impacts, then the residuals
after the onset of intervention should come from the impact of the interven-
tion alone. The researcher should test the response series for isolation from
other possible impacts by defining input variables for plausible alternative
inputs and confirming they have no significant input by testing for signifi-
cance and reviewing the residuals.

The researcher may begin testing his research hypothesis by modeling
the impact. The first impact is indicated by the regression coefficient, �0 ,
at time lag b. Subsequent impacts can be formulated as a ratio of the
numerator to the denominator parameters: ��i(L)/(1 � ��i(L)). De-
pending upon whether the intervention indicator is a pulse or a step func-
tion, the impact should assume the shape indicated in the graph of the
series at and after the impact of the intervention on the response series.
The analyst tries to identify the impact model from the change in the series
following the intervention. To do so, he focuses on several aspects of the
impact. He considers the nature of onset and duration of the change in the
postintervention series. He may focus on a change in mean level, a change
in slope, or even a change in variance of the series. He notes whether this
change at the onset of the intervention is sudden or gradual. He also
examines the duration of the change for transience or permanence. He
checks to see whether the postintervention process levels off, oscillates, or
decays. From these aspects of the shape of the impact, he guides the
construction of the impulse response function. Whether the onset is abrupt
or gradual and whether the change is transitory or permanent determines
the nature of the response. The change in shape of the output series will
determine what kind of response function the analyst endeavors to model.

8.5.2. FULL SERIES MODELING STRATEGY

The analyst may have reason to try an alternative strategy for interven-
tion analysis. When he graphically examines the series before, during, and
after the event or intervention, he might encounter one of three situations
that make an alternative modeling strategy preferable. First, the series
may not be long enough to be segmented into pre- and postintervention
segments. The researcher might decide that circumstances require modeling
the impact first and the noise last. Second, the impact of the intervention
might appear to have an overwhelming influence on the level or slope or
variance of the series, making it reasonable to model the impact first and
the residual noise later. Third, under other circumstances, if the salient
shape of the impact, as seen from the time plot, is found to be transient,
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the whole series may be used as a basis of assessment of the nature of the
impact (McCain and McCleary, 1979).

An analyst might try to model the intervention by reviewing the cross-
correlation function (CCF) between the deterministic input indicator and
the response series. The cross-correlation function is similar to the autocor-
relation function except that it is computed as a correlation between the
input variable and output series. The cross-correlation function is asymmet-
ric: Significant positive spikes indicate that the input variable variations
lead the corresponding variations in the output variable, and significant
negative spikes indicate possible feedback from the output to the input
variable. The delay in the response will be apparent in the cross-correlation.
The cross-correlation function depends on the inverse filtering out (a pro-
cess known as prewhitening, which will be discussed in detail in the next
chapter) of the autocorrelation of the input series to preclude contamination
of the cross-correlation between the input and output series. In the case
of intervention models, the input is deterministic, coded as a dummy vari-
able, and is not prewhitened. For these reasons, the shape of the impulse
response weights may not be proportional to the cross-correlations. More-
over, negative spikes on an intervention that has not yet taken place make
no sense and may well be ignored. Even though the cross-correlation func-
tion may be indicated in the SAS programming syntax, the shape of the
postintervention pattern in the graphical time plot is really the theoretic
and empirical basis for the identification of the impact (Brockelbank and
Dickey, 1986; Box et al., 1994; Woodfield, 1987; Woodward, 1998). Nonethe-
less, the lag time between incidence of the event and impact is easily
identifiable from a cross-correlation plot.

The analyst should generally seek to model impacts from external inter-
ventions. He should not arbitrarily use pulse functions to control for random
irregular residuals (Vandaele, 1983). To test the intervention hypothesis,
he must examine the approximate T test statistics for the parameters hy-
pothesized. If any parameter T values are less than 1.96 and nonsignificant,
he needs to try to eliminate the parameters. If any parameters are significant,
he may retain those parameters in the model. He needs to examine the
residuals for white noise to see whether he has modeled all of the signifi-
cant variation.

A step or pulse can be modeled easily, merely by including the input
indicator coupled with the proper time delay parameter. If the size of the
spikes in the time plot becomes pronounced at the second lag after impact,
then the delay time should be two periods. If the spike is at the third lag,
then the dead or delay time should be three time periods. A pulse response
function would be represented by an instantaneous spike in the response
series, whereas a step response function would be represented by an abrupt
and permanent change in the response series.

If the change in the series appears delayed but sharp and temporary,



8.5. Modeling Strategies for Impact Analysis 287

then the pulse function may be coupled with a delay parameter as in Eq.
(8.22) to model this process. When the response polynomials have been
modeled so that there is a noise as well as a response function, the residuals
should be diagnosed, checked, and refined so that the residuals are ulti-
mately white noise. Ultimately, the researcher will have to metadiagnose
the alternative models. The residuals will have to be checked for white
noise. Different estimation techniques may have to be tried. The parsimony
of the model will have to be compared with minimum information criteria,
such as the AIC and SBC. The model with the smallest SBC will be deemed
the optimal one.

In sum, impact analysis modeling strategy involves several steps. If there
are enough observations in the pre- and postintervention data sets for
separate modeling, the preintervention ARIMA noise model is undertaken
first. The transformation and differencing of the series is first performed
to effect stationarity. Unit-root tests—for example, the augmented Dickey–
Fuller test—may be used to determine whether stationarity has been at-
tained. An ARIMA noise model is developed with the assistance of the
ACF and PACF. If an ARMA noise model is formulated, the corner
method or EACF may be used to find the optimal order. The model is
identified with the help of the ACF and PACF; then the model is estimated
with conditional least squares, unconditional least squares, or maximum
likelihood. Diagnosis of the model involves review of the residuals, checked
against the portmanteau or modified portmanteau Q statistic, which indicate
whether this ARIMA noise model is adequate. Metadiagnosis facilitates
identifying the optimal ARIMA noise model.

Once the preintervention ARIMA noise model is formulated, the impact
on the postintervention series may be modeled. If there the impact on the
response series is very large in relation to other variation in the series, or
if there are not enough observations in the overall series for separate
modeling of the pre- and postintervention data sets, then the impact of the
intervention on the series is modeled first. Alternatively, the postinterven-
tion series is reviewed and the impact is modeled. Identification of the
transfer function is based on what is known and observed about the impact
of the intervention. The time sequence plot shows the change from preinter-
vention to postintervention. Modeling the impact involves observing the
changes in mean level, slope, or variance of the series at particular time
lags after intervention, which indicate the delay time for the impacts. The
analyst will examine the onset and duration of the response. Whether the
onset is abrupt or gradual and whether the duration is constant or temporary
will determine the type of parameters tested. Sudden and constant changes
are attributed to step functions. Sudden and instantaneous changes are
modeled with pulse functions. Gradual and permanent increases may be
modeled with step functions with first-order decay rates. Sudden and de-
caying responses are modeled with pulsed functions with first-order decays.
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Gradual onset and gradually decaying responses may be modeled with
compound functions. Estimation of the impact parameters should reflect
what is known and observed about the impact of the intervention. The
impact model should be as theory-driven as possible. Diagnosis of the
impact model includes hypothesis testing about the impact parameters
and entails trimming the impact model of nonsignificant effects as well as
retaining theoretically and statistically significant effects. The likelihood
ratio or T statistics will indicate which ARIMA and intervention parameters
should be retained. When the residuals are white noise, then the adequacy
of the model of the intervention model will be established. Alternative
models should be compared according to their explanatory power, explana-
tory appeal, parsimony, AIC, or SBC. All other things being equal, the
model with the lowest information criterion should be the optimal model.
This model programming strategy holds for modeling the impact of events
as well as outliers.

8.6. PROGRAMMING IMPACT ANALYSIS

Basic intervention analysis is possible with both SAS and SPSS. At
the time of this writing, the SAS Econometric Time Series module has
much more power and flexibility than does the SPSS Trends module for
handling complicated impact analysis. Both SAS and SPSS permit the
researcher, of course, to code either pulse or dummy input variables. Both
SAS and SPSS permit the differencing of these variables. Both permit the
inclusion of multiple discrete deterministic input variables into an ARIMA
model. Therefore, both permit the modeling of simple step and pulse input
functions as independent variable in a multiple time series model. For the
simplest of intervention models, either SPSS or SAS does very well.

In the simplest of intervention models, SPSS syntax utilizes a dummy
(step or pulse) intervention indicator, called X. The ARIMA procedure
syntax merely models the ARIMA process on the data before the interven-
tion. Then the whole data set is included. The intervention indicator is
added to the ARIMA syntax by the ‘‘with’’ option. Remember, SPSS
command syntax has to begin in the first column of the syntax window.
For example:

ARIMA Response with X/

Model�(0,1,1)(0,1,1)12 constant/

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT
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If the residuals are white noise, the model will have been fit, but reality
is often not so kind to the analyst. It often presents much more challenging
problems that require a more sophisticated modeling of the impulse re-
sponse. If a more complex form of the intervention is desired, the SPSS
coding would have to be approximated manually by the investigator or set
up with the aid of some more sophisticated ‘‘compute’’ statements with
which SPSS can construct new variables.

Of the two packages, SAS permits the automatic modeling of an impulse
response function with a ratio of a numerator function of � parameters to
a denominator function of � parameters. SPSS has developed two modules
called DecisionTime and WhatIf? to allow automatic modeling. Because
SAS permits custom design of the response function, SAS is used for
parameter estimation of the identified response function parameters—
including the �i of the numerator and �i values of the denominator—and
is strongly preferred at present for pedagogical applications of interven-
tion analysis.

Although both statistical packages have developed menu driven proce-
dures that provide black-box automatic modeling of the impulse response
function, these procedures have little pedagogical utility and are not covered
here. The SAS Time Series Forecasting system and the SPSS Decision
Time and What If modules endeavor to mechanically arrive at a model.
The SAS ETS system provides for more flexible custom design of the
impulse response function. For this reason, the design of the impulse re-
sponse function with this package is explained and applied here.

Programming the impulse response function with SAS is simple. In the
identification subcommand, the response variable is identified, differenced
with parentheses around the order of differencing, and centered with the
CENTER option; then the input variable X is cross-correlated with the CROS-
SCORR option. Centering is usually preferred with intervention analysis
because this simplification facilitates focus on the deviations from the mean
after intervention. Both RESPONSE and input series, X, conventionally
receive the same differencing. An example of this subcommand in the
ARIMA procedure is

PROC ARIMA;

IDENTIFY VAR=Response(1) CENTER CROSSCORR=X(1);

The ESTIMATE subcommand follows the IDENTIFY subcommand in
the syntax sequence. The ARIMA noise model parameters are estimated,
so that if the model is an ARMA(1,1) model, the first portion of the
ESTIMATE subcommand would have the P=1 and Q=1 options noted. The
PRINTALL and PLOT options follow. If maximum likelihood estimation is
requested, then METHOD=ML MAXIT=40 would follow.

Then the INPUT option specifying the impulse response function is
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utilized within the same ESTIMATE subcommand. Suppose that the impulse
response function is being modeled as

Responset �
(�0 � �1L � �2L2 � �4L4)

1 � �1L � �2L2 Xt�3 . (8.29)

The ESTIMATE subcommand right under the IDENTIFY subcommand
within the same ARIMA procedure would be

ESTIMATE P=1 Q=1 PRINTALL PLOT METHOD=ML MAXIT=40

INPUT=3$(1 2 4)/(1 2) X;

The 3$ indicates the time delay between presence of the intervention
and impact. There are three time periods of dead time or delay before
impact in this case. The (1 2 4) numerator indicates the lags of omega
parameters being estimated after the initial �0 , while the denominator (1
2) terms indicate the lags of delta parameters being estimated. This ratio
of polynomials is multiplied by the X intervention indicator. With this
syntax, SAS can estimate the parameters of the impulse response function.

SAS offers flexibility and variety in its ability to model impact analysis.
Most forms of impact may be modeled with this software. X may be either
a step variable, so that X=S1, or a pulse variable, so that X=P1. (S1 and
P1 are pedagogically used to indicate previous step and pulse constructions
of the X variable, although proper specification of the input variable at this
stage of the computer program is an X.) An abrupt and permanent impact
may be modeled with an INPUT=(S1) option. An abrupt yet temporary
form of impact may be modeled with the inclusion of a first-order rate
parameter, �1 , in the denominator with an INPUT=(/(1)P1) option. A
gradual and permanent form may be obtained with the model INPUT =

((1)/(1)S1) specification. In each of the foregoing cases, the first-order
rate parameter in the denominator indicated by (/(1)) has an estimate
in the output less than 1.0 to prevent unattenuated oscillation. Another
gradual (or graduated) yet permanent kind of impact may be programmed
with INPUT = ( (1 1 1 1 1)S1). An oscillatory and permanent type
of impact can be obtained with ((1)/(-1)S1). In these ways, various
types of impact can be identified with SAS (Leonard, 1998; Woodfield,
1987; Woodward, 1996–1998).

Once the ARIMA noise model is combined with this impact analysis,
the parameter estimates are given along with their T tests. Then a residuals
analysis is permitted with the ACF and PACF of the residuals, which, if
the model fits, should appear to be white noise.

8.6.1. A EXAMPLE OF SPSS IMPACT ANALYSIS SYNTAX

SPSS ARIMA provides for including event or intervention input vari-
ables in a combination regression–ARIMA model, where the input vari-
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ables are dummy variables. In the field of American electoral studies, the
prominent controversies pertains to the proper classification of elections.
In 1955, V. O. Key, Jr. proposed a ‘‘Theory of Critical Elections,’’ according
to which, there are critical elections in which the realignment of the voting
patterns of the electorate is both abrupt and protracted. The realignment in
the configuration of interest groups, pressure groups, political organizations,
and controversies causes the dominant political party identification, affilia-
tion, and support to shift from one party to the other. It alters the basis of
political competition and controversies for years to come and serves as a
basis for classification of periods in American electoral history (Niemi and
Weisberg, 1976).

Various scholars seek to define periods in United States history. They
endeavor to classify elections to determine the delineation of these periods.
Campbell et al. (1960) in a classical study of The American Voter refined
the classification of elections. They suggested that elections be classified
into maintaining, deviating, and realigning types. In a maintaining election,
the basic pattern of party loyalty is continued. In the deviating election,
the minority party wins temporarily owing to a temporary defection of
voters from the majority party. In the realigning election, the electorate is
transformed into a new configuration of party loyalty.

Gerald Pomper (1972) developed a two dimensional typology for the
classification of presidential elections. One dimension represents the conti-
nuity or change in the electorate, whereas the other dimension represents
the victory or defeat of the majority party. Where the electoral cleavages
do not change, the maintaining election is the one where the majority party
wins and the deviating election is the one where the majority party is
defeated. Where the electoral cleavages are transformed, the converting
election is one where the majority party gains more electoral support to
win and the realigning election is one where the majority party is defeated
by a shift in characteristic voting patterns.

The proper classification of elections has implications for the periodiza-
tion of the electoral history. If periods of electoral history are characterized
by stable partisan attachments, then periods are delineated by critically
realigning elections. Neimi and Wiesberg (1976) have suggested that one
period of electoral history extends from the Civil War and covers the
reconstruction era. This period ends around 1894 or 1896. The next pe-
riod they call the populist or Bryan era, which begins somewhere between
1892 and 1896. This period extends through the progressive era in the early
1900s to the time of the Great Depression 1929. The next critical election
was that of 1932, which ushered in the New Deal. The next period extended
from the New Deal until the early 1990s (Heffernan, 1991). It can be argued
that after the 1980 realignment, the next critical election took place in 1994.
However, that matter may not be resolved till after the 2000 election when
observers can see whether the current partisan attachments are maintained
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or revert to those of the pre-1994 era. Controversies over the proper periodi-
zation continue to this day.

There has been a debate over whether the critical election that ushered
in the era of populism and Bryanism was that of 1894 or 1896. To define
the nature of the competition characterizing the political milieu, it is neces-
sary to know when the period began. Avery Leiserson (1958), Jensen (1970),
Neimi and Weisberg (1976), and Gerald Pomper (1976), among others,
suggest that 1896 witnessed a movement of voters from one party to the
other. Burnham (1982) writes of the ‘‘system of 1896’’ in implying that
the critical realignment stemmed from this time. Other scholars, such as
Burnham (1970), Kleppner (1970), Heffernan (1991), and Maisel (1999)
have suggested that the critical election was held in 1894. Whether the
period began in 1894 or 1896 can be determined by ascertaining whether
the election of 1894 was a deviating election with a temporary defection
of voters or a critical election with a more or less stable realignment of
them. This period extends to the time of the Great Depression in 1929/32.
With the proper periodization, we are better able to understanding Ameri-
can political history.

The political debates during these campaigns manifest represent the
political interests. Although Kleppner (1970) admits that the economic
depression realigned the electorate for the election of 1894, he gives more
emphasis to the social and religious interests during the 1896 campaign.
The Panic and depression of 1893, like the Great Depression of 1929,
threatened the livelihood of many people and thus realigned the interests
and political loyalties of the political electorate. The Democratic party,
the party of easy (free silver) money, pietism, and personal liberty,
gained massive voter support from the impact of the depression. The
Republican party of reform and hard (gold standard) money lost substan-
tial support.

After the election of 1894 but before the election of 1896, partisan
alignment shifted. Although the easy money Democrats advocated a pro-
gressive income tax, free silver, tariff reduction, more railroad and trust
regulation, and opposition to the gold standard in the 1896 campaign,
The Republicans advocated maintaining the gold standard, sound money,
economic recovery, employment, and prosperity. The Republican position
was helped by the improvement of the economic situation and discovery
of Gold in South Africa, providing for easier money, and economic recovery
(Boller, 1984). Kleppner maintains that the real political configuration was
based on religious and not economic values. In 1896, Catholic and Lutheran
voters defected from the Democrats to support McKinley. Jensen (1970)
suggests that McKinley introduced pluralism to American politics. Burnham
(1982) notes that there was a massive mobilization of new immigrants.
Once the depression effects abated, those predispositions regained control
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Figure 8.9 Graphical time plot of 1973 oil embargo/price rise: impact on U.S. petroleum
product imports in millions of dollars. Data courtesy of U.S. Department of Commerce, Stat-
USA Web site.

with a net movement toward a more broad-based, less pietistic, more pros-
perous McKinley Republicanism.

Whether the election of 1894 was a deviating or critical election can be
tested by intervention analysis (Heffernan, 1991). The research question
is whether the 1894 is a deviating or critically realigning election. Electoral
party loyalty is measured by the (mean centered) percent of Democratic
seats in the United States House of Representatives. The data come from
the World Wide Web Site of the Clerk of the House of Representatives.
The null hypothesis is that the 1894 election is a maintaining election and
not a significant deviation from the status quo. Review of the time plot
suggests that there is a deviation in the democratic percent of the seats in
the House of Representatives, but the location of the observation remains
slightly within the confidence limits of the individual forecasts. The two
research hypotheses are that the 1894 is either a deviating (instantaneous
pulse) or a critically realigning (extended pulse) election. If 1894 election
can be better modeled as an instantaneous pulse, it can be construed as a
deviating election. If that election can be better modeled as an extended
pulse function, this election could be interpreted as a critically realigning
election over the long run (Heffernan, 1991). The better fitting model
should determine the interpretation.

An analyst seeking to determine whether the election of 1894 had no
impact, an instantaneous impact, or a sustained impact on the percentage
of seats held by members of the Democratic Party in the United States
House of Representatives would first formulate a model of that Democratic
percentage prior to the 1984 election. The researcher, using the centered
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variable named CDEMPROP, identifies, estimates, and diagnoses an ARIMA

noise model prior to this controversial event. In this model, the series is
mean-centered prior to analysis. Therefore, the model includes no constant.
The ARIMA(1,0,0) of CDEMPROP with no constant is the preintervention
model that leaves white noise residuals with these data and the SPSS syntax
in C8PGM1.SPS:

* ARIMA.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU END.

ARIMA cdemprop

/MODEL=( 1 0 0 )NOCONSTANT

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

ACF

VARIABLES= err_1

/NOLOG

/MXAUTO 16

/SERROR=IND

/PACF.

To model the impact of intervention of the election of 1894, the series
is expanded to include the pre- and postintervention (centered) election
Democratic percentages of U.S. lower house Congressional seats, and the
variable indicating the presence of the election of 1894 would be added to
the first line of the SPSS ARIMA program. Several models are tested. In
one model, the election of 1894 is defined as an instantaneous pulse, and
in another model, the election of 1894 is defined as an extended pulse that
lasts till 1914. In alternative tests of these models, the election of 1912 is
controlled for by introducing a Bull Moose Party variable. This variable is
defined as a pulse in 1912 to control for any voting changes induced by
reconfiguration of interests, debates, and pressures stemming from that
campaign. Alternative models use the election of 1896 instead of the elec-
tion of 1894 as the event generating the impact. An 1896 pulse and an 1896
extending through 1930 are tested here. The better fitting model is the one
selected as the basis for determining whether the election of 1894 was a
deviating or critically realigning election.

A Bull Moose variable is introduced to control for the reconfiguration
of party attachment during the election of 1912. The Democrats nominated
a liberal governor, Woodrow Wilson. The regular Republicans nominated
a prominent conservative, William Howard Taft. The progressive Republi-
cans formed the Bull Moose Party and nominated Teddy Roosevelt. Boller
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(1984) writes that the Progressive platform called for better factory working
conditions, agricultural aid, women’s suffrage, democratic election of Sena-
tors, a federal income tax, natural resource conservation, federal tariff and
trust regulation, along with other proposals for popular election and social
justice. Wilson, with the help of attorney Louis Brandeis, formulated a
platform called ‘‘The New Freedom,’’ which de-emphasized the regulation
advocated by Roosevelt. The energetic and popular candidates, Roosevelt
and Wilson, began to dominate the debate, as genial Taft slipped from
salience. The relevant issue agenda included different versions of progres-
sive or liberal positions. As the ideology of conservatism waned and the
split within the Republican party undercut support for Roosevelt, Wilson
won the election. The voter defection during this campaign is best controlled
for by a Bull Moose election variable for the year of 1812.

Because there are other events or interventions that can confound the
effect of the election of 1894, they are included in the model to control
for their potentially confounding effects. The effect of the progressive
realignment in 1912 is controlled for by inclusion of an instantaneous pulse
dummy indicator for 1912 called BULLMOOS, whereas the effect of the New
Deal realignment is controlled for by an extended pulse dummy indicator
for 1932 through 1980 called NEWDEAL in the postintervention segment of
the program. This program segment tests the impact of the election of 1894
while controlling for effects of these potentially confounding realignments.

Inclusion of the NEWDEAL variable is needed as a control for the 1932
critical realignment. The campaign of 1932 revolved around the issue of
the Great Depression and the economic and financial actual and threatened
devastation it wrought on America. Widespread asset depreciation, prop-
erty loss, unemployment, poverty, and evictions created a climate of des-
peration. These economic ills were associated with Herbert Hoover. His
attempts to launch public works did not engender recovery. Desperate,
discontented veterans camped out in Washington in protest of their plight
and in beseech of relief (Amendola, 1999). When Franklin D. Roosevelt
promised farm aid, public development of hydroelectric power, a balanced
budget, and regulation of large scale corporate power, he seemed to offer
a way out of this predicament (Andries et al., 1994–1998), there was a
mobilization of previous nonvoters and a massive shift of voters to his
party. This great realignment lasted until 1980 as can be seen from the
preliminary graphical time plot in Figure 8.9.

In the following program segment, the election of 1894 is first tested as
an extended pulse (E1894S) and later tested as an instantaneous pulse
(E1894P). This test helps determine whether the election is a deviating
or critically realigning election. The events or interventions that being tested
or controlled for are included after theWITH option of theARIMA command.
The output of these models can be compared.
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Title 'Test of the Critical Election hypothesis'.

* ARIMA.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU END.

ARIMA cdemprop WITH e1894s bullmoos newdeal

/MODEL=( 1 0 0 )NOCONSTANT

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

*Diagnosis of the Critical Election Hypothesis'.

ACF

VARIABLES= err_3

/NOLOG

/MXAUTO 16

/SERROR=IND

/PACF.

*Sequence Charts .

TSPLOT VARIABLES= demproph

/ID= year

/NOLOG

/FORMAT NOFILL NOREFERENCE

/MARK criteltn.

title 'Test of Deviating Election Hypothesis'.

* ARIMA.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU END.

ARIMA cdemprop WITH e1894p bullmoos newdeal

/MODEL=( 1 0 0 )NOCONSTANT

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

ACF

VARIABLES= err_4

/NOLOG

/MXAUTO 16

/SERROR=IND

/PACF.

After the specification of the extent of the forecast and the confidence
intervals with the TSSET command, the ARIMA(1,0,0) model without a
constant is specified. The several models are compared and it is found that
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both the 1894 electoral pulse and the 1894 extended pulse are significant.
The diagnosis for white noise residuals follows. The more extended electoral
variable is more significant. The hypothesis that the election of 1894 has
an extended effect is confirmed by the better model. Detailed comparison
of the models is shown in the next section.

8.6.2. AN EXAMPLE OF SAS IMPACT ANALYSIS SYNTAX

To evaluate the impact of the election of 1894, our strategy is to compare
what happened with what would have happened, had there been no election
of 1894. First, SAS program C8PGM1.SAS. produces a graphical time plot
of the raw data (Fig. 8.9). The changes in the series attributable to this
event in 1894 are modeled with SAS syntax. The procedure employed is
explained in the preintervention phase, the forecasting phase, and the
impact assessment phase. The preintervention ARIMA noise model is
applied to the whole series and the residuals are modeled to represent the
interventions. Within the impact assessment phase, there is an identification,
estimation, diagnosis, and metadiagnosis phase. The residuals should be
the whitest noise possible.

To program the preintervention phase in SAS, the data set, DATA
PREINT, is constructed. The data are contained within the program. Two
forms of the intervention variable that represent the election of 1894.
These variables are E1894P and E1894S. These two variables represent
hypothesized effects of the election of 1894. The E1894P represents the
deviating election. This variable is a pure pulse dummy variable coded as
one for the year of the election and zero otherwise. E1894S represents
the lasting effect of a critical election; this variable is an extended pulse
dummy variable that is coded one from 1894 through 1930 and zero other-
wise. The strategy is to determine whether only the instantaneous pulse
dummy is the best intervention variable, substantiating the hypothesis that
the election of 1894 was a deviating election, or whether the extended pulse
dummy, substantiating the hypothesis that the election of 1894 was a critical
election, is significant as well. If the extended pulse dummy is significant,
then that election can be justifiably described as a critical election.

Other indicator variables are constructed to represent pulses, phases, or
level shifts. These event variables are employed to control for transient
influences of potentially confounding effects. In the modeling that is per-
formed here, indicator variables for the Election of 1912, for the election
of 1920, and the New Deal phase of the analysis are constructed. These
are coded as 1 when the event occurs and 0 otherwise. Accordingly, BULL-
MOOS is coded as 1 during 1912 and 0 otherwise. E1920P is coded as 1
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during 1920 and 0 otherwise. The NEWDEAL variable is coded as 0 prior to
1932 and 1 until 1980.

Therefore, the preintervention data predates the election of 1894. The
year variable is incremented in steps of 2 years because the congressional
elections take place every other year. A ‘subsetting IF’ statement extracts
only the data prior to 1894 for analysis in DATA PREINT. A PRINT proce-
dure permits checking of the data to be sure that it is being read correctly
by the program. A title statement designates this portion of the analysis
as the ‘‘Preintervention Series.’’ If the title appears in a graphical plot and
is too long, the font will be automatically reduced in size with a warning
and that maximum permissible title size will depend on the linesize option
setting. The preintervention series, consisting of only 44 observations, is
estimated as an ARIMA(1,0,0) model. At this step the analyst takes a
slight liberty with protocol. Because of the small preintervention sample
size, there is low power and what might not pass for significance may
be significant when more data values are added to the sample. The final
preintervention series is modeled as an AR(1) accordingly and called the
‘‘Preintervention Noise Model.’’

Data preint;

set congress;

year = year + 2;

if year < 1894;

proc print;

run;

symbol1 i=join c=green v=star;

symbol2 i=join c=blue v=diamond;

axis1 label=(a=90 'Democratic Proportion of Seats')

order=(.20 to .8 by .1); proc gplot data=preint;

plot (Demproph) * year/overlay

href=1860,1865,1877,1892 vaxis=axis1 annotate=anno1b;

title 'Preintervention Democratic Proportion of Congress';

run;

proc arima data=preint;

i var=demproph center;

e p=1 noint printall plot;

f lead=18 id=year out=fore1;

title 'Preintervention Democratic Proportion of House Seats';

title2 'Test of AR1 model';

run;

More specifically, the preintervention ARIMA noise model is developed.
In the SAS syntax of DATA PREINT, the data set CONGRESS is read into
the data set PREINT with the SET command. All observations prior to the
year of the 1894 election are included, while those following this date are
excluded, with the ‘subsettingIF' statement in the third line of the program.
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The time series data are then printed for review with the procedure PRINT.
A forecast from the intervention model is then compared to that of the
preintervention series in a graphical plot.

The ARIMA procedure below the PRINT procedure models the prein-
tervention series.The identify subcommand begins with an I, the estimate
subcommand begins with an E, and the forecast subcommand begins with
an F. The preintervention ARIMA noise model is almost the same one
developed in the SPSS syntax above. It is an ARIMA(1,0,0)model without
an intercept (constant) owing to centering of the series. The IDENTIFY

subcommand, I VAR=DEMPROPH CENTER, generates the ACF, IACF,

and the PACF of the centered series. The CENTER option centers the series
by subtracting its mean. The ESTIMATE subcommand indicates that the
series has an autoregressive parameter at lag 1. This estimation algorithm
is that of conditional least squares. The printed estimation history and
significance tests are requested along with the ACF and PACF plots of
the residuals.

The input series is examined for stationarity. Unit root tests may be
applied. Alternatively, the rate of attenuation of the ACF or PACF may
be examined to determine whether differencing is necessary. If differencing
of the input series is in order, it is invoked here. Once the proper order
of differencing has been invoked, stationarity is attained.

Before the program can proceed to an analysis of the postintervention
series, some other preprocessing is necessary. New variables are constructed
out of the forecast and confidence limits. The temporal increment has to
be adjusted so that each yearly increment is actually a biannual increment.
Reassignment of year values accomplishes this objective. The reconstructed
values are then saved for subsequent graphical presentation.

data prepa;

set fore1;

year = year + 2;

proc sort; by year;

run;

data prep1;

set prepa;

/* ********************************************** */

/* Renaming the variables from the first forecast */

/* profile and saving the renamed variables */

/* ********************************************** */

dph = demproph;

fc1 = forecast;
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l951 = l95;

u951 = u95;

/* ********************************************** */

/* Preparation for merging with other data sets */

/* dropping the old variables */

/* and setting earlier values to missing for */

/* values to be hidden in the graph */

/* ********************************************** */

drop demproph forecast l95 u95;

if year < 1894 then fc1 = .;

if year < 1894 then l951=.;

if year < 1894 then u951=.;

/* *********************************************** */

/* Because of biannual increment redefinition */

/* of years is necessary to control forecast output */

/* ************************************************ */

if year = 1912 then year = 1928;

if year = 1911 then year = 1926;

if year = 1910 then year = 1924;

if year = 1908 then year = 1922;

if year = 1907 then year = 1920;

if year = 1906 then year = 1918;

if year = 1905 then year = 1916;

if year = 1904 then year = 1914;

if year = 1903 then year = 1912;

if year = 1902 then year = 1910;

if year = 1901 then year = 1908;

if year = 1900 then year = 1906;

if year = 1899 then year = 1904;

if year = 1898 then year = 1902;

if year = 1897 then year = 1900;

if year = 1896 then year = 1898;

if year = 1895 then year = 1896;

if year = 1894 then year = 1894;

proc sort; by year;

run;

proc print;

title3 'Review of Preintervention data';

run;
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Preparatory to analyzing the shape of the impact after each event, an
ASCII time plot is generated from a data set called DATA WHOLE. A
time plot of the series is programmed with the PROC TIMEPLOT com-
mand.

data whole;

set congress;

proc timeplot;

plot demproph;

id year;

title 'Time Plot of Democratic Proportion of House Seats';

run;

Using YEAR as an ID variable helps the researcher model the response
to the input. Identifying the observations by YEAR facilitates counting
the number of lags between one event and another. The inclusion
of the value of the plotted variable provides for accurate assessment
of pulses or level shifts. This permits accurate analysis of the time
plot.

After we model the preintervention series with an ARIMA noise
model, we preliminarily model the impact of the election input on the
response series. First, we examine the SAS ASCII time plot output to
ascertain the general shape of the response to the input. The time plot
reflects the deep drop in Democratic proportion of House seats in 1894
and the Republican gains in each election thereafter until 1898. After
some fluctuation, there is another drop in Democratic control as Teddy
Roosevelt, with a ‘‘Square Deal’’ that incorporated fair labor and business
regulation, swept the country in 1904 in a landslide victory. The Democrats
recover in 1912 with the splitting of the Republican Party into the
conservative Republicans and the progressive Bull Moose Party. When
in the 1920 electoral campaign, Warren Harding advocated a return to
normalcy from the hardships of the war, President Wilson had already
suffered a stroke. Although Wilson hoped the election to become a
referendum on the League of Nations, it became an evaluation of his
health, which allowed the Republicans to take control of the Presidency
and won widely throughout Congress. Only after 1920 did the Democrats
begin to recover again.
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According to our modeling strategy, we model the preintervention
series first. At first glance, the ACF and the PACF of the series appear
to yield white noise. Upon reflection, it can be observed that the sample
size is low for the preintervention series and that apparent statistical
nonsignificance can be due to sparse data. Therefore, this process is
repeated with the full series included. The characteristic patterns of the
ACF and PACF of the full series are those of an AR(1) ARIMA model.
Inserting a low order AR(1) is consistent with the first part of the
modeling procedure. Autocorrelation within the input series would render
the statistical estimation inefficient. The standard errors become com-
pressed. Therefore, the insertion of low order regular and, if necessary,
seasonal AR components, is necessary to control for this effect on the
significance tests. The ARIMA specification used as the basis of this
analysis is therefore an ARIMA(1,0,0). Because the series has been
centered, no constant is needed.
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The postintervention modeling is found in the PROC ARIMA DATA=

WHOLE; command. A few points of modeling strategy need to be noted.
After modeling the preintervention series, the SAS cross-correlation con-
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nection is specified. Within IDENTIFY statement, a CROSSCORR option
indicates the input variable name. More than one input variable may be
designated. In this case, the option, CROSSCORR=E1894S designates one
input variable, named E1894S. Because the input variable gets the same
differencing as the response variable, if the response variable were first
differenced, indicated by the (1), the same differencing in the computer
syntax would appear after the response and input variables.

IDENTIFY VAR= VOTE(1) CENTER CROSSCORR = VOTE(1)

It is important to remember event intervention models utilize discrete
dummy variable(s) as input(s) that do not require prewhitening (which is
discussed in detail in Chapter 9). However, the cross-correlation function,
invoked by the CROSSCORR subcommand, is helpful in displaying the lag
in and shape of the impact.

The precise presentation of the dates and corresponding response values
in this output permits precise specification of the lags in the INPUT state-
ment. We model the delay time first. The delay time can be ascertained
from the graphical or ASCII time plots, or from the delay in the cross-
correlation function before positive spikes are observed. The delay time is
the lag time of between the occurrence of an event and the time of observed
impact of that event on the response. If we think that there was a delay
of impact in the election of 1912, we can model this with the BULLMOOS

variable. Suppose we observe that after 1912 there was a lapse of 4 (2 year)
periods before an appreciable drop in Democratic control is observed.
The modeling of this 8 year delay (when years are incremented by 2) is
performed with the 4$ in the INPUT=(4$(...)BULLMOOS); sub-
command.

The level shifts in the value of Democratic proportion of control over
the House is modeled next. Suppose an inspection of spikes in the ASCII
time plot after the event of the Bull Moose election of 1912 revealed that
there are spikes at lags 3 and 5. The researcher could model the Bull Moose
Party delayed effect as part of the ESTIMATE subcommand as INPUT=
3$(2)BULLMOOS;. Because a constant at the current time is assumed
within the parenthesis, this statement estimates the first impact after a
delay of 3 periods, and estimates another delayed effect occurs 2 periods
thereafter. If, however, there were spikes at 0, 3, and 5 lags, the researcher
could model these spikes with INPUT=(3,5)BULLMOOS in the ESTIMATE
subcommand. In this way, the researcher can estimate the pulses that appear
in the graph of the response function. These parameters are included as
part of the INPUT option of the ESTIMATE subcommand.

Several event or intervention models are then tested in the program.
To test whether the election of 1894 is a deviating election, the election of
1894 is modeled as an instantaneous pulse.
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proc arima data=congress;

i var=demproph center crosscorr=(e1894p bullmoos newdeal);

e p=1 noint printall plot input=(e1894p bullmoos newdeal);

f lead=6 id=year out=fore3;

title 'Test of Change in Democratic Proportion of Congress';

title2 'Test of AR1 and Instantaneous Pulse Function model';

run;

When the Bull Moose Party and New Deal variables are included as con-
trols, the E1894P instantaneous pulse election variable is statistically sig-
nificant. The T statistic exceeds an absolute value of 1.96, which disconfirms
the null hypothesis of no effect of the election of 1894. At least the election
of 1894 appears to be a deviating election.

Before concluding that this test of the deviating election hypothesis is
adequate, it is necessary to review the residuals from this model to deter-
mine whether they appear to be white noise. This residual review can
be performed by examination of the ACF and PACF or the modified
portmanteau tests.

Because the ARIMA model coupled with these intervention variables con-
trols for all systematic variation in the system, the residuals are white noise.
If the ARIMA model did not control for all of the systematic variation,
the modified Portmanteau tests for the residuals would be significant. A
review of the CCF, ACF, and/or PACF of the residuals would permit
diagnosis of spikes that remained unmodeled. Revision of the model would
follow. In this case, the model accounts for the systematic variation. Al-
though the election of 1894 is a deviating election, the stability of the
realignment is evanescent; it is really just a temporary defection of the
voters.
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If the partisan realignment is more stable, then what appears to be a
deviating election can actually be a critical election. If there is evidence
that the partisan realignment is maintained for a few years, then the election
under consideration can be construed as a critical election. To be sure, if
the realignment is maintained until the next critical election of 1932, then
the election of 1894 is a critical election. A review of the time plot in Fig.
8.9 suggests that this effect might hold for several elections. Visual inspec-
tion can lead to subjective conclusions. More objective standards are pre-
ferred. We test the hypothesis that the election of 1894 is a critical election
with an extended pulse Election of 1894 variable, named E1894S. Several
models to test this hypothesis are constructed. One model is the simple
extended pulse model. Another model is the first-order attenuated pulse.
A third model controls not only for the Bull Moose Party deviation of 1912
but also for the Harding takeover from Wilson four years later. If, with
any of these types of controls, the extended pulse is found to be significant,
then evidence exists to support the hypothesis that the election of 1894
was also a critical election, followed by protracted partisan realignment
among the voters. Each of these models is tested. The simple extended
pulse (temporary step function) can be tested first with the following
syntax.

proc arima data�congress;

i var=demproph center crosscorr=(e1894s bullmoos newdeal);

e p=1 noint printall plot input=(e1894s bullmoos newdeal);

f lead=18 id=year out=fore;

title 'Test of Change in Democratic Proportion of House';

title2 'AR1,Step Function, with Bull Moose model';

In the output from this model, the effect of the New Deal is clearly signifi-
cant. Neither the effect of the Bull Moose Progressive Movement nor that
of the election of 1894 extended pulse is statistically significant.

A review of the modified portmanteau tests shows that this model accounts
for the systematic variation in the system.
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The residuals are white noise also. If the number of observations were
substantially larger, the researcher could be sure that this evidence discon-
firmed the hypothesis of the critical election of 1894. Because this relative
sparseness could limit the power of the tests, one more model is considered.
A review of the graphical time plot reveals that a realignment can be more
temporary than an extended pulse function coupled with the effects of the
Bull Moose Party activity of 1912, the effect of the Wilson stroke prior to
the election of 1920, and the New Deal realignment would indicate. A pulse
dummy is included to represent the effect of the 1920 election campaign. A
model is therefore tested where there is attenuation of the 1894 realignment
when the effects of the progressive Bull Moose Party, the election of 1920,
and the New Deal are taken into account. The model that represents this
specification is

DEMPROPH t - � =

{(�0 - �1L)/(1-�1L)}E1894Pt + BULLMOOSt + E1920Pt+ NEWDEALt + et/1-�1L)

and the program that estimates it is

data cong3:

set congress;

proc arima;

i var=demproph center crosscorr=(e1894s bullmoos e1920p newdeal);

e p=1 noint printall plot input=((1)/(1)e1894s bullmoos e1920p newdeal);

f lead=6 id=year out=fore3;

title 'Test of Change in Democratic Proportion of Congress';

title2 'Test of AR1, Extended Pulse Function, Bull Moose,1920 model';

title3 'Optimization by Modeling Bull Moose Party';

run;

This model is estimated by conditional least squares estimation. In it, there
are controls for the progressive Bull Moose Party activity of 1912, the
election of 1920 downfall of Wilson, and the New Deal realignment. The
noise model AR parameter is significant. Controlling for its effects precludes
inefficient and incorrect significance tests. When the effects of these events
and noise are controlled for, all of the component parameters of the election
of 1894 extended and attenuated pulse are statistically significant. These
results suggest that when the other effects are controlled for the election
of 1894 had temporary rather than permanent critical partisan realigning ef-
fects.
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The combined effects of the 1894 election and three other events appear
to account for the overall partisan realignment. A review of the residuals
indicates that all of the significant systematic variation is taken into account
by this model.

In retrospect, the researcher may chose to compare the models to see
which fit the data best. By relying on the SBC or error variance for each
model, the researcher can decide which of the models provides the best
fit. We observe that three models fit. We visually compare the ACF and
PACF of each of the models. We review the models for their SBC. The
deviating election model, with an instantaneous 1894 electoral pulse, has
an SBC of �110.77. The critical election model, with an extended pulse
from 1894 through 1928, has an SBC of �107.24. The attenuated realign-
ment model has an SBC of �105.42. According to this standard of fit and
parsimony, the election of 1894 was primarily a deviating election rather
than one of critical realignment. If we allow for attenuation of the critical
realignment effect, controlled for by the election of 1920 as well, we can
interpret the 1894 election to have declining realignment effects. If our
series were much longer, we could compare models over varying time spans
to see which model parameters are more stable and reliable. We could also
evaluate the forecasts of the respective models. We could generate forecasts
6 periods in advance and compare the MSFE or MAPE of each of the
models. Either we could evaluate the fit, parsimony, parameter constancy,
or the forecast accuracy of the models.

After we have conducted our hypothesis testing, drawn our conclusions,
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and evaluated our models, we can select the optimal equation. On the basis
of the SBC, we chose the model with the lowest SBC. That happens to be
the model with the 1894 electoral pulse whose output for the response
variable is:

Model for variable DEMPROPH

Data have been centered by subtracting the value 0.5084619457.

No mean term in this model.

Autoregressive Factors

Factor 1: 1 - 0.39314 B**(1)

Input Number 1 is E1894P.

Overall Regression Factor = -0.19148

Input Number 2 is BULLMOOS.

Overall Regression Factor = 0.142719

Input Number 3 is NEWDEAL.

Overall Regression Factor = 0.147738

This equation can be formulated as

(Dempropht � 0.0508) � (�0.191E1894Pt � 0.143BULLMOOSt

� 0.148NEWDEALt) � � et

(1 � 0.393L)
� ,

where

Dempropht � Democratic Proportion of Seats in

(8.30a)House of Representatives at time t

E1894Pt � Instantaneous effect of election of 1894

BULLMOOSt � Instantaneous effect of Bull Moose Party

NEWDEALt � Extended effect of New Deal.

We reassess our finding. How does history help disconfirm the hypothesis
that the election of 1894 is a critical election? The test of the critical election
disconfirms a categorical assertion that this election critically realigns parti-
san dominance. When a simple extended pulse for the election of 1894 is
shown to be statistically insignificant, this evidence disconfirms an unquali-
fied assertion that the election in question was a critical one. Is the partisan
shift of the deviating election of 1894 combined with other events stable
enough to be deemed critical realignment?
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Graphical evidence reveals that the low level of Democratic control of
House seats was not maintained from 1894 through 1930. During the two
elections following 1894, there was continued Democratic recovery in the
House of Representatives from the low point of 1894. Then there was some
fluctuation before the Democrats resumed their Congressional recovery.
By 1908 the progressive movement split the ranks of the Republican opposi-
tion to allow for a huge Democratic recovery of seats. Clearly, the realign-
ment of 1894 was short-lived. It took the illness of Wilson to allow Demo-
cratic control to fall to the level of the 1894 alignment, after which
Democratic recovery resumed. These two electoral events were able to
engender new deviations that cast doubt on the thesis of a critical realign-
ment in 1894. Although there appears to be a slight and insignificant differ-
ence in levels of Democratic dominance between the post Civil War era
and the pre-World War period after 1894, instability of Democratic domi-
nance casts doubt on the thesis that the 1894 election was a critical election.
The fact that there is a stable level shift in Democratic dominance after
1932 is not at issue here.

If the impact of the election of 1894 is qualified by the intervention of
other electoral events, then this slightly attenuated step upward in Demo-
cratic control following the 1894 electoral event shows that the decline in
Democratic proportion of House seats was neither permanent nor stable.
If the researcher examines the parameters, he observes that the drop in
Democratic control was reversed but the reversal was attenuated as time
passes. This is the impact that the first-order extended pulse function mod-
els. The other three indicator variables account for major shifts in the
Democratic control that destroyed the stability of a 1894 realignment.
The Bull Moose Party indicator variable represents the dividing of the
opposition and the resurgence of Democratic control in 1912. Although
the 1920 election indicator was not statistically significant in earlier models,
it is almost significant and therefore retained in this model. The 1920
election pulse indicator represents a loss of control due to Wilson’s stroke
the previous year and Harding’s takeover of the Presidency. The positive
impact of the New Deal in 1932 represents a critical and stable realignment
that lasts until 1980. This New Deal indicator is another extended pulse
that spans this period of time.

These other indicators account for the sharp increase and decline in the
Democratic control. When they are entered, the researcher finds that they
support the hypothesis of a short-lived duration of the 1894 partisan shift
in control. When he examines the nature of this realignment, he sees that
this evidence supports the thesis of an initial (deviating) but not lasting
(and hence not critical) election.

Our modeling of this impact yields estimated parameters.
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Model for variable DEMPROPH

Data have been centered by subtracting the value 0.5084619457.

No mean term in this model.

Autoregressive Factors

Factor 1: 1 - 0.40273 B**(1)

Input Number 1 is E1894S.

The Numerator Factors are

Factor 1: -0.1989 + 0.19503 B**(1)

The Denominator Factors are

Factor 1: 1 - 0.64018 B**(1)

Input Number 2 is BULLMOOS.

Overall Regression Factor = 0.137112

Input Number 3 is E1920P.

Overall Regression Factor = -0.15775

Input Number 4 is NEWDEAL.

Overall Regression Factor = 0.09409.

This output can be formulated as

Dempropht � 0.508 �
(�0.199 � 0.195L)

(1 � 0.64L)
E1894St � 0.137BullMoost

�0.158E1920Pt � 0.09NewDealt

�
et

(1 � 0.403L)
,

where

Dempropht � Democratic Proportion of House of

(8.30b)

Representatives seats at time t

BullMoost � 1912 electoral pulse
E1920Pt � 1920 electoral pulse

NewDealt � New Deal realignment extended pulse

This model of attenuated pulse (with a step function E1894St multiplied
by the rational polynomial) of partisan realignment represents a decompo-
sition of total impact into relative impacts from each of these event interven-
tions. From the signs of the regression parameter estimates, the analyst
can tell whether the impact on the Democratic control is enhanced or
reduced. From the magnitude of the regression coefficients, the analyst can
assess their relative contribution. From the nature of the impulse response
function of the 1894 electoral event, the analyst can glean a sense of the
attenuation of the partisan realignment the election of 1894. Although the
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more statistically parsimonious model is that of the deviating election, this
model theoretically explains the nature of the impacts of these other events
and thereby facilitates our understanding of American electoral history.

A scenario or ‘‘what if’’ analysis can sometimes provide a new and
helpful perspective in the examination of hypotheses. To test the effects
of the 1894 election and the following modeled events, we examine the
preintervention pattern. In so doing, we ask the question, ‘‘What would
have happened if there were no deviating election of 1894 or subsequent
influential events?’’ We model the preintervention series. Then, we can
generate a forecast profile until the next critical realigning election in 1932
from the ARIMA(1,0,0) preintervention model. The preintervention fore-
cast and its intervals depict a scenario of what would have happened had
the election of 1894 or the subsequent modeled events not impacted the
series. The forecast and its limits are renamed and saved. Fluctuations of
Democratic proportion of seats in the House of Representatives beyond
these forecast limits would indicate statistically significant and substantial
impacts on the preintervention system. Due to sparse preintervention data,
the confidence interval around the forecast is wide and the width of the
interval easily encompasses the variation of Democratic proportion of
House seats (Fig. 8.10). With insufficient data, previously deemed significant
events of the 1894 election and the Bull Moose Party participation do not
appear to be significant after all. A full-series modeling strategy instead of
the conventional two-step strategy can obviate this problem. Even with
enough data, the election of 1894 appears to be a demarcation point and
contributing factor but not the event that defines the partisan alignment
until the onset of the New Deal. When we have sparse data, the scenario

Figure 8.10 A forecast profile from the pre-1894 Democratic proportion of House seats
series provides a ceteris paribus baseline set of expectations for the no event scenario analysis.
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analysis is not sufficient to use as a basis for our conclusions; we may need
to the full intervention model before drawing conclusions.

If we extend the scenario analysis to include electoral events beyond
1932, a forecast profile is generated over the New Deal period. The saved
forecast profiles from the preintervention model and from the model up
to 1932 are superimposed on the actual data to reveal what would have
taken place without other event interventions. In this case, the election of
1932 reveals a Democratic proportion of seats in the House that exceeds
the earlier forecast limits. From this significant change, it is clear that the
election of 1932 marks a level shift or sea change in the configuration of
political affiliation and partisan support. In this way, scenario analysis can
be useful in assessing the nature of regime or level shifts in a series. The
SAS program syntax for the graphical scenario analysis is

/* Preparation of a Scenario Analysis Profile Plot */

data prep2;

set fore2;

if year < 1932 then forecast = .;

if year < 1932 then �95=.;
if year < 1932 then u95=.;

proc sort; by year;

proc print;

title3 'Complete data for fore2';

run;

data all;

merge prep1 prep2; by year;

if dph < 1896 then dph = .;

proc print;

title 'Merging Prep1 and Prep2';

run;

symbol1 i=join c=green v=star;

symbol2 i=join c=blue v=plus;

symbol3 i=join c=red;

symbol4 i=join c=red;

symbol5 i=join c=green v=star;

symbol6 i=join c=blue v=plus;

symbol7 i=join c=red;

symbol8 i=join c=red;

axis1 label=(a=90 'Democratic Proportion of Seats');

proc gplot data=all;

plot (Dph fc1 l951 u951 demproph forecast l95 u95) * year/overlay

href=1860,1865,1877,1894,1912,1932 vaxis=axis1

annotate=anno2;

title justify=L 'Figure 8.10 Democratic Proportion of House of

Representatives Seats';

title2 'Forecast represents Null Hypothesis of No Change';

title3 'After Elections of 1894 and 1932';

run;
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To determine the nature of the election of 1894, we have tested the
different hypothetical models by intervention and scenario analysis. Al-
though the deviating election model seems to be the statistically optimal
one, the attenuated realignment model has theoretical explanatory power.
The subsequent scenario analysis, although plagued by limited sample size,
showed that the big shifts in Democratic control were within the confidence
limits of the pre-1894 election situation. It can be argued that as the number
of observations in our series grows larger, the confidence intervals may
become more compressed and impacts deemed insignificant might become
significant. Hence, a full-series intervention model would be needed to test
our hypotheses. In the Chapter 12, the proper sample size needed to perform
this analysis with confidence will be addressed. Without an understanding
of what sample size is needed, we have to run the risk of the perils of low
statistical power—namely, a tendency to a Type II error—to glean the
information we need. For our failure to control all relevant factors with
the proper sample size, our theoretical assessment must be deemed tentative
in nature.

8.6.3. EXAMPLE: THE IMPACT OF WATERGATE ON NIXON

PRESIDENTIAL APPROVAL RATINGS

8.6.3.1. Political Background of the Scandal

One of the greatest political scandals in the history of the United States
presidency to date was that of the Watergate affair. To understand Ameri-
can political history, it is helpful to examine the impact of the Watergate
scandal on President Richard M. Nixon’s public approval and political
support. What happened, and what kind of public impact did it have? The
question posed by the Gallup Poll is ‘‘Do you approve or disapprove of
the way the President is handling his job’’ The answer categories from which
respondents choose one are: Approve, do not approve, and no opinion. The
monthly average of the percentage of respondents approving presidential
job performance is used to gauge public approval. In general, the Gallup
Organization in Princeton, New Jersey, conducts these polls usually twice
a month and publishes the results for general review (Gallup Opinion
Index, 1969–1974). Even though the number of observations over time (in
this case, after the incidence of the conviction of the Watergate burglars)
may not be as many as we would ordinarily wish, it may be worthwhile to
apply this form of impact analysis to enhance our understanding of the
impact of Watergate on the public approval of the presidential job perfor-
mance at the time.

Because revelations of the Watergate scandal implicated President Nixon
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in serious crimes against the state, a student of American history or political
science needs to examine both the background and the illegalities of Wa-
tergate. The sub rosa activity of the Nixon Administration made for a
time of tumult before the break-in at the Watergate Democratic National
Committee Headquarters. Journalistic investigative reporting and the Sen-
ate Watergate Committee hearings exposed of a multitude of operations
of political espionage, dirty tricks, and sabotage of the democratic process,
assuring the American public that a national nightmare, of which there
were only rumors before, had indeed been brought to life by the Nixonians.
This revelation led to a precipitous decline in legitimacy, trust in govern-
ment, political support, and approval of the Presidential performance.

The roots of Watergate stemmed from the dark side of the Nixon admin-
istration. Although Nixon originally approved the Huston plan for covert
illegal surveillance of political opponents on January 23, 1970, J. Edgar
Hoover, Director of the FBI, allegedly objected and the plan was reportedly
quashed. In his fascinating transcription of the new Nixon tapes, Professor
Stanley I. Kutler reveals that on June 17, 1971, Nixon verbally reendorsed
the plan for officially sanctioned, surreptitious, illegal political activity di-
rected at designated dissidents and other imagined Nixon political enemies
during the Vietnam War (Kutler, 1997). With these shadowy activities,
Nixon began his fall from grace (Kutler, p. 454). Nixon believed that there
was a conspiracy out to get him, and he tried to enlist other officials in the
belief that this cabal had to be sought out and destroyed (Kutler, pp. 8, 9,
10, 14–16). He wanted to break into the Brookings Institution, the Rand
Corporation, and the Council of Foreign Relations to steal national security
information, which he would selectively leak to the press in order to tarnish
the historical image of the Democratic Party (Kutler, pp. 6, 11, 17, 24).
One of his aides, John Ehrlichman, expressed the desire to break into
the National Archives to steal such information as well (Kutler, p. 30).
Specifically, Nixon wanted disparaging information about plans for and
implementation of operational attempts on the life of Fidel Castro, the
Bay of Pigs invasion fiasco, the Cuban Missile Crisis, and the origins of the
Vietnam War. Nixon had his aide, Charles Colson, hire E. Howard Hunt,
a former CIA political officer and old school chum, for political espionage
and sabotage. Hunt had told Colson early on that if the truth had been
known, Kennedy would have been destroyed (Russo, 1998). Early in June
of 1971, Nixon had Erlichman tell Director of Central Intelligence Richard
Helms that he had to have the file on the ‘‘the Cuban Project.’’ It was the
considered and well-founded opinion of Helms, who had been director
of covert operations and heavily involved with anti-Castro activities, and
Lawrence Houston, the CIA General Counsel, that Nixon wanted to use
these documents for partisan political purposes. Helms reluctantly released
only three files, after 3 years of stalling. The reluctance to divulge the dirt
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and refusal to block the FBI investigation into the Watergate espionage
got Helms transferred from his position of Director of Central Intelligence
to that of U.S. Ambassador to Iran (Russo, pp. 421–423, 580n).

Nixon really wanted to reinaugurate McCarthyism (of the Joseph, not
the Eugene, stripe) (Kutler, pp. 11, 18). He wanted a congressional commit-
tee to investigate internal security (Kutler, 11, 18). When Daniel Ellsberg
leaked the Pentagon Papers to the New York Times and Washington Post,

a secret White House unit was formed, ostensibly to plug national security
leaks, but actually to surreptitiously combat a presumed conspiracy believed
to consist of antiwar activists and political opponents of Richard Nixon
(Kutler, pp. 13–19). Egil Krogh placed Howard ‘‘Eduardo’’ Hunt and
G. Gordon Liddy, chief of security for the Committee to Re-Elect the
President (CREEP), in charge of a ‘‘special investigations unit,’’ colloquially
called ‘‘the plumbers.’’ This unit broke into the office of Dr. Lewis Fielding,
psychiatrist of Daniel Ellsberg, in order to gather compromising information
on him. Nixon ordered the members of this unit to collect information on
political opponents for purposes of character assassination in the press
(Kutler, pp. 34–36).

The Nixon administration planned and carried out espionage against
their political opposition. Nixon and his aides considered using the Secret
Service to spy on opposing political candidates (Kutler, p. 40). Nixon wanted
the IRS to harass his opposing political candidates, Senators Muskie and
Humphrey (Kutler, pp. 28–30). They had Howard Hunt and another White
House investigator, Tony Ulasewicz, dig for poltical dirt in the private life
of Senator Ted Kennedy (Kutler, p. 29). Under the direction of Hunt and
Liddy, they formulated a plan code-named GEMSTONE for surreptitious
entry, electronic eavesdropping, agents in place, and prostitute-escorted
entrapment, among other things. In the economical version that was author-
ized by head of CREEP and Attorney General of the United States John
Mitchell, the Watergate burglars targeted the Democratic National Com-
mittee Headquarters at the Watergate Hotel for surreptitious espionage
and surveillance. In late May 1972, they planted the bugs. Malfunctions
developed. On June 17, 1972—the anniversary of Nixon’s verbal reendorse-

ment of the infamous Huston scheme for coordinated illegal surreptitious

entries, thefts of political documents, recruitment of campus informants, and

an array of measures by which the political opposition would be neutral-

ized—when they reentered the Watergate Offices of the Democrats to
replace the defective bugs, their break-in was detected by the security guard
and they were apprehended by DC police shortly thereafter.

How was this information to be used? The collected information along
with covert action was used to sabotage the political campaigns of oppo-
nents. In fact, Nixon had E. Howard Hunt, a White House consultant, forge
cables to falsely implicate President John Kennedy in the murder of
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President Diem of South Vietnam. One field operative, Donald Segretti, run
by another White House aide, Dwight Chapin, let mice loose at a campaign
rally of one of the opposing candidates and over-ordered pizzas for another
candidate’s campaign workers. Nixon operatives forged a letter that tar-
nished Democratic candidate for President Edmund Muskie that had him
appear to Canadians as ‘‘Canucks,’’ a term considered by more cultured indi-
viduals to be a vulgar ethnic slur (Kutler, p. 454). Nixon operatives spread
false rumors of homosexuality about another opposing candidate, Senator
Henry Jackson (Kutler, p. 454). Nixon’s people, under his direction, manage-
ment, and financial support, were insecure of their capability to win in the
arena of the intellect, political discourse, and public persuasion. In sabotaging
and disrupting the campaigns of their political opponents, Nixon’s covert
operatives engaged in wholesale sabotage of the electoral process.

From June 17, 1972, when the Watergate political espionage team was
captured, a cover story in fact was fabricated by President Richard M.
Nixon and his cronies (Kutler, pp. 3,55). The tactics and strategy of public
impression management diverted Nixon’s attention from other critical is-
sues and resulted in the first resignation of an American president. The
intervention analysis reveals the impact of Watergate on President Richard
Nixon’s public approval ratings. Nixon’s public approval during some of
the roots of the Watergate scandal is depicted in Fig. 8.11.

Who broke into the Watergate? The perpetrators of the Watergate
break-in on June 17, 1972, were arrested as they attempted to break in,
steal documents, and repair eavesdropping equipment that they had already
installed in the Democratic National Committee offices at the Watergate
office complex in Washington, DC. The penetration group consisted of

Figure 8.11 The roots of the Watergate scandal: Nixon presidential approval during the
origins.
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Bernard Barker (a former assistant to Bay of Pigs political officer Howard
Hunt), James McCord (a former agency security officer in charge of elec-
tronic surveillance), Eugenio Rolando Martinez (a ‘‘connected’’ boat cap-
tain), Virgilio Gonzales (a virtuoso of locks and picks), and Frank Sturgis
(a swashbuckling former ‘‘soldier of fortune’’ who was with Castro when
he took over Cuba in 1959). Three other members of this cadre, Reinaldo
Pico, Felipe DeDiego, and Alfred Baldwin, their lookout at the Hotel
across the street, escaped prosecution. Overall, they were being directly
supervised by Hunt and Liddy. While the White House pretended to be
ignorant of these mischievous activities, Hunt’s White House phone number
was found in the address book belonging to one of those arrested. Even
when Liddy, Hunt, and the ‘‘Cubans’’ were indicted, the matter was not
publicly identified as a White House caper and Nixon’s popularity did not
yet suffer.

The plan to cover up involvement of Nixon and his White House aides
entailed the crimes of obstruction of justice and perjury. For the appre-
hended team to remain silent and serve out their jail terms without revealing
the sources of their activities, Hunt sought financial support for the men
and their families from the White House through White House Counsel
John Dean. From the viewpoint of the ‘‘Cubans,’’ and Hunt who felt
responsible for them, this support was necessary for their families until
they were released from prison and got new jobs. At one point, Nixon
sought to get the CIA to obstruct the FBI inquiry into the Watergate break
in by having General Walters speak to people in the FBI and tell them to
back off. One of Nixon’s aides, Charles Colson, suggested the possibility
of framing the CIA for what happened (Kutler, p. 61).

To what extent was fear of unraveling the cover based on fact? The
White House cover story was that they wanted to protect the Bay of Pigs
secrets harbored by those arrested, as if the fiasco had not been known to
Castro far enough in advance. In fact, Castro had advance knowledge of
the impending Bay of Bigs invasion. Security for the invasion was deplor-
able. The plans for the ‘‘secret’’ invasion had leaked into the Cuban commu-
nity in Miami weeks before the invasion, C.I.A. official Lyman Kirkpatrick
tried to get the operation aborted, but he was told that it was too late and
was overruled (Kirkpatrick, 1968; Russo, 1997). Cuban representatives to
the UN protested that the CIA was preparing to invade, and Castro pre-
pared the trap for the invasion.

Hunt served as a CIA political officer for the Bay of Pigs invasion.
Cuban exiles involved in the Bay of Pigs invasion were promised that the
U.S. military would provide air cover for the invasion, but President Ken-
nedy blocked the provision of promised air cover. Castro’s forces fought,
decimated, and captured the surviving members of landing parties. The
Kennedy brothers felt humiliated by their defeat. Afterward, Hunt main-
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tained a liaison between Bobby Kennedy, then Attorney General, who
was directing covert operations against Cuba, and Sergio Arcacha Smith’s
Cuban Revolutionary Council (CRC), which was one of the groups imple-
menting his marching orders and which was reportedly the group that in
the summer of 1961 passed on reports of Russian missiles being deployed
in Cuba. Of course, Russian Colonel Oleg Penkovsky, before his capture
by the K.G.B., had already advised his M.I.6 and C.I.A. contacts of Russian
plans to deploy these missiles and these deployments were later confirmed
by C.I.A. U-2 surveillance flights. Hunt and Barker also served as case
officers of Cuban exiles involved in contingency planning of a reinvasion
of Cuba, purportedly to be an autonomous enterprise to be launched from
Central America. Nixon suggested to Ehrlichman that he pursuade the
CIA that the FBI investigation would unravel the cover of a series of covert
anti-Cuban operations with which Hunt had been associated (Russo, 1998).
The cover-up was revealed to Judge John Sirica in a letter from James
McCord, the team surveillance expert, and part of it was reported to the
Senate Watergate Committee by John Dean, Counsel to the White House.
From Dean’s viewpoint, the provision of this hush money could be consid-
ered extortion and obstruction of justice. Nixon’s taped orders approving
the procurement and disbursement of the hush funds are what at the time
appeared to implicate him in the cover-up.

What was the source of the ‘‘hush money’’ and how was it distributed?
The resources that made the cover-up possible were indirectly accessible.
Nixon came up with the idea and John Mitchell, Attorney General, seems
to have been the one who made the arrangements. The hush money was
obtained in cash from Thomas Pappas in exchange for securing an Ambassa-
dorship for Henry Tasca in Greece (Kutler, pp. 217–218), although Frank
Sturgis used to tell acquaintances that the money came from fugitive Robert
Vesco. After the conviction of the Hunt, Liddy, and the other Watergate
burglars, Nixon’s popularity began to plummet. It became necessary to
involve others White House officials in the disbursement of the hush funds.
Nixon’s personal attorney Herb Kalmbach directed Tony Ulasewicz, a
former New York City policeman who served the Nixon White House as
a private investigator, to skulk around town depositing little brown bags
filled with $100 bills at prearranged drop spots for surreptitious retrieval.
When Helen Hunt, Howard’s wife, died in a plane crash with thousands
of dollars of hush money, part of it went undelivered. More had to be
obtained and John Dean got worried that there might not be an end to
these demands. John Dean, turning state’s evidence, soon revealed that
the cover-up extended to the Oval Office and that Nixon had been warned
there was a cancer on the Presidency that had to be excised. The cover-
up did not, however, stop there.

In addition, on June 19, 1972, when the FBI drilled a White House safe
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to retrieve contents in their investigation of the Watergate affair, L. Patrick
Gray, Acting Director of the FBI, found incriminating material and was
convinced by White House staffers to destroy this material. In so doing,
Gray himself became implicated in the cover-up.

Meanwhile, the diligent investigative reporting of Bob Woodward and
Carl Bernstein of the Washington Post penetrated much of the cover,
exposing enough nefarious activities to give rise to and help the investiga-
tion. In their odyssey, they claim to have been guided by leads from a highly
placed, well-positioned official with connections to the national security
establishment, whom they code-named ‘‘Deep Throat.’’ To this day, Wood-
ward, Bernstein, and Ben Bradlee, their editor, have kept the identity of
this reliable source a secret.

Phase one of the Watergate scandal included the origins of the scandal
and the exposure of one of many covert operations. The origins of the
political skullduggery reside in the Huston plan for surreptitious entry,
illegal surveillance, and covert disruption of the political enemies and its
verbal reendorsement by Nixon on June 17, 1991. The story of the Wa-
tergate burglars and their foremen culminated in their conviction on Janu-
ary 30, 1973, and this was indeed a watershed event. With the disclosure
of this cover-up, conviction of the Watergate Five plus Hunt and Liddy,
and the implication of Nixon’s involvement, Nixon fell from respect and his
public approval began to dive. This revelation exposed one of a collection of
covert activities that threatened the Constitutional structure of fundamental
personal and political freedom.

The second phase began when James McCord revealed the existence of
an organized White House cover-up and perjuries in a letter to Judge John
Sirica on March 23, 1973. H. R. ‘‘Bob’’ Haldeman, John Ehrlichman, and
John Dean were fired on April 30, 1973. By the end of June 1973, John
Dean had implicated President Nixon in the cover-up in his testimony
before the Senate Watergate Committee. As evidence emerged that the
White House had been heavily involved in political skullduggery, the cover-
up and its attendant obstruction of justice began to really unravel. For
Nixon, the beginning of the end had come (Fig. 8.12). For years trust in
government had suffered from one governmental disaster after another.
The Bay of Pigs fiasco, the official cover-up of Lee Harvey Oswald’s involve-
ments in the interest of preventing another war (Russo, 1998), and the
official propaganda about the origins of the Vietnam War, and the success
of the U.S. military in waging it (Kutler, p. 37) all compounded public
cynicism about government.

The third phase of the Nixon’s fall from public grace was characterized
by the exposures of high crimes following from the legislative and judicial
quest for evidence. On May 17, 1973, the Senate Watergate Committee
began televised hearings. For a short while there was a wait-and-see attitude
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Figure 8.12 Impact analysis of Watergate scandal on Nixon presidential approval rating.
The opening of the floodgates: McCord exposes and Dean implicates.

on the part of the public. John Dean began admitting to prosecutors that
Nixon and he had discussed the cover-up at least 35 times and testified
before the Senate on June 30 that Nixon was clearly implicated in approving
the hush money. Alexander Butterfield in July disclosed the existence of
the White House taping system, whereupon the Senate and the Special
Prosecutor began to subpoena the tapes. Nixon demurred on the basis of
‘‘executive privilege’’ (Fig. 8.13).

The White House was under siege. More and more White House aides

Figure 8.13 Impact analysis on Watergate scandal on Nixon presidential approval rating.
The first cascade: The demand for evidence; the courts and legislature besiege the Nixon
White House.
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got into trouble. This scandal saw the indictment, arrest, conviction, and
imprisonment of more White House officials than ever before in American
history. Evidence traced from the revelations of Dean and others brought
to light more evidence of wrongdoing. The White House plumbers were
indicted in early September 1973, and it was disclosed that Nixon had
inspired the break-in of the office of Dr. Lewis Fielding, the psychiatrist
of Daniel Ellsberg, the Pentagon researcher who had released the Pentagon
Papers to the press. The plumbers, who included most of the Watergate
burglars plus some others, broke into the office of Dr. Fielding to check
for damaging information on Ellsberg following his release of the secret
history of American involvement in the Vietnam War. On one level, the
plumbers were convicted for these scandalous legal offenses. On another
level, a fascinating story underlay the secret history of American involve-
ment and prosecution of the Vietnam War. The drama gained new excite-
ment when Nixon ordered the Special Prosecutor, Archibald Cox, fired in
October of 1973. Aggravating suspicion of a cover-up, an 18¹⁄₂ minute gap
was found in the recording on one of the tapes. Chief of Staff Alexander
Haig attributed it to ‘‘sinister forces.’’ After this cascade of evidence, a
new phase began (Fig. 8.14).

The last phase was that of Presidential impeachment. On May 17, 1974,
the Senate began impeachment hearings. On July 23, the House of Repre-
sentatives voted articles of impeachment. Those articles accused Nixon of
failing to take care that the laws were faithfully executed, abuse of power,
obstruction of justice, and sabotage of the democratic process. They were
not compartmentalized personal peccadillos. The articles charged that high
crimes and misdemeanors against the state—warranting removal of Nixon

Figure 8.14 Impact analysis of Watergate scandal on Nixon presidential approval rating.
The final deluge: Impeachment, taped evidence, and forced resignation.
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from office—had been committed. Then on August 5, a tape revealing
Nixon authorizing the hush money payments to the burglars was discovered.
This was the proverbial ‘‘the smoking gun,’’ the first piece of conclusive
evidence of obstruction of justice. As more and more evidence was uncov-
ered, this collection provided the evidentiary basis for the ultimate disgrace
and downfall of an American president. The release of the tapes provided
for the deluge of evidence that the investigations needed.

More concern about obstruction of justice with destruction of evidence
grew. Nixon was implicated in the authorization of the support and mainte-
nance of the cover-up, and hence was clearly guilty of obstruction of justice.
The House Judiciary Committee voted articles of impeachment, and Nixon
was forced to resign or face almost certain conviction. After he weighed
the odds, 68 months after taking office, Nixon resigned on August 8, 1974,
and left town retaining his pension and Secret Service protection. Little
did the skulkers in the Watergate know that their efforts to re-elect the
President would boomerang as they did. The flood of evidence had over-
whelmed fortress White House. After Vice-President Gerald Ford became
president, he pardoned Nixon, which may have cost Ford any chance of
reelection.

In sum, the results of the analysis show that after the conviction of Hunt,
Liddy, and the other Watergate burglars on January 30, 1973, Nixon’s
popularity began to plummet. In this analysis, the scandal begins as of
February 1, 1973, since that was the date by which the conviction had been
reported in the press. Others might begin it at June 17, 1972, or after the
indictment of the Watergate burglars. Each of these approaches would
result in a different impact model. Even a different algorithm for missing
data replacement (when Presidential trial heats rather than job approval
polls were conducted) might change the finely tuned specification of the
model. McCord accelerated the political unraveling by revealing the White
House cover-up. After Dean implicated Nixon and Butterfield told of the
tapes, the coverup came undone as the clamor rose for release of the taped
evidence. It was the tapes that provided the evidence of culpability. Nixon
was ultimately forced from office in disgrace. Much can be learned from
the public reaction to these events. From the graphical analysis, it can
be seen that the conviction of the Watergate burglars severely damaged
presidential job approval and precipitated the removal of a president from
office. We now turn our attention to whether this analysis can show what
damaged the President most.

8.6.3.1.2. Programming the Watergate Impact Model

This intervention model is programmed with SAS. The data are input
into an Excel file and then converted to a SAS data set called NIXAPP5.SD2
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with a conversion program called DBMSCOPY�. The program below sets
up a LIBNAME for the directory and reads in the data.into a data
set called NIXON. The approval rating is called APPROV. It consists of
the average percentage of respondents to the Gallup Poll approving the
job performance of the president. If a poll began in one month and
ended in the next, it was considered to be within the month of its
termination. If there were no other polls during that month, the value
of the poll beginning but not ending in that month was used. When
Gallup conducted presidential trial heats instead of these polls, the means
of the adjacent ratings were imputed. These data were culled from
publications of the Gallup Organization (1969–1974). A date variable
is constructed with the INTNX function, which defines and names the
month and year of each observation from the point of inception. Missing
values are truncated so that the data set ends at the time of Nixon’s
resignation. A scandal variable is constructed from the dates formed.
The scandal variable is a step function dating from the time of conviction
of the Watergate burglars on January 30, 1973. The scandal variable is
coded 1 from February 1, 1973 when the news was disseminated through
August 8, 1974, when Nixon was forced to resign. Several models were
programmed and compared. I selected the model that fit best accord-
ing to the Schwartz criterion. Ultimately, the choice of the best model
is a question of art and judgment in the trade-off between explanatory
power, parsimony, and the whitest noise. The best general model to
define the impact this scandal had on Nixon’s presidential approval is
formulated as

(1 � L)(Yt � �) � (�0)(I � L)It�3 �
(1 � 	13L13)et

(1 � �1L � �3L
3)

(8.31)

or

(1 � L)(Approvalt � �) � �0Scandalt�3(1 � L)

(8.32)
�

(1 � 	13L13)et

(1 � �1L � �3L
3)

.

When the parameters are estimated by the program the model becomes

(1 � L)(Approvalt � .522) � �9.736Scandalt�3(1 � L)

(8.33)
�

(1 � .356L13)et

(1 � .351L � .365L13)
.
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In order to explain the rationale behind the SAS programming, we first
list the command log

/* ************************************************* **/

/* SAS LOG of Program of Watergate Scandal C8PGM2.SAS */

/* Blank lines were deleted from the log file to conserve space */

/* ********************************************** * ** */

NOTE: Copyright (c) 1989-1996 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) Proprietary Software Release 6.12 TS020

Licensed to NEW YORK UNIVERSITY, Site 0011830001.

1 options ls=80 ps=55;

2 title 'Impact Analysis of Watergate Scandal';

3 title2 'on Nixon Presidential Approval';

4 title3 'Percent of Respondents approving of Way President';

5 title4 'is Handling his Job: Source Gallup Poll Monthly';

6 title5 'January 1969 thru Aug 1974';

7 libname inp 'e:statssas';

NOTE: Libref INP was successfully assigned as follows:

Engine: V612

Physical Name: e:statssas

8 data nixon;

9 set inp.nixapp5;

10 time + 1;

11 date = intnx('month','01jan1969'd,_n_-1);

12 scandal=0;

13 if date > '30jan73'd & date < '01Sep74'd then scandal=1;

14 label scandal='Scandal from Convictn of WGate 7 2 end';

15 if _N_ < 69;

16 format date monyy5.;

NOTE: The data set WORK.NIXON has 68 observations and 11 variables.

NOTE: The DATA statement used 0.69 seconds.

17 proc print;

18 title6 'Nixon Era';

19 run;

NOTE: The PROCEDURE PRINT used 0.42 seconds.

23 data anno1;

24 input date date7. text $ 9-50;

25 function='label'; angle = 90 ; xsys='2'; ysys='1';

26 x=date; y=45; position='B';

27 cards;

NOTE: The data set WORK.ANNO1 has 5 observations and 9 variables.

NOTE: The DATA statement used 0.22 seconds.
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35 /* generates the x-axis value above the reference line */

36 data anno2;

37 input date date7. text $ 9-50;

38 function='label'; angle = 90 ; xsys='2'; ysys='1';

39 x=date; y=50; position='B';

40 cards;

NOTE: The data set WORK.ANNO2 has 4 observations and 9 variables.

NOTE: The DATA statement used 0.25 seconds.

47 /* generates the x-axis value above the reference line */

48 data anno3;

49 input date date7. text $ 9-50;

50 function='label'; angle = 90 ; xsys='2'; ysys='1';

51 x=date; y=50; position='B';

52 cards;

NOTE: The data set WORK.ANNO3 has 8 observations and 9 variables.

NOTE: The DATA statement used 0.34 seconds.

63 /* generates the x-axis value above the reference line */

64 data anno4;

65 input date date7. text $ 9-50;

66 function='label'; angle = 90 ; xsys='2'; ysys='1';

67 x=date; y=50; position='B';

68 cards;

NOTE: The data set WORK.ANNO4 has 3 observations and 9 variables.

NOTE: The DATA statement used 0.19 seconds.

74 /* generates the x-axis value above the reference line */

75 data anno5;

76 input date date7. text $ 9-50;

77 function='label'; angle = 90 ; xsys='2'; ysys='1';

78 x=date; y=50; position='B';

79 cards;

NOTE: The data set WORK.ANNO5 has 3 observations and 9 variables.

NOTE: The DATA statement used 0.17 seconds.

86 axis1 order=(20 to 70 by 10) label=(a=90'Percent approving');

87 symbol1 i=join c=blue v=star;

88 proc gplot data=nixon;

89 plot approval * date /

90 href='23jan70'd '17jun71'd '03sep71'd,'17Jun72'd,'15sep72'd

91 vaxis=axis1 annotate=anno1;

92 title justify=L 'Figure 8.11 The Roots of the Watergate Scandal';

93 title2 'Nixon Presidential Approval during';

94 title3 'The Origins';

95 run;
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101 axis1 order=(20 to 70 by 10) label=(a=90 'Percent approving');

102 symbol1 i=join c=blue v=star;

NOTE: The PROCEDURE GPLOT used 1.95 seconds.

103 proc gplot data=nixon;

104 plot approval * date /

105 href= '30jan73'd,'23Mar73'd,'30apr73'd '04sep73'd

106 vaxis=axis1 annotate=anno2;

107 where date > '01Dec71'd;

108 title justify=L 'Figure 8.12 Impact Analysis of Watergate Scandal';

109 title2 'on Nixon Presidential Approval Rating';

110 title3 ' The Opening of the floodgates';

111 title4 'McCord Exposes & Dean Implicates';

112 run;

114 axis1 order=(20 to 70 by 10) label=(a=90 'Percent approving');

115 symbol1 i=join c=blue v=star;

NOTE: The PROCEDURE GPLOT used 9.49 seconds.

116 proc gplot data=nixon;

117 plot approval * date /

118 href= '17May73'd,'03jun73'd,'25jun73'd, '16jul73'd,'23jul73'd,

119 '04sep73'd,'20Oct73'd,'21nov73'd

120 vaxis=axis1 annotate=anno3;

121 where date > '01jan73'd & date < '01Mar74'd;

122 title justify=L 'Figure 8.13 Impact Analysis of Watergate Scandal';

123 title2 'on Nixon Presidential Approval Rating';

124 title3 ' The First Cascade: The Demand for Evidence';

125 title4 'The Courts & Legislature Beseige Nixon White House';

126 run;

128 axis1 order=(20 to 70 by 10) label=(a=90 'Percent approving');

129 symbol1 i=join v=star;

NOTE: The PROCEDURE GPLOT used 2.17 seconds.

130 proc gplot data=nixon;

131 plot approval * date /

132 href= '17may74'd,'23jul74'd,'08aug74'd

133 vaxis=axis1 annotate=anno4;

134 where date > '01Dec73'd;

135 title justify=L 'Figure 8.14 Impact Analysis of Watergate Scandal';

136 title2 'on Nixon Presidential Approval Rating';

137 title3 'The Final Deluge: ';

138 title4 'Impeachment, Taped Evidence, & Forced Resignation';

139 run;
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142 /* ********************************** */

143 /* Pre-Watergate Nixon Era */

144 /* Model A is chosen for parsimony */

145 /* Model F is chosen as best fitting */

146 /* ********************************** */

NOTE: The PROCEDURE GPLOT used 2.47 seconds.

148 data prewater;

149 set nixon;

150 if date < '01feb73'd;

NOTE: The data set WORK.PREWATER has 49 observations and 11 variables.

NOTE: The DATA statement used 0.26 seconds.

151 proc print;

152 title3 'Pre-watergate Nixon Era';

153 run;

NOTE: The PROCEDURE PRINT used 0.01 seconds.

155 /* does approval need differencing */

156 proc arima data=prewater;

157 i var=approval center stationarity=(adf=(0,1,2,3,4,5,6)) nlag=20;

158 run;

NOTE: The PROCEDURE ARIMA used 0.2 seconds.

160 proc arima data=prewater;

161 identify var=approval center nlag=25;

162 e p=(1) noint printall plot;

163 title3 'Pre-Watergate Model A AR1 No Seasonal AR';

164 /* residuals not wn */

165 run;

NOTE: The PROCEDURE ARIMA used 0.01 seconds.

168 proc arima data=prewater;

169 identify var=approval center nlag=25;

170 e p=(1,3) noint printall plot;

171 title3 'Pre-Watergate Model B AR (1,3)';

172 /* parsimonious & resids are wn */

173 run;

NOTE: The PROCEDURE ARIMA used 0.08 seconds.

175 proc arima data=prewater;

176 identify var=approval center nlag=25;

177 e p=(1) q=(3) noint printall plot;

178 title3 'Pre-Watergate Model C ARMA(1,3) component';
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179 /* Residuals are not wn */

180 run;

NOTE: The PROCEDURE ARIMA used 0.02 seconds.

182 proc arima data=prewater;

183 identify var=approval center nlag=25;

184 e p=(1,3) q=(4) noint printall plot;

185 title3 'Pre-Watergate Model D: AR2 MA 1 components';

186 /* MA1 term is ns */

187 run;

NOTE: The PROCEDURE ARIMA used 0.14 seconds.

189 proc arima data=prewater;

190 identify var=approval center nlag=25;

191 e p=(1,6) q=(3,13) noint printall plot;

192 title3 'Pre-Watergate Model E ARMA(1,6-3,13) components';

193 run;

NOTE: The PROCEDURE ARIMA used 0.02 seconds.

195 proc arima data=prewater;

196 identify var=approval center nlag=25;

197 e p=(1,3,6) noint printall plot;

198 title3 'Pre-Watergate Model F 3 AR components';

199 run;

NOTE: The PROCEDURE ARIMA used 0.13 seconds.

201 proc arima data=prewater;

202 i var=approval center nlag=25;

203 e p=(1,3) q=(13) noint printall plot;

204 title3 'Pre-Watergate Model G AR2 MA(13)';

205 run;

NOTE: The PROCEDURE ARIMA used 0.02 seconds.

208 proc arima data=prewater;

209 i var=approval(1) center nlag=25;

210 e p=(1) noint printall plot;

211 title3 'Pre-Watergate Model H diff AR1';

212 run;

NOTE: The PROCEDURE ARIMA used 0.02 seconds.

214 proc arima data=prewater;

215 i var=approval(1) center nlag=25;

216 e p=(1,3) noint printall plot;

217 title3 'Pre-Watergate Model I diff ar(1,3)';

218 run;

NOTE: The PROCEDURE ARIMA used 0.02 seconds.
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221 proc arima data=prewater;

222 i var=approval(1) center nlag=25;

223 e p=(1,3) q=(13) noint printall plot;

224 title3 'Pre-Watergate Model J diff ar(1,3)MA(13)';

225 run;

227 /* *********************************** */

228 /* Model J is selected for best SBC */

229 /* Residuals are wn */

230 /* All terms are significant */

231 /* No substantial collinearity */

232 /* *********************************** */

233

235 /* The Complete Nixon Era */

NOTE: The PROCEDURE ARIMA used 0.02 seconds.

239 data water;

240 set nixon;

241 time + 1;

NOTE: The data set WORK.WATER has 68 observations and 11 variables.

NOTE: The DATA statement used 0.27 seconds.

242 proc print;

NOTE: The PROCEDURE PRINT used 0.01 seconds.

243 proc timeplot;

244 id time date;

245 plot approval;

246 title3 'Nixon Era';

247 run;

NOTE: The PROCEDURE TIMEPLOT used 0.08 seconds.

248 proc arima data=water;

249 i var=approval(1) center crosscorr=(scandal(1)) nlag=20;

250 e p=(1,3) q=(13) input=(scandal) noint printall plot;

251 title justify=L 'Impact Analysis of Watergate Scandal';

252 title2 justify=L 'testing for scandal ';

253 run;

NOTE: The PROCEDURE ARIMA used 0.04 seconds.

255 proc arima data=water;

256 i var=approval(1) center crosscorr=(scandal(1)) nlag=20;

257 e p=(1,3) q=(13) input=(3$scandal) noint printall plot;

258 f id=date lead=24 out=nixres;

259 title justify=L 'Impact Analysis of Watergate Scandal';
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260 title2 justify=L 'Parsimonious Model';

261 run;

NOTE: The data set WORK.NIXRES has 71 observations and 7 variables.

NOTE: The PROCEDURE ARIMA used 0.19 seconds.

263 data forec;

264 set nixres;

265 if date < '30jan73'd then forecast = .;

266 if date < '30jan73'd then l95 = .;

267 if date < '30jan73'd then u95 = .;

NOTE: The data set WORK.FOREC has 71 observations and 7 variables.

NOTE: The DATA statement used 0.17 seconds.

268 proc print data=forec;

269 run;

NOTE: The PROCEDURE PRINT used 0.01 seconds.

270 axis1 order=(20 to 70 by 10) label=(a=90'Percent approving');

271 symbol1 i=join v=star c=blue;

272 symbol2 i=join v=Plus c=green;

273 symbol3 i=join c=red;

274 symbol4 i=join c=red;

275 proc gplot;

276 plot (approval forecast l95 u95) * date/overlay

277 vaxis=axis1 href='30jan73'd '23mar73'd '23jun73'd annotate=anno5;

278 title justify=L 'Figure 8.17 Impact Analysis of Watergate Scandal';

279 title2 'on Percent of public approving Presidential job performance';

280 title3 'Data from The Gallup Organization web site';

281 title4 'World Wide Web URL: http://www.gallup.com/';

282 footnote justify=L 'data=star, forecast=plus, 95% confidenceintervals=

lines';

283 run;

The complete SAS program constructing and annotating the preceding
graphs can be found in the SAS program 8.2. After a review of the graph,
the ARIMA preintervention model is identified. The monthly Gallup Poll
presidential job approval percentage appears to be an autoregressive pro-
cess. Owing to detection of MA-type spikes in the residuals of the differ-
enced, AR identification, several models are tested. Model J, which has
the lowest SBC, is selected as the best fitting model. With inspection of
the ACF and PACF, we can hypothesize that the ARIMA noise model
may be a differenced ARMA model with autoregressive lags at 1 and 3,
and one moving average component at lag 13. Lines 221 through 225
of the SAS program log above reveal the syntax for programming the
preintervention model.
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Data prewater;

set nixon;

if date < '01Feb73'd;

proc print;

title3 'Pre-watergate Nixon Era';

run;

Proc arima data=prewater;

identify var=approv(1)center nlag=25;

e p=(1,3) q=(13) noint printall plot;

title3 'Pre-Watergate Model J diff ar(1,3) MA(13)';

run;

After this preintervention model is identified, the model is estimated using
conditional least squares. We find the T ratios of the AR components to
be significant.

The subsequent residuals are diagnosed as white noise.

The ARIMA noise model is identified, estimated, diagnosed, and metadiag-
nosed with the SBC and is presumed to be stable throughout the whole
study. It is this model that we can carry over into the model of the complete
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series. All changes to the series found in the time plot are attributed to
the intervention.

After the noise model is diagnosed and resolved, the intervention compo-
nent needs to be modeled. There are several steps to this process. The first
step is to augment the data set by the whole Nixon era. The augmentation
is accomplished by construction of a new data set named DATA WATER.

All of the NIXON data set is brought down and subsumed within DATA

WATER with the SET command. The next step is to set up the identification
procedure. The preintervention model is identified, differenced, and cen-
tered to effect stationarity and simplification. Identification now entails
construction of cross-correlation syntax. The same differencing that is ap-
plied to the response series APPROV is applied to the SCANDAL intervention
variable in the cross-correlation syntax. Remember that there is no real
prewhitening of the input variable with an intervention analysis, even
though the cross-correlation syntax is being employed (Box et al., 1994;
Brocklebank and Dickey, 1986; Woodfield, 1987; Woodward, 1998).

The next step is to carry over the preintervention model. This is accom-
plished with the estimation subcommand. The estimation of the preinter-
vention series is carried over into this syntax with the E P=(1.3) Q=

(13) NOINT PRINTALL PLOT portion of the ESTIMATE subcommand.
The last step is to include and define the input response function to the
SCANDAL intervention variable, which is done with the CROSSCORR sub-
command within the IDENTIFY subcommand and the INPUT subcommand
within the ESTIMATE subcommand. The programming syntax for the full
series can be found in lines 235 through 261.

235 /* The Complete Nixon Era */

239 data water;

240 set nixon;

241 time + 1;

242 proc print;

243 proc timeplot;

244 id time date;

245 plot approval;

246 title3 'Nixon Era';

247 run;

248 proc arima data=water;

249 i var=approval(1) center crosscorr=(scandal(1)) nlag=20;

250 e p=(1,3) q=(13) input=(scandal) noint printall plot;

251 title justify=L 'Impact Analysis of Watergate Scandal';

252 title2 justify=L 'testing for scandal ';

253 run;
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255 proc arima data=water;

256 i var=approval(1) center crosscorr=(scandal(1)) nlag=20;

257 e p=(1,3) q=(13) input=(3$scandal) noint printall plot;

258 f id=date lead=24 out=nixres;

259 title justify=L 'Impact Analysis of Watergate Scandal';

260 title2 justify=L 'Parsimonious Model';

261 run;

In order to model the input response function, we turn our attention to
the time plot, the five lines of programming for which may be found under
the PROC PRINT statement of the above program. Both the TIME counter,
which counts the observations and facilitates lag estimation, and the DATE
variable are used as ID variables by which to identify each of the monthly
approval ratings. Although the graphical plots before this nicely show the
overall picture, they do not carefully identify each observation with its
corresponding date. For intervention modeling, the time plots in SAS are
very useful. Careful examination of the time plot in Fig. 8.15 at the time
of intervention and impact suggests the kind of model to be programmed.

Figure 8.15 reveals that the time following the conviction of the Wa-
tergate burglars on January 30, 1973 coincided with the decline in Presiden-
tial approval. In March 1973, about two months later, James McCord, the
surveillance expert of the Watergate penetration team, disclosed to Judge
John Sirica a felonious conspiracy to cover up criminal involvement of high
officials, and presidential job approval began to slide downhill. From the
appearance of these sudden shocks to the approval rating, we can observe
that news of the Watergate break-in aroused suspicions among the cogno-

scenti. However, not until Hunt and Liddy and the other Watergate Five
were convicted did Nixon’s job approval ratings begin to slump. Only when

Figure 8.15 Impact analysis of Watergate scandal on Nixon presidential job performance.



8.6. Programming Impact Analysis 335

Nixon let his chief aides Haldeman and Ehrlichman go was there a pause
in the fall of the job approval ratings.

A little more than two months later, on June 25, 1973, John Dean openly
implicated Nixon in the cover-up, whereupon presidential job approval
resumed its decline. Although Nixon had really been involved in the cover-
up from the beginning, the full extent of this involvement would not become
evident until the new Nixon tapes were released. Nixon and his aides had
tried to pin the Watergate escapade on the CIA and then to use the CIA
to block the FBI investigation into their partisan political espionage. By
falsely claiming it would compromise too much about the Bay of Pigs covert
activity, Nixon tried to get the FBI to back off of their exposure of the
political espionage activities of the Committee to Re-Elect the President,
affectionately known as the ‘‘CREEP.’’ When the burglars were nabbed,
Nixon launched the plot to obtain the hush money by trading on an ‘‘ambas-
sadorship’’ in return for the cash. When Alexander Butterfield testified to
the existence of the White House taping system that might contain evidence
of these activities, in July 1973, Special Prosecutor Archibald Cox and Sena-
tor Sam Ervin, chairman of the Senate Watergate Committee, subpoenaed
the tapes. Nixon, of course, resisted full disclosure and his approval fell fur-
ther. In September, Egil Krogh’s ‘‘plumbers’’ were indicted for the surrepti-
tious entry and burglary of the office of Dr. Lewis Fielding, the psychiatrist
of Daniel Ellsberg, and Nixon’s public persona suffered and his job approval
slid further. On October 30, Nixon fired Archibald Cox and an 18¹⁄₂-minute
gap was discovered on a tape made shortly after the Watergate break-in.
Nixon’s job approval slid yet further. By the time the scandal had reached its
conclusion, 21 Nixon aides had been tried and convicted of crimes. Nixon was
gradually and painfully forced from grace, public respect, and political office.

Using these changes as indicators, we examine the cross-correlation
function and observe a single negative pulse at lag 3. A pulse function is
constructed from a differenced scandal dummy variable. The impact is
lagged by 3 months. Just before the incidence of this lag, McCord exposed
the White House cover-up and perpetrator perjury, and at about the time
of this lag, Haldeman, Ehrlichman, and Dean were fired by Nixon, sug-
gesting that high White House Aides may have been involved. By July
1973, Butterfield had revealed the existence of the White House tapes, and
Nixon had resisted turning over subpoenaed tapes. In September of that
year the White House plumbers were indicted for the Fielding break-in.
The nature of the series is one where the regression coefficients have the
following structure. A differenced scandal input would create such a pulse.
The impact of these events is represented by the differenced scandal lagged
by 3 months.

�0Scandalt�3(1 � L) (8.34)
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At this point, it should be remembered that the same differencing that was
applied to the response variable is applied to the intervention input.

The regression weights are estimated to find the values for their coeffi-
cients. In this model, conditional least squares estimation is employed.

All significant coefficients owing to the model reduce the presidential ap-
proval following scandal-connected events. The fit statistics—including the
standard error estimate, SBC, and AIC—are presented. The correlation
matrix in the output reveals that the largest intercorrelation among the
parameters was �0.176, from which we can infer that multicollinearity is not
problematic. Then the autocorrelation check of the residuals is presented. If
these are white noise residuals, then the systematic variation has been
accounted for by the model parameters and the model fits. Although a
model with fewer AR terms or no MA term may be parsimonious, the residu-
als are more white noise from this chosen model. When only white noise
residuals remain, as indicated by the insignificant modified Q Tests, these
model parameters seem to account for all significant impact (Fig. 8.16).

When we review the graphs of these sequence of events, we perceive
events that drive down the approval ratings at lags 3, 6, and 8 after the
disclosure of the cover-up. What events are associated with these drops in
approval? Following the burglary conviction, James McCord’s exposure of
the cover-up, and the firing of top White House Aides Haldeman, Ehr-
lichman, and Dean were accompanied by a precipitous decline in presiden-
tial approval. When the televised Senate Watergate hearings convened,
there was a short let-up while both sides built their cases. For two months,
the Senate Watergate hearings were televised. But once John Dean, former
White House counsel, implicated Nixon in the cover-up and obstruction
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Figure 8.16 Impact analysis of Watergate scandal: best-fitting model.

of justice, approval of the presidential performance started its downhill
slide again. The legislature and the courts demanded the tapes and the
president demurred, citing ‘‘executive privilege’’; there was a slow-down
of decline. However, once the plumbers were indicted the rate of decline
increased again. The mathematical equation describing this phenomenon
is based on the following output.

Model for variable APPROVAL

Data have been centered by subtracting the value -0.522388006.

No Mean term in this model.

Period(s) of differencing = 1.

Autoregressive Factors

Factor 1: 1 + 0.35149 B**(1) - 0.36478 B**(3)

Moving Average Factors

Factor 1: 1 - 0.35594 B**(13)

Input Number 1 is Scandal with a shift of 3.

Period(s) of Differencing 1

Overall Regression Factor -9.73637
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From this output, we can reconstruct the formula for Nixon’s presidential
approval ratings before and during the Watergate scandal as

(1 � L)(Approvalt � 0.522)
(8.35)

� (�9.736)Scandalt�3(1 � L) �
(1 � 0.356L13)et

(1 � 0.351L � 0.365L3)
.

The series for Nixon’s presidential approval rating can be mathematically
explained as a nonstationary series I(1). After differencing, this presidential
approval series is typically an autoregressive series with components at lags
1 and 3 prior to the Watergate scandal. The onset of that scandal is modeled
as a differenced step (pulsed) input. The impact of the scandal is associated
with a plummeting value of Nixon’s approval rating. The approval was
plummeting after the conviction of Hunt, Liddy, and the burglars. About
three time periods (months) afterward, McCord revealed the existence of
a conspiracy to cover up the full extent of involvement. Nixon’s implication
came with John Dean testimony in June of 1973. By July, Nixon refused
to turn over the subpoenaed tape recordings, and his approval fell further.
Eventually, Nixon was forced to turn over the tapes, which contained
evidence that he had been a principal to obstruction of justice, abuse of
power, sabotage of the democratic process, and failing to take care that
the laws were faithfully executed, whereupon his legitimacy crumbled and
he was forced to resign lest he be certainly convicted of high crimes and
misdemeanors. The end result, a general public disillusion and dissatisfac-
tion with his presidency, was reported by more than three-quarters of the
people polled. In the end, the later exposure of Nixon’s darker deeds
overwhelmed him and his place in history. The model and the forecast
profile generated by it is presented in Fig. 8.17.

In the analysis of political scandals, there is a caveat. This formula for
the decline in presidential approval rating for President Richard M. Nixon’s
administration highlights a dimension of Nixon’s popularity among the
people, but does not necessarily hold for that of any other president. Cha-
risma was a coat that did not fit Nixon well. His expressions, mannerisms,
and style were stilted and awkward. The circumstances of the Nixon admin-
istration were rather unique and, assuming the nation’s leaders learn from
the errors of their predecessors, there is no reason to suspect that this
tragedy for the country is destined to recur in the near future. Nixon
had promised to extricate the United States from an unpopular military
quagmire in Vietnam. Contrary to promises, he actually appeared to extend
the war into Cambodia in 1970. His military activities against North Vietnam
engendered protest at home while the economy was hobbled by balance-
of-payments problems in 1971, by leaving the gold standard later that year,
and then by the OPEC oil embargo and production cutbacks in the 1970s.
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Figure 8.17 Impact analysis of Watergate scandal on percent of public approving presidential
job performance. Data from the Gallup Organization Web site (http://www.gallup.com).

Governmental credibility over the Vietnam war had crumbled by summer
of 1971; trust in government suffered, as political discontent and unrest
percolated. Not all political scandals have the capability to undermine the
foundations of a presidency. For the country to learn from its history, its
historians and political scientists must carefully study it and accurately
report it. More will be said about the limitations of this kind of analysis at
the end of the chapter.

Other presidential scandals need not resemble Watergate. The key deci-
sion makers, their organizations, and the institutions involved as well as
the configurations of power within them must be analyzed amid the political
context and historical background. A complete analysis of presidential
scandals might have to candidly and completely examine the Teapot Dome
scandal, the surprise of the Japanese attack on Pearl Harbor, the Bay
of Pigs fiasco, the Gulf of Tonkin incidents, the Watergate scandal, the
Iran–Contra scandal, and the Clinton–Lewinsky scandal. Only from an
honest analysis of a more or less complete set of political scandals could
the commonalities and their impacts be deduced. Although these findings
would be of great interest to serious students of political science, they might
not find much government sponsorship outside of the intelligence agencies.

To illustrate how presidential scandals differ in their impact, consider
the Clinton–Lewinsky scandal. Monica Lewinsky was a young White House
intern fresh out of college with whom President William Jefferson Clinton
had a brief inappropriate relationship. The Republican Congress during
the tenure of President Clinton gave the appearance of an inquiry in search
of a scandal. Time and again, unfounded accusations gave rise to inquiries.
Time and again, none of these inquiries yielded evidence of crimes linked
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to the White House. President Clinton, apart from this lapse of judgment,
has been an extraordinary talented, politically adept, diplomatically adroit,
and extremely intelligent president. In international affairs, he made deci-
sions that put an end to genocide in Bosnia–Herzegovina, expanded NATO,
mobilized NATO in attacking Serbia for its massacres of Kosovars, facili-
tated an end to ‘‘the Troubles’’ in Ireland, brokered two peace deals in
the Mideast, and extended a hand of friendship to the Chinese people. He
twice forced Saddam Hussein to promise to live up to UN agreements to
allow UN weapons inspectors to continue their efforts to verify disarma-
ment of weapons of mass destruction. When Hussein finally reneged on
his UN agreements, President Clinton initiated air strikes against Iraq
designed to reduce Hussein’s ability to threaten his neighbors or the world.
When Osama Bin Laden declared war against the United States and spon-
sored attacks against U.S. Embassies in Tanzania and Kenya, Clinton retali-
ated against Bin Laden’s camp. He spoke before the United Nations, ral-
lying countries to a war against terrorism before the terrorists obtained
weapons of mass destruction. For his efforts in support of international
security and peace, it has been reported that he was under serious consider-
ation for the Nobel Peace Prize.

Domestically, the U.S. economy was prosperous and robust at the time
of the scandal, even though other economies had suffered. The Asian
economies had begun to cave in. The Russian economy was almost implod-
ing. Instabilities were apparent in Latin American economies. Although
the U.S. economy suffered from a drop in demand for exports from those
economies, domestically things were going fairly well.

Many scholars—including, Edward Tufte—have noted that economic
prosperity may determine the kind and extent of support that a president
enjoys. Measures of such prosperity, such as the Conference Board index
of consumer confidence or the University of Michigan index of consumer
sentiment, have been used to indicate this kind of well-being. Nonetheless,
this was not used as a factor in these analyses to model the impact of the
Watergate or Lewinsky scandal, because of a desire to focus on the impact
of the Watergate scandal in the former case and in the latter case for lack
of sufficiently large sample size. Notwithstanding these constraints, the
general economic well-being of the American citizen remains an important
factor in public approval of the quality of political leadership.

While Congress and the political comedians fixated on the investigation
of Clinton’s indiscretion with a White House intern, the public became
disenchanted with the lack of congressional focus on matters of real national
interest. That a popular president had been seduced first by a young intern,
hounded by a special prosecutor, ensnared in a perjury trap, deprived by
the courts of legal support and real executive security, stripped of his privacy
by having his personal peccadillos dumped in lurid detail onto the World
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Wide Web by Congress, and divested of personal respectability by having
his personal reputation besmirched before the world made the public won-
der how insensitive and prurient the minds of the Republican Congressmen
really were. Columnists began to complain that Congress was disgusting
the country and leading it astray, and wondering what kind of grotesque
country the United States had become. Images of sexual McCarthyism
emerged and people began to sympathize with the persecuted rather than
the prosecutors. The White House counterattacked that this was a do-
nothing Congress willfully negligent of the needs of the people. The Repub-
licans failed to gain all the seats they expected to in the election of 1998.
The Republican Speaker of the House, Newt Gingrich of Georgia, whose
relationship with a younger aide to the House Agricultural Committee
would later become an issue during his divorce proceedings, resigned. The
next Republican Speaker of the House, Robert Livingston of Louisiana,
was discovered to have been guilty of sexual indiscretion and therefore
forced into resignation. Clinton’s popularity began to increase while that
of the Republican-dominated Congress began to decrease. The public saw
Clinton as basically an effective president who essentially should be forgiven
for a real mistake. In a Gallup Poll in early November, 66% of national
adults wanted Clinton not to be impeached and to remain in office.

Clinton’s political opposition complained that he was just too slick and
always one step ahead of them. When Clinton committed a personal and
sexual peccadillo by having a liaison with a young, talkative White House
intern, he gave her something to brag about. Rumors began to spread. This
time they spread through the conservative spyvine back to the special
prosecutor. After having been put on the stand and having publicly denied
sexual involvement, he was forced to admit an inappropriate intimate rela-
tionship with the intern. Clinton, however, was blessed by the unsavory
character of many of his most prominent political enemies and persecutors.
Time and again, he was blocked by a Republican congressional majority
from passing social reform legislation in the best interests of minorities and
the needy in the country. In areas of campaign finance reform, tobacco
legislation to protect the public health, health insurance, funding for more
teachers and educational facilities, and pro-choice legislation favored by
most women, the Republican Congressional majority protected the special
interests and thwarted Clinton (Bentley, 1998). In the meantime, he built
up a lot of faith, credit, and trust on the part of the people who believed
that he was trying to do the right thing for the country. When he found
himself caught by the Republicans and upbraided by friendly Democrats
for this serious lapse of judgment, the more issue-oriented people in the
country rallied around him rather than see him be politically lynched by
his rabid Republican opposition. The majority of the mass public wanted
the country spared another prolonged, offensive, insensitive, Republican
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investigation from which they could expect minimal yield. The public’s
sensibilities had been offended ad nauseum by these congressmen. They
preferred that Clinton be censured and the Congress move on to attend
to the pressing interests of the country. Others marveled at the kind of
interpretation of the Constitution that would deprive a political system of
stability and flaw it with vulnerability by allowing the whimsical irresponsi-
bility of a young White House intern to bring down a Presidential adminis-
tration.

Within this situation, Clinton’s Gallup Poll presidential job approval
ratings at first declined slightly, but then recovered (Fig. 8.18). While evalua-
tions of Clinton’s personal character suffered, his Gallup Poll monthly job
approval average remained between 60 and 66%. Although the possibility
that he had lied under oath threatened a charge of perjury, there was no
credible evidence of suborning perjury or obstruction of justice. Much
depended on whether these constituted ‘‘high crimes and misdemeanors’’
of the type the framers of the Constitution or the House of Representatives
interpreted them to be. Although the scandal contributed to a decline in
approval of the personal character of the President and threatened Clinton
with impeachment, it was surprisingly accompanied by a general rise in
Clinton’s Gallup Poll presidential job approval as he masterfully dealt with
situations and crises that challenged him. Although many members of the
U.S. Senate expressed disapproval of President Clinton’s misbehavior, the
Senate ultimately acquitted him, on February 12, 1999, of crimes alleged
in the articles of impeachment passed by the Republican-dominated House
of Representatives, for lack of evidence, proof, or seriousness of the crimes.
In other words, not all presidential scandals overturn a very popular presi-
dent who clearly made a mistake.

8.7. APPLICATIONS OF IMPACT ANALYSIS

Impact analysis permits the study of input and output phenomena in
the time domain. It has clear applications in the modeling of regime changes,
impacts of external events (including policy changes), scenarios, contingen-
cies, or even outliers in time series analysis. In contrast to cross-sectional
research, impact analysis allows examination of the temporal sequence
necessary for confirmation of sequential or causal relationships. It permits
careful modeling of various forms of impact of one or more events on a
response series. If a graphical analysis suggests a change in regime, indicated
by a change in the level of a response series, and an objective test—e.g.,
Chow or Likelihood Ratio test—confirms such a structural change, then
impact analysis might be in order. By forecasting from the preintervention
series, intervention analysis permits comparison of the impact of an inter-
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vention with that preintervention forecast. In this way, the net difference
between what might have happened, ceteris paribus, had there been no
intervention and the impact of the intervention becomes clear. Intervention
analysis enables the analyst to model a change in situation with the inclusion
of an independent dummy variable. If the change in regime is gradual
rather than sudden, the analyst can model that change in situation or regime
by an impulse response function of an intervention variable. Various shapes
of impact may be modeled by combining the components of gradual or
sharp onset with those of sharp or gradual attenuation or oscillation of
effect. These techniques are part and parcel of interrupted time series
analysis (McCain and McCleary, 1979; McDowell et al., 1980).

The accuracy of impact analysis is contingent upon the fulfillment of the
assumptions mentioned earlier. The analyst can test alternative explana-
tions for the observed impact on the series by including other event indica-
tors in a multiple time series intervention analysis. The input indicator
variable is deterministic, representing the presence or absence of an event.
Multiple input functions may be modeled. The other deterministic indica-
tors should be variables representing the plausible alternative explanations
for the impact. If and when those impulse functions are shown to be nonsig-
nificant, they are eliminated as explanatory variables, unless required for
specification of other variables. If and when other deterministic inputs are
significant, the input combinations will represent the combined driving
forces of the response series. For example, if there are two significant step
inputs, each with two possible values, the multiple input of the two indicators
yields four combinations that can drive the response series. In option one,
both inputs will have a value of zero, which may be deemed a reference
point from which others may deviate. In option two, both inputs will have
a value of unity. In option three, one input will have a value of unity and
the other will have a value of zero, and in the final option, the input that
in option three that had a value of unity will have a value of zero and the
input that had a value of zero will have a value of unity. To represent k

combinations of categories, it will be necessary to include k-1 dummy
variables, regardless of whether all k-1 dummy variables are statistically
significant. In this way, the final regression model can control for multiple
complex and compound explanations, as well as interactions.

Assessment of interventions on a series is a valuable tool for policy
analysis. If the system is relatively closed and there are only a few impacts
on the series, then this kind of analysis is empirically very useful. It has
the advantage of demonstrating temporal sequence, which is necessary for
establishing a causal model. These models are flexible. These intervention
models can entertain two or more separate interventions at different points
in time. They may involve interactions between other inputs. Indeed, if
there are two or more inputs, it may behoove the researcher to test whether
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there is a joint effect of these inputs, over and above their separate impacts
(Ege, et al., 1993). They may involve continuing interventions—for example,
extended pulse functions or step functions. Although this is not sufficient
to establish causality, the method provides a valuable statistical technique
for detecting, testing, and modeling empirical evidence of causal relation-
ships. When a conflict develops between statistical and theoretical fit, the
model building should be theory-driven. Nonetheless, the temporal se-
quence is one component of causality in statistical models that cross-sec-
tional research designs do not capture (Nagel, 1961; Campbell and Stanley,
1963; McDowell et al., 1979). Application of intervention models in time
series may elucidate these complex relationships.

Furthermore, impact analysis with its pulse function input may be used
for modeling outliers, unusual data points that may be the product of coding
errors. Such an error can produce what is called an observational or additive
outlier, which can be modeled by a pulse intervention indicator. To model
this outlier, the ARIMA series model [in this case, an ARIMA(1,0,1)
process] is added to the pulse response function (1 � L)It�b with interven-
tion indicator It, time delay b, regression coefficient �1:

Yt �
(1 � 	1L)

(1 � �1L)
et � �1(I � L)It�b . (8.36)

This is a simple example with only one outlier. Actually, the series may
have several outliers. The model for such a series would require an outlier
response function for each outlier. In that case, there would be as many
components beginning with �i on the right-hand side of the equation as
there were outliers in the series. This kind of model is similar to the impact
model of the Watergate scandal, which has multiple pulse inputs.

If the outlier has a persistent or permanent effect on the level and
variance process of the series, it is called an innovational outlier. Innova-
tional outliers are more complex than observational outliers. The formula
defining such outliers was given by Mills (1990). With an innovation outlier
the presence of the extraordinary shock effects a sustained general response
through the noise model of the data-generating process:

Yt �
(1 � 	1L)

(1 � �1L)
et �

(1 � 	2L)

(1 � �1L)
[�1(I � L)It�b].

(8.37)

where �1 � �1.

The impulse response or transfer function is divided by the autoregressive
parameters and multiplied by the moving average parameters before being
added to the noise model. For a more detailed discussion of the analysis
of innovational outliers, readers can consult Mills (1990) or Box et al. (1994).
The procedure for modeling these outliers is the same as for modeling the
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standard impact analysis model. If an innovation outlier is estimated, the
polynomial denominator of the transfer function will be the same as the
autoregressive polynomial in the noise model of the series, in which case
they are functionally equivalent. That is, �1 and �1 should be the same in
sign, number, and magnitude.

Outlier detection requires an iterative process. First, the ARIMA model
is estimated for the portion of the series under consideration (whether the
preintervention or the postintervention series). The residuals and residual
variance are obtained from this series. If interventions or innovational
outliers occur near the end of the series, there will have to be enough
observations that follow their occurrence for them to be properly detected,
diagnosed, and modeled. Asymptotic standard errors are computed from
the residual variance and standardized t statistics are computed for each
innovational outlier. When these t statistics exceed a value of 3, the point
is identified as an outlier with a significant impact (Box et al., 1994). For
observational outliers, the variance calculations are slightly different. These
outliers can be smoothed out by assigning them the value of the mean of the
residual. The process is reiterated until all outliers are identified, replaced,
modeled, or removed.

8.8. ADVANTAGES OF INTERVENTION ANALYSIS

Time series research designs have very substantial advantages over other
conventional research designs. A time series research design may be re-
quired to detect changes in level, slope, or regime of a process. Sometimes
the impact of the intervention, treatment, or event is not applied instantane-
ously. A time series research design may be needed to detect a gradual,
threshold, delayed or varying effect, which might go unobserved in a more
conventional cross-sectional design. Cook and Campbell (1979) note that
this kind of design is useful in detecting temporal change, such as the
maturation of a trend prior to the intervention. If the researcher takes
large, representative, and equivalent samples for control and experimental
groups, he may be able to properly assess these effects (Campbell and
Stanley, 1963). A principal advantage of a quasi-time-series experiment is
that it focuses on the sequence of events, some of which may be input and
others of which may be responses. Along with the covariation of input and
response, this sequence of these events is necessary for the inference of
causality. The modeling of the type of response reveals a sense of the
structure of the impulse response to an input event. The shape of the
response facilitates understanding of the nature of the effect, as it were.
The advantage of multiple observations is that it is possible to detect and
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model various forms of impact that often escape detection and observation
in more conventional cross-sectional designs.

8.9. LIMITATIONS OF INTERVENTION ANALYSIS

The researcher needs to understand the principal advantages and dis-
advantages of his design. Time series quasi-experiments may be afflicted
with problems that threaten the internal and external validity of the analysis.
Cook and Campbell (1979) note a number of threats to internal validity
inherent in this kind of design. Problems with instrumentation may con-
found the design. The researcher must be sure that the series is properly
defined conceptually and operationally before data collection. Proper ad-
ministration of the data collection and maintenance of the records through-
out the process is necessary. The time intervals must be made small enough
to capture the process to be studied. If there is trend, cycle, or seasonality
inherent in the series, then the instrumentation must be calibrated to units
of temporal measurement appropriate to the capture, detection, and identi-
fication of these components. Calibration must be maintained. Without a
large enough sample size for the preintervention and postintervention se-
ries, there will not be enough power to detect the differences of trend,
cycle, seasonality, noise, or impact necessary for modeling an intervention
analysis. Moreover, there must be sufficient protection against possible
alternative historical impacts on the process to ensure internal validity. A
concurrent control group for baseline comparison may be used to guard
against such threats. A control group series isolates part of the series from
impact stemming from the event, intervention, or treatment. The control
of group series can then be concurrently compared to the impacted series.
If the impact generates sample attrition, then selection bias may also creep
into the study, which can be guarded against with the use of a control
group series.

There may arise threats to internal validity that preclude confirmation
of a causal relationship between two variables. Some threats to internal
validity are not completely overcome by application of a time series quasi-
experiment. Without concurrent isolation and establishment of a control
or baseline series, it may be not be possible to conclusively demonstrate that
the intervention alone generated the observed impact. Cook and Campbell
(1979) mention several of these threats to internal validity. A control group
helps keep maturation of the subjects within the time frame of the quasi-
experiment from confounding the results. It can isolate subjects from test
reaction bias. It may be necessary to shield against differential attrition of
subjects from the groups owing to fatigue, demoralization, or other external
pressures. Random assignment to the experimental and control groups is
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necessary to protect against differential selection of subjects into the groups
and differential attrition of subjects. The use of equivalent control groups
may also protect against interaction of selection and maturation biases, on
the one hand, or selection and historical biases, on the other. Without the
baseline series separated from the experimental series, there is no guarantee
of protection against the confounding of learning, fatigue, or other carryover
effects. With separate control and experimental groups, it is sometimes
possible to employ unobtrusive measures that in and of themselves isolate
the subjects to prevent compensatory equalization, imitation, or competi-
tion between or within the two groups. The unobtrusive measures may be
necessary to preclude demoralization, which could bias the intervention
effects, among those receiving the less favorable treatment. In many cases,
the advantages far outweigh the disadvantages in the application of this kind
of analysis. If the researcher guards against these contaminating problems so
they do not plague the particular impact analysis, interrupted times series
or intervention analysis may prove very valuable.

Another threat to internal validity is insufficient closure of the system
under examination. There may be hidden factors at play that are not readily
apparent to the analyst. The failure to model these factors is called specifi-
cation error. Specification error can result in biased estimation. If the omit-
ted variable is now in the error term, and if there is a positive correlation
between the omitted and an included variable, then the error is now related
to an included variable. This will increase the magnitude of the estimated
coefficient of the included variable. If there is a negative correlation, then
the estimation of the parameter is a reduction in the magnitude of the
regression coefficient of the included variable. In either case, the parameter
estimation of the included variable is biased. The significance tests can also
be biased and spurious relationships may be mistaken for real ones. A
conflict between closure, completeness, and consistency may be impossible
to overcome, according to Gödel’s Incompleteness Theorem (Kline, 1980).

Even though these models are occasionally called causal models, it is
important to dispel the myth that causality, strictly speaking, is really being
proven. For this reason, we need to consider the limitations of impact
analysis in the demonstration of predictive causality. Although supporting
evidence for a causal relationship may be developed by a time series quasi-
experiment, the quasi-experiment does not, strictly speaking, prove causal-
ity. Although temporal sequence may be necessary for causality and may
be shown by such a quasi-experiment, temporal sequence by itself is insuffi-
cient to prove causality. As David Hume has written, the habitual observa-
tion of a sequence of an event followed by another event is not a valid
test of a causal relationship. When this physical proximity and temporal
sequence appears to be invariable, the antecedent event is presumed to be
a cause and the subsequent effect is presumed to be an effect. Just because
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a temporal sequence was repeatedly observed in the past does not imply
that sequence will always take place in the future (Nagel, 1961).

If a sample is small and unrepresentative, the causal relationship might
appear to hold. If the sample is expanded, it might be shown that under
some circumstances the relationship does not hold. Since the material impli-
cation of logical induction is not empirically guaranteed, the early empiri-
cists—Hume and Comte—insisted that established causality must be di-
rectly observed rather than inferred. Operationalism emerged as defining
phenomena in terms of their measuring instruments and measurements,
from which causality must be observed for its existence to be established
(Cook and Campbell, 1979).

To infer a law from a single case would be to commit a universalistic
fallacy. To believe that the Watergate scandal is characteristic of all political
scandals is to commit that same fallacy. For a theory of the impact of
scandals on the presidency, it is necessary to examine a representative
number of scandals and their political, economic, and sociocultural environ-
ments. To be sure, the Watergate scandal undermined the presidency of
Richard Nixon. His Gallup Poll presidential job approval ratings plummeted
as his implication in the illegalities became more apparent. Politically, Nixon
presided over an unpopular war and defeat in Southeast Asia, the failure
to support Taiwan fully in its conflict with mainland China, and the develop-
ment by the oil producing states of an oil weapon against Israel and its
allies, including the United States. Trust in government was already a
casualty of the Vietnam war and the Johnson administration. Perhaps in
these respects, the Watergate scandal was sufficient to reveal extensive
governmental corruption and to precipitate the impeachment and probable
conviction of a president, which would force his resignation. The reader is
warned not to commit the universalistic fallacy—overgeneralizing from a
single case to a universalistic law—thereby concluding that political scandal
guarantees the removal of a U.S. president.

If a president and his administration clearly work to foster what the
people think are its best interests, enough faith and credit may be built
up that people will support him even if he gets into trouble. During the
administration of President Clinton, the exposure of an inappropriate liai-
son with a White House intern was not enough to fatally undermine Presi-
dent Clinton’s Gallup Poll job approval ratings. President Clinton and
his administration presided over a healthy and prosperous economy. He
advocated campaign finance reform, tobacco legislation that would protect
children from addiction and poisoning that comes from protracted smoking,
and better school facilities that the Republican party opposed. He advo-
cated protection of Social Security while Republicans pushed for tax cuts
and scandalmongering. Although the disclosure of the inappropriate rela-
tionship embarrassed Clinton and the administration, the American mass
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public had more faith in him than it did in the opposition and consistently
opposed his impeachment. Clinton’s public approval ratings in general
increased from the onset of the scandal right up to the congressional elec-
tion, in which the Republicans failed to gain the customary number of
seats. A graph of his public approval ratings from the onset of the crisis
(Fig. 8.18) shows how resilient those ratings were in the face of investigation
and exposure. The Conference Board index of consumer confidence is also
graphed to show how one might be related to the other.

Essentialist philosophers added other criteria for establishing causality.
In defining cause and effect as a necessary, sufficient, inevitable, and infalli-
ble functional relationship, they maintained that the cause refers to a con-
stellation of variables that when taken together are both necessary and
sufficient for an effect to occur. Whether precursors to events are necessary
and/or sufficient for other effects to occur may require controlled experi-
ments rather than naturalistic surveys. Controlled experiments involve ran-
dom assignment of subjects to experimental and control groups as well
as pre- and postintervention observations. Therefore, the impact analysis
discussed here is not, strictly speaking, a controlled experiment. At best,
it is a quasi-experiment riven with possible drawbacks. One drawback is
the lack of differentiation between a control and an experimental group.
Another problem is the lack of random assignment to control and experi-
mental groups. Without these safeguards, impact analysis does not qualify
as a controlled experiment. At best, it constitutes what Cook and Campbell
(1979) call a time series quasi-experiment.

John Stuart Mill took the requirements of establishing causality one step

Figure 8.18 Gallup Poll: Percent approving Clinton handling job.
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further. He concurred with Hume that cause and effect must be related
and that cause must precede effect in time. The mere temporal sequence
of day and night does not mean that day causes night or that night causes
day. He maintained that alternative explanations of the causal relationship
need to be tested and eliminated, in which case the simple impact analysis
model may not under all circumstances allow for the inclusion of enough
independent variables to test all plausible alternative explanations. It is
helpful to understand that under many circumstances alternative explana-
tions can be tested with multiple input variables in an intervention analysis.
This presumes that the inputs take place during the overall time span of
the response series. Impact analysis allows a detailed assessment of the
functional relationship of the impact of particular events or sets of events
on a particular series, but it is necessary to examine in detail not just
one such event, but a representative number of them before tendering
generalizations about them.
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Transfer Function Models
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9.1. DEFINITION OF A TRANSFER FUNCTION

A dynamic system may exist where an input series seems related to an
output series. The relationship between the exogenous (sometimes called
the forcing) series, Xt , and the endogenous response series, Yt , is a func-
tional one. The input series may be a pulse or step process like those
functions examined in the previous chapter, or it can be a continuous
process driving another series. Much as light can be interpreted as discrete
photons or continuous waves, transfer functions can be interpreted as those
having pulsed discrete inputs that approximate continuous inputs. That is
to say, the input series under examination is periodically sampled although
it may have values between the periodic sampling times.

In the case of a transfer function model, both the input and output series
are time series, and the endogenous series is a function of the exogenous
input series that is driving it. These transfer function models are generally
formulated as Yt � v(L)Xt � nt. These models have two components. The
v(L)Xt is the transfer function component and nt is the ARMA or ARIMA
noise model component. The transfer function component consists of a
response regressed on lagged autoregressive endogenous variables and
lagged exogenous variables, whereas the noise model component is a time
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series (ARMA or ARIMA) error model. Graphs of the v(L)Xt relationships
over time are generally referred to as transfer functions. The simplest case
is a bivariate relationship between two time series, occasionally called a
leading indicator, ARMAX (ARMA with a cross-correlation between input
and output), or TFARIMA (transfer function ARIMA) model. The re-
searcher uses these models to predict the Yt response series from the leading
indicator, v(L)Xt�b, which leads by b periods. Of course, a bivariate model,
consisting of a pair of input and output series, can be extended to include
multiple input series. Because there is more than one series involved in such
a model, these models are sometimes referred to as multiple time series
ARIMA or MARIMA models. We focus on two transfer function modeling
strategies, and begin by addressing the Box–Jenkins modeling strategy for
bivariate cases. When these separate inputs are added together to yield
the output series, they constitute a linear transfer function. We will also
consider another approach, called the Dynamic Regression or Linear Trans-
fer Function Method (Pankratz, 1991), which is recommended in cases of
multiple simultaneous inputs. This chapter thus continues our examination
of the theory and programming of multiple time series analysis.

9.2. IMPORTANCE

Wherever and whenever time-dependent processes are examined, ques-
tions arise about the relation, transfer, and impact of one series on another
over time. When the structure of that impact is important, transfer function
models are important. Examples of these phenomena abound in economics,
business, and engineering, among other fields. In economics, leading indica-
tors or transfer function models are used in forecasting business cycles. A
transfer function model can show how a change in net imports is affected
by a change in the exchange rate. Another economic transfer function
model reveals how personal disposable income drives real nondurable con-
sumption in the United Kingdom (Mills, 1990). In business, this kind of
relationship is that of advertising driving sales (Makridakis et al., 1983).
Another example of a transfer function is a combination of forecasts, where
the driving series are the forecasts, with ARMA errors. Statistical and
engineering process control are based on modeling the transfer functions
between inputs and outputs and the construction of feedback monitoring
and feedforward control loops in these systems (Box et al., 1994). Such
statistical process control systems are essential in remote-control or other
kinds of servomechanisms. Although statistical and engineering process
control are beyond the scope of this book, the transfer function models
discussed in this chapter are fundamental components within many complex
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systems. Examples of bivariate and multiple input transfer function models
will be used to illustrate the theoretical explanation and programming
applications of these models.

9.3. THEORY OF THE TRANSFER FUNCTION MODEL

9.3.1. THE ASSUMPTIONS OF THE SINGLE-INPUT CASE

The transfer function model, consisting of a response series, Yt , a single
explanatory input series, Xt , and an impulse response function v(L), is
predicated on basic assumptions. The input series may be deterministic, as
explained in the last chapter, or stochastic, as explained in this chapter.
The input also includes a stochastic noise component, et , which may be
autocorrelated. It is assumed that the discrete transfer function and the
noise component are independent of one another. Moreover, it is presumed
that this relationship is unidirectional with the direction of flow from the
input to the output series. If the exogenous input series and the endogenous
output series are stochastic, both variables are usually centered and differ-
enced if necessary, to attain a condition of stationarity. They are usually,
but not necessarily, deseasonalized to simplify modeling as well. Although
previous Xt observations may influence concurrent or later Yt observations,
there can be no feedback from Yt to Xt. In other words, the Xt in a transfer
function must be exogenous, and regardless of whether it is discrete or
continuous, the transfer function is assumed to be stable.

9.3.2. THE BASIC NATURE OF THE SINGLE-INPUT

TRANSFER FUNCTION

The basic formulation of the transfer function is Yt � v(L)Xt � nt. The
impulse response function is actually a lagged polynomial with impulse
response weights, vi. This lagged polynomial, with its entire set of vi weights,
may be formulated as v(L) � v0 � v1L � v2 L2 � . . . . The impulse response
weights represent the change in the output series as a result of a unit
change in the explanatory variable at the indexed time. Each of the impulse
response weights may be interpreted as responses to a pulse input at a
point in time. At time i � t, the magnitude of the output variable per unit
change in the input variable is indicated by the magnitude of the coefficient,
vt. After one period of time has elapsed, the response of the endogenous
variable is equal to the product of the coefficient times the value of the
input variable at that time plus the same products at previous time periods.
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That is, the output response is equal to the sum of the products of the
impulse response weights times the value of the input variable, from the
inception of the process through the current time period. If vi � 0, the
direction of the impulse response from the current time is opposite that of
the value of the input variable. If vi � 0, the direction of the response from
the current time is the same as that of the value of the input variable. The
transfer function can therefore be expanded:

Yt � v(L)Xt � et (9.1)
� v0Xt � v1Xt�1 � v2Xt�2 � � � � � vLXt�L � et.

In theory this transfer function may be of infinite order. As an infinite
series, v(L) converges as �L� � 1. In other words, if the series is absolutely
summable, then

��
L�0

�vL� � �. (9.2)

When the discrete transfer function is absolutely summable, it converges
and is considered to be stable. The transfer functions considered here are
assumed to be stable (Box et al., 1994). In practice, the values may taper
off after awhile, rendering them effectively finite. This total effect is the
gain of the transfer function (Vandaele, 1991):

��
L�0

vt�L � Gain. (9.3)

The output variable and the input variable(s) are assumed to have been
transformed to stationarity. Mean-centering the input and output series
also simplifies the modeling and is recommended in this kind of analysis.

9.3.2.1. A Discrete Transfer Function with Stochastic Input

To illustrate the dynamic meaning of these impulse response weights in
a transfer function, attention is turned toward the dynamic transfer func-
tion process of a response series and a stochastic input series. Of primary
interest here is the structure of the impulse response weights. Remember
that the impulse response weight at each sampling period of time is deemed
to be the response to the change in the input series from the previous to
the current time period. The cumulative effect of those responses be-
comes the focus of attention now. Even though the input series might
not be deterministic, the significant weighted effects are related to in-
puts at specific time periods, defined by the transfer function. The
modeling process is explained as these weights are identified, estimated,



9.3. Theory of the Transfer Function Model 357

diagnosed, metadiagnosed, and then possibly used for forecasting. For ex-
ample, consider transfer function model in Eq. (9.4). The order of the
function has been found to have a lag of 3. At time t, the Vt is estimated
to be 0.1. At time t � 1, the Vt�1 � 0.6. At time t � 2, the Vt�2 coefficient
is 0.3. And at time t � 3, the impulse response coefficient is �0.2. The
linear transfer function model, minus the stochastic noise component, is
therefore

Yt � 0.1Xt � 0.6Xt�1 � 0.3Xt�2 � 0.2Xt�3, (9.4)

where

vt � 0.1
vt�1 � 0.6
vt�2 � 0.3
vt�3 � �0.2.

Makridakis et al. (1983) graphically depict the process of transfer in a table
similar to that of Table 9.1. A study of Table 9.1 facilitates understanding
of the dynamic process. When time � 1, the value of Yt (in the rightmost
column) can be calculated from the product of the coefficient of Xt and
the value of Xt for that time period. At time t � 1, the value of Xt can be
found in the second column from the left, and the coefficient for Xt may
be found in the equation at the head of the table. The product of the value
of Xt (20) and the coefficient (0.1) is 2. At time t � 2, the impulse response
Yt , is a composite of inputs at the current and previous time. The input at
the current time is the product of the value of Xt (30) and the coefficient
(0.1) and has a value of 3. This value of 3 is found at the intersection of

Table 9.1

Transfer Function Process, Yt � 0.1Xt � 0.6Xt�1 � 0.3Xt�2 � 0.2Xt�3

TimeValue Value
Time of Xt 1 2 3 4 5 6 7 8 9 10 of Yt

1 20 2 2
2 30 12 3 15
3 40 6 18 4 28
4 50 �4 9 24 5 34
5 60 �6 12 30 6 42
6 50 �8 15 36 5 48
7 40 �10 18 30 4 42
8 30 �12 15 24 3 30
9 20 �10 12 18 2 22

10 10 �8 9 12 1 14
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time � 2 in the columns and time � 2 in the rows. The input at the previous
time is represented by Xt�1. The coefficient of Xt�1 is 0.6 times 20 (the
value of Xt), which equals 12. This value is found at the intersection of
time � 2 in the rows and time � 1 in the columns. The total value of Yt

at t � 2 is the sum of the values for Yt at t � 1 and t � 2. That is, 3 �
12 � 15, which is found in the second row all the way on the right. In this
way, the impulse response for a particular time is computed down the table.
The process produces the values found for Yt in the rightmost column of
the table from the inception to the end of this process.

9.3.2.2. The Structure of the Transfer Function

The structure of the transfer function can be defined by its constituent
parameters. The impulse response weights are coefficients of a rational
distributed lag model. The notion that impulse response weights are ex-
pressed as a ratio is inherent in the name of a rational distributed lag model.
The impulse response weights vt consist of a ratio of a set of s regression
weights to a set of r decay rate weights, plus a lag level, b, associated with
the input series, and may be expressed with parameters designated with r,

s, and b subscripts, respectively. The order of the transfer function refers
to the levels of (r, s, b), respectively.

The order of delay or dead time is represented by the value of b. This
is the time delay between incidences of changes in input, Xt, and the
apparent impact on response, Yt. The structure of the response weights is
also specified according to a set of lag weights, from time lag � 0 to time
lag � L. The delay time b, sometimes referred to as dead time, determines
the pause before the input begins to have an effect on the response variable:
(L)bXt � Xt�b.

The order of the regression is also represented by the values of s, which
designates the number of lags for unpatterned spikes in the transfer func-
tion. The number of unpatterned spikes is s � 1. Together, these compo-
nents comprise the transfer function. The formula can be found in Eq.
(9.5). The time delay is designated by the t � b subscript of the input
variable. The numerator of the ratio consists of s � 1 �s regression weights,
from time � 0 to time � s. These coefficients, with the exception of the
first, have negative signs.

The order of decay is designated by the value of r as well. This parameter
represents the patterned changes in the slope of the function. The order
of this parameter signifies the number of lags of autocorrelation in the
transfer function. The denominator of the transfer function ratio consists
of decay weights, �r from time � 1 to r. The magnitude of these weights
controls the rate of attenuation in the slope. If there is more than one
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decay rate, the rate of attenuation may fluctuate. The transfer function
formula is

Transfer function v(L) � v0Xt � v1Xt�1 � v2Xt�2 � � � � � vf Xt�b

�
�(L)

�(L)
(L)bXt �

�(L)

�(L)
Xt�b (9.5)

�
(�0 � �1L � �2L2 � � � � � �sL

s )Xt�b

1 � �1L � �2L
2 � � � � � �rL

r
.

The levels of the parameters determine the structure of the transfer
function. If we suppose that the b parameter is set to L2 then (L)2Xt �
Xt�2. There are s � 1 � regression weights. The size of the s parameter
indicates how many regression coefficients and at what lags these coeffi-
cients comprise the numerator. The order of regression (plus 1 for �0)
designates the number of unpatterned spikes. If s � 2, then the numerator
of the ratio is �0 � �1L. The size of the r parameter determines the order
of decay (rate of slope attenuation). The r parameter controls the pattern
in the slope. If r � 1, then the transfer function would have a denominator
equal to (1 � �1L) and would be one of first-order decay. If r � 2, then
the function would have a denominator equal to (1 � �1L � �2L

2) and
would be one of second-order decay. The structure of the transfer function
model are characterized by these parameters as well as the patterns of
impulse response associated with them.

9.3.2.3. A Discrete Transfer Function with Deterministic Input

With a discrete transfer function, each of the impulse response weights
can be interpreted as a response to a pulse or a step input. In either case,
Xt � It. Table 9.2 presents formulations of common transfer function re-
sponse models. All the formulations in Table 9.2 have a delay time desig-
nated by the parameter b. The first three models are ones with decay rates
of �r � 0. The structural parameter representing the rates of decay, r, equals
zero for these models. Models 1, 2, and 3 have �s regression coefficients,
the order of which is s � 0, 1, and 2. The number of significant regression
coefficients s � 1 equals 1, 2, and 3, respectively, in these models. Models
4, 5, and 6 have �r decay rate parameters, the order r of which equals 1,
1, and 2, respectively. To illustrate the structure of the transfer functions,
some discrete transfer function models and their impulse responses for
different levels of r and s are illustrated in Table 9.2 (Box and Jenkins, 1976).

Although transfer function models may have pulse, step, or continuous
inputs, the pulse and step inputs are employed to illustrate the characteristic
patterns of these models. Figures 9.1 through 9.12 show the response pat-
terns for these models.
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Table 9.2

Basic Transfer Function Model Structures

Model r s b Model Impulse response

1 0 0 b Yt � �0Xt�b j � b: vj � 0
j � b: vj � �0

j � b: vj � 0

2 0 1 b Yt � (�0 � �1L)Xt�b j � b: vj � 0
j � b: vj � �0

J � b � 1: vj � ��1

J � b � 1: vj � 0

3 0 2 b Yt � (�0 � �1L � �2L
2)Xt�b j � b: vj � 0

j � b: vj � �0

j � b � 1: vj � ��1

j � b � 2: vj � ��2

j � b: vj � 0

4 1 0 b j � b: vj � 0
Yt �

�0

1 � �1L
Xt�b j � b: vj � �0

j � b: �1vj�1 � 0

5 1 1 b j � b: vj � 0
Yt �

(�0 � �1L)

(1 � �1L)
Xt�b j � b: vj � �0

j � b � 1: vj � �1�0 � �1

j � b � 1: vj � �1vj�1

6 2 2 b j � b: vj � 0
Yt �

(�0 � �1L � �2L
2)

(1 � �1L � �2L
2)

Xt�b j � b: vj � �0

j � b � 1: vj � �1�0 � �1

j � b � 2
vj � (� 2

1 � �2)�0 � �1�1 � �2

j � b � 2: vj � �1vj�1 � �2vj�2

Characteristic patterns of the responses to these discrete functions are
displayed in a series of graphs for both step and pulse input functions.
When these characteristic patterns are detected, the trained analyst has a
clearer notion of what kind of impulse response function is at work. Model
1 exhibits characteristic patterns following pulse, Xt�b(1 � L), and step,
Xt�b, inputs. That is, when the input is designated as a pulse, the input is
simply a first-differenced level shift. There are simple practical rules for
determining these parameters, subject to some variation due to sampling.
The delay or dead time is the number of time periods between intervention
and impact. The decay rate is zero when there is no decay. When there is
first-order exponential decay, then the decay rate is less than unity. If there
is oscillatory or compound exponential decay, the order of decay is 2 or
more. The number of unpatterned startup terms is usually s � 1 � r.
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Figure 9.1 Model pulse response.

The discrete pulse response pattern for model 1, Yt � 0.4Xt�3 (1 � L),
with order of (r � 0, s � 0, b � 3) and a pulse input, is shown in the bar
graph contained in Fig. 9.1 (a line graph might be more appropriate if the
response appears to be continuous).

Figure 9.2 illustrates the discrete step response pattern for model 1,
Yt � 0.4Xt�3, with transfer function structural parameters (r � 0, s � 0,
b � 3) and a step input. In contrast to the pulse response, the reader
observes a clear step response.

Figure 9.2 Model 1 response from step input.



362 9/Transfer Function Models

The double pulse response pattern for a model 2, Yt � (0.4 � 0.3L)Xt�2

(1 � L), is characterized by s � 1 � 2 spikes, with b � 2, can be found in
Fig. 9.3. In this case, the input does not occur until t � 6, but there is a
two-period delay, so the first spike appears in period 8. The second spike,
which follows, has a magnitude somewhat less than the first.

The model 2, Yt � (0.4 � 0.3L) Xt�2, with step input and order parameters
(r � 0, s � 1, b � 2) exhibits a graduated step response pattern for s � 1
regression weights (Fig. 9.4). That is, there are two regression weights.
Also, there are s augmentations of response before the peak of the response
is attained at s � 1. The input appears at time t � 6, and then there is a
two period lag before the impact becomes apparent at time period 8. For
the step input, the pulse response weight of 0.4 kicks in at period 8. By
the next period, the next impulse response of 0.3 is added to the first and
the top of the step is reached. For this input, the response of 0.7 is continued
during subsequent periods.

Model three, Yt � (0.4 � 0.3L � 0.2L2)Xt�6 (1 � L) with order (r � 0,
s � 2, b � 6), is an attenuated multiple pulse response to a pulse input
with zero-order decay rate. It has three spikes in the response pattern that
corresponds to each of the s � 1 regression coefficients in the model. Fig-
ure 9.5 displays the delayed response pattern for this pulse input. When
there is pulse input, there is no other spike in the response pattern.
The pulse takes place at lag 6 while the impact, owing to a delay of 2,
appears two lags later, in period 8. The first regression weight is 0.4, the
second is 0.3, and the last is 0.2. The pulses are shown in order of their
appearance.

Figure 9.3 Model 2 response from pulse input.
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Figure 9.4 Model 2 response from step input.

Model 3 with step input, Yt � (0.4 � 0.3L � 0.2L2) Xt�2, exhibits a
graduated onset of permanent impact shown in Fig. 9.6. The intervention
begins in period 6, but owing to a delay of 2, the impact does not appear
until time period 8. At that point, the response is equal to the first regression
weight. One period later, the response is augmented by the next regression
weight. Finally, the peak is reached with the augmentation of the last
regression weight. When the spikes are considered all together, there are
s � 1 � r unpatterned spikes (0.4 and 0.3 and then the addition of
0.2 times the input), by which time the impact reaches a peak. Once the
top of the step occurs, the impact remains constant.

Figure 9.5 Model 3 response from pulse input.
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Figure 9.6 Model 3 response pattern from step input.

Model 4 with pulse input, Yt � [0.4/(1 � 0.5L)] Xt�2 (1 � L), is the first
transfer function in this series that contains an abrupt impact with a first-
order decay (Fig. 9.7). The structural parameters for the pulse input of this
function are (r � 1, s � 0, b � 2). There are s � 1 regression coefficients.
In this case, there is one regression coefficient with the pulse input. The
intervention occurs at lag 6, but there are two periods of delay before it is
observed at time period 8. The single pulse has a magnitude equal to the
regression weight of 0.4. In the next time period, the response consists of
the autoregressive half of the previous response. In the next time period,
that autoregressive response has a magnitude of only 0.2. In the next time

Figure 9.7 Model 4 response pattern from pulse input.
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period, there is only half of the previous response remaining. Of the total
spikes, there are s � 1 � r unpatterned regression spikes. The response to
such pulse input is one abrupt onset and exponential decay. The bounds
of system stability require that the size of the decay parameter remains
between plus and minus unity.

The model 4 response function with step input, Yt � [0.4 /(1 � 0.5L)]
Xt�2, is shown in Fig. 9.8. The response pattern is one of asymptotic growth
or gradual onset and permanent duration. Both of these patterns are typical
of first-order decay in the transfer function. The same delay of two periods
is observed until impact at period 8. The increment to the impact is one-
half of the earlier impact until it levels off.

Model 5, Yt � [(0.4 � 0.8L)/(1 � 0.5L)] Xt�3(1 � L), is distinguished
from model 4 by three essential differences (Fig. 9.9). First, model 5, unlike
model 4, has one extra regression coefficient in the numerator. This extra
coefficient is lagged one period behind the first. With s � 1, the pattern
may exhibit two distinguishing startup spikes, before decay takes effect.
Second, this response function contains a first-order decay parameter, 0.5L,
in the denominator. Third, there is also a three-period delay so when the
intervention takes place at time 3, the impact is not observed until period
6. For this pulse input, there are s � 1 unpatterned initial spikes, as well
as a gradual attenuation of decreasing slope after the two initial spikes.

For the step input for model 5, Yt � [(0.4 � 0.8L)/(1 � 0.5L)] Xt�3,
shown in Fig. 9.10, there is gradual onset and permanent response duration
after the s � 1 unpatterned startup spikes. The input takes place at time
3. The delay time for model 5 is three periods, before the input attains
impact. At period 6, the first impact is observed. The magnitude is deter-

Figure 9.8 Model 4 response pattern from step input.
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Figure 9.9 Model 5 response pattern from pulse input.

mined by the first regression coefficient, 0.4, at period 6. At the next time
period, the magnitude of the response is determined by the decay rate
parameter (0.5) as well as those of the first and second regression weights:
0.4 and 0.8. With the rate parameter at 0.5, this means that half of the last
response (0.5 � 0.4 � 0.2) is added to the new response, which is the sum
of 0.4 and 0.8. The total accumulation for period 7 is 1.4. In short, the
accumulation of response for the step input is half the value of the response
at each previous time lag, after the startup spike.

The model 6 transfer function Yt � [(0.5 � 0.6L � 0.4L2)/(1 � 0.51L �

Figure 9.10 Model 5 response pattern from step input.
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.25L2)]Xt�3 (1 � L), has structural parameters (r � 2, s � 2, b � 3). This
transfer function shown in Fig. 9.11, has (s � 1 � 3) three regression
weights, a second-order decay, and a time delay of 3. Because s � 1 � 3,
there are three initial unpatterned spikes, before decay takes effect.
Whereas the first-order decay follows a single rate of attenuation after the
initial spikes, the second-order decay has a quadratic polynomial decay
after the initial spikes. The response pattern depends on the roots of the
characteristic equation of this denominator polynomial, (1 � �1L � �2L

2).
If the roots are real, the pattern exhibited may be more or less damped.
If the roots are complex, the characteristic pattern will be one of sinusoidal
oscillation. In other words, for this system to be stable, three conditions
must hold: (a) � 1 � �2 � 1; (b) �1 � �2 � 1; (c) �2 � �1 � 1. The �s

coefficients are 0.5, 0.6, and 0.4, respectively. In this model, the �r coefficients
are 0.5 and 0.25, while the delay parameter remains 3. The pattern is one
of both gradual onset and gradual (slightly quadratic) decline.

With a model 6 step input, Yt � [(0.5 � 0.6L � 0.4L2)/(1 � 0.5L �
0.25L2)]Xt�3, the first few unpatterned spikes may be more or less distinctive,
depending upon the similarity of the magnitude of the regression coeffi-
cients (Fig. 9.12). If the regression coefficients are similar, startup spikes
may be indistinguishable. If the regression coefficients have significantly
different magnitudes, then the initial spikes may appear to be noticeably
unpatterned. The asymptotic growth after those spikes will be more or less
quadratic, depending upon the relative magnitudes of the delta parameters

Figure 9.11 Model 6 response pattern from pulse input.
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Figure 9.12 Model 6 response pattern from step input.

in the denominator (Fig. 9.12). In this instance, there is no perceptible
fluctuation in the attenuation of growth. These characteristic patterns ex-
hibit some features of the basic discrete transfer functions.

The transfer function may have either discrete deterministic input or
stochastic continuous input. Although the last chapter addressed the basic
nature of the response function to deterministic step and pulse input, where
Xt � It , this chapter discusses the response function to input Xt , where it
is a stochastic series. Whether the input is deterministic or stochastic, the
functional relationship between the input and output series needs to be
modeled. Modeling a transfer function includes identification, estimation,
diagnosis, forecasting, metadiagnosis, and programming. For the bivariate
case, the classical Box–Jenkins approach will be employed. For the multiple
input case, the regression or linear transfer function approach will also
be explained.

9.4. MODELING STRATEGIES

9.4.1. THE CONVENTIONAL BOX–JENKINS

MODELING STRATEGY

9.4.1.1. Graphing and Preprocessing the Series

In this work, two modeling strategies will be discussed. The classical
modeling strategy, particularly suited to bivariate cases, is presented by
Box and Jenkins (1976). The alternative regression strategy, also known
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as the linear transfer function modeling strategy, which does not apply
prewhitening, is presented in the case of the multiple input models, where
this approach is most suitable. In this instance, the series is preprocessed.
First, the two series need to be graphed or plotted. These plots should be
examined for unusual patterns or outliers. The data are checked for errors,
and any observational outliers are smoothed or modeled. Both series should
be centered. Both the input and output series are transformed into stationar-
ity, which may require a natural log, Box–Cox, power, or differencing
transformation. Moreover, the series should be deseasonalized if possible.
Deseasonalization, although not necessary, removes external sources of
variation that could complicate the identification process (Makridakis et

al., 1983). Finally, the input series should be checked for exogeneity by a
Granger causality test, described in the subsequent section on exogeneity.

9.4.1.2. Fitting an ARMA Model for the Input Series

After the preprocessing, an ARMA model is fit for the input series. In
this case, it is recognized that autocorrelation within the input series may
contaminate the cross-correlation between the input and output series. Box
and Jenkins propose neutralizing this autocorrelation contamination with
a prewhitening filter. This inverse filter, developed from the input series,
is then applied to both input and output series.

9.4.1.3. Prewhitening

This filter is an inverse transformation, which turns the input series into
white noise. If there is autocorrelation within the input series, there will
be a need for prewhitening. If there is no autocorrelation within the input
series, it is possible to do without the prewhitening (Liu and Hanssens,
1982). Once the prewhitening filter is applied to both the input and the
output series, it removes the corrupting influence of the autocorrelation
within the input series while maintaining the same functional relationship
between the two series. Instead of solving for Xt, the equation is inverted
to solve for et. After the prewhitening filter has been applied to both
the output series and the input series, those series are said to have been
prewhitened. Since the same factors are multiplied by the output and the
input series, the functional relationship between them remains unchanged.

The prewhitening filter is formulated from the existing ARMA model.
Suppose for a first-order ARMA model that the form of the ARMA model
of the input series Xt

(1 � �1L � �2L2 � � � � � �pLp )Xt � (1 � 	1L � 	2L2 � � � � 	qLq)et (9.6)
may be abbreviated by �t(L)Xt � 	t(L)et.
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The inverse transformation converts the input series to white noise. Because

Xt �
	x(L)

�x(L)
et,

(9.7)

et � 	 �1
x (L)�x(L)Xt.

By applying this same filter to the output series, the output series is prewhit-
ened and Pt is obtained:

Pt � 	 �1
x (L)�x(L)Yt. (9.8)

The cross-correlation between two series subjected to the identical transfor-
mation remains the same. By transforming a set of nonorthogonal relations
into a set of orthogonal relations, the prewhitening eliminates contamina-
tion of the cross-correlation by the autocorrelation of the input series.
Because the relationship between the prewhitened output series and the
prewhitened input series is now a dynamic function of white noise input,
there is no autocorrelation to contaminate the cross-correlation function
between Pt and v(L)et. The transformed output is now proportional to the
impulse response function plus the transformed noise:

	 �1
x (L)�x(L)Yt � 	 �1

x (L)�x(L)Xt � 	 �1
x (L)�x(L)et.

Because

�(L)(Ls )��1(L) � v(L),
(9.9)

and
nt � 	 �1

x (L)�x(L)et,

Pt � v(L)et � nt.

The cross-correlation should now accurately reflect the structure of the
impulse response function (Box et al., 1994). Therefore, with prewhitening,
the pattern of cross-correlation should accurately reflect the impulse re-
sponse weights, with some allowance for sampling error.

9.4.1.4. Direct Estimation of the Transfer Function Structure by
Examination of the Cross-correlation Function

After the input and output series are prewhitened, direct estimation
of the transfer function impulse response weights is made possible from
examination of the cross-correlation function. The shape of the cross-corre-
lation between those two prewhitened series reveals the pattern of (r, s,

and b) parameters of the transfer function (Box and Jenkins, 1976).
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In single-input MARIMA models, the cross-correlation between the

prewhitened input and prewhitened output series reveals the structure of
the transfer function model. Whereas in univariate ARIMA, the moving
average or autocorrelation forms the basis of the within-series dynamics
of the model, the cross-correlation between a prewhitened input series,
et , and a prewhitened output series, Pt , is essentially a Pearson product
moment correlation of the dynamics between the two series.

How the cross-correlation function (CCF) is computed and how it is
interpreted are important. Like the Pearson Product Moment correlation,
the cross-correlation is basically the covariance between the input and
output series divided by the product of the standard deviation of one
series times the standard deviation of the other series. Consider the
numerator of the CCF, which is the covariance between the two series.
The covariance of two variables is simply

Cov(Xi, Yi ) �
1

n
�n
i�1

(Xi � X)(Yi � Y), (9.10)

where i � the observation, and n � the number of observations. If the
process is stationary, then the autocovariance ( j) � autocovariance (�j)
within the same process. When the cross-covariance is plotted against a time
axis, it is called the cross-covariance function. Unlike the autocovariance or
autocorrelation function, the cross-covariance and cross-correlation func-
tions between two different processes are not symmetrical. Summing over
time after differencing and using j as order of the cross-covariance is re-
formulated as the sum of the products of the mean deviations of each series
at each point in time.

Cross-covariancexy( j)

�
1

n
�n�j

t�1

(Xt � X)(Yt�j � Y) when j �� 0 (9.11)

�
1

n
�n�j

t�1

(Xt�j � X)(Yt � Y) when j �� 0,

where n � number of observations after subtracting the order of differenc-
ing, and j � order of cross correlation. Not only can the j subscript can
assume a negative or positive value; when different lags (or leads) of the
cross-covariance are used as the point of reference, different numbers of
Y values are used for the computation after subtraction for differencing.
As will be shown, the magnitude of the cross-covariance can also differ
depending on the lag j under examination. The denominator of the cross-
correlation (CCF) consists of the product of the sum of the standard devia-



372 9/Transfer Function Models

tions over time of one series times the sum of the standard deviation of
the other series over time of the other series:

Standard deviation Sxx �
1

n � j ��n�j

t�1

(Xt � X)2

(9.12)

Standard deviation Syy �
1

n � j ��n�j

t�1

(Yt � Y)2

where n � number of observations, and j � lag of cross correlation. If a
cross-correlation were used to test the leading indicator relationship of Xt

to Yt�j , the CCF with subscript t � j equals the ratio of the cross-covariance
to the product of the standard deviations of the two series:

Cross-correlationxy (where j � 0) �

�n�j

t�1

(Xt�j � X)(Yt � Y)

��n
t�1

(Xt � X)2 ��n
t�1

(Yt � Y)2

.

(9.13)

Cross-correlationxy (where j � 0) �

�n�j

t�1

(Xt � X)(Yt�j � Y)

��n
t�1

(Xt � X)2 ��n
t�1

(Yt � Y)2

.

The interpretation of the CCF( j) indicates the transfer function direction
between the series and delay between incidence and impact. Because this
coefficient is asymmetric, after some delay time, b, if the CCF( j) � 0, then
Xt is correlated after some delay b with Yt�j . Prior to that time period the
CCF( j) will not be significant. Afterward, if CCF( j � k) � 0 then the
input series and the response series will be related with j � k lags difference.
The shape of the CCF over time will resemble the response functions
described earlier. If the impact is one of an autoregressive process, after b

delay periods and j lags the cross-correlation parameter may be exponenti-
ated to the j th power. Because it is assumed that the transfer proceeds from
the input series to the output series, the positive side of the CCF( j) is used
to define the nature of the impact.

Although one of the assumptions of the transfer function is that the
relationship proceeds from Xt to Yt , it is possible for the CCF(�j) to
indicate a reverse effect, feedback, or simultaneity. As Figs. 9.13 and 9.16
show, the CCF has the appearance of a Cartesian graph of positive and
negative values against time. This asymmetry means that rxy(1) � ryx(1)
and that rxy(1) � �rxy(1). If the CCF(�j) � 0, then Xt�b�j is cross-correlated
with Yt�b . In other words, after the delay time, b, if CCF(�j) � 0 then
Xt�b�j leads Yt . If this were the case, significant cross-correlation spikes
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would be observed on the negative side CCF and the assumption of no
feedback would be violated. Hence, only the positive CCF( j) is used for
identification. If there is evidence of CCF(�j) � 0, then there is evidence
of feedback and a more complicated dynamic simultaneous equation may
be in order. For these reasons, the cross-correlation is useful in assessing
the time delay, b, and the positive or negative direction of transfer between
the input and the output series.

To understand how the CCF reflects the nature of the transfer function,
it is important to understand how the cross-correlation function reflects
the impulse response weights. The et is the uncorrelated white noise and
�t is the transformed noise from the noise model nt . In Eq. (9.9), one
obtains a formula for the prewhitened series and that is redisplayed here
for convenience:

Pt � v(L)	 �1
x (L)�x(L)Xt � 	 �1

x (L)�x(L)nt

� v(L)Xtet � 	 �1
x (L)�x(L)nt (9.14)

� v(L)Xtet � �t .

If we premultiply both sides by et�j and take the expectations, we obtain

E(et�jPt) � v0E(et�jet) � v1E(et�jet�1) � � � � � vj E(et�j et�j ) (9.15)
� E(et�j�t).

Because E(etPt) � 0 for all t � j and E(Pt�t) � 0 (since they are not
correlated), this equation may be expressed as

Cross-covariancePtet
( j) � vj


2
et
.

Therefore,

vj �
Cross-covariancePtet

( j)


 2
et

�

Pt

Cross-covariancePtet
( j)


e
e
Pt

(9.16)

� �Ptet( j)


P
t


e
t

for j � 0,1,2, . . . .

The impulse response weights are therefore a function of the cross-correla-
tions, �j, at lag j in the cross-correlation function.

Significance of the cross-correlation function is given by the formula

SEccf � � 1

(T � j)
, (9.17)

where T is the number of observations (n), and j is the number of lags
(Wei, 1993). The printout of the cross-correlation function can be seen in
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the output in Figs. 9.13 and 9.16. In Fig. 9.13, the dotted lines represent
the plus or minus 2 standard errors, or the 95% confidence limits of the
cross-correlation coefficient. Significant correlations extend beyond those
limits as they do in the ACF and PACF. From the significant sample cross-
correlations, the impulse response weights may be estimated from the
formula used in Eq. (9.16). If the CCF attenuates slowly, the relationship
between the input and output series is not stationary. In this case, the
researcher should consider further differencing of the input and output
series to attain stationarity before proceeding with the analysis (Box et al.,
1994). The transfer function structural parameters may be found either by
matching the characteristic patterns of the positive CCF with those impulse
response functions described earlier or by the corner method about to
be explained.

Table 9.3 illustrates the computation of a cross-correlation between two
series. The data used are segments of business cycle historical indicator
data, courtesy of the U.S. Department of Commerce. The quarterly unit
labor cost of all persons from the business sector data (rescaled to 1992 �
100) was selected as the input series, and the annual rate of corporate
profits after taxes in billions of dollars (1992 � 100) was selected as the
output series. Two cross-correlations are computed. The first is the cross-
correlation at j � 0 lags. The second is the cross-correlation at j � 1 lag.
From the formula for the cross-correlation (Eq. 9.13), it can be seen that
there is one case lost each time the lag j increases. In the cross-correlation at
lag 1, in Table 9.3, the Yt series has been adjusted so that lag j � 0 is missing
and lag j � 1 is moved up a row. Not only do the numbers of cases in their
computation differ, the magnitudes of the cross-correlations differ according
to the lag at which they are computed. Because the number of cases in them
differ, their sample size and standard errors differ slightly as well.

9.4.1.4.1. Exogeneity

One of the assumptions of a transfer function model is that there is
unidirectionality in the relationship between the input and output series.
In other words, it is presumed that there is no feedback from the output
to the input series. One test for exogeneity is the Granger causality test.
When two time series are related, it is necessary to be sure that the Xt is
exogenous with respect to Yt. To test this form of exogeneity, the following
autoregressive equations are estimated:

Yt � ��
s�1

�1sYt�s � ��
s�1

�1sXt�s � �1

(9.18)

Xt � ��
s�1

�2sXt�s � ��
s�1

�2sYt�s � �2



Table 9.3

Cross-Correlation Computation of Unit Labor Cost and Corporate Profits (Annual Rate, $ Billions)a

Numerator Calculations

Cross-correlation (0) Cross-correlation (1)

1992 � 100 j � 0 J � 1

Xt Yt

Year Qtr Ibrcost (Xt � X) corprofit (Yt � Y) (Xt � X) � (Yt � Y) (Xt � X) (Yt�1 � Y) (Xt � X) � (Yt�1 � Y)

1993-1 101.8 �0.8 280.8 �40.4 30.6 �0.8 �30.4 � 23.0

1993-2 102.5 �0.1 290.8 �30.4 2.7 �0.1 �29.0 � 2.5

1993-3 102.3 �0.2 292.2 �29.0 6.9 �0.2 �6.6 � 1.6

1993-4 101.5 �1.1 314.6 �6.6 6.9 �1.1 �30.5 � 32.2

1994-1 102.3 �0.2 290.7 �30.5 7.2 �0.2 �2.8 � 0.7

1994-2 102.9 0.4 318.4 �2.8 �1.0 0.4 8.3 � 3.0

1994-3 102.8 0.3 329.5 8.3 2.4 0.3 19.4 � 5.5

1994-4 102.7 0.1 340.6 19.4 2.6 0.1 37.6 � 5.0

1995-1 103.1 0.6 358.8 37.6 21.9 0.6 32.5 � 19.0

1995-2 102.9 0.4 353.7 32.5 11.8 0.4 41.6 � 15.1

1995-3 103.2 0.7 362.8 41.6 27.2 0.7

Numerator Components � �(y1 � y) 119.1 � � 107.5

Denominator Calculations

Xt Yt

Year Qtr Ibrcost Xt � X (Xt � X)2 corprofit Yt � Y (Yt � Y)2

1993-1 101.8 �0.8 0.6 280.8 �40.4 1630.0

1993-2 102.5 �0.1 0.0 290.8 �30.4 922.5

1993-3 102.3 �0.2 0.1 292.2 �29.0 839.4

1993-4 101.5 �1.1 1.1 314.6 �6.6 43.2

1994-1 102.3 �0.2 0.1 290.7 �30.5 928.6

1994-2 102.9 0.4 0.1 318.4 �2.8 7.7

1994-3 102.8 0.3 0.1 329.5 8.3 69.3

1994-4 102.7 0.1 0.0 340.6 19.4 377.4

1995-1 103.1 0.6 0.3 358.8 37.6 1415.8

1995-2 102.9 0.4 0.1 353.7 32.5 1058.0

1995-3 103.2 0.7 0.4 362.8 41.6 1732.8

X � 102.5 �(xt � x)2 � 2.9 Y � 162.8 321.2 �(y1 � y)2 � 9024.8

Stdev � 1.7 Stdev � 95.0

Cross-correlation (0) � 0.73 Cross-correlation (1) � 0.66

a 1992 � 100 for both series.

375
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If feedback (Granger noncausality) obtains, the �2s parameter would have
to be statistically significant. For exogeneity or unidirectional association
to exist, there can be no feedback inherent in these linear projections. For
there to be no feedback, the �2s parameter would have to be statistically
nonsignificant.

Another test of exogeneity is the cross-correlation function. Two precon-
ditions must hold. First, both the input and output series have to be identi-
fied properly, leaving white noise residuals after identification. Then both
series have to be prewhitened by the appropriate inverse filter. If the cross-
correlation function then exhibits significant negative spikes, it means that
the direction of the relationship appears to be going from the postulated
endogenous series to the postulated exogenous series. If there are both
significant positive and negative spikes, then this is prima facie evidence
of simultaneity or feedback. Feedback is a violation of the assumption of
a unidirectional relationship from the exogenous to the endogenous series.
When two series are not prewhitened, apparent feedback shown in Fig.
9.13 cross-correlations may result from the failure to trim out contaminating
autocorrelation of the input series by introducing lower order AR terms
in the model or failure to prewhiten.

Figure 9.13
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One of the problems with labor costs leading the corporate profits is
that if the analyst looks far enough into the past, he finds negative spikes
in the series. Negative spikes signify feedback from the corporate profits
to the unit labor costs. When profits become high enough, production
may begin to expand and enjoy economies of scale, or automation and
computerization may be implemented, any combination of which may re-
duce the unit labor costs. When the cross-correlation function is applied
to this relationship, it can be seen that there are spikes in the negative as well
as the positive part of the function. There are significant cross-correlations
at time periods �5 and �7 as well as at 0 and 1. If any contaminating
autocorrelation in the input series were removed by prewhitening or inclu-
sion of AR terms, these negative spikes would suggest feedback in this
relationship. Such feedback would violate the assumption of exogeneity of
the input series and unidirectionality of the relationship between the input
and output series. Because this apparent feedback violates a basic assump-
tion of the transfer function model, this relationship is rejected as amenable
to transfer function modeling and another example will be used. Therefore,
the researcher should check for exogeneity as part of the preliminary consid-
eration of the series, prior to modeling the transfer function.

9.4.1.4.2. Linear Transfer Function Method of Identification of the
Transfer Function Structural Parameters

The transfer function r, s, and b coefficients can be identified directly from
an inspection of the stationary, prewhitened cross-correlation function.
Alternatively, a method called the linear transfer function method can be
used. With this modeling strategy, we can render both series stationary,
then add a lower order AR or ARSAR term (to partial out contamination
of the within-series autocorrelation), after which the response series may
be regressed on a distributed lag of the input series such that Yt � v1Xt �
v2Xt�1 � v3Xt�3 � v4Xt�4 � v5Xt�5 � v6Xt�6 � . . . . We standardize the v

coefficients by dividing the absolute value of the maximum v weight into
all of the weights. We plot the magnitude of the standardized vi impulse
response weights against the time lags of the input series. From a compari-
son of the actual pattern in the CCF or standardized impulse response
weights with common theoretical transfer functions, we can derive the
structure of the transfer function.

There are some practical guidelines (rather than exact rules) by which
we can identify the structure of the transfer function. After the series is
preprocessed in the ways described, these rules provide guidelines by which
the general pattern of the transfer function can be identified. Fine-tuning
the identification process may require some trial and error with a view
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toward testing the parameters for significance and minimizing residuals or
the information criteria.

First, we identify the dead or delay time. The b parameter is simply the
dead or delay time between input and apparent impact. The number of
periods after reference time period, lag 0, before a significant positive spike
appears on the cross-correlation function signifies the delay time. If the
first significant spike is at the zero-reference point on the cross-correlation
function, there is no delay time. If the first significant spike is at the first
period after that point, the delay time is a lag of one period. If the first
significant spike appears three lags after the point of input, there is a delay
of three periods. The delay time is therefore easy to identify.

Second, we can identify the decay pattern. The decay parameter, r,

represents the autoregressive decay in the process. The decay parameters
indicate the portion of the weights that have a defined pattern. There is
the case of the zero-order response function. If there are no decay parame-
ters and the impulse response weights reach their permanent magnitude
immediately, then r � 0 and the input is a step function. If r � 0 and the
function is that of a pulse, then the input is a pulse function (a first-
differenced step input). Whether step or pulse function, the onset of the
response will be delayed by b time periods. There is also the case of the
first-order response function. If there is only one decay parameter such
that r � 1, there is usually exponential decay. If the decay parameter
remains within its bounds of stability, exponential decay can characterize
the slope. There is also the case of a second-order response function. If
there are two decay parameters remaining within their bounds of stability,
then the impulse response function could be a damped exponential or a
dampened sine wave, depending on the roots of the polynomial (1 �
�1L � �2L

2). If the roots are real, the spikes would follow a pattern of
uneven exponential attenuation, whereas if the roots are complex, response
function would form a pattern of oscillation (Box et al., 1994; Wei, 1993).
Assuming that the roots are real, common transfer functions can be defined
with second- or lower-order response functions.

Pankratz (1991) notes that the pattern of decay is preceded by startup
spikes. The number of these startup spikes generally corresponds to the
order of the decay. In other words, there are usually r startup spikes before
the decay begins. If there is first-order decay, there will usually be one
startup spike. If there is a second-order decay, there will usually be two
startup spikes before the decay commences. The number of startup spikes
helps identify the order of decay (Pankratz, 1991).

Third, there are s � 1 unpatterned spikes generated by the �s regression
weights. The one is added to account for the initial �0 weight. These weights
need not follow a pattern; they can be completely unpatterned. After
subtracting the r weights that exhibit a pattern, we find s � 1 unpatterned
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spikes in the model. In ideal situations, these patterns are easy to identify,
but in real situations sampling variation may complicate the pattern by
adding another source of variation. Although this variation can complicate
distinguishing startup from unpatterned spikes, there are s � 1 unpatterned
spikes found after delay time has passed. With proper application of these
general rules, the cross-correlation function is used after prewhitening to
identify the transfer function. Estimation of the transfer function parame-
ters as well as the ARIMA noise model parameters follows (Box et al., 1994).

9.4.1.4.3. Identification of Transfer Function Structure with the
Corner Table

Another method proposed by Liu and Hanssens (1982) and expounded
upon by Tsay (1985) involves the use of the corner method. Where addi-
tional assistance is required, the corner table is used to determine the
structure of the transfer function. This method is recommended by Tsay
(1985) where the autocorrelations do not taper off quickly; in other words,
if the model is not stationary or contains unit or near unit roots, the corner
table method can be used. Pankratz indicates that this method can handle
the problem with autocorrelation in the input series. From the pattern
inherent in the corner table, the r, s, and b parameters can be ascertained,
even if the model has not been prewhitened. Before we examine this
protocol, it may be helpful to examine the prewhitening, the cross-correla-
tion function, and the corner table in detail.

The nature of the transfer functions can be identified from the structure
of a corner table or C-array. The corner table consists of determinants of
matrices of standardized transfer function weights. This corner table is an
M � 1 by M matrix made up of c(f, m) elements. Each c(f, m) element is
a determinant of standardized impulse response weights. Standardization
is performed by dividing the particular impulse response weight by the
absolute value of the maximum impulse response weight. In each determi-
nant, the standardized weights are designated by �ij (� vij/�vi,max�), where
the subscript i is omitted from Fig. 9.19 for simplification. The c elements
of the corner table have subscripts f and m. Subscript f (f � 0, 1, . . . , M)
is the row number of the corner table and subscript m(m � 1, 2, . . . , M)
is the column number of the corner table. The determinants c(f, m) are
constructed as follows:

c(f, m) � |
�f �f�1 � � � �f�m�1

�f�1 �f � � � �f�m�2

. . � � � .

. . � � � .

�f�m�1 �f�m�2 � � � �f

| (9.19)
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Table 9.4

The Corner Table (C-Array)

m columns

f 1 2 3 � � � � � � r r � 1 r � 2 � � � m � M � 1

0 0 0 0 0 0 0 0 0 0 0

b rows
1 0 0 0 0 0 0 0 0 0 0
� � � � � � � � � � �

� � � � � � � � � �

b � 1 0 0 0 0 0 0 0 0 0 0
�

b x x x x x. x x x x x
� x x x x x. x x x x x s rows

b � s � 1 x x x x x x x x x x �
b � s x x x x x x 0 0 0 0
b � s � 1 x x x x x x 0 0 0 0

� x x x x x x � � � �

M x x x x x x � � � �

(r columns) � � � �

For each explanatory variable, xj, of the free-form distributed lag model,
one can construct an element c(f, m) that has a value of the determinant
if f � 0, m � 0, and �j � 0 if j � 0. Actually, the element c(f, m) has a
value of 0 or close to 0 due to random and/or sampling error if j � 0. When
the corner table or C-array is constructed in this way, it contains a structure,
shown in Table 9.4, from which the order of the transfer function may be
derived. Within the corner table, we represent the values of the elements
by zeros or x’s. The cells with zeros represent relatively small weights,
whereas the cells with x’s represent relatively larger weights. From the
patterns of zeros and x’s we are able to derive the transfer function structure.

The pattern of the matrix of f rows by m columns reveals the order of
the transfer function. The f rows are indexed from zero through M. The
upper rows of the matrix will consist of zeros. There are b rows of zeros
before we reach rows of x-marked cells. We find the delay time by counting
the upper rows of zeros. Following the b rows of zeros (row 0 through row
b � 1), there are s rows (extending from row b through row b � s � 1)
of x-marked cells before we encounter a rectangular block of zeros in the
lower right section of the table. This rectangular block of zeros begins in
row b � s. There will be a distance of r columns from the first column of
the table to the first column before the lower right block of zeros. In other
words, the block of zeros therefore begins in column r � 1. From this
characteristic pattern of the tabular matrix, we can identify the order of
the transfer function (Lui and Hanssens, 1982; Mills, 1990; Pankratz, 1991;
Lui et al., 1992).
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9.4.1.5. Estimation of the Transfer Function

We can estimate the transfer function by conditional least squares, un-
conditional least squares, or maximum likelihood. Maximum likelihood
may require more data points than the other two. Sums of squared residuals
are found and the iterations continue until those sums of squared residuals
do not improve significantly.

9.4.1.6. Diagnosis of the Transfer Function Model

Diagnosis and metadiagnosis of the transfer function model takes place
next. When the iterations converge, they yield estimates of the parameters.
We test these parameters for significance against their standard errors. To
test the model for adequacy, the parameters estimated should be significant.
Moreover, the decay parameters should conform to the bounds of stability
for transfer function models. If the model is one of first-order decay, then
��1� � 1. This means that the �1 parameter estimate should not be too close
to the value of 1.00. If the parameter is 0.96, then the model may be unstable
and be in need of further differencing. If the model is one of second-order
decay, the three conditions of system stability must hold: (a) �2 � �1 � 1;
(b) �2 � �1 � 1; and (c) ��2� � 1. None of the parameters should be
nonsignificant. If the parameters are not significant, we prune them from
the model. When the estimated parameters appear to be significant, and
the nonsignificant ones are trimmed from the model, the model residuals
should be white noise. The residuals can be diagnosed by their ACF and
PACF along with use of the Box–Ljung Q test.

9.4.1.7. Metadiagnosis of the Transfer Function Model

Metadiagnosis entails comparative evaluation of alternative transfer
function models. If there are spikes in the ACF and PACF of the residuals,
new parameters that could account for those spikes are tested. If these
parameters are significant, the alternative models are compared according
to their residuals or their minimum information criteria, such as sums
of squared residuals, the Akaike information criterion, or the Schwartz
criterion. Metadiagnosis can also include the comparative evaluation of the
forecasts generated by those models. The MSFE and MAPE are generally
used for evaluation of the forecast against the validation sample, although
the MAPE is often preferred.

9.4.1.8. Formulation of the Noise Model

If the Box–Jenkins approach is employed, the noise model of the input
series is identified before prewhitening. Theoretically and ideally, the noise
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model is independent of the transfer function model. The residuals re-
maining after the identification, estimation, diagnosis, and metadiagnosis
of the transfer function are reexamined. In particular, the noise model (the
ARIMA model for the residuals from the transfer function) is reexamined.

9.4.1.8.1. Identification of Noise Model Parameters

The residuals from the transfer function are examined. All necessary
differencing should have been performed. If the residuals exhibit ARMA
characteristics, a particular procedure can be invoked to assist the proper
identification of the ARMA order. The researcher can use the ACF, PACF,
and the extended sample autocorrelation function (ESACF) to identify the
proper ARMA order. The bounds of stationarity and invertibility should
be considered to be sure that the parameters identified yield a stable model.
If the parameters cleave closely to those bounds and stationarity becomes
an issue, the parameters should be tested for nonseasonal and seasonal
unit roots. From these considerations, he can identify the proper ARMA
parameters. Those parameters can then be estimated and diagnosed.

9.4.1.8.2. Estimation of Noise Model Parameters

The estimation may be undertaken by the algorithms already discussed in
the chapter on estimation. They are conditional least squares, unconditional
least squares, or maximum likelihood. If the parameters are stable and
the model converges, then further diagnosis is in order. Nonsignificant
parameters are trimmed from the model.

9.4.1.8.3. Diagnosis of Noise Model

Diagnosis of the model includes a review of the model assumptions. Is
the model congruent with those assumptions? Does the model make sense?
The estimated parameters should not be too close to the bounds of stationar-
ity and invertibility. If the parameters are not close to those bounds, then
they will be stable. If the parameters are stable and account for all of the
variation in the noise model, the ACF and PACF of their residuals should
reveal white noise.

If there are any outliers apparent in the residuals, then the series should
be checked for the outliers. Smoothing or modeling the outlier should be
considered. For example, modeling an observational outlier can involve
the use of another pulse function to be added to the model.

If the parameters are unstable, the residuals would not be white noise.
There could be significant spikes in the ACF or PACF of the residuals.
The estimated parameters might not be stable because the coefficient values
might be too large or have the wrong signs. It is theoretically assumed that
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there should not be a multicollinearity problem. A check of the correlation
matrix among the parameters would be in order. If the parameters are
intercorrelated, they could be unstable. Changes in some parameters could
change the values of other parameters, and the model could be difficult to
fit. Another assumption is that the transfer function is uncorrelated with
the ARIMA noise model. In fact, the noise model parameters could be
correlated with the transfer function parameters, and changes in the transfer
function might change the nature of the noise model. A cross-correlation
function check is used between the noise and transfer function model to
test the assumption of independence between the transfer function and
noise model.

If these correlations between the parameters are substantial or high, the
model may have difficulty converging to final estimates, in which case more
differencing and remodeling may be necessary. When the iterations to
parameter estimates converge, the estimates should be found to be signifi-
cant and the ACF and PACF of the residuals should reveal white noise
(Lui et al., 1992).

Upon diagnosis of the ARMA noise model, we fine-tune the model.
The nonsignificant parameters may be pruned from the model. If the residu-
als are not yet white noise, model reidentification should follow, with either
new parameters that need to be added or old ones that need to be remod-
eled. Reformulation of the noise model would entail reformulation of a new
prewhitening filter and a remodeling of the transfer function. Alternative
models may be tested against one another with minimum information
criteria and/or with residuals best resembling white noise.

9.4.1.8.4. Metadiagnosis and Forecasting

When alternative models are compared with one another to find the
optimal model, they may also be compared for model explanation, fit, or
forecast accuracy. If they are being evaluated for explanatory scope, they
can be compared according to the amount of theory encompassed. If they
are being evaluated for explanatory efficiency, they can be assessed by their
adjusted R2 or minimum information criteria. If they are being evaluated
for model fit, the criteria by which they are compared can be minimum
information criteria or the sum of squared residuals. If they were well
estimated, their parameters estimates should have the right sign, a reason-
able magnitude, and stability. When alternative models are used to generate
forecasts and those forecasts are evaluated for accuracy, the forecasts can
be compared with the mean square forecast error or the minimum absolute
percentage error. We can forecast h leads into the forecast horizon, based
on a model that includes both a transfer function and a noise component
according to the following formula (Box et al., 1994; Granger, 1999):
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Yt�h � �1Yt�h�1 � � � � � �p�d�rYt�h�p�d�r

� �0Xt�h�b � � � � � �p�d�sXt�h�b�p�d�s

� et�h � 	1et�h�1 � � � � � 	q�ret�h�q�r,
where
t is the time period
h is the lead time period
p is the order of autoregression (9.20)
d is the order of differencing
r is the order of decay
b is the delay
s is the order of regression
and
q is the order of moving average.

The forecast error variance and forecast interval limits are

Var(h) � 
 2
e �h�1

j�0

�2
j � 
 2

e �h�1

j�0

� 2
j , (9.21)

where

�j � error of vj

Ŷt�h � �1.96[V(h)]1/2.

From the definition of the � weights given earlier in the chapter on forecast-
ing and these formulas, the analyst can compute the forecasts and forecast
intervals (Fig. 9.13). Although some analysts use the MSFE as the conven-
tional criterion of predictive validation of the model, other researchers
prefer the MAPE, because it is not so vulnerable to outlier distortion.
Those who prefer the minimum squared forecast error claim that, unlike
MAPE, it is not as susceptible to distortion because of estimates being
close to zero (Fildes et al., 1998). From the metadiagnosis, the analyst can
select the optimal model and then plot the forecast. Before proceeding to
the more complicated problems of multiple input models, an example of
a single input transfer function modeling process is presented.

9.4.1.9. Programming a Single Input Transfer Function Model
Using the Conventional Box–Jenkins Strategy

A single-input transfer function model can be constructed from the
relationship between U.S. per capita personal disposable income (PDI)
driving or influencing personal consumption expenditures (CE) from 1929
through 1994. The series data, measured in 1987 constant dollars, were
obtained from the National Income and Product Accounts of the United
States and the Survey of Current Business, July 1994 and March 1995, from
the Bureau of Economic Analysis, U.S. Department of Commerce.
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Once the data are gathered, the researcher should consider his strategy
and choice of statistical package. To illustrate transfer function model
building, SAS is chosen because it has excellent comprehensive transfer
function modeling capability. SAS users can employ either the Box–Jenkins
approach or the linear transfer function approach. If researchers adhere
to the Box–Jenkins approach, they can automatically prewhiten the input
and output series with the inverse filter formed from the noise model of
an input series. The inverse prewhitening filter neutralizes autocorrelation
in the input series that would bias the parameter estimates of the transfer
function. Adherents of this approach identify the parameters of the transfer
function model—including the delay, decay, and regression parameters of
the transfer function—with the cross-correlation function. Some scholars
have argued that prewhitening is necessary to remove the corrupting auto-
correlation from the input series before modeling the transfer function.
They suggest that without the prewhitening approach, the cross-correlations
may not accurately reflect the impulse response weights (Brocklebank and
Dickey, 1984; Box et al., 1994; Woodward, 1997). Because SPSS does not
automatically prewhiten the series, researchers who prefer the Box–Jenkins
approach would prefer SAS.

SAS also permits the researcher to model the transfer function by the
linear transfer function approach. Following the linear transfer function
approach, the analyst includes lower order AR terms in the noise model
of the input series to control for autocorrelation bias, and then the inputs
are included. Other scholars maintain that this approach is sufficient to
remove the corrupting autocorrelation from the input series (Liu and Hans-
sens, 1982; Tsay, 1985; Pankratz, 1993). The transfer function parameters
are derived from inspection of the cross-correlation function or from the
corner table. Researchers who prefer the linear transfer function approach
to modeling can also use SPSS.

Although the SPSS ARIMA procedure at the time of this writing can
handle discrete and continuous inputs, SPSS is currently developing a new
time series analysis and forecasting module, called Decision Time, that
allows for either single or multiple, deterministic and/or stochastic pre-
dictors. With the SPSS ARIMA procedure, the user must code the interven-
tion himself, but with Decision Time the module permits automatic coding
of the event or intervention. Neither SPSS module possesses automatic
prewhitening capability, but the Decision Time module will permit the user
to define the structure of the transfer function, with the exception of fixing
the values of the parameters. Instead of permitting conventional Box–
Jenkins modeling, both SPSS modules require the user to model with the
linear transfer function method or a method that involves the regression
of predictors with ARIMA modeling of the residuals. For this reason, the
SPSS procedures are not discussed in the section on Box–Jenkins modeling
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strategy, and SAS is used to demonstrate the Box–Jenkins approach to
transfer function modeling.

This section presents a step-by-step explanation of the program of the
conventional transfer function modeling of the relationship between per
capita personal disposable income and personal consumption expenditures.
The complete file for this model is called C9PGM1.SAS. Some preliminary
programming matters need to be addressed. An OPTIONS statement limits
the number of columns to 80, with the LINESIZE (abbreviated LS) � 80
option. This options statement causes output to be formatted to 80-column
width, a format that is easy to read on any computer monitor. There are
four TITLE statements. These allow adequate description of the project,
subproject, data source, and procedure for future reference.

The directory (folder) in which the data set is located must be defined,
and this specification is done in the LIBREF (sometimes called LIBNAME)
statement. The directory is abbreviated INP in the LIBNAME statement as
follows: LIBNAME INP ‘C:\STATS\SAS’;. This means that data sets
prefixed with an INP will be found in the specified directory C:\STATS\

SAS’;. Each SAS program is divided into DATA steps and PROC steps.
Then the DATA step must be given a name. In this program it is called
NEW, by the DATA NEW; statement. Another command is issued to read
in the data. The source directory and the source data set have to be identified
with this command. From the LIBNAME statement the directory in which
the data set is located is abbreviated INP. The data set PDI_CE.SD2
located in ‘C:\STATS\SAS’ is used. The command that imports this data
set into the data set called NEW is SET INP.PDI_CE;. DATA NEW; has
now gotten its data from PDI_CE.SD2 and redefined that data as its own.
In this way, the directory and data set are defined and the data are imported.

The preprocessing of the data follows. The IF _N_ � 66 THEN DE-

LETE; statement eliminates the irregular data set length in the two series.
By deleting observations number 67 and higher in the series, this statement
guarantees that both of the series have the same length. The DATE �
INTNX function defines the date in years from 1929 onward. Each observa-
tion is dated by the year of observation. Extraneous variables DATE_ and
YEAR_, which were created earlier, are dropped. The DATE variable cre-
ated by the DATE function is then formatted according to a four-column
YEAR designation. Figure 9.14 depicts the two series, with their stochastic
trends, plotted against time in years.

The next paragraph defines the graph of the two series. Because we
have reviewed SAS overlay graph program syntax before, we only cursorily
review it now. From the graph review, we can observe that the two series
exhibit similar patterns. The first AXIS statement defines the label and
rotates it 90 degrees so it fits along the vertical axis. The SYMBOL statements
sequentially define the joining of points, the color, and the shape of the
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Figure 9.14 Personal consumption expenditures driven by per capita personal disposable
income in 1987 constant dollars. Source: U.S. Bureau of Economic Analysis.

functions respectively specified in the plot statement. Two series are over-
laid and plotted against DATE in order to see which series may be driving
the other from this similarity of pattern. Therefore, the relationship between
them is explored further. Then six title statements replace the previous
ones and two FOOTNOTEs are added to the bottom of the graph. The
footnotes that are left blank below delete the two footnotes for subse-
quent procedures.

options ls=80;

title ’Per capita PDI => ce in 1987 dollars’;

title2 ’Source: U.S. Bureau of Economic Analysis’;

title3 ’National Income and Product Accounts of the United States’;

title4 ’Survey of Current Business July, 1994 and March 1995’;

LIBNAME inp ’c:\stats\sas’;

data new ;

set inp.PDI_ce;

/* pre-processing the series */

if _n_ > 66 then delete;

date = INTNX(’year’,’01jan1929’d,_n_-1);

drop year_ date_ tab1987;

format date year4.;

/* Examination of the data to be sure it is read correctly */

proc print;

run;

/* Preliminary Plotting of the Series */

axis1 label=(a=90 ’1987 Constant $’);

symbol1 i=join c=green v=star;

symbol2 i=join c=blue v=circle;
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proc gplot;

plot (PDI ce) * date/overlay vaxis=axis1;

title ’ Personal Consumption Expenditures’;

title2 ’Driven by Per Capital Personal Disposable Income ’;

title3 ’in 1987 Constant $’;

title4 ’Source: US Bureau of Economic Analysis’;

title5 ’National Income and Product Accounts of the US’;

title6 ’Survey of Current Business, July 1994 & March 1995’;

footnote1 justify=L ’Personal Disposable Income=star’;

footnote2 justify=L ’Consumption Expenditures=circle’;

run;

footnote1 justify=L ’ ’;

footnote2 justify=L ’ ’;

The next step in the Box–Jenkins approach is the preliminary testing
of ARMA noise models for the input series. The strategy is to identify the
best noise model for the input series. By trying several alternative models,
the best fitting and most parsimonious model is selected. For each model
tested specific PROC ARIMA syntax is employed.

This procedure begins with the PROC ARIMA command. The identifica-
tion subcommand of the ARIMA procedure begins with I VAR=PDI(1)

CENTER NLAG=25; . I abbreviates IDENTIFY. VAR=PDI indicates that
the personal disposable income variable, PDI, is to be analyzed. PDI has
to be first differenced in order to be rendered stationary, so a (1) is placed
immediately after the variable name. The series is subsequently centered
to simplify the modeling. The CENTER subcommand subtracts the mean
from each observation of the input series PDI. The NLAG=25 option sets
the number of lags to be reviewed at 25 and prints the ACF, IACF, and
PACF of the first difference of PDI for evaluation.

Underneath the IDENTIFY statement is the ESTIMATE statement. Sev-
eral alternative ARMA noise models for the input series are estimated.
The ESTIMATE statements begin with an abbreviation E. Each of the
estimations was performed with maximum likelihood with a maximum of
40 iterations. The NOINT options specified that no intercept was to be used
because the series were already centered. The PRINTALL option specifies
that the preliminary estimation, iteration history, and optimization sum-
mary be printed in addition to the final estimation results. The PLOT option
requests the residual ACF and PACF plots. Each model estimation con-
verged. For model 1, an AR(1) MA(10) model is estimated. For model 2,
an AR(1) MA(4 10) model is estimated. Model 3 is an AR(1) MA(2 4

10) parameterization. All the models were evaluated by the SBC, the
modified portmanteau test, and the ACF and PACF graphs. Title statements
give numbers to the models and specify their SBC and residual results.
Although model 1 has the lowest SBC, model 2 had ACF and PACF
residuals that appeared to be more white noise. For this reason, model 2
was selected as the ARIMA noise model for the input series.
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/* ******************************************************* */

/* Preliminary Identification of Input Series Noise Model */

/* This is done to set up prewhitening inverse filter */

/* ******************************************************* */

proc arima;

identify var=ce;

identify var=pdi;

title7 ’Preliminary Noise Model Identification’;

run;

proc arima;

i var=pdi(1) center;

e p=1 q=(10) noint printall plot method=ml maxit=40;

title7 ’PDI estimation p=1 q=(10) SBC=890.3 - residual spike at lag 4’;

title8 ’Model 1’;

run;

proc arima;

i var=pdi(1) center;

e p=1 q=(4 10) noint printall plot method=ml maxit=40;

title7 ’PDI estimation p=1 q=(4 10) SBC= 891.5 - good residuals’;

title8 ’Model 2’;

run;

proc arima;

i var=pdi(1) center;

e p=1 q=(2 4 10) noint printall plot method=ml maxit=40;

title7 ’PDI estimation p=1 q=(2 4 10) good residuals’;

title8 ’Model 3 p=1 q=(2 4 10) SBC=893.1 vy good residuals’;

run;

/* ******************************************************* */

/* Model 2 selected as input Noise model */

/* ******************************************************* */

Prewhitening is applied next. Prewhitening is invoked by the syntax of
the full transfer function model. To form the prewhitening filter, the input
(personal disposable income) series identification and estimation are per-
formed first. Once formed, the prewhitening filter is then applied to both
series. By stacking the identification and estimation commands of the input
series on those of the output series, invoking the cross-correlation function
option on the identification command for the output series, and by speci-
fying the input series with the INPUT option in the estimation subcommand
of the output series, the researcher applies the prewhitening filter to
both series.

In the computer syntax for the full transfer model, the first two lines
identify and estimate the input series noise model.
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proc arima;

i var=pdi(1) center esacf nlag=25;

e p=1 q=(4 10) noint printall plot;

This noise model is used to prewhiten both series. The second identification
and estimation subcommands

i var=ce(1) center esacf nlaq=25 crosscorr=(pdi(1));

e q=1 printall plot noint input=((10)pdi);

run the ACF and the PACF up to 25 lags of the first differenced and
centered output series. They run the ACF and PACF of the residuals of
the estimated model. They invoke the cross-correlation function. The CCF
is invoked with the CROSSCORR=(PDI(1)) option. It should be noted
that the PDI differencing is indicated by the (1) suboption. Pankratz argues
that if the noise model requires differencing, then algebraically both the
response (CE) and the input series (PDI) should be identically differenced
(Pankratz, 1991).

title7 ’Full Transfer Function Model ’;

title8 ’Per capita pdi = Consumption expenditures’;

proc arima;

i var=pdi(1) center esacf nlag=25;

e p=1 q=(4 10) noint printall plot;

i var=ce(1) center esacf nlag=25 crosscorr=(pdi(1));

e q=1 printall plot noint input=((10)pdi);

f lead=24 id=date interval=year out=fore;

run;

The cross-correlations between the differenced input and output series are
indicated as prewhitened by the inverse filter in Fig. 9.15.

A direct estimation of the transfer function characteristics is undertaken
from a review of these cross-correlations. In Fig. 9.16, it can be seen that
there are no statistically significant negative spikes, which implies no feed-
back. In other words, the per capita personal disposable income does seem
to be exogenous in this relationship. There are statistically significant spikes
at lags 0 and 10, however. This would imply that there is an immediate
effect of disposable income on the expenditures within that annual period.
Also, that there is an effect that lags by about 10 years as well. The number
of lags shown depends on the number attached to the NLAG= option in the
identify subcommand. The cross-correlations for 10 lags are shown here.

At this point, the program syntax is modified, so that NLAG=24 in the
ESTIMATE subcommand of the line with CROSSCORR in it. The cross-
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Figure 9.15

Figure 9.16
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Figure 9.17

correlation function and the Q tests for significance from lag 0 through lag
23 are printed (Fig. 9.17).

Because the cross-correlations reflect pulse response weights, �s regres-
sion terms are modeled at lags s� 0 and 10 (where the cross-correlation
function reveals significant, sharply defined, and pronounced spikes) in the
input statement of the ESTIMATE subcommand for the personal consump-
tion expenditures series. INPUT � ((10) PDI) requests the following
transfer function model: (�0 � �1L

10) (1 � L) PDIt. The (1 � L) comes
from the earlier differencing of the PDI series, assuring the analyst that
the consumer expenditure pulse responses are found at lags 0 and 10. There
are unpatterned spikes that suggest numerator regression coefficients.
These lags suggest the lags of coefficients. This completes the tentative
identification of transfer function parameters.

If the cross-correlations had more complicated shapes, the syntax for
modeling these forms of input functions are given in Table 9.5. The syntax
for modeling these transfer functions is contained in the corresponding
input option of the identify command of the response variable of the table.
At this point, it is reasonable to inquire how one programs the six transfer
function models specified earlier. Table 9.5 illustrates how to formulate
those transfer functions. Bresler et al. (1991) and Ege et al. (1993), as well
as Bowerman and O’Connell (1993), give detailed explanations for other
transfer function model parameterizations in SAS.

Table 9.5

SAS Transfer Function Model Syntax for b � 3

Model 1 Yt � �0Xt�b INPUT � (3$XT)
Model 2 Yt � (�0 � �1L)Xt�b INPUT � (3$ (1)XT)
Model 3 Yt � (�0 � �1L � �2L

2)Xt�b INPUT � (3$(1,2)XT)
Model 4 INPUT � (3$/(1)XT)

Yt �
�0

1 � �1L
Xt�b

Model 5 INPUT �((3$(1)/(1))XT)
Yt �

(�0 � �1L)

(1 � �1L)
Xt�b

Model 6 INPUT �(3$ (1, 2)/(1 2)XT)
Yt �

(�0 � �1L � �2L
2

(1 � �1L � �2L
2)

Xt�b
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The model is estimated by maximum likelihood estimation. Diagnosis
of the transfer function model parameters is the next step. The significance
tests of these transfer function model parameters are estimated, and if they
are nonsignificant, they are trimmed from the model. This output is shown
in Fig. 9.18.

Figure 9.18

All of the transfer function parameters are significant. The two transfer
function model parameters called NUM1 and NUM1,1 at lags 0 and 10,
respectively, have very significant t statistics. Inclusion of these parameters
in the model reduces the magnitude of the AIC and SBC to 687.50 and
693.52, respectively.

In the meantime, it is noted that the MA parameters are no longer
statistically significant.These were originally necessary to control for moving
average variation in the input series. It can be argued because they are not
part of input autocorrelation, they could be trimmed from the model prior
to forecasting. Because they were part of the original prewhitening filter,
they are left in the model in accordance with convention for simplified
presentation of the modeling process. Examination of the correlations
among the parameters and of the Q tests for the residuals of the transfer
function model in Fig. 9.19 permits further diagnosis of the transfer function.
The transfer function parameters are significant and account for all of the
spikes in the cross-correlation function, from which we conclude that the
transfer function has been successfully identified.

Diagnosis of the transfer function includes review of the correlation
matrix among the parameters. Ideally, the transfer function and the noise
model are independent of one another. Under such circumstances, the
correlations between the transfer function and noise model parameters
should be small. Given the prewhitening by the inverse filter on the con-
sumer expenditures series, there are autoregressive and moving average
noise model parameters along with the transfer function parameters in
the correlation matrix. Owing to relatively low correlations between these
components shown in Fig. 9.19, multicollinearity does not appear to pose a
problem. Diagnosis, however, involves more than a multicollinearity review.
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Figure 9.19

A diagnostic review of the residuals is also in order. When this noise
model is coupled with the transfer function model, nonsignificant residuals
emerge. The nonsignificant residuals in Fig. 9.19 indicate the parameteriza-
tion of the models accounts for all of the systematic variance. Hence, there
seems to be no need to resort to the corner table for estimation of the
structural parameters of the transfer function or the ESACF for estimation
of the order of the ARMA noise model.

If the transfer function model together with the prewhitened noise model
did not already account for all of the systematic variance, the residuals
would not be nonsignificant. In that hypothetical case, then the next step
in the modeling strategy is to remodel the noise model until the residuals
are white noise. Figures 9.20 and 9.21, respectively, provide the ACF and
PACF of the residuals from this model.

An additional transfer function diagnosis is necessary. In the transfer
function model, there is an assumption that the noise model and the transfer
function are independent of one another. We must validate this assumption
before placing any faith in the model. A cross-correlation of noise model
residuals and the transfer function is output for diagnostic examination
(Fig. 9.22). If the assumption holds, there should be no statistically signifi-
cant cross-correlation between them. If a statistically significant cross-corre-
lation remains, then autocorrelation remains between the transfer function
and the noise model residuals, potentially corrupting estimation, and either
the transfer function or the noise model or both need to be reidentified.
Once the residuals appear to be white noise, we can proceed to metadi-
agnosis and the final step of forecasting. To test this assumption, SAS
performs Q tests of the cross-correlations of the residuals of this input
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Figure 9.20

Figure 9.21



396 9/Transfer Function Models

Figure 9.22

noise model of personal disposable income and the transfer function. In
the event that there is no additional cross-correlation, the Q tests will be
nonsignificant. When residuals are diagnosed as white noise, as they are
shown to be in Fig. 9.22, the transfer function plus noise model are inferred
to be independent, to provide an acceptable fit, and to explain the process.

Once the model has been diagnosed and the residuals are found to be
white noise, the next step entails generation and evaluation of the forecast
from the model. It is at this point that any nonsignificant transfer function
parameters may be trimmed from the model. The graph of the forecast
profile generated is shown in Fig. 9.23.

The forecast data set, designated FORE in the forecast subcommand,
is generated from the unprewhitened series by the forecast subcommand in
the ARIMA procedure. That data set includes the variables: the observation
number, OBS; the date variable, DATE; the response variable, CE; the
forecast, FORECAST; the standard error, STD; the lower 95% confidence

Figure 9.23 Personal consumption expenditures driven by per capita personal disposable
income in 1987 constant dollars. Source: U.S. Bureau of Economic Analysis.
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limit, L95; the upper 95% confidence limit, U95; and the residual,
RESIDUAL.

f lead=12 id=date interval=year out=fore;

The data set is then merged with the input data set so both PDI and CE

are contained in the data set for graphing.

/* merging the Forecast series set with the estimation data set */

data new2;

merge new fore; by date;

format date year.;

run;

In this case, the forecast is extended 12 years into the future. The identi-
fying variable is DATE, which designates the year of the observation. The
interval of year is specified. The output data set is called FORE. It is merged
with the previous data set by date (in years). The SAS syntax in Fig.
9.24 graphs the two series and their forecast shown at the beginning of
this modeling.

Figure 9.24
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The question remains how one interprets the SAS output and translates
it into a formula. Immediately after the cross-correlations between the
transfer function model and the noise model, the estimated parameters are
output. The noise model for the input series, PDI, is given in the first four
of the following lines.

Model for variable PDI

Data have been centered by subtracting the value 152.13846154.

No mean term in this model.

Period(s) of Differencing = 1.

Autoregressive Factors

Factor 1: 1 - 0.41038 B**(1)

Moving Average Factors

Factor 1: 1 - 0.22279 B**(4) - 0.46116 B**(10)

From this input series, the prewhitening filter is developed and applied.

Both variables have been prewhitened by the following filter:

Prewhitening Filter

Autoregressive Factors

Factor 1: 1 - 0.41038 B**(1)

Moving Average Factors

Factor 1: 1 - 0.22279 B**(4) - 0.46116 B**(10)

But the final full (untrimmed) model for the transfer function and ARIMA
noise model is given in the last part of the output, where it provides the
model for personal consumption expenditures, CE.

Model for variable CE

Data have been centered by subtracting the value 141.01538462.

No mean term in this model.

Period(s) of Differencing � 1.

Autoregressive Factors

Factor 1: 1 - 0.27365 B**(1)

Moving Average Factors

Factor 1: 1 - 0.21738 B**(4) � 0.1275 B**(10)

Input Number 1 is PDI.

Period(s) of Differencing � 1.

The Numerator Factors are

Factor 1: 0.4721 � 0.17895 B**(10)



9.4. Modeling Strategies 399

From this output, the following model is estimated.

(CEt � 141.02)(1 � L) � (0.472 � 0.179L10)(PDIt � 152.14)(1 � L)

�
(1 � 0.217L4 � 0.128L10)

1 � 0.274L
et ,

(9.22)

where et is the innovation or random shock,
CEt is the consumption expenditures, and
PDIt is the personal disposable income.

If the series were not centered, there would be a constant noted in the
output that would be entered as the first term on the right-hand side of
Eq. (9.22). If there were denominator factors in the transfer function, these
would be placed underneath the factor preceding the mean-centered PDIt

on the right-hand side of this equation. Additional trimming of this model
before forecasting is left as an exercise. When the researcher trims nonsig-
nificant moving average terms from the full model, he should observe
carefully what happens to the model fit, the model parsimony, the mean
square forecast error, and the forecast interval. When there is moderate
or substantial correlation between transfer function and noise model param-
eters, spurious spikes can appear in the residuals of the noise or transfer
function model parameters. The benefits and costs from trimming have to
be weighed in determining how many erstwhile significant moving average
terms can be prudently pruned. Parsimony is an important principle in this
process, yet the final decision on what terms can be shaved from the model
may depend on artistic taste as well as sound scientific judgement. In this
way, SAS can be used to apply the Box–Jenkins strategy to transfer function
modeling and forecasting.

9.4.2. The Linear Transfer Function Modeling Strategy

9.4.2.1. Dynamic Regression

This section focuses exclusively on the dynamic regression (DR) or linear
transfer function (LTF) modeling strategy for transfer functions. Because
the strategy does not involve prewhitening the series, it is easy to apply.
Because it claims that there is no need for prewhitening, this strategy
claims to be able to include model multiple inputs without unnecessary
complication. Insofar as the several input series are not highly correlated,
this modeling strategy is in fact very useful. Therefore, this approach is
argued to be more robust than the classical Box–Jenkins one. This newer
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approach has been developed by Lui and Hanssens (1982) and Tsay (1985).
If the researcher is using SPSS he should use this approach because SPSS
cannot automatically prewhiten series selected for analysis. To overcome
possible problems of omitted time-lagged input terms, autocorrelation in
the disturbance series, and common correlation patterns among the input
and output series that yield spurious correlations, the dynamic regression
or linear transfer function modeling approach can be very helpful (Pankratz,
1991). Using this approach, the researcher can develop an ARIMA noise
model and then include one or more unprewhitened input series in either
SAS or SPSS. First, we entertain the underlying theoretical considerations
and then a programming application.

First, preliminary background preparation is necessary. Before the mod-
eling begins, the researcher should familiarize himself with the history, the
theory, the empirical reality, and the relevant logic of processes and/or
persons involved. From a literature review of the theory and/or history of
the subject, the researcher/analyst may be able to tell which predictor series
are needed to model his response series. From this knowledge, he may be
able to tell which predictor series are not needed for this project. He may
be able to tell from the history of the series which events are significantly
or not significantly related to turning points in the response series. From
this information, he can determine which events need to be included in
the model and which events need not be included. He may also be able to
tell how many predictor series he needs to model the process. He can
interview key persons to check on his literature. He can graph the series
against the time line and compare changes in the response to historical
related events. He needs to be sure that they correspond. There is no
substitute for expert knowledge in the beginning of the analysis.

Second, the researcher should graph the data and review the series for
outliers. These may be holiday effects or singular events that affect the series.
If he finds outlying observations, he should test them to confirm that they are
outliers. If they are confirmed outliers, he should model, smooth, or remove
them in accordance with his understanding of the historical data.

Third, preliminary identification of both series with a review of the ACF
and PACF is helpful at this pont. Although Tsay (1995) contends that
the LTF method is more robust to nonstationarity than the conventional
Box–Jenkins approach, Pankratz (1991) suggests that nonstationarity would
require the appropriate detrending or differencing between the two series.
Preliminary transformations to obtain covariance stationarity may be neces-
sary, lest such nonstationarity confound the forthcoming feedback test.

Fourth, the researcher needs to perform the Granger causality test for
feedback, while making some allowances for sampling variation. If feedback
is not logical or theoretically permissible, inputs that suggest apparent
feedback may need to be considered for evaluation of sampling variation,
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spurious regression, and subsequent removal. It may be helpful to remove
or model seasonality at this point.

Fifth, specification of a linear transfer function model involves formula-
tion of an equation in the form

Yt � � � v(L) � et (9.23)
� � � v0Xt � v1Xt�1 � v2Xt�2 � � � � � vjXt�j � et .

We choose the order j to be large enough to accommodate the significant
lags of the exogenous series, Xt. By comparison of the actual pattern with
the theoretical patterns of the transfer functions previously mentioned, we
can discover the nature of the transfer function and its structural parameters.
Small sample sizes may limit the number of lags that are modeled, so
researchers prefer larger sample sizes for this kind of modeling. We can
prune the free-form distributed lag to exclude nonsignificant lagged terms.

Sixth, we model a disturbance term, et , as a low-order autoregressive–
seasonal autoregressive process.

(1 � �1L)(1 � �sL
s )nt � et

(9.24)
nt �

et

(1 � �1L)(1 � �sL
s )

.

Alternatively, a first-order nonseasonal AR term can be modeled, and
if the ACF or PACF of the residuals reveal seasonality, a seasonal AR
factor can be included. This identification and estimation will absorb the
autocorrelation in the noise model so that it will not contaminate (render
inefficient the significance tests of the impulse response weights) the cross-
correlations between the input and output series. In other words, the new
model is parameterized as a combination of Eqs. (9.23) and (9.24) and
estimated as

Yt � � � v0Xt � v1Xt�1 � � � � vf Xt�j �
et

(1 � �1L)(1 � �sL
s )

. (9.25)

Seventh, we can diagnose the ACF and PACF of the noise model to
determine whether the model is nonstationary and requires further differ-
encing. If we find the noise model AR term to be close to or equal to unity,
differencing may be in order. The effect of this is to difference both the
input and output series identically. If differencing is required, it may be
first and/or seasonal differencing. If only first differencing is required, the
new model would be

�Yt � a � v0�Xt � v1�Xt�1 � � � � � vj�Xt�j

(9.26)
�

et

(1 � �1L)(1 � �sL
s )

.

where a � ��.
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Eighth, the ACF and PACF for the noise model residuals should reveal
whether this model has accounted for all of the residual autocorrelation.
If the residuals of the noise model are white noise after differencing, then the
model has properly accounted for the residual autocorrelation. If, however,
seasonal nonstationarity remains, and the residuals exhibit a cyclical pattern
that tails off slowly, then the input and output series can be seasonally
differenced. The first and seasonal differencing of the input and output
series should then render the model stationary. The ACF and PACF of
the residuals should taper off quickly or, if the noise model is properly
identified and already estimated, then they should reveal only residual
white noise. The researcher can overfit and underfit the model to attain
the best noise model at this stage.

Ninth, after identifying and estimating the noise model, the researcher
can graph the impulse response function. The model is first specified as a
free-form distributed lag model with enough vj weights to model the transfer
function effect (Eq. 9.25). He compares this actual vj weight pattern with
theoretical transfer function patterns plotted earlier and formulated in
Table 9.5, and then he attempts by direct estimation to identify the structural
parameters of the transfer function. In this way, he can identify the delay,
then the decay, and finally, the number of numerator regression parameters.

Tenth, he specifically examines the delay in impact. If the vj weights are
nonsignificant for five lags, then 5 is the delay parameter. b is then said to
equal 5. If there is no delay before the vj weights become statistically
significant, then b � 0. In this manner, he identifies the b parameter.

Eleventh, he next examines the decay rate pattern of the impulse re-
sponse function. If there is an instantaneous pulse or a sudden albeit perma-
nent level shift, there is no decay at all and the r decay parameter equals
0. If there is simple exponential dampening of the magnitude of the vj

weights, this is first-order decay, in which case, the r decay parameter might
equal 1. If there is compound dampening in the pattern of the response
function, then this is evidence of higher-order decay. If, for example, he
discerns cyclical variation in the pattern of impulse response weights, then
the decay parameter might equal 2 or more. Most transfer function models
have first- or second-order decay. Having identified the decay parameter,
which models patterned spikes, he proceeds to examine the numerator
coefficients, which represent unpatterned spikes.

Twelfth, he counts the number of unpatterned startup values. If there
are two unpatterned spikes in the pattern of vj weights, then s � 1 equals
2 so s equals unity. The number of numerator regression coefficients that
is significant should be s � 1. Frequently, it is helpful to test one or two
more to empirically observe the point at which these tail off in significance.
Thus, he can identify the structural parameters of the impulse response
function. As a check of his transfer function modeling, he can construct a
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corner table for assistance in confirming the order of the structural parame-
ters of the impulse response function.

Thirteenth, after the noise model and the transfer function model have
been estimated, he reviews the residuals. At this stage of the analysis, he
checks the correlations between the parameters of the noise and the transfer
function model. If these correlations are minimal, this evidence supports
the assumption of independence between these two models. If the noise
model is independent of the transfer function model, then the CCF between
their residuals should show white noise. If there is some dependence, there
might appear to be a relationship between et and et�j that could be inter-
preted as a 	t�j in the noise model. A failure to model an �t�j regression
parameter may result in a spike in the CCF at lag j . Sometimes theory or
history is helpful in determining which of the parameters is the appropriate
one to model this relationship. Lacking such hints, the researcher can revert
to remodeling the linear transfer function in hope of removing residual
spikes in the CCF. The CCF can reveal misspecification of the dynamic
regression model and suggest the need for revision (Pankratz, 1991).

Fourteenth, he reviews the ARMA model for the disturbance term. He
rechecks the residual ACF, PACF, and EACF. He looks for outliers that
can confound the sample correlogram output and models or smooths them.
If, for example, there is one statistically significant spike in the sample ACF
and one statistically significant spike in the sample PACF, this pattern
would suggest an MA(1) model for the stationary noise model. As a double-
check, the sample EACF could be used. The upper left vortex of the triangle
of zeros (at the 0.05 level of significance) would indicate at what order of
AR rows and MA columns identifies the ARMA noise model. In this way,
the sample EACF could be used to confirm identification of the order of
the ARMA noise model. If the low-order AR and/or SAR terms already
account for the autocorrelation, the EACF will confirm proper MA specifi-
cation of the noise model. The model is then fine-tuned to produce white
noise residuals.

Fifteenth, if diagnosis of the sample ACF, PACF, and EACF residuals
discloses noise or transfer function misspecification, reformulation of the
model is in order. The analyst can hypothesize and test noise model re-
formulation. An incorrect transfer function specification can induce auto-
correlation in the noise model, although the remainder of the ARIMA
specification is in fact correct. Trimming insignificant parameters may elimi-
nate peculiar residual spikes in the correlograms (ACF, PACF, EACF, and
CCF) and should be used to improve fit, parsimony, and prediction.

The model building process is iterative. The researcher may need to
recycle through these steps until the model fulfills the assumptions, makes
sense, and fits well. The model must be adequate and should be simple.
After reiterating through this process, the model should be the best plausi-
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ble model. In this way, the researcher builds a model to represent the
dynamic relationship under consideration.

9.4.2.2. Advantages of the Dynamic Regression Modeling Strategy

The advantages of the LTF strategy are several according to the work
of Liu and Hanssens (1982), Tsay (1985), Lui et al. (1992), and Pankratz
(1991). The LTF (DR) method is easy to apply. It does not entail compli-
cated prewhitening. It is more independent of sequence than the conven-
tional Box–Jenkins method. The conventional method requires a rigid
sequence for (1) proper specification of the ARIMA noise model, (2) proper
prewhitening, and (3) the use of the CCF for transfer function model
identification. If there is misspecification at any of these stages or if the
order of the sequence is altered, the modeling process may become seriously
undermined. These authors emphasize that the strategy can handle nonsta-
tionary models, multiple inputs without complicating prewhitening, and
autocorrelation in the noise model without rendering the significance
tests inefficient and biased. Like the Box–Jenkins method, it requires diag-
nosis and model reformulation before the fine-tuning of the mode is com-
plete.

A principal advantage is that dynamic regression models can be applied
to the combination of multiple forecasts. With each forecast constituting
a driving or forcing series, the combination point forecast can be con-
structed. If the dynamic regression model possesses ARMA(p,q) residuals,
then the residuals can be modeled with an ARIMA procedure according
to the linear transfer function method described. If the dynamic regression
model possesses only moving average or seasonal moving average errors,
this is a regression with a form of time series errors that requires no
prewhitening (Bresler et al., 1993). It is common, however, for models to
have inputs or noise that are not free of autocorrelation. Because of its
theoretical and applied advantages, the linear transfer function approach
is recommended as a strategy to modeling multiple input series.

There are two basic approaches to modeling transfer functions with
multiple input series. The researcher can either sequentially or simultane-
ously input the explanatory series. To sequentially model, one models the
output series as a transfer function of the input series, in the manner just
explained. In the next stage of input, the researcher may use the residuals
from the previous model as output to the new input series. In this way, he
can sequentially chain input series to the output series. In the Box–Jenkins
approach, multiple inputs may be sequentially chained taken two at a time.
An example of this type of model was set forth in McCleary et al. (1980)
between the size of the Swedish harvest and the Swedish fertility rate, first,
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and between the fertility rate and the Swedish population next. For such
analysis, the Box–Jenkins method, with its prewhitening, serves well. For
modeling several series simultaneously, the linear transfer function ap-
proach, which does not require prewhitening, is recommended.

The advantages of LTF modeling are that they permit the development
of multiple input models. They permit modeling multiple input models that
can be sequential or simultaneous. If the models are sequential, then they
are chains of bivariate sequences of variables strung together. They permit
modeling of multicausal theoretical relationships among series. If there is
not much multicollinearity, simultaneous multiple input models can be
identified, estimated, diagnosed, metadiagnosed, and forecast with some
precision. The newer modeling strategy can handle autocorrelation within
the disturbance term and nonstationary series and instances of spurious
correlation produced by common patterns in the within-series correlation.
In essence, these developments have raised time series analysis to the level
where different hypotheses can be tested as to the transfers from one series
to another. The advantages show how one or several series can drive an
endogenous series; they can form the basis of a path analysis of time series.
They provide an opportunity to model, test, and explore the understanding
of these relationships. They can be used to test predictive or concurrent
validity, or they can be combined to fashion designed responses or to model
complex situations. They are a powerful tool of analysis that forms the
basis for much quality and engineering process control analysis.

9.4.2.3. Problems with Multiple-Input Models

If we use the regression approach for multiple inputs, some problems
occasionally occur that merit consideration. When we are modeling two
simultaneous inputs, these inputs cannot be highly correlated with one
another without multicollinearity creating problems for the estimation pro-
cess. Too much multicollinearity inflates standard errors and may preclude
convergence of the estimation process. If simultaneous inputs are substan-
tially correlated and the transfer functions are estimated, the question of
how to handle this problem arises (Reilly, 1999).

A number of suggestions have been tendered. Centering the series re-
duces the number of terms in the model and therefore some of the possibility
of multicollinearity. If the Box–Jenkins approach to modeling is used, Liu
and Hanssens (1982) suggest using the same prewhitening filter. Priestley
(1971) has recommended prewhitening both the input and output series
before obtaining transfer function weights. If there is one endogenous
series and two exogenous series, each of which has different levels of
autocorrelation within it, then it could be very difficult to develop a common
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prewhitening filter that would be suitable for all three. The prewhitening
filter developed from one might be inappropriate for the other. Liu and
Hanssens (1982) have suggested that in some instances the use of double-
precision computing may avoid these problems. When it does not matter
whether the original variables are radically transformed prior to analysis,
Tsiao and Tsay (1985) propose a canonical analysis to produce scalar com-
ponents models, after which they subject these components to a vector
ARMA approach to solving the problem, but this last suggestion is beyond
the current scope of this text. Reiterative trimming reduces multicollinearity
in the model (Liu et al., 1992). If the LTF strategy is applied, this approach
need not involve problematic prewhitening with multiple input models.

9.4.2.4. Dynamic Regression Modeling with SAS and SPSS

It seems logical that construction contracts lead to housing starts. Our
housing start and construction contract data extend from January 1983
through October 1989 and are available from Rob Hyndman?s Time Series
Data Library, the World Wide Web address of which is http://www.maths.-
monash.edu.au/�hyndman/TSDL/index.htm. A graph displaying these data
may also be found in Makridakis et al. (1998). The presumption is that
construction contracts naturally lead to housing starts.

We can use either SAS or SPSS to program the linear transfer function
method. Let us consider the SAS syntax first. SAS PROC ARIMA can be
used to build a transfer function model between the number of construction
contracts and housing starts during this time period. The complete SAS
programming syntax, with its major steps, is found in C9PGM2.SAS.

First, we conduct our background research and check the integrity of
the data with a PROC PRINT.

Second, we graph the series, examine the plotted series, and find no
obvious outliers (Figure 9.25).

Third, we perform preliminary identification of the series with the ACF
and PACF to check for nonstationarity and seasonality. With the observa-
tion of seasonal spiking at lag 12, we see that seasonal differencing of order
12 is required to bring about stationarity (Figs. 9.26 and 9.27).

After 12th differencing of both the contracts input and housing starts
output series, we can see from their ACFs that both series are stationary
(Figs. 9.28 and 9.29).

These differenced autocorrelations tail off nicely. Both the input and
output series are differenced at lag 12. No further transformation of either
series appears to be needed.

Fourth, we perform a sample preliminary feedback check by regression
of 12th differenced contracts on five distributed lags of 12th differenced
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Figure 9.25 (*) Housing starts, (�) construction contracts, January 1983 through October
1989.

Figure 9.26 Step 3: Preliminary stationarity check—construction contracts.
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Figure 9.27 Step 3: Preliminary stationarity check—housing starts.

housing starts with the program command statements

/* Step 4 Granger Causality Test */

proc reg;

model difctrct = d12hst1 d12hst2 d12hst3 d12hst4 d12hst5;

title ’Step4 Granger Causality test’;

title2 ’Insignificant Regression Coefficients reveal no problem’;

run;

We find no significant regression coefficients for this sample output (Fig.
9.30), though more lags are generally tested. In fact, there is evidence of
minor irregularity, sampling variation, or feedback when more lags are
tested. For our purposes, these aberrations are not considered serious and
we proceed with the analysis.

If we have reason to believe that there might be feedback, we can
examine as many lags might be relevant.

In step 5, we can model the regression of differenced and centered new
housing starts on a distributed lag of differenced and centered construction
contracts. Lagged contracts variables are constructed and equally differ-
enced before serving as predictors of the similarly differenced Housing
Starts series. For these monthly data, all series are differenced at lag 12 in
the CROSSCORR statement in accordance with Eq. (9.26).



Figure 9.28 Step 3: Stationarity check—construction contracts.

Figure 9.29 Step 3: Stationarity check—housing starts.

409
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Figure 9.30 Step 4: Preliminary Granger causality test.

proc arima;

i var=hstarts(12) center crosscorr=(contrcts(12) contrL1(12) contrL2(12) contrL3(12)

contrl4(12) contrl5(12) contrl6(12) contrl7(12) contrl8(12)

contrl9(12) contrl10(12)) nlag=25;

e input=(contrcts contrL1 contrl2 contrl3 contrl4 contrl5 contrl6 contrl7 contrl8

contrl9 contrl10 ) printall plot noint method=ML maxit=40;

title ’Step 5 Free form distributed lagged model of exogenous terms’;

title2 ’ with review of the residuals’;

Title3 ’Step 5 LTF model approach ’;

run;

The output suggests that only the first numerator at lag 0 is significant.

Step 5 Free form distributed lagged model of exogenous terms

with review of the residuals

Step 5 LTF approach

23:22 Sunday, August 15, 1999

ARIMA Procedure

Maximum Likelihood Estimation

Approx.

Parameter Estimate Std Error T Ratio Lag Variable Shift

NUM1 3.23582 1.36103 2.38 0 CONTRCTS 0

NUM2 1.65967 1.36239 1.22 0 CONTRL1 0

NUM3 0.70663 1.34629 0.52 0 CONTRL2 0

NUM4 0.58266 1.32519 0.44 0 CONTRL3 0

NUM5 -0.65923 1.33267 -0.49 0 CONTRL4 0

NUM6 0.64851 1.33627 0.49 0 CONTRL5 0

NUM7 -0.15888 1.35718 -0.12 0 CONTRL6 0

NUM8 0.36643 1.36415 0.27 0 CONTRL7 0

NUM9 1.93708 1.37504 1.41 0 CONTRL8 0

NUM10 -0.23511 1.42390 -0.17 0 CONTRL9 0

NUM11 -0.57502 1.40027 -0.41 0 CONTRL10 0
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An examination of the estimates of these impulse response weights
reveals no dead time. The only significant response is at the beginning.
There is an immediate peak and no significant gradual decay, indicative of
a pulse input. The SBC is 510.000. From Figure 9.31, we observe that the
shape of the response weights is identical to that of a single significant
pulse at lag 0 and a possible additional pulse at lag 8. It can be argued that
the pulse at lag 8 is not significant at first glance and should be dropped,
but we first try to test a model that includes this second pulse.

There were some preliminary matters demanding attention. Although
we tried a first-difference, we found it unnecessary to assure stationarity.
We could either leave the significant lagged exogenous terms in or we could
reexpress them as a function. A first-order decay parameter was found
to be nonsignificant. To conserve degrees of freedom, we now trim the
nonsignificant extraneous distributed lag terms with a zero-order pulse in
the input statement INPUT =((8)CONTRCTS) to match the pattern of
the transfer function on the ESTIMATE subcommand, begun with the abbre-
viation, E. Differencing usually centers a series. The differenced exogenous
inputs are lagged at periods 0 and 8 to represent a (�0 � �8L8)(1 � L12)
CONTRCTSt formulation. This formulation, given the relative magnitude of
the parameters, effectively models the spikes and reduces the SBC to 492.69.
If we do not recognize the empirical form to be one of the conventional
theoretical patterns of the transfer function, we can always use the corner
table for transfer function identification. If we find that there are several
significant transfer functions separated, we can model a more complex
combination to fit the pattern.

Figure 9.31 Step 5: First-order transfer function for housing starts (12) as a function of
construction contracts (12).
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In step 6, we note the residuals from this transfer function and the ACF
spikes at lags 1 and 2. Therefore, we try a low-order ARSAR noise model,
with the P=(1 2)(12) in the beginning of the ESTIMATE subcommand.
proc arima;

i var=hstarts(12) center crosscorr=(contrcts(12)) nlag=25;

e p=(1 2 )(12) input=((8)contrcts) printall plot noint method=ML maxit=40;

title ’Step 6 Test Lower Order AR terms to model input AR’;

title7 ’Using trimmed significant lags Regression approach ’;

title8 ’Test Low Order AR terms to get rid of corrupting influence’;

run;

From this ARIMA procedure, we obtain an estimation that shows
that all the transfer function terms and AR noise model terms are
significant.

ARIMA Procedure

Maximum Likelihood Estimation

Approx.

Parameter Estimate Std Error T Ratio Lag Variable Shift

AR1,1 0.25280 0.12730 1.99 1 HSTARTS 0

AR1,2 0.35405 0.13152 2.69 2 HSTARTS 0

AR2,1 -0.30258 0.15073 -2.01 12 HSTARTS 0

NUM1 2.77137 0.94842 2.92 0 CONTRCTS 0

NUM1,1 -2.03126 0.93072 -2.18 8 CONTRCTS 0

Variance Estimate = 105.691652

Std Error Estimate = 10.2806445

AIC = 471.259174

SBC = 481.894846

Number of Residuals= 62

In step 7, we trim the first-order autoregressive parameters from the
model in the interest of parsimony in the next procedure by merely speci-
fying a p � (2), which means that only the second-order autoregressive
term is estimated.
proc arima;

i var=hstarts(12) center crosscorr=(contrcts(12)) nlag=25;

e p=(2) input=((8)contrcts) printall plot noint method=ML Maxit=40;

title ’Step 7 Trimming the Model’;

title2 ’LTF modeling Strategy ’;

run;

The coefficients are reestimated with the following results.

ARIMA Procedure

Maximum Likelihood Estimation

Approx.

Parameter Estimate Std Error T Ratio Lag Variable Shift

AR1,1 0.27966 0.12649 2.21 1 HSTARTS 0

AR1.2 0.33000 0.12866 2.56 2 HSTARTS 0

NUM1 2.96772 0.95632 3.10 0 CONTRCTS 0

NUM1,1 -2.00643 0.93008 -2.16 8 CONTRCTS 0
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Variance Estimate = 112.621286

Std Error Estimate = 10.6123177

AIC = 473.125455

SBC = 481.633993

Number of Residuals= 62

The AIC and SBC are not much lower, but the model is more parsimonious
and all of the parameters are significant. The parameters are not
highly intercorrelated and a review of the residuals shows that this
model fits.

ARIMA Procedure

Autocorrelation Check of Residuals

To Chi Autocorrelations

Lag Square DF Prob

6 6.30 4 0.178 0.006 -0.048 -0.116 0.134 0.237 -0.040

12 11.61 10 0.312 0.066 -0.101 0.101 -0.028 -0.083 -0.190

18 17.39 16 0.361 -0.046 0.027 -0.032 0.089 -0.201 -0.117

24 25.83 22 0.259 -0.169 -0.018 -0.033 -0.066 0.123 -0.188

If we overfit and underfit to be sure that we have the best model, we
can arrive at an alternative model. We can review the residuals and discover
a not quite significant moving average spike at lag 5. To model this spike,
we can add a moving average parameter at lag 5 and trim the nonsignificant
autoregressive terms at lags 1 and 12. The program for the fine-tuned of
the model is

proc arima;

i var=hstarts(12) center esacf crosscorr=(contrcts(12)) nlag=25;

e p=(1 2) q=(5) input=((8)contrcts) printall plot noint

method=ML Maxit=40;

Title ’Step 8 Fine-tuning the LTF Model ’;

run;

The coefficients are reestimated and the output from the model reveals
a more parsimonious model with an SBC of 480.76, slightly better than that
of the earlier model and substantially better than that of the model with
only lagged exogenous predictors.

Maximum Likelihood Estimation

Approx.

Parameter Estimate Std Error T Ratio Lag Variable Shift

MA1.1 -0.33328 0.12918 -2.58 5 HSTARTS 0

AR1.1 0.39355 0.12314 3.20 2 HSTARTS 0

NUM1 3.53925 0.91761 3.86 0 CONTRCTS 0

NUM1,1 -2.03453 0.89755 -2.27 8 CONTRCTS 0
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Variance Estimate = 110.161259

Std Error Estimate = 10.4957734

AIC = 472.257264

SBC = 480.765801

Number of Residuals= 62

The correlation among these parameters are small and not problematic.

Correlations of the Estimates

HSTARTS HSTARTS CONTRCTS CONTRCTS

Variable Parameter MA1,1 AR1,1 NUM1 NUM1,1

HSTARTS MA1.1 1.000 0.150 -0.038 -0.046

HSTARTS AR1.1 0.150 1.000 0.098 -0.026

CONTRCTS NUM1 -0.038 0.098 1.000 0.046

CONTRCTS NUM1,1 -0.046 -0.026 0.046 1.000

The autocorrelation check of the residuals of this model reveals that they
are clearly white noise.

Autocorrelation Check of Residuals

To Chi Autocorrelations

Lag Square DF Prob

6 4.38 4 0.357 0.201 -0.052 0.046 0.140 0.007 0.032

12 10.92 10 0.364 0.111 -0.066 0.015 -0.002 -0.155 -0.208

18 19.43 16 0.247 -0.029 0.011 -0.038 0.068 -0.157 -0.252

24 26.87 22 0.216 -0.184 -0.057 -0.098 -0.037 0.110 -0.128

A visual inspection in step 8 of the ACF and PACF confirms white noise
(Figs. 9.32 and 9.33).

In step 9 of the programming, the researcher needs to be sure that there
is no significant correlation between the transfer function parameters and
the noise model; a final cross-correlation check between them is run. Special
program syntax is required to invoke this check. In the same ARIMA
procedure, the input series needs to be identified and estimated prior to
the identification and estimation of the output series.

proc arima:

i var=contrcts(12) center nlag=25;

e printall plot noint:

i var-hstarts(12) center crosscorr=(contrcts(12)) nlag=25;

e p=(2) g=(5)input=((8) contrcts ) printall plot noint method=ML maxit=40;

f lead=12 interval=month id=date out=fore;

title ’Step 9 Cross-Corr Check between Noise and TF Parms’;

run;

From these results, it is clear that there is no significant cross-correlation
between the separate components of the model.



9.4. Modeling Strategies 415

Figure 9.32

Figure 9.33
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Crosscorrelation Check of Residuals with Input CONTRCTS

To Chi Crosscorrelations

Lag Square DF Prob

5 5.35 4 0.253 0.069 0.204 0.134 0.067 -0.097 0.091

11 8.46 10 0.584 -0.073 0.060 0.009 0.062 -0.025 -0.191

17 9.85 16 0.875 -0.094 -0.015 -0.059 -0.087 0.042 0.018

23 19.57 22 0.610 -0.265 -0.062 -0.222 -0.178 -0.046 -0.000

The output of the program yields the basis for the final formula.

Model for variable HSTARTS

Data have been centered by subtracting the value -4.158571429.

No mean term in this model.

Period(s) of Differencing =12.

Autoregressive Factors

Factor 1: 1 - 0.39355 B**(2)

Moving Average Factors

Factor 1: 1 + 0.33328 B**(5)

Input Number 1 is CONTRCTS.

Period(s) of Differencing = 12.

The Numerator Factors are

Factor 1: 3.539 + 2.0345 B**(8)

In other words, the formula for the model is

(1 � L12)(Housing startst � 4.159)

(9.27)

� (3.539 � 2.035L8)(1 � L12)Contractst � �1 � 0.333L5

1 � 0.394L2� et .

In this manner, we apply the linear transfer function modeling strategy
without prewhitening and recommend this method for modeling for multi-
ple input models. Having fit the model, we can generate the forecast profile
(Fig. 9.34).

The SPSS ARIMA commands use the WITH option to include predictor
variables. The first line of SPSS ARIMA command syntax is almost identical
to that shown in Chapter 8. Instead of an ARIMA procedure with a discrete
variable, the ARIMA procedure with one or more continuous variables is
specified. Suppose that there are two continuous predictor variables—
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Figure 9.34

namely, X1 and X2. They should be centered. The input variable is succes-
sively lagged. If necessary, both series are identically differenced to attain
stationarity. After the ARIMA noise model is designed with low order
autocorrelation terms to control the within-series autocorrelation, the first
line of ARIMA command syntax, starting in column one of the syntax
window, is simply modified to read

ARIMA Y WITH X1 X2 .

Multiple lags of X1, X2, and other predictor series can be constructed and
sequentially added until they fail to retain statistical significance. In a later
step, the nonsignificant predictors are pruned from the model and the
ARIMA modeling discussed earlier is applied to the residuals. Whereas
the SAS model can use a transfer function formulation, the final SPSS
model substitutes lagged exogenous predictors. As a result, the SPSS AR-
IMA procedure in the TRENDS model performs a regression of lagged
exogenous variables with time series errors. The SPSS syntax for the housing
start analysis follows.

*Program C9PGM3.SPS .

*Step 1 Data Check.

*Step 2 Sequence Charts .

LOT VARIABLES= chstarts contrcts

/ID= year_

/NOLOG.
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*Step 3 Preliminary Check for Stationarity .

ACF

VARIABLES= chstarts ccntrcts

/NOLOG

/MXAUTO 20

/SERROR=IND

/PACF.

* Seasonal Differencing needed at order 12.

* Recheck for stationarity with Seasonal Differencing at d=12.

ACF

VARIABLES= chstarts ccntrcts

/NOLOG

/SDIFF=1

/MXAUTO 20

/SERROR=IND

/PACF.

*Step 4 Preliminary Granger Causality Check .

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT ccntrcts

/METHOD=ENTER l1chstar l2chstar l3chstar l4chstar l5chstar .

*Step 5 Free Form Lags of Exogenous Variables.

* ARIMA.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU END.

ARIMA chstarts WITH ccntrc1 ccntrc2 ccntrc_3 ccntrc_4 ccntrc_5 ccntrc_6

ccntrc7 ccntrc8 ccntrc9 ccntrc10

/MODEL=( 0 0 0 )( 0 1 0 ) NOCONSTANT

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

*Residual Diagnosis of Free Form Distributed Lag Model.

ACF

VARIABLES= err_11

/NOLOG

/MXAUTO 20

/SERROR=IND

/PACF.

* Step 6 ARIMA Testing Lower Order AR term to model disturbance.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU END.

ARIMA chstarts WITH ccntrc1 ccntrc2 ccntrc_3 ccntrc_4 ccntrc_5 ccntrc_6

ccntrc7 ccntrc8 ccntrc9 ccntrc10

/MODEL=( 2 0 0 )( 0 1 0 ) NOCONSTANT

/P=(2)
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/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

*Residual Diagnosis for Model Fine-Tuning.

* Notice spikes at 7 and 12.

ACF

VARIABLES= err_12

/NOLOG

/MXAUTO 20

/SERROR=IND

/PACF.

*Step 7 Fine-Tuning ARIMA noise model.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU END.

ARIMA chstarts WITH ccntrc_1 ccntrc_2 ccntrc_3 ccntrc_4 ccntrc_5 ccntrc_6

ccntrc_7 ccntrc_8 ccntrc_9 ccntrc10

/MODEL=( 2 0 1 )( 0 1 0 ) NOCONSTANT

/P=(2)

/Q=(12)

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

*Residual Analysis of model.

ACF

VARIABLES= err_13

/NOLOG

/MXAUTO 20

/SERROR=IND

/PACF.

* Step 8 Several Overfitting and Trimming Steps are here.

* Step 9 Final model.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU END.

ARIMA chstarts WITH ccntrc_1 ccntrc_4 ccntrc_5 ccntrc_7

ccntrc8

/MODEL=( 1 0 1 )( 0 1 0 ) NOCONSTANT

/P=(2)

/Q=(12)

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT.

ACF

VARIABLES= err_18

/NOLOG

/MXAUTO 20

/SERROR=IND

/PACF.
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9.5. COINTEGRATION

In econometric modeling or dynamic regression modeling, there is a
caveat. Independent series often seem to be related to one another.
Granger and Newbold (1986) have noted that in a regression model of one
series upon another, when the R2 is higher than the Durbin–Watson d,

there is frequently a chance of a spurious correlation or spurious re-
gression. Specious relationships are more the rule than the exception
when random walks or integrated moving average processes are re-
gressed upon one another, and especially where there are a lot of indepen-
dent variables in the model. Indeed, when autocorrelated errors can lead
to artificially low standard errors and inflated R2 and F tests among unre-
lated series, spurious trends may emerge. The parameter estimates of those
values can be large (Granger and Newbold, 1986). The researcher should
be careful to properly specify his model to avoid regressing integrated
series upon one another (Maddala, 1992). How these goodness of fit and
significance tests become distorted will be discussed in more detail in the
next chapter.

From the examination of the relationship between personal disposable
income (PDI) and personal consumption expenditures (CE), we can see
that these two variables seem to cling to one another over time. They appear
to have a common trend and to be interrelated by a long-run dynamic equilib-
rium. There are sometimes pairs or larger sets of variables that appear to be
in equilibrium with one another (Davidson and MacKinnon, 1993). Prices of
the same commodity in different countries, money supply and prices, or
wages and prices might be other examples of paired series whose values fol-
low one another. When series share a common trend, these series may be
integrated at order one I(1), or at I(2) if the trend is quadratic. As such, they
are nonstationary and require transformation before becoming amenable to
econometric modeling. Occasionally, particular combinations of these vari-
ables exist that render the combination stationary or I(0). Series that can be
combined in this way are said to be cointegrated.

Sometimes a regression model can combine these trending series in such
a way as to produce a combination that in and of itself is I(0). A regression
model that combines nonstationary series and yields stationary residuals
is called a cointegrating regression. For example, earlier we examined per-
sonal disposable income (PDI) and consumer expenditures (CE). To dem-
onstrate that PDI and CE are nonstationary when taken by themselves,
we examine the results of the ADF unit root tests (Chapter 3, Sections
3.6.1 through 3.6.4). Both PDI and CE have t probabilities in the ADF
tests that are nonsignificant indicating that series are individually found to
be nonstationary and I(1).
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When centered consumer expenditures, CCEt , is regressed on centered
personal disposable income, CPDIt , using the data from C9PGM1.SAS,
the following cointegrated regression model is estimated:

CCEt � 0.91CPDIt � et , (9.28)

where

CCEt � centered personal consumer expenditures
CPDIt � centered personal disposable income.

If these series share a common trend, this cointegrating regression repre-
sents the long-run equilibrium around that trend between the two series.
The residuals, representing long-run disequilibrium error, of this cointegrat-
ing regression should be found to be I(0). We perform a cointegration test.
These residuals, et , are analyzed with an ACF and tested by an augmented
Dickey–Fuller test. They appear to attenuate rapidly and to have a signifi-
cant t probability. Therefore, they now appear to be stationary. The cointe-
grating parameter is �0.91 and because et � CCEt � 0.91CPDIt , the cointe-
grating vector of (CCE, CPDI)’ is therefore (1, �0.91). Using this technique,
linear combinations of sets of series can be found to render those combina-
tions stationary and amenable to conventional time series analysis.

9.6. LONG-RUN AND SHORT-RUN EFFECTS IN
DYNAMIC REGRESSION

If two series, say CCE and CPDI, are I(1), the relationship between
them found in the cointegrating regression in Eq. (9.28) defines the long-
run dynamics of the relationship. When series are differenced, they lose
their long-run interpretation. The differences of these series represent short-
run marginal changes. Nonetheless, the first differences need to be em-
ployed to render the series stationary. When specifying regressions in time
series, all the series in the equation have to be integrated by the same order
(Maddala, 1992). Engel and Granger (1987) suggest a two-step estimation
procedure. First, with ordinary least squares, we can estimate the cointegrat-
ing parameter or vector from the long-run equation. Second, we can include
the error correction mechanism (in the previous time period) in the short-
run differenced equation, permitting us to capture both long-run and short-
run changes in the same regression model as Eq. (9.29).

�CCEt � ��CPDIi � �(CCE � 0.91CPDI)t�1 � �t , (9.29)



422 9/Transfer Function Models

where

�CCEt � differenced centered personal consumption expenditures
�CPDIt � differenced centered personal disposable income
CCEt � centered personal consumption expenditures
CPDIt � centered personal disposable income
(CCE � 0.91CPDI)t�1 � error correction mechanism.

This error correction model relates the change in consumption expenditures
to the change in the last period of personal disposable income and the
long-run adjustment from disequilibrium during the past period. By render-
ing these effects stationary, cointegration permits the modeling of both
long-run equilibrium and short-run disequilibrium, which has utility in many
fields, some examples of which are the study of rational expectations,
differential market efficiency, and purchasing power parity (Maddala, 1992).

9.7. BASIC CHARACTERISTICS OF A GOOD TIME
SERIES MODEL

Regardless of the modeling strategy chosen, the resulting model should
have certain essential characteristics. A good time series model would have
some basic theoretical and statistical qualities. A good theoretical model
would have acceptable theoretical scope, power, reliability, parsimony, and
appeal. Good theoretical scope can be measured by specification error tests
or F tests for parameter or variance encompassing. The theoretical power
of the model deals with the completeness of explanation of phenomena
being analyzed. Power may be measured by the R2, minimum residuals sums
of squares, minimum information criteria, Hausman, or White’s general test
for specification error. For reliability, the theoretically important parame-
ters should be stable, regardless of changes of and in auxiliary theoretical
variables (Hansen, 1992; Leamer, 1983). The theoretical appeal derives
from the parsimony, simplicity, and depth of the explanation.

A good time series model should also have certain fundamental statistical
qualities. It should be sufficiently statistically powerful with sample size
characteristics, a subject to be discussed in detail in Chapter 12. Outliers
should be trimmed, replaced, or modeled. A respectable model should have
good explanatory power, fit, parsimony, stability, and forecasting capability.
ARMA models need to have stationary and invertible parameters. For a
model to have good explanatory power, it would have to encompass the
essential theoretical components and they would have to explain most of
the variation of the response series. For the model to fit well, it should have
statistically independent residuals. For it to fit better than other models, it
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should have maximum adjusted R2 and minimum information criteria. For
the model to be parsimonious, it would have to be fit with the minimum
number of statistically significant parameters. For the model to have good
stability, the model should be tested with a split-sample Chow test. For
transfer function models to be stable, the decay parameters need to be
stable. If there are level shifts, then models need to account for such shifts
by modeling the splines over time. If the process exhibits seasonal pulses
or local trends, these should be modeled as well. For the model to have
good forecasting capability, it would have to have minimum forecast error
variance in the near term and have acceptable minimum forecast error
variance over as long a forecast horizon as possible (Granato, 1991; Hansen,
1992; Tovar, 1998).
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Autoregressive Error Models
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10.1. THE NATURE OF SERIAL CORRELATION
OF ERROR

In time series analysis, researchers often prefer to use multiple-input
dynamic regression models to explain processes of interest. The dependent
series yt is the subject of interest and the input series x1t , x2t , . . . serve as
indicators of plausible alternative explanations of that subject. The error
term et represents whatever has not been explained by the model of the
predictor input series. While bivariate time series models are relatively
easy to explain, with their separate endogenous and exogenous series, the
causal system is in reality rarely so closed that it is monocausalistic. Other
series commonly affect the response series. Dynamic regression models
with multiple inputs have an added advantage of easily permitting the
hypothesis testing of the plausible alternative causes. By permitting the
simultaneous testing of significance and magnitude of the hypothesized

425
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input series, the dynamic regression analysis allows more sophisticated
model building of dynamic causal systems.

Yt � � � b1x1t � b2x2t � � � � � et , (10.1)

where

xi � particular input series.

Furthermore, multiple input dynamic regression models can also provide
more stable long run forecasts than many other methods. A problem that
commonly plagues dynamic regression models, however, is that of autocor-
relation (serial correlation) of the error.

This chapter examines the implications and corrections for serial cor-
relation of error. First, it reviews basic linear regression analysis and its
conventional assumptions (Hanushek and Jackson, 1977; Goldberger, 1991;
Gujarati, 1995; Theil, 1971). When autocorrelation violates those assump-
tions, the efficiency of estimation is impaired. In particular, it corrupts the
computation of the error variance, significance testing, confidence interval
estimation, forecast interval estimation, and the R2 calculation. It elaborates
on how serial correlation corrupts this estimation, and it examines sources,
tests, and corrections for serial correlation. Under conditions of auto-
correlated error, we can use the structure of that correlated error to improve
prediction. Finally, the chapter presents programming options and
examples of autoregression procedures designed to deal with autocorrel-
ated errors.

10.1.1. REGRESSION ANALYSIS AND THE CONSEQUENCES

OF AUTOCORRELATED ERROR

How do autocorrelated residuals violate the basic assumptions of linear
regression analysis? Among the basic assumptions of ordinary least squares
estimation in regression analysis are four that relate to autocorrelation of
the errors. These four assumptions are homogeneity of variance of errors,
independent observations, zero sum of the errors, and nonstochastic
independent variables. Two of these assumptions, homogeneity of vari-
ance of the errors and independent errors, specify the structure of the
ordinary least squares error variance–covariance matrix. Homogeneity of
variance of the residuals indicates that the error variance in the principal
diagonal of the matrix is constant and is equal to 
 2. Independent obser-
vations indicates noncorrelation of the errors, and this in turn indicates
that the off-diagnonal elements of the matrix are all equal to zero.
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Therefore, the structure of the error variance–covariance matrix appears
as follows:

E(ee�) � 
2
e 

1 0 � � � 0

0 1 � � � 0

� � � � � �

0 0 � � � 1

� . (10.2)

Significance testing of the parameters is also dependent on an error
structure that is 
 2 I, shown in Eq. (10.2). It is imperative that the errors
be uncorrelated to preclude irregular fluctuation of the magnitude of the
standard errors and consequent inefficient estimation.

The intercept and regression coefficients in a linear regression equation
yt � a � bxt � et can be shown to be related to their variance. The variance
of these parameters is shown by Makridakis et al. (1983), Johnston (1984),
and Kamenta (1986), among others, to be dependent on the magnitude of
the error variance. From the formula for the simple bivariate regression
equation, we can rearrange terms and solve for the error term et . We can
then square et , sum over the cases, take the partial differential of the sum
of squared errors with respect to the regression coefficient, b, and by
solving the first-order condition, obtain the formula for the regression coef-
ficient.

Let Yt � yt � y and Xt � xt � x.

For Yt � bXt � et ,

et � Yt � bXt ,

and

e2
t � (Yt � bXt)

2.

Therefore, �e2
t � �(Yt � bXt)

2 � �(Y 2
t � 2bXtYt � b2X 2

t ).

Taking the partial derivative with respect to b,

��e2
t

�b
� � 2�XtYt � 2b �X 2

t .

Setting
��e2

t

�b
� 0 to obtain a minimum,

�2 �Xt Yt � 2b �X 2
t � 0, (10.3)
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and

b �
�(Xt)(Yt)

�(Xt)
2

�
�(xt � x)(yt � y)

�(xt � x)2 � ryx

sy

sx

.

The variance of the regression coefficient can be expressed as

Because yt � a � bxt � et

and the expectation E(b) � � and E(a) � �,

b �
�Xt(� � �xt � et)

(xt � x)2

� � �
�(xt � x)et

(xt � x)2 .
(10.4)

Because Var(b) � E(b � �)2

� E ��(xt � x)et�2 �

 2

e �(xt � x)2

�(xt � x)4

�

 2

e

�(xt � x)2 .

The standard error of the regression parameter is a function of the error
of the model.

SEb � 
b �

e

��X 2
t

. (10.5)

The significance test for the intercept is a t test that is also dependent on
the standard error of the parameter estimate.

t �
b � �

SEb

�
b � �

s/�(xt � x)2

where
(10.6)

s �
�e2

t

(T � k)

T � sample size
k � number of parameters tested
df � T � k.

The variance of the intercept of the regression model can also be shown
to be a function of that error variance. First, the formula for the intercept
is obtained from
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yt � a � bxt � et

et � yt � a � bxt

�et � �(yt � a � bxt)

�et � �yt � �a � b �xt

Because �et � 0 and �a � Ta, (10.7)

�yt � Ta � b �xt � 0,

and

Ta � �yt � b �xt ,

a � y � bx.

Johnston (1984) shows that the expected variance of the intercept is

Because E(b) � �, E(et) � 0, E(a) � �

and a � Y � b(xt � x)
� � � �(xt � x) � e � b(xt � x), (10.8)

Var(a) � E(a � �)2

� E(b � �)2(xt � x)2 � E(e)2 � 2E[(b � �)(xt � x)et ].

Because E(e2) �

2

e

T
, these terms may be reexpressed as

Var(a) �

 2

e(xt � x)2

�(xi � x)2 �

 2

e

T
(10.9)

� 
 2
e � (xt � x)2

�(xi � x)2 �
1

T
� .

The square root of this estimate yields the standard error of the regression
parameter, which is clearly a function of the equation error:

SEa � 
e �� (xt � x)2

�(xi � x)2 �
1

T
� . (10.10)

The t test for the significance of the regression parameter estimate is a
function of this standard error, and that in turn is a function of the equa-
tion error:

t �
a � �

s � (xt � x)2

�(x � x)2 �
1

T
(10.11)

df � T � 2.
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Hence, the significance tests of the parameters depend on the accurate
estimate of the variance of the parameter and that of the error.

To be sure, the R2 and F test are also functions of the error variance,

 2

e . The F test is the ratio of the variance explained by the model to the
error variance. The smaller the error variance, all other things remaining
equal, the larger the F value. The larger the error variance, all other things
remaining equal, the smaller the F value. The error variance is equal to
1 � R2/(T � k � 1), where T equals the number of observations in a
regression model and k equals the number of regressors in the model.
Therefore, the larger the R2, all other things being equal, the smaller the
error variance and vice versa. Therefore, both the R2 and the F value of
the model are functions of the error variance.

The confidence intervals around the parameters and the confidence inter-
vals around the predicted value of Y are functions of the error variance as
well. Makridakis et al. (1983) show how the variance of the mean forecast
is a function of the model error variance:


 2
Yi

� E(Ŷi � E(Ŷi ))2

� E[a � bXi � E(a) � E(b)Xi ]
2

Letting � � E(a) and � � E(b)

� E[(a � �) � Xi(b � �)]2

(10.12)
� 
 2

a � X 2
i 


2
b � 2XiCov(a,b)

and obtaining 
 2
a and 
 2

b from (10.4) and (10.9)

� �1

T
�

X 2
i

�(xt � x)2� 
 2
e �

X 2
i

�(xt � x)2 
 2
e �

2XXi

�(xt � x)2 
 2
e

� �1

T
�

(Xi � X)2

�(xt � xi)
2� 
 2

e .

If the error variance were not properly estimated, very important aspects
of the regression analysis would be in error. Although the estimates of the
parameters would not be biased, assessments regarding their variances
would be incorrect. The goodness of fit tests, the significance tests, and
confidence intervals of the parameters and the forecasts would be in error.
We can now examine how autocorrelation corrupts model estimation.

In time series regression models these assumptions are relaxed so as
to commonly exhibit autocorrelation in the disturbance term. When one
observation is correlated with the previous observation in that series and
measurement of the observation is less than perfect, errors associated with
the observation at one time period are a function of the errors of the
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observation at a previous time period. The error (disturbance or shock) of
the system does not evaporate at the time period of its impact, though
trend and seasonality may have been removed. With first-order autocorrela-
tion, the effect of the error does not dissipate until after the subsequent
time period has elapsed. From the dynamic linear regression, the shock or
error has an inertial memory of one period.

yt � a � b1x1t � b2x2t � et (10.13)
et � �et�1 � �t ,

where

��� � 1
� � autocorrelation of error

For stationary processes, it should be remembered that � � 1. If the autocor-
relation is positive, it may have a smoothing effect on the error, as can be
seen in Fig.10.1. A second-order autoregressive error process is a function
of the errors of the previous two time lags in the series; the inertial memory
of error is a function of its order. This second-order autocorrelation of
error is

et � �et�1 � �2et�2 � �t (10.14)

where

��� � 1.

The larger the order, the longer the memory of the autocorrelated error
process. Under conditions of autocorrelation of disturbances, the uncor-
rected errors, et , are not serially independent. Kamenta (1986) notes that
if this autocorrelation of the error is positive in direction, it will exhibit a
form of inertial reinforcement of previous error. The existence of negative
autocorrelation tends to produce regular alternations in the direction of
error.

It is helpful to examine the effect of autocorrelation on the error variance
and the error covariance to see how this renders estimation inefficient. The
apparent variance of autocorrelated error, E(e2

t ) can be represented as

E(et , et) � E(�et�1 � �t)(�et�1 � �t�1)

 2

e � �2
 2
e � 
 2

�


 2
� � (1 � �2)
 2

e ,
(10.15)

where

 2

e � apparent (uncorrected autocorrelated) error variance


 2
� � actual identically, independently distributed error variance.

Clearly, with no first-order autocorrelation, the real errors are independent
of one another and their variance is constant over time. Such constant error
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variance is easily and efficiently estimated with ordinary least squares. The
larger the magnitude of first-order positive autocorrelation, the more the
error variance aggregates unto itself portions of variance carried over from
the earlier time periods. Each time period that passes, the portion of the
variance carried over from the first time period declines by a power of the
numberof timeperiods that haveelapsedsince thefirstperiod. Thesuccessive
aggregation prevents the error variance from remaining constant and aug-
ments the error variance over what would have been estimated at period one.


 2
�

(1 � �2)
� 
 2

� (1 � �2 � �4 � � � �). (10.16)

This effect of the positive autocorrelation on the error variance decreases
the estimated standard errors and biases significance tests toward false
positive significance of the parameter estimates. The F tests and R2 become
inflated. The forecast interval becomes artificially inflated. Without correc-
tion for autocorrelation, the model and forecast error variances are larger
than those estimated by least squares. Estimation with other than minimal
error variances is inefficient and usually leads to erroneous inference.

How model efficiency is impaired requires elaboration. It is useful to
review the covariance of the errors to gain a better understanding of the
process. To gain a sense of the error covariance structure and its effect on
the variance of the parameters, one can expand E(epet�1), into factors and
then multiply.

If yt � �xt � et and errors are AR(1),
error variances are not efficient because

E(et , et�1) � E(et � vt)(et�1 � vt�1)

� E(et � vt)(�et � vt�1)

� �
 2
e .

(10.17)

If yt � �xt � et and errors are AR(s),
autocorrelation shrinks apparent error because

E(et , et�2) � ��
2 � �2
 2
e

E(et , et�3) � �3
 2
e

� �

� �

E(et , et�s) � �s
 2
e,

where s is the order of autocorrelation.
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In Eq. 10.18, Maddala (1992) also derives the warping factor by which
autocorrelation contributes alters the parameter variance.

Because � �
�(xt � x)(yt � y)

�(xt � x)2 and E(�̂ � �) � 0, (�̂ � �) �
�(Xt)(et)

�(Xt)
2

E(�̂ � �)2 � Var(�̂ � �)2 �
Var �(Xt)(et)

�(X 2
t )2

�

 2

e

�(X 2
t )2 �(Xtet)

�

 2

e

�(X 2
t )2 (�X 2

t � 2� �Xt Xt�1 � 2�2 �XtXt�2 � � � �)

�

 2

e

�(X 2
t )
�1 � 2�

�Xt Xt�1

�(X 2
t )

� 2�2 �Xt Xt�2

�(X 2
t )

� � � �� (10.18)

�

 2

e

�(X 2
t )

(1 � 2�r � 2�2r 2 � � � �)

�

 2

e

�(X 2
t )
�1 �

2�r

(1 � �r)
�

�

 2

e

�(X 2
t )
�(1 � �r)

(1 � �r)
� ,

where the right hand factor represents bias due to parameter
variance when errors exhibit autocorrelation.

The higher the order of autocorrelation in general, the higher the order
by which the apparent error variance shrinks. Johnston (1984) and Ostrom
(1990) have explained how to compute the bias in the parameter variance
from the factor (1 � �r)/(1 � �r) induced by the autocorrelation in an
AR(1) model. The amount of change in error variance is a function of its
magnitude as well as its sign, and the deviation of error from white noise
shown in (Figs. 10.1 and 10.2) has implications on the fit and significance
tests.

As a matter of fact, it is reasonable in dynamic time series regression
models to expect that the error terms will be correlated. The errors et are
generated by a process described by a first or higher-order autoregressive
process. Instead of having a homogeneous error variance–covariance
matrix with a minimal 
2 in the principal diagonal, the error variance–
covariance matrix for a regression model with autocorrelated errors is



434 10/Autoregressive Error Models

Figure 10.1 White noise and AR(1) simulation: (�) white noise, (�) positively autocorre-
lated error.

given by

E(ee�) � E
e2

1 e1e2 � � � e1es

e2e1 e2
2 � � � e2es

� � � � � �

� � � � � �

� � � � � �

ese1 ese2 � � � e2
s

�
(10.19)

�

 2

�

(1 � �2)
1 � �2 � � � �s�1

� 1 � � � � �s�2

� � � � � �

� � � � � �

� � � � � �

�s�1 �s�2 �s�3 � � � 1

� .

In this matrix, the error variance is periodically deflated by the power of
the autocorrelation. To illustrate, we focus attention on a first-order positive
autocorrelated error process, where each error is expressed in terms of its
temporal predecessor and a random error term.

The artificial compression of the estimated least squares regression error
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Figure 10.2 White noise and AR(1) simulation: (�) white noise, (�) negatively autocorre-
lated error.

variance, unless corrected, will produce inefficient and erroneous estimates
of standard errors. The larger the positive autocorrelation, the more serious
the relative compression of the standard errors, the more likely the false
significance tests, and the more inflated R2 of the model. If the error
variances are artificially compressed, then the forecast error will be deflated
and the forecast intervals erroneously constricted. Residual variances from
earlier periods when unmodeled gives rise to aggregation of forecast error
variance. Correction for autocorrelation reduces the forecast error. Other-
wise, inaccurate forecasts can follow. The parameter estimates are not as
efficient under these circumstances as they would be if the autocorrelation
were controlled for in the model. Finally, the consequences impede accurate
prediction (Ege et al., 1993). Therefore, the violation of the regression
analysis assumption that the errors are independent of one another can
have serious consequences.

Even when there is autocorrelation of the errors, as long as there is no
lagged endogenous variable, the parameter estimates remain unbiased
and consistent. For proofs, the reader is referred to Kamenta (1986) or
Johnston (1984).

10.2. SOURCES OF AUTOREGRESSIVE ERROR

Gujarati (1995) gives several reasons for autocorrelation of the errors.
Some time series possess inertia or momentum built into their processes.
When measurement of a process is imperfect and when what happens at
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one time period depends on what took place at the previous time period,
this error in measurement manifests itself as serial correlation in the error.

Misspecification may derive from whole variables being excluded from
the model. When variables are omitted from the model, they become part
of the error term. When the dependent variable is explained by unspecified
series that are autocorrelated, the error term becomes autocorrelated
(Griffiths, Hill, and Judge, 1993).

Misspecification of functional form may produce autocorrelated error.
If the data-generating process follows a quadratic functional form, while
the analyst models a linear relationship between the dependent and inde-
pendent variables, serial correlation may follow from a lack of squared or
other polynomial terms in the model. The excluded squared component is
correlated with the included linear component. The omission of that series
may result in a positive correlation of the included variable with the error
term. The excluded error may expand quadratically over time, giving rise
to autocorrelated, heteroskedastic error. Such models may be deemed to
produce a form of specification bias as well.

Gujarati (1995) writes that latency effects can produce autocorrelation
of the errors. A cyclical relationship may lead to such serial correlation. A
gestation period may be required before a reaction in another variable may
develop. For example, the amount of crops farmers plant may depend on
the price of the crop during the previous year. If the crop price was high
the previous year, farmers may plant more and harvest more the next year.
Hence, crop prices may influence crop planting and crop harvest one year
later. This is an example of a lagged effect on the part of other variables.
If any of these series are inaccurately measured or erroneously omitted in
the specification of the model, they become part of the error term and
bestow autocorrelation upon the error as well.

Much the same can be said for counter-cyclical effects discovered in the
data. Overproduction during the previous year may result in reduction of
planting this year. Underproduction during the previous year may cause
the farmers to plant more seed this year. Counter-cyclical effects may
produce a cobweb phenomenon, a U-shaped appearance on a graph of high
one year, low the next, and high the following year. But there are other
types of delayed effects. Estimation is made inefficient by such sources of
serial correlation of the error.

If the series is a function of time (trend) or seasonality, estimation
of these parameters may depend on correct standard errors. With the
autocorrelation inherent in the series, the standard error bias in the first
stage of analysis may corrupt specification of seasonality or trend. This
functional trend may be linear, quadratic, cubic, or of a higher power. As
pointed out earlier, such trends are forms of nonstationarity that should be
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controlled for before subsequent Box–Jenkins analysis. With the standard
errors inflated, estimation of trend and seasonality parameters may be
incorrect as well (Wonnacott and Wonnacott, 1979).

Sometimes an analyst wishes to study two series, one of which is monthly
and the other of which is quarterly. Usually, he will combine the three
months of the monthly series so that he can analyze two quarterly series.
In the process of aggregating the monthly series, he is smoothing the data.
While this smoothing eliminates some variation, it may introduce artificial
autocorrelation. If this happens, the smoothed series may now have an
AR(p) aggregation bias (Gujarati, 1995). One, some, or any of these phe-
nomena may force the researcher to consider the consequences of autocor-
relation for his analysis.

10.3. AUTOREGRESSIVE MODELS WITH SERIALLY
CORRELATED ERRORS

Autoregressive models with lagged endogenous variables are sometimes
used to handle autocorrelation of the process and of the error. Many natural
and social phenomena contain inertia. Technological modernization is a
form of emulation, when measured, that contains inertia as well. Cultural
fashions, styles, fads, movements, and trends are inertial phenomena (Mad-
dala, 1992). Inertial effects have built-in lag, and these lagged phenomena
may be analyzed with autoregressive models. If these phenomena are im-
precisely measured or even omitted, the errors possess autocorrelation
as well.

When models possess a lagged endogenous variable as well as serially
correlated errors, there is a complicated warping of the error. The auto-
regression in the structural portion of the model generates a geometric lag
of the exogenous variables along with a change in the error structure that
renders the estimation biased, inconsistent, and inefficient. For a more
detailed treatment of such models, the reader is referred to Greene (1997).

10.4. TESTS FOR SERIAL CORRELATION OF ERROR

There are several tests by which we can detect autocorrelation of the
residuals. From a regression on a time trend, with possible inclusion of
seasonal dummy variables, we can compute residuals for graphical and
statistical analysis. An examination of time plots, ACF, PACF, with their
modified portmanteau tests, should reveal the order and type of autocorrela-
tion (Greene, 1997).
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A test of first-order autocorrelation is the Durbin–Watson d test. The
formula is similar to that of a �2 test on the difference between the current
and first lagged residual. This test is not applicable if there are lagged
dependent variables. The Durbin–Watson d is applicable only to first-order,
and not higher order, autocorrelation, though it is somewhat robust to
violations of homoskedasticity or normality (Kamenta, 1986):

Durbin–Watson d �

�T
i�2

(et � et�1)2

�T
t�1

e2
t

. (10.20)

The range of the d is from 0 to 4. The d will tend to be smaller (d � 2)
for positively autocorrelated residuals and larger (d � 2) for negatively
autocorrelated ones. If the d approximates zero, there will be no first-order
autocorrelation among the residuals.

The Durbin–Watson tables include upper (dU) and lower (dL) bounds.
The Durbin–Watson scale ranges from 0 to 4. Within this range there are
5 segments. They consecutively extend from (1) 0 to dL , (2) from dL to
dU , (3) from dU to 4 � dU, (4) from 4 � dU to 4 � dL , and (5) from 4 �
dL to 4. In general if d � dL , there is positive first-order autocorrelation.
The test is inconclusive if either dL � d � dU or if 4 � dU � d � 4 � dL .
If d is 2, there is no first-order autocorrelation of the errors. For d � 2.0,
the residuals are negatively autocorrelated ones. Another way of conceptu-
alizing the Durbin–Watson d is

d � 2(1 � r). (10.21)

The significance levels vary for the number of regressors in the equation
and according to the upper and lower bounds of significance for the Durbin–
Watson d. Again, this test loses power if there are lagged dependent vari-
ables and the d becomes inappropriate (Johnston, 1984; Gujarati, 1995).

Other tests can be applied for first or higher order autocorrelation, among
which is the Breusch-Godfrey test or Durbin M test. This test procedure is
to regress the dependent series on the exogenous variables with OLS
and obtain the current residual et plus the lagged residuals from t � 1 to
t � p. The null hypothesis is that �t�i � 0, where i � 1 to p. If the disturbance
term et is a significant function of a higher order autocorrelation, then at
least one � will be significant in

et � �1et�1 � �2et�2 � � � � � �pet�p � �t . (10.22)

The et is a random error term with a mean of 0 and a constant variance.
If the sample size is large, then this test is equivalent to a LaGrange
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multiplier test with

TR2 � �2

with df � p(number of parameters in model) (10.23)
and T � sample size.

If p � 1, this test is called the Durbin M test (Greene, 1997).

10.5. CORRECTIVE ALGORITHMS FOR REGRESSION
MODELS WITH AUTOCORRELATED ERROR

Transformations of the regression equation with autocorrelated errors
may render those errors independent of one another and may permit best
linear unbiased parameter estimation. Among these corrective algorithms
are the Cochrane–Orcutt, Hildreth–Lu, Prais–Winsten, and maximum like-
lihood methods. There are two-step and iterative versions of these methods.
In the two-step Cochrane–Orcutt algorithm, the OLS regression is run and
the residuals are saved. From the residuals, the first-order autocorrelation,
�̂, among the residuals is estimated with

et � �et�1 � �t

(10.24)
�̂ �

�etet�1

�e2
t

.

Since there is no predecessor to the first observation, this process cannot
use the first observation for the computation of the first-order autocorrela-
tion. All other observations are utilized to estimate �̂1 . Then this estimate
is applied to the model in the next equation to obtain the parameter
estimates for � and � by least squares estimation:

(Yt � �̂Yt�1) � �(1 � �̂) � �(Xt � �̂Xt�1) � �t . (10.25)

Alternatively, a solution can be obtained by iterative minimization of the
squared residuals, �2

t . At that point convergence is reached and the parame-
ter estimates are output.

The Hildreth–Lu algorithm, sometimes referred to as unweighted least
squares or nonlinear least squares, performs a grid search along a parameter
space to try different �̂1 values—say, from �̂1 � .1 to 1.0 by .2—to obtain
a sum of squared residuals for each tested parameter estimate. When the
value of the sum of the squared residuals converges upon a minimum, the
parameter at this point in the parameter space becomes the final estimate
(Pindyck, R. S. and Rubinfeld, D. L, 1993).
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The Prais–Winsten or estimated generalized least squares algorithm
has both a two-step and an iterative form. Whereas the Cochrane–Orcutt
estimator of �̂ can be obtained by minimizing the sum of the squared re-
siduals,

SSerror � �T
t�2

(et � �et�1)2, (10.26)

it loses the first observation. In the Prais–Winsten algorithm, the objective
criterion of the adjusted sum of squared residuals, Spw , is minimized, with
the following adjusted utilization of the first observation:

SSpw adjusted error � (1 � �2)e2
1 � �T

t�2

(et � �et�1)2. (10.27)

Once this criterion is minimized, the �pw associated with that minimum can
be found according to

�̂pw �

�T
t�2

etet�1

�T
t�3

e2
t�1

. (10.28)

Recall that in Eq. (10.13), the formula is given for first-order autocorrelated
error where

e2
t �

�2
t

(1 � �2)
, therefore et �

�t

�(1 � �2)
.

It follows that

Yt � a � �Xt �
�t

�(1 � �2)
; (10.29)

and multiplication by the common factor yields

�(1 � �2L)Yt � �(1 � �2L)a � �(1 � �2L)�Xt � �t .

When the Prais–Winsten transformation is applied, the transformed vari-
ables, designated by asterisks, in the transformed model

Y*t � a* � �t X*t � �t ,

where (10.30)

Y*t , a*, X *
t , and �t are the transformed variables,

become the best linear unbiased estimators. In the two-step procedure, the
estimated autocorrelation is computed and plugged into the transformation.
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In the iterative versions, various � values are searched, then squared so
identically, independently distributed residuals, �2

t , may be found, and the
equation is solved by minimization of the sum of squared residuals. This
iterative Prais–Winsten algorithm generally yields excellent results.

Another algorithm that yields good results is that of maximum likelihood.
The likelihood function is premultiplied by the Prais–Winsten transforma-
tion. The natural log is taken,

ln(Likelihood) � �
N

2
ln(2	) �

N

2
ln(
2

� ) �
1

2
ln(�V �) �

S

2
 2
�

,

so minimization of
S

2
 2
�

is performed,

(10.31)where S � (y � X )V �1(y � X ),

y is the y matrix,

X is the x matrix,

is the � matrix,

V �1 is estimated from

 2

�

1 � �2 ,

and S is the sum of squares of transformed residuals.

with minimization performed by a Marquardt algorithm (Ege et al., 1993).
Kamenta (1986) notes that in general, algorithms that do not lose the

first observation perform better than those that drop that observation. He
writes that this algorithm, which does not lose the first observation, in Monte
Carlo studies has produced results with relatively small samples as good as
those yielded by maximum likelihood (Ege et al., 1993). Moreover, he writes
that these results are usually better than those of ordinary least squares, and
he suggests that the iterative procedures successively improve on their esti-
mates and in general are to be preferred to the two-step procedures.

10.6. FORECASTING WITH AUTOCORRELATED
ERROR MODELS

If the model were one with independently, identically, and normally
distributed disturbances, OLS would be the most efficient procedure by
which to estimate the model. When the model possesses autocorrelated
errors, then a form of generalized least squares is a more efficient estimation
procedure. In this form of generalized least squares, the model is first
estimated by OLS, and then the variables andOLS residuals are transformed
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to correct for the autocorrelation of the residuals. The autocorrelation in
the error may be estimated preliminarily or iteratively as the estimation
proceeds to convergence of minimization of squared error. Corrective
weights are constructed as functions of the autocorrelated error and its
variance. These weights are formed from the V�1 matrix displayed in
Eq. (10.31). When these weights are used, the effect is that of transforming
the original variables by the Prais–Winsten transformation in Eq. (10.29).
When least squares estimation is performed on these transformed variables
and identically independently distributed (i.i.d.) error, it has been called
estimated generalized least squares or feasible generalized least squares.
At this juncture, it is helpful to review the nature of that bias and how the
first-order correction rectifies the error variance inflation in the forecast-
ing process.

The regression model at time, t, is

yt � at � �t xt � et

et � �et�1 � �t

so

yt � at � �xt � �et�1 � �t

yt�1 � at � �xt�1 � �et � �t�1 (10.32)
yt�2 � at � �xt�2 � �2et � �et�1 � �t�2

yt�h � at � �xt�h � �het � �h�1et�1 � � � � � �t�h .

Figure 10.3 Forecast profile of regression with AR(1) errors: (*) actual data, (F) forecast,
(solid line) trend line, (dotted line) forecast interval limits.
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To predict h periods ahead, the best predictor in terms of the current error
at the time t is �het . As h increases, the amount of error incrementally
added to the forecast exponentially attenuates until an asymptote is approxi-
mated. The forecast interval attenuation characteristic of the AR(1) fore-
cast profile is very rapid and cannot always be observed (Fig. 10.3). The
programming of the model and the interpretation of the parameterization
is essential to the proper application of this technique.

10.7. PROGRAMMING REGRESSION WITH
AUTOCORRELATED ERRORS

10.7.1. SAS PROC AUTOREG

A regression model with first-order autocorrelated errors can be
analyzed with either SAS or SPSS. The procedures utilized for this analysis
are SAS PROC AUTOREG and SPSS AREG. Although the same analysis
can be performed with SAS PROC ARIMA or the SPSS ARIMA program,
attention is directed to the procedures dedicated to handling regression
models with autocorrelated errors because the ARIMA procedures have
already been discussed. The data are generated by a simulation of first-
order autocorrelated disturbances along a time trend, displayed in Fig. 10.1.
If the analyst has reason to suspect that the errors are autocorrelated, he
may save and test the residuals from his model with ARIMA, AUTOREG,

or AREG procedures. Although it is easy to apply the autoregression proce-
dures in either statistical package, SPSS users should be cautioned at the
writing of this text that AREG handles only first-order autocorrelation prob-
lems. For higher order autocorrelation or ARMA error problems, they would
have to employ SPSS ARIMA or SAS PROC AUTOREG.

We turn to a presentation of the SAS PROC AUTOREG program syntax.
In program C10PGM2.SAS, the data are obtained from the data set desig-
nated genauto1.sd2 and in line 31 and specifies the model statement as a
regression on a time trend.

Yt � a � b1time � et ,

where (10.33)

et � �et�1 � �t .

The program strategy entails first detrending the series to be able to
analyze the residuals. The next step is to diagnose autocorrelation of the
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residuals and then to correct for them. In this way, the estimation will
become efficient, the standard errors will be corrected, the goodness of fit
tests will be more precise, and prediction will be rendered more accurate.
Of course, other exogenous variables could also be included. But in this
case, only the time trend is included on the right-hand side of the equation.

We examine the programming syntax. The log file of program
C10PGM.SAS gives the commands and their associated line numbers. The
first part of this program includes a subroutine (in lines 4 through 12) to
generate autocorrelated error for later analysis. Lines 18 through 22 graph
the output of this subroutine. In lines 24 through 28, we check the autocorre-
lation of the residuals with theACF and PACF of anARIMA to be sure that the
residuals are correctly generated. In the later lines, the series is detrended
by a regression against time, and the autocorrelated errors are modeled.
Although there might be other exogenous variables modeled in other cases,
the problem of autocorrelation of the disturbances should be handled with
either a SAS AUTOREG or ARIMA procedure. After presentation of the SAS
program syntax, we elaborate on the AUTOREG procedure.

1 options ls=80;

2 title 'Chapter 10 Simulation of AR(1) error';

3 title2 'Generation of the First estimation sample';

4 data genauto1;

5 u1=0;

6 do time=-5 to 100;

7 u=.5*u1+rannor(123456);

8 y=10+.5*time+u;

9 if time�0 then output;

10 u1=u;

11 end;

12 run;

NOTE: The data set WORK.GENAUTO1 has 100 observations and 4 variables.

NOTE: The DATA statement used 0.23 seconds.

16 proc print data=genauto1;

17 run;

NOTE: The PROCEDURE PRINT used 0.02 seconds.

18 symbol1 i=join c=green v=star;

19 symbol2 i=r c=blue v=none;

20 proc gplot;

21 plot Y*time=1 Y*time=2/overlay;

22 run;

NOTE: Regression equation: Y=9.837328+0.505249*TIME.
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NOTE: The PROCEDURE GPLOT used 0.38 seconds.

24 proc arima data=genauto1;

25 i var=u center;

26 e p=1 printall plot ;

27 title2 'Check of Autocorrelated error in Original data';

28 run;

29

NOTE: The PROCEDURE ARIMA used 0.17 seconds.

30 proc autoreg data=genauto1;

31 model y = time/nlag=6 method=ml dwprob dw=6 backstep;

32 output out=resdat2 r=resid2 ucl=ucl lcl=lcl p=forecast pm=ytrend;

33 title2 'Autoregression Model of the data';

34 run;

NOTE: The data set WORK.RESDAT2 has 100 observations and 9 variables.

NOTE: The PROCEDURE AUTOREG used 0.2 seconds.

36 data resck;

37 set resdat2;

38 title2 'The Residual Data Set';

NOTE: The data set WORK.RESCK has 100 observations and 9 variables.

NOTE: The DATA statement used 0.17 seconds.

39 proc print;

40 run;

NOTE: The PROCEDURE PRINT used 0.02 seconds.

42 proc arima;

43 i var=resid2;

44 title2 'Check of autocorrelation of residuals of Autoregression';

45 run;

NOTE: The PROCEDURE ARIMA used 0.01 seconds.

46 data together;

47 set resdat2;

48 if time � 50 then forecast=.;

49 if time � 50 then ucl=.;

50 if time � 50 then lcl=.;

51 run;

NOTE: The data set WORK.TOGETHER has 100 observations and 9 variables.

NOTE: The DATA statement used 0.19 seconds.
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58 /* generates the x-axis value above the reference line */

59 data anno;

60 input time 1-4 text $ 5-58;

61 function='label'; angle = 90 ; xsys='2'; ysys='1';

62 x=time; y=60; position='B';

63 cards;

NOTE: The data set WORK.ANNO has 1 observations and 9 variables.

NOTE: The DATA statement used 0.14 seconds.

66 axis1 label=(a=90 'Simulated Y(t)');

67 symbol1 i=join c=blue v=star;

68 symbol2 i=join c=green v=F;

69 symbol3 i=join c=black line=1;

70 symbol4 i=join c=red line=20;

71 symbol5 i=join c=red line=20;

72 proc gplot data=together;

73 plot (y forecast ytrend lcl ucl) * time/overlay vaxis=axis1 href=50

74 annotate=anno;

75 where time � 25 & time � 60;

76 title 'Figure 10.3 Forecast Profile of Regression with AR(1) Errors';

77 footnote1 'Star=actual data, F=forecast, solid line=trend line';

78 footnote2 'Dotted lines=forecast interval limits';

79 run;

Let us focus on the principal portions of the program. In lines 4 through
12 of the program, in the data step calledGENAUTO1, a simulation generates
first-order autocorrelated residuals. First, the data set is printed out begin-
ning on the first page of output, C10PGM2.LST, to permit inspection for
obvious problems. A partial listing of the data is presented to facilitate
interpretation.

Chapter 10 Simulation of AR(1) error
Generation of the First estimation sample

OBS U1 TIME U Y

1 0.82577 1 �0.08182 10.4182
2 �0.08182 2 �1.10301 9.8970

99 2.12288 99 �0.38309 59.1169
100 �0.38309 100 0.20595 60.2059

Even if the researcher has reason to suspect autocorrelation of the
residuals, he may wish to empirically test and confirm it. This test is per-
formed with the ARIMA procedure following the data generation on the
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error series, U. An ACF and PACF confirm a first- and sixth-order autocorre-
lation.

At this point, the AUTOREG procedure is run on the data series, Y. Lines
30 through 34 provide the SAS program syntax for setting up this model.
The autoregression procedure may be invoked (lines 30 through 34 in the
log file) to perform the analysis

30 proc autoreg data=genauto1;

31 model y = time/nlag=6 method=ml dwprob dw=6 backstep;

32 output out=resdat2 r=resid2 ucl=ucl lcl=lcl p=forecast pm=ytrend;

33 title2 'Autoregression Model of the data';

34 run;.

In line 30, the data to be analyzed with the autoregression procedure are
drawn from data set GENAUTO1. In line 31 the model statement specifies
that a dependent series Y is to be autoregressed on a linear trend called
TIME. TIME is a counter that increases by one unit with each period
of time and is created by the loop statement in line 6. The number of
lags for which autocorrelated error are diagnosed is six, specified with
NLAG=6.The method of estimation is that of maximum likelihood, selected
with METHOD=ML; otherwise, the Yule–Walker estimation is used by de-
fault. To request Durbin–Watson significance levels for each of the re-
quested six Durbin–Watson tests, the DW=6 and the DWPROB options are
specified. In this case, the backward elimination procedure is requested
with the BACKSTEP option. This process begins at the lag specified with
the NLAG option and successively eliminates non-significant (with a default
significance level of 0.05) autocorrelated error terms. Yule-Walker estima-
tion is used during the backward elimination to obtain the preliminary
model order and then maximum likelihood estimation is used for the rest
of the parameters.

An output data set is constructed in line 32. The name of the output
data set is RESDAT2. In addition to the regular variables within that data
set, new names are given to the five auxiliary output variables. The residual
is called RESDAT2, the predicted scores are called FORECAST, the trend
line is called YTREND, and the upper and lower 95% confidence limits are
called UCL and LCL respectively. With the syntax in lines 66 through 79,
the output variables are plotted to produce Fig. 10.3.

The first part of the AUTOREG output presents the OLS estimates, shown
in Fig. 10.4. The dependent variable is identified as Y. The regression
R2 (REG RSQUARE) is the R2 of the structural part of the model, after
transforming for autocorrelation correction. In short, the regression R2 is
a measure of the transformed regression model. The total R2 (TOTAL

RSQUARE) is the R2 of the transformed intercept, transformed variables,
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Figure 10.4

and the autocorrelation correction. Therefore, the total R2 is a measure of
how well the next value can be predicted from the complete model. (Ege
et al., 1993). When there is no correction for autocorrelation, as is the
case in the OLS estimation, these R2 remain the same (Fig. 10.4). The
Durbin–Watson tests suggest that a first-order autoregressive error
model may be in order. The model suggested by the OLS estimation is
Yt � 9.844 � 0.505Time � et with both R2 equal to 0.9951.

One good way to determine the order of autoregressive error is to
employ the backward elimination procedure, the output for which is shown
in Fig. 10.5. This output reveals the autocorrelation, the standard error,
and the T ratio for each of the parameters tested. Significant autocorrelation
is found at lags 1, 5, and 6.

The maximum likelihood estimation output is contained in Figs. 10.6
and 10.7. In Fig. 10.6, the error variance (MSE) is shown to be 0.92 and
the regression R2 is 0.9917 while the total R2 is now 0.9959. The regression
R2 is less than the total here by a small amount which indicates that there
is some difference owing to the autocorrelation correction. The Durbin–
Watson statistics in Fig. 10.6 are given for the corrected model, and their
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Figure 10.7

probabilities reveal no significant residual autocorrelation, suggesting that
residual autocorrelation has been corrected.

In Fig.10.7, the maximum likelihood model estimates are given for the
structural model as well as for the error components under the rubric
‘‘Autoreg Procedure.’’ The variable, its degrees of freedom, the coefficient,
the standard error, the t ratio, and the approximate probability of the
parameter are given first for the structural model and then for the errors.
The errors are named A(t) where t is the order of the error term. For the
model estimated in Fig. 10.7, the equation is

Yt � 9.844 � 0.505time � et (10.34)
et � 0.295et�1 � 0.216et�5 � 0.237et�6 � �t .

At this point, a caveat is noteworthy. The signs in the lower error equation
of Eq. 10.34 are the reverse of those shown in the output (Bresler et al.,

1991; Ege et al., 1993).
The method requested is that of maximum likelihood. If this algorithm

is not requested, the Yule–Walker method, a form of estimated generalized
least squares, is used by default. The estimated generalized least squares
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for AR(1) uses the Prais–Winsten two-step technique. For the iterative
version, the ITYW option must be employed. The ULS option is a more
advanced version of the Hildreth–Lu estimation technique (Ege et al.,

1993). The BACKSTEP option invokes backward elimination to eliminate all
nonsignificant autoregressive parameters. This procedure trims the model of
potentially intercorrelated insignificant predictor variables and autocorre-
lated error terms.

Three things remain to be done. First, an output data set is constructed,
with the residuals, forecast, trend line, and the forecast confidence limits
saved. From the program log, the command in line 32 performs these tasks.
The output data set is called RESDAT2 and the residuals from this analysis
are called RESID2. Key variables are constructed and added to the series
in the data set. Among these newly constructed variables are the forecast,
given the same name; the trend, called YTREND; and respectively the upper
and lower confidence limits of the forecast. Line 36 creates a data set
called RESCK in which RESDAT2 is subset on the next line. Second, the
autoregression model residuals are double-checked with an ARIMA proce-
dure in lines 42 and 43 of the log file. The ACF and PACF for the residuals
of the estimated AR model are generated along with Q statistics confirming
white noise. In this way, the model is shown to fit. Third, the forecast profile
is plotted in Fig. 10.3.

The programming of the forecast profile plot is done in lines 46 through
79 in the program log file. The forecasting profile begins at time t � 50
here, so in lines 48 through 50 in the log, the data for the forecast and its
confidence limits are set to missing. Lines 58 through 60 set up the annota-
tion of the reference line. Lines 66 through 79 set up the forecast plot. Line
66 defines the axis label for the vertical axis. Lines 67 through 71 define
the different symbols for the forecast graph. The GPLOT command then
plots a forecast profile for the components of the autoregression output.
Lines 73 through 75 instruct the GPLOT to overlay the actual data, the
forecast, the trend line, the lower, and the upper confidence limits on the
graph. A vertical reference line is positioned on the horizontal time axis
at period 50. That line is then annotated according to the data found in
the data set called ANNO. To prevent the forecast from becoming too small
for close inspection, a window of resolution is defined between times 25
and 60 to be displayed. These graphs greatly facilitate interpretation.

The SAS autoregression procedure is very flexible and powerful. Not
only can AUTOREG model ordinary exogenous series with simple AR(p)
error structures, it can also model seasonal dummies, lagged dependent
variables, and generalized autoregressive heteroskedasticity conditional on
time. Built into it are a variety of tests for the different assumptions of
autoregressive models. For ordinary autoregressive models, the most recent
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version of AUTOREG contains tests for higher order serial correlation of
errors, for normality of the residuals, for stability of the model, for unit
roots, and for different orders of heteroskedasticity. In the event lagged
dependent variables are used, it contains the Durbin h test for first-order
autocorrelation of the lagged dependent variable, and if there are different
orders of heteroskedasticity, it contains a La Grange multiplier test for
determining the order of the heteroskedasticty. This SAS procedure for
autoregressive models is powerful and flexible.

10.7.2. SPSS ARIMA PROCEDURES FOR AUTOREGRESSIVE

ERROR MODELS

At the time of this writing, the SPSS AREG procedure can model time
series regressions with only first-order autocorrelation of the residuals.
It performs Cochrane–Orcutt, Prais–Winsten, and maximum likelihood
estimation of these model parameters. Because AREG cannot handle higher
order autocorrelated error structures, SPSS ARIMA is invoked. After a
preliminary invocation of AREG, in paragraph 1 of the SPSS command
syntax, the syntax for the ARIMA models is contained in paragraphs follow-
ing paragraph 2 in the SPSS command syntax below.

In the following SPSS program (c10pgm3sps), the SPSS AREG program-
ming commands are given in the first paragraph. They model an autoregres-
sion of Y on time, with the assumption of first-order error autocorrelation.
The output is shown in Fig. 10.8. The first-order correction is invoked with
AREG, the parameters are estimated with maximum likelihood, but higher
order serial correlation remains. Despite this, the SPSS AREG algorithm is
not yet capable of correcting for it. To test for such residual autocorrelation,
the residuals, ERR_1, from this model are reviewed in paragraph 2 of the
command syntax. From sequential diagnosis of the residuals, we see that
there are significant autocorrelations at lags 5 and 6, as can be seen in
Fig. 10.9. To permit modeling of these higher order autocorrelations,
SPSS ARIMA is invoked. The command syntax shown next models
an autoregression on time with first-, fifth-, and sixth-order autoregressive
errors in the third from last paragraph and the diagnosis in the final para-
graph that such a models leaves white noise residuals. The output for
the parameter estimates and their residuals are contained in Figs. 10.10
and 10.11.

Autoregression with AR(1) error against Time .

TSET PRINT=DEFAULT CNVERGE=.001 CIN=95 NEWVAR=ALL .

PREDICT THRU END.
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AREG y WITH time

/METHOD=ML

/CONSTANT

/RHO=0

/MXITER=10.

*ACF and PACF reveal spikes at Lag =5.

ACF

VARIABLES= err_1

/NOLOG

/MXAUTO 16

/SERROR=IND

/PACF.

*ARIMA against Time P=(1,5) model.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU END.

ARIMA y WITH time

/MODEL=( 1 0 0 )CONSTANT

/P=(1,5)

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

*Diagnosis of Residuals shows spike at lag=6.

ACF

VARIABLES= err_2

/NOLOG

/MXAUTO 16

/SERROR=IND

/PACF.

*ARIMA against time P=(1,5,6) model.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU END.

ARIMA y WITH time

/MODEL=( 1 0 0 )CONSTANT

/P=(1,5,6)

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

*Final Diagnosis indicates white noise.

ACF

VARIABLES= err_3
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/NOLOG

/MXAUTO 16

/SERROR=IND

/PACF.

*ARIMA Final Model Forecast Generation.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU 100 .

ARIMA y WITH time

/MODEL=( 1 0 0 )CONSTANT

/P=(1,5,6)

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

*Forecast Plot based on Final Model.

TSPLOT VARIABLES= y lcl_5 ucl_5 fit_5

/ID= time

/NOLOG.

*ARIMA.

TSET PRINT=DEFAULT CIN=95 NEWVAR=ALL .

PREDICT THRU 125 .

ARIMA y WITH time

/MODEL=( 1 0 0 )CONSTANT

/P=(1,5,6)

/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

The SPSS autoregression analysis output appears in Fig. 10.8. The
method selected is that of maximum likelihood. The initial � value is set
at 0 and found through iteration. When the residuals, ERR_1, exhibit fifth
order autocorrelation, then a more sophisticated and more flexible SPSS
ARIMA procedure has to be invoked (Fig. 10.9).

We attempt an ARIMA procedure modeling those autocorrelations. The
residuals, ERR_2, upon review show that there is also an autocorrelation
at lag 6. After repeated diagnosis, it is revealed that first-, fifth- and sixth-
order autoregressive errors are significant and they are modeled in the
third from last paragraph of the SPSS command syntax.

ARIMA y WITH time

/MODEL=( 1 0 0 )CONSTANT

/P=(1,5,6)
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/MXITER 10

/PAREPS .001

/SSQPCT .001

/FORECAST EXACT .

When the SPSS ARIMA procedure is finally invoked, the Y process
is identified, estimated, and diagnosed as an AR model with spikes at
lags 1, 5 and 6. Hence, we attempt a final ARIMA model regressed on time,
with errors autocorrelated at lags 1, 5, and 6. This model fits. With the
/FORECAST EXACT subcommand, we generate the forecast for later
graphing.

In sum, for complex AR(p) error structure analysis, the researcher can
utilize the SPSS ARIMA procedure. An ARIMA model with AR parameters
is generated by the subcommand P=(1,5). The output of this analysis is
shown, but the ACF and PACF of ERR_2 reveals significant spikes at lag 6.
Therefore, a third ARIMA model is run with AR parameters set by
P=(1,5,6). Now the ARIMA modeled with time as an independent vari-
able has AR(1), AR(5), and AR(6) parameters in the model. They are

Figure 10.8 SPSS AREG output.
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Figure 10.9 ACF of AREG error reveals ACF(5) error.

all significant at the p � 0.05 level. The error now is diagnosed as white
noise as can be seen from the residuals in Fig. 10.10.

The original SPSS AREG procedure output (Fig. 10.8) specifies the model
to be

Yt � 9.844 � 0.505time � et (10.35)
et � 0.282et�1 � �t

(SPSS, 1994; 1996). The residuals are not white noise and are modeled
here without a sign reversal in the output. After switching to the ARIMA

procedure regressing Yt on time, with maximum likelihood estimation, we
obtain the following significant parameters: AR1, AR5, AR6, Time, and
a Constant. The last two parameters pertain to the principal equation,
whereas the first three autoregressive parameters define the error structure
of the model. The output of this model is shown in Fig. 10.11. The equation
obtained is essentially identical to that obtained by SAS on the same data
as shown in Eq. (10.34). These parameters are not highly correlated with
one another. They appear to be stable. When we diagnose the residuals
(ERR_3) of this model with an ACF and PACF, we find them to be without
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Figure 10.10 ACF of final model residuals reveals white noise.

Figure 10.11
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Figure 10.12 Forecast plot from final ARIMA model.

any statistically significant spikes. In other words, they appear to be white
noise, indicating that the model has been fully explained by these parame-
ters. At this juncture, we re-estimate the model. We extend the forecast
along with its confidence limits to the end of the data set and save them.
We plot these data in Figure 10.12.

10.8. AUTOREGRESSION IN
COMBINING FORECASTS

Granger and Ramanathan (1984) have suggested the use of regression
and regression controlling for autocorrelated errors as models to combine
forecasts. Others, such as Diebold (1996, 1998) and Clements and Hendry
(1998), have followed suit. In the early years of the U.S. economy, farms
and plantations predominated. Eventually, during the later nineteenth and
early twentieth centuries, industry developed and factory workers predomi-
nated. Since the Second World War, the U.S. economy has become for the
most part a service economy. Thus, the average hourly wage of the service
worker is of interest.
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The data are divided into an historical and an evaluation period. The
historical period extends from January 1964 through December 1991; the
evaluation period extends from January 1992 through February 1999, shown
in Fig. 10.13. In program C10PGM4.SAS, two different models, each
formed on the historical data, are used to generate forecasts. Although this
example combines two forecasts, at least five forecasts can be combined if
they are actually available (Armstrong, in press). The two forecasts gener-
ated by these models span the time horizon of the evaluation data set.

The first model is that of an exponential smoothing with a linear trend.
The equation for this model is (Smoothed Mean Hourly Wage)t � 0.10557
Current value of Service Worker Mean Hourly Waget � (1 � 0.10557)
(Smoothed Service Worker Average Hourly Wage)t�1 . This model fits the
data nicely with an R2 of 0.998 and produces an excellent forecast and a
very small forecast interval, as shown in Fig. 10.14.

The second model, graphed in Fig. 10.15, is a polynomial autoregression
model, with time and time-squared used as predictors. SAS PROC
AUTOREG is employed with backward stepwise elimination of the non-
significant autocorrelations, revealing multiple significant remaining autore-
gressive errors at lags 1, 2, 23, 24, 26, and 27. The maximum likelihood
estimation in SAS corrects the standard errors for bias of the significance
tests that would otherwise contaminate the model. The model that emerges
from this analysis is (Mean Hourly Wage of Service worker)t � 1.725 �
0.012Time � 0.0004Time2 � et , with each of these parameters significant
at p � 0.001. The autoregressive error structure is represented by et �
0.760et�2 � 0.264et�2 � 0.208et�23 � 0.372et�24 � 0.306et�26 � 0.185et�27 �
vt , where vt is the uncorrelated error. It is important to remember that
these signs of the autoregressive parameters in the maximum likelihood

Figure 10.13 Average hourly earnings of service workers in the United States. Seasonally
adjusted (Bureau of Labor Statistics data: censinfo@bls.gov).
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Figure 10.14 Average hourly earnings of service workers in the United States. Seasonally
adjusted (Bureau of Labor Statistics data: censinfo@bls.gov). Model 1 exponential smoothing
with linear trend forecast.

output change when these terms appear in this equation because of a
rearrangement of terms in the error structure. Also, the model fits very
well with a high R2 � 0.906 after correction. With this second model a
forecast is generated that extends till February 1992, and this forecast profile
is also displayed in Figure 10.15.

These two forecasts, which extend over the evaluation sample, are then
combined by autoregression, to form a more accurate forecast profile
(Fig. 10.16). Autoregression is used to adjust for the autocorrelation inher-
ent in the actual and forecast series. The first forecast, called F1, is produced
by an exponential smoothing model. The second forecast, called F2, comes

Figure 10.15 Average hourly earnings of service workers in the United States. Seasonally
adjusted (Bureau of Labor Statistics data: censinfo@bls.gov). Model 2 series EES80000006
autoregression forecast.
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Figure 10.16 Average hourly earnings of service workers in the United States. Seasonally
adjusted (Bureau of Labor Statistics data: censinfo@bls.gov). Graph of combined autoregres-
sion forecast.

from the polynomial autoregression analysis. Within the evaluation period,
the actual data are regressed on the two forecasts and the autoregression
adjusts the model for serial correlation in the error structure. The funda-
mental formula for the combining autoregression is

CFt � a � b1F1t � b2F2t � et

et � vt � �1vt�1 � � � � � �pvt�p ,

where (10.36)

CFt is the Combined forecast
F1t is the Model 1 forecast
F2t is the Model 2 forecast.

In this example, the actual U.S. service worker mean hourly wage is used
as the dependent variable in the autoregression on the two forecasts. The
model estimated has a high R2 of 0.996 with each of the forecast parameters
having a significance level of p � 0.001. The model estimated is

Average Hourly Wage (of US service worker)t+h = 14.986 - 5.959

Fit+h + 5.475F2t+h + et,

where et=.824et-1 + vt.

The combined forecast consists of a set of predicted scores generated from
this autoregression model. The combined forecast profile corrects for the
autocorrelation in the series to render a less biased estimate than would
emerge from an OLS regression combination. This forecast fits the data
well, and is evaluated by comparing the actual data within the evaluation
window to the combined forecast (Meyer, 1998).
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Table 10.1

Forecast Evaluation

Mean square Mean absolute
Type of model forecast error percentage error

Model 1 exponential smoothing forecast 0.0217 3.121
Model 2 polynomial autoregression forecast 0.094 6.730
Autoregression combined forecast 0.00009 0.087

These methods for combining forecasts are optimized when there is no
autocorrelation. Granger (1989) recommended that serial correlation be
taken into consideration when combining forecasts. In 1998, Diebold recom-
mended not only contemplation of serial correlation of the errors, but also
of lagged endogenous variables to capture all of the dynamics in the forecast
by the combining method. To do this, he recommends using the regression
method just described, with an important modification. He suggests saving
the residuals from the regression combination and modeling those residuals
as an ARMA(p,q) process. He maintains that this process need not
be linear. For nonlinear models, there can be interaction terms, polyno-
mial terms, or even polynomial interactions on the right-hand side of the
model.

In the comparative evaluation of the separate forecasts and the combined
forecast, these forecasts are compared with the actual data within the
evaluation period. The MSFE or the MAPE are general criteria that can be
used to make this comparison. The MSFE and the MAPE for each of the two
forecasts and the combining forecast are presented in Table 10.1, from which
we see that according to both criteria the combining autoregression greatly
improves the forecast accuracy. Accordingly, in the graph of the forecast gen-
erated from this autoregression combination of forecasts, the forecast inter-
val around the prediction scores is so small that it is difficult to see.

An ARIMA procedure models MA errors in the residuals if any exist and
then produces the forecast interval data. The ARIMA also supplies the upper
and lower 95% confidence limits for the forecast profile. Although not
demonstrated here, the AUTOREG procedure can be used to model changes
in variance as well.

10.9. MODELS WITH STOCHASTIC VARIANCE

An assumption of a valid regression model is that it possesses constant
error variance. To be sure that the model is valid, we must test the assump-
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tions. There is really no reason to believe that the errors are white noise
without testing (Granger and Ramanathan, 1984). Engle (1982) has written
that under some circumstances, the ‘‘error variance may change over time
and be predicted by past forecast errors.’’ Processes with such an autoregres-
sive heteroskedasticity have found particular application in matters of fi-
nancial econometrics and the analysis of inflation (Engle, 1982; Diebold
and Lopez, 1996; Figlewski, 1999b). With inflation, volatility in the value
of a stock option may increase. Where error variance of a stock option
profit model increases over time, the risk of the investment increases. In
cases of regression models, where the value of error variance is a function
of the time lag, an autoregressive model with conditional heteroskedastic
(ARCH) error variance may be in the appropriate model to model that
risk or volatility (Bollerslev, 1984). Engle, Granger, and Kraft (1984)
suggest that combining forecasts can be accomplished with ARCH models
(Peel et al., 1990). For these reasons, the subject of ARCH models is
briefly introduced.

10.9.1. ARCH AND GARCH MODELS

ARCH process have error variances that can be expressed in a simple
functional form. If Yt is a model that has a variance, ht , that is conditional
on the error variance at a previous time periods, that model, with its
conditional variance, can be expressed as

If Yt � �1xt � et,

and et � N(0, ht ),

ht � Var(et) � �0 � �1e2
t�1 (10.37)

or when the model is of order q—that is, ARCH(q):

ht � VAR(et) � �0 � �q
j�1

�2
t�q .

Bollerslev (1984) extended the ARCH model to generalized version called
a GARCH model. The GARCH model is one where the variance is a function
of previous conditional variances as well as previous innovations. The fun-
damental formulation of a GARCH(q,p) model is

ht � Var(et) � �0 � �q
j�1

�j e
2
t�q � �p

i�1

�i h
2
t�i . (10.38)

A basic test for ARCH errors is a test for the significance of �1 . After
estimating the model, save the residuals and regress the squared residuals
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on past lags of the squared residuals. If the hypothesis that ��1� � 0 is
confirmed, then there are ARCH errors. The tests for the order of ARCH or
GARCH are performed with a LaGrange multiplier test. Estimation of these
models is performed with maximum likelihood; a BHH algorithm is preferred
for estimation of ARCH or GARCH models.

10.9.2. ARCH MODELS FOR COMBINING FORECASTS

Engle, Granger and Kraft (1984) have suggested that ARCH models be
used for combining forecasts. They use a relatively complicated ARCHmodel
to generate time-varying combining weights.

They introduce a bivariate ARCH model, based on Eq. (10.37). The
forecasts are autocorrelated, so autoregression is preferable to OLS regres-
sion. The conditional heteroskedasticity is modeled as well. To allow for
the covariance of the errors, the matrix equation for the variance of errors
is specified in quadratic form:

H(et�1) � Ht � [Hijt ] (10.39)
Hijt � ai, j0 � e�t�1Cijet�1 .

For all possible combinations of e1 and e2 for an ARCH(1) model to be
specified, Engle et al. (1984) express the process as

ht � �
H11t

H21t

H22t

�� �
a01

a02

a03

�� �
a11 a12 a13

a21 a22 a23

a31 a32 a33

��
e2

1t�1

e1t�1e2t�1

e2
1t�1

� (10.40)

� a0 � A t�1

Alternatively, the improved combined forecast, fct , is obtained from a
combination of the forecast from one model, f1t , and the forecast from
another model, f2t , with combining weights �0 , �1 and �2 :

Fct � �0 � �1 F1t � �2 F2t � ect . (10.41)

Because eit � Yt � fiv , where Yit is the actual data from the evaluation
sample. This combination implies a forecast error:

ect � Yit � �0 � �1 F1t � �2 F2t . (10.42)

The error variance forms the basis of the forecast error and confidence
intervals. If in testing for ARCH(q) in the error variance, the researcher
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finds it and can estimate

e 2
ct � �0 � �

q

j�1
�

2
t�q , (10.43)

then this ARCH(q) model can explain the risk structure in the combined
forecast.

A caveat is in order here. ARCH and GARCH models, which involve more
than one equation, are relatively complex and difficult to fit. They require
large data sets. Only models with a small number of parameters appear to
be well behaved, and these models have more parameters than others. The
parameters need to be stable, lest they fall apart in out-of-sample tests.
They may be good for one-step-ahead forecasts and not for multistep
forecasts. The incremental utility of the improvement in fit that they obtain
is not always worth the extra investment of time and energy (Figlewski,
1999a). For these reasons, simpler algorithms, such as a combining regres-
sion with ARMA errors, may well be preferred. Nonetheless, as the value of
modeling time-dependent risk grows, the more the advanced theory and
programming of GARCH and other models becomes an objective worthy of
serious study.
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Chapter 11

A Review of Model and
Forecast Evaluation

11.1. Model and Forecast 11.4. Comparison of Individual
Evaluation Forecast Methods

11.2. Model Evaluation 11.5. Comparison of Combined
11.3. Comparative Forecast Forecast Models

Evaluation References

11.1. MODEL AND FORECAST EVALUATION

Two principal purposes of time series analysis are explanation and fore-
casting. Throughout this book, the models discussed range from the simple
to the more complex. As we examine the different approaches, the time
series models become more sophisticated. Not only can they handle more
inputs, they can also handle more complicated inputs. The more compli-
cated models become vehicles for theoretical explanation and theory test-
ing. Larger models have the potential to be more theoretically encompassing
(Harvey et al., 1998). The analyst must develop competing models and
comparatively evaluate them.

This chapter addresses evaluation with respect to explanation as well as
prediction. We evaluate the explanatory model, refine it, compare it with
alternative models, and select the best specified model. We comparatively
evaluate the explanatory and forecasting capabilities of different models,
and then compare and contrast combined models with respect to forecasting
accuracy. From the assessments of the models addressed in this book, we
find that different models have specific advantages and drawbacks. Focusing

467
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on these relative advantages of the moving average, exponential smoothing,
X11-X12, ARIMA, seasonal ARIMA, intervention, transfer function, dy-
namic regression, autoregression, and combined models provides a guide for
the analyst. Where combinations of models outperform individual models, it
behooves the analyst to know which combinations provide maximal advan-
tage. Consequently, a comparative analysis of relative advantages and disad-
vantages of specific approaches and their combinations provides a guide
for their proper application.

11.2. MODEL EVALUATION

Whether the model is an ARIMA model or a dynamic regression model,
there are general criteria by which it can be evaluated. The model must
be consistent with theory. The model should explain the process as simply
as possible, but not more simply than that, as Albert Einstein was reported
to have remarked (Parzen, 1982). The better model will be theoretically
more encompassing in scope. The model should have some goodness of
fit. It should be well specified. It should be parsimonious. Its parameters
should be stationary, stable, and invertible; they should, however, not be
collinear. The model should be stable over time and robust to changes in
its auxiliary parameters. It should have good predictive power over a variety
of forecast horizons. If an ARIMA model shares these characteristics, it
has utility.

If the model is a dynamic regression model, most of the criteria are the
same. The good model is derived from a good data set, which consists of
sufficient sample size that has been properly measured, equally spaced,
consistently collected, double-checked, and cleaned of typographical errors.
Outliers have been identified and corrected, replaced, or modeled. The
good model has the proper dynamic specification. It has the right number
of AR terms for each of the exogenous variables. The exogenous series
included have been tested for exogeneity. The parameters should be con-
stant over the time period. The parameters should not be substantially
collinear. Residual autocorrelation should be properly modeled (Pankratz,
1991). Such dynamic regression models should have been built with Hendry
and Richard’s general-to-specific approach to avoid the pernicious effects
of specification error. The constructed model should be stable and reliable.
It should be robust to regime shift. The parameters should be constant
over such shifts. If auxiliary variables are interchanged, the key theoretical
parameters should exhibit robustness, stability, and constancy (Leamer,
1985). The parameters by themselves and the model as a whole should be
consistent with theory. The model should explain most of the variance of
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the dependent variable. Misspecification should be minimized. There should
be goodness of fit. The model should have maximum encompassing of
both variance and theory (Granato, 1991). It should be parsimonious. The
model should not only have the explanatory power that comes from fulfilling
such requirements, it should have sufficient predictive power to be able to
forecast to a validation sample with minimal error of prediction and minimal
mean absolute forecast error over a sufficient time horizon at a minimal
cost. The model should be subject to crossvalidation (Maddala, 1992). It
should possess these qualities both in the short and the long run (Gujar-
ati, 1995).

11.3. COMPARATIVE FORECAST EVALUATION

In addition to explanation, one of the fundamental objectives of social
science is prediction. Forecasting is one means of predictively validating
theory. Theoretically elaborate models may not always predict as well as
simpler ones. In this chapter, we compare the forecasting capability of the
time series models. In general, forecast evaluation is performed by subset-
ting the series into an estimation subsample and a validation subsample. The
model is developed using the estimation or historical subsample, whereas its
forecast, extended into the validation subsample, is evaluated on the basis
of the latter subsample (Granger and Newbold, 1986). It could also be
validated on data collected later. Evaluation of the forecast is essential to
this validation process.

In the process, the forecasting capability can be evaluated with reference
to various standards. The standards by which forecasts are evaluated include
statistical measures of accuracy and assessments of cost in terms of time,
money, and effort involved in preparation of the data and fine-tuning a
model. The statistical standards include the required size of the information
set, the definition and specification of the variables in the forecast model,
bias, mean square forecast error (which may not reflect parameter con-
stancy), mean absolute percentage error, ability to detect turning points,
accuracy over different forecast horizons, stability of the model, and encom-
passing scope of the model. The availability, quantity (sample size), and
quality of the data needed should be examined. The cost in time and money
of data set preparation must be considered. More specifically, the cost of
sampling, data collection, managerial oversight, verification, and cleaning
necessary for data set preparation, the number and kind of transformations
of the variables involved, and the number of runs needed to prepare a
functional model are practical considerations that should not be overlooked
(Makridakis et al., 1983; Montgomery et al., 1990; Sullivan and Claycombe,
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1977; Clements and Hendry, 1994). The practical standards are useful in
planning, while the statistical standards are useful in evaluating the forecast-
ing model.

From a number of forecasting competitions, researchers have come to
basic conclusions about which models are more accurate. Makridakis has
held several forecasting model competitions since 1982, called the M compe-
titions. He has found that no one model, regardless of criteria of evaluation
and the circumstances, outperforms all others. Some models perform well
when evaluated by one criterion while other models perform better when
evaluated by other criteria. Sometimes simpler models outperform the more
sophisticated ones. Moreover, different models forecast more effectively
with different kinds of data (Gilchrist, 1976; Makridakis, 1984).

Several factors were found to influence forecast accuracy. When the
sampling variability of the estimation data set differs, the forecasts will
differ. The size and type of the data set required is another criterion. Some
data sets are nonseasonal, others are both nonseasonal and seasonal, while
others are seasonally adjusted with nonseasonal models. Outliers or sea-
sonal pulses can make a difference. Regime or level shifts can also make
a difference. Time trends can also make a difference in the data. Some
series will have local or piecewise trends and others will have global trends.
Some time trends are deterministic, whereas others are stochastic. Not only
the type of data, but also the forecast horizons over which these approaches
may be evaluated differ. Various combinations of data type and forecast
horizons are more amenable to some forecast models than others.

In general, the further ahead into the time horizon the forecast is made,
the less accurate it is (Granger, 1989). It behooves the researcher to examine
his series to see which aspects dominate in the short-, middle-, and long-
term forecast horizons. In the short run, which usually extends to approxi-
mately the first six temporal periods of the forecast horizon, the random
error and the seasonality may predominate. Extrapolative methods, the
more sophisticated of which take local time trend and seasonality into
account, can be useful in providing reasonably accurate forecasts in the
near term with relative ease of computation (Makridakis et al., 1997). In
the middle range, from about 7 to 18 periods into the forecast horizon,
while random error still is important, cycle and seasonality become salient
and trend becomes increasingly important. Cycles, often difficult to pre-
cisely forecast, gain prominence in this time range and render forecasting
even more hazardous. In the longer term, the cycle may decline while the
global time trend may grow in prominence (Makridakis et al., 1983), even
though systemic regime shifts may render these forecasted trends useless.
For this reason, long-run forecasting often becomes more difficult, doubtful,
and dangerous than midterm prediction (Makridakis et al., 1997). The



11.3. Comparative Forecast Evaluation 471

amount and proportion of randomness in the data may be responsible for
differences in model performance (Makridakis and Hibon, 1984). In other
words, performance of different models may depend on components of
trend, cycles, seasonality, and random error exhibited by the data.

11.3.1. CAPABILITIES OF FORECAST METHODS

Scholars have commented on the relative advantages and disadvantages
of different models with respect to their forecast capability. Some scholars
describe these attributes of the different models with respect to forecasting
over various horizons. They refer to forecast accuracy as well as ability to
detect turning points. Sometimes they refer to the data requirements of
the models. They refer to the cost of the method as well as the ease of
computation. They refer to the time it takes to develop the model and the
applications to which such models are put. Some methods have better
capability in the short run. Others have better capability in the middle
range, while still others have better long-term capability.

In this section, general and tentative descriptions of the different fore-
casting capabilities of the methods emphasized in this work are presented.
Sullivan and Claycombe (1977) write that moving averages have varying
accuracy. They claim that the accuracy of moving averages is poor to good
in the short run and worse in the medium and long run. To be sure, they
require stationary data. A minimum of 2 years of data for seasonal analysis
is recommended. They also note that calculation of moving averages re-
quires little sophistication and expense. While the computations may take
less than a day to estimate, turning point detection is poor. Nonetheless,
this method frequently finds application in areas of inventory control
(Sullivan and Claycombe, 1977).

Exponential smoothing exhibits better accuracy than moving averages in
the short run. The accuracy of the simpler exponential smoothing procedure
typically goes from good to poor in the medium range, and gets worse in
the long run. The data required by the simpler smoothing methods needs
to be stationary as well. These simpler methods do a poor job in the
identification of turning points and require a minimum of 2 years of data
for seasonal material and less for nonseasonal data. Single exponential
smoothing may do better than most methods with small data sets. Although
exponential smoothing requires a little more sophistication than does the
moving average method, it is still simple and easy to apply in its simpler
forms without computers. The more sophisticated types of exponential
smoothing that account for local time trend and seasonality are more easily
calculated with computers than others. This procedure can be automated
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and performed routinely to generate many forecasts with relatively little
cost in terms of data, computer storage, computer time, or labor. It may
take a day or less to estimate, depending on the complexity of the data,
the length of the forecast horizon, and the method. Still, the relative ease
and amenability to automation are reasons that exponential smoothing
methods are commonly used for inventory and production control, and
simple kinds of financial data analysis. With very small data sets of 30
observations or less, the Holt–Winters method is considered by some to
be about the only one acceptable (Granger and Newbold, 1986). The Holt–
Winters exponential smoothing method is said to perform well with 40 to
50 observations (Newbold and Granger, 1974). As the forecast horizon was
extended, the Holt–Winters method outperformed the stepwise autoregres-
sion more often (Newbold and Granger, 1974; Makridakis et al., 1983). Not
only have Holt exponential smoothing procedures done well in the M
competitions, another simple method, called the Theta method, developed
by V. Assimokopoulos, that combines linear trend and moving average
estimates, has also performed well in the M3 competition (Fildes et al.,

1998; Hibon, 1999, June). Other forecasting packages that earned honorable
mention in some of the M3 competition were Forecast Pro (Goodrich,
1999) and Autobox (Reilly, 1999).

If the forecasting method used is that of classical decomposition or
Census X-11, the method breaks down the series into component parts of
trend, cycle, seasonality, and random error. Because there is no guarantee
that the series components will in reality remain the same, it is necessary
to gather enough data to test parameter constancy. The problem is that
there is no guarantee how much data is needed for this purpose, although 5
to 6 years of observations is generally considered advisable. Decomposition
methods are generally effective in extracting the trend, cycle, and seasonal-
ity from the irregular component of a series, although they have more
difficulty in isolating trend, cycle, and seasonal subpatterns (Makridakis et

al., 1983). Census X-11 has been widely used by governments around the
world since the 1950s to deseasonalize data prior to forecasting. This method
is useful in making medium-range predictions, where other factors remain
relatively stable (Makridakis et al., 1997). This method is being replaced
by Census X-12.

Census X-12, not yet part of SAS or SPSS, contains a number of innova-
tions over earlier X-11 and the 1988 update, X-11-ARIMA, developed by
E. Dagum et al. at Statistics Canada. With X-11-ARIMA, Dagum intro-
duced the use of backcasting and forecasting to reduce bias at the ends of
the series. The new X-12 program contains more ‘‘systematic and focused
diagnostics for assessing the quality of seasonal adjustments.’’ X-12 has a
wide variety of filters from which to choose in order to extract trend and
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seasonal patterns, plus a set of asymmetric filters to be used for the ends
of the series. Some of the diagnostics assess the stability of the extracted
components of the series. Optional power transformations permit optimal
modeling of the series. X-12 contains a linear regression with ARIMA
errors (REGARIMA) that forecasts, backcasts, and preadjusts for sundry
(moving holiday and Leap Year) effects. The corrected AIC (see AICC
in glossary) is used to detect the existence of trading day effects. This
REGARIMA can partial out the effects of regime shifts, explanatory vari-
ables prior to decomposition, as well as better test for seasonal patterns
and sundry calendar effects—including trading day, moving holiday, and
Leap Year effects. In this way, it can partial out user-defined effects and
thereby eliminate corruption from such sources of bias (Findley et al.,

1998; Makridakis et al., 1997). REGARIMA provides for enhanced outlier
detection of and protection from additive outliers and level shifts (including
transient ramps). Moreover, the X-12 program incorporates an option for
automatic model selection based on the best AICC (Findley et al., 1998;
Soukamp, 1999). X-12 may soon become the global standard for deseasonal-
ization of series data.

The Box–Jenkins method combines comprehensive moving average and
autoregressive capability. If there is a univariate or a unidirectional bivariate
model to define and forecast, the Box–Jenkins model often provides a good
forecast, especially in the short run. If there are just a few uncorrelated
inputs, then the Box–Jenkins model may serve nicely. Box–Jenkins model-
ing requires a sound mathematical background, some experience at
ARIMA modeling, and access to good computer software and hardware
(Sullivan and Claycombe, 1977).

Box–Jenkins models exhibit forecasts that decline in accuracy over the
forecast horizon. In the short run, their accuracy is reportedly good to
excellent (Anderson and Weiss, 1984). In medium term, their accuracy is
reportedly good to poor, and in the long term, their accuracy tends to be
poor. The more data they have, the better their models. Scholars disagree
over how many observations are necessary for ARIMA models. ARIMA
models require more data than some prominent scholars have claimed. The
data have to have been already detrended or detrendable by differencing.
Although some scholars maintain that ARIMA models can be based on
as few as 30 observations (Makridakis et al., 1983), others claim that they
require 50 to 100 equally spaced observations (Box and Jenkins, 1976;
Box et al., 1994; Granger, 1989). Seasonal models require more data than
nonseasonal ones, and, with that data, may extend the accuracy of forecast
further into the forecast horizon (Newbold and Granger, 1974). Box-Jen-
kins-Tiao intervention models require more data than nonintervention
models, but can significantly improve the models when the data are plagued
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by singular or unusual events. To clarify the confusion and help resolve
the controversy over this matter, Monnie McGee analyzes the sample size
requirements of common time series models in Chapter 12.

Although intervention models perform well in the short and midrun and
may improve upon ARIMA models over those horizons, they may fall
behind simpler models for long-run forecasting under some circumstances.
They have the capability to identify impacts as well as trend, seasonal, and
cyclical patterns. They may require a few days to model—especially to
diagnose and metadiagnose (Granger and Newbold, 1986; Makridakis
et al., 1997). In general, it appears that the Box–Jenkins methods outper-
form both the stepwise autoregressive models in the short and early part
of the medium range (Granger and Newbold, 1986; Makridakis et al., 1983,
1997). For longer forecast horizons, especially with trends in the data, the
Holt models may provide more accurate forecasts than the ARIMA models
(Fildes et al., 1998).

Transfer function models can have reasonably good predictive accuracy
as far as predicting the continuation of the data-generating process. They
may be used to test theoretical hypotheses, especially when extended to
include transfer functions of multiple inputs. When these models employ
leading indicators to forecast the turnaround of the economy, they may
have less accuracy than others. In the near and medium terms, their accuracy
is reportedly good to poor, but when they are used to forecast turning
points their reliability becomes even more suspect. Whether the causes of
business cycles stem from environmental problems or problematic eco-
nomic conditions, the lengths of and variations in business cycles, estimated
by some scholars to worsen the human condition with troughs of depression
and misery (or peaks of inflation) lasting from 2 to 10 or more years, often
renders such prediction a real challenge. That is to say, leading indicator
models have had less than complete success in predicting turning points in
the economy. Data requirements for these models include several years of
data and in some cases a 5� to 10-year historical data set (Sulliivan and
Claycombe, 1977). With the linear transfer function modeling strategy,
dynamic regression models with multiple response functions may be devel-
oped for multiple input series as long as the inputs remain relatively uncorre-
lated. Such models have substantial theoretical explanatory power.

Regression models forecast better than the other techniques over
medium- and long-run forecasting horizons. Over the short run, they often
have limited forecasting ability. They can have good to very good forecast
accuracy over the longer range. They can be used to extract an average
trend. As long as the trend is global rather than local, the regression on
trend can prove useful. These trends may be linear or polynomial. Spline
regressions can be used to deal with multiple local trends. With dummy
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variables the models can capture seasonality and regime shifts, and with
trigonometric functions they can capture deterministic cyclicity.

Regressionmodels maybeused toforecast long-term trendsalone or those
coupled with cycles. The quality of prediction depends on the starting posi-
tion of the data and whether there are enough data in the series from which
to form a pattern from which a long-term prediction can be made. In general,
long-term predictions are founded on a ceteris paribus assumption that usu-
ally does not hold over the very long run. Over the very long range, systemic
regime or level shifts may come about that render the informational set from
which the predictions are made inappropriate as a basis for such forecasts.
Even in the better long-run regression forecasts, the farther into the future
one predicts, the less certain one is of the outcome. A nonparametric method,
called robust trend, which is based on median change, has also performed
well in the M3-competition (Hibon, 1999). The growth of risk with expanding
forecast error often makes such soothsaying questionable. Very long-term
forecasts are extremely precarious at best.

Autoregressive models attempt to compensate for autocorrelation bias
in the least squares trend extrapolation. They model trends while compen-
sating for serial correlation bias in the error. They can handle multiple
inputs easily and therefore possess an advantage in theory testing where
parameter encompassing is important. More advanced programs such as
SAS can even handle lagged endogenous variables in such models as well.
These models have the added advantage of lending themselves to fully
automatic variable selection, model construction, and model refinement.
The process of determining the number of lags of the exogenous variable
to be included in the model building may be performed with a minimum
information criterion or a LaGrange multiplier test. In a stepwise autore-
gression model, successive inclusion of lagged terms can proceed until the
fit no longer significantly improves (Payne, 1973), and these models may
function well with data sets of at least 30 observations (Newbold and
Granger, 1974; Granger and Newbold, 1986). A better automatic approach
would be initial overparameterization of lagged terms followed by backward
elimination of nonsignificant lags.

Other forms of autoregression include regression models with stochastic
error volatility. There are many kinds of autoregressive conditionally heter-
oskedastic (ARCH) models, whose error variance may be modeled by an
autoregressive function. A more general kind of ARCH model is the general
autoregressive conditionally heteroskedastic (GARCH) model, whose er-
ror variance may be modeled by both autoregressive and moving average
components. Both of these kinds of models are frequently used and show
great promise for modeling the structure of risk in the field of computa-
tional finance.
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11.4. COMPARISON OF INDIVIDUAL
FORECAST METHODS

To compare the average forecast accuracy of different models, Makri-
dakis in his M competition uses the mean absolute percentage error
(MAPE), which is less sensitive to outlier distortion than the mean square
forecast error (MSFE). He compares the moving average, single exponen-
tial smoothing, Holt’s, Winter’s, and Box–Jenkins methods for three differ-
ent forecast horizons. Very rarely was the moving average method superior
to any of the exponential smoothing methods (Hibon, 1984). Makridakis
et al. (1983) speak of the average forecasting accuracy of the particular
models in terms of four different forecast horizons. These horizons span
less than a month, 1 to 3 months, 3 months to 2 years, and longer than
2 years, respectively. In the M-competitions, they arrived at some basic
conclusions about comparative forecast capabilities of these approaches.
Although the Box–Jenkins method is found to generally outperform the
others in MAPE accuracy, Winter’s exponential smoothing method is the
second best in all three lengths of forecast horizons in the M competition.
Single exponential smoothing appears to be next best in terms of MAPE
accuracy, while Holt’s method, the next best, generally outperforms the
moving average method. If the data set is very small, however, single
exponential smoothing may outperform either Box–Jenkins or stepwise
autoregression models (Granger, 1989).

There are, however, qualifications to these conclusions. Sometimes the
amount of random error in the series may determine which model forecasts
more accurately. Sometimes the forecast horizon may determine which
model is better. Makridakis and Hibon (1984) find that simpler (single or
Holt–Winters) exponential smoothing models may occasionally outperform
the Box–Jenkins models when there is more random error in the series. The
single exponential smoothing does better with monthly and microlevel data,
whereas the Holt and Winters methods do better with yearly data. The Holt
method performed better on data that were already deseasonalized than the
Winters method did on seasonal data, but the difference between these two
methods under such circumstances is small (Hibon, 1984).

Another qualification is that some of the exponential smoothing models
have ARIMA functional equivalents. Simple exponential smoothing fore-
casts are functionally equivalent to ARIMA(0,1,1) models. Holt’s linear
method is the same as an ARIMA(0,2,2) model. Moreover, the Holt–
Winters additive model is the cognate to an ARIMA(0,1,s�1)(0,1,0)s

model. The more randomness in the data, the more the Box–Jenkins models
may overfit the data and the better single exponential smoothing performs
compared to more complex methods. With such series, the farther the
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forecast horizon, the more possible it is that exponential smoothing models
may outperform Box–Jenkins models (Hibon, 1984; Makridakis et al., 1997).
Although the Box–Jenkins method provides for a more comprehensive
model, the simpler exponential smoothing methods may allow for simpler,
easier, cheaper, and more automatic forecasts.

Granger (1989) writes that Box–Jenkins methods do better when focus-
ing on one-step-ahead or short-range forecasts. Granger and Newbold
(1986) have found that the Box–Jenkins models generally yield superior
forecasts to the others. They find, more specifically, that Box–Jenkins
methods generally outperform exponential smoothing and stepwise auto-
regression models in terms of forecast accuracy. The percentage of time
that the Box–Jenkins forecasts remain superior to exponential smoothing
forecasts declines as the forecast horizon is extended. The same can be
said for the comparison of Box–Jenkins forecasts to those of stepwise
autoregression. Exponential smoothing may outperform stepwise auto-
regression in dealing with local trend in the short run, but stepwise autore-
gression may be more accurate than exponential smoothing in the one-
step-ahead forecast (Granger, 1989).

Granger infers some general rules concerning forecasting. The farther
into the future the forecast is made, the less accurate it is. He also maintains
that the larger the information set, the better the forecast as long as the
extra information is relevant. The more data analysis that the forecaster
does, the better in general is the forecast, he continues. He qualifies this
conclusion by saying that sometimes smaller models do indeed produce
better forecasts. Finally, he holds that when separate forecasts are com-
bined, the combined forecast usually yields more accurate results
(Granger, 1989).

11.5. COMPARISON OF COMBINED
FORECAST MODELS

In general, methods of combining forecasts do better than suboptimal
individual methods, as long as the one individual method does not encom-
pass the others. Three common methods of combining forecasts were ex-
plained in Chapter 7: the simple average, the variance–covariance method
of Bates and Granger (1969) and the regression (with intercept) method
of combination of Granger and Ramanathan (1984). The question arises
as to which combinations of these methods outperformed others in accuracy.
Granger, seeking an answer to this question in the near term, compares
combinations of models against individual models and shows that combina-
tions of models usually outperform any individual model. Occasionally,
the Box–Jenkins model will outperform combinations pitted against it.
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Generally, the combination is more accurate when it contains the Box–
Jenkins method (which are called Box–Jenkins combinations). The Box–
Jenkins combinations are found to outperform all single methods more
than 50% of the time. Stepwise autoregression combinations generally
outperform exponential smoothing methods. Stepwise autoregression and
exponential smoothing combinations do not outperform Box–Jenkins
methods, however.

Among new regression methods for optimally combining forecasts are
those that involve the use of regression with ARIMA errors, autoregression,
or ARCH or GARCH models with time-varying combining weights. Die-
bold (1988) suggested that autoregression be employed to combine forecasts
whose errors are serially correlated, to achieve more efficient estimation
than mere OLS as a combining tool. Diebold (1998) recommended that
regression combinations allow for lagged dependent variables and serially
correlated errors to capture any of the dynamics not yet modeled in the
combining formula. To do so, he suggested that the regression combination
be modeled with ARMA(p,q) errors. For a more efficient combination of
such forecasts, time-varying combining weights have been advocated using
ARCH models (Engle et al., 1984) or switching or smoothing regression
models (Deutsch et al., 1984) to improve the combination and to reduce
the error.

Figlewski (1998) has cautioned about the utility of the GARCH model-
ing. Although these models may be necessary for forecasting volatility,
these models are more complex than others. They require large data sets.
They depend on parameter constancy. They are better for one-step ahead
forecasts. There is too much parameter uncertainty with multistep forecasts.
They are difficult to fit, but their power and flexibility in modeling the
variance has great utility in risk assessment and financial analysis, fascinating
subjects to be examined in another text (Figlewski, 1997). Unless the fore-
casting of volatility is necessary, Figlewski suggests using simpler solutions.
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Transfer Functions

Statistical consultants are often asked how many subjects are needed in
order to have reliable and valid results. If the sample size for an experiment
is too large, the results may show a statistically significant difference, even
when no real difference exists in the population. Likewise, an investigator
would not be able to detect a real difference with a sample size that is too
small. Real differences are those that are truly present in the population
from which the sample for the analysis is drawn. These problems pervade
time series analysis, regardless of the statistical program being used to do
the analysis.

In the Box–Jenkins time series context, a common null hypothesis is
that the residuals of the process are white noise, although this is not always
the case. Suppose the analyst incorrectly models a realization of a time
series data-generating process. For example, suppose he models a series
as an AR(1) process when it is really an AR(2) process. In that case, the
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residuals of the series probably would not be white noise. A hypothesis
test on the residuals would, one hopes, indicate that the model is incorrect.
However, if the test is not statistically powerful enough, then it might falsely
indicate that the residuals are white noise, when in fact they are not. Making
such an error would affect any predictions calculated with the incorrect
model.

In determining a sample size for an experiment, the statistician must
consider several things: Type I error, Type II error, effect size, and power.
Type I error (also known as �-level or level of significance) is the probability
of incorrectly rejecting a correct null hypothesis. Type II error (often de-
noted by �) is the probability of incorrectly accepting a false null hypothesis.
Statistical power is the converse of Type II error: the probability that a
real difference will be detected in a sample given that such a difference
really exists in the population. The ability of a test to detect an alternative
also depends on the effect size, which is a measure of how grossly the
alternative departs from the null. Large differences are easier to detect
(and thus require smaller sample sizes) than small differences.

In this section, the sample size and power properties for Census X-11,
Box–Jenkins (ARIMA) models, unit-root tests, intervention analysis, trans-
fer functions, and regression with autocorrelated errors are discussed. In-
stead of focusing on the power of certain tests, we choose to focus on
minimum sample sizes required to detect specific effect sizes while main-
taining good power (�80%) at a given level of significance. The results in
this chapter are meant to be applied to estimation of historical time series
data used to build a model.

12.1. CENSUS X-11

The X-11 variant of the Census Method II of Seasonal Adjustment,
commonly known as ‘‘Census X-11,’’ is a computationally intensive pro-
cedure for removing seasonal components from time series data (see
Chapter 2). X-11 works by passing each realization of a time series through
many filters in an iterative fashion, in order to separate the series into
seasonal, trend, and irregular components. The filtered data are then tested
after each pass through a filter to ascertain whether or not the resulting
irregular component is white noise. Sometimes, tests are also done to make
sure that the data have not been overdifferenced. Testing the irregular
component is most often done via a portmanteau test, a modified por-
tmanteau, or a unit-root test (Scott, 1992, and Dagum, 1981). These tests
can have low power for certain alternatives. More specific results are given
in later sections.
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Not much has been said about the optimal length of a series for
X-11. In the journal articles surveyed, the series were anywhere from 5 to
20 years of monthly data in length, with a majority of the series having at
least 12 years of data. Most of the data used to evaluate the performance
of X-11 versus other methods of analyzing seasonal components were cho-
sen for their ‘‘empirical and practical’’ interest (Kenny and Durbin, 1972;
Abraham and Chatterjee, 1983; McKenzie and Stith, 1981). Wallis (1982)
discusses types of data that are well modeled by X-11, but he does not
discuss sample size.

12.2. BOX–JENKINS MODELS

The Box–Jenkins method of modeling and forecasting, discussed in
Chapters 3 through 7, has four main steps. These are model identification,
parameter estimation, diagnostic checking, and comparison of alternative
models. It is the third stage where most of the hypothesis testing takes
place. Once a candidate model has been identified and its parameters have
been estimated, it remains to be determined whether or not that model fits
the data (i.e., whether or not the model residuals form a white noise process).

In order to examine the hypothesis that the residuals are white noise
rather than an unspecified alternative, Box and Pierce (1970) developed
the portmanteau test, also called the Box–Pierce test. This test involves a
sum of a certain number of autocorrelations from the series, and this number
is denoted by M. Several papers have explored the statistical properties of
the portmanteau test, and the consensus is that the test has poor statistical
properties. For example, Davies et al. (1977) found that the size (of the
Type I error) of the Box–Pierce test was much less than it should be
for AR(1) series with 50, 100, and 200 observations. In a series with 50
observations, the empirical Type I error rate was 0.013 when the theoretical
rate was 0.05. This means that the test rejects the null hypothesis of white
noise much more often than it should, which means that the analyst is told
to search for another model when the one under consideration truly does
have white noise residuals. Surprisingly, only for AR(1) data with 500
observations did the probability of type I error approach 0.05. These simula-
tions were done for M � 20.

In order to address the issue of the poor properties of the Box–Pierce
test, the modified portmanteau (Ljung–Box) test was developed (Ljung
and Box, 1978). Davies and Newbold (1979) found that it also has poor
properties. They ran simulations with 24 ARMA models with AR orders
of 1 or 4 and MA orders of 2. The simulations calculated power and one-
step-ahead forecast misspecification error for sample sizes T � 50, 100, and
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Table 12.1

Sample Sizes Needed to Obtain Power of 80% at 5% Significance Level

M � 5 M � 10 M � 15 M � 20 M � 30

Alternative P MP P MP P MP P MP P MP

Undermodeling 200 50 150 100 200 100 250 200 250 250

Overmodeling �250 �250 �250 �250 �250 �250 �250 �250 �250 �250

Underdifferencing 50 150 150 200 150 250 150 250 250 250

Overdifferencing 250 250 250 250 250 250 250 250 250 250

Overestimation of 100 50 100 50 250 150 250 150 250 200

seasonality

M � number of autocorrelations tested
P � Portmanteau test; MP � modified Portmanteau test

200, using significance levels of 0.05 and 0.10. In all cases, M was set to 20.
For T � 50, most of the powers were below 50% (and often below 25%),
even in cases when the forecast misspecification error was large. Low power
implies that the test would fail to reject even when the residuals are clearly
not white noise, thus leading the analyst to use an incorrect model for
forecasting. For T � 200, the simulated powers were greater than 80% in
about half of the 24 series. The series for which the test had the most power
were those with strong correlation in the AR part of the model.

These results, although informative, are also incomplete. Table 12.1 gives
various results of sample sizes needed to achieve at least 80% power at a
significance level of 0.05 for the portmanteau (P) and modified portmanteau
(MP) tests. Simulations were done for various values of M, and for several
alternative hypotheses. For M equal to 5, 10, 15, 20, 30, 50, and 70, series
of various lengths were generated for each alternative hypothesis. Their
residuals were tested using both P and MP tests, and the p-value for each
test was recorded. This procedure was repeated 1000 times for each of the
scenarios. The resulting power was determined by dividing the number of
times that the test correctly rejected a false null hypothesis by 1000. All
simulations were performed on a Gateway E-3000 computer using S-plus
for Windows 95. Sample size requirements for Box–Jenkins models will
be examined under the following alternatives; incorrect order, underdiffer-
encing, overdifferencing, presence of seasonality, and nonstationarity. Al-
though the portmanteau test is designed to be a test against an unspecified
alternative, it does better against some alternatives than others. Each of
the results is discussed in turn.

Undermodeling: This represents a special case of incorrect order when
a series is modeled by another series with a smaller order than is correct.
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Specifically, an AR(2) series with coefficients 0.85 and �0.5 was simulated,
and then modeled by an AR(1) series with coefficient 0.85. By the time
the sample size reached 100, both tests were rejecting approximately
98% of the time; however, the type I error for the Portmanteau test
was too small. At M � 30 and T � 250, the probability of type I error
approached 0.10 for both tests. The MP test generally outperformed the
P test.

Overmodeling: This is the reverse case of under-modeling. An AR(1)
series with coefficient 0.85 was simulated and modeled by an AR(2)
series with coefficients 0.85 and �0.1. The performance of both P and
MP tests was abysmal for this scenario. Even with 250 data points, the
power did not reach 1%. With 750 observations, powers were typically
from 10 to 15%.

Overdifferencing: This represents the scenario when a series with a
linear trend is modeled by one with a quadratic trend. In this case, an
ARIMA(1,1,0) series was modeled by an ARIMA(1,2,0) series. For both
series, the AR coefficient was 0.85. Even with 500 observations, the power
of either test to detect overdifferencing did not exceed 62%. In addition,
for the modified portmanteau test, the �-level of the test consistently ex-
ceeded 0.06.

Underdifferencing: This represents the opposite case of overdifferencing.
An ARIMA(1,2,0) series was modeled by an ARIMA(1,1,0) series. Both
tests are able to detect this type of misspecification very well, even with as
few as 50 observations. Unfortunately, S-plus had a great deal of trouble
with this simulation because of the nonlinearities present in underdiffer-
enced data. The simulations were repeated only 100 times in this case
because the software often balked after the 99th iteration. Note that P
outperforms MP.

Overestimation of seasonality: This scenario is the case when too many
seasonal components are extracted from a series. Both tests seem to have
trouble detecting a series that has been modeled with an incorrect seasonal
component, although the problem is not as severe as it is in the case
of overdifferencing. For these situations, an ARIMA((0,1,1)(0,1,1)12) was
modeled with an ARIMA ((0,1,1)(0,1,1)4) model. It was not possible to
run simulations for the case of underestimation because of the nonlinearities
present in models with unextracted seasonal components.

Recall from the previous section that Census X-11 uses both the P and
MP tests to examine the irregular components of models produced through
its series of filters on seasonal data. Because of the poor performance of
these tests for small sample sizes, one must be sure to have adequate
amounts of data when using X-11. In addition, X-11 uses tests for nonsta-
tionary, which we will now discuss.
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12.3. TESTS FOR NONSTATIONARITY

One important problem in econometrics is the question of the nonsta-
tionarity of certain important series. This question underlies controversies
over perfect market theory, permanent income theory of consumption, and
real business cycles, for example (De Jong et al., 1992). Recall that in order
for a series to be considered stationary, and therefore be a candidate for
Box–Jenkins modeling, it must not have any parameter estimates inside the
unit circle (parameter estimates with complex roots), and it must oscillate
around a constant mean with a constant variance. Several tests have been
developed to test for changes in the mean (structural shifts) or zeros inside
the unit circle (unit roots). The Chow F-test, the Dickey–Fuller (DF) test,
and the augmented DF test are tests for nonstationarity of various types.
These tests were introduced in Chapter 3. In this section, we will discuss
their statistical properties.

Chow (1960) developed a test for structural shifts under the assumption
that the series has the same variance both before and after the shift. This
test is called the Chow F-test, and it was discussed earlier in chapter three.
However, structural shifts often are accompanied by changes in variance
as well. If the variance changes after the shift, the Chow F-test will not
give reliable results (Toyoda, 1974; Schmidt and Sickles, 1977). Various
attempts have been made to develop a test in which one can have different
variances. Gupta (1982) and Zellner (1962) introduced likelihood ratio
tests to deal with the problem of heteroskedasticity, while Jayatissa (1977)
introduced a large sample test for this phenomenon. Simulation studies for
the performance of the Chow F-test, along with various modifications of
it, are given in Ali and Silver (1985). The authors find that the actual size
of the Chow F-test is often very much above or below the theoretical size;
therefore, they do not perform a power analysis on it. However, they
present a modification to the Chow F-test that has a maximum of 70%

power at a 5% significance level when the sample size is 100. This power
holds in the heteroskedastic scenario when the variance after the shift
represents 20% of the sum of the variances before and after the shift.

There is an ongoing study of the performance of the unit root tests in
the econometric literature. De Jong et al. (1992) examine the performance
of these tests under the assumption that the time series data have autocorrel-
ated errors. These errors can have either an AR(1) or MA(1) structure
(the authors do not examine the possibility of an ARMA structure). For
the DF tests, in the presence of AR and MA errors with moderate correla-
tion, the power against trend stationary alternatives is close to 0. In addition,
the size of the test is distorted by as much as 30% compared to the size of
the test under white noise errors. All simulations were done for a series
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with 100 observations at a significance level of 0.05. The authors note that
increasing sample size by increasing sampling frequency (e.g., using monthly
instead of quarterly data for the same series) does not increase power. No
mention is made of the effect on power if one increases sample size while
maintaining the same sampling frequency.

Although its performance is anything but perfect, the augmented Dickey-
Fuller (ADF) test has the best power to detect a unit root in the presence
of positively autocorrelated errors. For roots close to the unit circle and
positive AR (or MA) coefficients in the error term, the minimum power
is 0.06 (0.19 for MA errors). When the coefficient in the error term is
negative, the ADF performs worse than the Phillips-Perron (PP) test, espe-
cially as the roots approach the unit circle. De Jong et al. (1992) recommend
the ADF test as the best overall test for a unit root in the presence of
autocorrelated errors, mainly because it does not suffer size distortions
under overparameterization, extreme autocorrelation, and increased sam-
pling frequency. Similar findings are reported in Ghysels and Perron (1993)
and Nabeya and Tanaka (1990).

12.4. INTERVENTION ANALYSIS AND
TRANSFER FUNCTIONS

Box–Tiao intervention analysis (Box and Tiao, 1975) is explained in
Chapter 8. Outliers (or interventions) come in two flavors: additive and
innovative. Additive interventions are those that affect only one observa-
tion. Innovative outliers represent shocks at a certain time that have linger-
ing effects on the data at subsequent time points. Chang et al. (1988) give
results of a simulation of the power of the intervention analysis model to
detect both additive and innovative (and mixed) disturbances in an AR(1)
model with coefficient 0.6 and variance 1, and in an MA(1) model with
coefficient 0.6 and variance 1. Two different sizes of outliers, 3.5 and 5
standard deviations from the mean (called moderate and large, respec-
tively), are used in the simulation with sample sizes of 50, 100, and 150. It
is assumed that the disturbance occurs in the middle of each series. Another
simulation is performed to detect two disturbances with much the same
specifications, assuming that the shocks occur at the one-third and two-
thirds points from the beginning of the series. Simulations for the MA(1)
model are not performed in the two-outlier case.

In general, the power of the procedure in the one-intervention case is
quite good. One can detect a moderate shock (�x �3.5 SD) correctly at
least 80% of the time when there are 100 observations. A large shock can
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be detected with only 50 observations. For two moderate outliers, the
procedure is very likely to miss at least one of them even if the sample
size is 150. The power is much better for large interventions, requiring only
50 observations when the outliers are either both innovative or mixed;
however, 100 observations are required when both outliers are additive.

Transfer function models are an extension of intervention models. Trans-
fer functions, as discussed in Chapter 9, are meant to describe the relation-
ship between two series when one series drives the other. In other words,
a data value of a driving series (called the input series) 1 month ago
influences a value of the second series (the output series) today. One models
a transfer function pair by modeling the input series and using an inverse
of that model as a filter for the series (a process called prewhitening). Then,
one obtains the cross-correlation function (CCF) for the prewhitened series.
Significant spikes (spikes that are greater than 1.96 times the standard
deviation of the series) in the cross-correlation function appear at certain
lags, indicating how much the output series is lagged behind the input
series. For example, if a significant spike appears at a lag of 2, this indicates
that the output series is driven by the value of the input series two lags
ago. Once the series is modeled, one can test the residuals for white noise
with one of the tests mentioned above However, those tests appear to have
rather poor properties for even moderate sample sizes.

Since the cross-correlation function is such an integral part of modeling
a transfer function pair, one might ask how well it is able to detect the
correct number of lags for the output series. To test its detection ability,
we simulated several transfer function pairs separated by a known number
of lags and ran each simulation 1000 times in order to count the number
of times a significant spike occurred at the correct lag. Several transfer
function models with various inputs were used, and their equations are
given next. These models were taken from a table on page 349 of Box
and Jenkins (1976). In this notation �Yt � Yt � Yt�1 .

Yt � aXt�3 (12.1)
(1 � a�)Yt � Xt�3 (12.2)

Yt � (1 � a�)Xt�3 (12.3)
(1 � 0.25� � 0.5�2)Yt � Xt�3 (12.4)

Yt � (1 � 0.25� � 0.5�2)Xt�3 (12.5)
(1 � a�)Yt � (1 � 0.5�)Xt�3 (12.6)

(1 � 0.5�)Yt � (1 � a�)Xt�3 (12.7)

These equations represent, respectively, the following types of transfer
functions: pulse, AR(1), MA(1), AR(2), MA(2), ARMA(1,1) with the vari-
able AR coefficient, and ARMA(1,1) with a changing MA coefficient. Input
series are denoted by Xt, with t � 1, . . . , T, and output series are given by
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Yt, with t � 1, . . . , T. Different coefficients for each AR and MA model
were used in order to test the influence of the strength of the correlation
on the ability of the cross-correlation function to detect it. These coefficients
are denoted by a in the above equations, where a � 0.2, 0.4, 0.6, 0.8, and
1.0. The input series used ranged from simple pulse inputs to white noise
to AR(1) models, with coefficients 0.1, 0.5, and 0.9.

The results are fairly simple to interpret. The more complicated the
model and the smaller the AR (or MA, or both) coefficients, the more
difficult it is to obtain a significant spike at the appropriate lag (lag 3, in
this case). When the input series was a pulse or white noise, the CCF had
a significant spike at lag 3, no matter what the transfer function. For the
pulse transfer function model, the program detected a spike at the third
lag 100% of the time, regardless of the structure of the input series, the
strength of the correlation within the input series, or the value of a. This
occurred at sample sizes as low as 30.

For AR(1) input series with AR(1) and MA(1) transfer functions, the
CCF was significant at the correct lag 100% of the time with a sample size
of 50. Interestingly, at this sample size the CCF also had significant spikes
at lag 4 more than 88% of the time when a was 0.8 or 1.0 and the AR(1)
input series coefficient was 0.1, and more than 98% of the time for all
AR(1) input series coefficients of 0.5 and 0.9 at all values of a. With an
MA(1) transfer function, sample sizes of 50 were sufficient to give the
correct results 100% of the time, except for the case when the AR(1) input
coefficient was 0.1 and a = 0.6 or 0.8. (When the AR(1) input coefficient
was 0.5 and a was 0.8, a series with 50 observations had a significant CCF
at the third lag 86% of the time.) With 100 observations, the model with
a � 0.6 was correct 100% of the time, and the model with a � 0.8 was
correct 89% of the time. Although there were some instances in which the
CCF was not significant at lag 3 (the correct lag) with T � 50, in all cases
the CCF was significant at lag 4 more than 98% of the time for the MA
transfer function.

For the second-order AR transfer function model, the CCF was signifi-
cant no more than 65% of the time at the third lag for any combination of
coefficients. Sample sizes tested were 30, 50, and 100. Significant spikes at
lags 4 and 5 of the CCF occurred approximately the same percentage of
the time as did the spikes at the correct lag. For the MA(2) transfer function
model, the third lag was significant more than 98% of the time even at a
sample size of 30. Significant spike in the CCF at lags 4 and 5 were also
detected over 90% of the time when T � 100. Performance of the
ARMA(1,1) models with a varying AR(1) coefficients are reliable for all
combinations of coefficients, even at a sample size of 30. When we vary
the MA(1) coefficient, the CCF has significant values more than 80% of
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the time at lag 3 for T � 30 only for a � 0.2, and 0.4. The sample size must
be larger than 50 for there to be more than 80% accuracy for a � 0.6.
Finally, the sample size should be 100 for the same amount of accuracy to
be achieved when a � 0.8 or 1.0. These numbers are true regardless of the
value of the AR(1) input series coefficient. Spurious significant spikes ap-
pear at lag 4 100% of the time for both models when there are as few as
30 observations.

From these results, it seems that the complexity of the model plays a
large role in the accuracy of the CCF at a given lag. The coefficients of the
transfer function also determine how often the CCF has a significant spike
at the correct lag. The coefficients of the input function, at least in the
AR(1) case, do not seem to matter as much. A more interesting result is
that significant spikes appear at incorrect lags nearly as often as significant
values occur at the lag of interest.

12.5. REGRESSION WITH AUTOREGRESSIVE ERRORS

Sometimes there are certain variables that are believed to influence the
path of a time series. The time series data can then be modeled in a
regression context with several independent variables representing exoge-
nous variables in a hypothesized causal model. This method of modeling
was discussed in Chapter 10. The residuals of this type of regression are
usually correlated with time in some manner, and this autocorrelation can
affect the precision of any least squares estimates of the parameters of the
regression model. There are several widely used procedures for time series
regression modeling. These are Cochrane–Orcutt, Hildreth–Lu, and Prais–
Winsten. All of these involve a transformation of the variables and residuals
estimated from the data in order to obtain noncorrelated residuals. Specific
forms of the transformation for each procedure have been discussed in
Chapter 10.

Taylor (1981) discusses the efficiency of the Cochrane–Orcutt (CO)
estimator relative to ordinary least squares (OLS) in time series regression
models. One estimator is more efficient than another one if fewer observa-
tions are needed to achieve the same accuracy for the estimation of the
parameters. His conclusion is that CO is more efficient than OLS except
when the realization of the exogenous variable process is strongly trended.
He also concludes that a generalized least squares (GLS) estimator beats
both CO and OLS when the coefficients of the exogenous variable process
are known. It is generally accepted that all iterative methods outperform
one-stage or two-stage estimators.
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Rao and Griliches (1969) discuss the properties of several estimators
for small samples. These authors calculate small sample efficiency for GLS,
OLS, CO, Durbin (D), Prais-Winsten (PW), and a nonlinear estimator
(NL). Their model is a regression with a single exogenous variable and
an AR(1) error process. All calculations are done for data sets with 100
observations. The authors first begin with the estimation of the coefficient
of the AR(1) error process, since this is calculated in different ways for
each of the estimators. They find that no estimator has uniformly smaller
bias than the others, as far as the estimation of this coefficient is concerned.
All results are given relative to the GLS estimator. Note that GLS is
unattainable if the coefficients of the error process are unknown. However,
when the coefficients of the error processes are known, it is the most
efficient estimator. The simulation results show that no estimator attains
the efficiency of the GLS estimator, and that the OLS estimator performs
the worst, with only 15% efficiency for strongly correlated errors. As for
the other estimators, none consistently outperforms the others, although
they all are better than NL.

Magee (1985) examines the problem analytically. He compares the iter-
ated PW, the two-stage PW, and maximum likelihood estimates of a regres-
sion model with AR(1) disturbances. The three estimators are found to be
equivalent in terms of the MSE of the estimates.

12.6. CONCLUSION

In their 1976 book, Box and Jenkins stated that 50 to 100 observations
were necessary to ensure adequate power for model testing (Box and
Jenkins, 1976). This viewpoint has been supported in other time series texts
(Cook and Campbell, 1979; McCain and McCleary, 1979; and McCleary et

al., 1980). However, several papers and our simulations have shown that
the minimum number of observations is more likely to be between 100 and
250. This observation is certainly true for tests of model fit, such as the
portmanteau tests and unit root tests. The discrepancy between the mini-
mum number of observations for valid hypothesis tests in this section and
that of the common belief indicates that much of the analysis based on
such short series may be in need of reestimation. Clearly, more research
in this field is necessary, especially since previous authors tended to fix the
sample size and examine the power, rather than fix the power and examine
the sample size. With contemporary computing speed, various sample sizes
can be used to find how many observations are necessary to achieve accept-
able power at an acceptable significance level.
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Appendix A
Empirical Cumulative Distribution
of ̂ for � � 1

Sample
Size Probability of Smaller Value

n 0.01 0.03 0.05 0.10 0.50 0.90 0.95 0.98 0.99

̂ with no constant

25 �2.65 �2.26 �1.95 �1.60 �0.47 0.92 1.33 1.70 2.15
50 �2.62 �2.25 �1.95 �1.61 �0.49 0.91 1.31 1.66 2.08

100 �2.60 �2.24 �1.95 �1.61 �0.50 0.90 1.29 1.64 2.04
250 �2.58 �2.24 �1.95 �1.62 �0.50 0.89 1.28 1.63 2.02
500 �2.58 �2.23 �1.95 �1.62 �0.50 0.89 1.28 1.62 2.01
� �2.58 �2.23 �1.95 �1.62 �0.51 0.89 1.28 1.62 2.01

̂ with constant

25 �3.75 �3.33 �2.99 �2.64 �1.53 �0.37 0.00 0.34 0.71
50 �3.59 �3.23 �2.93 �2.60 �1.55 �0.41 �0.04 0.28 0.66

100 �3.50 �3.17 �2.90 �2.59 �1.56 �0.42 �0.06 0.26 0.63
250 �3.45 �3.14 �2.88 �2.58 �1.56 �0.42 �0.07 0.24 0.62
500 �3.44 �3.13 �2.87 �2.57 �1.57 �0.44 �0.07 0.24 0.61
� �3.42 �3.12 �2.86 �2.57 �1.57 �0.44 �0.08 0.23 0.60

̂ with constant and trend

25 �4.38 �3.95 �3.60 �3.24 �2.14 �1.14 �0.81 �0.50 �0.15
50 �4.16 �3.80 �3.50 �3.18 �2.16 �1.19 �0.87 �0.58 �0.24

100 �4.05 �3.73 �3.45 �3.15 �2.17 �1.22 �0.90 �0.62 �0.28
250 �3.98 �3.69 �3.42 �3.13 �2.18 �1.23 �0.92 �0.64 �0.31
500 �3.97 �3.67 �3.42 �3.13 �2.18 �1.24 �0.93 �0.65 �0.32
� �3.96 �3.67 �3.41 �3.13 �2.18 �1.25 �0.94 �0.66 �0.32

The table was constructed by David A. Dickey with Monte Carlo Methods. It is reprinted
with permission of Wayne Fuller and John Wiley and Sons, Inc.
Source: Wayne A. Fuller, Introduction to Statistical Time Series, 2nd ed. New York: John
Wiley & Sons, Inc., 642.
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Glossary

ACF (Autocorrelation function) The
autocorrelation structure of a series
over time, where time is measured in
lags 0 through p, where p is the high-
est time lag.

Additive model A model whose terms
are added together; these models
have neither multiplicative factors
nor interaction product terms.

Additive outlier See outlier.

ADF See augmented Dickey-Fuller
test.

Adjusted R square Shrunken R2.
When variables are added to a model,
they tend to inflate the R2. The ad-
justed R2 is shrunken by a degree of
freedom correction that compensates
for the variable inflation.

ADL model See autoregressive dis-
tributed lag model.

AIC (Akaike information criterion)
Akaike’s goodness of fit measure.
This criterion is equal to minus 2
times the log likelihood function plus
2 times the number of free parame-
ters in the model.

AICC (Akaike information criterion
corrected) Used in Census X-12,
the formula for this informa-
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tion criterion is � �2 Ln(L) �
2m(T/(T � m � 1)), where L � esti-
mated likelihood function, m � num-
ber of model parameters, and T �
sample size.

A posteriori analysis An analysis con-
ducted after the forecast has been
analyzed.

A priori analysis An analysis con-
ducted prior to the forecasting and
its assessment.

ARCH model Introduced by Engle in
1982, these models are models where
the error variance is conditional on
past squared disturbances. There are
many variations of ARCH models.
See also GARCH.

AREG An SPSS procedure that per-
forms first-order autoregression error
correction analysis.

ARIMA An autoregressive integrated
moving average analysis developed
by George Box and Gwilym Jenkins.
In this analysis, a series is trans-
formed to a condition of covariance
stationary, and then it is identi-
fied, estimated, diagnosed, possibly
metadiagnosed, and forecast. The
ARIMA model is represented by
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ARIMA(p,d,q). In this notation, the
parameters inside the parentheses
represent the order of (p) autoregres-
sion, (d) for differencing, and (q) for
moving average in the model.

ARIMA Procedure SAS and SPSS
programs to perform ARIMA
analysis.

ARMA model A model of a series that
contains both autoregressive and
moving average components of a sta-
tionary series that needs no differ-
encing.

Asymptotically unbiased estimation
Parameter estimation whose bias ap-
proaches zero as the sample size ap-
proaches infinity.

Augmented Dickey–Fuller (ADF) test
A Dickey–Fuller test for unit roots
that removed serial correlation in the
series by adding autoregressive pa-
rameters to control for it.

Autocorrelation serial correlation The
correlation of observations at par-
ticular temporal distances from one
another within the same series.

Autocorrelated errors Autocorrela-
tion of the errors, innovations, or
shocks of a model.

Autocorrelation function (ACF) See
ACF.

AUTOREG An SAS autoregression
procedure that estimates autoregres-
sive, ARCH, and GARCH models.

Autoregression A regression of a se-
ries on past lags of itself.

Autoregressive conditional hetero-
skedasticity See ARCH model.

Autoregressive distributed lag (ADL)
model A transfer function model.
A type of dynamic regression model
that includes a ratio of two polynomi-

als multiplied by distributed lags of
one or more exogenous variable(s).

Autoregressive error model A regres-
sion model with serial correlation
of error.

Backcasting Forecasting the initial val-
ues or preliminary values of a series
from the remainder of the series.
Sometimes referred to as back-
forecasting.

Backshift operator The lag operator,
L, which invokes a backstep in time
on a series. (L)Yt � Yt�1 ; (L2)Yt �
Yt�2 . Sometimes a B is used instead
of L.

Bias Difference between the expecta-
tion of a statistic and the true popula-
tion parameter.

BIC See SBC.

Bounds of invertibility The limits
within which the value of a moving
average parameter may vary if an
autoregressive representation of it is
to be able to converge.

Bounds of stability The limits within
which the value of the decay parame-
ter in a transfer function may vary so
that the transfer function process will
not become chaotic.

Bounds of stationarity The limits
within which an autoregressive pa-
rameter may vary for the model to
be able to converge.

Box–Jenkins analysis See ARIMA. A
methodology developed in the 1930s
of combining autoregression and
moving average models after they
have been transformed and differ-
enced to attain a condition of covari-
ance stationarity, which permits the
estimations to converge. In the 1970s,
G.E.P. Box and Gwilym Jenkins ap-
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plied this methodology to time series
analysis, forecasting, and control of
processes.

Box-Jenkins-Tiao methodology A re-
sponse function analysis of the im-
pact on a series of an external event
or intervention, expounded by Box
and Tiao in 1975.

Box-Ljung Q statistic A test of signifi-
cance of autocorrelated errors found
in an ACF or PACF. A modification
of the Box–Pierce Q statistic with a
degree of freedom correction to en-
hance accuracy in correlogram analy-
sis in smaller samples.

Box-Pierce Q statistic A test of sig-
nificance of autocorrelated errors
found in an ACF or PACF. The Q

statistic is the sample size times the
sum of the autocorrelations. It is dis-
tributed as a chi-square with m de-
grees of freedom. Sometimes called
a portmanteau test.

Breusch–Godfrey test A large sample
test for higher order autocorrelation
of error, involving a regression of the
error term from a regression on the
regressors plus lags of the error term
from the first regression. A chi-
square test of significance indicates
presence or absence of higher order
autocorrelation.

Business cycle Periodic variation in a
series indicating some aspect of busi-
ness activity. Business cycles tradi-
tionally refer to periods of down-
swings, depressions, upswings, and
prosperity. Business cycle theorists
seek to predict turning points and to
determine the troughs and peaks of
the cycle.

Causal modeling With a presumption
of closure of a system, the events of

series Xit are unidirectionally associ-
ated with and followed by those of
series Yt , where i � the number of
the exogenous variable and t � time
period. Intervention and transfer
function models are examples of such
causal modeling.

Census I See classical decomposition.
This decomposition is performed by
the SPSS Season procedure.

Census II An upgrading of classical de-
composition that was incorporated
into Census X-11.

Census X-11 See X-11.

Census X-12 See X-12.

Chow test A test for the constant vari-
ance in a series.

Classical decomposition A procedure
that extracts from a series trend,
cycle, seasonal, and irregular compo-
nents. The procedure can be addi-
tive or multiplicative, so that the
components are added together or
multiplied together to reconstitute
the original series. This decompo-
sition is performed by the SPSS
SEASON procedure.

Cochrane–Orcutt algorithm An algo-
rithm for first-order correction of in-
efficiency caused by serially corre-
lated error in a regression model. The
algorithm involves transforming the
variables by multiplying them by the
factor (1 � �1), where �1 � first-order
autocorrelation of errors. This
algorithm is performed by SAS
AUTOREG and SPSS AREG.

Combining forecasts See forecast com-
bination methods.

Compound transfer function A combi-
nation of two or more impulse re-
sponse functions.



500 Glossary

Concurrent validity Validation against
a known, tested, and accepted crite-
rion at the same time.

Conditional forecast An ex post fore-
cast. This forecast is conditional on
the series model, its explanatory vari-
ables, and its assumptions about how
it extends over the forecast horizon.

Conditional least squares (CLS) An
algorithm for estimation of ARIMA
models that backcasts the starting
values and proceeds to estimate the
parameters by minimization of the
sum of squared errors. This algorithm
is an option in SAS ARIMA model-
ing and SPSS ARIMA forecasting.

Confidence interval An interval
formed by the probability distribu-
tion around a parameter, that extends
over a distance of two standard errors
on either side of a particular parame-
ter, and should bracket the true value
of the parameter 95% of the time.
When applied to a forecast, this inter-
val is called the forecast interval.

Cointegrating parameter (or vector) A
regression parameter that permits
cointegration of nonstationary series.
The cointegration regression yields a
stationary series that may be used in
the analysis. See error correction
mechanism.

Cointegrating regression The regres-
sion, the residuals of which constitute
the stationary series computed from
the two nonstationary series. See er-
ror correction mechanism.

Cointegration A combination of two
or more nonstationary series into a
stationary one that can be mod-
eled with dynamic regression or
ARIMA methodology.

Consistency A property of an estimate

that the bias tends toward zero as the
sample size becomes very large. The
estimate is said to converge in proba-
bility to the true parameter.

Constant The intercept in an equation.
The value of the response variable
where the value of the exogenous
variables equal zero. See Chapter 4
for how this constant can differ from
the mean of the model.

Corner method A method, sometimes
referred to as a C-array, proposed by
Lui and Hanssens (1982) to identify
the structure of a transfer function.
See Chapter 9 for details.

Correlogram A plot of a correlation
against time, called a correlation
function. Examples are the ACF
and PACF.

Covariance stationarity Threefold
property of a series that includes
equilibrium about the mean, vari-
ance, and autocovariance. Constant
mean, variance, and covariance is
also known as weak stationarity or
second-order stationarity.

Cross-correlation function (CCF) A
functional correlation between two
series over time, used in identifying
transfer function structure and unidi-
rectionality of association (See Chap-
ter 9 for details).

Cross-validation Repeated forecasting
of sequentially deleted observations
in a model to determine the mean
square of the model. Comparison of
models is conducted according to
this criterion.

Cyclicity Periodic temporal variation
within a series, especially that which
spans more than a year. This pattern
of temporal variation has a down-
swing, a trough, an upswing, and a
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peak. Analysts usually try to predict
the imminence or incidence of its
turning points.

Data-generating process (DGP) The
underlying process that yields the
realization from which the model is
built.

Dead time (delay time) The time be-
tween onset of an input and reaction
in the response variable.

Decay rate parameter A rate parame-
ter in a transfer or response function.

Decision Time An SPSS module for
time series analysis that performs
automatic modeling of and forecast-
ing from exponential smoothing,
ARIMA, intervention, and LTF
models.

Decomposition methods The extrac-
tion of and extrapolation from cycle,
trend, seasonality, and irregular com-
ponents of a series.

Degrees of freedom The number of el-
ements that are free to vary in the
computation of a statistic or estima-
tion of a statistical model.

Delphi method A qualitative forecast
extracted from the collective judg-
ment of a panel of experts.

Deterministic trend A trend that is a
function of another variable.

DF test See Dickey-Fuller test.

Diagnosis A stage of ARIMA model-
ing in which the model is assessed
for goodness of fit and its estimated
parameters are assessed for retention
or deletion. In this stage, the model
is examined for fulfillment of assump-
tions concerning residuals and the
model parameters are examined for
their estimated values, permissible
range, statistical significance, direc-

tion, multicollinearity, and theoreti-
cal meaning.

Dickey–Fuller test A test for unit
roots (nonstationarity), developed by
Wayne Fuller and David Dickey,
whose test distribution depends on
whether the model under examina-
tion has no constant, has a constant,
or has a constant with a deterministic
trend. An augmented version (ADF)
controls for serial correlation within
the process. (A Dickey-Fuller critical
value table can be found in Appen-
dix A).

Differencing A transformation of a
variable from levels to changes. This
transformation is accomplished by
first or generalized differencing. First
differencing subtracts the lagged ob-
servation from its successor. Second
differencing involves taking a differ-
ence of a difference. Generalized dif-
ferencing involves taking a second or
higher order difference.

Difference stationary A property of
being transformable to stationarity
through differencing.

Disturbance An innovation, shock, or
error. ‘‘Well-behaved’’ disturbances
are identically, independently distrib-
uted with mean of zero and normal
variance. See error.

Double moving average A moving av-
erage of a moving average. See mov-
ing average.

Drift Random variation about a non-
zero level.

Dummy variable A variable with two
values, coded as 0 and 1, to indicate
the presence or absence of an event,
intervention, or observational outlier
in a model.
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Durbin h test A test for higher order
autocorrelation of error designed for
use in autoregressive models with
lagged dependent variables. The h �
�̂(T/(1 � T[var(�)]), where d � Dur-
bin–Watson d; �̂ � 1 � 2/d; T �
sample size, and var(�) � variance
of coefficient of lagged dependent
variable.

Durbin M test A test for higher order
autocorrelation of error.

Durbin-Watson d test A test for first-
order autocorrelation of error. The
statistic d is equal to the sum of
squared differences between suc-
cessive errors, divided by the sum
of the squared errors. The Durbin–
Watson d has an approximation of
d � 2(1 � �̂).

Dynamic regression model A dynamic
regression is a regression of one re-
sponse time series on other input se-
ries. These models assume the data
to be observed at equally spaced in-
tervals and that there is no feedback
exist between the response series and
the input series.

EACF Extended autocorrelationfunc-
tion. Used for identifying orders of
ARMA models.

Efficiency Minimum variance of esti-
mation.

Encompassing There are several types
of encompassing. There is theory,
variance, and forecast encompassing.
If a first model theoretically encom-
passes a second model, the first model
explains whatever the second model
explains. Among nested models, this
may be measured by explained vari-
ance. The encompassing model may
contain all the explanatory vari-
ables that the encompassed model

contains. The encompassing model
explains all of the variance of the
response variable that the encom-
passed model explains. Among non-
nested models, the preferred model
may be one with the better fit. The
more preferred model may explain
more of the theoretically important
response variance. If the forecast of
the first model contains all of the per-
tinent information of the second
model, the first model forecast en-
compasses the second model fore-
cast, and nothing would be gained by
attempting to combine the two fore-
casts.

Endogenous variable A response vari-
able determined within the system.
Common name for a variable in-
fluenced by other variables within
the simultaneous dynamic equation
model or path analytic model.

Equilibrium Baseline value around
which a series may vary or cycle.

Ergodicity A condition of a time series
realization whose sample moments
approach the population parameters
as the length of the realization ap-
proaches infinity.

Error A difference between predicted
and observed value. Another mean-
ing of error is a disturbance or inno-
vation. See disturbance.

Error correction mechanism A mecha-
nism in a model that corrects for long-
run equilibrium error. In a cointe-
grated regression, the model is that
of the difference of yt regressed on
the difference of xt plus an error cor-
rection mechanism. That mechanism
is a factor that captures the long-run
equilibrium correction. In the equa-
tion, �yt � �xt � b(y � �x)t�1 � et ,

the error correction mechanism is
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b(y � �x)t�1 and the cointegrating
parameter (or vector) is �.

Error correction model (ECM) A
model where there is a correction for
past, current, or expected disequilib-
rium. Adaptive expectations, partial
adjustment, and cointegrated regres-
sion models are sometimes referred
to as ECMs.

Error cost function The relationship of
cost of a forecast to the size of fore-
cast error.

Estimation Computational determina-
tion of the values of the parameters
by an algorithm that minimizes a cri-
terion of error. Common algorithms
used include conditional least
squares, unconditional least squares,
or maximum likelihood estimation.

Estimation Sample See historical
sample.

Event analysis See intervention
analysis.

Exogeneity The independence of a
variable in a system or model. Lack
of feedback from other variables in
the model of a causal system. Strict
exogeneity holds when the values of
an exogenous variable for each time
period are independent of the ran-
dom errors of all other variables at
all time periods. Weak exogeneity
obtains when inference on a set of
parameters can be made condition-
ally from a particular variable with-
out loss of information.

Exogenous variable A variable whose
values are determined outside the
model or system. Common descrip-
tion of an independent variable in the
context of a simultaneous dynamic
equation model or path model.

EXPAND procedure SAS interpola-
tion procedure.

Expected value The mean of a distri-
bution of a random variable or series.

Exponential smoothing Models of
weighted averages that give varying
weights to the most recent or the set
of past observations. These weights
usually decline exponentially in mag-
nitude with the passage of time.
Holt’s smoothing can handle trends,
whereas Winter’s smoothing can han-
dle both trend and seasonality.

Extended sample autocorrelation func-
tion (ESACF or EACF) A table of
correlations used to identify the or-
der of an ARMA model.

Extrapolative forecasting Forecasting,
broadly construed, as using exponen-
tial smoothing, decomposition, or
trend models.

Ex ante forecast A prediction using
data available at the time of predic-
tion. An unconditional forecast.

Ex post forecast A prediction using
data collected after the forecast hori-
zon begins. A conditional forecast.

Feedback Simultaneity. The influence
of the endogenous variables on the
exogenous variables in a model.

Filter A function or algorithm that
screens out particular components of
a series and lets other components of
a series pass through a system.

Forecast Prediction over a forecast ho-
rizon. The forecast can be a point
forecast, an interval forecast, or a
probability density forecast.

Forecast combination methods Av-
eraging (simple and weighted), vari-
ance–covariance (conventional or
adaptive), and regression (OLS,
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WLS, autoregression, ARCH, and
regARIMA) methods for combining
forecasts to improve accuracy.

Forecast horizon The prediction win-
dow. The time over which a forecast
is made.

Forecast interval The confidence inter-
val around the point forecast. See
confidence interval.

Forecast model A model that is used
for forecasting.

Forecast profile The pattern of fore-
cast defined by the point and interval
forecast; the profile at times can in-
clude the probability density forecast.

Fourier analysis Time series analysis in
the frequency domain. Spectral anal-
ysis. The analysis of the time series
by decomposition into sines, cosines,
amplitudes, wavelengths, and phase
angles.

Frequency The number of cycles
within a period of time, usually a
year.

GARCH model A generalized autore-
gressive conditional heteroskedastic
model introduced by Bollerslev in
1986 that has heteroskedasticity con-
ditional on past error variances and
past variances.

Goodness of fit A measure of the pro-
portion of variance explained, the
proportion of variance unexplained,
the amount of error, or the parsimony
of the model. Typical indicators of
goodness of fit of models are R2, AIC,

SBC, RMSE. Typical indicators of
goodness of fit of the forecast in the
holdout sample are MSFE or MAPE.

Granger causality A test for exogen-
eity of variables, where the each vari-
able is regressed on the current and

lagged values of the other variables.
Given two time-dependent variables,
Yt and Xt , nonsignificant regression
coefficients of the regression of Xt on
the current and lagged values of Yt

suggest lack of feedback from Yt to
Xt and Granger causality from Xt to
Yt . This noncausal condition is called
Granger noncausality of Yt to Xt .

Heteroskedasticity Unequal variance
of the errors of the model.

Hildreth–Lu algorithm An algorithm
for performing a correction for serial
correlation of error that finds the op-
timal first-order autocorrelation by it-
erating through the range of autocor-
relation correction factors and selects
the coefficient that minimizes the sum
of squared residuals.

Historical sample The segment of the
sample reserved for estimation and
model building.

Holdout sample The portion of a sam-
ple that is reserved for evaluation,
validation, or testing of the model.

Holt’s method An exponential
smoothing method that models trend
as part of the analysis of the series.

Homogeneity of variance of residu-
als An assumption of ordinary least
squares regression analysis that there
is equality of variance of the residuals
across the predicted scores.

Homogeneous stationarity Equality of
variance in a time series.

Homoskedasticity See homogeneity of
variance of residuals.

Identification In Box–Jenkins time se-
ries analysis, a process of examining
the ACF and PACF to determine the
nature of the process under consider-
ation.
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Impulse response function A function
displaying the structure of the re-
sponse to a pulse, step, or continuous
input in a dynamic regression model.
There are several kinds of these re-
sponse functions, including simple,
higher-order, compound, and mul-
tiple.

Impulse response weights Coefficients
of lagged exogenous variables in a
dynamic regression model.

Independence of observations An as-
sumption of ordinary least squares
regression analysis.

Innovation An error or disturbance or
random shock.

Innovational outlier See outlier.

Integrated A summative process that
must be removed by differencing or
regression before the series can be
modeled with Box–Jenkins analysis.
If wt � �yt, so that �wt � yt , then wt

is integrated before differencing.

Intercept See constant.

Intervention analysis Impact analysis
with deterministic step or pulse input,
expounded by G. E. P. Box and
G. C. Tiao in 1975. A dynamic analy-
sis of the impact of the occurrence of
an event.

Inverse autocorrelation function An
autocorrelation function developed
by Cleveland to help identify need
for differencing and identify overdif-
ferencing in models.

Invertibility The ability to invert an
MA series to obtain a convergent aut-
oregressive series and vice versa.

Lag operator The lag operator, L,

which invokes a backstep in time on
a series. (L)Yt � Yt�1 . (L2)Yt � Yt�2 .

Same as backshift or backstep opera-
tor, B.

Lagging indicator An economic indi-
cator that lags behind the part of the
business cycle that is under exami-
nation—usually the downswing,
trough, or upswing.

La Grange multiplier test An asymp-
totic test for higher order autocorre-
lation of errors that is distributed as
a �2 test with the degrees of freedom
equal to the number of parameters,
used in identifying the order of
(G)ARCH errors.

Lead A projection forward in time.
See lead operator.

Leading indicator An indicator whose
value is supposed to indicate the on-
set of a part of a business cycle under
examination before that onset takes
place.

Lead operator The lead operator is
sometimes indicated as F. (F)Yt �
Yt�1 .

Linear transfer function (LIF) meth-
od A method of modeling transfer
functions that uses low order autore-
gressive terms and distributed lags of
the exogenous variables, along with
the corner method to identify the
structure of the transfer function in
a dynamic regression model. This
method handles multiple transfer
functions better than the classical
Box–Jenkins approach to such mod-
eling.

Ljung–Box Test A modified portman-
teau Q test for significance of serial
correlation.

LTF See linear transfer function
method.

MAE Mean absolute error.
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MAPE Mean absolute percentage
error.

Maximum likelihood estimation meth-
ods Asymptotic iterative estima-
tion of parameters by maximizing the
likelihood that the model fits the
data. This procedure usually involves
modeling the likelihood, taking its
natural log, finding its minimum, and
estimating the parameter values that
minimize that lack of fit (maximize
the likelihood that the model fits
the data).

Mean The average.

Mean absolute percentage error
(MAPE) The average of the sum of
the absolute values of the percentage
errors. A measure of forecast accu-
racy used in the M competitions, not
as susceptible to outlier distortion as
mean square forecast error.

Mean square error (MSE) Error
variance.

Mean square forecast error (MSFE)
Forecast error variance.

Mean stationarity The property of a
constant level.

Metadiagnosis The fourth stage of
ARIMA modeling where alternative
models are compared to determine
which of the adequate models is opti-
mal. Some analysts would include
comparative forecast evaluation as
part of this stage.

M competitions A series of forecasting
competitions run by Makridakis
(1982, 1993) and the International In-
stitute of Forecasters (1997), in which
different methods are compared for
their forecast accuracy over different
forecasting horizons on 111, 29, and
3003 time series, respectively.

Misspecification Proper specification

of the variables, polynomial terms,
and cross-products in the model as
well as specification of the autocorre-
lation and heteroskedasticity in the
model.

Mixed model A time series model in-
cludes both autoregressive and mov-
ing average processes or both sea-
sonal and nonseasonal parameters.

Model A symbolic representation of
an empirical process. The representa-
tion commonly specifies the compo-
nent variables and the nature of their
interrelationships.

Moving average A series comprising
an average of x time periods that
slides its span as time progresses. A
process that entails a linear combina-
tion of current and previous random
shocks or errors.

Multicollinearity Correlation among
explanatory variables in a model. If
this condition is sufficiently severe,
it can bias downward statistical tests
of significance.

Multiplicative model An ARIMA
model with nonseasonal and seasonal
factors multiplied by one another.

Multivariate time series models Time
series models with multiple endoge-
nous series, including structural
equation models, vector autoregres-
sion and state space models, etc. Mul-
tivariate models with multiple re-
sponse series are distinguished from
univariate models, with one endoge-
nous series.

Naive forecast (NF) A forecast based
on the last actual observation. NF 1
uses the last real observation,
whereas NF 2 seasonally adjusts the
data and uses the last observation of
the seasonally adjusted data.
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Noise Random variation or error in
the values of a series.

Nonseasonal model A model without
seasonal parameters or factors.

Nonstationarity Drift, random walk,
or trend in a series. These series are
said to have unit roots, where the pa-
rameters have reached the limit of
invertibility or stationarity.

Normality of residuals An assumption
of ordinary least squares regression
analysis that the errors of a model
are normally distributed.

Ordinary least squares (OLS) A
method of estimation of parameters
in a model that involves minimizing
the sum of the squared errors. This
estimation method is commonly used
in analysis of variance and regres-
sion analysis.

Outlier A data value that is more than
3 standard errors away from the ex-
pected value of the parameter being
estimated is an outlier.

Overdifferencing The differencing of a
series at a higher order than is neces-
sary to render the series stationary.

Parameter Target population charac-
teristics that are estimated with sam-
ple statistics.

Parameter constancy Parameter sta-
bility when a model is subjected to
predictive validation.

Parsimony ‘‘As simple a model as is
possible, but no simpler’’ (Albert
Einstein).

Partial autocorrelation function (PACF)
An autocorrelation function that
identifies the k lag magnitude of the
autocorrelation between the t and
t � k, controlling for all intervening
autocorrelations.

Peak Maximum value of the observa-
tions in a cycle of observations.

Periodicity Fixed length of cycle in
Fourier or spectral analysis.

Phillips–Perron (PD) test A nonpara-
metric test for unit roots.

Prais–Winsten algorithm A method of
transforming variables in a regression
with autocorrelated errors to correct
for the serial correlation of error. In
a model with first-order autocorrela-
tion, this transformation involves
multiplying each of the variables in
the regression by �1 � �2, where �2

is the square of the first-order auto-
correlation coefficient.

Prediction A point, interval, or proba-
bility density forecast.

Predictive validation Reliability test-
ing of the model estimated on a his-
torical data set by assessment of its
goodness of fit with a validation
data set.

Prewhitening Application of an in-
verse filter, designed to neutralize the
contaminating serial correlation in
the input series, to both input and
output series prior to examining the
relationship between the series with
a cross-correlation function.

Pulse input An instantaneous change
in value of an input.

Pulse response function A response
over time to a pulse input.

Purely seasonal model A model with
only between-period effects.

Q statistic test See Box–Pierce or Box-
Ljung test of significance.

R square Coefficient of determination.
The proportion of variance of a de-
pendent variable explained by the
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model, used as a measure of fit. See
adjusted R square.

Randomness Unsystematic variation.

Random sampling Sampling the ele-
ments of a population so that every
element selected for the sample has
a known or equal probability of selec-
tion. Random samples of sufficiently
large size should possess statistics
that more or less reflect the character-
istics of the population parameters.
The sampling error reflects the extent
that the sample is not representative
of the population.

Random walk Random movement
from one point to another in time.

REGARIMA OLS regression with
time series (ARIMA) modeling of re-
siduals.

Regression An explanatory model
with a dependent (criterion) variable
being explained by explanatory vari-
ables, called independent, regressors,
or predictor variables. Regression
can be bivariate or multiple. It can
be univariate or multivariate. It can
be linear or nonlinear. The regression
can be cross-sectional or dynamic.

Regression parameters Variables in
the population that are estimated in
a regression model.

Regression with ARIMA errors See
RegARIMA.

Residual An error. The difference be-
tween the observed value and that
predicted by the model.

Sample Subsetting Segmenting the
sample into two subsets. The first sub-
set is an estimation (historical) sub-
sample. The model is built on this
subset of data. The second subset is
the test, evaluation, or predictive vali-

dation subsample. This post-sample
evaluation compares the forecast to
the actual data in this subsample.

SAS� Statistical Analysis System from
SAS Institute, Inc., Cary, NC.

SBC (Schwartz Bayesian criterion) A
measure of goodness of fit. This crite-
rion is equal to the number of free
parameters times the natural log of
the number of residuals minus 2 times
the natural log of the likelihood func-
tion. This measure is often used for
order selection of models.

Seasonal adjustment Removal of sea-
sonality from a time series. Govern-
ments around the world have cus-
tomarily used Census X-11 or
X11-ARIMA procedures to perform
the seasonal adjustment. Census
X-12 is now coming into use as the
program of choice for deseasonaliza-
tion of series.

Seasonal differencing Differencing at
seasonal lags.

Seasonal integration Integration at
seasonal lags.

Seasonal moving average Periodic
moving average model.

Seasonal model An ARIMA model
with seasonal parameters. A purely
seasonal model contains only sea-
sonal parameters; a mixed multiplica-
tive model contains nonseasonal as
well as seasonal parameters.

Seasonal pulse A pulse that occurs
during particular seasons in an in-
put series.

Seasonal unit root Seasonal integra-
tion of a series.

Seasonal autoregression Periodic aut-
oregression model.
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Seasonality Annual variation within
a series.

Second-order stationarity See covari-
ance stationarity.

Serial correlation of error Autocorrel-
ated error.

Shock An innovation, random fluctu-
ation, or error.

Slope The regression coefficient of a
function: the amount of increase in
the response variable per unit in-
crease in the explanatory variable.

Specification error Failure to properly
specify a model by not including of
all essential significant explanatory
variables and/or improperly defining
the functional form of the relation-
ship between the dependent vari-
able(s) and explanatory variables.

Spectral analysis See Fourier analysis.

SPSS� Statistical Package for the So-
cial Sciences. A popular statistical
packagefor general statisticalanalysis
developed by SPSS, Inc. Chicago, IL.

State space models Models of jointly
stationary multivariate time series
processes that have dynamic interac-
tions and that are formed from two
basic equations. The state transition
equation consists of a state vector of
auxiliary variables as a function of a
transition matrix and an input matrix,
whereas the measurement equation
consists of a state vector canonically
extracted from observable variables.
These vector models are estimated
with a recursive protocol and can be
used for multivariate forecasting.

Stationarity A condition of mean, vari-
ance, and covariance equilibrium.
These properties of a series render it
amenable to ARIMA analysis. There

are two basic types: strict and weak.
Weak (covariance or second-order)
stationarity includes constant mean,
variance, and autocovariance. Strict
stationarity adds another require-
ment to the series, and that is nor-
mality.

Statistics Sample characteristics that
estimate population parameters.

Step input A sudden and permanent
change in the input.

Step response function A sudden and
permanent response over time to a
step input.

Stochastic trend A systematic change
of level in a series that also has ran-
dom variation within it.

Strict stationarity A weak stationarity
conjoined with normal distribution of
its observations.

Super-consistency Rapid convergence
to a limit as a sample grows in size
at a higher than normal rate. Least
squares estimation of parameters
with unit roots exhibit super-consis-
tency and downward bias. Super-con-
sistency also characterizes conver-
gence of estimation of parameters in
cointegrating regressions.

Theil’s U statistic The ratio of a one-
step-ahead sum of squared forecast
errors to the sum of squared errors
for a random walk.

Time-varying combining weights
Weights that change over time as
weighted forecasts are combined to
improve the predictive reliability.

TIMEPLOT An SAS procedure for a
plot of the series over time.

Time series A realization of a data-
generating process, where observa-
tions are equally spaced across time.
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Trading day Census X-11 and X-12
correct for the number of workdays
in the month and year in performing
their computations.

Transfer function A model of a func-
tional relationship between an input
and output time series. These models
can have pulse, step, or continuous
inputs. They have decay rates that are
ordered according to the number of
decay rate parameters in the model:
Zero-order transfer functions are
have no decay parameter. Their re-
sponses are level shifts or pulses.
First-order transfer functions have an
impulse response function with one
rate parameter and they exhibit expo-
nential attenuation of growth or dim-
inution. Second-order impulse re-
sponse function with two rate
parameters and exhibit undulation of
decay. Higher-order response func-
tions have more than two decay rate
parameters and exhibit complex at-
tenuation.

Trend A systematic change in level
over time. Trends are classified ac-
cording to their type and length.
There are deterministic and stochas-
tic types of trends. There are local
(short run) and global (basic, long
run) trends. Holt-Winter exponential
smoothing models estimate local or
recent trend better than regression
models. Regression models estimate
basic or long run trends better than
exponential smoothing models.

Trend analysis The extraction and ex-
trapolation of trend from a series, of-
ten performed with ordinary least
squares linear regression analysis, to
make a forecast. This analysis focuses
on absolute or relative direction,
magnitude, significance, linearity,
and stability of the trends. See Trend.

Trend stationary A series that needs to
be detrended by regressing the series
over time and saving the residuals.

Trough Minimum value of a cycle.

Turning point A change in direction of
seasonal, trend, or cyclical value of
a series.

Unbiasedness The equality of a mean
of a statistic and the true population
parameter, when the mean of the sta-
tistic is computed from a large num-
ber of samples.

Unconditional forecast See ex ante

forecast.

Uncorrelated errors An assumption of
ordinary least squares regression esti-
mation.

Unit root A model parameter whose
value reaches or exceeds the bounds
of stationarity or invertibility. A pa-
rameter value that renders its
model nonstationary.

Unweighted least squares (ULS) An
algorithm for estimation of models
that is based on minimization of the
sum of squared errors. Starting values
are set to zero.

Validation Concurrent validation can
be measured by the fit of the model
on the historical sample. Predictive
validation is measured by the fit of
the forecast to the real data in the
holdout sample.

Variance stationarity Constant vari-
ance in a series.

Vector autoregression A multivariate
autoregression analysis that regresses
an N-dimensional vector of variables
on p lags of itself and past lags of the
other variables as well. This proce-
dure allows errors to be correlated
and for multivariate interactions.
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Wavelength The shortest temporal
distance between two identical parts
of a cycle.

Weak stationarity See Covariance sta-
tionarity.

What If An SPSS module that per-
forms contingency analysis with
exponential smoothing, ARIMA, in-
tervention, and dynamic regression
time series models. Used in conjunc-
tion with the SPSS Decision Time
module.

White noise A process with only ran-
dom or unsystematic variation resid-
ing within it.

White’s general test A test developed
by Halbert White for heteroskedas-
ticity andspecification error that is
used for diagnosis of regression
models.

Winter’s method Exponential smooth-
ing that models both trend and sea-
sonality in additive and multiplica-
tive models.

Wold decomposition theorem A theo-
rem that every covariance stationary,
nondeterministic, stochastic process
can be written as a sum of a sequence
of uncorrelated variables.

X11 SAS procedure for performing
Census X-11 series decomposition
and seasonal adjustment.

X12 SAS procedure in version 8 for
performing Census X-12 series de-
composition and seasonal adjust-
ment. See X-12 and X-12-ARIMA.

X-11 Census X-11. A method of de-
composing a time series into trend,
cycle, seasonality,and irregular com-
ponents, by which governments have
seasonally adjusted data. Developed
by Shiskin et al. at the U.S. Bureau
of the Census, Department of Com-
merce.

X-12 Census X-12. An enhanced ver-
sion of Census X-11 that incorporates
new filters, regression with time se-
ries errors, and new diagnostics. See
Chapter 2.

X-11-ARIMA An update of Census
X-11 developed by E. B. Dagum at
Statistics Canada in 1988. Later
adopted by the U.S. Census Bureau.

X-12-ARIMA Latest improvement of
X-11-ARIMA developed in 1998 by
the U. S. Bureau of the Census, now
replacing X-11-ARIMA. See X-12.
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Academic Press web site, 8

AIDS

definitional changes, 71

epidemic development modeling,

212–213

prevalence rate tracking, 75–76

Akaike Information Criterion, 220

in Box–Jenkins time series analysis, 91

corrected, in Census X-12, 66

of log transformation, 107

multiplicative models, 181–182

Algorithms, see also specific algorithms

comparisons for ARIMA models,

215–216

corrective, for regression models with au-

tocorrelated error, 439–441

in estimation of Box–Jenkins model

building, 191–208

SAS and SPSS applications for estima-

tion, 204–207

Alpha, arrived at by grid search over sum

of squared errors, 29–30

Alpha coefficient, in Holt’s linear exponen-

tial smoothing, 32

Amemiya’s prediction criterion, 220

Approval ratings

Clinton administration, 341–342, 348–349

Nixon administration, impact of Wa-

tergate, 314–339

ARCH model

for combining forecasts, 464–465

error variances, 463–464
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heteroskedastic, 475
with time-varying combining weights, 478

ARIMA
application to X-11, 51–52
conversion of, 99
forecast function, 230–232
forecast profile, 235–236
prewhitening filter, 390–392
sample autocorrelation function, 110–118
SPSS command syntax, 416–419

autoregressive error models, 452–458
SPSS estimation syntax, 206–207

SPSS X11ARIMA, 63–65

X11-ARIMA, 55–56

ARIMA models

basic formulation, 108–110

comparison of algorithms for, 215–216

controlling for systematic variation, 305

estimation

by conditional and unconditional least

squares, 192–198

of parameters, 197–198

evaluation, 468–469

longitudinal perspective, 216–217

observations for, 473

and regression combination of forecasts,

262

as seasonal moving average model,

166–167

ARIMA models, seasonal

autocorrelation structure, 169–170

Box–Jenkins multiplicative, program-

ming, 183–186

cyclicity, 151–154
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ARIMA models, seasonal (continued)

modeling strategy, 171–183

multiplicative seasonal, 162–168

seasonal differencing, 161–162

seasonality

alternative methods of modeling,

186–188

deterministic or stochastic, 188–189

seasonal nonstationarity, 154–161

stationarity and invertibility, 170–171

ARIMA noise model, 268, 273, 283–285,

287, 294, 298–301, 331–333, 353, 398

ARMA models

algorithmic estimation, 202

with autoregressive lags, 331

fitting for input series, 369

seasonal, 168

ARMA noise model, estimation for input

series, 388–390

ARMA process

characteristic patterns, 128–149

forecast profile for, 241–242

formulation, 77

identification of mixed models, 142–149

implications of autocorrelation function

for, 116–118

Artificial compression, estimated least

squares regression error variance,

434–435

Assumptions

basic to forecasting, 224–225

Box–Jenkins method, 70–74

Dickey–Fuller test and augmented

Dickey–Fuller test, 85–86

event intervention model, 267–268

noise model, 382–383

of stationarity, 8

violations of, 216

Asymptotic estimators, maximum likeli-

hood estimation based on, 207

Autocorrelated error

consequences of, and regression analysis,

426–435

regression models with

corrective algorithms for, 439–441

programming of, 443–458

Autocorrelated error models, forecasting

with, 441–443

Autocorrelated residuals, 84–85, 446–447

Autocorrelation
bias, autoregressive models compensating

for, 475
check of residuals, 336–337, 414
elimination in residuals, 89
modeling of, 454–455
partial, least squares estimation, 197
as problem in input series, 379
structure, seasonal ARIMA models,

169–170

Autocorrelation function

in ARIMA process, 110–118

autoregressive processes, 134–137

inverse and extended sample, 126–128

mixed ARMA models, 142, 146

moving average models, 138–142

noise model, 401–402

partial, see Partial autocorrelation

function

preintervention series, 302

residuals, 388, 390

seasonal, 175–176

and seasonal nonstationarity, 157, 159

slowly attenuating, 210

standard error of, 118–119

Autocovariance

strictly stationary series, 5–6

structure, seasonal moving average

model, 169–170

Autocovariance function, in ARIMA pro-

cess, 110–118

Autoregression

in combining forecasts, 458–462

forecast function for, 226–228

implications of stationarity for, 94–97

stepwise, 477

Autoregressive error

regression with, sample size and power

properties, 490–491

sources of, 435–437

Autoregressive error models, SPSS AR-

IMA procedure, 452–458

Autoregressive integrated moving average,

see ARIMA

Autoregressive models

compensating for autocorrelation bias,

475

estimation of parameters, 195–197

identification, 134–137

polynomial, 459–462
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purely seasonal, 172–173
seasonal, 164–166, 412
with serially correlated errors, 437

Autoregressive process
basic formulation in ARIMA model,

108–110
bounds of stationarity for, 120
characteristic patterns, 128–149
defined by autocorrelation function,

112–113
forecast profile for, 236–239
and PACF, 122–124
plus moving average, see ARMA process
time series, 76–77

Averaging techniques, 18–23

B

Backcasting
and conditional least squares, 193–194
in integrated moving average forecast

function, 229
in SPSS X11ARIMA, 64–65

Backward elimination procedure, 448
Baseline, naive, 250–251
Bay of Pigs, 318
Bounds of invertibility, 98–99

and autoregressive function, 125–126
autoregressive processes, 119–122
parameter estimates near, 209

Bounds of stationarity, 95–97
and autoregressive function, 125–126
autoregressive processes, 119–122
parameter estimates close to, 209

Box–Cox transformation, 90–92, 107
Box–Jenkins models

comparison with other forecast methods,
476–477

diagnosis, 208–213
estimation, 191–208
forecast accuracy, 473
modeling strategy, 368–399
sample size and power properties,

483–486
seasonal multiplicative, programming,

183–186
Box–Jenkins models, forecasting

confidence intervals, 233–234
forecast error variance, 232–233
forecast function and forecast error,

225–232

methodology, 224–225
objectives, 222–224
profiles for basic processes, 234–244

Box–Jenkins strategy, programming of sin-
gle input transfer function model,
384–399

Box–Jenkins–Tiao methodology, interven-
tion models, 7–8, 473

Box–Jenkins–Tiao strategy, 283–285
Box–Jenkins time series analysis

ARMA processes, 77
assumptions, 70–74
autoregressive processes, 76–77
implications of stationarity, 94–99
importance of modeling, 69–70
limitations, 70
moving average processes, 74–76
nonstationary series and transformations

to stationarity, 77–81
stabilizing variance, 90–92
strict stationarity, 93
structural or regime stability, 92–93
tests for nonstationarity, 81–90

Box–Ljung Q statistic, modified, 119
Box–Pierce portmanteau Q statistic, 119
Box–Pierce test, 483
Breusch–Godfrey test, 438
Business cycle, phases, 152

C

Calendar effects, as components of series,
45

Castro, Fidel, 318
Causality, establishment of, 348–350
Causal models, exogenous and endogenous

components, 7–8
Census Bureau, see also X-11

work on decomposition of time series,
50–52

X-12 program, 66, 472–473
Centering

in intervention analysis, 289
moving average, 20–22
preanalysis, 103–104
time series: mean-centering, 12–13

Centers for Disease Control, AIDS data,
212

Chow F test, 486
Clinton presidency

approval rating, 348–349
and trust in government, 34
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Cochrane–Orcutt algorithm, 439–440,
490–491

Coffee consumption, U.S., SAS and SPSS
forecast syntax, 252–256

Cointegration, regression models, 420–421
Combining of forecasts, 245–248

ARCH models for, 464–465
autoregression in, 458–462
basic averaging techniques for, 245–248
comparison of combined models,

477–478

with regression analysis, 256–263

Command log, SAS programming, 325–331

Command syntax

compared to menu selection, 2

SAS, for graphical time sequence plot,

105–106

SPSS, see SPSS command syntax

Comments, indicated by statement starting

with asterisk, 29

Conference Board index, of consumer con-

fidence, 349

Confidence intervals

forecast, 233–234

as functions of error variance, 430

specified in program syntax, 296

Construction contracts, and housing starts,

dynamic regression modeling, 406–409

Control group

for baseline comparison, 346–347

differentiation from experimental group,

349

Convergence, criterion of, 200–204, 207

Corner table, identification of transfer func-

tion structure, 379–380

Corrective weights, as functions of autocor-

related error, 442

Correlogram

autocorrelation function of seasonal

model, 176

seasonal nonstationarity detected by, 157

for stationary processes, 106–107

Counter-cyclical effects, producing autocor-

related error, 436

Covariance, see also Autocovariance

stationarity, in sample autocorrelation

function, 111–112

Cover-up, during Nixon administration,

319–323, 335

Critical elections, theory of, 292–293

Cross-correlation function, 286, 335, 370–

380, 389–390, 403–404, 488–489

Cross-correlation syntax, 333

Cross-covariance, plotted against time,

371–372

Cycles

affecting forecast accuracy, 470–471

business, phases, 152

in conditional least squares estimation

process, 193–194

in decomposition methods, 50

Cyclical dominance, month of, 55

Cyclicity, seasonal ARIMA models,

151–154

D

Dampened trend linear exponential smooth-

ing model, 38–39

Data

Academic Press World Wide Web site,

data on authors page, 7–8

AIDS, 212–213

Clinton

Presidential approval, 348–349

trust in government, 34

coffee consumption, U.S., 244–256

construction contracts, 417–419

defense and space, U.S. gross product

value, 257–261

debt, growth of U.S. gross total federal,

90

Democratic percentage of U.S. House of

Representatives seats, 140–142,

292–314

free inventory space, 28

Gallup Poll Presidential approval,

341–349

housing starts, 417–419

international airlines ticket sales, 160–

175

international terrorist incidents, 46–47

male unemployment, U.S. young, 41–43

missing, replacement, 3, 57–58, 72–74,

205

natural gas, average daily U.S. city cost

per 100 therms of, 56–65

personal consumption expenditures,

420–421

personal disposable income, 420–421
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preprocessing in SAS, 386
proper adjustment in stage 5 of X-11,

54–55
Sutter County, Calif. workforce data,

157–159
Time series

analytical approaches, 7–9
graphical analysis, 102–107

unemployment rate, U.S. civilian, 167
unemployment, young male, 44

Watergate scandal, 314–350

Wolfer sunspot data, 156–157, 162–167

Decay

first-order, in transfer function, 364–365,

367, 402

gradual, and graduated onset, 279–280

order of, 359–360

oscillatory, and abrupt onset, 278–279

pattern identification, 378

seasonal autoregressive, 169

Decision Time, SPSS, 385

Decomposition

of total impact into relative impacts, 311

X-11

comparison with exponential smooth-

ing, 65

five stages of, 52–55

SPSS syntax for, 58–63

Decomposition methods

components of series, 45–46

historical background, 50–52

seasonality and cycles, 50

trends, 46–50

Defense, and space equipment, gross prod-

uct value, 257–261

Delay parameter, and simple step function,

272

Delay time

modeled in intervention models, 304

order of, 358

transfer function, identification, 378

Derivation, PACF, 123–124

Deseasonalization, 355

Deterministic indicator, in impact analysis,

343

Deterministic input, discrete transfer func-

tion with, 359–368

Deterministic process, series driven by, 5

Detrending

by differencing or transformation, 47, 79

by regression, 49–50
series, 443–444

Diagnosis, see also Metadiagnosis
autocorrelation function of noise model,

401
Box–Jenkins model, 208–213
noise model, 382–383
residuals, with PACF, 456, 458
transfer function model, 381, 393–396

Dickey–Fuller tests
detection of unit root, 487
nonseasonal and seasonal unit roots,

173–174
for nonstationarity, 81–89, 134

Difference operator, symbolized by &�, 12
Differencing

extended sample autocorrelation func-
tion, 127

housing start series, 408
order of, 109–110
seasonal, 161–163, 167–168

in Dickey–Fuller test, 87–89
for stationarity, 175

seasonal autoregressive models, 165–166
and SPSS autocorrelation function com-

mand syntax, 129, 132
transformation into stationarity by, 79

Disturbances, autocorrelation of, 444
Disturbance term, 401
Drift

nonstationary series characterized by, 6
random walk with, 79–80, 83, 88–89, 103

Dummy variables
in impact analysis, 343
pure pulse and extended pulse, 297
in seasonal ARIMA models, 155–156,

188
and spline regressions, 474–475

Durbin M test, 438–439
Durbin–Watson d test, 438, 447–448
Dynamic regression

long- and short-run effects, 421–422
modeling strategy for transfer functions,

399–405
Dynamic regression model, evaluation,

468–469

E

Economy, during Clinton administration,
340
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Efficiency, model, impairment of, 432–435
Ergodicity

in maximum likelihood estimation, 199
working assumption of, 5

Errors, see also Sum of squared errors
ARMA, 354
autoregressive, sources of, 435–437
coding, producing additive outlier,

344–345
independent of one another in Dickey–

Fuller test, 85–86

mean prediction, 218

past and future, 230

serial correlation of, see Serial correlation

of errors

specification, resulting in biased estima-

tion, 347

standard, see Standard error

Error variance

becoming infinite, 96

and best fit, 308

effect of positive autocorrelation,

432–435

linear regression equation, 427

R2 and F tests, 430

Espionage, during Nixon administration,

315–317

Estimation

conditional least squares, see Least

squares

lag, 334

maximum likelihood, see Maximum likeli-

hood estimation

model, autocorrelation corruption of,

430–435

as stage in Box–Jenkins model building,

191–208

transfer function

by least squares, 380–381

structure, 370–380

two-step procedure, 421–422

unconditional least squares, see Least

squares

Evaluation

forecast, 248–251, 467–468

comparative, 469–475

forecast error, 223

model, 468–469

period of, and combining regression

model, 262–263

Evaluation sample, and regression combina-

tion of forecasts, 256–257, 260–262

Event intervention model, 304

assumptions of, 267–268

Watergate, 323–338

Event interventions, impacts of, 265–267

Event sequence, focus of quasi-time-series

experiment, 345

Executive privilege, Nixon, 321, 337

Exogeneity, and estimation of transfer func-

tion structure, 374–377

Expectation

forecast error, 227–228

as operation performed on discrete vari-

ables, 11–12

Explanatory power, good time series

model, 422

Exponential smoothing

accuracy of, 471–472

dampened trend linear, 38–39

evaluation of, 43–44

forecasts from, 223, 459–460

Holt’s linear, 32–38

Holt–Winters method, exponential

smoothing, 39–43, 186, 472, 476

models, comparison, 476–477

for series with trend and seasonality,

39–43

simple, 23–32

single, 44

Winters method, 39–43, 186, 472–476

and X-11 decomposition, comparison, 65

Extended autocorrelation function, 403

Extended sample autocorrelation function,

126–128, 146

Extrapolative methods, time series analysis,

7

F

Feedback

apparent, inputs suggesting, 400–401

cross-correlation function and, 373

and exogeneity, 376–377

Filters

Census X-12, 66, 472–473

Kalman, method of combining forecasts,

246–247

prewhitening, 389–391, 398, 405–406



Index 519

Fluctuations
irregular, smoothed by single moving av-

erage, 19
short-run, elimination, 21

Forecast
combining, see Combining of forecasts
confidence intervals, 233–234
evaluation, 248–251, 467–468

comparative, 469–475
generation from model, 396–397

metadiagnostic measures applied to,

217–219

methods

capabilities of, 471–475

comparison, 476–477

multiple, application of dynamic regres-

sion models, 404

one-step-ahead, 230

optimal, characteristics, 244–245

regression combination of, 256–263

statistical package syntax, 251–256

by weighted moving averages, 22–23

Forecast accuracy

Box–Jenkins models, 473

combined forecast models, 477–478

depending on forecast horizon, 249

factors affecting, 470–471

statistical assessment, 16–17

Forecast error

autoregressive process, 238–239

computation and expectation of, 227–228

evaluation, 16

inflated, 71–72

mean square, 224, 249, 261, 476

for one-step-ahead forecast, 244

Forecast error variance

Box–Jenkins models, 232–233

derived from baseline comparison,

250–251

as integrated process, 236

minimizing, 246–247

minimum, 423

noise model, 384

Forecast function

ARIMA, 230–232

autoregressive, 226–228

Box–Jenkins models, 225–232

integrated moving average, 228–230

Forecast horizon, 224–225, 229–244, 249,

472–474

Forecasting, see also Backcasting
with autocorrelated error models,

441–443
exponential smoothing for, 23–25
necessity for, 9
noise model, 383–384
single exponential smoothing for, 31–32

Forecasting, Box–Jenkins models
confidence intervals, 233–234
forecast error variance, 232–233
forecast function and forecast error,

225–232
methodology, 224–225
objectives, 222–224

Forecast interval
artificially inflated, 432
autoregressive process, 239
erroneously constricted, 435
integrated moving average model,

243–244
moving average process, 240

Forecast profiles
ARIMA, 235–236
autoregressive process, 236–239
Box–Jenkins models, 234–244
combined, 460–461
generated and saved, 313
moving average process, 239–244
plot programming, 451
white noise process, 235

G

Gallup Poll
Clinton approval rating, 341–342,

348–349
Nixon approval rating, 324, 331, 348
response series, 265–266

Gallup Poll Index, example of ARIMA
model, 134

Gambler’s toss, example of random walk
plus drift, 79–80

GARCH model
error variances, 463–464
heteroskedastic, 475
with time-varying combining weights, 478

Goodness-of-fit
indicators for, 15–17, 24
models compared according to, 216
statistical measures of, 217–221
tested by SPSS command, 30



520 Index

Granger causality test, 374, 400
Granger noncausality, 376
Graphing, Box–Jenkins modeling strategy,

368–369
Great Depression, 292, 295
Grid search, in least squares estimation al-

gorithm, 199–200

H

Heteroskedasticity, 452, 475
Hildreth–Lu algorithm, 439, 451
Historical background

decomposition of time series, 50–52
Watergate political scandal, 314–323

Historical sample, defense spending fore-
cast, 257–258, 260

Historical trend, stochastic nonlinear: terror-
ist incidents, 46–47

Holt model
addition of seasonal parameter via Win-

ters model, 39–43
linear exponential smoothing, 32–38

Holt–Winters method, exponential smooth-
ing, 39–43, 472, 476

House of Representatives, Democratic per-
centage of seats in, 140–142, 240,
310–314

Housing starts
analysis with SPSS, 417–419
dynamic regression modeling, 406–409

Hush money, during Nixon administration,
319, 321, 323

Huston plan, for covert espionage and neu-
tralization, 315–316

I

Impact analysis
applications, 342–345
modeling strategies, 282–288
programming, 288–342

Impact analysis theory
abrupt onset

and oscillatory decay, 278–279
temporary duration, 276–278

first-order step function: gradual onset,
permanent duration, 272–276

graduated onset and gradual decay,
279–280

intervention function, 270
intervention indicators, 268–270

simple step function: abrupt onset, perma-
nent duration, 270–272

Impact model, see Event intervention
model

Impulse response, certain impacts as, 266
Impulse response function

graphed, 402
of pulse effect plus noise, 284
SAS programming, 289–290
significance tests for, 280–282

Impulse response weights

and corner table, 379

as function of cross-correlation, 373–374

in transfer function, 356–358

transfer function for housing starts, 411

Innovation

current and past, 109

infinite moving average of, 97

negative, and positive PACF, 124

positive, and negative spikes on autocor-

relation function, 115–116

Innovational outlier, 344–345

Input series

fitting ARMA model for, 369

multiple, modeling transfer functions

with, 404–406

testing of ARMA noise models for,

388–390

transfer proceeding from, 372

Integrated process

characteristic patterns, 128–149

stochastic drift as, 80

Internal validity, threats against, 211–213,

346–347

Interpolation, linear, for missing value,

72–74

Intervention analysis

advantages and limitations, 345–350

impact of Watergate on Nixon approval

ratings, 317

sample size and power properties,

487–488

testing of U.S. election types, 293–297

Intervention function, formulation, 270

Intervention indicators

in impact analysis theory, 268–270

lagged value, 277–278

Intervention models

Box–Jenkins–Tiao, 7–8, Chapter 8

SPSS command syntax, 288–289
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Inverse autocorrelation function, 126–128
Invertibility, see also Bounds of invertibility

moving average model, 97–99
seasonal ARIMA models, 170–171

Iterative process
detection of outliers, 345
maximum likelihood estimation, 198–204

J

Job performance approval, autoregressive
process, 76–77

K

Kalman filter, method of combining fore-
casts, 246–247

Kurtosis coefficient, 93

L

Lagged response value, 277–278
Lag operator

backshifting of focus of time period, 12
first-order step function, 273
seasonal factors expressed in terms of,

163
Latency effects, producing autocorrelated

error, 436
Least squares

conditional, 307
to estimate forecast function and inter-

val, 255
conditional and unconditional

in ARIMA model estimation, 192–198
estimation of transfer function,

380–381
SAS and SPSS specifying, 204–208

estimated generalized, 442, 450–451
ordinary

compared with Cochrane–Orcutt esti-
mator, 490

regression analysis, 260, 262
Levenberg–Marquardt algorithm, 198, 200,

202–204
Lewinsky, Monica, political scandal,

339–341
Likelihood function, in maximum likeli-

hood estimation, 198–203
Limitations

Box–Jenkins models, 70
intervention analysis, 346–350

maximum likelihood estimation, 204

multiple-input models, 405–406

SPSS X11ARIMA, 63–64

Linear constant model, 25

Linear transfer function, modeling strategy,

399–419

Linear transfer function method, identifica-

tion of structural parameters,

377–379

Ljung–Box statistic, modified, 210

Log likelihood

and likelihood ratio, 220

in maximum likelihood estimation,

198–204

M

Maximum likelihood algorithm, 441

Maximum likelihood estimation, 198–204

autoregression procedure, 447–448, 450,

454, 456

in combining forecasts, 459–460

SPSS program syntax, 206–207

of transfer function, 380–381

Mean absolute percentage error, 17, 249,

261, 384, 476

Mean-centering, time series, 12–13

Mean shift, time-dependent, 154–155

Mean square error, 218–219, 250–251

Melard’s algorithm, fast maximum likeli-

hood, 205–206

Memory

autocorrelated error process, 431

finite

autocorrelation function with, 114

moving average process, 116

for two time lags, 75

Metadiagnosis

in comparison of models, 217–222

multiplicative models, 182–183

noise model, 383–384

transfer function model, 381

Metadiagnostic criteria, statistical program

output, 221–222

Milosevic regime, and forecast combining,

257–258

Misspecification

error, of forecast, 483–484

minimized, 469

producing autocorrelated error, 436
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Modeling

autocorrelations, 454–455

importance for Box–Jenkins time series

analysis, 69–70

seasonality, 153

alternative methods, 186–188

transfer function, with SAS, 385–399

trend, regression for, 46–50

Modeling strategies

conventional Box–Jenkins, 368–399

full-series, 312

for impact analysis, 282–288

linear transfer function, 399–419

seasonal ARIMA models, 171–183

Moving average

accuracy of, 471

autoregressive integrated, see ARIMA

centered, 20

double, 20–22

integrated

forecast function for, 228–230

forecast interval for, 243–244

parameters, in transfer function model,

393

single, 18–19

weighted, 22–23

Moving average models

bounds of invertibility, 120–122

identification, 137–142

PACF, 124–125

purely seasonal, 172–173

seasonal, 166–168

with white noise residuals, 179

Moving average processes

and autoregression, duality, 121–122

characteristic patterns, 128–149

forecast profile for, 239–244

implications of stationarity for, 97–99

in time series, 74–76

Multiple-input models

linear transfer function strategy for, 416

problems with, 405–406

Multiplicative models

decomposition, 51–52

estimation, diagnosis, and comparison,

181–182

seasonal, 162–168

modeling strategy, 173–183

Winters, 40–41

N

Naive forecast, 19–20
Natural log, transformation, 90–92
Newton–Raphson algorithm, 202
Nixon, Richard M., Watergate impact on

approval ratings, 314–339
Noise model

ARIMA, see ARIMA noise model
ARMA, see ARMA noise model
formulation of, 381–384
input series, 398
parameters, identification, 382
and transfer function, cross-correlation,

394, 396, 403, 414–415
Nonlinearity, trend, 46–47
Nonstationarity

augmented Dickey–Fuller test, 84–85
and autocorrelation function, 132–134
Box–Jenkins models, 71–72
characteristic patterns, 103
Dickey–Fuller test, 81–84

assumptions of, 85–86
programming, 86–89

seasonal
identification, 171
tests for, 188–189

seasonal ARIMA models, 154–161
seasonal effects, 6–7
tests for, 486–487
and transformations to stationarity,

77–81

O

Observational outlier, 344–345
Obstruction of justice, Nixon, 322–323
Operationalism, 348
Order of decay, 359–360
Outlier distortion, smoothing, in X-11, 54
Outliers

additive and innovative, 487–488
affecting forecast accuracy, 470
data review for, 400
modeling with impact analysis, 344–345
nonstationarity following from, 78
replacement of, 283–284

Overdifferencing, 485
Overfitting

for alternative model, 413
model testing by, 210–211

Overmodeling, 485
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P

PACF, see Partial autocorrelation function

Parameterization, autoregressive, 233–234

Parameters

autoregressive

first-order, 412

and forecast profile, 236–237

autoregressive and ARIMA model, esti-

mation, 195–198

Box–Jenkins model, estimation, 208–209

delay, and simple step function, 272

noise model, identification, 382

smoothing, 234

structural, transfer function, 374, 377–379

Parsimony

good time series model, 422–423

model, determined by number of parame-

ters, 220–221

multiplicative model simplification, 182

and trimming moving average terms, 399

Partial autocorrelation function

autoregressive processes, 134–137

diagnosis of residuals, 456, 458

and impact analysis modeling strategy,

287

mixed ARMA models, 142, 146

moving average models, 138–142

moving average process, 107

noise model, 401–402

preintervention series, 302

residuals, 388, 390

sample, 122–125

seasonal models, 157, 159, 174–176, 179,

181

Periodicity

annual

cycles with, 153

trigonometric function for control of,

186–188

data set in SPSS X-11, 61

SPSS X11ARIMA, 63

Personal disposable income, relationship to

personal consumption expenditures,

420–421

Phases, Watergate scandal, 320–323

Phillips–Perron test, 487

Polynomial autoregression model, 459–462

Portmanteau modified tests, 210, 306, 388,

482–484

Power analysis
Box–Jenkins models, 483–486
Census X-11, 482–483
intervention analysis and transfer func-

tions, 487–490
regression with autoregressive errors,

490–491
unit root tests, 486–487

Prais–Winsten algorithm, 440–442, 451,
490–491

Prediction

accuracy of transfer function models, 474

based on moving average, 23

poor, cost of, 222

precision of, measuring, 224

trust in government, 33–34

Prediction error, mean, 218

Preintervention model, SAS programming,

331–333

Preprocessing, Box–Jenkins modeling strat-

egy, 368–369

Presidential elections, classification of,

291–297

Presidential scandals

Clinton–Lewinsky, 339–342

Watergate, 314–339

Prewhitening, 488

Box–Jenkins modeling strategy, 369–370

filter, 389–391, 398

input variable, 333

multiple input series, 405–406

and test of exogeneity, 376

Programming

Dickey–Fuller test, 86–89

impact analysis, 288–342

regression with autocorrelated errors,

443–458

seasonal multiplicative Box–Jenkins mod-

els, 183–186

single input transfer function model,

384–399

Watergate impact model, 323–338

Programming syntax

SAS, see SAS programming syntax

single exponential smoothing, 26–32

SPSS, see SPSS programming syntax

Winters model, 40–43

Pulse

Bull Moose Party variable defined as,

294–295
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Pulse (continued)
dummy variables for, 297, 307
extended and instantaneous, 295–296
indicator for 1920 election, 310
modeled, 286

Pulse function, 269–270, 277, 284, 287, 335
Pulse input, transfer function model,

364–365
Pulse models, 306–307
Pulse response function, discrete and dou-

ble, 361–362
Purely seasonal models, 171–173

R

Ramp function, response transformed into,
275

Random variables, expected value of, 11
Random walk

about previous nonzero level, 103–104
Harvey’s, 219–220
nonstationarity following from, 78–79
nonstationary series characterized by, 6
plus drift, in Dickey–Fuller test, 83, 85,

88–89
process after inversion, 120

Realignment, U.S. electorate, 292–295,
305–312

Recursion, forward and backward, in esti-
mation process, 193–194

Regime shifts, affecting forecast accuracy,
470, 473

Regime stability, in Box–Jenkins time se-
ries analysis, 92–93

Regression
with autocorrelated errors, programming,

443–458
with autoregressive errors, sample size

and power properties, 490–491
combination of forecasts, 256–263
dynamic, linear transfer function model-

ing strategy, 399–404
linear, with ARIMA errors, 473
for testing and modeling trend, 46–50

Regression analysis
and consequences of autocorrelated er-

ror, 426–435
for forecasting, 223
iterated, 127–128

Regression coefficient
in discrete transfer function, 359

first-order step function, 273

and impact modeling, 285

in linear regression equation, 427–428

presidential approval ratings, 335–336

in transfer function models, 362, 364–367

Regression equation, Dickey–Fuller test, 82

Regression method, for combining fore-

casts, 247–248

Regression models

with autocorrelated error, corrective algo-

rithms for, 439–441

forecasting over long-run horizons,

474–475

with stochastic variance, 462–465

Regression weights, in transfer function,

358–359, 362–366

Representativeness, sample, 4

Residual analysis, model diagnosis entail-

ing, 209–210, 394

Residual sum of squares, 92–93

Response, and intervention, relationship,

271–272

Response function

first-order step function, 272–275

impulse, see Impulse response function

Risk structure, in combined forecast, 465

Root mean square error, 17, 219

S

Sabotage, during Nixon administration,

315–317

Sample

data collection, and forecasting objec-

tives, 222–223

historical, defense spending forecast,

257–258, 260

representativeness of, 4

Sample size

approximations, 3–4

Box–Jenkins models, 483–486

Census X-11, 482–483

intervention analysis and transfer func-

tions, 487–490

regression with autoregressive errors,

490–491

SAS

DLAG option, 160–161

dynamic regression modeling with,

406–419
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forecasting ability, 251–252

graph of series exhibiting linear trend,

104–105

interpolation of missing values by PROC

EXPAND, 73–74

model estimation, algorithms for,

204–207

modeling of transfer function, 385–399

output of metadiagnostic criteria, 221

testing with linear regression, 48–49

version of X-11, 56–58

Winters and Holt models in, 42

SAS program

data step, 26

Dickey–Fuller test, 86–89

forecast procedure producing data sets,

27–28

Holt linear trend exponential smoothing

model, 34–36

identification of series, 128–132

Watergate impact model, 323–331

SAS programming syntax

Complete Nixon Era, 333–334

with DLAG option, 160–161

forecasting U.S. coffee consumption,

252–254

graphing forecast profile, 397

Holt model, 35–36

for identifying model, 128–132

impact analysis, 297–314

impulse response function, 289–290

PROC AUTOREG, 443–452

seasonal multiplicative Box–Jenkins mod-

els, 183–185

transfer function model, 392

for X-11, 56–58

Scandals, presidential

Clinton–Lewinsky, 339–342

impact theory, 348

Watergate, 314–339

Scenario analysis, 312–314

Schwartz Bayesian Criterion, 220, 411,

413

in Box–Jenkins time series analysis, 91

impact analysis models, 308–309

multiplicative models, 181–182

Seasonal components, multiplicative, identi-

fication, 174–176, 179, 181

Seasonal correction factors, in X-11, 53

Seasonal effects

nonstationarity, ARIMA models,

154–161

nonstationary series, 6–7

Seasonality

controlling for, 50

deterministic or stochastic, 188–189

modeling: alternative methods, 186–188

overestimation, 485

series with

adjustment of, 153

exponential smoothing for, 39–43

Seasonal models

general multiplicative, modeling strategy,

173–183

purely SAR and purely SMA, 172–173

Serial correlation of errors

autoregression adjusting for, 461

and dynamic regression models, 425–426

regression analysis and autocorrelated er-

ror, 426–435

tests for, 437–439

Shocks

around mean, moving average process as

function of, 109–110

driving time-ordered stochastic series,

75–76

having inertial memory of one period,

431

moving average, infinite sequence of, 120

multiple, in maximum likelihood estima-

tion, 199

persistence, 98–99

random

autoregressive forecast function,

227–228

and white noise process, 77–81

in sample autocorrelation function, 114

tracking through time, 94–95

Signals, as components of series, 45–46

Significance tests

biased, 347

for impulse response functions, 280–282

incorrect, 307

of linear regression parameters, 427–430

transfer function model, 393

Significant spikes, in cross-correlation func-

tion, 488–490

Simple average, used for series smoothing, 18
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Smoothing

exponential, see Exponential smoothing

irregular fluctuations, by single moving

average, 19

methods, forecasts from, 251

outlier distortion, in X-11, 54

single moving average, by double moving

average, 20–21

time series, simple average for, 18

Smoothing constant, 23–25, 247–248

Smoothing weight

found by grid search over sum of

squared errors, 29–30

in Holt’s linear exponential smoothing,

32

Specification error, resulting in biased esti-

mation, 347

Spline regression, 474–475

SPSS

ARIMA procedures for autoregressive er-

ror models, 452–458

dynamic regression modeling with,

406–419

forecasting ability, 251–252

maximum likelihood estimation, 204–207

output of metadiagnostic criteria, 221

performing multiplicative Winters expo-

nential smoothing, 43

syntax window, 72

X11ARIMA, 63–65

SPSS command syntax

ARIMA, 416–419

autocorrelation function, 129, 132

intervention analysis, 288–289

for simple exponential smoothing, 28–32

time sequence plot, 38

SPSS programming syntax

ARIMA estimation, 206–207

for decomposition: X-11, 58–63

forecasting U.S. coffee consumption,

254–256

Holt model, 36–38

housing start analysis, 417–419

impact analysis, 290–297

seasonal multiplicative Box–Jenkins mod-

els, 185–186

Stability

boundaries of, 276

good time series model, 423

structural or regime, in Box–Jenkins time

series analysis, 92–93

Standard error

autocorrelation function, 118–119

bias, 436–437

PACF, 125

Standards, statistical, forecasts evaluated

by, 469–470

Startup spikes, 365–367

Stationarity, see also Bounds of stationarity

assessment of, 132–134

assumptions of, 8

correlograms and, 106–107

difference, 6–7

implications for

autoregression, 94–97

moving average processes, 97–99

seasonal ARIMA models, 170–171

strict, in Box–Jenkins time series analy-

sis, 93

transformations to, 77–81

trend, 6–7, 83, 104–105

types, 5–6

Statistics

assessment of forecast accuracy, 16–17

fit

following listed output, 37

SAS forecast procedure, 27–28

Q, and standard error of autocorrelation

function, 119

test, in stage 5 of X-11, 54–55

Step function

changes attributed to, 287

first-order: gradual onset, permanent du-

ration, 272–276

simple: abrupt onset, permanent dura-

tion, 270–272

Step input, and impulse response function,

360–363, 365–368

Stochastic input, discrete transfer function

with, 356–358

Stochastic process, series driven by, 5

Stochastic variance, models with, 462–463

Summation, single and double, 10–11

Sum of squared errors, 16, 29–30, 48, 194–

196, 199–204, 218, 427

T

Taylor series approximation, 201, 204

Terrorist incidents, stochastic nonlinear his-

torical trend, 46–47
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Time sequence graph, analysis of time se-

ries data, 102–106

Time sequence plot, produced by SPSS, 31,

38

Time series

applications, 4–5

ARMA processes, 77

autoregressive processes, 76–77

decomposition methods, 45–65

described, 2–3

mean level, seasonal shift in, 154

moving average processes, 74–76

nonstationary

Nixon’s presidential approval rating,

338

and transformations to stationarity,

77–81

postintervention, 283–287, 299, 303

preintervention, 274, 282–283, 285, 298–

303, 342–343

stationary, 237, 242

univariate, historical impacts on, 212–213

Time series analysis

Box–Jenkins, see Box–Jenkins time se-

ries analysis

internal validity, threats against, 211–213

modeling: importance, 69–70

Time series data

analytical approaches, 7–9

graphical analysis, 102–107

Time series models

good, characteristics of, 422–423

sample size and power properties

Box–Jenkins models, 483–486

Census X-11, 482–483

tests for nonstationarity, 486–487

Time-varying combining weights, 478

Trading day

adjustment, in X-11, 52–53

regression estimates, in X11ARIMA, 65

Transfer function

definition and importance, 353–355

linear, modeling strategy, 399–419

sample size and power properties,

488–490

single-input, assumptions and basic na-

ture, 355–368

structure, direct estimation, 370–380

Transfer function models, 7–8

assumptions of single-input case, 355

basic nature of single-input, 355–368

cointegration, 420–421
dynamic regression, long- and short-run

effects, 421–422
modeling strategies, 368–420
predictive accuracy, 474

Transformation, see also Box–Cox transfor-
mation

natural log, 90–92
Prais–Winsten, 440–442

Trend, see also Detrending
calculation by double moving average,

21–22
in decomposition methods, 46–50
deterministic, random walk with drift

around, 89
deterministic linear, 83
as example of nonstationarity, 104–105
long-run, 6–7
removal of

by differencing or transformation, 7,
47, 49

by regression, 7, 49–50
seasonal shift in slope, 156
series with, exponential smoothing for,

39–43
short-run, 6–7
stochastic, 6–7

nonstationary, 113
Trend-cycle

smoothing, in SPSS X11ARIMA, 63–64
in X-11, 51–52

estimation, 53
Trend stationary, 49, 80–81
Trigonometric function, for controlling an-

nual periodicity, 186–188
Trust in government

as casualty of Vietnam War, 348
and Clinton presidency, 34
prediction, 33

U

Underdifferencing, 485
Underfitting

for alternative model, 413
model testing by, 210–211

Undermodeling, as special case of incorrect
order, 485

Unemployment, U.S.
SAS programming syntax, 129
young males, multiplicative model,

41–43
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Unit root, seasonal, 173–174, 179
Unit root tests, 299

Augmented Dickey–Fuller (ADF), 84–85
Dickey–Fuller (DF), 81–89
performance of, 486–487
Phillips–Perron (PP), 487
seasonal, 189
seasonal nonstationarity detected by,

159–161
Unpatterned spikes, 365–367, 378–379, 392,

402–403
Updating, see Smoothing

V

Validation period, series testing, 224
Validation sample, 25
Variance

of error, see Error variance
forecast error, see Forecast error variance
intercept of regression model, 429
regression coefficient, 428
residual, 92–93
stabilization, in Box–Jenkins time series

analysis, 90–92
stochastic, models with, 462–465

Variance–covariance matrix, 427, 433–434

W

Warping factor, 433
Watergate, impact on Nixon presidential ap-

proval ratings, 314–339
What If analysis, 312–314
White House secret intelligence unit, dur-

ing Nixon administration, 315–316
White noise

error diagnosed as, 456
input series converted to, 370
random insignificant, 147

White noise process, 77–81, 117
forecast profile for, 235
weighted sum of present and past values,

196
White noise residuals

autocorrelation check, 336–337, 414

Box–Jenkins time series, 481–482
determination of, 305
diagnosis, 394, 396
in Dickey–Fuller test, 84
and model diagnosis, 210
moving average models yielding, 179
noise model, 402
rendered amenable for analysis, 87
testing for, 86

Winters model
exponential smoothing, 186, 476
seasonal parameter, addition to Holt

model, 39–43
Wold decomposition theorem, 186
Wolfer sunspot time series, 156–157
Workforce data, seasonal nonstationarity,

157–159, 162–163
World Wide Web, AP site, 8

X

X-11
coupled with ARIMA, 55–56

SPSS, 63–65
decomposition, comparison with exponen-

tial smoothing, 65
estimation of trend-cycle, 53
medium-range predictions from, 472
output of tables and test statistics, 54–55
prior factors and trading day adjustment,

52–53
sample size and power properties,

482–483
SAS and SPSS versions, 56–63
for seasonal decomposition and adjust-

ment, 51–52
seasonal factor procedure, 53
smoothing of outlier distortion, 54

X-12
filters, 472–473
new features of, 66

Y

Y2K, programming problems, 52
Yule–Walker equations, 123–124, 197
Yule–Walker estimation, 447, 450
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